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ABSTRACT 

 

FINE PARTICLE SOURCES AND ADVERSE EVENTS IN INFANTS USING HOME 

CARDIORESPIRATORY MONITORS 

Background: Recent research has provided a wealth of knowledge of the 

contributions of air pollution to adverse cardiovascular and respiratory events in sensitive 

populations. Source apportionment methods can be used to apportion and identify 

ambient sources of air pollution, which can then be used to estimate health effects of air 

pollution sources. Infants are thought to be particularly susceptible to air pollutant 

sources; however, little research has been conducted. The objective of this study was to 

examine the associations of ambient source apportioned fine particulate matter with 

bradycardia (low heart rate) and apnea (cessation of respiration) events in a cohort of 

infants prescribed home cardiorespiratory monitors.  

Methods: We utilized data from 3,629 infants within the Atlanta metropolitan 

statistical area who used home cardiorespiratory monitors between November 19, 1998 

and December 31, 2002. Home monitors were used to record respiratory effort and heart 

rate to detect bradycardia and apnea events. Chemical mass balance (CMB) and positive 

matrix factorization (PMF) source apportionment methods for fine particulate matter 

(PM2.5) were used to produce 14 source profiles. Repeated-measures unconditional 

logistic regression using generalized estimating equations (GEEs) was used to associate
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 cardiorespiratory events with air pollution sources. A stationary 45-dependent 

correlation structure was used to account for the correlation of multiple event-days for a 

patient. The model included age of the infant, the squared age of the infant, average daily 

temperature, the square of average daily temperature and indicator variables for weekend 

and federal holiday. Our analysis used a day, day-squared and day-cubed set of variables 

for the full term/normal birth weight apnea analysis to adjust for time. Cubic splines with 

seasonal knots for time were used to adjust for long term temporal trends in the 

remainder of the presented final results for apnea analyses and all of the bradycardia 

analyses. We performed separate analyses for zero and one-day lags of pollution. We 

used odds ratios (ORs) and 95% confidence intervals (CI‘s) as our measure of effect size 

to describe the odds of an event occurring. ORs from the analysis were calculated for an 

inter-quartile range (IQR) increase in each of the single pollutant source models. Apnea 

and bradycardia were evaluated separately.  

Results: We observed a pattern of suggestive positive odds ratios, especially in 

the primary analysis, such as in the woodsmoke source, which were consistent across 

source apportionment method and lag structure. We observed positive associations in the 

positive matrix factorization models for the woodsmoke source in the apnea zero-day lag 

for the primary analysis with an odds ratio of 1.031 (95% CI: 1.001-1.061; IQR: 0.93 

µg/m
3
 increase). We also observed positive associations in the positive matrix 

factorization models for the woodsmoke source in the apnea one-day lag analysis for 

primary and premature/normal birth weight with an odds ratio of 1.048 (95% CI: 1.017-

1.080; IQR: 0.93 µg/m
3
 increase) and 1.041 (95% CI: 1.006-1.077; IQR: 0.93 µg/m

3
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increase), respectively. The results for the full term/normal birth weight strata had 

stronger odds ratios than for both the primary and premature/low birth weight strata. 

Conclusions: Although we did observe wide confidence intervals and some 

protective odds ratios, we also observed stronger odds ratios in the one-day lag models 

compared to the zero-day lag models for the apnea events across both source 

apportionment methods. We observed some suggestive associations between 

cardiorespiratory events and source apportioned fine particulate matter that contributes to 

the body of air pollution literature. The access to such a large cohort of infants with the 

apnea and bradycardia data made this study a contribution to the understanding of the 

associations between cardiorespiratory events and source apportioned fine particulate 

matter in infants at high risk for cardiorespiratory events. 
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Chapter 1: Introduction 

 

Introduction 

Since the occurrence of major air pollution incidents, such as the Meuse Valley 

incident of 1930 and the Great Smog of London in 1952, air pollution has become an 

important public health concern (Andersen et al. 2007; Logan 1953; Loomis et al. 1999). 

Research since then has provided evidence of adverse health effects of air pollution 

(American Lung Association 2008; Brook et al. 2010; Chow et al. 2006; Pope and 

Dockery 2006; US-EPA 2009b). Studies using air quality measurements and longitudinal 

patient follow-up data have further shown associations of ambient air pollution with at-

risk populations, such as the elderly, children and infants being exposed to ambient air 

pollution (Sarnat et al. 2008). More recent research has provided a wealth of knowledge 

of the contributions to adverse cardiovascular and respiratory events in especially 

sensitive populations. Premature, low birth weight and neonatal infants have documented 

adverse events being associated with increased ambient air pollution with the primary 

associations being with particulate matter (Andersen et al. 2007; Concericao et al. 2001; 

Dales et al. 2006; Ha et al. 2003; Lin et al. 2004; Loomis et al. 1999; Moore et al. 2008; 

Pierse et al. 2006; Triche et al. 2006; Woodruff et al. 2006). 
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Hypotheses are moving toward the idea that specific components of pollution may 

be positively associated with immune inflammatory responses for which an over-reaction 

may lead to wheezing and coughing which can then lead to cardiorespiratory events, such 

as apnea, bradycardia, and dysrhythmia as well as hampering lung growth/development 

in children, as summarized in Table 1.1 (American Lung Association 2008; Brook et al. 

2010; Chow et al. 2006; Firket 1931; Logan 1953; Pope and Dockery 2006). Infants and 

children are more vulnerable to the effects of air pollution than adults because of a 

number of factors, such as the following: (1) infants have a higher respiratory rate 

coupled with a larger lung surface area per kilogram of body weight, (2) approximately 

80% of the alveoli in the lungs are formed postnatally and continue to develop through 

adolescence, and (3) an infant‘s immune system is not yet fully developed (Kim 2004; 

Schwartz 2004). It appears that one of the mechanisms by which air pollution, including 

particulate matter with average aerodynamic diameter less than 10 microns (PM10) and 

particulate matter with average aerodynamic diameter less than 2.5 microns (PM2.5), are 

having an impact on cardiorespiratory health is by depressing the function and 

development of epithelial cells, macrophages and respiratory extra-cellular lining fluid in 

the lungs as described in Fig 1.1 (Gilliland et al. 1999), by increasing blood pressure by 

instigating acute autonomic imbalance (Brook et al. 2010) and by increasing systemic 

inflammation (Delfino et al. 2009). 

Source apportionment methods are used to apportion and identify ambient 

concentrations from specific sources by analyzing the chemical composition, size, 

concentration and co-presence of certain pollutants in sampled air. The concept that 

differing levels of toxicity may lend itself to the idea that these more toxic particles 
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would help identify the sources that produced them, thereby driving the focus of research 

from a wide range of sources toward those most likely to be associated with adverse 

health events. Researchers may then identify the main sources that lead to these more 

toxic particles, which contribute to triggering health effects. This would point toward the 

possibility of more specific control regulations and strategies which could be aimed to 

address the sources responsible for the majority of the health conditions (Hopke et al. 

2005; Hwang and Hopke 2006; Katsouyanni et al. 2001; Kim et al. 2003). Our work here 

addresses the challenge of which air pollution sources may cause cardiorespiratory events 

by investigating the association of cardiorespiratory events with source apportioned air 

pollution. 

In this project we used data from 3,629 infants within the Atlanta metropolitan 

statistical area followed by the Apnea Center of Children‘s Healthcare of Atlanta at 

Egleston from November 19, 1998 to December 31, 2002.  Patients were prescribed a 

home monitor for prematurity, gastroesophageal reflux disease, previous apnea events, 

for having a sibling who suffered from Sudden Infant Death Syndrome (SIDS) or due to 

an apparent life threatening event. Cardiorespiratory event data (including apnea and 

bradycardia) were collected by the Apnea Center.  A previous investigation of this 

population reported associations between bradycardia and ozone (OR: 1.049 per 25ppb; 

95% CI: 1.021, 1.087) and nitrogen dioxide (OR: 1.025 per 20 ppb; 95% CI: 1.000-

1.050) (Peel et al. 2003). The results of the analysis by Peel et al.  revealed attenuated 

odds ratios among the premature/low birth weight group compared to those among the 

full term and normal birth weight group (Peel et al.  2003). The abnormal development of 

an immune response, increased respiratory rate (and therefore increased tidal flow) along 
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with under-developed anatomy and physiology was thought to contribute to a lack of 

association between ambient air pollutants and cardiorespiratory events in preterm infants 

in the previous investigation (Peel et al.  2003).  

Temperature, chemical composition, gaseous pollutants and particle size fractions 

were measured by the Study of Particles and Health in Atlanta (SOPHIA) project at the 

Aerosol Research and Inhalation Epidemiology Study (ARIES) monitoring station in 

downtown Atlanta. Measurements included ozone, carbon monoxide, nitrogen dioxide, 

sulfur dioxide, volatile organic carbon, elemental carbon, organic carbon, water-soluble 

transition metals, PM10 and PM2.5 (Sarnat et al. 2008). Investigators from Georgia Tech 

have performed two methods of source apportionment, chemical mass balance (CMB) 

and positive matrix factorization method (PMF), which were used for this project 

(Marmur et al. 2007; Sarnat et al. 2008). The sources resulting from the chemical mass 

balance and positive matrix factorization methods include mobile sources (both gasoline 

and diesel), biomass burning or woodsmoke, soil, sulfate rich secondary aerosols, and 

nitrate-rich secondary aerosols  (Marmur et al. 2007). In this investigation, we evaluated 

the association of sources of PM2.5 with the cardiorespiratory events (apnea and 

bradycardia) among infants using home monitors. Repeated-measures unconditional 

logistic regression was utilized to account for potential autocorrelation of the outcome 

within subject. The analysis was performed using these methods because the data are 

longitudinal in nature, and the events being measured represent dichotomous, repeated-

measurements on each subject. Additionally, generalized estimating equations (GEEs) 

were utilized as multivariate generalization of quasi likelihood using observed variability 

to generate usable standard errors (Agresti 2002; Sarnat et al. 2008).  
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Statement of Problem 

The development of the cardiorespiratory system has been shown to be sensitive 

to increased levels of air pollution (American Lung Association 2008). It is possible that 

both the immune development and the anatomy/physiology unique to infants at risk of 

apnea and bradycardia leave this population at increased risk to the effects of ambient air 

pollution. Research by a group at Emory University has shown that infants on home 

cardiorespiratory monitors appear to have adverse health events associated with PM2.5 

components (Peel et al. 2003). Their analysis further showed interesting differences in 

odds ratios, in that the analysis of the data on full term and normal birth weight infants 

revealed stronger associations with air pollution than that for premature/low birth weight 

infants. The investigators theorized that this may be due to the underdevelopment of an 

immune response of the premature infants (Peel et al.2003). In this project, we further 

examine this population by evaluating associations between sources of fine particulate 

matter and cardiorespiratory events in the population of premature infants.  

Specific Aims 

We examined associations of fine particulate matter sources with apnea and 

bradycardia events in infants using home respiratory monitors. Based on the source 

profiles of particulate matter in Atlanta and previous research (Andersen et al. 2007; 

Bates 1995; Pierse et al. 2006; Sarnat et al. 2008; Triche et al. 2006), as well as published 

work on this population (Peel et al. 2003), we hypothesized that apnea and bradycardia 

events were positively associated with air pollution sources.  

In analysis of both apnea and bradycardia events our sub-aims were to examine 

the particulate matter source associations with apnea and bradycardia events in full term 
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infants compared to the premature infants. This aim is justified based on prior analysis 

done on this population (Peel et al. 2003). The hypothesis driving these sub-aims is the 

research by Peel et al.  showing evidence that suggests that normal/full term infants were 

more sensitive to pollutants than were the premature infants. Here we expected to observe 

similar associations between apnea and bradycardia with fine particulate matter sources 

among premature infants represented by lower odds ratios, thereby both supporting the 

hypothesis that the under-developed respiratory system of the premature infant lacks 

appropriate immune responses and shedding more light on the differences and similarities 

of how normal/full term infant and premature/low birth weight infants respond to ambient 

air pollutant sources. 

1. Specific Aim 1: Examine the association of fine particulate matter sources with 

apnea events in infants using home monitors. 

a. Sub-Aim: Examine particulate matter associations with apnea in full term/ 

normal birth weight infants compared to the premature/low birth weight 

infants.  

2. Specific Aim 2: Examine the association of fine particulate matter sources with 

bradycardia events in infants using home monitors.  

a. Sub-Aim: Examine particulate matter associations with bradycardia in full 

term/ normal birth weight infants compared to the premature/low birth 

weight infants.  
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Table 1.1: Acute and Chronic effects of ambient air pollution on children‘s health; 

adapted from Gilliland et al. (1999). 

Acute Effects Chronic Effects (putative) 

Increased respiratory symptoms 

Increased respiratory illness 

 

Asthma exacerbations 

 

 

Increased health care utilization 

 

Excess cardiorespiratory mortality 

Respiratory tract inflammation 

Increased airway reactivity 

Altered host defenses including oxidant 

defenses, mucociliary clearance, 

macrophage function, and immune 

response 

Impaired functional lung growth 

Earlier onset and increased rate of decline 

in lung function with aging 

Increased lifetime risk for chronic 

respiratory diseases including chronic 

obstructive pulmonary disease, asthma and 

lung cancer 

Altered lung structure including 

metaplasia of the respiratory epithelium in 

respiratory bronchioles, mononuclear 

peribronchiolar inflammation, localized 

deposition and alteration in collagen, and 

remodeling of the peribronchiolar 

airspace. 
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Fig 1.1 Biologic impact pathways of ozone, nitrogen dioxide, particulates on acute and 

chronic respiratory effects ands susceptibility factors. Cu, copper; F, iron; GST, 

glutathione S-transferase (M1 T1 polymorphic); MPO, myeloperoxidase (polumorphic); 

PA, physical activity; PUFA, polyunsaturated fatty acids; TNF-alpha, tumor necrosis 

facto alpha; vit E,C, A, vitamins E, C, A. Adapted from Gilliland et al (1999) 
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Chapter 2: Background and Literature Review 

Clean Air Act, US-EPA and Air Pollution 

The Clean Air Act is a federal law that covers the United States (Peel et al. 2003; 

US-EPA 2007). The United States Environmental Protection Agency sets the allowable 

limits on certain types of air pollutants that can be in ambient air. Through the Clean Air 

Act, the agency also has the authority to limit the emissions from chemical plants, 

utilities and steel mills sources (US-EPA 2007). The Clean Air Act was born from the Air 

Pollution Control Act of 1955, which was the first federal legislation involving air 

pollution, and provided funds for federal research in pollution (US-EPA 2007, 2008c). 

The Clean Air Act of 1963 became the nation‘s first federal legislation on the control of 

air pollution and a federal program within the U.S. Public Health Service (US-EPA 

2008b). Four years later, in 1967, the Air Quality Act was put in place to expand the 

federal government‘s activities in enforcement proceedings in regions subject to interstate 

air pollution transport, studies of air pollutant emission inventories, ambient monitoring 

techniques, control techniques, and for the first time extensive ambient monitoring 

studies and stationary source w (US-EPA 2008b, c). 

The Clean Air Act of 1970 authorized the development of comprehensive federal 

and state regulations limiting industrial and mobile sources. From the 1970 Clean Air 

Act, the National Ambient Air Quality Standards (NAAQS), State Implementation Plans, 

National Emission Standards for Hazardous Air Pollutants and New Source Performance 
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Standards became the major regulatory programs for stationary sources. The US-EPA 

was then created in 1971 to implement the requirements mandated by the Clean Air Act 

of 1970 (US-EPA 2008c). The creation of the Air Pollution Control Act of 1955, the Air 

Quality Act of 1967, the Clean Air Acts of 1963 and 1970, and the amendments that 

followed, which resulted in the creation of the US-EPA, came out of the global concern 

that air pollution was affecting public health and the environment. Major examples of air 

pollution events include the 63 deaths and thousands sick, which were recorded in the 

Meuse Valley Fog of 1930 (Firket 1931) and the Great London Smog of 1952 in which 

more than 3,000 deaths were recorded (Logan 1953). Domestically, the health 

implications of air pollution were also demonstrated within the United States in the 

Donora, Pennsylvania incident of 1948 where 20 deaths with upwards of 6,000 illnesses 

were recorded (Schrenk et al. 1949).  

Of great interest to health research is the effect of fine particulate matter (PM2.5) 

air pollution. Fine particulate matter, one of the six ambient criteria air pollutants 

regulated by the EPA, is a mixture of liquid and solid particles that can vary in solubility, 

chemical composition, shape, size, and origin. Particulate matter is characterized by size 

distribution of: coarse PM (PM 2.5-10 µm), fine PM (PM < 2.5 µm) and ultrafine particles (PM< 

100 nm) (Brook et al. 2010; Canada 2004; Dockery and Pope 1994; Künzli and Tager 2005; 

Osunsanya et al. 2001; Pope et al. 2002; Pope and Dockery 2006; Pope 2000; Seaton et 

al. 1995; Seaton et al. 1999).  Particulate matter is produced in two primary ways 

depending upon the size. The coarse particles are created from the residual of the 

mechanical breakdown of larger particles, and the smaller particles are formed from 

gases and nucleation from condensation, combustion reactions and chemical reactions 
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forming new particles in the atmosphere (Brunekreef and Holgate 2002). Research 

studies from around the world reviewing the health effects of air pollution and the 

cardiovascular and respiratory effects of particulate matter have built a body of 

knowledge documenting the adverse health effects of ambient particulate matter in 

general populations (Brook et al. 2010; Brunekreef and Holgate 2002; Canada 2004; 

Dockery and Pope 1994; Künzli and Tager 2005; Nel 2005; Osunsanya et al. 2001; Pope 

et al. 2002; Pope and Dockery 2006; Pope 2000; Seaton et al. 1995; Seaton et al. 1999). 

These and many other studies may be given credit for the ongoing revisions of the US-

EPA‘s NAAQS limiting the amount of each criteria pollutant (Table 2.1). 

An important component of ambient pollution is fine particulate matter, PM2.5. 

Fine particulate matter is a heterogeneous mixture of many components from various 

sources (Cherrie 2002). Fine PM is of particular concern as compared to larger size 

fractions because of its ability to penetrate deep into the respiratory and the circulatory 

system and deposit into the blood stream and potentially reach the cardiac system (Seaton 

et al. 1999). As these fine particles are released into the air and interact with the 

atmosphere, the amount of fine particulate matter can be measured.  Source 

apportionment addresses where these different components of particulate matter are 

coming from.  For example, particles containing relatively high amounts of arsenic and 

selenium may be more likely to have come from coal combustion, whereas nickel and 

vanadium may be due to oil combustion (Grahame and Hidy 2004).  To study 

appropriately the health effects of particulate matter it is vital that we understand this 

make up since the agents it contains (e.g., nickel, arsenic, selenium, aluminum, nitrates, 

sulfates, etc.) may have differing toxicity levels.  More recent research has begun to 
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address the effect of fine particulate matter on public health. Research studies have 

shown positive associations between visits to emergency rooms for upper respiratory 

infections (URI) and PM10, nitrogen dioxide, ozone and carbon monoxide among infants 

and children (National Research Council 2004; Peel et al. 2005).   

Whose health is most affected by particulate matter appears to be dependent upon 

the health end point evaluated and levels and lengths of exposures. In the case of acute 

exposures to moderately elevated particulate matter, in their review of the over 100 

published research articles since the early 1990‘s, Pope and Dockery concluded that 

persons with influenza, asthma and chronic cardiopulmonary disease are most 

susceptible, with the elderly and the very young being most at risk (Dockery and Pope 

1994; Pope and Dockery 2006). The progression of air pollution research has led to 

studying the associations of adverse health effects in these high risk populations 

(Atkinson and Lewis 1974; Dockery et al. 1993; Harley et al. 1989; Schauer et al. 1996). 

Source Apportionment  

Source Apportionment - Introduction 

The number of mathematical models to apportion the aerosols that receptor 

measures at a site to its sources are numerous. Over the past 30 years receptor-based 

models have seen substantial development (Henry et al. 1984). Source apportionment can 

be applied to existing samples from air quality compliance networks; however, it has 

been documented that compliance monitoring sites may not provide the contrast needed 

between varying times of day and proximity to suspected contributors (Watson et al. 

2002). Watson et al. in 2002 outlined eight generally accepted steps in conducting a 
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source apportionment study: (1) formulate conceptual model, (2) compile emissions 

inventory, (3) characterize source emissions, (4) analyze ambient samples for mass, 

elements, ions, carbon, and other components from sources, (5) confirm source types 

with multivariate model, (6) quantify source contribution, (7) estimate profile changes 

and limiting precursors, and (8) reconcile source contributions with other data analysis 

and source models (Watson et al. 2002).  

The estimation of emissions from air pollution sources is often supported by 

emissions factors, which are values that attempt to represent the amount of a pollutant in 

the atmosphere to an activity associated with the pollutant‘s release (US-EPA 2009a). 

Emissions factors are published by the US-EPA in the AP-42 Emissions Factors for use 

in formulating national inventories; however, these may be of limited use for specific air-

sheds. Hence, locally obtained emissions factors should be utilized wherever possible 

(Watson et al. 2002).  

Source apportionment methods have gained in utility and advancement in recent 

times. To better investigate the association between health outcomes and sources of 

pollutants, epidemiological studies are making use of source apportionment models and 

are now beginning to increase in frequency. The two methods we utilize in our study, 

which we will now describe, are chemical mass balance and positive matrix factorization 

methods. 

Chemical Mass Balance  

In chemical mass balance (CMB) modeling and analysis, ambient chemical 

concentrations are expressed as the sum of products of species abundances and source 
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contributions. These equations are solved for the source contributions when ambient 

concentrations and source profiles are supplied as input. Several methods for solving  

these equations have been applied; however, the effective variance least squares 

estimation method is most commonly used because it incorporates precision estimates for 

all of the input data into the solution and propagates these errors to the model outputs 

(Watson et al. 2002). 

The chemical mass balance equations have been used to apportion observed 

pollutant concentrations to their various pollution sources. The model is based on the 

principle of conservation of mass; the amount of a chemical species observed in ambient 

air is a sum of the pollutant contributions released from a finite number of pollution 

sources in the region (Miller et al. 1972; Winchester and Nifong 1971). Hence, the mass 

concentration of the i
th

 species (yi) is a linear combination of contributions from k 

pollution sources:  

yi = 
k

j 1
xij*Bj+ei;  

where i = 1, …, p, Bj is the mass contribution of source j to the atmosphere at the 

receptor, ei is the measurement error at the receptor for the i
th

 species and x(j) = (x1j, …, 

xpj)‘, j = 1, …, k, represents the composition or ―profile‖ of the j
th

 source (Christensen 

and Gunst 2004; Hopke 1991; Watson et al. 2002). 

The chemical mass balance model is utilized with respect to the assumptions that 

(1) source emission compositions are constant over time, chemical species do not react 

with each other (they add linearly), (3) all influential sources are speciated, (4) source 

compositions are linearly independent, (5) the number of sources does not exceed the 



 

15 

 

number of chemical species and (6) measurement uncertainties are random, uncorrelated 

and normally distributed (Christensen and Gunst 2004; Henry et al. 1984; Watson et al. 

2002). These assumptions are essentially addressing the issue of analysis simplicity; that 

is, that modeling emissions which do not change, species are not reacting (they add 

linearly), we have all the species, the sources have the possibility to be assigned a ‗unique 

signature‘ and the residual-errors not be correlated with one another. Of particular 

concern can be the violations of assumptions which researchers should be keeping an eye 

out for: 

Assumption One: Constant source compositions – this assumption tends to 

be violated simply due to the heterogeneity of operating conditions. It is 

quite obvious that source compositions may vary somewhat depending 

upon operational, environmental and atmospheric factors; however, the 

mathematics used for this type of analysis is complex and continues to 

improve to account for these variations (Watson et al. 2002). 

Assumption Four and Assumption Six: Correlation of source 

compositions, non-zero measurement error correlations and non-zero 

correlations within a profile across species and within species across 

profiles. The violations of these assumptions challenge epidemiologists 

attempting to elucidate the associations between health endpoints and 

pollutant sources as problems of collinearity arise in source apportionment 

research. Careful and knowledgeable decision-making during analysis by 

the investigator is the primary defense for this challenge (Watson et al. 

2002). 
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 Hildemann (2002) summarizes chemical mass balance by pointing out that 

chemical mass balance must have complete emissions composition information for each 

source and cannot operate with missing sources or missing data (Hildemann 2002). 

Chemical mass balance can analyze single receptor samples and can identify specific, 

well-known sources. Although in using chemical mass balance, researchers must 

recognize that chemical mass balance cannot resolve collinear sources and learn to spot 

problems in model output such as missing sources (Christensen and Gunst 2004). 

Positive Matrix Factorization  

Positive matrix factorization (PMF) has been applied to a wide range of data 

(Engel-Cox and Weber 2007; Hopke et al. 2005; Hwang and Hopke 2006; Kim et al. 

2004; Reff et al. 2007; Thurston et al. 2005). The goal of a multivariate receptor model, 

such as the positive matrix factorization method, is to identify a number of factors and 

specie profiles for each source and the amount of mass contributed by each factor to each 

individual sample. Positive matrix factorization is a multivariate factor analysis tool that 

is used to decompose a matrix of speciated sample data into two matrices. These two 

matrices have to then be interpreted as to which source types are represented using 

measured source profile information. A speciated data set is viewed as a data matrix. The 

results are constrained so that no sample can have a negative source contribution – each 

of the data points are individually weighted. Similar to chemical mass balance, a mass 

balance equation can be written to account for the species in the samples as contributions 

from independent sources (Hildemann 2002; Hopke 2000). 

Just as in the case of the chemical mass balance method, positive matrix 

factorization method has assumptions of its own: (1) the original data must be reproduced 
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by the model, (2) the predicted source compositions must be non-negative, (3) predicted 

source contributions to the aerosol must all be non-negative and (4) the sum of the 

predicted elemental mass contributions for each source must be less than or equal to total 

measured mass for each element (Hopke 2000). These constraints essentially address that 

the model needs to replicate the actual observed data, which would never apply a 

negative value to a measurement or percentage and the model should not predict mass 

that exceeds total mass.  

A disadvantage of the least squares approach in the positive matrix factorization 

method is that it can yield multiple solutions depending on the initial starting point. 

Hence, it is usually advised to perform the analysis several times to be certain that there 

is replication in the solution (Hopke 2000; Reff et al. 2007; US-EPA 2008a). Although 

collinearity is still an issue, the added conveniences of the positive matrix factorization 

method are that it does not require source compositions as inputs, accounts for 

uncertainties in the input measurements and can handle missing and below detection limit 

input data (Hildemann 2002; Hopke 2000; US-EPA 2008a). The positive matrix 

factorization method side steps the problem presented in standard principle component 

analysis (PCA) of distorted scaling, or non-optimal scaling from column/row scaling 

(Hopke 2000). 

 

Comparison of Chemical Mass Balance and Positive Matrix Factorization 

Receptor models are tools based on the same scientific principles as source 

models that are explanatory rather than predictive of source contributions. The utility of 
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chemical mass balance has been well established and widely used to develop pollution 

control strategies (Watson et al. 2002). Both source apportionment models, chemical 

mass balance and positive matrix factorization methods, have similar aims and provide 

quantitative estimates of the source contributions. Also, each method utilizes least 

squares fitting; however, they have different essential mechanisms and methods for how 

error structures are modeled (Engel-Cox and Weber 2007; Hildemann 2002; US-EPA 

2008a). 

With chemical mass balance, source profiles must be provided by the analyst. The 

model then uses this information to apportion mass. Chemical mass balance also allows 

for the assignment of error estimates to each source contribution value. The positive 

matrix factorization model estimates the source profiles and may utilize source profiles 

(if they are known) to decrease the rotational indeterminacy. A limitation of the positive 

matrix factorization method is that one cannot assign errors to the source profile or 

contributions (Kim et al. 2003; US-EPA 2008a), and it also uses estimates of the average 

source profiles over the time period of sample collection. 

Chemical mass balance and positive matrix factorization methods have already 

been applied to epidemiological studies in the Atlanta air-shed where our sample of 

infants resides (Sarnat et al. 2008). Additionally, work has been done on source 

identification of Atlanta aerosol (Kim et al. 2003), as well as on improving the source 

identification of Atlanta aerosol (Kim et al. 2004).  
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Infant Physiology and Growth  

Premature and Low Birth Weight Infants 

The development of the fetus is an important aspect of how an infant‘s body and 

organs respond to the environment around them after birth (Kenner and McGrath 2004) . 

Disruption of the delicate developmental process, such as premature and/or low weight at 

birth, can greatly and adversely affect an infant‘s ability to survive (Kenner and McGrath 

2004). The National Center for Health Statistics Division of the Centers for Disease 

Control and Prevention observed that, from data on births in 2007, premature and low 

birth weight births held steady at 12.7% from 2006 estimates of 12.8% (Martin et al. 

2010). During the period of our study, the 2002 final birth report indicated two primary 

population-level predictors of infant health whose indices rose 1 - 2 % from 2001 (Martin 

et al. 2010): (1) percent of births born premature (under 37 completed weeks of gestation) 

and (2) the percent of births born low birth weight (under 2,500 grams). Increases in 

premature and low birth weight rates of 3% and 1%, respectively, were noted between 

2000 and 2001.  Figure 2.1 by Kochaneck and Martin (2005) show that since 1990 

premature and low birth weight rates have risen steadily. Moderately premature (32-36 

weeks of gestation) and moderately low birth weight (1,500-2,499 grams) infants appear 

to account for the main portion of the increase. From 1990 to 2002, the moderately 

premature rate rose from 8.7% to 10.1% and the moderately low birth weight rate 

increased from 5.7% to 6.4%, while the rate for very premature (under 32 gestational 

weeks) rose from 1.92% to 1.96% and the very low birth weight (less than 1,500 grams) 

from 1.27% to 1.46%.   There appears to be evidence of increased risk of early death 
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associated with the low the birth weight or gestational classification (Mathews et al. 

2003). 

A number of documented health consequences have been associated with 

premature and low birth weight infants. The designation of being premature means that 

the infant has not fully developed and thus is at a higher risk than full term infants for a 

suite of health challenges including hearing and vision problems, longer-term motor, 

cognitive, behavioral, social issues and gastrointestinal, immunologic, and acute 

respiratory and growth problems (Behrman and Butler 2007; Moster et al. 2008). 

Similarly, low birth weight infants tend to experience more challenges with health issues, 

such as respiratory distress syndrome, retinopathy, underdeveloped lungs and, heart 

problems, immature liver growth anemia or polycythemia or regulating and maintaining a 

normal body temperature (Stevens 2002).  

Cardiovascular and Respiratory Development 

At approximately the 27
th

 through 29
th

 days, the chambers of the heart can be 

filled with blood cells and plasma (Kenner and McGrath 2004) . During the sixth through 

eighth weeks post-fertilization, the embryo will begin to develop pharyngeal arches, 

which will develop into the maxillary and mandibular prominences. At the same time the 

esophagus will continue to grow and the flow of blood through the atrioventricular canal 

will begin to divide into a left and a right stream (Kenner and McGrath 2004) . During 

this period of time, the heart will grow, better defining the ventricles. The heart will show 

signs of dividing into its four chambers at approximately 41 days (postovulation) (Jirasek 

2004; Kenner and McGrath 2004; Thorburn and Harding 1994; Yagel et al. 2006). In the 

9
th

 through 15
th

 weeks, the heart beat can begin to be detected and the lungs continue to 
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develop. The fetus may then respire the amniotic fluid that is necessary for the 

developing alveoli inside the lungs to function properly (Kenner and McGrath 2004).  

As the respiratory system begins to mature to the point that the lungs have 

reached the canalicular stage, the bronchioles divide into two or more respiratory 

bronchioles, which will eventually develop into the alveolar ducts. Nearing 24 weeks 

conceptional age, extrauterine respiration is possible. However, surfactant production will 

not reach the optimal levels in the fetus until closer to 28 weeks conceptional age, 

rendering unassisted respiration insufficient. From 24 weeks to birth, the lung 

development is completing its terminal stage marked by the rapid growth of the sacs that 

are the site of gas exchange in the lungs, thinning of epithelium and bulging of capillaries 

into the sacs for gas exchange (Kenner and McGrath 2004; Thorburn and Harding 1994). 

By approximately 28 weeks, the lining of the sacs in the lungs undergoes a shedding in 

which type I alveolar cells (squamous epithelial cells) are replaced by pulmonary 

surfactant secreting type II alveolar cells. It is important to note here that at weeks 28 to 

32 the fetus begins to develop an immune system. Yet, it will take until weeks 38 to 40 

conceptional age that full surfactant production is achieved (Jirasek 2004; Kenner and 

McGrath 2004).  

From week 37 the birth of a fetus is considered to be full term even though a 

normal human pregnancy is noted to be 40 weeks in length (Kenner and McGrath 2004). 

The lung development is considered to be capable of supporting life from 37 weeks 

forward (Kenner and McGrath 2004). The premature infant is defined as <37 weeks 

gestation, moderate prematurity 31-36 weeks and severe prematurity 24-30 weeks 

(Kenner and McGrath 2004; Swamy 2004). Low and very low birth weight are 
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documented at < 2500 grams and <1500 grams, respectively. Premature infants are often 

also low birth weight; however, a full term infant may be born low birth weight and 

present different complications (Kenner and McGrath 2004). 

The premature infant is at a respiratory disadvantage in part due to the 

proportionately larger head and tongue and smaller, narrower nasal passages, an anterior 

and cephalad larynx, long epiglottis and short trachea and neck as seen in Figures 2.2 and 

2.3 (Swamy and Mallikarjun 2004).  Furthermore, the narrow cricoid cartilage and 

narrow trachea increase the ease and likelihood of both a mechanically blocked airway, 

as well as immune induced closure of the airway in comparison to even a five-year-old 

(Loughlin 2000; American Heart Assoc 2006; Matthew 2003; Kelmanson 2006).   

The mortality rates for premature infants reported by the Center for Disease 

Control and Prevention reflect the challenges to survival of a premature fetus with 68.6% 

of all infant deaths in 2005 occurring among premature infants (MacDorman and 

Mathews 2008). These data are biologically understandable given that independent life is 

not viable until gestational age is 24-26 weeks due to development of the airway system, 

alveolar growth and surface active proteins (Kelmanson 2006; Kenner and McGrath 

2004).  Premature infants may suffer from a lack of breathing control due to the immature 

hypoxic and hypercapnic ventilatory drives that depress respiration (Kenner and McGrath 

2004). This lack of control combined with susceptibility to fatigue of the respiratory 

muscles may be responsible for increased rates of apnea in premature infants (Kenner and 

McGrath 2004). Thus, we find that infants are at an increased risk of inhalative exposure 

since their oxygen consumption, with a respiratory and heart rate of 40 breaths and 140 
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beats per minute, is nearly double that of an adult   (American Heart Assoc 2006; 

Kelmanson 2006; Loughlin 2000; Matthew 2003; Swamy and Mallikarjun 2004). 

Apnea and Bradycardia  

The cardiorespiratory system of the infant is not a uniform entity; it covers vast 

ranges of heterogeneity that make managing the airway a complex task (American Heart 

Assoc 2006; Kelmanson 2006; Loughlin 2000; Matthew 2003; Swamy and Mallikarjun 

2004). Apnea (cessation of breathing for more than 20 seconds) and bradycardia (low 

heart rate) are two health events of concern 

Matthew et al. (2003) present analysis in which they show approximately 97% of 

bradycardias are preceded by apnea events. Apnea is understood as the brief cessation in 

breathing. Healthy, normal infants have been recorded to cease respiration for up to 15-

20 seconds (Kenner and McGrath 2004). Apnea is defined as the cessation of breathing 

for more than 20 seconds (Loughlin 2000). The causes of apnea are still being 

investigated and have been linked with other infant mortality risk factors, including sleep 

apnea and Sudden Infant Death Syndrome (SIDS) (Spitzer 2005). In infants these short 

disruptions in breathing patterns (less than 20 seconds) are said to be normal; however, 

the termination of breathing for more the 20 seconds is considered worthy of seeking 

medical attention (Kelmanson 2006). Symptoms of obstructive apnea are snoring, restless 

sleep, labored breathing and changes in color (Matthew 2003). 

The literature reports three types of apnea. The first type is obstructive apnea in 

which an obstruction causes the apnea. An example of an obstruction would be food, toys 

or even enlarged tonsils and adenoids (Matthew 2003). Prolonged apnea occurs in nearly 
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all premature infants < 28 weeks post-conceptional age, and has been found to occur in 

approximately half of infants at 31 weeks (Matthew 2003). Central apnea occurs when 

there is a malfunction in the section of the brain that controls the start or maintenance of 

breathing functions. This is especially common in very premature infants because the 

respiratory center in the brain is immature. Finally, mixed apnea is described as a 

combination of central and obstructive apnea and is mostly seen in infants and young 

children who have abnormal control of breathing.  

Bradycardia is defined as a slower than normal heart rate (Kenner and McGrath 

2004). A drop in heart rate can mean that the body‘s organs do not obtain as much 

oxygen as they should which can lead to dizziness, fatigue, and fainting, as well as chest 

pains and other problems (Kelmanson 2006). Bradycardia can be caused by a disturbance 

in the electrical impulses of the heart that control the rate of work. Other documented 

causes of bradycardia include the degeneration, infection or damage of tissues in the 

heart, an iron buildup in the organs and repeated disruptions of breathing or bouts of 

apnea which  is cause for additional observation (Spitzer and Gibson 1992). In infants, 

especially premature and low birth weight infants, the incomplete development of the 

lungs and heart chambers can be a cause of bradycardia. Additionally, the under-

development of the immune system may leave these infants at increased susceptibility of 

bradycardia episodes due to infection.  The Children‘s Healthcare of Atlanta defines 

bradycardia for infants as: heart rate <100 beats per minute in a premature infant, <80 

beats per minute in a full term infant and <60 beats per minute in an infant > 3 months 

(Kelmanson 2006; Kenner and McGrath 2004). 
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Cardiorespiratory Monitors 

The physiology of infants, especially in the disrupted development of premature 

and low birth weight infants, has lead to the need for increased observation and 

monitoring of these infants. Premature and low birth weight infants are permitted to be 

taken home by the parent(s) under the aided care of a computerized home 

cardiorespiratory monitor. These monitors are portable machines to record the infant‘s 

heart rate and breathing (Erler and Peters 2006; Gibson et al. 1996; HealthCentral 2009; 

Medline Plus 2009; Spitzer 2005; Spitzer and Gibson 1992). In most cases the electrodes 

are secured by stick-on patches or a belt attached to the subject‘s chest or stomach 

(Medline Plus 2009). The measurement of respiration with most all of these monitors is 

accomplished through a surrogate measure of impedance typically using an elastic band 

around the chest of the infant. Thus, these monitors are measuring respiratory effort, or 

more accurately chest movement, as a surrogate measure of respiration. If the heart or 

breathing rate falls below the preset limit on the monitor, an alarm signals to alert the 

attention of a care provider or parent. Since the early 1970‘s, home monitors have been 

used to care for infants thought to be at risk of illnesses, such as Sudden Infant Death 

Syndrome (SIDS), by recording heart rate and breathing (Halbower 2008). Some notable 

debate has occurred over the years of the utility of these monitors as no randomized or 

controlled trials were performed on the efficacy of monitor use prior to public 

distribution. Thus, although many studies have looked at compliance, access to and 

quality of life with monitor use; there have not been a large number of studies which 

address the actual life-saving role of monitor use (Halbower 2008). Although researchers 

also debate the utility and efficacy of home monitor therapies due to false alarms, 
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monitors have continued to be utilized and credited with successful cardiorespiratory 

recording (Erler and Peters 2006; Gibson et al. 1996; HealthCentral 2009; Medline Plus 

2009; Spitzer 2005; Spitzer and Gibson 1992).  

Health Effects of Ambient Air Pollution in Child/Infant Populations  

Identifying populations, such as infants, that are susceptible to the acute adverse 

health effects of ambient pollutants, and providing insight regarding biological 

mechanisms are both priorities in air pollution research (National Research Council 

2004). A large body of research from around the world investigating associations 

between air pollution and health effects of infants and children has been accumulated 

(Awasthi et al. 1996; Bates 1995; Bayer-Oglesby et al. 2005; Bobak and Leon 1999a; 

Concericao et al. 2001; Dales et al. 2006; Gilliland et al. 1999; Ha et al. 2003; Heinrich 

and Slama 2007; Kaiser et al. 2004; Kim 2004; Lin et al. 2004; Loomis et al. 1999; 

Moore et al. 2008; Morgenstern et al. 2008; Moshammer et al. 2006; Nicolai et al. 2003; 

Peel et al. 2003; Pierse et al. 2006; Pope and Dockery 1992; Schwartz 2004; Sunyer et al. 

2004; Triche et al. 2006; Wang and Pinkerton 2007; Ward and Ayres 2004; Wong et al. 

2004; Woodruff et al. 1997). Air pollution can be especially dangerous to infants and 

children due to the increased heart rate and respirations, which lead to high volumes of 

air exchange and thus increased potential for exposure to pollutants (Gilliland et al. 1999; 

Kim 2004).  Additionally, infants are more susceptible to disease due to the 

underdevelopment of the immune system. The consequences of air pollution are not 

balanced for all members of a population, and the literature is showing that infants and 

children are among the most vulnerable and sensitive of subgroups (Heinrich and Slama 

2007). The effects of air pollutants on infants and children have included postnatal 
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development (Wang and Pinkerton 2007) and increased adverse pregnancy outcomes and 

infant mortality (Bobak and Leon 1999a, b; Loomis et al. 1999; Woodruff et al. 1997; 

Woodruff et al. 2006) and respiratory and lung function (Awasthi et al. 1996; Brunekreef 

et al. 1995; Pierse et al. 2006). 

Fetal and Early Postnatal Development 

 A number of studies have investigated the effects of air pollution on fetal and 

early postnatal development has shown an increasing body of evidence that fine particle 

exposure has a measurable impact on birth outcomes (Heinrich and Slama 2007).  In 

discussing their work reviewing birth outcomes and development, Heinrich found that 

intrauterine growth retardation was consistently associated with particulate matter and 

increased risk of prematurity with particulate matter levels (Heinrich and Slama 2007). 

Additionally, particulate matter exposure during pregnancy was associated with increases 

in birth defects, such as atrial septal defects (Heinrich and Slama 2007). 

 Wang and Pinkerton in 2007 observed that exposure to air pollutants during fetal 

development and early postnatal life is associated with abnormal development including 

low birth weight, premature birth, intrauterine growth restriction, congenital defects, 

decreased lung growth, and neurocognitive decrements(Wang and Pinkerton 2007). In 

another review, Moshammer et al. (2006) suggest that the heterogeneous nature of 

particulate matter containing heavy metals, persistent organic pollutants (POPs) and 

polycyclic aromatic hydrocarbons (PAHs) can impact fetal and early postnatal 

development (Moshammer et al. 2006). Research two years later by Bateson and 

Schwartz in 2008 corroborated the suggestions by Moshammer et al. in which they 

explained that considerable evidence of maternal exposure to air pollution during 
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pregnancy is associated with adverse birth outcomes. Bateson and Schwartz (2008) found 

in reviewing the literature that increases in prevailing level of air pollution are associated 

with early fetal loss, premature delivery, and lower birth weight. 

Mortality 

 Researchers have also documented relationships between air pollution and infant 

mortality. Reviews by Pope and Dockery have addressed the susceptibility of infants and 

children to air pollution (Pope and Dockery 2006). The literature reveals an increasing 

body of evidence that fine particle exposure has a measurable impact on infant health 

(Heinrich and Slama 2007). In research by Lacasana et al. in 2005 the authors reviewed 

the literature and observed that an increase of 10µg/m
3
 in particle concentration PM10 is 

associated with a nearly 5% increase in post-neonatal mortality for all causes and nearly 

22% for post-neonatal mortality for respiratory diseases (Lacasana et al. 2005).  

 Sram et al. reviewed the literature and observed there to be a near consensus of 

the association between infant and childhood mortality and exposure to particulate matter 

(Šrám et al. 2005). Sram et al. (2005)concluded their research by stating that the evidence 

is sufficient to believe there is a causal relationship between particulate air pollution and 

respiratory deaths in the postneonatal period. Wang and Pinkerton (2006) reviewed the 

relationship between infant mortality and outdoor air pollutants and concluded that 

carbon monoxide and PM10 were both observed to be associated across a number of 

studies. The research performed by Bateson and Schwartz (2008) cites separate work by 

Woodruff et al. (1997), Bobak et al. (1999), Loomis et al. (1999), Bateson et al. (2008) 

and Ritz et al. (2006) which identified particulate matter as associated with infant 
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mortality. The works by these researchers provide abundant evidence of the impact air 

pollution has on infant mortality. 

Respiratory Illnesses/Events 

 Studies have shown evidence of associations between respiratory symptoms and 

air pollutants. Odds ratios for PM10 have been estimated at 1.62 (95% CI: 1.31-1.97) and 

1.42 (95% CI: 1.02-1.97) for incident symptoms of cough without a cold and wheezing 

without a cold, respectively (Pierse et al. 2006). Bayer-Oglesby et al. (2005) observed 

moderate declines in air pollution levels in the 1990‘s in Switzerland to be associated 

with reduced respiratory symptoms and diseases in school children in a cross-sectional 

study of 9,951 participants(Bayer-Oglesby et al. 2005). In  an 18-year study, work done 

by Moore et al. who studied the time trends in associations between child asthma 

hospitalizations observed that a 10-ppb mean increase in mean quarterly 1-hr maximum 

O3 resulted in a 4.6% increase in the same quarterly outcome (Moore et al. 2008). Triche 

et al. (2006) concluded that levels of ozone exposure close to (or even below) the U.S. 

EPA standards, appear to place infants at increased risk of respiratory symptoms based 

upon their analysis that revealed a 37% (95% CI: 2-84%) increased likelihood of 

wheezing for every interquartile-range (11.8 parts per billion) increase in same-day 24-

hour average ozone. This percent increased to 59% (95% CI: 1-154%) for infants of 

asthmatic mothers (Moore et al. 2008; Triche et al. 2006). Dales et al. (2006) observed 

multiple associations in their Canadian study testing the associations between daily 

concentrations of ambient gases and daily respiratory hospitalizations (asphyxia, 

respiratory failure, dyspnea and respiratory abnormalities, respiratory distress syndrome, 

unspecified birth asphyxia in live-born infant, other respiratory problems after birth and 
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pneumonia) in which O3, NO2, and CO were observed to be significant at the 0.05 level of 

significance with odds ratios of 3.35 (95% CI: 1.73-4.77 per 12.0 µg/m
3
 increase), 2.85 

(95% CI: 1.68-4.02 per 10.0 µg/m
3
 increase), and 9.61 (95% CI: 4.53-14.7 per 0.5 µg/m

3
 

increase), respectively (Dales et al. 2006). Research by Peel et al. (2003) on the same 

cohort of 3,629 infants as included in our current study observed associations between 

bradycardia and ozone (OR: 1.049 per 25 ppb; 95% CI: 1.021-1.087) and nitrogen 

dioxide (OR: 1.025 per 20 ppb; 95% CI: 1.000-1.050). The infants were under six months 

in age at the beginning of the study within the Atlanta metropolitan statistical area and 

were patients of the Healthcare of Atlanta at Egleston Apnea Center from August 1, 1998 

to December 31, 2002 (Peel et al. 2003).  Patients were prescribed a home monitor for 

prematurity, gastroesophageal reflux disease, previous apnea events, apparent life 

threatening events or have a sibling who suffered from Sudden Infant Death Syndrome 

(SIDS).  

Health Effects of Source Apportioned Air Pollution  

The evaluation of the health effects of source apportioned air pollution is a field 

of study gaining in utility, yet is still in its early phases. As such, there are only limited 

publications from such studies.  Prior studies have observed interesting associations 

which have helped to form the hypotheses of our work here. For instance, Larson et al. 

(1994) and Schreuder et al. (2008) observed consistent associations between a biomass 

burning source and a number of respiratory end points using a tracer method of source 

identification that matched well with other source apportionment methods (source 

apportionment comparisons not published) (Larson and Koenig 1994; Schreuder et al. 

2008).  
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A 2009 study observed an association of hospital admissions for arrhythmia with 

Aitken mode particles and PM2.5 from the traffic source in which a 3.1% increase (95% 

CI: 0.43–5.8 per 2,467 cm
-3

 increase) for pneumonia over the 5-day mean, and a 3.8% 

increase (95% CI: 1.3–6.3 per 2,467 cm
-3

 increase) for asthma-COPD at lag 0 was 

observed. They also observed an association of respiratory mortality mainly with 

accumulation Aitken mode particles (5.1%; 1.2–9.0 at lag 0 per 287 cm
-3

 increase) 

(Halonen et al. 2009). Research by Ito et al. (2005) used air pollution data from the city 

of Washington, D.C. and a Poisson generalized linear model (GLM) to estimate source-

specific apportionment to estimate  relative risks (RR) at lags 0–4 days for total non-

accidental, cardiovascular, and cardiorespiratory mortality adjusting for weather, 

seasonal/temporal trends, and day-of-week. The results from this workshop on air sheds 

and health statistics data from Washington, DC estimated mean relative risks associating 

PM2.5, soil, sulfates and traffic sources with cardiovascular and non-accidental 

mortalities. Ito et al. (2005) presented results from the workshop on particulate matter 

source apportionment and health effects for Washington, DC in which they observed that 

the percent excess deaths per 5
th

-95
th

 percentile increment (values not provided) of 

apportioned PM2.5 for total mortality was significantly associated with the secondary 

sulfate source at 6.7% increase (95% CI: 1.7-11.7) with a 3 day lag (three days following 

the event), 2.6% increase (95% CI: -1.6-6.9) for the traffic source related PM2.5, 2.1% 

increase (95% CI: -0.8-4.9) for the soil source and 2.7% increase (95% CI: -1.1-6.5) for 

residual oil factor source on a 2 day lag (two days following the event) in the DC dataset 

(Ito et al. 2005).  
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A Copenhagen study observed that an increase in the 4-day PM10 average was 

associated with a 2.7% increase in cardiovascular disease hospital admissions the next 

day (95% confidence interval 1.3%–4.2%; per 14.0 µg/m
3
 increase). For respiratory 

disease and asthma, one IQR increase in 5- and 6-day PM10 averages was associated with 

3.7% (1.4%–6.0% per 14.0 µg/m
3
 increase) and 7.7% (0.4%–15.5% per 14.0 µg/m

3
 

increase) increases in hospital admissions the next day, respectively (Andersen et al. 

2007).  

In their 2008 study, Sarnat et al. (2008) observed that their results using both 

CMB and PMF source apportionment methods were robust to the selection of source-

apportionment method. They observed several significant, positive associations, such as 

between cardiovascular disease and same-day PM2.5 source concentrations of diesel, 

gasoline and biomass combustion in both the PMF and CMB modeling estimates. They 

also observed secondary sulfate to be significant in the respiratory disease analysis  

(Sarnat et al. 2008). Their results show an important relationship between the two models 

which provides evidence that there may be little difference in associations observed in 

epidemiological studies when associating health events and source apportioned air 

pollution. 

Mar et al. (2005) found small or no associations between the biomass burning 

source and cardiovascular disease (CVD), in a comparison of a suite of multivariate 

factor analytic based models target-transformation factor analysis, confirmatory factor 

analysis, unmix and positive matrix factorization method (Ito et al. 2005; Mar et al. 

2005). Datasets presented by Mar et al. (2005) observed evidence that cardiovascular 

mortality was associated with the secondary sulfate source (16.0% per 5
th

-95
th

 percentile, 
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actual values not provided) at lag zero-day was associated with cardiovascular mortality 

and the traffic source (13.2% per 5
th

-95
th

 percentile [actual values not provided] at lag 

one-day in Phoenix. However, in their analysis, the investigators noted that an increase in 

the time between exposure and event observation showed a decreased association in the 

traffic related particulate matter. In an earlier 2000 study, Mar et al. (2000) observed 

significant associations between cardiovascular mortality and selected gaseous air 

pollutants with relative risks of: CO 1.05 (95% CI: 1.00-1.11; per 1.19 ppm increase) and 

1.10 (95% CI: 1.04-1.15; per 1.19 ppm increase) in 0- and 1-day lags, respectively, and 

NO2 with a relative risk of 1.10 (95% CI: 1.04-1.17; per 0.02 ppm increase) and 1.10 

(95% CI: 1.04-1.15; per 0.02 ppm increase) at the 1-day lag. There was also an 

association with SO2 at the 0 day lag. Cardiovascular mortality was positively associated 

with CO (0-4 days lag). The associations between PM10 and total mortality and between 

the coarse fraction of particulate matter (PM10-2.5) and total mortality were marginal. Mar 

et al. (2000) observed the strongest associations with cardiovascular mortality with PM10 

with a relative risk of 1.05 (95% CI: 1.01-1.09; 24.88 per µg/m
3
 increase), the non-soil 

PM2.5 source with a relative risk of 1.04 (95% CI: 1.00-1.08; 0.02 per µg/m
3
 increase), 

and PM10-2.5 with a relative risk of 1.05 (95% CI: 1.01-1.09; 18.39 per µg/m
3
 increase). 

Summary 

Air pollution and its effects on human health have been the subject of a number of 

studies. Research has indicated a further need to explore the effects of the sources of air 

pollution and address the effects of air pollution, as well as source apportioned air 

pollution on vulnerable populations. The emerging methodology and technology to detect 

and to ascertain the sources of fine particles provides researchers with an expanded array 
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of tools, such as improved source apportionment models that may increase the precision 

and accuracy of effect estimations within certain populations. As presented above, the 

challenges and need to address at risk and highly susceptible populations, such as infants, 

is great. The amount of current research on specific respiratory and cardiac events in 

infants is lacking in quantity due in part to the technological and methodological 

challenges, such as the development of source apportionment standards and the conduct 

of longitudinal studies which require long term follow-up, patient commitment and 

compliance in order to obtain the large amount of data required by such studies. The 

public health concern and need to address the association between air pollution and 

health provide increased motivation to investigate the hypothesis of source associated 

health effects to improve our understanding of the relationship between infant health and 

air pollution sources. Fine particulate air pollution is becoming an increasing concern in 

the field of air pollution due to the effects shown in studies investigating respiratory 

outcomes, cardiovascular health, pregnancy outcomes, asthma, and SIDS. The work we 

present here can add to the growing body of literature in narrowing the constituent 

sources of air pollution which may be harmful to infants. 
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Table 2.1: United States National Ambient Air Quality Standards, adapted from the 

United States Environmental Protection Agency‘s National Ambient Air Quality 

Standards website (US-EPA 2009c). 

                         NATIONAL AMBIENT AIR QUALITY STANDARDS 

 Primary Standards Secondary Standards 

Pollutant Level Averaging Time Level Averaging Time 

Carbon Monoxide 9 ppm  8-hour None None 

 35 ppm 1-hour None None 

Lead 0.15 µg/m3  Rolling 3-month 

average 

Same as Primary Same as Primary 

 1.5 µg/m3 Quarterly average Same as Primary Same as Primary 

Nitrogen Dioxide 0.053 ppm Annual (Arithmetic 

Mean) 

Same as Primary Same as Primary 

Particulate Matter 

(PM10) 

10 µg/m3 24-hour (3) Same as Primary Same as Primary 

Particulate Matter 

(PM2.5) 

15.0 µg/m3 Annual(4) (Arithmetic 

Mean) 

Same as Primary Same as Primary 

 35 µg/m3 24-hours (5) Same as Primary Same as Primary 

Ozone 0.075 ppm (2008 std) 8-hour Same as Primary Same as Primary 

 0.08 ppm (1997 std) 8-hour Same as Primary Same as Primary 

 0.12 ppm 1-hour(8) (Applies only 

in limited areas) 

Same as Primary Same as Primary 

Sulfur Dioxide 0.03 ppm Annual (Arithmetic 

mean) 

0.5 ppm (1300 µg/m3) 3-hour 

(1) not to be exceeded more than once per year. 

(2) final rule signed  October 15, 2008. 

(3) not to be exceeded more than once per year on average over 3 years. 

(4) to attain this standard, the 3-year average of the weighted annual mean pm2.5 concentration from single or multiple community oriented monitors 

must not exceed 15.0 µg/m3 

(5) to attain this standard, the 3 year average of the 98th percentile of 24 hour concentrations at each population oriented monitor within an area must 

not exceed 35 µg/m3 
 (effective December 17, 2006).  

 to attain this standard, the 3 year average  of the fourth highest daily maximum 8-hour average ozone concentrations measured at each monitor within 

an area over each year must not exceed 0.08 ppm. 

 (a) to attain this standard, the 3 year average of the fourth highest daily maximum 8 hour average ozone concentrations measured at each monitor 

within an area over each year must not exceed 0.08 ppm 

      (b) the 1997 standard – and the implementation rules for that standard – will remain in place for implementation purposes as EPA undertakes 

rulemaking to address the transition from the 1997 ozone standard to the 2008 ozone standard. 

(8) (a) the standard is attained when the expected number of days per calendar year with maximum hourly average concentration above 0.12 ppm is < 1. 

      (b) as of June 15, 2005 EPA revoked the 1-hour ozone standard in all areas exept the 8-hour ozone nonattainment Early Action Compact (EAC) 

Areas. 
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Figure 2.1 Infant Mortality Rate of Premature and Low Birth Weight live births adapted from 

Kochanek and Martin (2005). 
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Infant/Child Airway (A) – side view 

 

Figure 2.2: Anatomical challenges in infants, adapted from Swamy and Mallikarjun 

(2004).  
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Infant/Child Airway (B) – side view 

 

Figure 2.3: Sagittal section of the adult (A) and infant (B) airway, adapted from  Swamy 

and Mallikarjun (2004).  
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Chapter 3: Methods 
 

 The analysis for this work used existing data from various sources. The source 

apportioned fine particulate matter data were merged with the patient clinical and event 

data into one database for analysis. We then utilized SAS 9.2 (SAS Inc; Cary, NC) to 

perform unconditional logistic regression (within a generalized estimating equation 

framework to account for autocorrelation within subject) to investigate the association 

between particulate matter sources and apnea and bradycardia events. Our analysis was 

performed using the sources identified from both chemical mass balance and positive 

matrix factorization source apportionment methods based on single source models (one 

source per model). 

Study Population 

The data from this research are part of a previous project that examined the 

relationship between ambient air pollution and cardiorespiratory events (apnea and 

bradycardia) in a population of primarily premature and low birth weight infants 

monitored with home devices (Peel et al. 2003). The event and patient data were obtained 

from the Apnea Center at Children‘s Healthcare of Atlanta at Egleston. Data collected 

included date of birth, gender, race, gestational age at birth, birth weight, payment 

method, reason for referral and residential zip code for all patients followed by the Apnea 
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Center. Data were collected from an electronic database and included patients whose 

residential zip codes 
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were within the 20-county Atlanta Metropolitan Statistical Area (MSA) (Peel et al.  

2003).  The 3,629 infants less than six months of age at the beginning of the study, were 

followed from November 19, 1998 to December 31, 2002, corresponding to the 

availability of the source data.  Patients were prescribed a home monitor for various 

reasons including prematurity, gastroesophageal reflux disease, previous apnea events, 

apparent life threatening events, or having a sibling who had suffered from Sudden Infant 

Death Syndrome (SIDS).   

Event Data 

 The monitors recorded heart rate, ECG, and a measure of chest impedance for 

apnea (when the infant briefly stops breathing) and bradycardia (low heart rate), using 

pre-set parameters to recognize the events. The apnea setting is usually set at 20-25 

seconds to detect longer pauses in respirations, and heart rate is typically set to measure 

periods where the rhythm falls below 100 bpm, 80 bpm and 60 bpm for premature, full 

term and infants > three months old, respectively. These settings are chosen based on the 

gestational age at birth and age of each infant. Normal birth weight and full term infants 

have been known to have short periods of apnea and the age of the infant determines 

what the normal heart rate should be (Halbower 2008; Kenner and McGrath 2004). 

Impedance is the method of measurement of respiration wherein expansion and 

contraction of the trunk and chest region are used to detect respiratory effort, typically 

using an elastic band around the circumference of the infant. Impedance is an indirect 

method of detecting apnea by monitoring the rise and fall of the chest, which means that 

only apneas that occur when there is no respiratory effort (central apneas) rather than 

obstructive apneas are detected. Bradycardias in our study may represent primary cardiac 
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events, as well as events which are secondary to obstructive apnea events that would not 

be documented apneas since they could be missed by the impedance method. 

 Approximately once a month or when events were being experienced by the 

infant, the monitor wave forms were collected and reviewed by the clinicians. Using 

these waveforms, clinicians assessed the type and validity of the event and summarized 

the information into a patient file which contained the unique patient identification 

number, event time, date, type and duration of the event, the lowest heart rate during a 

bradycardia, the time period the download covers, type of monitor, the monitor‘s low 

heart rate and apnea settings, and compliance for that download. If the monitors are 

incorrectly secured or the electrodes fell off the infant, a false event may be recorded. 

The clinicians were able to determine if a recorded event was a false event or a true apnea 

or bradycardia. The monitor is recommended to be used for about 20 hours per day, 

especially during sleep, car seat use, or when an adult is not present in the same room. It 

is the goal of the Apnea Center to collect 90 event-free days before the cessation of 

monitor use. 

 Patients included in the study were patients younger than six-months of age at the 

start of their follow-up and where patient cardiorespiratory monitor use was more than 

66% compliant during a download period and only the download periods for which the 

infant used the monitor for more than 66% of the days. Follow-up time was censored at 

six-months of age or at the end of the study period – which ever was first.  
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Source Apportionment 

 The source apportionment methods were presented by Kim et al. (2004), Marmur 

et al. (2005) and Sarnat et al. (2008). Investigators utilized chemical mass balance and 

positive matrix factorization methods of source apportionment on PM2.5 mass collected 

from November 19, 1998 to December 31, 2002 in the urban area of Atlanta monitored at 

the Jefferson Street site, four kilometers northwest of downtown Atlanta. This site is a 

primary measurement site for the Southeastern Aerosol Research and Characterization 

Study (SEARCH), the Aerosol Research Inhalation Epidemiology Study (ARIES) and 

other studies that are part of the Studies of Particles and Health in Atlanta (SOPHIA) . 

These two methods produced 14 source profiles (see Table 3.1). Of these profiles, six 

(gasoline, diesel, woodsmoke, soil, secondary sulfate I, and secondary nitrate) were 

identified by both source apportionment methods, while three (power plants, other OC 

and ammonium bisulfate) were identified only by the chemical mass balance method, and 

five (cement kiln, bus and highway, railroad, metal processing and secondary sulfate II) 

were identified only by the positive matrix factorization method.  

 The positive matrix factorization method (PMF) done by Kim et al. (2004) used 

daily integrated PM2.5 composition data including eight individual carbon fractions 

collected at the Jefferson Street monitoring site in Atlanta (Kim et al. 2004; Sarnat et al. 

2008). Particulate carbon was analyzed using the thermal optical reflectance method that 

divides carbon into four organic carbon (OC), pyrolized organic carbon (POC), and three 

elemental carbon (EC) fractions. A total of 529 samples and 28 variables were measured 

between August 1998 and August 2000. PMF identified 11 sources in this study: sulfate-

rich secondary aerosol I (50% - average mass distribution), on-road diesel emissions 
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(11%), nitrate-rich secondary aerosol (9%), woodsmoke (7%), gasoline vehicle (6%), 

sulfate-rich secondary aerosol II (6%), metal processing (3%), airborne soil (3%), 

railroad traffic (3%), cement kiln/carbon-rich (2%), and bus maintenance 

facility/highway traffic (2%). This study indicated that the temperature-resolved 

fractional carbon data can be utilized to enhance source apportionment study, especially 

with respect to the separation of diesel emissions from gasoline vehicle sources (Kim et 

al. 2004).  

 The chemical mass balance done by Marmur et al. (2005), in addition to the 

commonly used particulate-phase source profiles, used a modified approach to PM2.5 

source apportionment, using source indicative sulfur dioxide/PM2.5, carbon 

monoxide/PM2.5, and nitrous oxides/PM2.5 ratios as constraints to develop sources. 

Additional information from gas-to-particle ratios assisted in reducing collinearity 

between source profiles. The solution is based on a global optimization mechanism, 

minimizing the weighted error between apportioned and ambient levels of PM2.5 

components, while introducing constraints on calculated source contributions that 

ensure that the ambient gas-phase pollutants (sulfur dioxide, carbon monoxide, and  

nitrous oxide) are reasonable (Marmur et al. 2005).  

Source apportionment is a developing technique with practitioners using their 

own personal knowledge to guide them in source naming and profile discrimination. 

Thus, the missing components of air pollution which may be needed to estimate pollution 

sources may prevent the estimation of a source in practitioner‘s technique. The lack of 

uniformity in the field of source apportionment means that there can be differences or 

misleading similarities in the naming, compound and component make-up of a source. 
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The challenge of non-uniformity in source identification conventions, along with 

estimating differences between the two source apportionment methods we used to 

estimate the sources, lead to inconsistency of the days for which each method was able to 

generate source data measurements. In order to help to reconcile these differences so that 

comparable days of data would be used, we censored the source data to include only days 

in which we obtained source contributions for similar sources from both positive matrix 

factorization and chemical mass balance methods. Missing values present in the source 

data occurred when data could not be obtained from the central monitor, in which case 

the source apportionment measurements cannot be estimated.  

Statistical Methods  

All statistical analysis was performed using SAS 9.2 (SAS Inc., Cary, NC). The 

clinical and demographic data were merged with event data for each of the patients to 

construct the database. Descriptive statistics for the air quality (mean, interquartile range, 

percentiles and standard deviation) and outcome data (apnea and bradycardia events) 

were calculated. Spearman correlation coefficients between the sources within and 

between the PMF and CMB methods were calculated. We examined the association 

between the apnea and bradycardia and source apportioned fine particulate matter (Aim 1 

and 2, respectively) from the positive matrix factorization and chemical mass balance 

methods separately.  We assigned the dependent variable as an event-day (apnea or 

bradycardia event evaluated separately on each day). We evaluated the association with 

the source data for the day of (zero-day lag) and the day before (one-day lag) the event 

utilizing one source per model. 
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Repeated-measures unconditional logistic regression within a generalized 

estimating equation (GEE) framework was used to address the possibility that multiple 

event-days for a patient may be correlated (Agresti 2002). Due to the availability of only 

a few models to handle the joint distribution of repeated observations for each subject, 

the analysis of longitudinal data is challenging and requires the use of GEEs, which are 

an extension of generalized linear models (Liang and Zeger 1986). The utility of GEEs is 

the ability to estimate the average response comprised of the sample population to create 

a population-averaged effect (Hardin and Hilbe 2003). One of the strengths of GEEs is 

the ability of the equations to be constructed when the joint distribution of the 

observations is unknown or not given. GEEs have become an increasingly important tool 

by providing a methodology for the statistical analysis of correlated data, such as those 

which are regularly seen in longitudinal data, as well as nested and repeated-measures 

designs wherein measurements taken have characteristics in common and are taken at 

different points in time (Ballinger 2004; Liang and Zeger 1986). GEEs are also able to 

generate more efficient and unbiased regression parameters as compared to the ordinary 

least-squares regression since they allow for the working correlation matrix, which 

dictates the structure of the within-subject correlation to be directly specified (Ballinger 

2004). 

We attempted to utilize a model, we call the ‗preferred model‘, which included 

the fine particle source, age, age-squared, temperature splines with knots at the 25
th

 and 

75
th

 percentiles, time splines with seasonal knots, and indicator for weekend and 

holidays. Later in this section, we describe problems in utilizing this ‗preferred model‘ 

which lead to presenting the results of from two models. The first model was used for the 
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full term/normal birth weight strata was the same as the ‗preferred model‘ but replaced 

the temperature splines with average daily temperature and the square of daily 

temperature variables to adjust for temperature and replaced time splines with day, day-

squared and day-cubed variables to adjust for time. The second model used for the 

remainder of the analysis was identical to the ‗preferred model‘ but replaced the 

temperature splines with average daily temperature and the square of daily temperature 

variables to adjust for temperature. 

We used a stationary 45-dependent correlation structure; average daily 

temperature and the square of average daily temperature were used to adjust for daily 

average temperature as well as indicator variables for holidays and weekends. Age and a 

quadratic term for age of infant were included in the model so that we could adjust for the 

age of the infant since the probability of cardiorespiratory events, such as apnea and 

bradycardia, decrease with the increase in age of the infant (Peel et al. , 2003). The 

stationary 45-dependent correlation structure attempts to account for the possibility that 

multiple events recorded by a subject are correlated, by treating events occurring less 

than 45 days apart as a correlated event. Events which occur more than 45 days apart are 

treated as separate independent, uncorrelated events. We included the terms day, day-

squared and day-cubed in the full term/normal birth weight apnea analysis to adjust for 

temporal trends and cubic splines with seasonal knots for adjustment for long term 

temporal trends in the remainder of the study. The quadratic age term is included to 

account for the decreased probability of an event (both bradycardia and apnea) with 

increasing age (Peel et al.  2003).   
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The odds ratio (OR) is a measure of effect size used to describe the strength of 

association between data values. All odds ratios (ORs) and 95% confidence intervals 

(CIs) from GEE unconditional logistic analysis using apportioned sources lagged zero 

and one-day were calculated for increase in each pollutant source equal to the inter-

quartile range.  

The analyses for apnea events and for bradycardia events were conducted 

separately (Aim 1 and 2, respectively). We evaluated the association between each of the 

sources with apnea or bradycardia events for the entire population and then stratified the 

subjects by birth weight and gestational age status to compare the odds ratios of the 

primary analysis utilizing all birth weights and gestational ages versus the low birth 

weight/premature infants (< 2500 g/<37 months) and those of normal birth weight/full 

term infants (>2500g/>37 months) (Sub-Aim i). These aims were justified based on prior 

analysis done on this population showing evidence that suggests that normal/full term 

infants were more sensitive to pollutants than were the premature infants (Peel et al.  

2003).  

Upon running the described ‗preferred‘ model (fine PM source, age, age-squared, 

temperature splines with knots at the 25
th

 and 75
th

 percentiles, time splines with seasonal 

knots, and indicators for weekend and holidays), the Hessian matrices, constructed in 

order to produce the needed covariance matrices to calculate confidence intervals, would 

not converge, causing us to have to simplify the model (data not presented). We ran the 

analysis of all strata changing the correlation structure from stationary 45-dependent to 

independent, compound symmetry and autoregressive. Using the independent correlation 

structure, all of the off-diagonal correlations are zero. These off-diagonal zeros are 

http://en.wikipedia.org/wiki/Effect_size
http://en.wikipedia.org/wiki/Association_(statistics)
http://en.wikipedia.org/wiki/Data
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interpreted in our research as each cardiorespiratory event being completely uncorrelated. 

In the exchangeable correlation structure, the off-diagonal is assumed to be equally 

uniformly correlated in a manner such that every observation of an event an infant 

experiences is equally correlated with every other observation by that infant. Thus, the 

off-diagonal correlations in the correlation matrix of the exchangeable correlation 

structure are equal. Since the correlations between observations in our study are likely to 

diminish as the time between observations increases, we did not expect the exchangeable 

correlation structure to be fitting for our analysis. The autoregressive (AR) correlation 

structure assumes observations are related to their own past values. An autoregressive 

correlation structure indicates that two observations taken close in time within an 

individual tend to be more highly correlated than two observations taken far apart in time 

from the same individual. Utilizing an m-dependent correlation structure, the analysis 

assumes that the further apart to observations are, the less correlated they will be. The m-

dependent correlation structure allows the analyst to specify a number (m), such that 

observations more than a distance m apart will have zero correlations. 

In each case, the Hessian matrices would not converge (we compared the 

resulting point estimates to those of our results presented and observed little difference, 

data not presented). The similarity we observed is not surprising given that the GEE 

method is robust to changes in correlation structure (Twisk 2003).  

We resorted to removing one variable at a time to see if we could find the variable 

that would allow the model to run. We left the splines for the last attempt only to find that 

removing the temperature splines solved the problem for all but the full term/normal birth 

weight infant apnea stratum constructing a model which included fine PM source, age, 
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age-squared, weekend, time splines with seasonal knots and holiday. We then re-

attempted the changes in correlation structures without the temperature splines which did 

allow for convergence in all categories other than the full term/normal birth weight infant 

apnea analysis (data not presented). 

We then replaced the temperature splines with temperature (24-hour average) and 

temperature-squared constructing a model which included fine PM source, age, age-

squared, temperature, temperature-squared, weekend, time splines with seasonal knots 

and holiday, which still allowed the program to produce the estimates in all cases other 

than the full term/normal birth weight infant apnea sets. We removed the temporal 

splines, which did allow the estimates to be run (fine PM source, age, age-squared, 

temperature, temperature-squared, weekend and holiday, data not presented). This lead us 

to a model that included the fine PM source, indicator variables for holidays and 

weekends and linear and quadratic terms for temperature and age of infant with a 

stationary 45-dependent  correlation structure for the full term/normal birth weight infant 

apnea analysis (fine PM source, age, age-squared, temperature, temperature-squared, 

weekend and holiday, data not presented) and the same variables with the addition of the 

temporal splines for the remainder of the strata (fine PM source, age, age-squared, 

temperature, temperature-squared, time splines with seasonal knots, weekend and 

holiday, data not presented).  

Recognizing the importance of accounting for temporal trends, we calculated the 

estimates replacing the time splines with day of study, day of study squared and day of 

study cubed (fine PM source, age, age-squared, temperature, temperature-squared, day, 

day-squared, day-cubed, weekend and holiday; data not presented) in the hopes that this 
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simplification would allow the model to run. Another attempt involved creating indicator 

variables for year and indicator variables for season and the interaction between the 

indicator variables for season and year (age, age-squared, weekday, holiday, temperature, 

temperature-squared, indicator variables for year and indicator variables for season and 

the interaction between the indicator variables for season and year, data not presented) 

using 1999 and winter as referent year and season. Both of these methods were successful 

in producing convergent Hessian matrices that resulted in odds ratios and confidence 

intervals. However, these results were so similar (<10% difference) to those presented in 

the final model (age, age-squared, temperature, temperature-squared, time splines with 

seasonal knots, weekend and holiday, model 9; for full term/normal birth weight apnea 

analysis: fine PM source, age, age-squared, temperature, temperature-squared, weekend 

and holiday, model 8), we chose to use model 10 (fine PM source, age, age-squared, 

temperature, temperature-squared, day, day-squared, day-cubed, weekend and holiday) 

for the apnea full term/ normal birth weight analysis and model 9 (age, age-squared, 

temperature, temperature-squared, time splines with seasonal knots, weekend and 

holiday) for the remainder of the strata (all infants, premature and low birth weight). 

In the interest of performing a sensitivity analysis, we compiled all of the point 

estimates from all of the described program output attempts. Using a 10% change in odds 

ratio point estimate values as a guide, the comparison observed only few minor 

discernible differences. We calculated differences between odds ratio point estimate 

values in the ‗preferred‘ model (model 1: fine PM source, age, age-squared, temperature 

splines, time splines with seasonal knots, weekend and holiday) and the final model (fine 

PM source, age, age-squared, temperature, temperature-squared, time splines with 
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seasonal knots, weekend and holiday, model 9) and observed that there was only one 

instance of a difference greater than 10% (10.23%) which was in the apnea full 

term/normal birth weight section for the one-day lag in the diesel/gas PMF analysis. Four 

other instances showed a slightly more than 10% difference in the comparison between 

model 1 (preferred)  and model 10 (using day, day squared and day cubed) among the 

apnea full term/normal birth weight in the diesel/gas PMF (10.8%), gas PMF (10.1%) and 

diesel CMB (10.1%). Lastly, the other instance which showed more than a 10% 

difference was the comparison between model 1 (preferred)  and model 8 (age, age-

squared, temperature, temperature-squared, weekend and holiday) in the apnea full 

term/normal birth weight section for the zero-day lag in the diesel/gas  PMF analysis.  

We observed these few differences above 10% to be tolerable given sensitivity 

analysis for GEE methods. Thus, we conclude that the results presented are robust to 

changes in correlation structure, as well as the method in adjusting for time and 

temperature. Thus, we chose to use model 10 (fine PM source, age, age-squared, 

temperature, temperature-squared, day, day-squared, day-cubed, weekend and holiday) 

for the apnea full term/ normal birth weight analysis and model 9 (age, age-squared, 

temperature, temperature-squared, time splines with seasonal knots, weekend and 

holiday) for the remainder of the analysis. 
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Table 3.1: Source apportionment names by category. Adapted from Sarnat et al. (2008)  

Positive Matrix Factorization Factors Chemical Mass Balance Sources 

Gasoline Gasoline 

Diesel Diesel 

Woodsmoke Biomass burning 

Soil Soil 

Secondary sulfate I Ammonium sulfate 

Secondary nitrate Ammonium nitrate 

Secondary sulfate II ---- 

Metal processing ---- 

Railroad ---- 

Bus and highway ---- 

Cement kiln ---- 

---- Power plants 

---- Other OC 

---- Ammonium bisulfate 
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Chapter 4: Results 

Descriptive Statistics  

 There were 1,891 infants out of 3,629 who experienced at least one apnea event 

(see table 4.1). These infants had 95,339 total follow-up days. Among infants with at 

least one apnea event we observed there were 821 males (56.9%), 1,683 were low birth 

weight (89.0%) and 1,766 were born prematurely (93.4%) with 1,178 infants (62.3%) 

being both low birth weight and premature. The mean follow-up time in days was 50.4 

days with a mean age at the start of follow-up and mean gestational age at birth of 40.9 

days and 31.2 weeks, respectively. There were 3,629 infants who experienced at least one 

bradycardia event (see table 4.1). These infants had 157,753 total follow-up days. We 

calculated that 53.5% of the infants were male (N=1,499), 85.1% were low birth weight 

(N=3,089) and 89.1% were born prematurely (N= 3,233) with 78.4% of infants (2,125) 

being both low birth weight and premature. The mean follow-up time at the start of 

follow-up was 43.5 days with a mean age and mean gestational age at birth of 46.0 days 

and 31.6 weeks, respectively. 

Tables 4.2.A and 4.2.B present the descriptive statistics (N, mean, standard 

deviation, 25
th

, median and 75
th

 percentiles, minimum and maximum) of the identified 

sources during the 1,502 day study period. The results of these calculations appeared to 

be within reason. We observed that comparable sources from the two methods had 

similar values. The gas and ammonium sulfate CMB sources were nearly identical to the 
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gas and ammonium sulfate PMF sources, respectively. The soil and ammonium nitrate 

CMB sources were very similar to the gas and ammonium nitrate PMF sources, 

respectively, although not quite as close as the gas and ammonium sulfate. 

The Spearman correlation coefficients (r) demonstrated that the two source 

apportionment methods appeared to be well correlated where similar sources were 

identified (Tables 4.3, 4.5 and 4.6). The majority of the correlations were as would be 

expected, such as the similarly named sources between CMB and PMF Diesel (r= 0.84) 

and Woodsmoke (r= 0.76). However, it was surprising that the correlation between the 

two gas sources was relatively low (r= 0.37). Furthermore, the results reflected that 

various other sources were also highly correlated (see Tables 4.3, 4.5 and 4.6).  For 

instance, comparing the CMB sources, we observed moderate correlations between the 

gas and woodsmoke source (r= 0.57), the ammonium nitrate sources (r= 0.51), and the 

diesel sources (r= 0.48), respectively. The diesel and other organic compound sources 

were strongly correlated (r= 0.69). The correlation for PMF sources demonstrated that the 

diesel source was highly correlated with the combined diesel/gas (r= 0.95), gas (r= 0.63) 

and woodsmoke (r= 0.57) sources. The combined diesel/gas source was highly correlated 

with the PMF gas source (r= 0.82) and moderately correlated with the woodsmoke source 

(r= 0.58). 

Comparing the CMB gasoline sources to the PMF sources, we observed some 

expected moderate and strong correlations, such as with the diesel-PMF source (r= 0.66), 

the metal processing-PMF source (r= 0.64), the combined diesel/gas-PMF source (r= 

0.61), the woodsmoke-PMF source (r= 0.57) and the cement kiln-PMF source (r= 0.44).  

The diesel (CMB) source observed positive matrix factorization source correlations to be 
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expectedly strong with the diesel source (PMF) (r= 0.84) and the combined diesel/gas 

(PMF) source (r= 0.76). The soil (CMB) source was highly correlated with the soil 

(PMF) source (r= 0.94). The woodsmoke source (CMB) also had a strong correlation 

with its positive matrix factorization method counterpart woodsmoke (PMF) source (r= 

0.76), as well as with the combined diesel/gas (PMF) source (r= 0.73), the diesel (PMF) 

source (r= 0.68) and the gas (PMF) source (r= 0.65). The other organic carbon source 

(CMB) has a moderate to strong correlation to the gas (PMF) source (r= 0.69) and the 

combined diesel/gas (PMF) source (r= 0.77).  The power plant (CMB) and cement (PMF) 

sources were also highly correlated (r= 0.71). The ammonium sulfate (CMB) source with 

the ammonium sulfate (PMF) source (r= 0.94) and the ammonium nitrate (CMB) source 

with the ammonium nitrate (PMF) source (r= 0.90) were also observed to be highly 

correlated. The gas (CMB) source has a moderate correlation with the woodsmoke (PMF) 

source (r= 0.57) and the combined diesel/gas (PMF) source (r= 0.61).   

Figure 4.1presents a distribution of the proportion of the sources contributing to 

PM2.5 showing that the secondary sulfate (38% in CMB) and ammonium sulfate (36% in 

PMF) sources make up a large proportion of the overall source apportioned pollution. For 

the PMF method diesel made up 13%, while in the CMB category the other organic 

carbon source (15%) and unspecified components (13%) were a larger proportion of the 

distribution than diesel (9%). The strong correlations between the like named sources 

across the PMF and CMB methods are not surprising given the similarities of the source 

profiles (see figures 4.2 and 4.3). We observe from the source profiles that in comparing 

the key elemental components (also known as tracers), the descriptive profiles of the 

PMF and CMB methods are very similar. For example, in both source apportionment 
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methods, the diesel source revealed a large proportion of elemental carbon and the 

gasoline sources both revealed high proportions of organic carbon and elemental carbon. 

Statistical Analysis 

Our study examined the relationship between cardiorespiratory events (apnea and 

bradycardia) in infants on home monitors in relation to daily source apportioned daily 

fine PM in Atlanta from November 19, 1998 through December 31, 2002. We calculated 

252 odds ratio estimates (108 CMB figures 5.1, 5.2, 5.5 and 5.6 and 144 PMF figures 5.3, 

5.4, 5.7 and 5.8). The sources used in this study are described by their names, as well as 

by their primary identifying elemental or compound constituent(s). However, there are a 

few sources that warrant some additional explanation: other organic carbon, secondary 

sulfate/ammonium sulfate, secondary nitrate/ammonium nitrate and ammonium bisulfate. 

As such, they have been labeled based on their primary elemental or compound 

constituent(s) (Kim et al. 2004; Marmur et al. 2006): 

Other organic carbon: is a source category for which the profile did not 

sufficiently fit other source categories that contain organic carbon. 

Ammonium sulfate/secondary sulfate/bisulfate: formed largely from 

photochemical reactions involving SO2 from primary power plant 

emissions. Ammonium nitrate/secondary nitrate: aerosol is identified by 

its high concentration of NO3.  

Chemical Mass Balance 

CMB: Apnea Zero-Day Lag 
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There were no significant associations in the zero-day lag in CMB models for 

apnea events. 

CMB: Apnea One-Day Lag 

We observed that, for the CMB models for full term/normal birth weight infants, 

airborne soil was significant at the 0.05 level of significance in the apnea one-day lag 

analysis with an odds ratio of 0.769 (95% CI: 0.668-0.885; IQR: 0.27 µg/m
3
 increase, 

Table 4.6.A). Our analysis also observed a positive association between apnea and 

ammonium nitrate (one-day lag) among the full term/normal birth weight infants in the 

chemical mass balance analysis with an odds ratio of 1.159 (95% CI: 1.000-1.343; IQR: 

1.29 µg/m
3
 increase, Table 4.6.A.).   

CMB: Bradycardia Zero-Day Lag 

We observed significant negative associations between bradycardia events and 

coal fired power plants in the zero-day lag with an odds ratio of 0.972 (95% CI: 0.950-

0.995; IQR: 0.13 µg/m
3
 increase, Table 4.6.B) and ammonium nitrate with an odds ratio 

of 1.025 (95% CI: 1.001-1.049; IQR: 1.29 µg/m
3
 increase, Table 4.6.B) among low birth 

weight/premature of the chemical mass balance model (Table 4.6.B). 

CMB: Bradycardia One-Day Lag 

We did not observe any significant associations in the one-day lag for the CMB 

models in the bradycardia analysis.  

CMB Suggestive Patterns 

CMB: Apnea Zero-Day Lag  
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We observed suggestively strong odds ratios in the CMB primary apnea analysis 

among the zero-day lag for the woodsmoke source with an odds ratio of 1.024 (95% CI: 

0.982-1.068; IQR: 0.72 µg/m
3
 increase) and the ammonium nitrate source with an odds 

ratio of 1.051 (95% CI: 0.995-1.109; IQR: 5.05 µg/m
3
 increase).   

CMB: Apnea One-Day Lag 

Strong odds ratios were also observed in the one-day lag for the full term/normal 

birth weight analysis in the ammonium nitrate and soil sources with an odds ratio of 

1.054 (95% CI: 0.890-1.250; IQR: 1.29 µg/m
3
 increase) and 1.034 (95% CI: 0.959-1.155; 

IQR: 0.27 µg/m
3
 increase), respectively.  

In the one-day lag of the gas source we observed these suggestively strong odds 

ratios in all strata with odds ratios for the primary analysis, premature/low birth weight 

and full term/normal birth weight of 1.032 (95% CI: 0.997-1.069; IQR: 0.94 µg/m
3
 

increase), 1.029 (95% CI: 0.990-1.069; IQR: 0.94 µg/m
3
 increase) and 1.039 (95% CI: 

0.884-1.221; IQR: 0.94 µg/m
3
 increase), respectively. Similarly, we observed strong odds 

ratios in all strata for diesel with odds ratios for the primary analysis, premature/low birth 

weight and full term/normal birth weight of 1.029 (95% CI: 0.991-1.068; IQR: 1.17 

µg/m
3
 increase), 1.029 (95% CI: 0.987-1.073; IQR: 1.17 µg/m

3
 increase) and 1.039 (95% 

CI: 0.837-1.073; IQR: 1.17µg/m
3
 increase), respectively. 

In the one-day lag of the other organic carbon source we observed strong odds 

ratios in the primary and full term/normal birth weight analysis with odds ratios of 1.027 

(95% CI: 0.991-1.064; IQR: 1.79 µg/m
3
 increase) and 1.095 (95% CI: 0.962-1.247; IQR: 

1.79 µg/m
3
 increase), respectively. 
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CMB: Bradycardia Zero-Day Lag 

Suggestively strong odds ratios were observed in the zero-day lag among the full 

term/normal birth weight strata of the coal-fired power plant source with an odds ratio of 

1.085 (95% CI: 0.990-1.188; IQR: 0.13 µg/m
3
 increase). 

CMB: Bradycardia Zero-Day Lag 

We observed suggestively strong odds ratios in the bradycardia analysis mostly in 

the full term/normal birth weight strata. In the CMB models, suggestively strong odds 

ratios in the one-day lag were observed among the full term/normal birth weight in the 

gas source 1.029 (95% CI: 0.944-1.122; IQR: 0.94 µg/m
3
 increase), the diesel source 

1.062 (95% CI: 0.972-1.162; IQR: 1.17 µg/m
3
 increase), woodsmoke 1.051 (95% CI: 

0.943-1.173; IQR: 0.72 µg/m
3
 increase), and the other organic carbon source 1.049 (95% 

CI: 0.962-1.144; IQR: 1.79 µg/m
3
 increase). 

 

Positive Matrix Factorization 

PMF: Apnea Zero-Day Lag 

In the PMF analysis we observed a number of associations between apnea events 

between stationary-type sources. We also observed the woodsmoke source was 

significant in the apnea zero-day lag for the primary analysis with an odds ratio of 1.031 

(95% CI: 1.001-1.061; IQR: 0.93 µg/m
3
 increase, Table 4.7.A).  
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We also observed associations with apnea in the positive matrix factorization 

method models for the ammonium sulfate source with an odds ratio of 1.054 (95% CI: 

1.003-1.108; IQR: 5.78 µg/m
3
 increase) in the primary analysis in the zero-day lag 

We also observed negative associations with apnea in the positive matrix 

factorization method models for the cement kiln source among the primary analysis with 

an odds ratio of 0.970 (95% CI: 0.945-0.995; IQR: 0.33 µg/m
3
 increase, Table 4.7.A) and 

among the premature/low birth weight with an odds ratio of 0.968 (95% CI: 0.940-

0.9996; IQR: 0.33 µg/m
3
 increase). 

PMF: Apnea One-Day Lag 

We observed, in the positive matrix factorization models, that woodsmoke was 

significant at the 0.05 level of significance in the apnea one-day lag analysis for 

premature/normal birth weight infants with an odds ratio of 1.041 (95% CI: 1.006-1.077; 

IQR: 0.93 µg/m
3
 increase, Table 4.7.A). The woodsmoke source was statistically 

significant in the one-day lag analysis with an odds ratio of 1.048 (95% CI: 1.017-1.080; 

IQR: 0.93 µg/m
3
 increase) in the primary strata.  

We also observed associations with apnea events and the diesel/gas source in the 

one-day lag for the primary analysis with an odds ratio of 1.037 (95% CI: 1.000-1.076; 

IQR: 3.27 µg/m
3
 increase; Table 4.7.A). Additionally, the positive matrix factorization 

method one-day lag model observed the airborne soil source was associated with apnea 

events with an odds ratio of 0.757 (95% CI: 0.650-0.883; IQR: 0.48 µg/m
3
 increase).  

PMF Bradycardia Zero-Day Lag 
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We observed one association in the zero-day lag for the bradycardia analysis, 

which was in the premature/low birth weight strata of the cement kiln source with an 

odds ratio of 0.983 (95% CI: 0.967-0.999; IQR: 0.33 µg/m
3
 increase, Table 4.7.B). 

PMF Bradycardia One-Day Lag 

All three of the associations observed in the one-day lag in the bradycardia 

analysis were among the full term/normal birth weight infants and the sources 

bus/highway, woodsmoke and cement kiln with odds ratios of 0.978 (95% CI: 0.959-

0.997; IQR: 0.11 µg/m
3
 increase), 1.106 (95% CI: 1.031-1.186; IQR: 0.93 µg/m

3
 

increase) and 0.979 (95% CI: 0.963-0.995; IQR: 0.33 µg/m
3
 increase), respectively.  

We also observed an association for the one-day woodsmoke in the bradycardia 

analysis of the full term/normal birth weight strata with an odds ratio of 1.106 (95% CI: 

1.031-1.186; IQR: 0.93 µg/m
3
 increase).  

Suggestive Patterns 

PMF: Apnea Zero-Day Lag  

We observed a pattern of suggestively strong odds ratios in the analysis with the 

pattern being most pronounced across the study in the primary analysis. Suggestively 

strong odds ratios were also observed in the zero-day lags for full term/normal birth 

weight infants in the secondary sulfate, ammonium sulfate, gas and soil sources with 

odds ratios of 1.059 (95% CI: 0.901-1.244; IQR: 1.31 µg/m
3
 increase), 1.097 (95% CI: 

0.920-1.1.308; IQR: 5.78 µg/m
3
 increase) and 1.040 (95% CI: 0.958-1.128; IQR: 0.48 

µg/m
3
 increase), respectively. 
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PMF: Apnea Zero-Day Lag  

In the apnea models, primary analysis (using the entire population) exhibited 

some strong, although not statistically significant, odds ratios in the gas source 1.030 

(95% CI: 0.995-1.067; IQR: 1.23 µg/m
3
 increase) and diesel with an odds ratio of 1.036 

(95% CI: 0.999-1.075; IQR: 2.26 µg/m
3
 increase) in the one-day lag for PMF and the gas 

source with an odds ratio of 1.032 (95% CI: 0.997-1.069; IQR: 0.94 µg/m
3
 increase). We 

observed these stronger odds ratios in the PMF method for one-day lags in the railroad 

source with an odds ratio of 1.041 (95% CI: 0.995-1.090; IQR: 0.51 µg/m
3
 increase). The 

ammonium sulfate source also showed a suggestively strong odds ratio in the one-day 

lags with an odds ratio 1.035 (95% CI: 0.985-1.087; IQR: 5.78 µg/m
3
 increase), 

respectively.  

Strong odds ratios were observed in the one-day lag of 1.112 (95% CI: 0.923-

1.341; IQR: 0.91 µg/m
3
 increase), 1.087 (95% CI: 0.954-1.239; IQR: 2.26µg/m

3
 

increase), 1.067 (95% CI: 0.921-1.235; IQR: 0.51 µg/m
3
 increase) and 1.064 (95% CI: 

0.937-1.210; IQR: 1.23 µg/m
3
 increase) for apnea in the full term/normal birth weight 

strata for the ammonium nitrate, diesel, railroad and gas sources, respectively. 

PMF: Bradycardia Zero-Day Lag 

In the PMF bradycardia analysis of the full term/normal birth weight strata, we 

observed suggestive odds ratios in the diesel source 1.034 (95% CI: 0.950-1.126; IQR: 

2.26 µg/m
3
 increase), the gas source 1.042 (95% CI: 0.967-1.123; IQR: 1.23 µg/m

3
 

increase), and the diesel/gas source 1.040 (95% CI: 0.957-1.130; IQR: 3.27 µg/m
3
 

increase) in the zero-day and one-day lags.  
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We also observed a suggestively strong odds ratio of 1.069 (95% CI: 0.997-1.145; 

IQR: 0.93 µg/m
3
 increase) in the zero-day lag among the full term/normal birth weight 

infants in the woodsmoke source model.  

PMF: Bradycardia Zero-Day Lag 

In the PMF bradycardia analysis of the full term/normal birth weight strata, we 

observed suggestive odds ratios in the diesel source 1.067 (95% CI: 0.978-1.164; IQR: 

2.26 µg/m
3
 increase), the gas source 1.054 (95% CI: 0.973-1.143; IQR: 1.23 µg/m

3
 

increase), and the diesel/gas source 1.067 (95% CI: 0.980-1.163; IQR: 3.27 µg/m
3
 

increase) in the zero-day and one-day lags, respectively. The railroad source observed a 

suggestively strong odds ratio of 1.055 (95% CI: 0.939-1.185; IQR: 0.51 µg/m
3
 increase) 

in the full term/normal birth weight strata in the one-day lag.  
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Table 4.1 Characteristics of 3,629 infants with follow-up on monitors between 11/19/1998 – 12/31/2002. 

 Infants with at least 1 apnea event Infants with at least 1 bradycardia event 

Number of patients, N 1,891 3,629 

Mean (SD) follow-up time (days) 50.4 (32.6) 43.5 (31.0) 

Mean (SD) age (days) 40.9  (30.6) 46.0 (34.7) 

Male, N (%) 821 (56.9) 1,499 (53.5) 

Mean (SD) age at date of follow-up (days) 41.1 (30.4) 45.9 (34.4) 

Mean (SD) gestational age at birth (weeks) 31.2 (3.8) 31.6 (4.3) 

Birth weight <2,500 grams, N (%) 1683 (89.0) 3089 (85.1) 

Gestational age < 37 weeks, N (%) 1766 (93.4) 3233 (89.1) 

Method of payment, N (%)   

             Insurance 784 (57.7) 1,479 (56.1) 

             Medicaid 531 (39.0) 1,071 (40.6 

             Not Insured 45 (3.3) 86 (3.3) 

Total number of apnea-days 8,605 - 

Total number of bradycardia days - 27,246 

Total number of follow-up days 95,339 157,753 
Mean (SD) compliance per patient (percent 

of days used of the total follow-up days) 96.8 (7.2) 96.8 (7.1) 
SD = Standard Deviation  
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Table 4.2.A: Descriptive statistics for 24-hour average source results in µg/m
3
 out of 1,502 days for chemical mass balance 

(CMB), November 19, 1998 – December 31, 2002; Atlanta 

  N Mean Std 

Dev 

25th 

Percentile 

Median 75th 

Percentile 

Minimum Maximum 

PM 2.5 Mass 1459 17.31 8.42 11.10 15.89 22.18 1.74 65.81 

Gas 1018 1.25 0.95 0.64 1.03 1.58 0.06 8.99 

Diesel 1018 1.46 1.07 0.73 1.18 1.90 0.00 8.69 

Soil 1018 0.30 0.36 0.11 0.21 0.38 0.00 4.76 

Woodsmoke 1018 1.03 0.60 0.60 0.90 1.32 0.08 4.55 

Power Plant 1085 0.13 0.11 0.05 0.10 0.18 0.00 0.81 

Ammonium Sulfate 1018 6.27 4.18 3.27 5.26 8.32 0.00 24.90 

Ammonium Bisulfate 1085 0.47 1.17 0.00 0.00 0.25 0.00 11.40 

Ammonium Nitrate 1009 1.43 1.25 0.60 1.01 1.89 0.02 9.66 

Other Organic Carbon 1085 2.52 1.67 1.45 2.17 3.24 0.00 20.00 
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Table 4.2.B: Descriptive statistics for 24-hour source average results in µg/m
3
 out of 1,502 days for positive matrix 

factorization (PMF), November 19, 1998 – December 31, 2002; Atlanta 

  N Mean Std 

Dev 

25th 

Percentile 

Median 75th 

Percentile 

Minimum Maximum 

PM 2.5 Mass 1459 17.31 8.42 11.10 15.89 22.18 1.74 65.81 

Ammonium 

Nitrate 

1009 0.98 0.89 0.38 0.68 1.29 0.00 8.03 

Diesel 1018 2.24 2.12 0.80 1.62 3.06 0.00 18.89 

Metal Processing 1147 0.78 0.75 0.27 0.60 1.09 0.00 8.20 

Railroad 1147 0.63 0.39 0.35 0.58 0.85 0.00 2.35 

Secondary Sulfate 1147 1.54 1.10 0.78 1.39 2.10 0.00 7.89 

Ammonium 

Sulfate 

1018 6.63 4.99 3.01 5.29 8.79 0.00 31.00 

Bus/Highway 1147 0.14 0.46 0.01 0.03 0.13 0.00 9.32 

Gas 1018 1.39 1.29 0.57 1.03 1.80 0.00 13.70 

Woodsmoke 1018 1.15 1.04 0.51 0.91 1.44 0.00 9.40 

Cement  Kiln 1147 0.40 0.42 0.15 0.28 0.49 0.00 5.10 

Soil 1018 0.55 0.74 0.20 0.38 0.67 0.00 10.70 

Diesel/Gas 1018 3.63 3.14 1.58 2.69 4.84 0.00 31.00 
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Table 4.3: Spearman correlation coefficients between chemical mass balance sources, November 19, 1998 – December 31, 

2002; Atlanta 

  Gas Diesel Soil Woodsmoke 
Power 

Plant 

Ammonium 

Sulfate 

Ammonium 

Bisulfate 

Ammonium 

Nitrate 

Gas 1.00        

Diesel 0.48 1.00       

Soil -0.01 0.29 1.00      

Woodsmoke 0.57 0.43 0.28 1.00     

Power Plant 0.08 0.22 0.28 0.12 1.00    

Ammonium Sulfate 0.09 0.29 0.41 0.19 0.18 1.00   

Ammonium Bisulfate -0.02 -0.11 -0.15 0.05 0.03 -0.18 1.00  

Ammonium Nitrate 0.51 0.26 -0.28 0.38 0.05 -0.13 0.26 1.00 

Other Organic Carbon 0.28 0.69 0.30 0.45 0.14 0.34 -0.05 0.12 



 

69 

 

Table 4.4: Spearman correlation coefficients between positive matrix factorization sources, November 19, 1998 –  

December 31, 2002; Atlanta 
  Ammonium 

Nitrate  

Diesel Metal 

Processing 

Railroad Secondary 

Sulfate 

Ammonium Nitrate  1.00     

Diesel 0.13 1.00    

Metal Processing 0.18 0.40 1.00   

Railroad -0.14 -0.14 -0.13 1.00  

Secondary Sulfate 0.01 0.08 -0.07 0.25 1.00 

Ammonium Sulfate -0.09 0.20 0.09 0.12 0.24 

Bus/Highway 0.08 0.38 0.33 -0.02 -0.15 

Gas 0.03 0.63 0.19 -0.40 -0.03 

Woodsmoke 0.33 0.57 0.24 -0.32 0.06 

Cement  Kiln 0.07 0.35 0.31 0.09 0.23 

Soil -0.31 0.13 0.10 0.14 0.11 

Diesel/Gas 0.10 0.95 0.36 -0.26 0.05 

 

  Ammonium 

Sulfate 

Bus/ 

Highway 

Gas Wood

smoke 

Cement  

Kiln 

Soil 

Ammonium Nitrate        

Diesel       

Metal Processing       

Railroad       

Secondary Sulfate       

Ammonium Sulfate 1.00      

Bus/Highway -0.08 1.00     

Gas 0.05 0.13 1.00    

Woodsmoke 0.03 0.18 0.47 1.00   

Cement  Kiln 0.11 0.16 0.07 0.26 1.00  

Soil 0.30 0.03 0.08 -0.01 0.34 1.00 

Diesel/Gas 0.16 0.32 0.82 0.58 0.28 0.12 
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Table 4.5: Spearman correlation coefficients between chemical mass balance (CMB) and positive matrix factorization  

sources (PMF), November 19, 1998 – December 31, 2002; Atlanta 
CMB / PMF Ammonium 

Nitrate  

Diesel Metal 

Processing 

Railroad Secondary 

Sulfate 

Ammonium 

Sulfate 

Gas 0.40 0.66 0.64 -0.13 0.05 0.05 

Diesel 0.06 0.84 0.37 0.20 0.13 0.24 

Soil -0.37 0.24 0.11 0.17 0.13 0.34 

Woodsmoke 0.22 0.68 0.31 -0.30 0.12 0.16 

Power Plant -0.03 0.14 0.08 0.11 0.20 0.15 

Ammonium Sulfate -0.13 0.23 0.14 0.17 0.34 0.94 

Ammonium Bisulfate 0.20 -0.03 -0.07 -0.15 0.00 0.05 

Ammonium Nitrate 0.90 0.37 0.26 -0.20 0.03 -0.08 

Other Organic Carbon -0.09 0.71 0.15 0.04 0.32 0.30 

PM 2.5 0.12 0.63 0.40 0.01 0.30 0.72 

 
CMB / PMF Bus/ 

Highway 

Gas Woods

moke 

Cement  

Kiln 

Soil Diesel/Gas PM2.5 

  

Gas 0.35 0.37 0.57 0.44 -0.02 0.61 0.46 

Diesel 0.37 0.42 0.33 0.33 0.64 0.76 0.59 

Soil 0.10 0.14 -0.02 0.32 0.94 0.23 0.19 

Woodsmoke 0.18 0.65 0.76 0.33 0.26 0.73 0.58 

Power Plant 0.05 0.01 0.10 0.71 0.37 0.11 0.29 

Ammonium Sulfate -0.07 0.06 0.03 0.18 0.36 0.19 0.71 

Ammonium Bisulfate -0.01 0.00 0.08 -0.06 -0.11 -0.02 0.22 

Ammonium Nitrate 0.20 0.20 0.47 0.18 -0.27 0.34 0.23 

Other Organic Carbon 0.20 0.69 0.30 0.16 0.15 0.77 0.61 

PM 2.5 0.13 0.47 0.46 0.28 0.12 0.61 1.00 
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Table 4.6.A: Odds Ratios and 95% confidence intervals (per µg/m
3
 IQR increase) from 

GEE unconditional repeated-measures logistic regression models examining the 

association of daily ambient source apportioned (chemical mass balance analysis) air 

pollution level (of lag 0 and lag 1) and apnea evening in infants on home 

cardiorespiratory monitors, 11/19/1998-12/31/2002. 
Chemical Mass Source  Apnea (lag 0) 

Lag 0 

Apnea (lag 1) 

Lag 1 

Balance Source     IQR Analysis OR  95% CI OR 95% CI 

PM2.5 

 

 

 

 

11.08 Primary   0.990 0.951,1.031 1.009

  

0.967,1.052 
  Full term and NBW 1.042 0.932,1.165 1.017

  

0.911,1.136 

  Premature and LBW 0.988 0.945,1.032 1.000 0.957,1.044 

Gas 0.94 Primary 1.011 0.977, 1.046 1.032 0.997, 1.069 
  Full term and NBW 1.010 0.849,1.202 1.039 0.884, 1.221 

  Premature and LBW 1.003 0.967, 1.041 1.029 0.990, 1.069 

Diesel 1.17 Primary 1.010 0.973, 1.050 1.029 0.991, 1.068 
  Full term and NBW 0.991 0.851,1.151 1.039 0.837, 1.160 

  Premature and LBW 1.011 0.968, 1.055 1.029 0.987, 1.073 

Soil 0.27 Primary 0.986 0.959, 1.014 0.980 0.952, 1.008 
  Full term and NBW 1.034 0.925,1.155 0.769 0.668, 0.885 

  Premature and LBW 0.980 0.952, 1.009 0.978 0.948, 1.008 

Woodsmoke 0.72 Primary 1.024 0.982, 1.068 1.039 0.995, 1.085 
  Full term and NBW 1.044 0.881, 1.236 1.144 0.987, 1.325 

  Premature and LBW 1.016 0.971, 1.064 1.026 0.978, 1.076 

Coal-fired  0.13 Primary 0.987 0.951, 1.024 1.027 0.988, 1.066 
Power plant  Full term and NBW 0.942 0.749, 1.187 0.873 0.720, 1.058 

  Premature and LBW 0.985 0.946, 1.025 1.018 0.976, 1.061 

Ammonium  5.05 Primary 1.051 0.995, 1.109 1.013 0.962, 1.068 
Sulfate  Full term and NBW 1.038 0.871, 1.237 0.926 0.737, 1.164 

  Premature and LBW 1.050 0.989, 1.115 1.007 0.951, 1.066 

Ammonium  0.25 Primary 1.000 0.994, 1.007 1.006 0.999, 1.012 
Bisulfate  Full term and NBW 1.021 0.998, 1.044 1.018 0.997, 1.040 

  Premature and LBW 0.998 0.991, 1.006 1.005 0.998, 1.012 

Ammonium  1.29 Primary 1.008 0.969, 1.049 0.999 0.961, 1.038 
Nitrate  Full term and NBW 1.054 0.890, 1.250 1.159 1.000, 1.343 

  Premature and LBW 1.008 0.965, 1.052 0.985 0.944, 1.027 

Other 1.79 Primary 1.010 0.975, 1.046 1.027 0.991, 1.064 
Organic  Full term and NBW 1.002 0.855, 1.174 1.095 0.962, 1.247 

Carbon  Premature and LBW 1.010 0.971, 1.050 1.020 0.980, 1.061 
* 
OR – Odds Ratio; IQR – Interquartile Range; CI – Confidence Interval; NBW – Normal Birth Weight; 

LBW – Low Birth Weight; GEE – Generalize Estimating Equation; Primary – Entire Population
 

**  
The model includes the source variable and age, age-squared, average daily temperature, average daily 

temperature squared, indicator variables for holiday amd weekday, and temporal splines with seasonal 

knots(temporal splines with seasonal knots  are replaced with the variable combination day, day-squared 

and day-cubed for normal birth weight/full term apnea analysis) 
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Table 4.6.B: Odds Ratios and 95% confidence intervals (per µg/m
3
 IQR increase) from 

GEE unconditional repeated-measures logistic regression models examining the 

association of daily ambient source apportioned (chemical mass balance analysis) air 

pollution level (of lag 0 and lag 1) and bradycardia evening in infants on home 

cardiorespiratory monitors, 11/19/1998-12/31/2002. 

Chemical Mass Source  Bradycardia Lag 0 

Lag 0 

Bradycardia Lag 1 

Lag 1 

Balance Source     IQR Analysis OR 95% CI OR 95% CI 

PM2.5 

 

 

 

 

11.08 Primary    0.999 0.975, 1.024 0.999 0.975,1.024 
  Full term and NBW 1.065 0.955, 1.188 1.053 0.943,1.175 

  Premature and LBW 0.994 0.968, 1.021 0.995 0.969,1.023 

Gas 0.94 Primary 0.993 0.973, 1.013 0.996 0.976, 1.017 
  Full term and NBW 1.022 0.930, 1.122 1.029 0.944, 1.122 

  Premature and LBW 0.988 0.967, 1.010 0.989 0.967, 1.011 

Diesel 1.17 Primary 1.000 0.978, 1.023 1.007 0.986, 1.029 
  Full term and NBW 1.021 0.929, 1.123 1.062 0.972, 1.162 

  Premature and LBW 0.999 0.976, 1.023 1.005 0.981, 1.029 

Soil 0.27 Primary 0.996 0.981, 1.011 0.993 0.978, 1.008 
  Full term and NBW 1.007 0.950, 1.068 1.005 0.950, 1.063 

  Premature and LBW 0.994 0.977, 1.010 0.988 0.971, 1.004 

Woodsmoke 0.72 Primary 0.986 0.961, 1.011 0.990 0.965, 1.015 
  Full term and NBW 1.012 0.915, 1.118 1.051 0.943, 1.173 

  Premature and LBW 0.984 0.957, 1.012 0.984 0.957, 1.011 

Coal-fired  0.13 Primary 0.985 0.964, 1.006 0.999 0.978, 1.021 
Power plant  Full term and NBW 1.085 0.990, 1.188 1.003 0.921, 1.091 

  Premature and LBW 0.972  0.950, 0.995 0.991 0.968, 1.014 

Ammonium  5.05 Primary 1.001 0.970, 1.032 0.982 0.955, 1.010 
Sulfate  Full term and NBW 1.016 0.893, 1.156 1.009 0.891, 1.143 

  Premature and LBW 0.992 0.959, 1.026 0.987 0.957, 1.018 

Ammonium  0.25 Primary 0.999 0.995, 1.002 1.002 0.999, 1.006 
Bisulfate  Full term and NBW 1.001 0.983, 1.019 0.994 0.976, 1.011 

  Premature and LBW 0.997 0.993, 1.002 1.003 0.999, 1.006 

Ammonium  1.29 Primary 1.020 0.998, 1.042 0.993 0.971, 1.015 
Nitrate  Full term and NBW 0.978 0.880, 1.087 0.961 0.860, 1.075 

  Premature and LBW 1.025  1.001, 1.049 0.989 0.965, 1.014 

Other 1.79 Primary 1.005 0.985, 1.026 0.998 0.977, 1.019 
Organic  Full term and NBW 1.021 0.941, 1.108 1.049 0.962, 1.144 

Carbon  Premature and LBW 0.998 0.976, 1.021 0.998 0.976, 1.021 
* 
OR – Odds Ratio; IQR – Interquartile Range; CI – Confidence Interval; NBW – Normal Birth 

Weight; LBW – Low Birth Weight; GEE – Generalize Estimating Equation; Primary – Entire 

Population
 

**  
The model includes the source variable and age, age-squared, average daily temperature, 

average daily temperature squared, indicator variables for holiday and weekday, and temporal splines 

with seasonal knots(temporal splines with seasonal knots  are replaced with the variable 

combination day, day-squared and day-cubed for normal birth weight/full term apnea analysis) 
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Table 4.7.A: Odds ratios and 95% confidence intervals (per µg/m
3
 IQR increase) from 

GEE unconditional repeated-measures logistic regression models examining the 

association of daily ambient source apportioned (positive matrix factorization) air 

pollution level (of lag 0 and lag 1) and apnea evening in infants on home 

cardiorespiratory monitors, 11/19/1998-12/31/2002. 
Positive Matrix Source  Apnea Lag 0 

Lag 0 

Apnea Lag 1 

Lag 1 
Factorization 

Source 

IQR Analysis OR 95% CI OR 95% CI 

PM2.5 

 

 

 

 

11.08 Primary  0.990  0.951, 1.031   1.009 0.967, 1.052 
  Full-term and NBW  1.042  0.932, 1.165   1.017 0.911, 1.136 

  Pre-term and LBW 0.988  0.945, 1.032 1.000 0.957, 1.044 

Ammonium  0.91 Primary 1.012 0.972, 1.054 0.999 0.960, 1.040 
Nitrate  Full term and NBW 1.009 0.818, 1.244 1.112 0.923, 1.341 

  Premature and LBW 1.020 0.975, 1.067 0.993 0.951, 1.038 

Diesel 2.26 Primary 1.009 0.974, 1.046 1.036 0.999, 1.075 
  Full term and NBW 1.020 0.878, 1.185 1.087 0.954, 1.239 

  Premature and LBW 1.006 0.967, 1.048 1.031 0.989, 1.075 

Metal 0.82 Primary 0.988 0.956, 1.020 1.002 0.970, 1.035 
processing   Full term and NBW 0.938 0.786, 1.120 0.811 0.645, 1.020 

Plants  Premature and LBW 0.989 0.954, 1.026 1.018 0.982, 1.056 

Railroads 0.51 Primary 1.018 0.973, 1.064 1.041 0.995, 1.090 
  Full term and NBW 0.949 0.791, 1.139 1.067 0.921, 1.235 

  Premature and LBW 1.021 0.973, 1.071 1.025 0.975, 1.078 

Secondary  1.31 Primary 0.997 0.957, 1.039 0.969 0.928, 1.012 
Sulfate  Full term and NBW 1.059 0.901, 1.244 0.937 0.747, 1.176 

  Premature and LBW 0.994 0.950, 1.040 0.957 0.913, 1.003 

Ammonium  5.78 Primary 1.054  1.003, 1.108 1.035 0.985, 1.087 
Sulfate  Full term and NBW 1.097 0.920, 1.308 0.951 0.775, 1.165 

  Premature and LBW 1.048 0.993, 1.107 1.028 0.975, 1.085 

Bus and  0.11 Primary 1.000 0.992, 1.008 1.003 0.995, 1.010 
Highway  Full term and NBW 0.964 0.929, 1.001 0.998 0.981, 1.015 

  Premature and LBW 0.997 0.988, 1.006 1.003 0.994, 1.011 

Gas 1.23 Primary 1.015 0.981, 1.050 1.030 0.995, 1.067 
  Full term and NBW 1.024 0.891, 1.177 1.064 0.937, 1.210 

  Premature and LBW 1.012 0.975, 1.052 1.027 0.988, 1.067 
Wood- 0.93 Primary 1.031  1.001, 1.061 1.048  1.017, 1.080 

Smoke  Full term and NBW 1.017 0.878, 1.180 1.112 0.993, 1.246 

  Premature and LBW 1.024 0.991, 1.059 1.041  1.006, 1.077 
Cement 0.33 Primary 0.970  0.945, 0.995 1.016 0.991, 1.042 

Kiln  Full term and NBW 0.933 0.833, 1.045 0.937 0.813, 1.079 

  Premature and LBW 0.968  0.940, 0.996 1.019 0.990, 1.048 
Soil 0.48 Primary 0.985 0.962, 1.008 0.983 0.960, 1.007 

  Full term and NBW 1.040 0.958, 1.128 0.757 0.650, 0.883 

  Premature and LBW 0.978 0.955, 1.002 0.980 0.955, 1.006 
Diesel/Gas 3.27 Primary 1.013 0.978, 1.049 1.037  1.000, 1.076 

  Full term and NBW 1.024 0.883, 1.186 1.084 0.955, 1.231 

  Premature and LBW 1.009 0.970, 1.050 1.032 0.991, 1.075 

* 
OR – Odds Ratio; IQR – Interquartile Range; CI – Confidence Interval; NBW – Normal Birth Weight; 

LBW – Low Birth Weight; GEE – Generalize Estimating Equation; Primary – Entire Population
  

**  
The model includes the source variable and age, age-squared, average daily temperature, average daily 

temperature squared, indicator variables for holiday and weekday, and temporal splines with seasonal 

knots(temporal splines with seasonal knots  are replaced with the variable combination day, day-squared 

and day-cubed for normal birth weight/full term apnea analysis)
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Table 4.7.B: Odds ratios and 95% confidence intervals (per µg/m
3
 IQR increase) from GEE 

unconditional repeated-measures logistic regression models examining the association of daily 

ambient source apportioned (positive matrix factorization) air pollution level (of lag 0 and lag 1) 

and bradycardia evening in infants on home cardiorespiratory monitors, 11/19/1998-12/31/2002. 
Positive Matrix Source  Bradycardia Lag 0 

Lag 0 

Bradycardia Lag 1 

Lag 1 
Factorization 

Source 

IQR Analysis OR 95% CI OR 95% CI 
PM2.5 

 

 

 

 

11.08 Primary      0.999     0.975, 1.024        0.999       0.975,1.024 
  Full term and NBW      1.065     0.955, 1.188        1.053        0.943,1.175 
  Premature and LBW      0.994     0.968, 1.021        0.995        0.969,1.023 

Ammonium  0.91 Primary 1.018 0.994, 1.042 0.991 0.969, 1.014 
Nitrate  Full term and NBW 0.983 0.883, 1.094 0.951 0.853, 1.059 

  Premature and LBW 1.023 0.997, 1.049 0.989 0.964, 1.013 
Diesel 2.26 Primary 0.995 0.974, 1.017 1.001 0.979, 1.023 

  Full term and NBW 1.034 0.950, 1.126 1.067 0.978, 1.164 
  Premature and LBW 0.992 0.969, 1.015 0.993 0.970, 1.018 

Metal 0.82 Primary 0.989 0.971, 1.008 0.986 0.966, 1.007 
processing   Full term and NBW 1.015 0.937, 1.100 0.988 0.900, 1.086 

Plants  Premature and LBW 0.984 0.964, 1.004 0.984 0.963, 1.006 
Railroads 0.51 Primary 1.001 0.975, 1.027 1.020 0.993, 1.047 

  Full term and NBW 0.900 0.795, 1.018 1.055 0.939, 1.185 
  Premature and LBW 1.005 0.977, 1.033 1.020 0.991, 1.050 

Secondary  1.31 Primary 1.018 0.995, 1.042 1.005 0.983, 1.028 
Sulfate  Full term and NBW 0.971 0.873, 1.082 0.978 0.878, 1.089 

  Premature and LBW 1.022 0.996, 1.048 1.006 0.982, 1.031 
Ammonium  5.78 Primary 0.991 0.963, 1.020 0.986 0.960, 1.012 

Sulfate  Full term and NBW 1.007 0.894, 1.134 0.993 0.890, 1.109 
  Premature and LBW 0.982 0.952, 1.012 0.992 0.963, 1.021 

Bus and  0.11 Primary 0.998 0.994, 1.002 0.997 0.992, 1.001 
Highway  Full term and NBW 1.000 0.987, 1.013 0.978  0.959, 0.997 

  Premature and LBW 0.997 0.993, 1.001 0.997 0.993, 1.002 
Gas 1.23 Primary 0.997 0.977, 1.017 1.002 0.982, 1.022 

  Full term and NBW 1.042 0.967, 1.123 1.054 0.973, 1.143 
  Premature and LBW 0.989 0.967, 1.011 1.002 0.980, 1.024 

Wood- 0.93 Primary 1.007 0.989, 1.026 1.009 0.990, 1.028 
Smoke  Full term and NBW 1.069 0.997, 1.145 1.106 1.031, 1.186 

  Premature and LBW 1.001 0.981, 1.021 1.001 0.981, 1.022 

Cement 0.33 Primary 0.986 0.972, 1.000 0.986 0.972, 1.000 
Kiln  Full term and NBW 0.995 0.933, 1.060 0.998 0.935, 1.065 

  Premature and LBW 0.983  0.967, 0.999 0.979  0.963, 0.995 
Soil 0.48 Primary 0.993 0.980, 1.006 0.997 0.985, 1.010 

  Full term and NBW 1.008 0.961, 1.057 1.005 0.961, 1.051 
  Premature and LBW 0.990 0.976, 1.005 0.993 0.979, 1.007 

Diesel/Gas 3.27 Primary 0.995 0.974, 1.017 1.001 0.980, 1.023 
  Full term and NBW 1.040 0.957, 1.130 1.067 0.980, 1.163 
  Premature and LBW 0.990 0.967, 1.013 0.996 0.973, 1.020 

* 
OR – Odds Ratio; IQR – Interquartile Range; CI – Confidence Interval; NBW – Normal Birth Weight; 

LBW – Low Birth Weight; GEE – Generalize Estimating Equation; Primary – Entire Population
  

**  
The model includes the source variable and age, age-squared, average daily temperature, average daily 

temperature squared, indicator variables for holiday and weekday, and temporal splines with seasonal 

knots(temporal splines with seasonal knots  are replaced with the variable combination day, day-squared 

and day-cubed for normal birth weight/full term apnea analysis)
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A. 

 

B. 

 

Figure 4.1: Fractional contribution to PM2.5 source categories from (A) positive matrix factorization 

and (B) chemical mass balance.
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Species Gasoline Diesel Soil 

Woodsmok

e 

Coalfire

d Power 

Plant 

Cement 

Kiln 

Ammoniu

m Sulfate
*
 

Ammoniu

m 

Bisulfate
*
 

Ammoniu

m Nitrate
*
 

Other 

Organic 

Carbon
*
 

SO4-2 0.013 0.005 0.001 0.024 0.287 0.314 0.727 0.835 0.000 0.000 

NO3- 0.000 0.002 0.001 0.002 0.007 0.089 0.000 0.000 0.775 0.000 

Cl- 0.000 0.001 0.001 0.076 0.009 0.071 0.000 0.000 0.000 0.000 

NH4+ 0.000 0.000 0.000 0.017 0.018 0.024 0.273 0.156 0.225 0.000 

EC 0.236 0.735 0.006 0.158 0.014 0.030 0.000 0.000 0.000 0.000 

OC 0.549 0.198 0.044 0.644 0.272 0.128 0.000 0.000 0.000 1.000 

Al 0.002 0.000 0.095 0.001 0.053 0.011 0.000 0.000 0.000 0.000 

As 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Ba 0.000 0.000 0.000 0.000 0.011 0.000 0.000 0.000 0.000 0.000 

Br 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 

Ca 0.012 0.001 0.018 0.004 0.166 0.175 0.000 0.000 0.000 0.000 

Cu 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 

Fe 0.012 0.000 0.053 0.001 0.036 0.013 0.000 0.000 0.000 0.000 

K 0.000 0.000 0.009 0.057 0.005 0.116 0.000 0.000 0.000 0.000 

Mn 0.000 0.000 0.002 0.000 0.001 0.001 0.000 0.000 0.000 0.000 

Pb 0.002 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 

Sb 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Se 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000 0.000 

Si 0.012 0.000 0.266 0.003 0.107 0.043 0.000 0.000 0.000 0.000 

Sn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Ti 0.000 0.000 0.010 0.000 0.009 0.002 0.000 0.000 0.000 0.000 

Zn 0.009 0.001 0.000 0.000 0.003 0.004 0.000 0.000 0.000 0.000 

 

Figure 4.2 CMB particulate source profiles used in the apportionment process (Fraction of total PM2.5 emissions and standard deviations 

over multiple measurements. 
*
 Based on molecular-weight fractions. Adapted from Marmur et al. (2005).
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Figure 4.3. PMF source profiles resolved from PM2.5 samples (prediction + standard 

deviation). Adapted from Kim et al. (2004). 
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Chapter 5: Discussion 

 

In general, results from this study were null. We did observe a pattern of 

suggestive positive odds ratios, especially in the primary analysis, such as for 

woodsmoke source, which were consistent across source apportionment method and lag 

structure. We observed positive associations in the positive matrix factorization models 

for the woodsmoke source in the apnea zero-day lag for the primary. We also observed 

positive associations in the positive matrix factorization models for the woodsmoke 

source in the apnea one-day lag analysis for primary and premature/normal birth weight. 

The results for the full term/normal birth weight strata had stronger odds ratios than for 

both the primary and premature/low birth weight strata.  

Overall in our analysis, we observed a similar pattern across apnea and 

bradycardia analysis for both positive matrix factorization method and chemical mass 

balance leading to evidence that possibly supports the proposed suggestion by Peel et al.  

(2003) that premature infants may not be able to launch an appropriate immune response 

to the pollutants (Figures 5.1-5.8). This may be interpreted to corroborate prior work by 

Peel et al.  (2003) in that these infants may have had an underdeveloped response to the 

pollutants and pollutant sources. This study directly addresses previous research by Bates 

et al. (1995), Bateson et al. (2008) and Brook et al. (2010) who have speculated that 

infants and children may be more at risk of adverse health effects of air pollution. 

Overall, the results were robust to changes in specified correlation structure as we 

saw minimal changes in point estimates and confidence intervals across stationary 45-
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dependent, autoregressive, compound symmetric and independent correlation structures. 

Across the two source apportionment methods we observed that the odds ratios for the 

mobile sources corresponded well, as did those of the woodsmoke, cement kiln, metal 

processing plant and coal-fired power plant sources.  

We observed interesting associations between cardiorespiratory events and source 

apportioned fine particulate matter reflected in patterns of significant and suggestively 

strong odds ratios across the PMF and CMB analysis. The stronger and consistent pattern 

in the woodsmoke source made its association with cardiorespiratory events stand out 

more than other sources. It appeared in our study that the most evidence of suggestively 

strong odds ratios came from the results of the primary analysis in the woodsmoke 

source. The woodsmoke source results in the primary analysis appeared to maintain these 

stronger odds ratios across both source apportionment methods. These suggestively 

strong odds ratio were also observed to remain strong in both lag structures and in the 

apnea and bradycardia analysis. The main component of woodsmoke was organic carbon 

(OC) and elemental carbon (EC), which made it somewhat surprising that we did not see 

as many significant associations between the cardiorespiratory events and the sources 

containing OC such as diesel, gas and other organic carbon. Although, across the study, 

these OC containing sources did not show statistically significant results as consistently 

as woodsmoke, they did fall into the pattern of suggestively strong odds ratios. 

The metal processing, cement kiln, secondary sulfate, soil, bus/highway and coal-

fired power plant sources were all consistently observed to have odds ratios below the 

null. We are unsure as to why these sources would result in ‗protective‘ odds ratios. It 

could be that the wind may be related to the appearance of a protective effect of these 
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sources since the wind may be lowering the impact of these other sources by dispersion. 

The dispersion of pollutant sources would decrease the infants‘ exposure to the pollutant 

sources. The hypothesis being that when the wind comes up infants are not exposed at as 

high levels as the air pollution monitors recorded resulting in the observation of 

protective odds ratios. 

Overall in the CMB, we did not observe any clear patterns in the data, although, it 

appeared that the point estimates were stronger in the one-day lags in comparison to the 

zero-day lags among the apnea events. However, no discernable pattern was observed in 

the results among the lag periods for the bradycardia events. Across the gestational age 

and birth weight strata in the CMB method, it was evident that the infants in the full 

term/normal birth weight strata had stronger odds ratios compared to those of the primary 

or the premature/low birth weight strata. By event, the apnea events showed a stronger 

pattern than bradycardia. Most of these suggestive apnea odds ratios were in the zero-day 

lag analysis and the full term/normal birth weight strata.  

Similar to the CMB lag analysis, in the analysis of the PMF method we did 

observe that apnea odds ratio estimates being stronger for one-day lags than for zero-day 

lags. Among the suggestively stronger odds ratios, the pattern of apnea odds ratio point 

estimates for one-day lags were stronger than zero-day lags was clearer.  The pattern of 

stronger odds ratios among the bradycardia odds ratio point estimates was only apparent 

across the suggestively strong estimates. 

By grouping what could be considered the PMF mobile sources diesel, gas and 

diesel/gas together, we observed very similar odds ratio estimates and confidence 
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intervals. Among the mobile sources in the CMB method gas and diesel we also observed 

very similar estimates. While the railroad and bus/highway sources seemed to follow 

similar patterns with each other within the apnea analysis, they did not appear to fit a 

pattern within the bradycardia or the other mobile sources. Although they were primarily 

skeptical protective odds ratios, the cement kiln and the metal processing plant sources, 

we observed strikingly similar point estimates and confidence intervals. These 

similarities across the study lead us to believe there is a strength and consistency in our 

results. When taking the presence of the suggestively strong odds ratios, it is our 

interpretation that further research is worthwhile in investigating the associations of 

cardiorespiratory events in infants of the Atlanta area with mobile source pollution. 

Our results were similar to those highlighted in the work by Peel et al. (2003), in 

that Peel et al.  recognized that full term/normal birth weight infants appeared to have 

stronger odds ratios than premature/low birth weight infants. The investigation by Peel et 

al. (2003) estimated associations between cardiorespiratory events and daily ambient air 

pollution on the same cohort of infants from August 1, 1998 to December 31, 2002. 

Similar to the results by Peel et al. (2003), we observed mostly non-significant 

associations, yet some suggestively strong odds ratios. 

The results of this study also contribute evidence that supports the findings of 

work by Larson et al. (1994) who observed consistent associations between biomass 

burning and respiratory events. Thurston and Ito et al. (2005) observed associations 

between secondary sulfates and traffic related fine particulate matter (PM2.5) and 

cardiovascular/non-accidental mortality in the D.C. and Phoenix cohorts, which match 

with our findings of secondary sulfates and combined diesel/gasoline mobile sources. 
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The strength of the associations is consistent with the odds ratios and relative 

risks seen in other similar studies. For example, a six year study observed that crustal and 

secondary sources were associated with cardiovascular admissions, biomass sources were 

associated with respiratory admissions, and vehicle sources were associated with asthma 

admissions (Andersen et al. 2007). Sarnat et al. (2008) observed significant, positive 

associations between cardiovascular-related emergency department visits with same-day 

PM2.5 concentrations attributed to mobile sources with relative risks ranging from 1.018 

to 1.025 (per IQR increase) and biomass combustion with relative risks ranging from 

source categories 1.024 to 1.033 (per IQR increase). Sarnat et al. (2008) also observed 

associations between source categories containing sulfate-rich secondary PM2.5 with 

relative risks ranging from 1.012 to 1.020 (per IQR increase).  

Limitations 

Information Bias 

This research has a number of limitations. One limitation is the cardiorespiratory 

monitor use and the failure to capture all events due to the infant not always being 

connected to the monitor. Missing these events can lead to a potential for event days to be 

misclassified as non-event days resulting in false negatives and reducing sensitivity of 

monitor data. Misclassification of event days as non-event days would likely result in a 

bias toward the null and would likely decrease the power of our analysis. Clinicians 

verified recorded cardiorespiratory events. This clinician verification confirmed the 

validity of recorded events assuring there were no false positive events. Clinician 

verification and using only patient data from infants who had download periods with 
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more than 66% compliance during a download period and only the download periods for 

which the infant used the monitor for 66% of the days reduced our concern of further bias 

due to misclassification of events. 

Exposure estimation is often considered the most challenging aspect of 

environmental epidemiological studies. Error in assessing environmental exposure in this 

study may have resulted in systematic error resulting in a bias towards null. The error 

may have occurred due to the use of a centralized air monitor for collecting the air 

pollution data which could have lead to non-differential misclassification. 

Selection Bias  

Selection bias is especially of concern in case control studies in selection of cases 

and controls in epidemiological studies because of the possibility that participants might 

have been selected differently based on disease and exposure status. Selection bias can 

also be of concern in cohort studies when there is loss to follow-up. Since the patients in 

our study were selected without knowledge of their exposure status to the ambient air 

pollution sources and the nature of our study did not allow for the possibility of loss to 

follow-up, we do not believe there to be a concern for selection bias. 

Confounding and Effect Modification 

We attempted to adjust for time, season, age and temperature in the statistical 

models. The complication of the model resulting in the inability to use the preferred 

model, which included splines for temperature, was partially rectified by using the 24-

hour average for temperature and temperature-squared. This change was less than ideal 

for accounting for the influence of temperature in our analysis; however, we did find the 
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results to be robust to changes in temperature adjustment (data not presented). In the 

additional models we ran, we did not observe much evidence of confounding by the time 

and temperature variables. Some factors, such as smoking status of family 

members/caretakers, smoking status in the household, indoor allergens such as, molds, 

pollens, dust, rodents or other local or household exposures, amount of time outside, 

neonatal exposures to endocrine disrupting compounds, maternal consumption of alcohol 

and cigarettes are less of a concern as confounders in our study since they are unlikely to 

be associated with the day-to-day change in pollution. However, these could be potential 

effect modifiers of interest, which future studies may consider addressing.  

Other Limitations 

It was surprising that both the CMB coal fired power plant source and the PMF 

cement kiln source resulted in ‗protective‘ odds ratios since we observed no evidence in 

the literature to support this. In our study we estimated odds ratios and 95% confidence 

intervals for 22 sources, two lag periods, two health outcome measures, and three strata 

of gestation and birth weight status totaling 252 estimates. With this number of statistical 

tests, (if each of these tests were independent, which they were not) we would expect that 

approximately 13 estimates would result in significance at the 5% level of significance 

(both positive and protective). The challenge of these associations presents a substantial 

limitation since we cannot differentiate between the significant results observed that are 

true from those which are statistical anomalies. Furthermore, the inability to utilize the 

same covariates in the analysis of the full term/normal birth weight infant in the apnea 

analysis due to failure of convergence of the Hessian matrices resulted in a lack of 
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comparability of the full term/normal birth weight infant in the apnea results across the 

analysis.  

Another limitation to this study is one of temporal sequence in the zero-day lag. 

Since events in our study are presented as event-days, we cannot be sure that the 

exposure came before the event. An example is the situation in which an infant has a 

cardiorespiratory event in the early hours of the morning, say 3 a.m. When we are 

analyzing the data using the zero-day lag, we might falsely assume that the event 

occurred after the exposure. However, the temporal sequence cannot be verified. 

The incorporation of source apportionment is a relatively new tool to 

epidemiological studies. As few epidemiological studies have utilized source 

apportionment in their studies, the standardization of methods and protocols for utilizing 

this tool are still being developed. Three key issues arise from the novelty of source 

apportionment in epidemiological studies. The first is that the ‗art‘ of source 

apportionment means that different practitioners may make different decisions along the 

series of decisions that lead them to discriminate between sources. Second, the naming of 

the sources may lead to different practitioners using the same name to describe sources 

whose sources are actually the not the same. Lastly, the naming of sources may not 

actually be what the name implies. These three issues mean that there may be a lack of 

repeatability and consistency in the source apportionment of air pollution which leads to 

a challenge in interpreting the results of epidemiological studies. However, studies by 

Thurston et al. (2005), Ito et al. (2006) and Hopke et al. (2006) have shown in work with 

the United States Environmental Protection Agency there to be reliability in the 
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consistency across methods such that there is less concern about issues which may arise 

due to source naming and practitioner techniques. 

The exposure assessment is also complicated by the fact that the majority of our 

cohort was low birth weight and premature infants who likely spent very little time out of 

doors. Furthermore, approximately 83% of homes in Atlanta are equipped with central air 

conditioning, which can change the actual exposure to ambient outdoor air pollution 

sources (US Census Bureau 1997). Thus, the presence of air conditioning in the home 

may have an unknown impact on the actual exposure of the infants to pollution sources, 

resulting change in the exposure of the participants than what was measured at the air 

pollution monitor (Metzger et al. 2004; Peel et al. 2005). 

Strengths 

The clinician verification of the events decreased the potential for systematic error 

by limiting measurement error. Furthermore, this study adds to the body of source 

apportionment and health effect literature utilizing two methods of source apportionment 

and novel health outcomes. Additionally, a notable strength in our study is the large 

sample size. The access to such a large cohort of infants with the apnea and bradycardia 

data made this study a unique and important contribution to the understanding of the 

associations between cardiorespiratory events and source apportioned fine particulate 

matter in infants on cardiorespiratory monitors.Our study also provides information on a 

sensitive and susceptible population of research. 

Conclusion 
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We examined the associations of ambient source apportioned air pollutants with 

bradycardia and apnea events in a cohort of infants prescribed home cardiorespiratory 

monitors. Our results were primarily null. We observed a pattern of suggestively strong 

odds ratios, especially in the primary analysis, such as in the woodsmoke source results, 

which were consistent across source apportionment method and lag. We observed 

positive associations in the positive matrix factorization models for the woodsmoke 

source in the apnea zero-day lag for the primary as well as in the one-day lag analysis for 

primary and premature/normal birth weight. Our analysis also observed a positive 

association between apnea and the ammonium nitrate source (one-day lag) among the full 

term/normal birth weight infants in the chemical mass balance in the zero-day lag model 

among low birth weight/premature of the chemical mass balance model for bradycardia. 

We observed some suggestive associations between apnea and bradycardia events and 

source apportioned fine particulate matter, which contributes to the body of air pollution 

literature.  
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Figure 5.1 Chemical Mass Balance Results (with 95% Confidence Intervals) for GEE Unconditional Logistic 

Regression Analyses Examining the Association of Daily Source apportioned Air Pollution Levels (per Interquartile-

Range) for 0-day Lag Apnea Events in Infants on Home Cardiorespiratory Monitors, 11/19/1998 - 12/31/2002, Atlanta 
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Figure 5.2 Chemical Mass Balance Results (with 95% Confidence Intervals) for GEE Unconditional Logistic 

Regression Analyses Examining the Association of Daily Source apportioned Air Pollution Levels (per Interquartile-

Range) for 1-day Lag Apnea Events in Infants on Home Cardiorespiratory Monitors, 11/19/1998 - 12/31/2002, Atlanta  
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Figure 5.3 Positive Matrix Factorization Results (with 95% Confidence Intervals) for GEE Unconditional Logistic 

Regression Analyses Examining the Association of Daily Source apportioned Air Pollution Levels (per Interquartile-

Range) for 0-day Lag Apnea Events in Infants on Home Cardiorespiratory Monitors, 11/19/1998 - 12/31/2002, Atlanta 
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Figure 5.4 Positive Matrix Factorization Results (with 95% Confidence Intervals) for GEE Unconditional Logistic 

Regression Analyses Examining the Association of Daily Source apportioned Air Pollution Levels (per Interquartile-

Range) for 1-day Lag Apnea Events in Infants on Home Cardiorespiratory Monitors, 11/19/1998 - 12/31/2002, Atlanta  
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Figure 5.5 Chemical Mass Balance Results (with 95% Confidence Intervals) for GEE Unconditional Logistic 

Regression Analyses Examining the Association of Daily Source apportioned Air Pollution Levels (per Interquartile-

Range) for 0-day Lag Bradycardia Events in Infants on Home Cardiorespiratory Monitors, 11/19/1998 - 12/31/2002, 

Atlanta 
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Figure 5.6 Chemical Mass Balance Results (with 95% Confidence Intervals) for GEE Unconditional Logistic 

Regression Analyses Examining the Association of Daily Source apportioned Air Pollution Levels (per Interquartile-

Range) for 1-day Lag Bradycardia Events in Infants on Home Cardiorespiratory Monitors, 11/19/1998 - 12/31/2002, 

Atlanta  
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Figure 5.7 Positive Matrix Factorization Results (with 95% Confidence Intervals) for GEE Unconditional Logistic 

Regression Analyses Examining the Association of Daily Source apportioned Air Pollution Levels (per Interquartile-

Range) for 0-day Lag Bradycardia Events in Infants on Home Cardiorespiratory Monitors, 11/19/1998 - 12/31/2002, 

Atlanta  
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Figure 5.8 Positive Matrix Factorization Results (with 95% Confidence Intervals) for GEE Unconditional Logistic 

Regression Analyses Examining the Association of Daily Source apportioned Air Pollution Levels (per Interquartile-

Range) for 1-day Lag Bradycardia Events in Infants on Home Cardiorespiratory Monitors, 11/19/1998 - 12/31/2002, 

Atlanta
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