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ABSTRACT 

A NET-RISK APPROACH TO DISPLACEMENT AND REOCCUPATION DECISION MAKING 

Decision makers and planners have a large body of information available concerning most 

aspects of a radiation disaster.  International and national standards organizations, as well as 

national and local level policies and plans provide little guidance about the risks involved in 

relocating a population from a radiologically contaminated area.  Populations displaced after all 

types of disasters have demonstrated poorer health outcomes, both physiological and 

psychological, than their non-displaced peers.  These include a greater risk of diabetes and 

greater rates of post-traumatic stress disorder and depression when compared with other 

populations who experienced the disaster but were not relocated.  Methodologies for 

population-level radiation dose prediction have improved, with recent data from contaminated 

areas in Japan providing real-world information about radiation doses.  These improvements 

have not yet made their way into policies and guidance.  The objective of this work is to 

quantify and incorporate multiple forms of risk, radiological and non-radiological, into a single 

model to improve decision making and minimize harm connected to displacement from and 

reoccupation of radiologically contaminated areas after a disaster. 
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INTRODUCTION 

Major disasters can result in large scale and long-term displacements of affected populations. 

Hurricane Katrina in March 2005 resulted in the initial dislocation of almost 1.5 million people; 

six months later, just over 40% of them – 600,000 people – still had not returned (Groen, 2008).  

The earthquake and tsunami that struck eastern Japan in March, 2011 resulted in the release of 

large quantities of radioactive material from the Fukushima Daiichi Nuclear Power Plant, some 

of which was deposited in populated areas of Fukushima, Iwate, and Miyagi Prefectures.  Over 

several months, the Government of Japan ordered the relocations of almost 400,000 people in 

response to this triple disaster. (NCRP, 2014)  While there is no formal dividing line between 

evacuation and displacement, this work considers evacuation to be a short-term relocation 

(days to weeks), while displacement is longer-term (months to years). 

Experiences with these displacements have led to questions about the relative value of 

relocating people after a radiological incident.  Historically, evacuating sensitive populations 

(such as hospital inpatients and nursing home residents) has led to excess mortality simply due 

to disruptions in care and the stress of the move (e.g. (Brown et al., 2012)), but the 2011 

evacuations in Fukushima Prefecture led to a new wave of studies examining this phenomenon.  

Nomura et al., for example, found that nursing home residents had three times the mortality 

risk after being evacuated than they had before the earthquake (Nomura et al., 2013).  

Comparisons of health records from before and after the disaster have shown that increased 
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incidence of diabetes causes a greater loss of life expectancy (LLE) than radiation in affected 

areas (Murakami, Tsubokura, Ono, Nomura, & Oikawa, 2017).   

The overall risks of displacement have historically been difficult to quantify and have been 

extremely situation dependent. Current U.S. and international standards for evacuation and 

displacement due to a radiological release are dose-based, with some policies accounting for 

special populations and local circumstances.   

The hypothesis of this work is that a model can be created that will quantify and incorporate 

multiple forms of risk, radiological and non-radiological, to improve decision making and 

minimize harm connected to displacement from and reoccupation of radiologically 

contaminated areas after a disaster.  The goal is quantify the risks of displacing a given 

population due to radioactive contamination, and to directly compare risks to a population for a 

given radiological release scenario with the risks of displacing that same population.  The 

ultimate objective is to enable planners and emergency managers to make better judgements 

on when to consider evacuation and displacement.  The specific aim is to provide a tool to 

advocate for the use of net risk instead of simply dose-based action criteria in public policy.  

This work does not aim to predict the actual probability of mortality in a given population; 

rather, it attempts to provide useful information for emergency planning and decision making. 

While important, this work does not consider economic costs and impacts of evacuation, 

relocation, or remaining in place.  Many of the psycho-social impacts of the disaster will be 

linked to economic damages and loss of livelihood, but these will not be explicitly considered. 
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POPULATION DOSE ASSESSMENT 

Introduction: Dose as a Proxy for Risk 

Most radiation policy is based on dose – whether for worker safety (0.005 Sv total effective 

dose equivalent/year)(U.S. Nuclear Regulatory Commission, 2015) or public safety (0.02 mSv 

per hour) (U.S. Nuclear Regulatory Commission, 2015).  The International Commission on 

Radiation Protection (ICRP) states that the factors used to develop their standards include the 

reduction of life expectancy due to radiation as well as the increase in age-specific mortality 

rates. (ICRP, 2006a)  There are regulations and policies based on other non-stochastic biological 

end states (such as cataracts or acute radiation sickness) but the current effort focuses on 

excess cancer mortality due to radiation exposures in affected populations, as this is the 

primary driver for displacement and reoccupation decision making.   

Note that this work considers only gamma-emitting isotopes in the environment, although 

radiological incidents can include considerable releases of alpha- and beta-emitting materials.  

Further, this work focuses on stochastic effects, specifically increased cancer incidence, and 

assumes low dose rates (on the order of 20 µSv per hour or less) for exposed populations.  

Unless otherwise specified, this work uses the term dose to refer to the total effective dose 

equivalent (TEDE), as defined in 10 CFR 20.1003.  (U.S. Nuclear Regulatory Commission, 2015)  A 

summary of the basis for TEDE can be found at Appendix 1. 
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Sources of Effects Information and Current Methodologies 

Much of the radiation risk data used to develop radiation safety standards is from three major 

cohorts – survivors of the atomic bombs dropped by the United States at Hiroshima and 

Nagasaki, Japan, during World War Two; workers in the nuclear industry including those 

involved in uranium extraction; and persons exposed to fallout during above-ground nuclear 

weapons testing.  Other radiation risk data comes from the medical community, from research 

on non-human subjects, and from various accidental exposures over roughly the last 100 years.  

(Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, 2006) 

The bulk of the discernable effects within a population (e.g. excess cancer mortalities) occur 

with doses exceeding 100 mGy in a short time frame.  The effects of lower doses, or doses 

occurring at low dose rates over long time frames, become difficult to discern from background 

rates of cancers.  (Committee to Assess Health Risks from Exposure to Low Levels of Ionizing 

Radiation, 2006)  Regulators and advisory bodies have adopted a model in which dose and 

effect are extrapolated linearly to zero, known as the Linear-No-Threshold Model (LNT).  

(Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, 2006) 

Estimates of excess cancer mortality based on radiation exposure distill large variations in risk 

into a single risk value.  Generally, risk values are developed by examining actuarial data for a 

variety of cancer types (such as bladder, stomach, lung, and others) as well as the associated 

demographic and radiation exposure information, then subtracting background rates of the 

same cancers in the same demographic, and normalizing for the estimated radiation dose.  An 
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excess cancer mortality rate is then calculated based on a given dose of radiation for each 

considered cancer type. (Committee to Assess Health Risks from Exposure to Low Levels of 

Ionizing Radiation, 2006)  These risk rates are then summed; typically radiation risks are 

grouped into two broad categories of cancers, solid cancers and leukemias.   

Assessments of Cancer Risk from Radiation 

Table 1 shows selected estimates of the nominal cancer mortality risk per unit radiation dose, 

including those from the BEIR (Biological Effects of Ionizing Radiation) VII committee 

(Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, 2006), 

ICRP 103 (ICRP, 2007), the United States Environmental Protection Agency (EPA) (EPA, 1999), 

and (United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (United 

Nations Scientific Committee on the Effects of Atomic Radiation, 2000).  Also included are ICRP 

26 (ICRP, 1977) and ICRP 60 (ICRP, 1991), from which many of the U.S. and international 

regulations are derived.  Note that the U.S. EPA attempts to set standards based on a 1 × 10-4 to 

1 × 10-6 risk of cancer incidence, and presumes that cancer incidence attributable to radiation is 

8 × 10-5 per mSv and cancer mortality risk is 6 × 10-5 per mSv.(EPA, 2017) Similarly, the ICRP 

considers cancer risks on the order of 1 × 10-6 to be “…a region in which people are usually 

content to dismiss the risk as approaching the trivial.”  Risks of 1 × 10-5 are considered “minor,” 

and 1 × 10-4 intermediate.(ICRP, 2006a)  
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Table 1: Comparison of Estimates of Cancer Mortality Risk per Unit Dose, All Cancers 

Source 

Estimate  

(Excess Fatalities per 

10,000 per Sv) Reference 

BEIR VII 474 
(Committee to Assess Health Risks from Exposure to 

Low Levels of Ionizing Radiation, 2006) 

EPA 600 (EPA, 1999) 

ICRP 103 503 (ICRP, 2007) 

ICRP 60 600 (ICRP, 1991) 

ICRP 26 100 (ICRP, 1977) 

UNSCEAR 5201 
(United Nations Scientific Committee on the Effects of 

Atomic Radiation, 2000) 

Note: Estimate is the average of male and female values 

Table 2 is adapted from the BEIR VII report(Committee to Assess Health Risks from Exposure to 

Low Levels of Ionizing Radiation, 2006) and shows the detailed age and sex breakdown of 

cancer mortality risks.  Generally, radiogenic cancer mortality risk is greater for females, and for 

persons under 20 years of age. 

 
1 All solid cancers (excludes leukemia) 
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Table 2 Lifetime Attributable Risk of Cancer Mortality by Age and Sex: Single dose, 0.1 Gy (Committee to Assess 

Health Risks from Exposure to Low Levels of Ionizing Radiation, 2006)  

Age at Exposure (years) 

Cancer Site 0 5 10 15 20 30 40 50 60 70 80 

Males 

Stomach 41 34 30 25 21 16 15 13 11 8 4 

Colon 163 139 117 99 84 61 60 57 49 36 21 

Liver 44 37 31 27 23 16 16 14 12 8 4 

Lung 318 264 219 182 151 107 107 104 93 71 42 

Prostate 17 15 12 10 9 7 6 7 7 7 5 

Bladder 45 38 32 27 23 17 17 17 17 15 10 

Other 400 255 200 162 134 94 88 77 58 36 17 

All Solid 1028 781 641 533 444 317 310 289 246 181 102 

Leukemia 71 71 71 70 67 64 67 71 73 69 51 

All Cancers 1099 852 712 603 511 381 377 360 319 250 153 

Females 

Stomach 57 48 41 34 29 21 20 19 16 13 8 

Colon 102 86 73 62 53 38 37 35 31 25 15 

Liver 24 20 17 14 12 9 8 8 7 5 3 

Lung 643 534 442 367 305 213 212 204 183 140 81 

Breast 274 214 167 130 101 61 35 19 9 5 2 

Uterus 11 10 8 7 6 4 4 3 3 2 1 

Ovary 55 47 39 34 28 20 20 18 15 10 5 

Bladder 59 51 43 36 31 23 23 22 22 19 13 

Other 491 287 220 179 147 103 97 86 69 47 24 

All Solid 1717 1295 1051 862 711 491 455 415 354 265 152 

Leukemia 53 52 53 52 51 51 52 54 55 52 38 

All Cancers 1770 1347 1104 914 762 542 507 469 409 317 190 

Note: Number of deaths per 100,000 persons exposed to a single dose of 0.1 Gy. 

One interesting implication of these age- and sex-dependent risks is that different populations, 

exposed to the same radiation levels, might experience differing excess cancer mortality risks.  

For example, a community with a university might experience higher risks than a retiree-

dominated community.  By taking the demographic profile of the United States (U.S. Census 

Bureau, 2010) and cross referencing it with the mortality data in Table 2 one can determine an 
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expected excess mortality per 10,000 persons per Gy (or, for external gamma exposure, Sv) of 

598 (see Appendix 1 for calculation details).  This value compares well with the values in Table 

1.  Repeating the exercise for other populations yields differing results. Figure 1 shows the 

population distributions, by age and sex, of the United States (median age 37.5 in 2015), Nigeria 

(median age 17.9 in 2015), and Japan (median age 46.3 in 2015). (U.S. Census Bureau, 2010)  

 

Figure 1 Population Distributions (by age and sex) of the United States, Nigeria, and Japan (U.S. Census Bureau, 

2010) 
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For a country with a significantly older population, such as Japan, the calculation yields a result 

of 524 per 10,000 per Gy, while a population that skews much younger, such as Nigeria, yields a 

result of 869, as shown in Table 3.  A strong, largely age-based, variation suggests that dose-

based standards may be over- or under-protective in cases where the affected population 

diverges strongly from the demographics from which the risk estimates were developed.  This 

work will utilize the age and sex distributions of these same populations, the United States, 

Nigeria and Japan, as representative middle-aged, young, and older populations.   

Table 3 Calculated Excess Risk of Cancer Mortality from 1 Gy, in Deaths per 10,000 Persons 

Country 

Median Age in 2015 

(U.S. Census Bureau, 

2010) 

Calculated Aggregate 

Cancer Mortality Risk 

United States 37.5 years 598 

Nigeria 17.9 years 869 

Japan 46.3 years  524 

 

The BEIR VII Committee also evaluated the cancer mortality for two chronic low-level exposure 

scenarios.  In the first, the hypothetical population is exposed to 1 mGy per year from birth.  

The Committee utilized life tables based on Anderson et al. (Anderson & DeTurk, 2002), with a 

United States life expectancy at the time of 76.7 years.  In the second scenario, the population 

is exposed to 10 mGy per year from ages 18 to 65.  The cancer mortality risks were then 

tabulated by BEIR VII.  The results are summarized in Table 4, below.  Note that the total doses 

discussed are 76.7 mGy and 470 mGy respectively. 
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Table 4 Lifetime Attributable Risk of Solid Cancer Incidence and Mortality, Chronic Low-level Exposure based on 

BEIR VII (Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, 2006) 

 Exposure Scenario 

Cancer Site 
1 mGy per year 

throughout life 

10 mGy per year 

from ages 18 to 65 

Males 

Stomach 13 66 

Colon 53 273 

Liver 14 72 

Lung 99 492 

Prostate 6.3 32 

Bladder 16 80 

Other 85 395 

All Solid 285 1410 

Leukemia 47 290 

All Cancers 332 1700 

Females 

Stomach 19 94 

Colon 34 174 

Liver 8 40 

Lung 204 1002 

Breast 53 193 

Uterus 3.5 18 

Ovary 18 91 

Bladder 21 108 

Other 98 449 

All Solid 459 2169 

Leukemia 38 220 

All Cancers 497 2389 

Note: Number of deaths per 100,000 persons exposed to 1 mGy per year throughout life or to 10 mGy per year from 

ages 18 to 64.  Cumulative doses are roughly 90 mGy and 460 mGy respectively. 

Note that, in all three of these tables, the unit of dose is the Gray.  When considering external 

exposures to primarily gamma emitters, this is effectively equivalent to the Sievert, as the 

radiation weighting factor for photons is 1. (ICRP, 2007)   
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Focusing on excess mortality from all cancers, Table 4 can be reduced to the following: 

Table 5 Excess Cancer Mortality for Two Scenarios, by Sex, per 10,000 people exposed 

 Exposure Scenario 

Sex 
100 mGy to mixed-

age population 

1 mGy per year 

throughout life 

10 mGy per year 

from ages 18 to 65 

Male 479 332 1700 

Female 662 497 2389 

 

Dose Limits Applied to Radiation Disasters 

There have been two radiation disasters which resulted in the long-term displacement of large 

populations: Chernobyl (1983) and Fukushima (2011).  Other radiation disasters that resulted in 

a release of contamination, such as the Windscale Fire (1957) (Eisenbud, 1997), the Palomares 

Crash (1966) (Eisenbud, 1997), or Three Mile Island (1979) (Eisenbud, 1997), did not lead to 

population displacements and are not considered here. 

On April 26, 1986 workers conducting a test turned off critical safety systems at the Chernobyl 

Nuclear Power Plant in Ukraine, at the time part of the USSR.  Absent these safety systems, a 

power surge caused a steam explosion that damaged the core and reactor vessel.  This led to a 

graphite fire that burned intensely for about 10 days, spreading radioactive material over much 

of the northern hemisphere.  Roughly 5.2 EBq of radioactive material was released, mainly 

short-lived isotopes.  About 1,770 PBq of 131I and 85 PBq of 137Cs were released.  Ultimately, 
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about 115,000 people were displaced as a result of the release. (United Nations Scientific 

Committee on the Effects of Atomic Radiation, 2008) 

On March 11, 2011 a magnitude 9.0 earthquake struck just off the eastern coast of Japan, 

triggering a tsunami that killed nearly 20,000 people. (Nakahara & Ichikawa, 2013)  In addition, 

the earthquake and tsunami disabled power to all six units of the Fukushima Daiichi Nuclear 

Power Plant, eventually leading to core melts in three of the units, as well as damage to the 

spent fuel pool.  The damaged facility released approximately 770 PBq of radioactive material, 

primarily 131I, 134Cs and 137Cs.  This represented roughly 10% of the activity released by the 

Chernobyl disaster. As a result of the earthquake, tsunami, and power plant disasters, almost 

400,000 people in the Fukushima, Iwate, and Miyagi Prefectures were displaced. (United 

Nations Scientific Committee on the Effects of Atomic Radiation, 2013) 

Current Policy Guidance for Occupation of Contaminated Areas 

Table 6 presents a summary of current policy guidance for occupation of or displacement from 

contaminated areas, from the United States Government and from other national and 

international standards bodies. 
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Table 6: Summary of Policy Guidance for Post-Emergency Occupation 

Source Dose Limit Calculation Source Regulatory? 

US EPA2 20 mSv / first year 

5 mSv / following 

years 

Worst Case, 

ambient dose 

rate @ 1 m 

Protective Action 

Guides(EPA, 2017) 

No 

US NRC3 1 mSv / year Calculated 

individually 

10 CFR 20 (U.S. 

Nuclear Regulatory 

Commission, 2015) 

Yes 

ICRP4 1 mSv / year averaged 

over 5 years 

95th Percentile 

“reference 
person” 

ICRP 103 (ICRP, 

2007) 

No 

ICRP 1 – 20 mSv / year 95th Percentile 

“reference 
person” 

ICRP 111 (ICRP, 

2009) 

No 

IAEA5 25 µSv / hour 

( ~ 220 mSv / year) 

Ambient dose 

rate @ 1 m  

EPR-NPP Public 

Protective Actions 

(International Atomic 

Energy Agency, 

2013) 

No 

IAEA 20 mSv / year  (per ICRP) IAEA General Safety 

Requirements Part 

7(International 

Atomic Energy 

Agency, 2015) 

No 

NCRP6 1-20 mSv / year (per ICRP) NCRP 175(NCRP, 

2014) 

No 

 

The U.S. Environmental Protection Agency (EPA) produces the primary guidance for the United 

States in the form of the “PAG Manual: Protective Action Guides and Planning Guidance for 

 
2 United States Environmental Protection Agency 

3 United States Nuclear Regulatory Commission 

4 International Commission on Radiological Protection 

5 International Atomic Energy Agency 

6 National Council on Radiation Protection and Measurements 
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Radiological Incidents.”  The most recent version was published in 2017 (EPA, 2017).  This 

manual (hereinafter “PAGs”) is non-statutory, consisting only of non-binding recommendations 

to emergency planners and policy makers.  The EPA divides a radiation emergency into three 

phases – the Early phase, the Intermediate phase, and the Late phase.  Determinations about 

long-term displacement fall into the Late phase in EPA parlance. 

The EPA recommends that, at doses projected to exceed 20 mSv in the first year, and 5 mSv in 

the following years, local officials consider relocation of the affected population.   

For comparative purposes, the U.S. Nuclear Regulatory Commission, whose regulatory 

authority does not specifically apply to emergencies or evacuation decisions, enforces a whole-

body public dose limit of 1 mSv per year for activities under its purview. (U.S. Nuclear 

Regulatory Commission, 2015) 

The ICRP offers more nuanced guidance for post-emergency dose levels, having adopted 

several concepts of interest.  Ultimately, the ICRP recommends public dose limits of less than 1 

mSv per year. (ICRP, 2007)  However, they acknowledge the challenges of reaching these levels, 

and consider a band of doses between 1 and 20 mSv per year to be more achievable. (ICRP, 

2009)  They incorporate a process of “optimization” into their recommendations, a term which 

evolved out of cost-benefit analysis and keeping doses As Low As Reasonably Achievable 

(ALARA) (ICRP, 1977).  Acknowledging the complexities and uncertainties of population dose 

assessment and prediction, the ICRP recommends assessing the dose to the “representative 
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person”(ICRP, 2006b), effectively the 95th percentile of the population (described more fully in a 

later section). 

The International Atomic Energy Agency (IAEA) provides two standards, differing in applicability 

and measurement, but generally defers to the ICRP (discussed in the following section). 

(International Atomic Energy Agency, 2015) 

The (United States) National Council on Radiation Protection and Measurements (NCRP) 

directly adopts the ICRP standards.  (NCRP, 2014) 

Predicting Population Doses for Comparison to Dose Limits – Summary of Methodologies 

Predicting population doses is a highly variable and uncertain process, especially in the early 

phases of an incident.  The quantity and types of radionuclides released may be difficult to 

estimate.  The distribution of those radionuclides in the environment is strongly affected by 

winds, terrain, initial particle size, temperature, the forces involved in the release (e.g. 

explosion, pressurized venting, et al.), and precipitation, to name some of the most important 

factors.  Once the initial plume has passed, deposited particles of radioactive materials can be 

resuspended by winds, carried by rain or snow, incorporated into vegetation, or migrate deeper 

into soils and other surfaces.  The dose to an individual will be affected by their behavior and 

personal characteristics such as time spent in contaminated areas, breathing rate, diet, and 

shielding (such as a building or vehicle).  Selecting which individual(s) on which to base a 

population dose is also a complex process.  A person who largely remains indoors will have a 
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very different exposure profile than an agricultural worker, for example.  This type of 

assessment is considered a prospective assessment.(ICRP, 2006b)  Note that these 

methodologies differ from those used in dose reconstruction, where available data is used to 

estimate past doses to individuals or populations.  An example of these retrospective 

methodologies can be found at Akahane et al. (Akahane et al., 2013), which describes the 

estimation system for doses to residents of Fukushima during the first four months after the 

Great East Japan Earthquake of 2011 and subsequent radiological release from the Fukushima 

Daiichi NPP. 

Policies for responding to radiological incidents include strict controls for foodstuffs and water.  

This work presumes that these controls are in place and effective and that contributions from 

the ingestion pathway are negligible.  This was largely the case in Japan after the Fukushima 

release, for example. (United Nations Scientific Committee on the Effects of Atomic Radiation, 

2013) 

The inhalation pathway is important to large-scale radioactive releases under two 

circumstances – first, when a receptor is inside the plume, and secondly when deposited 

material is resuspended by traffic, winds, and other events.  Many of the referenced policies 

(such as (EPA, 2017)) specifically consider the reseuspension pathway to be a near-negligible 

contributor during intermediate- and late-phase responses such as those under consideration 

here.  Therefore, the inhalation pathway will not be considered in this work. 
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The U.S. EPA, the IAEA, the ICRP, the U.S. Nuclear Regulatory Commission, and the Government 

of Japan each have different formal methodologies for estimating population doses. 

Summary of EPA Methodology 

The most recent version of the U.S. EPA’s Protective Action Guides (PAG) was published in 

2017. (EPA, 2017)  The PAG defines projected dose as the “sum of the effective dose from 

external radiation exposure … and the committed effective dose from inhaled radioactive 

material.” (EPA, 2017)  Note that this specifically excludes an ingestion pathway, as a base 

assumption that food and water intake of radionuclides will be managed to negligible levels.  

For EPA purposes, evacuation is defined as “the urgent removal of people from an area to avoid 

or reduce high-level, short-term exposure[s]” while relocation is “the removal or continued 

exclusion of people (households) from contaminated areas to avoid chronic radiation exposure.  

(EPA, 2017)  Explicit assumptions also include that populations “remain in the contaminated 

area during the entire time,” “do not account for shielding provided by being indoors part of 

each day of the projection year,” and that “radionuclides are in the chemical and physical form 

that yields the highest dose.”  Partially offsetting this, the EPA selected the value of 20 mSv 

based on an expectation that actual doses would in fact be reduced based on the above factors, 

resulting in a first-year dose of roughly 10 mSv. (EPA, 2017)   

For dose estimation, the EPA turns to an interagency methodology developed by the Federal 

Radiological Monitoring and Assessment Center (FRMAC).  The FRMAC publishes a technical 

document entitled the “FRMAC Assessment Manual” (FRMAC, 2015).  For the intermediate 
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phase, the Projected Public Dose (Method 1.5), is simply the sum of the doses from external 

exposure to the deposited material and the dose from deposited material that has been taken 

into the body via resuspension and inhalation.  Coupled with the highly (and explicitly) worst-

case assumptions above, this is a relatively simple calculation.  The concentration of each 

individual radioisotope is estimated or measured, the concentration-to-dose conversion factor 

is selected, and the results are summed and multiplied by the exposure time.  Equation 1, 

below, illustrates the summation, where the dose contributions during the time phase (TP) 

under consideration are summed.  PPDTP is the population dose during the time phase of 

interest; Dp_InhDPi, TP is the contribution from inhaled radionuclide i based on deposition; 

Dp_ExDPi, TP is the contribution from external exposure to radionuclide i based on deposition. 

Equation 1 Projected Public Dose (Intermediate Phase)(FRMAC, 2015) 

𝑃𝑃𝐷𝑇𝑃 = ∑ 𝐷𝑝_𝐼𝑛ℎ𝐷𝑃𝑖,𝑇𝑃   +𝑖  𝐷𝑝_𝐸𝑥𝐷𝑃𝑖,𝑇𝑃 

The EPA states that age-based dose coefficients account for less than 15% differences in dose, 

well within the conservatism of the assumptions, so only adult coefficients are utilized. (EPA, 

2017)  The EPA PAG recommends relocation if public doses are estimated to exceed 20 mSv in 

the first year, and 5 mSv in subsequent years.(EPA, 2017) 

Summary of IAEA Methodology 

The IAEA publishes two different methodologies for assessing doses to the public.  In its 

technical publication Actions to Protect the Public in an Emergency Due to Severe Conditions at 
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a Light Water Reactor (International Atomic Energy Agency, 2013), Operational Intervention 

Levels (OIL) are based on dose rates measured at 1 m above the ground.  The primary OIL for 

relocation of the public in the intermediate / late phase is OIL 2, set at 25 µSv per hour.  This 

aggregates to roughly 220 mSv per year, which appears at first glance to be considerably higher 

than most of the other standards, including others published by the IAEA itself.  After 

consideration of the other normal dose reduction factors, however, (such as time spent in other 

areas, time spent indoors, weathering and decay, etc.) this level is roughly in line with other 

references.  Other OILs address food and water ingestion, inhalation, and doses to a fetus.  The 

IAEA also explicitly adopts the ICRP methodology in its publication Preparedness and Response 

for a Nuclear or Radiological Emergency. (International Atomic Energy Agency, 2015) 

Summary of ICRP Methodology 

The ICRP has prepared a detailed methodology for assessing population-level doses in ICRP 

Publication 101, “Assessing dose of the representative person for the purpose of radiation 

protection of the public.” (ICRP, 2006b).  They acknowledge the complexity and range of 

methodologies available for calculating population doses.  Their recommended process can be 

summed up as the following, all from publication 101: 

1) Gather information about the source term (radionuclides quantities and distributions, 

radiation emitted) 

2) Gather information about the environment, including terrain and climate information 
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3) Combine these quantities and human behavioral information into an “exposure 

scenario,” effectively a profile of the time course of human exposure to the various 

radionuclides 

4) Use coefficients to relate concentrations in air or soil to pathway dose rates – primarily 

external and ingestion, then sum those dose rates into a composite rate 

Figure 2illustrates this process. 
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Figure 2 Dose-assessment process (adapted from ICRP 101, Figure 2.1, with permission)(ICRP, 2006b) 

The ICRP does not provide a specific recommendation for deterministic versus probabilistic 

calculations, instead leaving the specific methodology to local authorities. They acknowledge 

that the two approaches “…may not necessarily yield mathematically equivalent results” (ICRP, 

2006b) but that with transparency, appropriate peer review, and stakeholder involvement the 

goal of providing an appropriate estimate for determining the required protection can be met.  
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The ICRP introduced the concept of the “representative person” in 1985, in Publication 43 

(ICRP, 1985).  As currently described, the representative person is a hypothetical individual who 

“receives a dose that is representative of the more highly exposed individuals in the 

population.” (ICRP, 2006b)  The ICRP is careful to note that this person should not be developed 

using an extreme case, or entirely worst-case assumptions within the habit data (in contrast to 

the U.S. EPA).  When a single pathway dominates the dose estimate (e.g. food intake) they 

recommend use of the 95th percentile habit profile, while other habits (such a breathing rate or 

outdoor time) should be closer to median values.  Ultimately, the objective is to define the 

representative person such that “the probability is less that about 5% that a person drawn at 

random from the population will receive a greater dose.” (ICRP, 2006b)  The ICRP also suggests 

subdividing the population into three age bands: 0-6 years, 7-15 years, and 16-70 years, with 

each group utilizing dose coefficients for 1-year-olds, 10-year-olds and adults respectively. 

ICRP Publication 103 sets a public dose reference level for relocation at 1 mSv per year (ICRP, 

2007), but amended this for post-disaster response to a band of 1 – 20 mSv per year in ICRP 

Publication 111 (ICRP, 2009), acknowledging the difficulties of reaching 1 mSv per year after a 

major disaster. 

U.S. NRC Methodology 

The NRC is a special case, in that it only regulates certain activities and does not explicitly set 

criteria for relocation.  The NRC sets a public exposure limit from regulated activities at 1 mSv 

per year. (U.S. Nuclear Regulatory Commission, 2015)  If a radiological incident originates with 
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an NRC-licensed activity, it is conceivable that some decision-makers might attempt to apply 

this standard as an evacuation threshold.  The NRC does not specify a calculation methodology. 

Government of Japan, Ministry of the Environment Methodology 

The Government of Japan (GOJ) uses a hybrid methodology for dose assessment.(Government 

of Japan, 2011)  The total daily dose rate (DRtotal) is calculated by summing the historical 

background dose rate (DRbg) and a combination of two simple exposure scenarios.  Using the 

ambient hourly dose rate (DRamb) measured at 1 m above ground level, the GOJ assumes that 

the affected population spends 8 hours outdoors, unshielded, and 14 hours indoors, shielded 

by a wood frame house.  The shielding factor used for the indoor period is 0.4.  Equation 2 

illustrates this relationship. 

Equation 2 GOJ Daily Population Dose Estimate (Government of Japan, 2011) 

𝐷𝑅𝑡𝑜𝑡𝑎𝑙 = 𝐷𝑅𝑏𝑔 + (8 hours × 𝐷𝑅𝑎𝑚𝑏) + (16 hours ×  0.4 × 𝐷𝑅𝑎𝑚𝑏)  
This results in a value that is less conservative than the U.S. EPA, while remaining simple to 

calculate.  The equation simplifies to a daily dose rate of background plus 0.6 times the ambient 

hourly dose rate, or 

Equation 3 Simplified GOJ Daily Population Dose Estimate 

𝐷𝑅𝑡𝑜𝑡𝑎𝑙 =  𝐷𝑅𝑏𝑔 + (24 hours ×  0.6 ×  𝐷𝑅𝑎𝑚𝑏) 
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Modifications to Ambient Dose Rate for Improved Accuracy 

At a coarse level, each of the population dose estimation methodology transforms measured or 

predicted deposition levels and ambient measurements into dose to an individual.  The ICRP 

considers this in the “Habit” and “Dose” steps of its dose assessment process, shown in Figure 

2. (ICRP, 2006b) The EPA relies on the deposition-to-dose coefficients in Federal Guidance 

Report 13 (EPA, 1999) and on a 1-to-1 conversion of ambient dose rates at 1 m above ground. 

(EPA, 2017)  The Government of Japan uses a simple shielding factor to convert ambient doses 

to predicted population doses per Equation 3. 

The radiological release at Fukushima Daiichi created an opportunity to test the conversion 

factors in areas which received radiological deposition, but which have since been 

decontaminated or did not receive significant contamination. Some areas still have residual 

ambient dose rates well above background levels, but do not reach levels that warrant 

relocation.  Several municipalities and researchers have conducted research comparing 

ambient dose rates and actual external doses based on individual dosimetry.   

Miyazaki et al. (Miyazaki & Hayano, 2016) described the efforts and data collected by Date City, 

in Fukushima Prefecture.  The municipal government developed maps of the ambient dose rate 

at 1 m above ground for the entire city, divided into a grid of ~1 km squares.  From July 2012 to 

June 2013 Date City issued glass dosimeters to ~65,000 residents.  Combining the resulting 

measured doses with the household locations within the contamination map allows a 

comparison of mapped ambient dose rates versus the measured personal doses.  The 
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researchers found that the ratio of individual dose rate to grid dose rates was 0.15 ± 0.03, or 

roughly one sixth of the ambient dose, or about one fourth of the values generated by the GOJ 

standard formula (Equation 3).  

One limitation faced by simple dosimetry studies is that they are unable to distinguish between 

indoor and outdoor time, shielding factors, whether the dosimeter was actually worn, and 

other factors that may influence the resulting dose measurement.  Naito et al. (Naito et al., 

2016) provided 142 residents of Fukushima Prefecture with GPS-enabled dosimeters to 

measure their actual received doses, correlated with their locations.  They demonstrated that 

overall dose rates were 0.18 of the nominal ambient dose rates, indoor dose rates were 0.14, 

and actual outdoor dose rates were only 0.32 of nominal ambient dose rates.  The researchers 

suggest that the differences between the assumed shielding value of buildings (0.4) and the 

measured effective shielding value (0.14) could be attributed to more robust structures and 

time spent in buildings other than wood frame homes.  They attribute the reductions in 

outdoor dose rates to the effects of incidental shielding (vehicles, buildings and vegetation) as 

well as time spent at heights higher than the measured 1 m elevation (e.g. on tractors).  

Additionally, they note that most people live and work in areas that were more intensely 

decontaminated than a general area measurement might account for in predicting dose rates. 

Together, these papers suggest that the EPA’s assumption of a 1-to-1 conversion of ambient 

dose rate to individual dose and the GOJ 0.6 conversion factor overstate received dose by 
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factors of roughly 6 and 4 respectively, a safety factor that may have strong impacts on 

evacuation and displacement decision making.  
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HEALTH EFFECTS OF LONG-TERM DISLOCATION AFTER A DISASTER 

Introduction: Post-Disaster Health 

Disasters carry long-term effects for the exposed population, even where the individual 

experiences no direct harm or loss.  Studies following Hurricane Katrina identified increased 

overall mortality, physical disability, and degraded mental health among survivors. (Sastry & 

Gregory, 2013)  A range of clinical outcomes have been identified; post-traumatic stress 

disorder (PTSD), anxiety, depression, and increased rates of substance abuse are the most 

commonly cited long-term effects (Neria, Nandi, & Galea, 2008; Porter & Haslam, 2005), with 

prevalence and duration varying with the affected population, proximity to the disaster, and 

time elapsed since the disaster took place.  Interestingly, suicide rates appear to show little 

change after a disaster, though suicidal ideation and non-fatal self-harm showed increases in 

some cases. (Bonanno, Brewin, Kaniasty, & Greca, 2010) (Kolves, Kolves, & De Leo, 2013) 

Beyond mental health outcomes, researchers have studied changes in body composition and 

obesity (Ohira et al., 2016), metabolic syndrome(Hashimoto et al., 2017), physical performance 

(Ishii et al., 2015), cardiovascular health (Ohira et al., 2017), and effects on pregnancy and 

childbirth (Leppold et al., 2017).   

Clinical outcomes due to evacuation and long-term displacement have been less studied, in part 

because separating the effects of the dislocation from the general effects of the disaster itself is 

difficult, and because relatively few disasters generate long-term, large-scale dislocation.  A 

2008 literature review of the health effects of relocation following disaster identified only 40 
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research articles published on this topic between 1950 and 2006, with only 24 of those 

containing quantitative data.  (Uscher-Pines, 2009)  This relatively small body of literature has 

been greatly enhanced since the 2011 Great East Japan Earthquake and the subsequent 

relocations due to potential radiation effects.  The combination of a robust national health 

system and intense interest in the large displaced population has led to considerable study 

comparing populations relocated after the disaster with those similarly affected by the event, 

but not relocated, or which returned to their homes after a short evacuation.   

In laying the groundwork for the parameters used to develop the risk model, this work presents 

a survey of clinical outcomes and post-disaster health. 

General Effects of Disasters on Mortality Rates 

Disasters have been identified as an indirect factor in mortality via increased risks of infectious 

disease (Kouadio, Aljunid, Kamigaki, Hammad, & Oshitani, 2012), impaired cardiovascular 

health (Kario, McEwen Bruce, & Pickering Thomas, 2003), and psychological disorders 

(Stephens et al., 2007).  

Ho et al. examined overall mortality rates in the 5 years following the 2004 earthquake and 

tsunami that killed 170,000 people in Aceh, Indonesia.  They found that, for most groups, 

surviving the disaster had a small, negative affect on mortality rates (that is, fewer deaths) in 

the first two years following the event, while in the out years (3-5 years post-disaster), 

populations who lost their homes in the flooding had elevated mortality rates (+7.58%, 95% CI 
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3.75% - 11.41%).(Ho, Frankenberg, Sumantri, & Thomas, 2017)  This particularly affected males 

over 50 years old.  The authors note that the short-term reduction in mortality was in spite of 

the initial slow pace of reconstruction.  

Morita et al. (Morita et al., 2017) evaluated vital records from Soma City and Minamisoma City 

for a baseline period of 5 years before the 2011 earthquake (2006-2010) against records for the 

period 2011-2015, excluding direct deaths due to the earthquake and tsunami.  They found that 

overall mortality risks in Fukushima Prefecture more than doubled in the month following the 

disaster (relative risk: 2.64 for men and 2.46 for women), with the leading causes identified as 

pneumonia (28% of overall mortality), stroke (15%), coronary heart disease (10%) and cancer 

(9%).  The excess risk overall, and these specific causes, were more prominent in older 

populations.  Morita et al. cited degradation of access to primary care due to the disaster as a 

primary cause of the excess mortality.  The mortality risks returned largely to baseline levels 

within 3 months, with risks for younger populations (under 65) returning to baseline within 1 

month.  The study did not consider evacuated/displaced populations separately.  

Focusing on effects on the elderly, several studies have examined how disasters and evacuation 

impacted nursing home residents.  Brown et al. examined death records following Hurricane 

Gustav, which made landfall in Louisiana in September 2008.  They found elevated mortality 

among nursing home residents with dementia at 30 days post-evacuation (+2.8%) and 90 days 

(+3.9%) compared to non-evacuated residents. (Brown et al., 2012)  The duration of the 

evacuation was not discussed.  Murakami et al. compared the tradeoff of hypothetical radiation 
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risks to the residents and staff of three nursing homes under an evacuation order in Fukushima 

province with the actual mortality experienced due to evacuation. (Murakami et al., 2015)  

They found that the Loss of Life Expectancy (LLE) for the rapid evacuation that took place 

greatly exceeded the estimated LLE even from radiation exposures much higher than 

experienced in the area (11,000 person days for rapid evacuation, 5800 for 100 mSv total 

exposures).   

Nomura et al. conducted the most general study of excess mortality on residents of elder care 

facilities (not necessarily nursing homes per se), finding that the experience of the disaster itself 

represented only a small increase in mortality risk (hazard ratio 1.10, 95% CI 0.84-1.43), while 

evacuation from the original facility was associated with significantly higher mortality (hazard 

ratio 1.82, 95% CI 1.22-2.70).  He did not consider the duration of the evacuation in this work.  

(Nomura, Blangiardo, Tsubokura, Nishikawa, et al., 2016) 

Psychosocial Outcomes 

The effects of disaster on mental health has been well documented, though again, reports 

examining differences in outcomes between displaced and non-displaced populations have 

been sparse.  Many of these mental health outcomes are difficult to isolate and quantify, as 

they are often comorbid with each other.   
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Post-Traumatic Stress Disorder 

PTSD General Characteristics 

One of the most common mental health pathologies affecting the victims of a disaster is Post-

Traumatic Stress Disorder (PTSD) (Neria et al., 2008).  The Diagnostic and Statistical Manual of 

Mental Disorders (DSM-5) (American Psychiatric Association, 2013) describes PTSD as the 

presence of several intrusive symptoms associated with a traumatic event, including recurring 

memories, flashbacks, and intense or prolonged psychological distress.  In the United States, 

the general background prevalence is ~3.5%, with variation by sex (rates are higher among 

men) and ethnicity (rates are higher among Latinos, African Americans, and Native Americans).  

Symptoms usually begin within 3 months of the trauma, but can take up to a year (R. C. Kessler 

et al., 2008).  Comorbidities include anxiety, depression, and substance abuse. 

Morina et al. (Morina, Wicherts, Lobbrecht, & Priebe, 2014) conducted a meta-analysis of the 

time course of PTSD and found a ~44% remission rate at 3 years after the traumatic event, but 

also noted 60% remission in the case of natural disasters.  Kessler et al. (Ronald C. Kessler, 

1995) found that, with treatment, approximately 40% of cases are resolved within one year, 

and about 60% within six years.  Roughly 30% of untreated cases resolved within one year, 

while at the 6-year point, the rates of resolved and unresolved cases were similar to the treated 

values. Table 7 summarizes these values. 

Table 7 Remission rates for PTSD - Selected References 

Source of PTSD Remission Rate Treatment Timeframe Reference 

General 44% Yes 40 months (Morina, 2014) 
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Natural 

Disasters 

60% Yes 40 months (Morina, 2014) 

General 40% Yes 1 Year (Kessler, 1995) 

General 30% No 1 Year (Kessler, 1995) 

General 50% Yes 6 Years (Kessler, 1995) 

General 50% No 6 Years (Kessler, 1995) 

 

Post-Disaster PTSD 

Bromet et al. (Bromet et al., 2017) reported that, in high-income countries, displacement 

following a disaster represented a 6-fold increase in risk for PTSD versus non-displaced 

populations, while human-made disasters presented a 3.3x greater risk of PTSD versus natural 

disasters.  Neria et al. (Neria et al., 2008) found that the direct victims of a disaster experienced 

PTSD at rates between 30 and 40%, while 10-20% of rescue workers and 5-10% of the non-

directly affected population experienced it as well. 

Bryant et al. (Bryant et al., 2014) explored mental health outcomes based on the degree of 

impact from severe wildfires that passed through rural areas of Victoria, Australia in February of 

2009.  They defined impact at the community level based on property damage and number of 

fatalities; and at the individual level based on immediate danger during the fires, loss of 

personal property, and deaths of close friends/family during the fires.  A move to temporary 

housing was considered among the stressors.  Residing in highly affected communities 

correlated strongly with both PTSD (OR 4.57, 95% CI: 2.61-8.00) and heavy drinking (OR 1.39, 

95% CI: 1.01-1.89), as did the individual factors. 
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Oe et al. (Oe et al., 2016) conducted a particularly detailed study of the population affected by 

the Fukushima disaster.  Their study examined medical records and survey responses in 2012 

(n=71,100), 2013 (n=53,162) and 2014 (n=44, 913) found that age, sex, and displacement all 

played strong roles in PTSD rates, with older persons experiencing greater morbidity than 

younger, women greater than men, and displaced greater than non-displaced.  The authors 

suggest caution regarding the age sensitivity as a large portion of their study population was 

over 65, and previous studies have been contradictory regarding age as a factor.  This study did 

not consider persons under 20 years old.  Table 8 compares the identified PTSD prevalence in 

residents who were either never evacuated or had returned, against those who were still under 

an evacuation order (e.g those experiencing long-term displacement). 

Table 8 PTSD Prevalence Among Fukushima Evacuation Zone Residents (Oe et al., 2016) 

Sex Displacement Status 
Year 

2012 2013 2014 

Male Displaced 23.5% 22.3% 21.9% 

 Non-displaced 16.1% 15.2% 15.0% 

 ∆ +7.4% +7.1% +6.9% 

Female Displaced 30.7% 28.5% 28.1% 

 Non-displaced 22.0% 20.4% 20.1% 

 ∆ +8.7% +8.1% +8.0% 

 

Substance Abuse and Problem Drinking 

Increased rates of substance abuse in general, and heavy alcohol use in particular are 

commonly reported after disasters.  Bryant et al. (Bryant et al., 2014) found correlation 

between the degree of community and individual impact of a disaster with increased heavy 

drinking.  Heavy drinking was identified as a coping mechanism for ~15% of Oklahoma City 
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bombing survivors (North, 1999), while almost 25% of New Yorkers reported increased alcohol 

use after the World Trade Center attacks in 2001 (Vlahov, 2002).  37% of Hurricane Katrina 

survivors were identified as binge drinkers 6-12 months post-event, compared to a Louisiana 

average of 14.2% (Flory, Hankin, Kloos, Cheely, & Turecki, 2009).  Other studies, however, 

suggest that the overall prevalence increases only slightly, with problematic use occurring 

primarily in persons with prior substance abuse problems, or comorbid with other disorders 

such as PTSD, depression, or anxiety (Norris et al., 2002).  Ueda et al. (Ueda et al., 2016) found 

that, within a year, about 9.8% of pre-disaster non-drinkers reported starting to drink, and also 

linked changed drinking behavior to a high risk of serious mental illness.   

Quantitative discussions of the effects of post-disaster displacement on substance abuse in 

general are very sparse, and might represent a significant future research area.  Bryant et al. 

(Bryant et al., 2014) identified property loss (not specifically relocation) as a minor risk factor 

(OR = 1.04, CI: 0.99 – 1.09) for heavy alcohol use after the 2009 wildfires in Victoria, Australia, 

with younger age and male sex showing the greatest risk.  Oe et al. (Oe et al., 2016) provided 

the only study that specifically examined relocation and problem drinking.  They found that, as 

of 2014, prevalence of problem drinking among populations still under evacuation orders (e.g. 

displaced) differed only slightly from those no longer or never under evacuation orders; see 

Table 9. 

Table 9 Prevalence of Problem Drinking Among Fukushima Evacuees (Oe et al., 2016) 

Sex Displacement Status 
Year 

2013 2014 
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Male Displaced 13.3% 13.1% 

 Non-displaced 13.6% 13.3% 

 ∆ -0.3% -0.2% 

Female Displaced 2.9% 2.8% 

 Non-displaced 2.6% 2.6% 

 ∆ +0.3% +0.2% 

 

Smoking behavior also undergoes changes following a disaster.  Flory et al. found that, in 

surveys taken 6-12 months after Hurricane Katrina, 53% of survivors were current smokers, 

compared to a Louisiana-wide prevalence of 23.5% (Flory et al., 2009) Hashimote et al. noted 

that smoking prevalence in Fukushima Prefecture as a whole jumped from 23% in 2010 to 39.7 

in 2014.  (Hashimoto et al., 2017).  The increase was almost indistinguishable between 

displaced and non-displaced populations. 

Suicidal Behaviors 

In a systematic literature review published in 2012, Kõlves et al. examined trends in suicidal 

behaviors (suicide and non-fatal suicidal behaviors) after natural disasters.  They found that, 

over the course of 3-5 years, suicidal behaviors dropped after a disaster, then appeared to rise 

to levels exceeding pre-disaster rates before returning to baseline. (Kolves et al., 2013)  They 

described this as a “honeymoon phase,” followed by a period of delayed increase.  Though the 

effects described by Kõlves were weak and difficult to discern, they appear to have matched 

the experiences of Japan after the Fukushima disaster.  Maeda et al. reviewed studies of mental 

health issues in Fukushima Prefecture (Maeda & Oe, 2017) and found that, indeed, suicide 

mortality ratios (SMR) dipped in the 2 years after the disaster, then rose to exceed previous 

baseline rates (2010 – 108, 2011 – 107, 2012 – 94, 2013 – 96, 2014 – 126).  Similar results were 
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found in neighboring prefectures.  SMR is the ratio prefectural suicide rate against the rate of 

the general population of Japan.  These studies were conducted at the prefecture level, and did 

not distinguish between displaced and non-displaced populations. 

 

Physiological Outcomes 

Degradation of physiological markers has been well documented in post-disaster health 

literature, usually linked to disruption of ongoing medical care, loss of access to medical 

infrastructure, traumatic stress and anxiety, and the ongoing stressors of dislocation, recovery 

and reconstruction.  Cardiovascular and metabolic outcomes, including changes in body-mass 

index (BMI), obesity, metabolic syndrome, diabetes, and other associated conditions have been 

studied in relation to disasters and displacement.  These outcomes tend to be closely related 

and overlap – type 2 diabetes is tightly linked to obesity, for example (Golay & Ybarra, 2005).  A 

major consideration in examining these sequelae is the disruption in care for chronic conditions 

surrounding a disaster (Callen & Homma, 2017). 

 

General Cardiovascular Health 

At the most acute end of the spectrum, sudden disasters have been shown to trigger sharp 

increases in mortality by cardiac death (Kloner, Leor, Poole, & Perritt, 1997) immediately 
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following the disaster.  In the short-term post-disaster, cardiac events (such as acute myocardial 

infarction and tachyarrhythmia) appear to increase, likely due to increased stress.  Feng et al. 

reported significantly more cardiac events in a study of admissions to a single hospital in New 

York City during the 60 days after the 9/11 attacks, for example (Feng, Lenihanx, Johnson, Karri, 

& Reddy, 2006).  Kario et al. reported similar results in a review of cardiac health following 

major earthquakes (Kario et al., 2003), noting as well that increased hypertension persisted 4-6 

weeks after a disaster, even when most other metabolic markers had returned to baseline.  

Kitamura et al. demonstrated that rate of cardiac arrest following the Great East Japan 

Earthquake rose by 70% in the first week, 50% in the second and 25% in the third and fourth 

weeks post-event.  

Stroke admissions at one hospital in Minamisoma City in the 30 months following the 

Fukushima disaster rose from 10.7 to 13.9, for a relative risk of 1.62 (95% CI 1.23-2.14). 

(Gilmour, Sugimoto, Nomura, & Oikawa, 2015)  Similarly,  

No studies were found that discussed general cardiovascular health in the context of 

evacuation or displacement, but degradation of the cardiovascular system is an endpoint of and 

comorbid with both diabetes mellitus, excess body weight, and substance abuse. 

Cardio-metabolic Metabolic End-States Other Than Diabetes 

Studies examining the effect of the Great East Japan Earthquake of 2011 on clinical markers in 

evacuees began appearing shortly after the disaster.  Significantly higher body weight, body 

mass index, waist circumference and blood glucose levels were identified in evacuees in a small 
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study (n=200) by Tsubokura et al. (Tsubokura et al., 2013) with data collection taking place less 

than 6 months after the disaster and compared to results prior to the event.  A larger study 

(n=6528), by Takahashi et al. (Takahashi et al., 2016) compared measures at 8 and 18 months 

post-disaster between relocated and non-relocated populations, finding much greater increases 

in body weight and waist circumferences in the relocated populations, along with deterioration 

in physical activity; other findings will be discussed below. 

A large study (n=27486) compared data collected on participants aged 40 and up during 2008-

2010 and 2011-2013 (3 months to 2 years after the disaster), comparing mean body weight and 

proportion of overweight and obese evacuees and non-evacuees. (Ohira et al., 2016)  The study 

team found that mean body weight among evacuees increased by 1.2 kg, while non-evacuees 

saw an increase of 0.3 kg; similarly, the proportion of overweight persons increased from 31.8% 

to 39.4% among evacuees, and from 28.3% to 30.3% among non-evacuees.  Displacement 

presented a Hazard Ratio of 1.68 versus the non-displaced population.  No significant change 

was found at the national-level during the same time period. 

A similar study by Nomura et al. (Nomura, Blangiardo, Tsubokura, Ozaki, et al., 2016), 

conducted with a smaller subset of the population (n=6406) and health records through 2014, 

again found higher Body Mass Index among evacuees versus non-evacuees, but by 2014 BMI 

had essentially returned to baseline levels among evacuees (see Table 10).  This study, 

however, only considered persons aged 40-74, excluding those 75 years of age and older. 
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Table 10 Comparisons of Body Mass Index 2008-2014 (Adapted from Nomura et. al, 2016) 

Study Group Baseline 2011 2012 2013 2014 

Displaced 23.6 24.0 24.2 24.0 23.7 

Non-Displaced 23.5 23.6 23.6 23.6 23.4 

∆ +0.1 +0.4 +0.8 +0.4 +0.3 

 

Metabolic syndrome (METS), a set of conditions which are risk factors for diabetes mellitus and 

hypertension, was studied in displaced and non-displaced populations in Fukushima prefecture 

by Hashimoto et al (Hashimoto et al., 2017).  They identified significantly higher body weight, 

waist circumference, triglycerides, and fasting plasma glucose among displaced populations 

than in non-displaced.  Displaced persons also experienced significantly higher rates of 

metabolic syndrome (M: 19.2% vs. 11.0%, F: 6.6% vs. 4.6%), with displacement presenting an 

adjusted odds ratio of 1.72 (95% CI: 1.46-2.02) relative to non-displaced persons. 

 Male Female 

Clinical Marker Non-Displaced Displaced P value Non-Displaced Displaced P value 

∆ weight, kg 0.4 2.0 <0.001 0.3 23.7 <0.001 

∆ BMI, kg/m2 0.1 0.8 <0.001 0.2 0.4 <0.001 

∆ FPG7, mg/dL 0.0 3.0 <0.001 0.0 3.0 <0.001 

METS, % 11.0 19.2 -- 4.6 6.6 -- 

 
7 FPG: Fasting Plasma Glucose 
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Diabetes Mellitus 

The American Diabetes Association defines diabetes (more properly, diabetes mellitus) as “a 

group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin 

secretion, insulin action, or both.(American Diabetes, 2010)  Type 2 diabetes represents 90-95% 

of cases, and is a combination of insulin resistance and some degree of insulin deficiency.  The 

symptoms of diabetes range from polyuria (excessive urination) and polydipsia (excessive thirst 

or drinking) to hyperglycemia with ketoacidosis (excess glucose and ketones in the 

bloodstream, potentially life-threatening).  Long-term complications of Type 2 diabetes include 

loss of vision, renal failure, peripheral neuropathy (loss of sensation in the extremities), and 

cardiovascular symptoms.   

Diabetes (in particular, Type 2 diabetes) has no cure per se, but can enter remission in certain 

cases.  Severely obese patients who undergo gastric bypass surgery can achieve complete 

remission rates of up to 70%.(Arterburn et al., 2013)  Short of gastric bypass surgery, type 2 

diabetes does have a very small (<<1%) prolonged remission rate, generally when freshly-

diagnosed cases are met with rigorous lifestyle changes and diabetes support and 

education.(Karter, Nundy, Parker, Moffet, & Huang, 2014)  Both pathways to partial or 

complete remission can fail, with relapses hovering near 30% of remissions.  

Studies examining Type 2 Diabetes after disasters generally focus on the disruptions to care – 

loss of access to dialysis, localized shortages of insulin, failure or inability to monitor blood 

glucose levels, and limitations on available diet. (see, for example, (Lee et al., 2016)).  
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Numerous studies indicate short-term increases in the severity and complications of existing 

diabetes cases after a disaster.  Kamoi et al., in a small study, (Kamoi, Tanaka, Ikarashi, & 

Miyakoshi, 2006) identified short term degradation of glycemic control as well as increased 

incidence of some complications from diabetes after a major earthquake in Japan, but found 

that all measures returned to pre-earthquake levels within 12 months.  On the other hand, A1C 

levels (a measure of hemoglobin with attached glucose) in diabetic Katrina survivors were 

continuing to increase 16 months after the event. (Fonseca et al., 2009)  Leppold et al. (Leppold 

et al., 2016) identified this same pattern of deterioration in glycemic control after the Great 

East Japan Earthquake of 2011, but noted that there was no correlation with displacement 

status. 

No studies were identified that specifically examined excess diabetes cases after disasters until 

after the Great East Japan Earthquake and Tsunami of 2011; some of these reflect a strong 

interest in the relative risks of displacement and radiation in affected areas.  

The first major study examining diabetes prevalence in displaced and non-evacuated 

populations, compared with their pre-disaster rates, was published in 2015.  This work, by 

Satoh et al. (Satoh et al., 2015) examined the clinical markers of diabetes in 27,486 subjects 

aged 40-90 from the disaster-affected provinces.  The data was collected from the annual 

health checkups of patients who were examined before the disaster (2008-2010) and after 

(2011-2012).  This study found that, prior to the disaster, the population had a diabetes 

incidence of 9.3%, while after the disaster the overall rate for both the displaced and non-
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evacuated population was 11.0%.  Of the previously non-diabetic population, 3.0% had become 

diabetic – this rate was 3.6% for evacuees, but only 2.6% for non-evacuees. 

Takahashi et al. (Takahashi et al., 2016), as noted above, examined 6528 adults (18+ y.o.) in 3 

affected provinces at 8 and 18 months post-disaster.  Note that this study did not assess results 

before the disaster, only after.  The relocated population had an overall incidence of diabetes of 

7%, while the non-relocated population had an incidence of 6%. 

A study by Ebner et al. (Ebner, Ohsawa, Igari, Harada, & Koizumi, 2016), similar to the Satoh et 

al. study noted above, examined the health records of ~700 residents of Kawauchi Village.  The 

study compares 3 years of results prior to the disaster with 2 years after the event, a somewhat 

longer follow up period than found in the Satoh et al. study, in the population of adults over 40 

years of age.  The entire studied population was evacuated in March 2011, and began to return 

starting in April 2012.  Mirroring Satoh et al., the incidence of lifestyle diseases was shown to 

have increased, but also was continuing to increase in 2013, the year after return was 

permitted.  Diabetes prevalence in the village was 11.3% before the earthquake; in 2012 the 

rate in the same population was 14.7%, and in 2013 reached 17%.  Of note, obesity rates had 

begun to decrease at the latter part of the study period (pre-event: 35.3%, 2012: 39.7%, 2013: 

36.9%). 

Like the Ebner et al. study, Nomura et al. (Nomura, Blangiardo, Tsubokura, Ozaki, et al., 2016) 

examined medical records for municipalities affected by the Great East Japan Earthquake.  In 

this case, the study population was centered on Minamisoma City and Soma City.  These cities 
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experienced partial evacuations, some immediately, some in April of 2011; small numbers of 

evacuees were permitted to return as zone boundaries were adjusted in 2012, while others 

remain displaced.  Medical records for persons aged between 40 and 74 years from prior to the 

incident (2008-2010) and after (2011-2014) were compared.  Table 11 shows the diabetes 

prevalence in the affected populations.  As of 2014, diabetes prevalence among evacuees was 

significantly higher than among non-evacuees, and continuing to increase, while the rate 

among non-evacuees appears to have leveled off.  Japanese national diabetes prevalence for all 

adults, (8.3% in 2012), was largely unchanged during the study period(Ikeda, Nishi, Noda, & 

Noda, 2017).  Compared to baseline, the age-adjusted relative risk of diabetes among evacuees 

was 1.60 (95% CI: 1.18-2.16), while the relative risk to non-evacuees was 1.27 (95% CI: 1.11-

1.45). 

Table 11 Comparisons of Diabetes Prevalence 2008-2014 (Adapted from Nomura et. al, 2016) 

Study Group Baseline 2011 2012 2013 2014 

Evacuees 7.7% 9.3% 10.2% 13.1 13.6 

Non-Evacuees 7.7% 8.0% 9.5% 11.6 11.2 

∆ 0.0% +1.3% +0.7% +1.5% +2.4% 

 

Radiological Effects on Non-Displaced Populations 

Surprisingly, only one study was found that specifically examined clinical parameters for a non-

displaced population with a focus on non-cancer radiological effects.  Ishii et al. conducted a 

small study (n = 155) in the Tamano district of Soma City, Japan. (Ishii et al., 2016)  Tamano had 
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levels of radiation of 1.0 to 1.9 µSv per hour at the time of the study (July 2012), equating to 

roughly 8 mSv per year using the Government of Japan dose calculation, Equation 3 above.  

Internal uptake was low, with no study participant estimated to receive more that 1 mSv per 

year from internally incorporated 137Cs.  The researchers found small but statistically significant 

decreases in blood pressure and in body mass index, while other clinical markers were either 

unchanged or clinically negligible.  

The Nomura et al. study noted above (Nomura, Blangiardo, Tsubokura, Ozaki, et al., 2016) 

found no significant association between the disease risks studied and the radiation levels in 

the non-evacuated/temporarily evacuated residents of Minamisoma City and Soma City.  

Radiation levels were estimated at an air dose rate of 0.25 to 0.5 µSv per hour (~2-4 mSv per 

year using the Government of Japan methodology). 
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DEVELOPING A NET RISK MODEL 

Introduction:  Modeling Radiogenic and Displacement Risks 

With access to at least some quantitative information about risks connected to displacement, it 

becomes possible to consider modeling the comparative risks of displacing a given population 

vice allowing them to remain in place despite some level of radiation risk. Development of such 

a model makes up the heart of this work. 

The first step to development of the model is the selection of which clinical outcomes to model.  

While an ideal case would include a comprehensive suite of outcomes, with detailed values and 

associated uncertainties, the paucity of published data limits the possibilities.  Further, many of 

the outcomes are closely associated and/or comorbid with each other.  Degradation of 

cardiovascular health is associated with disasters and displacement, but is also comorbid with 

and an end state of diabetes mellitus, for example.  After assessing the available information, 

three clinical outcomes were selected. 

Since the bulk of radiation regulation and standards are based on excess cancer risk, radiogenic 

cancer mortality was a straightforward choice on which to base the radiation risks.  Other end 

states, such as cataract formation or Acute Radiation Syndrome, are extremely unlikely to occur 

at the low exposure rates being considered here. 
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Two displacement risks were selected: Post-Traumatic Stress Disorder and diabetes mellitus.  

While some data were available for other outcomes, they were unsuitable for use for several 

reasons.  First, many of the general outcomes, such as increased mortality, lacked specific 

details on life shortening.  There was limited data available on several clinical outcomes closely 

related to (and often comorbid with) diabetes mellitus, such as increased obesity rates, 

degraded cardiovascular health, and conditions such as metabolic syndrome and hypertension.  

Similar difficulties limited the potential mental health outcomes – difficulties separating 

depression, anxiety, suicidal behaviors and substance abuse, coupled with a paucity of 

quantitative studies.  These outcomes were excluded because of the complexity that would be 

introduced with the comorbidities, especially given the relatively small number of studies 

available. 

Strict vs. Extrapolated Model 

Some data were only available for limited age groups, discussed in more detail below.  As such, 

two variants of the model were prepared.  The strict model only applies excess risk to the 

populations matching those described – for example, excess diabetes mellitus was only studied 

in persons aged 40-75 at the time of the Fukushima disaster.  The strict model applies that 

excess morbidity to the matching age groups.  A second variant, the extrapolated model, 

ascribes some moderate level of excess morbidity to other age groups; for example, again in 

the case of diabetes, 50% of the excess for persons aged 40-49 was assigned to persons aged 

30-39. 
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Modeling Radiation Doses 

As noted previously, predicting radiation doses to a population is a highly subjective 

proposition, with several available methodologies, each subject to a range of interpretations.  

In order to model the risk, several elements are needed.  First, some estimate of the dose rate 

is needed, which requires in turn a starting exposure rate, and an effective half-life.  The model 

handles radiation in a simple manner, as its purpose is not to provide a sophisticated 

population dose estimate.  An initial exposure rate (𝐷̇0) is provided (default is 0.04 Gy per year, 

or 40 mGy/y), along with an effective half-life (default is 5 years) and the duration of exposure 

(default is 20 years).  These parameters are used to generate two integrated doses provided in 

the output.  The first, and worst case, is a dose based on the U.S. EPA methodology, which 

holds the exposed population in place, without shielding or time spent elsewhere, for the entire 

exposure period.  The second, more realistic (but still quite conservative) method is based on 

the methodology employed by the Government of Japan (GOJ).  The primary difference 

between the two is that the GOJ methodology results are 60% of the EPA results, accounting 

modestly for time spent indoors and in places with little or no excess radiation exposure.  With 

the youngest age groups divided into 5-year blocks (e.g. 0-4, 5-9, etc.) the model integrates the 

dose (D) over 5 year periods according to Equation 4.  The dose is recalculated and reapplied 

for each 5-year block of the supplied duration. 

Equation 4 Total Dose During Time Interval t (Johnson, 2017) 

𝐷 =  𝐷̇0𝜆𝐸 (1 − 𝑒−𝜆𝐸𝑡) 
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where 

Equation 5 Effective Decay Constant 

𝜆𝐸 =  0.693𝑇𝐸  

There are several built-in assumptions to the radiation code.  First, that the measured ambient 

dose rate is the H*(10) dose, requiring no conversion or weighting to relate to whole-body 

doses among the affected populations.  Second, that the population and its demographic 

distribution are stable – the number of people in entering and leaving each age and sex 

grouping remains the same.  Third, that the effective half-life remains stable over the period of 

interest.  In this work, the effective half-life includes the effects of weathering, decay, and 

decontamination.  The effective half-life of radiation exposures in the areas affected by the 

releases from the Fukushima disaster, for example, have been estimated to be 3.2 ± 0.5 years. 

(Hayes, 2019). 

 

Units for Quantifying Risk 

A net risk model necessarily requires quantification of both the risks of the potential radiation 

exposure and the risks of displacement.  Ideally, a decision maker would be able to make a 

determination to displace a given population due to a potential radiation hazard only when the 
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risk of remaining is greater than the risk of relocation, essentially scoring each risk separately 

and comparing the two.  This requires a common scale of risk, with units that cover both 

radiological and non-radiological impacts.  

The World Health Organization (WHO) has developed a system for assessing the global burden 

of disease, including measures of detriment due to a wide range of conditions.  (World Health 

Organization, 2017)  A Disability-Adjusted Life Year (DALY) is a summary measure combining 

years of life lost through premature death (YLL) with years of healthy life lost due to disability 

(YLD).  A set of tabulated Disability Weights accounts for differing detriments of 234 different 

diseases and injuries.  The WHO includes data on cancers, post-traumatic stress disorder 

(included under anxiety disorders), diabetes, obesity, hypertension and more.  Years of life lost 

have also been considered by radiation standards-setting bodies such as BEIR, who found that 

the typical fatal solid cancer resulted in the loss of 11 years of life in both males and females, 

while fatal leukemias resulted in the loss of 12 years of life in males and 13 years of life in 

females. (Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, 

2006) 

In calculating DALYs for a given clinical outcome, Equation 6 is used: 

Equation 6 Disability-adjusted Life Year Calculation 

𝐷𝐴𝐿𝑌(𝑐, 𝑠, 𝑎) = 𝑌𝐿𝐿(𝑐, 𝑠, 𝑎) + 𝑌𝐿𝐷(𝑐, 𝑠, 𝑎) 

where c is the cause, s is the sex, and a is the age. 
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The typical years of life lost for many conditions can be found in the literature or, as noted 

above, have been assessed by standards-setting bodies, and is a measure of premature death 

based on a hypothetical lifespan, “thought likely to be achievable by a substantial number of 

people who are alive today.” (World Health Organization, 2017)  Literature values may differ 

from the WHO values in that the WHO methodology assumes an ideal, disease- and injury-free 

lifespan of 91.9 years for both males and females, while other authors may use other values, 

based on national or regional life tables (e.g. Pham et al., who used the Japan Life Tables for 

1995 in their study of cancer YLLs. (T. M. Pham et al., 2009))  The general formula for YLL at an 

attained age a is shown in equation 5. 

Equation 7 General formula for YLL 

𝑌𝐿𝐿𝑐(𝑎) = ∑ 𝑚𝑐(𝑎, 𝑠) × 𝐿(𝑎, 𝑠)𝑎,𝑠 ∑ 𝑚𝑐𝑎,𝑠 (𝑎, 𝑠)  

where m is the number of mortalities at age a and sex s from cause c, and L is the loss function 

describing the standard expected life remaining for an individual of sex s in good health at age 

a.    

The calculation of YLD for each cause c is shown in Equation 8: 

Equation 8 Calculation of YLD 

𝑌𝐿𝐷𝑐(𝑠, 𝑎) = ∑ 𝑝𝑐(𝑠, 𝑎) × 𝑛(𝑠, 𝑎) × 𝑑𝑐 × 𝑑𝑤𝑐𝑠,𝑎  
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where p is the prevalence of a given condition, n is the size of the affected population, d is the 

duration of the condition, and dw is the weight assigned to the condition.  If the condition 

persists for the remainder of life, then dc becomes: 

Equation 9 Calculation of Duration of Condition When it Extends to End of Life 

𝑑𝑐 = 91.9 − 𝑎 − 𝑌𝐿𝐿𝑐(𝑎) 

in accordance with the WHO methodology. 

Selection of Modeled Clinical Outcomes and Quantitative Basis 

To construct DALYs for the outcomes under consideration, values are required for the incidence 

and duration of the condition, the disability weights (per WHO), and the associated Years of Life 

Lost. 

Excess Radiogenic Cancer - DALYs 

As noted previously, cancer mortality is the primary endpoint considered by standards-setting 

bodies and regulators in low-dose and low-dose-rate scenarios.  For this work, the BEIR age- 

and sex-based cancer mortality risk values in Table 2 form the starting point for the radiation 

module. 
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Cancer YLLs (sometimes Average YLL (AYLL) is used) have been well studied, and some 

standards-setting bodies have developed consensus values.  Table 12 summarizes YLL values for 

cancer from selected sources.   

Table 12 Years of Life Lost Due to Cancer Mortality - Selected References 

Author/Source Region 

Male YLL 

(years) 

Female YLL 

(years) Data Year Reference 

BEIR Global 11 (solid) 

12 (leukemia) 

11 (solid) 

13 (leukemia) 

Not 

specified 

(Committee to Assess Health 

Risks from Exposure to Low 

Levels of Ionizing Radiation, 

2006) 

Brustugun et 

al. 

Norway 12.7 (all 

cancers) 

14.9 (all cancers) 2012 (Brustugun, Moller, & Helland, 

2014) 

Burnet et al. UK 12.5 (solid)8 

13.6 (leukemia)8  

2004 (Burnet, Jefferies, Benson, 

Hunt, & Treasure, 2005) 

NIH US 14.7 (all 

cancers) 

16.6 (all cancers) 2015 (National Institutes of Health, 

2019) 

Pham et al. Japan 13.6 17.5 2003 (T. M. Pham et al., 2009) 

 

The WHO, in assessing the global burden of cancer, estimates that YLL makes up 96% of the 

total DALY for cancer (Global Burden of Disease Cancer et al., 2017).  That is, YLD makes up only 

4% of the DALY.  Other studies addressing the proportions making up the overall DALY found 

similar results, with allowances for variations in methodologies.  Table 13 summarizes the 

percentages of YLL that make up the overall DALY for all cancers found in selected references.  

The Shimada et al. study was somewhat of an outlier, having used an older 2004 WHO 

 
8 Results were for entire population 



53 

 

methodology (World Health Organization, 2004) with sharply different disability weights. 

(Shimada & Kai, 2015)  Disability weights for cancer were heavily revised in 2010 and have been 

only slightly modified since. (World Health Organization, 2017) 

Table 13 Percentage of YLL in DALY, all cancers - selected references 

Author/Source Region % YLL in DALY 

Data 

Year Reference 

WHO Global 96% 2015 (Global Burden of Disease 

Cancer et al., 2017) 

Shimada et al. Japan 88% 2010 (Shimada & Kai, 2015) 

Pham et al. Japan 93.8% 2000 (T.-M. Pham et al., 2011) 

Sakia et al. Asia 95.6% (male) 

92% (female) 

2008 (Saika & Machii, 2013) 

Murillo-Zamora 

et al. 

Colima, 

Mexico 

87.4% (male) 

93.7% (female) 

2014 (Murillo-Zamora et al., 2018) 

GBD 

Collaboration 

US 93.4% (male) 

93.1% (female) 

2017 (Global Burden of Disease 

Collaborative Network, 2018) 

GBD 

Collaboration 

Global 97.1% (male) 

96.1% (female) 

2017 (Global Burden of Disease 

Collaborative Network, 2018) 

GBD 

Collaboration 

India 98.5% (male) 

97.8% (female) 

2017 (Global Burden of Disease 

Collaborative Network, 2018) 

 

For model use, a decision was taken to consider only YLL from cancer, as the YLD would 

contribute only on the order of 4-6% to the value.  Cancer YLLs for males were generally found 

to be lower than YLLs for females.  The male YLL for all cancers was chosen to be 14 years, in 

between published values for Japan and the United States noted in Table 12.  Female YLL was 

chosen as 17 years for all cancers.  Table 14 summarizes the model parameters for radiogenic 

cancers. 
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Table 14 Summary of Model Parameters for Radiogenic Cancer 

Incidence Per Table 2 

Duration n/a (only YLL considered) 

Disability Weight n/a (only YLL considered) 

Male YLL 14 years 

Female YLL 17 years 

 

Displacement Effects – DALYs 

Selecting effects suitable for modeling posed several challenges.  Even with the increased 

reporting of clinical outcomes attributable to displacement, many outcomes had only limited 

sample size or a small number of studies, or both.  Further, many outcomes were intertwined 

and difficult to impossible to assess separately.  After consideration of comorbidity and data 

strength, the two primary measures selected for inclusion were PTSD and diabetes milletus.  

For reasons noted below, AUD was selected as an additional measure. 

Post-Traumatic Stress Disorder – DALYs 

PTSD is one of the most well-documented and quantified outcomes of disasters in general, and 

some data is available regarding the time course and the relative prevalence among evacuees.  

PTSD is not directly associated with mortality, though it is routinely comorbid with conditions 

that are, such as depression or substance abuse.  

DALYs for PTSD, therefore, are derived from YLDs.  The disability weights assigned to PTSD fall 

under the health state of Anxiety Disorders under the WHO rubric (World Health Organization, 

2017).  The WHO assigns weights to Mild (0.030), Moderate (0.133) and Severe (0.523) Anxiety 
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Disorders.  Lacking data on the specific clinical states of individual patients suffering from PTSD, 

the model makes use of the Moderate disability weight of 0.133.  For model purposes, excess 

incidence of PTSD is selected to be +7% for male evacuees, and +8% for females, in line with Oe 

et al. (Oe et al., 2016).  Information about the correlation of age with PTSD morbidity is 

conflicted; Oe et al. is one of the primary sources of information on PTSD in displaced 

populations and did not discuss results for persons aged 0-19, so the strict model does not 

apply any excess PTSD to these age groups.  The extrapolated model applies the same values to 

these age groups as for 20+ year age groups.  PTSD is modeled to begin immediately after the 

event. 

Duration for PTSD was selected based on the mean values identified by Kessler et al. for man-

made disasters of 41.3 months (R. C. Kessler et al., 2017).  Table 15 summarizes the model 

parameters used for Post-Traumatic Stress Disorder. 

Table 15 Summary of Model Parameters for Post-Traumatic Stress Disorder 

Incidence Male +7%, Female +8% 

Duration 41.3 months 

Disability Weight 0.133 

Male YLL n/a (only YLD considered) 

Female YLL n/a (only YLD considered) 

 

Diabetes Mellitus – DALYs 

Diabetes was selected for several reasons.  First, quantitative studies of diabetes prevalence 

among disaster evacuees are relatively new, with the first being identified only in 2015 (Satoh 
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et al., 2015).  Second, diabetes is well studied, with documented time-course and detriment.  

Finally, it is one of the major end-states of some of the other clinical outcomes reported, such 

as obesity and waist size. 

Quantitative values for excess diabetes for use in the model were drawn from Nomura et al. 

(Nomura, Blangiardo, Tsubokura, Ozaki, et al., 2016), as this study directly compared pre- and 

post-event health records among both displaced and non-displaced populations (see Table 11).  

Staying within the bounds of the published results, the model assumes that excess diabetes 

incidence occurs in the affected population for three years, increasing linearly at 0.8% per year 

to reach the 2.4% differential reported by Nomura et al. at the third year.  It is further assumed 

(again, staying within the bounds of the published results) that this increased incidence occurs 

only in persons aged 40-75 at the time of the displacement.  Given the very small (<<1%) 

remission rates noted by Karter et al. (Karter et al., 2014), remission is ignored. 

The life-shortening impacts of diabetes have been studied for some time, with peer-reviewed 

papers dating back into the early 1970s (see, for example, (I. I. Kessler, 1971).  While some 

papers report crude estimates of life shortening overall (e.g. a worldwide YLL of 5-10 years, 

(Panzram, 1987)), most lay out a loss of life expectancy by age and sex.  Improvements in 

diagnosis and treatment have resulted in decreases in detriment – the loss of LE for men 

diagnosed within a year of birth in Canada dropped from 12.8 years in 1995/6 (Manuel & 

Schultz, 2004) to 9.3 years in 2004/6 (Loukine, Waters, Choi, & Ellison, 2012).  Table 16, Table 

17, and Table 18  summarize YLLs by age and sex from several studies.  Each study used 
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somewhat differing (but comparable) methodologies to derive an expected YLL based on 

attained age.  Table 19 shows the loss of life expectancy from birth(Manuel & Schultz, 2004), 

and Table 20 summarize YLLs from Narayan et al. (Narayan, Boyle, Thompson, Sorensen, & 

Williamson, 2003), who elected to identify the age at which a diagnosis was made and estimate 

YLL from that point. 

Table 16 Years of Life Lost for Diabetes – Per Magliano et al. 

Study Region: Australia Data Year: 2004/5 Reference: (Magliano et al., 2008) 

Age (attained) Male YLL Female YLL 

25 10 7.6 

35 8.3 6.8 

45 6.9 5.9 

55 5.5 4.8 

65 4.0 3.4 

 

Table 17 Years of Life Lost for Diabetes – Per Loukine et al. 

Study Region: Canada Data Year: 2004-2006 Reference: (Loukine et al., 2012) 

Age (attained) Male YLL Female YLL 

1 9.3 10.1 

20 8.8 9.2 

55 5.0 6.0 

80 1.9 2.6 

 

Table 18 Years of Life Lost for Diabetes – Per Turin et al. 

Region: Japan Data Year: (not specified) Reference: (Turin et al., 2012) 

Age (attained) Male YLL Female YLL 

40 8.8 6.6 

45 4.4 6.8 

50 4.9 7.0 

55 4.9 6.5 

60 4.0 5.6 
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65 3.4 5.9 

70 2.8 4.3 

75 2.2 4.6 

80 2.3 3.0 

85 0.9 1.9 

 

Table 19 Years of Life Lost in Ontario Canada for Diabetes 

Study Region: Ontario, Canada Data Year: 1996/7 Reference: (Manuel & Schultz, 

2004) 

Age (attained) Male YLL  Female YLL 

12+ 12.8 (from birth) 12.2 (from birth) 

 

Table 20 Years of Life Lost in the United States for Diabetes (Narayan et al., 2003) 

Region: United States Data Year: 2000 Reference: (Narayan et al., 2003) 

Age (at diagnosis) Male YLL Female YLL 

10 18.7 19.0 

20 17.2 17.9 

30 14.5 16.5 

40 11.6 14.3 

50 9.2 12.1 

60 7.3 9.5 

70 5.3 6.5 

80 3.8 4.1 

 

As the primary study that considered excess diabetes morbidity due to displacement only 

considered persons aged 40-74, the strict model calculates DALYs for the same age range, to 

avoid unsupported extrapolation and overestimation of risk.  The age- and sex-based YLLs from 

Narayan et al. were selected for model use.  The extrapolated model expands on this slightly, 

setting values for ages 30-40 and 80+ at half that of the 40-50 range. 
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The WHO-assigned disability weights for diabetes vary depending on the particular stage of the 

disease, and for specific sequelae (e.g. neuropathy, or gastric bleeding).  Lacking data on the 

specific clinical states for individual patients, the primary health state of interest is what the 

WHO terms chronic kidney disease stage IV, for which the weight is 0.104 (World Health 

Organization, 2017).  This represents the general condition of controlled diabetes, without need 

for dialysis and lacking other side effects; this is also least-severe state considered by the WHO 

for diabetes.  As diabetes is effectively a remainder-of-life disease, the duration of the 

condition, for modeling purposes, is set per Equation 9. 

Table 21 summarizes the model parameters used for diabetes mellitus. 

Table 21 Summary of Model Parameters Used for Diabetes Mellitus 

Incidence +0.8% per year over 3 years for ages 40-75 

Duration Remainder of life per Equation 9 

Disability Weight 0.104 

Male YLL Per Table 20 for ages 40+ 

Female YLL Per Table 20 for ages 40+ 

 

Uncertainties and Significance 

The model makes use of many parameters for which uncertainties are not available.  Many of 

the published YLLs, for example, do not include uncertainties, and the weighting factors in the 

DALYs are based on consensus standards developed by the World Health Organization.  Rather 

than mix these values with those for which uncertainties are available, the decision was made 
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to rely on significant figures to express uncertainty.  The model outputs will be presented with 2 

significant figures. 

Model Description 

The model is coded in R (R Core Team, 2017); the code is included and described in detail at 

Appendices 1-3.  Table 22 shows the model inputs and default values.  Default values in this 

case are those utilized by the model if the user provides no other input. 

Table 22 Model Inputs and Default Values 

Field Description Default Value 
fips_code 2-letter country codes used by US Census Bureau “US” 
year 4-digit year for census data 2012 
starting_exposure_rate The starting exposure rate for estimating dose 

(Gy/y) 

0.04 

effective_half_life The effective half-life of exposure rates, including 

weathering and decay (years) 

5 

duration Duration for exposure (years) 20 
pop_size Size of the affected population (#) 100,000 

 

Population data is drawn from the US Census Bureau (U.S. Census Bureau, 2010).  A function 

was developed in R to obtain national-level population data, broken down by age and sex.  This 

data was then combined to match the age categories utilized by the BEIR VII (e.g. Table 2).  

Additional functions were developed for data visualization as described in Appendix 1, but were 

not central to the function of the model. 
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Description of Model Inputs 

The U.S. Census Bureau (U.S. Census Bureau, 2010) maintains a set of international population 

data, accessible via the internet.  The model includes a pre-constructed data call, requiring only 

two inputs, fips_code and year.  Although the National Institutes for Science and Technology 

have since replaced the Federal Information Processing Standard (FIPS) 2-letter codes with a set 

of codes based on ISO 3166 (Federal Geographic Data Committee, 2008), the current 

application programming interface (API) still utilizes the older codes.  The default country for 

the model is the United States (fips_code “US”) and the default year for population data is 

2012. 

The inputs starting_exposure_rate and effective_half_life are used in the radiation model as 

explained above.  The default value for starting_exposure_rate of 0.04 Gy/y is double the EPA 

standard for population displacement, but is only utilized when the user provides no other 

value. 

The input population size is a convenience; the model works internally entirely based on 

proportions of age and sex.  The default value, 100,000, is arbitrary.  A value of 1 will yield the 

results equivalent to DALYs per capita for the affected population as used, for example, by 

Murakami et al. in their paper on diabetes risks. (Murakami et al., 2017) 
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Description of Model Outputs 

The core function of the model does not produce user-readable output; rather, it produces a 

data frame intended for further processing and plotting.  Table 23 summarizes the output fields 

of the risk comparison module, described further in Appendix 2 – Risk Comparison Codes. 

Table 23 Description of Model Output Fields 

Field Description 
Country 2-letter FIPS code (as provided by user) 
Pop_Size Population size (as provided by user) 
Start_Exp Starting exposure rate (as provided by user) 
Eff_Half Effective half-life (as provided by user) 
Duration Duration of exposure under consideration (as provided by user) 
EPA_DALY DALY generated using US EPA methodology with all dose applied at the 

beginning of exposure period (depreciated) 
GOJ_DALY DALY generated using Government of Japan methodology with all dose 

applied at the beginning of exposure period (depreciated) 
BLOCK_EPA_DALY DALY generated using US EPA methodology with dose applied in 5-year 

blocks 
BLOCK_GOJ_DALY DALY generated using Government of Japan methodology with dose 

applied in 5-year blocks 
PTSD DALY generated from excess PTSD as a result of displacing the modeled 

population 
Diabetes DALY generated from excess diabetes mellitus as a result of displacing 

the modeled population 
Displaced_DALY Total DALY generated as a result of displacing the modeled population 

(sum of the PTSD and diabetes mellitus DALYs) 

 

Of note, the fields EPA_DALY and GOJ_DALY are generated, but not utilized further in this work.  

They represent the DALY assuming that the total dose derived from the entire exposure period 

is delivered at once.  This is an absolute worst case, and sharply exaggerates the radiation risk.  

These output fields were left in place but not processed further. 
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MODEL RESULTS 

Broadly speaking, the model calculates two radiation DALYs, based on the EPA and GOJ 

methodologies respectively, which depend on the demographics of the population, the starting 

dose rate, and the effective half-life of that dose rate.  It also calculates a strict and an 

extrapolated DALY for displacement, depending on the demographics of the population.  In the 

case of a single run of the model, using a US-proportioned population, a starting dose rate of 20 

mSv/y, and an effective half-life of 5 years, the radiation DALYs would be 0.070 y for the EPA 

methodology and 0.042 y for the GOJ methodology.  These DALYs represent the per-capita 

disability-adjusted years of life lost due to excess cancers if the population remained in the 

elevated radiation area.  The calculated DALYs for displacement, shown in Table 24, total 0.15 y 

for the strict model, and 0.19 for the extrapolated version; both exceed the radiation DALY by a 

large margin. 

Table 24 Sample of Displacement DALYs for a US-Proportioned Population 

 Strict Extrapolated 

Data Year PTSD DALY 

(y) 

Diabetes DALY 

(y) 

PTSD DALY 

(y) 

Diabetes DALY 

(y) 

2012 0.0074 0.14 0.020 0.17 

 

Continuing this example, we can vary the starting dose rate.  Plotting the results, as shown in 

Figure 3, allows the user to consider the “crossover” points at which the anticipated DALY cost 

of excess cancer mortality begins to exceed the DALY cost of displacement.  In this example, the 

radiation risk utilizing the EPA methodology exceeds the strict displacement DALY at a starting 
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dose rate of 42 mSv/y, while the GOJ methodology does not exceed the strict displacement 

DALY until a starting dose rate of 70 mSv/y. 

 

Figure 3 Sample DALYs for a US proportioned Population, with Teff of 5 years 

The slope of the radiation DALY line depends on the effective half-life and is unique to each 

population demographic mix.  Figure 4 shows DALYs for the same US-proportioned population, 

with effective half-lives of 3, 5, and 7 years. 
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Calculated DALYs 

 

Figure 4 Sample DALYs for a US-proportioned Population, with 3-, 5-, and 7-year Teff 

As expected, for a given starting dose rate, a longer half-life generates a larger cumulative dose 

and hence a larger DALY.  This lowers the crossover point, meaning that displacement becomes 

the less-costly (in terms of DALY) option at a lower starting dose rate. 

Similar results are obtained when examining other populations.   The next example shows the 

effect of demographic profile, with Nigeria for a younger population, and Japan for an older 

one. 
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Displacement DALYs for a Nigerian-proportioned population differed somewhat from the 

United States-proportioned previous calculation, as portrayed in Table 25.  The strict model, 

which excludes PTSD in persons under 20 years of age, and diabetes mellitus in persons under 

40, yields significantly lower DALYs for a Nigerian population.  The extrapolated model reduces 

this effect somewhat, but major contributor to the DALY in either case is excess diabetes.  The 

extrapolated model still excludes persons under 30 years of age, so effects on Nigeria’s very 

young population (see Figure 1) might still not be adequately captured by the model. 

Table 25 Sample of Displacement DALYs for a Nigerian-Proportioned Population 

 Strict Extrapolated 

Data Year PTSD DALY 

(y) 

Diabetes DALY 

(y) 

PTSD DALY 

(y) 

Diabetes DALY 

(y) 

2012 0.0046 0.060 0.020 0.089 

 

When the DALYs from excess radiogenic cancers are brought in, as in Figure 5, differences 

between the two examples become more stark.  With ages skewed much younger, a Nigerian-

proportioned population is more at risk from radiation.  The crossover point with the strict 

model for a 5-year half-life using the EPA methodology is only 14 mSv/y, whereas  the US-

proportioned population it was 42 mSv/y.  The crossover for the extrapolated displacement 

line, likely more appropriate for such young demographic, is still only 23 mSv.  This wide 

difference suggests, as anticipated, that the radiation risks for a young population may exceed 

the risks of displacement at much lower levels than for an older one. 
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Figure 5 Sample DALYs for a Nigerian-proportioned Population, with 3-, 5-, and 7-year Teff 

Finally, we look at an older population.  Here we see the largest DALYs for displacement, shown 

in both in the strict and in the extrapolated models.   

Table 26 Sample of Displacement DALYs for a Japanese-Proportioned Population 

 Strict Extrapolated 

Data Year PTSD DALY 

(y) 

Diabetes DALY 

(y) 

PTSD DALY 

(y) 

Diabetes DALY 

(y) 

2012 0.0082 0.16 0.020 0.19 

 

Reflecting the greater age of the population, the crossover points, shown in Figure 6, are 

pushed much further to the right; the EPA methodology with a 5-year half-life crosses the strict 
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model for displacement at 53 mSv/y, far higher than the 42 mSv/y seen for the US population 

or the 14 mSv/y for the Nigerian population. 

 

Figure 6 Sample DALYs for a Japanese-proportioned Population, with 3-, 5-, and 7-year Teff 

Comparisons between countries can be illustrated for each given effective half-life; the data 

remains unchanged, but is merely plotted differently for illustrative purposes.  Figure 7, Figure 

8, Figure 9 show the DALYs for 3-, 5- and 7-year half-lives respectively, with the crossover points 

for each population highlighted. 
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Figure 7 Comparison of DALYs for US, JA, and NI populations at Teff = 3 years 
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Figure 8 Comparison of DALYs for US, JA, and NI populations at Teff = 5 years 
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Figure 9 Comparison of DALYs for US, JA, and NI populations at Teff = 7 years 
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DISCUSSION 

Few papers have examined the relative health impacts of displacement against the hazard or 

disaster causing relocation.  Some works focused on economics have suggested that post-

disaster displacement costs go far beyond the up-front costs of housing and supporting 

evacuees (see Waddington et al. (Waddington, Thomas, Taylor, & Vaughan, 2017), Park et al. 

(Park, Cho, & Rose, 2010) and Deryungina et al. (Deryugina T., 2014) for discussions related to 

the Chernobyl and Fukushima disasters, as well as Hurricane Katrina).   

Some research has been done comparing the avoided risks of radiation after Fukushima to the 

loss of life during the evacuation process among older populations in care facilities, finding that 

the risk to patients and staff from radiation was dwarfed by the excess mortality among 

residents. (Murakami et al., 2015)  

More interestingly, Murakami et al. followed up their 2015 paper with one examining the 

overall risk of excess diabetes versus that of radiogenic cancers.  (Murakami et al., 2017)  They 

reviewed about 28,000 medical records from the cities of Minamisoma and Soma, with some of 

the same limitations noted above (only considering excess diabetes in 40-74 year olds, for 

example).  They did not distinguish evacuees from non-evacuees, but did note that 15.1% of the 

population considered had lived in mandatory evacuation areas, that is, locations experiencing 

long-term dislocation.  They then considered the estimated LLEs from excess diabetes post-

disaster and from radiogenic cancers based on doses estimated for each resident.  They used a 

detailed estimate for radiation doses in the first year of the incident, then generalized to 0.55 
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µSv/hr (4.8 mSv/year) based on post-decontamination measurements in the area. Their model 

gave an LLE for the estimated radiation exposures of 0.69 x 10-2 years (95% CI: 0.61-0.79) for 

the entire population, while excess diabetes gave 2.6-4.1 x 10-2 years (the paper considered 

several scenarios for future diabetes prevalence).  

Murakami et al. used very different methodologies to arrive at their conclusions from this work, 

as well as a different measure – LLE versus DALY.  Nonetheless, as a very rough comparison, 

Table 27 presents model results using 4.8 mSv/year as a starting effective dose rate, along with 

a 3.5 year half-life and a Japanese population distribution.  Murakami et al. used tailored 

factors (e.g. in line with the ICRP methodology noted above) which generated significantly 

smaller radiation effect sizes than allowed for in either the EPA or GOJ model, while this work 

considers not just the LLE for diabetes but the DALY as a whole.  Murakami found  that the ratio 

of diabetes LLE to radiation LLE was between 3.7 and 5.9; this work put that ratio at roughly 2. 

Table 27 Model results for a Japanese population using parameters adapted from Murakami et al. 

  DALY (10-2 y) 

Dose Methodology Diabetes  Total Displacement  

EPA GOJ Strict Extrapolated Strict Extrapolated 

12 7.6 16 19 16 21 

 

Policy Implications 

Overall, this work suggests that, at low radiation levels, the risks of displacement can exceed 

those of the avoided radiation exposures, especially in older populations.  Within the United 
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States, with a median age of 37.5 years old, county-level populations range in age from 22.4 to 

66.6 (U.S. Census Bureau, 2010).  These populations, in turn, have widely differing levels of risk 

from both radiation exposure and from displacement. 

It is highly unlikely that the US public would accept a purely risk-based relocation policy, 

responding to a hazard differently due to demographic variations in the affected populations.  

Rather, this work aims to show that the risks of dislocation are of a similar magnitude to, and 

can readily exceed, those of chronic low-level radiation exposures.  The US relocation guide – 

20 mSv per year in the first year, 5 mSv per year in the following years – is quite low and, 

depending on the effective half-life and demographics of the population involved, may drive 

relocations that cause greater net harm than the averted radiation hazard.  Efforts by the ICRP 

to reduce the guidelines to 1 mSv per year (ICRP, 2009) may not represent a risk reduction, but 

rather a risk increase.  Policy makers might consider comparing these excess risks in developing 

new guidance.  It may be possible, long-term, to increase risk awareness in the general 

population, allowing better risk-informed policy decisions in the future. 

An intermediate step towards a risk-based policy for disaster management might include steps 

such as pre-assessing populations at the county or regional level for displacement risk, then 

assessing specific hazard scenarios – this could take place at the direction of the NRC under the 

auspices of its disaster planning mission. 

Future work should include a broad, multidisciplinary effort to examine disaster risks 

holistically, to potentially establish a framework for inserting risk-based decision making into 
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disaster response policy.  Additional focused effort should examine improving broad public 

understanding of risk and risk assessment, particularly as applied to governance and public 

policy. 

 

Further, most of the effects on displaced populations are mutable – PTSD is a treatable 

condition; excess diabetes mellitus appears to be related to lifestyle changes and loss of social 

networks, and so forth.  More intense efforts to treat and prevent these conditions may result 

in reduced risk.  Pre-planning for, and post-disaster implementation of mitigation strategies can 

reduce both incidence and duration of negative clinical outcomes.  This work assumes a 

“steady-state” support network for both displaced and non-displaced populations – no 

significant changes to resource availability and services that would affect lifestyles and 

community health. 

Limitations of This Work 

The primary limitation of this work is the relative paucity of quantitative data on clinical 

outcomes among displaced populations.  This work relies heavily on research originating in the 

Fukushima disaster of 2011, and as such is based on the affected Japanese populations.  

Generalizing from this specific disaster to others in other parts of the world is difficult, and so 

the results of this model should be used with caution.  The diabetes papers, in particular, 

focused on persons 40-74 based on the timing of annual checkups in the Japanese National 



76 

 

Healthcare System, with no data available on excess morbidity among younger or older 

populations.  

Future Development 

A number of areas are ripe for future work in this area.  First and foremost, expanded research 

on the health of displaced populations would greatly improve the model, and give it a much 

more firm statistical foundation.  As the primary health outcome of interest, examination of 

diabetes mellitus rates in other regions of the world affected by disasters and displacement 

should be a priority as it appears to be a significant risk.  Substance use and abuse rates are 

culturally linked – examining post-disaster behaviors in multiple cultural contexts would also be 

fruitful. 

Two aspects of the code would reward future development.  On a pragmatic level, coding of a 

user interface would ease the use of the model, currently run on a command-line interface 

within the R Studio development environment. (R Core Team, 2017)  Secondly, the US Census 

Bureau provides access to a number of databases for population information.  This work made 

use of the national-level databases, but the Bureau also maintains a different database down to 

the census block level.  Future work might include developing code to access that database to 

generate model populations tailored to specific regions of the country, perhaps at the county 

level, to allow emergency planners to consider what dislocation risks might be for the areas for 

which they have responsibility. 
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APPENDIX 1 – DEMOGRAPHIC CALCULATIONS AND ASSOCIATED R CODE 

This work utilizes several demographic tools, generated in the R programming language (R Core 

Team, 2017).  Each is described briefly in the following sections, followed by the code. 

Appendix 1A – R Function get_data_secure() 

The function get_data_secure() is a generic tool that gathers national-level demographic data 

from the United States Census Bureau via a secure Application Programming Interface (API).  

This API depends on an API key, which is unique to each user and is obscured here.  This 

function defaults to 2012 census data for the United States; the user can supply any 2-letter 

country code and year for which the Census Bureau has data.  The function divides the data 

into the 5-year age bins for ages 0-99 years, and a final “100+” bin; it is also divided by sex.  The 

output is a data frame of age bins, sex, and population.  The male population figures are 

returned as negative values for graphing convenience. 

This is the complete command line: 
get_data_secure(country = “US”, year = 2012) 
 

Where a variable in the command line is followed by an equals sign, it represents a default 

value. 
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This command will obtain the dataset for the U.S. in 2012, since this is the default: 
get_data_secure()  

 

This command line will obtain the dataset for Japan in 2015: 
get_data_secure(“JA”, 2015) 
 

The code is below: 

# created 8 Jan 2019  
 
# function get_data_secure(country="US", year=2012) 
# function that grabs US census data population data from census.gov 
# requires an API key 
# returns a dataframe with Age, Sex, and Population for every 5 year group 
# 0-4, 5-9, 10-14, etc. 
# 
# default country is US, year is 2012 
# example call: get_data_secure(country="JA", year=2010) 
# 
# does not depend on any other custom functions 
# 
library(reshape2) 
library(plyr) 
library(jsonlite) 
 
# country is the 2-letter FIPS code, default is "US"  
# also takes 2-letter state codes without problem 
# year is the 4-digit year of interest, default is 2012 
# for my purposes other country codes of note are NIgeria, 
# JApan, GM (Germany), BRazil, UK 
 
get_data_secure <- function(country="US", year=2012) { 
  # construct URLs for data request 
  # had to separate male and female because the URL gets too long! 
 
  # my_key is an API key specific to myself 
  # for distribution - change my_key 
  my_key <- "XXXXXXXXX" 
  c1 <- "https://api.census.gov/data/timeseries/idb/5year?" 
  m1 <- "get=MPOP0_4,MPOP5_9,MPOP10_14,MPOP15_19,MPOP20_24,MPOP25_29,MPOP30_34" 
  m2 <- ",MPOP35_39,MPOP40_44,MPOP45_49,MPOP50_54,MPOP55_59,MPOP60_64,MPOP65_69" 
  m3 <- ",MPOP70_74,MPOP75_79,MPOP80_84,MPOP85_89,MPOP90_94,MPOP95_99,MPOP100_" 
  f1 <- "get=FPOP0_4,FPOP5_9,FPOP10_14,FPOP15_19,FPOP20_24,FPOP25_29,FPOP30_34" 
  f2 <- ",FPOP35_39,FPOP40_44,FPOP45_49,FPOP50_54,FPOP55_59,FPOP60_64,FPOP65_69" 
  f3 <- ",FPOP70_74,FPOP75_79,FPOP80_84,FPOP85_89,FPOP90_94,FPOP95_99,FPOP100_" 
  c3 <- paste0("&FIPS=", country, "&time=", year, "&key=") 
  male_url <- paste0(c1, m1, m2, m3, c3, my_key) 
  female_url <- paste0(c1, f1, f2, f3, c3, my_key) 
  # I've frequently had to rerun these, maybe due to delays in establishing 
  # secure connections or downloading.  Not sure how to handle in the context 
  # of a function.  I don't think it's a code problem, just connectivity. 
  male_df <- fromJSON(male_url) 
  female_df <- fromJSON(female_url) 
   
  # because of the way the data comes in from census.gov, have to do some 
  # reshaping.  Drop cols 22 and 23, which echo the input country code and 



87 

 

  # year.  Drop row 1 which is the variable names.  Leaves a char vector 
  male_df2 <- male_df[,-(22:23)] 
  male_df2 <- male_df2[-1,] 
  female_df2 <- female_df[,-(22:23)] 
  female_df2 <- female_df2[-1,] 
   
  # fold cleaned up male and female vectors together with a pretty set of 
  # age ranges into a single data frame, then clean up 
  ages <- c("0-4","5-9","10-14","15-19","20-24","25-29","30-34","35-39","40-44", 
            "45-49","50-54","55-59","60-64","65-69","70-74","75-79","80-84", 
            "85-89","90-94","95-99","100+") 
  df <- data.frame(ages, male_df2, female_df2, stringsAsFactors = FALSE) 
  colnames(df) <- c("Age", "Male", "Female") 
  df$Female <- as.numeric(df$Female) 
  df$Male <- as.numeric(df$Male) 
  # set male pops as negative for later graphing.  Obviously delete 
  # or reset if actually using the numbers.  Just easier to do at this 
  # point than later 
  df$Male <- -1 * df$Male 
  df$Age <- factor(df$Age, levels = df$Age, labels = df$Age) 
  # take to long form, with Age (factor), Sex (factor), Pop (numeric) 
  df.melt <- melt(df,  
                  value.name='Population',  
                  variable.name = 'Sex',  
                  id.vars='Age' ) 
  # rev 6 Jan 2019 melt stopped correctly naming the columns so brute force 
  colnames(df.melt) <- c("Age", "Sex", "Population") 
   
  return(df.melt) 
} 

 

Appendix 1B – R Function demo_risk() 

The function demo_risk() performs two tasks; first, based on the demographic profile of the 

input country, it prints the overall value of cancer risk per 10,000 people per gray.  Then, it 

generates a plot pairing the population proportions with the cancer mortality risk proportions 

for the input country. This function depends on both get_data_secure() and on a data file, 

beir_vii_cancers.txt, set in the working directory.  Calls are similar to get_data_secure(), in that 

the user supplies a 2-letter country code (default, “US”) and year (default, 2012).  Note: this 

function was one of the first developed, and is only used for generating a few graphics.  It was 

not updated. 
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This is the complete command line: 
demo_risk(country = “US”, year = 2012) 
Where a variable in the command line is followed by an equals sign, it represents a default 

value. 

This command line will generate the risk value and plot for Japan in 2015: 
demo_risk(“JA”, 2015) 
 

The output would be: 

[1] "JA Total Cancer Mortality Risk per 10000 per Gy =  516.418061602261" 

 

and a plot (Figure 10)
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Figure 10: Example plot for function demo_risk() 

The code is below: 

# reviewed, tested, comments revised 13 Feb 2018 
# 
# depends on my function get_data_secure(), found in file get_pop_data secure.R 
# requires the file "beir_vii_cancers.txt" in the working directory 
# 
#this function produces a plot of all demographic contributions 
# to cancer risk, paired with their population proportions. 
# it also prints the value of excess cancer risk per 10000 people 
# per Gy of low LET radiation 
#  
library(tidyverse) 
library(reshape2) 
library(countrycode) 
 
demo_risk <- function(country = "US", year=2012) { 
  # pull in the BEIR VII table, peel out male and female mortality figures 
  beirvii_mm <- read_delim("beir_vii_cancers.txt", delim = " ", col_names = FALSE) 
  temp_names <- unlist(beirvii_mm[,1]) 
  beirvii_t <- t(beirvii_mm[, 2:ncol(beirvii_mm)]) 
  beirvii_t <- as.data.frame(beirvii_t, row.names = FALSE) 
  colnames(beirvii_t) <- temp_names 
 
  # convert to 1 Gy, and per-person  
  beirvii_t$male_incidence <- beirvii_t$male_incidence*10/100000 
  beirvii_t$female_incidence <- beirvii_t$female_incidence*10/100000 
  beirvii_t$male_mortality <- beirvii_t$male_mortality*10/100000 
  beirvii_t$female_mortality <- beirvii_t$female_mortality*10/100000 
 
  male_mort_table <- select(beirvii_t, male_mortality) 
  female_mort_table <- select(beirvii_t, female_mortality) 
 
  #pull in country pop fractions, fold bins to match BEIR 
  # a lot of tedious manual combining 
  # 0-4  5-9  10-14  15-19  20-29 (up by 10, 80 max) 
  pop_raw <- get_data_secure(country, year) 
  total_pop <- sum(abs(pop_raw$Population)) 
  pop_raw$Population <- pop_raw$Population/total_pop 
  pop_raw$Age <- as.character(pop_raw$Age) 
  pop_raw$Sex <- as.character(pop_raw$Sex) 
  pop_raw$Population <- abs(pop_raw$Population) 
  pop_frac_beir <- tibble(Age = "0", Sex = "0", Population = 0) 
  pop_frac_beir[1,] <- pop_raw[1,] 
  pop_frac_beir[2,] <- pop_raw[2,] 
  pop_frac_beir[3,] <- pop_raw[3,] 
  pop_frac_beir[4,] <- pop_raw[4,] 
  pop_frac_beir[5,] <- c("20-29", "Male",  
                       pop_raw[5,3] + pop_raw[6,3]) 
  pop_frac_beir[6,] <- c("30-39", "Male",  
                       pop_raw[7,3] + pop_raw[8,3]) 
  pop_frac_beir[7,] <- c("40-49", "Male",  
                       pop_raw[9,3] + pop_raw[10,3]) 
  pop_frac_beir[8,] <- c("50-59", "Male",  
                       pop_raw[11,3] + pop_raw[12,3]) 
  pop_frac_beir[9,] <- c("60-69", "Male",  
                       pop_raw[13,3] + pop_raw[14,3]) 
  pop_frac_beir[10,] <- c("70-79", "Male",  
                       pop_raw[15,3] + pop_raw[16,3]) 
  pop_frac_beir[11,] <- c("80+", "Male",  
                       pop_raw[17,3] + pop_raw[18,3] + 
                       pop_raw[19,3] + pop_raw[20,3] + 
                       pop_raw[21,3]) 
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  pop_frac_beir[12,] <- pop_raw[22,] 
  pop_frac_beir[13,] <- pop_raw[23,] 
  pop_frac_beir[14,] <- pop_raw[24,] 
  pop_frac_beir[15,] <- pop_raw[25,] 
  pop_frac_beir[16,] <- c("20-29", "Female",  
                       pop_raw[26,3] + pop_raw[27,3]) 
  pop_frac_beir[17,] <- c("30-39", "Female",  
                       pop_raw[28,3] + pop_raw[29,3]) 
  pop_frac_beir[18,] <- c("40-49", "Female",  
                       pop_raw[30,3] + pop_raw[31,3]) 
  pop_frac_beir[19,] <- c("50-59", "Female",  
                       pop_raw[32,3] + pop_raw[33,3]) 
  pop_frac_beir[20,] <- c("60-69", "Female",  
                       pop_raw[34,3] + pop_raw[35,3]) 
  pop_frac_beir[21,] <- c("70-79", "Female",  
                        pop_raw[36,3] + pop_raw[37,3]) 
  pop_frac_beir[22,] <- c("80+", "Female",  
                        pop_raw[38,3] + pop_raw[39,3] + 
                          pop_raw[40,3] + pop_raw[41,3] + 
                          pop_raw[42,3]) 
  pop_frac_beir$Population <- as.numeric(pop_frac_beir$Population) 
  male_frac <- pop_frac_beir[pop_frac_beir$Sex == "Male",3] 
  female_frac <- pop_frac_beir[pop_frac_beir$Sex == "Female",3] 
 
  #demographic risk contribution 
  male_risk <- male_frac * male_mort_table 
  female_risk <- female_frac * female_mort_table 
  total_risk <- sum(male_risk) + sum(female_risk) 
  # uncomment to see total pop risk - just a check 
  out_string <- paste(country, 
            "Total Cancer Mortality Risk per 10000 per Gy = ",total_risk*10000) 
  print(out_string) 
  # parsing out the age-based risk for plotting 
  under_20_risk <- sum(male_risk[1:4,]) + sum(female_risk[1:4,]) 
  mid_risk <- sum(male_risk[5:8,]) + sum(female_risk[5:8,]) 
  over_60_risk <- sum(male_risk[9:11,]) + sum(female_risk[9:11,]) 
   
  #parsing out the age-based population fractions for plotting 
  under_20_frac <- sum(male_frac[1:4,]) + sum(female_frac[1:4,]) 
  mid_frac <- sum(male_frac[5:8,]) + sum(female_frac[5:8,]) 
  over_60_frac <- sum(male_frac[9:11,]) + sum(female_frac[9:11,]) 
 
  #create vectors for plotting 
  risk_vec <- c(under_20_risk, mid_risk, over_60_risk) 
  risk_vec_proportion <- risk_vec/sum(risk_vec) 
  risk_vec_proportion <- signif(risk_vec_proportion, digits = 3) 
  pop_vec <- c(under_20_frac, mid_frac, over_60_frac) 
  pop_vec <- signif(pop_vec, digits = 3) 
 
  # Plotting 
  table_names <- c("Under 20 Years", "20 to 59 Years", "60 Years and Older") 
 
  pop_data <- tibble( 
    age_group = factor(table_names),  
    pop = pop_vec,  
    risk = risk_vec_proportion 
  ) 
  pop_data$age_group <- factor(pop_data$age_group, levels = table_names) 
  # A quick conversion of 2-letter (fips) country code to full name 
  country_name <- countrycode(country, "fips", "country.name") 
  pop_data <- as.data.frame(pop_data) 
  pop_data_m <- melt(pop_data) 
  country_demo_risk <- ggplot(pop_data_m, aes(x = age_group, y = value, fill = variable)) +  
    geom_bar(stat = "identity", position = "dodge", color = "black") + 
    theme_bw() + 
    theme(legend.text=element_text(size=8)) + 
    labs(x = "Age Group", y = "Proportion") + 
    labs(title = paste0(country_name, ": Demographic Contributions\nto Total Population and Total 
Risk")) + 
    scale_fill_brewer(name = NULL,  
                    labels = c("Population\nProportion", "Risk\nProportion")) + 
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    ylim(0,1) 
  plot_name <- paste0(country, "_demo_risk.png") 
  ggsave(plot_name, plot = country_demo_risk, width = 5, height = 4) 
 
  return(country_demo_risk) 
} 

 

 

Appendix 1C – Data File beir_vii_cancers.txt 

The data file beir_vii_cancers.txt is a simple extract of the BEIR VII Table 12D-2, Lifetime 

Attributable Risk of Cancer Mortality (Committee to Assess Health Risks from Exposure to Low 

Levels of Ionizing Radiation, 2006), condensed down to the data on all cancers by age and sex. 

This was directly incorporated into all functions except demo_risk(), as noted above. 

age 0 5 10 15 20 30 40 50 60 70 80 
male_incidence 2563 1816 1445 1182 977 686 648 591 489 343 174 
female_incidence 4777 3377 2611 2064 1646 1065 886 740 586 409 214 
male_mortality 1099 852 712 603 511 381 377 360 319 250 153 
female_mortality 1770 1347 1104 914 762 542 507 469 409 317 190 

 

Appendix 1D – R Function pop_pyramid() 

The function pop_pyramid() generates a waterfall chart that illustrates population sex and age 

proportions for the user-selected country and year.  It depends on the function 

get_data_secure() and, like that function, has the United States data for 2012 as its default. 

This is the complete command line: 
pop_pyramid(country = “US”, year = 2012) 
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Where a variable in the command line is followed by an equals sign, it represents a default 

value. 

This command line will generate a waterfall chart for Japan for 2015: 
pop_pyramid(“JA”, 2015) 
 

And the output would be a plot, Figure 11 

 

Figure 11 Example plot from the function pop_pyramid() 

The code is below: 

# file pop_pyramid.R 
# function pop_pyramid(country="US", year=2012) 
# 
# edited 28 May 2019 improved comments 
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# edited 06 Jan 2019 countrycode() changed its modifiers 
# reviewed, tested, comments modified 13 Feb 2018 
# 
# depends on my custom function get_data_secure(), found in the  
# file get_data_secure.R 
# default country is US, year is 2012 
# 
# example call: pop_pyramid("JA", 2010) 
# 
# generates a waterfall chart to show country demographics 
# displays and also saves in the current working directory 
# filename is XX_pyramid.png, where XX is the 2-letter country code 
# 
# uses function get_data_secure, which downloads from census.gov 
# and returns a data frame with Age(factor), Sex(factor), Pop 
# 
# a warning message of "removed # rows" means the scale has been exceeded 
# e.g. some population division is greater than 12% of the population 
library(gridExtra) 
library(jsonlite) 
library(ggplot2) 
library(countrycode) 
library(reshape) 
 
pop_pyramid <- function(country="US", year=2012) { 
  demographics <- get_data_secure(country, year) 
  # normalizes so as to get proportions 
  # comment out if you want actual population numbers 
  total_pop <- sum(demographics$Population[22:42])-sum(demographics$Population[1:21]) 
  demographics$Population <- demographics$Population/total_pop 
  country_female <- subset(demographics, Sex == "Female") 
  country_male <- subset(demographics, Sex == "Male") 
 
  # A quick conversion of 2-letter (fips) country code to full name 
  # tweaked 06 Jan 2019 because of changes to countrycode() 
  country_name <- countrycode(country, "fips", "country.name") 
 
  # generate the waterfall diagram 
  country_pyramid <- ggplot(demographics, aes(x = Age, y = Population, fill = Sex)) +  
    geom_bar(data = country_female, stat = "identity") +  
    geom_bar(data = country_male, stat = "identity") +  
    scale_y_continuous(breaks = seq(-0.12, 0.12, 0.03), 
                     labels = as.character(c(seq(0.12, 0, -0.03),  
                                             seq(0.03, 0.12, 0.03))), 
                     limits = c(-0.12, 0.12)) +  
    coord_flip() +  
  # this sets to b&w 
  # use scale_fill_brewer(palette="Set1") for nice red and blue 
    scale_fill_grey() +  
    geom_text(data = country_female, aes(label = signif(abs(Population), digits = 3)),  
            size = 2, hjust = -0.1) + 
    geom_text(data = country_male, aes(label = signif(abs(Population), digits = 3)),  
            size = 2, hjust = 1.1) + 
  # uncomment to include individual titles 
    ggtitle(country_name, subtitle = paste0("Population Distribution: ", year)) + 
  # plain theme_bw() for the full plot, blanks for no y-labels 
    theme_bw() 
  #  theme(axis.text.y = element_blank(), axis.title.y = element_blank()) 
 
  # change file extension to change output type 
  plot_name <- paste0(country, "_pyramid.png") 
  ggsave(plot_name, plot = country_pyramid, width = 7, height = 4, dpi=600) 
 
return(country_pyramid) 
} 
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Appendix 1E – R Function side_by_side2() 

The function side_by_side2() uses pop_pyramid() to generate three population waterfall diagrams 

in a single plot, with a shared legend.  It depends on the function get_data_secure(). 

This is the complete command line: 
side_by_side2(country1, country2, country3, year = 2012, out_file_name = “side_by_side.pdf) 
 

Where a variable in the command line is followed by an equals sign, it represents a default 

value. 

 

This command line will generate plots for the United States, Nigeria, and Japan in 2012, saved 

as “US_NI_JA_2012.pdf”: 
side_by_side2(“US”, “NI”, “JA”, “US_NI_JA_2012.pdf”) 
 

The code is below: 

# file side_by_side2.R 
# function side_by_side2(country1, country2, country3, year=2012,  
#                        out_file_name = "side_by_side.pdf") 
# takes 3 country names (2-letter FIPS codes)  
# and a year, generates waterfall plots of the populations, 
# sets them side by side with common legends 
# 
# year defaults to 2012, output file to "side_by_side.pdf" 
# example call: side_by_side2("US", "NI", JA", 2010, "comparison.pdf") 
# 
# uses pop_pyramid() which in turn uses get_data_secure() 
# and grid_arrange_shared_legend() 
library(lemon) 
library(tidyverse) 
library(gridExtra) 
library(ggplot2) 
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library(countrycode) 
library(reshape2) 
library(plyr) 
library(jsonlite) 
library(grid) 
 
 
side_by_side2 <- function(country1, country2, country3, year=2012,  
                          out_file_name = "side_by_side.pdf"){ 
  plot1 <- pop_pyramid(country1, year) 
  plot1 
  plot2 <- pop_pyramid(country2, year) 
  plot2 
  plot3 <- pop_pyramid(country3, year) 
  plot3 
  #  setEPS() 
  pdf(out_file_name, width = 16, height = 5, onefile = FALSE) 
poster_plot <-  
  grid_arrange_shared_legend(plot1, plot2, plot3) 
dev.off() 
return() 
} 
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APPENDIX 2 – RISK COMPARISON CODES 

This work uses, as its core, a risk comparison model developed in the R programming 

language(R Core Team, 2017).  As noted above, two versions of the risk comparison codes were 

developed, a strict and an extrapolated version.  Both are reproduced here, though they are 

very similar.  See the section Model Description for more details on the inputs and algorithm. 

Appendix 2A – risk_comparison_strict() 

This function represents the strict version of the code, as described above.  It requires, as part 

of its input, a data frame generated by get_data_secure().  It takes a number of variables as 

inputs, and generates DALYs for radiation, diabetes milletus, and PTSD.  The output is a 

summary table. 

The complete command line is: 

 risk_comparison_strict(raw_population, fips_code=”US”, year = 2012, starting_exposure_rate = 

0.04, effective_half_life = 5, duration = 20, pop_size = 100000) 

Where a variable in the command line is followed by an equals sign, it represents a default 

value. 
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This command line will generate DALYs for a Nigerian-proportioned population with a starting 

exposure rate of 20 mSv per year, an effective half-life of 10 years, and a duration of 50 years 

under consideration: 

risk_comparison_strict(raw_population, “NI”, 2012, 0.02, 10, 50) 
 

The code is below: 

# Created 07 Jan 2019 
# Last Modified 28 May 2019 - removed AUD, 
#           moved call to get_data_secure() outside function, 
#           other minor tweaks 
 
# Comparative Risk Model (Strict) 
# The "strict" version - no extrapolation 
# PTSD only age 20+ 
# Diabetes 40-75 
 
# This code gathers age and sex *proportions* for a given population 
# (e.g. the national-level US population), normalizes to 100000 (this 
# can be changed in the call).  It also takes radiation exposure info 
# and creates simple dose estimate (EPA and Govt of Japan), then 
# calculates a DALY for radiation and separate DALYs for  
# two clinical outcomes related to displacement. 
 
# uses 2-letter fips codes for country information  
 
# function risk_comparison_strict() 
# inputs: 
# raw_population: dataframe generated by get_data_secure() 
# fips_code: 2-letter fips code, default is "US" 
# year: 4-digit year, default is 2012 
# starting_exposure_rate: starting exposure rate in Gy/year, default 0.04 
# effective_half_life: eff. half-life of contamination, years, default 5 
# pop_size: size of the population of interest, default 100,000 
# relies on get_data_secure(), found in get_pop_data secure.R for 
# data on the population of interest 
 
risk_comparison_strict <- function(raw_population, 
                            fips_code="US",  
                            year=2012,  
                            starting_exposure_rate=0.04, 
                            effective_half_life=5, 
                            duration=20, 
                            pop_size = 100000)  { 
   
# obtain country-level population proportions using get_data_secure() 
# raw_population is a df with columns age, sex, and population 
# male numbers are negative (a trick for plotting later) 
 
# need to do some combining of age bands to match the BEIR table 
# the census data was in 5-year blocks; see beir_ages below for the 
# desired breakdown 
# brute force methodologies have the advantage of being straightforward 
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pop_proportions <- tibble(Age = "0", Sex = "0", Population = 0) 
pop_proportions[1,] <- c("0-4", "Male", raw_population[1,3]) 
pop_proportions[2,] <- c("5-9", "Male", raw_population[2,3]) 
pop_proportions[3,] <- c("10-14", "Male", raw_population[3,3]) 
pop_proportions[4,] <- c("15-19", "Male", raw_population[4,3]) 
pop_proportions[5,] <- c("20-29", "Male",  
                       raw_population[5,3] + raw_population[6,3]) 
pop_proportions[6,] <- c("30-39", "Male",  
                       raw_population[7,3] + raw_population[8,3]) 
pop_proportions[7,] <- c("40-49", "Male",  
                       raw_population[9,3] + raw_population[10,3]) 
pop_proportions[8,] <- c("50-59", "Male",  
                       raw_population[11,3] + raw_population[12,3]) 
pop_proportions[9,] <- c("60-69", "Male",  
                       raw_population[13,3] + raw_population[14,3]) 
pop_proportions[10,] <- c("70-79", "Male",  
                        raw_population[15,3] + raw_population[16,3]) 
pop_proportions[11,] <- c("80+", "Male",  
                        raw_population[17,3] + raw_population[18,3] + 
                          raw_population[19,3] + raw_population[20,3] + 
                          raw_population[21,3]) 
pop_proportions[12,] <- c("0-4", "Female", raw_population[22,3]) 
pop_proportions[13,] <- c("5-9", "Female", raw_population[23,3]) 
pop_proportions[14,] <- c("10-14", "Female", raw_population[24,3]) 
pop_proportions[15,] <- c("15-19", "Female", raw_population[25,3]) 
pop_proportions[16,] <- c("20-29", "Female",  
                        raw_population[26,3] + raw_population[27,3]) 
pop_proportions[17,] <- c("30-39", "Female",  
                        raw_population[28,3] + raw_population[29,3]) 
pop_proportions[18,] <- c("40-49", "Female",  
                        raw_population[30,3] + raw_population[31,3]) 
pop_proportions[19,] <- c("50-59", "Female",  
                        raw_population[32,3] + raw_population[33,3]) 
pop_proportions[20,] <- c("60-69", "Female",  
                        raw_population[34,3] + raw_population[35,3]) 
pop_proportions[21,] <- c("70-79", "Female",  
                        raw_population[36,3] + raw_population[37,3]) 
pop_proportions[22,] <- c("80+", "Female",  
                        raw_population[38,3] + raw_population[39,3] + 
                          raw_population[40,3] + raw_population[41,3] + 
                          raw_population[42,3]) 
pop_proportions$Population <- as.numeric(pop_proportions$Population) 
raw_pop_size <- sum(abs(pop_proportions$Population)) 
pop_proportions$Population <- pop_proportions$Population/raw_pop_size 
 
################################### 
# Radiation Risk 
################################### 
 
# default to BEIR VII age/sex values; others can be used 
# BEIR VII Table 12D-1 and 12D-2 (includes DDREF 1.5), All cancers LAR 
# number of cases and mortalities per 100,000  
# exposed to a single dose of 0.1 Gy 
# may add ICRP values in the future 
# BEIR VII values for radiation risk  
# (incidence not used any further, just included for possible future use) 
beir_ages <- c("0-4", "5-9", "10-14", "15-19", "20-29", "30-39", 
               "40-49", "50-59", "60-69", "70-79", "80+") 
beir_male_incidence <- c(2563, 1816, 1445, 1182, 977, 686, 
                         648, 591, 489, 343, 174) 
beir_female_incidence <- c(4777, 3377, 2611, 2064, 1646, 
                           1065, 886, 740, 586, 409, 214) 
beir_male_mortality <- c(1099, 852, 712, 603, 511, 381, 377, 
                         360, 319, 250, 153) 
beir_female_mortality <- c(1770, 1347, 1104, 914, 762, 542, 
                           507, 469, 409, 317, 190) 
age_vector <- c(beir_ages, beir_ages) 
sex_vector <- c(rep(c("Male"), times=11), rep(c("Female"), times=11)) 
beir_mortality <- c(beir_male_mortality, beir_female_mortality) 
beir_risk <- tibble("Age" = age_vector, "Sex" = sex_vector,  
                    "BEIR Mortality" = beir_mortality) 
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# Because the BEIR risk values are mortalities per 100,000 pop, 
# divide by 100,000 to represent the risk per person 
# note that there is no statistical validity to this per-person risk 
# these are aggregate population-level risk values 
beir_risk$`BEIR Mortality` <- beir_risk$`BEIR Mortality`/100000 
 
# apply cancer risks to the population of interest 
# this is excess cases per age group per 0.1 Gy in a single dose 
# assuming a DDREF of 1.5 per BEIR VII 
pop_cancer_risk <- pop_proportions 
# un-negative the male population values 
pop_cancer_risk$Population <- abs(pop_cancer_risk$Population*pop_size) 
pop_cancer_risk$'Cancer Risk' <-  
  abs(pop_cancer_risk$Population*beir_risk$`BEIR Mortality`) 
 
# Modified 29 Mar 19 to split male/female yll 
# NIH figures for US were M=14.7, F=16.6 
# Pham et al. figures for JP were M=13.6, F=17.5 
# selected values of M=14, F=17 
male_cancer_yll <- 14 
female_cancer_yll <- 17 
 
# so total excess cancer mortalities expected per 0.1 Gy is: 
pop_male_cancers <- sum(pop_cancer_risk$`Cancer Risk`[1:11]) 
pop_female_cancers <- sum(pop_cancer_risk$`Cancer Risk`[12:22]) 
# and the total DALY per 0.1 Gy applied in a single dose (conservative) 
pop_cancer_daly <- pop_male_cancers*male_cancer_yll +  
  pop_female_cancers*female_cancer_yll 
 
# finally, convert basis from per 0.1 Gy to per 1 Gy 
# this is a table of cancer DALY for each population block per Gy 
pop_cancer_daly <- pop_cancer_daly*10 
# 
# *********************** 
# Dose of interest 
# *********************** 
# variables are: 
# starting_exposure_rate in Gy or Sv per year 
# effective_half_life in years (weathering, decay) 
# duration_of_exposure in years 
 
# there are two models calculated, only the second is actually used 
# the first, here, applies the *entire* dose in one shot 
# this is a very simple and conservative model 
# assumes low LET (e.g. photons) 
 
lambda <- 0.693/effective_half_life 
duration <- 20 
cumulative_exposure <- starting_exposure_rate*(1/lambda)* 
  (1-exp(-lambda*duration)) 
 
# hyperconservative to assume all dose arrives at once, at time=0 
# e.g. effects on youngest age groups very exaggerated 
# epa says crude exposure = dose 
# govt of japan says cut this down a bit, to 60% 
epa_dose <- cumulative_exposure 
goj_dose <- 0.6*cumulative_exposure 
 
# finally, multiply dose by per-Gy DALY 
epa_daly <- epa_dose*pop_cancer_daly 
goj_daly <- goj_dose*pop_cancer_daly 
 
# this is the second case (actually used in the paper) 
# each 5-year block is calculated and 
# applied - still conservative but much less so 
# assumes entire pop stays stable, same age groups 
# all dose delivered at start of 5 year period 
# block_epa_daly and block_gov_daly are the outputs 
 
num_blocks <- (duration %/% 5) + 1 
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val <- 1 
cum_epa_daly <- 0 
cum_goj_daly <- 0 
block_time <- 0 
block_starting_exposure_rate <- starting_exposure_rate 
block_pop_cancer_risk <- pop_cancer_risk 
block_epa_daly <- 0 
block_goj_daly <- 0 
while (val <= num_blocks)  
  { 
  ifelse (val == num_blocks,   
          temp_duration <- (duration %% 5), temp_duration <- 5) 
  block_exposure <- block_starting_exposure_rate*(1/lambda)* 
    (1-exp(-lambda*5)) 
  block_time <- (ifelse (val == num_blocks,  
                         duration, val*5)) 
  block_epa_dose <- block_exposure 
  block_goj_dose <- 0.6*block_exposure 
  block_pop_cancer_risk$`Cancer Risk` <-  
    block_pop_cancer_risk$Population*beir_risk$`BEIR Mortality` 
  block_pop_male_cancers <- sum(block_pop_cancer_risk$`Cancer Risk`[1:11]) 
  block_pop_female_cancers <- sum(block_pop_cancer_risk$`Cancer Risk`[12:22]) 
  # and the total DALY per 0.1 Gy applied in a single dose (conservative) 
  block_pop_cancer_daly <- block_pop_male_cancers*male_cancer_yll +  
    block_pop_female_cancers*female_cancer_yll 
  block_epa_daly <- block_pop_cancer_daly*10*block_epa_dose + block_epa_daly 
  block_goj_daly <- block_pop_cancer_daly*10*block_goj_dose + block_goj_daly 
  # reset values for next iteration 
  val <- val + 1 
  block_starting_exposure_rate <-  
    block_starting_exposure_rate*exp(-lambda*temp_duration*block_time) 
} 
 
###################################### 
# Non-Radiation Risks 
###################################### 
 
# PTSD 
# No clear info on age so apply evenly to all ages over 20 
# Oe et al. identified excess PTSD incidence among evacuees 
# fairly steady over 3 years post-incident M=+7%, F=+8% 
# Mean duration of PTSD is 41.3 Months = 3.44 Years 
pop_ptsd_risk <- pop_proportions 
# un-negative the male population values and bring up to the pop 
# of interest (remember, pop_proportion is just fractions) 
pop_ptsd_risk$Population <- abs(pop_ptsd_risk$Population)*pop_size 
pop_ptsd_male_incidence = 0.07 
pop_ptsd_female_incidence = 0.08 
pop_ptsd_duration = 3.44 
pop_male_ptsd <-  
  pop_ptsd_male_incidence*sum(pop_ptsd_risk$Population[5:11]) 
pop_female_ptsd <-  
  pop_ptsd_female_incidence*sum(pop_ptsd_risk$Population[16:22]) 
 
# PTSD has no associated YLL 
# PTSD DALY has multiple weights depending on severity; the literature does 
# not cover degrees of PTSD after disasters so use the value for 
# "moderate" PTSD, 0.133 
ptsd_daly_wt <- 0.133 
# and the total DALY for the pop of interest for PTSD 
pop_ptsd_daly <- (pop_male_ptsd + pop_female_ptsd)*ptsd_daly_wt 
 
# Diabetes  
# age-based using Murakami et al 2017 
# also Satoh et al. 2015 and Nomura et al. 2016 
# only assessed people 40-75 YO at time of disaster 
#  
# excess diabetes set to 2.4% 
pop_dia_excess <- 0.024 
 
# duration: remainder of life 
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# disability weight: use least-severe value: 0.104 
# for YLL extract from Narayan et al. 
# since data only collected for 40-75 ignore other ages 
# Age 40 M=11.6, F=14.3 
# Age 50 M=9.2, F=12.1 
# Age 60 M=7.3, F=9.5 
# Age 70 M=5.3, F=6.5 
# Age 80 M=3.8, F=4.1 
dia_yll <- c(0,0,0,0,0,0,11.6,9.2,7.3,5.3,3.8,0, 
             0,0,0,0,0,14.3,12.1,9.5,6.5,4.1) 
dia_wt <- 0.104 
 
pop_dia_risk <- pop_proportions 
# un-negative the male population values and bring up to the pop 
# of interest (remember, pop_proportion is just fractions) 
pop_dia_risk$Population <- abs(pop_dia_risk$Population)*pop_size 
# setting up remaining life based on YLLs above 
# values in age categories outside 40-79 are not used and so are set 
# to zero; remaining life is only used for diabetes cases 
# WHO max age assumed to be 91.9 years 
ages <- c(0,5,10,15,20,30,40,50,60,70,80,0,5,10,15,20,30,40,50,60,70,80) 
remaining_life_dia <- 91.9 - ages - dia_yll 
pop_dia_risk$Remaining <- remaining_life_dia 
 
# excess cases = population*prev 
pop_dia_risk$excess <- 0 
pop_dia_risk$yld <-0 
pop_dia_risk$yll <- 0 
pop_dia_risk$excess[7:11] <-  
  pop_dia_risk$Population[7:11]*pop_dia_excess 
pop_dia_risk$excess[18:21] <-  
  pop_dia_risk$Population[18:21]*pop_dia_excess 
 
# yld = excess*duration*wt 
pop_dia_risk$yld <- pop_dia_risk$excess*pop_dia_risk$Remaining*dia_wt 
# yll 
pop_dia_risk$yll <- pop_dia_risk$excess*dia_yll 
 
# sum up for DALY 
pop_dia_daly <- sum(pop_dia_risk$yld, pop_dia_risk$yll) 
 
# output of interest: 
# pop_ptsd_risk 
# pop_dia_risk 
# make a table of results 
daly_output <- tibble( 
  Country = fips_code, 
  Pop_Size = pop_size, 
  Start_Exp = starting_exposure_rate, 
  Eff_Half = effective_half_life, 
  Duration = duration, 
  EPA_DALY = epa_daly,  
  GOJ_DALY = goj_daly, 
  BLOCK_EPA_DALY = block_epa_daly, 
  BLOCK_GOJ_DALY = block_goj_daly, 
  PTSD = pop_ptsd_daly, 
  Diabetes = pop_dia_daly, 
  Displaced_DALY = sum(pop_ptsd_daly, pop_dia_daly) 
) 
return(daly_output) 
} 
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Appendix 2B – risk_comparison_extrapolated() 

This function represents the extrapolated version of the code, as described above.  It requires, 

as part of its input, a data frame generated by get_data_secure().  It takes a number of variables 

as inputs, and generates DALYs for radiation, diabetes milletus, and PTSD.  The output is a 

summary table. 

The complete command line is: 

 risk_comparison_extrapolated(raw_population, fips_code=”US”, year = 2012, starting_exposure_rate 

= 0.04, effective_half_life = 5, duration = 20, pop_size = 100000) 

Where a variable in the command line is followed by an equals sign, it represents a default 

value. 

This command line will generate DALYs for a Japanese-proportioned population with a starting 

exposure rate of 40 mSv per year, an effective half-life of 7 years, and a duration of 20 years 

under consideration: 

risk_comparison_extrapolated(raw_population, “JA”, 2012, 0.04, 7, 20) 
 

The code is below: 

# Created 07 Jan 2019 
# Last Modified 28 May 2019 - removed AUD, 
#           moved call to get_data_secure() outside function, 
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#           other minor tweaks 
 
# Comparative Risk Model (Extrapolated) 
# The "extrapolated" version - assume that the PTSD affects 
# all ages, and that diabetes affects both younger and older 
# persons to a lesser extent.  No quantitative data supports this. 
# PTSD all ages 
# Diabetes 40-70 half value age 30-40 and 70+ 
 
# This code gathers age and sex *proportions* for a given population 
# (e.g. the national-level US population), normalizes to 100000 (this 
# can be changed in the call).  It also takes radiation exposure info 
# and creates simple dose estimate (EPA and Govt of Japan), then 
# calculates a DALY for radiation and separate DALYs for  
# two clinical outcomes related to displacement. 
 
# uses 2-letter fips codes for country information  
 
# function risk_comparison_extrapolated() 
# inputs: 
# raw_population: dataframe generated by get_data_secure() 
# fips_code: 2-letter fips code, default is "US" 
# year: 4-digit year, default is 2012 
# starting_exposure_rate: starting exposure rate in Gy/year, default 0.04 
# effective_half_life: eff. half-life of contamination, years, default 5 
# pop_size: size of the population of interest, default 100,000 
# relies on get_data_secure(), found in get_pop_data secure.R for 
# data on the population of interest 
 
risk_comparison_extrapolated <- function(raw_population, 
                            fips_code="US",  
                            year=2012,  
                            starting_exposure_rate=0.04, 
                            effective_half_life=5, 
                            duration=20, 
                            pop_size = 100000)  { 
   
# obtain country-level population proportions using get_data_secure() 
# raw_population is a df with columns age, sex, and population 
# male numbers are negative (a trick for plotting later) 
raw_population <- get_data_secure(fips_code, year) 
 
# need to do some combining of age bands to match the BEIR table 
# the census data was in 5-year blocks; see beir_ages below for the 
# desired breakdown 
# brute force methodologies have the advantage of being straightforward 
pop_proportions <- tibble(Age = "0", Sex = "0", Population = 0) 
pop_proportions[1,] <- c("0-4", "Male", raw_population[1,3]) 
pop_proportions[2,] <- c("5-9", "Male", raw_population[2,3]) 
pop_proportions[3,] <- c("10-14", "Male", raw_population[3,3]) 
pop_proportions[4,] <- c("15-19", "Male", raw_population[4,3]) 
pop_proportions[5,] <- c("20-29", "Male",  
                       raw_population[5,3] + raw_population[6,3]) 
pop_proportions[6,] <- c("30-39", "Male",  
                       raw_population[7,3] + raw_population[8,3]) 
pop_proportions[7,] <- c("40-49", "Male",  
                       raw_population[9,3] + raw_population[10,3]) 
pop_proportions[8,] <- c("50-59", "Male",  
                       raw_population[11,3] + raw_population[12,3]) 
pop_proportions[9,] <- c("60-69", "Male",  
                       raw_population[13,3] + raw_population[14,3]) 
pop_proportions[10,] <- c("70-79", "Male",  
                        raw_population[15,3] + raw_population[16,3]) 
pop_proportions[11,] <- c("80+", "Male",  
                        raw_population[17,3] + raw_population[18,3] + 
                          raw_population[19,3] + raw_population[20,3] + 
                          raw_population[21,3]) 
pop_proportions[12,] <- c("0-4", "Female", raw_population[22,3]) 
pop_proportions[13,] <- c("5-9", "Female", raw_population[23,3]) 
pop_proportions[14,] <- c("10-14", "Female", raw_population[24,3]) 
pop_proportions[15,] <- c("15-19", "Female", raw_population[25,3]) 
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pop_proportions[16,] <- c("20-29", "Female",  
                        raw_population[26,3] + raw_population[27,3]) 
pop_proportions[17,] <- c("30-39", "Female",  
                        raw_population[28,3] + raw_population[29,3]) 
pop_proportions[18,] <- c("40-49", "Female",  
                        raw_population[30,3] + raw_population[31,3]) 
pop_proportions[19,] <- c("50-59", "Female",  
                        raw_population[32,3] + raw_population[33,3]) 
pop_proportions[20,] <- c("60-69", "Female",  
                        raw_population[34,3] + raw_population[35,3]) 
pop_proportions[21,] <- c("70-79", "Female",  
                        raw_population[36,3] + raw_population[37,3]) 
pop_proportions[22,] <- c("80+", "Female",  
                        raw_population[38,3] + raw_population[39,3] + 
                          raw_population[40,3] + raw_population[41,3] + 
                          raw_population[42,3]) 
pop_proportions$Population <- as.numeric(pop_proportions$Population) 
raw_pop_size <- sum(abs(pop_proportions$Population)) 
pop_proportions$Population <- pop_proportions$Population/raw_pop_size 
 
################################### 
# Radiation Risk 
################################### 
 
# default to BEIR VII age/sex values; others can be used 
# BEIR VII Table 12D-1 and 12D-2 (includes DDREF 1.5), All cancers LAR 
# number of cases and mortalities per 100,000  
# exposed to a single dose of 0.1 Gy 
# may add ICRP values in the future 
# BEIR VII values for radiation risk  
# (incidence not used any further, just included for possible future use) 
beir_ages <- c("0-4", "5-9", "10-14", "15-19", "20-29", "30-39", 
               "40-49", "50-59", "60-69", "70-79", "80+") 
beir_male_incidence <- c(2563, 1816, 1445, 1182, 977, 686, 
                         648, 591, 489, 343, 174) 
beir_female_incidence <- c(4777, 3377, 2611, 2064, 1646, 
                           1065, 886, 740, 586, 409, 214) 
beir_male_mortality <- c(1099, 852, 712, 603, 511, 381, 377, 
                         360, 319, 250, 153) 
beir_female_mortality <- c(1770, 1347, 1104, 914, 762, 542, 
                           507, 469, 409, 317, 190) 
age_vector <- c(beir_ages, beir_ages) 
sex_vector <- c(rep(c("Male"), times=11), rep(c("Female"), times=11)) 
beir_mortality <- c(beir_male_mortality, beir_female_mortality) 
beir_risk <- tibble("Age" = age_vector, "Sex" = sex_vector,  
                    "BEIR Mortality" = beir_mortality) 
 
# Because the BEIR risk values are mortalities per 100,000 pop, 
# divide by 100,000 to represent the risk per person 
# note that there is no statistical validity to this per-person risk 
# these are aggregate population-level risk values 
beir_risk$`BEIR Mortality` <- beir_risk$`BEIR Mortality`/100000 
 
# apply cancer risks to the population of interest 
# this is excess cases per age group per 0.1 Gy in a single dose 
# assuming a DDREF of 1.5 per BEIR VII 
pop_cancer_risk <- pop_proportions 
# un-negative the male population values 
pop_cancer_risk$Population <- abs(pop_cancer_risk$Population*pop_size) 
pop_cancer_risk$'Cancer Risk' <-  
  abs(pop_cancer_risk$Population*beir_risk$`BEIR Mortality`) 
 
# Modified 29 Mar 19 to split male/female yll 
# NIH figures for US were M=14.7, F=16.6 
# Pham et al. figures for JP were M=13.6, F=17.5 
# selected values of M=14, F=17 
male_cancer_yll <- 14 
female_cancer_yll <- 17 
 
# so total excess cancer mortalities expected per 0.1 Gy is: 
pop_male_cancers <- sum(pop_cancer_risk$`Cancer Risk`[1:11]) 



105 

 

pop_female_cancers <- sum(pop_cancer_risk$`Cancer Risk`[12:22]) 
# and the total DALY per 0.1 Gy applied in a single dose (conservative) 
pop_cancer_daly <- pop_male_cancers*male_cancer_yll +  
  pop_female_cancers*female_cancer_yll 
 
# finally, convert basis from per 0.1 Gy to per 1 Gy 
# this is a table of cancer DALY for each population block per Gy 
pop_cancer_daly <- pop_cancer_daly*10 
 
# *********************** 
# Dose of interest 
# *********************** 
# variables are: 
# starting_exposure_rate in Gy or Sv per year 
# effective_half_life in years (weathering, decay) 
# duration_of_exposure in years 
 
# there are two models calculated, only the second is actually used 
# the first, here, applies the *entire* dose in one shot 
# this is a very simple and conservative model 
# assumes low LET (e.g. photons) 
 
lambda <- 0.693/effective_half_life 
duration <- 20 
cumulative_exposure <- starting_exposure_rate*(1/lambda)* 
  (1-exp(-lambda*duration)) 
 
# hyperconservative to assume all dose arrives at once, at time=0 
# e.g. effects on youngest age groups very exaggerated 
# epa says crude exposure = dose 
# govt of japan says cut this down a bit, to 60% 
epa_dose <- cumulative_exposure 
goj_dose <- 0.6*cumulative_exposure 
 
# finally, multiply dose by per-Gy DALY 
epa_daly <- epa_dose*pop_cancer_daly 
goj_daly <- goj_dose*pop_cancer_daly 
 
# this is the second case (actually used in the paper) 
# each 5-year block is calculated and 
# applied - still conservative but much less so 
# assumes entire pop stays stable, same age groups 
# all dose delivered at start of 5 year period 
# block_epa_daly and block_gov_daly are the outputs 
 
num_blocks <- (duration %/% 5) + 1 
val <- 1 
cum_epa_daly <- 0 
cum_goj_daly <- 0 
block_time <- 0 
block_starting_exposure_rate <- starting_exposure_rate 
block_pop_cancer_risk <- pop_cancer_risk 
block_epa_daly <- 0 
block_goj_daly <- 0 
while (val <= num_blocks)  
  { 
  ifelse (val == num_blocks,   
          temp_duration <- (duration %% 5), temp_duration <- 5) 
  block_exposure <- block_starting_exposure_rate*(1/lambda)* 
    (1-exp(-lambda*5)) 
  block_time <- (ifelse (val == num_blocks,  
                         duration, val*5)) 
  block_epa_dose <- block_exposure 
  block_goj_dose <- 0.6*block_exposure 
  block_pop_cancer_risk$`Cancer Risk` <-  
    block_pop_cancer_risk$Population*beir_risk$`BEIR Mortality` 
  block_pop_male_cancers <- sum(block_pop_cancer_risk$`Cancer Risk`[1:11]) 
  block_pop_female_cancers <- sum(block_pop_cancer_risk$`Cancer Risk`[12:22]) 
  # and the total DALY per 0.1 Gy applied in a single dose (conservative) 
  block_pop_cancer_daly <- block_pop_male_cancers*male_cancer_yll +  
    block_pop_female_cancers*female_cancer_yll 
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  block_epa_daly <- block_pop_cancer_daly*10*block_epa_dose + block_epa_daly 
  block_goj_daly <- block_pop_cancer_daly*10*block_goj_dose + block_goj_daly 
  # reset values for next iteration 
  val <- val + 1 
  block_starting_exposure_rate <-  
    block_starting_exposure_rate*exp(-lambda*temp_duration*block_time) 
} 
 
###################################### 
# Non-Radiation Risks 
###################################### 
 
# PTSD 
# Extrapolated version - apply to all ages (not just 20+) 
# Oe et al. identified excess PTSD incidence among evacuees 
# fairly steady over 3 years post-incident M=+7%, F=+8% 
# Mean duration of PTSD is 41.3 Months = 3.44 Years 
pop_ptsd_risk <- pop_proportions 
# un-negative the male population values and bring up to the pop 
# of interest (remember, pop_proportion is just fractions) 
pop_ptsd_risk$Population <- abs(pop_ptsd_risk$Population)*pop_size 
pop_ptsd_male_incidence = 0.07 
pop_ptsd_female_incidence = 0.08 
pop_ptsd_duration = 3.44 
pop_male_ptsd <-  
  pop_ptsd_male_incidence*sum(pop_ptsd_risk$Population) 
pop_female_ptsd <-  
  pop_ptsd_female_incidence*sum(pop_ptsd_risk$Population) 
 
# PTSD has no associated YLL 
# PTSD DALY has multiple weights depending on severity; the literature does 
# not cover degrees of PTSD after disasters so use the value for 
# "moderate" PTSD, 0.133 
ptsd_daly_wt <- 0.133 
# and the total DALY for the pop of interest for PTSD 
pop_ptsd_daly <- (pop_male_ptsd + pop_female_ptsd)*ptsd_daly_wt 
 
# Diabetes  
# age-based using Murakami et al 2017 
# also Satoh et al. 2015 and Nomura et al. 2016 
# only assessed people 40-75 YO at time of disaster 
#  
# excess diabetes set to 2.4% 
pop_dia_excess <- 0.024 
 
# duration: remainder of life 
# disability weight: use least-severe value: 0.104 
# for YLL extract from Narayan et al. 
# since data only collected for 40-75 ignore other ages 
# Age 30 M=14.5, F=16.5 
# Age 40 M=11.6, F=14.3 
# Age 50 M=9.2, F=12.1 
# Age 60 M=7.3, F=9.5 
# Age 70 M=5.3, F=6.5 
# Age 80 M=3.8, F=4.1 
dia_yll <- c(0,0,0,0,0,14.5,11.6,9.2,7.3,5.3,3.8, 
             0,0,0,0,0,16.5,14.3,12.1,9.5,6.5,4.1) 
dia_wt <- 0.104 
 
pop_dia_risk <- pop_proportions 
# un-negative the male population values and bring up to the pop 
# of interest (remember, pop_proportion is just fractions) 
pop_dia_risk$Population <- abs(pop_dia_risk$Population)*pop_size 
# setting up remaining life based on YLLs above 
# values in age categories outside 40-70 are not used and so are set 
# to zero; remaining life is only used for diabetes cases 
# WHO max age assumed to be 91.9 years 
ages <- c(0,5,10,15,20,30,40,50,60,70,80,0,5,10,15,20,30,40,50,60,70,80) 
remaining_life_dia <- 91.9 - ages - dia_yll 
pop_dia_risk$Remaining <- remaining_life_dia 
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# excess cases = population*prev 
# extrapolated version 
pop_dia_risk$excess <- 0 
pop_dia_risk$yld <-0 
pop_dia_risk$yll <- 0 
pop_dia_risk$excess[6] <- pop_dia_risk$Population[6]*pop_dia_excess*0.5 
pop_dia_risk$excess[17] <- pop_dia_risk$Population[17]*pop_dia_excess*0.5 
pop_dia_risk$excess[7:11] <-  
  pop_dia_risk$Population[7:11]*pop_dia_excess 
pop_dia_risk$excess[18:21] <-  
  pop_dia_risk$Population[18:21]*pop_dia_excess 
 
# yld = excess*duration*wt 
pop_dia_risk$yld <- pop_dia_risk$excess*pop_dia_risk$Remaining*dia_wt 
# yll 
pop_dia_risk$yll <- pop_dia_risk$excess*dia_yll 
 
# sum up for DALY 
pop_dia_daly <- sum(pop_dia_risk$yld, pop_dia_risk$yll) 
 
# output of interest: 
# pop_ptsd_risk 
# pop_dia_risk 
# make a table of results 
daly_output <- tibble( 
  Country = fips_code, 
  Pop_Size = pop_size, 
  Start_Exp = starting_exposure_rate, 
  Eff_Half = effective_half_life, 
  Duration = duration, 
  EPA_DALY = epa_daly,  
  GOJ_DALY = goj_daly, 
  BLOCK_EPA_DALY = block_epa_daly, 
  BLOCK_GOJ_DALY = block_goj_daly, 
  PTSD = pop_ptsd_daly, 
  Diabetes = pop_dia_daly, 
  Displaced_DALY = sum(pop_ptsd_daly, pop_dia_daly) 
) 
return(daly_output) 
} 
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APPENDIX 3 – SUPPORTING SCRIPTS 

Four supporting scripts were developed in the R programming language (R Core Team, 2017)to 

automate certain plots specifically for this work.  These were not generalized, though a user 

could adapt them with relative ease.  They include custom labels and tailored positions for 

graphic elements that might not be suited to other uses.  Three scripts were developed to 

generate plots specific to each country; only one is reproduced here as the others are very 

similar.  They are us_batch_risk2.R, ni_batch_risk2.R, and ja_batch_risk2.R.  One additional script, 

combo_plot.R, generates a plot combining elements of the various data generated by the other 

three scripts, and requires that they have been run successfully.  These scripts do not have 

command lines; rather they are invoked by running the code directly from the R console. 

Appendix 3A - us_batch_risk2.R 

This script generates a series of plots for differing radiation dose rates and half-lives for a US-

proportioned population.  The other scripts, ni_batch_risk2.R, and ja_batch_risk2.R, mirror this 

one, with adjustments to graphical element positions and other minor tweaks. Figure 4 is an 

example of the output of this script.  The code is below: 

# us_batch_risk2.R 
# created 21 May 2019 
# heavily modified 28 May 2019 
# 
# this is a custom script generating images specific to my own work 
# I did not attempt to generalize this 
# 
# batch script for testing multiple runs of code 
# generates plot of DALYs for 3 different half-lifes 
# and a range of starting exposure rates set by the user 
# common values 
run_count <- 12 
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dose_increment <- 0.01 
year <- "2012" 
pop_size <- 1 
duration <- 20 
country <- "US" 
half_life_range <- c(3,5,7) 
us_population <- get_data_secure("US", 2012) 
 
# individual plots 
for(half_life in half_life_range) { 
#strict 
starting_dose <- 0.01 
xlower <- starting_dose 
for (i in 1:run_count) { 
    temp_risk <- risk_comparison_strict(us_population, 
                                 country,  
                                 year,  
                                 starting_dose,  
                                 half_life,  
                                 duration, 
                                 pop_size) 
    ifelse(i == 1, 
    us_s_summary <- tibble("Dose" = starting_dose,  
                           "EPA_DALY" = temp_risk$BLOCK_EPA_DALY, 
                           "GOJ_DALY" = temp_risk$BLOCK_GOJ_DALY), 
    us_s_summary <- add_row(us_s_summary, 
                            "Dose" = starting_dose,  
                            "EPA_DALY" = temp_risk$BLOCK_EPA_DALY, 
                            "GOJ_DALY" = temp_risk$BLOCK_GOJ_DALY)) 
  starting_dose <- starting_dose + dose_increment 
 
    if(i == run_count) 
     us_s_info <- tibble("country" = country, 
                          "year" = year, 
                          "half_life" = half_life, 
                          "pop_size" = pop_size, 
                          "ptsd_daly" = temp_risk$PTSD, 
                          "diabetes_daly" = temp_risk$Diabetes) 
} 
 
# error checking - comment out when working 
#  print(paste0("half-life= ", half_life)) 
#  print(us_s_summary) 
   
# extrapolated  
# only run once to get extrapolated displacement DALYs 
# radiation DALYs are the same as strict 
temp_risk <- risk_comparison_extrapolated(us_population, 
                                            country,  
                                            year,  
                                            starting_dose,  
                                            half_life, 
                                            duration, 
                                            pop_size) 
us_e_info <- tibble("country" = country, 
                    "year" = year, 
                    "half_life" = half_life, 
                    "pop_size" = pop_size, 
                    "ptsd_daly" = temp_risk$PTSD, 
                    "diabetes_daly" = temp_risk$Diabetes) 
disp_daly_strict <-sum(us_s_info$ptsd_daly,  
                       us_s_info$diabetes_daly) 
disp_daly_extrapolated <- sum(us_e_info$ptsd_daly, 
                              us_e_info$diabetes_daly) 
# doing some math only to set the plot boundaries 
# deleted in favor of a consistent xupper across all plots 
#test_model <- lm(GOJ_DALY ~ Dose, data = us_s_summary) 
#raw_xlim <- disp_daly_extrapolated/coef(test_model)[2] 
#xupper <-floor(raw_xlim*100)/100 +.01 
xupper <- us_s_summary$Dose[run_count] 
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us_risk_plot <- ggplot(us_s_summary, aes(x=Dose)) +  
  geom_line(linetype= "twodash", aes(y=us_s_summary$GOJ_DALY)) +  
  geom_text(aes(us_s_summary$Dose[5], 
                us_s_summary$GOJ_DALY[5], 
                label="GOJ DALY", 
                vjust = 3), 
            size = 2) + 
  geom_line(linetype= "dashed", color = "red", aes(y=us_s_summary$EPA_DALY)) +  
  geom_text(aes(us_s_summary$Dose[3],  
                us_s_summary$EPA_DALY[3],  
                label="EPA DALY",  
                hjust = -.4), 
            size = 2) + 
  geom_hline(color = "royalblue",aes(yintercept = disp_daly_strict)) + 
  geom_text(aes(us_s_summary$Dose[1],  
                disp_daly_strict,  
                label = paste0("Displacement DALY (strict) = ", 
                          signif(disp_daly_strict,3)),  
                vjust = -1, 
                hjust = -.05),  
            size = 2) + 
  geom_hline(color = "green", aes(yintercept = disp_daly_extrapolated)) + 
  geom_text(aes(us_s_summary$Dose[1],  
                disp_daly_extrapolated,  
                label = paste0("Displacement DALY (extrapolated) = ", 
                               signif(disp_daly_extrapolated,3)),  
                vjust = -1, 
                hjust = -.05),  
            size = 2) + 
  geom_text(aes(x = 0.02, 
                y = 0.3, 
                label = paste0("Country Profile = ", country)), 
            size = 2) + 
  geom_text(aes(x = 0.0205, 
                y = 0.29, 
                label = paste0("Effective half-life = ", half_life, " years")), 
            size = 2) + 
  geom_text(aes(x = 0.02, 
                y = 0.28, 
                label = paste0("Duration = ", duration, " years")), 
            size = 2) + 
  theme_bw() + 
  labs(x = "Starting Dose Rate (mSv/y)",  
       y = "DALY (years)") + 
  scale_x_continuous(limits = c(xlower, xupper),  
                     expand = c(0,0),  
                     breaks = seq(xlower, xupper, dose_increment), 
                     labels = seq(xlower*1000,  
                                  xupper*1000, dose_increment*1000)) + 
  scale_y_continuous(limits = c(0,0.3)) 
 
file_save_name <- paste0("./", country, "_risk_", trunc(half_life),"_yr_half_life.pdf") 
ggsave(file_save_name, plot=us_risk_plot,  
       device = "pdf", width = 6, height = 4, units = "in") 
 
} 
 
# ******************** 
# overlay plots 
# ******************** 
for(half_life in half_life_range) { 
  #strict 
  starting_dose <- 0.01 
  xlower <- starting_dose 
  line_name_GOJ <- paste0(half_life,"_year_line_GOJ") 
  line_name_EPA <- paste0(half_life,"_year_line_EPA") 
  for (i in 1:run_count) { 
    temp_risk <- risk_comparison_strict(us_population, 
                                        country,  
                                        year,  
                                        starting_dose,  
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                                        half_life,  
                                        duration, 
                                        pop_size) 
    ifelse(((half_life == half_life_range[1]) & (i == 1)), 
           us_s_summary <- tibble("Half_Life" = half_life, 
                                  "Dose" = starting_dose,  
                                  "EPA_DALY" = temp_risk$BLOCK_EPA_DALY, 
                                  "GOJ_DALY" = temp_risk$BLOCK_GOJ_DALY), 
           us_s_summary <- add_row(us_s_summary, 
                                   "Half_Life" = half_life, 
                                   "Dose" = starting_dose,  
                                   "EPA_DALY" = temp_risk$BLOCK_EPA_DALY, 
                                   "GOJ_DALY" = temp_risk$BLOCK_GOJ_DALY)) 
    starting_dose <- starting_dose + dose_increment 
     
    if(i == run_count) 
      us_s_info <- tibble("country" = country, 
                          "year" = year, 
                          "half_life" = half_life, 
                          "pop_size" = pop_size, 
                          "ptsd_daly" = temp_risk$PTSD, 
                          "diabetes_daly" = temp_risk$Diabetes) 
 
  # doing some math only to set the plot boundaries 
# deleted in favor of a consistent xupper across plots 
#if((half_life == half_life_range[1]) & (i == run_count)) { 
#  test_model <- lm(GOJ_DALY ~ Dose, data = us_s_summary) 
#  raw_xlim <- disp_daly_extrapolated/coef(test_model)[2] 
#  xupper <-floor(raw_xlim*100)/100 +.01 
#  print(paste(half_life, i, " xupper= ", xupper)) 
#  } 
xupper <- us_s_summary$Dose[run_count] 
     
} 
 
  # extrapolated  
  # only run once to get extrapolated displacement DALYs 
  # radiation DALYs are the same as strict 
  temp_risk <- risk_comparison_extrapolated(us_population, 
                                            country,  
                                            year,  
                                            starting_dose,  
                                            half_life, 
                                            duration, 
                                            pop_size) 
  us_e_info <- tibble("country" = country, 
                      "year" = year, 
                      "half_life" = half_life, 
                      "pop_size" = pop_size, 
                      "ptsd_daly" = temp_risk$PTSD, 
                      "diabetes_daly" = temp_risk$Diabetes) 
  disp_daly_strict <-sum(us_s_info$ptsd_daly,  
                         us_s_info$diabetes_daly) 
  disp_daly_extrapolated <- sum(us_e_info$ptsd_daly, 
                                us_e_info$diabetes_daly) 
} 
 
# break out each run for plotting 
GOJ_DALY_1 <- us_s_summary[1:run_count, c(2,4)] 
GOJ_DALY_2 <- us_s_summary[(run_count+1):(2*run_count), c(2,4)] 
GOJ_DALY_3 <- us_s_summary[(2*run_count+1):(3*run_count), c(2,4)] 
EPA_DALY_1 <- us_s_summary[1:run_count, c(2,3)] 
EPA_DALY_2 <- us_s_summary[(run_count+1):(2*run_count), c(2,3)] 
EPA_DALY_3 <- us_s_summary[(2*run_count+1):(3*run_count), c(2,3)] 
 
# scale factor just a visual trait for plotting 
scale_factor <- 0.244 
# find slope angle of each line to align text 
angle_gd1 <- as.numeric(atan(scale_factor*coef(lm(GOJ_DALY ~ Dose,  
                                                  GOJ_DALY_1))[2]))*180/pi 
angle_gd2 <- as.numeric(atan(scale_factor*coef(lm(GOJ_DALY ~ Dose,  
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                                                  GOJ_DALY_2))[2]))*180/pi 
angle_gd3 <- as.numeric(atan(scale_factor*coef(lm(GOJ_DALY ~ Dose,  
                                                  GOJ_DALY_3))[2]))*180/pi 
angle_ed1 <- as.numeric(atan(scale_factor*coef(lm(EPA_DALY ~ Dose,  
                                                  EPA_DALY_1))[2]))*180/pi 
angle_ed2 <- as.numeric(atan(scale_factor*coef(lm(EPA_DALY ~ Dose,  
                                                  EPA_DALY_2))[2]))*180/pi 
angle_ed3 <- as.numeric(atan(scale_factor*coef(lm(EPA_DALY ~ Dose,  
                                                  EPA_DALY_3))[2]))*180/pi 
 
us_overlay_risk_plot<- ggplot(GOJ_DALY_1, aes(x=Dose)) +  
  geom_path(data=GOJ_DALY_1,  
            linetype= "twodash", aes(x=Dose, y=GOJ_DALY)) +  
  geom_text(aes(GOJ_DALY_1$Dose[10], 
                GOJ_DALY_1$GOJ_DALY[10], 
                label="GOJ DALY 3-Yr Half-Life", 
                vjust = -.4, 
                angle = angle_gd1), 
            size = 2) + 
  geom_path(data=GOJ_DALY_2,  
            linetype= "twodash", aes(x=Dose, y=GOJ_DALY)) +  
  geom_text(aes(GOJ_DALY_2$Dose[10], 
                GOJ_DALY_2$GOJ_DALY[10], 
                label="GOJ DALY 5-Yr Half-Life", 
                vjust = -.4, 
                angle = angle_gd2), 
            size = 2) + 
  geom_path(data=GOJ_DALY_3,  
            linetype= "twodash", aes(x=Dose, y=GOJ_DALY)) +  
  geom_text(aes(GOJ_DALY_3$Dose[10], 
                GOJ_DALY_3$GOJ_DALY[10], 
                label="GOJ DALY 7-Yr Half-Life", 
                vjust = -.4, 
                angle = angle_gd3), 
            size = 2) + 
  geom_path(data=EPA_DALY_1, linetype= "dashed",  
            color = "red", aes(x=Dose, y=EPA_DALY)) +  
  geom_text(aes(EPA_DALY_1$Dose[8], 
                EPA_DALY_1$EPA_DALY[8], 
                label="EPA DALY 3-Yr Half-Life", 
                vjust = -.4, 
                angle = angle_ed1), 
            size = 2) + 
  geom_path(data=EPA_DALY_2, linetype= "dashed",  
            color = "red", aes(x=Dose, y=EPA_DALY)) +  
  geom_text(aes(EPA_DALY_2$Dose[7], 
                EPA_DALY_2$EPA_DALY[7], 
                label="EPA DALY 5-Yr Half-Life", 
                vjust = -.4, 
                angle = angle_ed2), 
            size = 2) + 
  geom_path(data=EPA_DALY_3, linetype= "dashed",  
            color = "red", aes(x=Dose, y=EPA_DALY)) +  
  geom_text(aes(EPA_DALY_3$Dose[6], 
                EPA_DALY_3$EPA_DALY[6], 
                label="EPA DALY 7-Yr Half-Life", 
                vjust = -.4, 
                angle = angle_ed3), 
            size = 2) + 
  geom_hline(color = "royalblue",aes(yintercept = disp_daly_strict)) + 
  geom_text(aes(us_s_summary$Dose[1],  
                disp_daly_strict,  
                label = paste0("Displacement DALY (strict) = ", 
                                signif(disp_daly_strict,3)),  
                vjust = -1, 
                hjust = -.05),  
            size = 2) + 
  geom_hline(color = "green", aes(yintercept = disp_daly_extrapolated)) + 
  geom_text(aes(us_s_summary$Dose[1],  
                disp_daly_extrapolated,  
                label = paste0("Displacement DALY (extrapolated) = ", 
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                               signif(disp_daly_extrapolated,3)),  
                vjust = -1, 
                hjust = -.05),  
            size = 2) + 
  geom_text(aes(x = 0.02, 
                y = 0.3, 
                label = paste0("Country Profile = ", country)), 
            size = 2) + 
  geom_text(aes(x = 0.02, 
                y = 0.29, 
                label = paste0("Duration = ", duration, " years")), 
            size = 2) + 
  theme_bw() + 
  labs(x = "Starting Dose Rate (mSv/y)",  
       y = "DALY (years)") + 
  scale_x_continuous(limits = c(xlower, xupper),  
                     expand = c(0,0),  
                     breaks = seq(xlower, xupper, dose_increment), 
                     labels = seq(xlower*1000,  
                                  xupper*1000, dose_increment*1000)) + 
  scale_y_continuous(limits = c(0,0.3)) + 
    coord_fixed(scale_factor) 
   
file_save_name <- paste0("./", country, "_risk_overlay.pdf") 
ggsave(file_save_name, plot=us_overlay_risk_plot,  
       device = "pdf", width = 6, height = 4, units = "in") 
   

 

Appendix 3B – combo_risk.R 

The script combo_plot.R generates a plot combining elements of the various data generated by 

the other three scripts, and requires that they have been run successfully. Figure 7 is an 

example of the output of this code.  The code is below: 

# combo_plot.R 
# created 21 May 2019 
# last modified 28 May 2019 minor tweaks 
# 
# batch script for plotting from multiple runs of code 
# 
# this is a custom script generating images specific to my own work 
# I did not attempt to generalize this 
# 
# depends on the output of: us_batch_risk2.R 
#                           ja_batch_risk2.R 
#                           ni_batch_risk2.R 
# 
# generates plot of DALYs 
# varying starting dose rate, keeping pop and half-life constant 
# common values must match the other batch files 
run_count <- 12 
starting_dose <- 0.01 
dose_increment <- 0.01 
year <- "2012" 
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duration <- 20 
 
disp_daly_extrapolated_us <- sum(us_e_info$ptsd_daly, 
                                 us_e_info$diabetes_daly) 
disp_daly_extrapolated_ja <- sum(ja_e_info$ptsd_daly, 
                                 ja_e_info$diabetes_daly) 
disp_daly_extrapolated_ni <- sum(ni_e_info$ptsd_daly, 
                              ni_e_info$diabetes_daly) 
us_epa_daly1 <- us_s_summary[1:12,c(2,3)] 
us_epa_daly2 <- us_s_summary[13:24,c(2,3)] 
us_epa_daly3 <- us_s_summary[25:36,c(2,3)] 
us_goj_daly1 <- us_s_summary[1:12,c(2,4)] 
us_goj_daly2 <- us_s_summary[13:24,c(2,4)] 
us_goj_daly3 <- us_s_summary[25:36,c(2,4)] 
 
ja_epa_daly1 <- ja_s_summary[1:12,c(2,3)] 
ja_epa_daly2 <- ja_s_summary[13:24,c(2,3)] 
ja_epa_daly3 <- ja_s_summary[25:36,c(2,3)] 
ja_goj_daly1 <- ja_s_summary[1:12,c(2,4)] 
ja_goj_daly2 <- ja_s_summary[13:24,c(2,4)] 
ja_goj_daly3 <- ja_s_summary[25:36,c(2,4)] 
 
ni_epa_daly1 <- ni_s_summary[1:12,c(2,3)] 
ni_epa_daly2 <- ni_s_summary[13:24,c(2,3)] 
ni_epa_daly3 <- ni_s_summary[25:36,c(2,3)] 
ni_goj_daly1 <- ni_s_summary[1:12,c(2,4)] 
ni_goj_daly2 <- ni_s_summary[13:24,c(2,4)] 
ni_goj_daly3 <- ni_s_summary[25:36,c(2,4)] 
 
# ****************** 
# plot 1, half-life = 3 years 
# ****************** 
half_life <- 3 
combo_plot1 <- ggplot(ni_s_summary, aes(x=Dose)) +  
  geom_line(data=us_epa_daly1, color = "green", 
            linetype= "twodash", aes(y=EPA_DALY)) +  
  geom_text(aes(us_s_summary$Dose[8], 
                us_epa_daly1$EPA_DALY[8], 
                label="EPA DALY (US)", 
                vjust = -3.5), 
            size = 2) + 
  geom_line(data=ja_epa_daly1, color = "royalblue", 
            linetype= "dotdash", aes(y=EPA_DALY)) +  
  geom_text(aes(ja_s_summary$Dose[3],  
                ja_epa_daly1$EPA_DALY[3],  
                label="EPA DALY (JA)",  
                hjust = -.2), 
            size = 2) + 
  geom_line(data=ni_epa_daly1, color="red", 
            linetype= "dotted", aes(y=EPA_DALY)) +  
  geom_text(aes(ni_s_summary$Dose[6], 
                ni_epa_daly1$EPA_DALY[6], 
                label="EPA DALY (NI)", 
                hjust = 1.2), 
            size = 2) + 
    geom_hline(color = "green", aes(yintercept = disp_daly_extrapolated_us)) + 
  geom_text(aes(us_s_summary$Dose[1],  
                disp_daly_extrapolated_us,  
                label = paste0("US Displacement DALY (extrapolated) = ",  
                               signif(disp_daly_extrapolated_us,3), " Y"), 
                vjust = -1, 
                hjust = -.05),  
            size = 2) + 
  geom_hline(color = "royalblue", aes(yintercept = disp_daly_extrapolated_ja)) + 
  geom_text(aes(ja_s_summary$Dose[1],  
                disp_daly_extrapolated_ja,  
                label = paste0("JA Displacement DALY (extrapolated) = ",  
                               signif(disp_daly_extrapolated_ja,3), " Y"), 
                vjust = -1, 
                hjust = -.05),  
            size = 2) + 
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  geom_hline(color = "red", aes(yintercept = disp_daly_extrapolated_ni)) + 
  geom_text(aes(ni_s_summary$Dose[1],  
                disp_daly_extrapolated_ni,  
                label = paste0("NI Displacement DALY (extrapolated) = ",  
                               signif(disp_daly_extrapolated_ni,3), " Y"), 
                vjust = -1, 
                hjust = -.05),  
            size = 2) + 
  geom_text(aes(x = 0.07, 
                y = 0.01, 
                label = paste0("Effective half-life = ", half_life, " years")), 
            size = 2) + 
  geom_text(aes(x = 0.07, 
                y = 0, 
                label = paste0("Duration = ", duration, " years")), 
            size = 2) + 
  theme_bw() + 
  labs(x = "Starting Dose Rate (mSv/y)",  
       y = "DALY (years)") + 
  scale_x_continuous(limits = c(xlower, xupper),  
                     expand = c(0,0),  
                     breaks = seq(xlower, xupper, dose_increment), 
                     labels = seq(xlower*1000, xupper*1000,  
                                  dose_increment*1000)) + 
  scale_y_continuous(limits = c(0,0.3)) 
 
file_save_name <- paste0("./", "combo_risk_",  
                         trunc(half_life),"_yr_half_life.pdf") 
ggsave(file_save_name, plot = combo_plot1, 
       device = "pdf", width = 6, height = 4, units = "in") 
 
# ****************** 
# plot 2, half-life = 5 years 
# ****************** 
half_life <- 5 
combo_plot2 <- ggplot(ni_s_summary, aes(x=Dose)) +  
  geom_line(data=us_epa_daly2, color = "green", 
            linetype= "twodash", aes(y=EPA_DALY)) +  
  geom_text(aes(us_s_summary$Dose[9], 
                us_epa_daly2$EPA_DALY[9], 
                label="EPA DALY (US)", 
                vjust = -3.5), 
            size = 2) + 
  geom_line(data=ja_epa_daly2, color = "royalblue", 
            linetype= "dotdash", aes(y=EPA_DALY)) +  
  geom_text(aes(ja_s_summary$Dose[3],  
                ja_epa_daly2$EPA_DALY[3],  
                label="EPA DALY (JA)",  
                hjust = -.2), 
            size = 2) + 
  geom_line(data=ni_epa_daly2, color="red", 
            linetype= "dotted", aes(y=EPA_DALY)) +  
  geom_text(aes(ni_s_summary$Dose[7], 
                ni_epa_daly2$EPA_DALY[7], 
                label="EPA DALY (NI)", 
                hjust = 1.2), 
            size = 2) + 
  geom_hline(color = "green", aes(yintercept = disp_daly_extrapolated_us)) + 
  geom_text(aes(us_s_summary$Dose[1],  
                disp_daly_extrapolated_us,  
                label = paste0("US Displacement DALY (extrapolated) = ",  
                               signif(disp_daly_extrapolated_us,3), " Y"), 
                vjust = -1, 
                hjust = -.05),  
            size = 2) + 
  geom_hline(color = "royalblue", aes(yintercept = disp_daly_extrapolated_ja)) + 
  geom_text(aes(ja_s_summary$Dose[1],  
                disp_daly_extrapolated_ja,  
                label = paste0("JA Displacement DALY (extrapolated) = ",  
                               signif(disp_daly_extrapolated_ja,3), " Y"), 
                vjust = -1, 
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                hjust = -.05),  
            size = 2) + 
  geom_hline(color = "red", aes(yintercept = disp_daly_extrapolated_ni)) + 
  geom_text(aes(ni_s_summary$Dose[1],  
                disp_daly_extrapolated_ni,  
                label = paste0("NI Displacement DALY (extrapolated) = ",  
                               signif(disp_daly_extrapolated_ni,3), " Y"), 
                vjust = -1, 
                hjust = -.05),  
            size = 2) + 
  geom_text(aes(x = 0.07, 
                y = 0.01, 
                label = paste0("Effective half-life = ", half_life, " years")), 
            size = 2) + 
  geom_text(aes(x = 0.07, 
                y = 0, 
                label = paste0("Duration = ", duration, " years")), 
            size = 2) + 
  theme_bw() + 
  labs(x = "Starting Dose Rate (mSv/y)",  
       y = "DALY (years)") + 
  scale_x_continuous(limits = c(xlower, xupper),  
                     expand = c(0,0),  
                     breaks = seq(xlower, xupper, dose_increment), 
                     labels = seq(xlower*1000, xupper*1000,  
                                  dose_increment*1000)) + 
  scale_y_continuous(limits = c(0,0.3)) 
 
file_save_name <- paste0("./", "combo_risk_",  
                         trunc(half_life),"_yr_half_life.pdf") 
ggsave(file_save_name, plot = combo_plot1, 
       device = "pdf", width = 6, height = 4, units = "in") 
 
# ***************** 
# plot 3, half-life = 7 years 
# ***************** 
half_life <- 7 
combo_plot3 <- ggplot(ni_s_summary, aes(x=Dose)) +  
  geom_line(data=us_epa_daly3, color = "green", 
            linetype= "twodash", aes(y=EPA_DALY)) +  
  geom_text(aes(us_s_summary$Dose[6], 
                us_epa_daly3$EPA_DALY[6], 
                label="EPA DALY (US)", 
                vjust = -3.5), 
            size = 2) + 
  geom_line(data=ja_epa_daly3, color = "royalblue", 
            linetype= "dotdash", aes(y=EPA_DALY)) +  
  geom_text(aes(ja_s_summary$Dose[2],  
                ja_epa_daly3$EPA_DALY[2],  
                label="EPA DALY (JA)",  
                hjust = -.2), 
            size = 2) + 
  geom_line(data=ni_epa_daly3, color="red", 
            linetype= "dotted", aes(y=EPA_DALY)) +  
  geom_text(aes(ni_s_summary$Dose[5], 
                ni_epa_daly3$EPA_DALY[5], 
                label="EPA DALY (NI)", 
                hjust = 1.2), 
            size = 2) + 
  geom_hline(color = "green", aes(yintercept = disp_daly_extrapolated_us)) + 
  geom_text(aes(us_s_summary$Dose[1],  
                disp_daly_extrapolated_us,  
                label = paste0("US Displacement DALY (extrapolated) = ",  
                               signif(disp_daly_extrapolated_us,3), " Y"), 
                vjust = -1, 
                hjust = -.05),  
            size = 2) + 
  geom_hline(color = "royalblue", aes(yintercept = disp_daly_extrapolated_ja)) + 
  geom_text(aes(ja_s_summary$Dose[1],  
                disp_daly_extrapolated_ja,  
                label = paste0("JA Displacement DALY (extrapolated) = ",  
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                               signif(disp_daly_extrapolated_ja,3), " Y"), 
                vjust = -1, 
                hjust = -.05),  
            size = 2) + 
  geom_hline(color = "red", aes(yintercept = disp_daly_extrapolated_ni)) + 
  geom_text(aes(ni_s_summary$Dose[1],  
                disp_daly_extrapolated_ni,  
                label = paste0("NI Displacement DALY (extrapolated) = ",  
                               signif(disp_daly_extrapolated_ni,3), " Y"), 
                vjust = -1, 
                hjust = -.05),  
            size = 2) + 
  geom_text(aes(x = 0.07, 
                y = 0.01, 
                label = paste0("Effective half-life = ", half_life, " years")), 
            size = 2) + 
  geom_text(aes(x = 0.07, 
                y = 0, 
                label = paste0("Duration = ", duration, " years")), 
            size = 2) + 
  theme_bw() + 
  labs(x = "Starting Dose Rate (mSv/y)",  
       y = "DALY (years)") + 
  scale_x_continuous(limits = c(xlower, xupper),  
                     expand = c(0,0),  
                     breaks = seq(xlower, xupper, dose_increment), 
                     labels = seq(xlower*1000, xupper*1000,  
                                  dose_increment*1000)) + 
  scale_y_continuous(limits = c(0,0.3)) 
 
file_save_name <- paste0("./", "combo_risk_",  
                         trunc(half_life),"_yr_half_life.pdf") 
ggsave(file_save_name, plot = combo_plot3, 
       device = "pdf", width = 6, height = 4, units = "in") 
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APPENDIX 4:  RADIATION DOSE DEFINITIONS 

Dose, as stated in 10 CFR §20.1003, is “… a generic term that means absorbed dose, dose 

equivalent, effective dose equivalent, committed dose equivalent, committed effective dose 

equivalent, or total effective dose equivalent [.]” (U.S. Nuclear Regulatory Commission, 2015) In 

this paper, the term “dose,” without further elaboration, will refer only to the total effective 

dose equivalent, as described below. 

The most basic measure of radiation energy deposition is absorbed dose.  The SI unit of 

absorbed dose is the gray, calculated in joules per kilogram (Bureau International des Poids et 

Mesures, 2006).   

The gray is the most general unit of measure for radiation dose, but does not account for 

differences between types of radiation and their effects on biological systems.  To account for 

these differences, other measures have been developed, the dose equivalent (absorbed dose 

multiplied by weighting factors accounting for radiation type) and the effective dose equivalent 

(the sum of dose equivalents for the entire body with weighting factors for the sensitivity of 

each tissue or organ).  The unit of dose equivalent and effective dose equivalent is the sievert 

(U.S. Nuclear Regulatory Commission, 2015). 

To account for radioactive material deposited in the body, a further nuanced definition is 

utilized, the committed effective dose equivalent.  This dose measure accounts for the effective 



119 

 

dose equivalent integrated over 50 years, and applies to exposures from internally incorporated 

radionuclides.  The unit remains the sievert (U.S. Nuclear Regulatory Commission, 2015). 

Finally, the combination of all radiation doses from all pathways is termed the total effective 

dose equivalent, and is the sum of effective dose equivalent (for external exposures) and the 

committed effective dose equivalent (for internal exposures) (U.S. Nuclear Regulatory 

Commission, 2015). 

An important note here is that the sievert, built on a combination of physical quantities (energy 

and mass) and weighting factors is defined only for stochastic effects – primarily cancer 

induction and mutation – as opposed to non-stochastic or deterministic effects such as Acute 

Radiation Syndrome (ARS) or cataract induction (U.S. Nuclear Regulatory Commission, 2015).   
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APPENDIX 5: OUTPUT OF MODEL TEST RUNS 

United States 

US Radiation 

Starting Exposure Rate 

(Sv/y) 

Effective Half-Life 

(y) 

DALY (EPA methodology) 

(y) 

DALY (GOJ methodology) 

(y) 

0.01 3 0.028 0.017 

0.02 3 0.056 0.034 

0.03 3 0.084 0.051 

0.04 3 0.11 0.067 

0.05 3 0.14 0.084 

0.06 3 0.17 0.10 

0.07 3 0.20 0.12 

0.08 3 0.22 0.13 

0.09 3 0.25 0.15 

0.1 3 0.28 0.17 

0.11 3 0.31 0.19 

0.12 3 0.34 0.20 

0.01 5 0.035 0.021 

0.02 5 0.070 0.042 

0.03 5 0.11 0.063 

0.04 5 0.14 0.084 

0.05 5 0.18 0.11 

0.06 5 0.21 0.13 

0.07 5 0.25 0.15 

0.08 5 0.28 0.17 

0.09 5 0.32 0.19 

0.1 5 0.35 0.21 

0.11 5 0.39 0.23 

0.12 5 0.42 0.25 

0.01 7 0.040 0.024 

0.02 7 0.081 0.048 

0.03 7 0.12 0.073 

0.04 7 0.16 0.097 

0.05 7 0.20 0.12 

0.06 7 0.24 0.15 

0.07 7 0.28 0.17 

0.08 7 0.32 0.19 

0.09 7 0.36 0.22 

0.1 7 0.40 0.24 

0.11 7 0.44 0.27 

0.12 7 0.48 0.29 
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US Displacement 

 Strict Extrapolated 

Data Year PTSD DALY 

(y) 

Diabetes DALY 

(y) 

PTSD DALY 

(y) 

Diabetes DALY 

(y) 

2012 0.0074 0.14 0.020 0.17 
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Japan 

Japan Radiation 

Starting Exposure Rate 

(Sv/y) 

Effective Half-Life 

(y) 

DALY (EPA methodology) 

(y) 

DALY (GOJ methodology) 

(y) 

0.01 3 0.025 0.015 

0.02 3 0.049 0.029 

0.03 3 0.074 0.044 

0.04 3 0.098 0.059 

0.05 3 0.12 0.074 

0.06 3 0.15 0.088 

0.07 3 0.17 0.10 

0.08 3 0.20 0.12 

0.09 3 0.22 0.13 

0.1 3 0.25 0.15 

0.11 3 0.27 0.16 

0.12 3 0.29 0.18 

0.01 5 0.031 0.018 

0.02 5 0.061 0.037 

0.03 5 0.092 0.055 

0.04 5 0.12 0.074 

0.05 5 0.15 0.092 

0.06 5 0.18 0.11 

0.07 5 0.22 0.13 

0.08 5 0.25 0.15 

0.09 5 0.28 0.17 

0.1 5 0.31 0.18 

0.11 5 0.34 0.20 

0.12 5 0.37 0.22 

0.01 7 0.035 0.021 

0.02 7 0.071 0.042 

0.03 7 0.11 0.064 

0.04 7 0.14 0.085 

0.05 7 0.18 0.11 

0.06 7 0.21 0.13 

0.07 7 0.25 0.15 

0.08 7 0.28 0.17 

0.09 7 0.32 0.19 

0.1 7 0.35 0.21 

0.11 7 0.39 0.23 

0.12 7 0.42 0.25 
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Japan Displacement 

 Strict Extrapolated 

Data Year PTSD DALY 

(y) 

Diabetes DALY 

(y) 

PTSD DALY 

(y) 

Diabetes DALY 

(y) 

2012 0.0082 0.16 0.020 0.19 
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Nigeria 
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Nigeria Radiation 

Starting Exposure Rate 

(Sv/y) 

Effective Half-Life 

(y) 

DALY (EPA methodology) 

(y) 

DALY (GOJ methodology) 

(y) 

0.01 3 0.038 0.023 

0.02 3 0.077 0.046 

0.03 3 0.12 0.069 

0.04 3 0.15 0.092 

0.05 3 0.19 0.12 

0.06 3 0.23 0.14 

0.07 3 0.27 0.16 

0.08 3 0.31 0.18 

0.09 3 0.35 0.21 

0.1 3 0.38 0.23 

0.11 3 0.42 0.25 

0.12 3 0.46 0.28 

0.01 5 0.048 0.029 

0.02 5 0.096 0.058 

0.03 5 0.14 0.087 

0.04 5 0.19 0.12 

0.05 5 0.24 0.14 

0.06 5 0.29 0.17 

0.07 5 0.34 0.20 

0.08 5 0.39 0.23 

0.09 5 0.43 0.26 

0.1 5 0.48 0.29 

0.11 5 0.53 0.32 

0.12 5 0.58 0.35 

0.01 7 0.055 0.033 

0.02 7 0.11 0.066 

0.03 7 0.17 0.10 

0.04 7 0.22 0.13 

0.05 7 0.28 0.17 

0.06 7 0.33 0.2 

0.07 7 0.39 0.23 

0.08 7 0.44 0.27 

0.09 7 0.50 0.30 

0.1 7 0.55 0.33 

0.11 7 0.61 0.37 

0.12 7 0.66 0.40 

 

Nigeria Displacement 

 Strict Extrapolated 

Data Year PTSD DALY 

(y) 

Diabetes DALY 

(y) 

PTSD DALY 

(y) 

Diabetes DALY 

(y) 

2012 0.0046 0.060 0.020 0.089 
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