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ABSTRACT

SPARSE REPRESENTATIONS IN MULTI-KERNEL DICTIONARIES FOR IN-SITU

CLASSIFICATION OF UNDERWATER OBJECTS

The performance of the kernel-based pattern classification algorithms depends highly on the

selection of the kernel function and its parameters. Consequently in the recent years there has been

a growing interest in machine learning algorithms to select kernel functions automatically from

a predefined dictionary of kernels. In this work we develop a general mathematical framework

for multi-kernel classification that makes use of sparse representation theory for automatically

selecting the kernel functions and their parameters that best represent a set of training samples. We

construct a dictionary of different kernel functions with different parametrizations. Using a sparse

approximation algorithm, we represent the ideal score of each training sample as a sparse linear

combination of the kernel functions in the dictionary evaluated at all training samples. Moreover,

we incorporate the high-level operator’s concepts into the learning by using the in-situ learning for

the new unseen samples whose scores can not be represented suitably using the previously selected

representative samples. Finally, we evaluate the viability of this method for in-situ classification of

a database of underwater object images. Results are presented in terms of ROC curve, confusion

matrix and correct classification rate measures.
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CHAPTER 1

INTRODUCTION

1.1. PROBLEM STATEMENT AND MOTIVATION

Underwater object classification is problem of classifying images of underwater objects into

two categories of mine-like and non-mine-like objects. There are various causes that make this

classification problem difficult to be tackled including different target (mine-like object) shapes

and orientations, different conditions in the environments from which the images are collected,

presence of spatial-varying clutter, different depths in which the targets are buried in the seafloor

and the obstruction of the targets by seafloor sand formations and vegetation that will result in

high false alarm rates. A great deal of research has been devoted [9] in recent years to develop

computerized methods to address such issues for underwater applications.

Many of the existing state-of-the-art methods for pattern classification rely on using the kernel

machines [10] that are useful in solving different machine learning problems. The idea behind

kernel machines is to non-linearly map the original input space into a higher dimensional feature

space and find the similarity measure (inner product) between the points in this higher dimensional

feature space. Using the kernel trick, we can simply replace the inner product in the original space

with a kernel function representing the similarity function in the higher dimensional space, without

having to find the explicit non-linear mapping function.

Although the advances in the kernel-based methods have significantly impacted on the ma-

chine learning field, the selection of the kernel functions and their corresponding feature spaces,

that plays an important role in the performance of the kernel-based methods, is still challenging

for the users. In most of the kernel-based learning algorithms a parametrized class of kernels is

selected and the parameters of the kernels are adjusted using cross validation. However, algorithms
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that rely on using a single kernel function [9] are not flexible enough for classification due to their

low degrees of freedom. Consequently, the methods such as [1]- [8] that allow for automatic se-

lection of kernel functions based on training data (multiple kernel learning methods) have recently

become more desirable. Using the multiple kernel functions, the number of available degrees of

freedom is increased and as a result the classes can be better represented while the outliers are

discarded for a more reliable classification. In the current work we have proposed a new multiple

kernel learning method that relies on using a kernel dictionary and sparse representation theory as

opposed to the single kernel methods. The proposed method also makes use of the expert opera-

tor’s feedback through in-situ learning in order to maintain the classification performance in new

environmental conditions as this is one of the problems encountered in real mine-hunting scenar-

ios. In the following sections we first give a literature review on kernel learning methods and then

introduce our multi-kernel method.

1.2. LITERATURE REVIEW ON KERNEL LEARNING METHODS

In [1] the authors develop a multiple kernel learning approach using semidefinite programming

(SDP) [11] for binary classification. They applied the method to a partially-labeled dataset in

order to predict the labels for the unlabeled portion. The dataset is implicitly embedded into a

higher-dimensional feature space in which the pairwise inner products between the data points are

calculated (implicitly using a kernel function) and contained in a symmetric positive semidefinite

matrix called kernel or Gram matrix. The kernel matrix in fact defines the relative positions of all

data points in the embedding space. As a measure of separation between the labeled points, they

used an optimization criterion (cost function) such as support vector machines (SVM) hard margin

or 1 and 2-norm soft margin over the labeled samples. However, instead of using a fixed kernel

matrix, they used a library of known kernel matrices to design a kernel matrix (corresponding
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to the whole dataset) that optimizes the cost function. For this reason, they restricted the kernel

matrix to the set of positive semidefinite matrices with bounded trace that can be written as a linear

combination of the kernel matrices in the library. They posed the problem of joint optimization

of the coefficients of such combination and the coefficients of the classifier and showed that it

is a semidefinite programming problem. By constraining the linear coefficients to be positive,

this optimization problem can be reduced further to a quadratically-constrained quadratic program

(QCQP) that is a special case of the SDP. Moreover, they considered the optimization problem

that searches for the kernel matrix which has the maximum alignment with a set of labels among

a set of linear combinations of known kernel matrices. Here, the alignment is the cosine of the

angle between the kernel matrix and the rank one matrix built using the labels vector (ideal kernel

matrix).

Although the QCQP problem in [1] is a convex optimization problem, it becomes intractable

as the number of learning samples or kernels grow. This allows the existing convex optimization

toolboxes to solve this problem only for small number of data samples and kernels. Therefore,

applying the more advanced solutions such as sequential minimal optimization (SMO) techniques

is essential for the large-scale problems. However, the multiple kernel learning, while being a

convex problem, is non-smooth; that means the cost function in this problem is non-differentiable.

The non-smoothness of the cost function causes the simple local descent algorithms such as SMO

to either not converge or converge to a wrong value. This new problem is addressed in [2] in which

the authors proposed a novel dual formulation of the QCQP as a second-order cone programming

(SOCP) problem. They called this new formulation, that is similar to the classical maximum

margin SVM formulation, the support kernel machine (SKM) due to the fact that the Karush-

Kuhn-Tucker (KKT) conditions in this formulation detect not only the support vectors but also

the so called ”support kernels” which are active in the linear combination of kernels. The SKM
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formulation that represents exactly the multiple kernel learning problem of [1], enables them to

derive a smoothed formulation of the problem through the Moreau-Yosida (MY) regularization

[21] that is consistent with the SMO techniques. Their evaluation results illustrated that their

proposed algorithm is more efficient compared to general-purpose interior-point methods.

An alternative mathematical framework for kernel learning is developed in [3] using the ideas

in [1]. Given a kernel function and a traning dataset, the authors of [3] first defined a function

called empirical quality functional that measures how well the kernel function matches to a spe-

cific dataset. Although optimizing over a large enough class of kernels can minimize this quality

functional, it leads to a poor generalization performance due to optimizing too much and over-

fitting. Therefore, to address this problem they regularized the empirical quality functional by

introducing a so called Hyper reproducing kernel Hilbert space (Hyper-RKHS) of functions on

the kernels itself and optimized the regularized quality functional over this Hyper-RKHS. In fact

the only things that tell the Hyper-RKHS and a normal RKHS apart are the compounded index

set of Hyper-RKHS and the additional condition of symmetry in the first two arguments of the

kernel that generates it, namely hyperkernel. They provided examples of hyperkernels and general

instructions for constructing them. They defined the regularized quality functional by adding the

regularization term, that is the squared RKHS norm of the kernel in Hyper-RKHS space weighted

by a regularization constant, to the empirical quality functional. They selected the specific exam-

ple of regularized risk functional (commonly used in SVMs) as the empirical quality functional

and considered only positive semidefinite kernel matrices to confirm the positive definiteness of

the kernel function. They proved the representer theorem for RKHS/Hyper-RKHS which says

the optimal kernel minimizing the regularized risk functional/ regularized quality functional can

be expressed as a finite kernel/hyperkernel expansion on the input data. Using this theorem, they

wrote the regularization terms in the regularized quality functional in quadratic form. They posed
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the optimization problem based on new formulation of the objective function, and derived its dual

formulation that can be represented as a SDP. They posed several hyperkernel optimization prob-

lems derived from some popular machine learning problems such as binary classification ( linear or

quadratic SVM), novelty detection (single class SVM) and regression. For each of the mentioned

problems they defined a suitable loss function in the regularized quality functional and derived the

corresponding SDP.

In [4] the authors studied the problem of searching through a compact and convex set of kernels

for an optimal kernel that estimates a real-valued function given a training dataset. A commonly

used approach of solving this problem is to optimize a regularization functional that trades off the

learning error quantized by a loss function and the smoothness of the solution measured by the

regularization term in a Hilbert space of functions. They let the Hilbert space to be a RKHS to be

able to use the result of representer theorem [3] for the representation of regularization functional.

They used this representation of the functional as a design criterion to find the optimal kernel

function. They also showed that the minimizer kernel exists if the loss function is continuous and

the set of kernels is a compact and convex subset of kernel functions corresponding to positive

definite kernel matrices. The two useful examples of a convex and compact set of kernels are

the set of convex combinations of a finite number of kernels belonging to set of kernels with

positive definite kernel matrices and the convex hull of a predefined set of kernels parametrized

by a compact set. They proved that this problem is a convex optimization problem for a variety

of regularization functionals and they provided the explicit function expression and the optimal

solution for the specific case of square loss regularization functional. Moreover, they proved that

the optimal kernel is always expressed as a convex combination of at most m + 2 basic kernels

(m is the number of training samples), even though the primary search span for the kernels is an

uncountable set.
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The authors of [5] started with the multiple kernel learning problem for binary classification

initially proposed in [1] and reformulated it as a semi-infinite linear program (SILP). They then

extended this problem to a general setting by formulating the SILP for an arbitrary strictly convex

and differentiable loss function. They tried different loss functions such as soft-margin loss, the

ǫ-insensitive loss and the quadratic loss in this general SILP and analyzed them. They developed

an algorithm for solving SILPs called wrapper algorithm that iteratively solves a single kernel

SVM problem, that can be solved with many existing toolboxes, while the number of constraints

grows at each iteration. The advantage of this algorithm is that it is valid for every kernel function

and for a large class of loss functions. They improved this algorithm by developing a significantly

more efficient algorithm called chunking algorithm that is able to optimize the SVM multipliers

and the kernel coefficients simultaneously. Finally, they showed how the SVM training (including

multiple kernel learning) can be sped up when the mapping into the kernel feature space is known

and sparse.

The authors of [6] proposed a Difference of Convex functions Programming (DC-programming)

algorithm for kernel learning. Similar to [3] they optimized a convex regularized functional over

the set of convex combinations of some basic kernels. What distinguishes this approach from

other related works is that it uses a continuous parametrized family of kernels as the basic ker-

nels. In other words, the objective function is optimized over a continuously parametrized set of

basic kernels such as a Gaussian family whose variance is an arbitrary positive value or a family

of polynomial kernels of arbitrary degree. Their resulting formulation for kernel learning includes

a minimax optimization problem and a greedy algorithm. While this optimization problem is not

convex, it can be categorized as the larger class of DC programs and be solved using the recent

results of DC optimization theory.
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Motivated by the works in [1], [2], [5], the authors of [7] introduced another formulation for

multiple kernel learning. They started by changing the mixed-norm regularization in the primal

formulation of [2] with a weighted ℓ2-norm regularization. They also managed the sparsity of the

linear combination of the kernels through an ℓ1-norm constraint on the kernel coefficients. This

leads to a new formulation for multiple kernel learning that is now smooth and convex and they

developed a simple gradient-descent-based algorithm to solve it iteratively. They extended their

algorithm that has been initially developed for binary classification to some other popular SVM-

based problems such as SVM regression, one-class SVM and pairwise multiclass SVM. They

also tried to generalize further by considering any other convex loss function that can be fitted

within their algorithm. They proved through empirical results that their algorithm is more efficient

compared to the similar approach in [5]. Moreover, by constraining the kernel coefficients to be

sparse they can interpret the resulting decision function more easily.

The authors of [8] showed that for a variety of kernel-based learning algorithms the problem of

learning the kernel and the parameters of the algorithm at the same time can be posed as a tractable

convex optimization problem that can be solved efficiently using interior-point methods. They first

wrote a very general optimization problem that formulates a wide variety of kernel-based learning

algorithms and consists of an objective function and some constraints. Using an extension of the

representer theorem [3], they reformulated the objective and constraints to be a function of the ker-

nel (Gram) matrix obtained from kernel function at training samples. They wrote the general kernel

learning problem corresponding to this new formulation and optimized it over a set of Gram ma-

trices obtained from a convex set of positive semidefinite kernel functions that should be selected

properly for a good generalization performance. Using the change of variables, they showed that

this optimization problem is convex and can be solved efficiently since the first and second deriva-

tives of its objective and constraints can be evaluated efficiently. They considered some special
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cases of this general formulation of the problem such as the regularized loss functional and hard

margin SVM and derived their equivalent convex kernel learning problems.

The authors of [9] used an adaptable multi-class single-kernel machine for the purpose of

image retrieval and classification. Similar to probabilistic neural network [12], their classification

system consists of pools of neurons each representing a class or a sub-class. Each pool of neurons

consists of a single kernel function that is centered around a set of feature vectors belonging to

the corresponding class. A linear combination of the kernel functions at each pool represents the

score function for that pool (class). They trained their system using either model-reference or

relevance feedback learning. In both cases the network parameters are obtained implicitly using

regularized least squares approach. In the model-reference learning they trained the samples for

each pool in a batch-mode to find the hidden information of classes. In addition, they introduced

a single-round relevance feedback learning as an alternative in order to adaptively modify the

score functions. The relevance feedback learning brings the high-level expert operator’s feedback

into the learning process by acquiring the operator to visually provide the desired scores for the

retrieved images. They derived a recusrsive equation to update the score functions for the images

that recieve the operator’s feedback. They also proved that their proposed relevance feedback

learning is stable in the sense that it does not change the score functions for the previously-trained

images. Moreover, to avoid over-fitting problems and reduce the computational complexity, they

developed an unsupervised selective sampling method based on the Fisher information matrix that

selects the most informative samples for each relevance feedback learning iteration.
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1.3. MULTIPLE-KERNEL IN-SITU CLASSIFICATION USING SPARSE

REPRESENTATION THEORY

In the current work, we propose a general kernel-based multi-class in-situ classification sys-

tem using an expanded dictionary of kernel functions and sparse representation theory and apply

it to the specific problem of classifying underwater objects images. As depicted in Figure 1.1, the

block diagram of this system consists of several units. In the feature extraction unit we extract

the entropy-based feature vectors from the localized snippet images of underwater objects. In the

baseline training unit we first construct a vector-valued score function as a linear combination of

various nonlinear kernel functions (selected from a kernel dictionary), each of which measures the

similarity between a data sample to be classified and the representative samples from a class. The

representative samples for different classes are selected automatically through a sparse approxima-

tion algorithm such as [19], by forcing the representation of the vector-valued score function to be

sparse in a dictionary of kernel functions with respect to all data samples from different classes.

After finding the sparse weight matrix, we use it to compute the vector-valued score function for

a new data sample q with unknown class label. When the entries in the score vector do not assign

the sample q to any of the classes with high enough confidence, then it is the time for the in-situ

learning unit to come into play. In the case of in-situ learning we need to update the score func-

tion by learning the new training samples one by one or in groups using the labels provided by an

expert user. However, the updating must be done such that the scores for all previously learned

data samples are not influenced at all. This is enabled by updating the representation vectors in

the null space of previously selected kernel functions in a sparse fashion. Additionally, we need

to decide whether the new samples need to be added to the representative sample sets for different

classes. For the first case, we consider to learn the new samples by simply updating the weight

matrix in the score function in a sparse fashion without changing the dictionary while maintaining
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the previously learned scores. For the second case, we go further by adding the new samples to

the dictionary while maintaining the previously learned scores, that simply means we expand the

kernel dictionary.

  Entropy-Based 
Feature Extraction

Snippet Images Feature Vectors

Multi-Kernel 
 Machine

Baseline Training

Scores and 
   Labels

 (Not  active during
 in-situ learning)

Training 
Features

   New 
Features

Update Network

 In-Situ 
Learning 

Classifier

FIGURE 1.1. Multi-kernel in-situ classification system

This system is similar to [9] due to its general multi-class structure and bringing in-situ learning

into play. Moreover, it is comparable to the kernel learning methods proposed in [1]- [8] in the

sense that it does not rely only on a single kernel.

The remainder of this thesis is organized as follows. In Chapter 2 we describe the proposed

theoretical framework for our classification algorithm in three sections: multi-kernel score func-

tion, sparse representation of the score function using training data and finally updating the sparse

representation using the in-situ data. In Chapter 3 we present the results of evaluating the proposed

theoretical framework for classification on a dataset of underwater images. Finally, we give a sum-

mary of our work and the evaluation results along with the possible improvements or future work

in Chapter 4.
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CHAPTER 2

MULTIPLE-KERNEL CLASSIFICATION SYSTEM USING

SPARSE REPRESENTATION FRAMEWORK

2.1. INTRODUCTION

In machine learning, classification is the problem of identifying a new sample based on a

training set of samples whose class membership is known. Prior to each classification process,

the feature vectors are extracted from the original data samples in order to make that classification

problem easier to be tackled. The feature vectors are the lower dimensional representations of the

data to be classified. As the dimensionality of the data used to fit a classifier increases, the quality

of the fitted model deteriorates and as a result the generalization error increases. This phenomenon

is known as curse of dimensionality [22]. Therefore, by removing the redundant (noise) features

and extracting the most salient features of the raw image data we can lower the risk of curse of

dimensionality. In addition, this enable us to deal with a smaller-sized data and as a result perform

the same task but with a lower amount of time and complexity. A classifier can now be fitted

to the feature vectors extracted from the training samples by setting a decision rule that divides

those feature vectors into p decision regions or classes. The classification decision for an unseen

observation vector is then made by comparing p scalar functions known as score functions. The

values of the score functions for a given observation vector decide to which class it should be

assigned. The observation vector belongs to the class for which it yields the maximum value of the

score function.

Different types of classifiers can be designed by generating different types of score functions.

For a variety of classification problems the kernel-based score functions are used. The kernel-

based classification system has been one of the most promising classification methods to this date.
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However, the selection of kernel functions and their parameters still remains to be a challenging

issue of the kernel-based methods. This issue has motivated many researchers to develop multiple

kernel approaches. Most of the current multiple kernel learning methods such as [1]- [8] construct

a kernel model that is a linear or nonlinear combination of some predifined base kernel functions.

The kernel learning algorithm then learns the weighting coefficients of each base kernel, rather

than finding the optimal parameters of a single kernel. A multiple kernel learning model benefits

from more degrees of freedom and flexibility and is specifically suitable for multi-modal data such

as sonar images. We may require a different notion of similarity (kernel) function to represent

each set of features in multimodal data. Therefore, we can represent each mode of the data by

a different kernel function and then linearly combine these functions to represent the whole data.

Although the current multiple kernel learning approaches automate the kernel selection process,

they are computationally expensive and less interpretable than single kernel approaches.

In the current work, we have developed a classifier with the multi-kernel-based score functions

that is simpler and more interpretable than the other multiple kernel approaches. The proposed

multi-kernel classification system that is shown in Figure 1.1 builds a large dictionary of base ker-

nel functions and makes use of sparse representation framework to automatically select the most

representative kernel functions for representing the subspace spanned by our dataset. The sparse

representation of score functions of the training samples leads to a more interpretable model and

enables us to manage the complexity of the model and consequently lower the overfitting risk.

Another capability of our classification system is to take advantage of an expert user’s feedback

through in-situ (online) learning. During the in-situ learning the parameters of the model are

changed in order to be able to represent the scores of a new set of samples in addition to the

previously-learned samples. The remainder of this chapter is divided into 3 parts in which we
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describe: the score function design, baseline training and in-situ training of our proposed classifi-

cation system, respectively.

2.2. MULTI-KERNEL SCORE FUNCTIONS

In this section we describe how we construct the score functions for our multi-kernel classifier.

Let X = {xj ∈ R
L, j ∈ [1,M ]} be the database of our training samples, xj’s, belonging to

p different classes C1, . . . , Cp. Without loss of generality, we assume that the data samples are

arranged in blocks, with the first block of data samples corresponding to all samples from C1, the

second block corresponding to all samples from C2, and so on. Our goal is to build a vector-valued

score function s : RL → R
p as a linear combination of some similarity matching functions between

a data sample q and every sample in the database X . A typical similarity function is the Euclidean

distance measure k(q, xj) = (q−xj)
T (q−xj). Equivalently, we can use the inner product function

k(xj, q) = xT
j q that is a decreasing similarity measure. If the data samples are linearly separable

in the original input space and an optimal hyperplane can separate them we calculate the inner

product in the original input space. However, there are the cases where the data samples are not

linearly separable in the original input space. In such cases we use a nonlinear mapping function

Φ : RL → R
Nf with Nf > L to map the data samples to the higher dimensional feature space. The

non-linear mapping function adds some high-level features to the original input space. We hope

that by mapping to the higher dimensional feature space the samples can be separated linearly

using an optimal hyperplane, because we will be able to catch higher-level concepts in this feature

space. The inner product in the higher dimensional feature space becomes

k(xj, q) = ΦT (xj)Φ(q).

By making use of the kernel trick we do not even need to explicitly find the mapping function Φ,

that can be infinite-dimensional sometimes. There are many symmetric functions k(xj, q) namely
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kernel functions [10] that can be formulated as an inner product in the higher dimensional feature

space. The kernel concept allows us to replace the simple inner product function with some other

choice of kernel function in the input space. In the current work we use a dictionary of these kernel

functions to construct our scoring function for each class.

Let K = {k(·, x; θ) | k ∈ F , θ ∈ Θ, x ∈ X} denote our dictionary of kernel functions, where

F is a set of kernel families and Θ is a set of parameters for the kernel families in F . Each kernel

element is a function k(·, x; θ) : R
L → R

+ which measures the similarity between a point in R
L

and a data point in X . For example, suppose F is the set of RBF Gaussian, Quartic and Laplacian

kernel families. Then, the elements of the kernel dictionary K consist of RBF Gaussian kernel

functions

k(q, x; σ2) = e−‖q−x‖22/2σ
2

,

with mean vectors x ∈ X and variances σ2 ∈ Θ, Quartic kernel functions

k(q, x; σ2) = (1− ‖q − x‖22/σ
2)2,

with varying parameters σ2 ∈ Θ and Laplacian kernel functions

k(q, x; σ2) = e−‖q−x‖2/σ

with centers x ∈ X and scale parameters σ ∈ Θ.

We construct a vector-valued score function as a linear combination of the dictionary elements in

K as the following form:

s(q)T = [s1(q), . . . , sp(q)] = k(q)TW

where W is an N × p weight matrix, k(q)T is a (N = |F|×|X |)-dimensional row vector of

all elements in K and the entries in the kernel vector k(q)T are arranged in blocks in the same
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fashion that data samples are arranged in X . That is, the first block has all the kernel functions

that are centered around samples from class C1, the second block has all the kernel functions that

are centered around samples from class C2, and finally the last block has all the kernels that are

centered around samples from class Cp. The ith entry si(q) in s(q)T is the score with which the

classifier believes the data sample q belongs to class Ci, i = 1, 2, . . . , p. Here the score function for

each class is built using the kernel functions centered around samples from all classes as opposed

to the method proposed in [9] where the score function for each class is built using only the kernel

functions centered around the samples from the same class.

Using the constructed score function s(q)T , our goal is now to represent the ideal scores of our

training samples in X as a sparse linear combination of kernel functions in the kernel vector k(q)T .

The sparse representation of the score functions automatically identifies the sample elements in X

and the kernel types and parameters that best represent different classes in a compact and parsi-

monious fashion. The sparsity enables the classifier to use only a partial number of samples for

representing each class and as a result reduces the required memory size and computing load, and

avoids overfitting problems as well. In addition, the interpretation of the score function for each

sample becomes easier using the sparsity concept. In the next section, we will introduce how a

sparse representation of the score function can be obtained from a set of training samples with

known class labels.

2.3. SPARSE REPRESENTATION OF SCORE FUNCTION USING TRAINING DATA

In this section we design our classifier by training it with the training samples in the database

X . Our goal is to represent the known labels of the training samples as a sparse linear combination

of the kernel functions that we have calculated by evaluating the dictionary elements at the same

training samples. Figure 2.1 shows a block diagram of our classification system that shares some
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similarities to [9] and can be interpreted as a more general form of it. The system consists of p

classes to each a subset of training samples belong. For a given sample q the score created by each

class is obtained by calculating the weighted sum of kernel functions in the dictionary K evaluated

at the sample q. The unique weight vector for each class determines which kernel functios are

active in building the score function for that class. However, the kernel functions from all classes

can potentially participate in building the score function for a given class because the dictionary

elements are centered around training samples from all classes. This is illustrated in Figure 2.1

where all of the classes are taking part in building the score function for a given class. Moreover,

by designing the weight vectors to be sparse, only a small number of kernel functions that best

represent the scores of classes are selected automatically. The term sparse means that the number

of non-zero entries in a vector is so small. The sparse approximation algorithm [13] finds the

weights for the kernel functions that are centered around selected representative samples while it

returns zero for the other weights. As a result of dealing with sparse vectors, we will need less

time for calculations, have less data to store in the memory as only the positions and the values of

non-zero entries need to be recorded and we will not encounter the consequences of over-training

of the classification system. Using the designed sparse weight vectors we can hopefully calculate

the scores of a new sample that has not been trained and find out to which class it belongs. In the

rest of this section we show how to design the weight vector for each class such that the desired

lables for training samples are met and the resulting weight vector will be sparse as well.
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FIGURE 2.1. The multi-kernel classification system

Let Xi denote a subset of training samples that represent class Ci, i = 1, 2, . . . , p such that

X =
⋃p

i=1 Xi and M = |X | =
∑p

i=1 |Xi|. Let ℓTi denote the 1 × p label (ideal score) vector for

class Ci, with a unit entry at position i and zero entries at all other positions. If a sample q
i
∈ Xi

from class Ci is given to the score function, then we expect the score function to return exactly

s(q
i
)T = ℓTi or a close approximation to it, that is

ℓTi = s(q
i
)T + eTi ,

where eTi is a small error vector. Therefore, if we plug all the training samples in X =
⋃p

i=1 Xi in

the score function sT (·), we will have

(2.1) L0 = K00W0 + E0.

where the rows represent the score equations for the training samples.
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is the matrix of desired labels,

K00 =













































k(x1,1)
T

...

k(x1,|X1|
)T

...

k(xp,1)
T

...

k(xp,|Xp|)
T













































∈ R
M×N

is the matrix of kernel vectors evaluated at data samples in X , where W0 ∈ R
N×p is a weight

matrix, and E0 ∈ R
M×p is a fitting error matrix, which we wish to keep its elements small and

xi,j ∈ Xi is the jth sample from class Ci. For example, if we only use the Gaussian Kernel family

with variances σ2
1 and σ2

2 , then

k(x1,1)
T = [1 1 e−‖x1−x2‖

2/2σ2
1 e−‖x1−x2‖

2/2σ2
2 · · · e−‖x1−xM‖2/2σ2

1 e−‖x1−xM‖2/2σ2
2 ].
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The objective is to design the weight matrix W0 ∈ R
N×p that minimizes the lengths of the

columns of error matrix E0 while keeping the columns of W0 sparse. However, (2.1) consists of

the following p columns that we need to solve separately in order to design each column of W0

(2.2) l0i = K00w0i + e0i, for i = 1, 2, . . . , p,

where w0i, l0i and e0i are the ith columns of W0, L0 and E0 respectively. The ith column in (2.2)

consists of M equations with N unknowns and since M < N it is an underdetermined system of

equations with many possible solutions. However, we are interested in the sparsest solution where

the total number of non-zero entries of w0i is only a fraction of the total number of measuments

M . The sparsity constraint regularizes our initial ill-posed optimization problem so that we can

achieve a unique solution . Therefore, the new problem becomes to recover high dimensional

sparse vectors w0i, i = 1, 2, . . . , p, using only a small number of noisy linear measurements. By

writing the equations in (2.2) as quadratic constraints and adding the sparsity requirement as an

ℓ1− norm, we can pose our problem as the following set of ℓ1− norm minimizations each for a

column of W0

min ‖w0i‖1

s.t.(2.3)

‖l0i −K00w0i‖2 ≤ ǫ, for i = 1, 2, . . . , p,

where ǫ > 0 is some prespecified error margin. The problems of this sort are called sparse approxi-

mation problems [13] and can be solved using one of several available algorithms, e.g., orthogonal

matching pursuit (OMP) [19],[20], basis pursuit denoising (BPDN) [16],[17], or LASSO [14],[15].

The sparse approximation algorithms have other applications including but not limited to feature
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extraction and denoising. The orthogonal matching pursuit algorithm that is used in this work is

described in Appendix A. The sparse solution to (2.3), W ∗
0 , if exists, is called the sparse approxi-

mation of L0. The locations of the nonzero entries in the columns of W ∗
0 determine indices of the

representative data samples in X , whose kernel functions are chosen to express the ideal training

scores.

After the weight matrix W ∗
0 is obtained, we can use it to calculate the score vector s(q)T of a

new sample q out of the dataset in order to assign it to a certain class. However, the case that some

entries in the score vector s(q)T are highly close to each other may happen. In such cases, we

can not decide to which class the new sample with unknown label belongs, which means we have

to use the feedback of a user to update the score functions in order to assign the new sample to a

class with high enough confidence. In the following section we show how the sparse representation

matrix W ∗
0 and the dictionary matrix K00 can be updated for in-situ learning as new data samples

become available, in a sparse fashion without changing the scores for samples which have already

been learned.

2.4. UPDATING SPARSE REPRESENTATIONS FOR IN-SITU LEARNING

The classification system designed in the previous section returns almost perfectly the ideal

scores of the training samples. These training samples are extracted from a certain environment

with specific properties. For example, in underwater target classification case the samples are

the sonar images taken from a patricular ocean floor. However, there are cases where we are given

samples from a totally different (geographical) environment with different properties (images from

another ocean floor with different water depth and background) to classify. Due to the change in the

environment, the feature vectors extracted from the new samples might be too different from the

training feature vectors that they do not fit in the trained system. Consequently, the classifier will
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not be able to make a correct decision about the new sample. In this case, either the new sample

is assigned to a wrong class or the score values are so close that the system can not classify the

sample with a high enough confidence. One of the solutions in this case is to somehow incorporate

an operator’s feedback namely relevance feedback into the learning process by asking an operator

(who is already familiar with the new objects) to provide the learning system with the true scores

and update the system based on these new information. We call this method of learning that makes

use of relevance feedback, in-situ learning. We should keep in mind that only a limited number of

samples can be used for in-situ learning. One of the reasons is that the operators will probably lose

patience if they are queried for feedback for many times. Another reason is to avoid the overfitting

of the system with too many (possibly redundant) in-situ samples. Therefore, if an in-situ sample

is classified correctly and with a high enough confidence, we do not need to query the operator

about that in-situ sample to update the classification system. In the rest of this section we show

how we applied the in-situ learning to our classification system.

Suppose that training is done and a sparse weight matrix W ∗
0 is found. Let q denote a new data

sample (not in X ) with unknown class label. The score vector for q is given by

s(q)T = k(q)TW ∗
0 .

If one entry si(q) in the score vector is larger enough than the others, then we assume that the

new sample q is adequately represented by the representative data samples selected by the sparse

weight matrix W ∗
0 . In this case, we do not need to change the weight matrix W ∗

0 or the kernel

dictionary K. However, if the entries in the score vector s(q)T do not assign the sample q to any of

the classes with high enough confidence, then the operator needs to be queried for the true label of

the sample and the score function sT (·) needs to be updated.
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Updating the score function can be performed for new samples one-by-one or in groups. How-

ever, it must be done such that the scores for all previously learned data samples are not affected at

all. We also need to decide whether or not the new samples need to be added to the representative

sample sets for different classes. That is, we need to decide whether or not to add new elements

to the kernel dictionary K, where these elements are centered around the new data samples. We

consider two cases. In the first case, the new sample can be learned by simply updating the weight

matrix in the score function in a sparse fashion (while maintaining the previously learned scores)

without changing the dictionary. In the second case, learning the labels for the new samples in

a sparse fashion (while maintaining the previously learned scores) requires expanding the kernel

dictionary.

2.4.1. CASE 1: IN-SITU LEARNING WITHOUT SAMPLE ADDITION. Let L1 de-

note the label matrix for new samples for which the score function needs to be updated. Each row

of L1 is a label vector with zeros at all entries, except for a one at the entry corresponding to the

class to which the operator believes the new sample q belongs. The simplest way to formulate the

score equations for training samples and new samples is as follows

(2.4)







L0

L1






=







K00

K10






W +







E0

E1






,

where W is the new weight matrix for learning the labels of the previous and new samples, K10 is

the kernel vector evaluated at new samples and [ET
0 ET

1 ]
T is the fitting error matrix. We wish to

design a sparse weight matrix W that keeps the error matrix [ET
0 ET

1 ]
T small. This problem also

consists of p ℓ1− norm minimizations for each column of weight matrix
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min ‖wi‖1

s.t.(2.5)

‖li −

[

KT
00 KT

10

]T

wi‖2 ≤ ǫ, for i = 1, 2, . . . , p,

where wi is the ith column of W and li is the ith column of

[

LT
0 LT

1

]T

.

The problems in (2.5) can be solved for sparse columns of weight matrix w∗
i , i = 1, 2, . . . , p using

a sparse approximation algorithm such as OMP [19],[20].

Formulating the problem as in (2.4) means that for every group of trained samples augmented

by new samples, the sparse algorithm solves recursively for new weight matrix. Although this

solution satisfies the scores for the new and previous samples, it lacks the ability to maintain the

support of the previously trained weight matrix while in practice we are interested in keeping this

support at each iteration of in-situ learning. In other words, we would rather to keep the previously

selected representative samples in the memory of the learning system.

One way to maintain the support of the weights from previous learning step is to somehow

enforce this support to the sparse approximation algorithm. This might requires us to modify part

of the sparse approximation algorithm. For instance, we can modify the OMP algorithm such that

it uses the support of weight matrix from the past learning steps as its initial atoms indices.

Alternatively we can update the weight matrix to learn the scores of the new samples by posing

the problem as
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(2.6)
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




,

where ∆W0 is the update weight matrix for learning the labels of the new samples and K10(W
∗
0 +

∆W0) are the scores for the new samples. We wish to design ∆W0 such that the updated weight

matrix W ∗
0 +∆W0 is sparse and the scores for previously learned samples do not change, that is

(2.7) K00(W
∗
0 +∆W0) = K00W

∗
0 .

The constraint in (2.7) gives

K00∆W0 = 0,

which means that the columns of ∆W0 must be in the null space of K00.

Since, L1,W
∗
0 , K00 and K10 are known, we can reformulate (2.6) as

(2.8)
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
,

Ideally, L0−K00W
∗
0 = 0 because W ∗

0 is a solution to (2.1). Therefore, if the error E0 is negligible,

the top portion of (2.8) assures that the columns of ∆W0 lie in the null space of K00. This in turn

assures that the scores of the previously learned samples do not fluctuate much. The bottom portion

is the score equations for the new samples. Now the objective is to find columns of ∆W0 that keep

the fitting error [ET
0 ET

1 ]
T small enough and are sparse at the same time. So the problem can be
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posed as the following ℓ1− norm minimizations that are also solved using a sparse approximation

algorithm

min ‖∆w0i‖1

s.t.(2.9)

‖l2i −

[

KT
00 KT

10

]T

∆w0i‖2 ≤ ǫ, for i = 1, 2, . . . , p,

where ∆w0i is the ith column of ∆W0, l2i is the ith column of the left side of (2.8) and ǫ > 0 is an

error threshold that is determined by the user.

Let W ∗ = [w∗
1 . . . w

∗
p] and ∆W ∗

0 = [∆w∗
01 . . .∆w∗

0p] be solutions to (2.5) and (2.9) respectively.

If the updated weight matrices W ∗ and W ∗
0 + ∆W ∗

0 are sufficiently sparse, then the new samples

are sparsely represented by the dictionary K and there is no need to update the dictionary by adding

the new samples. However, if W ∗ or W ∗
0 +∆W ∗

0 is no longer sparse or the loss of sparsity relative

to W ∗
0 is considerable, then simply updating the weight matrix is not sufficient and we have to

update both the dictionary and the weight matrix, as explained in the next section.

2.4.2. CASE 2: IN-SITU LEARNING WITH SAMPLE ADDITION. Suppose that W ∗

in (2.4) or W ∗
0 +∆W ∗

0 in (2.6) for Case 1 are not sufficiently sparse. This means that the scores for

the new samples can not be represented sparsely by the current kernel functions without affecting

the scores of the previously learned samples. In this case, we need to expand the dictionary by

adding new kernel functions.
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Let ∆K denote a set of kernel functions with different parameters each of which is centered

around one of the new data samples. If we add these kernels to the dictionary K, then we can write

the score equations for both previous training samples and new samples in the simplest matrix

form as

(2.10)
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In this equation, K01 and K11 are matrices of kernel functions in ∆K. Each column of K01 and K11

correspond to a kernel function that is centered at a new sample point for some choice of kernel

parameters. As we move from column to column the centers and/or the kernel types and their

parameters change. The rows of K01 and K11 are obtained by plugging in the training samples and

the new samples in these kernels, respectively.

Our goal is now to find the columns of W that are sparse and minimize the fitting error [ET
0 ET

1 ]
T .

This problem consists of the following p set of ℓ1− norm minimizations that are solved using

available sparse approximation algorithms for each column wi of weight matrix separately

min ‖wi‖1

s.t.(2.11)

‖li −Kwi‖2 ≤ ǫ, for i = 1, 2, . . . , p,

where,

K =







K00 K01

K10 K11






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is the expanded kernel matrix.

Similar to (2.4) in Case 1, the drawback of writing the problem as in (2.10) is that the repre-

sentative samples from previous learning steps are not maintained in the memory of the learning

system. Again, one way to solve this issue is to enforce the support of the columns of the weight

matrix from previous learning iterations to the sparse approximation algorithm that solves (2.11).

Another way is to change the formulation of the problem so that we can update the weights

instead of just solving for them recursively and independetly of the previous steps, that is

(2.12)







L0

L1






=







K00 K01

K10 K11



















W ∗
0

0






+







∆W0

∆W1












+







E0

E1






.

Here, ∆W =

[

∆W T
0 ∆W T

1

]T

is the weight update matrix for learning the scores of the new

samples that are now represented by the newly expanded kernel dictionary. To guarantee that

the scores of the previously learned samples are not changed by updating the weights and the

dictionary, we need to have

(2.13)

[

K00 K01

]

∆W = 0.
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This means that the update in the weight matrix must lie in the null space of

[

K00 K01

]

, which

we denote by N (

[

K00 K01

]

). We can rewrite (2.12) as

(2.14)







L0 −K00W
∗
0

L1 −K10W
∗
0






=







K00 K01

K10 K11






∆W +







E0

E1






.

where the left side and the matrix K are known. The top portion of (2.14) roughly satisfies the null-

space condition in (2.13) because W ∗
0 is the solution to (2.1). Hence, by writing the score equations

as in (2.14) we can learn the scores of the new samples represented by expanded dictionary while

keeping the scores of previously learned samples almost unchanged. We wish to design ∆W so

that it has sparse columns and minimizes the fitting error [ET
0 ET

1 ]
T . This problem can be posed

as

min ‖∆wi‖1

s.t.(2.15)

‖l2i −K∆wi‖2 ≤ ǫ, for i = 1, 2, . . . , p,

where ∆wi is the ith column of ∆W . Again, these are p sets of ℓ1−norm minimizations that can

easily be solved using a number of algorithms.

Let ∆W ∗ = [∆w∗
1 . . .∆w∗

p] be the solution to (2.15). The resulting updated weight matrix
[

W ∗
0
T 0T

]T

+ ∆W should be sparse given that the dictionary is now expanded by the kernel

functions centered about the new sample. However, it might be possible that it is not sparse.

Therefore, we have come up with an alternative solution to (2.12) in which the sparsity is enforced

to ∆W by setting the entries of ∆W0 equal to zero. Therefore, (2.12) becomes
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(2.16)







L0 −K00W
∗
0

L1 −K10W
∗
0






=







K01

K11






∆W1 +







E0

E1






.

Ideally L0 − K00W
∗
0 = 0, because W ∗

0 is a solution to (2.1), and if we enforce the columns of

∆W1 to be in the null-space of K01, then no more error than E0 is introduced to the top portion of

(2.16). This means

(2.17) ∆w1i = P⊥
K01

η
i
, for i = 1, 2, . . . , p,

where ∆w1i is the ith column of ∆W1, P
⊥
K01

is the orthogonal projection onto the null space of K01

and η
i

is a vector whose projection onto the null-space of K01 becomes ∆w1i and also satisfies the

bottom portion of (2.16).

Combining (2.17) and the bottom portion of (2.16) gives

(2.18) ∆w∗
1i = P⊥

K01
(K11P

⊥
K01

)♯l1i for i = 1, 2, . . . , p,

where l1i is the ith column of L1 −K10W
∗
0 and (K11P

⊥
K01

)♯ is the pseudo-inverse of K11P
⊥
K01

.

If the solution ∆W ∗
1 = [∆w∗

11 . . .∆w∗
1p] exists, the resulting updated weight matrix







W ∗
0

0






+







0

∆W ∗
1







will definitely be sparse and satisfies the scores of the new samples.
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2.5. CONCLUSION

We started this chapter by giving an introduction about multiple kernel classification systems

and then we gave a detailed description of our proposed multi-kernel classifier. We first described

how we designed the score function of this classifier using a predefined dictionary of kernel func-

tions and we continued by developing a mathematical framework for sparse representation of this

score function using a training dataset. Finally, we described how the user feedback can contribute

to the classifier’s learning process through in-situ learning.
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CHAPTER 3

EXPERIMENTAL RESULTS

3.1. INTRODUCTION

In this chapter we asses the performance of the general multi-kernel in-situ target classification

method proposed in chapter 2. We evaluate the viability of the developed method on a specific

feature set of underwater images called EOD dataset provided by Information System Technologies

Inc (ISTI). Our specific goal is to classify the mine-like and non-mine-like (clutter) objects. We

have used different performance measures such as receiver operating characteristic (ROC) curve,

confusion matrices and recall plots for the evaluation of our system. In the following sections we

first describe the EOD dataset and the feature vectors extracted from this dataset. Then, we explain

how we designed our baseline system by training it with part of the dataset to obtain the baseline

weights. Finally, we show how we used another part of the dataset for in-situ (online) training of

our system to obtain the weight updates. The remaining part of the dataset is used as generalization

(test) set for evaluation of the resulting classifier.

3.2. DATASET DESCRIPTION AND PREPROCESSING

We have generated the results of this chapter using the EOD dataset. This dataset consists

of feature vectors extracted from pairs of high-frequency (HF) and broadband (BB) sonar images

taken from the oceanfloor at one geographical environment with medium to hard difficulty levels

in clutter density, so the HF and BB images contain actual targets and background clutter. In

areas with higher clutter density the targets are obstacled by background clutter and as a result are

harder to be detected and classified. The images are collected using the Small Synthetic Apertur

Minehunter (SSAM) [24] that is a dual frequency band Synthetic Aperture Sonar (SAS) system.

The dual channels of SSAM are capable of constructing the HF sonar with high spatial resolution
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that captures more target details and the BB sonar with lower spatial resolution that has better

clutter suppression ability. The targets in the images include mine-like objects such as bullet, cone,

cylindrical and spherical shaped objects. The non-targets can be some typical objects (man-made

or natural) such as tire, fish traps and pipes found in the image backgorund.

The image pairs are partitioned into smaller regions of interest called snippets with 50% over-

lap in both dimensions in order to ensure that target is not divided between different snippets. As a

result of overlapping, the snippets with targets will contain the entire target not just part of it. The

size of the snippets is selected based on the average target size in the images. As scanned horizon-

tally, the image snippets containing an object have a background-highlight-shadow-background

pixel distribution. The highlight-shadow pixel distributions vary depending on the type of the ob-

ject and its range from the sonar. Thus, if we extract a distinct feature from each row of pixels in

the image snippet, the resulting feature vector will represent the unique patterns of an object within

the image snippet. Therefore, we extract the feature vectors based on the entropy of each row of

pixels in a snippet. We calculate the entropies of all rows of the downsampled HF and BB image

snippets and chain them together to form a 30-dimensional feature vector.

The resulting collection of 30-dimensional feature vectors extracted from the image snippets

along with their labels constitute the EOD dataset. We should note that the non-targets in EOD

dataset are so similar to the targets and are considered as difficult ones to be classified. We ran-

domly choose 25% of the total 661 feature vectors for baseline training. We use half of the re-

maining feature vectors for in-situ learning and the other half for measuring the generalization

error of our classification system. The generalization error measures how well a classifier gener-

alizes to previously unseen data. Table 3.1 shows the proportions of the feature vectors used for

baseline training, in-situ learning and generalization subsets of EOD dataset. It also shows the

number of targets/non-targets in each subset. In the following sections we apply our classification
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TABLE 3.1. EOD dataset

Targets Nontargets Total

Baseline 91 74 165 (25 % of all samples)

In-situ 136 111 247 (37.5 % of all samples)

Generalization 137 112 249 (37.5 % of all samples)

TABLE 3.2. Correct classification rate

Training In-situ Generalization

Recall 1 0.9190 0.9398

TABLE 3.3. Sparsity level of weight matrix after baseline training

Weight matrix Column 1 Column 2

Distinct centers (out of 165) 25 22

Total non-zeros (out of 2805) 26 22

TABLE 3.4. Confusion matrix after baseline training: zero threshold / knee point of ROC curve

Retrieved

Target Nontarget

T
ru

e

Target 133 / 127 4 / 10

T
ru

e

Nontarget 11 / 6 101 / 106

method to these feature vectors and evaluate it using performance measures such as ROC curves

and confusion matrices.

3.3. BASELINE TRAINING

Using the samples in the baseline training subset we first build the labels matrix L0 and kernel

matrix K00 that consists of Gaussian kernel functions centered around these samples. Each Gauss-

ian kernel function is parametrized by 17 different variances σ2 selected from the interval [0.05 6].

Therefore, the total number of columns in K00 is 165 × 17 = 2805. We then run OMP algorithm

[19],[20] for p = 2 times to solve (2.3) for each column of W0 separately. The OMP algorithm

stops running when the normalized residual reaches a desired size or in other words when the error

gets small enough. The desired size of the residual is adjusted so that both the desired training
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scores as well as a reasonable sparsity level are achieved. In our case ǫ = 0.09 satisfies both of

these conditions. We use the resulting optimal weights W ∗
0 to evaluate the system on the baseline

training, in-situ and generalization subsets of EOD dataset. The correct classification rates for

these subsets are shown in Table 3.2. We can observe that the baseline training already does an

almost perfect job on the generalization data set with a high value of correct classification rate. In

Table 3.3 We can see the number of distinct centers that are selected by the algorithm and also the

total number of non-zero entries for each column of W ∗
0 . This table shows that only 25 represen-

tative samples are needed to satisfy the scores of all 165 samples in the baseline training set hence

indicating a high level of sparsity. We should point out that in addition to the OMP, we tried to

solve the problem using a basis pursuit denoising approach [16], [17] such as log-barrier algorithm

[18]. However, the result did not turn out to provide a reasonable level of sparsity. Figure 3.1

shows the ROC curve for the generalization set. Table 3.4 depicts the generalization set confusion

matrix for two different threshold values of likelihood ratio test i.e. γ = 0 and the value of γ

corresponding to the knee point in Figure 3.1. The results presented in Table 3.4 show a small mis-

classification rate while the false alarm rate is a bit higher. In other words, this method has a better

ability in detecting the targets rather than non-targets. Finally Figure 3.2 shows the distribution of

the Gaussian variances that have been selected by the OMP algorithm where all of the 17 available

variances are selected at least once by OMP.

3.4. IN-SITU LEARNING

After the baseline training, we perform the in-situ learning using the samples in the in-situ

subset. At each in-situ iteration, we select a sample from the in-situ subset randomly. Using the

weight matrix from the previous learning iteration, we calculate the score vector for this randomly

selected sample. If the score vector suggests that this sample is classified correctly (i.e. the sample
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FIGURE 3.1. Generalization ROC curve after baseline training
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FIGURE 3.2. Histogram of the selected Gaussian variances after the baseline training

is located in the correct side of the current decision boundry) and the score values for 2 classes are

well-separated (i.e. the sample is located far enough from the current decision boundry not inside

it) , then we just evaluate the algorithm on the training, in-situ and generalization subsets, keep

the results and move to the next iteration. If the scores imply that either the sample is incorrectly

classified or is correctly classified but the score values for 2 classes are too close to each other, we

learn the sample by changing the weights (i.e. changing the decision boundry). We first try the first
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case to just update the weights without expanding the dictionary by solving one of the problems

in section 2.3.1. We set a threshold for the number of non-zeros that can be added to the weight

matrix after the update. If the number of non-zero entries that are added to the weight matrix after

the update is smaller than the threshold, we keep the updated weights, evaluate the algorithm and

continue to the next iteration. If this number exceeds the threshold, we expand the dictionary by

adding new kernel functions centered around new sample to it and we solve one of the problems

in section 2.3.2 to update the weights and again we evaluate the algorithm and move to the next

iteration. If the resulting updated weight matrix is not sparse enough according to our threshold,

even for case 2, we consider this sample as an outlier and remove it from the dictionary but we

still evaluate the algorithm using the weights from the previous iteration and keep the result. We

continue the learning until we run out of the in-situ samples.

Therefore, as the learning progresses, no matter a sample is learned or not, we evaluate the

algorithm on the entire training, in-situ and generalization subsets and calculate the correct clas-

sification rates for them. At the end of the in-situ learning process, we plot the recall and the

generalization ROC curves to see how well the in-situ learning performs and if it improves the

correct classification rate or not.

First we try the simplest way of formulating the problem as stated in (2.4) and (2.10) and

solve either (2.5) or (2.11) depending on the sparsity level that we can achieve. The results show

that out of 247 in-situ samples 8 are learned without addition and 11 with addition to the kernel

dictionary. The rest of the samples are not learned (i.e. do not contribute to the change of the

weights) because they are considered correctly classified and their score values for 2 classes are

well-separated. Table 3.5 represents the number of distinct centers and the total number of non-zero

elements of the weight matrix after in-situ learning. The numbers still prove a high sparsity level

for the weight matrix. Table 3.6 shows the generalization confusion matrices after the baseline and
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TABLE 3.5. Sparsity of weight matrix before / after in-situ learning that solves (2.5) or

(2.11) with OMP

Column 1 Column 2

Distinct centers (out of 165/ 176 ) 25/ 39 22 / 39

Total non-zeros (out of 2805 / 2992) 26 / 42 22 / 42

TABLE 3.6. Confusion matrix before / after in-situ learning that solves (2.5) or (2.11) with OMP

Retrieved

Target Nontarget

T
ru

e

Target 133 / 133 4 / 4

T
ru

e

Nontarget 11 / 8 101 / 104

in-situ training when the threshold value for likelihood ratio test is set to γ = 0. The numbers

show an improvement in the false alarm rate while it has no effect on the classification rate of

the targets. The overall classification rate is only improved slightly after the in-situ learning. We

can observe this also in Figure 3.3 where the correct classification rates for the whole training,

in-situ and generalization subsets are plotted. The green curve shows a noticeable improvement

in the classification rate of the in-situ subset while the red curve shows only a slight improvement

in the classification rate of the generalization subset. One reason behind this might be that the

baseline system perfectly learns the subspace spanned by the dataset and there is nothing left from

this subspace to be learned through in-situ learning. In this case we can conclude that the wrongly-

classified generalization samples are all outliers and we are not able to find a subspace that contains

the baseline samples as well as these outliers no matter how good our in-situ learning system is.

Another reason might be that the change in the subspace weights after each in-situ iteration is

too small to represent the bigger subsace that contains the new in-situ sample. Figure 3.4 is the

generalization ROC curve after baseline and in-situ training that shows no significant change after

in-situ learning due to the mentioned possible reasons.
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FIGURE 3.3. Correct classification ratio during in-situ learning that solves (2.5) or (2.11)

with OMP
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FIGURE 3.4. The generalization ROC curve before and after in-situ learning that solves

(2.5) or (2.11) with OMP

As mentioned briefly in section 2.3.1, the drawback of this in-situ learning approach is that the

previously selected centers are entirely cleared from the system’s memory at each larning iteration.

However, if we keep track of the weights as learning progresses, we can observe that there is only a
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small difference in the supports of the weight matrices from iteration to iteration. That means only

a few of the old centers are replaced by the new ones at each iteration. This can be observed in

Figure 3.5 where the boxplots for the indices of the non-zero entries in both columns of the weight

matrix are shown. The boxplots display the variation in the support of the columns of weight

matrix during the in-situ learning iterations. The bottom and top of each box are the first and third

quartiles of the indices, and the band inside each box is the median of the indices. The ends of the

whiskers extended from each box represent the minimum and maximum index values. The plot

does not show a significant change of the indices during iterations and also no outlier points are

observed in the plot. Due to this fact we came up with the idea to modify the OMP algorithm so

that at each iteration it selects all of the previously selected centers initially. In other words, we

can enforce the suppot of weight matrix at iteration i to be a subset of its support at iteration i+ 1.

A description of the modified OMP algorithm is give in Appendix A.
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FIGURE 3.5. The sparsity pattern for the columns of weight matrix during learning itera-

tions with OMP

So, this time we use the modified OMP algorithm to solve (2.5) or (2.11) depending on the

level of sparsity that we obtain after the weight update without addition case. Here, the support of
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TABLE 3.7. Sparsity of weight matrix before / after in-situ learning that solves (2.5) or

(2.11) with modified OMP

Column 1 Column 2

Distinct centers (out of 165/ 178 ) 25/ 66 22/ 61

Total non-zeros (out of 2805/ 3026) 26/ 76 22/ 68

TABLE 3.8. Confusion matrix before / after in-situ learning that solves (2.5) or (2.11) with

modified OMP

Retrieved

Target Nontarget
T

ru
e

Target 133 / 135 4 / 2

T
ru

e

Nontarget 11 / 10 101 / 102
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FIGURE 3.6. The sparsity pattern for the columns of weight matrix during learning itera-

tions with modified OMP

weight matrix during each iteration is retained and used in the next iteration. Out of 247 in-situ

training samples 18 are learned without addition and 13 with addition to the kernel dictionary.

The resulting weight matrix after this in-situ learning experiment is still highly-sparse according

to Table 3.7. In Figure 3.6 we can observe the sparsity pattern of this weight matrix during in-

situ iterations where the boxplots show more similarity between the indices from one iteration to

another.
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FIGURE 3.7. Correct classification ratio during in-situ learning that solves (2.5) or (2.11)

with modified OMP

According to Table 3.8, there is a slight improvement in the classification rates of targets and non-

targets after this in-situ experiment. The generalization ROC curve after this learning experiment

is observed in Figure 3.8. The overall classification rate on the generalization set is again slightly

improved as shown in Figure 3.7. Apparently, the only advantage of this approach to the previous

one is that the representative samples are retained at each iteration as is required in the real sonar

target classification scenarios.

Finally, we try to formulate the problem as in (2.6) and (2.12). We solve (2.9) or (2.15) de-

pending on the sparsity to find the weight updates. The results of this approach are not satisfying.

For each and every in-situ training sample, the updated weights for case 1 (without addition) and

even case 2 (with addition) introduce many new non-zero entries and therefore the sparsity is lost

significantly. As the final step we consider the second alternative for solving (2.12). We use this

approach and solve for the weight updates with the sparsity enforcement according to (2.18). The

weight updates in (2.18) are too small to make any change in the scores of generalization samples

41



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

 

 

After Baseline Training
After In−Situ Training

FIGURE 3.8. The generalization ROC curve before and after in-situ learning that solves

(2.5) or (2.11) with modified OMP

due to very small entries in the null-space of the matrix K01. On the other hand, if the variances are

selected such that the entries are bigger, the null-space shrinks and the previously trained scores

will change significantly. This issue can be related to the property of Gaussian kernel matrices. For

the Gaussian kernels, as long as the points are distinct the kernel matrix will be full-rank and there

will be no space left to put anything sparse in it. The solution might be to use a different kernel

function that may even not satisfy the Mercer’s theorem [25]. In addition to the RBF Gaussian

kernel functions we have tried other kernel functions as well. Using the Laplacian kernel functions

[10], we observed very similar results in terms of sparsity level as well as classification rate to the

case where Gaussian kernel is used. However, the results obtained with the Quartic and Polynomial

kernel functions [10] do not lead to a high level of sparsity as those with Gaussian and Laplacian

kernels.
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3.5. CONCLUSION

In this chapter we showed the results of evaluaing the method proposed in chapter 2 on the

EOD dataset given to us by Information System Technologies Inc (ISTI). This dataset consists of

30−dimensional feature vectors extracted from underwater image snippets along with their labels

(target and non-target). We first described the EOD dataset and then presented the evaluation re-

sults of our baseline system on this dataset using ROC curve and confusion matrix. We observed

that the baseline system has a very good generalization performance. Finally, we evaluated our

different in-situ learning approaches on EOD dataset and showed the results using recall plot and

ROC curve. The results suggested that our in-situ learning approaches do not increase the gener-

alization ability of our system despite the sparsity cost that they cause.
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CHAPTER 4

CONCLUSION AND FUTURE WORK

In this work we have used sparse representation theory to develop a multi-kernel learning

machine for in-situ learning and classification of underwater objects in sonar images. We applied

the method to a SAS dataset of underwater objects to classify them into two groups of mine-like

and non-mine-like objects. We first did the baseline training using a randomly selected subset of

this dataset and found a sparse representation of the proposed multi-kernel score functions for this

subset. We then performed the in-situ learning on another subset of the dataset to update the sparse

score representations for the new unseen samples from this subset.

The evaluation results show that the baseline training system performs very well in terms of

both generalization ability (with 93.98% correct classification rate) and sparsity level (99% spar-

sity). On the orher hand, we can observe from the in-situ learning results that the in-situ learning

(specifically without addition case) fails to make a noticeable improvement in the generalization

performance despite the sparsity level that it loses. This is possibly due to the incapability of the

in-situ learning system to capture the new subspace that contains the new in-situ samples. I.e. the

subspace weights are not changed sufficiently to capture the bigger subspace containing the new

samples. Another possibility is that the baseline system performs so well in learning the subspace

spanned by this dataset that it leaves no room for improvement during in-situ learning. In other

words, the subspace spanned by the dataset is learned pefectly through the baseline training and as

a result no significant change is made to the subspace weights during the in-situ iterations. In this

case, the lack of improvement in the generalization ability after the in-situ learning iterations can

be explained by the fact that the wrongly-classified generalization samples are just outlier samples.

In the latter case, using a manifold learning approach as opposed to the current subspace learning
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approach might improve the generalization performance through in-situ. Moreover, developing an

unsupervised selective sampling procedure that allows the most informative samples to be selected

for in-situ learning, might also contribute in improvement of the in-situ learning performance by

reducing the number of in-situ samples and avoiding the overfitting problems.
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APPENDIX A

ORTHOGONAL MATCHING PURSUIT

Orthogonal matching pursuit (OMP) [19] is an iterative greedy algorithm [23] that is used to

approximate a high-dimensional sparse vector from only a small number of linear measurements

that are corrupted by noise. OMP is simpler and faster compared to alternative sparse approxima-

tion algorithms.

Consider the following linear model

(A.1) l0 = K00w0 + e0

where l0 ∈ R
M is the observation vector, K00 ∈ R

M×N , e0 ∈ R
M is the vector containing the

measurement errors, and the number of measurements M is much smaller than the dimension N

of the unknown vector w0 (M ≪ N). The goal of OMP is to recover the support of sparse vector

w0 under the model (A.1). To do this, OMP first initializes its residual (error at each iteration)

and atom (selected column of K00 at each iteration). Then, at each iteration OMP selects a new

atom which is the column of K00 that is most correlated with the current residual and adds it

to the previous set of selected atoms. The algorithm then updates the residual by projecting the

observations orthogonally onto the null-space of the previously selected atoms. As a result, the

residual at each iteration will be orthogonal to the selected atoms (columns), so the algorithm does

not select an atom (a column) twice and the set of selected atoms grows at each iteration. The

algorithm then continues to iterate until a stopping criterion is met and it stops. In the following

we first show the OMP steps and then how we modify OMP to retain the support of the weight

matrix during in-situ learning iterations.

The OMP algorithm iterates as follows
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• Step 1: Initialize the residual r(0) = l0 and selected atom K(0) = ∅ and start the OMP

iteration counter i = 1.

• Step 2: At iteration i find the selected atom

ti = argmax
t

kT
t r

(i−1)

where kt is the tth column of K00. Update the set of selected atoms K(i) = [K(i−1) kti
].

• Step 3: Update the residual

ŵ0 = (K(i)TK(i))−1K(i)T l0

r(i) = l0 −K(i)ŵ0 = P⊥
K(i)l0

where P⊥
K(i) denotes the orthogonal projection onto null-space of K(i).

• Step 4: Stop the algorithm if the stopping criterion is met otherwise i = i + 1 and return

to step 2.

Several stopping rules for the OMP have been suggested in [19] such as ℓ2-bounded noise,

ℓ∞-bounded noise, and Gaussian noise. Our stopping rule for OMP follows the ℓ2-bounded noise

case and is achieved when the residual size (norm squared of the residual ) reaches a desired value.

In other words, in our work the OMP stops running as soon as the norm squared of the residual

falls behind a prespecified small threshold value.

As required by one of our experiments, we need to change the OMP algorithm such that at

each in-situ learning iteration it retains the support of the weight vectors from the previous in-

situ iterations. In other words, we want the OMP to select all of the selected kernel functions from

previous in-situ iterations first and then continues iterating until the stopping condition is achieved.

Therefore, the only change that is needed to be applied to OMP occures in the initialization step of

50



the algorithm. The initial atoms in this case are selected to be the columns that are retained from

previous in-situ learning step. The initial residual is then accordingly calculated by projecting the

observations onto the null-space of the initial atoms. So, the first step of the OMP in this case

becomes

• Step 1: Initialize the selected atoms K(0) = Ks, where the columns of Ks are the columns

of K00 that have been selected by the OMP at previous in-situ iteration.

Initialize the residual r(0) = P⊥
Ks
l0.

Start the OMP iteration counter i = 1.

The rest of the algorithm stays unchanged.
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