
Mapping of Subtasks with Multiple Versions in a
Heterogeneous Ad Hoc Grid Environment

Sameer Shivle1, H. J. Siegel1,2, Anthony A. Maciejewski1, Tarun Banka1,

Kiran Chindam1, Steve Dussinger1,3, Andrew Kutruff1, Prashanth Penumarthy1,
Prakash Pichumani1, Praveen Satyasekaran1, David Sendek1,

J. Sousa1,3, Jayashree Sridharan1, Prasanna Sugavanam1, and Jose Velazco4

Colorado State University

1Electrical and Computer Engineering Dept.
2Computer Science Dept.

Fort Collins, CO 80523, U.S.A
 {ssameer, hj, aam, tarunb, kiran, prashyp, prkash,

moses, jaya, prasanna}@engr.colostate.edu
{rcastain, sendekdm}@lamar.colostate.edu

3HP Technologies
Fort Collins, CO 80528-9544

{sjd, jso}@fc.hp.com

4Abbott Laboratories
Barceloneta, Puerto Rico 00617

jose.velazco@abbott.com

 This research was supported in part by the Colorado State
 University George T. Abell Endowment.

Abstract—An ad hoc grid is a heterogeneous computing
system composed of mobile devices. The problem studied
here is to statically assign resources to the subtasks of an
application, which has an execution time constraint, when
the resources are oversubscribed. Each subtask has a
preferred version, and a secondary version that uses
fewer resources. The goal is to assign resources so that
the application meets its execution time constraint while
minimizing the number of secondary versions used. Five
resource allocation heuristics to derive near-optimal
solutions to this problem are presented and evaluated.

Index Terms— ad hoc grid, communication scheduling,
mapping, resource allocation, task scheduling.

1. Introduction and Problem Statement

An ad hoc grid is a heterogeneous computing
(HC) and communication system without a fixed
infrastructure (i.e., all of its components are mobile).
Ad hoc grids allow a group of individuals to
accomplish a mission that involves extensive
computation and communication among the grid
components, often in a hostile environment. Examples
of applications of ad hoc grids include: disaster
management, wildfire fighting, and peacekeeping
operations [16]. In all of these cases, a grid-like
environment is necessary to reliably support the
coordinated effort of a group of individuals working
under extreme conditions. If, for any reason, some of
the machines in the ad hoc grid fail, then due to
limitations on the resource availability, some of the
subtasks of the application task will be forced to
receive degraded service.

An important research problem is how to assign
resources to the subtasks (matching) and order the
execution of the subtasks that are matched (scheduling)
to maximize some performance criterion of a HC
system. This procedure of matching and scheduling is
called mapping or resource allocation. The mapping
problem has been shown, in general, to be NP-
complete (e.g., [8, 10, 12]). Thus, the development of
heuristic techniques to find near-optimal solutions for
the mapping problem is an active area of research (e.g.,
[1, 4, 5, 6, 7, 9, 11, 15, 17, 21]).

For this research, a single, large application task is
considered to be composed of S communicating
subtasks with data dependencies among them. Each
subtask has two versions that could be executed. There
is a primary version, called full version and a
secondary version, called degraded version, utilizing
only 10% of the resources that the primary version
needs, and producing only 10% of the data output for
the subsequent children subtasks. Thus, the degraded
version (secondary version) represents a reduced
capability, designed to provide some lesser overall
value while consuming fewer resources. This
application task is to be executed in an ad hoc grid as
part of the mission being conducted.

Initially it is assumed that the simulated HC
environment consists of M machines in the ad hoc grid.
It is also assumed that a static mapping that maps the
subtasks to these M machines using their full versions
in the ad hoc grid already exists [18]. However, if for
some reason a subset of machines fails, then the
existing static mapping cannot be used and some of the
subtasks will be forced to use their degraded versions

Administrator
Text Box
0-7695-2210-6/04 $20.00 © 2004

due to a lack of available resources. We address two
ways of solving this problem. First, use the previous
static mapping for subtasks mapped to the all the
machines (assuming that all the machines in the grid
are working) and derive a new mapping for only the
subtasks mapped to the failed machines. Second,
discard the entire previous static mapping and derive a
new mapping for the entire application task to the set
of machines that are still available.

The studied HC environment has been designed
such that once a subset of machines fails it is not
possible to map all the subtasks using their full version
within the limited battery energy available. Hence, the
available battery energy becomes a constraint. The
goal of this study is to maximize the number of full
version subtasks that can be executed while still
completing the application task within the energy
constraint in addition to an application execution time
constraint τ. The underlying assumptions are that the
battery power and maximum time allowed to execute
the application are hard constraints, and that it will be
necessary to use degraded versions of some subtasks to
meet the constraints. In this study, the performance of
five mapping heuristics in three different, ad hoc grid
configurations is evaluated and compared. The wall
clock time for each mapper itself to execute is required
to be less than or equal to 180 seconds on a typical
unloaded (i.e., running no other application) 1 GHz
desktop machine.

The next section describes the simulation setup
used for this research. Section 3 provides a list of some
of the literature related to this work. In Section 4, the
heuristics studied in this research are presented.
Section 5 describes the results, and the last section
gives a brief summary of this research.

2. Simulation Setup

In this study, the application task is composed of
1,024 communicating subtasks. This large number of
subtasks is chosen to present a significant mapping
challenge for each heuristic. The data dependencies
among the subtasks are represented by a directed
acyclic graph (DAG). The pseudocode to generate the
DAG is given in the appendix of this paper. For this
study, ten different DAGs are developed. The
maximum fan-in (i.e., the number of input global data
items received by a subtask) and fan-out (i.e., the
number of output global data items sent out from a
subtask) for all the ten DAGs generated are twelve and
two, respectively. Also, for each DAG there are seven
subtasks with no predecessors, seven subtasks with no
successors, and the remaining 1,010 subtasks have
predecessors and successors. The sizes of the global
data items to be transferred from one subtask to

another are sampled from a Gamma distribution, with a
mean value of 2.8 megabits and a variance of 1.4
megabits.

Initially, for the baseline grid configuration (i.e.,
when all machines are present), it is assumed that there
are a total of eight machines in the simulated ad hoc
grid and these are divided equally into two classes:
“fast machines” and “slow machines.”

The three different ad hoc grid configurations,
each with less than eight machines are as shown in
Table 1. Case A represents the grid configuration
where two fast and two slow machines are present;
Case B has two fast and one slow machine; and Case C
has one fast and two slow machines.

Table 1: Simulation configurations.

configuration # fast
machines

slow
machines

Case A 2 2
Case B 2 1
Case C 1 2

The estimated expected execution time for each

subtask on each machine is assumed to be known a
priori. The estimated time to compute (ETC) values
are used by the mapping heuristics. The estimated
execution time of subtask i on machine j is ETC(i, j).
The ETC values for all subtasks, taking heterogeneity
into consideration, were generated using the Gamma
distribution method described in [2]. For this research,
a task mean and coefficient of variation (COV) were
used to generate the ETC matrices. The mean subtask
execution time was chosen to be 100 seconds and a
COV of 0.9 was used to generate an ETC matrix with
high task and high machine heterogeneity. For this
study, ten different ETC matrices were generated and
used with each of the ten DAGs to create 100 different
scenarios.

To obtain the two classes of machines, all the ETC
values for the slow machines are adjusted by a
multiplicative factor (MF) [18]. For each subtask i, the
ratio diffi of the ETC value of the fastest slow machine
to the ETC value of the slowest fast machine is
calculated as

 diffi = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
machinesfastacrossfor),(max

machinesslowacrossfor),(min

jjiETC

jjiETC
.

Then the value of MF is given by MF = 2 / (min diffi
for i ∈ [0, 1023]). All the ETC values for the slow
machines are now multiplied by the MF to get the new
adjusted values. After creating the two classes of
machines, the new mean estimated execution time for a
single subtask is 131 seconds. For this study, across all

2

the subtasks in an ETC matrix, the average fastest
machine is approximately ten times faster than the
average slowest machine. Each machine j has four
energy parameters associated with it:
a. maximum battery energy: B(j);
b. rate at which it consumes energy for subtask

execution, per ETC time unit: E(j);
c. rate at which it consumes energy for subtask

communication, per communication time unit:
C(j); and

d. the machine’s communication bandwidth: BW(j).
Parameters (b) and (c) use a simplified model of real
energy consumption.

The energy consumed for executing a single
subtask i on machine j is ETC(i , j) × E(j). The time
required to transfer one bit of a data item between
machine j and machine k is the inter-machine
communication time called CMT(j, k) and is given by:

())(),(min1)(kBWjBWkj,CMT = . The energy
consumed to send a data item g of size |g| from
machine j to machine k is CMT(j, k) × C(j) × |g|. Each
machine can transfer data to only one destination at a
time, and can do so while it is computing. A machine
can simultaneously handle one outgoing data
transmission and one incoming data reception. Similar
to the study in [20], we assume that:
a. a subtask can send out data only after it has

completed execution; and
b. a subtask may not begin execution until it receives

all of its input data items.
The ad hoc grid that is considered for this project

is a simplified version of an actual one. The list of
simplifying assumptions that have been made are as
follows:
a. the energy consumed by a subtask to receive a

data item is ignored;
b. any initial data (i.e., data not generated during

execution of the application task) is preloaded
before the actual execution of the application task
begins; and

c. a machine consumes no energy if it is idle (i.e., not
computing or not transmitting).
The values of B(j), C(j), E(j), and BW(j) for both

fast and slow machines are shown in Table 2. These
values represent an approximate industry average
based on microprocessors and battery capacity selected
on currently commercially available machines. Fast
machines are typified by the DELL Precision M60
notebook computer using an Intel MP4M processor
operating at 1.7GHz. The statistics for the slow
machines are typical personal digital assistant (PDA)
computers, such as the DELL Axim X5 that uses an
Intel PXA255 processor operating at 400 MHz.

Table 2: The values of B(j), C(j), E(j), and BW(j)
for fast and slow machines.

 fast machines slow machines

B(j) 580 energy units 58 energy units

C(j) 0.2 energy units/s 0.002 energy units/s

E(j) 0.1 energy units/s 0.001 energy units/s

BW(j) 8 megabits/s 4 megabits/s

The value of the time constraint τ is chosen so that
it ensures that all machines are utilized. A simple
greedy mapping heuristic was used to determine the
value of τ as 34,075 seconds. The performance of each
heuristic is studied for each of the three ad hoc grid
configurations and across the 100 different scenarios.

3. Related Work

The literature was examined to select a set of
heuristics appropriate for the HC environment
considered here. The ETC matrices and the DAGs
were generated using the same method as in [18].
However, in [18] the subtasks did not have versions
and also the performance metric was to minimize the
battery energy consumed, unlike in this study, where
the battery energy is a constraint.

Min-Min, Genetic Algorithm, and MCT, have
been used previously to map tasks onto heterogeneous
machines (e.g., [7]). The performance goal in [7] was
to minimize the total time required to complete an
application task, whereas the goal of our study is to
minimize the number of subtasks using degraded
versions mapped while completing the entire
application task within the available resources and
within a time constraint. The Min-Min heuristic has
proven to be a good heuristic for dynamic and static
mapping problems in earlier studies (e.g., [7, 15]). The
Bottoms Up heuristic used in this study is a variation
of the Min-Min heuristic. Bottoms Up assigns tasks to
machines in a manner similar to the Min-Min heuristic,
but considers tasks for scheduling in a different
manner. Genetic Algorithms are a technique used for
searching large solution spaces and have been used for
mapping subtasks to machines in a HC environment
(e.g., [7, 19, 20]). The Genetic Algorithm used in this
study is a slightly modified version of the one used in
[20].

3

4. Heuristics

For all the heuristics, except Bottoms Up, only the
subtasks whose predecessors had been fully mapped
(referred to as mappable subtasks) could be considered
during a given mapping iteration. After mapping a sub-
task, all heuristics were required to update the time and
energy used for both subtask execution and inter-
machine communication. The makespan is defined as
the overall execution time of the application task on
the machine suite in the ad hoc grid. So the final
makespan of all mappings has to be less than or equal
to τ.

The Bottoms Up, Genetic Algorithm, Min-Min,
and MCT heuristics all have two phases. In the first
phase, subtasks are assigned to machines using their
full versions, ignoring energy and makespan
constraints. In the second phase, some of the subtasks
are converted to their degraded versions, such that the
new mapping does not violate either the energy or time
constraint. Also, the Genetic Algorithm heuristic
initially assumes that all the machines are present in
the grid and performs a static mapping. This initial
mapping is then modified based on the knowledge that
a specific subset of machines is no longer available in
the ad hoc grid. This section describes the five
heuristics that were studied.

4.1. Recursive Bisection

Using their full versions, all subtasks are sorted in
descending order of their average ETC times across all
machines to form List 1. This ordering of subtasks in
List 1 is used to determine the version of the subtask to
be mapped.

Figure 1: Levelizing of subtasks S0, S1, S2, S3,
S4, and S5 for a given sample DAG.

In a manner similar to that used in [13] and as
shown in Figure 1, the Recursive Bisection (RB)
heuristic assigns subtasks to levels depending on the
data precedence constraints.

The lowest level consists of subtasks with no
predecessors and the highest level consists of subtasks
with no successors. Each of the other subtasks is at one
level above the highest producer of its global data
items. Subtasks are mapped to their minimum
completion time machine in order from the lowest-
level subtask to the highest-level subtask. Within a
level, subtasks are chosen randomly for mapping.

Initially all the subtasks are mapped to their
minimum completion time machines using their full
versions. After all subtasks have been mapped, the
entire mapping is evaluated to ensure that energy and
makespan constraints have been met. If either the
energy or makespan constraint is violated, then using
the bisection schedule, described below, some of the
subtasks are converted to their degraded versions.
Bisection Schedule

If the bisection schedule is needed, the first 512
subtasks (half of the total number of subtasks) in List 1
are selected to be degraded version subtasks. All
subtasks are then mapped using the mapping procedure
described earlier. At the end of the mapping,
depending on the makespan and the battery energy on
each of the machines, it is decided whether to increase
or decrease the number of degraded version subtasks.
If either the energy or time constraint is violated, then
the number of degraded version subtasks is increased
by half of the current number. If the energy or time
constraint is not violated, then the number of degraded
version subtasks is decreased by half of the current
number. This process of bisection is repeated until the
number of degraded version subtasks cannot be
reduced any more within the energy and makespan
constraints.

4.2. Bottoms Up

In the first phase, Bottoms Up (BU) assigns
subtasks to levels in a manner similar to the RB
heuristic. However, unlike RB, the BU heuristic begins
by mapping subtasks from the highest level. Thus, for
the BU heuristic, the set of mappable subtasks at any
given time consists of all subtasks that have no
successors and all subtasks whose successors have
previously been mapped. Subtasks within each level
are randomly selected for mapping.

Let the time for execution and communication of
subtask i on machine j, normalized with respect to the
maximum time required for execution and
communication by subtask i across all machines be
NT(i, j). Let the energy consumed for execution and
output communication of subtask i on machine j,

level 0
(lowest level)

level 3
(highest level)

S0

S3

S1

S2

S4

S5

level 2

level 1

4

normalized with respect to the maximum energy
consumed for execution and output communication of
subtask i across all machines, be NE(i, j). The fitness
value γij for each mappable subtask on each machine is
calculated as γij = NT(i, j) + NE(i, j).

For each mappable subtask considered, the
machine that gives the minimum fitness value is
determined and the subtask is assigned to that machine.
This process of machine assignment (matching) is
repeated for all subtasks in the application task. The
subtasks are scheduled for execution in the reverse
order they were matched. The entire mapping is then
evaluated. If the mapping does not meet either the
energy or the makespan constraint, then the second
phase of the heuristic is executed.

In the second phase, the makespan constraint is
met as follows. All the subtasks in the application task
using their full versions and using the mappings
obtained from the first phase are sorted in the
descending order of their execution times. Using this
ordering, one by one each subtask is converted to its
degraded version, until the makespan constraint is met.
Every time a subtask is converted to its degraded
version, the entire mapping is evaluated. After the
makespan constraint is met, if the battery constraint is
exceeded on any of the machines, then the following
procedure is carried out. For each machine that exceeds
its maximum battery energy, a list of all the subtasks
mapped to that machine in descending order of the
energy consumed is generated. Using this ordering,
one by one the subtasks are converted to their degraded
versions, until the energy constraint on that machine is
met. This is done for all the machines that exceed their
maximum battery energy. In this way the energy
constraint is met.

4.3. Genetic Algorithm

Initially all the subtasks are mapped to machines
using the Genetic Algorithm (GA) in [18], assuming
that all the eight machines are available (please see
[18] for the GA details due to the length constraints).
All the subtasks that were mapped to machines that are
labeled as failed are considered to be unmapped
subtasks and a list of these unmapped subtasks is
formed. These unmapped subtasks are selected for
mapping in the order they come in the scheduling
string of the GA [18]. The unmapped subtasks are
assigned machines using a fitness function. For each
unmapped subtask i, the maximum ETC value
(maxETC) and the maximum energy value (maxEN)
needed to execute this subtask on any machine, across
the available set of machines is found. The fitness
value fij is then calculated as:
 fij = [ETC(i, j) / maxETC]
 + [(ETC(i, j) × E(j)) / maxEN].

The unmapped subtask is then assigned to the
machine that gives the minimum fitness value. Once
all of the unmapped subtasks are assigned to machines,
the entire mapping is evaluated. If the makespan and
energy constraints are violated then they are met using
the same procedure as that of the second phase of
Bottoms Up.

4.4. Min-Min

For the first phase, the Min-Min heuristic (based
on the concept in [12]) utilizes a fitness function to
evaluate all mappable subtasks. The fitness function,
similar to that used for mapping unmapped subtasks by
GA is calculated as:
 fij = [ETC(i, j) / maxETC]
 + [(ETC(i, j) × E(j)) / maxEN].

For each mappable subtask considered, the
machine that gives the minimum fitness value is
determined. From these subtask/machine pairs, the pair
that gives the minimum fitness value is selected and
the subtask is mapped onto that machine. Resource
utilization is then updated. This process continues until
all subtasks are mapped. Once all the unmapped
subtasks are assigned to machines, the entire mapping
is evaluated. If the mapping does not meet either the
energy or the makespan constraint then the second
phase of the heuristic is executed.

In the second phase, a time metric CTavg and an
energy metric ECavg is calculated. If N(j) is
the number of subtasks mapped to a machine j then,
CTavg = N(j)τ and ECavg = N(j)B(j) . Subtasks are
considered for conversion to their degraded version in
the same order they were mapped in the first phase. If
subtask i is the nth subtask mapped to machine j, then it
is checked if the energy consumed by subtask i on
machine j exceeds ECavg and also if its completion time
exceeds n × CTavg. If either of the two quantities is
exceeded, the subtask is converted to its degraded
version. Every time a subtask is converted to its
degraded version, the entire mapping is evaluated. If
the mapping does not meet either the energy or
makespan constraint, the next mapped subtask (in the
order of mapping used in the first phase) is considered
for conversion to its degraded version using the above
procedure. In this way, the energy and time constraints
are met.

4.5. MCT

For the first phase, the MCT heuristic based on [3]
uses the minimum completion time machine to map a
subtask. For each mappable subtask considered, the
machine that increases the makespan by the least
amount if the subtask is mapped to it is determined and
the subtask is mapped to it. This process continues

5

until all subtasks are mapped. Once all the subtasks are
mapped to machines, the entire mapping is evaluated.
If either the energy or the makespan constraints are
violated then they are met using the same procedure as
that of the second phase of Bottoms Up and Genetic
Algorithm.

5. Results

The simulation results are shown in Figures 2 and
3. All heuristics were run for 10 different task graphs
(DAGs), using 10 different ETCs (i.e., for a total of
100 different combinations) across three different grid
scenarios. Their average values and 95% confidence
intervals [14] are plotted. The running times of the
heuristics averaged over 100 trials, mapping 1024
subtasks per trial, are shown in Table 3.

As seen in Figure 2, GA and BU were the best two
heuristics for Case A and Case B, MCT and GA were
the best two heuristics for Case C, and Min-Min and
Recursive performed poorly for all three cases. GA,
BU, and MCT differed only by their initial subtask to
machine assignments, they all used an identical
procedure for phase 2 to convert subtasks to their
degraded versions to meet the time and the energy
constraints. BU used a fitness function to assign all the
subtasks to machines, while GA used the initial static
mapping and in addition a fitness function for all the
unmapped subtasks.

0
100
200
300
400
500
600
700
800
900

R
ec

ur
si

ve

Bo
tto

m
s

U
p

G
en

et
ic

M
in

-M
in

M
C

Tnu
m

be
r o

f d
eg

ra
de

d
ve

rs
io

n
su

bt
as

ks Case A Case B Case C

Figure 2: The simulation results for number of
subtasks that used degraded versions for the
five different heuristics across the three
different ad hoc grid scenarios.

Table 3: The execution times of the heuristics
averaged over 100 scenarios.

heuristic

average execution
times (seconds)

Recursive 0.1
Bottoms Up 0.38
Genetic Algorithm 0.49
Min-Min 0.84
MCT 0.56

MCT assigned subtasks to machines that gave the
minimum completion time. It was seen that MCT
assigned more subtasks to fast machines as compared
to GA and BU, which had a better load distribution,
and hence had a smaller final makespan as seen in
Figure 3. This also resulted in a larger number of
degraded version subtasks for MCT in Cases A and B.
For Case C, which had only one fast machine, MCT
was forced to assign many more subtasks to the two
slow machines in addition to the one fast machine.
Hence, unlike in Case A and B, MCT performed
comparably to GA.

Similar to MCT, the Recursive Bisection heuristic
also used minimum completion time to map subtasks
to machines and hence mapped a majority of the

0

5000

10000

15000

20000

25000

30000

35000

40000

R
ec

ur
si

ve

Bo
tto

m
s

U
p

G
en

et
ic

M
in

-M
in

M
C

T

m
ak

es
pa

n(
se

c)

Case A Case B Case C

Figure 3: The simulation results for makespan
in seconds for the five different heuristics
across the three different ad hoc grid
scenarios.

6

degraded version subtasks in decreasing order of
average execution time across all machines irrespective
of whether the subtask was actually mapped to a fast
machine or a slow machine. Almost every time, a
subtask mapped to a fast machine was converted to its
secondary version. This resulted in Recursive
Bisection having a very small final makespan (as seen
in Figure 3) but a very large number of degraded
versions.

Min-Min considered subtasks for conversion in the
order they were mapped depending upon a time factor
and an energy factor, which in turn depended upon the
number of subtasks assigned to a particular machine.
This procedure was not found to work well, as can be
seen from Figure 2.

6. Summary

Five heuristics were designed, developed, and
simulated using the HC environment presented.
Application tasks composed of communicating
subtasks with data dependencies and multiple versions
were mapped using the heuristics described in this
research. For all the cases considered, the GA, on
average produced the best mappings. The results of
this work can be used in the development of ad hoc
grids.

Appendix

Pseudocode for generating the DAGs
/* input:
 Na subtask nodes with no predecessors and only

successors, with id #s ranging from 1 to Na
 Nb subtask nodes with both predecessors and

successors, with id #s ranging from Na+1 to
Na+Nb

 Nc subtask nodes with no successors and only
predecessors, with id #s ranging from Na+Nb+1
to Na+Nb+Nc

 maxFanOut, the maximum number of edges out of a
node

 minFanOut, the minimum number of edges out of a
node

*/
/* output:
 a DAG where all edges point from a smaller id node

to a larger id node
*/

DAG generator pseudocode

1) for every node with successors, i,
 /* the maximum number of outgoing edges of

node i must be equal to the maximum
fanout or the number of nodes with id larger
than node i */

2) maxedges = min(maxFanOut, number of
nodes with id larger than i)

3) generate a random number, j, between
(minFanOut, maxedges)

4) randomly select j nodes with id larger than i
and generate an edge from i to each of the j
nodes, updating the data structures
accordingly

5) endfor

/* check for nodes from (Na +1) to (Na+Nb+Nc) that
do not have an incoming edge*/

6. for each node, i,
7. if there is no incoming edge

/* find the first node with id less than i that
can be used to make an edge to the node i */

8. for k =1 to (i −1) do
9. if k does not have max outgoing edges
10. generate an edge between the node k

and the node i, and break out of this for
loop

11. else if k has an outgoing edge pointing to a
node that has more than 1 incoming
edge

12. move the outgoing edge to point to
node i, and break out of this for loop

13. endif /* matches the if in Line (9) */
14. endfor /* matches the for in Line (8) */
15. endif /* matches the if in Line (7) */
16. endfor /* matches the for in Line (6) */

End of DAG generator pseudocode.

Acknowledgment: The authors thank Jay Smith for his
valuable comments.

References

[1] S. Ali, J.-K. Kim, H. J. Siegel, A. A. Maciejewski, Y.
Yu, S. B. Gundala, S. Gertphol, and V. Prasanna,
“Greedy heuristics for resource allocation in dynamic
distributed real-time heterogeneous computing
systems,” 2002 International Conference on Parallel
and Distributed Processing Techniques and
Applications (PDPTA 2002), June 2002, pp. 519-530.

7

[2] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and
S. Ali, “Representing task and machine
heterogeneities for heterogeneous computing
systems,” Tamkang Journal of Science and
Engineering, Special 50th Anniversary Issue, Vol. 3,
No. 3, Nov. 2000, pp. 195-207 (invited).

[3] R. Armstrong, D. Hensgen, and T. Kidd, “The
relative performance of various mapping algorithms
is independent of sizable variances in run-time
predictions,” 7th IEEE Heterogeneous Computing
Workshop (HCW 1998), Mar. 1998, pp. 79-87.

[4] H. Barada, S. M. Sait, and N. Baig, “Task matching
and scheduling in heterogeneous systems using
simulated evolution,” 10th IEEE Heterogeneous
Computing Workshop (HCW 2001), in Proceedings
of the 15th International Parallel and Distributed
Processing Symposium (IPDPS 2001), paper HCW
15, Apr. 2001.

[5] I. Banicescu and V. Velusamy, “Performance of
scheduling scientific applications with adaptive
weighted factoring,” 10th IEEE Heterogeneous
Computing Workshop (HCW 2001), in Proceedings
of the 15th International Parallel and Distributed
Processing Symposium (IPDPS 2001), paper HCW
06, Apr. 2001.

[6] T. D. Braun, H. J. Siegel, and A. A. Maciejewski,
“Heterogeneous computing: Goals, methods, and
open problems,” 2001 International Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA 2001), June 2001, pp. 1–12
(invited keynote paper).

[7] T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, R. F.
Freund, D. Hensgen, M. Maheswaran, A. I. Reuther,
J. P. Robertson, M. D. Theys, and Bin Yao, “A
comparison of eleven static heuristics for mapping a
class of independent tasks onto heterogeneous
distributed computing systems,” Journal of Parallel
and Distributed Computing, Vol. 61, No. 6, June
2001, pp. 810-837.

[8] E. G. Coffman, Jr. ed., Computer and Job-Shop
Scheduling Theory, John Wiley & Sons, New York,
NY, 1976.

[9] M. M. Eshaghian, ed., Heterogeneous Computing.
Norwood, MA, Artech House, 1996.

[10] D. Fernandez-Baca, “Allocating modules to
processors in a distributed system,” IEEE Transaction
on Software Engineering, Vol. SE-15, No. 11, Nov.
1989, pp. 1427–1436.

[11] I. Foster and C. Kesselman, eds., The Grid: Blueprint
for a New Computing Infrastructure, San Fransisco,
CA, Morgan Kaufmann, 1999.

[12] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for
scheduling independent tasks on non-identical
processors,” Journal of the ACM, Vol. 24, No. 2, Apr.
1977, pp. 280-289.

[13] M. A. Iverson, F. Ozguner, and G. J. Follen,
“Parallelizing existing applications in a distributed
heterogeneous environment,” in Proceedings of 1995
Heterogeneous Computing Workshop (HCW ’95),
April 1995, pp. 93-100.

[14] R. Jain, “The Art of Computer Systems Performance
Analysis Techniques for Experimental Design,
Measurement, Simulation, and Modeling,” New
York, Wiley, 1991.

[15] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and
R. F. Freund, “Dynamic mapping of a class of
independent tasks onto heterogeneous computing
systems,” Journal of Parallel and Distributed
Computing, Vol. 59, No. 2, Nov. 1999, pp. 107-121.

[16] D. Marinescu, G. Marinescu, Y. Ji, L. Boloni, and H.
J. Siegel, “Ad hoc grids: Communication and
computing in a power constrained environment,”
Workshop on Energy-Efficient Wireless
Communications and Networks 2003 (EWCN 2003),
in Proceedings of the 22nd International Performance,
Computing, and Communications Conference
(IPCCC), Apr. 2003.

[17] Z. Michalewicz and D. B. Fogel, How to Solve It:
Modern Heuristics, New York, NY, Springer-Verlag,
2000.

[18] S. Shivle, R. Castain, H. J. Siegel, A. A. Maciejewski,
T. Banka, K. Chindam, S. Dussinger, P. Pichumani,
P. Satyasekaran, W. Saylor, D. Sendek, J. Sousa, J.
Sridharan, P. Sugavanam, and J. Velazco, "Static
Mapping of Subtasks in a Heterogeneous Ad Hoc
Grid Environment," 13th IEEE Heterogeneous
Computing Workshop (HCW 2004), in Proceedings
of the 18th International Parallel and Distributed
Processing Symposium (IPDPS 2004), Apr. 2004.

[19] M. Srinivas and L. M. Patnaik, “Genetic algorithms:
A survey,” IEEE Computer, Vol. 27, No. 6, June
1994, pp. 17-26.

[20] L. Wang, H. J. Siegel, V. P. Roychowdhury, and A.
A. Maciejewski, “Task matching and scheduling in
heterogeneous computing environments using a
genetic-algorithm-based approach,” Journal of
Parallel and Distributed Computing, Vol. 47, No. 1,
Nov. 25, 1997, pp. 8-22.

[21] M.-Y. Wu, W. Shu, and H. Zhang, “Segmented min-
min: A static mapping algorithm for meta-tasks on
heterogeneous computing systems,” 9th IEEE
Heterogeneous Computing Workshop (HCW 2000),
May 2000, pp. 375–385.

8

