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ABSTRACT 
 
 
 

AMINO ACID TRANSMITTERS AND THE NEURAL CONTROL OF FEEDING AND 

ENERGY HOMEOSTASIS 

 
 
 

Consuming the correct number of calories to maintain a healthy bodyweight is a delicate 

balancing act between intake and energy expenditure, and humans in modern society seem to 

have a keen knack for throwing the balance off-center. In the U.S. alone, more than 1/3 of adults 

are obese based on the body mass index scale, and $147 billion is the estimated annual medical 

cost for obesity in the United States. On the other end of the feeding spectrum, anorexia in the 

U.S. has been steadily rising since the 1960s, and has the highest mortality rate of any mental 

illness. While great strides have been made in understanding the neuronal regulation of energy 

balance, there is a need to more fully understand the homeostatic systems within the 

hypothalamus that are so powerful that they are able to drive individuals to poor health or death, 

often even in the face of consciously fighting their urges. 

Two groups of functionally opposed neurons contained within the arcuate nucleus of the 

hypothalamus, Neuropeptide Y / Agouti-related peptide (NPY/AgRP) and proopiomelanocortin 

(POMC) cells (the so-called first order feeding neurons), have been extensively studied for their 

roles in energy homeostasis—mostly through research into the peptides they are named after. 

There is clear evidence that peptides play an essential role for the function of NPY/AgRP and 

POMC cells, but what about simple amino acid transmitters? While it is known that GABA is 

packaged and released by NPY/AgRP cells and that this release is relevant to feeding behavior, 
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there is still a dearth of information about this aspect of the circuitry, very much an area waiting 

to be mined. 

This study focuses on better understanding the functional release and relevance of amino 

acid transmitters packaged in both NPY/AgRP and POMC cell populations. Evidence is 

presented here for the conclusive release of both GABA and glutamate from POMC cells within 

intact circuitry. For NPY/AgRP neurons, evidence is presented for a shift in functional release of 

GABA from these neurons onto POMC cells depending on feeding state, corroborated by 

concurrent in situ hybridization experiments. Using a combination of electrophysiology and in 

situ hybridization approaches, evidence is also provided that mRNA levels of glutamate 

decarboxylase can act as a general proxy for functional GABA release. 

Altogether, these results indicate that amino acid transmitters play a significant role in 

first order feeding neuron physiology. Not only does this warrant further study on the 

significance of each transmitter alone and their purpose in comparison with the peptides released, 

but also the interplay between POMC cell and NPY/AgRP cell amino acid transmitters and their 

many shared downstream targets. Imbalances in proper glutamatergic and GABAergic signaling 

may significantly contribute to obesity, and advancing this area of study could lead to correcting 

those imbalances to restore healthy energy homeostasis. 
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1. INTRODUCTION 

 

 

 

One of the largest current questions within the science of feeding and energy balance is 

this: with the multitude of targets discovered and much of the neural circuitry known, why hasn’t 

a highly effective drug treatment for obesity been developed? More specifically, it has been 

decades since Jeffrey Friedman’s group discovered the amazing adipogenic satiety peptide 

hormone they named leptin, so why do we currently have a dearth of pharmaceutical treatments 

for obesity, and those that do exist are only marginally better than their side-effects (e.g. 

glucagon-like peptide-1 receptor agonist Saxenda and 5-HT2C receptor agonist Belviq)? The 

simple, as well as lazy, answer is that there is still much unknown in the field, and the search for 

the magic bullet continues. The more descriptive answer is that our current understanding of 

feeding, until recently, was based mostly on a simplistic model of yin and yang (signals of 

hunger and satiety), which lacked the depth of receptor complexity, asymmetric circuitry, 

pathway redundancy, and neurotransmitter variety present in a complete model. The field has not 

yet reached full maturity, but recent advances in technology, especially genetic and imaging 

tools, have allowed for great strides to be made in the past few years. Pertinent to the primary 

research in this study, one area largely ignored but now starting to become a topic of interest is 

amino acid transmitter release from first order feeding neurons. To understand the complex 

picture of where the knowledge gaps currently lie, where the primary research in this study fits, 

and where the field should be going next requires background detailing obesity and 

hypothalamic control of energy homeostasis, including the current prevailing paradigms and the 

biological players within them. The purpose of this introductory chapter is to provide this 

information, as well as to provide context for the primary research contained in chapters 2 and 3. 
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1.1 Obesity 

  Weighing too much is a problem individuals are battling worldwide. Obesity is now 

considered a chronic disease or metabolic syndrome and is defined by excess body fat and is 

accompanied by various comorbidities. The quantifiable measure for estimating the weight 

health of a person is by utilizing the body mass index (BMI = weight in kilograms divided by the 

square of height in meters [kg/m2]). For adults a BMI of 18.5 to 24.9 is considered normal. BMI 

greater than 25 is considered as overweight, and a BMI larger than 30 and 40 indicate obesity 

and morbid obesity respectively (WHO, 2000). While BMI may occasionally be a poor measure 

of individual health (e.g. body builders or professional athletes), it is a good indicator of 

overweight on a population level. Although obesity may be plateauing in the United States, the 

obesity epidemic remains a public health crisis, with over 1/3 of adults and 16.9% of children 

being classified as obese in a 2011-2012 survey (Ogden et al., 2014). Worldwide, studies find 

that the prevalence and severity of obesity is increasing rapidly in children, adolescents, and 

adults (Wang and Lobstein, 2006; Chan and Woo, 2010). 

 It is known that obesity is associated with a number of chronic diseases spread across 

both adults and children including type 2 diabetes, hypertension, dyslipidemia, disturbed glucose 

tolerance, and some forms of cancer (Kelly et al., 2008; I'Allemand et al., 2008; Mauras et al., 

2010). Perhaps unsurprisingly, this leads to a connection between obesity and a shortened 

lifespan (Biro and Wien, 2010). While inexpensive and seemingly simple life changes early on 

could prevent negative health outcomes, living with chronic obesity drives significant health care 

costs in order to treat the disease, its comorbidities, and prevent mortality (Ebbeling et al., 2002; 

Yach et al., 2006; John, 2010; Muller-Riemenschneider et al., 2008; Finkelstein et al., 2009). 

Knowing exactly what causes obesity and finding as many appropriate treatments as possible 
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would obviously be a boon to humanity worldwide, reducing suffering and excess spending. A 

frantic race in the scientific community is now underway to unravel the mechanisms involved 

and build potential therapeutic strategies, spurred on by the urge to understand the fundamental 

determinants of obesity and obesity-related disease. 

So what is known about feeding circuitry, the disruption thereof, and how the body 

controls the homeostatic set point? Whereas some genetic loci have been clearly identified, and 

extensively studied as monogenic causes for obesity, it is widely accepted that the metabolic 

syndrome is in essence a multifaceted disease that encircles a complex network of molecular, 

cellular and physiologic alterations (Kopelman and Hitman, 1998; Kahn and Flier, 2000). 

Ultimately, the brain must coordinate the activity of peripheral tissue to insure the fate of some 

nutrients once ingested. The brainstem works at a basic and essential level to provide satiety 

behaviors (Grill and Norgren, 1978; DiRocco and Grill, 1979), but without a complete neural 

network, challenges to homeostasis cannot be countered by adjustments in physiology (Seeley et 

al., 1994; see Grill and Kaplan, 2001 for review). It is understood that the hypothalamus is where 

the core of much of this complex modulatory activity occurs, but it is conceptually easier to start 

with food actually entering the body and taking it from there. The following sections will start at 

the periphery and head into the central nervous system. 

  

1.2 Endocrine and peripheral input into the central nervous system 

 Much of the regulation of food consumption in the short term is driven by gastrointestinal 

peptides that are released directly after food is consumed (see Havel, 2001). These hormones will 

travel through the blood and directly or indirectly (through the vagus nerve up the general 

visceral afferent pathway) interact with the nucleus tractus solitarius (NTS), an area at the base 
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of the brainstem known for forming circuits that contribute to autonomic regulation (see Holzer 

and Farzi, 2014; Svendsen and Holst, 2015). The NTS can be considered one of the major satiety 

centers in the CNS, collating and making sense of the peripheral signals coming from the 

stomach, liver, and both small and large intestines to regulate satiety. Through the interaction 

with the NTS, as well as direct interaction with neurons in the arcuate nucleus of the 

hypothalamus (ARC), these hormones, with the exception of ghrelin, induce satiety and 

cessation of food intake. Examples include cholecystokinin (CCK) from the duodenum and 

jejunum, glucagon-like peptide-1 (GLP-1) from the ileum and colon, gastrin-releasing peptide 

(GRP) from the stomach, and peptide YY (PYY) from the ileum and colon. The mechanisms by 

which CCK promotes satiety are through delaying gastric emptying and activating the vagal 

afferent nerves that innervate the NTS (Schwartz et al., 1999). GLP-1 functions in many ways, 

including acting as an insulin secretagogue, slowing gastric emptying and forcing food to stay in 

the stomach for longer periods of time, and binding to receptors on afferent nerves in the liver 

and GI tract, thereby relaying satiety signals to the NTS (Moran, 2009). GRP promotes satiety 

mostly through delaying gastric emptying (Merali ey al., 1999). PYY is released in response to a 

meal and reduces appetite by slowing gastric emptying (Moran, 2009). In contrast to the satiety-

inducing (anorexigenic) actions of many gut hormones associated with the regulation of food 

intake, ghrelin is an octanoylated orexigenic peptide that is produced by the stomach, and to a 

lesser extent, the intestine and arguably the hypothalamus (Kojima et al., 1999; Havel, 2001). 

Plasma concentrations of ghrelin peak immediately before a meal and drop off quickly after a 

meal has been consumed (Cummings et al., 2001), acting on the G-protein coupled ghrelin 

receptors within the CNS to exert its metabolic effects (Guan et al., 1997; Mitchell et al., 2001; 

Zigman et al., 2006). In addition to the gastrointestinal peptides, mechanoreceptors in the 
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stomach and small intestines play a role in the short-term regulation of food intake. These 

receptors respond to the presence of food in the stomach and small intestines by transmitting 

signals via the vagal afferents to the hindbrain to initiate meal termination (Page et al., 2002; 

Carmagnola et al., 2005). Most of these gut signals are thought to act in the short term, while two 

other feeding-related hormones, insulin and leptin, are seen as longer-term players. 

 Whereas the short-term satiety signals often act upon the NTS in the brainstem, other 

circulating factors primarily interact with the various nuclei of the hypothalamus, including the 

ARC, paraventricular (PVN), ventromedial (VMH), and lateral (LH) nuclei (see Myers et al., 

2008). One such factor is the adipogenic hormone, leptin. The idea of a signal from fat 

interacting with feeding centers in the hypothalamus goes back over half a century with Kennedy 

and what became to be known as the lipostatic hypothesis (Kennedy, 1953). It took until 1994, 

when the leptin gene was first cloned, to find Kennedy’s adipogenic signal (Zhang et al., 1994). 

Leptin is produced by white adipose tissue, and plasma levels of leptin increase when the body 

has a surplus of energy available, especially when adipose tissue increases (Halaas et al., 1995; 

Friedman, 2009). One of the key signaling mechanisms driving the neuroendocrine, metabolic, 

and behavioral adaptations that promote a decrease in energy expenditure and increase food 

intake is a fasting-induced decrease in leptin (Ahima et al., 1996; see Myers et al., 2008). The 

importance of leptin in maintaining energy balance over the long term is highlighted by studies 

showing that leptin deficiencies or defects in the leptin receptors in the brain can cause 

hyperphagia and severe obesity (Montague et al., 1997; Clement et al., 1998; Strobel et al., 

1998). Leptin-responsive neurons express the long-form of leptin receptor (LepRb), which is a 

single-trans-membrane-domain protein of the cytokine receptor family that operates through the 

JAK-STAT signaling cascade. This specific receptor variant is required for leptin's central 
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effects and is highly expressed within several CNS sites, including hypothalamic nuclei 

(Elmquist et al., 1998, 2005; Scott et al., 2009). One interesting aspect of leptin is its opposing 

role to ghrelin. Many of the same areas of the brain contain receptors for both hormones, leading 

naturally to a push/pull hypothesis because of the overlap (see Nogueiras et al., 2008). However, 

both receptors have quite distinct profiles within the CNS, and deletion of the ghrelin receptor 

does not affect leptin sensitivity, casting doubt on a simple relationship (Perello et al., 2012). 

Insulin is another major player in energy homeostasis, but its role in the CNS is not as 

understood as in the periphery. Insulin is secreted from the beta cells of the pancreas in response 

to the ingestion of food, which promotes the absorption of glucose from blood to skeletal 

muscles and adipose tissue, causes fat to be stored rather than used for energy, and inhibits 

gluconeogenesis (Sonksen and Sonksen, 2000). Although insulin clearly has satiating effects in 

the CNS (Woods et al., 1979; Hallschmid et al., 2004; Brown et al., 2006), the physiological 

significance of these actions remains uncertain. For example, injecting an antisense 

oligonucleotide into the third ventricle in order to curtail insulin receptor expression in 

hypothalamic nuclei caused immediate and significant hyperphagia (Obici et al., 2002), but 

neural insulin receptor knockout strategies have found little to no phenotype in mice (Brüning et 

al., 2000; Choudhury et al., 2005). With a base of information on the link between peripheral 

signals and the CNS covered, this is an appropriate place to transition completely into the CNS, 

specifically regarding the hypothalamus and surrounding feeding circuitry.   

 

1.3 Hypothalamic regulation of energy balance 

Implication of the hypothalamus in feeding and energy balance goes as far back as 1840, 

when hypothalamic obesity was described by Mohr (1840). He noticed that a woman had 
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become obese within a year before her death, and upon autopsy of this woman, Mohr found a 

hypophysial tumor compressing and distorting the base of the brain. There was no attempt to 

connect the increase in adiposity to a hypophysial or hypothalamic injury, but this report and 

clinicians making other reports like it set the stage for new understanding of this brain region. 

Over decades, a controversy developed between those that thought pituitary dysfunction 

(Fröhlich, 1901) and those that thought purely neural dysfunction (Erdheim, 1904) was to blame 

for hyperphagia and increased adiposity in these case studies, and it was not until 1930 that 

enough empirical evidence was amassed to end the controversy for good (see Aschner, 1912; 

Smith, 1930 for best examples). Soon after the Horsley-Clarke stereotaxic instrument was 

adapted for rats in 1939, relatively more refined electrolytic lesion studies were performed to 

provide the first undeniable evidence that the hypothalamus is the central hub for feeding 

(Hetherington and Ranson, 1940, 1942). Lesions to the base of the hypothalamus produced such 

hyperphagia that rats recovering from the surgery were observed to begin eating voraciously 

even before the anesthesia had worn off, to the extent of dying from asphyxiation because their 

swallowing reflex had not yet returned (Brobeck et al., 1943). Later, somewhat more 

sophisticated, lesion studies would define specific areas of the hypothalamus, especially the 

ARC, as being responsible for feeding and energy balance (Nemeroff et al., 1978; Penicaud et 

al., 1983; Sims and Lorden, 1986). 

Referring to the peptide hormones discussed in the latter portion of 1.2, ghrelin, leptin, 

and insulin, what makes the hypothalamus, and specifically the ARC, such an exquisite target for 

their actions? What makes this area specialized to its job is suggested by the unique anatomy 

within the region. The ARC is located in the ventral portion of the brain, at the bottom of the 

third ventricle, directly next to the median eminence (ME), which is one of the circumventricular 
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organs (CVO). The “leaky” blood-brain barrier at CVOs allows for selective exchange of 

substrates between in the blood and cerebrospinal fluid, eventually allowing contact to the neural 

tissue in the ARC. Regulation of food intake and energy homeostasis depends on the ability for 

hormones from the periphery to effect change directly at neurons charged with that task. These 

neurons, termed “first order” feeding neurons integrate signals circulating through the blood and 

encode energy signals into synaptic transmission that will affect downstream secondary neurons. 

Unsurprisingly, these downstream neurons have earned the moniker of “second-order” feeding 

neurons. Tanycytes, from the Greek word tanus, which means elongated, are the specialized 

hypothalamic glial cells that act as gatekeepers of the blood-brain barrier and allow for exchange 

across it (Gao et al., 2014). Tanycytes extend from the ependymal surface (thus making them a 

specialized type of ependymal cell) of the third ventricle to a bed of permeable fenestrated 

capillaries (Langlet et al., 2013). Energy state-signaling hormones, such as ghrelin and leptin, are 

able to quickly pass through and relay their relevant actions (Schaeffer et al., 2013; Balland et 

al., 2014). These features ultimately define why first order feeding neurons are so poised to 

rapidly adapt, making electrophysiological changes is response to hunger or satiety signals, and 

continue carrying out their functions. 

 

First order feeding neurons: POMC cells and NPY/AgRP cells 

The ARC contains (at least) two major populations of neurons that are crucial for 

monitoring energy signals and subsequently pushing for the suitable behavioral and metabolic 

responses to alterations of energy state (see Figure 1.1 for relative location in the brain). The first 

group of neurons is proopiomelanocortin (POMC) neurons, understood to promote satiety and 

named after the propeptide these cells produce and utilize (Xu et al., 2011; Myers and Olson, 
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2012). POMC is cleaved by processing enzymes in a tissue-specific manner, resulting in a 

handful of bioactive peptides. Outside of the ARC, in the corticotrophs located in the anterior 

pituitary, POMC is translated and cleaved to make adrenocorticotropic hormone (ACTH), which 

is released into the blood where it regulates stress hormone production and release from adrenal 

glands (Wardlaw, 2011). Relevant to feeding, in the mouse ARC, POMC is expressed in a fairly 

evenly spread group of a few thousand neurons (Cowley, 2001; Jarvie, 2012), where it is 

processed into α- and γ-melanocyte stimulating hormone (α-MSH and γ-MSH) and the opioid β-

endorphin (Wardlaw, 2011). α-MSH, γ-MSH, and ACTH are all referred to as melanocortins 

because they agonize melanocortin receptors. All five melanocortin receptors are G-protein 

coupled receptors (GPCRs). The MC3R and MC4R are the receptors located in the CNS (Cone, 

2005; Kim et al., 2014), while the other three carry out quite unrelated activities, such as skin 

pigmentation and exocrine gland function. The discovery that injection of melanocortins into the 

CNS inhibited both spontaneous and drug-induced feeding in rats suggested that POMC neurons 

might be able to sense and respond to indicators of feeding state (Poggioli et al., 1986). Although 

most of the peptides POMC cells release have an impact on feeding, effects on the suppression 

of food intake have been primarily attributed to α-MSH signaling (Brown et al., 1998; Thiele et 

al., 1998). Injections of α-MSH, as well as the α-MSH synthetic analogue melanotan-II (MTII), 

into the ventricles caused a highly significant decrease in food consumption (Thiele et al., 1998). 

MTII injection into the PVN also produces reduction in eating, which is prevented by 

coadministering an AgRP analogue (Fan et al., 1997). 

The second ARC population of first order neurons which are essential for regulation of 

feeding are the neurons that make neuropeptide Y (NPY) and Agouti-related protein (AgRP) 

(from here on referred to as NPY/AgRP neurons). NPY was initially discovered in 1982 
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(Tatemoto et al., 1982), but it wasn’t until a couple years later that one of its functions was 

characterized as an orexigenic peptide (Clark et al., 1984). NPY agonizes a set of G-protein 

coupled NPY receptors (Linder et al., 2008). Infusion of NPY into the cerebral ventricles also 

causes an increase in eating (Clark et al., 1984; Levine and Morley, 1984; Stanley et al., 1985). 

Targeted infusion of NPY into subregions of the hypothalamus revealed the PVN, VMH, and LH 

as key areas involved in NPY-regulated eating (Stanley et al., 1985). AgRP was discovered as an 

Figure 1.1. Opposing first order feeding neuron populations are located in the arcuate 

nucleus of the hypothalamus. (A) Coronal section of an adult mouse brain containing the ARC. 
White triangle encompasses arcuate nuclei and ME. NPY/AgRP cells are densely packed near the 
ME, visualized using an NPY-hrGFP animal and presented as a confocal Z-stack (B). POMC cells 
are relatively more spread through the ARC and slightly larger than NPY/AgRP cells, visualized 
using a POMC-DsRed animal (C). 3v, third ventricle. Scale bar for (A) is 500 µm, while scale bar 

for (B) is 100 µm. 
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inverse agonist for the melanocortin receptors (Ollmann et al., 1997; Shutter et al., 1997), which 

led to the colocalization of the two peptides (Hahn et al., 1998). 

Previous work with the agouti gene (different than the AgRP gene) actually led to the 

hypothesis of opposing feeding neuron populations harnessing the melanocortin system. The 

agouti gene was cloned in 1992 (Bultman et al., 1992) and was the first obesity gene to be 

characterized at the molecular level. Hair follicles express agouti, where it leads to the 

production of yellow and red pigments and inhibits the production of black pigments in 

melanocytes. The mechanism through which agouti acts on melanocytes is by antagonizing 

MC1Rs. The lethal yellow (Ay) mutation is one of five known agouti mutations that leads to 

ectopic agouti expression (Michaud et al., 1994). Heterozygotes (homozygous expression of this 

spontaneous mutation is lethal), in addition to their yellow hair color, develop obesity within the 

first few months of life. This is because ectopic expression of agouti in the hypothalamus 

functionally outcompetes α-MSH at MC3 and MC4Rs. 

Like the effect of constitutively expressed agouti, infusion of AgRP into ventricles causes 

increases in food intake, which is prevented with simultaneous injection of melanocortin agonists 

(Hagan et al., 2000). NPY/AgRP cells not only release peptide neurotransmitters, they also 

release the amino acid transmitter γ-aminobutyric acid (GABA), providing NPY/AgRP neurons 

with another inhibitory mode of action (Horvath et al., 1997). Recent counts put the number of 

these neurons at about 10,000 in the mouse brain (Betley et al., 2013). 

 

Satiety and POMC vs. hunger and NPY/AgRP: paradigm of opposition 

 The classical paradigm for opposing first order feeding neurons continues as the standard 

model with the decades’ worth of literature behind it. Collectively, POMC and NPY/AgRP 
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neurons, their projecting fibers, target neurons expressing MC3R or MC4R, and a second small 

group of POMC-expressing neurons in the brain stem, define the neural melanocortin system 

(Mountjoy et al., 1994; Zhan et al., 2013). Through a combination of pharmacology experiments, 

electrophysiology, and knockout mouse models, a model of energy homeostasis was formed 

(Figure 1.2). Early hypotheses stated that two battling peptides, α-MSH and AgRP, act on the 

MC3 and MC4 melanocortin receptors throughout the brain to directly regulate food intake and 

energy balance. α-MSH-induced activation of melanocortin receptors decreases food intake and 

increases energy expenditure, and AgRP antagonizes these effects (Fan et al., 1997; Hagan et al., 

2000). This idea is consistent with the finding that POMC and NPY/AgRP cells share common 

second order targets in the CNS that are located in the PVN, LH, VMH, and dorsomedial (DMH) 

nuclei of the hypothalamus, as well as extrahypothalamic regions like the NTS and parabrachial 

nucleus (PBN) (Bagnol et al., 1999; Wang et al., 2015). POMC-KO and MC4R-KO mice are 

hyperphagic and obese, and MC3R-KO mice have increased fat mass (Huszar et al., 1997; 

Yaswen et al., 1999; Butler et al., 2000). AgRP-KO mice have no metabolic phenotype (Qian et 

al., 2002), however, acute ablation of NPY/AgRP neurons in adulthood using targeted diphtheria 

toxin receptor causes starvation (Wu et al., 2008). This evidence of the importance of peptide 

transmitters was used to build and sustain the basic opposing force model. 

 Circulating hormones directly and indirectly modulate the two pools of first order feeding 

neurons. A lot of study has been devoted to leptin, which activates POMC neurons and increases 

transcription of POMC mRNA levels, at the same time inhibiting NPY/AgRP neurons and 

decreasing AgRP mRNA levels through direct activation of LepRb, which is expressed on both 

cell types (Schwartz et al., 1997; Mizuno and Mobbs, 1999; Elias et al., 1999; Lam et al., 2015). 

Electrophysiologically, there is some evidence, although not yet completely convincing, that 
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Figure 1.2. Classical paradigm of opposing first order feeding neurons. Circulating energy signals reach the 
median eminence where they are able to cross the weak blood-brain barrier (BBB). POMC and NPY/AgRP cells 
are excited or inhibited by these signals, which alters the balance between the populations of neurons and allows 
for appropriate autonomic and behavioral food intake and energy expenditure actions to occur. POMC neurons 
activate downstream 2nd order feeding neurons by releasing α-MSH onto melanocortin 4 receptors (MC4Rs). 
NPY/AgRP neurons fight this activation by releasing the MC4R antagonist AgRP, in addition to releasing NPY 
onto the inhibitory NPY type 1 receptors (Y1Rs). NPY/AgRP cells directly inhibit POMC cells through 
activation of Y1Rs and putative GABA release onto GABAA receptors, while POMC cells directly inhibit 
NPY/AgRP cells through putative activation of melanocortin 3 receptors (MC3Rs). 
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leptin signaling depolarizes POMC neurons via activation of TRPC channels (Qiu et al., 2010), 

whereas NPY/AgRP neurons are hyperpolarized by activation of the Kv2.1 potassium channel 

(Baver et al., 2014). Because POMC cells are innervated by NPY/AgRP neurons (Atasoy et al., 

2012), leptin is also able to depolarize POMC neurons through reduction of inhibitory tone from 

AgRP NPY, as well as GABA, release (Cowley et al., 2001). Even though leptin inhibits 

NPY/AgRP neuron activity, it is actually required during early life development in order to 

properly wire. Mice genetically deficient of leptin (ob/ob) or its receptor (db/db) display 

abnormal projections to the PVN (Bouret et al., 2004; 2012) from ARC feeding neurons, 

pointing to a role as a trophic factor in neonates. Ghrelin also acts directly on first order neurons. 

It was shown to directly increase the firing rate of NPY/AgRP neurons, as well as indirectly 

inhibit POMC neurons by increasing inhibitory tone from NPY/AgRP cells onto POMC cells 

(Cowley et al., 2003). The ghrelin receptor is a Gα11/Gq11-coupled GPCR that activates 

phospholipase C (PLC). PLC increases the intracellular Ca2+ levels through inositol-3-phosphate 

(IP3) and protein kinase C pathways (van der Lely et al., 2004; Ferrini et al., 2009). In addition to 

these peptides, POMC and AgRP neurons are now known to also respond to estrogen, glucose 

and fatty acids in an opposing manner (Ibrahim et al., 2003; Chang et al., 2005; Titolo et al., 

2006; Jo et al., 2009; de Souza et al., 2011; Koch and Horvath, 2014). 

Using the Cre-lox system with POMC- and NPY/AgRP-Cre animals continues to be a 

popular method to find out how these two populations of neurons function and interact. 

However, careful attention must be paid not to overstate results when using these strategies, 

especially in light of recent findings that POMC is transiently expressed during development in 

cells fated to become NPY/AgRP or Kisspeptin neurons (Padilla et al., 2010; Sanz et al., 2015). 

Any meaningful amount of Cre being expressed in unintended neurons will cause permanent 
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recombination of floxed sites. For examples of work that may warrant alternative interpretation, 

see Balthasar et al., 2004 and Xu et al., 2008. Some of the most convincing evidence for the 

basic idea of first order feeding neuron opposition comes from the development of optogenetic 

tools. Through expression of the light-gated nonselective cation channel, channelrhodopsin-2 

(ChR2), it is possible to selectively activate molecularly marked neurons using a specific 

wavelength of light (Boyden et al., 2005; Arenkiel et al., 2007). Optogenetic stimulation of even 

a minority of NPY/AgRP cell bodies in vivo rapidly elicits an insatiable appetite and food 

consumption in mice, even if they have recently eaten a meal (Aponte et al., 2011). This effect 

scales with frequency of light stimulation. Conversely, light stimulation of POMC neurons 

decreases food intake and body weight, although a longer period of stimulation is needed to 

observe significant effects (Aponte et al., 2011). This difference between neuron types might be 

attributable to the timescales in which different neurotransmitters act. Interestingly, when Ay 

mice that are constitutively producing agouti protein, which binds melanocortin receptors and 

prevents changes in the natural melanocortin system to have any effect, are used, NPY/AgRP 

stimulation still causes feeding behavior and weight gain, while POMC cell stimulation has no 

effect on feeding (Aponte et al., 2011). This implies that, at least in that paradigm, melanocortin 

signaling is much more important for POMC cells than for NPY/AgRP cells, which could be 

relying on the fast actions of their amino acid transmitter, GABA. This is just one caveat to the 

simple idea of opposing actions of first order feeding neurons specifically at melanocortin 

receptors. More new findings and ideas are covered next. 
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Wrinkles in the classical paradigm 

While the dueling melanocortin idea of feeding is still established and accepted, the field 

is rapidly growing beyond a simple model (for excellent contemporary reviews, see Mountjoy, 

2015; Sternson and Atasoy, 2014). Advances in imaging and recording approaches have allowed 

for the development of in vivo calcium imaging. In line with ex vivo brain slice recordings, 

NPY/AgRP neurons are active during the fasted state and also respond with elevated calcium 

events to injections of ghrelin. The surprising and more novel finding, however, is that POMC 

and AgRP neurons respond rapidly to sensory food cues even before ingestion, and the response 

varies with nutritional state and depends on the palatability of the food presented (Betley et al., 

2015; Chen et al., 2015); the fast response is caused by detection, not consumption. Thus, in 

addition to long-term integration of nutritional signals and maintenance of energy balance, the 

melanocortin system is poised to be dynamically regulated by sensory stimuli and may be 

directly involved in food-seeking behavior. 

One conceptually simple finding to keep in mind is that POMC and AgRP neurons often, 

but not always, project to the same nuclei. This suggests that some areas of the brain utilize 

independent branches of the first order feeding neuron populations, implicating a possible role 

for each peptide independent of the other (Wang et al., 2015). It could be possible that there is 

constitutive activity of the melanocortin receptors in some brain regions, and there is some 

evidence to suggest that AgRP could act alone on a receptor as an inverse agonist rather than just 

a competitively binding antagonist (Tao, 2014). One hint at an alternate hypothesis lies with 

recent investigation into the signaling cascade downstream from the MC4R. Although α-MSH 

and opposing AgRP action on MC4Rs is transduced though a Gs-coupled pathway (Nickolls et 

al., 2005; Buch et al., 2009), recent findings are suggesting the somewhat controversial idea that 
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AgRP acts in a second, Gs-independent manner on the MC4R. Specifically, that there is  

coupling of the MC4R to the inward-rectifying potassium channel Kir 7.1 (Ghamari-Langroudi 

et al., 2015). 

As previously discussed, AgRP-KO mice have no metabolic phenotype, while ablation of 

NPY/AgRP neurons in an adult results in starvation (Wu et al., 2008). This suggests 

developmental compensation, but in what manner? Further study revealed that the starvation was 

melanocortin-independent, and that proper hunger signaling and was mediated at least in part by 

the amino acid transmitter GABA (Wu et al., 2008; 2009; 2012). In addition, two methods of 

targeted neural activation (cell-type-specific light- or chemical-mediated activation) show that 

excitation of AGRP neurons leads to immediate and voracious feeding, also independent of 

melanocortin signaling (Krashes et al., 2011; 2013). Through additional experiments, it was 

determined that NPY and GABA released by NPY/AgRP neurons both play a significant role in 

the short-term feeding behavior, whereas AgRP might be more responsible for feeding on a 

longer time scale (Krashes et al., 2013). 

POMC neurotransmitter release is not restricted to peptides; before beginning the primary 

research in this study, our lab had previously discovered that POMC cells release both GABA 

and glutamate in autaptic cultures (Hentges et al., 2009), although it was unknown if that 

phenotype held in intact circuitry or what physiological relevance amino acid transmitter release 

might hold. Further discussion will be found in later chapters, but to summarize, very little is 

known about the relevance of POMC amino acid transmitters. There is a small amount of 

evidence that there are two classes of POMC cell neurotransmitter release sites—one that 

releases a combination of neurotransmitters and peptides at conventional synapses, and the other 

being extrasynaptic sites that only release peptides (Atasoy et al., 2014). Clearly, the recent 
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findings described point toward a more complex feeding and energy homeostasis model that 

must account for separate mechanisms on separate timescales, redundancy, developmental 

adaptation, and importance of amino acid transmitters. 

 

Beyond first order neurons 

 Where do POMC and NPY/AgRP neurons exert their largest effects? One way to answer 

this is to know in what brain regions melanocortin receptors are most necessary for proper 

feeding and energy balance. A group using the Mc4rloxTB/loxTB mouse line, a global MC4R 

knockout that will re-express MC4R if Cre is introduced, along with a Sim1-Cre line, MC4Rs 

were only expressed in the amygdala, nucleus of the lateral olfactory tract, DMH, and LH 

(Balthasar et al., 2005). This selective expression drastically diminished the increased body 

weight phenotype observed in the Mc4rloxTB/loxTB mouse model, but it was not a complete rescue, 

suggesting at least some relevant melanocortin activity outside of these brain regions. Further 

targeting of the PVN with a selective knockout Mc4rlox/lox mouse line, in conjunction with the use 

of the previous selective rescue line and some elegant use of Cre-expressing viral injections, 

showed that melanocortin activity specifically in the PVN is both necessary and sufficient for the 

majority of a proper weight phenotype (Shah et al., 2014). This study did a great job in 

essentially using a brute-force strategy to determine the relevance of other types of neurons to 

the melanocortin system. Loss or rescue of MC4Rs in glutamatergic neurons using the vGLUT2 

glutamate transporter accounted for a complete loss or rescue of a weight phenotype, whereas re-

expression in oxytocin, corticotropin-releasing hormone, arginine vasopressin, or prodynorphin 

neurons (all expressed within the PVN) had no measured effect. Interestingly, although the PBN 

is part of a known feeding pathway (Carter et al., 2013), regaining any expression of MC4Rs in 
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the PBN results in no change in phenotype, suggesting that a melanocortin-dependent role of 

function is lacking in the region, that GABA release is the relevant first order transmitter 

released in the pathway, and/or that the pathway is not relevant to feeding outside extreme 

physiological states e.g. being poisoned or very sick. 

The PBN is actually a heavily researched area at this time, as a second group of neurons 

more lateral to those studied in Carter et al., 2013 is generating interest for being a major efferent 

target for the effects of MC4R-expressing PVN neurons. ChR2-mediated stimulation of 

terminals of MC4R-expressing PVN neurons located in the lateral PBN caused the same 

reduction in feeding behavior as activation at the soma level (Garfield et al., 2015). Although the 

pathway flowing through the glutamatergic PVN neurons is currently being heavily mined for 

information, there are other groups of relevant second order neurons that are innervated by both 

POMC and NPY/AgRP cells. However, results between groups have been mixed. Terminal field 

photostimulation of ChR2-expressing NPY-AgRP neurons in the anterior bed nucleus of the stria 

terminalis (aBNST) and LH promotes acute food consumption to comparable levels as that 

observed following NPY/AgRP soma activation (Atasoy et al., 2012; Betley et al., 2013; 

Sternson lab), but patch clamp recordings of MC4R-expressing cells in those regions while doing 

the same photostimulation of NPY/AgRP cells found no evidence for monosynaptic inhibitory 

connections (Garfield et al., 2015; Lowell lab). These pathways need further clarification. It may 

be that there is a complex system of interneurons between NPY/AgRP cells and their LH targets, 

or that the orexigenic nucleus in the LH is mostly under the control of POMC cells, but further 

work is needed to address these and other possibilities. 
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1.4 General hypotheses and aims of the study 

 With obesity being such a significant problem in Western society, there is an obvious 

need to more fully understand the homeostatic systems within the hypothalamus that drive 

feeding and energy balance. In reviewing some of the most important feeding literature currently 

published, context has been given for the primary research in this study. To summarize the ideas 

and concepts most relevant to the following chapters, NPY/AgRP and POMC neurons located in 

the ARC have been studied extensively for their opposing regulation of energy homeostasis. 

NPY/AgRP neurons express increased markers of activation, such as FOS during a fasted or 

hungry state (Wu et al., 2014). Conversely, POMC neurons show greater markers of FOS during 

a sated rather than a fasted state (Wu et al., 2014). The responsiveness of these cell types to 

changes in feeding state clearly points to their role as important players in feeding and energy 

balance circuits. Because of their exquisite placement next to a CVO and their ability to detect 

energy state signals in the bloodstream, it is no surprise that these two groups of cells are thought 

to represent the primary initial node in the feeding model of the mammalian brain. 

So far, the majority of study has examined the peptide transmitters that these first order 

feeding neurons release and are named for, which are clearly important for normal control of 

feeding and weight. However, only a small portion of obesity can be explained by perturbations 

or mutations in the first order feeding neuron peptide systems (van Vliet-Ostaptchouk et al., 

2009). While these peptides are clearly important for proper maintenance of body weight, 

classical amino acid transmitters may also play a significant role in POMC cell physiology (van 

den Pol, 2003; Meister, 2007), and definitely play an important role in NPY/AgRP cells’ ability 

to modulate feeding behavior (Aponte et al., 2011; Wu et al., 2012; Krashes et al., 2013; Carter 

et al., 2013). GABA has been long known to affect feeding (Kelly et al., 1977; Tsujii and Bray, 
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1991), and the GABA receptor continues to be a potential target for eating disorder and obesity 

treatment (Guardia et al., 2011). 

 The first aim of this study is to test the hypothesis that both glutamate and GABA are 

released from POMC cell terminals, and that this release is relevant to the feeding circuit. 

Chapter 2 addresses release, and while there is still little evidence for relevance, new findings 

from our lab are discussed in Chapter 4. 

 The experiments in Chapter 3 test the hypothesis that GABA release from NPY/AgRP 

cells is regulated based on feeding state, focusing specifically on the non-reciprocated direct 

synaptic connection of NPY/AgRP cells to POMC cells. Additionally, through in situ 

hybridization experiments, glutamate decarboxylase mRNA (Gad) level as a proxy for functional 

GABA release is discussed as a broadly applicable tool. The importance of inhibitory tone from 

NPY/AgRP neurons onto POMC neurons is discussed in Chapter 4. Both aims rely heavily on a 

combination of electrophysiology and optogenetic techniques to obtain pseudo-paired 

recordings.    
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2. REGULATION OF GABA AND GLUTAMATE RELEASE FROM 

PROOPIOMELANOCORTIN NEURON TERMINALS IN INTACT HYPOTHALAMIC 

NETWORKS1 

 

 

2.1 Summary 

Hypothalamic proopiomelanocortin (POMC) neurons and their peptide products mediate 

important aspects of energy balance, analgesia, and reward. In addition to peptide products, there 

is evidence that POMC neurons can also express the amino acid transmitters GABA and 

glutamate, suggesting these neurons may acutely inhibit or activate downstream neurons. 

However, the release of amino acid transmitters from POMC neurons has not been thoroughly 

investigated in an intact system. In the present study, the light-activated cation channel 

channelrhodopsin-2 (ChR2) was used to selectively evoke transmitter release from POMC 

neurons. Whole-cell electrophysiologic recordings were made in brain slices taken from POMC-

Cre transgenic mice that had been injected with a viral vector containing a floxed ChR2 

sequence. Brief pulses of blue light depolarized POMC-ChR2 neurons and induced the release of 

GABA and glutamate onto unidentified neurons within the arcuate nucleus, as well as onto other 

POMC neurons. To determine if the release of GABA and glutamate from POMC terminals can 

be readily modulated, opioid and GABAB receptor agonists were applied. Agonists for mu and 

kappa, but not delta, opioid receptors inhibited transmitter release from POMC neurons, as did 

the GABAB receptor agonist baclofen. This regulation indicates that opioids and GABA released 

from POMC neurons may act at presynaptic receptors on POMC terminals in an autoregulatory 

                                                 
1 Full article from Dicken MS, Tooker RE, and Hentges ST. (2012) The Journal of Neuroscience, 32:4042-4048. 
Shane Hentges contributed to experimental design and writing of the manuscript. Ryan Tooker performed initial 
ChR2 experiments and edited the manuscript. Matthew Dicken performed the majority of the experiments, analyzed 
collected data, assisted in experimental design, and contributed in writing the manuscript. 
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manner to limit continued transmission. The results show that in addition to the relatively slow 

and long-lasting actions of peptides, POMC neurons can rapidly affect the activity of 

downstream neurons via GABA and glutamate release. 

 

2.2 Introduction 

Hypothalamic proopiomelanocortin (POMC) neurons are thought to exert their effects on 

energy balance, motivation, pain and reward mainly through release of the mature POMC 

cleavage products α-melanocyte-stimulating hormone (α-MSH) and β-endorphin (Coll, 2007; 

Bertolini et al. 2009; Hegadoren et al., 2009). While these peptides are clearly important for 

proper function, classical amino acid (AA) transmitters may also play a significant role in POMC 

cell physiology (van den Pol, 2003; Meister, 2007). Previous reports have shown both GABA 

and glutamate release from POMC cells that have formed recurrent synapses in primary culture 

(Hentges et al., 2004, 2009). In addition, electron micrograph data has shown that POMC 

terminals make both symmetric and asymmetric synapses, suggesting both GABAergic and 

glutamatergic POMC terminals, respectively (Wang et al., 2001; Reyes et al., 2006). However, 

glutamate release from POMC neurons in an intact circuit has not been demonstrated and some 

studies have failed to detect GABAergic markers in POMC neurons using immunohistochemical 

or transgenic approaches (Ovesjö et al., 2001; Vong et al., 2011). A complete understanding of 

how POMC neurons affect the larger circuitry and behavior requires knowing the amino acid 

phenotype of these neurons. Thus, the present study was designed to determine whether POMC 

neurons release GABA and/or glutamate to affect neuronal activity in intact hypothalamic 

networks. 
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To examine transmitter release from POMC neuron terminals in an intact system, a 

combined optogenetics-electrophysiology approach was used. This approach is similar to that 

proposed for circuit mapping and functional studies (Petreanu et al., 2007; Atasoy et al., 2008; 

Kohl et al., 2011). Cell type-specific expression of the light-gated ion channel channelrhodopsin-

2 (ChR2) in POMC cells was used to excite POMC neurons as a population with light while 

recording from downstream neurons in slice preparations. With this method, amino acid (AA) 

transmitter release could be observed through native connections. The results show that both 

GABA and glutamate are released from POMC neurons onto downstream cells within the 

arcuate nucleus (ARC), indicating not only the phenotype of AA transmitter release, but also that 

POMC cells can terminate within the ARC. In addition, evoked transmitter currents could be 

dynamically modulated through G-coupled protein receptor (GPCR) activation, suggesting 

physiological regulation of GABA and glutamate release from POMC neurons may be another 

regulatory component of the POMC neuron system. 

 

2.3 Materials and Methods 

Animals 

 Male and female transgenic mice expressing Cre recombinase specifically in POMC cells 

(POMC-Cre) were used for all experiments. Transgenic animals were produced by standard 

techniques (see Xu et al., 2005) and backcrossed >12 generations onto the C57Bl/6 strain. 

Animals were 10-12-weeks-old when electrophysiological experiments were conducted. Mice 

were housed under controlled temperature (22-24°C) and a constant 12 hr light/dark cycle. Mice 

were fed standard rodent chow and tap water ad libitum. All experiments met United States  
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Public Health Service guidelines with the approval of the Colorado State University Institutional 

Animal Care and Use Committee. 

 

Viral gene transfer in vivo 

POMC-Cre transgenic mice (eight-weeks-old) were anesthetized with isoflurane and 

placed in a stereotaxic frame (Kopf Instruments). A viral vector containing a floxed sequence for 

ChR2 with an mCherry tag (AAV2/9.EF1.dflox.hChR2(H134R)–mCherry.WPRE.hGH; 

obtained from the Penn Vector Core at the University of Pennsylvania School of Medicine, 

Philadelphia, Pennsylvania) was unilaterally injected into the ARC of POMC-Cre mice. For each 

animal, a 300 nl injection (3.52E+12 GC/ml) was made using a Hamilton syringe and the 

following coordinates from bregma: X, -0.27 mm; Y, -1.35 mm; Z, -6.14 mm. After 

microinjection, the wound was sutured and animals were left to recover for a minimum of 14, but 

no longer than 28 days before experiments to ensure a high level of ChR2 expression. 

 

Immunofluorescence 

18 days post-AAV injection, mice were anesthetized, perfused transcardially with 4% 

paraformaldehyde, and brains were removed and post-fixed as described previously (Hentges et 

al., 2009). Sagittal brain slices (50 µm) containing the ARC were prepared on a vibratome and 

were subsequently incubated in phosphate-buffered saline (PBS) with 3% normal goat serum and 

0.3% Triton-X-100. The POMC peptide adrenocorticotropin (ACTH) was detected using a rabbit 

anti-ratACTH primary antibody (National Hormone and Peptide Program; 1:10,000, overnight at 

4°C). Tissue was then washed in PBS and incubated with an Alexa Fluor 647-conjugated donkey 

anti-rabbit secondary antibody (Invitrogen; 1:400). ACTH-immunoreactivity was visualized 



 26

using a Zeiss-510-Meta laser-scanning confocal microscope based on the far-red fluor (633 nm 

excitation and 650 nm emission wavelengths) and ChR2-mCherry was visualized using 580 nm 

excitation and 600 nm emission filters. Colocalization of ACTH immunoreactivity and ChR2-

mCherry expression was determined by counting the labeled cells in sections from 2 brains. Two 

investigators made independent counts of labeled cells in each brain to verify the results. 

 

Electrophysiology 

Sagittal brain slices containing the ARC were prepared as previously described (Pennock 

and Hentges, 2011). Whole-cell voltage clamp recordings were made at a temperature of 37°C 

with an internal recording solution containing the following (in mM): 57.5 KCl, 57.5 K-methyl 

sulfate, 20 NaCl, 1.5 MgCl2, 5 Hepes, 0.1 EGTA, 2 ATP, 0.5 GTP, 10 phosphocreatine, pH 7.3. 

Recording pipettes had a tip resistance of 1.5-2.2 MΩ when filled with internal solution. Slices 

were maintained in artificial cerebrospinal fluid (aCSF) containing the following (in mM): 126 

NaCl, 2.5 KCl, 1.2 MgCl2, 2.4 CaCl2, 1.2 NaH2PO4, 21.4 NaHCO3, and 11.1 glucose (saturated 

with 95% O2 and 5% CO2). Whole-cell recordings were conducted through the use of an 

Axopatch 200B amplifier (Molecular Devices, Sunnyvale, CA) and data was collected using 

AxographX software (Axograph, Sydney, Australia) running on a Mac OS X operating system. 

POMC neurons expressing ChR2 were identified by the mCherry fluorophore expressed as a 

fusion protein on the channel. Cells were held at -60 mV for recording light-evoked postsynaptic 

currents (PSCs). When recording from unidentified cells within the ARC, the patched cells were 

within ~100 μm of POMC-ChR2 expressing cells. Cells were excluded if the access resistance 

increased significantly from the initial access (6.04 ± 1.17 MΩ for unidentified cells, 4.6 ± 0.75 

MΩ for ChR2-expressing POMC neurons, and 4.9 ± 0.71 MΩ for POMC neurons without 
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ChR2). Postsynaptic currents were evoked using either a 25 or 100 ms blue light pulse delivered 

every 20 s to the slice from a mercury light source with a rapid shutter system (Lumen Pro 200, 

Prior). The light was adjusted to the minimum intensity required to evoke a consistent PSC, 

which was generally between 5-11 mW/mm2. PSCs were evoked for at least 5 min under 

baseline conditions to ensure a steady recording. PSCs were collected at 10kHz and digitally 

filtered at 1kHz. Data were analyzed by comparing an average of 3 min of baseline to an average 

of 2 min of steady-state response to drug. Excitatory and inhibitory PSCs were identified 

pharmacologically by blocking GABAA-mediated currents with bicuculline methiodide (BMI, 10 

µM; Tocris) or AMPA- and NMDA-mediated currents with 6,7-dinitroquinoxaline-2,3(1H,4H) 

(DNQX, 10µM; Sigma) and (+)-MK-801 (15 µM;Sigma). Representative recordings were 

plotted by minute, averaging the peak amplitude of 3 sweeps spaced 20 seconds apart. 

 

Drugs 

Stock solutions of DNQX, (+)-MK-801, and (+)-(5α,7α,8β)-N-methyl-N-[7-(1-

pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]-benzeneacetamide (U69593; Biomol International) were 

prepared with DMSO at least 10,000x more concentrated than the final solution. Stock solutions 

of [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO; Sigma), D-Phe-Cys-Tyr-D-Trp-Arg-

Thr-Pen-Thr-NH2 (CTAP; Tocris Bioscience), nor-binaltorphimine (nor-BNI; Sigma), [D-

Pen2,5]enkephalin (DPDPE; Bachem), bicuculline (Tocris Bioscience), [Met5]enkephalin 

(Sigma), baclofen (Sigma), dynorphin A (Tocris Bioscience), naloxone (Sigma), (2S)-3-[[(1S)-1-

(3,4-Dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic acid (CGP 55845; 

Tocris Bioscience), and BMI were prepared with distilled water. All drugs were diluted to  
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working concentrations in aCSF and applied via bath perfusion except (+)-MK-801, which was 

applied to the collected slices prior to being moved to the recording chamber. 

 

Data Analysis 

All data are presented as mean ± SEM. Comparisons between groups were compared 

using t-tests. P < 0.05 was considered a significant difference. 

 

2.4 Results 

Functional expression of ChR2 in POMC cells  

The selective expression of ChR2 in POMC neurons was verified in slices prepared from 

POMC-Cre mice that had been injected with the viral vector containing the floxed ChR2-

mCherry ≥2 weeks earlier. Approximately 88% of cells expressing ChR2-mCherry also 

displayed ACTH-immunoreactivity (ACTH-IR). Cells expressing mCherry without detectable 

ACTH-IR most likely represent POMC neurons with low ACTH expression. Injection of the 

viral vector into the ARC of wild-type C57Bl/6 mice yielded no detectable mCherry 

fluorescence (data not shown), indicating that expression is limited to cells that express Cre 

recombinase. Approximately 79% of ACTH-IR cells in the injected side of the ARC expressed 

mCherry (Figure 2.1A). ChR2-mCherry was notable throughout the membranes of cell body and 

neuronal projections, indicating strong expression and widespread trafficking of the channel. 

These findings indicate specific targeting of strong ChR2 expression to POMC neurons. 

Individual cells expressing high amounts of ChR2-mCherry were easily detected in live 

brain slices prepared from injected mice (Figure 2.1B). POMC cells with ChR2 had similar basal 

whole-cell properties as POMC neurons that do not express ChR2. The input resistance was 
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Figure 2.1. POMC cell-specific expression of functional ChR2. (A) Confocal z-stack image of a 
brain slice containing cells expressing ChR2-mCherry 18 days after AAV injection (left panel) and 
cells immunoreactive for ACTH (center panel). A high degree of colocalization can been seen in 
the merged image (right panel). (B) Images of the hypothalamus in a live brain slice from an AAV 
injected mouse shown in DIC (top panel) and fluorescence (bottom panel). Arrow indicates a 
neuron with a high level of ChR2 expression within the focal plane. (C) Whole cell currents from a 
ChR2-expressing neuron elicited by pulses of blue light at increasing intensities (0 at top trace; 28 
mW/mm2 elicited the largest current, bottom-most trace). (D) Light-induced depolarization of a 

ChR2-expressing neuron caused action potential firing in current clamp recordings. 
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1.3 ± 0.1 GΩ in ChR2 positive cells versus 1.6 ± 0.2 GΩ in ChR2 negative POMC neurons (n = 

9, p = 0.31). Whole-cell capacitance was also not different between ChR2 expressing and non-

expressing POMC neurons (29 ± 2.6 pF and 25.5 ± 1.4 pF, respectively; n = 9, p = 0.24). Whole-

cell voltage clamp recordings made in POMC-ChR2 neurons indicate that ChR2 mediates an 

inward current in response to blue light (~ 470 nm, Figure 2.1C). Peak and steady-state current 

responses were stereotypical of currents mediated by ChR2(H134R) (Lin et al., 2009). In current 

clamp, blue light depolarized POMC-ChR2 neurons and caused action potential firing (Figure 

2.1D). 

 

GABA and glutamate release from POMC neurons 

Activation of POMC neurons via ChR2 was used to determine if POMC cells release the AA 

transmitters glutamate and/or GABA in an intact neuronal network. Whole-cell voltage clamp 

recordings were made in unidentified cells (not expressing detectable mCherry) in the ARC near 

POMC neurons. The unidentified cells had basal properties similar to POMC neurons (input 

resistance, 1.1 ± 0.15 GΩ, capacitance, 23.3 ± 1.54 pF; n = 15, p > 0.05 for both properties 

compared to POMC neurons with or without ChR2). The likelihood that a pulse of light evoked 

neurotransmitter release from POMC-ChR2 cells varied from 50% to 8.33% (e.g. 1 out of 12 

cells patched) depending on the accuracy of the injection and thus, the number of ChR2-

expressing neurons. When light pulses evoked transmitter release from POMC terminals, the 

currents in the postsynaptic cell were mediated by both GABAA and AMPA receptors, indicating 

GABA and glutamate release from POMC neurons. Light-evoked inhibitory postsynaptic 

currents (IPSCs) were recorded in the presence of the AMPA receptor blocker DNQX (10 μM, 

Figure 2.2Ai) and were completely inhibited by the GABAA receptor antagonist BMI (10 μM, 
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Figure 2.2Aii). Upon washout of BMI, the current returned (Figure 2.2Aiii). Reversing the order 

of antagonist application showed the glutamatergic nature of some light-evoked currents. 

Currents evoked in the presence of BMI (Figure 2.2Bi) were blocked by the addition of DNQX 

to the bath (Figure 2.2Bii) and returned upon washout of DNQX (Figure 2.2Biii). In the presence 

of BMI, the onset of evoked currents was often substantially delayed from the initial light 

stimulus (as seen in Figure 2.2B), which may indicate a polysynaptic response. However, direct 

innervation was indicated in some instances, including where a brief light pulse evoked PSCs 

that were abolished only when both GABAA and AMPA receptors were blocked (Figure 2.2Ci-

iv). Altogether, when a light-evoked PSC was detected in a non-POMC cell, it was most often 

GABAergic in nature (27/39 cells showed GABA-mediated PSCs, Figure 2.2D). Glutamate-

mediated PSCs accounted for 23% of the PSCs observed (9/39 PSCs), and 3 cells appeared to 

receive input from both GABAergic and glutamatergic POMC cells (Figure 2.2D), although the 

possibility that individual terminals may release both GABA and glutamate cannot be ruled out 

based on the present experiments.   

The majority of light-evoked PSC recordings were made in non-POMC neurons, since 

the direct inward current carried through ChR2 can obscure the current induced by GABA or 

glutamate release. However, some POMC cells expressing ChR2 displayed both a direct ChR2-

mediated inward current and a slightly delayed light-evoked GABA-mediated IPSC (n = 4, 

Figure 2.2E). This result indicates that POMC neurons can innervate one another.         

All light-evoked currents in cells downstream of POMC neurons could be completely 

blocked by BMI and/or DNQX indicating that GABA and glutamate were the only transmitters 

being released in response to the acute depolarization of POMC neurons. The light-evoked 

release of transmitter from POMC neurons appears to be dependent on action potential 
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Figure 2.2. POMC neurons release GABA and glutamate onto cells within the arcuate nucleus. Light-
evoked IPSCs observed in the presence of DNQX (10 μM, Ai) were abolished with the addition of BMI (10 μM, 
Aii). Light evoked EPSCs observed in the presence of BMI (Bi) were abolished with the addition of DNQX 
(Bii). (C) An example of a cell with light-evoked IPSCs and EPSCs. Upon washout of DNQX and/or BMI 
evoked currents returned (Aiii, Biii, Civ). Panels in A and B consist of three overlayed sweeps, whereas panels 
in C are each an average of three sweeps. The transmitter(s) mediating evoked currents was determined in all 
cases where a PSC was observed and is presented in (D). (E) A light-evoked IPSC in a POMC cell which also 
displays a direct ChR2 current (top trace). The evoked IPSC is ablated by BMI (bottom trace). (F) Currents 

evoked onto an unidentified cell are completely inhibited by treatment with TTX (1 µM). 
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propagation and not direct stimulation of terminal release based on the observation that the 

addition of tetrodotoxin (TTX, 1 µM) completely abolished light-evoked PSCs (98.68 ± 0.94% 

reduction, n = 4, p < 0.001; Figure 2.2F). 

 

Opioids inhibit neurotransmitter release from POMC terminals via mu and kappa receptors  

 The ability of opioid receptor agonists to modulate the release of GABA and glutamate 

from POMC terminals was evaluated, since opioids reliably inhibit AA transmitter release from 

unidentified terminals within the ARC (Emmerson and Miller, 1999; Pennock and Hentges, 

2011). The mu (MOR) and delta opioid receptor (DOR) agonist ME (10 µM) caused a dramatic 

decrease in light-evoked IPSCs (72.46 ± 4.00% reduction, n = 9, p < 0.001; Figure 2.3A-B) and 

EPSCs (72.45 ± 4.64% reduction, n = 4, p < 0.001; Figure 2.3C-D). This reduction in current 

was readily reversed by washing out of drug (103.73 ± 10.03% of baseline, n = 5, p = 0.73; 

Figure 2.3C) or by co-applying the MOR-selective antagonist, CTAP (500 nM, 97.22 ± 9.42% of 

baseline, n = 8, p = 0.74; Figure 2.3A). 

The DOR selective agonist DPDPE (100 nM) had no effect on PSC amplitude in any cell 

tested (100.12 ± 3.41% of baseline, n = 4, p = 0.49), whereas the MOR selective agonist 

DAMGO (10 µM) reliably inhibited IPSC amplitude (72.70 ± 7.80% reduction, n = 4, p = 0.001; 

Figure 2.4A,B). The inhibition was reversed by CTAP (500 nM, 88.65 ± 5.95% of baseline, n = 

4, p = 0.15; Figure 2.4A). Thus, mu but not delta receptor agonists can inhibit AA transmitter 

release from POMC neurons. Kappa opioid receptor (KOR) agonists inhibit IPSCs regulating 

POMC neurons (Pennock and Hentges, 2011). Although POMC neurons are not directly 

hyperpolarized by KOR activation (Pennock and Hentges, 2011), the possibility that POMC 

neurons express KORs presynaptically to inhibit transmitter release was examined. The KOR 
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selective agonist U69593 (500 nM) inhibited light-evoked IPSCs in unidentified downstream 

neurons (63.39 ± 8.33% reduction, n = 6, p < 0.001) and the KOR antagonist Nor-BNI (100 nM) 

reversed the inhibition (95.68 ± 8.57% of baseline, n = 6, p = 0.64; Figure 2.4C-D). Thus, KORs 

expressed in POMC neurons inhibit AA release from POMC neurons even though they do not 

mediate a detectable outward postsynaptic current in POMC neurons. 

 

 

  

 

Figure 2.3. Light-evoked IPSCs and EPSCs are inhibited by opioid receptor activation. (A) Plot of 
light-evoked IPSC amplitudes over time shows an inhibition of light-evoked IPSCs by the nonspecific 
opioid agonist ME (10 μM). The IPSC inhibition is reversed by application of the MOR-selective 
antagonist, CTAP (500 nM). (B) Representative traces of IPSCs in control conditions and in the presence of 
ME. (C) ME inhibits light-evoked EPSC amplitude and EPSC amplitude returns to baseline upon washout 
of ME. (D) Representative traces of EPSCs in control conditions and in the presence of ME. The 

arrowheads in B and D indicate the timing of the light pulse. 
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GABAB receptor activation inhibits transmitter release from POMC cells 

In addition to opioid receptors, GABAB receptors can inhibit transmitter release from 

unidentified terminals in the ARC. To determine if GABAB receptors could modulate transmitter 

release from POMC neuron terminals in particular, light-evoked release was monitored in the 

presence of the GABAB receptor agonist baclofen. Baclofen (30 µM) caused a significant 

inhibition of light-evoked IPSCs in neurons downstream of POMC-ChR2 neurons (89.04 ± 

3.20% reduction, n = 6, p < 0.001; Figure 2.5A-B). In 4 cells, baclofen (30 µM) completely 

 

Figure 2.4. Mu and kappa opioid receptors mediate inhibition of evoked release from POMC terminals. 
(A) Plot of light-evoked IPSC amplitudes over time shows no effect of the DOR-selective agonist, DPDPE (100 
nM) and inhibition of IPSC amplitude by the MOR-selective agonist, DAMGO (10 μM). The DAMGO-induced 
inhibition is reversed by application of the MOR-specific antagonist, CTAP (500 nM). (B) Representative traces 
taken during control and agonist treatment. (C) The specific KOR agonist U69593 (500 nM) inhibited evoked 
IPSC amplitude and was reversed by the addition of nor-BNI (100 nM). (D) Representative traces taken during 

control conditions and during U69593 treatment. 
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ablated the light-evoked IPSC. Baclofen-

induced inhibition of the IPSC was fully 

reversed by washout or by co-applying the 

GABAB receptor antagonist CGP 55845 (1 

µM, 92.44 ± 4.19% of baseline, n = 6, p = 

0.13). This result indicates that POMC 

neurons express GABAB receptors, and 

these receptors can inhibit presynaptic 

GABA release from POMC terminals. 

 

 

 

 

 

 

 

2.5 Discussion 

The results of the present study show that POMC neurons are not only peptidergic, but 

release the classical amino acid transmitters GABA and glutamate. Considerable release of these 

transmitters occurs within the ARC and can be modulated dynamically by agents such as opioids 

and GABA. Although GABAergic and glutamatergic phenotypes had previously been suggested 

for POMC neurons based on immunolabeling and studies of transmitter release from cultured 

POMC neurons (Hentges et al., 2004, 2009; Meister, 2007), the finding that GABA and 

Figure 2.5. GABA-B receptor activation inhibits GABA 

release from POMC terminals. (A) Light-evoked IPSC 
amplitudes are inhibited by baclofen (30 μM). The 
inhibition is reversed by washout of drug. (B) 
Representative traces taken during control conditions and 

during baclofen treatment. 
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glutamate release can be evoked from POMC cells in live brain slices indicates that theses 

transmitters are likely to play an important role in the intact circuitry.  

 

Advantages of the optogenetic approach 

 The difficulty of determining transmitter phenotype in hypothalamic neurons using 

traditional means stems from 1) the fact that this structure lacks lamination precluding the use of 

paired recordings to detect released transmitters, and 2) the inability to directly detect GABA and 

glutamate reliably using immunohistochemical methods in this tightly-packed heterogeneous 

brain region. The optogenetic approach used in the present study allows for the activation of an 

entire population of identified neurons, which greatly increases the likelihood of detecting 

transmitter release onto downstream target neurons. Using this approach, Atasoy et al. (2008) 

recently demonstrated that POMC neurons could release GABA onto neurons in the 

paraventricular nucleus. The present data show that POMC neurons can also release glutamate, 

and that these neurons release both inhibitory and excitatory AA transmitters onto neurons 

within the arcuate nucleus. Thus, optogenetic activation of POMC neurons is a useful means of 

mapping distal projections and studying local innervation. 

 The use of combined optogenetic activation and electrophysiologic recording to detect 

transmitter release has many advantages over immunodetection and marker-based methods, 

including increased sensitivity and real-time assessment of release. Based on various labeling 

approaches, the AA phenotype of POMC neurons had been disputable. The inability to detect 

GABA immunoreactivity in POMC neurons (Ovesjö et al., 2001), and the presence of 

glutamatergic markers in a small population of POMC neurons (Collin et al., 2003; Kiss et al., 

2005) suggested that POMC neurons are not GABAergic. However, when the GAD67 promoter 
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was used to drive expression of the green fluorescent protein in transgenic mice, labeling could 

be observed in a subpopulation of POMC neurons (Hentges et al., 2004; Yee et al., 2009), 

suggesting that some POMC neurons may be GABAergic. In addition, approximately one-third 

of POMC neurons express GAD mRNA (Hentges et al., 2004). The GABAergic nature of some 

POMC neurons was further indicated in studies showing evoked GABA release from POMC 

neurons in primary cultures (Hentges et al., 2004, 2009). Despite the evidence suggesting that 

POMC neurons can be either GABAergic or glutamatergic based on phenotypic markers and 

GABA and glutatmate release from cultured POMC neurons (Hentges et al., 2009), the ability of 

these neurons to release both transmitters in brain slices had not been demonstrated until the 

present study.  

 Interestingly, although the present data clearly show evoked GABA release from POMC 

terminals, a recent study failed to detect vesicular GABA transporter (vGAT) in POMC neurons 

(Vong et al., 2011). This transporter is the only protein identified to date that packages inhibitory 

transmitters into vesicles (McIntire et al., 1997; Sagne et al., 1997; Gasnier, 2004). Whether the 

apparent lack of vGAT expression in POMC neurons is due to the transgenic expression system 

used, or reflects that very low levels of vGAT are sufficient to package GABA in POMC 

neurons remains to be determined. Nonetheless, the expression of GAD67-gfp and GAD mRNA 

in POMC neurons, as well as the release of GABA from POMC neurons in culture and in brain 

slices indicate that at least a subpopulation of POMC neurons is indeed GABAergic. Further 

studies are needed to determine whether POMC neurons release GABA in a vGAT-independent 

manner or if vGAT expression is too low to be readily detected. Either way, vGAT may not a 

reliable indicator of the GABAergic nature of POMC neurons.   
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GABA and glutamate release from POMC neurons is consistent with synaptic morphology 

 The present data localize a portion of POMC cell AA transmitter release to the ARC. The 

release of GABA is consistent with ultrastructural studies demonstrating POMC terminals make 

symmetrical (GABAergic) synapses onto neurons within the ARC (Chen and Pelletier 1983; 

Kiss and Williams, 1983). Asymmetrical (glutamatergic) POMC synapses within the ARC have 

not been described, although glutamate release was detected locally in the present study. The low 

percentage of PSCs that were mediated by glutamate and the relatively low number of POMC 

neurons expressing vGLUT2 (Vong et al., 2011) may explain why, morphologically, 

glutamatergic POMC terminals have not been observed in the ARC. Interestingly, POMC 

neurons have been shown to form both symmetrical and asymmetrical synapses onto neurons in 

distal target sites including the dorsal raphe nucleus (Wang et al., 2001) and the locus coeruleus 

(Reyes, et al., 2006). Thus, GABA and glutamate release from POMC neurons may be important 

for regulation both locally and at distal target sites. 

 

Amino acid transmitters and energy homeostasis 

  The studies of AA transmitters in hypothalamic circuits to date indicate a significant 

contribution of these transmitters in the regulation of food intake and metabolism. For example, 

glutamate release from neurons in the ventromedial hypothalamus is an important step in 

preventing hypoglycemia (Tong et al., 2007), the release of GABA from NPY/AGRP neurons in 

the ARC is also required for the normal regulation of energy balance (Tong et al., 2008), and 

GABA release from NPY/AGRP neurons into the parabrachial nucleus prevents starvation (Wu 

et al., 2009). It is likely that AA transmitters from POMC cells have important analogous 



 40

functions, although perhaps with more diversity, given the release of both GABA and glutamate 

from POMC neurons. 

 

Presynaptic regulation of transmitter release 

  In the present study, the ability of GABAB and opioid receptor agonists to regulate AA 

transmitter release from POMC neurons was demonstrated. These studies were undertaken 

primarily to determine if AA release from POMC neurons could be dynamically modulated as 

would be expected if these transmitters play an important regulatory role. GABAB and opioid 

receptors were chosen, as both have been shown to potently modulate transmitter release from 

terminals within the hypothalamus (Mouginot et al., 1998; Emmerson and Miller, 1999; Pennock 

and Hentges, 2011). Since transmitter release was evoked only from POMC neurons and 

inhibited by GABAB, MOR, and KORs, it is now clear that these receptors can inhibit release 

specifically from POMC terminals. The results raise the possibility that GABA and/or opioids 

released from POMC terminals could activate presynaptic receptors to inhibit further transmitter 

release.  

 

Conclusion 

The data collected here show that POMC neurons are not only peptidergic, but release the 

classical amino acid transmitters GABA and glutamate. Release of these transmitters can be 

dynamically modulated by agents such as opioids and GABA. Thus, in addition to the roles 

attributed to peptides, POMC neurons can cause rapid, inhibition or excitation of downstream 

neurons. 
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3. Gad1 mRNA AS A RELIABLE INDICATOR OF ALTERED GABA RELEASE FROM 

OREXIGENIC NEURONS IN THE HYPOTHALAMUS2 

 

 

3.1 Summary 

The strength of GABA-mediated inhibitory synaptic input is a principle determinant of 

neuronal activity. However, because of differences in the number of GABA afferent inputs and 

the sites of synapses it is difficult to directly assay for altered GABA transmission between 

specific cells. The present study tested the hypothesis that the level of mRNA for the GABA 

synthetic enzyme glutamate decarboxylase (GAD) can provide a reliable proxy for GABA 

release. This was tested in a mouse hypothalamic circuit important in the regulation of energy 

balance. Fluorescent in situ hybridization results show that the expression of Gad1 mRNA 

(encoding the GAD67 enzyme) was increased in hypothalamic neuropeptide Y/agouti related 

peptide (NPY/AgRP) neurons after an overnight fast, consistent with the ability of GABA from 

these neurons to stimulate food intake. Optogenetic studies confirmed that the observed increase 

in Gad1 mRNA correlated with an increase in the probability of GABA release from NPY/AgRP 

neurons onto downstream proopiomelanocortin neurons. Likewise, there was an increase in the 

readily releasable pool of GABA in NPY/AgRP neurons. Selective inhibition of GAD activity in 

NPY/AgRP neurons decreased GABA release, indicating that GAD67 activity, which is largely 

dictated by expression level, is a key determinant of GABA release. Altogether, it appears that 

Gad expression may be a reliable proxy of altered GABAergic transmission. Examining changes 

in Gad mRNA as a proxy for GABA release may be particularly helpful when the downstream 

                                                 
2 Full article from Dicken MS, Hughes AR, and Hentges ST. (2015) European Journal of Neuroscience, 42(9):2644-
53. Shane Hentges contributed to experimental design, performed in situ hybridization, and contributed to writing of 
the manuscript. Alex Hughes performed in situ hybridization and edited the manuscript. Matthew Dicken 
contributed to experimental design, performed electrophysiology experiments, analyzed collected data, and 
contributed to writing of the manuscript. 
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targets are not known or when limited tools exist for detecting GABA release at a particular 

synapse. 

 

3.2 Introduction 

The amino acid transmitter GABA has long been recognized as a critical mediator of 

neuronal inhibition, yet the role of GABA in several circuits is just beginning to be explored in 

detail. For example, despite the fact that GABA was first detected in neuropeptide Y/agouti-

related peptide (NPY/AgRP) neurons of the hypothalamus nearly 2 decades ago (Horvath et al., 

1997), it has only recently been discovered that synaptic GABA released from these neurons 

acutely stimulates food intake independent of peptide release (Tong et al., 2008; Wu et al., 2008; 

Krashes et al., 2013). The dynamic regulation of GABA release from this population of cells, 

particularly in response to altered energy state has not yet been explored. Several factors, such as 

sparse and spatially restricted afferent inputs and a potential lack of tools to detect transmitter 

release, hinder the ability to detect altered GABAergic transmission in various neuronal circuits. 

Therefore, the present study aimed to determine if the expression of GABA neuron specific 

mRNA could serve as a proxy for altered GABAergic transmission.  

Several proteins are only found in neurons that can package and release GABA, including 

the vesicular GABA transporter (vGAT), the plasma membrane GABA transporters (GATs), and 

GABA synthetic enzymes glutamate decarboxylase (GAD) 65 and 67. While vGAT is generally 

necessary for vesicular packaging and release of GABA, several lines of evidence suggest that 

modest changes in vGAT expression will not affect GABA release (Edwards, 2007; Apostolides 

& Trussell, 2013). Indeed, heterozygous mice with a significant reduction in vGAT expression 

show no apparent changes in synaptic GABA release (Yamada et al., 2012). By contrast, the 
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levels of cytosolic GABA, which are derived primarily from glutamate uptake (Mathews & 

Diamond, 2003), greatly affect vesicular GABA content and synaptic strength (Apostolides & 

Trussell, 2013; Ishibashi et al., 2013; Wang et al., 2013). Cytosolic GABA content is largely 

controlled at the level of glutamate decarboxylation by the GAD enzymes, with GAD67 being 

responsible for >90% of brain GABA content and essential for synaptic GABA release and 

survival (Asada et al., 1997; Chattopadhyaya et al., 2007; Obata et al., 2008; Lazarus et al., 

2013). The necessary nature of GAD67, and the fact that GAD67 protein and its mRNA (Gad1) 

levels are often more sensitive to a number of experimental conditions compared to GAD65 

(Rimvall & Martin, 1992; 1994; McCarthy, 1995; Bowers et al., 1998; Mason et al., 2001), led to 

the current hypothesis that changes in Gad1 expression could provide a means to assess overall 

changes in GABA transmission from a specific neuron type in response to a physiologic 

challenge. The results show that changes in energy state are sufficient to selectively increase or 

decrease Gad1 mRNA in NPY/AgRP neurons and cause a concomitant change in synaptic 

GABA transmission from these neurons. Using Gad1 mRNA as a proxy for altered GABA 

release has the advantages of examining the whole population of neurons at once and does not 

require recording inhibitory postsynaptic currents (IPSCs) from the postsynaptic neuron. 

 

3.3 Materials and Methods 

Animals 

POMC-EGFP (C57BL/6J-Tg(Pomc-EGFP)1Low/J, stock 009593), NPY-hrGFP 

(B6.FVB-Tg(Npy-hrGFP)1Lowl, stock 006417), and AgRP-Cre mice (AgRPtm1(cre)Lowl, stock 

012899) were obtained from The Jackson Laboratory. POMC-DsRed animals (Hentges et al., 

2009) were originally obtained from Dr. Malcolm Low. In the arcuate nucleus, NPY expression 
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is restricted to cells that also express AgRP with overlap greater than 90% (Hahn et al., 1998), 

thus the transgenically-expressed NPY-hrGFP specifically labels cells also expressing AgRP in 

this region. All transgenic animals were maintained on the C57BL/6J background. Both male 

and female mice (8-12 weeks old) were used for experiments and were distributed evenly over 

treatment conditions. Mice were maintained on a 12-hour light/dark cycle and were given ad 

libitum access to water and standard rodent chow unless noted otherwise. All experimental 

protocols were reviewed and approved by the Colorado State University Institutional Animal 

Care and Use Committee and were in accordance with the United States Public Health Service 

guidelines for animal use. 

 

In situ hybridization 

NPY-hrGFP mice were deeply anesthetized with sodium pentobarbital and transcardially 

perfused with a 10% sucrose solution, followed by 4% paraformaldehyde in PBS. Brains were 

post-fixed overnight at 4°C in 4% paraformaldehyde solution in PBS. 50 µm sections containing 

the arcuate nucleus were cut on a vibratome, collected in cold PBS and processed for in situ 

hybridization to detect Gad1 or Gad2 mRNA as detailed previously (Jarvie & Hentges, 2012). 

The fluorescent signal of the hrGFP was quenched through the in situ hybridization procedure. 

Therefore, after completion of the in situ hybridization protocol, immunofluorescence was used 

to detect hrGFP by addition of a polyclonal antibody against hrGFP (1:1000, Agilent 

Technologies, Santa Clara, CA) overnight at 4°C and detection with goat anti-rabbit conjugated 

to Alexa 568 (1:400, 1 h room temperature). Confocal images were collected using a Zeiss 510-

Meta confocal microscope. Z-stacks were initially constructed with 5-9 images 3 µm apart in 

depth for all tissue sections containing cells labeled for hrGFP. These stacks were pared down to 
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4 sequential images for analysis. Cell counts were made using a modification of the 3D counting 

method described by Williams and Rakic (1988) to limit oversampling (Williams & Rakic, 

1988). Only gfp-positive cells with a clear nucleus and completely contained in a 300 x 300 x 

12-µm counting box on the x-y-z plane were counted and the presence or absence of Gad1 signal 

was determined for each gfp-positive cell. Average fluorescence intensity had to be greater than 

10% above background for a cell to be considered positive for either signal and for Gad1, the 

signal had to be constrained within the somatic region of a gfp-positive cell for that gfp cell to be 

considered as expressing the Gad1 signal. All images were analyzed using NIH ImageJ by an 

experimenter blinded to the treatment groups. NPY-hrGFP-positive cells were identified in a 

minimum of 7 slices per animal. For each hrGFP-positive cell, the assessor determined whether 

or not the cell also contained the Gad label while examining individual images from the image 

stack and label intensity was automatically determined for each cell.  

 

In vivo gene delivery via adeno-associated virus 

Adeno-associated virus (AAV) (3.56E+13 GC/ml) containing a double-floxed sequence 

for ChR2 with an mCherry tag (AAV2/9.EF1.dflox.hChR2(H134R)– mCherry.WPRE.hGH; 

obtained from the Penn Vector Core at the University of Pennsylvania School of Medicine, 

Philadelphia, Pennsylvania) was delivered bilaterally into the arcuate nucleus as previously 

described (38) and recordings were made 2-3 weeks post-injection.  

 

Brain slice collection and electrophysiology 

Sagittal brain slices (240 µm) containing the arcuate nucleus were prepared as previously 

described (Pennock & Hentges, 2011). Optogenetic stimulation and electrophysiologic 
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recordings were performed as previously described (Dicken et al., 2012). In brief, slices were 

maintained at 37°C in artificial cerebrospinal fluid (aCSF) containing the following (in mM): 

126 NaCl, 2.5 KCl, 1.2 MgCl2, 2.4 CaCl2, 1.2 NaH2PO4, 21.4 NaHCO3, and 11.1 glucose 

(saturated with 95% O2 and 5% CO2). Immediately after collection, slices were maintained in 

aCSF containing the NMDA receptor blocker MK-801 (15 µM) for at least 45 min before being 

transferred to the recording chamber. Whole-cell voltage clamp recordings were made with an 

internal recording solution containing the following (in mM): 57.5 KCl, 57.5 K-methyl sulfate, 

20 NaCl, 1.5 MgCl2, 5 Hepes, 0.1 EGTA, 2 ATP, 0.5 GTP, 10 phosphocreatine, pH 7.3. 

Recording pipettes had a tip resistance of 1.5–2.2 MΩ when filled with internal solution. For 

cell-attached recordings, the recording electrode contained aCSF. AgRP cells were identified by 

the fluorescence of the mCherry tag fused to ChR2. POMC cells were identified by EGFP 

fluorescence. Cells selected for patching were in the region containing mCherry positive fibers or 

cell bodies. Recordings were excluded from analysis if access resistance changed significantly 

during the recording or if access resistance increased above 18 MΩ. IPSCs were evoked either 

with paired 2 ms 470 nm light pulses 100 ms apart for paired-pulse ratio (PPR), or by 40 2 ms 

light pulses 100 ms apart for the depletion protocol through the use of an LED/LEDD1B driver 

(Thorlabs, Newton, NJ) connected to a TTL output on the ITC-18 data acquisition board 

(InstruTech, Longmont, CO). For PPR acquisition, sweeps were 20 s apart. A 40 s break between 

sweeps was used in experiments with depletion protocol. In all light-evoked-release studies, the 

light intensity was adjusted to the minimum level that would evoke consistent currents from 

ChR2-expressing cells, and currents were evoked for data collection no sooner than 4 minutes 

after break-in. Recordings were collected at 10kHz, digitally filtered at 1kHz, and at least 3 

consecutive sweeps were averaged for presentation and analysis. To verify that evoked currents 
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were mediated by GABAA receptors, bicuculline methiodide (BMI; 10 μM; R&D Systems, 

Minneapolis, MN) was bath applied to the slice after experiments and always abolished the 

evoked currents. When recording from recurrent synapses in culture, GABA was evoked using a 

2 ms depolarization to 0 mV (action potential artifacts are blanked in averaged traces). 

 

Primary hypothalamic tissue culture 

Tissue culture was performed as previously described (Hentges et al., 2004) from 

hypothalami of young (P2-P7) NPY-hrGFP mice with minor modifications. In brief, 

hypothalami were collected into ice-cold Hibernate-A medium (Life Technologies). Tissue was 

minced, and cells were dissociated after exposure to papain (20 U/ml; Worthington) by passing 

through glass pipettes with fire polished tips. Cells were plated onto glass coverslips pre-coated 

with poly-L-lysine in Neurobasal-A medium (Fisher Scientific) supplemented with B27 (Fisher 

Scientific), 0.4mM L-glutamine, and 1% fetal calf serum. The media were replenished every 3–5 

d. Recordings from these cells occurred between 8-16 days of culture with either chelidonic acid 

alone (1 mM, Sigma) or with GABA (10 mM) included in the normal internal recording solution. 

 

Recombinant mouse intraperitoneal leptin injections 

Purified leptin (National Hormone & Peptide Program) was rehydrated by gentle mixing 

in 15 mM sterile HCl and the pH was adjusted to neutral. Leptin was brought to a final 

concentration of 1000 µg/ml with sterile saline. Mice received either a single intraperitoneal (IP) 

saline or leptin injection (6.0 µg/g body weight) 2 h prior to sacrifice. 
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Data analysis 

All data are presented as mean ± SEM. Comparisons between two groups were evaluated 

using either t-tests, or in the case of the intensity distribution data, a Kolmogorov-Smirnov test. 

One-way ANOVA analyses followed by Tukey’s HSD were used for comparisons between three 

groups. Repeated measures ANOVA with Dunnett post-hoc tests were used in the autapse 

experiments. For all experiments p < 0.05 was considered significant. Readily releasable pool 

estimates were performed as previously reported (Schneggenburger et al., 1999; Thanawala & 

Regehr, 2013). 

 

3.4 Results 

Fasting increases Gad1 mRNA in NPY/AgRP neurons 

Since NPY/AgRP neurons are GABAergic, are activated by fasting (Takahashi & Cone, 

2005; Yang et al., 2011) and may release more GABA in response to fasting (Vong et al., 2011) 

we sought to determine whether Gad1 mRNA also increased in these cells in response to fasting 

as a putative indicator of enhanced GABA transmission. In situ hybridization for Gad1 was 

performed in tissue from NPY-hrGFP mice under fed and fasted (17 h) conditions. Food 

restriction caused a significant increase in the number of NPY-hrGFP immuno-labeled cells that 

were also labeled with the probe for Gad1 mRNA (fasted 1.41 ± 0.10 compared to normalized 

control values, n = 6 mice, p = 0.01 by unpaired t-test; Figure 3.1A-B). Additionally, the 

proportion of NPY/AgRP neurons with strong Gad1 signal was increased in fasted mice 

(Kolmogorov-Smirnov test, p = 7.3*10-21, n = 608 cells in fed, 882 cells in fasted from 6 mice 

per group; Figure 3.1C). The total number of hrGFP cells counted was the same for both groups  
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Figure 3.1. Gad1 increases in NPY/AgRP cells after an overnight fast. NPY-hrGFP neurons were identified 
by immunoreactivity to hrGFP (A, left column, green) and Gad1 was detected using a cRNA probe (A, middle 
column, red). Insets show an enlarged view of the area within the white box. White arrows point to some NPY-
hrGFP cells containing Gad1. Fasting resulted in a significant increase in the percent of NPY cells expressing 
detectable levels of Gad1 (B), and an increase in the proportion of cells with high levels of Gad1 label intensity 
(C). The overall intensity of Gad1 label in the area adjacent to the hrGFP-labeled cells (circled in D) was not 

changed by energy state (E). Scale bar=100 µm. Data are plotted as mean ± SEM. * = p < 0.05. 
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(fed = 300 ± 16 cells/animal, fasted = 314 ± 20 cells/animal, p = 0.58 by unpaired t-test). To 

determine if Gad1 label intensity was broadly elevated in a majority of arcuate nucleus neurons, 

a large ROI was drawn that included a small number of hr-GFP-positive cells and a large number 

of Gad1 labeled cells that were not hrGFP-positive (Figure 3.1D, region indicated by yellow 

circles). The average intensity above background was not significantly different between groups 

(139.9 ± 7.6% in fed, 127.5 ± 5.0% in fasted, n = 6, p = 0.20 by unpaired t-test; Figure 3.1E). 

Therefore, it appears that the fasting-induced increase in Gad1 is relatively restricted to AgRP 

neurons in the arcuate nucleus, consistent with a previous report that also showed no overall 

difference in Gad1 in the hypothalamic arcuate nucleus in response to fasting (Schwartz et al., 

1993).  

A separate in situ hybridization experiment to detect Gad2 mRNA (encoding GAD65) 

was also performed. While the proportion of NPY/AgRP neurons with strong Gad2 signal was 

increased in fasted mice (Kolmogorov-Smirnov test, p = 4.4*10-18, n = 1299 cells in fed, 1430 

cells in fasted from 4 mice per group), fasting did not significantly increase the number of Gad2-

labeled hrGFP-positive cells (fasted 1.02 ± 0.03 compared to normalized controls, n = 4, p = 

0.41 by unpaired t-test). Thus, it appears that Gad1 expression is more sensitive to changes in 

energy balance compared to Gad2. 

 

Fasting increases IPSCs in POMC neurons 

Next, we wanted to determine whether the increase in Gad1 expression after fasting 

might translate into increased synaptic GABA release from AgRP/NPY neurons. Thus, 

spontaneous IPSCs were recorded in hypothalamic POMC neurons, as POMC neurons are 

heavily innervated by AgRP/NPY cells (Cowley et al., 2001; Atasoy et al., 2012; Newton et al., 
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2013). IPSCs were recorded using a pipette solution containing a high concentration of chloride 

causing GABA-mediated currents to be inward. POMC neurons from slices prepared from fasted 

animals (17 h) had a higher frequency of GABA-mediated IPSCs compared to the frequency in 

control mice with ad libitum access to food (7.3 ± 1.3 Hz in fed, 12.8 ± 1.9 Hz in fasted, n = 9 

cells from 4 fed and 5 fasted animals, p = 0.02 by unpaired t-test; Figure 3.2A-C), consistent 

with a previous report (Vong et al., 2011). There was no significant difference in sIPSC 

amplitude between food-restricted and control mice (45.2 ± 3.6 pA in fed, 53.1 ± 4.2 pA in 

fasted, n = 9 cells from 4 fed and 5 fasted animals, p = 0.17 by unpaired t-test; Figure 3.2D), 

however the sample size may have precluded detecting an increase as other investigators have 

shown a significant increase in sIPCS amplitude in POMC neurons after fasting (Vong et al., 

2011).  

 

  

Figure 3.2. Spontaneous GABA release onto POMC cells is increased in fasted animals. 
Representative traces of spontaneous GABA-mediated IPSCs in POMC neurons in tissue from 
fed (A) and fasted (B) mice. Compiled results are shown in the graph (C). Current amplitudes 
were not significantly different between feeding states (D). Data are plotted as mean ± SEM. 

*=p < 0.05. 
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AgRP neuron activation is sufficient to acutely inhibit POMC neurons 

Although POMC neurons are known to be postsynaptic to NPY/AgRP cells, it has been 

suggested that NPY/AgRP terminals do not account for a significant portion of the GABA inputs 

to POMC neurons (Tong et al., 2008). Therefore, the selectivity of functional coupling between 

AgRP and POMC neurons was examined. This was accomplished using specific activation of 

NPY/AgRP neurons with ChR2 expressed in NPY/AgRP cells. Strong expression of ChR2-

mCherry in NPY/AgRP neurons was induced following injection of an AAV containing a Cre 

recombinase-dependent sequence for ChR2-mCherry into the arcuate nucleus of AgRP-Cre 

mice. To estimate the percentage of NPY/AgRP neurons expressing ChR2, NPY-hrGFP; AgRP-

Cre double-transgenic mice were injected with the AAV and the tissue was processed for cell 

counting. Approximately 63% of the NPY-hrGFP cells expressed visible levels of ChR2-

mCherry, whereas ChR2-mCherry was not expressed in NPY-hrGFP negative cells. Thus, the 

AgRP-Cre line provides reliable expression of ChR2-mCherry in AgRP neurons. 

Next, AgRP-Cre mice were crossed to POMC-eGFP transgenic mice and double-

transgenic offspring received injections of the virus containing floxed ChR2-mCherry. The 

mCherry tag on the ChR2 was used to detect NPY/AgRP cells while POMC neurons were 

identified by the presence of eGFP (Figure 3.3A). Light-stimulation of ChR2-expressing neurons 

caused an inward current (Figure 3.3B) and caused evoked IPSCs (latency to onset of 4.6 ± 0.2 

ms) in POMC neurons (81 of 91 cells tested, Figure 3.3C, left). The GABAA antagonist BMI 

completely blocked the evoked IPSC in all cells tested (18/18 cells, Figure 3.3C, right). To 

determine whether the connection between AgRP and POMC neurons was specific or could also 

result from other groups of arcuate nucleus neurons, recordings were made in non-POMC 

neurons (cells lacking eGFP). Only 1 of 16 non-POMC neurons displayed an IPSC in response to 
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AgRP neuron stimulation. Thus, AgRP neurons preferentially innervate POMC neurons in the 

arcuate nucleus. 

 

 

 

 

 

 

 

 

 

 

 

 

To determine whether changing GABA release only from AgRP neurons is sufficient to 

alter the activity of POMC neurons, AgRP neurons were stimulated while measuring the firing of 

POMC neurons. Cell-attached recordings were made with external solution in the recording 

pipette such that the internal Cl- concentration was maintained at physiological levels. Activation 

of AgRP neurons decreased spontaneous action potentials and action currents in POMC neurons 

Figure 3.3. AgRP cells expressing ChR2 reliably release GABA onto POMC cells when stimulated. (A) In 
double transgenic AgRP-Cre;POMC-eGFP mice injected with the ChR2 construct, the POMC cells are 
visualized using the GFP tag (green) and AgRP neurons expressing ChR2 are visualized using the mCherry tag 
(red). A brief flash of blue light (indicated by the blue lines) causes a depolarization of ChR2-expressing cells 
and a stereotypical photocurrent in the AgRP cells (B), and evokes IPSCs in POMC cells (C, left) that are 
completely blocked by the GABAA antagonist bicuculline methiodide (BMI; C, right). In cell-attached voltage-
clamp recording with external solution in the pipette, light-evoked GABA release inhibits POMC cell firing and 
action currents are lost (D). Addition of BMI to the bath prevents the light-evoked inhibition of cell firing (E). 

Scale bar in (A) is 100 µm. 
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(0.006 ± 0.006 and 0.031 ± 0.031 of baseline firing, n = 3 cells from 2 animals, p = 0.01 and 

0.04, respectively; Figure 3.3D). Application of BMI blocked the inhibition (Figure 3.3E). The 

results indicate that GABA release from AgRP neurons causes a profound inhibition of POMC 

neurons consistent with a previous report (Atasoy et al., 2012). 

 

Fasting increases GABA release from NPY/AgRP to POMC neurons 

To determine whether fasting increased the strength of the functional coupling 

specifically from NPY/AgRP to POMC neurons, optogenetic activation of NPY/AgRP neurons 

was examined in slices from fasted animals. The probability of GABA release determined by a 

change in the paired-pulse ratio was examined in slices from fed and fasted animals. Consistent 

with a higher probability of release, the PPR decreased in slices from fasted animals (0.94 ± 0.07 

in fed, 0.75 ± 0.03 in fasted, 0.91 ± 0.06 in re-fed, n = 11 fed, 12 fasted, 11 re-fed cells from 6, 5, 

and 6 animals, respectively, one-way ANOVA, significant with Tukey’s HSD; Figure 3.4A-B). 

Although slightly higher after fasting, the overall amplitude of the first evoked current was not 

significantly different between groups (410.8 ± 56.5 pA in fed, 533.0 ± 88.4 pA in fasted, 431.7 

± 79.2 pA in re-fed, n = 11 fed, 12 fasted, 11 re-fed cells from 6, 5, and 6 animals, respectively, 

one-way ANOVA, not significant with Tukey’s HSD; Figure 3.4C). There was a weak negative 

correlation between PPR and initial IPSC amplitude (r = -0.36, r2 = 0.15, p = 0.02). 

The increase in probability of release could suggest that there is more GABA in the 

terminals overall. To test this possibility, the readily releasable pool (RRP) of GABA was 

examined in slices from fed and fasted animals using a depletion protocol (Schneggenburger et 

al., 1999). Repetitive pulses of light (40 at 10 Hz) were applied to evoke GABA release while 

recording from POMC neurons (Figure 3.5A-B, raw traces). The IPSC amplitudes were plotted  
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Figure 3.4. Fasting increases the probability of release from NPY/AgRP cell terminals presynaptic to 

POMC neurons. Representative traces (average of three consecutive sweeps) of GABA-mediated IPCSs 
light-evoked from NPY/AgRP neuron terminals in ad-lib fed (control, left), overnight fasted (middle), and 
re-fed (right) conditions are shown in (A). The paired-pulse ratio in mice allowed a 3 h re-feeding period 
after fasting is comparable to controls (B). There was not significant difference in peak GABA current 

amplitude between groups (C). Data are plotted as mean ± SEM. * = p < 0.05. 

Figure 3.5. Fasting increases the readily releasable pool of GABA in NPY/AgRP cell terminals. Trains 
of light stimuli (40 stimulations at 10 Hz) were applied to brain slices prepared from fed (A) and fasted (B) 
mice. Cumulative current plots were made and the readily releasable pool was estimated by calculating the 
y-intercept from an extrapolated line drawn through the final 14 points of the plot. Estimated readily 
releasable pool is significantly increased in fasted animals (inset in B). Data are plotted as mean ± SEM. * = 

p < 0.05. 
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and a line was extrapolated from the linear portion of the curve and the Y-intercept was used to 

determine the RRP (Figure 3.5A-B, plotted data). A significantly higher RRP was observed in 

slices from fasted animals (1.4 ± 0.32 nA in fed, 2.5 ± 0.45 nA in fasted, n = 13 fed, 11 fasted 

cells from 6 fed and 5 fasted animals, p = 0.04 by unpaired t-test; Figure 3.5B inset). 

Additionally, when the initial current amplitudes were normalized to the last evoked current in 

the train, it became apparent that the peak (1st) current was relatively larger after fasting (fed = 

7.7 ± 0.98; fasting = 12.4 ± 1.71, p = 0.02 by unpaired t-test). Importantly, the refilling rates 

(steady state currents at the end of the train) are not significantly different between the groups 

(fed = 97.9 ± 28.4 pA, fasted = 81.5 ± 13.1, p = 0.63 by unpaired t-test). Thus, by multiple 

estimates, amplitudes, PPR and RRP size, it appears that fasting increased GABA release from 

AgRP neurons onto POMC neurons, although the possibility of postsynaptic contributions 

cannot be fully excluded.   

 

GAD activity is necessary for maintaining GABA release from NPY/AgRP neurons 

We next asked whether the activity of GAD could be directly responsible for the increase 

in GABA release from AgRP/NPY neurons. This was examined in primary hypothalamic neuron 

cultures made from NPY-hrGFP transgenic mice and recordings were made in cells possessing 

recurrent synapse (autapses). When the conformationally restricted glutamate analogue 

chelidonic acid (1 mM), a competitive, potent, and fast-acting GAD inhibitor (Porter & Martin, 

1985), was included in the pipette solution there was a significant inhibition of evoked autaptic 

GABA currents (17.5 ± 5.5% of baseline after 17 minutes, n = 5, p < 0.0001 by RMANOVA, 

minute 5-17 significantly lower than baseline using Dunnett’s multiple comparisons test; Figure 



 57

3.6A,C). Thus, GAD activity is a pivotal determinant of GABA release in NPY/AgRP neurons 

consistent with previous reports at other GABAergic synapses (Apostolides & Trussell, 2013).  

To verify that chelidonic acid was not reducing GABA release independent of its actions 

on GAD activity, GABA (10 mM) was included in the pipette along with the chelidonic acid in 

some recordings. The inclusion of GABA prevented the chelidonic acid-induced inhibition of the 

autaptic currents (117.8 ± 8.4% of baseline after 17 minutes, n = 5, p = 0.38 by RMANOVA, no 

minute significantly different than baseline using Dunnett’s multiple comparisons test; Figure 

3.6B-C), indicating that chelidonic acid inhibited GABA release by directly reducing GABA 

levels in the cytoplasm. The chelidonic acid-induced reduction in the evoked IPSC correlated 

with increased PPR over time consistent with decreased GABA release and this effect was absent 

when GABA was included in the pipette (n = 5, p = 0.02 by RMANOVA over time, minutes 14, 

15, and 17 significantly different between groups using Sidak’s multiple comparisons test; 

Figure 3.6D). 

 

Decreased Gad1 expression correlates with reduced probability of GABA release 

After observing the correlation between increased Gad1 expression and enhanced 

functional GABA release, we tested the hypothesis that decreased Gad expression would reflect 

decreased GABA release from this synapse. IP leptin injections were used to approximate a 

satiated state. Compared to saline-injected controls, leptin caused a significant decrease in the 

number of NPY-hrGFP immuno-labeled cells that were also labeled with the probe for Gad1 

mRNA (0.75 ± 0.03 for leptin normalized to control, n = 3, 4 mice, p = 0.035 by unpaired t-test; 

Figure 3.7A). Correspondingly, the proportion of NPY/AgRP neurons with strong Gad1 signal 
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was decreased in leptin-injected mice (Kolmogorov-Smirnov test, p=4.0012*10-18, n = 390 

saline, 565 leptin cells; Figure 3.7B). 

 

 

 

 

 

 

 

 

 

 

 

 

 Optogenetic activation of NPY/AgRP neurons was again used to observe changes in 

probability of release. Leptin treatment caused a significant increase in PPR (0.90 ± 0.06 for 

saline, 1.30 ± 0.14 for leptin, n = 7 saline, 8 leptin from 3 saline-injected and 3 leptin-injected 

animals, p = 0.025 by unpaired t-test; Figure 3.7C) indicating a decrease in the probability of 

release. The peak amplitude of the first pulse in leptin-treated animals appeared to be less than in 

control tissue, but this was not statistically significant due to the high variance (324.63 ± 153.55 

Figure 3.6. Inhibiting the GAD enzyme reduces autaptic GABA release from NPY/AgRP cells in 

culture. Whole-cell recordings were made in NPY/AgRP cells that had formed autapses in culture. 
Addition of chelidonic acid (1 mM) in the pipette solution caused a significant inhibition of evoked 
GABA release over time (A). Adding GABA into the pipette along with the chelidonic acid prevented 
the decrease in eIPSC amplitude (B). Average amplitudes for each condition are plotted in (C) and 

average paired-pulse ratios are plotted in (D). Data are plotted as mean ± SEM. 
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pA for saline, 86.71 ± 21.55 pA for leptin, n = 7 saline, 8 leptin from 3 saline-injected and 3 

leptin-injected animals, p = 0.12 by unpaired t-test; Figure 3.7D). Together with the fasting 

results, the leptin-induced reduction in Gad1 and corresponding decrease in the probability of 

GABA release indicates that Gad1 is a dynamic indicator of both increases and decreases in 

GABA release. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Leptin injection decreases Gad1 in NPY/AgRP cells and decreases probability of GABA 

release. A single injection (IP) leptin 2 hours prior to tissue collection caused a significant decrease in the 
percent of NPY cells expressing detectable levels of Gad1 (A), as well as a decrease in the proportion of cells 
with high levels of Gad1 label intensity (B). Whole-cell recordings in POMC neurons in slice preparations show 
that leptin injection caused a significant increase in PPR when GABA release was light-evoked from NPY/AgRP 
terminals (C, averaged representative traces above respective bars). Peak amplitudes were not significantly 

different after leptin injection (D). Data are plotted as mean ± SEM. * = p <0.05. 
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3.5 Discussion 

The objective of the present study was to determine if a physiologic perturbation could 

cause a change in GABA release that is reflected in the overall expression of a GABAergic 

marker in situ. Focusing on the NPY/AgRP population of neurons with a known GABAergic 

phenotype whose activity is sensitive to energy balance, fasting was found to increase the 

expression of Gad1 mRNA in these neurons. Further, the enhanced mRNA expression correlated 

with an increase GABA transmission. It is likely that GABA release was increased at all 

terminals of NPY/AgRP neurons and that other conditions would also change Gad expression 

and GABA release from these neurons as indicated by the decrease in Gad expression and 

GABA release observed after leptin treatment. The expression of Gad1 mRNA may prove to be 

a useful proxy for GABA release in other systems.  

 

NPY/AgRP neurons and GABA release 

The present study focused on GABA release from AgRP/NPY neurons. These neurons 

were chosen because of the availability of tools to examine and control them, the ability to 

identify and record from a postsynaptic target neuron and because of the important role these 

neurons play in the regulation of energy balance (Parker & Bloom, 2012). Although the current 

work focused on NPY/AgRP/GABA to POMC neuron connections, it seems most likely that the 

fasting-induced increase and leptin-induced decrease in GABA release observed would be 

consistent for other terminals from these neurons throughout the brain. Previous studies have 

indicated that NPY/AgRP terminals in the paraventricular hypothalamus (Atasoy et al., 2012) or 

the parabrachial nucleus (Carter et al., 2013) account for the ability of NPY/AgRP neuron-

derived GABA to increase food intake, depending on the conditions studied. While NPY/AgRP 
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neuron-derived GABA can inhibit POMC neurons (Figure 3.3 and (Atasoy et al., 2012), this 

inhibition is reportedly not essential for the acute increase in feeding that results from 

experimental activation of NPY/AgRP neurons (Aponte et al., 2011; Atasoy et al., 2012). 

However, the possibility exists that under different conditions and/or timescales, changes in 

GABA input to POMC neurons may be an important factor in tilting energy balance in one 

direction or the other. What is clear at present is that GABA release from NPY/AgRP neurons is 

able to induce food intake and that both Gad1 mRNA and GABA release in these cells is 

dynamically regulated in an energy-state dependent manner.  

 

Correlating Gad67 mRNA and GABA tone 

Numerous studies indicate that Gad mRNA, particularly Gad1 mRNA, is sensitive to a 

variety of factors including steroids, stressors, glucose, insulin, seizure, lesions, cellular activity 

and GABA itself (Rimvall & Martin, 1992; 1994; McCarthy, 1995; Schwarzer & Sperk, 1995; 

Bowers et al., 1998; Mason et al., 2001; Pedersen et al., 2001; Patz et al., 2003). Separate studies 

have shown overall changes in regional GABA tone in response to many of these factors. 

However, we are aware of only one study showing a direct correlation between GABA release 

and Gad1 expression and that study used a Gad1 reporter system in cultured hippocampal slices 

as well as an olfactory bulb preparation (Lau & Murthy, 2012). Additional studies have shown 

that GAD activity or expression and corresponding changes in cytosolic GABA levels dictate the 

strength of GABAergic transmission in interneurons of the dorsal cochlear nucleus (Apostolides 

& Trussell, 2013) and in prefrontal cortex (Lazarus et al., 2013). Together with the present 

results in the hypothalamus using the physiological stimulus of fasting and leptin injection, it 

appears that changes in Gad mRNA and corresponding changes in protein levels for GAD may 



 62

closely reflect altered GABAergic transmission in many brain regions and cell types. Thus, at 

various synapses Gad may be a reasonable indicator of synaptic GABA levels.  

 It is important to note that, in addition to transcriptional regulation, the GAD enzymes are 

regulated by posttranslational modifications including coenzyme pyridoxal 5’ –phosphate (PLP) 

binding and phosphorylation (Wei & Wu, 2008). While we cannot rule out that these additional 

levels of regulation may be important determinants of cytosolic GABA and GABA release, 

transcription appears to be a key point of regulation, particularly for Gad1. In many systems, 

Gad1 mRNA levels are more sensitive to perturbations than Gad2 (McCarthy, 1995; Bowers et 

al., 1998; Mason et al., 2001; Patz et al., 2003). This differential dependence on transcriptional 

regulation likely reflects the observation that the majority of the 65 kD form of GAD 

(transcribed from Gad2) is maintained in the inactive apoenzyme form and thus is dependent on 

posttranslational activation by PLP, whereas GAD67 is maintained primarily in the active 

holoenzyme state (Wei & Wu, 2008) and is therefore more dependent on the level of expression 

rather than posttranslational modification. 

 In addition to GAD activity, cytosolic GABA levels may also be affected via GABA 

uptake through the plasma membrane-bound GABA transporters. While the autaptic studies 

presented here suggest that GAD activity is a key determinant of GABA release from 

NPY/AgRP cells, a possible contribution from altered GABA uptake cannot be ruled out. The 

promotion of self-synapses necessitates that the neurons be grown under relatively sparse 

conditions, which may preclude the presence of substantial extracellular GABA concentrations. 

It is difficult to know if GABA uptake plays an important role in the intact system, although 

previous studies in intact circuits found that chemical inhibition of GAD was sufficient to reduce 

GABA release (Apostolides & Trussell, 2013) and the majority of GABA for release comes from 
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glutamate decarboxylation (Mathews & Diamond, 2003, Martin & Tobin, 2000) suggesting a 

limited role for GABA uptake in synaptic release. Consistent with the importance of GABA 

content as a primary driver of vesicular uptake and release are the present results showing an 

increase in PPR and decrease in evoked GABA currents as GAD activity is interrupted by 

chelidonic acid.  

 

Broad potential for Gad mRNA as a proxy for GABAergic synaptic transmission 

There are many conditions in which it may be desirable to detect changes in Gad mRNA 

as a proxy for plasticity in GABAergic transmission. For example, the use of single or multi-

label in situ hybridization as used here allows for entire populations of cells to be examined in 

relatively intact tissue, which may be particularly useful in heterogeneous tissues or cell types. 

Further, semi-quantitative mRNA analysis of Gad could allow for an approximation of GABA 

tone when direct detection of GABA release is not technically feasible, such as when transgenic 

tools do not exist or when the postsynaptic target cannot be identified for paired recordings. 

While further studies will be needed to determine how generalizable the use of Gad mRNA will 

be as an indicator of GABA release from other cell types, the present studies together with past 

work indicate the potential for broad utility.  
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4. CONCLUSIONS, EXTENSIONS FROM FINDINGS, AND FUTURE DIRECTIONS 

 

 

 

It is still a wonder to me how the essential act of eating, so basic in concept, is so 

mechanistically complex in mammals. Beyond the social and cultural factors that go into how 

people behave regarding food, understanding of the finely tuned biological processes required to 

signal healthy feeding and maintenance of a balanced energy set point is still an incomplete 

puzzle. The scientific community has come a long way since lesion experiments of the 1940s, 

when it was first determined that the hypothalamus played a large role in feeding behavior and 

energy balance, but there is still a lack of understanding when it comes to the true nature of the 

many relevant circuits present throughout the nervous system. Hopefully, this study has added a 

few good pieces to the puzzle to help understand the topic as a whole. After completion of the 

main project, the feeding and energy balance field now has a more robust understanding for the 

existence and regulation of amino acid transmitters released by first order feeding neurons, and 

we continue to investigate physiological roles in circuitry and subsequent phenotypes for which 

this release is most relevant. 

 

4.1 Summary, weaknesses, and future directions for presented research 

 Results from Chapter 2 provide evidence for both glutamate and GABA release in the 

ARC from POMC cells. Using a combined optogenetics-electrophysiology approach, transmitter 

release could be assayed in pseudo-paired recordings with native synaptic connections still 

intact. ChR2 was used in POMC cells to find connections to nearby downstream cells. Just like 

the spontaneous input onto POMC cells, POMC glutamate and GABA release can be affected 

through activation of presynaptic GPCRs. One weakness of the recording paradigm used is that it 
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takes an enormous amount of effort to collect a data set of acceptable size. So far, it is not known 

if POMC neurons heavily innervate any one cell type in a given region. The ARC was chosen as 

a downstream target region mainly because it was convenient to do so, in addition to not finding 

a higher connection rate when randomly patching in the PVN. Through the inevitable 

development of future single synapse anterograde tracers, it will be interesting to see exactly on 

which neurons POMC cells synapse, and will provide an avenue for quickly finding many 

postsynaptic targets to patch onto or study in other ways. Alternatively, clever use of an 

anterograde tracer that is targetable and travels a known number of synapses per amount of time 

could be used similarly (e.g. the vesicular stomatitis virus vectors discussed in Beier et al., 2011). 

These strategies will allow for experiments like completed with NPY/AgRP cells in Chapter 3 to 

be completed in a timely manner, even if POMC cells innervate a sparse subset of any one type 

of cell. It would be interesting to know if glutamate or GABA release changes in a fed or fasted 

state, because this would be another avenue for feeding signals to be relayed, especially when 

considering juxtaposition with the fast amino acid GABA release from NPY/AgRP neurons. 

Opposing POMC amino acid transmitters of excitation and inhibition could be differentially 

regulated to appropriately modulate downstream feeding areas. Perhaps the two subpopulations 

of cells are completely distinct, and only rarely does glutamatergic POMC output overlap with 

GABAergic targets. After all, simultaneous glutamatergic and GABAergic release onto a 

downstream cell was a very rare occurrence in the data collected for Chapter 2. 

Showing that POMC cells release both glutamate and GABA forces the scientific field to 

acknowledge both first order feeding neuron populations’ amino acid transmitters when 

designing experiments. Current and previous studies that have failed to take into account these 

findings must accept potential weaknesses in their proposed models and be open to alternate 
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interpretations of their results. With this new information, GABA originating in the ARC is not 

confined to a unilaterally orexigenic force (Figure 4.1). As a nascent topic of research, there is 

still a dearth of information on POMC cell amino acid transmitter release, which leaves the 

subject poised to be mined for valuable contributions to energy homeostasis. It is exciting to 

hypothesize that adjusting amino acid transmitter release in POMC cells could help to regain 

healthy physiology from a far too negative or positive energy balance. 

 Results from Chapter 3 continued to add to the growing body of knowledge pertaining to 

amino acid transmitter release from first order feeding neurons. It was discovered that 

GABAergic input specifically from NPY/AgRP cells onto POMC cells is affected by feeding 

state. It had been shown before that in a fasted state, GABA tone increases onto POMC cells 

after a fast (Vong et al., 2011), but since it is not known what fraction of the total GABA release 

onto POMC cells is accounted for by NPY/AgRP cells, it was uncertain if the increase in 

inhibition actually comes specifically from these orexigenic neurons. As has been hypothesized 

before, this would be one mechanism by which satiety signals from POMC cells could be 

blunted, while at the same time exciting hunger circuits. I.e., not only can GABA be used by 

NPY/AgRP cells in a hungry state to acutely turn down the activity of POMC cells, it can also 

affect other downstream targets like anorexigenic second order neurons in the PVN. 

While the discovery that there is a massive one-way connection of NPY/AgRP neurons to 

POMC neurons preceded the research in Chapter 3 (Atasoy et al., 2012), it was compelling to 

find this out first hand during my own research because it was still common to believe that there 

was direct reciprocal innervation between the neuronal populations (compare Figure 1.2 to 

Figure 4.1). In a healthy slice preparation with high viral penetrance and brightly labeled POMC 

cells, almost any eGFP-labeled cell would be downstream of GABA-releasing NPY/AgRP cell  
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Figure 4.1. Adjusted paradigm of first order feeding neurons. In the new paradigm of first order neurons, 
reciprocal innervation between POMC cells has been removed. GABA release from NPY/AgRP cells is adjusted 
based on feeding state and release onto downstream targets is important for appropriate function of the circuit. 
The POMC population releasing glutamate and/or GABA onto downstream cells has been added to the model. In 
addition, either type of first order neuron may synapse onto a downstream cell without symmetrical connection 
by the opposing population. Abbreviations: blood-brain barrier (BBB), NPY type 1 receptors (Y1R), 

melanocortin 4 receptor (MCR4). 
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inputs. This is in contrast to expressing ChR2 in POMC cells and never finding a single 

glutamatergic or GABAergic current evoked onto NPY/AgRP cells. It seems that the older 

reciprocal feedback hypothesis is dying out. This is significant because in the old model, POMC 

and NPY/AgRP neurons are supposed to be battling for dominance both with each other and at 

downstream inputs. This finding continues to push the idea that these are often two distinctly 

separate pathways that often act asymmetrically from one another. POMC cells could still feed 

back onto their orexigenic neighbors, but it would have to be through indirect input or maybe 

paracrine effects of peptide release. 

 One limitation of the experiments in Chapter 3 is that all recordings were made at 

POMC�NPY/AgRP synapses. One set of future experiments would be to test other synaptic 

contacts located in other nuclei in order to determine if the increase in excitation observed after a 

fast translates to increased GABA release at all downstream inputs. Through these experiments, 

it could be determined if GABA release is regulated similarly at synaptic connections in both 

melanocortin -dependent and -independent pathways. It would also be important to extrapolate 

the synaptic physiology observed beyond the single synapse studied in order to continue 

validation of the Gad mRNA proxy hypothesis. The finding that the increase or decrease in Gad1 

message after a fast or leptin injection was a good correlate for increased functional GABA 

release might be a valuable tool for many projects. As a newer hypothesis, although as discussed 

in Chapter 3, not without rationale or additional support, this idea needs to be measured at the 

synaptic level and replicated across many areas in the brain. We also still do not know for certain 

if more Gad1 mRNA actually means more GAD67, and that any additional GAD67 is 

responsible for the observed increase in GABA release. While we observed an increase in 

mRNA, and subsequently showed that depletion of functional GAD from a cell reduces GABA 
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release, it is still a correlative finding. While establishing both broad applicability and a solid 

mechanistic link are important, we focused more on showing that the mRNA-as-proxy could be 

used for both increases and decreases in GABA release (by using fasted state and leptin 

injections), and that Gad1 tracks better with GABA release than Gad2 (responsible for the 

GAD65 protein). As a future topic beyond the scope of the primary findings, knowing exactly 

what cells each group of opposing feeding neuron types synapse onto in downstream regions will 

provide valuable drug target information, as well as elucidate how both cell populations 

appropriately coordinate their amino acid transmitter release. For example, with the finding that 

both first order cell types use GABA as their primary amino acid transmitter, it would be odd if 

differential regulation of GABA occurred depending on feeding state in both POMC and AgRP 

cells, only to have projections from both cell types going to the same downstream cell. No matter 

what energy state the animal is in, the GABA would be released onto this hypothetical 

downstream cell. Future studies, perhaps using new tracer technology, could be used to fully 

explore this aspect of the circuitry. 

 

4.2 Related experiments 

GABA released onto POMC neurons 

 One of the questions left unanswered in Chapter 3 is how much of the total GABA input 

onto POMC neurons comes from NPY/AgRP neurons. It should be noted that some hypothesize 

that this source of POMC cell inhibition is relatively unimportant because selective activation of 

both NPY/AgRP and POMC neurons at the same time induces feeding to the same extent as 

activating NPY/AgRP cells alone (implying that inhibition of POMC neurons is not a significant 

contributor to increased food intake; Atasoy et al., 2012). While this was not necessarily a bad 



 70

experiment, the results do not warrant dismissing any relevance for acute inhibition of POMC 

neurons in food intake.  It is not too surprising that acute maximal activation of both populations 

of first order feeding neurons, causes the biological imperative of energy consumption to win 

out; the effects of extraphysiological activation of NPY/AgRP neurons and subsequent 

transmitter release could trump POMC amino acid release, and POMC peptide release after 

chronic activation is not adequately considered. The interpretation of the specific experiment 

says more about the importance physiology puts on maintaining adequate energy stores than it 

does about the inhibition of POMC neurons by NPY/AgRP neurons. It is hard to believe that the 

significant effect that activation of NPY/AgRP cells expressing ChR2 has on POMC cell 

physiology (Figure 3.3) would not have physiological consequences if activation were not at a 

ceiling. A more nuanced set of experiments, where parameters are being manipulated within 

physiological dynamic ranges, is likely needed to test the true relevance of NPY/AgRP GABA 

tone on POMC cells. In any case, for the tuning of GABA release to have a relevant impact on 

POMC cell physiology, it is important to know that a large fraction of inhibitory tone onto 

POMC neurons is due to the release of GABA from NPY/AgRP cells. One early idea for 

answering this question involved expressing the hyperpolarizing light-sensitive Cl--specific ion 

pump, halorhodopsin, in AgRP-Cre animals. Instead of exciting the cells with blue light so they 

would release GABA onto POMC cells, we could look at spontaneous GABA input onto POMC 

cells both before and after inhibition specifically of the NPY/AgRP cell population. We were 

apprehensive of this idea, though, as most of the GABA release onto POMC cells is action 

potential-independent i.e. most sIPSCs would remain as mIPSCs after application of TTX (Pinto 

et al., 2004; Pennock and Hentges, 2011), meaning hyperpolarization of NPY/AgRP somas with 
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halorhodopsin might just return inconclusive results. In lieu of this approach, we decided to use a 

vesicular GABA transporter (VGAT) knockout targeted to NPY/AgRP neurons. 

Using a cross between an AgRP-Cre animal and a Vgatflox/flox animal, POMC cells could 

be recorded from in the same configuration as seen throughout Chapter 3 (requiring ChR2 

expression and another cross so POMC cells could be visually targeted) and observed for 

spontaneous GABA input. After it was determined that GABA could not be light-evoked from 

NPY/AgRP cells (0/14 cells patched showed a light-evoked current), spontaneous IPSCs were 

compared between AgRP-Cre; Vgatflox/flox; POMC-eGFP and AgRP-Cre; POMC-eGFP animals 

(Figure 4.2A-B). Interestingly, there was no difference between groups in either frequency or 

amplitude of spontaneous IPSCs (7.6 ± 1.5 Hz in control, 6.5 ± 2.0 Hz in experimental, n = 9 

cells from 3 control and 3 experimental animals, p = 0.66 by unpaired t-test; Figure 4.2C. 50.7 ± 

6.5 pA in control, 54.0 ± 7.7 pA in experimental, n = 9 cells from 3 control and 3 experimental 

animals, p = 0.74 by unpaired t-test; Figure 4.2D), suggesting that release from NPY/AgRP cells 

make up almost none inhibitory GABA tone seen by POMC cells. However, because this was 

not an inducible strategy and thus GABA release from a normal source was not available during 

development, there may have been some input compensation from other sources that prevented 

an accurate assessment of NPY/AgRP GABA release. This is a reasonable possibility given data 

to support to the existence of compensatory, redundant mechanisms in place to protect an animal 

from failing to consume a necessary caloric load. It is already accepted that global genetic 

deletions of NPY and/or AgRP, as well as directed knockout of Vgat from NPY/AgRP neurons 

has minimal effects on energy balance (Erickson et al., 1996; Qian et al., 2002; Tong et al., 

2008). 
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To get around developmental compensation, another transgenic approach was used. 

Instead of Vgatflox/flox, a floxed µ-opioid receptor (MOR) animal was used. Previous work 

indicates that a saturating concentration of MOR agonist at this synapse in a brain slice 

preparation causes a ~75% reduction in spontaneous IPSCs (Pennock and Hentges, 2011). With 

MORs deleted specifically in NPY/AgRP cells, inhibition of presynaptic release can be 

compared between experimental and control animals, with less inhibition in the experimental 

condition meaning a larger contribution of GABA inputs from NPY/AgRP neurons. At the time 

Figure 4.2. Spontaneous GABA release onto POMC cells is unaffected by 

removing the ability of NPY/AgRP cells to release GABA. Representative traces of 
spontaneous GABA-mediated IPSCs in POMC neurons in tissue from AgRP-Cre; 
POMC-eGFP (A) and AgRP-Cre; POMC-eGFP; Vgatflox/flox (B) mice. sIPSC 
frequency was not significantly different between groups (C), nor were current 
amplitudes (D). Data are plotted as mean ± SEM. 
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of this writing, these experiments are ongoing, but preliminary results indicate that there is a 

significant portion of GABA input onto POMC neurons by NPY/AgRP neurons. 

 

Relevance of POMC cell amino acid neurotransmitters 

 While mice with POMC cells that are GABA release-deficient have not been developed 

yet, I was able to play a role in a study that looked at the physiological relevance of glutamate 

release (Dennison et al., 2015). This study was divided mainly into two parts. First, it was 

discovered that mRNA for the vesicular glutamate transporter vGlut2 is highly colocalized with 

POMC expression early in development, and then tapers off as mice age into adulthood. The 

second part of the study involved deletion of vGlut2 specifically from POMC neurons. When fed 

a high-fat diet, male mice without vGlut2 expressed in their POMC neurons were not able to 

maintain their body weight, while female mice were unaffected (Figure 4.3). While this result 

suggests a physiologic role for glutamate release from POMC neurons in the maintenance of 

body weight on a high-fat diet, at least in males, care must be taken to consider the caveats of an 

interpretation limited to adult glutamate release. As discussed in Chapter 1, these genetic crosses 

that cause Cre expression whenever the POMC gene is turned on may make for convoluted 

results. The phenotype observed could be caused by glutamate acting as an important trophic 

factor early in development. Alternatively, neurons fated to be kisspeptin neurons, a 

subpopulation of ARC cells which express POMC early on, could have had their vGlut2 knocked 

out by Cre resulting from the transient expression of the POMC promoter in neurons that are not 

authentic POMC neurons (Padilla et al., 2012). While this study hasn’t provided a fully 

satisfying answer for the importance of POMC neuron glutamate release in adult animals, it is an 
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interesting first step. Experiments are ongoing using an inducible POMC-Cre line of mice to 

delete vGlut2 from POMC neurons in adulthood. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Amino acid transmitter release from POMC cells in the NTS 

 As mentioned in Chapter 1, in addition to the POMC cells located in the ARC, there is an 

additional neuronal population of POMC cells located in the medulla’s NTS (Bronstein et al., 

1992; Padilla et al., 2012). It is unknown, however, if this group of cells expresses POMC at any 

meaningful level in adulthood, since POMC mRNA cannot be detected past early postnatal 

Figure 4.3. vGlut2 deletion in POMC neurons increases weight gain in males on a high-fat 

diet. A–D: Weight curves of control mice (blackcircles) and mice lacking vGlut2 in POMC 
neurons maintained on normal chow (A,C) or high-fat diet (B,D). All data points are mean ± SEM. 
* = p < 0.05 compared to same age control mice (vGlut2flox/flox). Reproduced with permission from 

Dennison et al., 2015) 
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development. Nonetheless POMC-eGFP and POMC-Cre transgenes are expressed in the NTS, 

making this group of neurons targetable and able to be manipulated. This population of POMC 

cells’ role in food intake and energy balance still is not completely clear, but recent research 

suggests that they play a role in cessation of feeding on a short-term timescale (Zhan et al., 

2013). In light of this information and the knowledge that POMC neurons in the ARC release 

GABA and glutamate, we tested the hypothesis that amino acid transmitter release from POMC 

cells within the NTS, rather than peptide release, may mediate the physiologic response observed 

by Zhang et al. We used an approach similar to the blind patching in Chapter 2. An AAV 

containing the double-floxed inverted ChR2 construct was injected into the NTS of POMC-Cre 

animals, and after an incubation period, live sagittal slices were cut and were recorded from. 

Although exceedingly rare, both glutamate and GABA release were observed in this preparation 

(Figure 4.4). This might be one way in which these feeding neurons exert short-term feeding 

effects, but there exists one major caveat to these findings. Both in the case of Zhan et al., 2013 

and our experiment, a POMC-Cre animal is used to express the proteins crucial to testing 

hypotheses about NTS POMC cells, whereas an in situ hybridization approach was used to verify 

that POMC neurons expressed markers for GABAergic and glutamergic phenotypes. The in situ 

hybridization approach relied on the detection of eGFP driven by the POMC promoter since it is 

not possible to readily detect endogenous POMC mRNA or protein. In attempting to verify that 

POMC-Cre and POMC-eGFP are expressed in the same cells, it became apparent that 

completely distinct populations of cells actually express POMC-Cre and POMC-eGFP —there is 

no overlap at all (unpublished findings). Although concerning, this is not completely surprising 

since the Padilla et al., 2012 study found similar results. In this corroborating instance, it was 

found that the population of cells labeled by performing immunohistochemistry for eGFP in a 
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POMC-eGFP animal was completely distinct from the population of cells labeled by the 

expression of a Cre-dependent fluorophore in POMC-neurons. Taken together, it appears that 

there are distinct populations of cells marked by the expression of POMC-Cre and POMC-eGFP. 

Based on functional studies, POMC-Cre neurons likely play a role in proper food intake, but the 

results are murky since biochemical studies have relied on POMC-eGFP to assess cellular 

properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.4. GABA and glutamate are released by NTS POMC-Cre neurons. Cells 
nearby ChR2-expressing NTS POMC-Cre cell bodies were patched while light evoking 
transmitter release. Both GABA and glutamate currents were observed (A-B, left). BMI 
and DNQX were able to ablate each current, respectively (A-B, right). Black marks 

indicate a short flash of blue light. 
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4.3 Final remarks 

 Altogether, this study adds substantial evidence to support the growing idea that amino 

acid transmitters are essential to proper function of the so-called first order feeding neurons. We 

have provided compelling evidence that glutamate and GABA are released from POMC cells 

within their native circuits, and are just beginning to understand the physiological relevance of 

this release. We also discovered that GABA release from NPY/AgRP cells is modulated based of 

feeding state, and that in situ hybridization for Gad mRNA matches these findings suggesting 

that mRNA may be a useful proxy for functional GABA release in this, and perhaps other brain 

regions. I speculate that the feeding and energy balance field will continue to discover the 

importance of amino acid transmitter release from first order feeding neurons. Sensing energy 

state through circulating factors and afferent inputs, and subsequently signaling for the proper 

behavioral and autonomic adjustments requires a finely tuned and complex system. The fast 

neurotransmission provided by amino acid transmitters is an important part of this system, and is 

exquisitely poised to work in concert with the relatively slower peptide release to maintain 

healthy physiology. With better understanding of every component that makes up the neural 

circuitry of energy homeostasis, we will be able to provide better tools to fight for the correction 

of a disrupted energy balance. 
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