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Abstract—An ad hoc grid is a heterogeneous computing 
system composed of mobile devices. The problem studied 
here is to statically assign resources to the subtasks of an 
application, which has an execution time constraint, when 
the resources are oversubscribed. Each subtask has a 
preferred version, and a secondary version that uses 
fewer resources. The goal is to assign resources so that 
the application meets its execution time constraint while 
minimizing the number of secondary versions used. Five 
resource allocation heuristics to derive near-optimal 
solutions to this problem are presented and evaluated. 
 

Index Terms— ad hoc grid, communication scheduling, 
mapping, resource allocation, task scheduling. 

 
1. Introduction and Problem Statement 
 

An ad hoc grid is a heterogeneous computing 
(HC) and communication system without a fixed 
infrastructure (i.e., all of its components are mobile). 
Ad hoc grids allow a group of individuals to 
accomplish a mission that involves extensive 
computation and communication among the grid 
components, often in a hostile environment. Examples 
of applications of ad hoc grids include: disaster 
management, wildfire fighting, and peacekeeping 
operations [16]. In all of these cases, a grid-like 
environment is necessary to reliably support the 
coordinated effort of a group of individuals working 
under extreme conditions. If, for any reason, some of 
the machines in the ad hoc grid fail, then due to 
limitations on the resource availability, some of the 
subtasks of the application task will be forced to 
receive degraded service.  

An important research problem is how to assign 
resources to the subtasks (matching) and order the 
execution of the subtasks that are matched (scheduling) 
to maximize some performance criterion of a HC 
system. This procedure of matching and scheduling is 
called mapping or resource allocation. The mapping 
problem has been shown, in general, to be NP-
complete (e.g., [8, 10, 12]). Thus, the development of 
heuristic techniques to find near-optimal solutions for 
the mapping problem is an active area of research (e.g., 
[1, 4, 5, 6, 7, 9, 11, 15, 17, 21]). 

For this research, a single, large application task is 
considered to be composed of S communicating 
subtasks with data dependencies among them. Each 
subtask has two versions that could be executed. There 
is a primary version, called full version and a 
secondary version, called degraded version, utilizing 
only 10% of the resources that the primary version 
needs, and producing only 10% of the data output for 
the subsequent children subtasks. Thus, the degraded 
version (secondary version) represents a reduced 
capability, designed to provide some lesser overall 
value while consuming fewer resources. This 
application task is to be executed in an ad hoc grid as 
part of the mission being conducted.  

Initially it is assumed that the simulated HC 
environment consists of M machines in the ad hoc grid. 
It is also assumed that a static mapping that maps the 
subtasks to these M machines using their full versions 
in the ad hoc grid already exists [18]. However, if for 
some reason a subset of machines fails, then the 
existing static mapping cannot be used and some of the 
subtasks will be forced to use their degraded versions 
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due to a lack of available resources. We address two 
ways of solving this problem. First, use the previous 
static mapping for subtasks mapped to the all the 
machines (assuming that all the machines in the grid 
are working) and derive a new mapping for only the 
subtasks mapped to the failed machines. Second, 
discard the entire previous static mapping and derive a 
new mapping for the entire application task to the set 
of machines that are still available.  

The studied HC environment has been designed 
such that once a subset of machines fails it is not 
possible to map all the subtasks using their full version 
within the limited battery energy available. Hence, the 
available battery energy becomes a constraint. The 
goal of this study is to maximize the number of full 
version subtasks that can be executed while still 
completing the application task within the energy 
constraint in addition to an application execution time 
constraint τ. The underlying assumptions are that the 
battery power and maximum time allowed to execute 
the application are hard constraints, and that it will be 
necessary to use degraded versions of some subtasks to 
meet the constraints. In this study, the performance of 
five mapping heuristics in three different, ad hoc grid 
configurations is evaluated and compared. The wall 
clock time for each mapper itself to execute is required 
to be less than or equal to 180 seconds on a typical 
unloaded (i.e., running no other application) 1 GHz 
desktop machine.  

The next section describes the simulation setup 
used for this research. Section 3 provides a list of some 
of the literature related to this work. In Section 4, the 
heuristics studied in this research are presented. 
Section 5 describes the results, and the last section 
gives a brief summary of this research. 

 
2. Simulation Setup 
 

In this study, the application task is composed of 
1,024 communicating subtasks. This large number of 
subtasks is chosen to present a significant mapping 
challenge for each heuristic. The data dependencies 
among the subtasks are represented by a directed 
acyclic graph (DAG). The pseudocode to generate the 
DAG is given in the appendix of this paper. For this 
study, ten different DAGs are developed. The 
maximum fan-in (i.e., the number of input global data 
items received by a subtask) and fan-out (i.e., the 
number of output global data items sent out from a 
subtask) for all the ten DAGs generated are twelve and 
two, respectively. Also, for each DAG there are seven 
subtasks with no predecessors, seven subtasks with no 
successors, and the remaining 1,010 subtasks have 
predecessors and successors. The sizes of the global 
data items to be transferred from one subtask to 

another are sampled from a Gamma distribution, with a 
mean value of 2.8 megabits and a variance of 1.4 
megabits. 

Initially, for the baseline grid configuration (i.e., 
when all machines are present), it is assumed that there 
are a total of eight machines in the simulated ad hoc 
grid and these are divided equally into two classes: 
“fast machines” and “slow machines.”  

The three different ad hoc grid configurations, 
each with less than eight machines are as shown in 
Table 1. Case A represents the grid configuration 
where two fast and two slow machines are present; 
Case B has two fast and one slow machine; and Case C 
has one fast and two slow machines. 
 
Table 1: Simulation configurations. 
 

configuration # fast 
machines 

# slow 
machines 

Case A 2 2 
Case B 2 1 
Case C 1 2 

 
The estimated expected execution time for each 

subtask on each machine is assumed to be known a 
priori. The estimated time to compute (ETC) values 
are used by the mapping heuristics. The estimated 
execution time of subtask i on machine j is ETC(i, j). 
The ETC values for all subtasks, taking heterogeneity 
into consideration, were generated using the Gamma 
distribution method described in [2]. For this research, 
a task mean and coefficient of variation (COV) were 
used to generate the ETC matrices. The mean subtask 
execution time was chosen to be 100 seconds and a 
COV of 0.9 was used to generate an ETC matrix with 
high task and high machine heterogeneity. For this 
study, ten different ETC matrices were generated and 
used with each of the ten DAGs to create 100 different 
scenarios. 

To obtain the two classes of machines, all the ETC 
values for the slow machines are adjusted by a 
multiplicative factor (MF) [18]. For each subtask i, the 
ratio diffi of the ETC value of the fastest slow machine 
to the ETC value of the slowest fast machine is 
calculated as 

 diffi = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
machinesfastacrossfor  ),(max 

machinesslowacrossfor  ),(min 

jjiETC

jjiETC
. 

Then the value of MF is given by MF = 2 / (min diffi 
for i ∈ [0, 1023]). All the ETC values for the slow 
machines are now multiplied by the MF to get the new 
adjusted values. After creating the two classes of 
machines, the new mean estimated execution time for a 
single subtask is 131 seconds. For this study, across all 
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the subtasks in an ETC matrix, the average fastest 
machine is approximately ten times faster than the 
average slowest machine. Each machine j has four 
energy parameters associated with it: 
a. maximum battery energy: B(j); 
b. rate at which it consumes energy for subtask 

execution, per ETC time unit: E(j);  
c. rate at which it consumes energy for subtask 

communication, per communication time unit: 
C(j); and 

d. the machine’s communication bandwidth: BW(j). 
Parameters (b) and (c) use a simplified model of real 
energy consumption. 

The energy consumed for executing a single 
subtask i on machine j is ETC(i , j) × E(j). The time 
required to transfer one bit of a data item between 
machine j and machine k is the inter-machine 
communication time called CMT(j, k) and is given by:  

( ))(),(min1)( kBWjBWkj,CMT = . The energy 
consumed to send a data item g of size |g| from 
machine j to machine k is CMT(j, k) × C(j) × |g|. Each 
machine can transfer data to only one destination at a 
time, and can do so while it is computing. A machine 
can simultaneously handle one outgoing data 
transmission and one incoming data reception.  Similar 
to the study in [20], we assume that:  
a. a subtask can send out data only after it has 

completed execution; and 
b. a subtask may not begin execution until it receives 

all of its input data items. 
The ad hoc grid that is considered for this project 

is a simplified version of an actual one. The list of 
simplifying assumptions that have been made are as 
follows: 
a. the energy consumed by a subtask to receive a 

data item is ignored; 
b. any initial data (i.e., data not generated during 

execution of the application task) is preloaded 
before the actual execution of the application task 
begins; and 

c. a machine consumes no energy if it is idle (i.e., not 
computing or not transmitting). 
The values of B(j), C(j), E(j), and BW(j) for both 

fast and slow machines are shown in Table 2. These 
values represent an approximate industry average 
based on microprocessors and battery capacity selected 
on currently commercially available machines. Fast 
machines are typified by the DELL Precision M60 
notebook computer using an Intel MP4M processor 
operating at 1.7GHz. The statistics for the slow 
machines are typical personal digital assistant (PDA) 
computers, such as the DELL Axim X5 that uses an 
Intel PXA255 processor operating at 400 MHz. 
 

Table 2: The values of B(j), C(j), E(j), and BW(j) 
for fast and slow machines. 
 

 fast machines slow machines 

B(j) 580 energy units 58 energy units 

C(j) 0.2 energy units/s 0.002 energy units/s 

E(j) 0.1 energy units/s 0.001 energy units/s 

BW(j) 8 megabits/s 4 megabits/s 

 
 

The value of the time constraint τ is chosen so that 
it ensures that all machines are utilized. A simple 
greedy mapping heuristic was used to determine the 
value of τ  as 34,075 seconds. The performance of each 
heuristic is studied for each of the three ad hoc grid 
configurations and across the 100 different scenarios. 

 
 

3. Related Work 
 

The literature was examined to select a set of 
heuristics appropriate for the HC environment 
considered here. The ETC matrices and the DAGs 
were generated using the same method as in [18]. 
However, in [18] the subtasks did not have versions 
and also the performance metric was to minimize the 
battery energy consumed, unlike in this study, where 
the battery energy is a constraint.  

Min-Min, Genetic Algorithm, and MCT, have 
been used previously to map tasks onto heterogeneous 
machines (e.g., [7]). The performance goal in [7] was 
to minimize the total time required to complete an 
application task, whereas the goal of our study is to 
minimize the number of subtasks using degraded 
versions mapped while completing the entire 
application task within the available resources and 
within a time constraint. The Min-Min heuristic has 
proven to be a good heuristic for dynamic and static 
mapping problems in earlier studies (e.g., [7, 15]). The 
Bottoms Up heuristic used in this study is a variation 
of the Min-Min heuristic. Bottoms Up assigns tasks to 
machines in a manner similar to the Min-Min heuristic, 
but considers tasks for scheduling in a different 
manner. Genetic Algorithms are a technique used for 
searching large solution spaces and have been used for 
mapping subtasks to machines in a HC environment 
(e.g., [7, 19, 20]). The Genetic Algorithm used in this 
study is a slightly modified version of the one used in 
[20]. 
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4. Heuristics 
 

For all the heuristics, except Bottoms Up, only the 
subtasks whose predecessors had been fully mapped 
(referred to as mappable subtasks) could be considered 
during a given mapping iteration. After mapping a sub-
task, all heuristics were required to update the time and 
energy used for both subtask execution and inter-
machine communication. The makespan is defined as 
the overall execution time of the application task on 
the machine suite in the ad hoc grid. So the final 
makespan of all mappings has to be less than or equal 
to τ. 

The Bottoms Up, Genetic Algorithm, Min-Min, 
and MCT heuristics all have two phases. In the first 
phase, subtasks are assigned to machines using their 
full versions, ignoring energy and makespan 
constraints. In the second phase, some of the subtasks 
are converted to their degraded versions, such that the 
new mapping does not violate either the energy or time 
constraint. Also, the Genetic Algorithm heuristic 
initially assumes that all the machines are present in 
the grid and performs a static mapping. This initial 
mapping is then modified based on the knowledge that 
a specific subset of machines is no longer available in 
the ad hoc grid. This section describes the five 
heuristics that were studied. 

 
4.1. Recursive Bisection 

Using their full versions, all subtasks are sorted in 
descending order of their average ETC times across all 
machines to form List 1. This ordering of subtasks in 
List 1 is used to determine the version of the subtask to 
be mapped. 

 
 

 
 
Figure 1: Levelizing of subtasks S0, S1, S2, S3, 
S4, and S5 for a given sample DAG. 

In a manner similar to that used in [13] and as 
shown in Figure 1, the Recursive Bisection (RB) 
heuristic assigns subtasks to levels depending on the 
data precedence constraints.  

The lowest level consists of subtasks with no 
predecessors and the highest level consists of subtasks 
with no successors. Each of the other subtasks is at one 
level above the highest producer of its global data 
items. Subtasks are mapped to their minimum 
completion time machine in order from the lowest-
level subtask to the highest-level subtask. Within a 
level, subtasks are chosen randomly for mapping. 

Initially all the subtasks are mapped to their 
minimum completion time machines using their full 
versions. After all subtasks have been mapped, the 
entire mapping is evaluated to ensure that energy and 
makespan constraints have been met. If either the 
energy or makespan constraint is violated, then using 
the bisection schedule, described below, some of the 
subtasks are converted to their degraded versions.  
Bisection Schedule 

If the bisection schedule is needed, the first 512 
subtasks (half of the total number of subtasks) in List 1 
are selected to be degraded version subtasks. All 
subtasks are then mapped using the mapping procedure 
described earlier. At the end of the mapping, 
depending on the makespan and the battery energy on 
each of the machines, it is decided whether to increase 
or decrease the number of degraded version subtasks. 
If either the energy or time constraint is violated, then 
the number of degraded version subtasks is increased 
by half of the current number. If the energy or time 
constraint is not violated, then the number of degraded 
version subtasks is decreased by half of the current 
number. This process of bisection is repeated until the 
number of degraded version subtasks cannot be 
reduced any more within the energy and makespan 
constraints. 

 
4.2.  Bottoms Up 

In the first phase, Bottoms Up (BU) assigns 
subtasks to levels in a manner similar to the RB 
heuristic. However, unlike RB, the BU heuristic begins 
by mapping subtasks from the highest level. Thus, for 
the BU heuristic, the set of mappable subtasks at any 
given time consists of all subtasks that have no 
successors and all subtasks whose successors have 
previously been mapped. Subtasks within each level 
are randomly selected for mapping.  

Let the time for execution and communication of 
subtask i on machine j, normalized with respect to the 
maximum time required for execution and 
communication by subtask i across all machines be 
NT(i, j). Let the energy consumed for execution and 
output communication of subtask i on machine j, 

level 0 
(lowest level) 

level 3 
(highest level) 

S0 

S3 

S1 

S2 

S4 

S5 

level 2 

level 1 
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normalized with respect to the maximum energy 
consumed for execution and output communication of 
subtask i across all machines, be NE(i, j). The fitness 
value γij for each mappable subtask on each machine is 
calculated as γij = NT(i, j) + NE(i, j). 

For each mappable subtask considered, the 
machine that gives the minimum fitness value is 
determined and the subtask is assigned to that machine. 
This process of machine assignment (matching) is 
repeated for all subtasks in the application task. The 
subtasks are scheduled for execution in the reverse 
order they were matched. The entire mapping is then 
evaluated. If the mapping does not meet either the 
energy or the makespan constraint, then the second 
phase of the heuristic is executed.   

In the second phase, the makespan constraint is 
met as follows. All the subtasks in the application task 
using their full versions and using the mappings 
obtained from the first phase are sorted in the 
descending order of their execution times. Using this 
ordering, one by one each subtask is converted to its 
degraded version, until the makespan constraint is met. 
Every time a subtask is converted to its degraded 
version, the entire mapping is evaluated. After the 
makespan constraint is met, if the battery constraint is 
exceeded on any of the machines, then the following 
procedure is carried out. For each machine that exceeds 
its maximum battery energy, a list of all the subtasks 
mapped to that machine in descending order of the 
energy consumed is generated. Using this ordering, 
one by one the subtasks are converted to their degraded 
versions, until the energy constraint on that machine is 
met. This is done for all the machines that exceed their 
maximum battery energy. In this way the energy 
constraint is met. 
 
4.3.  Genetic Algorithm  

Initially all the subtasks are mapped to machines 
using the Genetic Algorithm (GA) in [18], assuming 
that all the eight machines are available (please see 
[18] for the GA details due to the length constraints). 
All the subtasks that were mapped to machines that are 
labeled as failed are considered to be unmapped 
subtasks and a list of these unmapped subtasks is 
formed. These unmapped subtasks are selected for 
mapping in the order they come in the scheduling 
string of the GA [18]. The unmapped subtasks are 
assigned machines using a fitness function. For each 
unmapped subtask i, the maximum ETC value 
(maxETC) and the maximum energy value (maxEN) 
needed to execute this subtask on any machine, across 
the available set of machines is found. The fitness 
value fij is then calculated as:  
           fij  = [ETC(i, j) / maxETC]  
                     +  [ ( ETC(i, j) × E(j) ) / maxEN]. 

The unmapped subtask is then assigned to the 
machine that gives the minimum fitness value. Once 
all of the unmapped subtasks are assigned to machines, 
the entire mapping is evaluated. If the makespan and 
energy constraints are violated then they are met using 
the same procedure as that of the second phase of 
Bottoms Up. 

  
4.4.  Min-Min  

For the first phase, the Min-Min heuristic (based 
on the concept in [12]) utilizes a fitness function to 
evaluate all mappable subtasks. The fitness function, 
similar to that used for mapping unmapped subtasks by 
GA is calculated as:  
          fij  = [ETC(i, j) / maxETC]  
                    +  [ ( ETC(i, j) × E(j) ) / maxEN]. 

For each mappable subtask considered, the 
machine that gives the minimum fitness value is 
determined. From these subtask/machine pairs, the pair 
that gives the minimum fitness value is selected and 
the subtask is mapped onto that machine. Resource 
utilization is then updated. This process continues until 
all subtasks are mapped. Once all the unmapped 
subtasks are assigned to machines, the entire mapping 
is evaluated. If the mapping does not meet either the 
energy or the makespan constraint then the second 
phase of the heuristic is executed.  

In the second phase, a time metric CTavg and an 
energy metric ECavg is calculated. If N(j) is  
the number of subtasks mapped to a machine j then, 
CTavg = N(j)τ  and ECavg = N(j)B(j) . Subtasks are 
considered for conversion to their degraded version in 
the same order they were mapped in the first phase. If 
subtask i is the nth subtask mapped to machine j, then it 
is checked if the energy consumed by subtask i on 
machine j exceeds ECavg and also if its completion time 
exceeds n × CTavg. If either of the two quantities is 
exceeded, the subtask is converted to its degraded 
version. Every time a subtask is converted to its 
degraded version, the entire mapping is evaluated. If 
the mapping does not meet either the energy or 
makespan constraint, the next mapped subtask (in the 
order of mapping used in the first phase) is considered 
for conversion to its degraded version using the above 
procedure. In this way, the energy and time constraints 
are met. 

 
4.5.  MCT  

For the first phase, the MCT heuristic based on [3] 
uses the minimum completion time machine to map a 
subtask. For each mappable subtask considered, the 
machine that increases the makespan by the least 
amount if the subtask is mapped to it is determined and 
the subtask is mapped to it. This process continues 
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until all subtasks are mapped. Once all the subtasks are 
mapped to machines, the entire mapping is evaluated. 
If either the energy or the makespan constraints are 
violated then they are met using the same procedure as 
that of the second phase of Bottoms Up and Genetic 
Algorithm. 

 
5. Results 
 

The simulation results are shown in Figures 2 and 
3. All heuristics were run for 10 different task graphs 
(DAGs), using 10 different ETCs (i.e., for a total of 
100 different combinations) across three different grid 
scenarios. Their average values and 95% confidence 
intervals [14] are plotted. The running times of the 
heuristics averaged over 100 trials, mapping 1024 
subtasks per trial, are shown in Table 3. 

As seen in Figure 2, GA and BU were the best two 
heuristics for Case A and Case B, MCT and GA were 
the best two heuristics for Case C, and Min-Min and 
Recursive performed poorly for all three cases. GA, 
BU, and MCT differed only by their initial subtask to 
machine assignments, they all used an identical 
procedure for phase 2 to convert subtasks to their 
degraded versions to meet the time and the energy 
constraints. BU used a fitness function to assign all the 
subtasks to machines, while GA used the initial static 
mapping and in addition a fitness function for all the 
unmapped subtasks. 

 

0
100
200
300
400
500
600
700
800
900

R
ec

ur
si

ve

Bo
tto

m
s

U
p

G
en

et
ic

M
in

-M
in

M
C

Tnu
m

be
r o

f d
eg

ra
de

d 
ve

rs
io

n 
su

bt
as

ks Case A Case B Case C

 
 

Figure 2: The simulation results for number of 
subtasks that used degraded versions for the 
five different heuristics across the three 
different ad hoc grid scenarios. 

 

Table 3: The execution times of the heuristics 
averaged over 100 scenarios. 
 

 
heuristic 

average execution 
times (seconds) 

Recursive 0.1 
Bottoms Up 0.38 
Genetic Algorithm 0.49 
Min-Min 0.84 
MCT 0.56 

 
 

MCT assigned subtasks to machines that gave the 
minimum completion time. It was seen that MCT 
assigned more subtasks to fast machines as compared 
to GA and BU, which had a better load distribution, 
and hence had a smaller final makespan as seen in 
Figure 3. This also resulted in a larger number of 
degraded version subtasks for MCT in Cases A and B. 
For Case C, which had only one fast machine, MCT 
was forced to assign many more subtasks to the two 
slow machines in addition to the one fast machine. 
Hence, unlike in Case A and B, MCT performed 
comparably to GA. 

Similar to MCT, the Recursive Bisection heuristic 
also used minimum completion time to map subtasks 
to machines and hence mapped a majority of the  
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Figure 3: The simulation results for makespan 
in seconds for the five different heuristics 
across the three different ad hoc grid 
scenarios. 
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degraded version subtasks in decreasing order of 
average execution time across all machines irrespective 
of whether the subtask was actually mapped to a fast 
machine or a slow machine. Almost every time, a 
subtask mapped to a fast machine was converted to its 
secondary version. This resulted in Recursive 
Bisection having a very small final makespan (as seen 
in Figure 3) but a very large number of degraded 
versions.  

Min-Min considered subtasks for conversion in the 
order they were mapped depending upon a time factor 
and an energy factor, which in turn depended upon the 
number of subtasks assigned to a particular machine. 
This procedure was not found to work well, as can be 
seen from Figure 2. 
 
6. Summary 
 

Five heuristics were designed, developed, and 
simulated using the HC environment presented. 
Application tasks composed of communicating 
subtasks with data dependencies and multiple versions 
were mapped using the heuristics described in this 
research. For all the cases considered, the GA, on 
average produced the best mappings. The results of 
this work can be used in the development of ad hoc 
grids. 

 
 
 
 
 
 
Appendix 
 
Pseudocode for generating the DAGs 
/* input: 
     Na subtask nodes with no predecessors and only 

successors, with id #s  ranging from 1 to Na 
     Nb subtask nodes with both predecessors and  

successors, with id #s ranging from Na+1 to 
Na+Nb 

     Nc subtask nodes with no successors and only 
predecessors, with id #s ranging from Na+Nb+1 
to Na+Nb+Nc  

     maxFanOut, the maximum number of edges out of a 
node 

     minFanOut, the minimum number of edges out of a 
node   

*/ 
/* output: 
     a DAG where all edges point from a smaller id node 

to a larger id node 
*/ 

DAG generator pseudocode 
 
1) for every node with successors, i, 
             /* the maximum number of outgoing edges of 

node i must be equal to the maximum 
fanout or the number of nodes with id larger 
than node i */ 

2)     maxedges = min(maxFanOut, number of  
nodes  with id larger than i) 

3)     generate a random number, j, between 
(minFanOut, maxedges) 

4)     randomly select j nodes with id larger than i 
and  generate an edge from i to each of the j 
nodes, updating the data structures 
accordingly 

5) endfor 
 
 
/* check for nodes from (Na +1) to (Na+Nb+Nc) that 
do not have an incoming edge*/ 
 
6. for each node, i,  
7.     if there is no incoming edge 

/* find the first node with id less than i that 
can be used to make an edge to the node i */ 

8.         for k =1 to (i −1) do 
9.               if k does not have max outgoing edges 
10.       generate an edge between the node k   

and the node i, and break out of this for 
loop 

11. else if k has an outgoing edge pointing to a 
node that has more than 1 incoming 
edge 

12.      move the outgoing edge to point to 
node i, and break out of this for loop 

13. endif /* matches the if in Line (9) */ 
14.         endfor /* matches the for in Line (8) */ 
15.      endif /* matches the if in Line (7) */ 
16.  endfor /* matches the for in Line (6) */ 
 
End of DAG generator pseudocode. 
 
 
Acknowledgment: The authors thank Jay Smith for his 
valuable comments. 
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