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ABSTRACT 

ON THE MOTION OF AUTOROTATING ELONGATED PRISMATIC BODIES 

The discussion presented in this study concerns the motion of 

elongated prismatic bodies and the forces induced on them by the rela­

tive wind. Two important dimensionless parameters which determine and 

characterize the motion of such bodies were identified--a dimensionless 

moment of inertia, 1* and the dimensionless rotational speed, nb/U. 

Two stable modes of motion were observed for bodies with large 1*. 

When the flow is normal to the largest area of the body and no rotation 

exists, a translatory motion occurs. The drag coefficient in this case 

is of the order CD = 2. When the body is oriented with its long axis 

normal to the flow and rotation exists around this axjs, a. steady 

autorotating mode occurs. In this mode one can distinguish between the 

following two extreme cases: 

1. When nb/U is small, the average lift acting on the body is 

zero and the average drag can be calculated using the quasi­

static approximation. 

2. When nb/U is large the velocity field is modified and 

results in a slight change in the value of CD from the 

value found for case 1. Furthermore, a very large lift 

coefficient due to a Magnus effect is generated, which is 

dependent upon nb/U. 

In the case of small 1* the translatory mode is not stable and motion 

for the two cases of autorotation--nb/U small and large--is affected 

by 1* as well as by nb/U. 



Wind-tunnel experiments by the authors and previous work by other 

investigators were used to estimate the drag and lift coefficients 

with different values of 1* and nb/U. 
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Chapter I 

INTRODUCTION 

An important concern in the design of nuclear power plants is the 

possible impact and penetration of containment vessels by tornado 

propelled bodies. Currently, the motion and impact speed of such bodies 

cannot be satisfactorily ascertained. Part of the difficulty is in 

predicting the tornado velocity field which is space and time dependent. 

The exact shape and weight of such bodies is not known either. However, 

even when the velocity field is defined and typical bodies are chosen 

to represent tornado-generated missiles, the calculation of their 

motion remains complicated and uncertain. 

Survey of the literature (Sadeh), shows that even the exact drag 

coefficients of simple bodies are not always known. Moreover, since 

the trajectory of a flying object which has six degrees of freedom is 

determined by all the forces and moments acting on it, knowledge of 

the drag coefficient alone is not sufficient for the calculation of the 

trajectory. In addition, flying objects, like a wood plank, could 

easily enter an autorotational or tumbling mode of motion, which 

drastically affects the trajectory. 

The initial objective of this study was to determine, by 

wind-tunnel tests, some drag and lift coefficients of typical bodies 

which might become airborne in tornados. It became apparent, however, 

that the exact determination of these coefficients is of secondary 

significance as the variation in the projected areas due to the change 

of orientation of such bodies is manyfold larger. Attention is 

therefore focused in this study on autorotating elongated bodies, 
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particularly wood planks. The question of whether it is possible to 

describe the motion of such bodies by the motion of a material point 

on which average drag and lift forces are exerted, is studied. The 

values of the coefficients which have to be used in such a procedure 

are also investigated. 



Chapter 2 

ON THE MOTION OF FREE ELONGATED PRISMATIC BODIES 

The motion of a free body can be described by six governing 

equations which represent the six degrees of freedom in translation 

and rotation, as shown in Fig. 2.1 . 

.. u _____ 

Figure 2.1. Coordinate system and associated rotations. 

The velocity which determines the forces and moments a.cting on the body 

is the relative velocity U between the body and the flow field. Note 

that the x2 axis has been chosen to be in the direction of the 

relative velocity U. The forces acting on the body consist of aero-

dynamic forces and body forces 

following equation: 

f., and can be described by the 
1 

3 

(2.1) 



where 
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P., i = 1,2,3 denotes the component of the force in the 
1 

direction of axis x., where c~ are dimensionless coefficients. The 
1 1 

superscript n denotes that the area used in Eq. (2.1) is the projected 

area on the plane normal to the vector li. Thus An depends upon the 
-:.. 

orientation of the body with respect to U. The body forces f. 
1 

include gravity forces and possibly additional forces due to large-scale 

pressure gradients in the field, which can be added to the body forces 

if the C~ are determined for a uniform flow. 
1 

It is also possible to express the forces acting on the body in 

terms of a reference area, Ar which is independent of the orientation 

of the body: 

(2.2) 

Moments acting on the body determine the oscillatory or rotational 

motion. Again one of two formulations can be used, as shown in 

Eqs. (2.3) and (2.4) to describe the moments acting on a free body, 

M. = Cn.LAn u2/2 1 m1 p (2.3) 

or 

M. = Cr.LAr u2/2 
1 m1 p (2.4) 

where L is a typical length. 

Certainly the reference area and the normal area formulations are 

equivalent. One should be aware, however, that the value of 

corresponding aerodynamic coefficients in the two formulations are 

quite different. Several authors prefer to use the normal area (An) 

formulation for the following reason. The value of the drag coeffi­

cient, C~ = c~, for various bodies do not vary considerably with the 
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orientation of the body and can be estimated. The latter formulation 

using reference areas, on the other hand, is more convenient for 

describing the average drag on a rotating body, as Ar is constant, 

independent of the angle of attack 6. 

Consider, for example, the body in Fig. 2.2. In position (a) 

C~ - 2, whereas in position (b) C~ ~ 1. 
r On the other hand, CD in 

position (b) is only one-eighth of C~ in position (a). This large 

difference in the second formulation reflects the change in the value 

of An rather than the change in nature of the flow. 

This example clearly shows that the main difficulty in estimating 

the force acting on a free body is in determining its orientation with 

respect to the flow, rather than in evaluating the exact drag coeffici-

ent at a particular known orientation. 

T 
u ,.. u ... 4t 

1 
n 

Cn" 2 CB~l 

I t I 
(a) (b) 

Figure 2.2. Drag coefficients at different orientations for a 
bluff body. 

When the values of the force and moment coefficients for all 

orientations are known, the motion of a body with six degrees of free-

dom, can be described by the following differential equations: 
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!. U2CrAr f 2 P i + i 

A similar formulation using the normal area can also be used. 

(2. Sa) 

(2.5b) 

Theoretically, one can examine the motion of a body from given 

initial conditions in a known velocity field using these equations. In 

practice, however, the force and moment coefficients, which depend both 

on the Reynolds number and the rotational speeds, are not known. It is 

the purpose of the work to examine whether the average motion of a 

body can be described using simplified formulations. 

Motion of Bodies with Large Moments of Inertia 

(a) Definition of Dimensionless Parameters 

The analysis is largely simplified if one considers a body with a 

large moment of inertia. The aerodynamic moments created by the flow 

in this case do not cause a quick response of the body. Thus rapid 

oscillations or large changes in the rate of rotation are not possible. 

This is obvious from Eq. (2.5b) which shows that for a relatively large 

moment of inertia I., or relatively small aerodynamic moments, the 
1 

relative value of dw./dt is small. 
1 

At this point it is useful to introduce appropriate time scales 

to describe the flow and the rate of change of the rotational speed of 

the body. The time scale of the flow, Tf , will be defined as 

L 

where L is a typical length of U is the relative velocity. 

(2.6) 
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u ... 

Figure 2.3. Dimensions of elongated rectangular body. 

In this work we shall consider elongated rectangular bodies. The 

length will be described by h, the width by b, and the thickness, 

which is the smallest dimension, by t, as shown in Fig. 2.3. The time 

constant, Tf , will be defined using L = b. 

The dimensions of the term dW./dt 
1. 

are and the value of 

this term defines a time scale, 

T = w 
1/(dw./dt)l/2 

1. 
(2.7) 

which characterizes the rate of change of the rotation w .• One is 
1 

interested in finding when dW./dt becomes small compared to 
1. 

2 l/T
f

, 

or Tw» T
f 

. Consider the body shown in Fig. 2.4 and the rotation 

around the x3 axis. 

222 Di viding Eq. (7.. Sb) by lIT f = U /b , one gets 

(2.8) 



u 

8 

, , , 

Figure 2.4. Body orientation for the definition of time scales. 

Since A
r = bh and I 

3 
on gets from Eq. (2.8) = Pbhb t/12 

T2 
f 1 

T2 
= I" 

w 

where 

Itt = (_1 ) Pbt 
6C P b m a 

(2.9) 

(2.10) 

The dimensionless moment of inertia Itt defined in (2.10) depends 

upon the moment coefficient C , and since C 
m m 

is a function of the 

angle of incidence e, it would be convenient to define a parameter 

proportional to P' but independent of e. Such a dimensionless 

moment of inertia independent 

1* 
Pb t 

= 
Pa b 

and Eq. (2.9) can be written 

T 
~ ex: (1*) 1/2 . 
Tf 

of C can be defined as, m 

(2.11) 

as 

(2.12) 
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Similar formulations can be made for i = 1 and 2. Note that the body 

described in Fig. 2.4 will have values of 1* 
1 

and 1* 
2 

larger than that 

of 1* = 1*3' and thus smaller changes are expected in wI and w2 

as compared to wS. Now, it is clear from Eq. (2.5b) that when the 

value of 1* 
I 

is increased, the time scale of the corresponding change 

of rotation is increased. Thus one should expect to find more rapid 

changes in w3 than in wI and w2" Similarly in case of a turbulent 

flow the rms value of w3 will be larger than that of wI and w2. 

For this reason in this study only the value of 1* = 13 will need to 

be used. 

One has also to define another time scale T, associated with the 
n 

rotation itself, rather than the rate of change of the rotational 

speed. If the body rotates around an axis at an average rate of n 

rotations per second, a time scale can be defined as 

T 
n = 1 

n' (2.l3) 

which is the time it takes the body to make one rotation. It should be 

noted that T can be either large or small, independent of T. For 
n w 

example, when n = 0, the body could still fluctuate at a high 

frequency because of a small value of 1*. A dimensionless parameter 

can be defined as 

(2.14) 

which describes the ratio of the time scales. 

We have limited the discussion in this chapter to bodies with 

large 1* which corresponds to large Tw/Tf. It is useful to 

further distinguish between three cases: 



(a) 

(b) 

and 

(c) 

nb 
U 

nb 
U 

= o 

small 

nb U large 

10 

The first two cases will be considered in this chapter. We shall 

analyze the case of large nb/U in Chapter 3. 

(b) The Case of nb/U = 0 

Consider a body oriented in the flow so that M. = 0 
1 

and 

w. = o. Obviously the problem is simplified as one needs to consider 
1 

only the translatory motion of the body. It is necessary to examine, 

however, if such an orientation would be stable for small perturbations 

as well as for large perturbations. Of particular interest is the 

determination of whether such an orientation is stable for the 

perturbations generated by the flow around the body. 

Previous studies and observations clearly indicate that flat 

bodies oriented with their large surface normal to the flow are stable 

for small perturbations. 

Willmarth (8] has studied the aerodynamics of oscillating discs. 

The discs were found to oscillate when oriented with their faces normal 

to the flow. His experiments showed that the measured frequency of 

oscillation satisfied the equation 

wb = (1*)-.44 
U (2.15 ) 

where 1* is a dimensionless moment of inertia defined in his case 

1* = IIp dS
, where d is the diameter of the disk and I a 

as its 

moment of intertia. The similarity to Eq. (2.12) is obvious. Wil1marth 
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has also found that dM/de < 0, for values of e up to 10° (where 

M is the restoring moment acting on the body and e is an angle of 

incidence to the flow defined so that at e = 0 the body is oriented 

with its large face towards the flow). This finding indicates that 

the position e = 0 is basically stable for quite large perturbations. 

The stability of this orientation for large perturbations would 

depend on the magnitude and frequency of the perturbations. Consider, 

for example, perturbations that are generated by the flow itself, like 

vortex shedding. Their frequency is inversely proportional to the time 

scale of flow. Obviously, if T
f 

is much smaller than T , the w 

characteristic time of change of rotational speed, the body would not 

be able to respond and would remain stable. Since small values of 

Tf/Tw correspond to large values of 1*, as indicated by Eq. (2.12), 

it is concluded that bodies with large Jimensionless moments of inertia 

would be stable and would not rotate due to the effect of their self-

generated disturbances. As it will be shown later this conclusion has 

been confirmed experimentally for a wood plank with 1* = 200. On the 

other hand, experiments show that strips of paper falling in air which 

have 1* < 10 are not very stable and easily enter a rotational mode. 

It is impossible to determine whether such a translatory motion 

would be stable in a typical tornado field which is highly nonuniform, 

has large vorticity, might have large velocity fluctuations and where 

the initial conditions might include some rotation. One has, therefore, 

to assume that this mode of motion, where n = 0, will be stable in 

some tornado generated missiles which usually have a large value of 

1*, but unstable in others. 
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When such a position is stable, the drag coefficient n CD would 

be of the order of 2 and the translatory motion could be readily 

estimated using Eq. 2.Sa. 

From the previous discussion it is clear why in the case of 

elongated bodies, rotation induced by the fluctuating forces will 

usually occur around the long axis of the body, namely the x3 axis, 

where 1* = 13 has the smallest value. It is also noted that the 

moments acting on an elongated body around the other axes are relatively 

smaller. Consider for example the two bodies described in Figs. 2.Sa 

and 2.Sb, 

(a) 
(b) 

Figure 2.S. Flow around bodies of differing length dimension h. 

which differ only in their x3 dimension. The moment per unit length 

(M3/h) in case (a) is expected to be larger than in case (b), since 

the variation of the flow in the direction of axis s is smaller in 
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case (b). Thus the body in case (b) is more likely to rotate around 

the axis s where the I; value is smaller, and not around the x3 

axis where both 1* 
3 is large and M3 

(c) The Case of Small nb/U 

is small. 

When considering a body which steadily rotates slowly relative to 

the flow (nb/U small), it may be assumed that the aerodynamic coeffi-

cients at each instant of time (or angle 8), could be approximated 

by the "static" coefficients of a stationary body at the corresponding 

angle of incidence. This approximation is called the quasi-static 

approximation. Thus, if one consiaers a symmetric body rotating at a 

small nb/U, its average lift force over a complete rotation is zero. 

u_ 
s-axis of symmetry 

Figure 2.6. Lift forces acting on symmetric body during rotation. 

One can also conclude that during translation in the xl direction, 

the average motion in the x2 direction is zero. Thus, if one assumes 

very small steady rotational rates, it is possible to neglect the 

effect of the lift and to describe the average motion of the body by 

a motion of a material point which is acted on by a drag force. 
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Even though the drag will be a function of time one could define an 

average drag coefficient in the x2 direction. If a body has large 

I*, its mass would usually be large and the velocity U would hardly 

change during one rotation. Thus, the average force can be calculated 

assuming a steady rotational speed and constant U, so that 

2n 2 
Fo = 1 J cr (e) pU Ar de = 

2n 0 0 2 

Defining an average drag coefficient as 

1 
2n 

Co = J cr de , 
2n 

0 
D (2.16) 

one can write that 

r Modi and El-Sherbiny [2 ] presented measurements of CD of a flat 

plate as a function of the angle e, as shown in Fig. 2.7 (Ar is the 

area of the plate). 

Using such data, CD for small nb/U can be calculated. Our 

calculations for the above data show that CD ~ 1.05. If the effect 

of blockage in the these experiments is taken into consideration a 

slightly smaller value CD ~ 1.0 is found. 

Following Smith [6 ] a similar expression can be derived for the 

average moment coefficient C where 
m 

C = m 
(2.17) 

which would indicate whether the rotational speed will increase or 

decrease. Obviously for symmetric bodies C is zero and therefore 
m 
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2.5 

2.0 

9\ blockage 

1.5 

1.0 

.5 

o 15 30 60 75 90 

Figure 2.7. Typical drag coefficients of a flat plate at different 
angles of attack. 

one would expect a steady rotational motion. However, this conclusion 

would not be correct if the rotational motion affects the aerodynamics 

of the flow. This case corresponds to the category of large nb/U, 

but it is not clear what value of nb/U can be considered to be large. 

Smith considered the problem and came to the conclusion that the 

translational motion could easily induce either a small positive or 

negative C at small values of nb/U, which is not obvious from the m 

consideration of the static moments. 
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If the body is not symmetrical and particularly if the center of 

gravity does not coincide with the center of pressure, rotation can be 

easily induced. Smith presented tests with a nonsymmetrical nose cone 

whose cross section (normal to the x3 axis) is circular with centers 

of gravity at different locations along the x3 axis. The results of 

this study showed that when the center of gravity was placed midway 

along the length of the body no rotation occurred around the x2 or 

axes. Due to the symmetrical cross section, no rotation would be 

expected about x
3

, the long axis of the body. Changing of the position 

of the center of gravity, from the midpoint along the long axis, did 

induce rotation about the nose cone's smaller axes. In these cases 

the value of the average drag coefficient was quite close to value 

found by applying Eq. (2.17). 

Thus, one may conclude that when nb/U is small, it is possible 

to consider only the translatory motion of the center of gravity of 

the body using an average drag coefficient estimated from the quasi­

static approximation. 



Chapter 3 

AERODYNAMICS OF AUTOROTATING BODIES 

In the previous chapter the significance of the dimensionless 

parameter nb/U to the dynamics of the motion of rotating bodies was 

discussed. When nb/U is small, the forces acting on such a body can 

be evaluated using the quasi-static approximation. However, when nb/U 

becomes large, the rotation induces significant circulation around the 

body. The circulation modifies the flow field and changes the forces 

acting on it. In particular, a circulation dependent lift force due to 

a Magnus effect is expected to occur. Now, observations suggest that 

a steady state rotation around the longitudinal axis may exist for many 

types of elongated bluff bodies. Namely there is a certain value of n3 

for these bodies such that n3 F 0 and dn3/dt = O. This type of 

motion will be classified as autorotation (see Fig. 3.la). Several 

authors use instead the term "tumbling," which will be used to describe 

such a motion. In this work the term tumbling will be used to describe 

motion with appreciable rotation around more than one axis, as shown in 

Fig. 3.lb. 

t=tl t=tl t=t 2 

u 

3 
Ca) Autorotation (b) Tumb If '1!;t 

Figure 3.1. Body motion during autorotation and tumbling. 

17 
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In this chapter an analysis will be made of the autorotational 

mode in order to find: (1) What is the value of nb/U for which a 

steady autorotation will be sustained by a relative velocity U of the 

fluid with respect to the body and how does it depend on the relative 

dimensions of the body. (2) What are the lift and drag forces acting 

on such steady autorotating bodies. 

The Value of nb/U in Steady Autorotation 

We shall limit the discussion to elongated bluff bodies with a 

rectangular cross section as described in Fig. 3.2. 

x3 

u 

Fig. 3.2. Orientation of body during autorotation. 

The body is assumed to rotate only aroung the x3 axis. We saw earlier 

that the dimensionless moment of inertia I; was the smallest, and that 

observations indicate that autorotation will usually occur around this 

axis. 

The value of n denotes the number of rotations per second. It 

should be stressed that the instantaneous angular velocity of the body, 



W3 ' need not be constant. If 
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I = 1* 
3 

is not large, it is quite 

possible that quasi-steady rotation will exist in which dw/dt; 0 

and w = w(l + f(8)). In this equation f is a periodic function of 

8 ,namely f(8 + 2n) = f(8) or f(t + T) = f(t) where the period 

T = lIn, in this case related to w by 

1 1 IT w 
n = 2n[T wdt] = 2n • 

o 

The value of n depends on the geometry of the cross section, the 

length of the body, its moment of inertia 13 , the relative velocity 

U and the properties of the fluid. Using dimensional analysis one 

finds that in steady state, 

nb/U = F(I*, k, Re, t/b) , (3.1) 

where k = h/b. (Appendix II gives an analysis for Eq. 3.1.) 

Since by definition t < b , the maximum value of t/b one should 

consider is one. In the case of flat bodies, its value can be much 

smaller than one, and at the limit, when t/b is small, nb/U should 

be independent of the ratio t/b. On the other hand, as t/b approaches 

one, the cross section will be more symmetrical and the value of nb/U 

will probably be reduced. Most of the available data are for small 

t/b. We shall assume that for these data, nb/U is not a function of 

t/b. Later we shall see that the effect of increasing t/b up to 

t/b = 1/3 is not very large. 

The effect of the Reynolds number on the rotation of bluff bodies 

is expected to vanish at large values which usually exist in auto-

rotating tornado generated missiles. Therefore, we assume that 

nb/U ; f(Re) and thus it is possible to write that 

nb/U = f(k, 1*). (3.2) 
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Let us consider now the limits of Sq. 3.2 for large value of k 

and I*. The role of k in this equation is to describe the edge 

effects. Thus, as k~, namely when the body is very long, one would 

expect most of the flow to be two-dimensional (d/dx3 = 0). In this 

case, nb/U would be independent of k. From previous experience this 

limit would be reached when k = h/b > 20. On the other hand when k 

becomes smaller, the flow around the edges would reduce the Magnus 

Effect and decrease the value of n. This point was discussed in 

Chapter 2, (see Fig. 2.5). Thus one may conclude that the effect of k 

would be recognized only for k < 20 and the effect would be to decrease 

the value of nb/U. 

Consider now the effect of the dimensionless moment of inertia I* 

on the motion. If I* is small, dw/dt might be significant and wet) 

within one cycle will change considerably. However, when I* becomes 

large, the body is not going to respond to relatively high frequency 

fluctuations of the moments induced by the flow. Recall that I* gives 

the ratio of the characteristic time of the rate of change of w to the 

time constant of the flow. Therefore, for large I*, one would expect 

to find wet) = 2~n = constant. At this stage the flow will be deter­

mined by the steady rotational motion of the boundary of the body and 

there is no way in which the density of the body can affect the flow. 

Since I* = Pbt/Pa b , one deduces that when I* becomes large, the 

value I* will not affect the value of nb/U. 

Therefore, one may conclude that for a large Reynolds number, 

k > 20 , and small t/b, an asymptotic constant value independent of 

these variables exists. 

nb nb 
U=U I = constant. as 
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It is difficult to evaluate theoretically the asymptotic value of nb/U. 

However it is reasonable to expect that the tangential velocity Ut of 

the tip of the body would not be much larger than U. When Ut = nb·n= U, 

it follows that 

or 

1 nb/U = -n 

U -
- - 11' nb 

Thus in the asymptotic case one would expect to have u/nblas ~ 2 • 

It should be stressed that the above conclusions do not imply that a 

body with a large value of 1* will easily enter an autorotational mode. 

In fact since such a body would not respond to the fluctuating forces 

due to the vortex shedding, it is expected that autorotation would have 

to be started by a large disturbance other than the disturbances 

generated by the flow around the body_ 

Analysis of Dupleich's Data 

Dup1eich [1] has studied the motion of elongated rectangular 

bodies falling down due to gravity. In most of his experiments, thin 

strips of paper were used with IS = 0(1) and t/b« 1. In some of 

his experiments rectangular slats of lead and iron were dropped in water. 

Since the Pa in Eq. 2.9 in the water tests corresponds to the density 

of water, the values of 1* were about the same as in the experiments 

with paper strips falling in air. The value of t/b in the water 

experiments were as large as 0.3. Unfortunately, the maximum value of 

k in Dupleich's experiments was 8. Moreover, the Reynolds number was 

not very large. In addition it is not absolutely certain that a steady 

state autorotation had been reached in some of the experiments. 
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Dupleich's analysis of the data is different from ours and he did 

not attempt to express the dependence of U/nb as a function of the 

above dimensionless parameters. Instead, he used the loading factor ~, 

(weight/unit area), as a dependent parameter. Dupleich did not calculate 

the values of CD and CL corresponding to his data either. 

Using the given values for t/b of his data (see Table 1, 

Appendix I), one can correlate the loading factor 8 with 1* as 

follows. Since 8 is the weight per unit area of the body, the density 

of the body Pb can be written as 

_ 8(b) (h) _ JL 
Pb - g(b)(h)(t) - gt ' 

where g is the acceleration due to gravity. Therefore, the dimension-

less moment of inertia about its longitudinal axis using Dupleich's data 

is given by 

where Ya is the specific weight of the fluid. 

Using this procedure, the values of U/nb and 1* for all his 

experiments were calculated and are presented in Appendix I. Only one 

set of tests, with cigarette paper, has not been analyzed as it was 

noted by Dupleich that the stiffness of the paper strips was not 

sufficient, and bending occurred along the x3 axis. 

Dupleich also measured the angle of descent of the falling bodies. 

Using his measurements, the value of CD and CL acting on the body 

can be calculated. Figure 3.3 shows an autorotating body in two 

dimensions with the longitudinal axis into the paper. The body is 

descending at an angle a with respect to the ground, and the relative 

velocity is shown as U. The vectorial sum of the lift and drag acting 
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D 

mg 

/7777/1/7 
ground 

Figure 3.3. Descent of autorotating body. 

on the body is equal to the weight of the body, mg. Thus the drag 

force D = mgsina. r r Now mg = 6-A , where A = b-h is the reference 

area. Thus one finds that 

(3.3) 

and 

(3.4) 

Using Eqs. 3.3 and 3.4 the drag and lift coefficients for 

Dupleich's data were calculated and are presented in Appendix I. 

Discussion of the Experimental Results 

The dependence of the dimensionless parameter U/nb on the aspect 

ratio k = h/b is shown in Fig. 3.4 for several values of 1*. The 

data confirms that U/nb for each value of 1* is a monotonically 
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decreasing function of k , namely a slower rotation exists for small 

values of k. Unfortunately, most of the data are for k < 4 and the 

maximum value of k in Dupleich's study was k - 9 , for which one still 

expects to find a significant edge effect. Thus, it is impossible to 

determine from this figure the exact value of U/nb/ as ' which appears 

to be around 2. 

The increased value of U/nb at small values of k is consistent 

in that significant autorotation occurs around the longitudinal axis, 

* x3 in our notation. Note that the ratio 13/1*2 is inversely pro-

portional to k. When k = I I; = Ii ' and complete symmetry with 

respect to these axes exists. When k is smaller than I, namely 

h/b is further decreased so that h is smaller than b the edge 

effects will cancel the moments which would maintain rotation around 

the x3 axis while the rotation around the x2 axis, which now 

becomes the longitudinal axis, will be significant. 

The effect of 1* on U/nb is shown in Fig. 3.5. It seems as 

though U/nb increases initially with 1*, but later reaches a 

maximum. However, the values of 1* did not sufficiently vary in 

Dupleich's tests to confirm that as 1* becomes large U/nb is 

independent of 1*. A test, which will be described in Chapter 4, 

was made during this study with a large model having 1* ~ 200. A 

value of U/nb = 4.4 (see Fig. 3.5) was measured in this test. This 

result supports the previous conclusion that an asymptotic value of 

U/nb does exist for I*~. Of course this value is a function of k • 

The values of the drag coefficient CD calculated from Dupleich's 

data are plotted in Fig. 3.6 as a function of k and in Fig. 3.7 as a 

function of 1*. It is apparent from Fig. 3.6 that k does not affect 
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the drag coefficient as much as it affects the rotation of the body_ 

Figure 3.7 on the other hand shows a more coherent dependence of Co 

on 1*. The figure suggests that CD is a function of 1* only when 

1* is smaller than 10, probably because wet) is not constant in this 
~ 

range. When 1* is larger than ten, a constant value of CD 0.8 is 

found for all the experiments with paper strips. Now it will be 

recalled that (Fig. 2.7), we have estimated earlier using the data of 

Modi, et al. and the quasi-static approximation that CD for flat 

bodies should be around 1.0. These two values seem to be close and it 

appears that the quasi-static approximation can be used for roughly 

estimating the drag of bodies even at large values of nb/U. 

The dependence of CL on 1* is shown in Fig. 3.8. No clear 

relationship between these two parameters is evident. On the other hand 

it appears from Fig. 3.9 that CL is related to k. Since the lift is 

mainly a function of the circulation induced by the rotation, it was 

decided to examine the relationship between CL and U/nb, which was 

plotted in Fig. 3.10. It is evident from this figure that CL is indeed 

primarily a function of U/nb. The lift coefficient measured in the 

present study, see Chapter 4, with 1* - 200, shown in the figure as a 

triangle, also supports this conclusion. One must note that the data 

in this graph cannot be extrapolated toward U/nb = 0, because the 

minimum value of U/nb for k~ is expected to be around 2. 

We have also examined whether a similar dependence of CD on U/nb 

can be established. It is clear from Fig. 3.11 that such a dependence 

does exist. 

Note that in Fig. 3.11 the two values of CD measured in the 

present study with 1* - 200, which are around CO: 1.75, are shown. 
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Now t/b in this case was 1/3 and for such a ratio the quasi-static 

approximation gives an estimated value of CD: 1.5. It should also be 

recalled that the Reynolds number of the flow in this case was about two 

orders of magnitude larger than in Dupleich's experiments and that no 

correction of blockage has been applied to the wind tunnel data. This 

explains the difference in CD between the data of Dupleich and this 

experiment, and confirms the previous conclusion that the quasi-static 

approximation can also be used to roughly estimate the drag of auto­

rotating bodies. 



Chapter 4 

A WIND TUNNEL MODEL OF AN AUTOROTATING BODY 

During the course of this study, limited experimental program 

aimed at modeling some tornado generated missiles was carried out. 

The experimental work can be separated into two parts: tests of an 

autorotating body whose purpose was to extend Dupleich's data to cases 

of autorotating bodies with a large moment of inertia, 1*, and; 

measurements of drag coefficients of a static, large bluff body. 

The measurements in the latter part are not related directly to the 

main course of the investigation and were therefore presented to the 

sponsor in a different form. 

Test of Autorotating Body 

The experimental work was perform~d in the Meteorological Wind 

Tunnel of the Fluid Mechanics and Wind Engineering Program at Colorado 

State University. The tunnel has a nominal cross section of six by 

six feet in which a model of an autorotating body was installed. The 

tunnel is a closed circuit facility with variable wind velocities from 

1 to 90 feet per second. An overview of the tunnel is shown in 

Fig. 4.1. 

In order to simulate autorotation of a bluff body with large 1*, 

a rectangular body made of wood, as shown in Fig. 4.2a, was con­

structed. The body was mounted on a one inch shaft with precision 

bearings as shown in Fig. 4.2b. The mounting allowed the body to 

rotate around the shaft with very little friction. The shaft was 

connected to the ceiling of the tunnel with a universal joint (point 

A in Fig. 4.2a), which allowed the shaft and the body to deflect 
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Figure 4.2. Experimental system for autorotational model. 
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in the xl or x2 directions. Fig. 4.3 shows photographs of the 

model installed in the tunnel and the universal joint. The shaft on 

which the model was mounted extended outside the tunnel through a hole 

in the tunnel floor. The diameter of the hole was only slightly 

larger than that of the shaft. The end of the shaft was connected 

to two buckets in which desired weights, WD and WL, could be 

placed to produce moments around the xl 

Fig. 4.2a. 

and axes, as shown in 

The velocity of the air in the tunnel produced a moment around 

the Xl axis proportional to the drag force acting on the body and a 

moment around the x2 axis proportional to the lift. These 

moments acted to deflect the shaft from its vertical position. By 

applying counter-moments using the weights WD and WL, the shaft 

could be brought back to its original vertical orientation. At that 

position, the average drag force D was equal to WD. 11/12, where 

11 and 12 are corresponding arms from the universal joint to the 

center of the body and to the point where WD 

Similarly, the average lift L was equal to 

and WL acted. 

WL • 11/12• The 

natural period of the suspended system, which resembled a pendulum, 

was approximately two seconds. In the tests the body rotated at a 

frequency higher than 12 cps. The fluctuations in the forces due to 

the rotation of the body had the same frequency, and therefore did not 

produce significant fluctuation of the shaft around the zero de­

flection point C (see Fig. 4.2a). Using this system, it was 

possible to determine the values of CD and C
L 

to within 

± 10 percent. 
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Figure 4.3. Model installed in wind tunnel test section. 
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The length-to-width ratio of the body was k = hlb = 6.9. 

However, one should realize that the proximity of the tunnel's roof 

and floor had some effect on the flow near the edges of the body. 

The ratio tlb of the model was 1/3. The rotating portion of the 

model was made of wood which gave a value if 1* about 200. The 

maximum blockage in the test section was 10.7 percent. Such a 

blockage probably increased both the drag and the lift. However, 

it was felt that the effect of blockage on CD and ct is within 

the experimental error and no attempt to correct that data was 

made. Table 4.1 summarizes the data collected in the wind tunnel 

tests. 

Table 4.1. Experimental Results in the Wind Tunnel Tests. 

U (fps) 

40 

SO 

k 

6.88 

6.88 

tlb 

.33 

.33 

n (cps) 

12.1 

15.3 

U/nb 

4.4 

4.3 

1.74 

1.81 

1.96 

1.88 

Figures 3.3, 3.4, and 3.10 presented and discussed in Chapter 3 

show the data points measured in the wind tunnel tests together with 

Dupleich's data. Figure 3.4 clearly shows that the largely increased 

dimensionless moment of inertia of the body, 1*, did not affect the 

rate of autorotation. Figure 3.3 shows that the rotation rate U/nb 

of this body is only slightly higher than the rotation rate measured 

by Dupleich in the water tests for the same value of k. 

Note that tlb in the experiments of Dupleich in water was 

larger than the rest of the experiments (see Table 1, Appendix I). 
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The slower rotational rate (U/nb larger) in our experiments could be 

due to the effect of t/b as well as due to the different Reynolds 

Number and different edge effects. 

The lift coefficient corresponding to our experiment is shown 

together with Dupleich's data in Fig. 3.10. It seems to be only 

slightly above the rest of the data, probably due to the blockage, 

or a Reynolds number effect. 

The experimental system was also used to examine the stability 

of the rotational motion of the body. When oriented with its large 

face normal to the flow, the body was very stable and would hardly 

oscillate. To induce autorotation it was necessary to give it a 

strong initial rotation. Once rotation started, it achieved 

a stable steady state. 



Chapter 5 

DISCUSSION 

We have identified in the previous chapters two possible stable 

modes of motion of free elongated bodies. 

1. Motion without rotation. In such a motion the body is 

oriented with its large face normal to the relative 

velocity. This mode appears to be stable for bodies with 

large dimensionless moments of inertia (1*). The drag 

coefficient in this case will be of the order of 2. How­

ever, if the body is subjected to a large moment around 

the longitudinal axis or given an initial rotation around 

that axis, it will start to autorotate. 

2. An ideal autorotational mode, with rotation around the 

longitudinal axis, which is oriented normal to the 

direction of the relative velocity. The drag coefficient 

in this case will be reduced and its value could be 

roughly estimated using the quasi-static approximation. 

The dimensionelss rotational speed nblU will be deter­

mined primarily by the relative length of k = hlb, 

see Fig. 3.3. Experiments with paper strips suggest that 

such an orientation is quite stable provided nblU is 

large, namely hlb is large, and provided the body is 

symmetric. This can be easily demonstrated by dropping 

elongated paper strips (say 1" x 7" strips made of IBM 

computer cards) after giving them a slight initial 

42 



43 

rotation. The motion of such a free falling strip is 

described in Fig. S.la. 

However, a slight asymmetry, or a small initial rotation 

around the x2 axis will cause a slow w2 rotation and the 

body will glide in a helical trajectory, as shown in 

Fig. S.lb. 

£ e 

c.) (b) 

Fig. 5.1. Descents of autorotational bodies. 

The effect of the w2 rotation on the gliding angle, the 

gliding velocity and the impact of the body when it hits 

the ground, will be very small. However the trajectory 

will be drastically different. It should be realized that 

even in the ideal autorotational case, one cannot determine 

the trajectory of the body as it will depend on the initial 

orientation and the direction of rotation. Thus, all one 

can predict even in this simple case is the area of possible 

impact and the impact velocity. 
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Different modes of motion will eventually occur if the bodies are 

not symmetrical or when autorotation is slow. We shall discuss a few 

examples: 

3. When the center of gravity of the body does not coincide with 

the center of pressure, rotation around the xl axis is 

generated. Such a rotation might also occur due to initial 

conditions or a nonuniform velocity field. Observations 

suggest that once significant autorotation around the 

longitudinal axis is established, long bodies with slight 

asymmetry will eventually orient themselves so that the 

longitudinal axis is horizontal, and glide down in a helical 

trajectory as shown in Fig. 4.lb. 

On the other hand if the center of gravity is way off 

to one side, the body will fall down with that side facing 

the ground as shown in Fig. 5.2a. In this case the drag 

acting on the body will be the smallest, and the body will 

have a relatively high speed and impact. Autorotation 

around the longitudinal axis, which is oriented in this case 

parallel to the relative velocity will not be sustained. 

In an intermediate range, whose limits we cannot define at 

present, different modes are possible. Various degrees of autorotation 

will exist together with procession, as shown in Fig. S.2b. 

4. When the cross section of the body normal to the 

longitudinal axis is circular or close to circular, or 

when the relative length is small, autorotation might not 

be maintained or the autorotational speed would be small. 
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e.G. 

Figure 5.2. Descents of bodies with center of gravity differing from 
center of pressure. 

The stabilizing effect of the autorotation will vanish in 

this case and the body might orient itself in the non-

rotational mode described in paragraph (1) earlier. However, 

depending on the initial conditions, it could also rotate 

around any of the axes and exhibit a tumbling motion. In 

this case the rate of rotation will be small and the average 

lift forces will be zero. The average drag, which such a 

tumbling body will experience, could be estimated using the 

quasi-static approximation. Its value in this case as well 

as in case (3) will be in between the maximum value obtained 

when its largest area faces the flow and the minimum value 

obtained when its minimum area faces the flow. 

Many more modes of motion are possible in a nonuniform field or 

when steady conditions are not achieved. 
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Appendix I 

DUPLEICH'S DATA 

tI 2 h b k t/b r* Co CL U/nb 
g/dm (em) (em) 

1.3 12 2 6 .01 5.2 .96 1.54 4.5 
9 3 3 3.5 1.07 1.15 5.4 

10 3.3 1.07 1.27 5.0 
12 4 1.06 1.43 4.5 
15 5 1.05 1.61 4.1 
10 4 2.5 2.6 1.1 1.08 5.4 
12 3 1.14 1.29 4.9 
12 5.2 2.3 2.0 1.18 1.20 4.8 
12 6 2 1. 73 1.24 1.19 4.8 
14 2.3 1.17 1.25 4.4 
16 2.6 1.26 1.51 4.1 
18 3 1.24 1.62 3.9 
24 4 1.37 2.18 3.3 
12 8 1.5 1.3 1.37 1.14 4.9 

2.04 10.8 3.6 3 4.5 .89 .91 5.9 
14.4 4 .86 1.07 5.1 
18 5 .88 1.32 4.6 
15 5 3 3.3 .92 1.03 5.4 
12 6 2 2.7 1.0 .86 5.8 
14 2.3 1.01 1.00 5.5 
16 2.6 1.00 1.09 5.2 
18 3 1.00 1.17 4.9 
24 8 3 2.1 1.06 1.30 4.2 
8 10 .8 1.6 1.09 .54 7.4 
9 .9 1.10 .60 6.9 

10 1.0 1.11 .64 6.6 
16 1.6 1.12 .94 5.3 
20 2 1.13 1.12 4.6 
25 2.5 1.10 1.27 4.3 
30 3 1.10 1.44 3.9 

2.57 24 8 3 2.6 1.2 1.42 4.3 
5.14 16.9 5.6 3 7.3 .95 .89 5.9 
6.32 24 8 3 6.3 .96 .96 5.4 
7.38 23.8 5.8 4.1 10.2 .83 .91 5.1 

24 8 3 7.4 .86 .82 5.6 
33 IS 2.2 3.9 .92 .82 5.3 
40 17 2.4 3.5 .94 .9 5.2 

7.94 33.5 19.0 1.8 .01 3.3 .91 .11 5.8 
8.89 24.0 8.0 3.0 8.9 .84 .77 5.7 
9.18 6.0 4.0 1.5 18.4 .83 .38 9.5 

6.0 3.0 2.0 24.5 .79 .42 9.3 
10.0 6.0 1.7 12.2 .86 .47 7.9 

11.5 34.0 8.5 4.0 10.9 .86 .96 4.7 

+429 7.5 5 1.5 .13 .86 1.17 .93 6.3 
IS 3 1.15 1.61 4.8 
30 6 1.17 2.53 3.3 

+887 5 3.5 1.4 .3 2.53 .87 .55 6.9 
10 2.9 .85 .92 5.4 
20 5.7 .86 1.52 4.1 
30 8.6 .86 2.13 3.3 

+ Dup1eich's tests with lead and iron in water. 
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Appendix II 

DIMENSIONAL ANALYSIS OF AUTOROTATIONAL MOTION 

From the consideration of the problem involved, the rotational 

rate which an autorotational body will assume is defined by parameters 

governing the flow such as the fluid velocity, density of the body and 

the fluid, viscosity and length dimension. Since all of these must 

be known for a solution to the rotation rate, a functional relationship 

must exist as shown in Eq. (1). 

(1) 

In Eq. (1), n is the rotational rate, Pa is the density of the 

fluid, Pb is the density of the body, U is the flow velocity, ~ is 

the viscosity, and 1, 11 and 12 are various length dimensions. 

Using the Buckingham II-theorem one can arrange the above 

parameters in nondimensional fashion to arrive at the correct functional 

dependencies. Five II-parameters can be formed using as the repeating 

variables of U, 

III = 

112 = 

113 = 

114 = 

115 = 

Substituting the 

III = 

Pa and 1 as shown in Eqs. (2a-c) . 

Xl YI zl 
U P 1 n a 

Y2 Y2 z2 
U P t ~ a 

Pa/Pb 

t/11 

1/1 2 

dimensions into Eq. (2a) , one gets, 

-1 -3 -1 
(LT )xi(ML )ylLzlT 

(2a) 

(2b) 

(2c) 

(2d) 

(2e) 
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from which the simultaneous equations for xl' Yl 

in Eqs. (Sa through Sc). 

Xl 3YI + zl = 0 

-x - 1 = 0 
1 

YI = 0 

and are shown 

(Sa) 

(3b) 

(Sc) 

From these equation xl = -1, Yl = 0, zl = 1, and the first II-term 

is given by 

= nR, 

U 

Similarly, for Eq. (2b) following the same procedure, the second 

II-parameter is, 

1 
Re 

(4) 

(5) 

Since Eqs. (2c, 2d and 2c) are already nondimensional, the functional 

relation given by Eq. (1) can now be written as 

fen1 1 
U ' Re' = o (6) 

It should be noted that the nondimensional parameters can be inverted 

and combined if desired such that Eq. (6) becomes 

f(n; , = o (7) 

In our problem 1 = b, 11 = hand 12 = t, and rewriting Eq. (7) as 

nb 
U = fl (Re, 1*, k, t/b), (8) 
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we find the functional relationship of the rotation parameter nb/U 

depends upon the Reynolds number, dimensionless moment of inertia 

aspect ratio k and the thickness to width ratio, t/b. 

1* , 
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