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ABSTRACT 

 

 

ANALYSIS OF LIFE CYCLE ASSESSMENT OF FOOD/ENERGY/WASTE SYSTEMS 

AND 

DEVELOPMENT AND ANALYSIS OF MICROALGAE CULTIVATION/WASTEWATER 

TREATMENT INCLUSIVE SYSTEM 

 

Across the world, crises in food, energy, land and water resources, as well as waste and 

greenhouse gas accumulation are inspiring research into the interactions among these 

environmental pressures.  In the food/energy/waste problem set, most of the research is focused 

on describing the antagonistic relationships between food, energy and waste; these relationships 

are often analyzed with life cycle assessment (LCA).  These analyses often include reporting of 

metrics of environmental performance with few functional units, often focusing on energy use, 

productivity and environmental impact while neglecting water use, food nutrition and safety.  

Additionally, they are often attributional studies with small scope which report location-specific 

parameters only.  This thesis puts forth a series of recommendations to amend the current 

practice of LCA to combat these limitations and then utilizes these suggestions to analyze a 

synergistic food/waste/energy system. 

As an example analysis, this thesis describes the effect of combining wastewater 

treatment and microalgae cultivation on the productivity and scalability of the synergistic 

system.  To ameliorate the high nutrient and water demands of microalgae cultivation, many 

studies suggest that microalgae be cultivated in wastewater so as to achieve large scale and low 

environmental costs.  While cultivation studies have found this to be true, none explore the 

viability of the substitution in terms of productivity and scale-up.  The results of this study 
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suggest that while the integrated system may be suitable for low-intensity microalgae cultivation, 

for freshwater microalgae species or wastewater treatment it is not suitable for high intensity salt 

water microalgae cultivation.  This study shows that the integration could result in reduced lipid 

content, high wastewater requirements, no greenhouse gas emissions benefit and only a small 

energy benefit.  
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PART I: ANALYSIS OF LIFE CYCLE ASSESSMENT OF FOOD/ENERGY/WASTE 

SYSTEMS 

Introduction 
The world is facing energy, food and water shortages, in addition to waste and 

greenhouse gas (GHG) accumulation, all compounded by land use changes [1–6].  These crises 

are all too extensive and complex to be examined together, but too intertwined to be investigated 

separately [5].  There is no longer one solution to solve one of the problems; many solutions 

must be examined and implemented.  Conversely, many of the problems can be combated with 

the same solution, developing synergistic multi-system solutions. 

The Food, Energy, and Waste Global Challenges Research Team was formed as part of 

the Colorado State University School of Global and Environmental Sustainability (SOGES) to 

examine issues at the nexus of food, energy and waste and to develop and evaluate a framework 

for evaluating the performance of systems in food production, energy generation and waste 

management focusing on synergistic relationships between each of these traditionally separated 

fields as opposed to antagonistic relationships.  In order to develop a framework for thinking 

about food/energy/waste systems, specific knowledge gaps found in previous literature need to 

be addressed. 

Current Antagonistic Relationships 

Studies analyzing the relationships between food, energy and waste, to this point have 

mostly focused on the antagonistic connections between the three.  For example, many 

researchers focus on the energy consumed by food production; according to the USDA, in 2002 

the United States used 15 Quadrillion BTU for food production [7].  Researchers have studied 

the production of individual food products including milk [8], Swedish semi-hard cheese [9], 

orange cultivation in Brazil [10], and ketchup [11].  To study the material and energy inputs and 
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outputs of these systems, researchers often use a ―cradle-to-grave‖ technique called Life Cycle 

Assessment (LCA).  Enough studies have examined the energy and other resource requirements 

of specific food products to warrant large review articles to consolidate the information [12, 13].   

Farming practices are also scrutinized with respect to relative environmental impacts; 

Gelfand, Snap and Robertson (2010) [14] explored the effects of tillage and chemical input on 

food/biofuel crops using actual hectare plots.  They considered four cases: ―conventional‖ using 

conventional tilling and chemical practices, ―no till‖, ―low chemical input‖, and ―organic‖.  

Energy input ranged from organic (requiring 4.8GJ/ha/yr) to conventional (7.1 GJ/ha/yr), 

whereas yield increased from organic (53.1 GJ/ha/yr) to no till (78.5 GJ/ha/yr).  Additionally, 

energy requirements for food do not stop at the farm; Pretty, Ball, Lang and Morison (2005) [15] 

explored the ―hidden‖ costs associated with food transport in the UK and found significant 

energy and monetary costs, especially if the food was imported from overseas or by air transport.  

Also, Baldwin, Wilberforce and Kapur (2010) [16] explored the energy impacts from restaurants 

and found that most occur at the farm or in restaurant ―operational support‖ (lighting, heating, 

ventilation, air conditioning, water, supplies and administration).  Food storage and preparation 

were found to have negligible impacts.  

Looking in the opposite direction along the energy-food axis, researchers have focused 

on the antagonistic relationships between food and energy for processes that produce energy 

from potential food sources or crops that compete with food sources.  For example, many studies 

have been conducted on the energy efficiency of biofuels and their net energy output.  

Bioethanol has been reported as both net energy positive [17] and net energy negative [18], 

depending on the data and methods of analysis.  Farrell et al. (2006) [19] reviewed six studies on 

bioethanol, examining the differences in the assumptions, data, and results and showed that 
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bioethanol actually requires approximately 95% fewer fossil fuels than petroleum and releases 

around 13% less greenhouse gases.  Others have estimated even higher emission reduction, 

between 48 and 59%, and a net energy ratio between 1.5 and 1.8 MJ produced/MJ consumed, 

with room for improvement [20].  However, even if bioethanol is net energy positive, many fear 

that creating energy from food creates too much competition between the two, if not now, then in 

the future as the world population increases and a higher strain is put on our food sources.  One 

specific area of concern is land requirements; many fear that we will need as much land as 

possible for food in the near future, and using some of that food for fuel will create economic 

problems or even shortages [3, 6, 12, 20–24].  Corn ethanol can require between 220 and 490 

m
2
/GJ (based on a production rate of 45.2 GJ/ha in Texas and 20.4 GJ/ha in Iowa) depending on 

location due to soil quality/fertilizer requirements and climate [20].  Furthermore, studies have 

expressed similar concerns for water use [5, 12, 21, 23, 25].  Regional irrigation practices greatly 

affect the water requirements of bioethanol, giving a range of 5 to 2138 L water/ L ethanol [25].   

The waste from energy production is another well explored antagonistic relationship.  In 

energy production, waste takes the form of pollution, which is well documented for most of the 

common energy production methods [19, 26–28], and other waste products like ash, biomass 

wastes and spent nuclear fuel rods.  As the desire for sustainable practices increases, research on 

the energy requirements of waste disposal is focusing on synergistic waste/energy options rather 

than the energy consumed through current waste production, handling and disposal practices.   

There are also antagonistic relationships explored amongst all three points of the 

food/energy/waste triangle [29, 30].  Cuéllar and Webber [29] calculated the approximate energy 

used in food production in 2007 and showed that, assuming 27% of food was wasted (as in 

1995), 2030 ± 160 trillion BTU were embedded in wasted food in 2007; this is equivalent to 
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about 2% annual U.S. energy consumption.  Additionally, it was shown by Muñoz, Milà i 

Canals, and Clift [30] that ―postconsumption nutrient emissions‖ (human waste) are important 

for a true closed cycle life cycle assessment; they can have a large eutrophication potential and 

they close the carbon cycle.  With the high costs of food/energy production and waste disposal 

becoming more understood, research is being conducted on more favorable and sustainable 

alternatives. 

Current Synergistic Research 

In this context, we use the term antagonistic to describe aspects of the food/energy/waste 

systems wherein the processing or production of either food, energy or waste has detrimental 

effects on the economy, sustainability or scalability of other food, energy or waste systems.  

Synergistic systems are those in which these relationships contribute to the economy, 

sustainability or scalability of other food, energy or waste systems.  It is the goal of the author to 

examine more synergistic relationships between food, energy and waste and to begin to 

understand how to better synthesize, evaluate and implement synergistic food/energy/waste 

systems.  Synergistic systems are currently being explored in energy systems to provide more 

sustainable alternatives to fossil fuels.  Examples of these systems include producing energy 

from various waste sources, such as agricultural waste or municipal waste, combining systems to 

reduce or utilize waste, and developing a better understanding of existing systems to increase 

efficiency.   

In an effort to reduce food crop use for bioethanol, several studies have focused on the 

development of ethanol from cellulosic wastes, such as corn stover.  This has been shown to be a 

promising alternative to first generation ethanol [19, 27, 31], requiring less land, nutrients, fossil 

fuels and having lower GHG emissions.  Sheehan et al. (2004) [31] calculated that with partial 
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removal of corn stover (enough stover was retained in the field to control soil erosion), soil 

organic matter drops slightly in early years, but levels out.  Also, for each kilometer fueled by 

corn stover-E85, the test vehicle used 95% less petroleum compared to gasoline.  Spatari, Zhang 

and MacLean (2005) [27] calculated that, compared to low sulfur reformulated gasoline, 

switchgrass based E85 produced 57% lower emissions; corn stover-E85, 65%.  Since ethanol 

from corn stover shares inputs and emissions with grain production, the ―blame‖ can be 

distributed amongst both, reducing the impact further.  It has been shown that biodiesel can be 

produced from crops, food waste or other agricultural sources, such as microalgae.  Second 

generation biodiesel is produced from various food wastes (animal fat and used cooking oil) or 

non-food oils (jatropha, jojoba, etc.).  Synergistic energy sources reduce or eliminate the 

competition with food, require less farm land and can produce other by-products, however, 

second generation biodiesel sources are not numerous enough and lead most simply to low-

performance biodiesel [21].   

There have also been studies comparing the environmental impact of municipal waste 

disposal methods and exploring alternatives to landfilling.  Additionally, many of the alternatives 

are also able to produce energy [32–34].  Levis and Barlaz (2011) [33] compared various 

methods of food waste disposal, anaerobic digestion, composting and landfilling, to determine 

which was more environmentally beneficial.  They found that anaerobic digestion performed 

best in all the environmental impact categories, but was most costly.  It had a global warming 

potential of -395 kg CO2e/functional unit (1000 kg food waste plus 550 kg of branches), 

composting ranged between -148 and -64 kg CO2e/ functional unit and land filling ranged 

between -240 and +1100 kg CO2e/ functional unit.  Also, anaerobic digestion, landfilling with 

energy recovery and bioreactor landfills all produced energy and sequestered NOx and SO2.  In 
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Denmark, there has been a ban on landfilling combustible waste since 1997; instead of 

landfilling, incineration is the most common form of municipal solid waste treatment.  

Fruergaard and Astrup (2010) [32] compared the environmental impacts of several types of 

municipal solid waste treatment: incineration of inorganic and organic solid waste with heat 

recovery, co-combustion of the inorganic portion and anaerobic digestion of the organic portion 

(with digestate being used for fertilizer and biogas either combusted for electricity or 

transportation fuels).  They found that, for Denmark, incineration of organic waste was more 

environmentally beneficial than either anaerobic digestion scenarios in nearly all explored 

impact categories, whereas the treatments for inorganic waste were nearly equal.  In Italy, 

however, landfilling is still the most common form of solid waste management; Cherubini, 

Bargigli and Ulgiati (2008) [34] explored other options for municipal solid waste disposal for the 

city of Rome.  Similar to Levis and Barlaz [33] they compared landfilling to landfilling with 

biogas recovery, incineration and a scenario where organics, inorganics and ferrous materials 

were sorted then anaerobically digested, combusted and recycled respectively.  They found that 

landfilling, with or without biogas recovery, was the most globally polluting scenario; 

incineration was better than landfilling, but still had several environmental impact problems 

relating to acidification and global warming potentials.  The sorting scenario had overall negative 

global warming and acidification potentials, reduced mass sent to landfills by over 80% and 

could produce up to 15.5% of Rome‘s electricity needs and 8.2 of its natural gas needs, however, 

it did require a 20% increase in fossil fuels for treatment, leading to an overall energy efficiency 

(Eout/Ein) of 52%.  

Overall, the studies that the Food, Energy, and Waste Global Challenges Research Team 

reviewed utilize several variations on LCA techniques when assessing the environmental and 
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economic impact of the integrated food/energy/waste systems.  Although many studies did exist 

in the field, the best practices for performing these types of studies has not been proposed to 

date.  

Research Questions 
Based on this understanding of the field, two research questions were proposed to address 

the knowledge gaps described above. 

Research Question 1: What are the characteristics of studies that can evaluate the 

environmental costs and benefits of systems that span the food/energy/waste problem set?  

Research Question 2: What are potential synergistic systems that we can explore utilizing 

knowledge gained from knowledge gap investigation? 

Tasks 

In order to answer these research questions, a set of tasks was proposed that resulted in 

the development of a review of the analysis methods for systems in the food-waste-energy 

problem set. 

With regards to Research Question 1: 

Task 1.1: Evaluate current practices in food/energy/waste system analysis 

Task 1.2: Determine knowledge gaps in the analysis of food/energy/waste systems 

Task 1.3: Combine current practices and knowledge gaps into new evaluation 

recommendations 

With regards to Research Question 2: 

Task 2.1: Explore and evaluate synergistic food/energy/waste systems using knowledge 

gained from Research Question 1 

These tasks were completed through individual and group literature reviews, and through 

discussion sessions with the Food, Energy, and Waste Global Challenges Research Team. 
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Findings 

Task 1.1: Analysis of Current Practices 

As our basic understanding of the antagonistic and synergistic relationships between 

food, energy and waste develops, a need to evaluate any future endeavors in the area arises.  

Currently, much of the work evaluating these systems uses Life Cycle Assessment (LCA) to 

quantify the systems.  LCA is an analysis method for calculating the input/output of a system 

including the environmental effects (GHG emissions, eutrophication, acidification, etc.) and 

categorizing the analysis output into a format easier to interpret and compare.  The U.S. 

Environmental Protection Agency and International Standards Organization have suggested 

guidelines and standards for conducting LCAs.  LCA is currently a widely used tool for the 

analysis of food, energy and waste systems to determine the material and energy requirements 

for food and energy production and waste disposal, the systems‘ productivity and  environmental 

impact.   

―[LCA] is unique because it encompasses all processes and environmental releases 

beginning with the extraction of raw materials and the production of energy used to 

create the product through the use and final disposition of the product.  When deciding 

between two or more alternatives, LCA can help decision-makers compare all major 

environmental impacts caused by products, processes, or services‖ [35].   
 

LCA consists of four major parts: goals definition and scoping, inventory analysis, 

impact assessment and interpretation.   

The first section is the goal definition and scoping, where the preparation for the analysis 

is organized; defining the purpose and how the study will be conducted.  The purpose of the 

LCA informs the entire analysis by shaping how one performs and interprets the analysis and 

influencing the inputs and outputs considered, size and level of detail of the study.  Defining the 

boundaries of the system under analysis is another important early decision, directly affecting the 

amount of information required, analysis time and the representativeness of the results.  The 
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boundaries should strive to encompass as much of the system as possible, but ability to collect 

data and time for analysis should be taken into account.  Functional units (FU) define the basis 

on which the outputs will be compared and normalize the decision criteria.  For example, 

kilogram of food or MJ of energy output are common in food and energy LCAs, but if the 

research question is based on land constraints, hectare of farmland is also useful.  Decision 

criteria are the normalized outputs used for decision making (e.g. GHG emissions, energy 

consumption, and health impact). 

Inventory Analysis, also discussed independently as Life Cycle Inventory (LCI), is where 

the energy and material inputs and outputs (including products, co-products and wastes) are 

identified, quantified and the relevant data is obtained and organized.  It begins with flow 

diagrams of the systems and their boundaries to determine the internal and external flows.  The 

baseline and alternatives, if used, must all share the same boundaries and level of detail to ensure 

comparability.  The quality of a life cycle analysis is based on the quality of the data collected in 

this phase, making this the most important phase of the analysis and the most time consuming. 

Impact Assessment evaluates the results of the inventory analysis, condensing the high 

volume of data in to a few key impact categories.  For example, one can consolidate emission 

data for carbon dioxide, nitrogen dioxide, and methane emissions into a global warming potential 

factor, often reported as the impact of an equivalent mass of carbon dioxide (i.e. kg CO2e).  From 

there one can continue to normalize factors such as global warming potential, acidification and 

eutrophication into a bulk environmental impact category via a predetermined weighting scheme 

to simplify comparisons. 

The final phase, interpretation, is where the results of the inventory analysis and impact 

assessment are examined for limitations and conclusions and recommendations are reached.  The 
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overarching objective of any LCA is to inform decision making, and the interpretation state is the 

stage of LCA where consensus building, peer review, and decision making might occur.  Finally, 

everything is compiled into an understandable and transparent format.  [35] 

Task 1.1: How LCA is used in current Food/Energy/Waste systems’ analyses 

LCA began being used as an energy assessment tool for manufacturing processes in the 

1960s; the use of LCAs eventually broadened to food production then solid waste management 

[35].  The use of LCA for the evaluation of food systems is so prevalent that Roy et al. [12] 

consolidated many studies into one report where the authors drew several conclusions about the 

state of the field.  They describe food LCA inputs as including energy and raw materials and the 

outputs including products, co-products, emissions and waste.  Reported metrics often include 

energy and land area used, mass of final products (also reported as energy/protein content in food 

or units of livestock) and various environmental impact metrics.  The authors also stated that the 

product, method of production (organic, hydroponic, conventional, greenhouse), location, 

packaging and distribution all have large effects on the incredibly complex system of food 

production.   

Many LCAs of food, energy and waste systems consist primarily of an accounting of the 

system (attributional LCAs) [12, 13, 19, 25, 30, 31, 36], but several are moving to more 

comparative (consequential) analyses
1
.  For example, a 2005 study moved past the farm gate and 

included transportation of food to retail and place of consumption; they also translated all ―costs‖ 

(pesticides, eutrophication, GHG emissions, loss of biodiversity, etc.) to actual monetary units 

                                                 

 

 

1
 According to Curran, Mann and Norris [88] ―‘attributional life cycle assessment‘ is defined as an attempt 

to answer ‗how are things … flowing within the chosen temporal window?‘ while ‗consequential life cycle 

assessment; attempts to answer ‗how will flows beyond the immediate system change in response to decisions?‘‖ 
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(GBP/year) as a means of evaluating the ―hidden costs‖ of food production and various methods 

of avoiding these costs [15].  There have also been comparative analyses conducted to study 

differences in farming practices.  One study conducted a comparative analysis of green energy, 

conventional and organic food cultivation systems in the Netherlands [37].  Each case modeled 

the same amount of food and energy production (either from conventional combustion of fossil 

fuels or energy crops) on single hectare farm.  Another conducted a comparative analysis of 

varying tillage, fertilizer inputs and gathered data experimentally using hectare plots to examine 

energy efficiencies and yield [14].  Several waste/energy studies have compared energy 

generating waste disposal methods [32–34] and another compares various methods of energy 

production from microalgae growth on municipal wastewater [38]. 

Table 1 describes a sample of individual life cycle assessments reviewed in this study; 

studies reported in review articles were not included.  Organized by first author, it includes a 

description of where in the food/energy/waste paradigm the study fits, a description of the 

functional units, which metrics were reported and if the study was an attributional or 

consequential LCA.  Eight types of metrics were identified as important: energy quantity, 

climate change, land quality, water quality, land use, food/product yield, water use and food 

quality.  ―Energy quantity‖ is a measure of how much energy was required or produced; ―climate 

change‖ reports any description of GHG emissions or other atmospheric climate change 

parameters; ―land quality‖ reports any inclusion of metrics regarding acidification, soil carbon 

levels or  other reports of the quality of the soil; ―water quality‖ includes eutrophication or other 

metrics regarding water pollutants.  Finally, any usage of land/water use or food/product quantity 

metrics was included in Table 1.  None of the studies reported included a metric on food quality.   
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Overall, it was found that most food/energy/waste life cycle assessments normalize their 

results with one functional unit [8, 14, 16, 25, 29, 30, 32, 33, 37, 39, 40] usually product (such as 

food or energy) or requirements (such as land and energy) of the system (e.g. kg beef, L fuel, ha 

land used, MJ energy).  Additionally, most food and biofuel LCA decision criteria are limited to 

energy use [8, 12–14, 16, 19, 22, 23, 27, 29–33, 36–39, 41], land use [6, 8, 12, 14, 16, 22, 23, 31, 

36, 37, 39, 41], yield [8, 12–14, 23, 25, 27, 31, 36–38, 40], GHG emissions [8, 16, 19, 27, 30–33, 

36, 37, 39], water quality [8, 12, 16, 22, 23, 30, 32, 37, 38, 41] and soil quality [8, 12, 13, 16, 27, 

31, 32, 37, 41]. These metrics are often expressed as ratios such as kg CO2/kg soy, MJ energy 

used/L fuel produced and kg soy/ ha. 
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Table 1: Select literature review summary 

Study 

No. 

FU Functional Unit 
Energy 

Quantity 

Environmental Impacts 

Land 

Use 

Food / 

Product 

Yield 
Water 

Use 
Food 

Quality 
First  
Author 

 
Year 

Food / Energy / 

Waste A /C 
Climate 

Change 
Land 

Quality 
Water 

Quality 

Baldwin  [16] 2011 Food A 1 month X X X X X 
   

Batan [36]  2010 Energy A 1 MJ produced X X 
  

X X X 
 

Broek  [37] 2001 Food/Energy C 1 ha*year X X X X X X 
  

Cederberg  [8] 2000 Food C 1 kg milk X X X X X X 
  

Chiu  [25] 2009 Energy A 1 L EtOH 
     

X X 
 

Cuellar  [29] 2010 Energy/Waste A 1 year 2007 X 
       

Farrell  [19] 2006 Energy A 2 MJ ethanol, L ethanol X X 
      

Fruergaard  [32] 2011 Waste/Energy C 1 1 tonne waste X X X X 
    

Gelfand  [14] 2010 Food C 1 hectare*year X 
   

X X 
  

Kimming  [39] 2011 Food/Energy C 1 amount of energy X X 
  

X 
   

Levis  [33] 2011 Waste/Energy C 1 mass of waste X X 
      

Munoz  [30] 2008 Waste/Energy A 1 kg food ingested X X 
 

X 
  

X 
 

Pretty  [15] 2005 Food C 1 capita*time X X 
 

X 
 

X 
  

Sheehan  [31] 2004 Food/Energy A 2 ha, km X X X 
 

X X 
  

Spatari  [27] 2005 Food/Energy C 2 L ethanol, km X X X 
  

X 
  

Sturm  [38] 2011 Energy/Waste C 1 ton biodiesel X 
  

X 
 

X X 
 

Yang  [40] 2011 Energy/Waste C 1 kg biodiesel 
     

X X 
 

Total             15 12 6 7 7 10 5 0 
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Task 1.2: Knowledge Gaps 

While looking at the general picture of food, energy and waste system analysis, several 

knowledge gaps and methodological issues were identified for future research.   

When exploring solutions to the aforementioned crises, there are several key decision 

parameters that must begin to be included in the analyses of food/energy/waste systems, as 

applicable.  For example, the world may be facing a fresh water shortage [4, 5, 42] and many 

farming communities in the U.S. are in areas where water shortages are a pressing issue.  To 

make an informed agricultural investment decision, the water footprint of the alternatives is a 

major factor, but many food system analyses fail to report it [5, 12], though it is typically 

included in biofuel system analyses [23, 25, 36, 38, 40].  Additionally, food nutrition [2, 43] and 

safety [12] must be addressed, in addition to production quantity, in studies involving the 

production of food.  Moreover, many LCAs only utilize one functional unit and only report a few 

decision criteria; it has been put forward that multiple metrics should be reported to make better 

comparisons [12, 22] For example, Roy and colleagues [12] include a section on the relative 

environmental impacts of meats and dairy, reporting that, in terms of environmental efficiency 

per unit protein, chicken is most efficient, followed by pork and beef, but in terms of 

environmental efficiency per unit energy content, pork is the most efficient, followed by chicken 

and still last, beef. 

It was also observed that many LCAs are accountings of a specific product, usually from 

a specific location, produced in a specific way [9–12, 16, 25, 29–31, 36].  Consequential LCAs 

study the effects of changing various parts of the system, such as comparing organic and 

conventional farming techniques [8, 14, 37] or various methods for biodiesel production [38].  

These studies use the same boundary conditions to analyze similar systems in a parallel fashion, 

so the only differences in the designs cause variation in the results.  Opening up a study as a 
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comparative exercise could better allow for decision making at a personal and policy making 

level. 

Additionally, many studies focus on a single-objective system, such as a biofuel or food 

product [8–15, 29–31, 36] and few combine systems into a larger synergistic system, like a 

combined food/biofuel or waste/fuel system [32, 33, 37–39, 44, 45].  As stated previously, 

combined synergistic systems can increase the sustainability of certain systems and are, 

theoretically, better than the sum of their parts, but few studies examine if this is the case. 

Finally, many studies are location specific; this is problematic on several levels.  First, 

many input values are location specific and depend on the relative location of the various parts of 

the system.  Second, in different locations, different variables are more important.  For example, 

in Europe, where many food LCAs have been conducted, land is a major constraining factor [6, 

13, 32, 37], but in the western United States and many developing nations, water is another 

major constraining factor [5, 42], making LCAs conducted in Europe less meaningful decision 

making tools for use in the United States. 

Numerous studies examining the current and upcoming relationships between food, 

energy and waste were reviewed, most utilizing LCA as a tool for analyzing the systems.  

Additionally, many starting points and a few knowledge gaps were found for future research to 

be conducted investigating synergistic relationships between the three areas.  In summary, the 

following knowledge gaps were identified: 

 Functional units and decision criteria 

 Accounting for food nutrition/safety and water is rare. 

 Using more than one functional unit is rare. 

 Few decision criteria are reported. 
 

 Analysis type 

 Most studies utilize an attributional approach. 

 Few studies use consequential approaches (controls and comparisons). 
 



16 

 

 Scope 

 Few large/combined systems are examined. 
 

 Location  

 Usually land constraints are deemed most important. 

 

Task 1.3: Recommendations for New Framework 

After individual literature reviews, the Food, Energy, and Waste Global Challenges 

Research Team consolidated our thoughts and recommendations and came up with the following 

proposed changes to the characteristics of state-of-the-art LCA:   

 Functional units and decision criteria 

 Report net energy, climate change, land use, product quantity, and water use, food 

safety, and food quality as applicable and using multiple functional units/decision 

criteria when possible. 
 

 Analysis type 

 Employ a consequential or comparative approach as a decision making tool. 
 

 Scope 

 Provide more research focused on large or combined systems. 
 

 Location  

 Make the study location independent by providing multiple metrics or sensitivity 

analysis of location specific parameters. 

 

Task 2.1: Possible Future Synergistic Systems 

Several possible systems were discussed for future research purposes, attempting to 

integrate several knowledge gaps, current research opportunities and system synergies. 

System 1- Waste Tire Disposal  

Due to their large volume and slow decomposition rate, waste tires have been a problem 

for a long time.  There are many recycling and reclamation techniques possible, but most have 

significant drawbacks.  Tire incineration is a long used method of tire disposal, especially as tires 

have a higher heating value than coal, so it is possible to generate some benefit to the disposal 

[46].  As there is currently a large amount of waste tires available in the Fort Collins area, the 
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idea of burning them for additional heat for greenhouses arose.  This could reduce the amount of 

waste tires and the impact of greenhouse agriculture, providing a synergistic use of waste to 

make energy to grow food; however, the introduced air pollution may make it an undesirable 

alternative. 

System 2- Conventional, Organic and Biofuels Farming 

There is currently a recognized trade-off between organic and non-organic agriculture 

[12, 14, 37] and debate persists on the benefits and impacts of crop biofuels.  Another suggested 

synergistic system to study is the trade-offs between biofuel, organic and conventional crops, 

similar to the 2002 Dutch study by van den Broek and colleagues [37].  They examined three 

systems: a traditional crop farm (base), a farm utilizing organic farming practices (organic) and a 

farm with a specified set-aside land to grow a cellulosic biofuel crop (green).  Each system 

produced the same amount of energy (provided by a fossil fuel plant as necessary) and food.  The 

results were mixed; green performed best in terms of acidification, climate change and fossil fuel 

use; organic, best with respect to soil toxicity; base, slightly better with respect to eutrophication.  

A new study could compare environmental and resource impacts of the three different crop 

cultivation systems, using data from the Colorado area.  As it would be focused on Colorado, 

water use, not land use would be a constant between the three systems.  They would be 

compared on the basis of the food and energy produced with a set amount of water and the 

environmental impacts of each system. 

System 3- Algal Biodiesel from Wastewater 

While first and second generation biodiesels have significant drawbacks, another 

alternative source of oil for biodiesel has arisen from microalgae.  Microalgae have shown to be 

a promising feedstock choice due to their high photosynthetic efficiency, growth rate and oil 

content leading to high efficiency and lower land use.  Additionally, many sources state that 
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wastewater could be used to offset some of the nutrient and water requirements [36, 38, 40, 44, 

45, 47–62], but few have actually studied doing so.  Studies have shown that microalgae can be 

used to remove nitrogen and phosphorus from wastewater on a bench top scale system [40, 44, 

54–57].  Sturm and Lamer (2011) [38] produced microalgae in open pond reactors filled with 

municipal wastewater; the microalgae produced had a lipid content of only 10%, but the process 

still was net energy positive.  Additional energy benefits came from eliminating the need for a 

biological nutrient removal process to treat the wastewater.  This was chosen as a synergistic 

system to be studied.  It was modeled using hybrid photobioreactors as described by Batan et al. 

(2010) [36] and Quinn et al. (2011) [63].  The hybrid photobioreactors have been shown to 

produce lipids on less land and with less energy and GHG emissions than soy [36, 63].  

Specifically, the hybrid photobioreactors avoid 75.29 g CO2e/MJ of greenhouse gas emissions 

compared to soy‘s 71.73 and conventional diesel emitting 17.24 g CO2e/MJ.  Additionally, 

hybrid photobioreactors have a net energy ratio of 0.93 MJ energy consumed/MJ energy 

produced compared to soy‘s 1.64 [36].  This system, being a photobioreactor, has a higher algal 

growth rate than an open pond reactor [64] and costs less than a regular photobioreactor, using 

polyethylene panel reactors instead of glass tubes to house the growth media. 

Task 2.1: Analysis of Chosen System 

Based on my understanding of the challenges and opportunities available for the analysis 

of synergistic food/waste/energy systems, the microalgae biofuel system was chosen for further 

analysis.  This further analysis will seek to enable a lifecycle accounting of the integrated 

wastewater/biofuel system which includes: 

 Functional units and decision criteria  

 Evaluate water use, energy use, yield, climate change parameters and provide 

results using several functional units (per ha*yr, per algae yield, etc.). 
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 Analysis type  

 Use a consequential LCA framework wherein several design scenarios including a 

current practice scenario will be compared. 
 

 Scope 

 Evaluate a system consisting of two normally independent processes. 
 

 Location  

 Analysis will include water and land metrics. 

 

Table 2: Comparison of food/energy/waste system analysis between current state of practice, recommended 

practice and practices used in this study 

    Current Practice Recommended Used in Part II 

Functional 

Unit 
  One Multiple 

hectare*year;  
kg dry algae;  
MJ; 
50% US wastewater usage 

Decision 

Parameters 

Net Energy Common 

Use multiple 

parameters 

Yes 

Climate Change Common Yes 

Land Use Common Yes 

Product Quantity Common Yes 

Water Use Rare Yes 

Food 

Safety/Quality 
Rare n/a 

Approach   Attributional Consequential Consequential 

Scope   Narrow Large Multiple system inclusive 

Location   Specific 
Independent/ 
More Inclusive 

Includes metrics of interest 

for many locations 
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PART II: DEVELOPMENT AND ANALYSIS OF MICROALGAE CULTIVATION/ 

WASTEWATER TREATMENT INCLUSIVE SYSTEM 

Introduction 
It is generally acknowledged that petroleum, and thus diesel, is a finite resource and 

alternatives need to be sought.  The development of next generation biofuel systems is motivated 

by the desire for a long-term sustainable personal transportation sector through a reduction in 

petroleum imports and greenhouse gas emissions.  To enable the development of these fuels, the 

U.S. Congress enacted the Energy Independence and Security Act (EISA) in 2007, which sets up 

a schedule for increased ―advanced biofuel‖ production culminating in the production of 21 

billion gallons per year of ―advanced biofuels‖ by 2020.  Advanced biofuels are defined in EISA 

as any ―renewable fuel, other than ethanol derived from corn starch, that has lifecycle 

greenhouse gas emissions… that are at least 50 percent less than baseline lifecycle greenhouse 

gas emissions.‖[65]  All biodiesel could fall under this definition.   

Early Biodiesel 

First generation biodiesel is derived from plant oils such as soy, peanut and sunflower 

[21].  Plant oil has been used to fuel diesel engines since before 1900 [66]; however, as biofuels‘ 

importance has risen, their drawbacks have also come to the forefront.  Plant based oils require 

cultivation resources (land, nutrients and water) and are considered to compete with food stocks, 

if not now, then as the world population increases.  Second generation biodiesel uses both food 

alternative crops (jatropha and jojoba oil, tobacco seed) and food waste (waste cooking oils and 

animal fats).  These fuel stocks hold many advantages over the first generation: reduced 

competition between food and fuel, less land is required and it may be of poorer quality, 

additional byproducts, and some better fuel properties.  Conversely, the biodiesel from animal 
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fats perform poorly in cold temperatures, create problems in transesterification and may present a 

biosafety issue [21].  

Microalgae Biodiesel  

Microalgae-based biofuels meet the requirements of an EISA advanced biofuel and 

exhibit several sustainability and productivity advantages over first and second generation 

biofuels.  Microalgae have a high photosynthetic efficiency, growth rate and oil yield compared 

to the more traditional feedstocks.  Additionally, they can be harvested year-round, require less 

and lower quality water and land than conventional feedstocks, thereby reducing the direct and 

indirect land use changes associated with biofuels [21, 36, 40].  Microalgae do not directly affect 

the human food chain [50, 51, 67], may not require herbicides or pesticides [21, 68], and have a 

reduced nitrification potential compared to previous generations of biofuels [69].  Moreover, 

they can be used for direct CO2 mitigation [21, 36, 40, 47, 54, 62] and wastewater treatment [36, 

38, 40, 44, 45, 47–62].   

Despite these positive features of microalgae over other feedstocks, their high capital 

intensity and the unscalability of conventional nutrient sources have been hypothesized to limit 

the scale of current microalgae biofuels‘ commercial production [45, 52, 62, 70].   

What are microalgae? 

Microalgae are photosynthetic microorganisms with a high lipid fraction that is 

convertible to biodiesel with existing technologies [67].  Many different species of microalgae 

exist, each with different proportions of carbohydrates, lipids and proteins, such that some are 

better for biodiesel production than others [71].  When nitrogen is plentiful, the cell can grow, 

increasing the amount of protein; when nitrogen is limited, lipids are produced [63].   
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It was found by Redford that carbon, nitrogen and phosphorous are in stable constant 

ratios of 106:16:1 in most forms of plankton [72].  Using this, an average elemental composition 

of microalgae can be derived as C106H181O45N15P [51].    

How are microalgae grown?  

There are several different methods used to grow microalgae including open 

pond/raceways and closed photobioreactors (PBR).  Raceway ponds have been used for algae 

cultivation since the 1950s.  They have significant evaporative and carbon dioxide losses to the 

atmosphere, risk foreign species contamination, and low microalgae concentration, but are, 

generally, less expensive to build and operate and considered the only economically sound 

method of large scale microalgae production.  PBRs consist of an array of small transparent 

tubes or plates, arranged in parallel or coiled.  PBRs significantly lowered evaporative and 

carbon dioxide losses, take up less area, are less susceptible to contamination and have lower 

biomass recovery costs.  They are more expensive, can allow oxygen to accumulate in the 

reactor reducing algal growth and have several other engineering issues that need to be worked 

through during design [62, 64, 70].  Hybrid photobioreactors have been developed as a way to 

compensate for the problems related to open ponds and traditional photobioreactors.  Solix 

Bioproducts and Colorado State University have developed a hybrid photobioreactor, in which, 

long polyethylene panel reactors replace the transparent tubes of conventional photobioreactors.  

These reactors are cheaper, have built in CO2 flow to allow for mixing and self-cleaning, and 

have a higher photosynthesis area allowing for more microalgae growth.  This system is 

designed for large scale cultivation of microalgae with the intent to become biodiesel or for other 

microalgae bioproduct production purposes.  Each polyethylene panel reactor has a pipe for CO2 

enriched air to be released and bubble through providing carbon to the microalgae, mixing the 

reactor media and removing microalgae from the walls (see Figure 1).  This is a major 
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improvement over previous photobioreactors as a microalgae biofilm will block light to the rest 

of the microalgae.  The algae are inoculated at a concentration of 1 g/L and fed a mixture of 

nutrients including 0.425g/L sodium nitrate.  This is the only nutrition supplied to the algae, 

other than CO2; it is consumed within a few days and the algae are then nitrogen starved, 

triggering stress and switching from protein to lipid production.  The reactors sit in a thermally 

controlled bath that can have heating and cooling systems, these can even be incorporated from 

nearby waste streams [36, 63].   

Sparge Tube
17.4 m

0.30 m
0.28 m

External Ballast 
Attachment

External Ballast 
Attachment

Sparge Tube

0.05 m

0.28 m 0.30 m

Growth Media
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Figure 1: Diagram and photograph of the generation 3 Solix photobioreactor used to validate Quinn et al.'s 

bulk growth model [63] 

The Problem 

While microalgae have been championed as a potential large-scale biofuel source [21, 36, 

47, 49–51, 62, 64, 67, 73], others have documented the numerous obstacles in the way of high 

intensity microalgae cultivation [36, 51, 62, 68, 70, 73].  One of the foremost problems is the 

high water and nutrient requirements [36, 51, 62, 68]; as demand for additional fuel sources has 

risen, research has been conducted on combating these weaknesses.  The U.S. Department of 

Energy‘s Aquatic Species Program conducted a long running series of studies to improve 

microalgae‘s viability as a sustainable and affordable fuel stock option.  Advances were made in 

maximizing lipid production by choosing algae species, growth reactor engineering, genetic 
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tailoring, and stress triggering, but presently, high intensity biodiesel production from microalgae 

continues to have scalability problems [74].  

To improve scalability and reduce the direct nutrient requirements of large scale 

microalgae production, many studies suggest the use of wastewater to satisfy the water and 

nutrient requirements of large-scale cultivation [36, 38, 40, 44, 45, 47–62].  As an aside, 

nitrification of water sources is becoming more of a problem and there are increasing demands 

for the reduction of nitrogen in wastewater effluents [45, 75].  Biological Nutrient Removal 

(BNR) is often used to remove nitrogen, but it is an energy intensive process [38, 45].  It stands 

to reason that combining wastewater nitrogen removal with the nutrient requirements of 

microalgae could be a synergistic solution to both problems.  However, no studies have 

examined the practicality of wastewater as a water/nutrient solution for high-intensity production 

of microalgae biofuels. 

Research Questions 
Research Question 3: Is wastewater a practical replacement for microalgae's nutrient and/or 

water requirements? 

Tasks 

With regards to Research Question 3: 

Task 3.1: Determine if literature supports idea that microalgae can be grown in 

wastewater 

Task 3.1.1: Determine if the resulting microalgae is suitable for high intensity 

production 

Task 3.2: Develop and examine several microalgae/wastewater inclusive systems with 

respect to high intensity production viability 
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Task 3.3: Evaluate the systems for the production of 21 billion gallons of microalgae 

biodiesel produced, matching the EISA mandate, and the utilization of 50% of U.S. 

wastewater. 

Findings 

Task 3.1: Microalgae Growth in Wastewater 

The use of algae in municipal wastewater treatment began in the early 1950s with work 

done by Ludwig, Oswald, Gotaas and Lynch [58–60].  They showed that various species of algae 

are able to grow in wastewater, and that the algae produce enough oxygen for bacteria to treat the 

wastewater.  This work was expanded to include the idea of combining wastewater treatment and 

power generation; specifically anaerobically digesting the wastewater-cultivated algae to 

produce methane for power generation [61].  Since then, many microalgae production and 

environmental assessment researchers cite these or other studies to support the idea that 

microalgae grown in wastewater is the solution to microalgae biodiesel production‘s nutrient 

problems [36, 38, 40, 44, 45, 47–62].  Others have investigated the suitability of wastewater for 

microalgae‘s nutrient needs, and many have produced biodiesel from microalgae grown in 

wastewater [38, 40, 44, 54–57].   

None of these assessment studies incorporate a reduction in productivity or lipid content 

of the microalgae feedstock due to supplying nutrients from wastewater, but every surveyed 

study of microalgae production using municipal wastewater as a nutrient stream demonstrates 

that these important metrics of economic performance may be compromised [64, 70, 76–78].  

The microalgae species modeled in this study, Nannochloropsis salina, can achieve a lipid 

fraction of over 50% in the laboratory [79–81] and at the pilot scale [63] using standard nutrient 

sources.  Studies at the bench top scale using municipal wastewater as a nutrient source varied in 
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lipid count between 4.9% (using mixed algae species) [54] and 36% (using Botryococcus 

braunii) [56].  Another bench top scale wastewater study [55] achieved an even higher lipid 

fraction, almost 60%, by introducing a second phase before which the microalgae 

(Nannochloropsis sp. grown in a seawater/wastewater mixture) was centrifuged, cleaned and 

placed in a high light, nitrogen limited, saltwater environment; before the second stage, lipid 

content was around 34%.  Sturm and Lamer‘s pilot scale reactors, using only wastewater as a 

nitrogen source and a natural algae mixture, achieved a lipid fraction of ~10% and growth rate of 

12 g/m
2
/d [38].  It is unclear whether the lower lipid fractions available from microalgae 

cultivated using a wastewater nutrient source can support environmentally beneficial and high 

intensity microalgae production.   

Based on this understanding of the field, this paper evaluates the compatibility, 

productivity, and environmental impacts of combining large-scale microalgae-based biofuels 

with wastewater treatment.  In order to better understand the effects of replacing growth process 

water with wastewater, several systems of integrated wastewater/algae production were modeled 

to compare the energy and material requirements and greenhouse gas emissions within the same 

set of boundary conditions.   

Task 3.2: Modeling of Microalgae Cultivation /Wastewater Treatment Inclusive Systems 

In order to evaluate the performance of the microalgae cultivation and wastewater 

treatment integrated system, we must combine models of the microalgae cultivation systems and 

models of the wastewater treatment systems.  This system-level model is then used to consider 

different scenarios for integration of wastewater and microalgae production and interpret outputs 

in terms of a lifecycle environmental impacts and scalability analysis.   
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Microalgae Cultivation Model 

The cultivation model initially created by Batan et al. [36] and refined by Quinn et al. 

[63] was employed for modeling the material and energy needs of microalgae cultivation.  Their 

model is based on data from the Colorado State University/Solix Bioproducts pilot plant scale 

reactor system and utilizes Nannochloropsis salina.  This system was chosen for the level of 

specificity and accuracy available in the microalgae biofuel life cycle model.  The cultivation 

model applies a growth rate of 15.7 g/m
2
/day and lipid fraction of over 50% of the dry algae 

mass, both of which have been derived and validated in an industrial pilot-scale reactor.  This 

growth rate is significantly lower than many productivity potentials used in microalgae life cycle 

studies, many of which are based on extrapolation from the bench-top scale, to conservatively 

estimate the potential of microalgae biofuels [63].  Microalgae system modeling studies conflict 

on the determination of microalgae nitrogen requirements; studies have used nitrogen 

requirements derived using the average elemental composition of microalgae (C106H181O45N15P) 

[51] arriving at a conclusion that nitrogen composes 9.2% of dry microalgae by mass.  

Benemann, Woertz and Lundquist [77] suggests that this value is overestimating the nitrogen 

requirements as it is based on the average of various microalgae species, not on a microalgae 

species with a high lipid fraction.  Algal lipids have significantly less nitrogen than the algal 

proteins [71], leading many researchers to possibly overestimate the nitrogen content in 

microalgae.  The nitrogen requirements for this study were adopted from Quinn et al‘s 

determination of Nannochloropsis salina’s growth rate [63] and assumes nitrogen is supplied by 

0.425 g/L of sodium nitrate or requires 23.33 grams of elemental nitrogen per kilogram of dry 

algae (1,334 kg/ha/yr).  Approximately 19,000 m
3
/ hectare/year of water make up the majority of 

the growth media and most is able to be recycled.  The photobioreactor uses polyethylene panel 

reactors suspended in clear water to allow for light penetration and to provide a CO2 flow for 
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mixing and self-cleaning.  Inside the panel reactors, the microalgae can be cultivated in the clean 

or wastewater.  Centrifugation is used for dewatering and the corresponding energy requirements 

from Batan et al. are incorporated into the cultivation model [36].   Extraction and 

transportation/distribution are not modeled as they are outside the boundary of this comparative 

study and are identical for the considered scenarios. 

Wastewater Treatment Model 

It has been observed that microalgae can not only treat wastewater effluent to reduce its 

eutrophication potential and, specifically, Chlorella sp. has been shown to reduce nitrogen, 

phosphorous, chemical oxygen demand (COD) and trace metals‘ (aluminum, calcium, iron, 

magnesium, manganese, and zinc) concentration at several stages of wastewater treatment [82].  

Nannochloropsis sp., a saltwater species, has not been used extensively in wastewater/microalgae 

cultivation investigations, but has been shown to grow in salt water/wastewater mixtures [55].  

Wang et al (2010) [82] demonstrated that the insertion of a microalgae wastewater treatment 

process before or after primary settling is an efficient means of removing nitrogen and COD 

from municipal wastewater (~82% and 75% of nitrogen and ~51% and 57% of COD, 

respectively); negatively, it has a higher retention time than the currently used activated sludge 

process.  Based on these studies, this model assumes that microalgae production can replace 

energy intensive Biological Nutrient Removal (BNR), resulting in an energy credit of 22 MJ for 

every kilogram of nitrogen removed in the form of reduced electricity use [38, 45].  In addition 

to a GHG emission credit from the avoided electricity needs of BNR, there is a credit for 

microalgae growth having lower direct N2O emissions than BNR (0.035 kgN2O/kg nitrogen 

removed) [69, 83]. This model assumes that all nitrogen present in the wastewater is available 

for microalgae growth and utilizes the mid-flow ―untreated wastewater‖ scenario described in 

Metcalf and Eddy (2003) [75] where the concentration of nitrogen is a constant 40mg/L and 
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flows at a rate of 460 L/day/capita.  It is assumed that, like Wang et al., the wastewater has 

undergone preliminary treatment (removal of rags, sticks, grease, etc) either immediately before 

or after primary settling.  Additionally, all nitrogen is assumed to be consumed in the microalgae 

growth stage.  Previous studies with wastewater have demonstrated as low as 61.4% 

consumption [38], however, they used a continuous reactor whereas the system used here is 

modeled as a batch reactor where nitrate concentration has been shown to reach zero [69]. 

Life Cycle Assessment  

The life cycle inventory data is based on previous work and continues to use the Argonne 

National Laboratory GREET model (GREET 1 2011) as a source for energy use and greenhouse 

gas emissions data [28, 36]. 

The scenarios described were compared using several metrics: microalgae productivity; 

energy, fertilizer and water requirements of the systems; amount of wastewater denitrified; 

greenhouse gas emission produced.  The metrics will be scaled on basis of per hectare per year, 

or per kilogram of dried algae produced.  The former allows comparisons for when land use is a 

constraining variable; the latter, for productivity.  Another means of comparison is energy 

requirements per expected energy output via combustion of microalgae, or the energy return on 

investment (EROI).  Additionally the scalability of each scenario will be compared based on full 

production of the EISA mandate and the percentage of the EISA mandate able to be produced 

with the United States‘ wastewater flows.   

Boundary Conditions of the Models 

This study attempts to take several key elements of biomass lipid production into account 

in an attempt to accurately model potential systems and to provide a means of comparison 

between several microalgae and wastewater integration scenarios and only focus on the portions 

of microalgae cultivation and wastewater treatment that are pertinent to the research questions.  
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The effects of salt and sodium nitrate fertilizer production, BNR, and microalgae cultivation 

(growth and dewatering) were the primary considerations of this study.  Not included in the 

models are the effects of the extraction, conversion and transportation of microalgae biodiesel, 

coproducts of microalgae biodiesel production (glycerin, microalgae extract), transportation of 

wastewater or other materials, pre- or post-treatment of wastewater, coproducts of wastewater 

treatment (utilizing wastewater and wastewater products for energy production), nor phosphorus 

nutrient requirements.  These were omitted as being identical between the scenarios or having 

small impact [36] and outside the scope of the study [35]. 

 

Figure 2: Overall system model 

Task 3.2: Development of Microalgae Cultivation /Wastewater Inclusive System Scenarios 

This study compares a baseline microalgae biofuel production scenario to several 

alternative integrated wastewater treatment and biofuel production scenarios.  All scenarios 

replace pool evaporative losses with clean treated water; carbon dioxide is assumed to be from a 

nearby facility [36]; and, wastewater is assumed to be from a nearby wastewater treatment 

facility and to be BNR-ready. 
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Baseline 

The baseline scenario (B) is similar to the system described in Batan et al. in 2010 [36] 

(see Figure 3).  The microalgae (Nannochloropsis salina) are assumed to grow at a rate of 57,200 

kg/ha/yr [63].  Most of the process media is made up of recycled process water (18,300 

m
3
/ha/yr), with process and evaporative losses replaced by fresh water.  Since this is a salt water 

species, salt is added to any fresh process water to maintain a salinity of 20 g/L.  Nitrogen 

nutrients are obtained via a sodium nitrate fertilizer (1,335 kg N/ha/yr) to obtain an elemental 

nitrogen concentration of 70 mg/L during inoculation.  The outputs of this system are only dried 

microalgae. 

 

 

 

Figure 3: Baseline Scenario schematic 
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Scenario 1 

The first alternative scenario (S1-Wastewater) (see Figure 4) replaces all process water 

with wastewater and eliminates the recycle stream.  No nitrogen fertilizer is added, leaving the 

growth media with a nitrogen concentration of 40 mg/L, resulting in a proportionately reduced 

growth rate (32,640 kg/ha/yr) [63].  Salt is still added to the wastewater/process water to 

maintain the required salinity so, it should be noted that the resulting nitrogen-reduced 

wastewater is saline. 

 

 

Figure 4: Scenario 1 schematic 
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Scenario 2 

As the first alternative scenario is assumed to have reduced productivity, the next 

alternative (S2- Conc. WW) was designed to concentrate all incoming wastewater to meet the 

required nitrogen concentration (70 mg/L) (see Figure 5).  The water enters the condenser at 

23
o
C, is heated, and then is vaporized until the liquid output of the condenser reaches the 

appropriate volume and concentration.  The condenser is powered by natural gas and has a steam 

waste product, which is used along with the heated wastewater to heat the incoming wastewater 

with an assumed 80% effectiveness.  This scenario uses the same microalgae growth rate as the 

baseline and uses far more wastewater (33,400 m
3
/ha/yr) but produces nitrogen-less saline and 

pure steam.  It is also possible, but not modeled, that concentrating the wastewater could produce 

higher concentrations of ion species that inhibit microalgae growth or are not reduced to 

acceptable wastewater treatment levels. 

 

  

Figure 5: Scenario 2 schematic 
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Scenario 3 

The third scenario (S3- WW & F) reconciles the high fertilizer demand and low 

productivity of the previous scenarios (see Figure 6).  For this scenario, all process water is still 

replaced by wastewater, but the desired nitrogen concentration is obtained by also adding 

fertilizer (573 kg N/ha/yr).  Again, since there is no recycling of process water, the scenario 

yields nitrogen-less saline wastewater.   

 

  

Figure 6: Scenario 3 schematic 
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Table 3: System characteristics 

Inputs Value Units 

  Baseline S1 S2 S3   

Algae Growth Rate 57 165 32 640 57 165 57 165 kg/ha/yr 

Land Requirement 0.17 0.31 0.17 0.17 m
2
/kg dry algae 

Nitrogen Fertilizer Consumption  23.35  ---   ---   10.02 g/kg dry algae 

Fresh Water Consumption 1 635.82 2 842.25 1 622.88 1 622.88 L/kg dry algae 

Salt Consumption  259 11 676 6 667 6 667 g/kg dry algae 

CO2 Consumption  1.92  1.92  1.92  1.92 kg/kg algae 

Wastewater Consumption  ---   584  584  333 L/kg dry algae 

Water Recycled  320.40  ---   ---   ---  L/kg dry algae 

Saline Production  ---   561  320  320 L/kg dry algae 

Steam Production  ---   ---   250  ---  L/kg dry algae 

Energy Consumption  7.42  7.42  7.42  7.42 MJ/kg dry algae 

GHG Emission - 1.15  0.49  8.56 - 0.53 kgCO2e/kg dry algae 

 

Task 3.2: Microalgae Cultivation /Wastewater Treatment Inclusive System Scenario 

Results 

Energy Decision Metrics 

The four scenarios were compared first on an energy requirement per kilogram dry 

microalgae produced basis for each stage of the system (see Table 4 and Figure 7).  The baseline, 

scenario 2 and scenario 3 all require the same amount of energy for microalgae cultivation while 

scenario 1 has an increased energy requirement as a result of the reduced nitrogen availability in 

wastewater decreasing the microalgae‘s productivity.  Scenarios 1 and 2 have the highest BNR 

energy offset due to the increased wastewater used to produce the same amount of dried 

microalgae, however, the second scenario is shown to be energetically unacceptable.  

Concentrating the input water requires too much energy to be a viable choice.  Scenario 3 has a 

small energy offset from BNR and a reduction in fertilizer energy requirements, compared to the 

baseline.  For all scenarios, the energy inputs for salt were negligible.  Overall, scenario 2 can be 
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rejected due to its high energy requirements, but the other three are still viable options (see 

Figure 8).  The baseline scenario requires 7.42 MJ for every kilogram of dried microalgae 

produced by the system, both scenarios 1 and 3 required less energy, 6.18 and 5.09 MJ/kg.  Table 

5 illustrates the energy use for each scenario applying several different functional units.  Again, 

scenario 3 is the most energy efficient in terms of energy required for microalgae cultivation per 

microalgae production; it is also the most efficient in terms of energy return on investment 

(EROI), energy required for microalgae cultivation per energy gained from the combustion of 

dry algae.  However, in terms of land use per year, scenario 1 is the most energy efficient, an 

important distinction if land constraints are more salient than productivity demonstrating the 

value of reporting multiple functional units.  
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Table 4: Comparison of energy requirements among abbreviated wastewater/algae cultivation systems by 

component (MJ/kg dry algae) 

  B 1 2 3 

BNR Offset  --- -0.52 -0.52 -0.30 

Growth 2.59 4.53 2.59 2.59 

Dewater 1.22 2.12 1.22 1.22 

Fertilizer 3.62  ---  --- 1.55 

Vaporization  ---  --- 14.82  --- 

Salt 0.001 0.062 0.035 0.035 

Total 7.42 6.19 18.14 5.09 

 

Table 5: Comparison of measures of energy intensity among wastewater/algae cultivation systems 

  Measures of Energy Intensity 

Scenario 

EROI 

[MJ MJ
-1

] 

Areal Productivity 

[MJ ha
-1

yr
-1

] 

Productivity  

[MJ kg algae
-1

] 

B 0.28 425 000 7.42 

1 0.24 202 000 6.18 

2 0.69 1 037 000 18.14 

3 0.19 292 000 5.09 
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Figure 7: Comparison of energy requirements among abbreviated wastewater/algae cultivation systems by component 

 

Figure 8: Comparison of net energy requirements among abbreviated wastewater/algae cultivation systems 
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GHG Decision Metrics 

The four scenarios were similarly compared on a greenhouse gas emission (in terms of 

kilograms of carbon dioxide equivalents) per kilogram dry microalgae produced basis for each 

stage of the system.  Table 6 and Figure 9 show the GHG emissions for each stage of the system.  

The baseline has largest overall GHG avoidance due to its use of process water recycling, which 

reduces salt demand.  The first and second scenarios have largest BNR offset due to their higher 

wastewater use but have large salt requirements, and therefore emissions, due to their lack of 

water recycling.  The second scenario‘s vaporization and subsequent GHG emissions dwarf any 

offsets achieved, providing another reason for removing it as a viable choice for microalgae 

production.  Finally, the third scenario has some offsets from BNR and microalgae growth, but 

the salt requirements from lack of recycling decrease the overall emissions sequestration.  

Excluding scenario 2, a better comparison between the baseline and remaining scenarios can be 

examined (see Figure 10).  Here one can see that, while all three scenarios are nearly equal in 

terms of energy, on the basis of GHG sequestration, the baseline is the more favorable 

alternative.  Table 7 illustrates the GHG emissions for each scenario with two different 

functional units; in terms of both areal and biomass productivity, the baseline scenario has the 

highest levels of GHG avoidance. 
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Table 6: Comparison of GHG emissions among abbreviated wastewater/algae cultivation systems by 

component (kgCO2e/kg algae) 

  B 1 2 3 

BNR Offset  --- -0.34 -0.34 -0.20 

Growth -1.43 -1.06 -1.43 -1.43 

Dewater 0.23 0.40 0.23 0.23 

Fertilizer 0.02  ---  --- 0.01 

Vaporization  ---  --- 9.25  --- 

Salt 0.03 1.49 0.85 0.85 

Total -1.15 0.49 8.56 -0.53 

 

Table 7: Comparison of measures of GHG emissions among wastewater/algae cultivation systems 

  Measures of GHG Emissions 

Scenario 

Areal Productivity 

[kgCO2e ha
-1

yr
-1

] 

Productivity 

[kgCO2e kg algae
-1

] 

B -65 500 -1.15 

1 16 100 0.49 

2 489 000 8.56 

3 -30 500 -0.53 
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Figure 9: Comparison of GHG emissions among abbreviated wastewater/algae cultivation systems by component 

 

Figure 10: Comparison of summed GHG emissions among abbreviated wastewater/algae cultivation systems 
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Tradeoffs 

Tradeoff scenarios were also examined to explore the tradeoffs between vaporization and 

fertilizer, and the tradeoffs between recycling and wastewater.  In the first tradeoff, the 

concentration of nitrogen in the system was set constant, and the amount obtained from fertilizer 

or concentrated wastewater was varied (see Figure 11).  This scenario utilizes recycling so the 

incoming water is reduced further, but no saline is produced.  The second tradeoff scenario 

varies the quantity of process water recycled, allowing for more wastewater to be used as the 

amount of recycling decreases.  Fertilizer is used to maintain a sufficiently high nitrogen 

concentration (see Figure 12).   

 

 

Figure 11: Tradeoff Scenario 1 schematic 
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Figure 12: Tradeoff Scenario 2 schematic 

Figure 13 shows that if vaporization is used, the energy requirements and GHG emissions 

are unacceptably high.  While the energy required for water vaporization decreases as the 

amount of wastewater decreases, the energy costs associated with fertilizer do not increase 

sufficiently to overcome the energy of vaporization.  Conversely, there does seem to be a 

tradeoff between recycling process water and adding wastewater.  Figure 14(a) shows how, as 

the fraction of process water recycled increases, the energy requirements associated with 

fertilizer increase and the BNR offset decreases.  However, Figure 14(b) shows that as the 

fraction of process water recycled increases, the GHG emissions associated with salt and the 

GHG avoidance from BNR both decrease.  Overall, as Figure 15 shows, using more wastewater 

decreases energy requirements but increases GHG emissions compared to having more 

recycling/fertilizer.  The optimum point can only be resolved through quantifying preference 

between GHG emissions and energy use.     
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Figure 13: Energy requirements as a function of fertilizer use 
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Figure 14: Energy requirements (a) and GHG emissions (b) as a function of fraction of process water recycled by component 

 

Figure 15: Energy requirements and GHG emissions as a function of fraction of process water recycled 
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Task 3.3: Scalibility Analysis for Microalgae Cultivation /Wastewater Inclusive System 

Scenario  

Two scale-up scenarios were also examined to determine if any of the acceptable 

scenarios could be scaled up to policy-relevant levels of production.  The first scale up scenario 

illustrates the system requirements for the production of the entire EISA mandate for advanced 

biofuels from algal biofuels.  The entire mandate was chosen as a scale up level to illustrate the 

requirements for producing a small fraction of U.S. energy needs while still producing a 

significant amount of biodiesel.  Each of the four previously described scenarios and an arbitrary 

point on the recycle/wastewater tradeoff, recycling 50% of its process water (50%R) are scaled 

up.  Table 8 shows the requirements of producing the entire EISA mandate from each of the 

scenarios and the arbitrary point relative to the resource availability.  Each alternative scenario, 

except the 50% recycle scenario, requires over 100% wastewater generated in the United States 

and all scenarios use unacceptable quantities of salt.  Even with wastewater available to reduce 

the nutrient demand, all scenarios that use any fertilizer still require large fractions of what is 

available in the United States to fulfill the mandate.  From these results, it becomes clear that 

without additional changes to this microalgae cultivation scheme, fulfilling the EISA mandate 

with only saltwater algal biofuels, and by extension fulfilling the United States‘ fuel needs, will 

be resource constrained.  With this in mind, the utilization of 50% of the US produced 

wastewater is another useful basis of comparison, it illustrates a production level lower than the 

EISA mandate, which was demonstrated to be infeasible with this system and does not assume 

that all U.S. wastewater would be available for biofuel production, but still demonstrates a high 

volume production level; the baseline was not included as it does not use wastewater.  Similar to 

Table 8, Table 9 shows the relative system requirements.  Again, without changing the 

microalgae growth stage, salt consumption prohibits even the reduced production shown here.  If 
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salt were to be removed from the equation, via the use of freshwater microalgae, it can be 

inferred that several of the scenarios would have merit, and could at least contribute to the EISA 

mandate. 
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Table 8: Relative resource requirements and products for production of 21Bgal of biodiesel from microalgae 

  B S1 S2 S3 50%R  Reference 

Waste Water 0% 193% 194% 111% 57% Annual US Production [75] 

Fertilizer (Urea) 166% 0% 0% 71% 117% Annual US Production [84] 

Salt 103% 4600% 2630% 2630% 1370% Annual US Production [85]  

Land 1.8% 3.2% 1.8% 1.8% 1.8% US Cropland [86] 

Energy Requirements 1.6% 1.3% 3.7% 1.1% 1.4% 2011 US Energy Production [87] 

GHG Emissions -3.6% 1.6% 34% -1.7% -1.3% 2011 US Energy CO2 Emissions [87] 

 

 

Table 9: Relative resource requirements and products for utilization of 50% U.S. wastewater 

  S1 S2 S3 50%R Reference 

Biodiesel Produced 26% 26% 45% 87% EISA Mandate [65] 

Fertilizer (Urea) 0% 0% 32% 101% Annual US Production [84] 

Salt 1190% 680% 1190% 1190% Annual US Production [85]  

Land 0.84% 0.48% 0.84% 1.6% US Cropland [86] 

Energy Requirements  0.35% 1.0% 0.50% 1.3% 2011 US Energy Production [87] 

GHG Emissions  0.40% 8.7% -0.77% -1.1% US Energy Emissions [87] 
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Discussion 
 These results have shown that large scale cultivation of saltwater microalgae for biofuels 

is incompatible with the use of wastewater as a nitrogen and water source.  This has numerous 

implications for research and development of microalgae biofuels industry (e.g. increasing 

research on the life cycle characteristics and implications of high intensity freshwater microalgae 

cultivation).  

 The scale up results show that salt availability is a major limitation for any scenario that 

does not use full recycling of process water.  Nannochloropsis salina, a saltwater based 

microalgae, was modeled in this study for its high lipid content and growth rate, however a 

freshwater microalgae species with high lipid productivity could improve the performance of 

wastewater integrated biofuels production.  Assuming that the microalgae characteristics, growth 

rate and nutrient requirements, and thus, the results of this study, are similar for freshwater 

microalgae, with the exclusion of the usage of salt, the energy requirements are similar between 

freshwater and saltwater microcultivation, but the GHG emissions for each scenario are reduced, 

making a freshwater version of scenario 3 the most favorable in terms of both energy and GHG 

avoidance (see Figure 16).  This suggests that wastewater integration may be a sustainable 

possibility for high intensity freshwater microalgae cultivation; however, wastewater is still a 

limiting factor on productivity.   
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Figure 16: GHG emissions for salt water compared to fresh water microalgae cultivation 

 

For a high-intensity microalgae production scheme, there is little nitrogen scalability 

advantage to wastewater integration, even with a freshwater species.  In the scenarios 

investigated here, there is insufficient energy savings gained from denitrifying wastewater with 

microalgae cultivation to offset the energy losses due to the reduction in productivity that results 

from using wastewater without a supplemental nitrogen source.  Additionally, wastewater itself 

becomes the constraining resource under large-scale production scenarios.  If a wastewater 

treatment facility is sufficiently nearby, in addition to the carbon dioxide source, it may be a 

suitable water replacement and nutrient source, but not a suitable nutrient replacement.  

Additionally, for saltwater microalgae, seawater or seawater combined with wastewater, may 

still be a viable option for water, salt and some nutrient requirements [55], in areas where sea 

water is more accessible than wastewater; sea-integrated algae biofuels should continue to be 

examined. 

In a nitrogen- or water- constrained economy, the use of wastewater could still be an 

important means of producing microalgae biofuels; however, these results suggest that while the 

additional fuel resource may be needed, it will be small relative to the overall fuel consumption 

of the United States. 
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As wastewater was not shown to be as effective for high productivity algae cultivation as 

hoped, other avenues of nutrient procurement must be explored.  Nutrient recycling though 

anaerobic digestion of the algal biomass waste may still be a promising source of nitrogen and 

other resources [61, 62, 67, 68, 70, 76, 77].  Additionally, other sources of wastewater, such as 

centrate from sludge dewatering, may be more appropriate for microalgae cultivation focused 

systems as it has a higher nitrogen concentration, but does not contribute to wastewater treatment 

facilities‘ overall denitrification [82]. 

The results of this study demonstrate that wastewater is not compatible with high 

intensity saltwater microalgae based biofuel production; but it may be more compatible with 

high intensity freshwater microalgae cultivation and is compatible with low scale freshwater 

microalgae cultivation and wastewater treatment.  Microalgae have been shown to be an energy 

favorable alternative to BNR [38, 45, 82] exclusive of the energy potential of any harvested 

algae.  Given the rising regulations for wastewater treatment facility effluent [45], microalgae 

appear to be a promising solution to reduce nitrogen content and provide small additional energy 

and GHG benefits.    
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PART III: CONCLUSIONS 

This thesis has: 

 evaluated the characteristics and knowledge gaps of analyses of food/energy/ 

waste systems and combined them into new evaluation recommendations, 

 identified potential food/energy/waste synergistic systems to assess based on 

knowledge gained from evaluation of previous analyses, 

 determined that, for high intensity production of saltwater microalgae based 

biofuels, wastewater is not a practical replacement nutrient demand. 

This work is novel in that it looks at food/energy/waste system analyses with a 

synergistic opportunities focus and uses a modified approach in analysis of a food/energy/waste 

system.  Additionally, it is novel in its evaluation of municipal wastewater as a potential solution 

to the microalgae nutrient problem that other works have taken for granted as practical.  

The results of the food/energy/waste systems‘ analysis study show that there are areas for 

improvement in the evaluation of the costs and benefits of systems that span the 

food/energy/waste problem set.  Specifically, limitations can arise from the narrow reporting of 

functional units and decision criteria, attributional approach, small scope and the location 

specificity of the analysis.  Improvement to the analysis of the food/energy/waste problem set 

can be achieved by increasing the number of functional units and decision criteria reported, and 

including metrics on water use and food safety and nutrition as applicable.  Additionally, a 

consequential approach would allow for more informed decision making, a larger scope would 

be required to span the problem set and reducing the location specificity would allow for broader 

use.  Several systems were considered for evaluation using this knowledge and a microalgae 

cultivation/wastewater treatment inclusive system was chosen.   

The microalgae cultivation/wastewater treatment inclusive system study evaluates energy 

use, product yield and climate change parameters in addition to the evaluation of water use for 

several microalgae cultivation/wastewater treatment systems.  Several functional units were 

chosen including areal, yield, and wastewater use.  The study uses several design scenarios to 
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compare large combined systems and attempts to reduce location specificity by including both 

land and water metrics.  The results show that municipal wastewater is not a large scale nutrient 

source option for saltwater microalgae cultivation.  The lower nitrogen concentration of 

wastewater does not lead to high productivity or lipid fraction [38, 44, 54–57], making scale up 

to large production capability resource constrained.  Wastewater inclusive systems do provide a 

combined wastewater treatment/microalgae cultivation system energy reduction, leading to the 

conclusion that microalgae may be a good choice for wastewater treatment.  However, the 

combined system does not lead to an improvement in greenhouse gas emission avoidance due to 

increased salt requirements; this combined with the other results suggest that the combined 

system is not a practical alternative for high-intensity saltwater microalgae biofuel production.  

An integrated wastewater treatment/microalgae growth system may be more compatible with 

high intensity freshwater microalgae cultivation and is compatible with low scale freshwater 

microalgae cultivation and wastewater treatment. 

This study provides recommendations to the framework of food/energy/waste synergistic 

systems‘ life cycle analysis; future work should account for the suggestions put forth.  This study 

also disputes the claim that municipal wastewater is a viable source of nutrients for high intensity 

saltwater microalgae biofuels production, and future work should focus on alternative nutrient 

sources, freshwater microalgae or small scale production. 
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