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ABSTRACT

AN ACCESS CONTROL FRAMEWORK FOR MOBILE APPLICATIONS

With the advent of wireless and mobile devices, many new applications are being developed

that make use of the spatio-temporal information of a user in order to provide better functionality.

Such applications also necessitate sophisticated authorization models where access to a resource

depends on the credentials of the user and also on the location and time of access. Consequently,

traditional access control models, such as, Role-Based Access Control (RBAC), has been aug-

mented to provide spatio-temporal access control. However, the velocity of technological devel-

opment imposes sophisticated constraints that might not be possible to support with earlier works.

In this dissertation, we provide an access control framework that allows one to specify, verify, and

enforce spatio-temporal policies of mobile applications.

Our specification of spatio-temporal access control improves the expressiveness upon earlier

works by providing features that are useful for mobile applications. Thus, an application using

our model can specify different types of spatio-temporal constraints. It defines a number of novel

concepts that allow ease of integration of access control policies with applications and make policy

models more amenable to analysis. Our access control models are presented using both theoretical

and practical methods.

Our models have numerous features that may interact to produce conflicts. Towards this end,

we also develop automated analysis approaches for conflict detection and correction at model and

application levels. These approaches rigorously check policy models and provide feedback when

some properties do not hold. For strict temporal behaviour, our analysis can be used to perform

a quantitative verification of the temporal properties while considering mobility. We also provide

a number of techniques to reduce the state-space explosion problem that is inherent in model

checkers.

Furthermore, we introduce a policy enforcement mechanism illustrates the practical viability

of our models and discusses potential challenges with possible solutions. Specifically, we pro-
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pose an event-based architecture for enforcing spatio-temporal access control and demonstrate its

feasibility by developing a prototype. We also provide a number of protocols for granting and re-

voking access and formally analyze these protocols in order to provide assurance that our proposed

architecture is indeed secure.
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Chapter 1

Introduction

The proliferation of wireless networks and mobile devices technologies spreads the develop-

ment of mobile applications. Mobile applications or “mobile apps” are the phrases that are used

to define the network applications that run on nomadic devices. They are composed of software

programs that provide various services for mobile users. A mobile application typically has two

components, one that runs on a user’s mobile device and communicates over a wireless data trans-

mission network with another component that executes in an application server.

On one hand, mobile applications allow the end-users to access Internet anytime and anywhere.

That is, users on the move can access information stored on shared devices over wireless networks.

The usage of such applications becomes ideal for many day-to-day services. For example, they

provide us with news, entertain us, connect us with family and friends, allow us to arrange tasks,

keep us informed about traffic, and support location awareness services.

On the other hand, mobile applications are not without serious security issues. Mobile appli-

cations introduce issues for both end-users and developers. Protecting access to applications data

remains a security issue. A number of security policies have recently emerged to control access

to shared data. These policies typically have new authorization requirements where environmental

conditions, such as location and time, are used together with the credentials of the user to deter-

mine access. For example, lost or stolen mobile devices due to a holder’s carelessness or theft may

allow an assailant to access sensitive services or information from undesired locations and time.

As such, a proper spatio-temporal policy is needed to protect access to sensitive resources in such

incidents. With novel mobile applications’ requirements, such policies become complex to spec-

ify, analyze, and enforce. The research work described in this dissertation focuses on providing

solutions for secure access in mobile applications.

This chapter is organized as follows: Section 1.1 elaborates the need of spatio-temporal access

control; Section 1.2 presents the motivations of the research; Section 1.3 introduces a number of
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tasks needed to fulfil the research objectives; Section 1.4 discusses the significance and contribu-

tions of this dissertation in comparison to the related studies; and Section 1.5 presents the structure

of this Ph.D. dissertation.

1.1 Problem Motivation

With growth of mobile device technologies, many new applications have been integrated into our

daily lives. Mobile devices use Global Positioning System (GPS) [1] to alert drivers for exceeding

the speed limit in school zones [2]. In healthcare systems, mobile devices allow e-health appli-

cations to be available on request by medical staff or patients [3]. For example, an emergency

management and response application (iFall) is an alert system for both detecting and notifying

personnel of a patient’s fall. Such applications primarily help people suffering from chronic dis-

eases [4].

There is no doubt that the new technology improves the deployment of various application

domains including e-commerce, electronic government, healthcare, and power-control systems.

Enterprises are aware of the great capabilities of the ubiquitous devices, but there are also concerns

about access control issues due to their mobility. The greatest concern is that a mobile computer

might fall on hands of malicious users, especially, out of the work environment. Therefore, such

applications create the requirements that access control depends on the location and time of access.

An example will help illustrate this point. Consider a real-world example of a spatio-temporal

policy for the telemedicine application iMediK [5]. The iMedik is a mobile application accessible

by handheld devices that are integrated with Global Positioning System (GPS) which identifies its

physical location. With help of the mobile devices, doctors can access their patient information

on the move. The security policy requires that doctors can use handheld devices to view complete

Patient Medical Record (PMR) information in the clinic during day-time, whereas the same doctors

can view only partial PMR information outside the clinic during night-time. Such policy is needed

to protect patient sensitive information in case of lost or stolen devices.

Spatiality and temporality are also needed for controlling access to sensitive services. For

example, when a mobile user is currently out-of-home and trying to terminate the home motion
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detector system from a mobile device after midnight, then such service request should be denied

by an access control policy. A circumvention of spatiality and temporality constraints may cause

system malfunction and, in some critical systems, it implies loss of human life and assets. Consider

the following military scenario: a malicious user might use a hand-held device from an unclassified

location to penetrate a missile launcher system and fire a missile causing excessive damage and

death. Therefore, access to such critical military systems should only be allowed from high-secure

locations.

Besides the safety requirements, there are other important considerations for employing spatio-

temporal access control. Spatio-temporal access control can greatly guarantee the enforcement of

law and legislation. A full-time student can be granted a campus license to use software packages,

access digital libraries, or watch movies only inside the campus and during the semester. Fur-

thermore, in distributed work environments, users need to prove they are performing certain jobs

within certain locations and time. A spatio-temporal proof covers the case when an individual has

to do a certain job on-site and at a certain time. For example, an on-site repair mechanic should be

able to prove that he was repairing a machine at customer site during working hours.

Additionally, job functions in mobile environment are often times subject to spatio-temporal

pre-requisite, post-requisite and triggers. For example, once a lab director receives an order for

analyzing a soil sample in different labs, two lab workers’ are notified to work in two different

lab rooms to analyze different splits of that sample. Periodicity and spatiality together are impor-

tant aspects in capturing the mobility behavior of emerging applications. For example, a nurse

has a commitment of working nights every Monday and Wednesday from 8 pm to 8 am at the

main building of Poudre Valley Hospital (PVH) in Fort Collins, Colorado and every Tuesday and

Thursday night at another branch of the hospital in the same city during the calendar year 2013.

1.2 Problem Definition

In the pertinent literature, there is a significant body of work that has introduced approaches

for spatio-temporal access control. However, the aforementioned security issues introduce novel

spatio-temporal requirements that might not be possible to address with the existing approaches.
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In one of our recent RBAC studies [6], we have emphasised for the need for access control ex-

tensions to support mobile RBAC systems. In this work, we found that there are quite a few newer

types of applications that impose authorization requirements which are not satisfied by many of the

proposed RBAC extensions. We outlined a new authorization model to fill this gap and conclude

that there is still need of continued research in this area. In another work [7] on analyzing RBAC,

we examined a number of analysis approaches and discussed their suitability for RBAC policy

verification. We concluded that one common problem is that most automated approaches do not

scale well for analyzing many RBAC systems. As such, future work in this area should investi-

gate techniques for reducing the state-space size and also approaches for reducing the verification

times. We also highlighted some properties that are unanalysed following those approaches. In this

dissertation, we will also show that there is a little work on enforcing RBAC models in real-world

applications.

This research focuses on addressing three primary problems of the spatio-temporal access con-

trol in mobile environment: (1) specification, (2) verification, and (3) enforcement of mobile access

control policies. In this section, we elaborate on the difficulties of using current approaches to ad-

dress the above noted spatio-temporal requirements, which provide the motivation for our research.

We also explain some related problems and describe how existing work provides limited solutions

to address some of them. We now present these issues in their order of importance with regard to

our contributions.

1.2.1 Policy Specification:

Traditional access control models, such as Role-Based Access Control (RBAC), do not take into

account spatio-temporal information while performing access control. Therefore, researchers have

addressed this need by extending RBAC that allows it to do access control based on the contex-

tual information associated with users and RBAC entities. In one of our previous works [8], we

proposed a trust based RBAC model for pervasive computing systems. This trust model addresses

the problem of unknown user in access control. It provides access based on the trustworthiness of

users and the trust ranges associated with RBAC entities such as roles and permissions. The trust

level of a user is computed on some role context based on three factors: properties, experience,
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and recommendations information for that user. However, this model cannot allow RBAC to do

location and time based access control for mobile applications.

To the best of our knowledge, the most known and detailed spatio-temporal RBAC extensions

are in [9, 10, 11, 12, 13]. Most of the work on spatio-temporal RBAC associate two entities,

namely, location and time with users, roles, and permissions. The location and time associated

with a user give the current time and his present location. The location and time associated with

a role designate when and where the role can be activated. The location and time associated with

a permission signify when and where a permission can be invoked. In addition, researchers have

also suggested how spatio-temporal constraints can be associated with role hierarchy (RH) and

separation of duties (SoD) relations.

The current spatio-temporal RBAC models lack one or more of the following requirements.

Most of the work on spatio-temporal RBAC do not consider the requirements of periodicity of

mobile roles as well as the pre-requisite, post-requisite, and trigger constraints. These models

are also not easily configurable to support a multi-dimension policy that has different domain

requirements. A typical example of such policy is the policy that allows access based on strong,

spatiality, or temporality conditions in addition to spatial-temporal requirements. For each domain

requirement, a new model or predicate is defined to enforce a certain type of a requirement in a

policy. As such, we argue that these models define a large number of predicates and use many

models in order to specify such polices, henceforth makes it difficult to use and check access

requests.

Furthermore, some of these models define new notions (e.g., eliminating constraints or trusted

entities), which are not consistent with the standard RBAC semantics and introduce ambiguities

and conflicts [13]. In these models, the relationship between predicates and their authorization

semantics are unclear. Such predicates only evaluate a single level in role hierarchies , do not

consider cycling in role hierarchies, or ignore enabling conditions on some intermediate roles and

permissions along multiple hierarchy paths. For example, the spatio-temporal permission usage

hierarchy predicate gives raise of the following problems: the predicate is defined recursively,

and as such, there is no base case replacing role names will create a cycle; the intermediate roles
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between a senior and a junior role in the hierarchy are ignored; and it might produce conflicts due

to the inconsistent enabling of roles in invalid location or interval points. Such problems might

allow unauthorized access in some undesirable spatio-temporal points.

The location and time information are represented as an external data structure for determining

access apart from the model structure. The relationship between such information and RBAC

components in the model structure is often unclear. In other words, these models define user, role,

permission entities and entity relationships as their core components; but they lack the definition

of an entity that contains spatio-temporal information in the model and also its association with

the model entities. Some models also lack the definition of the object entity. Moreover, treating

location and time as separate entities often times creates additional complexity in specifications

and analysis, and inadequacy for checking access requests. Consider the following two examples

to make the idea clear.

The first example considers the implication of checking location and time as separate entities

while performing spatio-temporal access control. While performing access control using existing

models, the RoleEnableLoc(r) and RoleEnableDur(r) functions separately determine the sets of

locations and time intervals in which role r is enabled. However, elements of these locations and

intervals sets are not related with each other in the spatio-temporal policy. Consequently, role r

might be activated by users in invalid spatio-temporal regions. Consider the role of a software

engineer in a software corporation so that role members can work from the set of locations (e.g.,

{programming office, testing office, home}) and during the set of time intervals (e.g.,{daytime:

[8a.m, 5p.m], night-time: [5p.m.and12a.m.]}). Now suppose the policy enforces that once a user is

appointed to test programs, that user can only work from the testing office and during the daytime.

However, the isolation of locations and time entities might improperly allow a user to access from

unacceptable locations and durations. In a case where a user attempts access from the testing office

during the night-time, the user will be granted access because the testing office and night-time

elements are respectively in the locations set as well as the interval set associated with the role of

software engineer. Though this environmental information in this combination (e.g., (testing office,

night-time)), should not authorize the user to test programs.
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The second example illustrates the number of entities that need to be managed and the problem

of creating new entities when spatio-temporal information constraints associated with them are

changed. Suppose a doctor role can be activated at locations {hospital, clinic} from 8:00 a.m.

to 5:00 p.m. This means that the doctor can activate his/her role either in the hospital or clinic

anytime from 8:00 a.m. to 5:00 p.m. Suppose the medical board decides to change the spatio-

temporal constraints such that the doctor can only activate his/her role in the hospital from 8:00

a.m. to 1:00 p.m. and can only activate his/her role in the clinic from 12:00 p.m. to 5:00 p.m. In

order to specify such a constraint, we would have to split the doctor role into two roles, namely,

hospital doctor and clinic doctor and associate the respective location and temporal constraints

with each of them.

Thus, a simple change to the spatio-temporal constraint requires the creation of new roles and

changes all the relationships that are associated with the original role. Such a change is non-trivial.

Treating location and time as distinct entities also causes a significant increase in the number of

entities to be managed as location and time that are associated with every entity and relation in

RBAC. This not only reduces ease of understanding for the security administrators but also makes

automated verification more challenging due to state-space explosion.

1.2.2 Policy Verification:

Spatio-temporal RBAC models have numerous features that may interact to produce inconsisten-

cies and conflicts. A potential flaw in a policy because such problems or incompleteness in autho-

rization constraints can cause security breaches. Therefore, a number of verification approaches

have been developed which utilize software tools for performing automated analysis. Earlier works

that use the de facto software modeling language UML [14] to specify access control requirements

have typically resorted to the use of other formalisms for automated analysis. Such an approach

typically involves a transformation process where the UML is converted to another specification

language, such as Alloy [15], for the purpose of analysis. The results of the analysis depend on the

correctness of the transformation procedure.

Researchers have proposed analysis approaches for verifying spatio-temporal RBAC policies

using automated tools. Examples include Alloy [16, 17] and Colored Petri Nets [18, 19]. Most
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often it is non-trivial to specify strict temporal constraints following these approaches. Many

of these approaches perform qualitative analysis of temporal behaviors. With these techniques,

time is represented in an approximate sense where the temporal properties change over continuing

time. Approaches that perform qualitative temporal analysis abstract away from quantitative time

analysis and they can only retain the sequencing of events modeled as a sequence of states. Such

time representation might not be suitable for modeling and analyzing the behavior of hard real-time

systems whose correct functioning is proportional to the dense-time delays (for instance, time-out).

UML and Alloy analysis approaches cannot specify temporal liveness properties indicating

something will happens in the future. For example, an active role will be deactivated later at

some point of time. With Colored Petri Net (CPN) approaches, the time is implicitly represented

using string data type. Furthermore, some techniques express the behavior of real-time systems as

discrete time behaviors using many integer valued variables. In such techniques, continuous time

is approximated to some fixed quantum. However, events do not always happen at integer-valued

times. This, in turn, limits the accuracy of real-time verification.

The notion of complex real-time in spatio-temporal policies necessitates the use of formal-

ization that supports the quantitative analysis of temporal properties and easy-to-specify temporal

properties. We need to consider temporal properties that not only refer to the order in which certain

events take place (before and after), but also the properties that take place or change over time at

exact real-time units. Thus, the state of the practice is to develop an analysis approach that explic-

itly models the behavior of the mobile users, simply, to specify temporal and spatial requirements

using appropriate logics, and then use some tools to automatically check whether the model satis-

fies the requirements or not. In general, the model checking approaches suffer from the problem of

state-space explosion. Introducing optimization techniques to improve the analysis performance is

also missing in the current RBAC analysis approaches.

1.2.3 Policy Enforcement:

Generally speaking, the enforcement of RBAC policies has received insufficient attention. The

development of novel applications and RBAC models leads to a number of interesting questions

about the policy enforcement. The policy enforcement mechanism is the mean that helps to analyze
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requirements, provide solutions, and demonstrate the applicability of access control models in real-

world applications. In particular, it helps to illustrate how to integrate the access control component

into a typical application architecture and answers whether a system requires major changes in

order to implement a policy model. Sandhu et al. [20] have provided a clear distinction between

policy, enforcement, implementation (PEI) models to fill the gap between policy models and real

implementation. That is, access control models traditionally define policies from high-level and

abstract perspectives, and enforcement mechanisms describe a useful implementation architecture.

We should be able to bridge the gap from abstract polices to implementation.

However, only few works that assessed the difficulties and cost of implementing RBAC poli-

cies in practical applications. Most of the existing work on spatio-temporal RBAC have mainly

focused on the development and analysis of policy models. We believe that the enforcement of

these models, especially in mobile applications, introduces a number of interested implementation

challenges that have not been addressed yet. For example, verifying integrity of the current user

location and access time adds a significant difficulty to the access control enforcement, especially

while the user on-the-move. Our main goal in this dissertation is to examine the above noted is-

sues, to provide a framework that allows one to specify, verify, and enforce spatio-temporal access

control.

1.2.4 Security Requirements

In this Ph.D. dissertation, we propose an access control framework to address the aforementioned

open issues in the mobile application security. Our main research focus is balancing the secu-

rity of spatio-temporal applications without introducing additional complexity. Here, we state a

number of security requirements for a spatio-temporal authorization model for specifying mobile

application policies.

1. The access control model should support the key requirement for spatio-temporal applica-

tions of providing the right data or services to the right person, in the appropriate location

and at the right time.

2. It can support the requirements of pre-requisite, post-requisite, and triggers.
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3. The access control model is supposed to be flexibly realized at the implementation level and

also be understood by security administrators at the design level; it should preserve a small

number of entities that need to be managed in a system.

4. Policies specified by our model should be amenable to analyze in order to ensure data secu-

rity.

5. It should be possible to incorporate the policy model in many mobile applications.

1.3 Research Goals and Tasks

In the following, we discuss the main three research tasks that we perform to address the access

control requirements listed in the previous section.

1.3.1 Task1: Access Control Models

The first task in this dissertation focuses on developing spatio-temporal authorization models that

should address the above listed issues. We base our models on RBAC due to its popularity in

many commercial sectors. RBAC is policy-neutral and it simplifies security management [21].

The proposed models tend to provide the followings: concise and clear semantics, a simple syn-

tax of spatio-temporal requirements, easy configurable to address different requirements, realize

the promise of RBAC, mange a small number of entities, use minimal number of predicates and

functions, define constraints on all RBAC entities and relations, have a well-defined languages

to specify properties that must be checked, feasible to validate authorizations conflicts, concisely

make access control decisions, and viable to apply in practical applications. We divide this task

into three subtasks.

First, we formalize the novel concept of spatio-temporal zone. The zone abstracts the location

and time into one entity. With this concept, we are able to simplify policy management and policy

analysis. In the mobile environment, policies could change also very dynamically, such as adding

new entities and associating spatio-temporal constraints. Thus a well-designed model should be

able to handle dynamic policy changes in a clean and efficient way. In our models, we show that

the design of the zone structure fully focuses on such requirements and handles the problem well.

10



Furthermore, when considering location and time as additional supporting factor, the real-time

permission validation, on a pre-request level, should be done on a secure and efficient manner. In

this research, the zone concept is designed to be associated with not only roles, but also permissions

and objects. Such design supports the real-time permission validation. The efficiency of such

validation, especially on a pre-request level with multiple requests from a moving user, is important

to investigate.

In the second subtask, we proposed a model which we refer to as the Generalized Spatio-

Temporal Role-Based Access Control (GSTRBAC) that is formalized using Unified Modeling

Language (UML) [14] and Object Constraint Language (OCL) [22]. The GSTRBAC model defines

the syntax, semantics, and pragmatics of spatio-temporal constraints in a UML/OCL class model.

The semantics of the GSTRBAC model is visualized in UML class diagram model, and the class

diagram components and OCL syntax expresses the spatio-temporal constraints. We use associ-

ation classes between model entities to specify model relationships rather than traditional binary

associations. The association classes reduce the complexity of policy specification and validation

to a great extent. It streamlines the OCL expression definition in presence of spatio-temporal con-

ditions and explicitly reflects the fact that GSTRBAC relationships are spatio-temporal dependent.

This mechanism is not followed by existing UML/OCL specification of RBAC.

A number of reasons motivated our choice. First, UML is a general-propose language that has

been considered as the de facto standard in modeling software. Thus, applications are likely to

be specified in UML. This will make it easier for us to integrate the access control policies with

many applications. Second, UML has a set of graphical notations for specifying static as well as

dynamic aspects of software systems. The graphical diagrams of the UML model make it easy to

understand and use. Third, UML has supporting tools [23] that can be used for automated analysis.

Fourth, UML can be used in all the phases of the software development process. Thus, it will be

easy to check whether access control implementation satisfies a policy if both are specified using

the same language.

In the occasion of defining the UML/OCL model, we define a spatio-temporal zone class in or-

der to express spatio-temporal constraints. These constraints are functional predicates that have to
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be evaluated for each access decision to some roles and permissions. They are formally expressed

in first order logic; consequently, we represent them using OCL pre- and post-conditions as well

as invariants. In particular, the operations in an application using our model might be restricted

via OCL invariants that must be evaluated to true in order to allow successful completion of that

operations.

In completion of this subtask, we also propose an expressive model extending the GSTRBAC

model to consider more important features such as spatio-temporal periodicity, pre-requisites, post-

requisites and triggers. Furthermore, this model formalizes different kind of zones into the seman-

tic of RBAC. Henceforth, the second model we refer to as the consolidated spatio-temporal RBAC

model because a multi-dimensions policy can be specified without the need of a major retuning of

the model. The formal semantics of this model is expressed using predicate logic. An application

using our model must satisfy the predicates in order to behave correctly.

1.3.2 Task2: Policy Verification Approaches

When it comes to the first task of introducing access control solutions, we compose two subtasks

to develop verification approaches for policies specified in our models. In the first subtask, we

utilize the UML-based Specification Environment (USE) tool [23] for validating GSTRBAC poli-

cies. The USE tool provide an interactive environment facilitating the validation of properties in

UML models specified in the form of OCL invariants, preconditions, and post-conditions against

some test scenarios. It supports the manual and automated generation of snapshot instances. The

verification is carried out by an embedded constraint solver.

However, validating the entire policy object model in USE tool is not feasible. That is, entities

that are not related to a property in question degrade the accuracy of the validation process. In this

subtask, we also propose an algorithm to generate a sub-object model based on properties that are

being checked in a policy. In this way, a property is investigated under a certain set of significant

entities, which are the only ones that have an impact on that property.

For the second subtask, we introduce a timed-automata based verification with supporting tools

to perform automated checking of strict real-time properties while mobility is still considered.

Timed-automata [24] provides a framework to model the behavior of real-time systems in anno-
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tated state transition graphs that have timed transitions labeled with piece-wise real-valued clocks.

A number of motives support the choice of using timed-automata language for this purpose.

First, spatio-temporal RBAC policies can be viewed as a timed state transition system. Tempo-

ral constraints are expressed by real-timed clocks that precisely capture the elapsed time between

events since the last reset of the clocks. Spatial constraints are specified by using shared integer

variables and control states. Second, timed-automata has been successfully applied in many case

studies [25, 26, 27, 28] for verifying complex real-time systems that relay on strict timing con-

straints, including timing delays, periodicity, bounded response time, and execution time. Third, a

number of interactive software tools, including COSPAN [29], KRONOS [30], and UPPAAL [31]

are available for modeling, specifying, and verifying the correctness of timed-automaton models.

Most of these tools incorporate many additional features for improving performance. With several

such existing choices, we decided to use model checker UPPAAL for the following aspects.

UPPAAL supports model checking of branching time requirements and allows checking for

safety temporal properties. It extends timed-automata with additional features that help for ex-

pressing spatio-temporal behaviour. It supports the modeling of urgent responses or events via

urgent and committed locations, or urgent channels. An example of the urgent actions in spatio-

temporal policy is that a role should be instantly deactivated when a user leaves a room. Fur-

thermore, these features allow the specification and verification of atomic actions (transactions)

that enforce a number of transitions to be taken simultaneously (e.g., enabling a role triggers the

enabling of a number of roles). UPPAAL also defines symbols to express bounded liveness proper-

ties. The bounded liveness properties refer to properties that are not only guaranteed to eventually

happen, but they take place after certain delays. An example of the bounded liveness property is

that once a role is activated, it should be eventually deactivated after some real-time instances, in a

certain location. Such application requirements must fulfil the strict temporal conditions. The UP-

PAAL verifier checks properties expressed in Timed Computational Tree Logic (TCTL) [32, 33].

TCTL has many rules and symbols that allow us to specify a variety of temporal properties.

However, the state-space explosion in the model checkers becomes a problem when we are ver-

ifying properties changing over continuous time. Consequently, in this subtask, we propose some
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techniques to confine this problem. We employ some optimization techniques supported by UP-

PAAL for improving the analysis performance, and carefully compose timed-automata with a min-

imum number of temporal conditions. We also introduce a technique that reduces the state-space

size based on a property being verified. This technique excludes the instantiation of non-dependent

timed-automata processes during the verification of timed-automata, and as such, improves the

analysis performance.

1.3.3 Task3: Policy Enforcement Mechanisms

The third task in this research is to develop a software architecture that defines a framework for

enforcing our spatio-temporal models. The architecture is necessary to identify the implications in

terms of space and computation overhead and configuring a system to implement a policy model.

The proposed architecture separates the security policy from the point of use, thereby making it

possible to be integrated in many applications. In the development of the architecture model, we

address the following subtasks.

First, identify the desirable design characteristics that our architecture should support. For

example, the architecture model should be as general as possible, efficient, and secure. We exclude

the operating cost of involving third parties for providing location and time proof.

Second, we study the device’s capability and storage requirements based on the responsibil-

ities of the architecture components implementing those devices. Such analysis is important in

identifying where each architecture component should be installed.

Third, we develop a number of protocols for our architecture model which should securely con-

trol the communication exchanges for accessing resources under various circumstances of mobile

users. These protocols should be fully automated. We also need to provide a security analysis to

ensure that these protocols are secure from common threats that are most likely to have an impact

on our design. Such analysis is necessary to identify countermeasures that can be employed to

prevent attackers from exploiting some common security vulnerabilities.

In the last subtask, we carry out an experimental evaluation of a prototype implementing our

spatio-temporal model in a mobile application. Thus, data observed in the empirical study provides

an assurance about the significance of our architecture design.

14



1.4 Contributions and Significance

There is a substantial body of work on the specification and verification of spatio-temporal RBAC

polices. As we described in the previous section, augmenting RBAC with location and time, limits

the user access, henceforth protects the use of critical resources from undesirable spatio-temporal

points. In this Ph.D. dissertation, we investigate a number of related problems in the existing

works: the perceived limitations in the spatio-temporal specifications, complexity and inconsis-

tency caused by the large number of entities and predicates in the models, lack of adequate conflict

detection and correction among model constraints and reporting feedback when properties do not

hold, the verification of complex temporal properties while considering mobility, the analysis per-

formance and state-space explosion problem in model checking, and a very limited works that

assess the difficulties of implementing these policy models in practical mobile applications.

This research presents models that addresses a new and challenging problem raised by today’s

internet environment with widely-used mobile devices. The novelty of this research is clear in three

aspects that are needed to be addressed in the design of such models and this work has dealt with

them well. Unlike existing works in this area, we strive to provide flexibility and precise autho-

rization semantics in our specification model, cost effective and rigorous verification approaches

for uncovering model conflicts, and a practical and complete enforcement mechanism with precise

measure of efficiencies and generalities. The follows describe the contributions of this Ph.D. dis-

sertation in the order of their importance, and briefly explain their significance compared with the

limitations in the existing works (see Section 1.2).

Existing works on RBAC are insufficient to capture the entirety of the listed security issues

in mobile applications. Current works authorize access based on the present of environmental

conditions related to a user, but do not provide mechanisms for persistent spatio-temporal control

after resources are accessed. They also do not consider the important requirements of the spatio-

temporal pre-requisites, post-requisites, and triggers. Neither of the presented mobile application

requirements are handled by previous RBAC models in a fully satisfactory manner. Therefore, the

current research endeavors to extend the earlier RBAC approaches along different dimensions to

fulfil those requirements.
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First, we propose an extended spatio-temporal RBAC model that is flexible and consolidated

to support the aforementioned mobile application requirements. The models systematically span

the spectrum from existing spatio-temporal RBAC models at one end to a quite expressive sup-

porting complex security objectives at the other. In addition to precisely specify a broad range

of spatio-temporal access requirements, we provide a mechanism to guarantee persistent access

control after approving an access, which is an essential aspect of many applications. Our model

supports the novel feature that we called termination triggers; it enforces a system to revoke a

user access at the moment his current environmental information violates policy constraints. None

of the existing work on spatio-temporal RBAC have attempted to provide control after access is

authorized. Strictly speaking, our models also preserve the promise of RBAC which is flexible,

easy-to-customize, and reduces the authorizations management overhead.

The RBAC models should have a limited complexity when adding new coordinates for location

and time information. Compared to other works, this work introduce the novel spatio-temporal

zone to model such additional information. Such design achieves the required complexity and

functionality at the same time. The main advantages of this concept is that it allows us to abstract

location and time into a single model entity. This, in turn, reduces the number of entities that

must be managed and also prevents creation of new roles or permissions when spatio-temporal

constraints associated with them change. We show the simplicity of our models in specifying

spatio-temporal constraints that compares favourably with previous RBAC attempts. Compared

with existing works, this feature makes our models easy managed, concise, and have precise au-

thorizations.

The spatio-temporal zone is a new logical RBAC entity that encapsulates the particularities of

location and time to achieve the granular formalisms. It tackles the problems of isolating time and

location entities and streamlines the access control checking. The spatio-temporal zone is defined

as a new component of our RBAC model that is linked to model entities and contains contextual

information for restricting access. In other words, it is like an authorization token injected into

every model entity to enforce spatio-temporal conditions.

We also define a number of relations on STZones and introduce the zone minimality concept
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that make our models flexibly and efficiently express many spatio-temporal access scenarios, which

other models cannot provide such features. These features also ensure that conflicts do not arise

among the spatio-temporal constraints specification. Furthermore, such relations fill the gap in the

authorization inconsistencies that some of existing models are suffering from. We also defined the

notion of a universal STZone (e.g., <anywhere, anytime>) to enforce strong constraints. These

features in our model allow users to specify spatio-temporal constraints in many scenarios with a

small number of predicates and easy understood semantic and syntax, making the model consistent

to check access requests.

Existing models add spatio-temporal constraints to the RBAC entities and relationships using

many functions. This approach makes it harder to capture the number, types, and the relationship

between the various spatio-temporal constraints. On the other hand, we consider a spatio-temporal

zone as an entity of RBAC along with the other defined entities. This allows a more uniform

treatment, the zone pertinent to the application are enumerated and their relationships can be easily

evaluated. The zone can also handle different states of a role and records various events that are

typical for a system. For instance, due to the mobile nature of users, a role might be blocked from

execution once a user moves out from a valid zone. This feature also allows the definition of many

types of constraints among roles based on the occurrence of certain events in different zones. The

zone concept can also consider the definition of the periodic behavior while allowing the users’

mobility.

Access control models proposed so far typically support a single security domain without

changing the formal semantic of the model or splitting their model into multiple subtypes to support

certain requirements. Conversely, we define different kinds of zones to hide perceived complexity

in the existing works. These zones allow a policy designer to flexibly specify multi-dimension

policy requirements in one model. All kinds of zones have the same format and are treated in the

model predicates in the same manner, but their contents vary for different requirements. For exam-

ple, a temporal zone class ignores the location constraints to express temporal requirements. Thus,

a simple change in the zones’ contents allows us to use the same predicate to express different

domain requirements.
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The spatio-temporal zone introduced here is referred to as STZone which defines where and

when an entity is available. The STZone entity is formally a pair of location and time, (i.e., STZone

=<location,time>), that are of interest to the RBAC entities in the spatio-temporal domain. The set

of STZone elements is referred to as STZones which defines where and when an entity is available.

The STZones set is easily managed by the security designer, by changing the zone content, we are

able to avoid the definition of new relations and entities. In the previous example, the doctor role

is initially associated with the following set of STZones: { <hospital, [8:00 a.m. – 5:00 p.m.]>,

<clinic, [8:00 a.m. – 5 p.m.]> }. When the medical board decides to change the policy, this can

be achieved by simply changing the STZones set associated with the doctor role as follows: {

<hospital, [8:00 a.m. – 1:00 p.m.]>, <clinic, [12:00 p.m. – 5 p.m.]> }. Therefore, abstracting

location and time into a single STZone reduces the number of entities in the model making it easier

to administrate and verify policies.

These contributions are presented in the following sections: Section 3.1: The definition of the

spatio-temporal zone concept, Section 3.2: The UML/OCL based access control model that is suit-

able to handle environment changes in mobile applications; it describes the syntax and semantics

of this model, and Section 4.1: The extended access control model which adds more important

features to the previous one.

Second, have developed a spatio-temporal RBAC models with various features, it is natural to

validate the model constraints that may interact to produce inconsistencies and conflicts. For con-

flict detection and correction, we develop an automated analysis approaches illustrating how our

policy models are checked at model and application levels. Our analysis approaches fill the gaps

in earlier works that relay on model transformation or cannot be used to check critical temporal

properties.

Our analysis approaches are automated, use appropriate logic for specifying properties, provide

feedback when some property does not hold, rigorously check various types of conflicts between

model constraints, and also can be used for verifying complex temporal properties. Unlike ex-

isting analysis approaches, our approaches can be concisely used to model and verify a number

of important properties such as bounded liveness, atomic actions, urgent actions, pre-requisite,
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post-requisite, triggers, and granular features interactions. These approaches are also effective in

uncovering subtle interactions between model features.

In addition to the model verification, we define some optimization techniques and algorithms

for improving the verification precision and performance. We also provide some effective tech-

niques to condense the state-space explosion problem in model checking. Such techniques are

important to scale the verification for large and complex access control policies. We show how

our approaches can be adapted to some real-world mobile applications. We also provide some re-

sults that demonstrate the analysis performance due to the decrease in the number of model states

that need to be explored. Most of the existing analysis approaches of RBAC do not scale well

and lack the verification of the complex temporal properties, and do not provide solutions to the

performance and state-space explosion problem.

A detailed discussion of these contributions can be found in these sections: Section 3.3: The

UML/OCL analysis approach to uncover errors in the policy model, Section 3.3.2: The sub-object

model generation technique to improve the UML/OCL analysis precision, Section 4.5: The timed-

automata based analysis approach that is suitable for checking complex temporal properties while

considering mobility, and Section 4.5.4: Techniques to improve the analysis performance and

alleviate the state-space problem in model checking of complex temporal properties.

Third, once a spatio-temporal policy is formally specified and analyzed, it is fundamentally

required to perform a syntactic analysis about the practical viability of the model to provide the

required level of access control. However, most of previous works do not address the challenges

raised by enforcing spatio-temporal RBAC policies in practical applications. In this dissertation,

we provide an enforcement mechanism that details on practical strategies for using our GSTR-

BAC model in mobile applications. We introduce a platform-independent architecture model for

designing applications enforcing a spatio-temporal policy.

The model separates a security policy from the point of use, and thus makes it possible to be

integrated in many applications. Additionally, we specify a number of architecture characteristics

such as model generality (e.g., centralized and distributed systems) and efficiency (e.g., using

small number of passes and operations). The proposed architecture consists of modules that own
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or request access to application resources. Access is granted or denied by an authorization module

in accordance to the spatio-temporal constraints. In the form of making access decision, the current

STZone of a user must be presented before access is authorized. In the form of maintaining a valid

access to the resources, the condition related to the future is that the access must be revoked at the

event the user migrates to an arbitrary invalid STZone while exercising the authorized resources.

We implement reference monitor components in the user mobile device to enforce termination

triggers conditions.

In the development of our architecture model, we address the following requirements. We de-

velop a number of event-based protocols that securely control and maintain access to resources.

We develop a threat model to identify possible attacks on our architecture model as well as to as-

sess the applied countermeasures to tackle these attacks. We provide a formal analysis approach to

uncover vulnerabilities in the protocol design. We resort to the use of model finder Alloy that rigor-

ously checks whether some attackers can break our protocol. The analysis approach demonstrates

the soundness of our proposed authentication protocols in the context of some well-known attack

methods, and it can be followed as a general analysis approach for RBAC authorization protocols.

We also describe an experimental evaluation of a proof-of-concept prototype implementing our

policy model in a mobile application. The experiment results show that the overhead imposed by

each node computations in our enforcement design is minimal. Additionally, these results enable

us to state that our design does not have bottlenecks and performs access control with high success

rates. As such, implementing our architecture for a real spatio-temporal RBAC application is

certainly practicable.

We present the details of these contributions in these sections: Section 5.1: The architec-

ture model for enforcing our model in the mobile environment, Section 5.2: The communication

protocols that demonstrate how access can be granted and revoked in the context of our model,

Section 5.3: The threat model identifying common security attacks on our design and to assess

the proposed countermeasures, Section 5.4: The formal analysis approach rigorously analyzing

the vulnerabilities in the protocol design, and Section 5.5: The proof-of-concept prototype imple-

menting our architecture in a real-world mobile application.
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1.5 Dissertation Structure

This Ph.D. dissertation is organized as follows: Chapter 2 reviews and compares research studies

related to our current research. Chapter 3 introduces the concept of spatio-temporal zones and

describes the formalization and analysis of the proposed access control model using UML/OCL.

We present the specification and verification of the extended model using first predicate logic in

Chapter 4. Chapter 5 discusses the proposed implementation architecture model and describes an

experimental evaluation of a prototype. Chapter 6 concludes the dissertation with pointers to future

work directions.
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Chapter 2

Related Work

This chapter provides an overview of the relevant work to our research areas. In Section 2.1,

we review some traditional access control models. The extensions of Role-Based Access Control

(RBAC) for integrating spatio and temporal information in controlling access are discussed in

Section 2.2. We review analysis approaches for Role-based Access Control models (RBAC) in

Section 2.3. Section 2.4 presents existing works on enforcing RBAC polices.

2.1 Access Control Policy Models

Access control has always been a fundamental security technique in systems in which multiple

users share access to common resources. Many organizations including companies, hospitals,

governments, and universities implement appropriate access control mechanisms to protect their

information from improper access. Access control is the process of expressing security policies

that determine whether a subject (e.g., process, computer, or human user) is allowed to perform an

operation (e.g., read, write, execute, delete, and search) on an object (e.g., a tuple in a database, a

table, a file, or a service). Nevertheless, administering users’ privileges in a system is one of the

most challenging tasks in access control.

In the last three decades, several access control models have been proposed, such as, Discre-

tionary [34] and Mandatory [35] access control models (DAC and MAC), and Role Based Access

Control model (RBAC)[36] models. Among several existing access control models, DAC and

MAC are widely implemented models in the information security industry, Trusted Computer Sys-

tem Evaluation Criteria (TCSEC) [37]. Latter, RBAC has emerged as an alternative access control

mechanism to DAC and MAC, because it reduces the complexity of security management and is

a policy-neutral; RBAC can be easily configured to support DAC and MAC. These models ar-

guably draw different effective paradigms for specifying a wide variety of security policies and

authorization management. The following sections provide an overview of these models.
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2.1.1 Discretionary Access Control Model

Discretionary access control (DAC) was proposed in early 1970s by Lampson [34]. Lampson de-

fined the notions of subjects, objects, and the access control matrix. The subject-object distinction

is the basis to control access. DAC is discretionary in that it allows subjects to propagate permis-

sions to others to access their objects. Subjects initiate actions or operations on objects. These

actions are permitted or denied based on the authorizations specified in a system. DAC policies

control access to objects based on subjects’ identities and permissions. That is, when a system re-

ceives an access request, the authorization mechanism checks the subject’s identity and the granted

permissions on the requested object.

Authorizations are usually expressed in terms of access rights or access modes. The access

matrix is a conceptual model which specifies the rights that each subject possesses for each object.

It also provides a useful framework for describing resource protection in operating systems. For

instance, an access control matrix A, with subjects that are represented by the rows and objects that

are represented by the columns, is used to determine the status of the protection. That is, A[s, o]

represents the access rights that subject s has over object o.

The access matrix can be implemented in three ways depending on the implementation details.

Every matrix can be read either by rows, columns, or tables. When a matrix is read by rows, it

is interpreted as a capability list. It determines what is permitted for each user. Such a matrix is

widely implemented in distributed systems. The access matrix is interpreted as an access control

list (ACL) when it is read by columns. It defines which permissions are granted to each object.

This method is widely used in centralized systems. As tables, the access matrix is interpreted as

access control triples that are represented in a table. This implementation is widely adopted in

common database systems. Each row of this table specifies one access right of a subject to an

object. Thus, the table contains three columns (subject, access mode, and object).

DAC, however, has some limitations. A complete users’ control on object access permissions

introduces some issues. DAC policies are susceptible to a Trojan Horse in which the content of

files is maliciously copied from one file to another. Furthermore, the verifications of DAC policies

are complicated due to unrestricted ownership of objects’ permissions. The lack of constraints

23



on the propagation of rights and copying information expose underlying policies to serious safety

issues. Furthermore, with a vast number of subjects and objects, it is really complicated to employ

DAC to manage access rights.

2.1.2 Mandatory Access Control Model

Mandatory Access Control (MAC) is commonly used in multi-level secure systems, where infor-

mation to which users are granted access is not owned by the users. Thus, MAC prevents Trojan

Horse from improper writing to files. In mandatory policies, objects are classified and the access

is controlled based on the users’ clearances and the objects’ classifications. In this regard, the most

confidential informations are given higher security levels. Usually, users are allowed to access

information with security levels up to and including their clearance levels.

Dorothy Denning [35] was the first to introduce the notion of the Lattice Based Access Con-

trol (LBAC) model for formalizing information flow policies in MAC. LBAC enforces a secure

information flow based on a lattice structure resulting from the security classes and the semantics

of organization’s information hierarchy. The goal of the control flow model is guaranteeing the

confidentiality and integrity in a computer system. The information flow model is viewed as a

tuple <N, P, SC,→,
⊕

> where N is a set of objects (i.e., a user may be considered an object), P

is a set of processes that are responsible for information flow, SC is a finite set of security classes

(also called security levels),→ is a binary flow relation defined on SC (i.e.,→⊆ SC × SC ), and⊕
is a binary operator called combining or joining operator on SC (i.e.,

⊕
: SC × SC =⇒ SC).

The set of security classes/levels are defined as a totally ordered set, i.e., { Top-Secret (TS),

Secret (S), Confidential (C), Unclassified (U) }, with ordering relation TS � S � C � U. The

order relation determines the dominance relation between two security levels. That is, we say that

the security level Li dominates the security level Lj (denoted by Li ≥ Lj) if Li precedes Lj in the

ordering of the security levels. In this relation, Li is referred to as the dominating security level

and Lj is the dominated one. In a lattice-based policy, the relation Li ≥ Lj is defined only if the

information can flow from Lj to Li. We say that Li and Lj are incomparable if Li 6≥ Lj and Lj 6≥ Li.

Labels h(s) and h(o) denote respectively the security levels of subject s and object o.

MAC rules were formalized by Bell-LaPadula into a mathematical model suitable for ensuring
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the information confidentiality [38]. The Bell-LaPadula (BLP) model defines two authorization

rules that must be satisfied for guaranteeing a system confidentiality. The BLP Simple-Security

property is mostly referred to as the “no read up” rule states that subject s is permitted a read

access to an object o only if the security label of subject s dominates the security label of object

o, i.e., h(s) ≥ h(o). The BLP *-Property property is known as the “no write down” rule and

declares that subject s can write to object o only if the security class of the object o dominates the

security class of the subject s, i.e., h(s) ≤ h(o). The *-Property property, however, can cause

integrity breach for information at the dominating level.

Biba model [39] has been developed as a counterpart model of the BLP confidentiality model

for data integrity. It enforces integrity of data through reversing the reading and writing proper-

ties of BLP model. The Biba integrity model governs information access based on two security

properties. The Biba Simple-Integrity property, which is referred to as the “No read down” permits

subject s for a read access mode to object o only if the object o security level dominates the subject

s level, i.e., h(s) ≤ h(o). The Biba *-Property property also known as the “No write up” allows

subject s to write object o only if the subject s security level dominates the level of object o, i.e.,

h(s) ≥ h(o). Although the Biba model provides methods for information integrity, it suffers from

Trojan Horse problem because it allows users to read up and write down.

Latter, Sandhu et al. [40] proposed a lattice-based mandatory approach that combines both

BLP and Biba models in order to achieve confidentiality and integrity purposes. This security

approach has the advantage of making multi-level secure systems unsusceptible to Trojan Horse

attacks.

Historically, MAC models are very useful for systems that have valuable objects and work in

a hostile environment. A good implementation of MAC models is very effective in ensuring con-

fidentiality and integrity for systems that are in a high danger by a warfare’s spy, such as military

systems and intelligence agencies. Furthermore, mandatory models can also be useful to cohabit

with other access control models to protect highly classified data in hierarchical organizations such

as banking systems.

However, the rigidity of MAC models makes them not widely accepted by many commercial
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organizations. MAC policies considerably restrict users’ activities and prevents security officers

from flexible modification of underlying policies because access is always controlled based on data

classification. Users’ ability to control data is restricted over unnecessarily highly data classifica-

tions causing a low system productivity. Additionally, the administration of security levels in MAC

policies necessitates a significant involvement of hierarchically classified agents and outsourced

components. Moreover, MAC policies cannot support least privileges and dynamic Separation of

Duties (SoD).

Ross Anderson [41] argued that the implementation of MAC systems requires the entire operat-

ing system and many related utilities to be considered as trusted agents executing outside the MAC

framework. These trusted components bypass MAC rules in order to maintain security policies at

a high cost. Thus, these components should be verified to prevent improper access to policies, and

developing access control mechanisms to protect against inappropriate access of these components.

2.1.3 Role-Based Access Control Model

Role Based Access Control (RBAC) has emerged as a powerful and generalised approach to access

control and it is a promising alternative of MAC and DAC [42, 21]. RBAC has been extensively

implemented in several applications at different levels due to its inherited beneficial features such

as flexibility, intuitiveness, and ease of administration. By configuring roles, RBAC can express

a wide range of security polices including discretionary and mandatory ones [36]. RBAC has

been used in a number of commercial software products such as Windows Server 2003 and Oracle

database for managing authorizations.

The reference model for role-based access control is RBAC96 [36]. Figure 2.1 shows the

entities and relationships of RBAC96. RBAC96 consists of four sub-models, increasingly adding

features to the basic model. These models define the four primary building components: users, per-

missions, roles, and session, and the relationships among these sets. Roles represent job functions

within an organization. Roles are the most steady components because organization’s activities or

functions usually change less frequently. In contrast, users and permissions associated with roles

are transitory. In the following we discuss the sub-models of RBAC96.

Core RBAC (RBAC0): The primary concept of RBAC is that permissions are assigned to roles
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Figure 2.1: RBAC96 Model

and users access permissions through an appropriate role membership. RBAC0 defines many-to-

many relations, namely, user-role assignment, permission-role assignment, and user-session as-

signment. Users can be assigned several roles, a role can have as many permissions, and a permis-

sion can be assigned to multiple roles. A user can instantiate multiple sessions at the same time

and each session should belong to a single individual.

Hierarchical RBAC (RBAC1): RBAC1 defines the notion of role hierarchy, which model the

line of authority and responsibility in an organization. With role hierarchy, the roles and permis-

sions assignment are implicitly given via senior roles, and as such, greatly simplifies the manage-

ment of authorizations. Mathematically, role hierarchy is a partial order relation, which is reflexive,

transitive, and anti-symmetric. In role hierarchy, powerful (or senior) roles at the top of hierarchy,

subsume all permissions associated with less powerful (or junior) roles at the bottom. Joshi et

al. [43] have defined two classes of hierarchy, namely, permission-inheritance hierarchy where a

senior role inherits permissions from junior roles, and role-activation hierarchy where members of

senior roles are permitted to activate junior roles.

Constrained RBAC (RBAC2): RBAC2 supports a collection of constraints, including Separa-

tion of Duties (SoD), cardinality, and pre-requisite constraints. The SoD principle reduces the risk

of a fraud or collusion by spreading the responsibility and authority over multiple users. The static

SoD (SSoD) and dynamic SoD (DSoD) constraints are two kinds of SoD [44]. SSoD prevents
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conflicting roles to be assigned to the same individual while DSoD prohibits the same individual

from activating conflicting roles simultaneously. SoD is also defined between permissions to pre-

vent the assignment of conflicting permissions to a single role. Cardinality constraints enforce the

security principle “least privileges”; a certain subset of permissions needed to perform a job are

only assigned to a role. Pre-requisite constraints control users’ competency and appropriateness.

That is, a user should be assigned to role A in order to be assigned to role B.

Consolidated RBAC (RBAC3): It combines RBAC0, RBAC1, and RBAC2 in one model, which

creates several issues. A policy conflict may occur due to subtle interaction between role hierar-

chies and SoD constraints. For example, a senior role should not inherit two conflicted junior roles

in order to prevent its members to access the permissions associated with those junior roles. Car-

dinality constraints might be breached through role hierarchies too. All of these issues need to be

carefully considered when designing a security policy.

Despite the improvement of the authorization management by RBAC, with all support of hierar-

chy, constraints, assignments, and activation features, the administration complexity is potentially

an issue for large systems. Moreover, with data abstraction in RBAC, it is not easy to control the

sequences of operations through permissions, a more sophisticated control needs to be incorpo-

rated in RBAC [36]. Traditional RBAC96 do not take into account location and time information

while performing access control.

2.2 Extended Role-Based Access Control Models

With the advent of wireless and mobile devices, new applications make use of the spatio-temporal

information in order to provide better functionality. However, traditional RBAC models do not

take into account contextual information into access control. In our earlier work [8], we proposed

a trust-based RBAC model for pervasive computing systems. Users are evaluated for their trust-

worthiness levels before they are assigned to different roles. Roles are associated with a trust range

indicating the minimum trust level that a user needs to attain before it can be assigned to that role.

A permission is also associated with a trust range indicating the minimum trust level a user in a

specific role needs to attain to activate the permission. To determine the authorization between a
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user and a role, a user’s trust value is evaluated based on each role context separately. The trust

relationship between a user and the system in the role context depends on three factors: properties,

experience, and recommendations. Each of these components has a value between [0,1] and sum

of these components is 1. The semantics of our model is expressed in graph-theoretic notations

that allows us to formulate precise semantics for the model. However, this model cannot be used

for specifying spatio-temporal RBAC policies needed by many mobile applications.

The follows elaborate on research work for extending RBAC to provide spatial, temporal, and

spatio-temporal access control.

2.2.1 Temporal Role-Based Access Control Model

Earlier studies have proposed temporal authorization models that are not based on users’ roles.

Bertino et al. [45] proposed a temporal authorization model that extends authorizations with tem-

poral constraints. In this model, an authorization is associated with a temporal expression identify-

ing the periods of time in which the authorization applies. Further, it also permits the specification

of derivation rules for expressing temporal dependencies among authorizations. Gal and Atluri

[46] have proposed a Temporal Data Authorization Model (TDAM) that can be seen as a com-

plementary model to the one in [45]. TDAM expresses time-based policies based on the temporal

attributes of data such as transaction time. However, since these models are for non-RBAC policies,

they cannot express temporal constraints on roles such as temporal constraints on role enabling and

disabling.

In the temporal domain, Bertino et al. [47] have proposed a time-dependent, role based ac-

cess control model, named Temporal RBAC (TRBAC). The TRBAC model expresses temporal

constraints on role enabling and disabling, temporal dependency, trigger priority, and run-time re-

quests. Thus, users can only assume roles when they are periodically enabled. However, the model

does not consider temporal constraints on user-role and role-permission assignments. Furthermore,

this model lacks the definition of separation of duties constraints, cardinality constraints, and role

hierarchy relationships in the temporal domain.

Latter, Joshi et al.[43] have proposed a more general temporal RBAC (GTRBAC) that sub-

sumes TRBAC features and handle a wider range of temporal constraints that are overlooked by
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prior temporal models. The GTRBAC model associates temporal information with role hierarchy

and SoD constraints, and different forms of temporal dependency constraints.

2.2.2 Spatial Role Based Access Control Model

Covington et al. [48] have introduced Generalized RBAC (GRBAC) to adopt environmental as-

pects into RBAC . It makes a distinction between two classes of roles termed as Environment Role

and Object Role. The former role class expresses a favourable system state in some positions,

and the latter class specifies necessary objects properties. Here, the GRBAC model incorporates

properties such as role activation, role hierarchy, and separation of duties into environment roles.

However, the set of environment roles would be extremely large for most applications.

Researchers have also incorporated geographical information into RBAC. Hansen and Oleshchuk

extended RBAC with spatial information in their model termed as spatio-RBAC (SRBAC) [49].

This model defines location based access control policy for wireless networks. With SRBAC

model, users are permitted to assume roles in order to access application resources not only based

on their credentials, but also on their current physical positions. The user position, however, has

not semantically meaningful “logical position“, but simply a geometric value; the position of a

user is defined by a cell-phone access point. The model also does not support physical locations

containment and overlapping which make the model incapable for specifying important spatial

constraints.

Bertino et al. [50] have proposed a GEO-RBAC model which allows a role activation based

on a user’s location with regard to logical positions associated with roles. In this model, spacial

information is captured by Geographical Information System (GIS) standards. Here, user-role

and permission-role assignments are not pertained to spatial information. The model lacks the

definition of spatial constraints on separation of duties or role hierarchies too. Furthermore, a

single location extent is associated with each role to specify the boundary at which the role is in

active space.

Ray et al. [51] have proposed a Location Aware RBAC model (LRBAC) which can handle

location overlapping while processing access requests. The authors have described how location

information is associated with RBAC components to simplifies the specification of location based
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on security policies. The LRBAC model considers not only location constraints on role activations,

but also associates locations with role and permission assignments. The LRBAC model defines role

hierarchy and a role-role relationships regardless of spatial information.

However, none of the aforementioned security models have addressed the combined impact of

both spatial and temporal information on RBAC components in making access decisions.

2.2.3 Spatio-Temporal Role Based Access Control Model

In spatio-temporal applications, access to resources is contingent based on location and time in-

formation that are appended with the access requests. Recently, researchers have investigated

spatio-temporal access control policies’ needs and designed some authorization models based on

the RBAC paradigm.

Chandran and Joshi [52] have developed a LoT-RBAC model which incorporates both location

and time into RBAC. The LoT-RBAC model combines both characteristics of GTRBAC [43] and

GEO-RBAC [50]. Here, a role can only be enabled on the satisfaction of temporal constraints

and users are entitled to activate a temporally enabled role once their current location satisfies

the location constraints associated with that role. It borrows the concepts of the distinction be-

tween physical and logical locations from the GEO-RBAC model and the temporal context from

the GTRBAC model. However, the model does not address the spatio-temporally aware of role

hierarchy and separation of duties constraints.

Samuel et al. [16] have proposed a spatio-temporal RBAC model which adds spatial sensitivity

to GTRBAC [43] to support spatial-temporal constraints. Once the temporal constraints associated

with GTRBAC components are satisfied, the spatial constraints are enforced. This includes the as-

sociation of spatial information with temporal role enabling, user-role assignment, role-permission

assignment, and role-activation. However, the model ignores the impact of spatio-temporal in-

formation on RBAC permissions. Whenever and wherever a role is enabled, all the permissions

associated with that roles can be executed regardless of any spatio-temporal constraints. Further-

more, the model only supports spatiality-based role hierarchy and separation of duties constraints.

Aich et al. [10] have proposed spatio-temporal RBAC model which is formalized based on

propositional logic and it is termed as STARBAC. The logical operations specified in STARBAC
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have been shown to be useful in expressing a number of real-world policies including spatio-

temporal aware of role enabling-disabling, role activation-deactivation, and roles assignment, and

permissions assignment. However, the model does not support spatio-temporal constraints on

separation of duties neither on role hierarchies.

Later, Aich et al. [12] extended the capabilities of their STARBAC model [10] in a model

termed as Enhanced Spatio-temporal STARABAC (ESTARBAC). The ESTARBAC model is based

on the idea of spatial and temporal extents which guides the definition of roles and permissions in

the model. The concept of spatio-temporal extent is the basis of specifying spatio-temporal con-

straints including separation of duties which is not considered in their prior model [10]. However,

ESTARBAC does not consider spatio-temporal constraints on user-role assignments, permission-

role assignments, role hierarchies, and dynamic separation of duties. Our proposed models elim-

inates these shortcomings. Although the goal of our work has similar concern of the combining

effect of location and time on RBAC components, our models can express real-world constraints

at a more granular level that are not possible in a such model. The proposed models substantially

differs from those models in the sense that it considers distinctive features such as spatio-temporal

constrains on pre-requisite and post-requisite relationships as well as on action triggers.

Chen and Crampton [13] have introduced graph-based formulation to describe the semantic

of three spatio-temporal RBAC models, each of which addresses certain spatio-temporal require-

ments. These models [13], like others, treat the location and time as separate entities. Unlike our

model, neither of these models impose spatio-temporal constraints on moving objects and separa-

tion of duties relationships nor consider the interaction between role hierarchies and separation of

duties for determining access. Furthermore, the work in [13] did not provide methods to identify

inconsistencies and conflicts in a policy graph model. We argue that using three different models

to specify a policy is non-trivial and the interoperability among various features is hard to capture

and validate. The notion of trusted entities and eliminating constraints on RBAC entities may in-

troduce ambiguities and they are contrary to standard RBAC semantics. Our work rectifies these

shortcomings by studying the impacts of spatio-temporal information on RBAC components and

providing validation and enforcement approaches.
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In contrast of using three separate models, and trusted entities, eliminating constrains in [13],

the containment and universal STZone (e.g., <anywhere, anytime>) in our model flexibly allow

a user to express a similar set of spatio-temporal requirements in one intuitive model. A subtle

interaction between role hierarchy and separation of duties may authorize a user to activate some

conflicting roles or access conflicting permissions, our model concerns with this problem. Further-

more, trusted entities (trusted users or roles) add more entities to the model and the management

of these entities is non-trivial since they are extremely privileged entities that bypass model con-

straints. That is, a trusted role might be pointed to inherit conflicting junior roles that may be

exploited to commit a fraud or penetrate a system security. The proposed model mainly addresses

this point by reducing such complexity and eliminating inconsistencies in a policy specification

and evaluation of access requests as well as condensing the number of entities that need to be

managed in a model.

Another approach for specification of spatio-temporal RBAC policy has been recently proposed

by Ray and Toahchoodee [9]. The model is termed as STRBAC and it improves the spatio-temporal

models proposed by Chandran and Joshi [52] and Samuel et al. [16]. The STRBAC model con-

siders spatio-temporal constraints that are not possible in those models. The authors discussed

the interaction impact of location and time information on RBAC components in making access

decisions. Here, different forms of spatio-temporal (weak, standard, and strong) constraints are

expressed on user-role assignment, permission-role assignment, role activation, role hierarchy, and

separation of duties. Later, an extended spatio-temporal RBAC (STRBAC) is proposed by Toac-

hoodee and Ray [11]. The extended STRBAC improves the expressiveness in their prior STRBAC

model [9]. The earlier STRBAC is enhanced to incorporate the transfer operations concept and the

concept of delegation chain.

Though the STRBAC model supports many features, separating role enabling and role alloca-

tion concepts are vague. That is, a user can activate a role in a position and time instance where a

role is allocated and enabled. The user, however, cannot activate a role if the role is allocated but

not enabled and vice versa. The relation between user context and these concepts is not obvious.

Our proposed models allow roles to be activated by users in some spatio-temporal zones where
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roles are available based on the role availability concept. Moreover, the STRBAC model lacks the

definition of the positions overlapping and containment, a user request at a given point of time

is always attached to a single logical location. Role hierarchies are defined at a single level of

inheritance lacking the transitivity feature of privileges.

Generally speaking, most of the existing spatio-temporal models do not consider locations and

intervals overlapping and containment. A user at a given point of time is considered to be in a

single point of location and time elements. Furthermore, treating time and spatial information in

isolation during the access process causes inconsistencies. That is, a user might assume a role on

the satisfaction of locations and temporal constraints in apart, but not on the acceptable spatio-

temporal point. Such formalizms also increase the number of entities in a policy resulting in

implications of policy specifications and analysis.

The proposed models fill these gaps by extending earlier models with a number of spatio-

temporal features and introduces the spatio-temporal zone notion that are associated with RBAC

components. Our models support the definition of entities pre-requisite, post-requisite, and triggers

that are not formalized in its counterparts. In our models, during the access, in addition to locations

overlapping and containment, temporal intervals overlapping and containment are also considered

in combination through the definition of STZzones operators. Furthermore, the STZone and entity

availability concepts simplify the specification of the impact of the time and location factors on

RBAC components, and also improve the performance as well as streamline the policy verification.

Different classes (types) of zones allow the specification of temporal, spatial, and strong policy

requirements with no need to change the formal semantic of the spatio-temporal model. Users

of our model can selectively model as many requirements from their perspective and in different

domains using a single model.

Note that, here has been some work on so-called “provisions” (i.e., conditions that must hold

or actions that must be executed before an access is authorized) [53, 54, 55, 56]. Such conditions

seem related to the kind of spatio-temporal pre-requisite constraints that must be satisfied to grant

a role to a user. These access control models have formally specified provision and obligation re-

quirements, but in the none-role based access control. We also argued that the spatio-temporal pre-
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requisite constraints are not considered in the previous studies on spatio-temporal RBAC models.

In particular, the models in [53, 54, 55, 56] cannot express spatio-temporal pre-requisite constraints

on assignments of roles and permissions, which our model does.

Furthermore, in these models, provision and obligation authorization have conflict in their

semantics. For example, in most of these models, except for the UCONABC model [56], provisions

impose conditions that must be fulfilled (e.g., in the present/past) prior to authorizing an access,

and obligations refer to commitments that a subject is bound to carry out after access (in the

future) with/without certain time frames. However, in UCONABC model [56], obligations refers to

the provision authorizations described in [53, 54, 55]. Our proposed pre-requisite constraints seem

to have a closer meaning to provision authorization, but our semantic is different.

The provision authorizations in [53, 54, 55, 56] are proposed as an extension that make the

access control more flexible than merely accept/deny access requests in order to support the pro-

liferating e-commerce and business to business (B2B) requirements. For example, a user might

be authorized for a certain purchase if that user is registered in a system, and the user can make

another purchase if the user has completed the first purchase reviews within 30 days. In contrast

to our model, the pre-requisite conditions bind certain relationships between roles and permissions

to ensure that a user has required responsibilities and qualifications. For example, a user should

have been trusted to play a certain role in order to be authorized to become a member of a more

critical role than the former one. Furthermore, our pre-requisite semantic focuses on the results of

the provisional authorizations, but not on how and when certain actions are performed.

2.3 Analysis of Role-Based Access Control Models

Along the development of novel RBAC models, researchers have also provided some automated

verification approaches for RBAC policies. They based the analysis approaches on the formal

specification languages with tool supports. The tool support is important for eliminating human

errors and enhancing the performance. These approaches vary in complexity and in the way of

modeling and verifying RBAC with respect to the notations inherited in those languages. The

following sections discuss a number of formal verification mechanisms with toolboxes support for
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analyzing RBAC policies.

2.3.1 Z-EVES Approaches

The formal language Z has been used to analyze RBAC in some studies [57, 51]. It was shown

that Z can express RBAC components and constraints. The authors have used Z to specify and

verify the consistency of RBAC systems using a theorem prover. This approach is based on the

development of a state-based verifiable model representing RBAC components, constraints, and

state-transition operations. The software toolkitZ/EVES is used for modeling and theorem proving.

The state-based verifiable model of RBAC is given by describing the RBAC state and the

set of operations over that state. The state schema of RBAC defines its sets and relations along

with invariants. A number of operation schemas are defined to specify events. There are three

states: initial state is the starting state of the system, secure/consistent state is a state in which

all security requirements are satisfied. The consistent state-transition is produced by a proper

system transition. The authors showed how to verify the consistency of the RBAC state under

different operations. The theorem stated that the system remains in secure states if and only if state

transitions start from secure states and operations comply with state-transition constraints.

However, the Z-based analysis approach lacks a complete support of automated analysis useful

to detect inconsistent states. With theorem prover Z-EVES, it is none-trivial to prove theorems. It

requires human-intervention to give some proof facts to the machine. Additionally, the Z-EVES

prover is only capable of proving simple theorems. The formal semantic of the prover is very

difficult for users to understand. It is hard to know what action should be taken when the prover

fails. In these studies, a limited number of security constraints (e.g., cardinality and separation of

duties) are verified. Verifying the interactions among various features in a state-transition RBAC

model is not addressed.

2.3.2 UML/OCL Approaches

Ray et al. [58] proposed a security analysis method of RBAC using the Unified Modeling Language

(UML) [14] and Object Constraint Language (OCL) [22]. Following this approach, we could

visualize some conflicts in RBAC constraints.
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Sohr et al. [59] have employed the USE tool [60] to validate a classic RBAC policy that are

specified in UML/OCL. The authors demonstrate how the USE tool can be utilized to validate

the correctness of some non-temporal properties in a conceptual UML/OCL model of the RBAC

policy. They validate the user-role assignment property by generating snapshots and validate them

against a UML policy model. The USE has been shown useful for uncovering errors and iden-

tifying missing constraints in RBAC policies. We extend this approach to verify spatio-temporal

policies.

Our UML/OCL verification approach is distinctive since it specifies and verifies a set of spatio-

temporal properties. In particular, here are some differences with prior UML/OCL approaches:

first, prior approaches have verified a classic RBAC policy against some authorization constraints

regardless of the impact of spatio-temporal factors; second, we verify the metamodel of UML

against a set of model instances that are automatically and manually generated; third, we consider

the specification of the core STZone entity and examine its impact on model entities and relation-

ships; fourth, conflicts in the model due to subtle features interaction such as between hierarchy

and separation of duties are restricted and checked in the model; fifth, we opt to use class asso-

ciations in the model rather than traditional binary associations to simplify the definition of OCL

expressions; we also develop an approach to generate sub-object models to eliminate irrelevant en-

tities from the validation of certain properties. Later in this research proposal, we will demonstrate

the effectiveness of our approach through the validation of a number of spatio-temporal properties

in a real-world application.

Despite all the advantages of the light-weight formalisms and validation using the UML/OCL

approach, some limitations should be considered. With UML/OCL approach, it is non-trivial to

capture dynamic properties of RBAC. The USE/UML approach cannot ensure that all conflicts

are detected; however, it can uncover conflicts only in certain scenarios of the users’ choices.

Therefore, we cannot put a complete reliance on the USE/UML approach to prove that the design

is correct. Moreover, UML/OCL approach is not suitable to check strict temporal and liveness

properties.

We argue that UML/OCL is very useful approach to streamline the modeling of security poli-
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cies and perform a sanity check. Applying as many heuristics may enhance the process of con-

flict detection by uncovering most common critical specification errors. Afterword, we can apply

model checking techniques to guarantee the detection of remaining conflicts. Strictly speaking,

the USE/UML approach is a reliable and an effective approach for designing security policies as a

primary task before testing and deployment of the RBAC policies using model checking.

2.3.3 Alloy Approaches

Samuel et al. [16] have used Alloy [15] for verifying security properties in their RBAC model.

They showed how to analyze spatio-temporal constraints on user-role assignment, permission-

role assignment, user-role activation, role hierarchy, and separation of duties. Their verification

approach does not consider the analysis of the subtle features interaction which might cause a

harm of an application security.

Toahchoodee and Ray have also considered the use of Alloy to verify a number of security

properties in their spatio-temporal RBAC model in three consecutive studies [61, 17, 62]. In the

first study [61], they specified various spatio-temporal features in Alloy. The Alloy analyzer is

used to detect a potential conflicting constraints in RBAC policies. In the following study [17],

Alloy is also used to specify and verify properties in their spatio-temporal RBAC model that are

not addressed in the prior study [61]. In the third study [62], the UML language is used to specify

access control requirements of a real-world application, and then UML2Alloy transformation tool

[63] is utilized to transform the UML model to Alloy specifications in order to verify some RBAC

operations.

The main motivation of the transformation is to take advantages of the verification tools ca-

pabilities provided by the target formal language for checking certain properties. However, the

correctness of the model strongly depends on the transformation algorithms. Transformation be-

tween modeling languages is challenging since it requires deep understanding of the semantics of

the involved languages and their objectives. Furthermore, the current transformation approaches

use informal validation of the transformation algorithms correctness; they first create a policy in the

source language and informally show how it is transformed and compatible to the target language.

However, a formal proof that the transformation is correct and complete is required, otherwise,
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the models in the source language are not guaranteed to be semantically equivalent to the models

in the target language. As a result, the verification process of the target model might not reveal

errors that are present in the source model, or might discover faults that are not actually present in

the source model. Our specification approach of UML/OCL models mitigates the transformation

issues by employing the prevalent USE tool.

The Alloy approach, however, is not without issues besides the transformation issues. It is

not easy to analyze and understand system behavior using Alloy. In particular, it is difficult to

identify undesirable states that a system might enter under different situations. Furthermore, in

terms of verifying real-time systems, Alloy is not commonly used to verify real-time systems.

Alloy does not support temporal logic for specifying temporal safety, liveness, and reachability

properties. Real-valued variables cannot be modeled in Alloy because it does not support real-

numbers. In Alloy approaches, time intervals are represented by a set of atoms which are static in

nature (indivisible, immutable, and un-interpreted). Additionally, with Alloy, it is hard to decide

whether a policy holds or not when the Alloy analyzer cannot find a counterexample of a property

in question within a certain scope. That is, when a counter example cannot be found in a model,

this does not mean the policy model is consistent.

2.3.4 Petri Nets Approaches

Researchers have also proposed alternative verification methods based on model checking tech-

niques such Colored Petri Nets (CPN) [64] or Timed-Automata (TA) [24]. These approaches can

perform exhaustive search in a model space to verify security properties including concurrent and

distributed actions that are infeasible to verify with Alloy and UML/OCL approaches.

The CPN approach has been proposed by Laborde et al. [65] for modeling and verifying net-

work security policies expressed in RBAC. The authors analyzed security properties in a network

security policy like confidentiality, integrity, and availability of services. Rakkay et al. [19] have

also showed how CPN can model classic RBAC policy and checks for some access control re-

quirements. With a help of the CPN-tool, some security conflicts are captured in undesirable CPN

control states (Places).

Shafiq et al. [18] have proposed CPN based verification framework to check the correct-
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ness of event-driven RBAC policies for real-time applications. The authors illustrated how to

examine the violation of cardinality and separation of duties constraints that might take place in

three actions namely: user-role assignment/de-assignment, role enabling/disabling, and role ac-

tivation/deactivations. However, the authors have only checked non-temporal RBAC properties.

Additionally, the authors have ignored the analysis of conflicting constraints.

The CPN analysis technique is also utilized by Toahchoodee and Ray [11] to verify secu-

rity conflicts in a policy expressed by their spatio-temporal model. The verification approach is

twofold: a security policy is first transformed to an Access Control Graph (ACG) policy that is

proposed by Chen and Crampton [13], then the ACG policy is mapped to a number of isolated

CPN nets in order to perform automated analysis. The authors performed a security analysis for a

real-world application scenario and they uncovered some errors such as isolated entities infeasible

paths between model entities.

Though, the structural decomposition of the security model into multiple CPN nets reduces

the state-space explosion problem, it is hard to say if the entire system is free from ambiguities

because the interaction between features across different modules remains unchecked. It is not

clear whether these CPN modules check independent properties. Furthermore, the spatio-temporal

information is approximately represented by tokens of a product color of two string variables

representing time and location factors. Furthermore, a number of auxiliary places are added in the

CPN model to capture tokens representing policy violations of certain properties; this may cause a

drastic increase of the model state-space.

Although CPN supports the exhaustive search, it has some issues for analyzing spatio-temporal

properties. CPN approaches approximate the time rather than using explicit real variables. We be-

lieve that it is ultimately counterproductive when use approximate variables for reasoning about

systems whose correct functioning depends on critical real-time constraints. With CPN approaches,

queries for checking some policy requirements are expressed by ML language which is a domain

specific language of the CPN tool. This language is hard to use to formulate properties. Unlike

temporal logics such as Linear Temporal Logic (LTL), ML specification language does not have

rules and symbolisms such as ’eventually’ and ’always’ keywords that are frequently used to ex-
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press temporal properties. Moreover, current CPN approaches do not utilize the timed Petri Net

(TPN) extension for verifying temporal properties in RBAC. In TPN nets, real-valued variables

are associated with each token, arc expression, and transition, and as such, results in extreme state-

space size. Consequently, the state space-explosion problem becomes an perpetual problem for a

large number of timed tokens, arcs, and transitions [66, 67].

Godray et al. [68] made a comparison between the use of the timed-automata and timed Petri

Net models in the context of temporal validation of real-time systems. The authors investigated

two factors, namely, the modeling formalism expression power and modeling formalism analysis

power. They concluded that both validation approaches have quite similar expressive power; how-

ever, timed-automata improves usability and intuitiveness upon the TPN approach. That is, the

graph representation of a quite large-scaled system in CPN may become too complex to be useful

and understandable. In terms of performance power, the timed-automata approach improves upon

TPN approach even though the optimization options supported by timed-automata is not used.

Since timed-automata algorithms are proven to have high performance, some researchers pro-

posed approaches for the structural transformation for TPN models to the timed-automata models

for analyzing temporal behavior [69, 70, 71, 72].

Another an approximate time analysis approach has been recently proposed Uzun et al. [73].

They have proposed an analysis approach for Temporal-RBAC (TRBAC) using a discrete time

model. The authors proposed to split the analysis problem of TRBAC into simpler RBAC sub-

problems to apply analysis techniques for traditional RBAC. In particular, their approach com-

poses multiple RBAC subproblems in order to simply search for particular reachable states. Our

UPPAAL approach primarily differs from this work since we assume continuous time model. We

are analyzing continues time properties while considering users’ mobility in GSTRBAC. The cost

of continues time analysis has been shown to be expensive, thereby we proposed a number of tech-

niques to confine this analysis cost. While performing the security analysis of some GSTRBAC

properties, our analysis approach decomposes the analysis problem into subproblems based on

those properties of our interest. We use a real-world mobile based DDSS system to evaluate our

approach. Our experimental results show that our analysis approach is both feasible and flexible.
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A number of algorithms and computational analysis of those algorithms are provided too. Further-

more, we have checked some critical temporal properties (e.g., bounded liveness and triggers) that

have not been considered in the Uzun work.

2.3.5 Timed-Automata Approaches

Researchers have also proposed a Timed-Automata (TA) approach as an alternative exhaustive

search approach to CPN for checking temporal properties in RBAC. Mondal et al. [74, 75, 67]

have used timed-automata for specifying properties in TRBAC [47] and GTRBAC [43] models.

The authors have verified temporal properties using toolbox UPPAAL [31]. In the first study [74],

the authors have illustrated how to verify temporal constraints on the role activation in TRBAC

timed-automata. In the subsequent study [75], the authors verified additional temporal properties.

Both studies have assumed that a user can activate one role at a time, and that user should deactivate

that role in order to activate another role. However, in RBAC, a user is authorized to activate

multiple roles simultaneously.

In the latter study, Mondal and Sural [67] have extended their earlier timed-automata ap-

proaches to check a wider number of temporal properties in the GTRBAC model. In this approach,

users are classified into four distinct categories: a single role activation, a multiple role activation

at different time instants, a simultaneous role activation, and a mutual exclusion role activation.

In real-world applications, however, most often users are authorized for performing all of these

role-activation categories in the same policy. Furthermore, these approaches do not consider the

verification of role hierarchies with multiple levels of inheritance. This is important to mitigate

conflicting junior roles activation at critical points of time. The authors also ignored the use of

the state-space reduction techniques supported by UPPAAL. Thus, their analysis performance de-

grades drastically with increasing number of model features and temporal constraints.

None of these timed-automata approaches addressed the verification of spatio-temporal con-

straints of RBAC policies. In our approach, we use the timed-automata to model the behavior

of systems whose correct functioning depends crucially upon spatiality and temporality consider-

ations. The combined impact of time and location on RBAC entities necessitated the design of

multi-interactive timed-automata that respond to location and time changes. Here, each RBAC
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entity is described by an interactive timed-automaton which reacts to spatio-temporal environment

changes by possibly leaving its current state.

The proposed timed-automata approach allows users to verify a number of spatio-temporal

constraints that are non-trivially and inadequately addressed in the existing approaches. In our

approach, it is possible to check some complex spatio-temporal properties such as bounded live-

ness, atomic actions, urgent actions, pre-requisite post-requisite, triggers, and features interactions.

Moreover, users can be in multiple role-activation categories at the same time. We also employ a

number of optimization techniques for reducing the state-space explosion problem in our timed-

automata model. Some of these techniques are supported by UPPAAL algorithms while others

are proposed by us such as careful design structure and entities-dependability techniques. To the

best of our knowledge, most of the existing RBAC analysis approaches do not apply state-space

reduction techniques. As a proof-of-concept, we evaluate our analysis approach performance for a

real-word mobile application.

2.4 Enforcing Role-Based Access Control Policies

The enforcement of spatio-temporal RBAC policies has not received significant attention from the

RBAC researchers. In the past two decades, most of the research on RBAC primarily focus on pro-

viding policy models and analysis approaches, but rarely consider the implementation details of

RBAC models. The enforcement mechanism of RBAC policies in real-world applications provides

additional information about the practical use of the RBAC models. The enforcement mechanism

answers a number of questions such as what are the cost effectiveness and the system’s require-

ments in order to apply such models in various applications. To the best of our knowledge, such

questions require us to develop a framework for implementing the RBAC policy models, and more

specific in mobile environment which is one of the main focus of our dissertation.

Very little research appears in addressing the challenges raised by enforcing spatio-temporal

RBAC policies in practical applications. The enforcement mechanism needs to integrate the access

control component into a typical application architecture. Access control models traditionally de-

fine policies from an abstract perspective and enforcement mechanisms describe how the policies
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are actually implemented in the context of the application. The enforcement of spatio-temporal

access control models in mobile applications introduces a number of interesting implementation

challenges that have not been addressed successfully yet. Verifying the time and location of a mo-

bile user while he is accessing some authorized resources is non-trivial. The followings elaborate

the earlier RBAC enforcement approaches and compare them with our enforcement mechanism.

Kirkpatrick and Bertino [76] enforced access control according to the user’s context. This

work, as does our work, it checks a user claim to a certain context. The authors developed protocols

to authenticate users’ claims based on the GEO-RBAC model [50] which supports spatially-aware

access control policy. In particular, these proctorial validate users’ locations in accordance to the

spatial conditions associated with roles. Their spatially-aware system is developed based on the

assumption that a number of location devices are preloaded in known physical areas to provide

a location proof for users. The location devices are installed in immovable structure, such as

room’s wall, and broadcast a very restricted range of 10 cm in radius. The authors also presumed

that malicious administrators are unable to remove the location devices and reinstall them in false

locations; these devices might be fixed inside a wall. In their approach, a user retrieves an evidence

of being in a room or a building from a location devise using a cell phone equipped with NFC reader

technology. Then, the user presents the location evidence with relevant credentials in the access

request to the system manger component. At a system side, the user claim is authenticated and

then compared with locations associated with the requested roles in the RBAC policy.

Our work differs from that of Kirkpatrick and Bertino in the following ways. First, Kirkpatrick

and Bertino approach does not support the needs for spatio-temporal RBAC polices in which access

decisions depend on the location and time associated with all RBAC entities, which our work

supports.

Second, the location devices in their approach are immobile, and as such, users are restricted

to be present in a room with a proximate distance from those devices in order to get location proof.

In contrast, our approach supports mobile users in the space and users, without such restraint, can

make access from any nomadic devices associated a trusted location system.

Third, we support the temporary suspension of the user’s access for a certain period of time
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the user is moving out of a valid zone, this feature is not supported in the work of Kirkpatrick and

Bertino. Our event-based architecture allows a user to automatically resume all of the previous

rights at a time the user moves back to the valid zone. Thus, our design enhances the perfor-

mance upon this previous work by alleviating the cost of re-activation of the previous roles for the

continuing usage of resources.

Fourth, for continuity of access, their work mandates a user to initiate a conformation protocol

every fixed period of time to proof his location although the user remains in the same valid position.

This approach, however, adds burden on the user’s side and also on the verifier side. Unlike such

approach, our event-based model requires a user to send a notification of access termination or

suspension to the system at the moment the user moves to an invalid zone. With this design, we are

able to reduce the number of communication passes as well as operations on both sides of client

and servers.

Fifth, Kirkpatrick and Bertino informally analyzed the security of their design. We argue that

such analysis cannot be considered complete unless it is formal. We, on the other hand, develop a

threat model to determine possible attacks on our proposed design, and next we formally analyze

those attacks using model finder Alloy [15]. Our enforcement model also has a number of design

characteristics for computational and communication efficiency as well as for implementation flex-

ibility, which this prior work did not attempt to provide. For example, if the application component

could not authenticate the user’s login information, it immediately sends a rejection response to

the user without consulting with the policy component. Our design also enhances the application

performance by alleviating the involvement of communication overhead with a third party, such as

a separate location device, for providing authentication information.

Finally, their design assumes a single access request at time, a single recourse manger to check

the user request, and a single role manger to map the user to a set of roles. Furthermore, the re-

source manger is inseparable part of the system architecture so that a designer must consider it

when they develop their system. However, this approach requires a developer to make a major

configuration in order to adopt a policy model and it is not suitable for widely deployed distributed

architecture. In contrast to such design, our aim is to provide general and flexible unified enforce-

45



ment model by separating a policy component from the point of use to make it possible to be

integrated in many applications. Additionally, our design considers multiple authorization compo-

nents that can provide the required level of access control. In our design, a system forwards access

requests to one of the available authorization servers in order to check whether the resource access

can be granted or not, and as such, the system is oblivious about the underlying polices. This

design decision adds implementation flexibility and protects from malicious insiders given that the

policy is managed by security officers in an isolated manner.

In one of our earlier works [77], we proposed a spatio-temporal role-based access control

model for mobile applications and discuss a simple centralized architecture for enforcing policies

adhering to this model. This model is useful for implementing policies for systems that have

a single access decision point, a resource handler node, and a single data resource base. Our

subsequent work extends the earlier approach along different dimensions. First, our proposed

software architecture model supports distributed environment by incorporating multiple points of

resources access, access decision, and databases for application data and policy. Henceforth, the

current access control protocols considers multiple endpoints of interactions for processing the

protocol passes. In addition, we specify the space and computation capabilities for system devices

implementing our architecture design.

Second, we specify a number of architecture characteristics such as model generality (e.g., cen-

tralized and distributed systems), efficiency ( e.g., using small number of passes and operations),

and separating access decision from point of use to integrate our model with many applications.

For example, the feature of generating access decision by application node without consulting the

authorization node in the architecture excludes unneeded extra passes.

Third, we develop a self-contained algorithm for generating an authorization-token for a par-

ticular user request, which ensures no SoD conflicts can occur between new and current users’

authorized roles and permissions. We also develop a threat model to identify possible attacks on

our proposed design as well as to assess the applied countermeasures to tackle these attacks. This

threat model is decomposed from three threat models: threat model for architecture nodes, the

exchanged data threat model, and the treat model for the authorization protocol. As such, the
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common attacks identified by the threat model can be formally analyzed.

Last but not least, we provide a formal analysis approach to uncover vulnerabilities in the pro-

tocol design. We resort to the use of model finder Alloy that rigorously checks whether some

attackers can break our protocol. Our analysis approach is twofold, it makes a sanity check that

the protocol behaves as expected, and then it tends to check whether some attackers can exploit the

design to launch an attack. Using Alloy, we model the correct behavior of the protocol design and

instruct Alloy to generate an instance of the success of an attack. The analysis approach demon-

strates the soundness of our proposed authentication protocols in the context of some well-known

attack methods, and it might be followed as a general analysis approach for RBAC authorization

protocols.

Enforcement has also been discussed in the context of XACML (eXtensible Access Control

Markup Language) [78]. The XACML framework describes XML-based language for managing

access to resources and provides a structure for enforcing access control policies.

In a usage scenario of XACML, a subject sends a resource access request to the Policy Enforce-

ment Point (PEP), which is the entity protecting that resource. The PEP creates a request based on

the subject’s credentials and other relevant information and sends it to the Policy Decision Point

(PDP). The PDP forms a request to the Policy Information Point (PIP) for retrieving information

relevant to that request. Once the PDP has determined the access decision, the decision is returned

to the PEP, which then allows or denies access to the requester.

Sometimes PEP forward requests to PDP via the Context Handler point, which generates au-

thorization requests based on the resource request details from a user. The Context Handler point

fetches the current users’ contextual information and incorporates this information into that autho-

rization requests and then it queries PDP.

Our architecture differs from the XACML structure in relation to the use of the PIP and Context

Handler points. We have decided to initially exclude these points to allow for a simpler architecture

and minimal communications overhead. Typically, PEP communicates with PDP through Context

Handler point when the user’s contextual information needs to be considered for making access

decision. However, this mechanism introduces additional communication steps.
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In our work, the authorization module needs to contact the recourse module, which imposes

additional delay in the access decision. Since the current user’s spatio-temporal zone is incorpo-

rated into the access request packages sent by users, there is no need to intermediate the Context

Handler point in between PEP and PDP. In its place, the authorization module is only required to

authenticate a users’ zones initiated by the resource module. Moreover, the communication over-

head in our architecture is also reduced by closely coupling PIP and PDP into a single principle.

Additionally, this module acts as PDP for evaluating the spatio-temporal zone and role member-

ship claims, and in combination with the resource policy itself, the authorization module acts as the

PIP. In our architecture, the authorization module manages access based on the underlying access

control policy whilst the resource module authenticates a user’s subscription in a system.

Moreover, existing XACML formulation of RBAC policies termed as XACML RBAC pro-

files (RB-XACML) [79, 80] do not support the impact of spatio-temporal information on RBAC

components (RBAC entities and relationships). These RB-XACML profiles only consider the

contextual information associated with subjects making resource access requests. Moreover, as-

sociating spatio-temporal information with RBAC components in those RB-XACML profiles is a

non-trivial task and there is no a clear approach for formally verifying the RB-XACML profiles

before deploying the such policies.
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Chapter 3

Model Specification and Verification using UML
and OCL

Role-based access control (RBAC) models have been receiving growing attention as they provide

access control security through a proven and increasingly predominant authorization model. One

of the main advantages of the RBAC in comparison with other authorization models is the ease

of its security administrations [81]. Using RBAC, organizations are capable to model security

from their unique perspective. RBAC models are policy neutral [21]; they can support different

access control policies including mandatory and discretionary through the appropriate role config-

uration. Security principles such as least privileges, Separation of Duties (SoD), and pre-requisite

authorizations are proven to be adequately specified using classical RBAC model [36].

With growth of the network technology and increasing use of mobile devices (e.g., smart

phones) new security requirements pose new security challenges. For mobile applications, ac-

cess decisions are influenced by spatio and temporal information of both subjects and objects in

the applications. Since classical RBAC model does not take into account environmental factors

in making access decisions, some studies have extended RBAC in the spatio-temporal domain to

satisfy mobile policy requirements [9, 10, 16]. Generally, these models compose spatio properties

defined in spatio RBAC extensions [50, 51, 49] with the temporal properties specified in temporal

RBAC extensions [82, 47, 43]. However, in spatio-temporal polices access depends simultaneously

on both location and temporal information associated with access requests and with the system en-

tities. With spatio-temporal RBAC models, spatio-temporal information are associated with RBAC

components, and proper matching of these information authorizes the use of application services.

Our first contribution in this dissertation is the development of an access control model, which

we refer to a generalized spatio-temporal RBAC (GSTRBAC). This model is built on the top of

RBAC and it improves upon many of its counterpart models by supporting richer security features

and has a powerful expressiveness via the notions of spatio-temporal zones (STZone) and role

49



availability. The concept of STZone is an extent to RBAC entities, such as to a role which is

referred to a role zone. STZones is a set of pairs for locations and intervals (e.g., Cartesian product

of set of locations and intervals) where and when RBAC entities are available for use. Unlike

existing spatio-temporal RBAC models, spatio-temporal information are not only associated with

application users and roles, instead, they are associated with permissions and objects stored in

computing machines at different physical locations. Further, the notion of STZone helps us to

flexibly specify a variety of spatio-temporal policies at more granular level than the prior spatio-

temporal models. For information security, we assume that the location devices signalling the

current users’ locations are tamper proof.

Some difficulties in specifying security properties in existing spatio-temporal RBAC models

originated from the isolated association of temporal and spatio information with RBAC compo-

nents. Strictly speaking, a role is associated with a set of locations and with a separate set of

intervals at which that role can be assumed. Every time a user sends an access request, the user

context information is evaluated with the set of locations first and then with set of intervals or vice

versa. This process might introduce inconsistency as a result of inaccurate matching of spatio and

temporal information of the role. Additionally, security features like pre-requisite memberships,

objects accessibility, and pre-requisite are not supported by previous models.

Putting our model in use, the security artifact simply determines a set of STZones for a system

and then associates them with RBAC entities. In these STZones, we say that roles, permissions, and

objects are spatio-temporally accessible. This process alleviates the effort and errors from com-

bining spatio and temporal information for each access request. Additionally, various operations

are defined on STZones to flexibly model many security properties including user-role assignment,

permission-role assignment, role activation,role hierarchy, SoD, and pre-requisite in the context

of spatio-temporal domain. For example, the containment and equality operations refer to some

points shared by two distinctive STZones. In other words, containment and equality operations are

specific type of overlapping between STZones points.

The semantics of the GSTRBAC model is defined using the Unified Modeling Language

(UML) [14] and Object Constraint Language (OCL) [22], though we believe that other formalisms
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can also be used for such specification. UML is a general-propose language that has been con-

sidered as the de facto standard in modeling software. UML has a set of graphical notations that

specify static as well as dynamic aspects of software systems. The graphical diagrams of UML

make it intuitive and appealing to software developers. Moreover, UML could be used in all phases

of software development process and has many specifications and analysis tools [23] that software

engineers could utilize. For its prevalence and its support for software development process, we

believe that specifying GSTRBAC model in UML makes the integration of access control into

software development process more feasible. Consequently, we decided to use UML and its con-

straint language, the Object Constrain Language (OCL), for specifying different security properties

supported by our model.

In our specification approach of GSTRBAC, UML class diagram provides a structural view of

the proposed model entities and relationships, whereas OCL expresses different spatio-temporal

constraints in the model. The fact that STZone entity is defined as an aggregate class in the UML

model which encapsulates both location and interval classes, simplifies the definition of various

spatio-temporal constraints in OCL. Further, model entity relationships are describe as class in

order to facilitate the specifications of spatio-temporal operations and constraints. The definition

of STZone as a class aims also to reduce the effort for the validation of policies specified using

the GSTRBAC model. Presently, we will demonstrate the practical implementation of our model

through the specification of a spatio-temporal policy for a real-world application.

With the all features supported by the GSTRBAC model, GSTRBAC needs to be analyzed at

the model level and application level for conflicts and inconsistencies. Some works have used

multiple formalizms in order to specify and verify the semantics of their models [9, 10, 12, 16].

The advantages of the verification tools capabilities motivated this choice. Thus, this method

requires the use of different languages, thereby transformation between modeling and verification

languages, such as Alloy [15], Colored Petri Nets (CPN) [64], or Timed-Automata (TA) [24],

is necessary. However, the transformation is challenging since it requires a formal proof of the

mapping correctness and completeness.

To the best of our knowledge, there are very few approaches that are based on transformation
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in which the transformation process is formally proven to be correct. Some of these techniques

use a mathematical approach to prove the transformation that is based on a technique called bi-

simulation presented in Robin Milner book [83]. Additionally, this technique is not applicable

in all situations because there are parts in the transformation process that makes bi-simulation

undecidable. It is worth noting that these techniques, that use bi-simulation, are not specific to the

specification and analysis of access control policies.

Our specification approach mitigates the transformation issues by using the prevalent UML/OCL

modeling and validation USE tool [23]. Here, spatio-temporal policies are defined as instances of

the GSTRBAC class model. UML-based approach is used for both the specification and the verifi-

cation of the GSTRBAC policies. The fact that UML is the standard modeling language in software

industry makes our approach even more suitable to be used. Therefore, industry security designer

using UML are relieved from learning new formal language just to do the verification. This design

decision makes our approach more applicable than other approaches in the industrial context.

In this chapter, we discuss the specification and verification of the proposed access control

models using the UML/OCL languages. Section 3.1 discusses the representation of spatial, tem-

poral, and spatio-temporal information in our model. Section 3.2 introduces UML/OCL formalism

of the proposed model. In Section 3.3, we discuss a lightweight verification approach based on

UML/OCL. Section 3.4 presents the specification and validation of a military application using the

USE tool.

3.1 Location and Time Representation

In our model, each entity and relation is associated with spatio-temporal information. Before

describing these associations in details, we show how spatio-temporal information is represented

in our models.

3.1.1 Location Representation

Our model considers two types of locations: physical and logical locations. In real world, the

physical location is a collection of physical points in the space in which objects are localized by
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means of three-dimensional coordinates [50, 52]. The physical points are represented by set P,

where P = {p1, p2, . . . , pm}, such that m is the number of physical points.

However, in software systems, the absolute space is not the most appropriate structure for per-

forming access control. Alternatively, the symbolic representation is better conceived by program-

mers and system administrators than the absolute one. The symbolic representation of a physical

position is referred as a logical location. Here, each logical location identifies a place of interest

such as Teller Office, Classroom, CS-Department, etc.

We define a logical location called anywhere that contains all other locations. Each application

can describe logical locations at different granularity levels. For example, some permissions might

be applicable on the entire state whereas other permissions are only applicable to people in the

city. A location is defined as minimal if it represents the smallest level of granularity supported by

the application. In other words, the size of the smallest location in P corresponds to the minimal

location granularity of the application. For example, in the organization Software Development

Corporation, we may have L = { MainBuilding, TestingOffice, DirectorOffice, DevelopmentOffice

}. The MainBuilding houses the three offices in separate floors of the building. In this case,

the minimal location granularity is one floor. In other words, TestingOffice, DirectorOffice, and

DevelopmentOffice are minimal logical locations, but MainBuilding is the containment location.

Since logical locations formed from a set of physical points in the space, we define a one-to-

one mapping function T to perform the translation. We define the set L to determine all logical

locations in a system from which protected resources are accessed.

Definition 1 [Mapping Function T] T is a total function that converts a logical location into a

subset of physical points in the space.

- T : L→ 2P, where P is the set of physical points and L is the set of logical locations.

Different operations can be performed on logical locations namely locations containment ⊆,

equality =, and location overlapping ∩.

- Locations Containment lj ⊆ li: Logical location lj is said to be contained in another location

li, i.e., lj ⊆ li: if all physical points of location lj are physical points of location li, i.e.,

T(lj) ⊆ T(li)
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- Locations Equality li = lj: Two logical locations li and lj are equal, i.e., li = lj if their

physical points are similar, i.e., T(li) = T(lj)

- Locations Overlapping li∩ lj: Two logical locations li and lj are said to be overlapping, i.e.,

li ∩ lj if they share some physical points, i.e., T(li) ∩ T(lj) 6= φ

3.1.2 Time Representation

The periodic and duration behavior are represented based on the definition of the periodic expres-

sion introduced by Bertino et. al. [45]. A periodic expression is represented by two formalisms:

the symbolic and mathematical formalisms. The symbolic formalism is expressed as a tuple of two

elements < [begin, end],P >, where P is an expression that refers to a set of time intervals, and

[begin, end] is the scope defines the lower and upper bounds of P expression. The expression P is

defined based on the calendar notion by Niezette and Stevenne [84]. Calendars are formalized by

the Hours, Days, Months, Years sets.

For example, the periodic expression Years + 7.Months � 3.Months represents the set of inter-

vals starting at month seventh of every year, and having a duration of three months (e.g., summer

time). The date expression is used to represent the symbolic boundaries [begin,end], i.e., [1/1/10,

12/31/10]. For example, the periodic time <[1/1/10, 12/31/10], Everyday + 8.Hours � 8.Hours

> specifies the set of time intervals with a duration of 8 hours, each starting at 8 a.m. (e.g., [8 AM

to 4 PM]) every day for a year, 2010.

Although symbolic expressions are convenient for users, they are not easy to manipulate by

application processes. Therefore, symbolic expressions given by administrators need to be trans-

lated into a mathematical format that is easily handled by programs. Mathematically, a periodic

expressions is a set of intervals whiten certain date boundaries. Elements of an interval are time

instants represented by natural numbers N. A time instant is one discrete point on the time line.

A time interval is a set of consecutive time instants which can be represented in the form of

d = [ts− te], where ts, te represent time instants and ts precedes te on the time line if ts 6= te. We use

the notation ti ∈ d to mean that ti is a time instant in the time interval d. The exact granularity of

a time instant is application dependent. Suppose the granularity of time instant in an application is
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one minute. In this case, time interval [3:00 a.m. - 4:00 a.m.] consists of the set of time instants {

3:00 a.m., 3:01 a.m., 3:02 a.m., . . . , 3:59 a.m., 4:00 a.m. }.

The minimal time granularity of an application refers to the size of the smallest time interval

used by the application. For example, in the Software Development Corporation, we may have

the following intervals that are of interest: I = {i1, i2, i3, i4}, where i1 = [8a.m. − 5p.m.], i2 =

[8a.m.− 12p.m.], i3 = [12p.m.− 1p.m.], and i4 = [1p.m.− 5p.m.]. The minimal time granularity

pertaining to this application is one hour, which is interval i3. Furthermore, i2, i3, and i4 are

considered minimal, but i1 is not as it contains at least one other interval.

We define a time interval called always that includes all other time intervals. Each application

should be able to express different types of temporal intervals. The set of all time intervals of

interest to the application is defined by I. Set I has all intervals corresponding to those in the

periodic expressions. In order to manipulate intervals, the Instant function determines the subset

of time instants for an interval.

- Instant : I → 2N

We define the following three operations that can be performed on time intervals.

- Intervals Containment dj ⊆ di: Time interval dj is said to be contained in interval di , i.e.,

dj ⊆ di, if all time instants of interval dj are time instants of interval di, i.e., Instant(dj) ⊆

Instant(di)

- Intervals Equality di = dj: Two intervals di and dj are equal , i.e., di = dj, if their time

instants are similar, i.e., Instant(di) = Instant(dj)

- Intervals Overlapping di ∩ dj: Two time intervals di and dj are said to be overlapping, i.e.,

di ∩ dj, if they have time instants in common, i.e., Instant(di) ∩ Instant(dj) 6= φ

3.1.3 Spatio-Temporal Zone (STZone)

A spatio-temporal zone is an abstract logical unit that encapsulates both spatial and temporal in-

formation. STZone is a one of the core components of the proposed model, which is linked to
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model entities. The spatio-temporal zone is written as STZone. For example, a spatio-temporal

zone zi is represented as a pair: < li, di > where li represents a spatial component and di represents

a temporal one. In our model, the entity availability is proportional to spatio-temporal zones that

define where and when that entity is accessible.

Definition 2 [Spatio-Temporal Zone] A spatio-temporal zone STZone is a pair of the form <

l, d > where l and d represent the logical location and the time interval respectively. An example

of a spatio-temporal zone can be, z =<Home Office, [6 p.m. - 8 a.m.]>.

The set of all spatio-temporal zones in a system is STZones, where STZones = {z1, z2, . . . , zm}.

An example of a spatio-temporal zone set is { < HomeOffice, [6 p.m. - 8 a.m.]>, <DeptOffice, [8

a.m. - 6 p.m.]> }. A spatio-temporal zone< l, d > is specified at minimal granularity if l and d are

specified at minimal location granularity and minimal temporal granularity respectively. In other

words, STZone < l, d > has the location and time interval that do not contain other location or

interval respectively in the context of the applications. Formally, in STZone < l, d >, location l is

minimal iff ¬∃ l′ ∈ P, l′ 6= l such that l′ ⊆ l, and time interval d is minimal iff ¬∃ d′ ∈ I, d′ 6= d

such that d′ ⊆ d.

Different zone contents define special classes (types) of constraints, such as temporal, spatial,

and strong constraints. The universal zones content defines strong constraints that should hold at

any time and in any locations, i.e zu =< anywhere, anytime >. The second content of zones is

temporal zones that expresses temporal constraints that should hold at any location but during a

certain period of time i, i.e zi =< anywhere, i >. The location zones content specifies the location

constraints that should hold at any time but in location l, i.e., zl =< l, anytime >.

Furthermore, the ZInt and ZLoc return the interval and location in a zone, respectively. These

functions are important to elaborate the content of a zone in order to define granular constraints.

STZones, ZInt, and ZLoc are formally defined as following:

- STZones ⊆ I × L

- ZInt : STZones→ I

- ZLoc : STzones→ L
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In the following, we define a set of operations that can be performed on zones:

- Spatio-temporal zone Containment zj ⊆ zi: Spatio-temporal zone zj =< lj, dj > is said to

be contained in zone zi =< li, di >, i.e., zj ⊆ zi, if they have both intervals containment and

locations containment, i.e., di ⊆ dj and li ⊆ lj.

- Spatio-temporal Equality zi = zj: Two zones zi =< li, di > and zj =< lj, dj > are equal,

i.e., zi = zj, if their time intervals and logical locations are similar, i.e., di = dj and li = lj.

- Spatio-temporal zone Overlapping zi ∩ zj: Two zones zi =< li, di > and zj =< lj, dj > are

said to be overlapping zi ∩ zi if their time intervals and logical locations are overlapping, i.e.,

dj ∩ di and lj ∩ li.

We define the following predicate to evaluate the relation between zones. Predicate containedZones(z, z
′
)

is true when zone z and zone z
′ are related by one of the zones’ operators.

- containedZones(z, z
′
) ⇒ z = z′ ∨ z ⊆ z′

Consider the following example of STZones containment. < FortCollinsOffice, May2011 > ⊆

< Colorado, Year2011 > since T(FortCollins) ⊆ T(Colorado) and May2011 ⊆ Year2011. How-

ever, < FortCollins, May2011 > 6⊆ < Colorado, Year2010 > since May2011 6⊆ Year2010. Simi-

larly, < FortCollins, May2011 > 6⊆ < Nevada, Year2011 > because T(FortCollins) 6⊆ T(Nevada).

3.2 A Generalized Spatio-Temporal Access Control Model

The GSTRBAC model is designed on top of the classical RBAC model [36]. In our model, access

is controlled by spatio-temporal information. Model entities and relationships are associated with

spatio-temporal zones. For example, a system administrator can take a back up from his/her office

during working hours. At home, after working hours, the same administrator is only allowed to

perform some updates (e.g., installing software).

To perform a spatio-temporal access control, a location and time device should be attached

to users and objects. We assume a GPS standard is installed in a computing machine, which

signals the current location of entities, and time reader device which returns the current local time.
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Furthermore, information sent by these devices is trusted because these devices are considered

tamper-proof; malicious programs cannot fraud spatio-temporal zones.

3.2.1 Model Entities

This section describes how spatio-temporal zone component is integrated into user, role, permis-

sion, and object components. We exclude the sessions from our model because STZones associated

with users have the same concept and at a more granular level than sessions. In conformance with

session termination, whenever a user move-out of the early declared zone, the user’s rights are

revoked .

Users:

Two kinds of users are considered in GSTRBAC: human users or agents operating on behalf of

humans. Unlike standard RBAC, users are mobile in nature. Users is the set of all the users

identifiers in a system, i.e., Users = {u1, u2, . . . , un}, where n is the number of users in a system.

Access requests are typically instantiated by users to activate roles or use some permissions

of active roles. The spatio-temporal zone associated with a user gives the user’s current location

and time. We assume that each valid user, interested in doing some location-sensitive operations,

carries a locating device that is able to track his location. The location of a user changes with time.

Upon receiving a user access request, a system processes the spatio-temporal information to

decide whether to allow or deny access. For each request, a typical question to be asked is in the

form of “Is a user allowed to perform a certain action on an object from his/her current zone? ”

This question is formulated in our model as a predicate to be approved before allowing access. We

define the currentzone function to give the current user zone from which a user can use system’s

resources or services.

- currentzone : Users −→ STZones

Note that, time and location can have different levels of granularity. For example, the current

time can be expressed as 12:00:05 p.m. or 12:00 p.m. Similarly, a user’s current location can be

Fort Collins or it can be Colorado. The user’s current location and time information will be used
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for making access decisions. Let us illustrate why the notion of minimality must be associated

with the user’s spatio-temporal zone. Suppose permission is valid in a certain zone. If we do not

use the concept of minimal, then it is possible that the user zone may partially overlap with the

permission zone. In such a case, should we give access or deny access? On the other hand, if

we use the concept of minimal, then the user’s zone will either be within the permission zone or

outside it. In such cases, we know whether to give or deny access. Consequently, we require the

minimal temporal and location be used to express the spatio-temporal zone associated with a user.

Consequently, we require the minimal temporal and location be used to express the spatio-

temporal zone associated with a user. For example, the minimal physical location of a user in the

110 CS lab inside the computer science (CS) building, is the three co-ordinates of the 110 CS lap

which is contained in the physical points of the CS building.

There are some challenges for capturing users’ zones; since users are mobile, their locations

change over time. The changes in the user zones may block the execution of some authorized roles

at the time a user moves into an invalid position or the access duration ends. Furthermore, it is

also important to resume the user’s privileges when the user go back to its valid zone. STZone

provides a kind of intelligence to contiguously track the status of the current active roles. It is also

used to trigger exceptions to revoke roles at the time a user moves in an invalid zone. These issues

are a major concern when policies are enforced in a system. Chapter 5 discusses some protocols

that handle the environmental changes based on the STZone concept. Most of the existing spatio-

temporal models do not address the environmental changes in the access requests at the run time.

Objects:

Objects are similar in nature to mobile users. The set Objects has all the objects’ identifiers in

an access control policy, i.e., Objects = {o1, o2, . . . , on}. Files are examples of objects which

contain or receive information and they are stored in different locations. The computing machines

where objects are stored are associated with trusted devices that send locations and timestamps

information. For example, tellers can only review a customer file at a bank only during working

hours. The function ozones determines the subset of object zones where an object is accessible.
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- ozones : Objects→ 2STZones

Operation/Activity: Operations or activities are similar to functions in a program that are invoked

to perform certain actions on objects. A single operation can be performed on one or more objects.

For example, money transfer from one account to another is an abstract operation that updates

multiple account information. The set of all operations in a system is Operations.

Roles:

The set of all roles in a system is defined by set Roles, i.e., Roles = {r1, r2, . . . , rn}. In GSTRBAC,

a role is available for activation or assignment in some predefined spatio-temporal zones which are

referred to as role zones. For example, a person can activate the role of nurse only when she/he is

in a hospital and during the working hours (day-time or night-time). To express such requirement,

we define a total function rzones that maps each role to a set of spatio-temporal zones.

- rzones : Roles→ 2STZones

Permissions:

The set of all permissions identifiers is termed as Permissions, i.e Permissions = {p1, p2, . . . , pn}.

In our model, a permission is an abstract view of the combination of objects and operations. Fol-

lowing functions determine the objects and operations associated with a permission.

- permObjects : Permissions −→ 2Objects

- permOperations : Permissions −→ 2Operations

Spatial-temporal zones are also associated with permissions to defined users’ access mode.

Each permission zone specifies the location and time in which a permission can be used. For

example, a nurse-on-duty is allowed to give medications to a patient and write in the patient’s file

in a specific ward and during the night. The pzones function returns the set of permission zones

associated with a permission.

- pzones : Permissions→ 2STZones
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3.2.2 UML/OCL Specifications of GSTRBAC

This section presents the specification of the GSTRBAC model in UML/OCL. The structural con-

cept of the GSTRBAC model is specified using UML class diagram with OCL constraints. The

behavioral aspects are modeled using pre-conditions and post-conditions of OCL operations. The

spatio-temporal constraints on GSTRBAC entities and relationships are specified in OCL invari-

ants. We first define the conceptual class diagram model describing GSTRBAC components. Then,

we define OCL expressions to specify spatio-temporal constraints and operations. Before starting

the discussion of the GSTRBAC formalism, we provide a brief overview of UML and OCL lan-

guages.

Overview of UML and OCL

Unified Modeling Language (UML):

UML is a family of modeling languages through which we can specify, visualize, and docu-

ment objects of software systems [14]. UML has a set of intuitive graphic notations which can

sufficiently model various components in a software system. Its importance in the software in-

dustry is attributed to its use in all phases of a software development process. It helps a software

engineer to confine and understand the structure of a system and how they interact with each other

to accomplish functional requirements.

UML includes functional, static and dynamic models. The first model specifies the functional

requirements of a software system using use-case diagrams. The second is the static model which

represents the structural view of data in a system at the conceptual, requirement, and implemen-

tation levels. System entities are replaced by object classes in the UML static diagram. In the

static diagram model, object classes are defined in terms of names, attributes, and behavior while

associations among classes are annotated by multiplicity, constraints, and role names. Associa-

tions have different forms including specialization, generalization, and aggregation relations. In

the third model, the behavior of a system is modeled using dynamic diagrams such as collabora-

tion, sequence, and state-chart diagrams.
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Object Constraint Language (OCL):

OCL is a declarative/textual language that was designed specifically to enable UML develop-

ers to write constraints that are not possible to specify in a diagrammatic manner [22]. It enforces

constraints on class values and relationships with conformance to system requirements. Collec-

tions are the main building blocks of OCL which include sets (no duplicates), bags (duplicates),

and sequences (duplicates, ordered). Various class invariants and operation restrictions can be

represented by OCL to control the structure and behavior in class diagram instances.

The expressions in OCL are constructed in four parts: context identifies the limited situation in

which the expression is valid; property is a characteristic of the context which might be an attribute

or set if the context is an object class; operation can be arithmetic, set manipulations, or qualifies

a property; and keywords specify conditional expressions, in particular, attributes or collections

(e.g., if, then, else, and, or, not, implies).

GSTRBAC Class Model

The UML class diagram model in Figure 3.1 defines the conceptual structure of the GSTRBAC

model. GSTRBAC entities such as zones, users, roles, permissions, objects, and activities are

represented by classes. Most of the entities classes are associated with the STZone class in order

to determine the zones where these entities are spatially and temporally available. All entities are

defined by single compact classes except for permissions and STZones entities. Permissions are

represented by superclass Permission of subclasses Object and Activity.

The STZone class is the core class in the class diagram model that is also connected to GSTR-

BAC relationships. The STZone class is a superclass that encapsulates the Location and the

TimeInterval classes. zcontainment is a reflexive association that specifies the requirement that

a zone can be contained in other zones. The query containedZones() operation in class STZone

returns the set of zones that are contained in a certain zone. GSTRBAC relationships are mod-

eled using association classes which are transformed to normal classes following the modeling

guidelines in [14, 22].
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+assignRole(in r : Role, in z : STZone)

+activateRole(in r : Role, in z : STZone)

+getAssignedRoles(in z : STZone)

+getActivatedRoles(in z : STZone)

+getAuthorizedRoles(in z : STZone)

+checkAccess(in o : Object, in a : Activity, in z : STZone)

User

+inheritsAH(in r : Role, in z : STZone) : bool

+getAuthorizedPermissions(in z : STZone)

+getAHJuniorRoles(in z : STZone)

+getAllAHInheritedRoles(in z : STZone)

+addAHJuniorRole(in r : Role, in z : STZone)

+getAssignedPermission(in z : STZone)

Role

+addSoDPermission(in p : Pemission, in z : STZone)

+deleteSoDPermission(in p : Pemission, in z : STZone)

+getSoDPermissions(in z : STZone)
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Figure 3.1: UML Class Model for GSTRBAC

Model Relationships

The relationships in GSTRBAC are spatio-temporal dependent. They are expressed in GSTRBAC

class diagram by association classes between entities. These association classes have a binary re-

lationship with the STZone class to define the spatio-temporal zones in which those relationships’

entities are available. This way of modeling simplifies the specification of spatio-temporal con-

straints in OCL operations and invariants. Each association class has both association and class

properties. Their instances are links that have attribute values as well as references to other objects.

A number of OCL expressions are defined to describe the spatio-temporal constraints on dif-

ferent relationships in the UML model of GSTRBAC. OCL constraints validate the correctness of

relationships’ instance by checking the association with STZone objects. For example, if entities in

a relationship are available in a particular STZone, then the OCL constraint returns true, otherwise

it denies the relationship from taking place in that zone. The complete UML/OCL GSTRBAC
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code generated by USE tool is shown in Appendix A.

User-Role Assignment:

User-role assignment is location and time dependent. That is, a user can be assigned to a role once

the role is spatio-temporally available. This relationship is represented in the GSTRBAC class

digram via subclass UserRoleAssignment of association class UserRoleRelations. UserRoleRela-

tions is linked to class STZone to specify the spatio-temporal constrains. Furthermore, user-role

assignment should only happen once in each zone. The following OCL operation describes the

spatio-temporal constraints on assigning a user to a role.

context User::assignRole(r: Role, z:STZone): UserRoleAssignment

pre: r.rzones -> includes(z)

pre: self.currentzone -> includes(z)

pre: self.getAssignedRoles(z)-> excludes(r)

post: self.getAssignedRoles(z)-> includes(r)

The preconditions respectively verify that role r is available in zone z, current user u is in zone

z, and role r is not already assigned to user u in zone z. The OCL query getAssignedRoles(z) op-

eration determines the subset of assigned roles to user u in STZone z. The post-condition asserts

that a user-role assignment instance has been created between user u and role r in zone z.

User-Role Activation:

A user can activate a role if the role is spatio-temporally available and it is already assigned to that

user. For example, the role of doctor trainee can only be activated in a hospital during the training

period. The difference with spatio-temporal user-role assignment is that the assignment of roles

does not mean roles are being used, but the activation refers to the usage of roles in a specific zone.

The dual checking of activation zones services as a second line of defence for any error in the first

place of user-role assignment.

User-role activation is specified in the GSTRBAC class diagram via subclass UserRoleActiva-

tion which has an association with the STZone class to define the zones where the role activation
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is allowed. Spatio-temporal constraints on a user-role activation operation are specified in OCL

activateRole() operation.

context User::activateRole(r: Role, z:STZone): UserRoleActivation

pre: self.currentzone->includes(z)

pre: r.rzones->includes(z)

pre: self.getAssignedRoles(z)-> includes(r)

pre: self.getActivatedRoles(z)-> excludes(r)

post: self.getActivatedRoles(z)->includes(r)

The first precondition checks that user u is currently in zone z, the second one ensures that role r

is available in zone z, user u assignment to role r in zone z is checked in the third precondition, and

the last one verifies that role r is not already in active state by user u in zone z. The post-condition

ensures the creation of UserRoleActivation instance between user u and role r in STZone z.

User-Object Access:

The goal of authorization models is protecting the access to system’s objects from unauthorized

users. In the spatio-temporal domain, a user access to protected objects from specific locations and

intervals. For example, a secure bank policy might require that a teller is allowed to have a read

and write access to teller files from the teller booth and during working hours. This feature is not

explicitly defined in existing spatio-temporal models. These models merely define spatio-temporal

constraints on roles and permissions.

The process of a user object access is three steps: first, the user activates a role; second, the

user accesses an appropriate permission associated with that role; third, the user accesses to the

object through that permission. The zones associated with the user, role, permission, and object

should be equivalent or have the zones containment relation. The checkAccess() boolean operation

checks whether a user is allowed to access an object in a specific zone.

context User::checkAccess(o:Object,a:Activity,z:STZone):Boolean

post: result = getActivatedRoles(z)->

65



collect( r | r.getAuthorizedPermissions(z))-> asSet()->

exists( p | p.object=o and p.activity=a and o.zones-> includes(z))

The OCL query returns true only if a user has activated role r in zone z, which has permission

p to access object o in that zone.

Permission-Role Assignment:

Permissions are assigned to roles in specific spatio-temporal zones. For example, a permission to

open a cashier drawer in a store should only be assigned to a salesman role and during the day-time.

Permission-role assignment is specified in the GSTRBAC class model by association class

PermissionAssignment that is also linked to the STZone class. The spatio-temporal constrain on

assigning a permission to a role is specified by the OCL assignPermission() operation.

context Role::assignPermission(p:Permission,z:STZone):

PermissionAssignment

pre: p.pzones->includes(z) and self.rzones->includes(z)

pre: self.getAssignedPermissions(z)-> excludes(p)

post: self.getAssignedPermissions(z)-> includes(p)

The first precondition checks that zone z belongs to the permission p and role r zones. The

second precondition checks that permission p has not yet assigned to role r in zone z. The OCL

operation getAssignedPermissions(z) returns the subset of permissions assigned to role r in STZone

z. The result of this operation is a new instance of PermissionAssignment that links role r, permis-

sion p, and STZone z.

Role Hierarchy

In role hierarchy (RH), higher-level roles (i.e., senior roles) dominate lower-level roles (i.e., junior

roles). Role hierarchy spans the scope of permission acquisition and role activation over explicit

assignment. For example, a project supervisor role inherits permissions from a programmer role

via role hierarchy in addition to its assigned permissions. Furthermore, RH prevents the problem

of multiple permissions assignment to roles.
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The permission-inheritance Hierarchy (I-Hierarchy) and the role-activation hierarchy (A-Hierarchy)

are two distinct subtypes of role hierarchy [43, 85]. In permission-inheritance hierarchy, members

of senior roles can access the inherited permissions without the need to activate the junior roles. In

role-activation hierarchy, members of senior roles are not implicitly authorized to permissions of

junior roles, they need to activate those junior roles.

In our model, I-Hierarchy and I-Hierarchy are spatio-temporal dependent. The spatio-temporal

role hierarchy only holds in specific locations and time intervals. In Figure 3.1, the aggregate Role-

Hierarchy class is linked to the STZone class to specify the set of zones where role hierarchies are

authorized. For the sake of simplicity, the zone where a senior role inherits a junior role is con-

sidered to be the same zone associated with senior and junior roles. The following shows how

different forms of role hierarchies are defined and constrained in the UML/OCL specification.

Permission-Inheritance Hierarchy:

Here, location and time constraints should be satisfied in order of a senior role to inherit permis-

sions from a junior role. For example, a software company policy might require that a software

project supervisor can only inherit permissions of a test engineer in the testing department during

the day-time.

The permission-inheritance is represented by I-Hierarchy class. Each instance of the I-Hierarchy

class draws the path between a senior role, a junior role, and a zone objects. Whenever a new ju-

nior role is added to role hierarchy, a new instance of I-Hierarchy class is created if and only

if the spatio-temporal zone constraints are satisfied. The following OCL operation expresses the

spatio-temporal constraints on adding junior roles to I-Hierarchy.

context Role::addIHJuniorRole(r:Role,z:STZone): I-Hierarchy

pre: self.rzones->includes(z) and r.rzones->includes(z)

pre: self.getIHJuniorRoles(z)-> excludes(r)

post: self.getIHJuniorRoles(z)-> includes(r)

The first precondition ensures that senior and junior roles are available in zone z. The second

precondition checks that junior role r is not in the set of inherited junior roles of the context role.
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Operation getIHJuniorRoles(z) returns the set of junior roles of the context role in zone z.

The delete operation of a junior role from I-Hierarchy in a particular zone can be defined in the

similar manner to the addition operation. The following OCL operation defines the deletion of an

I-Hierarchy instance.

context Role::deleteIHJuniorRole(r:Role, z:STZone)

pre: self.getIHJuniorRoles(z) -> includes(r)

post: self.getIHJuniorRoles(z)-> excludes(r)

The precondition checks that role r is in the subset of junior roles of the context senior role.

The getIHJuniorRoles(z) operation returns the junior roles of the context role in zone z. The post-

condition asserts that the I-Hierarchy instance is removed from the object model.

I-Hierarchy is a partial order and anti-symmetric in the context of spatio-temporal zone. That

is, not all roles have senior roles or junior roles, and the relation between a senior role and a junior

role is only one direction in a particular zone. Such requirement is enforced in I-Hierarchy by the

following OCL invariant.

context r1,r2: Role

inv IHierarchy_Cycle_Constraint: not STZone.allInstances->

exists(z|r1. inheritsIH(r2,z) and r2.inheritsIH(r1,z)and r1<>r2)

This OCL prevents the creation of any cycles of I-Hierarchy instances between roles. Oper-

ation inheritsIH(r,z) returns true if a role is a junior role directly or indirectly of a context role.

It evaluates the inheritance relation between roles through multiple levels of I-Hierarchy. OCL

expressions do not have a primitive for the transitive closure like Alloy. We have implicitly defined

the transitive closure using a recursive OCL operation. The OCL iterates construct allows such

operation to be executed. OCL boolean operation inheritsIH(r,z) is defined as following.

inheritsIH(r:Role,z:STZone): Boolean =

if (self.getIHJuniorRoles(z)->includes(r)) then true

else self.getIHJuniorRoles(z)-> exists(j | j.inheritsIH(r,z))

endif
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Permissions are either explicitly assigned to a role or implicitly acquired by a role via I-

Hierarchy. The following OCL getAuthorizedPermissions(z) operation gives the subset of autho-

rized permissions for a context role in STZone z.

context Role::getAuthorizedPermissions(z:STZone): Set(Permission)

Post: result= self.getAssignedPermissions(z)->

union(self.getAllIInheritedRoles(z)->

collect(r | r.getAssignedPermissions(z)))->

asSet()

Query getAllIInheritedRoles(z) uses boolean operation inheritsIH(z) in order to get the subset

of junior roles of the context role in STZone z. Some of the existing spatio-temporal models

totally lack the definition of such requirements or inaccurately considered them; they either define

a single level of role hierarchies or define unambiguous predicates that ignores enabling conditions

on intermediate roles and/or permissions.

getAllIHInheritedRoles(z:STZone): Set(Role)= Role.allInstances->

select(r | self.inheritsIH(r,z))-> asSet()

Role-Activation Hierarchy:

A restricted spatio-temporal role activation hierarchy allows members of senior roles to activate

junior roles in predefined spatio-temporal zones. For example, members of a chairman role in a

computer science department can only activate a role of a faculty member during the semester and

inside the department building.

Role-activation hierarchy is represented by class A-Hierarchy, which has two binary associ-

ations with class Role and one with class STZone. The OCL operations of adding and deleting

junior roles from A-Hierarchy are defined in the same way of the I-Hierarchy. The OCL operation

of adding an A-Hierarchy instance is defined as following.

context Role::addAHJuniorRole(r:Role,z:STZone): A-Hierarchy

pre: self.rzones->includes(z) and r.rzones->includes(z)
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pre: self.getAHJuniorRoles(z)-> excludes(r)

post: self.getAHJuniorRoles(z)-> includes(r)

Operation getAHJuniorRoles(z) returns the junior roles of the context role in zone z. The OCL

deletion operation of deleting a junior role from A-Hierarchy is specified as follows.

context Role::deleteAHJuniorRole(r:Role, z:STZone)

pre: self.getAHJuniorRoles(z) -> includes(r)

post: self.getAHJuniorRoles(z)-> excludes(r)

The cycling condition among different roles in A-Hierarchy is enforced in the same way in

I-Hierarchy.

context r1,r2: Role

inv AHierarchy_Cycle_Constraint: not STZone.allInstances->

exists(z| r1.inheritsAH(r2,z) and

r2.inheritsAH(r1,z)and r1<>r2)

inheritsAH(r:Role,z:STZone): Boolean =

if (self.getHJuniorRoles(z)->includes(r)) then true

else self.getAHJuniorRoles(z)->

exists(j | j.inheritsAH(r,z)) endif

Users can activate roles explicitly through user-role assignment or implicitly via A-Hierarchy.

OCL query getAuthorizedRoles(z) gets the authorized roles for a context user in STZone z.

context User:: getAuthorizedRoles(z:STZone): Set(Role)

post: result= self.getAssignedRoles(z)->

union(self.getAssignedRoles(z)->

collect(r| r. getAllAHInheritedRoles(z))->

asSet())

The result of this OCL query is a subset of roles that can be activated by a context user. OCL

query operation getAllAHInheritedRoles(z) returns a subset of junior roles inherited by a context

role in zone z.
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3.2.3 Model Constraints

Spatio-temporal constraints are an important part of our access control model; they are a powerful

techniques for expressing at a higher level organizational policy. Spatio-temporal constraints in

our model are classified into two categories, namely, prohibition and pre-requisite constraints [86].

Prohibition Constraints

Prohibition constraints in our model prohibit any a GSTRBAC component from doing something

which is not allowed to do in some undesirable spatio-temporal zones. An example of the spatio-

temporal prohibition constraints is spatio-temporal SoD. In the following subsections, we discuss

different forms of spatio-temporal SoD in our model.

Separation of Duties:

Static SoD (SSoD) and dynamic SoD (DSoD) constraints are two variations of SoD in RBAC [86].

SSoD prevents the assignment of conflict roles or permissions, whereas DSoD forbids the activa-

tion of conflict roles. That is, role SSoD (RSSoD) constraints are applied to user-role assignment,

permission SSoD (PSSoD) constraints are applied to permission-role assignment, and DSoD to

user-role activation

In our model, spatial and temporal factors are applied to the SoD constraints. Consider this mo-

tivation example, the same individual cannot be assigned to roles of student and teaching assistant

for the same class and during a semester in a specific department. Spatio-temporal SoD constraints

are defined using the zone notion. For the sake of simplicity, the SoD constraints are applied to

conflicting roles or permissions in the same zones where conflicting entities are available. Here

below we discuss how to specify spatio-temporal SoD in OCL expressions.

Role SSoD:

Sometimes the same user should not be assigned to some roles in a specific location and for a

certain duration. For example, an individual should not be assigned to billing clerk and account re-

ceivable clerk roles in the same time at a specific trade corporation. Subclass RSSoD in Figure 4.1
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links pairs of conflicting roles with a zone. Thus, roles that are related by RSSoD in a specific

STZone should not have an UserRoleAssignment association instance with a single user in that

STZone. The following OCL invariant forbids the instantiation of user-role assignment between

conflicting roles.

context User

inv RSSOD_Constaint: STZone.allInstances->

forAll( z | not self.getAssignedRoles(z)->

exists(r1,r2 | r1.getSSoDRoles(z)->includes(r2)))

This OCL invariant ensures that the context user must not have user-role assignments with r1

and r2 roles that are related by RSSoD in zone z. Query operation getSSoDRoles(z) returns the

conflicting role with a certain role in zone z.

This RSSoD invariant prevents the direct user-role assignment of conflicting roles in particular

zones. However, this constraint might be violated through I-Hierarchy. RSSoD violation might

occur when conflicting junior roles are inherited by a senior role in a critical zone. Thus, members

of that senior role can have access to conflicting roles.

This RSSoD violation is encountered by propagating RSSoD between junior roles upwards

I-Hierarchy. That is, a role must not inherit conflicting junior roles in some critical zones. For

example, a billing supervisor role must not be a senior role of the two conflicting billing clerk and

account clerk roles at the same time and in the same accounting department. The following OCL

constraint enforces such requirement.

context User

inv RSSOD_RH_Constraint: STZone.allInstances->

forAll( z | not self.getAuthorizedRoles(z)->

exists(r1,r2 | r1.getSSoDRoles(z)->includes(r2)))

This OCL invariant restricts a user from having conflicting roles through I-Hierarchy.
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Permission SSoD:

Spatio-temporal PSSoD prevents conflicting permissions to be assigned to a role in particular loca-

tions and at specific intervals. For example, a loan officer is not permissible to issue a loan request

and approve it in the bank building during the day-time.

Subclass PSSoD expresses this requirement by relating conflicting permissions with zones.

Therefore, any two permissions instances have the PSSoD relation in a specific zone must not have

an PermissionsAssignment association in that zone. The following OCL constraint prevents the

assignment of conflicting permissions in undeniable zones.

context Role

inv PSSOD_Constaint: STZone.allInstances->

forAll( z | not self.getAssignedPermissions(z)->

exists(p1,p2 | p1.getPSSoDPermissions(z)->includes(p2)))

This OCL invariant states that conflicting permissions p1 and p2 must not have permission-role

assignment instance in zone z. Query getPSSoDPermissions(z) specifies the conflicting permis-

sions by PSSoD in zone z.

This OCL invariant protects against the direct assignment of conflicting permissions to roles,

however, it can be violated through I-Hierarchy. Thus, the subset of permissions authorized to a

role by direct assignment or indirect I-Hierarchy in some zones must not have conflicting permis-

sions. The following OCL invariant prevents the violation of PSSoD via I-Hierarchy.

context Role

inv PSSOD_RH_Constraint: STZone.allInstances->

forAll( z | not self.getAuthorizedPermissions(z)->

exists(p1,p2 | p1.getPSSoDPermissions(z)->includes(p2)))

DSoD:

DSoD defines mutual exclusion roles at run-time. Spatio-temporal DSoD states that an individual

should not activate conflicting roles at some intervals and in some locations. For example, a user

might be assigned to both roles of cashier and cashier supervisor, where a supervisor is responsible
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for the correction of a cashier’s cash drawer in a store and during day-time. However, if a user

playing the cashier role attempts to switch to the cashier supervisor role, that user must drop the

cashier role and close the cashier drawer before assuming the cashier supervisor role.

In Figure 4.1, subclass DSoD links conflicting activation roles with zones in which the role

activation is forbidden. Whenever an instance of DSoD is created between two conflicting roles in

a zone, UserRoleActvation instances between these roles cannot be generated. The following OCL

constraint prevents the creation of UserRoleActvation between roles related by DSoD.

context User

inv DSOD_Constaint: STZone.allInstances->

forAll( z | not self.getActivatedRoles(z)->

exists(r1,r2 | r1.getDSoDRoles(z)->includes(r2)))

Operation getDSoDRoles(z) returns the conflicting activation roles in zone z that must not be

simultaneously activated.

Note that a user can activate roles via user-role assignment or membership of senior roles

in A-Hierarchy. The later activation might authorize a user to activate conflicting junior roles.

Suppose that a specialist doctor role is defined as a senior role of the doctor-on-night-duty and

doctor-on-day-duty roles in a hospital during night-time (10 pm to 10 am) and day-time ( 7 am

to 7 pm) respectively. Thus, there is a partial containment time interval (7 am to 10 am) where

both roles are available. Thus, members of the specialist doctor role might simultaneously activate

the doctor-on-night-duty and doctor-on-day-duty roles via A-Hierarchy in the partial containment

intervals.

Such DSoD violation cannot occur in our model. Query operation getActivatedRoles(z) returns

the current subset of active roles by a context user in zone z that are either assumed by user-role

assignment or A-Hierarchy, and are not in activation conflicts. Most of the existing spatio-temporal

models did not (granularly) address the violation of SoD via role hierarchies.
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Obligation Constraints

Sometimes an organizational policy enforces a component in RBAC to do (or being) something

which is allowed by that policy. This motivation is known as pre-requisite constraints [86]. Sandhu

et al. [36] have defined authorization constraints that mandate a user to have a combination of

user-role assignment or user-role activation for some roles. For instance, a user should have been

assigned role r1 in order to be assigned role r2.

Pre-requisite Constraints:

In our model, the pre-requisite constraints are location and time dependant which are defined us-

ing the STZone concept. For example, in order for a user to be authorized to a role in a specific

STZone, the same user must have assumed another role in combination in that STZone. Two types

of spatio-temporal pre-requisite constraints are specified in GSTRBAC. These pre-requisite con-

straints are not supported by existing spatio-temporal models.

Pre-requisite on User-Role Assignment:

Spatio-temporal pre-requisite constraints indicate that the assignment of a critical role necessitates

the assignment of some less critical roles in some favorable zones. For example, a role of nurse-

on-night-duty at a hospital can be assigned in an urgent care unit if and only if a role of nurse is

already assigned in the same urgent unit and during night-time.

Therefore, the user-role assignment instances can only be created if and only if the pre-requisite

constraints are satisfied. The following OCL constraint restricts the creation of UserRoleAssign-

ment instances.

context User

inv Prerequiste_URAssign: STZone.allInstances->

forAll(z | Role.allInstances->

forAll(r1 | (self.getAssignedRoles(z)->includes(r1)) implies

(self.getAssignedRoles(z) ->

includesAll(r1.getPreqAssRoles()))))
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This OCL constraint states that for all zones, if a user is assigned to role r1 in zone z, this

implies that all the pre-requisite roles are assigned to that user. Query operation getPreqAssRoles()

returns the assignment pre-requisite roles needed for assigning a certain role.

Pre-requisite on Permission-Role Assignment:

This constraint states that some critical permissions can be assigned to roles in specific zones if

and only if some pre-requisite permissions are already assigned to those roles. This constraint is a

dual form of the pre-requisite user-role assignment constraint.

For example, some banking policies enforce that a teller role can be assigned the permission

of read-customer file if and only if it has been assigned the permission of read-directory in a file

server machine located inside a bank building and during day-time. This pre-requisite constraint is

specified using the OCL expression in a similar way to the pre-requisite constraint on role assign-

ment.

context Role

inv Prerequist_PRAssign: STZone.allInstances->

forAll(z | Permission.allInstances->

forAll(p1 | (self.getAssignedPermissions(z)->

includes(p1)) implies

(self.getAssignedPermissions(z) ->

includesAll(p1.getPrerequisitePermissions()))))

Pre-requisite on User-Role Activation:

With this constraint, a user should have a certain combination of roles in user-role activation in

some zones. For example, a student role must be activated in a department during a semester time

in order to activate a teaching assistant role for a particular class. This principle also enforces the

legislation that an individual must be registered as a student in a department in order to be granted

a teaching assistant position.
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Thus, the creation of UserRoleActivation instances is constrained by this pre-requisite con-

straint in some critical zones. That is, whenever a user requests a user-role activation creation

for a critical role in a specific zone, that user should have already created a user-role activation

for some pre-requisite roles in that zone. The following OCL invariant restricts the generation of

UserRoleActivation instances on the satisfaction of the pre-requisite role-activation constraints.

context User

inv Prerequist_URActiv: STZone.allInstances->

forAll(z | Role.allInstances->

forAll(r1 | (self.getActivatedRoles(z)->

includes(r1)) implies (self.getActivatedRoles(z)

->includesAll(r1.getPreqActRole()))))

Query operation getPreqActRole() returns a subset of pre-requisite activation roles needed to

activate role r by user u in zone z.

3.2.4 Discussion

This section discusses some challenges that are encountered during the specification of the GSTR-

BAC model in UML/OCL. At the beginning, the class diagram model is designed to capture

the semantic of GSTRBAC. Then, OCL constraints are incrementally defined in the context of

the GSTRBAC class model in order to restrict model instances. OCL invariants as well as pre-

conditions and post-conditions are defined based on the zone concept. Entities in the UML class

diagram are linked with the STZone class association to specify the zones in which these entities

are available.

For modeling relationships, we have tried different ways to link relationships with spatio-

temporal zones. The relationships among entities are first specified using binary associations.

For example, user-role assignment is specified using a binary association between the User class

and the Role class. This binary association is named as UserRoleAssignment with one-to-many

multiplicity.
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However, modeling relationships in this way does not explicitly reflect the fact that GSTRBAC

relationships are spatio-temporal dependent. For instance, binary association UserRoleAssignment

between the User and Role classes in this manner does not express that the relationship is only

valid in particular spatio-temporal zones. Furthermore, the operations in these classes are much

harder to define and validate.

For example, the assignRole(r:Role, z:STZone) operation in the User class assigns a user to

role r in STZone z. It is difficult to define such operation with a binary association due to the

fact that UserRoleAssignment is zone dependent. Such definition requires the creations of links

between class User and class STZone as well as between class Role and class STZone and writing

additional OCL constraints in order to prevent ambiguities in the class model. To overcome this

problem, one must define an attribute on the binary association of the role assignment that specify

the zone in which the assignment holds. This choice makes binary associations between entities

act as association classes. Thus, we decided to employ association classes between model entities

to specify GSTRBAC relationships. These association classes reduce the complexity of policy

specification and validation to a great extent. This technique is not followed by existing UML/OCL

specification of RBAC.

As such, the specification of GSTRBAC relationships via association classes mirrors spatio-

temporal constraints and reduces the complexity of defining operations and OCL constraints. With

our approach, each relationship is represented by association class that is linked to two entities

classes as well as to the STZone class. Consequently, operations defined in the context of the

relationships classes becomes easier to define and check.

According to modeling guidelines of UML [14, 22], it is recommended that associations are

represented by classes in such case. Another option was using ternary associations, however,

ternary associations are usually not useful unless the multiplicity is many on all ends [14, 22]. In

our case, multiplicity of the class STZone end is one in all these association classes. Therefore,

we opted to use association classes and transformed them to normal object classes. Instances of

association classes precisely capture the requirement that GSTRBAC relationships are STZone

dependent. Moreover, association classes make OCL constraints more expressiveness and easy
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analyzed than binary associations.

After the GSTRBAC class model has been specified, OCL expressions are developed and tested

on the model through the USE tool. This includes OCL invariants, pre-/post-conditions, and oper-

ations. The process of defining OCL expressions is incrementally performed on the class model.

For each spatio-temporal constraint, a number of instances are created and tested until the con-

straint is satisfied. We utilized the basic mode of USE to create some good and bad instances

manually [23]. Good instances are those that conform to a particular OCL constraint while bad

instances violate it. If a good instance of the model violates the constraint, then the constraint is

not properly specified. If a bad snapshot does not violate the constraint, then the model does not

precisely capture our intuition of what the model should and should not allow.

For example, to validate the correctness of user-role assignment, we created good and bad

snapshots. A good scenario articulates a state that a user is assigned a role in a valid zone while

in a bad scenario a user is assigned a role in a bad zone. Then, we fed these snapshots to USE

and checked whether the tool returns the expected result for each scenario. We have followed

this approach to uncover and correct faults in the UML/OCL specification of GSTRBAC. We also

utilized the auto-generation mode of USE for automatic snapshot generation [23].

Consider the incremental process that we followed for defining the activateRole(z) operation.

First activateRole(z) is executed in order to generate an instance of UserRoleActivation class that

links USER, Role, and STZone classes. This activateRole(z) operation has two pre-conditions

(pre: self.currentzone− > includes(z)) and ( pre: r.rzones− > includes(z)) that check whether the

current user zone and role zone conform the correct activation zone. We instructed the USE tool

to execute avtivateRole(z) and the result shows that a user in question can activate a role in zone z

in which the role is available.

Then, we tried to execute the activation operation with a role that is spatio-temporally available

but it is not assigned to a user. The activation operation successfully allowed the user to activate

unassigned role. As such, the activation operation violated our GSTRBAC model specification that

enforces role assignment before allowing users to activate roles. Therefore, we added precondition

( pre: self.getAssignedRoles(z)− > includes(r) ) to check role assignment conditions before role
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activation and re-executed the operation again. As a result, the activation operation fails because

the user tries to activate an unassigned role in a valid zone.

Furthermore, the pre-requisite role-activation constraint is also missed in the first place. As

such, the activateRole(z) operation successfully allowed a user to activate a role regardless to the

activation of pre-requisite roles. In consequence, we added the required pre-requisite activation

invariant and activateRole(z) is tested again. Then, operation activateRole(z) failed because the

user has not activated the pre-requisite roles. The rest of the OCL expressions are developed

following the same incremental process for the role activation operation.

3.3 A UML/OCL Model Validation Approach

The proposed model in Section 3.2 is well-suited for many spatio-temporal policies, however, by

itself does not guarantee a system remains secure in all situations. The model supports the speci-

fication of various spatio-temporal features that might interact in a subtle way results in inconsis-

tencies and conflicts. A potential flaw in the policy because of an inconsistency or incompleteness

in the authorization constraints causes an erratic behavior or exposes the underlying resources to

many security breaches. As such, it is important to analyze a policy model before putting it in use.

At application level, a policy state keeps changing over time due to users’ and administrators’

activities, or due to the environmental changes such as zone updates. A security administrator

might add a new entity to a system or a user might assume or drop some roles. A policy state is

a particular configuration of entities and relationships in a system. These kind of changes might

change a policy state to a valid or invalid state. Thus, a policy designer should ensure the correct-

ness of a security policy under different states before it is widely deployed. A manual analysis of

access control policies is tedious and error-prone. A study by Jha et al. [87] concluded that model

checking approaches are promising for security analysis. Tool support reduces the probability of

human mistakes and enhances analysis performance.

Our second contribution in this dissertation is proposing an automated verification approach of

our model. The analysis approach is performed at model-level to ensure a proper specification of

model constrains and it does not raise any conflicts or inconsistencies. We also perform analysis
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at application level to ensure that systems using our model are well protected form security viola-

tions. We base our analysis approach on applying the constraint analyzer USE tool [23]. USE is an

interactive environment helps us to model and validate a system specified in UML/OCL models. It

facilitates the validation of security properties expressed in OCL invariants, pre-, and post- condi-

tions against some test scenarios, i.e object models and snapshots adhering to a UML model. Such

test scenarios could be automatically generated by USE tool which makes the verification process

is automated.

Thus, following our validation approach, a security verifier is not mandated to generate the test

scenarios manually, instead, s/he can impose the USE tool to do that by specifying procedures gen-

erating such scenarios. Once USE provides the object diagram and sequence diagram illustrating

the operations leading to the system state in question, we can check the validity of some security

constraints. Further, we can also evaluate some security queries described in OCL expressions

useful for navigating and exploring the system state.

We witnessed from the existing verification approaches that checking of spatio-temporal RBAC

policies is not easy to perform. Some of which suffers from a large number of model states due to

location and time conditions, and others lacks the verifications of some spatio-temporal properties

such as checking access to mobile objects. Furthermore, checking the interaction between model

features are not easy to handle following the existing approaches. In our approach, the concept

of a spatio-temporal zone streamlines the complexity of analysis by abstracting the environmental

information and their impact on model components. Instead of checking location availability and

then temporality or the reverse, our approach checks only zone availability which reduces the

verification time and space. The follows provides details about our UML/OCL analysis approach.

We first give an overview of the USE tool.

3.3.1 USE Constraint Analyzer

UML Specification Environment (USE) [23] is a constraint analyzer tool with the ability of simu-

lating UML models. USE can be used to analyze structural properties of class diagrams. Structural

properties are those concerning about the configuration of system’s entities at particular point of

time (i.e., a snapshot). Unlike behavioral properties that pertain to multiple system’s states or se-
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quence of snapshots, structural properties check the attributes of objects, links between objects,

and invariants associated with objects. For behavioural properties, USE provides a support for

checking operations expressed in OCL. It allows a user to interactively simulate the behavior of

an operation by entering command that changes the state of objects. The state at the end of a

simulation is checked by USE to determine if the operations’ post-conditions hold.

Another advantages of the USE tool, it can automatically generate instances that conform to

a class model. Gogolla et al. [23] suggest a scripting language that automates the process of

generating instances, which can be used to automatically check a number of instances. USE can

also be used to check whether a specific instance conforms to a model or not. This method requires

the manual generation of such instances. We use both approaches in our validation approach.

In practice, USE tool is used to validate UML/OCL models as follows. The tool takes two

inputs: Class digram model with OCL constraints and Object diagram (model instance). Firstly,

a UML class model with OCL constraints that characterize valid application states. This input

is represented textually in a file describing different classes, operations, associations, attributes,

invariants, pre-conditions and post-conditions. Secondly, an UML object diagram describes a

particular state of a system and it is constructed manually by the verifier of the system. Given

these two inputs, the tool makes some static analysis and returns whether the object diagram is

consistent with the class diagram and OCL constraints. If the object diagram is one possible

instantiation of the class model, then the tool returns a positive result. If not, a negative feedback is

returned indicating that the object model does not conform to the class model. The tool also shows

the constraints that are not satisfied in the object diagram. USE has been extended to support

the auto-generation of object diagrams that are in conformance with a class model [23]. In the

auto-generation approach, the construction of system states is performed in a declarative manner

in which a developer checks the properties that a system is expected to satisfy.

3.3.2 The UML/OCL Verification Framework

GSTRBAC policies are verified using two validation modes as shown in Figure 3.2. The first

mode we termed as Use-basic use mode that allows manual creation of a model instance and then

verifies that instance against the class model. The second validation mode we termed as Use-auto
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generation mode that allows the automatic generation of model snapshots and verifies them. The

following two sections elaborates how these analysis methods are used in our approach.

USE-Basic Mode

USE-Auto Generation  Mode

Class Model with 
Constraints

Object 
Instance 
Diagram

Characterizes Valid GSTRBAC 
Policies

Characterizes GSTRBAC 
Policy State

Analysis 
Results

References

References

USE

USE

class model with
OCL constraints

OCL expressions

Desired GSTRBAC Policy 
Properties

Characterizes Valid GSTRBAC 
Policies  

Generation
Procedures

Satisfies

Instance of 

Object 
Instance 
Diagram

Valid Policy
State 

Figure 3.2: The UML/OCL Verification Approach Framework

USE-Basic mode

In the USE-basic mode, a security verify can check a particular policy configuration. A security

verifier feeds two inputs to the USE tool: UML class model with its OCL constraints that charac-

terizes a valid GSTRBAC policy, and an object model of a GSTRBAC policy which is generated

manually. The GSTRABC class model with the OCL authorization constraints are defined in a

textual format as input to the USE tool. The USE tool performs the validation to determine errors

in the model instances or in the model design.

Based on a policy verifier understandability of what is valid and invalid, the verifier chooses bad

and good GSTRBAC policy states. USE returns whether a policy state conforms to the GSTRBAC

class diagram model or not. In case the policy state does not satisfy the model, USE indicates

the list of constraints that are violated. Depending on the result, a verifier either increases the

correctness of the model or debug the model to find an inconsistency.

However, analyzing the entire policy object model for a particular property is inconvenient
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and ambiguous because the model has many entities and some of them might not be related to

properties in question. Furthermore, we should only focus on interesting states that reveals some

problems in the policy and ignore the repeatable or regular states. Therefore, we define the follow-

ing coverage criterion based on the idea of abstraction and partition.

For each property in our model, we generate some instances covering a possible association

of these entities only. For instance, in order to check the correctness of some OCL constraints on

user-role assignment, we should only concern about instances of user, role, and zones. As such,

we ignore the generation of instances that are irrelevant to the user-role assignment relations such

as permissions, objects, and activities. This process supports the concept of separations of concern

and also reduces the search space. Instead of analyzing the entire model, a set of sub-object models

are derived from the policy object model and verified one-by-one into the USE tool. However, the

manual approach is tedious and time consuming. Thus, we develop Algorithm 1 to generate these

sub-object models based on each property in the policy.

Algorithm for Generating sub-Object Models:

Algorithm 1 takes the inputs of Access Control Specification (ACS), GSTRBAC-UML, and prop-

erty p that is being verified, and then it produces sub-object model m. It first checks whether

property p is supported by the policy or not; if not, then the algorithm will halt in line 42. Sub-

object model m is initialized from GSTRBAC UML class model with no instances. Lines 5-16 adds

entity’s instances to sub-model m that are pertained to property p. Some dependent properties (p′)

are evaluated in Lines 21-24 based on the set (entSet) derived from property p. In case both p
′

and p share some common entities, dependent property p
′ entities are added to sub-model m in

lines 25-38. The resulting object model m should only include entities and relationships that are

dependent on p.

Example:

The following example illustrates how Algorithm 1 generates a sub-object model for checking

user-role assignment. Consider an access control specification that has the following configura-

tion: 2 : 4 : 2 : 2, which means 2 users, 4 roles, 2 permissions, and 2 zones. The policy is formally
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Algorithm 1: Constructing sub-Object Model for p Property.
input : Access Control Specification (ACS), GSTRBAC-UML Class Diagram, and Property p
output: m sub-Object Model

1 if p ∈ ACS // ensure that the property p is supported by policy ACS.
2 then
3 Let: m = createObjectModel(GSTRBAC UML); // Function that instantiates object model m from class model GSTRBAC UML with no

instances of the classes.
4 entSet = entities(p); // obtain the entities involved in the property p
5 Initialization: instanceSet = φ; // initialize the set of instances.
6 foreach ent ∈ entSet // adding property p to m model
7 do
8 foreach e ∈ ent // for any element e in the set ent
9 do

10 if isNotEntityInstance(e,m) // if no e instance in the object model m.
11 then
12 Add: addNewInstance(e,m); // Function adds e instance to the object modelm.
13 Add: instanceSet = instanceSet ∪ {e}; // add the instance e to the set of instances instanceSet.
14 end
15 end
16 end
17 relationInstances = creatRelationInstances(p, instanceSet); // added relationships defined by p to relationInstances set.
18 foreach r ∈ relationInstances do
19 Add: addRelationInstance(r,m); // add new relationship r defined by property p to model m
20 end

21 foreach p
′
∈ ACS and p 6= p

′
// p

′
is another property supported by ACS

22 do
23 entSet

′
= entities(p

′
); // extract the entities used by property p

′

24 if entSet
′
⊆ entSet // check whether p

′
is a dependent property on p.

25 then
26 Initialization: instanceSet

′
= φ;

27 foreach ent
′
∈ entSet

′
// adding property p

′
to m model

28 do
29 foreach e

′
∈ ent

′
// any element e

′
in the set ent

′

30 do
31 Add: instanceSet

′
= instanceSet

′
∪ {e

′
}; // add instance e

′
to the set instanceSet

′
.

32 end
33 end

34 relationInstances
′
= creatRelationInstances(p

′
, instanceSet

′
); // add relationships defined by p

′
to the relationInstances

′
set.

35 foreach r
′
∈ relationInstances

′
// adding relation instances defined by p

′
property to the m model

36 do
37 Add: addRelationInstance(r

′
,m); // add relationship r

′
to the model m.

38 end
39 end
40 end
41 return(m);
42 else
43 Print: display(”The property p is not supported”)
44 end

described as following:

- ACS = {Users,Roles,Permissions, STZones,

UserRoleAssignment,PermissionAssignment,

RH,RSSoD, rzones, pzones}. Note that many more relationships can be also considered in

this ACS.

- Users = {u0, u1}

- Roles = {r0, r1, r2, r3}

- Permissions = {p0, p1}

- STZone = {z0, z1}
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- rzones = {(r0, z0), (r1, z0), (r2, z0), (r3, z1)}

- pzones = {(p0, z0), (p1, z0), (p1, z1)}

- UserRoleAssignment = {(u0, r0, z0), (u1, r1, z0)}

- PermissionAssignment = {(r0, p0, z0), (r1, p1, z0)}

- RH = {(r0, r2, z0)}

- RSSoD = {(r0, r1, z0)}

Algorithm 1 takes the policy sets and relationships in ACS as well as GSTRBAC class model

as input and generates sub-object model ura-Model as shown in Figure 3.3. The ura-Model sub-

object model in Figure 3.3 excludes Permission and RH instances because these instances are not

dependent on the UserRoleAssignment property. The only dependent property on UserRoleAssign-

ment is role SSoD. Role SSoD is an important property that should be considered in ura-Model to

detect any conflicting roles assignment.

In addition, roles that are not assigned to any user are also considered in ura-Model to detect the

isolated entities. We can observe that role SSoD between r0 and r1 is not violated since these roles

are assigned in zone z0 to users u0 and u1 respectively. Roles r2 and r3 are isolated entities; they are

not linked to any User instances. However, the informal observation of the ura-Model graph does

not guarantee the model is free from errors. Thus, ura-Model should be validated against OCL

constraints in GSTRBAC class model using the USE tool.

USE-Auto Generation mode

With the USE auto-generation mode, a security verifier can automatically generate some snapshots

reflecting the allowed policy changes. The USE tool then does the validation process and returns

the analysis results. With this mode, a security verifier investigates possible GSTRBAC policy

states that are allowed by a policy model. By observing some of allowed possible states, the

verifier can identify errors in the UML class model and OCL constraints. Moreover, the security

verifier would be able to investigate possible GSTRBAC policy changes leading to new states.

We write some generation procedures to automatically generate instances of the class model.

The output of these procedures are GSTRBAC policy instances that satisfy particular properties of
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Figure 3.3: Algorithm 1 Output: sub-Object Model ura-Model

our interest. In USE tool, the Snapshot Sequence Language (ASSL) aids the construction of system

states in the automatic mode. Interested readers can consult reference [23] for more information

about ASSL. Consider the definition of the following generateUsers and generateUserRoleAssign-

ment ASSL procedures:

procedure generateUsers(count:Integer)
var theUsers:Sequence(User);
begin
the Users:=CreateN(User,[count]);
end;

This ASSL procedure creates as many users as indicated by the parameter count. The CreateN

expression returns a sequence of newly created users.

procedure generateUserRoleAssignment(count:Integer)
var theURAs:Sequence(UserRoleAssignment),
aUser:User, aRole:Role, aZone:STZone;
begin
theURAs:=CreateN(UserRoleAssignment,[count]);
for asign: UserRoleAssignment in [theURAs]
begin
aUser:=Try([User.allInstances->asSequence->
select(u| u.relations->isEmpty())]);
aRole:=Try([Role.allInstances->asSequence->
select(r| r.relations->isEmpty())]);
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aZone:=Try([STZone.allInstances->asSequence]);
Insert(URRUser,[aUser],[asign]);
Insert(URRRole,[aRole],[asign]);
Insert(URRZone,[aZone],[asign]);
end;

end;

The above ASSL procedure assigns users to roles in particular zones through the generation of

objects of the class UserRoleAssignment. The URAs command creates aUser is of type User, aRole

is of type Role, and UserRoleAssignment objects. The procedure generates as many UserRoleAs-

signment objects as indicated by the count parameter. The Try command create links between

generated entity objects and the UserRoleAssignment objects. The following script instructs the

USE tool to generate a model snapshot of UserRoleAssignment ASSL.

use>open GSTRBAC.use
use>gen start GSTRBAC.assl generateUsers(7)
use>gen start GSTRBAC.assl generateRoles(5)
use>gen start GSTRBAC.assl generateZones(2)
use>gen start GSTRBAC.assl generateUserRoleAssignment(4)
use>gen start GSTRBAC.assl generateUserRoleActivation(2)
use>gen result
use>gen result accept

We omit some commands of this script that show the results of the snapshot generation process.

For example, after the generation of a user instance, The gen result and gen accept shows the

generation result. This script automatically generates 7 users, 5 roles, 4 UserRoleAssignment, and

2 UserRoleActivation objects as shown in the Figure 3.4. We follow the same approach for the

auto-generation of the rest of GSTRBAC entities and relationships

Typically, the result of the policy validation leads to the following consequences: First, the pol-

icy might permit undesired states because the constraints are too weak. Second, some acceptable

states are rejected because the authorization constraints are strongly overlapped. For the fist case,

the constraints are strengthened while the second case the conflicts are resolved. In the following,

we briefly elaborate the type of problems that are expected to be uncovered in a GSTRBAC policy.

In the subsequent sections, we discuss how they are detected using our analysis approaches

• Inaccessible Entity: A user is not connected to a role, a role is not assigned to any user, a

permission is not linked to role
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Figure 3.4: Auto Generation Instance of Role Assignment and Activation

• Missing Constraints: unauthorized users might access to some roles or permissions because

of the missing conditions.

• Conflicting constraints: A user might penetrate policy constraints through the benefit from

other constraints (e.g access conflicting roles via role hierarchy), it is not easy to uncover.

• Violating Constraints: A security violation might occur due to some errors in the policy

specification; for example, a user incidentally access to roles from invalid zones, a user

access conflicting roles, or conflicting permissions are assigned to the same role

3.4 A Military Application Scenario

This section illustrates how a spatio-temporal policy is represented in GSTRBAC and analyzed fol-

lowing our verification approach. For each security property, a number of instances are generated

and checked through the USE tool.

Consider a software production system which is spatio-temporally oriented. This system is

utilized to manage the development of a military software project. Software engineers use that
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system to share the development and maintenance of the project’s files. It is a secure system that

prevents users from improper access to the project’s files. These files are sensitive to exposure to

the public or even to some software programmers. Therefore, the software development system

implements an access control mechanism to protect against any kind of a tamper or an exposure of

those files.

The project’s files are stored in computer machines inside a secure building, and the access to

those files is location and time dependent. For example, a software engineer can copy project files

from the software development office and during the day-time, but the same user is not permitted to

do that from home. The access control policy of the department is informally defined as following:

• The department has six users: Bob, Ben, Alice, Rachael, Clare, and Sam

• The department has six job titles: a software engineer, a software programmer, a test engineer, a
software supervisor, a test supervisor, and a project leader.

• The software engineer can be as a software programmer or a test engineer.

• The software programmer can read, update and backup files of a project inside the office building and
during working hours (8 am to 6 pm). The same software programmer can continue working on the
project from home and during the night-time (6 pm, 8 am) , but he is restricted to take backup.

• The test engineer writes test cases for each software project and runs the tests for some project files
inside the testing office building and during working hours.

• The test engineer can write test cases from home and during night-time, but he is conditioned to run
the test cases.

• The software programmer supervisor is responsible for reading logs of the programs, writing the
business requirements, and developing software models in the software development office.

• The test engineer supervisor is in charge of reading, testing, and approving test cases developed by
testing engineers as well as reviewing bug history report.

• The project leader reads reports of supervisors, writes the project plan, and approves project develop-
ment phases only from the director office and during office hours.

• The following defines restrictions on these job functions:

- The project programmer and test engineer should be essentially a software engineer.

- The software engineer can work as a test engineer or a programmer in different projects, and
from different buildings where these projects are held. However, these two job functions cannot
be assumed by the same individual in the same project.

- The permission to test and write the same program must not be authorized for the same job
function.

- The software engineer supervisor can work as a software programmer and he has a complete
knowledge of programmers’ logs.
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- The test engineer supervisor has access to the rights of test engineers.

- The project leader can only be a director of one project in the same building.

- The project leader can be a supervisor when the supervisor is in a business trip.

3.4.1 Policy Specification

The access control policy of the secure software development system is specified in the GSTRBAC

model as follows:

• ACS = {Users,Roles,Permissions,Objects, STZones, rzones, pzones,UserRoleAssignment,
PermissionRoleAssignment,RH,RSSoD,PSSoD}

• Users = {Bob,Ben,Alice,Rachael,Clare, Sam}

• TimeIntervals = {i1 = (8am, 6pm), i2 = (6pm, 8am)}.

• Locations = {Home,DevelopmentOffice,
TestingOffice,DirectorOffice,DepartmentBuilding}.

• STZones = {z0 =
(DepartmentBuilding, i1), z1 = (user − home, i2), z2 = (DevelopmentOffice, i1),
z3 = (TestingOffice, i1),
z4 = (DirectorOffice, i1)}. Zone z0 represents the containment zone of the zones z2, z3, and z4.

• Roles = {SoftwareEngineer(SE),
SoftwareProgrammer(SP),TestEngineers(TE),ProgrammerSupervisor(PS),
TestSupervisor(TS),ProjectLeader(PL), }

• rzones = {(SE, z0), (SE, z2), (SP, z1),
(SP, z2), (TE, z1), (TE, z3), (PS, z2), (TS, z3), (PL, z4)}

• Objects = {ProjectFiles(obj1),
TestFiles(obj2),ProgramersLogs(obj3),TestLogs(obj4),ProgrammerSupervisourReport(obj5),
TestSupervisorsReports(obj6), }.

• ozones = {(obj1, < z1, z2 >), (obj2, < z1, z3 >), (obj3, z2), (obj4, z3),
(obj5, z4), (obj6, z4)}

• Activities = {(a1 = read), (a2 = write), (a3 = copy), (a4 = run), (a5 = review)}

• {Permissions = ReadFile(P1 = (a1, obj1)),WriteFiles(P2 = (a2, obj1)),CopyFiles(P3 = (a3, obj1)),
WriteTest(P4 = (a2, obj2)),RunTest(P5 = (a4, obj2)),ReviewTestLog(P6 = (a5, obj4)),
ReviewProgramLogs(P7 = (a5, obj3)),ReadSupervisorLogs(P8 = (a1, obj5))}

• pzones = {(P1, z1), (P1, z2), (P2, z1), (P2, z2), (P3, z2),
(P4, z1), (P4, z3), (P5, z3), (P6, z3), (P7, z2), (P8, z4)}

• Model relationships:

- UserRoleAssignment = {(Ben, SP, < z1, z2 >), (Bob,PS, z2),
(Alice,PL, z4), (Clare,TS, z3), (Rachael,TE, < z1, z3 >), (Sam, SE, < z1, z2 >)}
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- PermissionAssignment = {(SP,P1, < z1, z2 >), (SP,P2, < z1, z2 >), (SP,P3, z2),
(TE,P4 < z1, z3 >), (TE,P5, z3), (TS,P6, z3), (PS,P7, z2), (PL,P8, z4)}

- I Hierarchy = {(SP,PS, z2), (TE,TS, z3), (PL,PS, z0),
(PL,TS, z0)}

• Constraints:

- RSSoD = {(SP,TE, z0)}.

- PSSoD = {(P2,P4, z0)}.

- PreqAssRoles = {(SP, SE, z0), (TE, SE, z0)} The software programmer and test engineer roles can
only be assigned if a user is already assigned the software engineer role.

Figure 3.5 shows the GSTRBAC policy of our application example. The policy is an instance

of the GSTRBAC class diagram. However, a complete visualization of the policy reveals a very

crowded object diagram due to the number of entities and relationships.

Figure 3.5: Software Development Policy Specified in USE Tool

Therefore, the policy is graphically represented in Figure 3.6 using a graph-theoretic notation

of RBAC which is introduced by Chen and Crampton [13]. We extend the access control graph

of RBAC to include the concept of spatio-temporal zones. Since permissions are aggregation of
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objects and activities, we ignore the representation of objects and activities in Figure 3.6 to avoid

the crowding.
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Figure 3.6: Access Control Graph for Software Development System Policy

3.4.2 Policy Verification

In the following, we examine some important security properties in the policy example using our

analysis approach. We check the user-object access property which is a harder to validate and it

is not considered in many of the existing spatio-temporal analysis approaches. Here, the current

policy configuration is analyzed using the USE-basic mode and a number of snapshots are auto-

matically generated and checked through the USE auto-generation mode. The result of the analysis

is either confirms or refutes the policy model constraints.

user-role assignment:

Figure 3.5 shows that our policy fails the pre-requisite condition (e.g., Prerequisite-URAssign in-

variant) of the user role assignment. This means that our policy has an error that needs to be

corrected. Ben is assigned to SP, but not assigned to pre-requisite SE role. Referring to the access

control graph, Ben is not assigned to SE role. This policy error is depicted in Figure 3.7. Note that

in Figure 3.7 we have instructed the tool to show the objects and links that we are interested in this

property. Irrelevant objects and links that do not pertain to the pre-requisite constraint are ignored.
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Figure 3.7: Violating Pre-requisite Conditions in User-Role Assignment

We update the policy accordingly and check if it violates this constraint. Now, Ben is assigned

to SE role and the Prerequisite-URAssign constraint is not violated as shown in Figure 3.8.

Figure 3.8: Satisfying Pre-requisite Conditions in User-Role Assignment
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Suppose that now a security administrator wants to assign Bob to role PS role in zone z3 =

(TestingOffice, (8am,6pm)) which is an invalid zone. The USE tool detects the error since the as-

signment operation assignRole(r:Role,z:STZone) fails to be invoked as shown in Figure 3.9. The

sequence diagram on the right shows that Bob is already assigned to role PS in zone z2. The red

arrow in the sequence diagram indicates that the zone pre-condition of the assign operation is not

satisfied and hence the operation is not invoked.

Figure 3.9: Detecting Role Assignment in an Invalid Zone

permission-role assignment:

Suppose a security administrators tries to assign permission p6 to role TS in zone z3 in which both

the role and the permission are available. Therefore, the assignment operation assignPermission(p6,z3)

is successful. When the administrator invokes the same operation in zone z2, the operation fails

and no assignment is allowed. The USE simulates both scenarios and detects the error as shown in

Figure 3.10.

Referring to the policy, Clare can access to permissions of the junior role TE in addition to

permission of senior role TS in zone z3. Figure 3.11 shows the subset of permissions that Clare

can have which are actually a combination of the permissions assigned to TS (permission p6) and

to junior role TE (permissions p4 and p5).

Figure 3.11 shows that Clare is assigned to Role TS in zone z3 (e.g., Clare.getAssignedRoles(z3)).

Clare is only allowed to activate TS role in the same zone (e.g., Clare.getAuthorizedRoles(z3)).

Role TS is assigned to the permission p6 (e.g TS.getAssignedPermissions(z3)) and it is authorized
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Figure 3.10: Detecting Permission Assignment in an Invalid Zone

to p4 and p5 permissions via junior role TE (e.g TS.getAuthorizedPermissions(z3)).

Figure 3.11: User Access to Authorized Permissions

user-role activation:

User role activation operation (activateRole(r:Role,z:STZone)) is an example of the user-oriented

changes of the policy. A security verifier might instruct the USE tool to automatically generate
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some user operations and check if the resulting system states violate the policy model. Suppose

the USE tool generates a system state in which Clare was able to activate role TS in zone z2 which

is not assigned to her in zone z2. This situation should not happen because Clare is only authorized

to TS in zone z3.

In Figure 3.12, the USE tool shows that this activation does not violate the activation con-

straint. After investigating this undesired state, there was a missing pre-condition that checks the

zone availability in the activateRole(r:Role,z:STZone) operation. By adding this condition in the

activation operation, this undesired state should not reachable anymore.

Figure 3.12: Detecting The Activation of Unassigned Role

Suppose that Clare deactivates role TS and she tries to activate it in zone z2 over again. The ac-

tivation operation fails because the pre-condition in the activateRole(r:Role,z:STZone) operation is

not satisfied. Figure 3.13 shows the scenario where the resulting state is not allowed after updating

the missing constraint in the model.
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Figure 3.13: Detecting Role Activation in an Invalid Zone

Role SoD:

Suppose the policy administrator instructs the USE tool to generate an assignment relation between

Ben and role TE in the zone z1. Note that Ben is already assigned to role SP which conflicts with

role TE in zone z1. Surprisingly, the assignment was successful and the new system state violates

the RSSoD constraint.

Investigating this problem, we discover that the assignment operation is missing a pre-condition

for checking the conflicting assignment of roles. Thus, the missing pre-condition is added to the

assignment operation. Now, Figure 3.14 shows that the assign operation cannot by invoked in case

of conflicting roles.

Figure 3.14: Detecting Incorrect Assignment of Conflicting Roles
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Permission SSoD:

Suppose an administrator tries to assign permission p4 to role SP in zone z0. This assignment

operation should fail because of the PSSoD between permissions p4 and p2 in zone z0. The as-

signPermission(p:Permission,z:STZone) operation has a pre-condition that checks the existence of

conflict between permissions. Consequently, the administrator is not able to assign permission p4

to role SP as shown in Figure 3.15.

Figure 3.15: Detecting Incorrect Assignment To Conflicting Permissions

Role hierarchy:

The access control graph shows that PL inherits conflicting junior roles SP and TE in zone z0

through multiple levels of hierarchy. The SP and TE junior roles are respectively assigned con-

flicting permissions p2 and p4. As a result, members of senior role PL can assume conflicting roles

and commit a fraud.

Our model considers PSSOD-RH-Constraint constraint in the presence of multiple level of hi-

erarchy. Figure 3.16 shows that Alice can access to permissions p2 and p4 authorized to role PL

through role hierarchy resulting in PSSOD-RH-constraint violation. We consider this violation as

a security warning. The security administrator is warned that he is assigning Alice a too powerful

role. Then, it is up to the security designer to revise the policy or pay more attention when role PL

is assigned.
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Figure 3.16: Conflicting Between RH and SoD

Checking user access to objects:

Figure 3.17 shows that Ben is allowed to copy project files via permission p3 in zone z2. Ben has

activated role SP in order to access permission p3 in zone z2. The checkAccess operation returns

true as shown in the OCL expression evaluation box in the bottom of Figure 3.17.
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Figure 3.17: Object Access from a Valid Zone

Suppose now Ben moves to zone z3 = (TestingOffice, 8am to 6pm) and tries to copy the

ProjectFiles object again. However, Ben should not be allowed to access that object because role

SP is not available for activation in zone z3. Figure 3.18 shows that the object access constraint is

correctly specified in the policy.

Figure 3.18: Detecting Object Access from an Invalid User Zone

Consider a policy update in which a security administrator assigns permission p3 to role SP in

zone z1. Thus, Ben can activate role SP in z2, but he is not able to access the ProjectFiles object

anymore because p3 is not available in zone z2. Figure 3.19 confirms that Ben is not able to access
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object ProjectFiles.

Figure 3.19: Detecting Object Access from Incorrect Permission Zone

We would like to check if Bob is able to copy object ProjectFiles zone z2. Bob is a member

of senior role PS of junior role SP in zone z2, and permission p3 is assigned to SP the same zone.

Figure 3.20 shows that Bob can copy object ProjectFiles through permission-inheritance hierarchy,

which is authorized by the policy.
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Figure 3.20: User Access Objects Through RH
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Chapter 4

Model Specification and Verification using Pred-
icate Logic

In this chapter, we present an extended spatio-temporal model that also realizes the promise of

RBAC, including simplifying the management of authorizations, a policy neutral, and easy-to-

customize for expressing access control policies. This model aims to provide the right information

or services to the right individuals in the right places and at the correct time. The formal semantic

of the model is defined using predicate logic. The correct behaviour of an application using our

model is subject to the approval of model constraints. Here, RBAC entities and relationships are

also appended with some spatio-temporal zone entities which control their availability.

This model extends GSTRBAC with post-requisite and triggers features as well as it considers

different zone operators at the access time. While performing spatio-temporal access control, the

extended model considers various relations between STZones entities (e.g., containment, equality,

and overlapping) in a simplified manner. The concept of triggers allows one to enforce persistent

spatio-temporal access control while access rights to some resources are being used. That is, an

access should be terminated at the moment a user moves to an invalid zone. Most of the works on

spatio-temporal RBAC perform control before the access; once the access is authorized, there is

no control on the correct use of resources.

Additionally, the extended model expresses spatial, temporal, and strong constraints using the

zone classes (types). Each of the zone classes can flexible specify a particular domain require-

ment. Unlike existing spatio-temporal models, the same predicate can express different domain

requirements without the need to define a certain predicate or use a specific model for each do-

main requirement. This feature significantly reduces the number of predicates in our model. As

such, this model is referred as a consolidated model since it can support multi-dimensional policy

requirements.

Our model is developed to be adopted by non-real-time systems, and also for real-time critical
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and sensitive systems. Non-real times systems cannot guarantee responses will meet the deadlines,

even fast responses are standard. In contrast, in real-time systems, the response to an event, such as

termination triggers of a user access, must be guaranteed within strict time constraints. A real-time

response is usually in the order of seconds or sometimes milliseconds. An example of real-time

constraint in a spatio-temporal policy is the time in which a user must release a role before the role

activation deadline, or at the moment the user leaves a certain locations. Missing deadlines in these

systems can cause a complete system failure. Therefore, analyzing spatio-temporal features in a

continues time model is important to guarantee the information security for hard real-time systems.

A correct behaviour of such systems depends on the correct function of real-time constraints at each

time tick of a system.

We, therefore, propose a rigorous analysis approach for verifying hard real-time polices while

considering spatiality using timed-automata. The timed-automata approach is useful to model and

verify real-time properties that cannot be addressed in non-real-time analysis techniques. Examples

in our spatio-temporal policy model include the bounded liveness, atomic actions, urgent actions,

triggers, and user access termination features.

In this chapter: Section 4.1 shows the formalism of the extended model using predicate logic; a

proof-of-concept case study for specifying mobile-based healthcare system DDSS is described in

Section 4.4; Section 4.5 introduces a state-space based verification approach using timed-automata;

Section 4.6 describes the analysis of the DDSS policy using UPPAAL and also presents the analysis

results.

4.1 An Extended Spatio-Temporal Access Control Model

In this model, we use the representation of time, location, and spatio-temporal zone information

presented in Chapter 3. The following describes the formalism of the model using first predicate

logic.
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4.1.1 Entities and Relationships

Spatio-temporal constraints are predicates which applied to model components to determine if

their value is acceptable or not. This section describes how different classes of spatio-temporal

constraints are defined for the RBAC components.

Users:

The set of users in a system is defined by the Users set. The one-to-one function UserZone gives

the current user spatio-temporal zone.

- UserZone : (u : Users)→ STZones

Roles:

The set of all role identifiers in a system is denoted as Roles. The function Rzones maps each

element in the set Roles to a subset from the power set STZones.

- Rzones : Roles→ 2STZones

User-Role Assignment:

This spatio-temporal assignment constraint is formalized in this model using can AssignRole(u, r, z)

predicate. The predicate can AssignRole(u, r, z) holds when the current user zone z is one of the

zones in which role r is available. The predicates for expressing temporal, spatial, or strong con-

straints on user-role assignment can be defined in a similar manner using the temporal, spatial,

and universal zones respectively. The user-role assignment is defined in the UAz relation. Fur-

thermore, the assigned roles(u, z) function defines the set of assigned roles to a user, and function

assigned users(r, z) gives the set of users assigned to a role in a certain zone.

- can AssignRole(u, r, z)⇒ UserZone(u) = z ∧ ∃ z
′ ∈ Rzones(r) ∧ containedZones(z, z

′
)

- UAz ⊆ Users×Roles×STZones, where all the relation elements satisfies the zone condition.

Formally, ∀(r, u, z) ∈ UAz the predicate can AssignRole(u, r, z) must be true.

- assigned roles : (u : Users , z : STZones) → 2Roles, this maps the user u in zone z to subset

of roles. Formally, assigned roles(u, z) = {r ∈ Roles | (u, r, z) ∈ UAz}
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- assigned userss : (r : Roless , z : STZones) → 2Users, this maps role r in zone z to subset

of users. Formally, assigned userss(r, z) = {u ∈ Users | (u, r, z) ∈ UAz}

Role Enabling:

Once a role is enabled in a spatio-temporal zone, the role can be activated. The predicate can EnableRole(r, z)

specifies the spatio-temporal role enabling constraints. It checks whether role r can be enabled in

zone z. This predicate is true if and only if zone z is one of the valid zones attached to role r.

The temporal, spatial, and strong role enabling constraints can be expressed in a similar man-

ner using the temporal, spatial, and universal zones respectively. The function enabled roles(z)

specifies the current enabled roles in zone z.

- can EnableRole(r, z)⇒ ∃ z
′ ∈ Rzones(r) ∧ containedZones(z, z

′
)

- enabled roles : (z : STZones)× 2Roles, maps a zone to a set of roles that are in enabled state.

This is formally written, enabled roles(z) = {r ∈ Roles | can EnableRole(r, z)}

Whenever a role is disabled in a zone, that role cannot be used to acquire the permissions

associated with it. disabled role(z) gives the set of roles that are disabled in zone z and should not

be accessed by its members.

- disabled roles : (z : STZones)× 2Roles, maps a zone to a set of roles that cannot be accessed.

Formally, disabled roles(z) = {r ∈ Roles | ¬can EnableRole(r, z)}

User-Role Activation:

In order for a user to activate a role, the predicate can ActivateRole(u, r, z) should be satisfied.

This predicate holds if and only if the current user zone is one of the zones in which role r is in

enabled state. Additionally, role r should be assigned to user u in zone z. The temporal, spatial,

and strong role activation constraints can be defined in a similar manner using temporal, spatial,

and universal zones, respectively.

- can ActivateRole(u, r, z)⇒ r ∈ enabled roles(z) ∧ r ∈ assigned roles(u, z)
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- active roles : (u : Users , z : STZones) → 2Roles, maps a user u in zone z to a subset of

active roles. Formally, active roles(u, z) = {r ∈ Roles | can ActivateRole(u, r, z)}

Objects:

The Objects set defines the objects in a system. The function Objzones(obj) associates each object

in the set Objects with a subset of spatio-temporal zones.

- Objzones : Objects→ 2STZones

Operations:

A single operation can be performed on one or more objects. The set of all operations in a system

is referred to Operations.

Permissions:

The set of all permissions in a system is defined by the Permissions set. Permissions are categorized

into human and agent permissions corresponding to human and agent roles. Some spatio-temporal

zones are also associated with permissions. The function Pzones determines the subset of the

power set STZones in which a permission can be accessed.

- Pzones : Permissions→ 2STZones

Each permission is a cross product between the set of objects and operations inside some zones.

The following functions define the allowed objects for a permission in some, and set of permissions

that can be preformed on an object, set of operations associated with an object, respectively.

- Permissions = 2(Operations×Objects×STZones) , the set of permissions.

- permObjs : (p : Permissions , z : STZones)→ 2Objects maps each permission to set of objects

in particular zone. Formally, permObjs(p, z) = {obj ∈ Objects | ∃ z, ∈ Objzones(obj) ∧

containedZones(z, z
′
)}

- objectPerms : (obj : Objects, z : STZones)→ 2Permissions

- permOpr : (p : Permissions , z : STZones)→ 2Operations
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Permission-Role Assignment:

The predicate can AssignPerm(r, p, z) expresses the spatio-temporal constraints on permission-

role assignment. This predicate is true when zone z of permissions p is one of the zones in

which role r is available. The temporal, spatial, and strong constraints on permission-role as-

signments can be expressed in a similar manner through temporal, spatial, and universal zones

respectively. The permission-role assignment is a many-to-many relation defined by PAz. The

function assigned perms(r, z) determines all the explicitly assigned permissions to role r in zone

z, and function used roles(p, z) determines the set of roles using a permission within a specific

zone.

- can AssignPerm(r, p, z)⇒ z ∈ Rzones(r) ∧ ∃ z
′ ∈ Pzones(p) ∧ containedZones(z, z

′
)

- PAz ⊆ Roles× Permissions× STZones

, so that ∀(r, p, z) ∈ PAz the predicate can AssignPerm(r, p, z) should be true.

- assigned perms : (r : Roles , z : STZones) → 2Permissions, maps a role r in zone z to a set of

permissions. Formally: assigned perms(r, z) = {p ∈ Permissions |

can AssignPerm(r, p, z)}

User-Permission Authorization:

The predicate can AuthorizePerm(u, p, z) evaluates whether user u is authorized to permission p in

zone z.

- can AuthorizePerm(u, p, z)⇒ ∃ r ∈ active roles(u, z) ∧ p ∈ assigned perms(r, z)

- user authorized perm : (u : User , z : STZones) → 2Permissions, it maps user u in zone z to a

set of permissions. This is formally written user authorized perms(u, z) =
⋃

r∈active roles(u,z){p ∈

Permissions | p ∈ assigned perms(r, z)}

4.1.2 Role Hierarchy

The following shows the formalisms for role hierarchy RH, the permission-inheritance hierarchy

RHI , and role-activation hierarchy RHA. The functions juniorRolesI(r, z) and juniorRolesA(r, z)

respectively give the junior roles of role r in zone z in RHI and RHA .
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- RH ⊆ Roles× Roles× STZones

- RHI ⊆ RH, RHA ⊆ RH, and RHI ∩ RHA = φ

- juniorRolesI : (r : Roles, z : STZone) → 2Roles, it gives a subset of junior roles in zone z.

Formally, juniorRolesI(r, z) = {r′ ∈ Roles | (r, r
′
, z) ∈ RHI}

- juniorRolesA : (r : Roles, z : STZone) → 2Roles, return a subset of junior activation roles in

zone z, so that juniorRolesA(r, z) = {r′ ∈ Roles | (r, r
′
, z) ∈ RHA}

Now, different forms of permission-inheritance and role-activation hierarchies are defined based

on the zone concept.

Permission-Inheritance Hierarchy (RHI):

In this model, the spatio-temporal RHI is written as �I,z, where role r inherits r
′ role in zone z is

denoted by r �I,z r
′ , if and only if all permissions of role r

′ are permissions of role r. If roles r

and r
′ are not related by RHI in zone z, it means there is no dominance relation between these two

roles in zone z, i.e., r �I,z r
′ . The function authorized perms(r, z) returns a subset of permissions

that are either assigned to role r or inherited by role r in zone z.

- (r �I,z r
′
)⇒ z ∈ Rzones(r) ∧ ∃ z

′ ∈ Rzones(r
′
) ∧ containedZones(z, z

′
)

- authorized perms : (r : Roles , z : STZones) → 2Permissions, the mapping of role r in

zone z onto a set of permissions in the presence of RHI hierarchy. This is formally written,

authorized perms(r, z) = {p ∈ Permissions | (p ∈ assigned perms(r, z)) ∨ [ r
′ ∈

juniorRolesI(r, z) , p ∈ authorized perms(r
′
, z) ]}.

Now, all permissions authorized to an active role, either assigned or inherited, are authorized

to all the role’s members. The user-authorized permissions is revised as following:

- can AuthorizePerm(u, p, z)⇒ ∃ r ∈ active roles(u, z) ∧ p ∈ authorized perms(r, z)

Sometimes a policy allows a senior role to inherit permissions from junior roles within a par-

ticular time interval regardless of the locations implication. For example, a policy of a health care
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system may allow a doctor on duty to inherit permissions of a nurse on duty during critical situa-

tions. Like spatio-temporal permission-inheritance hierarchy, the temporal permission-inheritance

hierarchy can be simply expressed in the temporal zones.

Furthermore, location permission-inheritance hierarchy might be needed in a policy to allow

permissions to be inherited in some specific locations despite the consequences of time. For exam-

ple, an account auditor can inherit permissions of the accountant only in the bank. Such class of

permissions-inheritance hierarchy can be expressed via the spatial zones. The strong permissions-

inheritance can also be expressed in the same way in the universal zones.

Role-activation Hierarchy (RHA):

The spatio-temporal role-activation hierarchy is referred to �A,z. Roles r and r
′ are related by RHA

in zone z if and only if r �A,z r
′ . The function user autorized roles(u, z) determines a subset of

roles that are authorized to user u in zone z via either user-role assignment or RHA.

- r �A,z r
′ ⇒ z ∈ Rzones(r) ∧ ∃ z

′ ∈ Rzones(r
′
) ∧ containedZones(z, z

′
)

- user autorized roles : (u : Users , z : STZones) → 2Roles, maps user u in zone z to subset

of authorized roles that can be activated. We formally define this as, user autorized roles(u, z) =

{r ∈ Roles | (r ∈ assigned roles(u, z)) ∨ [r ∈ juniorRolesA(r
′
, z), r

′ ∈ active roles(u, z) ]}.

Based on the RHA relation, the user activation predicate is revised :

- can ActivateRole(u, r, z)⇒ r ∈ enabled roles(z) ∧ r ∈ user autorized roles(u, z)

Timed RHA authorizes members of a senior role to activate junior roles for a certain time

interval. For example, an instructor can activate the role of teaching during the lab time. The time

RHA can be expressed using timed zones in a similar manner to the spatio-temporal RHA. Location

RHA allow members of an activate senior role to activate junior roles only in certain locations

regardless to the temporal implication. For example, members of the specialist physician role can

activate the primary care physician role in the emergency room whenever needed. The location

RHA is constrained by spatial zones in the same way to spatio-temporal RHA
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4.2 Model Constraints

4.2.1 Separation of Duties (SoD)

The relation SSoDr determines the set of conflicting roles that should not be assigned to the same

individual in some spatio-temporal zones. In a similar way to SSoDr, the relation SSoDp defines

the conflicting permissions that are not allowed to be assumed by the same role in some spatio-

temporal zones. The conflicting activation roles in undesirable spatio-temporal zones are defined

by the DSoDr relation. The functions ssod Roles(r, z) and dsod Roles(r
′
, z) determine the conflict-

ing roles in zone z with role r and r
′ respectively, and ssod Perm(p, z) determines the conflicting

permissions with permission p in zone z.

- SSoDr ⊆ Roles× Roles× STZones

- DSoDr ⊆ Roles× Roles× STZones, and SSoDr ∩ DSoDr = φ

- SSoDp ⊆ Permissions× Permissions× STZones

- ssod Roles : (r : Roles, z : Stzone) → 2Roles

- dsod Roles : (r : Roles, z : Stzone) → 2Roles

- ssod Perms : (p : Permissions, z : Stzone) → 2permissions

In the following, we describe the formalism of the various forms of SoD constraints in this

model.

Role SSoD:

The conflict between roles in some spatio-temporal zones is defined by the relation SSoDr.

- ∀ u ∈ Users • (r, r
′
, z) ∈ SSoDr ⇒ ¬( r ∈ assigned roles(u, z)

∧
r
′ ∈ assigned roles(u, z) )

In some applications, the same user cannot be assigned to conflicting roles for a specific dura-

tion. For example, in an university, an individual can be a chairman of more than one department,

but not at the same time interval. This temporal SSoDr requirement can be enforced in a similar
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semantic to spatio-temporal SSoDr by using temporal zones. The location SSoDr requires that the

conflict between roles only takes place in a certain physical locations. For example, a bank security

policy reduces the possibility of committing a fraud by prohibiting the same individual from being

assigned to auditor and teller roles in the teller room. Similar to spatio-temporal SSoDr, the spatial

zones can be used to define location SSoDr.

Permission SSoD:

The mutual exclusive relation between permissions is defined by SSoDp as following.

- ∀ r ∈ Roles • (p, p
′
, z) ∈ SSoDp ⇒ ¬(p ∈ authorized perms(r, z)

∧
p ∈ authorized perms(r, z))

Timed SSoDp limits the distribution of powerful permissions only for a certain period of time.

For example, the same software engineer programmer should not be given the permissions to write

a code and test the same code at the same time. This requirement can be enforced by temporal

SSoDp using the temporal zones in the same way of the spatio-temporal SSoDp. The spatial SSoDp

prohibits the same role from having conflicting permissions in some locations. For example, a

doctor assistant cannot be authorized to write a patient report and approve it in the same ward; the

report should be signed by a specialist doctor. The spatial SSoDp can be expressed using the spatial

zones.

Role DSoD:

In this model, a pair of mutual exclusive roles related by DSoDr in a spatio-temporal zone are not

allowed from being activated by the same user.

- ∀ u ∈ Users • (r, r
′
, z) ∈ DSoDr ∧ r, r

′ ∈ authorized roles(u, z) ⇒ ¬(r ∈

active roles(u, z)
∧

r
′ ∈ active roles(u, z))

Temporal DSoDr prevents the temporally conflicted roles from being activated by the same

individual at some time intervals. A motivating example of this principle is that a doctor can ac-

tivate either a day-time or night-time doctor roles. Temporal DSoDr can be simply expressed in

our model through the association of temporal zones with the conflicting roles in SDoDr. Spatial
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DSoDr emphasizes that conflicting roles cannot be activated by the same individual in some loca-

tions. An intersecting example of this property is that for many companies, it is not acceptable to

authorize an individual to be acting the roles of production engineer and quality engineer in the

same engineering department. In our model, spatially conflicting roles are associated with spatial

zones in DSoDr.

4.2.2 Pre-requisite, Post-requisite, and Trigger Constraints

Some applications might require the automatic execution of certain actions due to the occurrence of

some events which necessitate the pre-requisite, post-requisite, trigger constraints among actions.

The spatio-temporal pre-requisite constraint enforces that a role should be in a certain state before

allowing an action to be taken on another role within specific time and location. We refer to the

former role as a pre-requisite role and the second role as a succeeding role.

The spatio-temporal role post-requisite constraint requires a role to remain in an active state

in a certain spatio-temporal zone as long as some related roles are active. An example where

this property is practical is that the role of doctor-on-training in a surgery room during a surgical

operation can be activated if and only if the role of senior doctor-on-duty is already activated in

the same room during the same surgical time. This means that the trainee doctor can only practice

in presence of a senior doctor. Thus, the senior doctor is forbidden to deactivate his/her role in the

surgery room during the surgical operation time if there is an active trainee doctor is involved in

that surgical operation.

Therefore, the spatio-temporal post-requisite constraints between roles are more restrictive

form than the spatio-temporal pre-requisite constraints where disabling of the pre-requisite roles

are not restricted. We refer to the doctor-on-training role as post-requisite role and the senior doctor

role as primary role.

The spatio-temporal role triggers are another important constraint referring to the automatic

execution of certain actions because of the occurrence of an event such as enabling a role. In the

event of role enabling, another role should be enabled in a particular location and for a certain du-

ration. The former role is referred to as stimuli role and the later role is referred to as triggered role.

An example of this property is that enabling the role of surgeon in a surgery room triggers the role
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of anaesthesiologist to be enabled in that room during the surgery. The following discusses some

forms of spatio-temporal role pre-requisite, post-requisite and trigger constraints in our model.

Pre-requisite Constraints

Pre-requisite on Role-Enabling:

An access control policy might require that a role can be enabled if and only if other roles are

already enabled in a certain location and time. For example, in a retail store, a cashier supervisor

reviews a cashier drawer before a designated cashier start to work. Thus, a role of cashier is

enabled if and only if the role of cashier supervisor is already enabled in the same store and at the

same time. To capture this requirement in our model, we define the function pre EnableRoles(r, z)

which retrieves the set of roles that should be already enabled in order to enable role r in zone

z. It is important to note that the disabling of any of the pre-requisite roles does not mean that

role r should be disabled. The role enabling pre-requisite in temporal and spatial domains can be

formalized using the same function.

- ∀(r
′
, z′) ∈ pre EnableRoles(r, z) • can EnableRole(r, z)⇒ r

′ ∈ enabled roles(z′)

Pre-requisite on Role-Disabling:

Sometimes before a role can be disabled, other critical roles must be disabled. pre DisableRoles(r, z)

defines the set of roles that must be disabled in certain zones prior to disabling role r in z. can Disable(r, z)

predicate defines when role r can be disabled in zone z.

- ∀(r
′
, z′) ∈ pre DisableRoles(r, z) • can Disable(r, z)⇒ r

′ 6∈ enabled roles(z′)

Pre-requisite on Role Assignment:

We define the function pre AssinRoles(r, z) in order to obtain the pre-requisite roles that should be

already assigned to a user in order to assign role r in zone z to a user. The de-assignment of any

of pre-requisite roles to a user does not imply that the assignment of role r must be revoked. The

temporal, spatial, and strong role assignment pre-requisite can be defined by this function.

- ∀(r
′
, z′) ∈ pre AssignRoles(r, z) • can AssignRole(u, r, z)⇒ r

′ ∈ assigned roles(u, z′)
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Pre-requisite on Role Deassignment:

Some critical roles must be deassigned from a user before deassigning other roles. The function

pre DeassignRoles(r, z) gives the set of roles that must be deassigned before deasigning role in

zone z. The predicate can DeassignRoles(u, r, z) says whether or not role r can be deassigned for

the user u in zone z.

- ∀(r
′
, z′) ∈ pre DeassignRoles(r, z)• can DeassignRole(u, r, z)⇒ r

′ 6∈ assigned roles(u, z′)

Pre-requisite on Role Activation:

The function pre ActivateRoles(r, z) determines the set of pre-requisite roles that have to be previ-

ously activated by a user in zone z in order to activate r. This security principle does not enforce the

deactivation of roles in case of some or all of the pre-requisite roles are deactivated. The temporal,

spatial, and strong role activation pre-requisites are also defined over the same function.

- ∀(r
′
, z′) ∈ pre ActivateRoles(r, z) • can ActivateRole(u, r, z)⇒ r

′ ∈ active roles(u, z′)

Pre-requisite on on Role Deactivation:

Some critical roles must be deactivated before deactivating other less important roles. The function

pre DeactivateRoles(r, z) gives the set of roles that must be deactivated before deactivating role r

in zone z. The predicate can DeactivateRole(u, r, z) states whether role r can be deactivated from

user u in zone z. The following constraint captures this.

- ∀(r
′
, z′) ∈ pre DeactivateRoles(r, z)•can DeactivateRoles(u, r, z)⇒ r

′ 6∈ active roles(u, z′)

Triggers for Performing Automated Operations

Role Trigger:

In our model, the role trigger principle enforces that enabling or disabling a role triggers other

roles to be enabled or disabled respectively, in some predefined locations and durations. The

trigger event is defined by symbol 7−→. For example, in a medical information system, the role

nurse-in-training is enabled in a hospitable for a predefined duration whenever the role of day-

time-nurse is enabled. Furthermore, disabling the day-time-nurse forces the role nurse-in-training

to be disabled immediately or after some fixed durations depending on the information sensitivity.
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In other words, a nurse in training role can access to a system as long as a member of role day-

time-nurse is present in the system. Another example for role activation triggers, the activation of

doctor-on-night-duty in a hospital at the night-time imposes the role of nurse-on-night-duty to be

activated.

The relations triggered EnableRoles(r, z) and triggered ActiveRoles(r, z) give the triggered

roles that need to be respectively enabled or activated in zone z. This means that the event of en-

abling role r in zone z, i.e., enable(r, z), triggers (7−→) the roles in

triggered EnableRoles(r, z) to be enabled. The events of disabling a role (i.e., disable(r, z)), acti-

vating a role (i.e., activate(r, z)), and deactivating a role (i.e., deactivate(r, z)) in zone z are defined

in the same way of the enabling trigger. The following conditions must be satisfied whenever a

stimuli role gets enabled or activated by someone in predefined zones. Note that, the termination

triggers enforce a system to deactivate a role at the moment the current user’s zone violates the

STZone conditions associated with that role.

- ∀ r
′ ∈ trriger EnableRoles(r, z) • enable(r, z) 7−→ enable(r

′
, z)

- ∀ r
′ ∈ trriger DisableRoles(r, z) • disable(r, z) 7−→ disable(r

′
, z)

- ∀ r
′ ∈ trriger ActiveRoles(r, z) • activate(r, z) 7−→ activate(r

′
, z)

- ∀ r
′ ∈ trriger DeactiveRoles(r, z) • deactivate(r, z) 7−→ deactivate(r

′
, z)

Triggers for Spatio-Temporal Zone Change of User:

In the spatio-temporal model, we may need some actions to take place when some events of interest

happens. We can formalize triggers for this purpose. For example, if a user moves out of a spatio-

temporal zone, his role must be automatically deactivated. The triggers are described using the

notation event cond7−→ action, where event triggers action if the predicate cond is true.

Let ZoneChange(u, z, z′) represent the event where the spatio-temporal zone associated with

the user u changes from z to z′.

Role Deactivation: ZoneChange(u, z, z′){r ∈ active roles(u, z) ∧ ¬can ActivateRole(u, r, z′)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

}

DeactivateRole(u, r, z′)
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Role Deassign: ZoneChange(u, z, z′){r ∈ assigned roles(u, z) ∧ ¬can AssignRole(u, r, z′)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

}
DeassignRole(u, r, z′)

Triggers for Enforcing Pre-requisite Constraints:

We define a number of concurrent constraints for guaranteeing role pre-requisites:

Role Enabling: EnableRoles(r′, z) 7→ EnableRole(r, z) where r′ ∈ pre EnableRole(r, z)

Role Disabling: DisableRole(r′, z) 7→ DisableRole(r, z), where r′ ∈ pre DisableRole(r, z)

Role Activation: ActivateRole(u, r′, z) 7→ ActivateRole(u, r, z), where r′ ∈ pre ActiveRoles(r, z)

Role Deactivation: DeactivateRole(u, r′, z) 7→ DeactivateRole(u, r, z), where

r′ ∈ pre DeactivateRole(r, z)

Assign Role: AssignRole(u, r′, z) 7→ AssignRole(u, r, z), where r′ ∈ pre AssignRole(r, z)

Deassign Role: DeassignRole(r′, z) 7→ DeassignRole(r, z), where r′ ∈ pre DeassignRoles(r, z)

Post-Requisite Constraints

Post-requisite on Role Enabling:

Spatio-temporal post-requisite enforces a role to remain enabled in a specific location and time as

long as other roles are in an enabled state. An example where this constraint is required is that

a primary-care-nurse role can be enabled inside a ward during the treatment time if and only if

the primary-care-physician role is already enabled. Due to the fact that the primary-care-physician

must follow up the treatments given by the primary-care-nurse to the patient, the primary-care-

physician role should remain in an enabled state as long as the primary-care-nurse work is going on.

The function post EnableRoles(r, z) gives the set of post-requisite roles for role r. This function

can also define the temporal and spatial role enabling post-requisite using respectively temporal

and spatial zones.

- ∀ r
′ ∈ post EnableRoles(r, z) • r

′ ∈ enabled roles(z) ⇒ r ∈ enabled roles(z)
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Post-requisite on Role-Assignment:

With spatio-temporal role assignment post-requisite, a role cannot be deassigned to a user while

another critical role is still assigned to the same user in some zones. This example shows where this

constraint is useful, a corporation may have a policy that the account auditor role can be assigned

to a user if and only if the accountant has already assigned in the accountant office during the

auditing period. Additionally, the role accountant cannot be designed while the account auditor is

assigned to the same user. post AssignRoles(r, z) gives the set of all the post-requisite assignment

roles in zone z which requires the assignment of role r to the same user. The temporal, spatial, and

strong role assignment post-requisites are defined using the same function.

- ∀ r
′ ∈ post AssignRoles(r, z) • r

′ ∈ assigned roles(u, z) ⇒ r ∈ assigned roles(u, z)

Post-requisite Role Activation:

This constraint prevents a user from deactivating a role as long as another critical role is in an

active state by the same user in undesirable zones. For example, once a user activate the role

of teller and access a confidential room in a bank during the working hours, the user must has

already activated the role of bank clerk. Furthermore, the same user cannot deactivate the role of

bank clerk while that user is playing the teller role in the bank during the working hours. Our

model express such requirements using the post ActiveRoles(r, z) function which gives the set of

post-requisite roles of role r in zone z. This function also expresses the temporal and spatial role

activation post-requisites.

- ∀ r
′ ∈ post ActiveRoles(r, z) • r

′ ∈ active roles(u, z) ⇒ r ∈ active roles(u, z)

4.3 The Graph Model Representation

Figure 4.1 summarizes the primary components of the proposed models. In this figure, the models’

entities are represented by oval shapes, and the single directional and bi-directional arrows respec-

tively represent one-to-one and many-to-many relations between those entities. Furthermore, the

bi-directional arrow with double ends (filled triangles) represents multiple relations between the

same entities, and it is used to reduce the crowd in the graph model. Most entities in the graph
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are connected to the STZone entity to express the spatio-temporal constraints. The cylinder shape

depicts the spatio-temporal constraints on model relationships.

Users RolesUA PermissionsPA
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Figure 4.1: Consolidated Spatio-Temporal RBAC Model

4.4 Real-World Mobile Application DDSS

As a proof-of-concept, we specify an extended cell-phone version of Dengue Decision Support

System (DDSS) using our approach. DDSS was developed in a collaborative effort between Col-

orado State University (CSU), Universidad Autonoma de Yucatan (UAY), Merida, Mexico, and

Servicios de Salud de Yucatan (SSY), Merida, Mexico. DDSS is a management information sys-

tem aims to improve prevention, surveillance, and control of the dengue vector-borne disease in

constrained geographical environments.

DDSS aids end-users in the prediction and quick response to outbreaks of the dengue disease.

This includes Vector Control (VC) and Vector Surveillance (VS) team members to collect infor-

mation regarding the surveillance and control tasks. Additionally, public health officials including

clinic and hospital physicians, laboratory technicians, and epidemiologists interact with the system

for collecting disease data during the course of control or surveillance mosquito vector. Control

and surveillance information are structured in the form of a flexible hierarchy using a located-in

relationship. For example, a city is located-in a jurisdiction, a jurisdiction is located-in a municipal-

ity, a municipality in turn is located-in a state, which is located-in a country. Thus, DDSS database
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resides in different geographical areas, and it is remotely accessed by users via smartphones while

they are working in different surveillance areas.

DDSS has the following job functions: Personal managers are responsible for assigning roles,

tasks, and privileges to users. Clinicians review patient personal information (e.g., names, gender,

date of birth), premises of the patient (e.g., residence, and optionally work or school), past hospi-

talization and treatment information (e.g., clinic, physicians, disease), and clinical findings (e.g.,

presence/absence of fever, nausea, or headache). Laboratory technicians collect laboratory test

data including type of samples, method(s) used to test the samples, framework for interpreting test

results, and interpreted results. Epidemiologists access patient and laboratory test information with

regard to plan and evaluate health safety standards and programs in order to improve surveillance

and public health strategies.

VC team members spray houses in certain infected areas. VS team members perform mosquito

collection and testing tasks intended for developing insecticide resistance methods. VC and VS

members are provided with needed materials to use during the course of dengue vector surveillance

and control. Material managers (MM) at state or city provide required materials to teams and

update materials inventories data in their vicinity. Vector manager (VM) creates a list of tasks to

be performed by VC and VS teams. Figure 4.2 illustrates the operational architecture of DDSS.

Figure 4.2: DDSS Operational Architecture

With the old version of DDSS, VC and VS teams go house-to-house and collect data in paper-

based forms, and then data is entered into the system. However, entering data from paper sheets

has many disadvantages. Paper-based data collection is time-consuming, error-prone, degrades
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the system performance (i.e., late responses), and these forms might easily get lost or damaged.

Furthermore, much of the collected information is never entered into the system, and henceforth

the analysis precision is lost.

Electronic data collection via cell-phones can solve the paper-based forms problem. It expe-

dites emergency responses and tracking the disease evolution. With the help of cell-phone, data is

instantaneously collected and transmitted to DDSS in a reliable manner. In case of network access

is not available, data is stored in cell-phones and transmitted later. Figure 4.3 shows the architec-

ture of cell-phone based DDSS.

Figure 4.3: Cell-Phone DDSS Architecture

Security Requirements for Mobile-based DDSS

Since DDSS is accessed by nomadic devices from diverse geographical locations and during dif-

ferent time intervals, spatiality and temporality are important security measures that must be con-

sidered. Healthcare information of dengue patients should be protected from unauthorized access.

Healthcare professionals are only allowed to access their patients’ records in the same areas where

the dengue case occurred and during the course of dengue.

Furthermore, a spatio-temporal evidence that VC and VS teams performing their tasks in the

right place and time is also mandatory for the credibility of data and disease control. Geographi-

cal hierarchy in DDSS imposes restrictions on both permission-inheritance, role-activation hierar-

chies, role assignments, and activation relationships. For example, a clinician working at the state

level can inherit permissions from the clinician at the city level. Therefore, a spatio-temporal pol-
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icy should be in place to define these requirements in DDSS. Consider the following DDSS access

control policy specified by our model:

- Users: Consider the following DDSS users.

Users = {Dan,Alice,Cliar,Tom, Sam,Yue,Lura}

- Roles: We only consider job functions at state State and city CityA.

Roles = {PersonalManeger(PM), StateHosbitalClinician(SHC),CityHosbitalClinician(CHC),
StateEpidemiologist(SE),CityEpidemiologist(CE),CityMaterialManager(CMM),CityVM(CVM),
VCTeamMember(VCT),VSTeamMember(VST)}

- Permissions:
Permissions = { ReadPatientRecord(p1), UpdatePatientRecord(p2), ReadPatientPrimse(p3),
UpdatePatientPrimse(p4), ReadLaboratoryTest(p5), UpdateLaboratoryTest (p6), ReadUsersData(p7),
UpdateUsersData(p8), ReadControlMaterial(p9), UpdateControlMaterial(p10), ReadVectorInfo(p11),
UpdateVectorInfo(p12), ReadScheduledTasks(p13), UpdateScheduledTasks(p14), DispatchVectorCase(p15),
CollectVectorInfo(p16), SprayHouses(p17) }

- Objects:
Objects = { PersonalUserData(obj1), PatientClinicalData(obj2), PatientLaboratoryData(obj3),
VectorData(obj4), PatientPremise(obj5), MaterialsInventoryData(obj6) }

- Spatio-temporal zones:
STZones = {z0:<State,DayTime>, z′0:<State,NightTime>, z1:<MainOffice,DayTime>,
z′1:<MainOffice,NightTime>, z2:<StateClinic,DayTime>, z3:<CityClinic,DayTime>,
z4:<StateEpo,DayTime>, z5:<CityEpo,DayTime>, z6:<MainWarehouse,DayTime>,
z7:<CityWarehouse,DayTime>, z8:<VMainOffice,DayTime>, z9:<VCityOffice,DayTime>,
z10:<City,Dayime>, z

′
10:<City,NightTime>} , DayTime = [8 a.m, 5 p.m] and NightTime = [6 pm,

10 a.m] and zone z0 is the zone that contains all other zones.

- Role zones:
Rzones = { (PM, z1), (PM, z′1), (SHC, z2), (SHC, z3), (CHC, z3), (CHC, z10),
(SE, z4), , (SE, z5), (CE, z5), (CE, z10), (CMM, z7), (CMM, z10),
(CVM, z9), (CVM, z10), (VCT, z10), (VST, z10) }.

- Permissions zones:
Pzones = { (p1, z2), (p2, z3), (p3, z5), (p4, z5), (p5, z3), (p6, z3), (p7, z1), (p8, z1), (p9, z6),
(p10, z7), (p11, z8), (p12, z9), (p13, z9), (p14, z9), (p15, z9) (p16, z10), (p17, z10)}

- Object zones:
Objzones = {(obj1, z1), (obj2, z3), (obj3, z3), (obj4, z9),
(obj5, z5), (obj6, z7)}, most of these objects can be also accessed in state zone z0 and city zone z10
with limited permissions such as read only.

123



- User-Role Assignments:

UAz = {(Dan,PM, z1), (Dan,PM, z′1), (Alice, SHC, z2), (Alice, SHC, z3),
(Clair, SE, z4), (Clair, SE, z5), (Tom,CMM, z7), (Tom,CMM, z10),
(Tom,CVM, z9), (Tom,CVM, z10), (Sam,CVM, z9), (Sam,CVM, z10),
(Yue,VCT, z10), (Lura,VST, z10)}

- Permission-Role Assignments:

PAz = {(PM, p7, z1), (SHC, p1, z2), (CHC, p2, z3), (SE, p3, z4), (CE, p4, z5), (CMM, p10, z7),
(CVM, p12, z9), (VCT, p13, z10), (VCT, p17, z10), (VST, p13, z10), (VST, p16, z10) }

- Permission Object access: Table 4.1 shows the zones where the permissions access objects.

Table 4.1: Permission Object Access Zones

Permission Object zone Permission Object zone
p1 obj2 z3 p2 obj2 z3
p3 obj5 z4 p4 obj5 z5
p5 obj3 z3 p6 obj3 z3
p7 obj1 z1 p8 obj1 z1
p9 obj6 z6 p10 obj6 z7
p11 obj4 z8 p12 obj4 z9
p13 obj4 z9 p14 obj4 z9
p15 obj4 z9 p16 obj4 z10
p17 obj4 z10

- Role-Activation Hierarchy: The job functions in DDSS are extremely hierarchical.

RHA = {(SHC,CHC, z3), (SE,CE, z5)}

- Role Enabling Triggers: The enabling of roles VCT or VST triggers role CMM to be enabled in
order to provide control or surveillance materials.

enable(VCT, z10) 7−→ enable(CMM, z7)
enable(VST, z10) 7−→ enable(CMM, z7)

- Separation of Duties: In DDSS policy has the following spatio-temporal SoD constraints:

– The role of clinician conflicts with role epidemiologist.

– Material manager and vector manager are conflicting roles.

– The vector control and vector surveillance are conflicting roles.

– The updating patient information and patient premise permissions are conflicting permissions.
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– The permission to update vector case information conflicts with update vector material permis-
sion.

– The permissions of spray a house and collect vector information are conflicting permissions.

Note that most of the conflict between roles and permissions occurs in the same zone or in the con-
tainment zones. For example, role VC and role VS cannot be assumed by a user in the same city.
Additionally, SoD constraint is inherited upwards in RHA. For example, SoD conflict between CHC
and CE roles is propagated to their senior roles SHC and SE.

- DSoDr = {(CHC,CE, z10), (CMM,CVM, z10), (VCT,VST, z10)}
- SSoDp = {(p2, p4, z10), (p10, p12, z10), (p16, p17, z10) }

The DDSS policy is graphically visualized in Figure 4.4.
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Figure 4.4: Access Control Graph for Mobile DDSS Policy

4.5 A Timed-automata Verification Approach

Due to the nature of strict continuous time in the proposed model, the USE approach is not ap-

propriate to explicitly verify temporal liveness, reachability or safety properties. Usually these

properties are expressed in Linear Temporal Logic (LTL) or Time Computational Tree Logic

(TCTL) [32, 33]. Therefore, we propose a timed-automata approach supporting TCTL to analyze

spatio-temporal policies expressed by our extended model. To the best of our knowledge, existing

studies on RBAC have not considered a continuous time modeling language to explicitly verify

the impact of spatial and temporal parameters on RBAC components. Furthermore, we consider

some important properties for mobile applications that have not addressed yet. Examples include,
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bounded liveness, atomic actions, urgent actions, pre-requisites, post-requisites, triggers, and gran-

ular features interactions. We also provide some effective techniques to condense the state-space

explosion problem.

In this approach, temporal constraints are represented by global real variables, whereas the

spatiality constraints are specified using shared discrete variables and control states. The nature

of spatio-temporal information requires that the timed-automata model must be configured in a

different way from merely handling temporal information. Here, a timed-automaton maintains a

continuous interaction with two environmental parameters that cause state transitions. The time

parameters are uniform and they continuously advance at the same pace, whereas locations of

entities are divers and may change or remain the same over time. If there is a location change, it

will be handled individually for each entity.

With the timed-automata approach, we build a formal model ‘M’ describing the behavior of a

mobile policy under verification, the correctness of temporal property ’P’ is expressed with TCTL,

and then a model-checker UPPAAL is used to automatically decide whether ‘M’ satisfies ‘P’ or

not. If successful, UPPAAL reports “a property is satisfied”. If unsuccessful, it reports “a property

is not satisfied”, hence a counterexample trace helps the user to identify the source of the errors.

TCTL has many rules and symbols that allow us, in a feasible manner, to specify a variety

of temporal properties. In a spatio-temporal domain, a typical safety property would be “A role

should never be activated in some undesirable STZones”. Along with safety properties, it is also

important to check for some liveness properties to ensure that the system is functioning properly.

For instance, a classic liveness query would be “An enabled role will eventually be activated”.

Moreover, reachability properties are also needed to perform a sanity check for validating the

basic behavior of the model. For instance, it makes sense to ask “Is it possible for user u to activate

role r in a certain zone?”. Figure 4.5 illustrates the flow of the timed-automata approach.

In the following: Section 4.5.1 provides an overview of timed-automata language and model

checking UPPAAL; Section 4.5.2 discusses the timed-automata model of the DDSS policy; Sec-

tion 4.5.3 describes a set of timed-automata algorithms for defining a policy model; we discuss

a number of optimization techniques for alleviating the state-space explosion problem in Sec-
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Figure 4.5: The Timed-Automata Verification Approach Framework

tion 4.5.4.

4.5.1 Overview of Timed-Automata and UPPAAL

Timed-Automata:

The theory of timed-automata was proposed by Alur and Dill [24] for modeling and verification of

real-time systems. Timed-automata is a finite state machine (a finite directed graph containing a set

of nodes/locations connected through edges ) augmented with non-negative real-valued variables

which model logical clocks in a system. A node in the timed-automata represents a control state

and edges are annotated with actions, constraints, and variable updates. Clocks are initialized to

zero when a system is started, and they advance synchronously at the same pace. Guards on edges

are expressed using clocks and/or discrete variables to constrain the behavior of a timed-automata

model. System transitions are represented by edges that are taken whenever clock values satisfy

guards on that edges. Clock values might be reset to zero whenever a specific transition is taken.

Furthermore, control states (locations) are associated with guards termed as invariants that should

be satisfied to stay in such states.

Syntactically, timed-automaton TA is a 6-tuple < L, l0,C,A,E, I > where: L is a set of finite

control states, l0 is the initial location, C is a set of clock variables, A is a set of synchronized

actions, E is a finite set of directed edges also called transitions between locations, I is a function
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that assign locations to invariants, i.e., I : L → B(C), and B(C) represents the clock constraints

over the set C.

The clocks can take any non-negative real value in R≥0. The clock valuation function v, v :

C → R≥0, which maps each clock variable c in the set C to a non-negative real value v(c) ∈ R≥0.

The set of all clock valuations is RC. After some delay d ∈ R≥0 the clock valuation v(c) + d

represents the clock valuation of clock c after delay d, and the system may remain in the same

state or move to another state. If the next control state is assigned to an invariant, then the clock

valuation should satisfy it in order to fire an incoming transition to that state. When the a clock

valuation v(c) satisfy a guard transition g, it is formally denoted by v(c) � g. Similarly, when

the clock valuations satisfy a location invariant I(l) after some delay d ∈ R≥0, it is written as

v(c) + d � I(l).

The set of directed edges are formally defined as E ⊆ L×A×B(C)×2C×L. The first element

L is the outgoing location, the last element L is the target location, A is an action, B(C) is a guard,

and 2C is the a set of clock need to be reset. When e ∈ E this means that e = (l1, a, g, r, l2) such

that e is a transition between two control states such as l1 and l2 that has an action a and guard g

boolean expression involving clocks and other variables that should be satisfied to get the transition

enabled, and finally r is a set of clocks need to be reset.

Systems are typically modeled in a single timed-automata model that is composed from a net-

work of timed-automata operating in parallel over a set of clocks, variables, and actions. The

parallelism in timed-automata helps to model distributed and concurrent systems efficiently. These

timed-automata interact with each other through synchronization channels. This means that chang-

ing the state of a timed-automaton by firing a transition might lead to a change of the state of a

relevant timed-automaton. For example, two timed-automata T1 and T2 can synchronize over two

edges e1 and e2 labelled with a1! and a2? respectively. Once a guard on edge e1 is evaluated to

true, the transition is taken which will cause the transition on edge e2 to be taken simultaneously

if the guard on e2 is also satisfied. The former automaton T1 is refereed as ”sending” automaton,

and the later automaton T2 is refereed as ”receiving” automaton (i.e., there might be more than

one receiving automata). In such synchronization action, the transition in the sending automata is
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performed before those of the receiving automata.

The state of a system modeled as a network of timed-automata is determined by the active

locations in each timed-automaton and the values of all clock variables and discrete variables.

A transition to a new system state results from a time transition (affects clock valuation, control

states, or both) or action transition that are taken only if transition guards and state invariants are

evaluated to be true. In particular, a time might elapse without affecting the control states or other

variables, it only causes an update of all clock valuations by the same rate reflecting a new system

state. The timed-automata language has some supporting toolboxes, such as UPPAAL [31], for

performing automated analysis.

UPPAAL Tool:

The model checker UPPAAL [31] is an extensive toolbox which provides the ability to create,

simulate, and analyze timed-automata models, and it offers additional features. In particular, UP-

PAAL is a useful tool for verifying systems modeled as a network of connected parametrized

timed-automata acting in parallel. With UPPAAL, we model a system using the UPPAAL editor,

simulate it to ensure it behaves as anticipated using the UPPAAL simulator, and verify the system

with respect to a set of properties using the UPPAAL verifier. Each parametrized timed-automaton

in the model is represented in UPPAAL by a template, and that template has a local declaration

pane for variables, channels, constants, and functions. Processes are instantiated for all templates

in a model during the simulation and verification.

UPPAAL extends the timed-automata with additional features that enable users to model the

behaviors of various types of real time systems. It allows the declaration of different types of data

structures including bounded integer variables, one-dimensional arrays, urgent synchronization

channels, urgent locations, and user defined functions. Data can be either declared locally (i.e., for

a single automata) or globally for all automata in a model. A global clock variable t can be used

by all automata in a model to synchronize their actions.

Locations in a timed-automaton can be labelled as committed or urgent locations to disallow

the passing of time in these locations (i.e., locations must be left without delay). Consequently,
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if the current active location of a timed-automaton is the urgent or committed location, then the

next system transition must involve one of the outgoing edges of that location. These two types

of locations are used to express atomic transactions that involve more than a single transition

to be taken at the same time (i.e., enabling arbitrary number of roles at the same time). Such

a requirement is modeled by labelling intermediate locations as urgent or committed locations

connected by transitions representing an atomic transaction.

Edges can also be labelled with urgent synchronization channels to guarantee that those edges

are taken without delay as soon as they are enabled. The urgent synchronization channels help

to model urgent actions like disabling a role once a spatio-temporal constraint is not satisfied.

When several transitions are interleaving, an urgent edge is non-deterministically taken over other

edges. This feature reduces the interleaving transitions (i.e., edges from different automata may

interleave), thus speeding up the verification process. This feature significantly reduces the number

of branches in the state-space graph.

UPPAAL checks properties that are expressed by TCTL. TCTL is the most appropriate logic

to express temporal properties as it has operators like “A role will be eventually activated,” “An

object will always be accessed ,” and so on. This query language consists of state formulae and

path formulae. State formulae is an expression that describes a property that we need to check in

each system state while the path formulae quantifies over the paths and traces in which states are

visited. TCTL expressions use two operators to describe state formula, <> indicates over some

states and [] indicates at all states. For example, the state formulae ϕ could be a simple expression,

like Role.Activated, that is true whenever a role timed-automaton is in a location ”Activated” that

represents the activation state of a role. Two operators are used in the path formulae, A means in all

paths and E means in some paths. Path formulae is used to specify spatio-temporal Reachability,

safety, and liveness properties in our analysis approach.

Reachability properties check whether a given property is satisfied in some reachable states

along a path starting from the initial state. For example, it makes sense to ask whether it is possible

for a role to be activated by a user in an available spatial-temporal zone. Usually, reachability

properties are performed during a system design to validate the sanity of a model behavior. The
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reachability properties are expressed using the expression E <> ϕ, where ϕ is the state formulae,

and path formulae E <> states that there is a path where some states satisfy the state formulae ϕ.

Safety properties ask that something bad will never happen. In other words, all system states

must not violate the safety conditions. For example, a role will never be activated in an undesirable

spatial-temporal zone. The safety properties are expressed as follows, A[]ϕ, which means that in

all paths, all states must satisfy the state formulae ϕ, if one state evaluated to be false, then the

system is considered insecure.

liveness properties verify whether something will eventually happen starting from some states.

For example, once a role is assigned, it will be eventually activated by a user in some desirable

spatio-temporal zones, otherwise, that role has no meaning in the system and it shouldn’t be defined

and assigned (e.g., we call such role an isolated/useless entity). The liveness properties can be

expressed in the form of leads to written as ϕ  Ω. It means that whenever the state formulae ϕ

is satisfied in a state, then eventually the state formulae Ω will be satisfied in some states along the

path.

Alternatively, the liveness is expressed in the path formulae A <> ϕ meaning that the state

formulae ϕ is eventually satisfied in some states starting from the initial state. UPPAAL also sup-

ports a bounded liveness property that ensures that a property of interest not only holds eventually,

but within a certain upper time-limit. The use of bounded liveness properties instead of unre-

stricted liveness properties provides more information and leads to a granular timed verification

in case deadlines must be satisfied. The bounded liveness properties are expressed in the form of

ϕ (Ω ∧ x ≤ t′), where x is a clock variable. This property states that whenever ϕ is satisfied, Ω

must hold before t′ time unit.

4.5.2 Timed-Automata Model

The first step of our verification is translating a spatio-temporal policy to a timed-automata model.

The result of the translation is a model of a network of timed-automata. Each timed-automaton

represents the behavior of an entity at a particular spatio-temporal zone. That is, each timed-

automaton in the analysis model represents an entity STZone (e.g., role zone, permission zone, or

object zone). Thus, a number of timed-automata are instantiated for each user, role, object, and

131



permission in a system. Clocks express temporal constraints on enabling transitions (i.e., Guards)

and control states (i.e., Location’s invariant) while discrete (integer type) variables express spa-

tial constraints. The state of each entity is identified in a timed-automaton by the current active

control state as well as the clock and discrete variables values. In the following, we will discuss

how timed-automata are constructed for each entity in the sets of Users, Roles, Permissions, and

Objects of the DDSS policy. We use some entities of DDSS to illustrate how timed-automata are

defined for the purpose of analyzing the DDSS policy.

Role Observer Timed-Automata O’TA:

Global clock t is used by all timed-automata to express temporal constraints. For each role zone,

we develop a timed-automata that describes the behavior of the role for the corresponding zone.

We also develop a Role Observer Timed-Automaton (O’TA) that is responsible for clock reset,

enabling and disabling of all roles. O’TA explores the set Rzones to determine the zones where a

role can be enabled. Nodes in the O’TA represent the states signifying the enabling and disabling

of roles in zones.

Figure 4.6 shows a partial O’TA for role SHC, CHC, and PM. Recall that the roles PM is

enabled in STZones z1:<MainOffice,[8 - 17]> and z′1:<MainOffice,[18 - 22]>, and SHC and

CHC are enabled in z3:<CityClinic,[8 - 17]>. The Init node signifies the state where all the roles

are disabled. The outgoing transition from initial location Init to location ERSHC with sending

action enable SHC[CityClinic]!, enables role SHC at time instant t1 = 8. Firing this transition

changes the state of the receiving role SHC timed-automaton at zone z3. Node ERSHC represents

the state where role SHC is enabled.

Since roles CHC and PM are enabled at the same time instant, thereby intermediate nodes

ERSHC and ERCHC are labeled as committed to allow simultaneous enabling of these roles. These lo-

cations allows more than a single action to be taken at the same time. The transitions enabling roles

CHC and PM are labeled with sending actions enable CHC[CityClinic]! and enable PM[MainOffice]!,

respectively. Thus, these action will change the states of roles PM and CHC timed-automata at zone

z3. Node ERCHC and ERPM represent the state where role CHC and PM are respectively enabled.
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O’TA remains in node ERPM as long as the clock invariant t < t
′
1, (note that, t

′
1 = 17). At time

t == t
′
1, roles SHC, CHC, and PM are simultaneously disabled by transitions labeled with syn-

chronous actions disable SHC[CityClinic]!, disable CHC[CityClinic]!, and disable PM[MainOffice]!,

respectively. The states, DRSHC, DRCHC, and ERPM, express that roles SHC, CHC, PM are disabled,

respectively.

Subsequent transitions enable and disable role PM at zone z′1 in nodes ER′PM and DR′PM. At

time t == t2, i.e., t2 = 18, PM timed-automaton gets enabled by the enable PM′[MainOffice]!

action and the control of O’TA moves to node ER′PM. Role PM remains enabled in node ER′PM until

the moment t == t′2, i.e., t′2 = 22, PM is disabled by action disable PM′[MainOffice]!. Location

DR′PM represents the state that role PM in zone z′1 is in disabled state.

On the event of firing the input transition to location Init coming from location DR′PM, at t = t3

(note that, t3 = 24), the function reset clock() resets clock variable t. The nodes that are not com-

mitted are labeled with invariants that strictly express the start and end of time intervals at which

roles are enabled or disabled.

ERSHC

enable_CHC[CityClinic]!

disable_CHC[CityClinic]!

t  == t3 

reset_clock()  

t  == t1 

enable_SHC[StateClinic]!

ERCHC

DRSHC

ERPM

ER’PMDR’PM

t  == t’2 

disable_PM’[MainOffice]!

Init

t < t1 
t < t'1 

t < t2 t < t'2 t < t3 

C

t == t’1 

disable_SHC[StateClinic]!

C

CC

DRCHC

disable_PM[MainOffice]!

DRPM

t  == t2 

enable_PM’[MainOffice]!

enable_PM[MainOffice]!

Figure 4.6: Role Observer Timed-Automata

Role Timed-Automata RTA:

For each role in set Roles, a parametrized automaton is constructed for each role zone in set Rzones

to capture the states at which the role is enabled, disabled, activated, or deactivated at that zone. In

the DDSS policy, we have 16 roles timed-automata. Note that, a role might be at the same time in

different states at different role zones. The timed-automaton in Figure 4.7 represents the enable,

disable, active, inactive states of role CHC at role zone z3 =< CityClinic, [8− 17] >.
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Node DisabledInCityClinic is the initial state of role CHC where it is disable, and control state

EnabledInCityClinic is the target state of the DisabledInCityClinic state that represents the enable

state of role CHC. Edges between these two control states synchronize with sending edges in

O‘TA (see Fig. 4.6) through receiving action enable CHC[CityClinic]?. Firing this action changes

the state of role CHC at zone z3 to the enable state.

The receiving action activate CHC[CityClinic]? activates role CHC. This action synchronizes

with a sending activation action at user Alice timed-automaton (see Fig. 4.10 ). Firing this action

changes the state of role CHC from an enabled to an active state. Note that, a role might be assigned

to multiple users in zone z3. Thus, any subsequent activation of role CHC in ActivatedInCityClinic

does not change the state of role CHC. The self-loop transitions at ActivatedInCityClinic indicate

that role CHC remains in an active state as long as there is at least one user is using role CHC.

The Cont CHC[CityClinic] variable records the number of users who activate role CHC. When

no user is using role CHC, role CHC goes back to the EnabledInCityClinic state. Role CHC

goes back from the EnabledInCityClinic state to the DisabledInCityClinic state at the end of the

enabling duration through urgent synchronization action disable CHC[

CityClinic]?. Since CHC is only accessed by Alice via RHA, these self-loop edges are not needed,

but we present them for the clarity of discussion.

The committed Aperm2 node between EnabledInCityClinic and ActivatedInCityClinic are added

to capture the permissions p2 access at the time role CHC is activated. The sending access p2[CityClinic]!

action synchronize with a receiving action at the corresponding permission timed-automaton of p2

in zone z3 (see Fig. 4.8 ). The committed Eperm2 node is also added between ActivatedInCityClinic

and EnabledInCityClinic to release of permission p2 when role CHC is deactivated by the user. The

sending channel exit p2[CityClinic]! has a corresponding receiving action at permission p2 timed-

automaton.

The deactivation of role CHC is represented by urgent synchronization channel deactivate

CHC[CityClinic]?. Thus, if a user suddenly moves to an invalid location while a role is in an active

state by that user, that role must be immediately deactivated. Similarly, when a role activation time

is expired, role CHC must be instantly revoked from the user. Such requirements are expressed by
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the deactivation triggers at user timed-automata (e.g., urgent actions and location invariants (see

Fig. 4.10) ). Timed-automata for other roles are composite in a similar manner to CHC.

DisabledInCityClinic

ActivatedInCityClinic

activate_CHC[CityClinic]? 
Cont_CHC[CityClinic]++ 

 

deactivate_CHC[CityClinic]? 
Cont_CHC[CityClinic]==1  

Cont_CHC[CityClinic]:=0 activate_CHC[CityClinic]?     
Cont_CHC[CityClinic] > 1           

Cont_CHC[CityClinic]--

access_p2[CityClinic]!

exit_p2[CityClinic]! 

Aperm2

Eperm2

EnabledInCityClinic

enable_CHC[CityClinic]? 

disable_CHC[CityClinic]! 

C

C

activate_CHC[CityClinic]? 
Cont_CHC[CityClinic]++ 

 

Figure 4.7: Timed-Automata of Role CHC at zone z3

Permission Timed-Automata PTA:

A permission timed-automaton is created for each permission zone in set Pzones. Therefore,

the DDSS policy has 17 permissions timed-automata. Each permission timed-automaton mod-

els the behaviour of a permission at a certain permission zone. Figure 4.8 shows the timed-

automaton of permission p2 in zone z3. Here, the states of a permission are represented by

control states UnacquiredInCityClinic and AcquiredInCityClinic by a role. The receiving action

access p2[CityClinic]? coming from initial node UnacquiredInCityClinic represents a request from

CHC role timed-automaton, (see Fig. 4.7 ), to access permission p2. The action of exit permission

p2 is represented by receiving action exit p2[CityClinic]? going from node AcquiredInCityClinic.

Once the access transition is taken, the permission p2 state moves to the AcquiredInCityClinic

control state. Permission p2 remains in the AcquiredInCityClinic state as long as some roles are

using it. The variable Cont p2[CityClinic] controls the number of roles that are currently using

permission p2 in zone z3.

The committed node Aobj2 is added between UnacquiredInCityClinic and AcquiredInCityClinic

to express that the associated object obj2 (see Fig. 4.9) with permission p2 is accessed in zone z3.

Object obj2 is accessed by a sending action access obj2[CityClinic]! that has a corresponding re-

ceiving action at timed-automaton p2. The committed Eobj2 node between AcquiredInCityClinic

and UnacquiredInCityClinic nodes with sending actions exit obj2[CityClinic]? represent the exit

from object obj2. We follow the same approach to instantiate timed-automata of other permissions
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in the Permissions set.

UnacquiredInCityClinic AcquiredInCityClinic

access_p2[CityClinic]? 
Cont_p2[CityClinic]++ 

 

exit_p2[CityClinic]? 
Cont_p2[CityClinic]==1 

Cont_p2[CityClinic]:=0

access_p2[CityClinic]?  

Cont_p2[CityClinic]++

exit_p2[CityClinic]?     
Cont_p2[CityClinic] > 1           

Cont_p2[CityClinic] --

C

C

access_obj2[CityClinic]!

exit_obj2[CityClinic]! 

Aobj2

Eobj2

Figure 4.8: Timed-Automata of Permission p2 at zone z3

Object Timed-Automata OTA:

An object timed-automaton is generated for each object zone in set Objzones. In total, the DDSS

policy has 6 objects timed-automata. The timed-automaton of object obj2 in Figure 4.9 has two

alternating control states, initial node UnaccessedInCityClinic and node AccessedInCityClinic in

zone z3. Receiving action access obj2[CityClinic]? represents the access to object obj2 by permis-

sion p2, while the action of leaving the object is defined by exit obj2[CityClinic]?. Object obj2

remains in AccessedInCityClinic node as long as it is being accessed by at least one permission.

The Cont obj2[CityClinic] variable tracks the number of permissions accessing object obj2. Other

objects timed-automata are composite in the same way of object obj2.

UnAccessedInCityClinic

AccessedInCityClinic

access_obj2[CityClinic]?
Cont_obj2[CityClinic]++ 

 

exit_obj2[CityClinic]? 
Cont_obj2[CityClinic]==1 

Cont_obj2[CityClinic]:=0

exit_obj2[CityClinic]?     
Cont_obj2[CityClinic] > 1           

Cont_obj2[CityClinic]--

access_obj2[CityClinic]?
Cont_obj2[CityClinic]++ 

 

Figure 4.9: Timed-Automata for Object obj2 at zone z3
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User Timed-Automata UTA:

A user timed-automaton is created for each user in set Users. DDSS has 7 users timed-automata.

Each user timed-automaton has an initial node and a set of nodes representing the behaviour of

a user at a particular zone where some roles are assigned. The set of user-role assignment, UAz,

determines the number of such nodes. For example, when (u, r, z), (u, r′, z′) ∈ UAz, then two

nodes, for example Lz and Lz′ , are created in user u timed-automaton that captures the states of

activating roles r and r′ at zones z and z′, respectively. The configuration of edges at each nodes

varies based on relations RHA, DSoDr, pre-requisite enabling, post-requisite enabling, etc.

A partial user timed-automaton UTA in Figure 4.10 models the behavior for user Alice at zone

z3. Control state UserElsewhere is an initial state that covers all the zones in which user Alice is

not permitted to access a system. Node UserInCityClinic represents that user Alice is in zone z3

The edges between these control states represent that Alice moves in and out of zone z3, and they

are controlled by timed guards using global clock variable t.

At time t >= t1, Alice moves to zone z3, which is captured by node UserInCityClinic. At con-

trol state UserInCityClinic, user Alice can activate and deactivate role SHC through synchroniza-

tion channels activate SHC[CityClinic]! and deactivate SHC[CityClinic]! and during time interval

[t1, t
′
1]. Firing a transition with activate SHC[CityClinic]! or deactivate

SHC[CityClinic]! changes the state of the role SHC timed-automaton. The deactivation actions are

defined as urgent actions. Such action is always has a high priority to be taken once it is enabled.

The boolean is inactive(uid, SHC,CityClinic) function ensures that user Alice has not yet acti-

vated role SHC, the boolean is active(uid, SHC,CityClinic) function checks that user Alice has

already activated role SHC. The variable uid stores the identifier of user Alice. The boolean

leave(uid,CityClinic) function ensures that all roles are deactivated when user Alice leaves po-

sition CityClinic. Alice can deactivate role SHC at any time before the activation time expires. In

case Alice leaves node CityClinic without deactivating the active role SHC, a system enforces such

role to be deactivated. This requirements are expressed by associating invariant t < t′1 with node

UserInCityClinic to urgently deactivate role SHC in case a user does not do that.

In the DDSS policy, RHA defines that role SHC is a senior role of junior role CHC in zone

137



z3. Thus, Alice can have full access to the role CHC privileges in zone z3 through the role ac-

tivation of SHC. That is, the activation of role SHC allows Alice to activate role CHC to access

some resources in the clinic. As such, we capture such requirements by associating some commit-

ted nodes with the UserInCityClinic node. The committed AjuniorCHC node and activation edges

between AjuniorCHC and UserInCityClinic nodes allow user Alice to activate junior role CHC

at the time senior role SHC is activated. The edge between AjuniorCHC and UserInCityClinic

with sending action activate CHC[CityClinic]! activates role CHC right after activating role SHC.

The committed DjuniorCHC node and deactivation transitions connected to it enforce the deacti-

vation of junior role CHC at the time senior role SHC is deactivated. That is, firing edge between

DjuniorCHC and UserInCityClinic with sending action deactivate CHC[CityClinic]! deactivates

CHC at the moment role SHC is deactivated.

A user must not activate two roles that have the DSoDr constraints in some zones. In the

DDSS policy, Tom is assigned to CMM and CVM roles in zone z6 which have the DSoDr conflict

in this zone. A timed-automaton in Figure 4.11 shows that Tom cannot simultaneously activate

roles CMM and CVM in node UserInCity, he is only allowed to activate at most one role. That

is, once the activation transition of role CMM is taken at UserInCity, the activation transition

of role CVM is disabled and vice versa. The activation transition of roles CMM and CVM are

respectively associated with boolean functions dsd(CMM,City) and dsd(CVM,City) to satisfy this

requirement. These functions determine whether some conflicting roles are in active state or not.

For example, role CMM cannot be activated if dsd(CMM,City) returns true.

Note also that, a user may attempt to activate a role that may have some pre-requisite activation

constrains in some zones. In such scenario, we define some boolean functions to evaluate these

constraints in the policy. Therefore, the role activation transition must be guarded by a boolean

function to represent the pre-requisite constraint. We will elaborate how these functions are defined

and associated with edges in the definition of algorithms constructing a timed-automata model.

138



C

deactivate_SHC[CityClinic]!                                    
is_active(uid,SHC,CityClinic)     

deactivate_CHC[CityClinic]!                                    

UserElsewhere

UserInCityClinic

      t >= t1 

 

leave(uid,CityClinic)
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activate_SHC[CityClinic]!                                    
is_inactive(uid,SHC,CityClinic)   

activate_CHC[CityClinic]!                                    

AjunioCHC                                    DjunioCHC                                    

t < t’1

Figure 4.10: Timed-Automata for User Alice

activate_CVM[City]!                                    
dsd(CVM,City) && 
is_inactive(uid,CVM,City)   

deactivate_CVM[City]!                                    
is_active(uid,CVM,City)  

 

activate_CMM[City]!                                     
dsd(CMM,City) && 
is_inactive(uid,CMM,City)               

deactivate_CMM[City]!                                    
is_active(uid,CMM,City)   

UserInCity

      t >= t1 

 leave(uid,City)

 

UserElsewhere

t < t’1

Figure 4.11: Timed-Automata for User Tom

4.5.3 Algorithms for Constructing Timed-Automata Model

Now we describe a set of algorithms for constructing a number of timed-automata for each user,

role, permission, and object as well as observer timed-automaton in a system. Furthermore, we

also provide the time-computation complexity for each algorithm. Table 4.2 summarizes the input

data structure in the form of sets and relations that are used in these algorithms for constructing a

timed-automata model for a system.

Algorithm 2 for constructing role O’TA:

Algorithm 2 explores role’s zones for each role r in Roles and determines the start time ts and

end time te at which role r is enabled and disabled. The enable r[Si]! and enable r[Si]! actions are

ordered in the record[] array based on time instants when these actions should be taken.
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Table 4.2: Input Data Structure for Timed-Automata Algorithms

N Data Set Description
1 Users Set of users in a system
2 Roles Set of roles in a system
3 Objects Set of protected objects in a system.
4 Permissions Set of permissions in a system.
5 Rzones(r) Returns the set of spatio-temporal zones associated with role r
6 Pzones(p) Returns the set of spatio-temporal zones associated with permissions p
7 Objzones(obj) Returns the set of spatio-temporal zones associated with object obj
8 assigned perms(r, z) Returns the set of permissions associated with role r in zone z
9 used roles(p, z) Gives the set of roles using permission p in zone z.
10 permObjs(p, z) Returns the set of objects associated with permission p in zone z
11 objectPerms(obj, z) Defines the set of permissions using an object in zone z
12 ZLoc(z) Returns the physical location in zone z
13 ZInt(z) Returns the time interval in zone z
14 assigned roles(u, z) Returns the set of roles assigned to user u in zone z
15 assigned users(r, z) Gives the set of assigned users to role r in zone z
16 juniorI(r, z) Gives the junior roles of role r in RHI at zone z
17 juniorA(r, z) Returns the junior roles of role r in RHA at zone z
18 dsod Roles(r, z) Returns dynamically conflict roles with role r in zone z
19 pre EnableRoles(r, z) Returns pre-requisite enabling roles for role r in zone z
20 post EnableRoles(r, z)Returns the enable post-requisite roles of role r in zone z
21 Cont r[S] Count the number of users assuming role r in location S in a zone
22 Cont [S] Count the number of roles acquiring permission p in location S in a zone
23 Cont obj[S] Determine the number of permissions accessing object obj in location S in a zone

Lines 20-35 explore elements in record[] orderly and construct nodes and edges needed to

enable or disable each role. Based on the actions in record[], each node can be enabling node ERi

or disabling node DRi. A node is marked as a committed node only if a role is enabled or disabled

at the time instant when the preceding role in record[] is enabled or disabled. The non-committed

nodes are associated with invariants to enforce enabled edges to be taken without delay.

The number of roles (Nr) and role’s zones (Nz) define the time complexity of Algorithm 2

which is O(Nr ∗Nz). Algorithm 2 constructs one time automata. Therefore, total number of timed-

automata constructed in a network timed-automata model is NTA, where NTA = NRTA + NPTA +

NOTA + NUTA + 1, where NRTA is the number of roles automata, NPTA for the permissions automata,

NOTA is the number of objects automata, and NUTA is the number of users automata .
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Algorithm 2: Constructing Role Observer Timed-Automaton
input : Data Structure
output : Role Observer Timed-Automata “O′TA′′

1 foreach r ∈ Roles do
2 i = 0;
3 foreach z ∈ Rzones() do
4 if assigned users(r, z) 6= φ // role r is assigned to users in zone z =< s, d >
5 then
6 Si = ZLoc(z);
7 D = ZInt(z) ;
8 ts = firstInst(Instant(D) ;
9 te = lastInst(Instant(D);

10 record[i + +] =< enabler[Si]!, ts > ;
11 record[i + +] =< disabler[Si]!, te > ; // firstInst() and lastInst() functions return first and last time instants,

respectively

12 end
13 end
14 end
15 sort(secondField(Record), >); // sort the list of records ascendantly on the basis of the second field time
16 n = i;
17 prevTime = 0;
18 Let: a Timed-Automata O′TA = 〈L, L0, C, A, E, I〉;
19 Initialization: L = {L0}, I = φ, L0 = Init, C = {t}, A = φ, E = φ;
20 foreach i = 0 to i = (n-1) do
21 L = L ∪ {Li+1}; // Li+1 can be ERi or DRi
22 currentTime = secondField(Record[i + 1]);
23 if (prevTime == currentTime // committed nodes
24 then
25 commit(Li+1) ;
26 g = φ ;
27 else
28 g = (x == secondFiedl(Record[i + 1])) ;
29 I = I ∪ {(Li+1 → (x < secondField(Record[i + 1]))} ; // associate an invariant with not "Committed" nodes

30 end
31 end
32 a = firstField(Record[i + 1]);
33 A = A ∪ {a} ;
34 E = E ∪ {(Si, a, g, φ, Li+1)} prevTime = currentTime ;
35 end
36 E = E ∪ {(Li+1, a, g, reset clock(), L0)}; // reset() function to resets global clock t to 0

37 return(O′TA);

Algorithm 3 for constructing RTA:

A number of parametrized timed-automata are constructed for each role r in the Roles set to capture

its behaviour at some role zones. Nodes set L is initialized by DisabledInSi and EnabledInSi nodes;

actions and edges connecting these nodes are respectively defined in the A and E sets. Then, node

ActivatedInSi is added to set L and actions activate r[Si]? and deactivate r[Si]? are added to set A.

The perms set stores all permissions assigned or inherited by role r in zone z. For each permis-

sion pm in set perms, nodes Aperm pm and Eperm pm are added to L, where m counts the number

of permissions, and actions to access and leave these permissions are added to E. To allow si-

multaneous access to these permissions, nodes Aperm pm and Eperm pm are marked as committed

nodes using the commit() function.

Once set L is complete, the edges in set E are used to connect these nodes. Lines 27-31 consider

the case in which role r is assigned to a single user while lines 32-41 structure the timed-automaton

edges in case of multiple users are assigned to role r. Then, Algorithm 3 goes back to create another

role timed-automaton for the subsequent zone of role r.
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The time complexity of Algorithm 3 primarily depends on the number of roles, role’s zones,

and role’s permissions. Therefore, the time complexity of Algorithm 3 is O(Nr ∗ Nz ∗ (Nrh + Np)),

where Nr is the number of application roles, Nz represents the maximum number of role’s zones,

Nrh is the maximum number of junior roles, and Np is the upper bound of the role’s permissions.

When Algorithm 3 halts, it constructs NRTA role timed-automata, i.e., NRTA = Nz × |Roles|.

Algorithm 3: Constructing Roles Timed-Automata
input : Data Structure
output : A Set of Parametrized Roles Timed-Automata “RTA”

1 RTA = φ;
2 foreach r ∈ Roles do
3 i = 0;
4 foreach z ∈ Rzones(r) do
5 if assigned users(r, z) 6= φ // role r is assigned to some users in zone z =< s, d >
6 then
7 Si = ZLoc(z);
8 Let: Parametrized Timed-Automata RTA(Si) = 〈L, L0, C, A, E, I〉;
9 Initialization: L = {DisabledInSi, EnabledInSi}, L0 = {DisabledInSi}, I = φ, C = φ, A = {enable r[Si], disable r[Si]},

E = (DisabledInSi, enable r[Si], φ, φ, EnabledInSi), (EnabledInSi, disable r[Li], φ, φ, EnabledInSi) ;
10 L = L ∪ {ActivatedInSi};
11 A = A ∪ {activate r[Si]?, deactivate r[Si]?};
12 perm = assigned perms(r, z); // the set of permissions associated with role r in z zone
13 if juniorI(r, z) 6= φ // role r is a senior role in role RHI
14 then
15 foreach r

′
∈ juniorI(r, z) do

16 perms = assigned perms(r
′
, z);

17 end
18 end
19 m = 0;
20 foreach pm ∈ perms do
21 commit(Apermm, Epermm) ; // commit function marks nodes as "Committed" nodes
22 L = L ∪ {Apermm, Epermm};
23 urgentSynChannel(exit pm[Si]); // function to make this action an urgent action
24 A = A ∪ {access pm[Si]!, exit pm[Si]!};
25 m + +;
26 end
27 if | assigned users(r, z) |= 1 // role r is assigned to a single user in z zone
28 then
29 E = E ∪ {(EnabledInSi, activate r[Si]?, φ, φ, Aperm0), (Aperm0, access P0[Si]!, φ, φ, Aperm1),

(Aperm1, access p1[Si]!, φ, φ, Aperm2), . . . , (Apermm−1, access pm−1[Si]!, φ, φ, Apermm),

(Apermm, access pm[Si]!, φ, φ, ActivatedInSi)}; // activation and access edges
30 E = E ∪ {(ActivatedInSi, deactivate r[Si]?, φ, φ, Epermm),

(Epermm, exit pm[Si]!, φ, φ, Epermm−1), . . . , (Eperm1, exit p1[Si]!, φ, φ, Eperm0),

(Eperm0, exit p0[Si]!, φ, φ, EnabledInSi)}; // deactivation and exit edges

31 end
32 else
33 Let g, a guard which is a conjunction of predicates and boolean expressions involving clocks ;
34 Cont r[Si] = 0;
35 u = Cont r[Si] + +;

36 u
′
= Cont r[Si]−−;

37 g = Cont r[Si] > 1;

38 g
′
= Cont r[Si] == 1;

39 E = E ∪ {(EnabledInSi, activate r[Si]?, φ, u, Aperm0), (Aperm0, access P0[Si]!, φ, φ, Aperm1),
(Aperm1, access p1[Si]!, φ, φ, Aperm2), . . . , (Apermm−1, access pm−1[Si]!, φ, φ, Apermm),

(Apermm, access pm[Si]!, φ, φ, ActivatedInSi), (ActivatedInSi, activate r[Si]?, φ, u, ActivatedInSi)}; // activation and
access edges

40 E = E ∪ {(ActivatedInSi, deactivate r[Si]?, g, u
′
, ActivatedInSi), (ActivatedInSi, deactivate r[Si]?, g

′
, u
′
, Epermm),

(Epermm, exit pm[Si]!, φ, φ, Epermm−1), . . . , (Eperm1, exit p1[Si]!, φ, φ, Eperm0),

(Eperm0, exit p0[Si]!, φ, φ, EnabledInSi)}; // deactivation and exit edges

41 end
42 RTA←− RTA ∪ {RTA(Si)}; // adds RTA(Si) to set RTA
43 i + +;
44 end
45 end
46 end
47 return(RTA);
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Algorithm 4 for constructing PTA:

Algorithm 4 constructs a number of timed-automata for each permission p in set Permsiosns in

a quite similar manner to RTA automata. The permission p timed-automaton is initialized by

appropriate nodes, actions, and edges as shown in lines 4 - 16. Lines 10-16 explore a set of objects

that can be accessed by permission p in Si. For each object, two committed nodes and two edges

connecting these nodes are added to set L and set E, respectively. Lines 17-20 and 22-30 structure

the timed-automaton based on the number of roles that can acquire permission p. Algorithm 4

repeats the same steps to create another permission timed-automaton for permission p behaviour

in another zone.

The key factors of Algorithm 4 time complexity are the number of permissions, permissions’

zones, and permissions’ objects. The time complexity of Algorithm 4 is O(Np ∗ Nz ∗ Nobj), where

Np is the maximum number of permissions, Nz is the upper bound of the permission’s zones, Nobj is

the maximum number of the permission’s objects. The total number of permission timed-automata

constructed by Algorithm 4 is NPTA, where NPTA = |Nz| × |Permissions|.

Algorithm 5 for Constructing OTA:

Algorithm 5 elaborates the steps of constructing a number of timed-automata for each object obj

in set Objects at each object zone. Lines 1-21 create the nodes and actions that controls the sate of

object obj at location Si. The structure of the object obj timed-automaton at location Si is defined by

the number of permissions authorized to access object obj. Thus, lines 30-34 and 36-44 alternate

the object obj timed-automaton structure for a single permission or multiple permissions accessing

object obj.

The number of objects in set Objects and objects’ zones in set Objzones are the key factors to

determine the time complexity of Algorithm 5. The time complexity of Algorithm 5 is O(NObj∗Nz),

where NObj is the number of objects and Nz is the maximum number of object’s zones. Algorithm 5

constructs NOTA = |Nz| × |Objects| object timed-automata.
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Algorithm 4: Constructing Permissions Timed-Automata
input : Data Structure
output : A Set of Parametrized Permissions Timed-Automata “PTA”

1 PTA = φ;
2 foreach p in Permissions do
3 i = 0 ;
4 foreach z in Pzones(p) do
5 if used roles(p, z) 6= φ // permission p is used by some roles in zone z =< s, d >
6 then
7 Si = ZLoc(Z) ;
8 Let: Timed-Automata PTA(Si) = 〈L, L0, C, A, E, I〉;
9 Initialization: I = φ, L0 = {UnacquiredInSi}, C = φ, A = φ, E = φ;

10 L = L ∪ {UnacquiredInSi, AcquiredInSi};
11 A = A ∪ {access p[Si]?, exit p[Si]?};
12 m = 0;
13 foreach Objm ∈ PermObjs(p, z) do
14 commit(Aobjm, Eobjm); // commit function marks these nodes as "Committed" nodes
15 L = L ∪ {Aobjm, Eobjm};
16 A = A ∪ {access objm[Si]!, exit objm[Si]!};
17 m + +;
18 end
19 if |used roles(p, z)| == 1 then
20 E = E ∪ {(UnacquiredInSi, access p[Si]?, φ, φ, Aobj0),

(Aobj0, access obj0[Si]!, φ, φ, Aobj1), (Aobj1, access obj1[Si]!, φ, φ, Aobj2),
. . . , (Aobjm−1, access objm−1[Si]!, φ, φ, Aobjm), (Aobjm, access objm[Si]!, φ, φ, AquiredInSi)}; // acquiring and

access edges
21 E = E ∪ {(AcquiredInSi, exit p[Si]?, φ, φ, Eobjm),

(Eobjm, exit objm[Si]!, φ, φ, Eobjm−1), (Eobjm−1, exit objm−1[Si]!, φ, φ, Eobjm−2),

. . . , (Eobj1, exit obj1[Si]!, φ, φ, Eobj0), (Eobj0, exit obj0[Si]!, φ, φ,UnaquiredInSi)}; // unacquiring and exit edges

22 end
23 else
24 Let g, a guard which is a conjunction of predicates and boolean expressions involving clocks ;
25 Cont p[Si] = 0;
26 u = Cont p[Si] + + ;

27 u
′
= Cont p[Si]−− ;

28 g = Cont p[Si] > 1 ;

29 g
′
= Cont p[Si]−− ;

30 E = E ∪ {(UnacquiredInSi, access p[Si]?, φ, u, Aobj0), (Aobj0, access obj0[Si]!, φ, φ, Aobj1),
(Aobj1, access obj1[Si]!, φ, φ, Aobj2), . . . , (Aobjm−1, access objm−1[Si]!, φ, φ, Aobjm),

(Aobjm, access objm[Si]!, φ, φ, AquiredInSi), (AquiredInSi, access p[Si]?, φ, u, AquiredInSi)}; // acquiring and access
edges

31 E = E ∪ {(AcquiredInSi, exit p[Si]?, g, u
′
, AcquiredInSi), (AcquiredInSi, exit p[Si]?, g

′
, u
′
, Eobjm),

(Eobjm, exit objm[Si]!, φ, φ, Eobjm−1), (Eobjm−1, exit objm−1[Si]!, φ, φ, Eobjm−2),

. . . , (Eobj1, exit obj1[Si]!, φ, φ, Eobj0), (Eobj0, exit obj0[Si]!, φ, φ,UnaquiredInSi)}; // unacquiring and exit edges

32 end
33 PTA←− PTA ∪ {PTA(Si)}; // adds PTA(Si) to set PTA
34 i + +;
35 end
36 end
37 end
38 return(PTA);

Algorithm 6 for constructing UTA:

Since a user can only be in a certain location at a time, Algorithm 6 constructs one timed-automaton

for each user who is assigned to at least one role. For each physical position Si from which a user

can activate roles, control state UserInSi is added to set L. Two edges are added to connect initial

node UserElsewhere and node UserInSi. g and g
′ are conjunction of boolean expressions forming

guards needed to activate and deactivate a role in position Si.

The structure of a user timed-automaton at each UserInSi node differs based on the authorized

roles and activation constraints. At node UserInSi, self-lop activation and deactivation edges are

added to set E. These edges are primarily fired on the satisfaction of temporal guards. Additionally,

roles available at node UserInSi might have pre-requisite and DSoD constraints that should be

144



Algorithm 5: Constructing Objects Timed-Automata
input : Data Structure
output : A Set of Parametrized Objects Timed-Automata “OTA”

1 OTA = φ;
2 foreach obj in Objects do
3 i = 0 ;
4 foreach z in Objzons(obj) do
5 if ObjectPerms(obj, z) 6= φ // object obj is accessed by permissions in location Si
6 then
7 Si = ZLoc(z);
8 Let: Timed-Automata OTA(Si) = 〈L, L0, C, A, E, I〉;
9 Initialization: I = φ, L0 = {UnaccessedInSi}, C = φ, A = φ, E = φ;

10 L = L ∪ {UnaccessedInSi, AccessedInSi};
11 A = A ∪ {access obj[Si]?, exit obj[Si]?};
12 m = 0;
13 if |ObjectPerms(obj, Si)| == 1 then
14 E = E ∪ {(UnaccessedInSi, access obj[Si]?, φ, φ, AccessedInSi),

(AccessedInSi, exit obj[Si]?, φ, φ,UnaccessedInSi)};
15 end
16 else
17 Let g, a guard which is a conjunction of predicates and boolean expressions involving clocks ;
18 Cont obj[Si] = 0;
19 u = Cont obj[Si] + +;

20 u
′
= Cont obj[Si]−−;

21 g = Cont obj[Si] > 1;

22 g
′
= (Cont obj[Si] == 1);

23 E = E ∪ {(UnaccessedInSi, access obj[Si]?, φ, u, AccessedInSi), (AccessedInSi,

access obj[Si]?, φ, u, AccessedInSi), (AccessedInSi, exit obj[Si]?, g, u
′
, AccessedInL),

(AccessedInSi, exit obj[Si]?, g
′
, u
′
,UnaccessedInSi)};

24 end
25 OTA←− OTA ∪ {OTA(Si)}; // adds OTA(Si) to set OTA
26 i + +;
27 end
28 end
29 end
30 return(OTA)

satisfied too. In the case of activating a senior role, activation and deactivation committed nodes as

well as edges connecting them to UserInSi are added for each junior role.

The time complexity of Algorithm 6 depends on the number of users, roles, roles’ zones and

depth of RH. Algorithm 6 complexity is O(Nu ∗ Nur ∗ Nz ∗ Nrh), where Nu is the number of users,

Nnr is the number of assigned roles, Nz is the number of role’s zones, and Nrh is the number of

junior roles. Algorithm 6 constructs NUTA, NUTA = |Users|.

145



Algorithm 6: Constructing Users Timed-Automata
input : Data Structure
output : A Set of Users Timed-Automata: “UTA”

1 UTA = φ foreach u ∈ Users do
2 Let: Timed-Automata UTAu = 〈L, L0, C, A, E, I〉;
3 Initialization: L = φ,I = φ, C = {t}, l = φ, A = φ, L0 = {UserElsewhere}, t is a global clock ;

4 Let g, and g
′

two guards which is a conjunction of boolean expressions involving clocks ;
5 Addedzones = φ; // refers to the set of zones that has already created a node for it in user u timed-automaton
6 foreach r ∈ assigned roles(u, z) do
7 i = 0;
8 if can ActivateRole(u, r, z) // user u can activate role r in zone z =< s, d >
9 then

10 if z 6∈ Addedzones) // zone z has not yet defined for user u
11 then
12 Addedzones←− Addedzones ∪ {z};
13 Si = ZLoc(z) ;
14 L = L ∪ {UserInSi};
15 g = x >= firstInst(Instant(ZInt(z))); // gives first time instance in instances of a time interval
16 E = E ∪ {(UserElsewhere, φ, g, φ,UserInSi)};
17 A = A ∪ {activate r[Si]!, deactivate r[Si]!};
18 g = leave(u, Si), is evaluated to true if user u can leave location Si;
19 E = E ∪ {UserInSi, φ, g, φ,UserElsewhere};
20 I = I ∪ {(UserInSi → x < lastInst(Instant(ZInt(z))))} ; // associate an invariant with node UserInSi
21 end
22 g = is inactive(u, r, Si); // evaluates that u has not activated r in location Si

23 g
′
= is active(u, r, Si); // evaluates that u has activated r in location Si

24 g
′
= t < lastInst(Instant(ZInt(z))); |; |; // gives last time instance in instances of a time interval

25 if post EnableRoles(r, z) 6= φ // role r has post-requisite roles
26 then
27 g

′
= g
′
∧ formPostGurad(u, post EnableRoles(r, z)); // role r should not be deactivated while post-requisite

role are still active in z zone

28 end
29 else
30 g

′
= g
′
∧ formDeactvateGuard(r, Si); // user u is only allowed deactivate active roles

31 end
32 if pre EnableRoles(r, z) 6= φ // role r has spatio-temporal activation pre-requisite constraint
33 then
34 g = g ∧ formPreGuard(r, z)) ;

35 E = E ∪ {(UserInSi, activate r[Si]!, g, u,UserInSi), (UserInSi, deactivate r[Si]!, g
′
, u,UserInSi)};

36 end
37 else if dsod Roles(r, z) 6= φ // role r is in DsD with other roles
38 then
39 g = g ∧ formDSoDGuard(r, z)) ;

40 E = E ∪ {(UserInSi, activate r[Si]!, g, u,UserInSi), (UserInSi, deactivate r[Si]!, g
′
, u,UserInSi)};

41 end
42 else if RHA(r, z) 6= φ // role r is a senior role in role activation hierarchy relation
43 then
44 j = 0;
45 foreach rj ∈ juniorA(r, z) do
46 if can ActivateRole(rj, z) then
47 A = A ∪ {activate rj[Si]!, deactivate rj[Si]!};
48 commit(Ajunior rj,Djunior rj); // commit function marks these nodes as "Committed" nodes

49 L = L ∪ {Ajunior rj,Djunior rj};
50 j + +;
51 end
52 end
53 if |juniorA(r, z)| = 1 then
54 E = E ∪ {(UserInSi, activate r[Si]!, g, u, Ajunior r0),

(Ajunior r0, activate r0[Si]!, φ, u,UserInSi),

(UserInSi, deactivate r[Si]!, g
′
, u,Djunior r0),

(Djunior r0, deactivate r0[Si]!, φ, u,UserInSi)};
55 end
56 else
57 E = E ∪ {(UserInSi, activate r[Si]!, g, u, Ajunior r0),

(Ajunior r0, activate r0[Si]!, φ, u, Ajunior 1), (Ajunior 1, activate 1[Si]!, φ, u, Ajunior 2),
. . . (Ajunior j− 1, activate j− 1[Si]!, φ, u, Ajunior j),
(Ajunior j, activate j[Si]!, φ, u,UserInSi),

(UserInSi, deactivate r[Si]!, g
′
, u,Djunior rJ),

(Djunior rj, deactivate rj[Si]!, φ, u,Djunior rj−1),
(Djunior rj−1, deactivate rj−1[Si]!, φ, u,Djunior rj−1), . . . ,
(Djunior r1, deactivate r1[Si]!, φ, u,Djunior r0),
(Djunior 0, deactivate r0[Si]!, φ, u,UserInSi)};

58 end
59 end
60 else
61 E = E ∪ {(UserInSi, activate r[Si]!, g, u,UserInSi),

(UserInSi, deactivate r[Si]!, g
′
, u,UserInSi)};

62 end
63 i + +;
64 end
65 end
66 UTA←− UTA ∪ {UTAu}; // adds UTAu to set UTA

67 end
68 return(UTA);
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4.5.4 Alleviating The State-Space Explosion Problem

It is a well-known fact that the state-space explosion is an perpetual problem in model checkers. In

our case, the number of temporal conditions increases the state-space size. Here, we present some

techniques for reducing the likelihood of the state-space explosion problem.

Analysis Optimizations

UPPAAL supports a number of optimization techniques that are useful for improving the anal-

ysis performance. Our approach makes use of these optimization techniques and follows a set

of design recommendations described in [31]. With a single clock the state-space size is signifi-

cantly reduced. Resting variables when they are no longer needed reduces the state-space and the

occurrence of deadlocked states.

We make part of the model executing in atomic steps (i.e., atomicity) in order to reduce the

number of interleaving edges. The committed nodes are used to achieve the atomicity. Atomicity

is also important to model concurrent actions such as role triggers. Urgent channels also decrease

the number of interleaving paths in state-space and model actions that should be taken without

delay such as deactivating roles.

Information Encoding

To carry out the verification of a policy in UPPAAL, we use settings supporting the optimization

of state-space. We utilize these parameters: State-space Representation- use Difference Bound

Matrix (DBM) to store reachable states which increases the memory usage, State-space Reduction-

aggressive option that reduces the number of states stored in the memory, Search Option- Search

Order-breadth first order for a quick search in the state-space, Trace Option- by default produces

symbolic traces, and 16 MB hash table size.

Temporal Properties Refinement

A careful design structure can decrease the state-space size. Our modeling pattern has many sup-

porting facts related to the intuitiveness, motivation, and state-space optimizations. Typically, the

number of temporal conditions drastically expand the state-space while the number of processes
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(i.e., timed-automata at run time) with non-temporal variables do not considerably impact on the

state-space size. Most of the security queries can be verified in almost a constant time irrespective

of the number of non-timed processes. Therefore, our design decision was reducing the number of

temporal constraints as possible.

In our analysis approach, temporal conditions are mainly confined in the Observer and User

timed-automata. Furthermore, the number of these timed-automata is usually limited; a single

timed-automaton is constructed for each user and only one Observer automaton is used. Our model

has a larger number of timed-automata with no timed edges and nodes. That is , the parametrized

timed-automata for roles, permissions, and objects are designed without temporal guards and their

temporal behaviour are captured by the Observer and User timed-automata.

Sub-Models Verification

Analyzing the entire network of timed-automata model for a particular property has a negative

impact on the analysis performance and it might cause the state-space explosion problem. In such

case, the UPPAAL engine explores a large number of paths and states in order to check a property.

Moreover, the state-space of the network of timed-automata model has some states and paths that

are not dependent on a property in question. Thus, exploring such paths and states unnecessarily

requires excessive searching time.

Therefore, we propose a technique, which we refer to as the entities–dependability technique,

for reducing the state-space size. Our reduction pattern replaces the problem of verifying a large

system to hopefully feasible abstracted sub-systems. It generates a sub-automata model from the

network of timed-automata models in order to verify a certain property. The resulting sub-automata

model has only the dependent entities that are pertinent for checking a property. Thus, the state-

space of the sub-automaton model has a subgroup of states and paths that are important to search

in order to know whether a property holds or not.

Our reduction approach is formally defined as follows. For analyzing a policy, we need to

check a set of properties, i.e., P = {p1, p2, . . . , pn} where n is the number of properties in time-

automata model M representing the policy. Each property in set P checks the correctness of a

certain relationship between some entities. For example, property pi may check the correctness of
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user-role assignment in certain spatio-temporal zones. If model M satisfies all the properties in

set P, i.e., p1 ∧ p2 ∧ · · · ∧ pn, then we say that the policy is free from ambiguities, otherwise we

investigate model M with respect to the properties that do not hold.

With our approach, for verifying properties in P, a number of sub-automaton models are de-

rived from model M based on the set of properties in P. For example, for verifying property

pi, sub-automata model Mi is instantiated which has all the timed-automata processes related to

property pi. Therefore, the UPPAAL engine explores the state-space of sub-automaton model Mi

instead of model M. In case all the properties are satisfied in some sub-automaton models, then

the policy is considered consistent. In case one of the properties does not hold, the sub-automaton

model concerning that property is examined.

Algorithm 7 forms sub-automaton model Mi for verifying property pi in timed-automata model

M. Lines 1-10 construct model Mi from timed-automata M for each entity set in the entSet set.

The entities(pi) function returns all entities’ sets involved in property pi. For example, if property

pi investigates the correctness of user-role assignment, the sets (i.e., ent) in entSet are Roles and

Users. The gets() function copies some timed-automata from model M to model Mi in the regard of

property pi, and the TA() function returns timed-automata of an entity in the ent set. For example,

if the entity el is role r0, then the TA() function gives a number of timed-automata concerning about

the behavior of role r0 in different zones.

Lines 11-22 updates the edges and temporal-guards in timed-automaton m′ in Mi to conform

property pi. Edges that synchronize m′ with timed-automata that are not in Mi are removed and

m′ is reconstructed in lines 11-21. Functions remove() and reconstruct() respectively deletes

edges connecting to unwanted timed-automata and then reconfigures timed-automata in Mi. The

sending() function determines the timed-automaton initiating the actions that change the states of

the Mi model. Function guard() adds guards and invariants to the sending m′ where are needed.

Once Algorithm 7 terminates, it produces Mi concerning about checking property pi.

149



Algorithm 7: Constructing sub-Automaton Model Mi for Property pi.
input : Timed-Automata model M, property pi ∈ P
output: sub-Automaton model Mi

1 autom(Mi); // sub-routine creates timed-automata model Mi
2 Mi ←− gets(O′TA,M); // returns O’TA from M and add it to Mi
3 entSet = entities(pi); // extracts the entities sets involved in the property pi
4 foreach ent ∈ entSet // for every entity set in entSet
5 do
6 foreach el ∈ ent // for any element el in the set entSet
7 do
8 Mi ←− gets(TA(el,M),M); // adds timed-automata of entity el to Mi
9 end

10 end
// at this step sub-model Mi is created

11 foreach m ∈ M and m 6∈ Mi do
12 foreach m′ ∈ Mi do
13 foreach e ∈ connect(E′, E) // E and E′ are set of edges in m and m′

14 do
15 remove(e, E′); // deletes the edge e from E′

16 reconstruct(E′, L′,m′) // updates the automaton m′

17 end
18 end
19 end
20 foreach m′ ∈ sending(Mi) do
21 guard(g, E′) // creates temporal guards and invariants to m′

22 end
23 return(Mi);

Example:

The following example helps to illustrate the reduction technique. Consider a simple timed-

automata model M for a DDSS policy in the left rounded rectangle of Figure 4.12, M = UTATom ‖

RTACMM ‖ PTAp10 ‖ OTAobj6 ‖ O′TA. In this model, role CMM can only be activated by user Tom

in time interval [t1 - t′1] = [8:00 am - 5:00 pm] and from node CityWarehouse. At the moment role

CMM is activated, permission p10 is acquired and object obj6 is accessed.

Suppose now a policy verifier tends to check property p1 that validates the correctness of the

spatio-temporal relation between role CMM and permission p10 in the M model. Following Al-

gorithm 7, sub-automata model M1 is derived from M as shown in the right rounded rectangle of

Figure 4.12. In this sub-model, timed-automata UTATom and OTAobj6 are excluded from sub-model

M1. Furthermore, the edges and guards are also reconstructed for RTACMM and PTAp10 in a conse-

quence of removing the user and object timed-automata. Note that, the observer timed-automaton

remains intact because it is not directly related to the required changes for checking property p1.

Once model M1 is constructed, a number of queries representing property p1 are checked against

M1 using UPPAAL. In the subsequent section, we will evaluate the effectiveness of our approach

in terms of the number of states and searching time.
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Figure 4.12: State-Space Reduction Example

4.6 DDSS Policy Analysis

In the analysis of the DDSS policy, we apply our algorithms in Section 4.5.3 to construct timed-

automata model M. M is composite from a number of timed-automata operating in parallel, i.e.,

M = M0 ‖ M1 ‖ M2 ‖ · · · ‖ Mn, where n is the number of timed-automata. The total number of

timed-automata in M is computed by NTA = NRTA + NPTA + NOTA + NUTA + 1., where, NUTA = 7 for

users automata, NRTA = 16 for roles, NPTA = 17 for permissions, NOTA = 6 for objects, and 1 for

O′TA, in total, NTA = 47 automata in M.

The partial UPPAAL data types and functions of the DDSS timed-automata model M is shown

in Appendix B. The verification is carried out on the Windows platform using 4GB RAM with In-
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tel(R) Core(TM) 2Due CPU. Furthermore, our optimization techniques in Section 4.5.4 are applied

for improving the analysis performance.

We first simulate model M using UPPAAL to gain confidence that it behaves as anticipated and

it has no deadlocked states. In the model state-space, the execution path might halt in a deadlocked

state and it does not reach to the final/accepted state in the path. Such a problem usually occurs

in model checking approaches because of incorrect specifications of a system. For example, the

execution cannot continue in a path that has a role remains in Active state and never goes back to

the Inactive state even when no user is using it. UPPAAL has the advantages over existing RBAC

model checking approaches as it provides a built-in query (deadlock) to automatically uncover

deadlocked states in the model state-space, and as such, eliminates human involvement overhead.

Once the simulation reveals no problems, the UPPAAL verifier is utilized to check whether

the DDSS policy satisfies some properties or not. Here, a number of sub-automata models are

instantiated using Algorithm 7 for checking those properties. For each property, certain queries

are written using TCTL and checked against a sub-automata model concerning about that property.

It is important to note that all the queries are checked in UPPAAL with contiguous time intervals.

In other words, UPPAAL records the events of the DDSS system for each single clock tick and

creates the timed state-space for all model states.

Along the verification of queries, the UPPAAL verifier also shows the memory space usage

(or number of states explored) and the time needed to explore these states in order to answer each

query. Our next goal is to specify some spatio-temporal properties in TCTL and verify them. These

properties are represented as reachability, safety, and liveness queries.

(Q)uery1: A[] not deadlock

Query 1 is a safety query that checks for deadlocked states. The query fails at a deadlocked

state in which role VCT halts in the active state and never goes to the successor inactive state. The

counter example trace shows that the action of deactivating VCT role sometimes interleaves with

other actions, causing that the deactivation transition is not taken at the moment user Yue leaves

the patient premise in the city or the activation time expires.

This means that the policy does not enforce Yue or the system to deactivate VCT role at the
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time the role zone is violated. To fix this inconsistency, we define the action of deactivating role

VCT as an urgent action that must be taken at the time it is enabled. Thus , it will be given a high

priority over the other transitions when they are interleaving. An alternative solution is to associate

the Activated nodes in VCT timed-automata with an invariant. This invariant enforces the enabled

deactivation transition to be taken once the clock valuation is not satisfied. In this manner, all

deactivation actions of roles are defined as urgent actions to express the enforcement of immediate

roles deactivation in invalid zones.

(Q)uery2: A[] CMM(MainWarehouse).Enabled imply (x>=8 && x < 17)

Query 2 is a positive safety property that indicates a role can only be enabled in a favourable

zone. It checks that role CMM is only enabled in valid zone z7. The verification result shows that

the property is satisfied in all paths and at any state.

(Q)uery3: A<> SE(StateEpo).Activated and (x>=8 && x=<17)

Query3 is a general liveness query guarantees that the DDSS system is doing something good

as well. The query expresses that a role should eventually be activated at favourable zones. We

checked that role SE can eventually be activated in zone z4.

(Q)uery4: CMM(CityWarehouse).Enlabled && x>=8 -->
CMM(CityWarehouse).Disabled && x>17

Query 4 specifies a bounded liveness property for role enabling. The query is satisfies that

once role CMM is correctly enabled, it will be eventually disabled in location CityWarehouse

before time instant 17.

(Q)uery5: A[] SHC(StateClinic).Activated && SHC_u[Alice.uid]== 1 imply
Alice.UserInStateClinic and (x>=8 and x<=17)

Query 5 represents a positive safety property of spatio-temporal constraints on user-role acti-

vation. It explicitly checks that role SHC is activated by Alice inside the StateClinic location and

during the day-time. The result shows that the property is satisfied along all baths and states.

(Q)uery6: E<> p2(CityClinic).Acquired and (x>=8 and x<=17)
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Query 6 applies a reachability query of permission access in some favourable zones. The query

asks whether or not permission p2 can be acquired by a role in favourable zone z3. The query result

shows that there are some states (at least one) where permission p2 is accessed. This security

requirement is very important to check because a permission might never used. For permissions:

p5, p6, p8, p9, p11, p14, and p15, such query is not satisfied because these permissions are not

assigned to roles. In such case, a security officer should exclude/assign these permissions in the

policy.

(Q)uery7: E<> obj2(CityClinic).Accessed and
(p2(CityClinic).Acquired and (x> 8 && x<17))

The query specifies a reachability property for the correct object access in some favourable

zones. The query checks whether object obj2 can be accessed by permission p2 in zone z3. This

property is satisfied, the object is correctly accessed.

(Q)uery8: A[] forall(i:uid)(CMM(City).Activated
and CMM_u[i] == 1) and forall(j:uid)(CVM(City).Activated
and CVM_u[j] == 1) and (x >= 8 && x < 17)imply i != j

Query 8 is a safety property that checks for the violations of DSoD constraint. The query

search for the states that violate the DSoD constraint between CMM and CVM roles in zone z10.

The results shows that at all reachable states, DSoD constraint is satisfied.

(Q)uery9: E<> SE(CityEpo).Activated and SE_u[Clair.uid] == 1 and
CE(CityEpo).Activated and (CE_u[Clair.uid]==1
and (x>=8 and x<=17))

Query 9 applies the reachability properties to spatio-temporal constraints on RHA. It checks

the activation of junior role CE of senior role SE in zone z5. The policy specifies that whenever

Clair activates SE, she is allowed to activate CE. This property is satisfied at some reachable states.

From this query, another important security property can be also derived, senior role SE must not

be deactivated while junior role CE is in active state.

(Q)uery10: VCT(City).Enabled --> (CMM(CityWarehouse).Enabled
and (x>=8 && x<=17))
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This bounded liveness query checks for the correctness of the role enabling triggers in some

favourable zones. The property of interest is that the enabling of the VCT role to perform a certain

control task triggers the enabling of role CMM to provide the required materials, the property is

satisfied.

Table 4.3 compares the average number of the explored states and the consumed time for check-

ing quires: Q2, Q3, Q4, . . . , and Q10, for the entire policy model M versus the sub-automata models

that are generated by Algorithm 7. In our analysis scenario, we have four models, timed-automata

model M and three sub-automata models: M1 for checking the interaction between users and roles,

M2 for verifying the roles and permissions relationships, and M3 concerning about the access to

objects via permissions.

Table 4.3: Evaluation of the State-Space Reduction Technique

Timed-Automata Model Sub-Automata Models Search-Space Reduction %
Properties Explored

States
Elapsed
Time

Explored
States

Elapsed
Time

States% Time%

Q2 :M vs M1 95616 7,252ms 5184 749ms 94% 89%
Q3 :M vs M1 30 156ms 5 73ms 83% 53%
Q4 :M vs M1 26 628ms 4 102ms 85% 84%
Q5 :M vs M1 95616 5,703ms 5184 853ms 94% 85%
Q6 :M vs M2 1019 230ms 1 12ms 99% 94%
Q7 :M vs M3 1028 175ms 1 11ms 99% 93%
Q8 :M vs M1 95616 7.018ms 5184 644ms 94% 90%
Q9 :M vs M1 622 193ms 30 79ms 95% 59%
Q10 :M vs M1 95616 6,968ms 5184 866ms 94% 87%

Reduction Average 93% 81%

Sub-automata model M1 has timed-automata for users (7 timed-automata) and roles (16 timed-

automata), in total, it is 24 automata including the observer automata. Thus, the number of au-

tomata in M1 is reduced to 48% from the number of automata in M. M2 includes on 34 timed-

automata, 16 automata for roles, 17 automata for permissions, and the observer automata. The

number of automata in M2 is 28% smaller than the number of automata in M. M3 has 17 per-

missions automata, 6 objects automata, and the observer automata, thereby in total 24 automata.

The number of automata in M3 is reduced to 49% in comparison to the number of automata in
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M. Table 4.3 shows that the average number of explored states is reduced by 93% and the aver-

age elapsed time is decreased by value of 81% in the sub-models in a comparison to check those

queries against the policy model M. Consequently, these values demonstrate the effectiveness of

the proposed reduction technique in verifying spatio-temporal properties in our model.
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Chapter 5

The Enforcement Mechanism of Our Models

Chapter 3 describes how a spatio-temporal policy is formally specified using our UML/OCL

model, but the practical viability of our model need to be studied to ensure that it provides the

required level of access control. That is, our access control model defines policies from high-level

perspective, and enforcement mechanisms describe a useful implementation architecture. In the

pertinent literature, there are little works that have considered the enforcement of spatio-temporal

RBAC policies in real-world applications. Most of existing researches on RBAC focus more on

modeling and analysis of access control models. Such models might be either error-prone or not

flexible to configure when used. We believe that the developments of new applications and RBAC

models have given rise to a number of interesting implementation problems.

Therefore, a policy enforcement mechanism of our model predicts potential challenges and

bottleneck performances with hints to possible answers. For example, an architecture model can

inform us how systems are configured to implement access control policies and what design deci-

sions make our model more efficient to use. Additionally, implementing our model in a prototype

system and analyzing the access decisions response time provide a natural way to evaluate the

suitability of the model. With respect to this aspect, our third contribution in this dissertation fo-

cuses on addressing a primary problem of enforcing spatio-temporal access controls in the mobile

environment. We introduce a platform-independent architecture model for designing applications

enforcing a spatio-temporal policy specified by our model.

This chapter describes the proposed enforcement mechanism of our access control models in

mobile applications. Section 5.1 introduces an implementation architecture; we discuss the secu-

rity guarantees of our architecture in Section 5.3; Section 5.2 describes a number of protocols used

by our architecture; and Section 5.5 discusses an empirical study on a prototype implementation

of the proposed architecture.
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5.1 Software Architecture Model

In the previous sections, we addressed the high-level definitions and formal analysis of GSTRBAC

polices. Yet, we did not consider the enforcement mechanism of the policy at the application

level. This section describes a platform-independent implementation architecture, which maps the

high-level GSTRBAC policy definition to the enforcement mechanism in mobile applications.

In our implementation architecture, some elements of the usage control model UCONABC [56]

are integrated into GSTRBAC model for checking access requests. UCONABC is a family of mod-

els describe a number of methods for checking access requests. The pre-authorization (preA) in

UCONABC indicates that the resource access verification must be performed before the requested

resource is exercised. The ongoing-authorizations (onA) defined by UCONABC indicates that a

system continue to enforce access control while the resource is being accessed.

Since our access control model supports the spatiality and temporality access control, the en-

forcement of the GSTRBAC policy introduces a number of challenges; we mainly focus on two

of them. First, the integrity of the current user STZone should be maintained. A system should

authenticate a user claim of his STZone by a secure manner before processing the access request.

Second, capturing the user STZone changes after approving a user access request. When a current

user STZone becomes invalid (i.e., due to the locations changes or the access duration ends on),

all granted user’s privileges should be revoked immediately.

The first challenge is addressed by the STZone-proof provided by a trustworthy STZone reader

component planted in a user’s mobile computer. For each access request, the STZone reader com-

ponent at the client side constructs the STZone-proof and timestamp at which the proof is issued.

The second challenge is addressed by enforcing the ongoing-authorizations (onA) of UCONABC.

We define a listener component at the user’s mobile that gets notifications at the time the cur-

rent mobile’s STZone deviates from the valid zone associated with a user mobile. The listener

component requests the service termination at the time a user moves into an invalid STZone.

Figure 5.1 depicts the proposed implementation architecture for enforcing GSTRBAC in a mo-

bile application. Typically, the design is developed with aim of having a feasible tradeoff between

security, functionality, and ease-of-use. Users might become disgruntled with the heavy security
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constraints complicating their work for no substantial reasons, resulting in bad outcomes for en-

terprises. From a high-level perspective, the design is based on separating the security policy from

point of use as well as granting authorization-tokens (ATs) for managing users’ access while in

move. The architecture in Figure 5.1, consists of three core components, the request composition

module (RCM), resource access module (RAM), and authorization control module (ACM) which

are stand alone programs. The request composition module is installed at a user mobile device

while the resource access and authorization control modules are implemented in servers which

may or may not be colocated depending on the implementation details. The application data and

policy data can be kept in a single local database server or maintained in distributed servers. In case

the relevant data is not stored locally, the modules must intercommunicate in the form of remotely

distributed servers.

Architecture components are either locally or remotely interconnected to data repositories in

order to perform their tasks. In the presentation of the proposed implementation architecture,

we discuss our design characteristics, the computation and the space capabilities, the architecture

modules, and the authorization algorithm.

Authorization Control Module (ACM)

Request Composition Module (RCM)

Mobile User

Server

GSTRBAC 

Policy Base
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STZone Listener

Request Builder
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Figure 5.1: Implementation Architecture of GSTRBAC Policy in Mobile Applications
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5.1.1 Assumptions

Here are some realistic considerations in a mobile application architecture enforcing a GSTRBAC

policy model:

• The access control model is implemented as a separate component linked to the target appli-

cation to provide a proper access control.

• The architecture implements the client server paradigm, in which the client side sends re-

quests to the server side, and the server processes the requests and sends back the responses.

• Architecture components are implemented by tamper-proof and trusted software. In par-

ticular, RCM component is installed in a secure element of a mobile-device, which control

access to signed applications. Software product vendors are in charge of using up-to-date

preventive techniques to protect software data and functionality across multiple applications.

• The key aspect STZone is implemented as object information; its attributes are the location

and time information needed for checking a user access.

• A public key cryptography and a hash algorithm MD5 should be installed in users’ mobile

phones as well as RAM and ACM servers. These algorithms at the entire architecture com-

ponents must be identical. The design decision of employing the public key cryptography in

preference to the secret key scheme is because the public key scheme has many advantages

for building secure authentication protocols. The secret key cryptosystem is faster, but it

suffers from many security threats such as replay and reflection attacks on the authentication

exchanges.

• The strength of the cryptography and hash algorithms, and the secure distributions of certifi-

cates, depend on the implementation details and sensitivity of applications’ documents.

• A user public certificate ties a user with a certain mobile device; the mapping between a user

and a mobile device is one-to-one relationship. That is, a user cannot use his colleague’s

cell-phone to access an application.
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• The GSTRBAC model is defined based on the assumption that a tamper-proof location sys-

tem such as GPS or WLAN-based systems [1] is installed in a user mobile device. This

assumption is based on the fact that smartphones with a tamper-proof GPS receivers [88]

onboard are becoming increasingly common. Most of today’s smartphones, such as the

iPhone/iOS, Bada, Windows Mobile 7, and Android, are fully GPS-Enabled.

• Users’ membership is controlled by strong passwords that are resistant to many password

cracking tools. Furthermore, if users store their passwords in their cell-phones, these pass-

words should be properly encrypted by some keys that are transparently hoarded in a secure

element of the cell-phones. Stolen cell-phones are also protected from improper usage of

local sensitive information by employing a password protection tool or a biometric measure

such as a fingerprint reader.

• Architecture components clocks have proper synchronization within time windows that are

controlled by a time synchronization protocol. That is, the clocks are defined so that they

synchronously advance at the same pace in each architecture component.

• The data consistency at all architecture components (i.e., distributed RAM and ACM servers)

is guaranteed by applying some underlying protocols for consistent data services [89, 90, 91].

These protocols support the data integrity, concurrency control, and recovery from crashes

and communication failures across interconnected databases.

5.1.2 Design Characteristics

Before we discuss our implementation architecture model in Figure 5.1, we introduce a number of

desired characteristics that our architecture design should satisfy. The following elaborate on each

of these design requirements:

• Keeping the architecture as general as possible in order to easily incorporate it in various

mobile applications. In practice, it is desirable to have multiple authorization and resource

manager servers within mobile applications. The architecture can be implemented in a local

centralized paradigm or a distributed environment.
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• The design architecture should maintain practical computational and communication effi-

ciency. With computational efficiency, the number of operations required to execute the

protocols are kept to the minimum. We reduced the number of cryptographic operations

needed to securely exchange messages to the least amount. With communication efficiency,

the number of passes (communication steps) for performing the protocols are kept as small

as possible. Therefore, our implementation does not make for inconvenience to users and a

lowering the targeted application effectiveness.

• In order to improve the performance, the design should reduce the number of components

involved in the access control. To fulfil this design goal, our architecture does not relay on

third parties to provide the STZone proof for a user, authorization tickets, secrets (e.g., keys

or hash values), or any other forms of trusted information. For example, the STZone proof

is issued locally by a trusted software component that is embedded in the user device.

• Due to the constraint environment of the mobile devices, the number and type of opera-

tions performed at the client side should be small. In our design, most of the computations

overheads are placed on the server side which are assumed to have powerful space and com-

putational capabilities. Furthermore, we only allow the operations that consume a small

amount of space and computation overhead to be performed at the mobile devices.

• For ongoing/persistent access checking, the continuous STZone confirmation should not

drastically increase the communication messages consuming a significant amount of com-

putation power at a user mobile. In our design, the STZone listener component, at the user

client side, sends an access termination request if and only if the current user STZone is

invalid. In such a way, the user does not need to continuously or periodically sends STZone

conformations after some fixed period of time to maintain the access.

• The key feature of our architecture is the separation between the application layer and the

policy layer. We design two distinctive modules, one is for the authorization enforcement and

another one for making access decisions. This design choice adds flexibility for integrating

GSTRBAC policies with various applications. In practice, ACM maps a user to proper roles
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and permissions. Conversely, RAM enforces the authorizations granted by ACM without

any knowledge about the underlying policies. As such, our design protects against insider

attackers by isolating the authorization decision from the point of use.

• The users’ anonymity must to be preserved. The ACM servers should not learn any in-

formation about users’ credentials such as the users’ devices, passwords, and public keys.

Here, users’ credentials are only meaningfulness to the resource server to validate the users’

registrations in the application. Thus, such information is not forwarded to ACM during the

resource access. Furthermore, ACM cannot match the user name with roles since GSTRBAC

policies are defined based on users’ identifiers.

• Protocols in our architecture should be secure. Our protocols are designed to establish secure

connections over insecure channels. As such, these protocols employ various countermea-

sures protecting against most common security attacks.

• Architecture protocols should have a significant performance while performing access con-

trol. This goal is achieved in our protocol design by reducing the number of passes between

the RAM and ACM servers. That is, in case a user is not authenticated at a RAM server, the

access rejection response is sent directly to a user aside from consulting with a ACM server.

In similar manner, the suspension of the user’s authorizations while on the move is concisely

handled by the RCM and RAM components.

• A user must not be restricted to be in a proximate place such as a room, a department, or a

building in order to have an access; these physical quarters may have pre-installed location

devices to provide users’ locations. In the proposed architecture model, a user can freely

move and access resources with no restraints of being a near by (i.e., few centimetres or

meters) to a location device signalling his current location.

• The implementation should also consider freezing authorizations of moving users. Users’

privileges should not be revoked at the time a user suddenly leaves a valid location since that

user might return after a short period of time and before the access duration is timed out. This

design objective is defined to tackle the redundancy problem of redoing the role activation
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steps all over again. Such problem causes pointless resource and time consumption as well

as inconvenience for users. Authorization suspicion is primarily one of our techniques for

getting better implementation performance. That is, in case a user suddenly leaves a valid

position, a client sends a request to freeze or suspend user access for a certain time window

computed by the client and properly synchronized with the RAM server. Once the user

gets back to his/her valid position, that user can effortlessly resume his work. It is worth

mentioning that the ACM component is not involved in the freezing authorization procedure.

5.1.3 Architecture Modules

In the definition of our architecture modules, we incorporate some relevant key points of the

general-purpose access control policy language XACML (eXtensible Access Control Markup Lan-

guage) [78].

Now, we describe the proposed architecture modules in terms of their accountabilities:

• RCM - is responsible for forming a user access request and maintaining the access while

the rights are being exercised. The Request Builder component in RCM creates a resource

access request package and includes the current user STZone and user’s credentials (e.g.,

user identifier, password, timestamp, and device identifier) with the request, then sends it to

one of the available RAM servers. The Request Builder enquires the current user STZone

from STZone Reader. The STZone Reader component in turn reads the current mobile de-

vice time and gets the location from GPS data component storing the location information.

STZone Reader tracks current user’s STZone and sends notifications of invalid STZones to

the STZone Listener component that requests an access termination request to the server side.

• RAM - is an intermediate server between a user’s mobile and the ACM server, which is

primarily responsible for handling the application resources to the users. It typically acts like

PEP as it is in charge of communicating with the application resource base. RAM receives

the user request on one-hand, and it consults the user’s authorizations with ACM server on

the other hand. The Credential Evaluator component checks user credentials stored in the

application base server. The Authorization-Token Requester component requests a user’s
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access rights from one of the available ACM servers. The Resource Provider component

provides access to some object information requested by users.

• ACM - is accountable for the policy evaluation and issuing a new authorization-token for

every user request. ACM acts as PIP to provide required information for evaluating a user

request and as PDP to make an access decision and forward it to RAM. ACM communi-

cates with the policy base in order to issue users’ authorizations-tokens. The Role Activation

component maps a user to an appropriate set of roles and permissions based on its STZone

provided by the STZone Extractor component. STZone Extractor is the component imple-

ments the mapping function T discussed in Chapter 3. Furthermore, the Role Activation up-

dates the policy state for each activated role. The Authorization-Token Granter component

is the mean that allowed us to concretize the ongoing access rules. The Authorization-Token

Granter component is responsible for granting the authorization-token for using a particular

role. Note that, a user’s role can be activated if and only if all the following conditions are

satisfied: (a) the role is not already active, (b) the role can be activated in the given STZone,

and (c) no conflicting roles are in active state.

The authorization-tokens are like a tickets which equip client applications by a ”kind of in-

telligence” that made them able to manage their own access rights. That is, a user will have an

ongoing access till the point in time the current user STZone violates the authorized STZone in

the authorization-token that is stored in the user’s device. The format of the authorization-token

AT may varies depending on the implementation details of a system. In our protocols, the user’s

authorization-token should have the current activated role, a set of authorized permissions, and the

current user STZone.

An authorization-token is formally defined as AT = (IDu, IDut, r,P, STZone) where IDu refers

to a user identifier, IDut is a token’s identifier, r is a requested role to be activated, P is a set

of the authorized permissions associated with role r, and STZone defines where and when these

privileges are valid. The set of activated roles by a user and the set of authorized permissions are

respectively defined by these functions: ActiveRoles : (u : Users, z : STZones) → 2Roles, and

AuthorizedPerms : (u : Users, z : STZones) → 2Permissions. With a distributed RAM and ACM
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paradigm, ACM broadcasts the new user’s authorization-token to all RAM servers to keep the

access control consistent. In addition, ACM also broadcasts this update to a list of ACM servers to

preserve the state of the policy.

For every activation request, ACM grants or denies authorization-tokens using Algorithm 8. A

user request is approved if and only if the requested role does not violate the spatio-temporal policy

rules. If a user requests to activate an unauthorized or a conflicting role, ACM does not issue a

new authorization-token for that role, instead, a rejected access response is sent to the user. Corre-

spondingly, for having conflicting permissions, the access request should be rejected. Algorithm 8

descries how the authorization-tokens (ATs) are either computed or denied; it is invoked by ACM

for each activation request. As shown in Algorithm 8, mutually exclusive roles are also checked

before issuing an new authorization-token.

Algorithm 8 takes in three inputs: user u, role r, and STZone z: u is the user who wants to

activate role r in zone z. Line 1 initializes the permission P to the null set. The algorithm proceeds

only if r has not already been assigned to u in zone z. If the user already has authorization tokens, a

check is made to ensure that no conflicting roles or permissions are activated – this is done in Lines

4 – 24. If these conditions are satisfied, the role r can be activated for user u in zone z. The set of

active roles for user u in zone z is updated in Line 25 to include the role r. In Line 26, P is set to the

permissions associated with role r in zone z. Lines 27 and 28 generate the authorization-token AT .

The algorithm produces as output the AT if the role can be activated, otherwise a reject message is

sent to the user.

With distributed and replicated RAM and ACM servers, ACM broadcasts the new authorization-

token to all the RAM and ACM servers to keep the access control consistent.

5.1.4 Computational Capabilities and Storage Space

The user mobile device is assumed to operate in a restricted environment in terms of a computa-

tional power and a space capacity. Nevertheless, in modern mobile Operating Systems (OSs), the

processor computation power is very advanced and the storage space is increasingly extended with

permanent memories of 8GB, 16GB, 32GB, etc.

A user’s mobile is assumed to execute a public key cryptography algorithm as well as hashing
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Algorithm 8: Generate authorization-token AT
input : User u, STZone z, and Role r
output: authorization-token AT or Reject

1 P←− φ;
2 if r ∈ active roles(u, z) // r is already activated by u
3 or r 6∈ assigned roles(u, z) // r is assigned to u in z
4 then
5 if userToken(u) 6= φ // u has some authorization-token
6 then
7 foreach r

′
∈ active roles(u, z) // checks conflicting roles

8 do
9 if r

′
∈ RSoD(r, r

′
, z) // a role conflict is exist

10 then
11 print(Request is Rejected + Details);
12 exit;
13 end
14 end
15 foreach p ∈ assigned perms(r, z) // checks conflicting permissions
16 do
17 foreach p

′
∈ assigned perms(r, z) do

18 if p
′
∈ PSoD(p, p

′
, z) // a permission conflict exists

19 then
20 print(Request is Rejected + Details);
21 exit;
22 end
23 end
24 end
25 end
26 active roles(u, z)←− active roles(u, z) ∪ {r}; // updates role r state
27 P←− assigned perms(r, z) ;
28 IDut = generateID(AT); // generate a sequence number of user’s token
29 AT ←− (u, IDut, r, P, z); // creates authorization-token AT
30 return(AT);
31 end
32 else
33 print(Request is Rejected + Details);
34 end

algorithm MD5. It is also supposed to store a user’s private key PrKu, the RAM’s public key, and a

list of authorization-tokens. Such data should not consume a large volume from the memory, and

it should be stored in a secure component of the user’s smartphone; it should only be reachable by

licensed applications.

On the servers’ side, the servers’ computation power and storage capacity are not restricted

since they are usually very powerful machines in comparison with personal computers (PC).

Servers are designed to have a high-speed memory, can handle a very high volume input and

output (I/O), deal with massive databases, and emphasize high throughputs in order to perform as

many computational tasks on behalf of the clients.

A RAM server maintains a list of users’ public key certificates denoted by UCerts. A user

certificate must be deleted from UCerts list in case the user’s key is compromised. It also preserves

a list of authorization-tokens that is referred to as the UATokens list. When the authorization-

token expires, it must be removed from UATokens list. The integrity of this data must be properly

maintained from threats such as data is accidentally or maliciously modified, altered, or destroyed.

Since the implementation paradigm supports the distributed environment, RAM also stores a
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list of public keys certificates of distributed ACM servers referred by the ACCert list. Each public

key in the ACCert list is used to communicate with a particular ACM. In other words, all the

connections between the RAM and RCM servers or between the RAM and ACM servers are peer-

to-peer connection controlled by designated public keys. RAM should also performs the public

key cryptography and hashing.

We do not place a certain storage capability on the ACM servers. Each ACM server only stores

its private key and a list of public keys certificates for distributed RAM servers. Since ACM is

connected with GSTRBAC policy base, it updates the policy base with each new request.

5.2 Access Control Protocols

We systemically define a number of resource usage protocols incorporating spatio-temporal con-

straints. These protocols securely govern the way our architecture components interact in order

to permit the resource usage under various circumstances; they are fully automated. This section

discusses the protocols’ prelude and define how these protocols work.

5.2.1 Protocols Prelude

We expect the following essential settings are already carried out in order to operate the protocols.

All architecture principles should have agreement on some public keys that are used to encrypt

messages and verify signatures. A user must have registered with a system and has created a

password. When a user register in a system, a trusted Certificate Authority (CA) issues a pair of

public and private keys for that user. A user’s certificate has a user’s public key PuKu, a user’s

smartphone identifier IDs, user identifier IDu, and user password Pu. The Certificate Authority

(CA) must have already deployed each RAM’s public key certificate to every ACM and RCM

entities in a system, and similarly for ACM servers.

The communication passes are controlled by timestamps that record the time at which a pro-

tocol exchange is created. Therefore, the protocol endpoints should have already adjusted their

clocks to a certain amount of synchronization throughout a time management protocol. The time

should be approximately the same at every interconnecting endpoints in our protocols. The size of
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the time frame at a recipient endpoint is left up to the application implementers, it might depend

on the criticality of the requested resources.

Figure 5.2 describes the communication exchanges of the resource usage protocols imple-

mented by a single RCM client, RAM server, and ACM server. Suffixes associated with the com-

munication messages indicate the order of steps in the protocols. Message Mi indicates step i of

the protocol. Table 5.1 enumerates the notations used in the description of the protocols.

In Figure 5.2, the RAM and ACM servers are implemented in two distinct centralized servers.

RAM with application base are executed in a sever denoted by the resource server (RS). ACM

along with the policy base are applied in a server that is called the authorization server (AS).

The user component RCM is implemented in a mobile device referred to by (RC). The protocols

endpoints’ identifies are sent in clear in order to allow the receiving endpoints to allocate the

senders’ key certificates. The channel between user mobile phone and RAM server are wireless

network (e.g., GPRS, UMTS, WLAN, Internet WAP 2.0). We do not put any assumptions about the

communication channel between RAM server and ACM server, it can be either wired or wireless.

 M3- IDas, Ers{Mas,Sas{M*as}}

 M1- IDu, IDs, Ers{Mrc,Src{M*rc}}

 M4- IDrs, Erc{Mrs,Srs{M*rs}} 

M2- IDrs, Eas{Mrs,Srs{M*rs}}

 M6- IDrs, Rejected Access  

 M5- IDas, Rejected Access

 M7-  IDu, IDs, Ers{Mrc,Src{M*rc}}    

 M8- IDrs, Eas{Mrs,Srs{M*rs}}  

RCM

Client

(RC)

RAM

Server

(RS)

ACM

Server

(AS)

Figure 5.2: Communication Steps of the Resource Usage Protocols

An Initial Access Control Protocol

The steps of the basic resource usage protocol for handling users’ requests are performed as fol-

lowing:

- Resource Usage Request [RCM M1−→ RAM] : A user mobile sends an encrypted and digitally

signed access request package M1 to RAM as shown in Figure 5.2. RCM creates an access
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Table 5.1: The Notations of the Resource Usage Protocols

Symbols Interpenetration
IDx Identifier of party x
IDs User’s device identifier
PuKx Public key of party x
PrKx Private key of party x
Tsx Timestamp computed by party x
Pu User password
P∗u One-time password
H(Pu,Tsx) Computes P∗u
Mx Package payload created by party x
Ex{S} Encryption of sequence S by PuKx

M∗x Message checksum generated by party x
H(Mx,Tsx) Computes M∗x
Sx{M∗x} Signing M∗x by PrKx

A Mi−→ B Party A sends package Mi to party B
Tw Time window
AT Authorization-token
IDut Authentication-token identifier
“Close” Keyword indicates deletes user’s AT
“Freeze” Keyword indicates suspends user’s AT

request payload Mrc = (IDu, IDs,P∗u, STZone, r,Tsrc), where IDu is the user identifier, IDs is

the device identifier, P∗u = H(Pu,Tsrc) is the user one-time password, STZone is the current

user zone, r is the requested role, and Tsrc is the timestamp at which Mrc is created. RCM

computes the hash value M∗rc = H(Mrc,Tsrc) and signs it using user’s private key PrKu, i.e.,

Src{M∗rc}. RCM composes the package M1 which has IDu and IDs in clear. At the resource

server, RAM uses IDu and IDs to lookup for the corresponding the user’s certificate. RAM

decrypts M1 using its private key and verifies the digital signature using user public key

PuKu; it recomputes the message checksum and compares it with the one in M1. Then, RAM

validates the user registration in the application using user IDu and Pu in his/her certificate.

- User AT Request [RAM M2−→ ACM]: If the user is authenticated, RAM forwards an encrypted

and signed request package M2 to the ACM server in order to issue the user’s authorization-

token AT . RAM forwards the AT request payload Mrs = (IDrs, IDu, STZone, r,Tsrs), where

Tsrs is the payload’s timestamp. RAM computes the hash value and signs it using its private
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key PrKrs. Then, RAM encrypts the Mrs along with digitally signed signature Srs{M∗rs}

using ACM public key PuKas. At the authorization server, ACM decrypts package M2 and

validates the digital signature using the public key of RAM PuKrs. Nevertheless, if the user

authentication fails, RAM sends access rejection response M6 to the user without the need

to communicate with the ACM, and as such, speeds up the implementation performance.

- User AT Response [ACM M3−→ RAM]: Once message M2 is authenticated, ACM replays

the user’s AT in M3 package only if the user has the rights to activate a requested role.

ACM maps the user IDu and his/her current user STZone with appropriate rights in the pol-

icy. Once the user’s request is approved, ACM sends an encrypted and signed response

acceptance package M3 to RAM, which includes Mas payload as well as a digital signa-

ture Sas{M∗as} signed by ACM private key PrKas. Payload Mas = (IDas, IDut, IDu,AT,Tsas),

has user’s identifier IDu, user’s authorization-token AT , token identifier IDut, and timestamp

Tsas. However, if the requested role is not approved by the policy, then an access rejection

response M5 is sent to the RAM server.

- Forwarding User AT [RAM M4−→ RCM]: After authenticating message M3 from ACM, RAM

stores a copy of the user’s authorization-token AT in the UATokens list along with the token

identifier IDut, user identifier IDu, and device identifier IDs. Then, RAM forwards a signed

and encrypted response package M4 to RCM. The response package has payload Mrs =

(IDrs, IDu, IDs, IDut,AT,Tsrs) as well as a digital signature Srs{M∗rs} signed by the private

key PrKrs. Note that the user’s authorization-token is bound to particular user IDu and device

IDs. At user side, if M4 package from RAM is authenticated, RCM stores the authorization-

token AT in a secure element of the user’s cell-phone. However, in case the access request is

rejected by ACM, RAM directly forwards rejection response M6 to RCM.

The basic resource usage protocol thwarts a user from having conflicting roles or permissions.

The SoD constraints are enforced by ACM. As shown in Algorithm 8, a user is not granted a new

token for role r if it conflicts with at least one of the current user’s active roles, and also if the

associated permissions with role r conflicting with one of the current user’s permissions.
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An Ongoing Access Control Protocol

The resource usage protocol supports (preA) principle of UCONABC for checking access requests

before resources are actually used. However, in our model, we need to revoke access whenever

a user moves out of a valid STZone. The basic protocol does not check the users’ access after

resources are being granted. Therefore, we define the ongoing access protocol that applies the

(onA) principle of UCONABC.

The first implementation choice was that STZone conformations are continuously or periodi-

cally sent to RAM servers while users’ rights are being exercised. In this manner, a user connects

with RAM and send a conformation of current STZone, or RAM server requests a conformation

from a user. The STZone conformation is automatically performed by client software without a

need to personal reminders. In response, RAM servers check the confirmations and either maintain

the users’ access or terminate them. However, in this design choice, there is a significant overhead

on the user side and on the server side. Our design choice intends to minimize the work load

primarily on the users and preferably on the servers.

Our alternative choice is that a user device sends a notification of terminating an access only

if the current user STZone becomes unacceptable. Therefore, there is no need to send a confor-

mation if the current user STZone is valid. The problem of extra work load and computations at

both the client side and the server side are resolved in our design. At the client side, the soft-

ware engineer solution, “Observer” design pattern [92], is implemented to fulfil this objective. In

this design solution, The STZone Listener component gets periodic updates by the STZone Reader

component about the spatio-temporal coordinates of the user. Whenever the current user location

or time does not satisfy the information in a user’s authorization-token, the STZone Listener com-

ponent revokes the user’s authorization-token and requires Request Builder to request an access

termination. STZone Listener must be tamper-proof component and transparent to users, it is only

accessed by signed applications.

The initial resource access protocol is revised in order to define the ongoing/persistent resource

usage protocol. In this protocol, two communications steps are added to the basic resource us-

age protocol. In Figure 5.2, the communications messages M7 and M8 describe the additional
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exchanges needed to implement the ongoing access protocol.

- Terminating User Access [RCM M7−→ RAM]: RCM sends the termination access request

M7 to RAM at the time the current user STZone becomes invalid. It creates a termination

message payload Mrc = (IDu, IDs, IDut,Pu,Close,Tsrc) where the keyword “Close” indicates

the termination of access. RCM concatenates Mrc with the user digital signature Src{M∗rc} and

encrypts M7 with RAM public key PuKrs. The user’s authorization-token is deleted at the

client side in order to terminate the user access.

- Revoking User Privileges [RAM M8−→ ACM]: After authenticating the sender of M7 package,

RAM reads the keyword “Close” and then use IDu, IDs, and IDut to lookup for the user’s

authorization-token in the UATokens list and removes it. Therefore, if a user subsequently

requests an access to a resource via deleted IDut, this request will be denied. RAM forwards

an encrypted and signed termination request M8 to ACM in order to update the current user’s

authorizations. The M8 request has payload Mrs = (IDrs, IDu, IDut,Close,Tsrs) as well as the

digital signature Srs{M∗rs} signed by RAM private key. At the authentication server, after

authenticating the sender of M8, the keyword “Close” indicates ACM to revoke the current

user’s active role and authorized permissions associated with user’s authorization-token IDut.

A Resource Access Suspension Protocol

Since in our GSTRBAC users are mobile, a user might momentarily depart the authorized location

from which he/she currently accessing some resources and come back after a small period of time.

To maintain our design efficiency and ease of use, the user’s privileges should not be permanently

revoked, instead, these privileges must be frozen or suspended for the short period of time the user

is off-site and returned back when the user is on-site.

We achieve this design goal by modifying the communication steps of the ongoing resource

usage protocol in order to define the suspending resource usage protocol. In this protocol, RCM

suspends user access and sends a resource access deferral package M
′
7 at the time a user unexpect-

edly leaves a current valid position. This message has a quite identical format to M7 except that

the keyword “Close” is changed to “Freeze” to indicate that the user’s privileges should be frozen
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for a certain time period.

A time window Tw is appended to M
′
7 package to determine the freezing time throughout a

user cannot exercise previously granted access rights. Once a user crosses back the boundary of

the user’s valid location and prior to the Tw expiration , he/she can automatically practices earlier

activated roles with no need to resend an activation request. At the resource server side, RAM

reads the key word “Freeze” and instead of deleting user’s AT, it prevents the user from exercising

rights for the duration defined in the constant Tw.

If RAM gets a resource access request from the user within the time window Tw, it handles the

requested resource to the user, and deletes Tw from the user’s record. Nonetheless, in case RAM

does not hear anything from the user throughout Tw, it forwards package M8 to ACM in order

to revoke the current user’s active role and the authorized permissions combined with the user’s

authorization-token IDut.

5.3 Securing Against Some Common Attacks

Since our primary concern is protecting applications’ resources from improper access, it is impor-

tant to guarantee that our architecture design is indeed secure from many security threats. In this

section, therefore, we describe a threat model that is capable to categorize many attack methods

in which an adversary would use to exploit vulnerabilities in our architecture design. This treat

model also informally assess the protective measures supported by our design that can alleviate

those common threats.

The proposed threat model examines some portions of the threat modeling process proposed

in these studies [93, 94]. This model is a process that we conducted to identify the attack methods

that an adversary would use to uncover vulnerabilities in our design. In order to identify these at-

tack methods, we need to analyze the architecture components as well as the flow of data between

those components. Furthermore, to create a useful threat model, we should look at each architec-

ture component through an adversary’s eye and consider both passive and active attacks. In the

analysis of our architecture design, we propose three threat models: the first threat model studies

the software implementing the architecture components, the second model examines attacks on the
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messages exchanged between those components, and the third threat model analyzes vulnerabili-

ties in the protocol designs that interconnect those components.

Attacks on Software Components

Since the attack methods in the first threat model are not directly related to the architecture design,

we assume that RAM and ACM components are implemented in computing machines equipped

with appropriate software protection. Moreover, the RCM component is installed in a phone’s

secure element, which prevents unauthorized access. For example, Android platform provides

a number of access control mechanisms, based on a Linux kernel, that protect access to shared

data and functionality across multiple applications [95]. RAM and ACM servers should employ

some preventative measures to tackle common attack methods, including, a strong cryptographic

technique, a proper firewall configuration, a malware prevention, a proper anonymous protocol,

etc. With a strong cryptography, no matter how much computational power is available for the

attacker, the cryptosystem keys cannot be broken. It is important to for the preventive techniques

to have the latest security updates.

For the denial-of-service attack (DoS), RAM and ACM are protected from such attack because

our architecture supports the distributed resource paradigm. In practice, the exchanges in step 1 and

step 2 play as countermeasures against DoS with distributed RAM and ACM servers throughout a

network. A user client RCM submits requests to a number of distributed RAM servers, similarly,

RAM requests authorization-tokens through a number of distributed ACM servers. As such, in

case of a compromised user successfully saturates a RAM sever using some methods of attack

(e.g., ICMP flood, SYN flood, and Degradation-of-service), other RAM servers will be available

to provide services to other users.

However, with the distributed denial-of-service attack (DDoS attack) or other DoS attack

classes, a client attacker might succeed to bottleneck some or all servers. Such attack success

is inherently a result of the vulnerabilities in the network design, but not because of our proto-

col design. To mitigate the DDoS attack, service nodes in Intranet or in the software architecture

should utilize appropriate DDoS detection and prevention mechanisms (e.g., Firewalls, Blackhol-
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ing and Sinkholing, Clean pipes, and blacklisting), which block illegitimate traffic and only allow

traffic that is diagnosed as a legitimate traffic.

Attacks on Protocol Messages

For the second threat model, the message confidentiality, message integrity, message negation, and

message identity are important to protect communication messages. These features are provided

in our architecture.

The message confidentiality is guaranteed invulnerable to eavesdropping by a proper public key

encryption. The message integrity is maintained by concatenating each message with the message

digest, and as such, if an intruder intercepts and alters a communication message, the receiver can

detect that. The message negation is protected by associating digital signatures with messages; the

digital signature provides a non-repudiation proof of the message origin. Message identity is pro-

vided by using public key certificates and digital signatures. Using these two features, the sender

and the receiver are able to mutually authenticate their identities. We assume that private keys used

to sign the message digests are only possessed by the signers, and the public key certificates have

one-to-one mapping between the public key and the owner. Furthermore, passwords also provide

a proof of identity.

Attacks by Malicious Entities

The third threat model investigates attacks by malicious entities that impersonate as legitimate

protocol’s endpoints. In particular, this treat model examines attack methods posed by a mali-

cious RCM client, a malicious RAM server, or a malicious ACM on the protocol design. In the

following, we show how our resources are protected from improper access by malicious protocol

endpoints.

Malicious RCM: The goal of a malicious RCM client (a user) is having an unauthorized access

to application resources via the RAM servers. The followings discuss a number of countermeasures

in our protocols to deter common attack methods that authorized/unauthorized users can carry out
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to gain an access to protected resources. We first consider the attacks that unauthorized users might

perform:

• Eavesdropping: This attack allows an adversary unit to make a copy of communication

exchanges; then discloses sensitive information such as passwords, identifiers, and learn

procedures for making access. Nevertheless, the passes between RCM and RAM are en-

crypted using public keys and passwords are transformed (e.g., one-time password). There-

fore, eavesdropping attacks cannot cause a harm to our architecture.

• Modifications: A modification attack occurs when an attacker intercepts and modifies the

contents of communication passes in order to impersonates others to gain an access. This

attack is not applicable to our protocol because paths between RCM and RAM servers are

encrypted and combined with signed checksums; therefore, RAM receivers validate those

checksums before accepting incoming traffics.

• Replay: In this attack, an eavesdropper intercepts authentication exchanges coming from a

legitimate RCM and later replays that exchange as it comes from a lawful RCM client re-

sulting in harmful consequences such as redundant orders of the same item. Since the com-

munication messages sent from RCM clients are encrypted and associated with timestamp

as a non-repeated value, replay attacks will be detected. In addition, one-time passwords are

non-repeatable value preventing an adversary from reusing passwords in the replayed passes.

Therefore, our authentication protocol is not subject to the replay attack.

• Reflection: The reflection attack on the same target occurs when a malicious user intercepts

a message coming from the target RCM and reuse it as a response coming from a legitimate

recipient RAM. The reflection attack is of a great concern to our authentication protocols

that relay on the similar encryption/decryption keys. Since passes are encrypted by the

recipient public key, the sender cannot decrypt the reflected messages with its private key.

The protocols’ exchanges are also associated with signed message digests as well as senders’

identifiers which help a sender to become aware of the messages reflection. Besides of
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these features, the formats of the request messages and response messages are different.

Consequently, the protocols are not vulnerable to the reflection attack.

• Man-in-the-middle (MITM): In MITM attack, an intermediate intruder eavesdrops the

communication between the victims and intercepts the exchanges coming from one sender

victim and retransmits them to the intended recipient as they are directly coming from the

victim; the entire connection is managed by the intruder. This attack is of a great concern

to communication parties that lack the mutual authentication scheme. In our protocol is de-

signed with assumption that entities authenticate each other identities before accepting the

incoming traffic and the traffic is encrypted, digitally signed, and appended with senders’

identifiers, one-time passwords, and timestamps. As a result, these features preclude the

chances of MITM attacks [96].

• Compromised-Key: The goal of a compromised-key attack is for an eavesdropper to ob-

tain a public key of a RAM server by some means and use it to create a fake access request

package. In order for this attacker to succeed, it should have intercepted the exchanges be-

tween some lawful RCM and RAM endpoints and learn information such as user’s identifier

IDu, device identifier IDs, and layout of the request package. This attack is of our great

concern to our protocol design because public keys are typically not kept secret. From the

first glance at the protocol design, we might uncertainly judge that this attack is possible

because the IDu and IDs identifiers are sent in clear. However, our protocol is solid in front

of the compromised-key attack. The encrypted user’s password, user’s identifier, and signed

checksum in the request package are significant preventive measures against such attack. In

addition, the one-time password cannot be reused in the false request.

• Illegitimate Use: There are two variations of this attack. The first attack might occur when

a participant tries to gain access to resources using a cell-phone of another legitimate par-

ticipant assuming the second party is oblivious about this onslaught. Our design is secure

from such attack by virtue of user identifier IDu and device identifier IDs the request pack-

age, which are pertained to a distinct user certificate at the RAM servers. Therefore, the user
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access is declined in case those parameters do not match in the user’s certificate. The second

practicability of this attack happens when a malicious user tries to make an access via lost or

stolen cell-phones. However, such assailant cannot breach our authentication protocol since

a user access is controlled by a strong password assuming that user’s password is securely

stored in its device.

Strictly speaking, the proposed protocols are enhanced with a number of security measures

such as the public key cryptography, digital certificates, checksums, one-time passwords, digital

signatures, timestamps, and encrypted senders’/receivers’ identifiers. In most attack scenarios,

these techniques have been used for a long time and have proven practices for preventing, detecting,

deterring many of those attacks. In particular, it is mathematically not possible to discover a private

key from its pair public key. Moreover, the strength of the cryptography or hashing algorithm is

implementation details that differ based on the criticality of the application data and services. We

next consider the attacks that might be carried out by authorized users.

• Reusing Authorization-Tokens: A user may want to access a resource using his past

authorization-token. However, when the STZone expires, the authorization-token gets deleted

from RCM and cannot be used.

• Modifying Authorization-Tokens: A user may modify the authorization-tokens stored at

his site. However, authorization-tokens cannot be modified as they are stored in a secure

tamper-proof storage at a user’s mobile device.

• Users Collusion: With collusion attack, two or more users collude in order to commit a

fraud. That is, user u1 gets a valid authorization-token for a role and sends it by some means

to user u2 in order to allow u2 to violate conflicting constraints. However, this attack is

not applicable to our protocols because each authorization-token’s identifier adheres to a

particular user’s device.

• Distributed Resources: In this attack, a disgruntled RCM client exploits services from

several distributed RAM servers. We discuss the possibility of this attack bearing in mind
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that the data consistency at all servers is preserved. In particular, a disgruntled RCM client

requests a role activation from a designated RAM server and later attempts to activate a

conflicting role from another RAM server with the purpose of committing a fraud. In this

regard, the second RAM forwards user’s request of the conflicting role to one of the ACM

servers. Since the policy state is consistent at all ACM servers, that ACM server rejects the

user’s request because of activation conflict constraints. Therefore, this attack is not possible

in our protocols.

Malicious RAM: The primary goal of a disgruntled RAM is to compromise a security policy.

Such attack might disrupt the continuity of business operations for a company by either deleting

or altering policy rules, or allow a user to commit a fraud or a theft. In order to achieve this goal,

the disgruntled RAM eavesdrops the communication channel between RAM and ACM severs and

initiates hostile connections with the ACM servers. For instance, an attacker fabricates a number

of authentication-token requests to disclose the underlying authorization rules in an application

policy. There are number of methods of performing this attack such as replay, reflection, man-in-

the-middle, compromised-key, eavesdropping, and modification attacks.

However, our protocol is enhanced with a number of protective techniques to alleviate these

attacks. The traffic between RAM and ACM servers is protected by public keys, digital certifi-

cates, checksums, one-time passwords, digital signatures, and timestamps. These techniques are

widely accepted through proven practices for preventing, detecting, deterring many of those secu-

rity threats.

Malicious ACM: In a simple form of this attack, a corrupted ACM sever issues a false authorization-

token tolerating unauthorized access to critical resources. Additionally, since RAM servers are

oblivious about the underlying policies, the false authorization-token may allow users to play

unauthorized roles, access conflicting roles, or acquire conflicting permissions. Our protocol is

designed with ACM servers acting in good faith, they are well-developed and behaving properly

most of the time. That is, the reported authorization-tokens from truthful ACM servers are always

considered correct.

In all other forms of false reporting attacks, RAM servers only accept authorization-tokens
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from a set of certified ACM servers that have pre-deployed public key certificates. With the false

reporting attack, an ACM attacker may surreptitiously subvert a system through impersonation of

a lawful ACM server. Such ACM intercepts a number of authorization-token responses from the

lawful ACM server and interprets the responses’ contents, then reroutes harmful authorization-

tokens to requesting RAM servers. Evidently, our protocol design ensures effective protection

measures preventing corrupted ACM servers to subvert users’ privileges.

5.4 Formal Protocol Analysis

In the preceding section we have given informal guarantees that certain types of attacks leading to

access control breaches do not occur in our architecture. However, our security analysis is by no

means complete because of lack of formality. Often times, formal analysis may reveal problems

that are not apparent in informal analysis. Our second goal in the analysis context includes formal

verification of the protocol to provide further assurance that the attacks mentioned do not occur.

In this section we use Alloy [15] to check whether the resource usage protocol described in

the paper is vulnerable to the Man-In-The-Middle (MITM) attack. Alloy is a formal specification

language that has been used to rigorously analyze security policies (e.g., see [16, 97, 98]). It has

very good tool support in the form of the Alloy Analyzer that translates an Alloy specification into

a boolean formula that is evaluated by embedded SAT-solvers.

An Alloy model consists of signature declarations, fields, facts and predicates. A signature

defines a set of objects. A field belongs to a signature and represents a relation between two

or more signatures. In Alloy invariants can be defined as facts. Facts are statements that define

constraints on the elements of the model. Operations can be specified as predicates. Predicates

are parameterized constraints that can be invoked from within facts or other predicates. Properties

to be checked can be expressed as predicates. A property holds for an Alloy model if the Alloy

Analyzer finds an instance satisfying the predicate that specifies the property.

Figure 5.3 shows an fragment of an Alloy model for the resource usage protocol (see Figure 6)

described in the paper. For the details on the entire Alloy specification, we refer to Appendix C.

Signature Module in the Alloy model represents network participants, and it has a unique identifier
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Figure 5.3: An Fragment of an Alloy Model for the Resource Usage Protocol

(i.e., an instance of ID), a public key (i.e., an instance of PubKey) and a private key (i.e., an

instance of PriKey). The basic entities involved in the network communication are represented by

sub-signatures of Module (e.g., Client, Sever, and Attacker). Thus a module can be a server, a

client, or an attacker.

An instance of Client can be a RCM client that has a requested role (i.e., an instance of Role), a

password (i.e., an instance of Password), one-time password (i.e., an instance of OnePassword), a

device identifier (i.e., an instance of ID), and an instance of STZone that records the client’s current

zone.

An instance of Server can be either a RAM server or an ACM server. An instance of Snapshot

represents a system state consisting object configurations at a particular time. It typically consists

of a RCM client, a RAM server, an ACM server, and an attacker.

(a) Message M1 (b) Message M4

Figure 5.4: Alloy Message Predicates
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Figure 5.4(a) shows an example of an Alloy predicate that specifies the message M1 shown

in the resource usage protocol (see Figure 5.2). The M1 predicate takes as input a before snap-

shot and an after snapshot, where the before snapshot describes a system state before the message

is sent, and the after snapshot describes a system state after the message has been sent. Param-

eter senderPre represents a message sender in the before snapshot while senderPost represents

a message sender in the after snapshot. Similarly, receiverPre, stzonePre, rPre, iduPre, idsPre,

and pubkeyPre represent states of objects accessed by the predicate in the before snapshot while

receiverPost, stzonePost, rPost, iduPost, idsPost, and pubkeyPost represent states of objects in the

after snapshot.

The predicate specifies that the message sender must be a RCM client and the message receiver

must be a RAM server. The sender’s attributes must have the same value with the parameters of

the predicate. For example, the value of the sender’s current zone must be equal to the value of

the stzonePre parameter. The frame condition in the predicate specifies that the participants of the

protocol must remain the same after the message has been sent.

Since it is assumed that RAM and ACM are trusted in the protocol, only the network commu-

nication (e.g., M1 and M4) between a RCM client and a RAM server is analyzed using the Alloy

Analyzer. Figure 5.4(b) shows an Alloy predicate that specifies the M4 message from a RAM

server to a RCM client. The M4 message includes the client’s identity information (senderPre.id

= idsPre) that ensures the protocol described in the paper is immune from an MITM attack.

Figure 5.5(a) shows an Alloy predicate that specifies a scenario without the MITM attack in

which a RCM client sends M1 to an RAM server and then receives M4 from the RAM server.

SnapshotSequence in the predicate represents a sequence of snapshots, while first is the first snap-

shot in the sequence, second is the second snapshot and etc. first represents a system state before

M1 has been sent, second represents a system state after M1 has been sent and before M4 has been

sent, and third represents a system state after M4 has been sent.

The Alloy Analyzer uses the predicate in Figure 5.5(a) to query whether there exists an instance

that satisfies the predicate. For this scenario, the Analyzer did return an instance, indicating that the

communication protocol between the RCM client and the RAM server was successfully simulated.
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(a) Regular RCM and RAM Passes (b) MITM RCM and RAM Passes

Figure 5.5: Alloy Simulation Predicates

To verify whether the protocol is immune from an MITM attack, we introduce an attacker

between a RCM Client and a RAM Server. The attacker makes independent connections with the

RCM Client and the RAM Server respectively, and relays messages between them. In an MITM

attack scenario, message M1 is replaced by two messages, Client2Attacker and Attacker2RAM,

where Client2Attacker is a message from the client to the attacker and Attacker2RAM is a message

from the attacker to the server. Similarly, M4 is replaced by RAM2Attacker and Attacker2Client,

where RAM2Attacker is a message from the server to the attacker and Attacker2Client is a message

from the attacker to the client.

Figure 5.5(b) shows an Alloy predicate that simulates an MITM attack scenario. The Alloy

Analyzer uses the predicate in Figure 5.5(b) to query whether there exists an instance that satisfies

the predicate. For this MITM attack scenario, the Analyzer returned no instance, indicating that

the MITM attack was not successfully simulated under the protocol described in the paper. Thus,

the proposed protocol is immune from an MITM attack.

Figure 5.6: A Partial Alloy Instance for the ScenarioWithAttack Predicate shown in Figure 5.5(b)

In order to test our protocol, we eliminated senderPre.id = idrsPre from
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Attacker2Client. Without this statement, we can no longer verify the identity of the sender. The

attacker can pose as the RAM Server causing the MITM attack to succeed. The Alloy Analyzer in

this case would return an instance (see Figure 5.6) that demonstrates the MITM attack scenario.

The Alloy instance shown in Figure 5.6 consists of five snapshots, each of which is associated

with a server, a client and an attacker. Snapshot0 corresponds to first in the ScenarioWithAttack

predicate, representing the first snapshot in the sequence, Snapshot1 corresponds to second etc.

The first snapshot (Snapshot0) specifies an initial state before the Client2Attacker message has

been sent, the second (Snapshot1) represents the state after the Client2Attacker message has been

sent, the third snapshot (Snapshot2) specifies the state after the Attacker2RAM message has been

sent, the fourth snapshot (Snapshot3) represents a system state after the RAM2Attacker message

has been sent, and the fifth snasphot (Snapshot4) represents a system state after the Attacker2Client

message has been sent. Other attacks such as replay, reflection, etc can also be simulated using the

approach described in the paper. The complete version of the Alloy model of the successful MITM

Attack is shown in Appendix D.

More details on the MITM attack and its fix can be found in [96]. Other attacks such as replay,

reflection, etc can also be simulated using the approach described in the paper. We only provided

the details of the simulation approach on the MITM attack since the MITM attack is one of the

most sophisticated attacks.

5.5 Experimental Evaluation

In this section, we describe an empirical evaluation of our architecture performance. We develop

a proof-of-concept prototype for our architecture enforcing GSTRBAC in an Android mobile ap-

plication. The prototype implements our design in a distributed system with multiple autonomous

virtual servers. Our Android client and servers are written using Java programming language. The

RCM client is implemented as an Android “mobile app” component runs in a user’s cell-phone

[99]. RAM and ACM components are executed in traditional Java server programs.

The primary reasons motivated our choice of using the Google Android software stack to de-

velop our prototype are its free and open source nature. Additionally, Google Android is built on
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the top of a Linux distribution that includes a Java Virtual Machine (JVM) designed to run mobile

devices [99]. Google Android platform has also many features for incorporating a GPS receiver

package into mobile applications code. Android has a powerful Software Development Kit (SDK)

[100] that is easy-to-use in building mobile applications run on a variety of smartphones’ technolo-

gies. The Android SDK provides a debugger, libraries, and a handset emulator that are necessary

to write and test Android platform applications. The Android emulator allows us to simulate mo-

bile applications before actual use. The development environment of our prototype is Eclipse IDE

integrating the Android Development Tools (ADT) plug-in. For the first run of the Android ap-

plication, we utilize the AVD manager in Eclipse to create a new Android device enhanced with a

GPS receiver.

To implement the basic resource usage protocol, we have adopted source code from the Flex-

iProvider Toolkit [101] that has Java based cryptographic modules, including public key, digital

signature, and MD5 message digest. The toolkit applies fast and secure cryptographic algorithms

that are written in Java language. Prior to running the experiment, each entity should have its

private key and stores the public key of the communicated endpoints in a local file. We used the

KeyPairGenerator class to produce a pair of public and private keys for each entity. The public

keys are securely distributed using AES symmetric-key encryption. For the message authentication

code, RCM, RAM, and ACM components employ the MD5 method supported by FlexiProvider.

The relational database is used to represent the application and policy data. This relational

database is realized in the open source database MySQL server [102]. The MySQL server has

two tables, the first table is the application table which stores the users’ login information and the

second table is the policy table that stores GSTRBAC policy rules.

In order to incorporate the location capabilities of Android into our prototype, we used the

LocationManager package [100] to track the current user position and capture the local time at

which the location is retrieved. The LocationManager.requestLocationUpdates method revises the

user’s device’s location every fixed period of time through an enabled location provider GPS. A

class implementing the LocationListener interface handles changes in the device location. The

LocationManager.getLastKnownLocation method in the LocationListener implementer gets the
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last known location object which has the altitude, latitude, and longitude information. When the

Android emulator starts for the first time, it reports the current location Null because there is no

last known location to be obtained. Thus, we used the DDMS view of Eclipse to manually feed

mock location data into the Android emulator. Once the emulator’s GPS device has the dummy

data, the LocationListener implementer is triggered to retrieve the current location. Google Maps

Application Programming Interface (API) is utilized to display the location’s coordinates on the

screen. We then manually record the logical locations in a local file.

The correctness of the mobile application components are tested via the Android emulator and

the test showed that our prototype works as expected. Our Android handset emulator in Figure

5.7 displays the Android app component runs in a user’s mobile. This handset emulator prompts a

user to select his/her role and enters the user’s identifier and password. Once the user enters these

information and hits the connect button, the Android application software retrieves the last known

user location and the local time. Then, it composes an access request package and sends it to one

of the available virtual RAM servers in a secure manner.

Figure 5.7: Android Handset Emulator

In the experiment setup, only one machine is used to measurer the back-end servers’ overhead

for processing access requests. The experiment is performed in one machine in order to eliminate

the network delay from the local computations of the architecture components. Furthermore, the

time needed for the GPS receiver to get the location coordinates from the base station varies from
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milliseconds to double digit minutes, or it might not get the coordinates at all in some blind areas.

However, this is not as a result of our design. The experiment is carried out in a machine with a

Windows 7 platform running on Intel(R) Core(TM) 2 Duo CPU at 2.20 GH with 4.00 GB RAM.

The experiment evaluates the architecture performance on three virtual handset Android emu-

lators, three RAM virtual servers, and three ACM virtual servers. These virtual machines commu-

nicate via traditional sockets. A virtual server running a local centralized MySQL database is also

instantiated on the same machine. The database server is accessible by the RAM and ACM servers

in order to process users’ requests. For each request, the handset emulator opens a new connection

with one of the virtual RAM servers and closes the connection at the time it receives a response.

The RAM server in turn opens a new connection with one of the ACM servers if the user login

information is correct. The RAM server closes the connection when it gets a response from the

endpoint ACM server.

To evaluate different spatio-temporal access scenarios, we have stored the logical locations and

role names in two local files. Thus, for each request, the handset emulator randomly selects a

location name and a role name from these files and sends them along with other information in the

request package. This approach allows us to test whether our application works as anticipated and

validates the policy correctness. We measure the total time needed to issue and send a new access

request until the time a response is received. The response delay is evaluated using 150 requests

sent simultaneously from three Android handset emulators. Each emulator sends 50 requests.

The responses vary based on the information in the request packages. For example, a request is

approved if and only if the login information is correct, the requested role can be authorized, and

the current user’s zone is acceptable. Otherwise, the request is rejected.

Table 5.2: Back-end Average Response Delay

Response Average Delay
0-Approved 73.66 ms
1-Rejected (Improper login data) 29.56 ms
2-Rejected (Improper role) 67.50 ms
3-Rejected (Improper zone) 81.43 ms
Total Average Delay: 63.04 ms

The results in Table 5.2 show the average response delay for each response type as well as the
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total average delay in milliseconds. The overall delay yielded by the basic resource usage protocol

is 63.04 ms. Consequently, implementing our architecture for enforcing GSTRBAC is indeed

viable. The rejected requests due to invalid login information yields 29.56 ms, which is the smallest

response delay because RAM servers send these responses immediately without consultation with

ACM servers. This implies that the design goal of reducing the response time by eliminating

unnecessary steps is fulfilled. Additionally, the prototype demonstrates that there are no bottleneck

points apparently degrading the performance.
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Chapter 6

Conclusions and Future Work

Access control is the most important techniques to ensure the security of systems. There has been a

lot of work done by security researchers in developing flexible and semantically rich access control

models. Currently, the Role Based Access Control Model (RBAC) is the de facto standard. RBAC

supports many features which make it widely accepted and used in various applications. However,

notwithstanding its popularity, RBAC has been found lacking in many applications as they keep

emerging with the growing utilization of wireless networks and mobile devices.

Such applications necessitate sophisticated authorization models where access to a resource

depends on the credentials of the user and also on the location and time of access. Consequently,

researchers have extended the traditional access control RBAC to provide spatio-temporal access

control. Unfortunately, we found in this work that there are some types of mobile applications

requirements that are not completely satisfied by any of the proposed RBAC extensions. These

models either lack the specification flexibility or cannot be used to specify some novel requirements

that are presented in this dissertation. Therefore, the development of new access control models are

required to secure access in the mobile applications such as to those presented in this dissertation.

Mere development of RBAC models does not guarantee the safety of systems. A potential flaw

in the policy specification results in inconsistent state or erratic system behavior. The verification

and validation of underlying access control policies have been performed informally by manual

inspection or formally by applying formal analysis techniques. The informal verification technique

requires the involvement of human and as a result the manual inspection is tedious and prone to

ambiguity. Researchers have advocated the use of formal analysis techniques for analyzing RBAC

such as the one in [87].

Towards this end, researchers have proposed different security analysis methods to ensure the

consistency of the access control specification and it is free from ambiguities. Among these meth-

ods, researchers have advocated the use of existing formal specification languages. Each of these
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studies exhibits some shortcomings and advantages. This work investigated the current approaches

based on some properties in mobile applications that must be rigorously checked to prevent secu-

rity beaches. This research emphasised that the current formal models are only relevant for ver-

ifying particular category of RBAC models, and they are insufficient for verifying some features

interactions in presence of spatio-temporal conditions with role hierarchy and separation of duties.

Furthermore, most of the existing verification methods verifies a limited number of security con-

straints due to the state-space limitation, and also they cannot be used to check complex temporal

properties in the existence of location constraints. As a result, researchers need to propose analysis

techniques that reduce the state-space size and thereby increase the versification time.

Furthermore, in this research we argued that an architecture model for implementing new ac-

cess control models is needed to naturally investigate the practical viability of these models and

analyze the system requirements to adopt such policy models. However, we found that a very lim-

ited studies have considered the real-world implementation issues of RBAC. A major issue is that

the proposed extensions of RBAC look very complex to use. For example, the implication in terms

of configuring a system based on this approach is mostly left over.

Furthermore, we do not know the cost of keeping it up to date and the impact on other exist-

ing access control solutions. We should also be able to predict that does a system require major

changes in order to apply newly developed models. The developer of new models need to provide

more evidence about the value provided by their models: a case study and trial should have been

carried out in a real-world scenario. This is actually a key step that should have been done along the

introduction of new models to assess the proposed approach against real-world constraints. Hav-

ing, a full prototype being implemented provides more information about how an access control

model is integrated with real applications/services to provide the required level of access control.

Broadly speaking, the primary focus of this dissertation is to provide an access control frame-

work for mobile applications that is motivated by the aforementioned issues of the existing access

control solutions. We have introduced a consolidated access control model which improves upon

the expressiveness of the existing models and flexibly supports various mobile applications re-

quirements. For conflict detection and correction in a security policy, we have also developed an

191



automated analysis approaches which can religiously perform qualitative and quantitative analy-

sis of many spatio-temporal properties. Furthermore, we have defined an architecture model for

designing a system enforcing our model in either a centralized or a distributed system.

In Section 6.1 we disuses the contributions of this dissertation in some more details and outline

some pointers of future research works in Section 6.2.

6.1 Summary of the Contributions

In Chapter 3 we proposed a generalized spatio-temporal RBAC model (GSTRBAC) that incorpo-

rates spatio-temporal components to all RBAC entities and relationships. We introduced a formal

representation of (physical and logical) locations, time, and their combination, which we called a

spatio-temporal zone (STZone). The notion of STZone is an abstraction to express in a compact

and natural way time- and location-based policies. This avoids some of the problems in previous

extensions of RBAC where location and time information were handled separately. Using the zone

concept, the number of entities was reduced, the model was easy to be customized, many secu-

rity properties were controlled flexibly, and the model has a great potential to be integrated with

various applications. With different types of zones, multi-dimensional security requirements were

easily expressed with no need for employing different models or altering the formal semantic of

the model.

We defined how the standard components of the RBAC model are parametrized by the notion

of STZone in order to build the GSTRBAC model. The proposed model supports many important

security features and it expressively defines granular mobile applications polices. In addition to

traditional role hierarchy and SoD constraints, we showed that the model flexibly specifies different

forms of pre-requisite, post-requisite, and triggers. The model is formalized in UML with OCL

constraints. and it has been demonstrated by the specification of a policy in a military context.

Furthermore, the extended version of GSTRBAC model is formalized by first-order logic and we

demonstrated how the extended model can be adapted to the complicated real-world healthcare

application DDSS. Following our model, a security designer simply defines a set of zones where

each model entity is accessible. Consequently, the access decision is contingent upon evaluating
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the STZone associated with a user making an access request and the STZones associated with the

requested entity that define where and when the entity is available.

This model addresses new and challenging problems raised by today’s internet environment

with widely-used mobile devices. In particular, it copes with the challenges posed by mobile

applications in which policies crucially depend on location and time. The model should have a

limited complexity when adding new coordinates for location and time information. Unlike other

works, this work introduced the novel ”STZone” to model such additional information. Such de-

sign achieves the required complexity and functionality at the same time. Additionally, the mobile

environment policies could change also very dynamically. Thus such a well-designed model should

be able to handle dynamic policy changes in a clean and efficient way. We naturally showed that

the design of the ”STZone” structure fully focuses on such requirements and handles the problem

well in many of access control scenarios.

When considering location and time as additional supporting factor, the real-time access val-

idation, such as on a per-request, post-requisite, and triggers levels, becomes more sensitive, and

efficiency is also critical. We demonstrated that the ”STZone” is designed to be associated with not

only roles, but also permissions and objects. Such design decision supports the real-time access

validation and improves the efficiency of such validation, especially on such levels. Furthermore,

we have presented some real-world mobile applications in which our access model was able to

achieve the required validation efficiency, at different levels, for multiple requests from a moving

user.

GSTRBAC model has many features that may interact with each other causing conflicts, incon-

sistencies, and security breaches. Additionally, constraints could be specified stronger than needed

resulting in some roles, permissions, or objects being inaccessible. Consequently, it is important to

analyze GSTRBAC policies before applying them. As such, in Chapter 3 and 4, we have developed

two novel analysis approaches of spatio-temporal policies specified by our proposed model.

We first proposed an automated verification approach based on the USE constraint solver tool.

A user can manually create some model instances and then verifying their correctness against the

class diagram model. This approach also supports the automatic generation of instances that rep-
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resent some policy changes performed by administrative or user actions. When the policy instance

does not conform to the GSTRBAC class diagram or it violates some property, the tool promptly

shows how the property has been violated. Specifically, it illustrates the relevant entities and the

relationships and how their interactions have caused for the property violation. For example, if

the security designer finds that some pre-requisite constraint has been violated via an assignment

operation, he can either change the pre-requisite relation or change the constraint depending on

the application requirement. To illustrate how our verification approach is used, we presented an

example illustrating how the USE tool can be exploited to investigate some scenarios of an access

control policy in a military application.

In the second analysis approach, we provided an approach for checking strict temporal con-

straints like duration, liveness, execution time, and bounded response time constraints while con-

sidering mobility. We explained how access control policies was translated to a timed-automata

model, and a set of security properties were feasibly specified in TCTL queries, and UPPAAL tool-

box was used to check whether the timed-automata model satisfies those properties. This approach

was seen capable to check strict temporal constraints and interactions between different features in

the DDSS system. A number of algorithms with their computation complexity for mapping appli-

cations’ polices to corresponding timed-automata were also presented. To get an efficient analysis

result, a number of techniques for eliminating the state-space explosion problem were provided

based on eliminating entities from the model which have no impact on the property of our interest.

In Chapter 5 we introduced an enforcement mechanism of our spatio-temporal RBAC model

in mobile applications, to demonstrate that our model is viable in real-world applications. We

proposed a platform-independent architecture for a mobile system enforcing our spatio-temporal

model. We made the design decision of separating policy from the point of use in order to inte-

grate our design in many applications. We developed a number of protocols that consider spatio-

temporal information for initiating and maintaining access under different circumstances.

The proposed access control protocols might be subject to security breaches. Towards this

end, we developed threat models and discussed the safeguard techniques that we take to protect

against some important threats to our design. We also formally analyzed our protocols using Alloy
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to provide assurance that they are indeed free from attacks. Our analysis approach is capable

of expressing complex structural constraints and behavior of our protocol. It is supported by an

automated constraint solver Alloy Analyzer that searches instances of the protocol model to check

for satisfaction of system properties. We provided Alloy code that illustrates how to model some

protocol attacks and rigorously verify them.

It is not sufficient to propose an architecture and a set of protocols for accessing resources. In

order to completely demonstrate the feasibility of our approach, we developed a proof-of-concept

prototype and showed how spatio-temporal policies can be implemented for a mobile application.

We described the implementation details. We also conducted some experiments that give the delays

incurred for performing authorization checks using our model. The overall results indicated that

the proposed architecture model is feasible to adopt in either centralized or distributed systems.

6.2 Future Research Work

The work presented in this dissertation has a great potential to be extended a long many dimensions.

The following outlines some promising directions of future works in the context of proposing new

models and analysis approaches.

In the first context of defining novel models to cope with the growing access control require-

ments, we plan the following model extensions. The models discussed in Chapter 3 and 4 define

a police in an off-line manner and a system executes the police at run time. That is, the STZone

constraints are defined in the policy are static in nature, they do not change during the execution of

the model. We plan to develop an adoptive model that supports the dynamic nature of mobile ap-

plications. The extended model should consider the effect of the dynamic association of STZones

with RBAC components at the model run time. It proposes some mechanisms of a run time gen-

eration of the authorization STZones. We refer of such type of access control models to models at

run time.

Workflow is a fast evolving technology that is recently deployed by many mobile applications.

Workflow enables the automatic execution of a business process by an information system usually

referred to a Workflow Management System (WfMS) [103]. Each business process in a workflow
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is a set of activities (or tasks) that are performed by multiple collaborating actors (human or ma-

chine agents) to outcome a particular product. A workflow defines two main aspects of a business

process: the control flow and the authorization rules. The control flow defines the dependencies

between the business process tasks that are typically executed in a particular order in a workflow.

Authorization rules controls the execution of tasks by legitimate actors to ensure the data security

in a workflow. These rules may also define the separation of duties between tasks to prevent frauds

and errors. Therefore, an access control model must be provided to formally define the autho-

rization rules of a workflow [104]. It should define the assignment of tasks to roles/users and the

association of permissions with tasks.

We plan to define a mobile business process that refers to a set of tasks that are performed

by nomadic devices (e.g., smartphone). A typical example of mobile business process is the mo-

bile DDSS system. The primary security requirement in such system is that users are allowed to

perform tasks on-site and at certain time intervals. For example, a vector control team receives a

request to perform a spry task for some infected houses, a team member reads the request details

from their handheld devices, then makes a journey to patients’ premisses and collects the data in

electronic format and sends it to the main office via a mobile device. We refer to these activities

by mobile activities. As such, the next phase of the work is to develop a spatio-temporal access

control model for business processes performed with mobile computers. We would like to extend

our spatio-temporal access control model for workflows which consists of a set of tasks that are

coordinated by control-flow, data-flow and dependencies. It would be interesting to see how these

various dependencies interact with the spatio-temporal constraints of the workflow.

Another extension is to develop an access control model for cross-domain interoperability sys-

tems operating in insecure environments. An example of such inter-policy systems is an access

control model for Web-services. Web Services are coupled applications that communicate in order

to provide services to users. Such applications are more dynamic and distributed in comparison

with traditional client-server applications. In such systems users are service requesters access a

web service system to get local and global services. The local services do not involve services

from other system providers since a system completes its tasks locally. For global services, a sys-
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tem collaborates with other providers in order to fulfil the requited services. The global services

might be composited from local and global services from other system provider too. Therefore, the

services in such system must be uniquely identified to be either local services or global services.

For example, different service providers exchange messages to make the booking of a plain, hotel,

and car for a user trip. Access control for interoperable systems are considerably complex due to

dynamic, distributed, and heterogeneous nature of systems. The challenge in this kind of systems

is to develop an effective access control model that deals with such aspects. Contextual informa-

tion such as time and location conditions, especially for mobile applications, must be incorporated

into the access control model to authorize an access. Additionally, the dynamic change of context

information should be captured by the access control model while users on-the-move. We believe

that our model can be extended to serve these objectives.

Delegation of access rights is one of the most important aspect of access control that our model,

at the current state, does not support. The delegation of authorities is a business rule related to the

access control policies for many organizations. A delegation operation allows an entity to pass all

or part of its privileges to another entity under certain conditions defined by organizations’ policies.

The entity that transfers rights is often referred to as a delegator, and the entity that use that rights

is called the delegatee. In many organizations, a delegations is needed in the situations like backup

of a job function, decentralization of authorities, and collaboration of work. The first and third

business rules require a temporary delegation while the second rule needs a durable delegation.

An access control model is needed to cover these requirements in which delegation can only take

place in a secure manner. In mobile applications such as ones presented in this dissertation, the

delegation must depend on the spatio-temporal information. In many situations the transfer of

rights happens for a short period of time to perform a task in a specific place. For example, a

physician may transfer part of his privileges to a nurse for a given period of time and in a particular

ward, when he is in an emergency. We plan to extend our model to incorporate delegations in

mobile applications. In such model, the delegation of authorization is contingent based on the

STZones conditions associated the model entities. Furthermore, our delegation model should deal

with complex delegation operations through multi-level of role hierarchies and separation of duties
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in presence of spatio-temporal constraints.

We also plan to provide a more flexible spatio-temporal access control that is able to make

authorization decisions in the presence of uncertainty, which is possible if the user’s location cannot

be accurately determined. For example, we considered in our model that the locations of objects

are captured at any single point in time line. For continuously moving objects, such as users who

are riding a train or boarding a plain, we should extend the definition of the location information

in our model to support such requirement. We also plan to extend our model that is not only

traditionally provides a yes/no answer to an access decision, it might ask for some actions to be

taken in order to allow an access. In addition, this new model may also partially disable some

access rights when a user moves to an unauthorized zone as an alternative of entirely disabling the

user access. Penalties in case of violating a policy, such as repeatability moving to invalid zones

after access, are another scheme that would be useful to incorporate into our prospective model.

Last, but not least, our future work in this aspect also includes deploying our model for a real-world

healthcare dengue decision support system (DDSS). This will allows one to naturally reason about

the scalability in terms of the number of entities and relationships.

In the second context of developing rigours analysis approaches, we plan to introduce the

following extension of our approaches. A short term of a research direction is to extend the

UML/OCL analysis approach in Chapter 3 to verify temporal properties. In our approach, a UML

model specifying an access control policy is analyzed against a set of temporal properties ex-

pressed in object-oriented temporal logic. We would like to check temporal properties such as

something happens in the next step, always happen, eventually will happen, and always true until

something else happens in the future. We intend to express such temporal properties in temporal

OCL (TOCL), which is a temporal logic extension to OCL [105]. From a high-level perspective,

it takes an access control policies specified by UML class diagram and a temporal property, then it

checks if there is a scenario supported by the class diagram violating that property. This analysis

approach should meet these objectives: it allows the validation of behavioral and temporal proper-

ties without the need of transformation, it is lightweight and henceforth cost-effective since it does

not have sophisticated notations or require mathematical maturity, and temporal properties in our
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access control model should be specified in a form that is amenable to analyze.

Access control is an important mechanism to ensure the data security in workflow systems.

An access control model handles the assignment of tasks and roles and defines SoD conflicts be-

tween tasks and roles. Particularly, in mobile application domain, workflow management systems

are influenced by location and time information making them very sensitive to use. An analy-

sis approach of such model is needed to uncover any violations at model and application levels.

As such, another direction of work is developing a verification approach for spatio-temporal work-

flows. This analysis approach aims to uncover conflicts between tasks, improper execution of tasks

by unauthorized users, violation of dependencies, deadlocks, etc, in the context of spatio-temporal

domain. Deadlocks may take place in a workflow in case no participant is available to perform a

task while some tasks are waiting the completion of that task at the first place. This problem arises

due to an error in the workflow specification. In our workflow model, a user access to tasks is

controlled by the GSTRBAC model. That is, tasks are associated with STZones that defines where

and when a user can perform those tasks. We are interesting in the use of the CPN language for

modeling the tasks and control flows dependencies, and employ appropriate toolbox to analyze the

correct execution of the workflow model with regard to spatio-temporal constraints.
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Appendix A

USE Specification of The UML/OCL GSTR-
BAC Model

model GSTRBAC
--***************************Classes ****************
-- classes

class User
attributes

name : String
operations
assignRole(r: Role, z:STZone): UserRoleAssignment
deassignRole(r:Role, z:STZone)
activateRole(r:Role, z:STZone): UserRoleActivation
deactivateRole(r:Role,z:STZone)
getAssignedRoles(z:STZone): Set(Role)=
self.relations->select(r |
r.oclIsTypeOf(UserRoleAssignment)and r.zone=z)->
collect( r| r.role)->asSet()
getActivatedRoles(z:STZone): Set(Role)=
self.relations->select(r |
r.oclIsTypeOf(UserRoleActivation)and r.zone=z)->
collect( r| r.role)->asSet()
getAuthorizedRoles(z:STZone):
Set(Role)= self.getAssignedRoles(z)->
union(self.getAssignedRoles(z)->collect(r|
r.getAllAHInheritedRoles(z))->asSet())
checkAccess(o:Object,a:Activity,z:STZone):Boolean =
getActivatedRoles(z)->collect( r |
r.getAuthorizedPermissions(z))->
asSet()->exists( p | p.object=o and p.activity=a)
end

class STZone
end

class Role
operations
addAHJuniorRole(r:Role,z:STZone): A_Hierarchy

deleteAHJuniorRole(r:Role,z:STZone)
addIHJuniorRole(r:Role,z:STZone): I_Hierarchy
deleteIHJuniorRole(r:Role,z:STZone)
addSSoDRole(r:Role,z:STZone): RSSOD
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deleteSSoDRole(r:Role,z:STZone)
addDSoDRole(r:Role,z:STZone): DSOD
deleteDSoDRole(r:Role,z:STZone)
assignPermission(p:Permission,z:STZone): PermissionAssignment
deassignPermission(p:Permission,z:STZone)
getSSoDRoles(z:STZone): Set(Role)= self.sod->select( s |
s.zone=z and s.oclIsTypeOf(RSSOD))->collect(s |
s.getInvolvedRoles())->union(self.SOD->select( s |
s.zone=z and s.oclIsTypeOf(RSSOD))->collect(s |
s.getInvolvedRoles()))->excluding(self)->asSet()

getDSoDRoles(z:STZone): Set(Role)= self.sod->select( s |
s.zone=z and s.oclIsTypeOf(DSOD))->collect(s |
s.getInvolvedRoles())->union(self.SOD->select( s |
s.zone=z and s.oclIsTypeOf(DSOD))->collect(s |
s.getInvolvedRoles()))->excluding(self)->asSet()
getJuniorRoles(z:STZone): Set(Role) = RoleHierarchy.allInstances->
select(h| h.seniorRole=self and h.zone=z)->
collect( rh | rh.juniorRole)->asSet()
getAHJuniorRoles(z:STZone): Set(Role)=
A_Hierarchy.allInstances->select(ah |
ah.seniorRole=self and ah.zone=z)->
collect(ah1 | ah1.juniorRole)->asSet()
getIHJuniorRoles(z:STZone): Set(Role)=
I_Hierarchy.allInstances->select(ah |
ah.seniorRole=self and ah.zone=z)->
collect(ah1 | ah1.juniorRole)->asSet()
getPrerequisiteRoles(): Set(Role) =
self.prerequisiteRole->asSet()
inherits(r:Role,z:STZone): Boolean = if
(self.getJuniorRoles(z)->includes(r))
then true else self.getJuniorRoles(z)->
exists(j | j.inherits(r,z))endif

inheritsAH(r:Role,z:STZone): Boolean = if
(self.getAHJuniorRoles(z)->includes(r))
then true else self.getAHJuniorRoles(z)->
exists(j | j.inheritsAH(r,z))endif

inheritsIH(r:Role,z:STZone): Boolean = if
(self.getIHJuniorRoles(z)->includes(r))
then true else self.getIHJuniorRoles(z)->
exists(j | j.inheritsIH(r,z))endif

getAllAHInheritedRoles(z:STZone):
Set(Role)= Role.allInstances->
select(r | self.inheritsAH(r,z))->asSet()

getAllIHInheritedRoles(z:STZone): Set(Role)=
Role.allInstances->select(r | self.inheritsIH(r,z))->asSet()

getAssignedPermissions(z:STZone): Set(Permission)=
self.permAssig->select( pa| pa.zone=z )->
collect( pa1| pa1.permission)->asSet()

getAuthorizedPermissions(z:STZone): Set(Permission)=
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self.getAssignedPermissions(z)->
union(self.getAllIHInheritedRoles(z)->collect(r |
r.getAssignedPermissions(z)))->asSet()

end

class Permission
operations

addSoDPermission(p:Permission,z:STZone): PSSOD
deleteSoDPermission(p:Permission,z:STZone)
getSoDPermissions(z:STZone): Set(Permission)=
self.pssod->select( s | s.zone=z)->collect(s |
s.getInvolvedPermissions())->union(self.PSSOD->
select(s | s.zone=z)->collect(s |
s.getInvolvedPermissions()))->excluding(self)->asSet()
getPrerequisitePermissions(): Set(Permission) =
self.prerequisitePermission->asSet()

end

class Object
end

class Activity
end

class Location
end

class TimeInterval
end

abstract class UserRoleRlation
end

class UserRoleAssignment < UserRoleRlation
end

class UserRoleActivation < UserRoleRlation
end

abstract class RoleHierarchy
end

class A_Hierarchy < RoleHierarchy
end

class I_Hierarchy < RoleHierarchy
end

abstract class SOD
operations
getInvolvedRoles(): Set(Role) =
self.firstRole->including(self.secondRole)

end
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class RSSOD < SOD
end

class DSOD < SOD
end

class PermissionAssignment
end

class PSSOD
operations

getInvolvedPermissions(): Set(Permission) =
self.firstPermission->including(self.secondPermission)

end

--************************Associations *************
-- associations

association URRUser between
User[1] role user
UserRoleRlation[*] role relations

end

association URRRole between
Role[1] role role
UserRoleRlation[*] role relations

end

association URRZone between
STZone[1] role zone
UserRoleRlation[*] role relations

end

aggregation ZoneLocation between
STZone [1..*] role include
Location [1] role location

end

aggregation ZoneTimeInterval between
STZone [1..*] role include
TimeInterval [1] role interval

end

association UserZone between
User [*] role users
STZone [1..*] role currentzones

end

association RoleZone between
Role [1..*] role roles
STZone [1..*] role allowedzones
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end

association PermissionZone between
Permission [1..*] role permissions
STZone [1..*] role zones

end

association ObjectZone between
Object [*] role objects
STZone [1..*] role zones

end

aggregation PermissionObject between
Permission[*] role permission
Object[1] role object

end

aggregation PermissionActivity between
Permission[*] role permission
Activity[1] role activity

end

association RolePermZone between
PermissionAssignment [*] role permAssig
STZone[1] role zone

end

association SODZone between
SOD [*] role sod
STZone[1] role zone

end

association PSSODZone between
PSSOD [*] role pssod
STZone [1] role zone

end

association RHZone between
RoleHierarchy [*] role rh
STZone[1] role zone

end

association RH1Role between
Role [1] role juniorRole
RoleHierarchy[*] role RH

end

association RH2Role between
Role [1] role seniorRole
RoleHierarchy[*] role rh

end

association SOD1Role between
Role[1] role firstRole
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SOD[*] role sod
end

association SOD2Role between
Role[1] role secondRole
SOD[*] role SOD

end

association PSSOD1Permission between
Permission [1] role firstPermission
PSSOD [*] role pssod

end

association PSSOD2Permission between
Permission [1] role secondPermission
PSSOD [*] role PSSOD

end

association PerAssToRole between
Role[1] role role
PermissionAssignment[*] role permAssig

end

association PerAssiToPermission between
Permission[1] role permission
PermissionAssignment[*] role PermAssig

end

association PrerequisiteRole between
Role[*] role prerequisiteRole
Role[*] role requistorRole

end

association PrerequisitePermission between
Permission[*] role prerequisitePermission
Permission[*] role requistorPermission

end

--*************Constraints and Invariants********

constraints

context RSSOD
inv SSOD_Constraint: not UserRoleAssignment.allInstances->
exists(ura1,ura2 | ura1.user=ura2.user and
ura1.role=self.firstRole and ura2.role=secondRole and
ura1.zone=self.zone and ura2.zone=self.zone)

context User
inv SSOD_With_RH_Constraint: STZone.allInstances->
forAll( z | not self.getAuthorizedRoles(z)->
exists(r1,r2 | r1.getSSoDRoles(z)->includes(r2)))

context User
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inv Activation_Constraint_with_RH: self.currentzones->
forAll(z| self.getAuthorizedRoles(z)->
includesAll(self.getActivatedRoles(z)))

context Role
inv Permission_Inheritance_Constraint1:
STZone.allInstances->forAll(z |
self.getAuthorizedPermissions(z)->
includesAll(self.getAllIHInheritedRoles(z)->
collect(r | r.getAssignedPermissions(z))->asSet()))
inv Permission_Inheritance_Constraint2:
STZone.allInstances->forAll(z |
self.getAllIHInheritedRoles(z)->forAll( r |
r.getAssignedPermissions(z)->
intersection(self.getAuthorizedPermissions(z))=
r.getAssignedPermissions(z)))

context User
inv Activation_Constraint: self.currentzones->
forAll(z| self.getAssignedRoles(z)->
includesAll(self.getActivatedRoles(z)))

context Role
inv Hierarchy_Cycle_Constraint: not STZone.allInstances->
exists(z| self.inherits(self,z))

context DSOD
inv DSOD_Constraint1: not UserRoleActivation.allInstances->
exists(ura1,ura2 | ura1.user=ura2.user and
ura1.role=self.firstRole and ura2.role=secondRole
and ura1.zone=self.zone and ura2.zone=self.zone)

context User
inv DSOD_Constaint2: STZone.allInstances->
forAll( z | not self.getActivatedRoles(z)->
exists(r1,r2 | r1.getDSoDRoles(z)->includes(r2)))

context PSSOD
inv PSOD_Constraint1: not PermissionAssignment.allInstances->
exists(pa1,pa2 | pa1.role=pa2.role and
pa1.permission=self.firstPermission and
pa2.permission=self.secondPermission and
pa1.zone=self.zone and pa2.zone=self.zone)

context Role
inv PSOD_RH_Constaint: STZone.allInstances->
forAll( z | not self.getAuthorizedPermissions(z)->
exists(p1,p2 | p1.getSoDPermissions(z)->includes(p2)))

context User
inv Prerequist_URAssign: STZone.allInstances->
forAll(z | Role.allInstances->forAll(r1 |
(self.getAssignedRoles(z)->includes(r1))
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implies (self.getAssignedRoles(z)->
includesAll(r1.getPrerequisiteRoles()))))

context User
inv Prerequist_URActiv: STZone.allInstances->
forAll(z | Role.allInstances->forAll(r1 |
(self.getActivatedRoles(z)->includes(r1)) implies
(self.getActivatedRoles(z)->
includesAll(r1.getPrerequisiteRoles()))))

--****Operations Specifications***********

--***********User Operations***********

context User::assignRole(r: Role, z:STZone):
UserRoleAssignment

pre assignRolePreCond1_definedObjects:
r.isDefined and z.isDefined
pre assignRolePreCond2_ZoneIncluded:
self.currentzones->includes(z) and
r.allowedzones->includes(z)

pre assignRolePreCond3_RoleNotAssigned:
self.getAssignedRoles(z)->excludes(r)
pre assignRolePreCond4_RoleNotSSoD:
self.getAssignedRoles(z)->collect(r |
r.getSSoDRoles(z))->excludes(r)
post AssignSTRolePostCond1_NewUserRoleRelation:
(self.relations - self.relations@pre)->size()=1

post AssignSTRolePostCond2_NewRoleAssignment:
(self.relations - self.relations@pre)->
forAll( rl | rl.oclIsNew() and
rl.oclIsTypeOf(UserRoleAssignment) and rl.zone=z
and rl.role->includes(r))
post AssignSTRolePostCond3_RoleIsAssigned:
self.getAssignedRoles(z)->includes(r)

context User::deassignRole(r:Role, z:STZone)
pre deassignRolePreCond1_RoleIsAssigned:
self.getAssignedRoles(z)->includes(r)
post deassignRolePostCond1_RoleDeassigned:
self.getAssignedRoles(z)->excludes(r)
post deassignRolePostCond2_RoleAssignmentObjectDeleted:
(self.relations@pre - self.relations)->size()=1 and
(UserRoleAssignment.allInstances@pre -
UserRoleAssignment.allInstances)->size()=1

context User::activateRole(r: Role, z:STZone): UserRoleActivation
pre activateRolePreCond1_denfinedObject:
r.isDefined and z.isDefined

pre activateRolePreCond2_ZoneIncluded:
self.currentzones->includes(z) and r.allowedzones->includes(z)

pre activateRolePreCond3_RoleNot:
self.getActivatedRoles(z)->excludes(r)
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pre activateRolePreCond4_RoleIsAssigned:
getAssignedRoles(z)->includes(r)
post activateRolePostCond1_NewUserRoleRelation:
(self.relations - self.relations@pre)->size()=1
post activateRolePostCond2_NewRoleActivation:
(self.relations - self.relations@pre)->
forAll( rl | rl.oclIsNew() and rl.oclIsTypeOf(UserRoleActivation)
and rl.zone=z and rl.role->includes(r))
post activateRolePostCond3_RoleIsAssigned:
self.getActivatedRoles(z)->includes(r)

context User::deactivateRole(r:Role,z:STZone)
pre deactivateRolePreCond1_RoleIsActivated:
self.getActivatedRoles(z)->includes(r)
post deactivateRolePostCond1_RoleDeactivated:
self.getActivatedRoles(z)->excludes(z)
post deactivateRolePostCond2_RoleActivationDeleted:
(self.relations@pre - self.relations)->size()=1 and
(UserRoleActivation.allInstances@pre -
UserRoleActivation.allInstances)->size()=1

--***********Role Operations***********

context Role::addAHJuniorRole(r:Role,z:STZone): A_Hierarchy
pre addAHJuniorRolePreCond1_definedObjects:
r.isDefined and z.isDefined
pre addAHJuniorRolePreCond2_ZoneIncluded:
self.allowedzones->includes(z) and
r.allowedzones->includes(z)
pre addAHJuniorRolePreCond3_NotAHJuniorRole:
getAHJuniorRoles(z)->excludes(r)
post addAhJuniorRolePostCond1_NewRoleHierarchy:
(self.rh - self.rh@pre)->size()=1 and
(self.RH - self.RH@pre)->size()=1
post addAhJuniorRolePostCond2_NewRoleA_Hierarchy:
(self.rh - self.rh@pre)->forAll( rh | rh.oclIsNew()
and rh.oclIsTypeOf(A_Hierarchy) and rh.zone=z
and rh.juniorRole=r and rh.seniorRole=self)
post addAhJuniorRolePostCond3_RoleIsAdded:
self.getAHJuniorRoles(z)->includes(r)

context Role::deleteAHJuniorRole(r:Role, z:STZone)
pre deleteAHJuniorRolePreCond1_RoleIsJuniorRole:
self.getAHJuniorRoles(z)->includes(r)
post deleteAHJuniorRolePostCond1_RoleDeleated:
self.getAHJuniorRoles(z)->excludes(r)
post deleteAHJuniorRolePostCond2_AHierarchyObjectDeleted:
(self.rh@pre - self.rh)->size()=1 and
(self.RH@pre - self.RH)->size()=1 and
(A_Hierarchy.allInstances@pre - A_Hierarchy.allInstances)->size()=1

context Role::addIHJuniorRole(r:Role,z:STZone): I_Hierarchy
pre addIHJuniorRolePreCond1_definedObjects:
r.isDefined and z.isDefined
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pre addIHJuniorRolePreCond2_ZoneIncluded:
self.allowedzones->includes(z) and r.allowedzones->includes(z)
pre addIHJuniorRolePreCond3_NotIHJuniorRole:
getIHJuniorRoles(z)->excludes(r)
post addIHJuniorRolePostCond1_NewRoleHierarchy:
(self.rh - self.rh@pre)->size()=1 and
(self.RH - self.RH@pre)->size()=1
post addIHJuniorRolePostCond2_NewRoleI_Hierarchy:
(self.rh - self.rh@pre)->forAll( rh | rh.oclIsNew()
and rh.oclIsTypeOf(I_Hierarchy) and rh.zone=z
and rh.juniorRole=r and rh.seniorRole=self)
post addIHJuniorRolePostCond3_RoleIsAdded:
self.getIHJuniorRoles(z)->includes(r)

context Role::deleteIHJuniorRole(r:Role, z:STZone)
pre deleteIHJuniorRolePreCond1_RoleIsJuniorRole:
self.getIHJuniorRoles(z)->includes(r)
post deleteIHJuniorRolePostCond1_RoleDeleated:
self.getIHJuniorRoles(z)->excludes(r)
post deleteIHJuniorRolePostCond2_IHierarchyObjectDeleted:
(self.rh@pre - self.rh)->size()=1 and
(self.RH@pre - self.RH)->size()=1 and
(I_Hierarchy.allInstances@pre - I_Hierarchy.allInstances)->size()=1

context Role::addSSoDRole(r:Role,z:STZone): RSSOD
pre addSSoDRolePreCond1_definedObjects:
r.isDefined and z.isDefined
pre addSSoDRolePreCond2_ZoneIncluded:
self.allowedzones->includes(z) and r.allowedzones->includes(z)
pre addSSoDRolePreCond3_NotSSODRole: getSSoDRoles(z)->excludes(r)
post addSSoDRoleRolePostCond1_NewSOD:
(self.sod - self.sod@pre)->size()=1 and
(self.SOD - self.SOD@pre)->size()=1
post addSSoDRoleRolePostCond2_NewSSOD:
(self.sod - self.sod@pre)->forAll( sod | sod.oclIsNew()
and sod.oclIsTypeOf(RSSOD) and sod.zone=z
and sod.firstRole=r and sod.secondRole=self)
post addSSoDRoleRolePostCond3_RoleIsAdded:
self.getSSoDRoles(z)->includes(r)

context Role::deleteSSoDRole(r:Role,z:STZone)
pre deleteSSoDRolePreCond1_RoleIsSSoDRole:
self.getSSoDRoles(z)->includes(r)
post deleteSSoDRolePostCond1_RoleDeleated:
self.getSSoDRoles(z)->excludes(r)
post deleteSSoDRolePostCond2_SSODObjectDeleted:
(self.sod@pre - self.sod)->size()=1 and
(self.SOD@pre - self.SOD)->size()=1 and
(RSSOD.allInstances@pre - RSSOD.allInstances)->size()=1

context Role::addDSoDRole(r:Role,z:STZone): DSOD
pre addDSoDRolePreCond1_definedObjects:
r.isDefined and z.isDefined
pre addDSoDRolePreCond2_ZoneIncluded:
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self.allowedzones->includes(z) and
r.allowedzones->includes(z)
pre addDSoDRolePreCond3_NotDSODRole:
getDSoDRoles(z)->excludes(r)
post addDSoDRoleRolePostCond1_NewSOD:
(self.sod - self.sod@pre)->size()=1 and
(self.SOD - self.SOD@pre)->size()=1
post addDSoDRoleRolePostCond2_NewDSOD:
(self.sod - self.sod@pre)->forAll( sod |
sod.oclIsNew() and sod.oclIsTypeOf(DSOD)
and sod.zone=z and sod.firstRole=r and
sod.secondRole=self)
post addDSoDRoleRolePostCond3_RoleIsAdded:
self.getDSoDRoles(z)->includes(r)

context Role::deleteDSoDRole(r:Role,z:STZone)
pre deleteDSoDRolePreCond1_RoleIsSSoDRole:
self.getDSoDRoles(z)->includes(r)
post deleteDSoDRolePostCond1_RoleDeleated:
self.getDSoDRoles(z)->excludes(r)
post deleteDSoDRolePostCond2_DSODObjectDeleted:
(self.sod@pre - self.sod)->size()=1 and
(self.SOD@pre - self.SOD)->size()=1 and
(DSOD.allInstances@pre - DSOD.allInstances)->size()=1

context Role::assignPermission(p:Permission,z:STZone):
PermissionAssignment
pre assignPermissionPreCond1_definedObjects:
p.isDefined and z.isDefined
pre assignPermissionCond2_ZoneIncluded:
p.zones->includes(z) and self.allowedzones->includes(z)
pre assignPermissionPreCond3_PermissionNotAssigned:
self.getAssignedPermissions(z)->excludes(p)
pre assignPermissionPreCond4_PermissionNotSSoD:
self.getAssignedPermissions(z)->collect(per |
per.getSoDPermissions(z))->excludes(p)
post assignPermissionPostCond1_NewPermissionAssignment:
(self.permAssig - self.permAssig@pre)->size()=1
post assignPermissionPostCond2_NewRoleAssignment:
(self.permAssig - self.permAssig@pre)->forAll( pa |
pa.oclIsNew() and pa.zone=z and pa.permission->includes(p))
post assignPermissionPostCond3_PermissionIsAssigned:
self.getAssignedPermissions(z)->includes(p)

context Role::deassignPermission(p:Permission,z:STZone)
pre deassignPermissionPreCond1_PermissionIsAssigned:
self.getAssignedPermissions(z)->includes(p)
post deassignPermissionPostCond1_PermissionDeassigned:
self.getAssignedPermissions(z)->excludes(p)
post deassignPermissionPostCond2_PermissionAssignmentObjectDeleted:
(self.permAssig@pre - self.permAssig)->size()=1
and (PermissionAssignment.allInstances@pre -
PermissionAssignment.allInstances)->size()=1
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--****Permission Operations*****************

context Permission::addSoDPermission(p:Permission,z:STZone): PSSOD
pre addSoDPermissionPreCond1_definedObjects:
p.isDefined and z.isDefined
pre addSoDPermissionPreCond2_ZoneIncluded:
self.zones->includes(z) and p.zones->includes(z)
pre addSoDPermissionCond3_NotSSODPermission:
getSoDPermissions(z)->excludes(p)
post addSoDPermissionPostCond1_NewSOD:
(self.pssod - self.pssod@pre)->size()=1 and
(self.PSSOD - self.PSSOD@pre)->size()=1
post addSoDPermissionPostCond2_NewPSOD:
(self.pssod - self.pssod@pre)->forAll( pssod |
pssod.oclIsNew() and pssod.zone=z and
pssod.firstPermission=p and pssod.secondPermission=self)
post addSoDPermissionPostCond3_PermissionIsAdded:
self.getSoDPermissions(z)->includes(p)

context Permission::deleteSoDPermission(p:Permission,z:STZone)
pre deleteSoDPermissionPreCond1_PermissionIsSSoDRole:
self.getSoDPermissions(z)->includes(p)
post deleteSoDPermissionPostCond1_RoleDeleated:
self.getSoDPermissions(z)->excludes(p)
post deleteSoDPermissionPostCond2_PSSODObjectDeleted:
(self.pssod@pre - self.pssod)->size()=1 and
(self.PSSOD@pre - self.PSSOD)->size()=1 and
(PSSOD.allInstances@pre - PSSOD.allInstances)->size()=1
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Appendix B

Partial UPPAAL Timed-Automata Code of
The DDSS Policy Model
<?xml version="1.0" encoding="utf-8"?><!DOCTYPE
nta PUBLIC ’-//Uppaal Team//DTD
Flat System 1.1//EN’
’http://www.it.uu.se/research/group/darts/uppaal/
flat-1_1.dtd’><nta><declaration>//
Place global declarations here.
clock x;

const int N = 12;
//int[0,7] uid;
//const int L=5;

const int mainwarehouse = 0, stateclinic = 1,
cityclinic = 2, statepo=3, cityepo=4,
mainoffice = 5, citywarehouse=6, vmainoffice = 7,
vcityoffice = 8, city = 9; // locations

const int shcid = 0, chcid = 1, seid=2, ceid=3,
pmid = 4, cmmid=6, cvmid=8, vctid = 10,
vstid = 10; // locations

chan activate_SHC[N], activate_CHC[N],
activate_SE[N], activate_CE[N],
activate_PM[N], activate_CMM[N],

activate_CVM[N], activate_VCT[N], activate_VST[N];

chan Ap1[N], Ap2[N], Ap3[N], Ap4[N], Ap12[N],
Ap13[N], Ap7[N], Ap10[N], Ap16[N], Ap17[N];
chan Ep1[N], Ep2[N], Ep3[N], Ep4[N], Ep7[N],
Ep12[N], Ep13[N], Ep10[N], Ep17[N], Ep16[N];

chan Aobj2[N], Aobj1[N], Aobj4[N], Aobj5[N], Aobj6[N];
chan Eobj2[N], Eobj1[N], Eobj4[N], Eobj5[N], Eobj6[N];

urgent chan deactivate_VCT[N], deactivate_VST[N],
deactivate_SHC[N], deactivate_CHC[N],
deactivate_PM[N], deactivate_SE[N],
deactivate_CE[N], deactivate_CMM[N],
deactivate_CVM[N];

// SHC Roles
int SHC_L[N]; int SHC_u[7]; int SHC_count[N];
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// CHC role
int CHC_L[N]; int CHC_u[7]; int CHC_count[N];

// SE role
int SE_L[N]; int SE_u[7]; int SE_count[N];

// CE role
int CE_L[N]; int CE_u[7]; int CE_count[N];

// PM role
int PM_L[N]; int PM_u[7]; int PM_count[N];

// CVM role
int CVM_L[N]; int CVM_u[7]; int CVM_count[N];

// CMM role
int CMM_L[N]; int CMM_u[7]; int CMM_count[N];

// VCT role
int VCT_L[N]; int VCT_u[7]; int VCT_count[N];

// VST role
int VST_L[N]; int VST_u[7]; int VST_count[N];

// user location indicator
int u_L[N];

////////////////////////////////////////////
// Check that a user can leave a place

bool out(int uid){

if (u_L[uid] == 0) return true; else return false;

}

///////////////////////////////////////////////////

bool acheck(int uid, int rid, int l) {

if (rid == shcid &amp;&amp; SHC_u[uid] == 0
&amp;&amp; SHC_L[l] == 0 ) {return true;}
else
if (rid == chcid &amp;&amp; CHC_u[uid] == 0
&amp;&amp; SHC_u[uid] == 1 &amp;&amp;
CHC_L[l] == 0) {return true;}
else
if (rid == seid &amp;&amp; SE_u[uid] == 0
&amp;&amp; SE_L[l] == 0 ) {return true;}
else
if (rid == pmid &amp;&amp; PM_u[uid] == 0
&amp;&amp; PM_L[l] == 0) {return true;}
else
if (rid == ceid &amp;&amp; CE_u[uid] == 0
&amp;&amp; SE_u[uid] == 1 &amp;&amp;
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CE_L[l] == 0) {return true;}
else
if (rid == cmmid &amp;&amp; CMM_u[uid] == 0
&amp;&amp; CMM_L[l] == 0) {return true;}
else
if (rid == cvmid &amp;&amp; CVM_u[uid] == 0
&amp;&amp; CVM_L[l] == 0) {return true;}
else
if (rid == vctid &amp;&amp; VCT_u[uid] == 0
&amp;&amp; VCT_L[l] == 0) {return true;}
else
if (rid == vstid &amp;&amp; VST_u[uid] == 0
&amp;&amp; VST_L[l] == 0) {return true;}
return false;
}

bool dcheck(int uid, int rid, int l) {

if (rid == shcid &amp;&amp; SHC_u[uid] == 1
&amp;&amp; SHC_L[l] == 1 &amp;&amp; CHC_u[uid] == 0)
{return true;}
else
if (rid == chcid &amp;&amp; CHC_u[uid] == 1
&amp;&amp; CHC_L[l] == 1) {return true;}
else
if (rid == seid &amp;&amp; SE_u[uid] == 1
&amp;&amp; SE_L[l] == 1 &amp;&amp; CE_u[uid] == 0)
{return true;}
else
if (rid == pmid &amp;&amp; PM_u[uid] == 1
&amp;&amp; PM_L[l] == 1) {return true;}
else
if (rid == ceid &amp;&amp; CE_u[uid] == 1
&amp;&amp; CE_L[l] == 1) {return true;}
else
if (rid == cvmid &amp;&amp; CVM_u[uid] == 1
&amp;&amp; CVM_L[l] == 1) {return true;}
else
if (rid == vctid &amp;&amp; VCT_u[uid] == 1
&amp;&amp; VCT_L[l] == 1) {return true;}
else
if (rid == vstid &amp;&amp; VST_u[uid] == 1
&amp;&amp; VST_L[l] == 1) {return true;}

return false;
}

void aupdate(int uid, int rid, int l)
{

if (rid == shcid) {SHC_L[l] = 1; SHC_u[uid] = 1;
SHC_count[l]++; u_L[uid]++;}
else
if (rid == chcid) {CHC_L[l] = 1; CHC_u[uid] = 1;
CHC_count[l]++; u_L[uid]++;}
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else
if (rid == seid) {SE_L[l] = 1; SE_u[uid] = 1;
SE_count[l]++; u_L[uid]++;}
else
if (rid == pmid) {PM_L[l] = 1; PM_u[uid] = 1;
PM_count[l]++; u_L[uid]=1;}
else
if (rid == ceid) {CE_L[l] = 1; CE_u[uid] = 1;
CE_count[l]++; u_L[uid]++;}
else
if (rid == cmmid) {CMM_L[l] = 1; CMM_u[uid] = 1;
CMM_count[l]++; u_L[uid]++;}
else
if (rid == cvmid) {CVM_L[l] = 1; CVM_u[uid] = 1;
CVM_count[l]++; u_L[uid]++;}
else
if (rid == vctid) {VCT_L[l] = 1; VCT_u[uid] = 1;
VCT_count[l]++; u_L[uid]++;}
else
if (rid == vstid) {VST_L[l] = 1; VST_u[uid] = 1;
VST_count[l]++; u_L[uid]++;}

}

void dupdate(int uid, int rid, int l)
{

if (rid == shcid) {SHC_L[l] = 0; SHC_u[uid] = 0;
u_L[uid]--; if (SHC_count[l] == 1) { SHC_count[l] = 0;}
else { SHC_count[l]--;} }
else
if (rid == chcid) {CHC_L[l] = 0; CHC_u[uid] = 0;
u_L[uid]--; if (CHC_count[l] == 1) { CHC_count[l] = 0;}
else { CHC_count[l]--;} }
else
if (rid == seid) {SE_L[l] = 0; SE_u[uid] = 0;
u_L[uid]--; if (SE_count[l] == 1) { SE_count[l] = 0;}
else { SE_count[l]--;} }
else
if (rid == pmid) {PM_L[l] = 0; PM_u[uid] = 0;
u_L[uid]=0; if (PM_count[l] == 1) {PM_count[l] = 0;}
else { PM_count[l]--;} }
else
if (rid == ceid) {CE_L[l] = 0; CE_u[uid] = 0;
u_L[uid]--; if (CE_count[l] == 1) { CE_count[l] = 0;}
else { CE_count[l]--;} }
else
if (rid == cmmid) {CMM_L[l] = 0; CMM_u[uid] = 0;
u_L[uid]--; if (CMM_count[l] == 1) { CMM_count[l] = 0;}
else { CMM_count[l]--;} }
else
if (rid == cvmid) {CVM_L[l] = 0; CVM_u[uid] = 0;
u_L[uid]--; if (CVM_count[l] == 1) { CVM_count[l] = 0;}
else { CVM_count[l]--;} }
else
if (rid == vctid) {VCT_L[l] = 0; VCT_u[uid] = 0;
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u_L[uid]--; if (VCT_count[l] == 1) { VCT_count[l] = 0;}
else { VCT_count[l]--;} }
else
if (rid == vstid) {VST_L[l] = 0; VST_u[uid] = 0;
u_L[uid]--; if (VST_count[l] == 1) { VST_count[l] = 0;}
else { VST_count[l]--;} }

}
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Appendix C

Alloy Specification of The Access Control Pro-
tocol
module SecurityProtocol

open util/ordering[Snapshot] as SnapshotSequence

abstract sig Key{}
sig PubKey, PriKey extends Key{}

sig ID{}
sig STZone{}
sig Role{}
sig Password{}
sig OnePassword{}
sig Timestamp{}

sig Snapshot {

rcmclient: one User,
ramserver: one Module,
acmserver: one Module,

attacker: one Module,
}

sig Module{
id : one ID,
pubkey: one PubKey,
prikey: one PriKey,
}

sig User extends Module{
stzone: one STZone,
r: one Role,
pwd: one Password,
onepwd: one OnePassword,
ids: one ID
}

sig Attacker extends User{}

pred M1[disj before, after: Snapshot,
senderPre, senderPost: User,
receiverPre, receiverPost: Module,
stzonePre, stzonePost: STZone, rPre, rPost: Role,
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iduPre, iduPost: ID, idsPre, idsPost: ID,
pubkeyPre, pubkeyPost: PubKey] {

senderPre = before.rcmclient
receiverPre = before.ramserver

senderPre.stzone = stzonePre
senderPre.r = rPre
senderPre.id = iduPre
senderPre.ids = idsPre

receiverPre.pubkey = pubkeyPre

senderPost = after.rcmclient
receiverPost = after.ramserver

before.rcmclient = after.rcmclient
before.ramserver = after.ramserver
before.acmserver = after.acmserver
before.attacker = after.attacker
}

pred RCM2Attacker[disj before, after: Snapshot,
senderPre, senderPost: User, receiverPre, receiverPost: Attacker,
stzonePre, stzonePost: STZone, rPre, rPost: Role,
iduPre, iduPost: ID, idsPre, idsPost: ID,
pubkeyPre, pubkeyPost: PubKey]{

senderPre = before.rcmclient
receiverPre = before.attacker

senderPre.stzone = stzonePre
senderPre.r = rPre
senderPre.id = iduPre
senderPre.ids = idsPre

receiverPre.pubkey = pubkeyPre

senderPost = after.rcmclient
receiverPost = after.attacker

before.rcmclient = after.rcmclient
before.ramserver = after.ramserver
before.acmserver = after.acmserver
before.attacker = after.attacker
}

pred Attacker2RAM[disj before, after: Snapshot,
senderPre, senderPost: Attacker,
receiverPre, receiverPost: Module, stzonePre, stzonePost:
STZone, rPre, rPost: Role, iduPre, iduPost: ID,
idsPre, idsPost: ID, pubkeyPre, pubkeyPost: PubKey]{

senderPre = before.attacker
receiverPre = before.ramserver

228



senderPre.stzone = stzonePre
senderPre.r = rPre
senderPre.id = iduPre
senderPre.ids = idsPre

receiverPre.pubkey = pubkeyPre

senderPost = after.attacker
receiverPost = after.ramserver

before.rcmclient = after.rcmclient
before.ramserver = after.ramserver
before.acmserver = after.acmserver
before.attacker = after.attacker
}

pred M4[disj before, after: Snapshot,
senderPre, senderPost: Module, receiverPre,
receiverPost: User, idrsPre, idrsPost: ID, iduPre,
iduPost: ID, idsPre, idsPost: ID, pubkeyPre,
pubkeyPost: PubKey]{

senderPre = before.ramserver
receiverPre = before.rcmclient

senderPre.id = idrsPre

receiverPre.id = iduPre
receiverPre.ids = idsPre

receiverPre.pubkey = pubkeyPre

senderPost = after.ramserver
receiverPost = after.rcmclient

before.rcmclient = after.rcmclient
before.ramserver = after.ramserver
before.acmserver = after.acmserver
before.attacker = after.attacker
}

pred RAM2Attacker[disj before, after:
Snapshot, senderPre, senderPost: Module, receiverPre,
receiverPost: Attacker, idrsPre, idrsPost:
ID, iduPre, iduPost: ID, idsPre, idsPost: ID,
pubkeyPre, pubkeyPost: PubKey]{

senderPre = before.ramserver
receiverPre = before.attacker

senderPre.id = idrsPre

receiverPre.id = iduPre
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receiverPre.ids = idsPre

receiverPre.pubkey = pubkeyPre

senderPost = after.ramserver
receiverPost = after.attacker

before.rcmclient = after.rcmclient
before.ramserver = after.ramserver
before.acmserver = after.acmserver
before.attacker = after.attacker
}

pred Attacker2RCM[disj before, after: Snapshot,
senderPre, senderPost: User, receiverPre,
receiverPost: Attacker, idrsPre, idrsPost:
ID, iduPre, iduPost: ID, idsPre, idsPost: ID, pubkeyPre,
pubkeyPost: PubKey]{

senderPre = before.attacker
receiverPre = before.rcmclient

senderPre.id = idrsPre

receiverPre.id = iduPre
receiverPre.ids = idsPre

receiverPre.pubkey = pubkeyPre

senderPost = after.attacker
receiverPost = after.rcmclient

before.rcmclient = after.rcmclient
before.ramserver = after.ramserver
before.acmserver = after.acmserver
before.attacker = after.attacker
}

pred Scenario1{
let first = SnapshotSequence/first|let second =
SnapshotSequence/next[first] | let third =
SnapshotSequence/next[second]|
some rcmclient: User| some ramserver: Module|
some disj idu, ids, idrs: ID| some r: Role|
some stzone: STZone| some disj pubkeyrcm, pubkeyram: PubKey|
M1[first, second, rcmclient, rcmclient, ramserver,
ramserver, stzone, stzone, r, r, idu, idu, ids, ids,
pubkeyram, pubkeyram] and M4[second, third, ramserver,
ramserver, rcmclient, rcmclient, idrs, idrs, idu, idu, ids, ids,
pubkeyrcm, pubkeyrcm]
}

run Scenario1 for 3

pred Scenario2{
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let first = SnapshotSequence/first|let second =
SnapshotSequence/next[first]|
let third = SnapshotSequence/next[second]|
let fourth = SnapshotSequence/next[third]|
let fifth = SnapshotSequence/next[fourth]|
some rcmclient: User|
some ramserver: Module| some attacker: Attacker|
some disj idu, ids, idrs: ID| some r: Role|
some stzone: STZone| some disj pubkeyrcm, pubkeyram,
pubkeyattacker: PubKey| RCM2Attacker[first, second,
rcmclient, rcmclient, attacker, attacker, stzone, stzone, r, r,
idu, idu, ids, ids, pubkeyattacker, pubkeyattacker] and
Attacker2RAM[second, third, attacker, attacker,
ramserver, ramserver, stzone, stzone,
r, r, idu, idu, ids, ids, pubkeyram, pubkeyram] and
RAM2Attacker[third, fourth, ramserver, ramserver,
attacker, attacker, idrs, idrs, idu, idu, ids, ids,
pubkeyattacker, pubkeyattacker] and Attacker2RCM[fourth, fifth,
attacker, attacker, rcmclient, rcmclient, idrs, idrs,
idu, idu, ids, ids, pubkeyrcm, pubkeyrcm]
}

run Scenario2 for 5
run Attacker2RCM
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Appendix D

Alloy Specification of Successful MITM At-
tack
module SecurityProtocol

open util/ordering[Snapshot] as SnapshotSequence

abstract sig Key{}
sig PubKey, PriKey extends Key{}

sig ID{}
sig STZone{}
sig Role{}
sig Password{}
sig OnePassword{}
sig Timestamp{}

sig Module{
id : one ID,
pubkey: one PubKey,
prikey: one PriKey,
}

sig Server extends Module{}

sig Client extends Module{
r: one Role,
pwd: one Password,
onepwd: one OnePassword,
ids: one ID,
stzone: one STZone
}

sig Attacker extends Client{}

sig Snapshot {
rcmclient: one Client,
ramserver: one Server,
acmserver: one Server,
attacker: one Attacker,
}

pred Client2Attacker[disj before, after: Snapshot,
senderPre, senderPost: Client, receiverPre,
receiverPost: Attacker, stzonePre, stzonePost: STZone, rPre,
rPost: Role, iduPre, iduPost: ID, idsPre, idsPost: ID,
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pubkeyPre, pubkeyPost: PubKey]{

senderPre = before.rcmclient
receiverPre = before.attacker

senderPre.stzone = stzonePre
senderPre.r = rPre
senderPre.id = iduPre
senderPre.ids = idsPre

receiverPre.pubkey = pubkeyPre

senderPost = after.rcmclient
receiverPost = after.attacker

before.rcmclient = after.rcmclient
before.ramserver = after.ramserver
before.acmserver = after.acmserver
before.attacker = after.attacker
}

pred Attacker2RAM[disj before, after: Snapshot,
senderPre, senderPost: Attacker, receiverPre,
receiverPost: Module, stzonePre, stzonePost: STZone, rPre,
rPost: Role, iduPre, iduPost: ID, idsPre, idsPost: ID,
pubkeyPre, pubkeyPost: PubKey]{

senderPre = before.attacker
receiverPre = before.ramserver

senderPre.stzone = stzonePre
senderPre.r = rPre
senderPre.id = iduPre
senderPre.ids = idsPre

receiverPre.pubkey = pubkeyPre

senderPost = after.attacker
receiverPost = after.ramserver

before.rcmclient = after.rcmclient
before.ramserver = after.ramserver
before.acmserver = after.acmserver
before.attacker = after.attacker
}

pred RAM2Attacker[disj before, after: Snapshot,
senderPre, senderPost: Module, receiverPre,
receiverPost: Attacker, idrsPre, idrsPost: ID, iduPre,
iduPost: ID, idsPre, idsPost: ID, pubkeyPre, pubkeyPost: PubKey]{

senderPre = before.ramserver
receiverPre = before.attacker

senderPre.id = idrsPre
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receiverPre.id = iduPre
receiverPre.ids = idsPre

receiverPre.pubkey = pubkeyPre

senderPost = after.ramserver
receiverPost = after.attacker

before.rcmclient = after.rcmclient
before.ramserver = after.ramserver
before.acmserver = after.acmserver
before.attacker = after.attacker
}

pred Attacker2Client[disj before, after: Snapshot,
senderPre, senderPost: Client, receiverPre, receiverPost:
Attacker,
idrsPre, idrsPost: ID, iduPre, iduPost: ID,
idsPre, idsPost: ID, pubkeyPre, pubkeyPost: PubKey]{

senderPre = before.attacker
receiverPre = before.rcmclient

// This is a key to fix the MITM attack because the
// client expects a message containing
//the server’s identity, while
// senderPre.id = idrsPre in the predicate ensures that
// the client will receive an identity from the sender, which is
// the attacker in the MITM attack scenario.
// senderPre.id = idrsPre

receiverPre.id = iduPre
receiverPre.ids = idsPre

receiverPre.pubkey = pubkeyPre

senderPost = after.attacker
receiverPost = after.rcmclient

before.rcmclient = after.rcmclient
before.ramserver = after.ramserver
before.acmserver = after.acmserver
before.attacker = after.attacker
}

pred ScenarioWithAttack{
let first = SnapshotSequence/first|let second =
SnapshotSequence/next[first]| let third = SnapshotSequence/next[second]|
let fourth = SnapshotSequence/next[third]|
let fifth = SnapshotSequence/next[fourth]|
some rcmclient: Client| some ramserver: Module| some attacker: Attacker|
some disj idu, ids, idrs: ID| some r: Role| some stzone: STZone|
some disj pubkeyrcm, pubkeyram, pubkeyattacker: PubKey|
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Client2Attacker[first, second, rcmclient, rcmclient,
attacker, attacker, stzone, stzone, r, r, idu, idu, ids,
ids, pubkeyattacker, pubkeyattacker] and Attacker2RAM[second,
third, attacker, attacker, ramserver, ramserver, stzone,
stzone, r, r, idu, idu, ids, ids, pubkeyram, pubkeyram] and
RAM2Attacker[third, fourth, ramserver, ramserver,
attacker, attacker, idrs, idrs, idu, idu, ids, ids,
pubkeyattacker, pubkeyattacker] and Attacker2Client[fourth, fifth,
attacker, attacker, rcmclient, rcmclient, idrs, idrs, idu, idu, ids, ids,
pubkeyrcm, pubkeyrcm]
}

run ScenarioWithAttack for 5
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