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ABSTRACT 

 
 

THE SPATIAL AND TEMPORAL PROPERTIES OF 

PRECIPITATION UNCERTAINTY STRUCTURES OVER TROPICAL OCEANS 

 
 

The global distribution of precipitation has been measured from space using a series of 

passive microwave radiometers for over 40 years. However, our knowledge of precipitation 

uncertainty is still limited. While previous studies have shown that the uncertainty associated 

with the surface rain rate tends to vary with geographic location and season, most likely as a 

consequence of inappropriate and inaccurate microphysical assumptions in the forward 

model, the internal uncertainty structure remains largely unknown. Hence, a classification 

scheme is introduced, in which the overall precipitation uncertainty consists of random noise, 

constant biases, and region-dependent cyclic patterns. It is hypothesized that those cyclic 

patterns are the result of an imperfect forward model simulation of precipitation variation 

associated with regional atmospheric cycles. To investigate the hypothesis, differences from 

ten years of collocated surface rain rate measurements from TRMM Microwave Imager and 

Precipitation Radar are used as a proxy to characterize the precipitation uncertainty structure. 

The results show that the recurring uncertainty patterns over tropical ocean basins are clearly 

impacted by a hierarchy of regionally prominent atmospheric cycles with multiple time 

scales, from the diurnal cycle to multi-annual oscillation. Spectral analyses of the uncertainty 

time series have also confirmed the same argument. Moreover, the relative importance of 

major uncertainty sources varies drastically not only from one basin to another, but also with 

different choices of sampling resolutions. Following the classification scheme and hypothesis 
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proposed in this study, the magnitudes of un-explained precipitation uncertainty can be 

reduced up to 68% and 63% over the equatorial central Pacific and eastern Atlantic, 

respectively. 
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CHAPTER 1 

INTRODUCTION 

 
 

Precipitation serves as one of the most important coordinators controlling global and regional 

hydrological balance and energy equilibrium. Water in its various forms travels unceasingly 

among the atmosphere, biosphere, land, and ocean, as it keeps the hydrological cycle in general 

balance (Fig. 1.1, Oki and Kanae 2006). The transport, however, is rarely smooth but instead 

sporadic, causing severe water deficiency (like droughts) over one region and excessive water 

supply (like floods) at another place. At the same time, imbalanced surface energy is removed 

mostly through evaporation and released to the atmosphere via the latent heat of condensation. 

While in its vapor form, latent heat from the water vapor can be transported over long distances 

through large-scale atmospheric motions. Once condensed, the drop will generally fall as 

precipitation. Hence, precipitation is not only serving as the heat transporter, but also as a 

sensitive indicator of Earth’s energy balance.  

A variety of measuring systems have been developed historically to retrieve rainfall 

information. More than 3500 years ago, astrologers in ancient China started to inscribe symbols 

on ox bones or turtle shells to record the eye-witnessed weather phenomena (mostly the extreme 

rainfall events) for fortune-telling purposes (Wang and Zhang 1988). Around 500 B.C, ancient 

Greeks and ancient Indians recorded the rainfall amount to deduce the expected crop yields, and 

used it as a basis for calculating the land tax (Strangeways 2010). During the Age of Discovery, 

Portuguese adventurers found prevailing wind systems over the Atlantic, and most likely the 

associated raining regions. In 1694, Richard Towneley, an English mathematician and 

astronomer, first discussed the rainfall differences over different parts of England using 15 years 

of systematic records of rainfall measurements (Towneley 1694). During World War II, 
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scientists from the Great Britain and the United States` started to use radar to explore rainfall 

properties associated with tropical cyclones. 

Complete global rainfall measurements finally became feasible in the early 1960s, when 

precipitation could be observed from satellites. The first attempt to estimate precipitation over 

ocean using a spaceborne microwave radiometer was accomplished by the Electrically Scanning 

Microwave Radiometer (ESMR) aboard the Nimbus 5 satellite. ESMR was a single channel, 

horizontally polarized radiometer, operating at 19.35 GHz. Allison et al. (1974) used an 

empirical relationship between the measured brightness temperatures and collocated surface rain 

rates to estimate the rainfall intensity. Given that the observed brightness temperatures depend 

not only on the rain rate, but also the surface temperature, its emissivity, as well as cloud water 

and water vapor, the empirically derived results were likely to be biased (Munchak 2010). More 

robust estimates could not be made until precipitation information could be retrieved from 

multiple channels, such as from the Scanning Multichannel Microwave Radiometer (Gloersen 

and Hardis 1978). In the late 1980s, the Special Sensor Microwave Imagers (SSM/I) aboard the 

Defense Meteorological Satellites Program (DMSP) satellites used seven microwave channels to 

infer surface rain rates. Another decade later, the Tropical Rainfall Measuring Mission (TRMM) 

was launched to simultaneously measure collocated rainfall events from a passive microwave 

imager and active centimeter-wavelength radar.  

At the beginning of the new millennium, a series of Advanced Microwave Scanning 

Radiometers (AMSR), and the successor AMSR-Earth Observing System, were sent to the space 

to gather information about water sources in the Earth’s system (Kawanishi et al. 2003). In 

February 2014, the launch of the Global Precipitation Mission (GPM) core observatory extended 

the region of active and passive observations (as compared to TRMM) from the extra-tropics up 

to 68° latitudes in both hemispheres (Hou et al. 2014). Furthermore, the GPM Microwave Imager 



	
   3	
  

(GMI) adds additional 4 high frequency channels to enhance its ability to detect precipitation in 

solid forms over high-latitude areas. Despite the continuously increasing observational 

capabilities and accompanying improvements in precipitation products, there has been little 

progress in quantifying uncertainties from the precipitation retrievals. This study seeks therefore 

to build a specific framework for computing uncertainties in one of the TRMM precipitation 

products – the passive microwave rainfall estimations, or 2A12 in its latest version (Version 7). 

The framework has been designed to be readily applicable to rainfall estimates produced by other 

passive microwave sensors as well. 

 

1.1 Background 

In the conventional way of defining measurement uncertainties, differences between the 

measurement and a specified “truth” are quantified as a combination of systematic and stochastic 

errors. Stochastic uncertainty from the satellite rainfall products can be quite large and critical 

for researchers who complete their work utilizing short-term and/or localized precipitation 

observations. Its relative importance, however, reduces quickly for climatological or large-scale 

research applications due to the signal cancellation of random noise. Systematic uncertainties, on 

the other hand, are rarely numerically uniform from a global rainfall perspective, instead varying 

with different meteorological regimes. Stephens and Kummerow (2007) argued that the bulk 

precipitation uncertainties look neither random (completely unpredictable) nor systematic 

(constant over space and time), but more like a mixture of both. Moreover, the majority of the 

bulk error seems to associate with the construction of the forward model, which tends to vary 

with cloud and precipitation regimes. Numerous studies have confirmed their statements. 

Examples detailing the spatial and/or temporal discrepancies among different precipitation 

products are presented below. 
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Masunaga et al. (2002) made one of the earliest attempts to discover the inconsistencies 

between TMI and PR rainfall products, in which they found that the biases had a strong regional 

dependence. In mid-latitudes, PR tended to over report the near-surface precipitation water 

content (PWC), especially in winter, which was most likely due to the limitation of the pre-

existing TMI profiling database. In tropics, however, PR produced much less precipitation water 

path (PWP) because of its algorithmic deficiency. Moreover, for a given PWC or PWP, TMI 

algorithm yielded a larger rain rate than PR. The authors then argued that the biases arose from a 

combined result of the different physical measuring principles between the two sensors and a PR 

algorithm-based precipitation water path-to-rain rate conversion scheme. 

Adeyewa and Nakamura (2003) compared the monthly averaged TRMM PR data to the 

surface rain gauge network over major climatic zones in continental Africa, and the biases 

showed apparent seasonal and regional variability. In general, the biases reached the annual 

maximum during local dry seasons, whose occurrence varies by latitudes. By further taking the 

zonal-mean precipitation analysis, they found PR severely overestimated (by more than 30%) the 

rainfall over the tropical-rain-forest region (between 6.5°S and 6.5°N) during the northern 

hemispheric wintertime. As a result, they concluded that the TRMM PR data was only reliable 

over northern and southern savanna regions (around 10°N and 20°S, respectively) during the 

wettest season of the year. 

Rajendran and Nakazawa (2005) compared the conditional surface rain rates (the average rain 

rate of all raining pixels within a pre-defined domain) between TMI and PR, and found that TMI 

estimates were generally larger than PR estimates for most part of the equatorial oceans. 

Through analysis of the convective rainfall percentages associated with the precipitation, the 

differences were likely related to different life stages of organized convections in the tropics. To 

be more specific, PR showed excessive rain in situations of low TMI convective percentages and 
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high PR convective percentages, which represented the formative stage of convections. The 

opposite, TMI overestimating the rainfall, often occurred during the mature-to-decaying stage of 

convection, when high TMI convective percentages and low PR convective percentages were 

often witnessed. Finally, the authors listed several reasons that may contribute to this systematic 

bias, which includes the existence of overshooting cloud tops, the time lag between the 

maximum rain rate and the highest cloud top height, the increased backscattering signals due to 

cloud ice crystals, and the presence of melting layer. 

Berg et al. (2006) examined a number of physical variables that can be used to explain the 

observed regional-dependent systematic precipitation detection differences between TMI and 

PR. The differences were mostly discovered along the mid-latitudes storm tracks, where only the 

higher-resolution PR can pick up rainfall signals from isolated convective trailing frontal 

systems. On the other hand, TMI captured light-to-medium rainfall over East China Sea, where 

radar signals are generally below the PR detection threshold. A following study by Berg et al. 

(2008) showed that high local aerosol concentrations could lead to an increase in the ratio of 

cloud water to rain water within the column, as well as postpone the initiation of warm rain 

processes. 

Yamamoto et al. (2008) explored daily variability of measured precipitation from TMI, PR, 

and the Visible and Infrared Scanner, which was onboard the TRMM satellite as well. 

Temporally as well as regionally dependent systematic biases were detected as the local peak 

raining times were shifted by a few hours among the three sensors. The phenomena were most 

profound over the plateau sections and the Gulf of Mexico. Further investigations were 

conducted to explain the systematic peak time shifts, and they found that the time shift was 

sensitive to the amplitude of diurnal variation (i.e., land vs. ocean), convective rainfall frequency, 

and storm heights. Therefore, they claimed that the observed time shifts could be tied to the 
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evolution of convective systems, and the shifts were mainly caused by the different detection 

capabilities of each sensor. 

Wang and Wolff (2012) performed the comparisons between the TMI rainfall estimates and 

the ground-based validation measurements (including radar and tipping-bucket rain gauges) over 

the TRMM Ground Validation site at Melbourne, Florida. The TMI measurements showed small 

negative biases during the 12-year studying period, with only a few exceptions. In terms of rain 

rates, TMI gave a much better performance over light rainfall compared to higher rain rates. 

Moreover, despite the fact that diurnal cycles of precipitation were well captured by both TMI 

and the ground site, there was about a one-hour time lag between the spaceborne sensor and the 

ground instruments, mostly due to the ice aloft which is consistent with the findings from 

Yamamoto et al. (2008) mentioned above. 

Based upon the aforementioned studies, the precipitation uncertainties have shown clear 

fluctuating characteristics that cannot be captured by a simple combination of two fixed values, 

i.e., the random and systematic uncertainties. Instead, an uncertainty-quantifying model should, 

at a minimum, contain enough structures to capture the uncertainty variations mentioned above.   

Unlike some recent work (Adler et al. 2012; Maggioni et al. 2014) that had primarily focused 

on the systematic or stochastic uncertainty individually, trying to capture the general external 

features of the measurement uncertainty, this work features an in-depth look into the chaos inside 

the uncertainty, trying to disentangle the overall uncertainty into a hierarchy of relatively well-

known constituents. Although some of those constituents appear to be independent from each 

other, they are more-or-less physically and mathematically connected via the observing 

mechanism and retrieval algorithm. While this study will only provide qualitative uncertainty 

numbers, the analyses utilize the difference between TRMM radar and radiometer rainfall 

products to provide a guide for building a comprehensive uncertainty model. Meanwhile, by 
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describing the characteristics of the uncertainty field, especially where large discrepancy occurs, 

it may shed light on regional rainfall retrieving defects that need to be fixed in the retrieval 

algorithm.   

 

1.2 Precipitation Uncertainty Analyses 

The sources of precipitation uncertainty can be quite complicated. This section will illustrate 

major uncertainty sources from the current TMI rainfall retrieval algorithm via multiple 

examples.  

The majority of TMI retrieval uncertainties act as a combination of stochastic and systematic 

components, which vary with space and/or time. In terms of individual uncertainty source, both 

components typically exist simultaneously, but often not of equal importance. For convenience, 

major uncertainty sources will be categorized as either random or systematic based on their 

predominant characteristics; in other words, a random uncertainty source may still retain its 

systematic portion, but behave more randomly under most frequent circumstances. Since a large 

portion of the overall uncertainty comes from the forward model, uncertainties associated with 

the forward model, including both random and systematic sources, are discussed independently 

at the end of this section. 

 

1.2.1 Random Uncertainty Sources 

Technically, random uncertainties are the unpredictable unknowns in measurements that can 

lead to measured values being inconsistent among multiple repeated measures (Taylor 1999). 

Random uncertainties have arithmetic means equal to zero, and their probability functions are 

considered to follow Gaussian distributions. Three common sources of random uncertainty in the 
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current TMI retrieval are considered to be the instrument noise, sampling limitation, and 

algorithmic ambiguity.  

Channel-dependent instrument noise is relatively small with the current state-of-the-art 

microwave radiometer, typically on the order of a few tenths of a Kelvin. Every radiometer has a 

noise value, or the “noise-equivalent temperature variation”, which is sensitive to both frequency 

and polarization. Despite the fact that the channel noise itself is normally distributed, the extent 

to which it will shape the distribution of the retrieved quantity, such as precipitation, is still 

unknown and left to be determined. Details of instrument noise associated with each TMI 

channel are given in Table 1.1.  

Another typical random measurement uncertainty source stems from the sampling limitation. 

Non-geostationary satellites can only fly over the same region once or twice per day. Hence, 

rainfall accumulation in particular, will have errors based upon this limited sampling strategy. 

For long-term climatological precipitation property, such as the annual mean rain rate, the 

sporadic observations are considered to be statistically stable. For short-term rainfall 

accumulation, such as the daily rainfall accumulation, however, the sampling uncertainty 

becomes more problematic (Maggioni et al. 2014), as an instantaneous rainfall observation of 

5mm/hr at noontime does not imply the atmosphere will keep raining at the same intensity for 

the entire day. Given TRMM’s non-sun synchronous sampling strategy and an emphasis on 

climatological rainfall uncertainty in this study, the author will treat sampling uncertainty as 

random in this work. 

Finally, due to the incomplete knowledge about the environmental condition, inverse 

problems are generally ill posed and may contain multiple solutions (Rogers 2000). As a result, a 

close match between the modeled and measured brightness temperatures (Tb) sometimes cannot 

guarantee a unique retrieval of the vertical hydrometeor profile. The ambiguity issue is 
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particularly noteworthy when two vertical rainfall profiles with difference surface rain rates have 

indistinguishable Tb at TMI frequencies, as illustrated in Kummerow et al. (2011). However, the 

impact is secondary as compared to the previous two, and can be reduced, if additional pieces of 

information, such as an extra radiometer channel or a collocated radar reflection, are supplied to 

make the similar rainfall structures distinguishable. 

 

1.2.2 Systematic Uncertainties Sources 

Imperfect sensor calibration contributes to a small fraction of the systematic uncertainty. For 

example, the TMI warm point calibration is established at every revolution with respect to a 

warm reference load. This reference is theoretically expected to emit like a blackbody at a fixed 

temperature (usually around 280 K). In reality, there will always be discrepancies between the 

“assumed” temperature and the “true” temperature measured by the sensor, which leads to 

systematic biases in the measured brightness temperatures. The sensor calibration bias is often 

uniform over time and space, and causes uncertainties in the precipitation retrieval. 

Another type of commonly seen systematic uncertainties comes from the instrument 

limitations, as each sensor has its preferential precipitation detecting regimes. For example, PR is 

incapable of detecting rain rate below 0.5 mm/hr because small rain droplets are nearly invisible 

to the centimeter-wavelength radar pulses. At the same time, higher frequency TMI channels 

saturate quickly in the heavy precipitation scenarios, which impairs the instrument sensitivity. 

Consequently, instrumental limitation is intrinsic to the sensor, and may vary systematically 

among individual rainfall regime.  
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1.2.3 Uncertainties Associated with the Forward Model 

Stephens and Kummerow (2007) pointed out that the leading source of retrieval uncertainties 

should arise from the cloud microphysical assumptions that are made during the construction of 

the forward model. The forward model can be schematically broken down into two basic 

modules – an atmospheric model parameterizing the cloud and precipitation structures imbedded 

in the rainfall event, and a radiative transfer model simulating the brightness temperatures at top 

of the atmosphere that are observed by the radiometer. For both modules, empirical and 

sometimes even unrealistic assumptions about certain microphysical parameters have to be made 

in order to complete the model, such as fixed ice density and spherical treatment for ice particles. 

More often than not, those parameters are integral parts of the forward model, which makes them 

hard to be dissembled and therefore inspected individually, without mentioning the frequent 

absence of well-characterized validation sources. To make the complexity even worse, for those 

ancillary parameters that are physically retrieved as inputs to the model, such as the liquid water 

path, their uncertainties are typically not quantified and would probably vary if the retrieving 

method changes. As a result, it is neither feasible nor meaningful to separate the forward model 

uncertainty into individual sub-components, which is also why the forward model uncertainty is 

so elusive to comprehend. The majority of forward model uncertainty looks neither random nor 

systematic, but more like a mixture of both. To simplify the discussion, more random-behaved 

model uncertainties will be introduced first, followed by the description of the more 

systematically behaved uncertainty components.  

An example of the random model uncertainty is the parameterization of cloud ice density in 

the cloud-resolving model. Although the density of ice particles within a mixed phased cloud 

system is likely to vary from one part of the cloud to another, the cloud ice density is a fixed 

mean value computed from limited number of studies. Hence, the model results are sensitive to 
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the pre-assigned density value, so that the any small density perturbation would lead to multiple 

distinctive but plausible retrievals for the column ice content as well as vertical distribution. 

Moreover, physical retrieval of ice density is not readily achievable and may require additional 

assumptions, which would further complicate the issue. As a result, the inevitable artificial 

assumptions of cloud ice density, together with many other cloud microphysical parameters, 

remains an untreatable (and may be even unsolvable) portion of the precipitation uncertainty in 

this study. 

The more systematic-like portion of the forward model uncertainty, on the other hand, is 

assumed to be one of the most important components in the overall precipitation uncertainty. 

Together with its random counterpart, their impact could be as much as an order of magnitude 

larger than any other individual uncertainty source. Fortunately, most random components 

reduce quickly in terms of their magnitudes with averaging because of their Gaussian-distributed 

nature, and eventually give statistically nearly unbiased climatological answers. The systematic-

behaved forward model uncertainties, which are often the result of parameterizing the 

precipitating conditions using long-term mean (or empirical) values. Despite the qualitative 

resemblance that may be achieved by utilizing the long-term mean values, the actual region-to-

region precipitation parameters, such as drop size distribution, hardly replicates the mean state 

close enough. Hence, if these forward model assumptions are not allowed to change with rainfall 

regimes, they will cause regime-dependent biases as illustrated in Berg et al. (2006). Two 

examples regarding the systematic forward model uncertainty are discussed below. 

Munchak et al. (2012) retrieved the drop size distribution (DSD) from two years of TRMM 

radar-radiometer combined algorithm, and characterized the DSD in relation to the vertical 

hydrometeor profile, mesoscale organization, and background environment. Small reflectivity-

normalized median drop sizes were often observed in the tropics, especially in the large shallow 
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convective system where the warm rain processes dominated. Alternatively, large median drop 

size values were found in scattered convection associated with the passage of extratropical cold 

front. The authors concluded that the precipitation difference between the TMI and PR 

associated with the DSD variations were mostly likely due to either the insufficient DSD 

adjustment in the PR retrieving algorithm or the incorrect description of the DSD as well as 

vertical profiles in the TMI hydrometeor database. 

Petkovic and Kummerow (personal communication) showed strong region-dependent biases 

in the surface precipitation when comparing the TMI surface rain rates to PR over the Amazon 

and central-west Africa, respectively. The authors found that the retrieved rainfall amounts were 

quite sensitive to the amount of ice particles present in the precipitating clouds, which was 

affected by local environmental conditions, such as the convective available potential energy 

(CAPE), wind shear, and vertical humidity profile. By appropriately accounting for the three 

variables, they could reduce local rainfall bias by as much as 30%.  

In summary, uncertainties resulting from the imperfect forward model simulations contribute 

to a substantial portion of the total measurement uncertainty. Although multiple uncertainty 

sources introduced by the forward model have been speculated, some of which had already been 

verified, the overall forward model impact on the final precipitation product still remains largely 

unknown.  

 

1.3 Overview of Thesis 

 It is clear from the preceding discussion that satellite-retrieved precipitation uncertainties are 

nowhere close to a constant number. Instead, previous peer studies have shown that the 

uncertainty tends to vary systematically from one region to another and similar uncertainty 

features are inclined to reveal themselves in a periodic manner, such as the strong positive biases 
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over the East China Sea observed only during the northern hemisphere wintertime (Berg et al. 

2006). Despite numerous factors that could have contributed to the total uncertainty, Stephens 

and Kummerow (2007) argued that the majority of precipitation uncertainty results from the 

inadequate and inappropriate microphysical assumptions in the forward model. In reality, 

microphysical parameters are physically connected with the ongoing atmospheric dynamics, 

which are inclined to repeat themselves over unique rainfall regimes. It is therefore reasonable to 

speculate that the retrieved precipitation uncertainty would behave in a similar manner. 

 The author is therefore proposing that: 1) the total precipitation uncertainty can be described 

by two independent but internally connected components – stochastic and systematic 

uncertainties, and that systematic component would further contain region-dependent constant 

biases as well as certain recurring patterns; 2) those recurring patterns mainly result from the 

forward model simulation of the locally prominent atmospheric cycles, and consequently contain 

temporal and spatial variability. 

A detailed description of primary sensors and observational data utilized in this research will 

be introduced in Chapter 2. In Chapter 3, the author will first show the property and impact of 

stochastic uncertainty at the instantaneous scale as well as its temporal propagating 

characteristics. Then, systematic precipitation uncertainties will be analyzed over several 

carefully chosen tropical oceans, with each of those regions containing one dominant 

atmospheric cycle selected from a broad range of time scales (from diurnal cycle to multi-annual 

oscillation). Beginning with a qualitative estimation of major uncertainty partitions over the 

central-to-eastern tropical Pacific, Chapter 4 will then explore how different regional 

atmospheric cycles influence the uncertainty structures simultaneously and how different 

uncertainty sources contribute to the overall precipitation uncertainty. This is followed by a 

similar experiment but performed over a different tropical ocean basin to highlight regional 
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discrepancies in the uncertainty structures. Eventually, the uncertainty classification framework, 

which evaluates different uncertainty sources on an individual basis, will be revisited in its 

entirety at the beginning of Chapter 5, followed by concluding remarks and suggestions for 

future work.  
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CHAPTER 2 

DATA 

 
 

In this chapter, the author will first present a quick review on the satellite configuration and 

instrument specifications of two major onboard sensors that are used to depict precipitation 

uncertainty structures in this work. Then, the precipitation retrieval scheme for the passive 

radiometer and active radar will be discussed in detail, as this work attempts to build a 

framework to characterize the rainfall uncertainty, based upon the difference of two nearly 

independent rainfall measurements - the TMI and PR. TMI uses microwave brightness 

temperatures, radiative transfer schemes, and a Bayesian-based retrieval algorithm to find the 

mostly likely surface rain rate. On the other hand, PR surface rainfall quantification relies 

heavily on the signal reflected by the hydrometeors, as well as the signal attenuation over the 

rainfall column. Since the detecting principles of two sensors are fundamentally independent 

from each other, the difference between those two products (i.e., TMI minus PR) should 

characterize the precipitation uncertainty with the broadest range possible.  

 

2.1 Tropical Rainfall Measuring Mission (TRMM) and Major Instruments Specifications 

Carrying instruments to measure precipitation and energy budget within the tropical 

atmosphere, the TRMM satellite was launched into a non-sun synchronous orbit in late 1997, and 

has been providing consistent and reliable monitoring data for more than 17 years (Kummerow 

et al. 1998). The satellite orbits earth approximately 16 times per day, scanning up to 35° in 

latitudes for both hemispheres. Its initial altitude was 350km, but was boosted to a higher altitude 

of 402.5km in August 2001 to reduce fuel consumption. All precipitation data used to calculate 

the uncertainty in this work are selected from the post-boost period to prevent any unnecessary 
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biases due to the orbital change (DeMoss and Bowman 2007). Moreover, on May 29, 2009, the 

original (A-side) electronic interface stopped working and it took the mission team 

approximately 2 weeks to investigate the reason and switch to the redundant electronics, as 

reported by Japan Aerospace Exploration Agency. Although this malfunction resulted in slight 

but noticeable change in the PR precipitation retrievals, the author decides to ignore the impact 

and replace 20-day of missing PR observations (from May 29 to June 19) with climatological 

mean values. 

 

2.1.1 TRMM Microwave Imager 

 The TRMM Microwave Imager (TMI) is a nine-channel passive microwave radiometer that 

measures brightness temperatures (TB) at five frequencies: 10.7, 19.4, 21.3, 37.0, and 85.5 GHz 

(Kummerow et al. 1998). Dual-polarimetric measurements are available at 10.7, 19.4, 37.0, and 

85.5 GHz channels. Compared to its technical predecessors (i.e., SSM/I), the TMI added a pair 

of low frequency channels at 10.7 GHz and moved the water vapor channel from 22.235 GHz to 

21.3 GHz to avoid water vapor saturation in the tropics. 

 The TMI antenna rotates at a constant speed of 31.6 revolutions per minute and receives 

microwave signals at an incident angle of 52.8 degrees with respect to the Earth’s surface 

(Fig.2.1, Kummerow et al. 1998). The conical scanning geometry allows 130 degrees from the 

forward direction to be used to collect data, while leaving the rest 230 degrees for calibration and 

housekeeping purposes. The forward 130-degree arc yields a swath of 759km in the cross-track 

direction with a spacing of 13.9 km between pixels from two successive scans. A more detailed 

instrument description is available in Kummerow et al. (1998). 
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2.1.2 Precipitation Radar 

 The first space-borne Precipitation Radar (PR), operates at 13.8 GHz (Ku-band) and scans 

±17° from nadir with 49 cross-track pixels. This results in a swath of 247 km (post-boost) that 

covers the central one-third of the TMI swath. The radar has a footprint size of 4.3km (which is 

similar to the footprint size of an 85 GHz TMI pixel) at nadir and a vertical resolution of 250m. 

The radar was designed to have a minimum detectable threshold of 17 dBz, which corresponds to 

approximately 0.5 mm/hr in rain rate. The TRMM PR can measure 3-D structures of rainfall 

events and provide additional hydrometeor information, such as precipitation type (convective 

vs. stratiform). More instrument details can also be found in Kummerow et al. (1998). 

 

2.2 Rainfall Retrieval Algorithms 

2.2.1 Rainfall Retrieval Algorithm for TMI 

 The Goddard Profiling Algorithm (GPROF) is a microwave-based rainfall retrieval 

algorithm, which was originally developed for the SSM/I sensors on the DMSP satellites 

(Kummerow et al. 1996). For implementing in TRMM operations, the algorithm has undergone 

several major modifications (Kummerow et al. 1996; Kummerow et al. 2001; Kummerow et al. 

2011). It has become the operational rainfall retrieval algorithm for TMI, AMSR-E, AMSR2, 

and SSM/I instruments since then. The GPROF is able to obtain 3-D rainfall structures and the 

associated hydrometeor environment. In this study, only surface rain rates will be used. Data can 

be obtained from the official NASA TRMM website (http://trmm.gsfc.nasa.gov/). 

 The retrieval algorithm can be divided into two parts: the rainfall retrieval over the ocean 

which is primarily based on the Bayesian probability theorem, and the land retrieval which is 

based on empirical relationships between the ice-scattering signals at high-frequency channels 

and the instantaneous surface rain rates. For completeness, both retrievals will be briefly 
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discussed in this section. Detailed retrieving procedures can be found from Kummerow et al. 

(2001, 2011). 

 

2.2.1.1 TMI Retrieval over the Ocean 

Over the ocean, the Bayesian-based rainfall retrieval can be symbolically expressed as 

(Kummerow et al. 2001): 

Pr ! !" = Pr  (!)×Pr  (!"|!)                                                 (2.1) 

Where R is the vertical hydrometeor profile, TB is the brightness temperature vector from all 

frequencies, Pr ! !"  is the posterior probability of observing R given the observed brightness 

temperature vector TB, Pr  (!) is the prior probability of observing the given hydrometeor 

profile of R, and Pr  (!"|!) is the probability of observing brightness vector TB for the 

hydrometeor content R. 

The prior probability of profile R (i.e., Pr  (!)) is calculated from the relative number of 

occurrences observed by the TRMM precipitation radar. A radiative transfer scheme is used to 

derive the brightness temperature vector TB at the top of the atmosphere, as it would be seen by 

the TMI. As a result, using the Bayes’ theorem, the term on the left-hand side is readily 

calculable. Finally, if assuming the observed and simulated error distributions are Gaussian, the 

optimally retrieved rain rates ! are given by the minimum variance solution: 

E ! = !!
!"(!!|!")

!!                                                            (2.2) 

and the conditional probability Pr(!!|!") and normalization factor ! can be expressed as: 

Pr(!!|!") = exp  {− !
!
!"!"# − !"!"#$% !! !(!+!)!![!"!"# − !"!"#$%(!!)]}          (2.3) 

! = exp  {− !
!
!"!"# − !"!"#$% !! !(!+!)!![!"!"# − !"!"#$%(!!)]}!      (2.4) 
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where !"!"# is the observed TB vector, !"!"#$% !!  is the simulated TB vector for the given 

hydrometeor profile !! , ! and ! are the observation and model error covariance matrices, 

respectively. 

To minimize the computational cost during daily routine operations, all the probabilities on 

the right-hand side of Eqn. (2.1) are calculated in advance and stored in a database, also known 

as the a-priori database. Further details about the a-priori database are detailed in Kummerow et 

al. (2011).  

 

2.2.1.2 TMI Retrieval over Land  

The rainfall retrieval over land contains less physics, when compared to its ocean counterpart. 

Unlike the cold ocean surface in the microwave band, the emissivity of the land is much closer to 

1, which makes it quite difficult for the TMI to distinguish raining hydrometeors from the 

surface background. The wide variation of topography, vegetation types, and soil moisture 

further complicates the problem. As an alternative to the emission-based approach, the TB 

depressions at 85 GHz (due to scattering by ice or large rain drops) are statistically related to the 

instantaneous surface rain rates (Spencer 1986; Grody 1991). Moreover, a screening procedure is 

performed to differentiate the raining scenes from radiometrically cold surfaces (e.g., snow, 

desert) that may otherwise be confused with precipitation  (Ferraro et al. 1998). In addition, since 

convective and stratiform rainfall behave differently from each other in terms of their empirical 

TB relationships, the surface rainfall is given by the sum of the weighted contributions from both 

the convective and stratiform rainfall (McCollum and Ferraro 2003), which can be expressed as: 

Rain!"#$ = Pr convective ×Rain!"#$%!&'$% + Pr  (stratiform)×Rain!"#$"%&'#( 

where: Rain!"#$  is the overall rain rate retrieved by the GPROF, Pr convective  is the 

probability of convective rainfall, Rain!"#$%!&'$% is the convective rain rate derived from the 
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empirical TB relationship, Pr stratiform  is the probability of stratiform rainfall, Rain!"#$"%&'#( 

is the stratiform rain rate derived from the empirical TB relationship. 

Wang et al. (2009) point out that the retrieval algorithm may fail to detect warm rain 

processes due to the lack of ice-scattering signals from the liquid cloud, while it is more likely to 

overestimate rain rates in strong convective clouds that tend to produce a lot more ice crystals. 

Liu and Zipser (2005) concluded that regionally dependent errors would occur if the ratio of the 

85 GHz ice scattering signal to rain rate was assigned improperly. Since this study focuses 

strictly on ocean retrievals, there will not be any further discussions regarding the possible 

systematic biases of the TMI rainfall retrieval over land. 

     

2.2.2 Rainfall Retrieval Algorithm for PR 

Similar to most ground-based radars, the TRMM PR uses a power law relationship between 

radar reflectivity Z and rainfall rate R to convert radar echo intensities into rainfall rates: 

! = !!! 

where coefficient a and exponent b are empirical constants for given drop size distributions. As 

these constants are typically not known, the PR uses a hybrid of the surface reference method 

(SRT, Meneghini et al. 2000) and the Hitschfeld-Bordan method (Iguchi and Meneghini 1994) to 

determine the signal attenuation (Iguchi et al. 2000). 

At 13.8 GHz, raw radar echoes suffer from appreciable amount of attenuation due to 

atmospheric gases, aerosols, and hydrometers. The PR rainfall retrieval algorithm treats the 

attenuation in two ways: the attenuation due to cloud liquid water, water vapor and molecular 

oxygen is empirically calculated from the radar-measured variables; the attenuation caused by 

precipitation is estimated using the hybrid method mentioned above. In this method, path-

integrated attenuation (PIA) is independently calculated using the Hitschfeld and Bordan (1954) 
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method and the SRT (computed by taking the difference of the normalized surface cross sections 

between a raining pixel and a nearby non-raining pixel). Then, a Bayesian-based method is used 

to retrieve the optimal PIA that can be best explained by the two independently calculated PIAs. 

Finally, an attenuation correction factor can be estimated from the optimal PIA, and applied to 

the measured reflectivity to retrieve the attenuation-corrected reflectivity. 

 After taking into account the non-uniform beam filling effect, the attenuation-corrected 

reflectivity is used to derive the vertical rain rate at each range gate where appropriate sets of a 

and b need to be chosen depending on a number of factors, such as the rain type, presence of 

bright-band, freezing height, and most importantly, their consistencies with respect to the 

optimal PIA. Detailed retrieving procedures can be found from Iguchi et al. (2000). 

 

2.3 Collocated TMI and PR Surface Rain Rates 

Hourly gridded TMI (Kummerow et al. 2001; Kummerow et al. 2011) and PR (Iguchi et al. 

2000) surface rain rates (TRMM 3G68) are used in this study, at 0.5°×0.5° spatial resolution. 

The dataset can be obtained from NASA’s Goddard Space Flight Center, via ftp at: 

ftp://trmmopen.gsfc.nasa.gov/pub. Additional information about the dataset is available from the 

Goddard DAAC TRMM information page. Ten years of surface rain rate measurement from the 

post-boost period, starting in January 2002 and ending in December 2011, are used to compute 

the precipitation uncertainty in this work, which is defined as the instantaneous surface rain rate 

difference between TMI and PR.  

For each valid grid box (which requires at least one TMI pixel and one PR pixel in the same 

0.5°×0.5° box), four rainfall parameters are stored independently: total rain volume reported by 

TMI, total number of pixels reported by TMI, total rain volume reported by PR, and the total 

number or pixels reported by PR. The mean grid box rain rate for each sensor is defined as the 
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total rain volume divided by the total number of pixels. For convenience, the dataset is further 

integrated into 1°×1° resolution, following the same recording standards. Results in Chapter 4 

will show that sampling resolution will only impact the magnitude of the precipitation 

uncertainty without changing its first-order characteristics. 

A snapshot of the collocated surface rain rate for January 1st, 2010, is shown in Figure 2.2. 

The upper panel (Fig. 2.2(a)) shows several TMI overpasses on that day, which covers nearly 

three times more area than PR does (Fig. 2.2(b)) because of TMI’s wider sensor swath. The 

difference between the collocated TMI and PR is calculated, as shown in the bottom panel (Fig. 

2.2(c)), with warm colors indicating TMI overestimations and cold colors indicating the 

opposite. 

The precipitation uncertainty in this study is characterized by the difference in TMI and PR 

products. Because the two products are independent, this provides at least a method for 

estimating the qualitative behavior, if not the magnitude of the uncertainties. Furthermore, given 

that the true rain rates will never be measured (since no sort of measuring technique is free from 

errors), it is not practical for the precipitation uncertainty to be defined as the difference between 

the truth and actual measurement, and therefore alternatives must be sought to portrait the 

uncertainty structure. For example, the Intergovernmental Panel on Climate Change (IPCC) uses 

the model differences to represent the precipitation uncertainty, while the GPCP estimates its 

climatological uncertainty based on the measured monthly spread among multiple single-source 

and merged precipitation datasets (Adler et al. 2012). In this work, the difference between the 

collocated TMI and PR is used as the uncertainty proxy, and called the “precipitation 

uncertainty” hereafter, to represent the instantaneous measurement uncertainty, which includes 

both random and systematic components from both TMI and PR.    



	
   23	
  

CHAPTER 3 

RESULTS 

 
 
 In this chapter, the surface rain rate difference between the latest TMI (Version 7) and PR 

(Version 7) retrievals will be analyzed over multiple tropical ocean basins, as they approximately 

represent the radiometer-retrieved precipitation uncertainty structures. The total rain rate 

difference will be broken into stochastic and systematic components and their multi-dimensional 

propagation characteristics will be examined. It is valuable, as will be shown later in this chapter, 

to further break the systematic uncertainty into regional-dependent constant biases and specific 

periodic patterns that contain substantial spatial and temporal variability. 

In this chapter, analyses of the random uncertainty and constant biases will be introduced 

first, for the sake of completeness. The main focus of interest is on the regional-dependent cyclic 

behaviors of the systematic uncertainty. According to the hypothesis proposed at the end of 

Chapter 1, the cyclic uncertainties are largely the result of the imperfect forward model 

simulation of local atmospheric cycles. To validate the hypothesis, the observed precipitation 

uncertainties will be tested over several carefully chosen tropical ocean basins to encompass as 

many atmospheric cycles as possible, and the results will show that the recurrent uncertainty 

patterns are likely to be associated with regionally predominant atmospheric cycles. 

 

3.1 Random Uncertainty 

3.1.1 Random Uncertainty at Instantaneous Scale 

At the instantaneous scale, random uncertainty can sometimes play a dominant role within the 

overall retrieved precipitation uncertainty, especially in heavy precipitation scenarios. An 

analysis of a typhoon pixel, raining at 33.7 mm/hr, is shown in Figure 3.1. The TMI precipitation 
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retrieval algorithm (GPROF) has selected a group of 4650 hydrometeor profiles from the 

database, and assigned corresponding Bayesian weights to each of them. Twenty-two profiles 

(shown as the 22 asterisks in the figure) are found to exercise more impact on the final rain rate 

compared to the rest of the group. Furthermore, three profiles (with corresponding rain rates of 

21, 38, and 55 mm/hr) are seen as having the greatest weights in the final solution. The 

magnitude of the rainfall uncertainty for this pixel, which can be approximated by visually 

checking the differences among those 3 profiles, is close to 18 mm/hr. The systematic 

uncertainty, determined from overall global mean rain rate difference over the 10-year period, is 

nonetheless close to 0.3mm/day. As a result, the random uncertainty for this heavy raining pixel 

is at least two orders of magnitude larger than its systematic counterpart. 

 

3.1.2 Random Uncertainty Propagation 

Despite the large impact from the random noise at the instantaneous scale, the magnitudes can 

decrease quickly as the dataset is integrated over longer time periods. For purely random noise, 

the uncertainty is characterized by the variance divided by the square root of the number of the 

averaged samples, according to classic statistics. A 10°×10° grid box is picked from the western 

Pacific (Fig. 3.2(a)) to illustrate the propagation of random precipitation uncertainty averaged 

over multiple integrating time periods, for the entire data period of 10 years.   

Panels with black asterisks (Fig. 3.2(b)-(e)) show the observed TMI vs. PR rain rates averaged 

over 1 day, 5 days, 1 month, and 3 months, respectively. The slopes of the asterisks can be 

roughly understood as the PR-to-TMI mean rain rates ratio, and it is almost identical to the one-

to-one relationship line (ORL) because TMI reports nearly the same rainfall amount as PR when 

averaged over the entire data period. The level of scatter of the asterisks, with respect to the 

ORL, represents the magnitude of the precipitation uncertainty. Integrating over longer periods, 
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the asterisks start to converge toward the ORL, indicating more and more random uncertainty is 

canceling out.  

If assuming that all the precipitation uncertainties are randomly distributed (Fig. 3.2(f)-(i)), 

statistical laws can be applied to simulate the propagating behavior of random uncertainties. It is 

clear that the blue asterisks are converging faster toward the ORL than the black ones. More 

specifically, by averaging the rain rates over 3 months, the magnitude of the pure random 

uncertainty is reduced to a trivial level (shown as the nearly straight line with little scatter in Fig. 

3.2(i)), while certain precipitation uncertainty remains in the observation and is shown as the 

moderate degree of scattering of the black asterisks in Figure 3.2(e). The contrast between two 

uncertainty groups indicates that the actual observed uncertainty (the black asterisks) is not 

purely random, and must have contained some non-random ingredients that would not average to 

zero. 

 

3.2 Systematic Uncertainty 

3.2.1 Geographic Distribution of Constant Biases 

If all measurement uncertainties are randomly distributed, following the trend from Figure 

3.2(f)-(i), the overall magnitude should be negligible after averaging data longer than one year. 

However, by averaging the global (TMI-PR) differences over the entire data period of ten years, 

clear geographical patterns are revealed in the results (Fig. 3.3), suggesting a possible intrinsic 

relationship between the rainfall uncertainty and regional climatological conditions. This 

geographic uncertainty distribution is similar to the results from Berg et al. (2006), who related 

the differences to the total precipitable water. Strong TMI overestimation is observed in the 

Central Pacific where the El Nino Southern Oscillation phenomenon prevails, as well as the 

“bulls-eye” feature over the East China Sea that is likely to be caused by locally high aerosol 
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concentrations (Berg et al. 2008). Meanwhile, negative uncertainties appear as the two flanks 

that originate from the west Pacific warm pool and extend toward the centers of the Pacific 

Ocean in both hemispheres, as well as the northern Indian Ocean in the tropics. Similar negative 

differences are also seen in the extra-tropical North Atlantic, the Gulf of Mexico, the Caribbean 

Sea, and the equatorial central Atlantic near the African side.  

 

3.2.2 Periodic Uncertainty Patterns Associated with Local Atmospheric Cycles 

 Up to this point, two out of three major uncertainty groups have been introduced (i.e., random 

uncertainty and constant bias), while the cyclic patterns are left to be determined. Results of the 

relative contribution from the three factors (data have been integrated over 1-month, with spatial 

resolution of 1°×1°) are shown over four tropical ocean basins (Fig. 3.4) - northern Indian Ocean 

(54°E~75°E, 9°N~3°S), western Pacific warm pool (150°E~180°E, 12°N~0°N), central-to-

eastern Pacific Ocean (144°W~124°W, 12°N~3°N), and equatorial eastern Atlantic 

(27°W~12°W, 9°N~3°S). Random uncertainties, in all four regions, only occupy the minimum 

fractions in spite of certain variations. Meanwhile, the magnitudes of constant biases vary quite 

dramatically from 15% to 50%, indicating strong region-dependent characteristics. The vast 

majority of total uncertainty with in each ocean basin (except for the central Pacific) cannot be 

appropriately explained. Given the previous argument on forward model uncertainty being the 

largest among all uncertainty sources, the un-explained uncertainty should result from the 

incorrect and inappropriate microphysical assumptions in the forward model. Moreover, those 

microphysical parameters are known to interact with local atmospheric regimes, which therefore 

result in cyclic characteristics in these uncertainties.  

 For the rest of this chapter, major characteristics of uncertainty (mostly the un-explained 

uncertainty) will be examined over several tropical oceans, in the hope of finding spatial and 



	
   27	
  

temporal uncertainty variations that are associated with locally dominated atmospheric cycles, 

from diurnal cycle to multi-annual oscillation. There are two caveats before proceeding to the 

cyclic analyses: 1) influences from the random uncertainty will be ignored since most analyses 

are based on monthly climatology; 2) regional constant biases (as shown in Figure 3.3) will be 

removed prior to the analyses as needed.  

Multiple grid boxes, which generally cover 10 to 20 degrees of area in both longitude and 

latitude, will be selected to analyze the local precipitation uncertainty within the defined area. 

For simplicity, boxes are selected such that the homogeneity within the box is as high as possible. 

Figure 3.5 illustrates the selection of an undesired grid box across the equatorial Atlantic. A 

dipole feature in the precipitation uncertainty field is evident in Figure 3.5(a), with positive 

uncertainties to the west half of the ocean and negative uncertainties to the east. The 

corresponding monthly climatological results, for TMI, PR, and the uncertainty, are showing 

quite smooth fluctuations throughout the year (Fig. 3.5(c)), where the climatological mean for 

any given month is defined as the mean value of the same months from the entire 10-year data 

period (i.e., 10 years of Januarys, 10 years of Februarys, so on and so forth). The main reason for 

this lack of signal comes from the positive/negative signal cancelation within the box-covered 

area. The same approach is then applied only to the negative uncertainty center near the African 

coast (Fig. 3.5(b)). This time, much larger seasonal variability (Fig. 3.5(d)) are observed by both 

sensors (up to 4mm/day for TMI and 3mm/day for PR) and the uncertainty (up to 2mm/day), 

which also serves as strong evidence for the presence of seasonal precipitation uncertainty 

variation over this region. 
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3.2.2.1 Diurnal Cycle 

 The diurnal cycle of the surface skin temperature over the ocean is less prominent than over 

land, as the water can hold much more heat per unit mass. The smoother diurnal fluctuation in 

the sea surface temperature generally leads to a flatter rainfall distribution throughout the day. In 

addition, the precipitation over the ocean tends to peak in the early morning (Nesbitt and Zipser 

2003), while the land precipitation peak usually occurs in the mid afternoon when the boundary 

layer stability is compromised due to solar heating. A grid box of 10°×10° in the eastern 

equatorial Indian Ocean captures the diurnal variability of precipitation uncertainty during the 

Asian-Australian summer monsoon seasons (June, July, and August, see Fig. 3.6(a)). 

 Two maximum rainfall peaks are observed by TMI around 06 and 18 in local time, 

respectively (blue line, Fig. 3.6(b)). The first peak is likely to be the morning ocean-driven 

stratiform precipitation, while the second peak could be associated with the convective 

precipitation due to unstable boundary layer conditions in the mid-to-late afternoon. In 

comparison, PR only captures the afternoon rainfall peak that is thought to be convection 

dominated (red line, Fig. 3.6(b)). This results in a sinusoidal precipitation uncertainty with 

positive values before the local noontime and negative values in the afternoon, as in Figure 

3.6(c). However, it is not uncommon to witness TMI overestimating stratiform rainfall while 

underreporting convective rainfall, which are mostly caused by distinctive environmental 

conditions exhibited by the two types of rainfall (Nesbitt et al. 2004).  

 Further investigations have revealed that the diurnal cycle in the uncertainty field can only be 

observed during the summer monsoon seasons. For the non-monsoon seasons when the 

afternoon convection is less vigorous, the magnitude of diurnal uncertainty cycle after the local 

noontime is much less vigorous (not shown here). As a consequence, for an imaginary “complete” 

error-predicting model that is trying to capture the diurnal uncertainty cycles, it is of vital 



	
   29	
  

importance to include a general circulation module to be able to resolve synoptic-scale 

meteorological systems, which includes but is definitely not limited to the summer monsoon 

system mentioned above. 

 

3.2.2.2 Multi-Month Cycle 

The central-to-eastern Indian Ocean provides an ideal bed for spawning the Madden-Julian 

Oscillation (MJO), which propagates to eastward with a speed close to 5 m/s (Elleman 1997). A 

collection of 23 MJO events (Table 3.2), most of which are chosen from the northern 

hemispheric cooler months to avoid confusion or interaction with the Asian-Australian Monsoon 

seasons, has been analyzed to explore how the precipitation uncertainty behaves during MJO 

events.  

Author uses a “moving coordinate” technique (Elsaesser and Kummerow 2012) to follow the 

MJO-impacted precipitation. The selected region in this case moves eastward along with the 

propagating MJO waves. An example of this technique is illustrated in Figure 3.7. A MJO event 

was first identified near 4°S and 57°E in the middle of Indian Ocean on July 4, 2007, where the 

color change from cold to warm to indicate the time progression. As the wave moves eastward, 

the strength of the event kept intensifying and started to propagate northward. During its passage 

over the archipelagos in southeast Asia, the southern part of the wave weakened, and diminished 

near 135°E. The northern branch ceased on the west side of the international dateline on the 

August 23 (showing as the warmest color). Each colored dot represents a circular area with a 

diameter of 2.5° in both longitude and latitude, within which the precipitation measurements 

from both sensors were averaged. 

 After re-aligning all 23 events with respect to their individual maximum strength day, mean 

results for both sensors and the uncertainty field are shown in Figure 3.8. Despite both sensors 
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having observed the peak precipitation, TMI tends to underestimate the heavy precipitation by 1-

2 mm/day during the 3 days before and 3 days after the maximum strength day. The 

underestimation, however, is not surprising, since TMI is known to have issues with detecting 

heavy convective precipitation, for the same reason discussed before. Moreover, due to the 

limited number of available cases, all MJO events were also randomly divided into two groups 

(one group containing 11 events and the other containing 12 events), and were put through the 

same analysis as described before. The two groups show qualitatively similar features as in 

Figure 3.8 (i.e., TMI underestimating the rain rates around the mean peak MJO strength day), 

which strengthens the robustness of our previous analyses.  

The analysis procedure presented here is somewhat uncommon, in that the geographic 

locations where the uncertainty observations were sampled move along with the MJO centers. 

The only reason for applying this moving coordinate technique, however, is the lack of high 

temporal-resolution observations, as it takes nearly 10 days to retrieve a full rainfall uncertainty 

map over the region of interest. This is much lower than the observational frequency demanded 

for resolving MJO-impacted uncertainty structures. Hypothetically, given perfectly sampled 

uncertainty time series (e.g., every 3 hours), there is a good chance that the MJO induced cyclic 

uncertainties would reveal themselves at time intervals between 30 to 90 days via certain spectral 

analyses. 

 

3.2.2.3 Seasonal Cycle 

 The seasonal variation is found to be one of the most robust periodic cycles in the climate 

system. A grid box is intentionally selected over the west Pacific warm pool (WPWP) to explore 

the seasonal uncertainty variability. 
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 The precipitation uncertainty over the WPWP contains mostly negative signals within the 

selected region (Fig. 3.9(a)). TMI overestimates the precipitation during the northern hemisphere 

winter months (i.e., from December to March of the next year), and the uncertainty sign reverses 

for the rest of the year (Fig. 3.9(b)). The performances of each sensor in two opposite seasons 

(winter vs. summer) are shown in Fig. 3.10. The winter months (December, January, and 

February) are dominated by TMI overestimation (Fig. 3.10(e)), without showing any intensity-

dependent preferences. Negative uncertainties (or PR overestimations) dominate the summer 

rainfall measurements over the same region (Fig. 3.10(f)). This may be attributed to the annual 

equatorial march and retreat of the sea surface temperature.  

 

3.2.2.4 Multi-Annual Cycle 

 As one of the most convective regions in the world, the warm moist air across the equatorial 

central-to-eastern Pacific Ocean rains more than 6 mm/day based on statistical mean values. 

Interestingly, the measurement differences between TMI and PR are much less prominent (less 

than 0.5mm/day) near the international dateline, but increase up to 3mm/day towards the east, 

during which the El Nino Southern Oscillations (ENSO) start to play a more and more important 

role (Fig. 3.11). A box of 48°×24° in the mid-to-east equatorial Pacific Ocean was chosen to 

explore the impact of ENSO on the local precipitation uncertainty. 

 A region of significant TMI overestimations is overlapping with the inter-tropical 

convergence zone (ITCZ, Fig. 3.11(a)), just a few degrees north of the equator. The monthly 

precipitation time series from the two sensors are shown in Figure 3.11(b). TMI (blue line) has 

significantly more rainfall amount than PR (red line), resulting in a severe overestimation of 

precipitation among the wetter months (black line in Fig. 3.11(b)). Interestingly, the four highest 

peaks in the uncertainty field (black line) all occur around January (in 2003, 2005, 2007, and 
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2010, respectively), indicating a possibility of having severe algorithmic defects in 

characterizing environmental conditions during the northern hemisphere wintertime. Finally, the 

magnitudes of the uncertainty field seem to oscillate with the monthly mean rain rates, as wetter 

months tend to produce higher positive uncertainties. 

 An Empirical Orthogonal Function (EOF) analysis is performed over the monthly 

precipitation uncertainty time series for the total period of 120 months.  Results from the two 

leading modes (which are the only modes that have passed the significance test) are shown in 

Figure 3.12. The first EOF mode (Fig. 3.12(a)) shows a clear pulsing signal (i.e., “on and off”) 

over the wettest ITCZ-overlapping rainfall regime. As the pulsing signal implies, wherever it 

rains, the magnitudes of the precipitation uncertainty are likely to increase accordingly. Since the 

precipitation uncertainty is defined as the difference between TMI and PR, the pulsing signal 

also suggests the inclination of having TMI over-reporting rain rates during the wetter months, 

which supports our arguments and observations from Figure 3.11(b). The corresponding 

principal component (Fig. 3.12(b)), or the time series of signal intensities, correlates 

approximately with the ENSO 3.4 Index (red line) from the Climate Prediction Center at the 

National Weather Service. This suggests a possible link between the ENSO phase change and the 

precipitation uncertainty variation. In addition, a two-to-three month time lag is observed 

between the EOF time series and the ENSO index, which might result from the slower oceanic 

temperature response due to the larger heat capacity of water. The second EOF mode indicates 

shifting signals between the northern and southern hemisphere (Fig. 3.12(c)), with a mean period 

close to 12 months (Fig. 3.12(d)). This is likely due to be the residual from the seasonal 

variability. However, further investigation is needed to confirm this argument. 
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 Overall, the leading two EOF modes could explain a significant portion of the uncertainty 

variability, indicating a consistent and plausible internal link between the precipitation 

uncertainty and the ENSO phenomenon over the central-to-eastern Pacific Ocean.  

 

3.2.2.5 Near Constant Biases 

 The precipitation uncertainty between TMI and PR over the northern Indian Ocean is quite 

uniform in terms of its geographic variability (Fig. 3.13(a)), where negative biases have filled up 

most of the grid box. The temporal uncertainty variation (black line, Fig. 3.13(b)), however, 

seems to contain a large amount of noise, showing as the randomly distributed fluctuations over 

the time. Surprisingly, for the majority of the timespan, TMI (blue line) is consistently reporting 

lower rain rates than PR (red line), and the magnitude of the precipitation uncertainty appears 

insensitive to the monthly mean rain rates. 

 To further reduce the magnitude of the random noise, monthly climatological precipitation 

uncertainties (black line, Fig. 3.13(c)) are computed over the 10-year period, together with the 

TMI (blue line) and PR (red line) measurements. For any given month, the magnitudes of true 

random uncertainty should have reduced to an insignificant level based upon previous 

discussions of the random noise propagation.  

Both sensors have captured the seasonal variation throughout the year, with wet seasons in the 

late fall and dry seasons in the early spring. The uncertainty field, however, seems to overlook 

the seasonal rainfall change, remaining nearly constant with a mean of -0.54 mm/day and a 

standard deviation of 0.13 mm/day. It is suggested that the prevailing precipitating cloud types 

over this region may have contributed to the consistent underestimation from TMI (or 

overestimation from PR). However, without any long-term validation sources, it is not possible 

to determine which sensor is wrong. Hopefully, with the launch of the GPM satellite, better-
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constrained cloud microphysics information can be retrieved from the Dual-Frequency 

Precipitation Radar, and thus help to investigate the reason behind the consistent underestimation 

by the radiometer over this region. 
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CHAPTER 4 

DISCUSSION 

 
 
 The forward model, which includes the simulation of atmospheric conditions as well as 

radiative transfer calculation, was identified in Stephens and Kummerow (2007) to contribute a 

substantial portion of the total precipitation uncertainty via inappropriate and inaccurate 

microphysical assumptions. Because of the physical connections between the microphysical 

parameters and atmospheric regimes, the forward model uncertainties are rarely constant but tied 

to atmospheric cycles, as shown in Chapter 3. 

 The first section of Chapter 4 will use precipitation measurements over a pre-defined region 

to explore how different regional atmospheric cycles influence the uncertainty structures and 

how different uncertainty sources contribute to the total precipitation uncertainty. The remainder 

of the chapter will then show the variations of precipitation uncertainty partitions for a variety of 

sampling resolutions, focusing on the propagation of major uncertainty sources in both time and 

space. Finally, a similar uncertainty analysis is applied to a different tropical ocean basin to 

highlight regional discrepancies in the uncertainty structures. 

 

4.1 Spectral Analyses of Precipitation Uncertainty 

 The precipitation data are taken from 5-day averaged surface rain rates over the central 

Pacific (161°W~157°W, 8°N~4°N), for both TMI and PR, from Jan 2002 to Dec 2011. The 

temporal series of the precipitation uncertainty (defined as TMI minus PR) is passed through a 

low-pass filter to reduce noise. Results are shown in Figure 4.1(a). A fast Fourier transformation 

is then applied to the smoothed uncertainty time series, resulting in four statistically significant 

spectral peaks (labeled A-D in Figure 4.1(b)).  
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 The most substantial atmospheric cycle (peak B), which exceeds the 95% confidence limit, 

peaks at 10 cycles per 10-year period, indicating the presence of annual variability (also known 

as the seasonal cycle). The variations are thought to be associated with the annual meridional 

movements of the ITCZ, as shown in Figure 4.2. It is speculated that the precipitation uncertainty 

may be involved with the height of convective organization and the meridional migration across 

the ITCZ from the southern border of the box (4°N) to the northern border (8°N) on an annual 

basis. Besides the annual variation, there are three other spectral peaks with greater than the 90% 

confidence, namely the 18-month peak (6 cycles per 10-year period, peak A), 6-month peak (20 

cycles per 10-year period, peak C), and 135-day peak (27 cycles per 10-year period, peak D). 

Peak A is likely associated with the ENSO phenomenon, in that the 10-year ENSO 3.4 indices 

have disclosed an ENSO phase period between 16-20 months (i.e., there are a total of seven 

ENSO cycles over 120 months, as shown in Fig. 3.12(b)), which could be readily aliased into 

this 18-month uncertainty spectral peak. Peak C is possibly associated with the meridional solar 

movement, as the sun crosses the area of interest approximately every 6 months. The physical 

reasons that result in peak D are more complicated, as there are two possible explanations for the 

spectral peak.  The first possibility is mechanical and comes from TRMM’s 46-day orbiting 

repeat cycle. The extent to which the 46-day sampling strategy could have impacted the 

uncertainty pattern, however, is not clear at this moment and requires further studies. On the 

other hand, the 135-day peak could also have indicated the presence of diurnal cycles in the 

uncertainty field, as the diurnal cycle is now being sampled every 46 days and the diurnal signals 

could be aliased into the 135-day peak. Further investigations (see Fig. 4.3) seem to confirm the 

second speculation, as there is clear evidence of having strong diurnal uncertainty cycles over 

this particular region. 
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 To retrieve more climatologically stable results, a broader region over the same 

meteorological regime (144°W~120°W, 3°N~9°N) was chosen to perform the same spectral 

analysis (see Fig.4.4). In addition, the overall monthly precipitation uncertainties will be 

presented by a collection of individual contributions from major uncertainty sources (Fig.4.5), 

where a spatial resolution of 3°×3° has been chosen to complete the analysis with an acceptable 

noise level. In comparison to Figure 4.1, the 135-day spectral peak, which is considered to be 

driven by the diurnal cycle, has disappeared from the current analysis. This could be associated 

with the smoothing effect from averaging uncertainty data across multiple time zones. At the 

same time, the strength of the 6-month peak has been reinforced, possibly due to the zonal-

oriented placement of the rectangular research box (i.e., the east-to-west length of the box is 3 

times longer than the south-to-north width, which may result in amplification of meridional 

disparities). However, the relative contribution from the 6-month peak has failed to pass the 

significance test from the EOF analysis; hence, it is not considered as an independent major 

uncertainty source. 

 When calculating the major uncertainty sources, the random uncertainty percentage is 

calculated from the pixel uncertainty itself, and the constant bias contribution is evaluated from 

the 10-year (2002-2011) surface rain rates differences between TMI and PR, whose values are 

the same as in Figure 3.3. Two major atmospheric cycles are identified to have substantial 

impacts on the rainfall uncertainty field – the seasonal cycle and the El Nino Southern 

Oscillation (ENSO). In addition, contributions associated with the regional atmospheric cycles 

are estimated from the principal components of the EOF analyses, during which only constant 

biases (instead of seasonal variations) were removed before applying the EOF method.  

 The largest contribution to the overall precipitation uncertainty comes from the constant 

biases, which accounts for over 55% of the total uncertainty. The random uncertainty, in 
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contrast, only explains approximately 2% of the month-to-month variability. Within the 

remaining 43% of uncertainty, ENSO phenomenon explains over 30% (or 13% of the overall 

uncertainty) and the seasonal variation is associated with another 17% (or 7% in the overall) of 

the uncertainty. A quarter (~22.5%) of the overall uncertainty cannot be properly explained by 

the hypothesis proposed at the end of Chapter 1 (i.e., a large portion of un-explained 

precipitation uncertainty should consist of multiple cyclic patterns). It nonetheless reduces the 

un-explained uncertainty by 68%, compared to the original 44% un-explained precipitation 

uncertainty (see Fig. 3.4 for original uncertainty partitions).   

 

4.2 Qualitative Precipitation Uncertainty Partitions 

Over the same region as in Figure 4.5, the major precipitation uncertainty sources are now 

examined for different temporal and spatial resolutions (Fig. 4.6).  To simplify the discussion, 

the impacts due to changing temporal resolutions are discussed first, followed by the spatial 

resolution. A similar uncertainty analysis will be performed over the eastern equatorial Atlantic, 

with the intent of highlighting regional discrepancies. 

The time series of the precipitation uncertainty measurements have been integrated over 1 and 

3 months, respectively, for both 1°×1° and 3°×3° spatial resolutions. The random uncertainty 

percentages decrease as more and more Gaussian-distributed noise is averaged to zero. The 

precipitation uncertainty due to constant bias, in contrast, gains in relative importance, in that the 

similarity level between the sampled uncertainty and the 10-year constant bias increases with 

longer sampling period. For a hypothetical extreme case, in which the sampling period is the 

same as the length of the uncertainty database (i.e., 10 years), the sampled uncertainty is the 

same as the constant bias, and the constant bias should therefore explain 100% of the overall 
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uncertainty. Meanwhile, there are also substantial uncertainty percentage increases associated 

with the regional atmospheric cycles – either by the seasonal cycle or by the ENSO phenomenon.  

Aside from corresponding to the two relatively well-known long-term cycles, a portion of the 

overall precipitation uncertainty should also be influenced by other coincident but not easily 

identifiable cycles, especially near the short-term end, such as the impact from diurnal cycle. The 

sampling strategy of the TRMM satellite, however, limits its ability to resolve impacts from 

short-term cycles, as it takes the sensors approximately 10 days to complete one full scan over 

the region of interest, unless special treatments (like the “moving coordinate” technique from 

Chapter 3) are applied to the dataset. Despite the lack of high temporal-resolution uncertainty 

data, the relative importance of random noise should increase on shorter time scale, with 

decreasing percentages associated with constant bias and regional atmospheric cycles.  

The impacts due to changing spatial resolutions are qualitatively similar to the temporal-

resolution effect. With larger grid boxes, the random noise explains less variability, while the 

constant bias and regional atmospheric cycles now have greater influence on the overall 

uncertainty. With the coarsest data resolution (3°×3°, 3-month integration), the percentage of un-

explained uncertainty drops to 14%, which is only 40% of the un-explained uncertainty at the 

highest data resolution (1°×1°, 1-month integration). 

For any of those four scenarios, there is always a certain level of unknown uncertainty (the 

magenta shaded regions in Fig.4.6) that cannot be properly explained by the proposed 

classification scheme, ranging from 14% to 35% of the overall uncertainty. As suggested earlier, 

part of the unknown uncertainty could result from the short-term atmospheric cycles that are not 

resolvable using sporadically sampled data, or any localized weather phenomena that are too 

small for the pre-defined box sizes. Another possible cause of the unknown uncertainty stems 

from inappropriately interpolating the mesoscale precipitating systems (ranging from tens of 
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kilometers to hundreds of kilometers in horizontal directions) into pre-defined grid boxes. 

During the interpolation, the original 2-D rainfall uncertainty field (which may correspond well 

to the regional precipitating cycle) was broken into multiple boxes and analyzed individually. 

Hence, the connection between each grid box and the precipitating cycle has been attenuated, 

and thus explains less uncertainty variability. Finally, the random uncertainty group includes a 

majority of random noise, but not all of it. For the excluded random processes, it is speculated 

that they could have finite contributions to the total un-explained uncertainties. 

 Similar tests have been carried in the eastern equatorial Atlantic (27°W~12°W, 9°N~3°S) in 

order to illustrate the regional differences in the uncertainty source partitions. Only two spectral 

peaks have been identified as significant uncertainty cycles (see Fig. 4.7), namely the annual 

(Peak B) and semi-annual (Peak C) cycle. Further investigations using the EOF analysis (Fig. 

4.8) have shown that the leading two modes are both indicating a 12-month variability (pulsing 

signal vs. shifting signal, see Fig. 4.8.(a) and (c)), while the principal components from the two 

modes are shifted by approximately 6 month (Fig.4.8.(b) and (d)), which may help to partially 

explain the existence of the 6-month spectral peak. To be conservative, only the relative 

contributions from the leading mode will be considered as the annual uncertainty variability. 

Despite negative constant biases being frequently observed over this region (Fig. 4.9), it only 

helps to explain approximately 20% of the overall precipitation uncertainty, except for the lowest 

data resolution (~32%). The random noise percentages, which vary from 5 to 11%, are nearly 

twice as much as those in the central Pacific, indicating a smoother probability distribution of 

hydrometeor profiles in terms of their surface rain rates. Instead of being influenced by two 

locally dominant atmospheric cycles (i.e., the seasonal variation and ENSO), the cyclic portion 

of the precipitation uncertainty over the eastern Atlantic is mostly affected by the season 

variation alone. Although there are studies demonstrating the ENSO tele-connections between 



	
   41	
  

the central Pacific and eastern Atlantic (Giannini et al. 2001), the ENSO impact does not reveal 

itself as a major uncertainty signal. A physical connection in the actual precipitation field cannot 

necessarily guarantee a successful transfer into the uncertainty field, as the later is more related 

to the empirical and artificial model assumptions rather than the actual rainfall amount. 

Mathematically, the hypothesized cyclic uncertainty pattern helps to reduce the original 

unknown uncertainty substantially, leaving the final un-explained uncertainty at 27% (at the 

lowest data resolution), which corresponds to more than 63% of relative improvement. 
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CHAPTER 5 

CONCLUSION 

 
 

Precipitation retrieved from space-borne microwave radiometers has been providing 

invaluable information about global precipitation information since early 1970s; the associated 

measurement uncertainty, on the other hand, has been overlooked until recently. Many studies 

mentioned in the introductory chapter have identified the spatial and temporal variability of the 

precipitation uncertainty, mostly as a consequence of inappropriate and inaccurate microphysical 

assumptions of the precipitating environment in the forward model. A few uncertainty-predicting 

models that were recently developed have tried to incorporate more spatial and temporal 

structures to account for the variability (Adler et al. 2012; Maggioni et al. 2014). The essence of 

the variability, or the internal structure of the uncertainty, remains elusive.  

By comparing precipitation products measured by two collocated but nearly independent 

sensors aboard the TRMM satellite (i.e., TMI and PR), this study provides insight into the 

internal structures of the satellite-retrieved precipitation uncertainty. Preliminary results have 

shown that the precipitation uncertainty can be largely divided into stochastic and systematic 

components. Moreover, for either component, a number of uncertainty sources have been 

identified to contribute cooperatively to the final uncertainty. Stochastic uncertainty can be 

expressed mathematically as Gaussian-distributed noise, and the magnitude of variability 

decreases quickly with averaging of data. The systematic uncertainty, in contrast, can be further 

decomposed into the region-dependent constant biases and localized cyclic patterns that vary 

with space and time. Among multiple sources that may have caused the cyclic patterns, 

inappropriate and inaccurate atmospheric parameterizations in the forward model (including the 

cloud-resolving model and radiative transfer scheme) are expected to have the largest impact on 
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the total uncertainty pattern. This is due to the fact that many key cloud parameters in the model, 

such as the cloud ice density and drop size distributions, are assigned with empirically derived 

values regardless of their spatial and temporal variability. 

Further investigations from this study have shown that there is a hierarchy of atmospheric 

cycles that have impacted the precipitation uncertainty structures over major tropical oceanic 

basins, ranging from the diurnal cycle to seasonal variation, and eventually to multi-annual 

oscillation. Despite multiple atmospheric cycles exerting influences simultaneously on the local 

precipitation uncertainty field, the major uncertainty variability is usually dominated by the 

leading one or two cycles. For different basins, nonetheless, the leading cycles may differ. 

Besides the actual physical reason (i.e., the atmospheric cycles) that contributes toward the 

regional cyclic pattern, the uncertainty analyses are largely subject to the change of sampling 

resolution, in both space and time. In general, uncertainty percentage explained by the random 

source decreases with lower sampling resolution (via either longer integrating time periods or 

larger grid boxes), while uncertainty percentages related to constant biases and localized 

atmospheric cycles tend to increase correspondingly. Through a number of sensitivity tests, it is 

clear that data resolution changes only the magnitudes of uncertainty percentage that can be 

explained by individual source, leaving the major properties associated with any given 

uncertainty source unchanged. Eventually, qualitative uncertainty partitions have shown that 

with an appropriate choice of sampling resolution, the proposed hypothesis in this study can help 

reduce the ill-explained portion of the total precipitation uncertainty up to 68 percent.  

Going forward, the construction of a dynamic precipitation uncertainty prediction model 

should be carefully considered and proposed, which include the uncertainty predictions for both 

stochastic and systematic uncertainties. The former part requires the quantification of the relative 

importance contributed by major random uncertainty sources, which include but are in no way 
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limited to instrument noise and sampling errors. Statistical laws and theories may be used to 

simulate the temporal/spatial propagations of these random uncertainties. The mathematical 

realizations for the systematic uncertainty, on the other hand, can be much more complicated, 

especially for those introduced by the forward model, as they require actual physical 

understanding of the reason that have caused the model to generate the biased results.  

Irrespective of the difficulties mentioned above, the benefits of having an uncertainty 

database for the radiometer-retrieved precipitation products would be tremendous. The 

uncertainty database would potentially expand the extent to which the space-measured 

precipitation products can be trusted and utilized in the future. A variety of atmospheric 

applications, such as the quantification the precipitation-induced latent heat release associated 

with the global energy equilibrium, the prediction of regional hydrological balance in support of 

water source management, and the validation of numerical weather prediction, could all utilize 

the improved precipitation uncertainty estimates. 
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FIGURES 

 
 

 
 

Figure 1.1 Schematic Hydrological Cycle (Oki and Kanae, 2006) 
  

use or water pollution (11). Runoff is accumu-
lated through river channels and forms river
discharge (Fig. 2B). River discharge can be con-
sidered as the potentially maximum available
RFWR if all the water from upstream can be
used. Both runoff and river discharge are con-
centrated in limited areas, and the amounts range
from nearly zero in desert areas through more
than 2000 mm/year of runoff in the tropics and
more than 200,000 m3/s of discharge on average
near the river mouth of the Amazon. Further-
more, the water demands for ecosystems and
navigation should also be met, and all the
RFWR cannot be used only for human beings.

How Are the World Water Resources Assessed?

In the late 1960s, the International Hydrological
Decade promoted studies on world water bal-
ances, and pioneering estimates were published
in the 1970s (5, 12, 13). Shiklomanov (4) as-
sembled country statistics on water withdrawals
in the past and present and made future
projections. Recent advances in information tech-
nologies have enabled global water-balance esti-
mations at finer spatial resolution (11, 14, 15).

Water withdrawals now can be distributed into
grid boxes, using the distributions of popula-
tion and the irrigation area as proxies, and
compared with the available RFWR in each
grid box (11, 14, 15).

The water scarcity index is defined as Rws 0
(W – S)/Q, where W, S, and Q are the annual
water withdrawal by all the sectors, the water
use from desalinated water, and the annual
RFWR, respectively. A region is usually con-
sidered highly water stressed if Rws is higher
than 0.4 (7, 11, 14, 15). It is considered to be a
reasonable, although not definitive, threshold
value because not all the RFWR can be used
by human society. Data with shorter time scales
will enable more detailed assessments consider-
ing the effects of temporal variability in the
hydrological cycles.

In the era of the ‘‘Anthropocene’’ (16), where
human impacts on natural processes are large
and widespread, it no longer makes sense to
study only natural hydrological cycles. For this
reason, some studies have started to consider the
impact of human interventions on the hydrolog-
ical cycles, thereby simulating more realistically

the hydrological cycles on a global scale. In such
studies, human withdrawals are subtracted from
the river flow (15), and the regulation of flow
regime by major reservoirs is incorporated (17).

The distribution of the water scarcity index
Rws (11), recalculated with the latest multimodel
ensemble estimates (3), is shown in Fig. 2C. Rws
is high in Northern China, in the area on the
border between India and Pakistan, in the Middle
East, and in the middle and western areas of the
United States. Based on this assessment, approx-
imately 2.4 billion people are currently living in
highly water-stressed areas (18).

Can the ‘‘Virtual Water Trade’’ Alone Save the
Water-Stressed Regions?

Transporting water over long distances, from
regions where water is abundant to dry regions
under water stress, is only feasible when gravity
can be used. The demand for high-quality drink-
ing water is limited to a few liters per person per
day and can be met through international trade
or by desalination. However, other demands for
water for households, industry, and agriculture
require up to one metric ton of water per day per

Fig. 1. Global hydrological fluxes (1000 km3/year) and storages (1000 km3)
with natural and anthropogenic cycles are synthesized from various sources
(1, 3–5). Big vertical arrows show total annual precipitation and evapo-
transpiration over land and ocean (1000 km3/year), which include annual

precipitation and evapotranspiration in major landscapes (1000 km3/year)
presented by small vertical arrows; parentheses indicate area (million km2).
The direct groundwater discharge, which is estimated to be about 10% of
total river discharge globally (6), is included in river discharge.
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Figure 2.1 TRMM Scanning Geometry (Kummerow et al. 1998) 

  

JUNE 1998 811N O T E S A N D C O R R E S P O N D E N C E

FIG. 1. Schematic view of the scan geometries of the three TRMM primary rainfall sensors: TMI, PR, and VIRS.

TABLE 1. TMI characteristics. Beam efficiency is the percentage of power enclosed within 2.5 times the beamwidth. Cross polarization is the
percentage power contributed by the cross-polarized component to the main beam. (Mass: 65 kg, power: 50 W, and data rate: 8.5 kbps)

Channel number 1 2 3 4 5 6 7 8 9

Center freq (GHz)
Polarization
Bandwidth (MHz)
Stability (MHz)
Beamwidth (deg)
IFOV-DT (km)

10.65
V

100
10
3.68
59.0

10.65
H

100
10
3.75
60.1

19.35
V

500
20
1.90
30.5

19.35
H

500
20
1.88
30.1

21.3
V

200
20
1.70
27.2

37.0
V

2000
50
1.00
16.0

37.0
H

2000
50
1.00
16.0

85.5
V

3000
100
0.42
6.7

85.5
H

3000
100
0.43
6.9

IFOV-CT (km)
Integration time per sample (ms)
EFOV-CT (km)
EFOV-DT (km)
EFOVs per scan
Samples (N) per beamwidth

35.7
6.60
9.1
63.2
104
4

36.4
6.60
9.1
63.2
104
4

18.4
6.60
9.1
30.4
104
2

18.2
6.60
9.1
30.4
104
2

16.5
6.60
9.1
22.6
104
2

9.7
6.60
9.1
16.0
104
1

9.7
6.60
9.1
16.0
104
1

4.1
3.30
4.6
7.2

208
1

4.2
3.30
4.6
7.2

208
1

Beam EFOV (km � km)
Beam EFOVs per scan
Temperature sensitivity, NE�T (K)
Beam temperature sensitivity NE�T (K)
Beam efficiency/Xpol(%)

63 � 37
26
0.63
0.32

93/0.4

63 � 37
26
0.54
0.27

93/0.5

30 � 18
52
0.50
0.35

96/0.4

30 � 18
52
0.47
0.33

96/0.5

23 � 18
52
0.71
0.50

98/0.6

16 � 9
104
0.36
0.36

91/2.2

16 � 9
104
0.31
0.31

92/2.1

7 � 5
208
0.52
0.52

82/2.0

7 � 5
208
0.93
0.93

85/3.0

IFOV-CT, while the major diameter is in the down-track
direction called IFOV-DT.
Because the TMI is rotating while its receiver is in-

tegrating, the concept of effective field of view (EFOV)
must be introduced. It is the effective area swept by the

antenna beam during the integration time, as shown in
Fig. 2. For the 85.5-GHz channels, its beam moves from
its starting position along the scan direction one IFOV-
CT in distance. The EFOV is taken to be the heavy
ellipse centered between the two IFOVs. The center of
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Fig. 2.2 A Snapshot of Surface Precipitation Retrieved from (a) TMI, (b) PR, and (c) the 

difference between TMI and PR on January 1, 2010 
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Figure 3.1 Normalized Weights of 22 Most Important Hydrometeor Profiles Selected for A 

Typhoon Pixel Raining at 33.7 mm/hr over Eastern China Sea on August 5, 2007 
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Figure 3.2 Scatter Plot of TMI and PR Surface Rain Rates in A 10°×10° Grid Box  

Over the Western Pacific, from Jan 2002 to Dec 2011 
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Figure 3.3 10-Year Surface Precipitation Difference Between TMI and PR 
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Figure 3.4 Random, Constant Bias, and Other Uncertainty Source Partitions  

over Four Tropical Ocean Basins 
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Figure 3.5 An example of undesired vs. desired box choosing  

over the eastern equatorial Atlantic 
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Figure 3.6 Diurnal Uncertainty Variability 
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Figure 3.7 Illustration of the Moving Coordinate Technique to Trace a MJO Event 
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Figure 3.8 Uncertainty Cycle Associated with MJO Events 
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Figure 3.9 Seasonal Uncertainty Variability over the West Pacific Warm Pool 
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Figure 3.10 TMI, PR, and Uncertainty Field over the West Pacific Warm Pool  
over Winter and Summer Seasons, respectively 
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Figure 3.11 Multi-Annual Uncertainty Variability over the Central-to-Eastern Equatorial Pacific 
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Figure 3.12 EOF Analysis of Uncertainty Fields over the Central-to-Eastern Equatorial Pacific 
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Figure 3.13 Near Constant Uncertainty Cycle over the Northern Indian Ocean 
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Figure 4.1 FFT Analysis on the Uncertainty Field of a 4°×4° Grid Box over Central Pacific 
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Figure 4.2 Annual Meridional Movements of the Central ITCZ Locations 
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Figure 4.3 Diurnal Uncertainty Cycle over a 4°×4° Grid Box over Central Pacific (TMI-PR)
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Figure 4.4 FFT Analyses over the Central-to-Eastern Equatorial Pacific 
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Figure 4.5 Major Uncertainty Source Partitions over the Central-to-Eastern Equatorial Pacific 
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Figure 4.6 Major Uncertainty Sources Partitions over the Central-to-Eastern Equatorial Pacific 

under Various Spatial and Temporal Resolutions 
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Figure 4.7 FFT Analysis over the Eastern Equatorial Pacific 
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Figure 4.8 EOF Analysis over the Eastern Equatorial Atlantic 
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Figure 4.9 Major Uncertainty Sources Partitions over the Eastern Equatorial Atlantic  
under Various Spatial and Temporal Resolutions 
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TABLES 

 
 

Table 3.1 TMI Performance Characteristics (Kummerow et al. 1998) 
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Table 3.2 List of All MJO Events (Elsaesser and Kummerow 2012) 
 

No.	
  of	
  Events	
   Starting	
  Date	
   Ending	
  Date	
   Days	
  of	
  Duration	
   Dates	
  of	
  Maximum	
  
Strength	
  

1	
   20040213	
   20040406	
   56	
   20040228	
  
2	
   20040627	
   20040819	
   51	
   20040711	
  
3	
   20040806	
   20040914	
   42	
   20040829	
  
4	
   20040912	
   20040925	
   16	
   20040916	
  
5	
   20040916	
   20041020	
   37	
   20041006	
  
6	
   20050205	
   20050309	
   35	
   20050221	
  
7	
   20050531	
   20050708	
   41	
   20050625	
  
8	
   20050703	
   20050814	
   45	
   20050730	
  
9	
   20050811	
   20051007	
   56	
   20050827	
  
10	
   20051020	
   20051114	
   28	
   20051104	
  
11	
   20051106	
   20051116	
   13	
   20051111	
  
12	
   20051120	
   20060208	
   83	
   20051129	
  
13	
   20051129	
   20060220	
   76	
   20060122	
  
14	
   20060212	
   20060302	
   21	
   20060224	
  
15	
   20060309	
   20060412	
   37	
   20060324	
  
16	
   20060417	
   20060426	
   12	
   20060422	
  
17	
   20061007	
   20061030	
   22	
   20061016	
  
18	
   20070115	
   20070129	
   17	
   20070122	
  
19	
   20070206	
   20070417	
   67	
   20070228	
  
20	
   20070312	
   20070325	
   14	
   20070317	
  
21	
   20070427	
   20070505	
   11	
   20070501	
  
22	
   20070704	
   20070822	
   52	
   20070720	
  
23	
   20070819	
   20071007	
   49	
   20070915	
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