
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 36,No.3, MARCH 1989

Parallel and Pipeline Architectures for
2-D Block Processing

M. R. AZIMI-SADJADI AND A. R. ROSTAMPOUR

Abstract - This paper is concerned with the development and design of
parallel and pipeline architectures for 2-D recursive and nonrecursive
block digital filter. In this regard, several high speed structures using
single-instruction multiple-data stream (SIMD) machines have been devel­
oped. These structures are designed based upon the specific nature of the
block convolution processor, block recursive processor and block state­
space processor both at the block and scalar levels.

443

such structure is given in this section for 2-D block implemented
FIR filters using SIMD machine.

Consider an image of size M X M which is partitioned into a
number of nonoverlapping blocks of size K X L. Now, if the size
of the blocks are chosen to be greater or equal to the order of the
FIR filter, the convolution summation can be arranged into the
following block convolution equation (causal quarter-plane fil­
ters) [5]

1;. j = HooU;,j + HOlU;, j-l + HlOU;-l, j + HllU;-l. j-l (1)

where U;,j represent the (i, j)th block of the input image defined
in a column vector of size KL X 1 such that

where 'Tmult is the time to perform a matrix-vector multiplica­
tion; 'Tadd is the time to perform the addition operation over the
entire block and 'Ttransfer is the time to transfer a block of data to
adjacent PE's. If longer computation time is to be traded in favor
of less complex hardware, a structure can be designed using only
one matrix-vector multiplier and one vector adder-accumulator.

Note that in general there are two methods used for the
construction of SIMD (systolic) machines. In one, PE's are
programmable hardware capable of data manipulation. All these
PE's will operate under the control of a central controller which
is responsible for instruction decoding and broadcasting. The
entire system is then connected to a host computer which is used
for program development. The host is connected to the system
through the use of a dual port memory. The second method
involves the construction of the PE using dedicated hardware
which performs a prescribed task. In this case, there is no need to
broadcast instructions, thus the central controllers can greatly be
simplified or altogether eliminated. However, the host is needed
for data exchange. In this situation, the memory resident in each

U~j) = [Urn,jL Urn,jL+l'" Urn,(J+llL-tl (2b)

where {urn, n} represents the input sequence. 1;, j which repre­
sents the (i, j)th block of the output image can be defined in a
similar manner. Matrices Hi, j 's are doubly Toeplitz matrices
with blocks that contain impulse response, h rn n elements [5]. Let
us for simplicity assume K = L. Then, this block equation can be
implemented using N 2 PE's (N ~ M/K, number of blocks in
each strip of the image). Each PE which performs the required
operations to calculate a block of the output image requires
blocks of input image from its North, West, and North-West
PE's as well as its input block from the buffers. This requirement
dictates an interconnection network as shown in Fig. l(a). Since
there are as many PE's as there are blocks of data, the entire
operation can be carried out in parallel. The sequence of opera­
tions depends on the internal architecture of each PE. In Fig.
l(b), the complex architecture is traded in favor of speed. In this
scheme, four matrix-vector multipliers and one vector adder are
used, The sequence of events are:

a) after loading blocks of the input image to the corresponding
PE's, all PE's transfer a copy of their input blocks to South,
South-East, and East PE's in parallel;

b) all PE's will perform the block computation in parallel.

Therefore, the total computation time is

I. INTRODUCTION

VLSI architectures are being increasingly used in real-time
signal processing applications. High-speed performance can be
gained in VLSI structures when the algorithms possess concur­
rent characteristic. In contrast to non-recursive or FIR filters
which inherently benefit from this concurrency and can effi­
ciently be implemented with high parallelism, recursive or IIR
filters can only be implemented in sequential manner. This
obviously imposes an upper limit on the speed of the operation
and in addition limits the effective use of large number of
processing elements (PE's). Lu, Lee and Messerschmitt [1] have
proposed several systolic architectures for block implemented
I-D FIR and IIR digital filters which offer considerably high
sampling and throughput rates as compared with the single
processing element. However, in order to utilize such advantages
the state matrix in the block state-space equation should be
transformed to a triangular or a quasi-triangular form using
unitary or orthogonal similarity transformations. Parhi and
Messerschmitt [2], introduced a look-ahead computation scheme
for parallel implementation of the block state-space equation.
This technique utilizes pipelining at bit level and allows higher
sampling rate. They have also proposed an incremental block
state-space structure [3] which offers lesser computational com­
plexities when compared to the standard and parallel block
state-space structures [4].

In this paper, several parallel and pipeline architectures for
2-D block implemented FIR and IIR digital filters described by
block convolution sum, block recursive equation and block
state-space formulations [5], [6] are presented. These structures
make use of a class of parallel computers which is known as
single-instruction multiple-data stream (SIMD) machine [7], [8].
This type of machine is particularly useful when similar opera­
tions on a large set of data are to be performed.

II. IMPLEMENTATION OF FIR FILTERS USING
SIMD ARCffiTECTURES

A 2-D nonrecursive or FIR filter is described by a convolution
summation over a finite window of size N, X N2 • Since for these
filters each output pixel is dependent only on a limited portion of
the input image data, they can be implemented on a fully parallel
architecture without requiring any recursion or sequencing. One

Manuscript received January 4,1988; revised June 12, 1988. This paper was
recommended by Associate Editor H. Gharavi.

The authors are with the Department of Electrical Engineering, Colorado
State University, Fort Collins, CO 80523.

IEEE Log Number 8825767.

and

u = [U(j) U(j) ... u(j) 1t
I,J IK iK+l (i+l)K-l

'Tto tal = 'Tmult + 'Tadd + 'Ttransfer'

(2a)

(3)

0098-4094/89/0300-0443$01.00 ©1989 IEEE

444 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 36,No.3, MARCH 1989

Let us consider the worst case when N1 = N2 = K. Note that this
can always be satisfied by zero padding {h m n} to make it of size
K X K. If K is divisible by 2, the matrice~ Hn's can be parti­
tioned into blocks of 2 X 2. The operations on these partitioned
matrices which are of special type circulants with noncircular
blocks, can be carried out using length-2 short convolution algo­
rithm [5], [9]. Each length-2 operator can be accomplished using
only 3 multiplications and 5 additions as

[~~ ~~ 1][~~] = [~~] or hu = y (6)

and

fJ(j) = [U(J)U(J-1)] I
m m m (5b)

mE[0,(K/2)-I].

The subblocks of u,'kJ}'-n that are

(8a)

(8b)

(7a)

(7b)

(7c)

go + gi = Yo

g2 - gl = YI'

and then

The operations in (4) can then be implemented on the structure
shown in Fig. 2(a). The internal structure of each block of Fig.
2(a) is shown in Fig. 2(b). In this structure the initial inputs to
the multiplexers are the subblocks of length 2 of u,1~~~)n that are

can be performed by defining the intermediate variables

go=(ho+h_I)u1

gi = ho(Uo - uI)

g2=(hl+ho)uo

(b)

WESTPE

U i , j _l

H
01

Ui,j

(a)

mE [0,(K/2) -1]

enter serially to the row processors. Fig. 2(c) shows the structure
of each h operator. The total number of multipliers per output
sample for this structure is found to be

which is considerably smaller than that of the direct matrix-vec­
tor implementation.

These architectures are independent of the type of scanning
and can provide real-time FIR filtering on temporal image data
provided that the temporal sampling period T; > Ttot.l' In what
follows, SIMD and pipeline structures are introduced for 2-D
block implemented IIR digital filters.

(9)Ntotal = 3/4(K + 2)(K + 1)

PE is regarded as a dual port memory and the host has access to
each memory modules in the PE's. The image blocks are loaded
into the PE's memory by the host.

A structure can also be designed to accomplish all the matrix
vector operations in each PE with a minimum number of multi­
plications. In order to arrive at such a structure, consider the
special form of matrices Hi) 's, If the constituent block matrices
of Hoo and HlO are H~O),s and those of HOI and H11 are H~1) 's,
then the block equation in (1) can be decomposed into a number
of (K) equations each describing the row operations required for
the output block (i, j). This row operation is given by

Fig. 1. (a) The SIMD implementation of FIR filters. (b) The PE architecture
using four-matrix multipliers.

where

K

L H}Y;}il,- n'
n=O

o

1£[0, K -1]

o

(4)

(Sa)

III. IMPLEMENTATION OF IIR FILTERS USING SIMD
MACHINES AND PIPELINE PROCESSORS

3.1. 2-D Block Recursive Implementation

Consider a causal quarter-plane 2-D recursive (IIR) digital
filter described by a 2-D difference equations. If we divide the
input output arrays into non-overlapping blocks of size K X L
the following 2-D block recursive equations can be obtained [5]

¥;,} = ElO ¥; - I . } + E01¥;.}-I + E11¥;-I.;_1 + FooU,.} + FioU,-I.;

+ F01U,.}-I+ FllU,-I,r l (10)

where matrices Ei}'s and Fi)'s are similar in structure to Hi}'s in
(1), but they are defined in terms of the coefficients of the 2-D
difference equation [5]. Since each output block is dependent not
only on past and present input blocks but also on the past output

IEEE TRANSACTIONS ON CIRCillTS AND SYSTEMS, VOL. 36, No.3, MARCH 1989 445

(a)

Buffer

Row

(b)

IC

IC
At nth Stage

n-o,l, K

Fig. 3. The pipelined SIMD implementation of IIR filters.

Note that at every TpE, the operations on the last block of an
image frame will be completed at PEN.N' whereas the first block
of a new image frame will eriter PEI,I' The temporal sampling

(15)

(12)TpE=Ty+TW'

where T W and T y are the time required to compute JV;,j and Y;,j'
respectively, The sampling rate will then be I/TpE'

The operations in each PE can be divided into two steps,
assuming that PEi,/ is processing a block of the k th frame,

(1) During the time interval TW' the following four operations
can be accomplished simultaneously:
a) compute

JV;~j = FooU;~j + FiOU;"-I,j + FrnU;~j-1 + FnU;"-I,j-l; (13)

b) deliver Y;~j-l to the output buffer;
c) send Y;~j-l to three immediate neighbors, PEi,j+I'

PEi+I,j+1 and PE1+I,j'
d) receive Y;"-l,j from PEi- I,{, Y;~j-l from PEi,j-1 (kth

frame), and receive y;"-t j-l of frame k + 1 from
PEi-1, / -1 and store it for future processing on the
(k+I)th frame. Note that, Y;"-l,j-l of frame k is
stored in PEi,/ one clock in advance,

(2) During the time interval of T y , the following four opera­
tions are accomplished simultaneously:
a) compute

Y;~j = ElOY;"-I,j + EOIY;~j-1 + EnY;"-I,j-1 + JV;~j; (14)

b) send U;~{ to the three of its neighboring PE's.
c) get U;~/ from the input buffer.
d) receive u;"-tlj and U;"-ilj_l of frame k + 1 from PEi-I,j

and PEi,j-l; receive U;~tlj_l from PEi-I,j-1 and store
them for future processing at frame k + 1. Note that the
operations in 2c) and 2d) are needed for future stages,

Therefore, the processing time for one complete image is

computation time TpE is

(c)

JV;,j = Frxll;,j+ FlOU;-I,j+ FrnU;,j-1 + FnU;-I,j-1 (lla)

Y;,j = ElOY;-I,j + EOl Y;,j-l + En Y;-l, j-l + JV;, i: (llb)

Now these operations for 2-D block recursive filtering on
multiple frames of digital images can be organized in pipeline
fashion on an array of N 2 PE's as shown in Fig, 3, During one
pipeline clock, all the PE's along each diagonal work on the same
image and their computed results are delivered to the output
buffers and also to the immediate neighboring PE's in the next
diagonals; while the PE's in the other diagonals are working on
different images. As a result at every clock pulse, 2N -1 images
are being processed once the pipe is full; and it takes 2N-I
clock periods to complete the processing of one image. The PE

blocks, the operations for IIR filters should be carried out in
sequential manner. In this section a pipeline mechanism for block
recursive equation is introduced making use of SIMD machines
and the fact that IIR filters can be realized as a cascaded of an
all-pole and a nonrecursive filter, i.e.,

Fig. 2. (a) The generation of output block Yi.} using the row processing
scheme. (b) The internal structure of each row processor. (c) The internal
structure of each two-by-two operator.

446 IEEE TRANSACTIONS ON CIRCffiTS AND SYSTEMS, VOL. 36, No.3, MARCH 1989

f\ .(1) R (2) R (3)
I,J i,j i,J

a 1,1 a1.2

R (4)
I,)

4
l; a R (q)
1 1 ,q I,J

ta R (q)
1 a.e i,J

b R (q)
1 4,q i,J

k+7 k+6
X, ,(1) x . (2)
I,) I,J

k+5 k+4
X, ,(3) x . (4)

I,J I,J

(a)

~ a k+3
q=11,q ti (q)

4 k+2

f..111z ,q ti (q)

4 k+1

q~1a3,q ~,i (q)

4 k

f=/tq ~,i (q)

Fig, 5. (a) The structure of fully pipelined PE. (b) The structure of each
subprocess element e;,j'

where 'I'm is the time for a scalar multiplication and To is the time
for a scalar addition. A typical 4 X 4 matrix-vector multiplier
utilizing recursive doubling is shown in Fig. 4.

(19)

(18a)

(18b)

(b)

'I'PE = Teale.+ Ttransfer

fi!\
\!..:l

where 'I'M is the time for a vector matrix multiplication and TA is
the time for a vector addition. The temporal sampling rate will
then be I/TpE and the latency is (2N -1)TPE' To obtain higher
sampling rate, TpE has to be reduced which in tum requires the
reduction of Teale: To achieve smaller Teale,' we may design ma­
trix-vector multipliers in which all the additions are done using
recursive doubling procedure, In this case, the computation time
in each PE would become

transferring Rk(i+l,j),SkU,j+l) to PEi+l,} and PEi,}+l in
Ttransfero

For this implementation, TpE is given by

Rk(i+l,j) =A1Rk(i,j)+AzSk(i,j)+Bpk(i,j) (17a)

Sk(i,j+l) =A3R
k(i,j)+A

4S
k(i,j)+ Bpk(i,j) (17b)

y k(i, j) = C1Rk(i, j) + ~Sk(i, j) + DUk(i , i) (17c)

frame k + 1, the PE;,} can be working on image frame k. For this
architecture, there will be (2N -1) images being processed simul­
taneously. The operations in each PE, say PEi , } (assuming PE;,)
is processing a block of the kth image, i.e., u-«, j» include:
calculations of iF(i + 1, j), SkU, j + 1) and yk(i, j) at Teale.

using

Fig. 4. A typical 4x4 matrix-vector multiplier utilizing recursive doubling
method (nl = n2 = K = L = 2).

interval for this pipelined architecture should be greater than or
equal to TpE' The main advantage of this partitioning is to share
the hardware for calculating W;~} and y;~} in different time
intervals TW and Ty . This consequently reduces the amount of
hardware needed to implement an IIR filter.

3.2. 2-D Block State-Space Implementation

Recursive digital filters can alternatively be described by a
state-space realization. Let us define the "block state" vectors
R(i, j) and s«, j) which, respectively, refer to the states associ­
ated with the boundary elements of the (i, j)th block along the
horizontal and vertical directions. Having defined the "block
state" vectors, the 2-D block state-space equation is given by [5]

R(i + 1, j) = A1R(i, i) + AzS(i, j) + B1U(i, j) (16a)

S(i,j+l) =A3R(i,j)+A4S(i,j)+BP(i,j) (16b)

Y(i, j) = C1R(i, j) + ~S(i, j) + DU(i, i). (16c)

The matrices in this multiinput multioutput (MIMO) structure
are obtained [5] in terms of those of the single-input single output
(SISO) structure. The block state vectors R(i, j) and S(i, j)
propagate vertically and horizontally to generate R(i + 1, j) and
S(i, j + 1), respectively. The global initial conditions are assumed
to be zero.

Similar to the pipelined structure in the previous case, a
pipelined SIMD structure can be devised for the 2-D block
state-space model. The interconnection network needed for this
implementation is simpler than the previous architecture due to
the fact that each PE only requires one vector R from the North
block and one vector S from the East block. This scheme not
only reduces the number of data path to two (diagonal connec­
tions are eliminated) as opposed to three in previous design, but
also each path is considerably smaller in size i.e., (n1L) and
(nzK) as compared to (KL) and (KL) in the previous implemen­
tation, where n1 and nz are the order of the 2-D IIR system. As
mentioned above, PE;,} can perform the output, R and S
calculations only when the PE;_l,} and PE-i,}-l ~ave already
finished their calculations of the required R and S, Therefore,
durin&, the pepod in which PE;_l,} and PE;,}_l are calculating
their R and S, the PE;,} would be idle, To avoid such a waste of
resource, the system will be setup to work in a pipelined fashion.
In this form, while the PE;_l,} and PE;,}-l are working on

IEEE TRANSACTIONS ON CIRCillTS AND SYSTEMS, VOL. 36, No.3, MARCH 1989 447

k+3
Ri+l,j (1)

k+2
Ri+l,j (2)

Ri~+ll,j (3)

R~+l ,j (4)

k+7 k+5
R (1) R (3)

t it,~~6(2) sk+14)
I,J I,j

~+(,)
k+5

A1
:J-~

5 ,(3)
/ IJ'-~I,j ,.)

k+6 k+4"~ ~ MVM1 / / IJ-+
U (2) U (4)
I,j I,j

1// V l,t~
k+7

•• s 1 A2 1/, ,(1) U ,(3) '/I,J

"1 l/
~ MVM2 /

81

MVM3

U

(a)

C2
MVM2

k+4

Yi ~~l)
~--·1~j(2)

1--------l.Yi~j(3)

)....-------.....i~j(4)

b
MVM3

(b)

Fig, 6. (a) Computation of the state R(i + I, j) by fully pipelined MVM's, (b) Computation of the (i, j)th output block by fully
pipelined MVM's,

3.2.1. A Fully Pipelined PE Architecture

To increase the processing speed of the PE's even further, a
fully pipelined matrix-vector multiplier (MVM) is designed in
this section. For simplicity, it is assumed that K = L = nj = nz. A
typical 4 X 4 fully pipelined MVM with an arbitrary input se­
quence [Xi, }(1),' . " Xi, }(4)] of four consecutive frames is shown
in Fig. 5, where k represents the frame number. As shown in Fig.
5, while the last output of image frame k,

4

L a4,qX~/q)
q -1

is leaving the lower and rightmost subprocess unit e4 4 of the
MVM i,} , the first input of image frame k +7 to MVMi,~' xt;(i),
is entering to the upper and left most subprocess unit. Therefore,
there are data from 2KL -1 image frames that are being pro­
cessed simultaneously in one MVM.

In order to implement the operations in (17) in each PE a total
of nine MVM's and six vector-adders are needed. Figs. 6(a) and
(b) show the implementation of (17a) and (17c), respectively.
Equation (17b) is implemented similar to (17a). As shown in Fig.
6(b), there are six latches (delays) for output synchronization in

each PE. Let Tm and Ta denote the required time for one scalar
multiplication and one scalar addition, respectively. Then, using
this structure the total computation in one PE becomes

(20)

which permits even higher sampling rate.

IV. CONCLUSION

In this paper several SIMD and pipeline architectures are
proposed for 2-D block processing. An SIMD architecture for
2-D FIR filters is presented which offer a choice of speed/cost
tradeoff. The matrix-vector operations in this structure can be
implemented using length-2 convolution processor with a mini­
mum number of multiplications. This SIMD architecture can
further be modified to process 2N -1 image frames simultane­
ously in a pipeline fashion for direct 2-D block recursive and 2-D
block state-space implementations. To yield higher throughput­
rate, pipeline mechanism has also been adopted at the PE level.
The structures introduced in this paper provide a symmetric
design for implementing near real to real-time filtering operation.

448 IEEE TRANSACTIONS ON CIRCillTS AND SYSTEMS, VOL. 36, No.3, MARCH 1989

00

y(n) = L h(n,m)x(m).

where the coefficients G; (n) and b,(n) are functions of the filter
characteristics at the sampling instant n. The present paper

The generalized transfer function (GTF), H(z, n), is then defined
as the z-transform of the impulse response with respect to the
variable (n - m):

II. THEFTA AND DIFFERENT STRUCTURES

In general, LTV filters have been described in the time domain
by an impulse response h (n, m), which is defined as the response
of the filter at the sampling instant n to an impulse applied at the
sampling instant m. The output of this filter may then be
written:

(2)

(1)

As an example of this, consider the rational function
K,

L G;(n)z-;

H(z, n) = ---'-;--~~'---2---­

I + L b,(n) z- i

i-I

H(z,n) = L h(n,m)z-(n-m).
m=-oo

Therefore, in LTV systems, we must either obtain a set of
difference equation coefficients to approximately realize a desired
filter or avoid the use of a difference equation realization alto­
gether (4). In any event, it may be very difficult, and sometimes
even impossible, to satisfactorily synthesize a fast varying LTV
filter.

The simplest solution to the problem of LTV filter synthesis is
known as the frozen-time approximation (F1). The FTA proce­
dure uses the rational function coefficients in a difference equa­
tion in the same manner as an LTI filter. This procedure does
not, in general, realize the desired filter, but simply produces an
approximate realization of it. The approach has been shown to
perform well only for slowly varying filters (3). The term slowly
varying, however, remains rather nebulous. In fact, most of the
proposed applications for LTV filters have also been described as
slowly varying. Therefore, the FTA should not be ruled out on
these grounds. Further, the FTA approach has been recently
discouraged by way of numerical example (5). This same example
will be used in the present work to reach the opposite conclusion.
Indeed, the negative conclusion that was reached was based on
the performance of the FTA for only one structure. Before the
FTA is dismissed, its performance should be assessed using many
different structures, since, in contrast to LTI filters, there is no
simple relationship between the coefficients used for different
structures in LTV systems.

The objective of this paper is to reestablish the frozen-time
approximation as a viable option for the synthesis of recursive
LTV filters. Improvements on the frozen-time approach will also
be introduced. It will be shown that filters can be synthesized
using these techniques which compare in performance to those
resulting from time-consuming optimization techniques. In Sec­
tion II an example demonstrates the accuracy of the frozen-time
approximation for different structures. Section III will describe
the improvement techniques that have been developed based on
the FTA. Examples will be presented to demonstrate the effec­
tiveness of the present approach.

Manuscript received January 4, 1988; revised July 8, 1988. This work was
supported in part by the Natural Sciences and Engineering Research Council
of Canada (NSERC) under Grant A4149. This paper was recommended by
Associate Editor Y. C. Jenq.

The authors are with the Department of Electrical Engineering, Queen's
University, Kingston, Ont., Canada K7L 3N6.

IEEE Log Number 8825766.

I. INTRODUCTION

It has been shown that linear time-varying (LTV) digital filters
have application to non-stationary systems [1), [2]. Recursive
structures for these filters are desirable due to the prohibitive
memory requirements of even short-duration FIR LTV filters.
Unfortunately, the simplicity of time-invariant recursion does not
carry over to time-varying systems. In fact, many of the assump­
tions with which we approach linear time-invariant (LTI) systems
do not hold for LTV systems.

In LTI systems, any filter described by a rational transfer
function may be realized by using the coefficients of that rational
function in a difference equation. In LTV systems, however, only
filters with stationary poles (neither a very large nor useful subset
of LTV filters) can be realized by a difference equation (3).

Abstract - This paper reexamines the frozen-time approximation (ITA)
for the synthesis of recursive linear time-varying (LTV) digital filters.
While the use of the ITA has been previously discouraged, analysis shows
that this approach is still valuable. Improvements on the ITA are also
proposed. These improvements take advantage of the simplicity of the
frozen time approach, being based on the assumption that for any desired
LTV filter there exists a related filter whose ITA produces a better
realization of the desired filter than its own ITA. Methods of finding such
a related filter are discussed. The resulting filters are superior in perfor­
mance to those obtained by the currently available optimization techniques
at a fraction of the computational load.

Synthesis of Recursive LTV Digital Filters Using the
Frozen-Time Approximation

S. DOUGLAS PETERS AND MOUSTAFA M. FAHMY

REFERENCES

[I] H. H. Lu, E. A. Lee, and D. G. Messerschmitt, "Fast recursive filtering
with multiple slow processing elements," IEEE Trans. Circuits Syst., vol.
CAS-32, pp. 11l9-1129, November 1985.

[2J K. K. Parhi and D. G. Messerschmitt, "Look-ahead computation: im­
proving iteration bound in linear recursions," in Proc. IEEE Int. Conf.
on Acoust., Speech, Signal Processing, Dallas, TX, 1987.

[3] K. K. Parhi and D. G. Messerschmitt, "Block digital filtering via incre­
mental block-state structure," Proc. 1987 IEEE Int. Symp. on Circuits
and Syst., Philadelphia, PA, May 1987.

[4J C. L. Nikias, "Fast block data processing via a new IIR digital filter
structure," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-32,
pp. 770- 779, Aug. 1984.

[5] M. R. Azimi-Sadjadi and R. A. King, "Two-dimensional block proces­
sors-structures and implementations," IEEE Trans. Circuits Syst., vol.
CAS-33, pp. 42-50, Jan. 1986.

[6J M. R. Azimi-Sadjadi, A. R. Rostampour, and T. Lu, "Parallel architec­
tures for 2-D block processing," in Proc. IEEE RIM Conf. Commun.,
Computers and Signal Processing, pp. 455-460, Victoria B.c. Canada,
June 1987.

[7] A. W. Burks (Editor), Essays on Cellular Automata. Urbana, IL, Univ. of
Illinois Press, 1970.

[8] G. H. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick, and
R. A. Stockes, "The ILLIAC IV computer," IEEE Trans. Computers, pp.
746-757, Aug. 1968.

[9J R. C. Agarwal and C. S. Burrus, "Fast one-dimensional digital convolu­
tion by multi-dimensional techniques," IEEE Trans. Acoust., Speech,
Signal Processing, vol. ASSP-22, pp. 1-10, Feb. 1974.

0098-4094/89/0300-0448$01.00 ©1989 IEEE

