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ABSTRACT 

 

METHODS TO ANALYZE LARGE AUTOMOTIVE FLEET-TRACKING DATASETS WITH 

APPLICATION TO LIGHT- AND MEDIUM-DUTY PLUG-IN HYBRID ELECTRIC 

VEHICLE WORK TRUCKS 

 

This work seeks to define methodologies and techniques to analyze automotive fleet-

tracking big data and provide sample results that have implications to the real world.  To perform 

this work, vehicle fleet-tracking data from Odyne and Via Plug-in Hybrid Electric Trucks 

collected by the Electric Power Research Institute (EPRI) was used.  Both CAN-communication 

bus signals and GPS data were recorded off of these vehicles with a second-by-second data 

collection rate.  Colorado State University (CSU) was responsible for analyzing this data after it 

had been collected by EPRI and producing results with application to the real world. 

A list of potential research questions is presented and an initial feasibility assessment is 

performed to determine how these questions might be answered using vehicle fleet-tracking data.  

Later, a subset of these questions are analyzed and answered in detail using the EPRI dataset.   

The methodologies, techniques, and software used for this data analysis are described in 

detail.  An algorithm that summarizes second-by-second vehicle tracking data into a list of 

higher-level driving and charging events is presented and utility factor (UF) curves and other 

statistics of interest are generated from this summarized event data. 

 In addition, another algorithm was built on the driving event identification algorithm to 

discretize the driving event data into approximately 90-second drive intervals.  This allows for a 

regression model to be fit onto the data.  A correlation between ambient temperature and 
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equivalent vehicle fuel economy (in miles per gallon) is presented for Odyne and it is similar to 

the trend seen in conventional vehicle fuel economy vs. ambient temperature.  It is also shown 

how ambient temperature variations can influence the vehicle fuel economy and there is a 

discussion about how changes in HVAC use could influence the fuel economy results. 

It is also demonstrated how variations in the data analysis methodology can influence the 

final results.  This provides evidence that vehicle fleet-tracking data analysis methodologies need 

to be defined to ensure that the data analysis results are of the highest quality.  The questions and 

assumptions behind the presented analysis results are examined and a list of future work to 

address potential concerns and unanswered questions about the data analysis process is 

presented.  Hopefully, this future work list will be beneficial to future vehicle data analysis 

projects. 

The importance of using real-world driving data is demonstrated by comparing fuel 

economy results from our real-world data to the fuel economy calculated by EPA drive cycles.  

Utility factor curves calculated from the real-world data are also compared to standard utility 

factor curves that are presented in the SAE J2841 specification.  Both of these comparisons 

showed a difference in real-world driving data, demonstrating the potential utility of evaluating 

vehicle technologies using the real-world big data techniques presented in this work. 

Overall, this work documents some of the data analysis techniques that can be used for 

analyzing vehicle fleet-tracking big data and demonstrates the impact of the analysis results in 

the real world.  It also provides evidence that the data analysis methodologies used to analyze 

vehicle fleet-tracking data need to be better defined and evaluated in future work. 

NOTE: This document has been published with permission from the Electric Power 

Research Institute (EPRI).  
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SECTION 1 

INTRODUCTION 

 

This research involved the development of a software toolset to enable the collection, 

processing, and analysis of large amounts of data from the vehicle controller area networks 

(CAN) of a fleet of plug-in hybrid electric vehicles.  The data is processed using big-data 

concepts and software to answer various research questions about the real-world utility of these 

novel-limited production vehicles.  Sample results, discussion, and recommendations to 

improve future data analysis are provided later in the document. 

Before an in depth explanation of these research tasks and results is given, the first step 

is to define some of the basic technology and systems that are central to this study.  The 

following introduction section introduces concepts such as Plug-in Hybrid Electric Vehicles 

(PHEV’s), what specific vehicle platforms are being monitored for this study, CAN networks, 

data collection, and big data.  Finally, a brief summary of the research workflow is presented at 

the end of this introduction in Subsections 1.6 and 1.7. 

 

1.1 What Is Plug-In Hybrid Electric Vehicle Technology? 

Plug-in Hybrid Electric Vehicle (PHEV) Technology is a rapidly growing automotive 

technology that expands on the concept of a traditional Hybrid Electric Vehicle (HEV) by 

allowing the driver to directly charge the hybrid vehicle battery [2, 3].  PHEV’s use a small 

electric battery as the primary form of propulsion and then use a gasoline or diesel engine as a 

backup propulsion system when the battery gets low and more driving range is needed [2, 3, 4, 

and 5].  PHEV’s can also be thought of as range extending vehicles, which use a less desirable 
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form of fuel to extend the range when the primary fuel runs out [2, 6].  Some well-known 

examples of PHEV vehicles that are currently on the market are the Chevy Volt, the Toyota 

Prius Plug-in Hybrid, BMW i8, and the Ford Fusion Energi [3, 7, 8, 9, and 10].   

PHEV’s typically have two different drive modes: a charge-depleting (CD) mode and a 

charge-sustaining (CS) mode [2, 11].  In the charge-depleting mode, the vehicle typically 

drains its battery until it reaches a threshold that is commonly around 25% battery state of 

charge, as in the Chevy Volt [10].  Once this threshold is reached, the vehicle transitions into a 

charge-sustaining mode where it operates in a traditional Hybrid Electric Vehicle (HEV) mode 

[12, 13].  In the HEV CS mode, the vehicle still uses battery power, but the battery is also 

recharged by HEV control strategies such as regenerative braking so the net energy loss out of 

the battery is approximately zero [13].  Hence the battery charge in charge-sustaining mode is 

“sustained.”  In the charge-depleting mode, there are typically different strategies for charge 

depletion [14].  Some vehicles such as the Chevy Volt [3, 10] or Via truck [3, 15] use a pure 

Electric-Vehicle (EV) charge depleting mode where the vehicle is solely propelled by the 

electric motor and the conventional engine mostly stays off .  Other vehicles, such as the Odyne 

trucks in our study, use a blended charge-depleting mode [15].  In a blended charge-depleting 

mode, gasoline or diesel is still used when the vehicle charge depletes, but the battery is 

drained and the electric motor is used to reduce the fuel consumption [2, 14].  A blended 

charge-depleting mode is a good strategy when an electric motor cannot provide the raw torque 

and power to propel a heavy vehicle, so it makes sense to combine the electric motor torque 

with the torque from a conventional engine [14].   

Below are some pictures of a 2013 Chevrolet (“Chevy”) Volt PHEV that is plugged 

into an electric vehicle charging station.  This vehicle is owned by Colorado State University 
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and I took these pictures myself in front of our Powerhouse Energy Campus building.  The first 

photograph presented in Figure 1.1 shows the entire vehicle plugged into its charging station.  

The left photograph in Figure 1.2 shows a closer view of the electric vehicle charging station 

and the right photograph in the same figure shows a close up of the charging connector and 

port.  Note that the Colorado State University Chevy Volt shown in these pictures was not 

involved with EPRI’s data collection efforts and it is only show to provide a real-world sense 

of what a PHEV and an electric vehicle charging station are. 

 

Figure 1.1 – Photograph of a 2013 Chevrolet Volt PHEV Connected to Its Charging Station 
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Figure 1.2 – Close up Photographs of an Electric Vehicle Charging Station and Connector 

 

1.2 Information About the Specific Vehicle Platforms That Were Monitored By the 

Data Collection System for This Study  

For the data analysis presented in this document, the EPRI Commercial Truck dataset 

was used [15].  This dataset was brought online in January 2015 and most of the data analysis 

discussed in this thesis covers data collected through July 2015.  There are two different fleets 

of vehicles in this dataset.  The first fleet consists of 119 medium-duty Odyne electric trucks 

and the second fleet consists of 177 light-duty Via electric trucks [15].  Later in this document, 

the results for these two fleets of vehicles are analyzed and presented separately.   

For more details about EPRI’s project to build and evaluate these Odyne and Via 

Trucks, see EPRI’s corporate technical report entitled Plug-In Hybrid Medium Duty Truck 

Demonstration and Evaluation [15].  This EPRI report is a great resource for additional, 
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general information about the Odyne and Via truck models and the EPRI Commercial Truck 

dataset that used for this research.  The EPRI report includes additional information about 

program management, program history, vehicle specifications, vehicle design, powertrain 

configurations, the data collection system, and vehicle manufacturing among other topics.  The 

EPRI report also presents additional data analysis on their Commercial Truck dataset that was 

conducted at EPRI independently of the data analysis efforts here at CSU.  The following two 

subsections (1.2.1 and 1.2.2) summarize some basic information about what the Odyne and Via 

vehicle platforms are, as these are custom, limited-release vehicles.  The summary is mostly 

based on the more detailed information that is presented in EPRI’s report [15]. 

 

1.2.1 Overview of the Odyne Vehicle System 

The Odyne vehicle systems use a parallel powertrain configuration where both the 

electric motor and the diesel engine can provide power directly to the driveshaft [2, 3, 11, 13, 

15, 16, and 17].  The hybrid system in the vehicle is simply added onto standard OEM 

drivetrains manufactured by International, Kenworth, Ford, Freightliner, and FCCC [15].  The 

Odyne system was determined to be what is called a “mild hybrid” [3, 16, 18, and 19] by 

examining its ratio of fuel to electric consumption and the relative size of its electric motor 

compared to its conventional engine [15, 20].  When a vehicle is classified as a mild hybrid, it 

means that the vehicle is primarily propelled by a conventional engine and it only uses a small 

electric motor to provide assistance when it improves driving efficiency [3, 16, 18, and 19].  

Mild hybrids generally cannot propel themselves using only the electric motor.  Note that 

although some works define a mild-hybrid car as having a 42 V electric motor [19] and the 

Odyne has a much higher voltage system [15, 20], the Odyne system can still be classified as a 
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mild hybrid since the Odyne system is a much larger truck application and is not a car.  It is 

more important to consider the relative size of the electric motor to the conventional engine 

than just the absolute size of the electric motor in this situation. 

The Odyne system also has three basic operational modes: drive mode, stationary 

mode, and charge mode [15].  The drive and charge modes are pretty self-explanatory: they 

correlate to when the vehicle is driving and charging.  When the vehicle is operating in 

stationary mode, it is parked and uses electric power to operate hydraulic equipment, 

pneumatic equipment, external equipment, heating, and/or air conditioning.  In addition to 

these drive modes, the Odyne vehicles are also programmed with either a mild or aggressive 

powertrain calibration [15].  When the vehicle is programmed with an aggressive calibration, it 

drains the battery energy more quickly when the vehicle is driving.  The truck driver cannot 

change the calibration of the vehicle [15] so it is basically a preset parameter.  Finally, it should 

be noted that the Odyne trucks were configured with two different battery sizes: a 14-kWh 

battery and a 28-kWh battery [15]. 

Below in Figure 1.3 is a graphic (originally presented in EPRI’s report [15]) that 

contains photographs of the different Odyne body types along with a pie chart that shows the 

relative makeup of each body type in the entire Odyne fleet.  Note that Odyne was 

manufactured with different body types for different purposes.  When the Odyne data was 

analyzed, these different body types were not separated for the data analysis or the final results. 
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Figure 1.3 – Odyne Truck Models (from EPRI Report) [15] 

 

An additional photograph of an Odyne truck in the digger configuration (originally 

from EPRI’s report [15]) is shown below in Figure 1.4. 

 

Figure 1.4 – Odyne Truck in Digger Derrick Configuration (from EPRI Report) [15] 
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1.2.2 Overview of the Via Vehicle System 

Unlike Odyne, the Via platforms use a series powertrain configuration [3, 15].  In a 

series hybrid powertrain configuration, the electric motor provides all of the propulsion power 

that goes directly to the wheels and the conventional engine is only coupled to a generator 

which provides electric power for the battery pack and traction motor [2, 3, 15, 16, 21, and 22].  

Also, unlike Odyne, the Via systems burn gasoline fuel instead of diesel fuel in their 

conventional engines [15].  The all-electric range of a Via hybrid is up to 47 miles [15].  Like 

Odyne, the Via hybrid system is an added system that can be installed onto a conventional 

truck platform, so Via is just a modified conventional truck.  In this case, the trucks are 

manufactured by Chevrolet [15].  The Via system can also be built into a van configuration as 

well [15].  When the Via is driving in its charge-depleting mode, it will only use battery power 

for propulsion [15, 21, and 22].  The engine will only turn on in its charge-sustaining mode 

[15].  Since Via can drive in a pure Electric Vehicle (EV) mode due to its series powertrain 

configuration, it would be classified as a full-hybrid instead of a mild hybrid [3, 16].   

Below in Figure 1.5 is a graphic (originally presented in EPRI’s report [15]) that 

contains photographs of the different Via body types along with a pie chart that shows the 

relative makeup of each body type in the entire Via Fleet [15].  Note that Via was 

manufactured with different body types for different purposes.  When Via data was analyzed, 

these different body types were not separated for the data analysis or the final results. 
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Figure 1.5 – Via Truck Models (from EPRI Report) [15] 

 

An additional photograph of a Via pickup truck towing a boat (originally from EPRI’s 

report [15]) is shown below in Figure 1.6. 

 

Figure 1.6 – Via Truck Towing a Boat (from EPRI Report) [15] 
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1.3 What Is the Onboard CAN-Communication Network on a Vehicle? 

Most modern vehicles are equipped with a network of sensors and computers known as 

a CAN network [23, 24, and 25].  The CAN network monitors pretty much every function on 

the vehicle, ranging from vehicle speed, to engine temperature, to whether the lights are turned 

on.  In addition, these on board computers are responsible for controlling the vehicle and 

transmitting driver requests to the appropriate mechanisms on the vehicle.  A mechanic can 

also connect to this system to diagnose problems with the vehicle using the OBD-II port.  

Many of the CAN signals on a vehicle are documented in published engineering standards [23, 

24] but others are proprietary and specific to individual vehicle models or manufacturers.   

 

1.4 Information About the Data Collection System Installed Onboard the Vehicles 

To collect vehicle tracking data from these vehicles for this study, the Electric Power 

Research Institute (EPRI) connected GSM / CDMA transmitters into the OBD-II ports to 

collect and decode the CAN signals [15].  This information was then sent to a central database 

and Colorado State University was given access to this central database through its contracts 

with EPRI.   

Most of the CAN signals were recorded every second while the vehicle was in 

operation, so the data-sampling frequency was very high.  High-rate data sampling has many 

advantages.  For example, it provides the capability to investigate short-term events and 

improves the overall accuracy of the calculations.  However, the high-data sampling frequency 

also presents challenges in terms of managing and processing large amounts of data.  In total, 

about 160GB of CSV data were downloaded from the central Amazon Redshift database and 

processed for this analysis work.  A MATLAB script running on a single core took multiple 
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days to fully analyze the dataset.  In addition, not every CAN-communication bus signal was 

utilized for this study and the data that was downloaded from the full database using SQL is 

just a subset of the total available fleet data. 

Near the very end of this project, a new version of the Odyne and Via datasets became 

available.  This new version of the dataset was available for download from Amazon Web 

Services (AWS) using its command line interface and CSU was told that the new data had 

additional pre-cleaning.  However, due to time constraints, this new data was only utilized for a 

small portion of the data analysis presented in this thesis and the old database that was 

downloaded using SQL was used for most of the data analysis presented in this work.   

Due to privacy considerations based on the detailed information contained in the 

database, this dataset is not publically available and is considered protected information.  EPRI 

is solely responsible for granting and denying access to this dataset.  Please contact EPRI for 

questions or inquiries regarding this dataset, or to request access.  Mark Kosowski was our 

main point of contact at EPRI for the EPRI Commercial Truck dataset [15]. 

 

1.5 Overview of “Big Data” as a Concept Beyond Fleet Data. 

Recently, as computer networking has enabled data to be collected from an ever larger 

number of sensors, users, and sources, “Big Data” has become a rapidly growing field [26, 27, 

28, and 29].  As computer, electronic, and networking technology improves and becomes less 

expensive, it is increasingly easier to collect vast amounts of data that are orders of magnitude 

larger than anything that has ever been collected before.  The concept of analyzing huge 

datasets can be applied to numerous and diverse applications, such as improving airline 

estimated time of arrival predictions [28], online advertising [28], atmospheric science [29], 
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supply chain management [27], health care [27], detecting influenza epidemics by using search 

engine query data [30], and analyzing particle accelerator data from the Large Hadron Collider 

[31]. 

However, big data presents many new challenges as well [26, 28, 29, and 32].  For 

example, when compared to traditional data analytics and statistics, big data generally has a 

record count that is orders of magnitude larger (aka. volume) [28, 29].  It also can have a high 

data creation rate (aka velocity) and can have a large variety of different signals and formats 

(aka variety) [28, 29].  In addition, these very large datasets often contain numerous errors and 

bad records that must be either filtered out or dealt with in some other way.  This can create 

immense data computation and processing challenges that need to be overcome.  Traditional 

methods of data analysis such as using Microsoft Excel soon become obsolete.  Big data 

creates a paradox: we can know so much about so many different variables in our system that 

we no longer know what the information represents as a whole.  Without new tools and 

methods for big data analysis, big data is useless for making decisions. 

Some tools and frameworks that are currently popular for managing big data include 

Hadoop Distributed File System (HDFS) and MapReduce [29, 33], Google File System [29], 

Tableau [31], NoSQL [31], Amazon Web Services [31], Storm [31], and many more.  Using 

tools designed specifically for large datasets, actionable conclusions can again be derived from 

these truly massive datasets.  Depending on the situation, custom software solutions can also 

be developed.  In addition, some big data problems rely on machine learning algorithms and 

artificial intelligence to make sense out of the large variety of data [31].   

Vehicle fleet-tracking data is considered to be a unique subset of big data analysis 

within the full scope of big data problems outlined above.  For much of the work in this study, 
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a custom MATLAB framework was used, as well as some Hadoop MapReduce.  Since our 

team mostly consists of mechanical engineers with experience in automotive technology, 

machine learning techniques were not used.  Instead, we developed our methods and 

calculations by using our knowledge and experience with hybrid and electric vehicle 

technology.  Having subject area expertise in the application from where big data is being 

collected is a huge advantage that can make up for some lack of computer science and 

programming experience. 

 

1.6 Research Tasks 

Based on this background understanding of the field and the available data, the research 

program described in this thesis seeks to develop big-data software tools and techniques to 

collect, process, and analyze data from fleets of Odyne and Via PHEVs operating in the real-

world.  The research tasks that this project seeks to develop are: 

Task 1 - The construction of a MATLAB data analysis software framework that can 

meet the goals of preparing the under-structured data output from the vehicles for 

research-level analysis.  Details are provided in Section 2. 

Task 2 - The development of a set of research questions and corresponding 

recommendations for data collection, processing, and analysis that can inform the 

ongoing EPRI data collection practices and future research.  Details are provided in 

Section 3. 

Task 3 - The development, testing, and validation of a method for processing the raw 

data output from the vehicles into “event-based” objects so as to characterize vehicle 

events such as charging, driving, etc. Details are provided in Section 4. 
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Task 4 - Based on these outcomes, this work will answer a subset of the research 

questions proposed in Task 2 so as to demonstrate the utility of the proposed data 

management and decision support systems.  Results and details are provided in Sections 

4 and 5. 

 

Below in Figure 1.7 is a simple diagram that shows the workflow of the research 

project, as well as the scope of the work performed here at CSU.  Most of the data collection 

and storage work was done outside of CSU and was managed by EPRI.   

 
Figure 1.7 – High-Level Project Workflow and Project Scope 
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1.7 Summary of This Document 

This work discusses methodologies for analyzing this vehicle fleet-tracking data after 

data is collected and presents results derived from the EPRI Commercial Truck datasets.   

Section 2 discusses a MATLAB framework that was initially constructed to manage 

data processing and analysis and which served as a foundation for future work in the later 

sections of this thesis.  This section corresponds to Task 1 which was defined in the previous 

Subsection 1.6. 

Section 3 provides an overview of some research questions that were reviewed to 

determine if they were feasible to answer and a high-level analysis to determine what data and 

analysis methodologies might be needed to answer the question.  This provided a basis to 

determine what research questions were possible to answer and later sections of this thesis 

discuss some of these results.  This section corresponds to Task 2 which was defined in the 

previous Subsection 1.6. 

Section 4 provides a description of a drive and charge event identification algorithm 

that summarizes second-by-second sensor data into a list of higher-level drive and charge 

“events.”  This work was also presented at the Electric Vehicle Symposium 29 (EVS29) in 

Montreal, Quebec in June 2016 [1].  In this study, a drive event is considered to be a single trip 

taken by a driver, starting when the vehicle began moving and ending when it stopped moving.  

Similarly, a charge event is considered to be the time starting when the vehicle was plugged in 

and power was being transmitted to the vehicle and ending when the power transmission 

terminated.  After the data is summarized into these “event-based” objects, it is much easier to 

analyze and produce meaningful results for a significant number of research questions.  Sample 

results created using the summarized data are also presented.  This section corresponds to Task 
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3 which was defined in the previous Subsection 1.6.  Some of the presented results also 

correspond to Task 4 in the same subsection. 

Section 5 discusses an algorithm that correlates vehicle fuel economy to other variables 

such as ambient temperature.  The drive event identification algorithm presented in Section 4 is 

used as a component in the algorithm presented in Section 5.  Sample results from this 

algorithm are also presented.  This section corresponds to Task 4 which was defined in the 

previous Subsection 1.6. 

Section 6 provides a high-level discussion about the real-world impacts of fleet-level 

data collection and analysis.  This discussion covers topics such as why fleet data analysis 

methodologies need to be better defined, how real-world fleet data can complement standard 

tests such as EPA drive cycles, and how fleet data analysis can influence policy related to 

electric vehicles.  In addition, the assumptions and potential pitfalls behind our data analysis 

project are discussed.  Examples to support these claims are provided. 

Section 7 outlines future work that can be taken to answer some of the additional 

questions raised by this thesis and to address some of the assumptions and pitfalls discussed in 

Section 6.  The proposed future work should help further validate and refine the techniques 

proposed by this thesis and generate additional results. 

Finally, conclusions are presented at the end of this document. 

In addition, after the bibliography, there is an Appendix that provides some additional, 

general discussion that might be useful to anyone who is trying to collect and analyze data 

from fleets of vehicles.  Topics discussed here include data security, privacy, problems 

encountered working with CAN network data, and considerations for choosing the right 

software and/or programming language for a data analysis framework.  The purpose of the 
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Appendix is not to provide scientific conclusions or solutions, but instead to just provide some 

general considerations and advice that should be accounted for when implementing this type of 

vehicle data collection and analysis project.   
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SECTION 2 

DEVELOPMENT OF MATLAB DATA MANAGEMENT FRAMEWORK 

 

2.1 Overview of the MATLAB Data Management Framework Software 

Before any assessment of the dataset or analysis could be performed, the first obstacle 

was determining how to manage the large quantity of data.  For example, the Odyne Medium-

Duty Truck dataset at CSU had 140 GB’s of data and the Via Light-Duty Truck dataset at CSU 

had 17 GB’s of data.  In addition, the Odyne and Via datasets at CSU were not complete 

datasets and only contained a subset of the total signals that were available in EPRI’s main 

database.  In addition, these datasets are stored in a collection of multiple CSV files and the 

data files contained errors and formatting problems that required robustness in the data analysis 

tools.  CSU was also contracted by EPRI to analyze some other datasets collected from other 

vehicle platforms, but due to confidentiality agreements those unfortunately cannot be 

discussed in this document.  However, the software and methods described in this section are 

just tools that can in theory be applied to any vehicle fleet-tracking dataset.  There were 

slightly different versions of this software designed for the specifics of each dataset, but the 

fundamentals were basically the same. 

My first project was to figure out how to manage these datasets in MATLAB.  The 

solution was to create a data analysis framework that separated the data analysis code that 

might be later added to generate scientific results from the data management code.  Tasks that 

can be managed by the data analysis framework include: 

1)  Automating the loading process of hundreds of individual CSV files for analysis. 
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2) Parsing the data file format to extract and reformat the raw signals into a more user 

friendly format. 

3) Converting timestamps into serial date numbers, which are easier to add, subtract, 

and plot. 

4) Splitting very large CSV files up into multiple pieces, so as to not overload the 

available RAM on a standard desktop machine.  For some reason, when MATLAB 

loads a data file, that data takes up significantly more RAM than disk usage.  For 

example, a 113 MB .mat file containing vehicle data (converted from a CSV file 

that was 971 MB in size), increased the RAM usage of the computer by 7.8 GB’s.  I 

do not have enough familiarity with MATLAB to understand why this large 

increase in memory occurs.  Fortunately, only a few raw data CSV files completely 

overloaded all 16 GB’s of the available RAM on the computer and needed to be 

split into multiple chunks. 

5) Removing formatting errors in files that could crash the data management or 

analysis software. 

6) Saving intermediate data into a .mat format that is more convenient to data analysis 

work. 

7) Tracking custom error conditions and referencing them to a particular data file.  

These error conditions include improperly formatted data, or missing data. 

 

This software was developed through multiple iterations.  The first version of the 

software was developed for other vehicle tracking projects that cannot be discussed here due to 

confidentiality and contract reasons.  Then, the software was reconfigured and modified again 
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to run on both the Odyne and Via Truck data from EPRI.  Numerous improvements were 

implemented during each of the software iterations.  This thesis only focuses on the final 

version of the software that I developed.  For the Electric Vehicle Symposium 29 (EVS29) 

conference paper, Zachary Wilkins further modified the framework described in this document 

to better suit his needs, but his work on the data management framework will not be heavily 

described in this document.  In addition, much of this framework was rewritten by Mike Reid 

for the analysis work presented in Section 5 and Subsection 5.2 and it served as a foundation to 

develop new versions of the analysis software. 

There are two main components in this framework that run as separate scripts.  The first 

is a data extraction and parsing framework which runs through the script titled 

Extract_all_Truck_data_v1.m.  This first component was responsible for parsing the raw CSV 

data files, reformatting the data, removing any obvious formatting errors, and then resaving the 

data into a .mat file format.  By resaving the data, subsequent data analysis would not have to 

rerun this initial data parsing and validation step.  All data analysis can be run directly out of 

the .mat files. 

The second main component of the framework is where scientific data analysis code 

can be added later, which runs through the script titled Analyze_all_truck_data_v1.m.  The raw 

code is mostly just a framework that additional analysis code can be added into.  This empty 

framework is responsible for keeping track of all the data files to be processed and then passing 

the file names to a sub-function where each data file is loaded and processed independently.  

The framework also includes a custom error tracking system, where the future data analysis 

code can flag custom error conditions when it is processing certain data files.  These error 

codes are then summarized for all data files at the end of the script run.  Finally, the framework 



21  

can reduce each data file into a single Excel spreadsheet row, so information such as fuel 

consumption, total distance traveled, etc. can be compiled by vehicle.  All the spreadsheet rows 

are then combined into a single Excel spreadsheet.  The idea was that fleet-level analysis could 

be performed on this output spreadsheet using Excel and no additional MATLAB development 

would be needed to combine vehicle results into fleet results. 

The below flowchart summarizes the data processing flow inside of this framework as 

the data moves through the data extraction and analysis software modules: 

 

Figure 2.1 – High-Level Data Processing Flow between Modules of the MATLAB Data 

Management Framework 

 

2.2 Details of the Data Extraction and Parsing Component 

This section describes in more detail how the data extraction script works for the EPRI 

Commercial Truck data. 
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The Extract_all_Truck_data_v1.m data extraction script is a preprocessing step for the 

Analyze_all_truck_data_v1.m script, which is explained next in Subsection 2.3.  The goal of 

the Extract_all_Truck_data_v1.m script is to perform data reformatting, data validation, and 

save the data into a .mat format that is faster to load and process during data analysis.  This 

way, when the data analysis needs to be run multiple times for development and debugging, all 

of this up front work will not need to be rerun. 

Data validation is built into the software, to identify any corrupt data.  For example, the 

software checks that each line of CSV data has the proper number of delimiters, each file has a 

proper header, and after the data is parsed from the CSV file it again checks the size of the data 

to ensure that all of the data was properly imported.  If there are corrupt lines of data, the 

process will attempt to remove these lines so the non-corrupt lines can still be used.  When 

corrupt data is encountered, an error code will be generated, a summary of errors will be 

displayed in the command window when the script completes, and the command window 

output can be continuously appended into a text file (if runlog is activated). 

The code is structured into two main levels.  The highest level script tracks all of the 

data files to be processed and collects error codes, while the 

epri_truck_data_file_extract_fcn_v1.m sub-function, which is called from the high-level script, 

processes individual data files.  Multiple .mat data files may be created for a single CSV file if 

the data size is too large so available RAM is not overloaded.  This sub-function also contains 

data validation tools that will prevent the loading of corrupt CSV data.  In addition, if the 

function header is commented out and the input variables are defined explicitly in the function 

(there is a commented out section of code just for this), it can be run as a script for testing 

purposes. 



23  

All of the parameters needed to adjust the performance of the 

Extract_all_Truck_data_v1.m are in a Controlling Variables section near the top of the script.  

Comments provide additional explanation of these variables.  For example, these variables 

define which directories data should be read from and saved to, and define switches that can 

turn on and off certain script functions. 

 
%% CONTROLLING VARIABLES - Use the controlling values to adjust the performance 
of the script. 
% This section is used to initialize the script, point it towards the 
% appropriate file directories, etc. 
% 
% Be sure to save this script after changes if it will be launched by 
% another script. 
  
% SET CURRENT DIRECTORY 
 cd('T:\projects\EPRI2014\MATLAB\Odyne Data and Analysis') % Windows 
% cd('/net/projects/data/projects/EPRI2014/MATLAB') ;% Linux Server 
  
  
% RUN PROFILES. 
% Each run profile is a branch of an if statement, and the control_profile  
% variable controls with branch is run to initialize the script. 
% This allows the user to quickly switch between different commonly used run 
settings. 
% Additional elseif statements can be added to create new run profiles if 
% needed. 
% 
% Values: 
% 1 - Actual Data (Test) 
% 2 - Data Validation Test 
 control_profile = 2 ;  
  
  
  
  
% ------------------------------------------------------------------------------- 
% PROFILE 1 - ACTUAL DATA VIA TEST 
if control_profile == 1;  
  
% DIRECTORY TO LOAD - CSV DATA 
 control_filedir_load = 'T:\projects\EPRI2014\MATLAB\Odyne Data and 
Analysis\Data\CSV\Via_Join_Test/' ; % Test Data  
 % Location of files to be extracted relative to CD.  Be sure to include \ at end 
of string.   
  
% DIRECTORY TO SAVE EXTRACTED MAT DATA 
 control_filedir_save = 'T:\projects\EPRI2014\MATLAB\Odyne Data and 
Analysis\Data\MAT\Via_Join_Test_MAT/' ; % Test Data 
 % Location of where to save processed .mat file relative to CD.  Be sure to 
include \ at end of string.   
  
% DO YOU WANT TO CREATE A RUNLOG FOR TROUBLESHOOTING? 
% This is recommended when large amounts of data are being processed to 
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% help troubleshoot a system crash, or verify the accuracy of results.  It also 
provides documentation of the 
% conversion process. 
 control_create_runlog = 1 ; 
 % 0 - do not create a runlog when script executes.   
 % 1 - save runlog in designated location. 
 control_runlog_nameandloc = [control_filedir_save 
'Extract_all_Truck_data_v1_runlog' ] ; % Test Data 
  
 % Specify runlog file name and location in relation to the CD as a  
 % text string.  Note that script start time and .txt will be appended  
 % onto the end of the runlog file name specified. 
  
% DEFINE MAX NUMBER OF DATA LINES PER .MAT FILE 
 control_max_number_of_datalines = 1250000 ; 
 % This value defines the maximum number of data lines that can be loaded and 
saved 
 % into a .mat file at a time.  This is to prevent RAM from being maxed 
 % out and crashing the machine when very large data files need to be 
 % processed, so they can be processed on a regular computer.  CSV files 
 % with more data lines than the maximum will automatically be split up 
 % into multiple .mat files. 
  
  
  
  
  
  
% -------------------------------------------------------------------------------  
% PROFILE 2 - DATA VALIDATION TEST 
elseif control_profile == 2;  
  
  
% DIRECTORY TO LOAD - CSV DATA 

Figure 2.2 - Controlling Variables Section of Code 

 

The first section of MATLAB code (Figure 2.2 above) shows the controlling variables 

section.  Since the user may have multiple configurations that they frequently run, such as a 

configuration for testing and a configuration for actual data analysis, different profiles can be 

created to save these settings so they do not need to be constantly adjusted.  To create a new 

profile, copy all of the variables from an existing profile and put the copy into a new branch of 

the if-else statement.  The control_profile variable is just a number that tells the script which 

section of the if-statement to execute for a given configuration.  The goal of this system is to 

make it very easy to switch between different settings to reduce setup errors. 
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Figure 2.2 above also shows the settings within one of these run profiles, below the 

section of the code where the configuration is defined.  Some of these variables are switches 

that turn different script functions on or off.  For example, if the variable 

control_create_runlog = 1, a runlog of the command window output will be created in the 

designated folder location with the designated file name.  However, the runlog will not be 

created if control_create_runlog = 0. 

In this section, be sure to specify which directory contains all the raw CSV data that 

needs to be converted and what directory converted .mat data should be saved into.  These can 

be the same folder, or different folders.  Please note that file paths can be relative to the current 

directory (CD), or can be defined as absolute file paths.  These file paths can then be later used 

to specify the location of other items, such as the runlog save location, to prevent the file path 

from being specified multiple times.  This again, will help reduce setup errors and make 

configuration more convenient. 

There is also an option that controls the maximum number of data lines that can be 

saved into a .mat file.  This is a memory management control.  Some CSV files may contain 

enough data to overload the available RAM on a standard desktop machine, or others have too 

much data to be saved into a single regular .mat file.  Any CSV file with more than the 

maximum number of data lines specified will be split into multiple .mat files. 

Note that all of the variable names in the controlling variable section start with the 

prefix control_ so they are not confused with other variables defined later in the script.  Once 

the controlling variables are adjusted to the user’s preferences, they can run the script and wait 

for results.  This process can take quite a long time, depending on the amount of data.  It is 
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recommended to start running the process overnight, and even then it still may not be finished 

by the next morning. 

The sub-function that converts individual CSV files to .mat data has the following 

format (shown below in Figure 2.3): 

 

[errorcode critical_fileerror] = 

epri_truck_data_file_extract_fcn_v1(filedir_load,  

filename_load, filedir_save, filename_save, max_number_of_datalines) 

Figure 2.3 - Format of the Data Extraction Sub-Function for Individual CSV Files 

 

Function output is optional and only indicates if an error was encountered.  While the 

function is running, information will be printed into the command window as well so it may 

not be necessary to collect the error code output.  The errorcode output variable contains 

numbers that correspond to specific error conditions.  This can be a single number, or an array 

of numbers for multiple error conditions.  Note that an errorcode of 0 indicates that no errors 

occurred.  The critical_fileerror output variable will always be a single value that indicates the 

severity of all the error conditions encountered and it helps define what actions should be taken 

by the higher level script.  A critical_fileerror of 0 indicates that the errorcode is more of an 

advisory to the user and no automated response is needed.  A critical_fileerror of 1 indicates 

that some of the .mat data files corresponding to the CSV file may be deleted due to corrupt 

data.  A critical_fileerror of 2 indicates that no .mat data should be saved for the vehicle and 

any .mat data saved previously should be deleted (note, the functionality to delete data files 

may not be in the extract data script for the medium duty truck data as critical_fileerror of 2 is 

not used in this script).  critical_fileerror = 2 is the most severe. 
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Additional error codes can be added into the epri_truck_data_file_extract_fcn_v1 

function if the software needs further development and compiled in the higher level 

Extract_all_Truck_data_v1.m script.  The process to add new error conditions is the same as 

the process used in the analyze data script, so read Subsection 2.3 which is next about the 

analyze data script for more details. 

 

2.3 Details of the Data Analysis Framework Component 

After the data is transferred into .mat files by the data extraction script described in the 

previous Subsection 2.2, the next step is to analyze the data.  This Subsection describes a 

framework that loads and manages the .mat files, and tracks error codes, into which additional 

data analysis code can be easily added.  After loading these .mat files, the 

Analyze_all_truck_data_v1.m script will compile results from each individual .mat file into an 

Excel spreadsheet where fleet summary statistics can be compiled.  A process to report error 

codes is also built into the script, so data files that have corrupt data, or do not process 

correctly, can be identified.  Overall, this script can load and keep track of multiple data files, 

so fleet wide analysis can be performed. 

The structure of the data analysis script is similar to the data extraction script, as the 

highest level of the script tracks and manages all of the data files and then a sub-function 

named epri_truck_data_file_analyze_fcn_v1.m loads each individual file and performs the 

analysis on the data within it.  Much of the code from the data extraction script was copied to 

create the data analysis script. 

The highest level Analyze_all_truck_data_v1.m script loads multiple .mat vehicle files 

in a directory for analysis.  The script will compile a summary of the analysis output for each 
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vehicle into an Excel Spreadsheet.  Results from the data analysis can also be saved into a .mat 

file, where the results are stored into a cell array that mimics the spreadsheet format.  This 

script is a framework that future data analysis can be added into, although some simple sample 

data analysis, such as a count of the number of data points in the file, is included in the empty 

framework to demonstrate how the script works. 

The epri_truck_data_file_analyze_fcn_v1.m sub-function analyses data in a single .mat 

vehicle file and outputs the results.  Additional analysis code can be added into the body of this 

function in the future.  The function is automatically invoked from the 

Analyze_all_truck_data_v1.m script, but it can also be run through the command window to 

analyze a single data file.  In addition, if the function header is commented out and the input 

variables are defined explicitly in the function (there is a commented out section of code just 

for this), the function can be run as a script for testing purposes. 

 

2.3.1 Instructions for Running the Data Analysis Framework 

All of the parameters needed to adjust the performance of the 

Analyze_all_truck_data_v1.m script are in a Controlling Variables section near the top of the 

script.  Comments provide additional explanation of these variables.  This controlling variables 

section is shown below (in Figure 2.4). 
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%% CONTROLLING VARIABLES - Use the controlling values to adjust the performance 
of the script. 
% This section is used to initialize the script, point it towards the 
% appropriate file directories, etc. 
% 
% Be sure to save this script after changes if it will be launched by 
% another script. 
  
  
% SET CURRENT DIRECTORY 
 cd('T:\projects\EPRI2014\MATLAB\Odyne Data and Analysis') % Windows 
% cd('/net/projects/data/projects/EPRI2014/MATLAB') % Linux Server 
  
  
% RUN PROFILES. 
% Each run profile is a branch of an if statement, and the control_profile  
% variable controls with branch is run to initialize the script. 
% This allows the user to quickly switch between different commonly used run 
settings. 
% Additional elseif statements can be added to create new run profiles if 
% needed. 
% 
% Values: 
% 1 - Data Validation Test 
% 2 - Actual Data Odyne 
% 3 - Actual Data Via 
 control_profile = 2 ;  
  
  
  
  
% ------------------------------------------------------------------------------- 
% PROFILE 1 - TEST DATA 
if control_profile == 1;  
  
  
% DIRECTORY TO LOAD PREFERENCES - MAT DATA 
 control_filedir_load = 'T:\projects\EPRI2014\MATLAB\Odyne Data and 
Analysis\Data\MAT\Data_Validation_Test_MAT\' ; % Test folder location % Location 
of .mat files to be analyzed relative to CD.  Be sure to include \ at end of 
string.   
  
% DIRECTORY TO SAVE ANALYSIS RESULTS 
 control_results_save = 'T:\projects\EPRI2014\MATLAB\Odyne Data and 
Analysis\Data\Analysis_Results\Data_Validation_Test_Results\' ; 
 % Location of directory where all data analysis results will be saved. 
  
  
% DO YOU WANT TO CREATE A RUNLOG FOR TROUBLESHOOTING? 
% This is recommended when large amounts of data are being processed to 
% help troubleshoot a system crash, or verify the accuracy of results.  It also 
provides documentation of the 
% conversion process. 
 control_create_runlog = 1 ; 
 % 0 - do not create a runlog when script executes.   
 % 1 - save runlog in designated location. 
 control_runlog_nameandloc = [control_results_save 
'Analyze_all_truck_data_v1_runlog - Test' ] ; % Test data 
 % Specify runlog file name and location in relation to the CD as a  
 % text string.  Note that script start time and .txt will be appended  
 % onto the end of the runlog file name specified. 
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% DO YOU WANT TO COMPILE A LIST OF ALL VEHICLES AND THEIR RESULTS INTO AN 
% EXCEL SPREADSHEET? 
 control_create_spreadsheet = 1 ; 
 % 0 - do not create an excel spreadsheet that summarizes individual 
 % vehicle results at the end of the script 
 % 1 - Compile a summary of vehicle results into a spreadsheet at 
 % the end of the script. 
 control_nameandloc_create_spreadsheet = [control_results_save 
'Analyze_all_truck_data_v1_spreadsheet_result_summary - test' ] ; % Test data 
 % Specify spreadsheet name and location in relation to the CD as a  
 % text string.  Note that .xls will be automatically included on the 
 % end of the file name and does not need to be included in the text 
 % string. 
  
 % NOTE: Existing summary spreadsheets can be overwritten, but be sure 
 % the summary spreadsheet is closed before running this script. 
  
  
% DO YOU WANT TO USE A EXCEL VIN LIST SPREADSHEET TO MANUALLY FILTER OUT 
% VEHICLE FILES FROM THE DATA ANALYSIS? 
% This spreadsheet is a list of all VIN numbers, and it can be used to 
% check which vin numbers should not be processed with an 'x'. 
  
% Note: First column of the spreadsheet should contain a column that has 
% either values of "x" or are blank.  The second column should contain 
% vehicle vin numbers.  VIN numbers with X will be skipped during data analysis. 
% Any additional columns will be ignored by this matlab script, but can be  
% included if the information is helpful in the spreadsheet. 
% "x" is not case sensitive and can have leading or trailing spaces.  This 
% data should start on the second row of the spreadsheet.  It will be 
% assumed that the first row is a header. 
  
 control_load_vinlist_spreadsheet = 0 ; 
 % 1 - Load a spreadsheet containing a list of vin numbers.  VIN 
 % numbers marked with "x" will be excluded from the analysis. 
 % 0 -Do not load a spreadsheet containing a list of vin numbers. 
  
 control_vinlist_spreadsheet_nameandloc = [ control_filedir_load 'List_of_trucks-
test.xlsx' ] ; % Test Data 
 % Specify the name and location relative to the CD where the 
 % spreadsheet containing a list of VIN numbers is located.  Be sure 
 % to include .xls or .xlsx at the end of the spreadsheet name. 
  
  
% DO YOU WANT TO AUTOMATICALLY SAVE DATA ANALYSIS RESULTS INTO A .MAT FILE? 
  
 control_save_results_as_mat = 1 ; 
 % 1 - Save final workspace as .mat file after data analysis completes. 
 % 0 - Do not save final workspace as .mat file. 
  
 control_matresults_nameandloc = [control_results_save 
'Analyze_all_truck_data_v1_mat_datafile.mat' ] ; %Test Data 
 % filepath and filename relative to the CD where the .mat file of results should 
be 
 % saved.  Variable should be string.  Be sure to include .mat at the end of the 
 % string. 
  
% DO YOU WANT TO CREATE PLOTS AND FIGURES DURING THE DATA ANALYSIS PROCESS? 
  
 control_save_figs = 0 ; 
 % 1 - Save figures for each vehicle file in designated location. 
 % 0 - Do not save any figures from data analysis. 
 control_fig_save_loc = [control_results_save 'Figs\' ] ; % Test Data 
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 % filepath relative to CD where .fig files genereated in analysis 
 % should be saved.  Variable should be a string.  Be sure to include 
 % a \ at the end of the string. 
  
  
  
  
  
% ------------------------------------------------------------------------------- 
% PROFILE 2 - FULL DATA SET FOR ODYNE 
elseif control_profile == 2;  
  
  
% DIRECTORY TO LOAD PREFERENCES - MAT DATA 

Figure 2.4 – Run Profile Settings in the Controlling Variables Section of Code 

 

The first section of MATLAB code (in Figure 2.4 above) shows the control profile 

section.  Since the user may have multiple configurations that they frequently run, such as a 

configuration for testing and a configuration for the full data analysis, different profiles can be 

created to save these settings so they do not need to be constantly adjusted.  To create a new 

profile, copy all of the variables from an existing profile and put the copy into a new branch of 

the if-else statement.  The control_profile variable is just a number that tells the script which 

section of the if-statement to execute for a given configuration.  The goal of this system is to 

make it very easy to switch between different settings to reduce setup errors. 

Figure 2.4 above also shows the settings within one of these run profiles.  Some of 

these variables are switches that turn different script functions on or off.  For example, if the 

variable control_create_runlog = 1, a runlog of the command window output will be created in 

the designated folder location with the designated file name.  However, the runlog will not be 

created if control_create_runlog = 0. 

In this section, be sure to specify which directory contains the .mat data files that need 

to be converted and where the final analysis results should be saved.  Please note that file paths 

can be relative to the current directory (CD), or can be defined as absolute file paths.  These 

file paths can then be later used to specify the location of other items such as the runlog save 
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location, spreadsheet result save location, and figure save location.  By concatenating these 

general-high level file paths to create lower level folder structures, this prevents the file path 

from being typed by the user multiple times to reduce setup errors and make configuration 

more convenient.  Basically, the setup is similar to the data extraction function, but with more 

options. 

A major difference between this script and the extract all data script is that spreadsheets 

can be imported and exported.  If control_create_spreadsheet = 1, all of the data analysis 

results will be exported into an Excel spreadsheet and saved in the designated location.  The 

data analysis results for each vehicle are listed in the spreadsheet.  Note that cell dimensions 

and formatting may need to be adjusted within the Excel interface after the spreadsheet is 

exported.   

If there are multiple .mat files for a single vehicle file, there will be multiple rows of 

data output for that vehicle.  The easiest way to combine results into a table that shows the 

cumulative results for a single vehicle on one line is to use a pivot table in Excel.  I did not 

want to spend weeks programming MATLAB to do this when the capability was already built 

into Excel. 

If control_load_vinlist_spreadsheet = 1, a control spreadsheet will be imported to help 

manually filter out individual vehicles.  In the control spreadsheet, VIN numbers with an ‘X’ 

marked next to them will not be analyzed.  The X’s should be in the first column of the 

spreadsheet and the VIN numbers should be in the 2nd column of the spreadsheet.  Any other 

columns are extra information and will be ignored by the Analyze_all_truck_data_v1.m script.   

Note that ‘X’ is not case sensitive and can have leading and trailing blank spaces.  It 

will also be assumed that the first row of the spreadsheet is a header and VIN numbers should 
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start on the second row.  Be sure that the VIN list spreadsheet is formatted exactly as specified.  

Also note that a warning will be produced if the VIN number in the spreadsheet does not match 

the VIN number in the vehicle .mat file.  Each vehicle data file should contain a VIN number 

before the first underscore ( _ ) in the file name in this implementation of the framework. 

Another option that can be selected is to automatically save the final workspace as a 

.mat file when the script completes.  This offers an alternative format from which vehicle 

summary information can be analyzed and provides a data backup in case an Excel spreadsheet 

cannot be exported.  If this option is turned on, the name and location of where the .mat file 

should be saved needs to be specified under controlling variables. 

Finally, the last option allows custom figures and charts to be saved for each .mat file.  

The data analyst is responsible for programming the charts they want into the MATLAB data 

analysis framework, so this feature just creates an easy framework that can be turned on to 

manage these graphs.  These can help the user visualize the data for individual vehicle files 

after a data analysis run and can also help spot problems in the dataset.  However, a very large 

number of graphs can be generated and this slows down the process, so the user may want to 

turn off automatic figure generation in some situations. 

Note that all of the variable names in the controlling variable section start with the 

prefix control_ so they are not confused with the other variables that are defined later in the 

script.  Overall, once the controlling variables are adjusted to the user’s preference they can run 

the script and wait for results.  This process can take quite a long time, depending on the 

amount of data.   

This function can be used individually to analyze a single data file.  It has the following 

format (shown below in Figure 2.5): 
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[spreadsheet_export_headers spreadsheet_export_row errorcode critical_fileerror] 

= epri_truck_data_file_analyze_fcn_v1(control_filedir_load, filename_load,  

control_save_figs, control_fig_save_loc) 

Figure 2.5 - Format of the Data Extraction Sub-Function for Individual .mat Files 

 

Like the extract all data script, the analyze data script contains the same error code 

tracking system.  The errorcode output variable contains numbers that correspond to specific 

error conditions.  This can be a single number, or an array of numbers for multiple error 

conditions.  Note that an error code of 0 indicates that no errors occurred.  The 

critical_fileerror output variable will always be a single value that indicates the severity of all 

of the error conditions encountered and it helps define what actions should be taken by the 

higher level script.  A critical_fileerror of 0 indicates that the errorcode is more of an advisory 

to the user and no automated response is needed.  A critical_fileerror of 1 indicates that some 

of the .mat data files corresponding to the CSV file may be deleted due to corrupt data.  A 

critical_fileerror of 2 indicates that no results from .mat data should be saved for the vehicle 

and any analysis results previously saved should be deleted.  critical_fileerror = 2 is the most 

severe. 

The other two output variables contain data analysis results in the form of a cell array 

row.  spreadsheet_export_row contains all output values concatenated into a horizontal cell 

array.  This will eventually form a row of data output in the Excel spreadsheet.  

spreadsheet_export_headers contains text headers that correspond to the values in the 

spreadsheet_export_row.  The header cell array should be the same size as the row cell array, 

or else MATLAB will crash. 

A controlling variables section also exists in the epri_truck_data_file_analyze_fcn_v1 

sub-function as well as the main script, where key variables that affect the performance of data 
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analysis for an individual vehicle can be controlled and tuned.  This is shown below in Figure 

2.6. 

Currently, the only value in this section is min_datapoints, which controls Error Code 

1.  This prevents the function from processing any data files with less than the specified 

number of data points.  Additional controlling variables can be added to this section if  more 

complex analysis is added into the data script.  For example, maybe there are certain cutoff 

values that control data filtering or separation steps. 

 

%% Controlling Variables 
% Use these variables to tune the performance of the analysis function. 
  
% Minimum acceptable number of data points that can be in a .mat file to 
% process the file.  This includes all bus message values. 
min_datapoints = 300 ; 
  
  
%% Begin Script - Initialize Workspace 

Figure 2.6 - Controlling Variables Section in Data File Analyze Function 

 

Since this code is only a data management framework that loads file data and produces 

basic data statistics, additional data analysis will need to be added into it in the future.  Here 

are the steps that need to happen when an additional data output variable and the corresponding 

logic are added into the function. 

 

2.3.2 Instructions to Add Data Analysis Code Into the Data Analysis Framework 

Note that absolutely no modifications need to be made to the higher level 

Analyze_all_truck_data_v1.m data script for new data output to be added.   
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Step 1: Add additional code to produce a new data output in the commented section of code 

shown below (Figure 2.7).   

The below section of code is where the actual data analysis can be added. 

 

%% DATA ANALYSIS - Add additional data analysis code here. 
  
% Create additional sections as needed.   
% When creating new output variables, be sure to: 
% > Initialize these new output variables in the initialize variables section 
where indicated 
% > Concatenate the new output variables into the spreadsheet_export_row 
% cell array, which will be sent to the higher level script and compiled 
% into an excel spreadsheet.  Be sure to define new headers that correspond 
% to the indecies in spreadsheet_export_row in spreadsheet_export_headers 
% as well. 
% > Define the new output variables in the function comments section at 
% the top of the script. 
% > Add additional print screen output at the end of this script if 
% desired, to print results to the screen. 

Figure 2.7 - Step 1 of Adding Additional Data Analysis 

 

Step 2: Be sure to initialize any new output variables generated in Step 1 in the “Begin Script 

– Initialize Workspace” section of code shown below (Figure 2.8).   

If an error code is produced, this ensures that a generic output value will still be 

produced.  This will help prevent MATLAB exceptions that could crash the process. 
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% Initialize Generic Data Output Variables 
datapointcount = []; % Count of data points in .mat file 
firstdatapoint_serialdate = 0; % first/earliest serial date number in .mat file 
firstdatapoint_timestamp = {''}; % first/earliest serial date number in .mat file 
converted to time stamp 
lastdatapoint_serialdate = 0; % last/ latest serial date number in .mat file 
lastdatapoint_timestamp = {''}; % last/ latest serial date number in .mat file 
converted to time stamp 
vin = 0; % Vin number, extracted from data file name 
filenum = 0; % File number, extracted from data file name.  There can be multiple 
.mat files for a single vin. 
filecount = 0; % Total number of .mat files for a single vin.  This is extracted 
from the data filename. 
  
% Initialize specific data output Variable 
% ADD VARIABLE INITIALIZATION FOR FUTURE DATA OUTPUT HERE 

Figure 2.8 - Step 2 of Adding Additional Data Analysis 

 

Step 3: Concatenate the new data output variables into the spreadsheet_export_row cell 

array at the bottom of the script.  Define new spreadsheet headers that correspond to the 

spreadsheet row in the spreadsheet_export_headers cell array. 

These spreadsheet variables are the function outputs, which will be compiled into an 

Excel spreadsheet.  Note that the variables spreadsheet_export_row and 

spreadsheet_export_headers are aligned, to ensure that spreadsheet headers will correspond to 

the correct data in the Excel spreadsheet.  In the below example, there was not enough 

horizontal space to show the sample code in this format.  In the MATLAB software, use the 

horizontal scroll bar to see the full length of the values in these vectors.  The section of code 

where this is defined is shown below (in Figure 2.9). 
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 % Horizontally concatenate all output variables and header labels into cell 
 % arrays.  spreadsheet_export_array must be cell array.  Excel spreadsheet 
 % columns will be in the order of data concatenation.   
 spreadsheet_export_headers = { 'File Name', 'VIN', 'File Number', 'Number of 
Data Files for VIN', 'Error Code Output', 'Severity of Error Code', 'Number of 
Data Points in File', 'First Data Point Collected at:', 'Last Data Point 
Collected at:', 'First Data Point Collected at (MATLAB serial date):', 'Last Data 
Point Collected at (MATLAB serial date):' };  
 spreadsheet_export_row = { filename_load vin filenum filecount errorcode_string 
critical_fileerror datapointcount firstdatapoint_timestamp 
lastdatapoint_timestamp firstdatapoint_serialdate lastdatapoint_serialdate };  
 % FOR FUTURE DEVELOPMENT, BE SURE TO CONCATENATE NEW VARIABLES AND 
 % HEADERS TOGETHER HERE TO COLLECT RESULTS IN SPREADSHEET. 

Figure 2.9 – Step 3 of Adding Additional Data Analysis 

 

Step 4 – Optional: Add new summary statistics print screen in “End of Function Display” 

section of code (shown in Figure 2.10).   

This will print the data analysis results to the command window, which can then be 

saved into the overall runlog output.  This output is redundant and harder to reference than 

Excel spreadsheet data, but it could be useful depending on user preferences. 

 

 %% End of Function Display  
  
if critical_fileerror == 0 % Output if no critical Error 
 fprintf('--------------------------------------------------------\n') 
 fprintf('\nData was successfully analyzed from the file:\n\t%s\n\n', fileloc) 
  
 % Summarize selected Output Variables in Print Screen 
 fprintf('Summary of output vehicle statistics from analysis:\n\n') 
 fprintf('\t%d - datapointcount - Total Number of Data Points in Vehicle File.  
\n', datapointcount) 
 fprintf('\t%s - firstdatapoint_timestamp - Date/time when the first/earliest 
data point in vehicle file was collected.\n', firstdatapoint_timestamp) 
 fprintf('\t%s - lastdatapoint_timestamp - Date/time when the last/latest data 
point in vehicle file was collected.\n\n', lastdatapoint_timestamp) 
  
 % FOR FUTURE DEVELOPMENT, ADD ADDITIONAL PRINT SCREEN OUTPUT HERE FOR  
 % ANY ADDITIONAL OUTPUT VARIABLES ADDED, IF DESIRED. 
  
end 
  

Figure 2.10 – Step 4 of Adding Additional Data Analysis 
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Step 5 – Optional but Recommended: Update output variable description in the 

comments at the beginning of the function (shown in Figure 2.11) to include new output 

variable.   

This will help document what the outputs are for future reference.   

 % > spreadsheet_export_row - Cell array that contains all output 
% variables.  Be sure to include a description of all output variables 
% that are compiled into this cell array below: 
% 
% General Output - applicable to any data analysis: 
% > filename_load - This input variable is also provided as an output 
% for reference 
% > vin - VIN number extracted from file name, for reference 
% > filenum - .mat file number, that indicates which .mat file is 
% beign processed if there are multiple .mat files per vehicle. 
% This is extracted from the .mat filename 
% > filecount - Total number of mat files for a vehicle.  This is 
% extracted from the .mat file name. 
% > errorcode_string - Text string of all error codes produced by the 
% data analysis, for reference in the Excel Spreadsheet. 
% > critical_fileerror - copy of critical fileerror output to the 
% function, for reference in the excel spreadsheet. 
% > datapointcount - The total number of data points in the vehicle file 
(all 
% bus messages). 
% > firstdatapoint_timestamp - Time stamp corresponding to first/ 
earliest data point collected. 
% > lastdatapoint_timestamp - Time stamp corresponding to last/ latest 
data point collected. 
% > firstdatapoint_serialdate = firstdatapoint_timestamp as MATLAB serial 
date number. 
% > lastdatapoint_serialdate = lastdatapoint_timestamp as MATLAB serial 
date number. 
% 
% Specific output to data analysis: 
% Add a description of new specific data output variables here. 

Figure 2.11 – Step 5 of Adding Additional Data Analysis 

 

If a new error code needs to be added to the shell script and function, follow these steps. 
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Step 1: Write code that defines a new unique value for the variable errorcode in the 

epri_truck_data_file_analyze_fcn_v1.m function if some error condition occurs. 

A section of code to demonstrate this is not provided, because this could occur at many 

different points in the function code. 

When an error code is defined, be sure to update the variable errorcode to the new 

value, or if errorcode already has previous errors, concatenate the new variable vertically onto 

the end of the existing values if multiple error codes should be reported.  In addition 

critical_fileerror may need to be updated as well, so the script can take some action.  Be 

careful to not downgrade the severity of critical_fileerror if a more severe error code was 

encountered previously.  It is the programmer’s responsibility to ensure the data analysis code 

produces the proper errorcode and critical_fileerror outputs for all possible error conditions.  

If statements can be used around subsequent sections of code to prevent execution if an error 

code has been encountered, or a function return statement can be used.  The user will have to 

design a system to ensure proper errorcode reporting. 

It may be a good idea to add some print screen output into the function when the error 

code is encountered and defined, such as: 

 errorcode = 1; % Too Few Data Points - All bus messages. 
 critical_fileerror = 1; 
 fprintf(['ERROR CODE 1: There are too few data points in this file 

for data to be analyzed.' ... 
 '\nThe file only has %d data points.\nThe File must contain at 

least %d data points.\n\n'], ...   
 length(time_days_serialnum), min_datapoints) 

Figure 2.12 – Sample Error Code Output Code 

 

It is recommended to add two new lines ‘\n’ onto the end of the print screen output to 

maintain spacing.   
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Step 2 – Optional but Recommended: Add a new error code description into the output 

variable description for errorcode in the comments at the beginning of the function. 

This will help document what the new error code value means for future reference. 

 % OUTPUTS ARE: 
% > errorcode - Numeric values corresponding to different error conditions: 
% 0 - No error 
% 1 - Too Few Data Points - All bus messages. 
% 
% errorcode can also contain multiple error codes for a single file, if 
% multiple errors are encountered.  If this occurs, errorcode should be 
% a vertical vector which contains all the error codes produced.  It is 
% the programmers responsibility to ensure that errorcode always 
% produces the appropriate output when modifying this script. 

Figure 2.13 – Step 2 of Adding Additional Error Codes 

 

Step 3: Script Changes – Add new print screen output into the higher level 

Analyze_all_truck_data_v1.m script that lists which files produced the error code at the end of 

script execution.  This will print the errorcodes produced by all .mat files into a summarized 

list. 

Match the format of existing error code print screen outputs.  The value of errorcode 

outputted by the function needs to be updated in the following highlighted locations.  This is 

critical to ensure proper output. 

The example below (in Figure 2.14) is an error code which does not exist in the current 

script format, but provides an illustrative example.  Also, update the print screen description so 

an appropriate message is displayed. 
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 % Display all Error Code 3 files 
 if length(find(track_errorcodes(:, 2)==3)) > 0 

fprintf(['Files Producing ERROR CODE 3: Vehicle file contains multiple VIN 
numbers in discrete value data.  \nThere' ... 

' should only be 1 VIN number per vehicle file.\nNo data from this VIN 
number will be saved in analysis results.\n\n']) 

% Display the names of all files that produced error code 3. 
fprintf('\t%s\n', 

data_directory_filenamelist_raw(track_errorcodes(find(track_errorcodes(:, 2)==3), 
1)).name)  

fprintf('\n') 
 end 

Figure 2.14 – Step 3 of Adding Additional Error Codes 

 
Additional actions do not need to be taken to compile error codes.  This will be done 

automatically when any error code is detected.  Error codes are tracked in the variable 

track_errorcodes in the Analyze_all_truck_data script, where the first column corresponds to 

an index in the data_directory_filenamelist_raw.name structure that lists each vehicle file, the 

second column contains the actual error code, and the third column corresponds to the value of 

critical_fileerror to define severity. 

 

2.4 Future Work That Could Improve the MATLAB Big Data Analysis Framework 

Although the data analysis framework was used successfully, there is always room for 

additional improvement.  This section outlines future work that could be implemented to make 

the data analysis framework even more robust and useful to future projects.  There is a huge 

advantage to having efficient, clean, and robust code.  Although it takes longer to develop, it 

can prevent major hassles down the road when it is finally implemented and used.  Here are 

some suggested areas where the described software can be improved: 

1) Parallel processing could be implemented into the data analysis framework using 

MATLAB ’s parallel computing toolbox [34] and it could be run on a computer 

cluster.  Currently the code runs on a single core and can take days to process all of 

the data.  However, since each data file is processed independently, in theory it 
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should be relatively easy to run the analysis in parallel on a computer cluster.  It is 

likely that the for loops would need to be changed into parfor loops and distributed 

arrays would possibly have to be used to collect output.  It is also possible to run 

MATLAB on a Hadoop Cluster [35]. 

2) Reduce hard coded values that control the data extraction CSV input format.  It 

should be easy to modify the data extraction script to accept different CSV formats, 

but there is no centralized system that controls the input file format.  All of the 

values related to format should be collected into one location, similar to the 

controlling variables section.  Maybe these could be grouped together into a 

separate data format definition script that launches from the main script. 

3) MATLAB structures could be used to group similar variables together. 

4) A Try / Catch statement could be implemented around the section that loads data 

files, in case the file system becomes unavailable.  This could also be placed inside 

of a loop, so the system will continue to try and load the data until it becomes 

available.  Occasionally, there were issues where a network issue would make our 

folder structure containing our dataset unavailable.  
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SECTION 3 

INITIAL FEASIBILITY ASSESSMENT OF USING THE EPRI VEHICLE TRACKING 

DATA TO ANSWER POTENTIAL RESEARCH QUESTIONS 

 

3.1 Introduction to the Feasibility Assessment 

A feasibility assessment was conducted in the Fall of 2014 on some of the preliminary 

data to better understand what kinds of questions could be answered.  The work in this section 

laid the foundation for this future work.  Below is a list of the questions that were evaluated for 

feasibility.  Not all of these questions were analyzed as many are very complex data analysis 

problems, so this section just outlines some theoretical approaches that could be used to 

attempt to answer the questions and what CAN signals might be needed.  However, it was a 

good initial exercise to identify what questions might be the most feasible and valuable to 

answer, and what approach might be taken.  This provided a guide to help determine which 

problems were to be analyzed later in this thesis.  Here is a list of the questions that were 

evaluated.  Questions in italic-bold text are examined and analyzed in some form later in this 

thesis. 

 How efficient are the vehicles? 

 What is the effective range of the vehicles? 

 How much energy do the vehicles use? 

 What kinds of utility load shapes do we see when the vehicle is charging? 

 What is the Utility Factor (UF) for the Vehicles? 

 How does HVAC affect vehicle performance? 

 How often were the vehicles charged over a certain period of time? 
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 How long did the vehicles go between charges?  How long were they charging? 

 How often was the vehicle driven?  In general, how far was a trip? 

 Did vehicles mostly travel between a handful of “unique” places, or were driving 

patterns more scattered?  Were most trips between a couple of locations?   

 Define some kind of assessment of vehicle performance (perhaps a combination of 

a couple of things such as efficiency or use depleting and charging of the battery). 

 Show a comparison of the different vehicles, perhaps highlighting why they are 

or are not different. 

 How much energy is recovered by regenerative braking? 

 How do climate and weather conditions affect vehicle performance and driving 

patterns? 

 

It is important to keep in mind that the information presented in this section only 

provides an initial feasibility assessment.  If more data analysis and feasibility assessment were 

performed, more information would become available and feasibility assessments and analysis 

approaches may change.  Unexpected problems that cannot be anticipated could still be 

encountered.  However, this section also provides an important foundation to identify which 

questions make the most sense to answer and provides a starting point to answer those 

questions. 

The remainder of this section provides a detailed discussion about each of the questions 

outlined above.  This discussion provides insight into the methods that might be used to answer 

these questions and what CAN signals might need to be collected from a vehicle to make the 

analysis feasible. 
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3.2 Category: Questions Related to Energy Usage / Efficiency of the Vehicles 

3.2.1 How Efficient Are the Vehicles? 

Vehicle efficiency can be addressed by examining the length of charge-depleting trips, 

or energy used per mile.  Distance traveled, gasoline consumption, and battery charge 

depletion data are needed to answer this question.  Energy consumption from vehicle charging, 

or energy usage by the motors and engine can also be used. 

A metric is needed to determine distance traveled.  An odometer signal could be used to 

measure distance traveled.  GPS data could also be used to estimate distance traveled.  Or 

vehicle speed CAN data can be integrated to determine the distance traveled.  Since speed data 

is being collected at a 1-second sampling frequency in the EPRI Commercial Truck dataset, 

this could be fairly accurate, but with no other metrics to determine the distance traveled there 

is no way to verify the accuracy of the estimation.  The lack of either odometer or GPS data to 

determine the distance traveled significantly lowers the feasibility of performing this analysis. 

A CAN signal for the fuel tank level could be useful to help determine how much 

gasoline was used by the vehicle.  The rate of fuel consumption should correspond to the 

power used by the vehicle engine.  Since the engine will only use a very small amount of fuel 

on a second-by-second basis, it may not be possible to observe the changing engine power 

requirements on this time scale using the fuel tank level signal.  The fuel level sensor is most 

likely not accurate enough to see how the fuel level in the gas tank is changing over seconds or 

minutes and is likely only useful to determine fuel consumption over longer time periods.  

Monitoring the fuel injection flow rate through the fuel injectors on the engine could provide a 

more accurate measure of fuel consumption over short time periods. 
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Engine power can also be estimated from engine speed and torque if those CAN signals 

are available.  If the OBDII  system on a vehicle platform can measure engine torque directly, 

this could be useful.  A correlation between vehicle torque and the CAN-communication bus 

signal for throttle position could possibly be determined.  However, in a hybrid vehicle with a 

parallel or power-split powertrain configuration [2, 13], it may be difficult to determine if the 

torque request from the driver is being directed to the engine or the electric motors without 

additional information.  Another problem is that the power output from the engine driveshaft 

will be much less than the energy content of the fuel that is flowing into the engine, as internal 

combustion engines generally have efficiencies of about 25% [36, 37].  The engine efficiency 

also varies depending on what speed and torque it is being operated at [13].  To estimate fuel 

consumption from the engine speed and torque, detailed information mapping the engine 

efficiency across the operating range of engine speeds and torques would also be needed.  It is 

possible that this kind of engine test data could be acquired from an outside source depending 

on the vehicle platform. 

To calculate electric charging efficiency, it would be best to use the charging station 

current and voltage CAN signals, as these are believed to represent the power being drawn 

from the grid by the vehicle charger.  Using the AC current and voltage values from the 

electric grid that are going into the charging station is probably best, as these measure AC 

electric powers before any power loss occurs due to the AC / DC converter or other 

components in the vehicle charger.  There may also be other CAN signals that measure the DC 

power after the power goes through the AC / DC converter in the vehicle charger. 

Electric power drawn from the battery can be calculated by multiplying the CAN 

signals for the main vehicle battery current and the voltage.  If this is monitored on a second-
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by-second basis, instantaneous power consumption can be estimated.  The electric energy 

coming out from the battery may not be the same as the electric energy needed to charge the 

battery, as there will be some energy loss when the battery is charged. 

Another method to determine electric motor power could be to use CAN signals that 

correspond to the rotational motor speed and the motor torque.  Many hybrid vehicle models 

have two electric motors (which also function as power generators) [2, 38, and 39] so torque 

and rotational speed would be needed for each motor.  Motors generally have much higher and 

uniform efficiencies than engines and they generally convert about 75% of electric power into 

mechanical power [13, 37, and 40].   

If data is being collected at different points along the electric power path through the 

vehicle, it may be possible to determine the electric efficiency of different electric components 

in the vehicle.  This would be done by studying the energy losses across those components.  

Specific pieces of hardware for which the energy efficiency could be calculated include the AC 

/ DC converter in the charger, the battery, and the electric motors. 

In addition, to calculate the driving efficiency, the time periods over which the vehicle 

is driving first need to be identified in the data.  Checking if the vehicle speed is greater than 

zero could be one method to identify these driving events.  Or a key on/off signal could also be 

used. 

This question of calculating the vehicle efficiency and fuel economy is investigated and 

analyzed further in Section 5 and results are presented. 
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3.2.2 What Is the Effective Range of the Vehicles? 

To determine the effective range of a Plug-in Hybrid Electric Vehicle (PHEV), charge-

depleting trips need to be identified.  The CAN signal for battery state of charge (SOC) can be 

used to identify when the battery reaches depletion.  The exact SOC level where the vehicle 

platform transitions from a charge-depleting to a charge-sustaining mode depends on the 

vehicle platform. 

In addition to state of charge, a metric is needed to determine distance traveled.  An 

odometer signal is likely the best way to measure distance traveled.  GPS data could also be 

used to estimate the distance traveled by calculating the distance between consecutive GPS 

data points.  Or a vehicle speed CAN signal could be integrated over time to determine the 

distance traveled.  Since speed data is being collected at a 1-second time interval in the EPRI 

Commercial Truck data, speed integration could be an accurate estimation for this dataset.  

However, it is also recommended to collect either odometer or GPS data to compliment the 

speed integration so the accuracy of the calculation can be verified.   

 

3.2.3 How Much Energy Do the Vehicles Use? 

This question is very similar to the question “How Efficient Are the Vehicles?” which 

was previously discussed in Subsection 3.2.1 and has the same requirements for data 

collection.  As a matter of fact, determining how much energy vehicles use is a prerequisite to 

determining their efficiency.  Again, see this previous Subsection 3.2.1 for more information 

about what is needed to determine energy usage. 

The feasibility of this question is likely higher because the overall amount of energy 

used per vehicle does not depend on distance traveled.  However, odometer, speed, or GPS 
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information that can be used to calculate distance would still be very beneficial, as energy used 

per mile might be a more useful number. 

 

3.2.4 What Kinds of Utility Load Shapes Do We See? 

This question can be addressed by referencing charger voltage and current information 

and the timestamps associated with these events.  A utility load shape is the graph of the power 

load on the power grid over time. 

 

3.2.5 What Is the Utility Factor for the Vehicles? 

To determine utility factor [41], it needs to be determined whether the vehicle is in a 

charge-depleting mode or a charge-sustaining mode [2, 11].  The vehicle is using battery power 

in charge-depleting mode, while it is using engine power in charge-sustaining mode.  This can 

be done by monitoring the battery SOC signal for low values that indicate a transition from CD 

to CS mode and by using an engine RPM bus message to determine when the engine is turned 

on.  Alternatively, the SAE J2841 methodology can be used with only daily-driving distance 

data [60]. 

This question is further investigated in Section 4 and utility factor results are provided 

for the EPRI Medium-Duty Truck dataset. 

 

3.2.6 How Does HVAC Affect Vehicle Performance? 

Using AC systems in the vehicle is known to decrease vehicle performance and 

efficiency [42, 43].  To measure the impact of these systems in the real world, data needs to be 

collected for the heater and/or AC systems.  Another reason to monitor HVAC use is that it is 
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know that in some PHEV vehicles, the engine turns on when its heater is running [44, 45].  

Engine rotational speed and ambient temperature CAN signals could be used to determine 

when the engine is turning on at cold temperatures vs. warm temperatures, and how this 

correlates to HVAC and vehicle performance. 

This question is discussed and analyzed further in Subsection 5.6.3. 

 

3.3 Category: Questions Related to How the Vehicles Were Used 

3.3.1 How Often Were the Vehicles Charged Over a Certain Period of Time? 

Charging events need to be identified in the continuous stream of data, likely using 

charging station or charging port current and voltage CAN signals to see when the vehicle is 

plugged in and when power is being transmitted to the vehicle. 

An algorithm to calculate charging events is presented in Section 4. 

 

3.3.2 How Long Did the Vehicles Go Between Charges?  How Long Were They Charging? 

Again, charging events need to be identified in the vehicle operating mode column.  

Then, the length of the charging events and the time between them can be averaged.  Time 

stamp information will need to be used.  Charging station current and voltage signals could 

also be used to determine when the vehicle is charging based on raw data signals. 

 

3.3.3 How Often Was the Vehicle Driven?  In General, How Far Was a Trip? 

To answer this question, there needs to be a way to determine when the vehicle is 

driving in the data stream.  Vehicle speed CAN information could be monitored for values 

greater than zero, which would indicate driving. 
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Distance traveled would also need to be determined.  An odometer CAN signal is likely 

the best way to measure distance traveled, as this is the legal definition of the value.  If these 

values are not available, GPS or speed integration could also be used.  With high-sampling rate 

data collected at 1-second intervals in the medium-duty truck data, this could be very accurate, 

but it would be impossible to verify the accuracy without another signal.  The lack of either 

odometer or GPS data to determine the distance traveled would significantly lower the 

feasibility of determining how much distance is traveled during trips. 

 

3.3.4 Investigate Driving Patterns 

Did vehicles mostly travel between a handful of “unique” places, or were driving 

patterns more scattered?  Were most trips between a couple of locations?  Describe general 

trends in driving habits without providing detail on specific vehicles. 

GPS data is required to answer these questions.  The location of the vehicle would need 

to be identified for this type of analysis.   

To improve this type of analysis if  GPS data is available, it may be helpful to survey 

the actual vehicle drivers in the fleet to identify the locations they consider to be home, work, 

the grocery store, etc. If this additional information can be collected from drivers, instead of 

just studying time spent going between frequently visited locations, it would be possible to 

actually define time spent driving from home to work, or home to the grocery store, etc.  
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3.4 Category: Questions Related to Utility Fleet Health Assessment and Performance 

Overall, the questions in this section are much more advanced and the answers will be 

based on the results of the questions that were reviewed previously.  Many of these questions 

cannot be answered until questions in the Questions Related to Energy Usage / Efficiency of 

the Vehicles in Subsection 3.2 are answered, such as “How much energy do vehicles use?” 

 

3.4.1 Define Some Kind of Assessment of Vehicle Performance (Perhaps a Combination of a 

Couple of Things Such as Efficiency or Use Depleting and Charging of the Battery) 

If previously reviewed questions are answered, some sort of diagnostic method could 

be determined to combine the results from the other questions to determine vehicle 

performance metrics.   

Another interesting study could be to look at charging locations.  If a vehicle charges in 

a certain location, this could be designated as a charging location and it could then be seen how 

frequently the vehicle charges again if it returns to and parks in this location.  GPS location 

data is required to answer this question. 

Kinetic Intensity (KI) could be investigated to measure driver aggressiveness.  Kinetic 

intensity is defined at the ratio of positive characteristic acceleration to the square of 

aerodynamic speed [46].  High kinetic intensity values indicate that positive acceleration 

events are dominant, while low kinetic intensity values indicate driving behavior dominated by 

cruising at high speeds.  A high-data sampling rate, such as 1-second sampling frequency data, 

is required to see the short term acceleration events that are needed to calculate kinetic 

intensity.  A CAN signal for throttle position could also possibly help identify driver 

aggressiveness and acceleration events.  To improve the accuracy of a kinetic intensity 
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calculation, a CAN signal for vehicle acceleration could also be used if it is available.  This 

would prevent the differential of speed from being taken.  For more accurate results, the 

change in height or gradient can be factored into the vehicle acceleration equation.  GPS data 

could be used to calculate change in altitude between points as the vehicle goes up and down 

gradients. 

 

3.4.2 Show a Comparison of the Different Vehicles, Perhaps Highlighting Why They Are or 

Are Not Different 

This question is very broad, which increases its feasibility.  Metrics such as standard 

deviation could be determined to quantify deviations between all the vehicles in a fleet for 

different values such as average speed, efficiency, etc.  

Case studies could be provided for a few interesting vehicles to provide a close up view 

of a small subset of the data.  Since there would be privacy concerns with publishing detailed 

information about the driving habits of specific drivers, this would only be possible if legal 

authorization were obtained from some of the drivers to be included in these case studies.  

Obtaining legal authorization to publish information about the driving habits of specific drivers 

would be very beneficial to the goals of any research project, as understanding the behavior of 

individual vehicles in the dataset can supplement the high-level fleet-wide view created from 

mining all of the data.  Illustrating the differences in driving behavior between specific vehicles 

could provide additional insight into how the fleet is being used. 

If legal authorization to publish case studies based on a few individual drivers can be 

obtained, these case studies could be further supplemented by integrating softer datasets into 

the hard data collected by the vehicle tracking system.  This softer data could include 
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interviews with fleet drivers about their experience, or self-reported driving information similar 

to the NHTS survey [47].  Although this type of information is generally not as concrete or as 

accurate as electronically gathered data from sensor networks, it is also a more flexible data 

collection system that may be able to identify unforeseen trends that are not being monitored 

by the electronic system.  When you just ask people about their experiences, you do not have to 

anticipate what kind of an answer you will be getting such as when you are trying to configure 

an electronic system of sensors.  This could help identify gaps in the electronic data collection 

system, or it could also help record information that cannot possibly be collected by sensors 

such as “driver satisfaction.”  This type of softer information could also be used to understand 

why trends in the electronic data occur.  For example, maybe Driver A has a different work 

schedule than Driver B and this could only be verifiably determined by interviewing fleet 

drivers directly.   

 

3.5 Category: Additional Questions That Could Be Interesting to Study 

3.5.1 How Much Energy Is Recovered by Regenerative Braking? 

The high 1-second data collection rate in the EPRI Medium-Duty Truck dataset should 

allow for these short term braking events to be identified.  Electric current traveling from the 

battery to the electric motor will be negative when these events occur, since the motor is 

operating as a generator and sending power back to the battery.   

In addition to a throttle position CAN signal, it could be helpful to have a brake 

position CAN signal for this kind of analysis.  This would help confirm when brakes are being 

used. 
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3.5.2 How Do Climate and Weather Conditions Affect Vehicle Performance and Driving 

Patterns?   

An ambient temperature CAN signal would likely be very helpful to determine the 

climate conditions in which the vehicle is operating.  If there are outside humidity or 

barometric pressure sensors on the vehicle, it could be helpful to collect data from these 

sensors as well to construct a more complete picture of the current weather conditions.  For this 

type of analysis, GPS data could also be very helpful, as it could in theory be cross referenced 

with a historical weather database to pull up temperature and weather conditions at a specific 

point at a specific time.  This could help determine if other weather events that cannot be 

recorded by current vehicle CAN sensors, such as rain or snow conditions, are occurring.  GPS 

information could also help identify changes in driving habits based on locational information.  

In addition to GPS, it would also be very helpful to have odometer information, as this could 

be used to determine distance traveled during full charge-depleting trips.  Distance traveled 

during charge depletion can be used as a metric of performance and efficiency. 

The correlation between ambient temperature and fuel economy is further explored in 

Section 5 and results from this analysis are presented in Subsections 5.5.1, 5.5.2, and 5.5.6. 

 

3.6 Comments on Data Sampling Frequency 

Higher data collection rates should improve the accuracy of all calculations.  Greater 

detail can be seen when data is collected at smaller time intervals so short-term vehicle events 

can be analyzed.  To better understand what this means, states of vehicle operation can be 

thought of in two categories: long-term super states and short-term control states.  Super states 

include longer term events such as EV vs. HEV mode, plug-in charging events, transmission 



57  

gear, drive, park, etc. Control states include short-term events such as fuel-injection rate 

changes in the engine, vehicle acceleration, braking, steering, etc. A lower data collection rate, 

such as data that is reported every minute, is sufficient to see the long-term super states.  

However it cannot identify the short-term control states.  A higher data collection rate allows 

for an analysis of both super states and control states, which will broaden the scope of possible 

analysis that can be performed with the data.   

The disadvantages of a higher data collection rate include the memory size and 

processing power required to analyze the collected data.  In addition, when more data is 

collected, there is a higher probability of rare and obscure errors occurring in the data which 

may need to be filtered and protected against.  Depending on the nature of the research 

question, a decision will need to be made on what data collection rate should be used.  

However, it is always possible to summarize a large dataset, but it is not always possible to 

collect more information if the data collection rate is too low, so it is generally better to use a 

higher data collection rate if the resources are available to do so. 
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SECTION 4 

DATA MANAGEMENT FOR GEOGRAPICALLY AND TEMPORALLY RICH 

PLUG-IN HYBRID VEHICLE “BIG DATA” 

 

4.1 Summary of Work 

This section details some of the data management algorithms that were developed to 

manage and derive results from the second-by-second medium duty truck dataset.  I would like 

to give special thanks to Zachary Wilkins for helping develop the charging and driving event 

identification algorithms and for developing much of the code to calculate these events while 

under my guidance.  Zack was able to finalize and test the event identification algorithms 

based on the data management and analysis framework that I had developed previously and 

which is described in Section 2.  He also developed the formula for the alternative utility factor 

calculation and generated the code to calculate and display the results.  I was then responsible 

for reviewing the code, fixing a few bugs, writing up the scientific paper, and determining the 

conclusions of the work.  Also, special thanks to Mark Kosowski at EPRI for providing us with 

the data for this study and overseeing the data collection project in general.  Finally, special 

thanks to my advisor Dr. Thomas Bradley at Colorado State University for providing me with 

guidance and insight to develop this paper.  Much of the text here in Section 4 was published in 

the Electric Vehicle Symposium 29 (EVS29) conference paper entitled Data Management for 

Geographically and Temporally Rich Plug-in Hybrid Vehicle “Big Data” on which I was the 

primary author [1].  There have been only minor changes to the paper in this thesis and some 

additional material added to the original text.   
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The Electric Power Research Institute (EPRI) and its project partners have developed 

some of the highest sampling frequency and most complete light- and medium-duty plug-in 

hybrid electric vehicle truck operational data for Odyne and Via trucks.  This data was 

collected through a CDMA / GMS transmitter plugged into the CAN-communication bus of 

the fleet.  This section discusses the process of transforming these raw datasets into a scientific 

database of driving and charging events using data quality management, filtering, processing 

and decision support tool development.  The result is a dataset with demonstrable utility for 

vehicle design, policy analysis, and operator feedback.   

 

4.2 Introduction 

The Electric Power Research Institute (EPRI) and the US utility industry are interested 

in understanding the means by which grid electricity will enter the transportation energy sector.  

The quantity, timing, and statistical distribution of electricity consumption have near- and 

long-term effects on utility planning for loads, assets, profitability, and sector growth [2, 48]. 

In the near-term, the function of the various types of OEM (original equipment 

manufacturer) electrified vehicles that are for sale is the most effective indicator of how 

consumers will use electrified vehicles [2, 15, and 49].  To gather data on the function of these 

vehicles and the behavior of their users, EPRI and the US Department of Energy have 

developed a program to gather and store GPS (geographical positioning system) derived 

location data along with detailed vehicle operation data from a sample set of light- and 

medium-duty PHEV trucks being utilized as utility bucket trucks and general support trucks 

[15].  Because of the very large scope of this effort, there exists a need to synthesize these large 
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datasets into databases and toolsets that can communicate the results of these studies to 

researchers and stakeholders.   

With the development of distributed data collection technologies, many other 

researchers have developed techniques to collect, store and synthesize operation data from 

vehicle fleets [15, 43, 48, 49, 50, 51, 52, 53, 54, 55, 56, and 57].  Characterizing the operation 

of PHEVs is of particular interest to transportation system researchers because of the well-

documented dependency of vehicle fuel consumption on individuals’ driving and charging 

habits [41, 48, 49, 50, 52, 53, 55, and 58].  In many previous studies [48, 49, 52, and 53], 

datasets have relied on the data collected from private individuals and have therefore 

encountered privacy and traceability concerns.  In this study, we have collected vehicle 

operation data from commercial light- and medium-duty vehicles.  In general, these vehicles 

represent a unique study subset of the US vehicle fleet that has not been studied in detail 

before.  In addition, because these are fleet-owned vehicles, the collection of correlated GPS 

and vehicle operational data does not present as many privacy concerns.   

On the other hand, the increased scope of this data collection effort has led to a variety 

of technical and “big data” management challenges that have been addressed.  In discussing the 

“reality” of these data collection projects, their limitations, and the technical means used to 

generate results from them, this chapter seeks to improve and contribute to the state of the art 

in the field of large-scale big data transportation system data collection projects.   

Colorado State University (CSU) has developed an algorithm to identify drive and 

charge events from the raw vehicle data files with the 1-second data sampling frequency.  

These results can be viewed directly in an Excel spreadsheet format with charts as 

demonstrated in the Decision Support Tools Development Subsection 4.3.6, or used for 
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additional scientific analysis, as demonstrated in the Application of Summarized Dataset and 

Results Subsection 4.4.  By summarizing the low-level high frequency data into a list of 

higher-level events, the data size can be greatly reduced into a format that provides great utility 

for answering policy, vehicle design, and operational questions about the vehicle fleet using 

significantly less computational power. 

 

4.3 Methods 

4.3.1 Dataset and Project Overview 

In this project, EPRI and CSU sought to summarize the very large raw dataset to 

produce a smaller subset of data with immediate utility to answer policy, design, and 

operational questions about PHEV vehicles.  This summary data was then used to calculate the 

actual energy consumption of these light- and medium-duty vehicles, investigate charging 

frequency, and generate utility factor curves.  This was done using vehicle-derived data, 

including driving distance, battery state of charge, fuel injection rate into the engine, charging 

station power, and more.   

 

4.3.2 Data Management and Quality 

The dataset was originally downloaded directly from EPRI’s main database hosted on 

Amazon Redshift using an R script with embedded SQL.  The Amazon Redshift database 

already had some low-level filtering applied to the data to eliminate known bad sensor data.  

The SQL embedded in R was used to filter out irrelevant CAN signals at the very beginning of 

the analysis, so they would not have to be parsed through later in the resulting CSV files.  
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These R scripts created a single CSV file for each vehicle month, which were then processed in 

MATLAB.   

The first step of the MATLAB processing involved converting the CSV data into a .mat 

file data format and performing some basic data validation.  Resaving the data added time to 

the overall processing sequence, as the data had to be written to and read from the disk an extra 

time.  However, it was also generally more beneficial to save intermediate data, so that later 

processing steps could be rerun without reprocessing all of the data through the preliminary 

steps.  Due to the large file size, a feature was built into the code that would only read in a 

portion of a CSV file to break up those files into multiple .mat files.  These .mat files could 

then be loaded individually into the computer memory for analysis to avoid overloading the 

available RAM. 

Basic data validation was also performed in this preprocessing step.  The basic data 

validation primarily verified the data file format, such as correct number of table columns and 

proper delimiters.  Most of the data was properly formatted, but it was also important to 

remove even very uncommon errors to prevent later analysis scripts from crashing.  This data 

cleaning made the general analysis process more robust.   

 

4.3.3 Data Processing and Filtering - Compiling Driving Events List from Raw Data 

To analyze the raw data into meaningful results, the data processing and filtering steps 

were closely integrated.  Often, the data was re-filtered after each processing and analysis step.  

This section walks through the process of how the raw 1-second sampling frequency data was 

converted into a meaningful list of vehicle driving events.  These driving events were also 

presented along with associated statistics, such as trip distance, time duration, energy usage, 
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and State of Charge (SOC).  Then, the next Subsection 4.3.4 shows how this algorithm to 

identify driving events can be modified to identify charging events. 

The biggest challenge to identifying these drive events was data quality, as there are 

some situations where the data for an event is incomplete.  Therefore, it is critical for this 

algorithm to be reasonably robust when applied to imperfect data that contains some errors, 

while remaining effective enough to still produce realistic results.   

A drive event is considered to be a single vehicle trip starting when the vehicle begins 

moving and ending when the vehicle stops moving.  Each drive event is recorded in a single 

spreadsheet row, along with additional information about the date, the time, the trip duration, 

the distance traveled, the fuel and electricity consumption, the initial battery state of charge, the 

final battery state of charge, and information identifying the individual vehicle.   

The drive mode for each vehicle was also identified along with each drive event and 

these are categorized as charge-depleting (CD), charge-sustaining (CS), or blended driving 

modes.  A charge-depleting mode is when the vehicle is driving only on battery power and this 

drive mode is powered by energy from the electric grid.  A charge-sustaining mode is a 

traditional Hybrid Electric Vehicle (HEV) mode, in which energy from the gasoline engine is 

recaptured and stored in the battery and the source of vehicle energy comes from conventional 

gasoline.  A blended drive mode is a variation of charge-depleting mode where the gasoline 

engine is used to slow the rate of battery depletion and the vehicle is operating on both grid and 

gasoline energy.  For Odyne, the vehicle only operates in a blended and CS mode, so there is 

no CD mode on Odyne [15].  On Via, the vehicle only operates in CD and CS modes and the 

blended mode is used to categorize driving events where the vehicle transitions from CD to CS 
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mode [15].  How the driving modes are defined could also be further refined in future analysis 

work. 

Data processing and filtering began after the data was converted into a MATLAB data 

format, as described previously in the Data Management and Quality Subsection 4.3.2.  When 

the analysis was run, any individual vehicle data file that had less than 5000 logged data points 

in a month was removed from the analysis.  These small data files could have been the result of 

vehicles that were never driven or vehicles that did not have a functional tracking system 

installed.  Then, the following data points for relevant CAN-communication bus messages 

were extracted: vehicle speed, vehicle odometer, battery state of charge, vehicle charging 

station voltage (when vehicle is being charged), vehicle charging station current, and engine 

fuel injection rate.   

Once these messages were extracted, each signal was run through a time stamp filter 

that removed duplicate timestamps.  This step was very important, as occasionally there were 

multiple different values reported at the same time for a single CAN-communication bus 

signal.  These multiple reported values caused significant problems later in the data analysis 

script if not removed.  The algorithm kept the first reported value and removed the rest. 

Next, the data points from the fuel injection rate, battery voltage, battery amperage, and 

battery SOC were interpolated onto the timestamp values for vehicle speed using linear 

interpolation.  Since the data was collected asynchronously, interpolation was a good method 

to realign and project all of the data vectors for different signals onto a single time stamp value.  

Vehicle speed timestamps were used for the projection target because these data points were 

generally only recorded when the vehicle is driving.   
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Drive events and modes were then estimated based on the following criteria:  

 

1) Vehicle speed greater than 0.01 mph was considered driving (vs. other events in the 

data such as charging, etc.).  An alternate method might have been to use a key on/ 

off signal, but unfortunately this CAN signal was not added into the data collection 

system until after this algorithm was developed and data was already downloaded 

onto CSU machines.   

2) Charge-Sustaining (CS) mode occurred when the battery was at less than 5% SOC 

for Odyne and was at less than 22% SOC for Via.  These numbers are defined in 

EPRI’s technical report [15].  It should be noted that for Odyne, 0% SOC is defined 

as the minimum charge level allowed by the vehicle’s control system and it does 

not represent a true 100% battery discharge that would be detrimental to battery 

performance. 

3) Charge-Depleting (CD) mode occurred when the vehicle was driving and not in 

Charge-Sustaining Mode.   

 

See the sample MALTAB code below (in Figure 4.1) to illustrate this logic process.  

Note that these steps were applied to all of the raw data points collected at the 1-second 

sampling frequency.  Later on, once more information was compiled about the driving events, 

the CD and CS modes were redefined.   
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 % Filter for identifying all drive events  

 Drive_Filter = Drive_Speed > 0.01; 

  

 % State of charge limit for CS Mode in Battery % SOC 

 CS_SOC_Limit = 5; % Odyne 

 % CS_SOC_Limit = 22; % Via 

 

 %% Primary Filters 

 % A CS Event is when the vehicle SOC is below the CS SOC Limit 

 CS_Filter = (Drive_Filter & Drive_SOC < CS_SOC_Limit); 

  

 % A CD Event is any time the vehicle is driving and is not in CS mode 

 CD_Filter = (Drive_Filter & ~CS_Filter); 

Figure 4.1 - Sample MATLAB Code to Illustrate the CD and CS Filtering Process 

 

Next, to find the start and end locations for each drive event, the script looked for a 

change in the vehicle trip conditions where the drive conditions transitioned from true to false 

in the list of all raw data points.  This was done by creating a logical vector based on the drive 

criteria, offsetting the values by one index value to create another offset vector, and then 

subtracting the vectors.  Any non-zero value in the resulting vector indicated a change in 

driving conditions and the sign of the value indicated whether the vehicle started or stopped 

driving.  To augment this method, a secondary method was also implemented to identify large 

gaps between timestamps greater than 300 seconds.  Any event with a time stamp gap greater 

than 300 seconds was split into two different events at the time gap, as it was assumed that the 

lack of recorded data indicated that the vehicle was not running.  Note that the data collection 

system installed on the vehicles only recorded data points when the vehicle was in operation or 

charging.  If any of the start and end times for an event were equal, that event was removed 

from the dataset.  Next, if any 2 events took place less than 120 seconds apart, they were 

recombined into a single event, as a stop of less than 2 minutes was considered 

inconsequential.  Finally, any drive events with less than 5 data points were removed to prevent 

small idiosyncrasies in the data from being recorded as significant events.  Filtering out these 
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small blips in second-by-second sampling frequency data was very important, because there 

were often small anomalies in the data that added noise to the bigger picture.  Combined, these 

methods robustly identified events when the vehicle was driving. 

Once the start and end times of drive events were located, those starting and ending 

timestamps (or index values) were used to locate other relevant information from the dataset to 

calculate statistics of interest for any particular driving event.  The statistics calculated for each 

event include distance traveled, fuel used, electric energy used, change in SOC, the start time 

and date, and the event duration.  A trapezoidal integration was also used to find the integrated 

values of some variables, such as fuel use, distance traveled, and electric energy usage when 

only the time-rate signal was available.  Note that speed was integrated to calculate distance 

even though an odometer signal was available because some of the Via odometer data was 

known to be faulty.  Ideally, an odometer signal should be used to calculate distance if it is 

available, but that was not the case for this dataset. 

At this point, some of the previously defined charge-depleting trips were redefined to 

be either a blended or charge-sustaining mode, based on additional information from the 

relevant summary statistics for each event. 

For this data analysis, a vehicle charge-depleting trip was redefined as blended mode 

when: 

1) The delta SOC for a previously identified charge-depleting trip was negative (i.e.  

charge was decreasing),  

2) The fuel consumption was positive, and  
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3) The initial SOC was above the CD / CS transition SOC that was set at 5% for the 

Odyne analysis and 22% for the Via analysis, based on the transition limits defined 

in EPRI’s report [15].   

 

Charge-depleting trips were redefined to be in charge-sustaining mode based on the 

following criteria: 

1) Delta SOC increased over the duration of the event. 

2) Fuel consumption was greater than zero and the vehicle was not in blended mode.   

 

Every other condition was considered to be a charge-depleting mode.  See the sample 

MATLAB code below (in Figure 4.2) to illustrate this logic: 

 

Blended_Condition = ((CD_SOC_Delta < 0) & (CD_Fuel > 0) & …  
 (CD_SOC_Initial > CS_SOC_Limit)); 

CS_Condition = (CD_SOC_Delta >=0 | (CD_Fuel > 0 & ~Blended_Condition)); 

  

for Iteration = 1:number_of_charge_depleting_events 

    % Determine Drive Mode 

    if Blended_Condition(Iteration) 

        CD_T_Mode{Iteration} = 'Blended'; 

    elseif CS_Condition(Iteration) 

        CD_T_Mode{Iteration} = 'CS'; 

    else 

        CD_T_Mode{Iteration} = 'CD'; 

    end  

end  

Figure 4.2 - Sample MATLAB Code to Redefine Driving Modes 

 

This last step produced the final values used to define the driving event modes in the 

event summary spreadsheet.  The final results were then exported into an Excel spreadsheet 

format.  This completed the data processing and filtering needed to identify drive events.  
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These results can be reimported into MATLAB for additional analysis or viewed as a stand-

alone document.   

 

4.3.4 Data Processing and Filtering - Compiling Charging Events List from Raw Data 

The algorithm used to identify charge events is similar to the algorithm used to identify 

drive events.  For this analysis, a charge event is considered to be a time duration when power 

was being delivered to the battery from the charging station.  Alternatively, a charge event 

could possibly be defined as a time when there was a voltage across the charging station.  

Using only voltage would account for time when the vehicle was plugged in but already fully 

charged, as power transfer stops when the battery is full. 

Charge events are also identified as Level 1, Level 2, or Level 2+ charges, which 

depends on the charging station type.  A Level 1 charger has a charging level of 120 volts, a 

Level 2 charger has a charger voltage of 240 volts, and a Level 2+ charger has a charger 

voltage of 240 volts with a power greater than 3.3kW [59].  The charge level for charging 

events was determined by finding which of the rated charging station voltage levels the actual 

charging voltage signal was closest to. 

Here are some notable differences in the charging events summary calculation when it 

is compared to the driving events summary calculation: 

1) This calculation used CAN signals for the charging station voltage, charging station 

current, and vehicle battery SOC. 

2) A vehicle was considered to be in a charging event when: 
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a. The charging power was positive and greater than 100 watts.  Charging 

station power was calculated by multiplying the charging station current 

signal by the charging station voltage signal. 

b. The duration of the charging event was greater than 2 minutes. 

3) All signals were interpolated onto either the charging station voltage or charging 

station current signal timestamps.  The projection target was chosen to be the signal 

with the most time stamp values.   

4) Any event with a time stamp gap greater than 2400 seconds was split into two 

different charging events at the time gap.  Any two events with a time stamp gap of 

less than 2400 seconds were combined into a single charging event. 

5) Charging events with no change in SOC were removed.  Then, the final state of 

charge was defined as the maximum SOC for the charging events, due to errors 

caused by approximating end locations of the charging event.  This removed some 

negative delta SOC values.  After the final SOC was redefined, any charging event 

that still had a negative change in SOC was removed. 

 

4.3.5 Code Validation 

Result validation is very important to the data analysis process.  Just because a data 

analysis script reads in data and produces numbers does not guarantee that those results are 

useful or accurate.  Therefore, it is critical to build validation tools into the data analysis script 

to track the script execution process so intermediate steps can be evaluated.  Below is a list of 

some of the validation tools that were developed for this project.  Section 2 of this thesis 

provides more information about these data validation features as well. 
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 A system to track custom error messages was embedded into the script, so that 

problems with individual files could be traced back to a specific point in the dataset.  

The data analyst still had to define and program the error code definitions into this 

framework, based on their discretion. 

 There was an option to easily create custom graphs of intermediate data from the 

data analysis process for each vehicle.   

 A run log of console print screen output was also recorded.  It was up to the data 

analyst to add print screen statements into the code to document the script execution 

process in a useful manner.   

 

4.3.6 Decision Support Tool Development 

Once the raw data was compiled into an event summary spreadsheet, it was very easy 

to post-process the data into charts and figures.  Additional software could be written to 

visualize the data, such as a web app, or the data can be processed directly in Microsoft Excel.  

Below in Figure 4.3 are some sample Excel graphs to demonstrate how the event summary 

data can be quickly visualized to support fleet management decisions, vehicle design, public 

policy, and research questions.  Excel pivot charts and tables were used to create these graphs. 
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Figure 4.3 - Examples of Data Visualizations in Excel for Decision Support 

 

4.3.7 Recommendations for Future Analysis Work 

For future work, here are some additional suggestions that could possibly be used to 

improve the data analysis methodology outlined here in Section 4 of this thesis.  These 

suggestions were not widely implemented in this study, but are instead seen as logical next 

steps to build on the methods presented in this section. 
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1) As datasets grow larger, it will become more important to parallelize the data 

analysis algorithm and run it on a computer cluster or multi-core machine.  For this 

study, some very initial preliminary work was done in the area of code 

parallelization, but it was found that the same results could be produced with less 

software development work and hardware investment by just letting the machines 

run for longer.  However, if the data size grew by another order of magnitude or if 

tighter deadline ruled out multi-day run times, parallel computing would have a 

much larger payoff and should be considered.   

2) More of the available CAN-communication bus signals could be integrated into the 

utility factor calculation to develop additional alternate utility factor calculations.  

For example, since both electric charging energy and fuel injection rate are 

available, the ratio of electric energy to gasoline used could be used as an 

alternative measure of utility factor.   

 

4.4 Application of Summarized Dataset and Results 

Once the raw dataset is transformed into summarized event data, it is very easy to 

generate useful numbers and additional analysis to support decisions related to policy, fleet 

operation, and vehicle design.  For example, this study generated utility factor curves from the 

summarized event data for the fleet of trucks, which supports both policy and vehicle design 

decisions [2, 41].  Utility factor (UF) curves for PHEV Medium-Duty Work trucks have also 

never been published, so the results from Odyne are immediately useful.  Then, to better 

understand how the number of daily charging events could affect utility factor, some additional 

statistics about the charging events were compiled.  The charging event statistics support 
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operator feedback and public policy by indicating that utility factor could be improved if the 

vehicles could be frequently recharged during the day [2, 41, 53, and 55].   

 

4.4.1 Utility Factor Curve Discussion 

This section describes and presents the calculation of utility factor (UF) results for both 

the Odyne and Via fleets.  There are three curves on these graphs.  The first curve is the 

standard utility factor curve in the SAE J2841 specification that was based on NHTS (National 

Household Travel Survey) data [60].  The second curve is the truck UF curve, calculated using 

the SAE J2841 methodology [60].  The third curve was calculated using the truck data, but 

with the SOC-based correction factor added to the standard SAE J2841 methodology to 

account for the possibility of more than one charge per day.  It should be noted that the 

standard SAE J2841 methodology assumes that vehicles are fully recharged only once every 

day, which may or may not be an accurate assumption [41, 49, 55, and 60].  Previous work by 

others has explored alternate utility factor definitions [41, 55]. 

The drive event summary data table information from the primary analysis described in 

the previous Subsection 4.3 is then used to calculate the UF curves for the medium-duty truck 

data.  First, each individual vehicle is identified, so UF vs. Range Charge-Depleting (RCD) can 

be calculated individually for each vehicle.  Then, a fleet wide UF curve is fit over this data. 

The total driving duration, distance, fuel use, electric energy use, and delta SOC is 

extracted and compiled for each individual vehicle day.  Total vehicle day driving distance is 

then computed by adding together the driving distance of each individual driving event.  Total 

Daily Delta SOC is calculated by adding together the Delta SOC for blended and CD driving 

modes. 
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To build the utility factor curve, a vector of theoretical Range Charge-Depleting (RCD) 

values is constructed from 0 to 300 miles, in increments of 0.5 miles.  This and vehicle daily 

total driving distance are then used to calculate a utility factor curve for each individual 

vehicle.  The following equation specified in SAE J2841 for the Fleet Utility Factor (FUF) [60] 

is used for this calculation:  

UFሺRେୈሻ =  ∑ ୫i୬ ሺdk,Rిీሻdk∈S∑ dkdk∈S      (1) 

In this equation, the Utility Factor (UF) is a function of the theoretical charge-depleting 

range (RCD).  dk is the daily driving distance of a single vehicle and S is the set of all daily 

vehicle driving distance data.   

Known sources of potential error in the standard SAE J2841 Fleet Utility Factor 

calculation shown above are the assumptions that it is based on [55].  According to the SAE 

J2841 Specification [60], there are two main assumptions that go into this calculation: 

1) The vehicle starts the day from a routinely achieved, fully charged state. 

2) The vehicle is charged to said state before every day of vehicle travel. 

 

Based on these assumptions, the vehicle is only charged once per day.  However, in the 

real world, many PHEV vehicles are recharged multiple times, especially if there is a charging 

station available at work or if the vehicle returns home multiple times throughout the day.  

These multiple charges increase the effective utility factor of the vehicle.   

An attempt was made to account for multiple charges per day by using the SOC signal 

to calculate a modified SOC based utility factor.  The below equations are used to calculate the 

modified SOC based utility factor curve.  These equations are a slight modification to the 

standard SAE J2841 Fleet Utility Factor (FUF) equation: 
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��ሺ�஼஽ሻ =  ∑ ୫i୬ ሺ��,ோ಴ವ∙஼�ሻ��∈� ∑ ����∈�      (2) 

�� =  ୫ax ሺ|∆ௌ�஼�|,ଵ଴଴−ௌ�஼಴ೠ೟���ሻଵ଴଴−ௌ�஼಴ೠ೟���      (3) 

In the SOC-based utility factor curve equation, Ck is a factor that increases the effective 

RCD in the SAE J2841 Fleet Utility Factor equation, based on the total daily change in battery 

State of Charge, ΔSOCk.  To calculate ΔSOCk, the changes in state of charge values for every 

vehicle trip in a day are added together.  Note that the absolute value of ΔSOCk is taken to 

ensure that the value is always positive.  The term 100 - SOCCutoff represents the percent SOC 

change that would occur during one fully charge-depleting trip.  The SOCCutoff value represents 

the battery state of charge level in which the vehicle transitions from a charge-depleting to a 

charge-sustaining mode, and in this analysis the value was set to 5% for Odyne and 22% for 

Via (as mentioned previously in Subsection 4.3.3) [15].  Note that the SOCCutoff value depends 

on the specific model of vehicle and its hybrid control system architecture.  The idea behind 

the Ck factor is that if a vehicle recharges during the day in between trips, its ΔSOCk will be 

greater than its 100 - SOCCutoff, thus increasing the true charge-depleting range of the vehicle 

for the day.  If ΔSOCk is less than 100 - SOCCutoff, the utility factor equation for the day will be 

the same as the SAE J2841 utility factor.  It should also be noted that if the vehicles are not 

charged at least once per day, the SOC-corrected utility factor equation will output the exact 

same curve as the standard SAE J2841 methodology. 

Below in Figures 4.4 and 4.5 are the two graphs that summarize the utility factor curves 

for both the Odyne and Via fleets: 
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Figure 4.4 - Odyne Utility Factor Curves 

 

 

Figure 4.5 - Via Utility Factor Curves 
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For the medium-duty Odyne trucks, it can be seen that the UF is higher than the 

standard SAE J2841 UF curve.  From a design perspective, this means that these trucks can be 

designed with a smaller battery than otherwise would be needed if the standard SAE J2841 UF 

curve was used to meet performance requirements.  From a policy perspective, medium-duty 

trucks may not need as strict of emissions requirements as other commuter vehicles, as they are 

inherently driven in such a way that increases UF.  The SAE J2841 UF curve is just an average 

of all vehicles in the US, whereas smaller subfleets within the set of all vehicles may have 

different usage and UF curves [41, 49].  However, it should also be noted that Odyne trucks do 

not operate in a true all-EV (electric vehicle) mode until the battery is depleted, which is an 

assumption of the SAE J2841 methodology [15, 60].  Instead, the Odyne Trucks use a blended 

CD vehicle mode where some gasoline power is used to extend the range of the electric 

battery.  So in reality, the actual gasoline displacement of the Odyne trucks will be less than the 

gasoline displacement estimated by these UF curves.  The actual gasoline displacement of 

these vehicles could likely be improved if their control strategy was reprogrammed to have a 

true-EV mode, or a blended-driving mode that used more electric power than the current 

driving mode.   

For the light-duty Via trucks, it can be seen that the UF is much closer to the standard 

SAE J2841 UF curve than it is for the Odyne trucks.  In this situation, it looks like the SAE 

J2841 UF curve does a good job of approximating the actual real-world UF of Via trucks.  

However, there is still a slight difference, so depending on the accuracy needed; the UF curve 

presented in this paper may still be required.  Unlike Odyne, the Via trucks operate in a true-

EV mode until the battery is nearly depleted, so the Via UF curves are likely representative of 

their actual utility grid utilization in the field. 
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In the Odyne and Via truck UF curves, it is also interesting to see that the SOC 

correction factor did not make a significant difference in the UF curve, so in this situation the 

standard SAE J2841 assumption of only one charge per day appears to be very reasonable.  It 

is possible that the vehicles are only being charged once per day in line with the SAE J2841 

standards, and if the charging pattern of the fleet changed, there could be a significant 

difference between the two UF methodologies.  To better understand the story of why these 

two curves are so similar, charging event statistics are discussed next in Subsection 4.4.2 to 

verify this hypothesis. 

Overall, the truck UF curves show that light- and medium-duty commercial PHEV’s 

are a great application for PHEV’s.  The fact that their utility factor curves are equivalent to or 

higher than the standard SAE J2841 curve means that on average, light- and medium-duty 

truck PHEV’s can displace at least as much if not more gasoline than privately owned 

commuter PHEV’s.  Displacing gasoline with electric power can create many positive 

economic and environmental benefits [2].   

 

4.4.2 Charging Summary Statistics Discussion 

Some additional charging event summary statistics were generated to better understand 

the truck UF curves presented in the previous Subsection 4.4.1.  Table 4.1 below presents these 

numbers for both Odyne and Via: 
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Table 4.1 - Charging Event Summary Statistics for Odyne and Via 

 Odyne Via 

Total number of vehicle driving days 1279 1679 

Total number of charging events 1850 1076 

Average number of charging events per vehicle driving 
day  

1.45 0.64 

Mean percent change in battery SOC for charging 
events 

35.0 54.4 

Median percent change in battery SOC for charging 
events 

26.5 62.0 

Average percent change in battery SOC for all charging 
events per vehicle driving day (%) 

50.7 34.8 

Mean final battery SOC after charging event (%) 91.8 90.9 

Median final battery SOC after charging event (%) 100.0 100.0 

 

Most charging events almost completely refill the battery, as can be seen in the 

demonstration graphs presented previously in the Decision Support Tools Development 

Subsection 4.3.6.  If a large number of charging events did not completely refill the battery, the 

SAE J2841 UF curve assumptions may not be accurate. 

Combined, these charging event statistics show that in general the fleet is being 

recharged along the lines of the SAE J2841 assumption of only one fully replenishing battery 

charge per day.  This explains why the two different utility factor curve methodologies 

presented in the previous Subsection 4.4.1 have such similar results.  It is also notable that on 

average, the Via fleet is not being fully recharged after every day of driving.  This information 

should alert the Via fleet operators that they can potentially improve their efficiency by 

recharging the vehicles more often.  This recommendation is also noted in EPRI’s report [15] 

on page 4-26, which was reached independently of the CSU results presented in this section of 

the thesis. 
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The Odyne fleet is charged more than once per vehicle driving day, but analysis 

showed that a large number of charges only replenishing the battery by a very small amount 

(see the previously presented graphs in the Decision Support Tools Development Subsection 

4.3.6).  Therefore, it is reasonable to conclude that the Odyne vehicles are being plugged in on 

days when they are not driving and are already mostly charged. 

From an operational perspective, there could be a lot of room for utility factor 

improvement for both the Odyne and Via fleets if multiple charges could be facilitated 

throughout the day [2, 15, 41, 53, and 55].1 

 

4.5 Conclusions for Event Summary Data 

The event summary methodologies presented in this chapter may be beneficial to future 

vehicle tracking projects that require the analysis of high sampling frequency data from on-

board tracking sensors.  The ability to summarize a large database of second-by-second driving 

data points into a list of longer-term events is a particularly difficult task, especially when the 

data collection devices are not 100% reliable.  However, when compiled correctly, this event 

summary list is also very useful.  To demonstrate the utility of these event summary statistics, 

utility factor curves, charging summary statistics, and demonstration histograms were 

presented. 

This work is also novel because it is the first time that UF curves have been published 

for a fleet of medium-duty PHEV trucks.  The presented UF charts for Odyne provide 

                                                            
1
 All of the charging statistics presented in this section were calculated from the summarized event data using 

about 80 lines of MATLAB code (including whitespace and comments) which ran on a single core in a matter of 

seconds.  The same analysis could have also been performed in Microsoft Excel.  For comparison, the MATLAB 

code written to create the event summary from the raw second-by-second driving CSV data was thousands of 

lines of code, and took multiple days to run on a single core.  Maintaining summarized event data can greatly 

simplify, streamline, and expedite the data analysis process when new questions of research, design, operation, 

or policy are posed. 
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additional evidence that different policies may be needed to govern different vehicle classes 

and that a single overarching UF curve for every situation may not be appropriate [41].   

The truck UF curves also show that light- and medium-duty trucks are an effective 

application for PHEV technology, as light and medium-duty PHEV’s displace a large amount 

of gasoline with electric power.  These PHEV’s can displace at least as much gasoline as 

privately owned commuter PHEV’s, if not more.   
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SECTION 5 

CALCULATING VEHICLE EFFICIENCY AND CORRELATING IT TO OTHER 

SIGNALS – METHODS AND RESULTS 

 

5.1 Summary of Work 

The work presented in this section originated from a class group project in my CS435 

Big Data class where I learned how to use Java, Hadoop, and MapReduce to perform big data 

analysis.  The goal of this work was to use the EPRI Odyne and Via truck data described 

previously to correlate vehicle efficiency to other signals and metrics.  Some of the MATLAB 

code that was used in this section (specifically Subsection 5.2) was similar to the code 

developed for earlier work.  The data management framework was improved from the original 

framework described in Section 2 by myself and Mike Reid.  Mike did the majority of the 

restructuring.   

The algorithm to analyze the data in this section was broken up into three consecutive 

phases and code was developed independently for each phase.  Each phase outputs a new 

dataset that is the input data for the next data processing phase.  The below flowchart in Figure 

5.1 summarizes all of the high-level software phases that were created to perform the data 

analysis presented in this chapter.  Then, additional description for each step is provided below 

the chart. 
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Figure 5.1 - High-Level Summary of the Fuel Economy Correlation Software 

 

Phase 1 of 3 involves cleaning and filtering the raw data, identifying charge-depleting 

drive events based on the algorithm explained in Section 4, and then splitting each charge-

depleting drive event into approximately 90-second drive intervals.  The drive intervals are 

approximate, because it is impossible to always divide any given length of driving time into 

perfect 90-second intervals.  Therefore, each drive event is divided into the number of 

segments that would make the length of each division as close to 90 seconds as possible.  The 

raw second-by-second data for each of these 90-second drive segments is then written into a 

CSV file with data from only that drive segment.  These CSV files are used as the input to 

Phase 2 of 3 which was written in Java for the Hadoop MapReduce framework.  The idea is 

that the fuel economy and other metrics can be calculated for each 90-second drive segment to 

Download EPRI Data 
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reduce each of these segments into a single data point.  This discretizes the continuous data in a 

way such that a regression model can be calculated.  It was also important to break up the raw 

data files into smaller chunks to avoid heap space errors in the Phase 2 MapReduce framework, 

which uses a whole file input format. 

The Phase 1 of 3 script is written in MATLAB and is similar to previous data 

processing scripts.  Phase 1 of 3 reads in the raw data from .mat files produced by the Data 

Extraction Function described in Section 2.  A slightly modified version of the Data Extraction 

Function described in Section 2 was also created for a new data format provided by EPRI and 

it was informally called Phase 0 of 3 since it came before Phase 1.  However, the basic 

principle and design behind this new Phase 0 is fundamentally the same besides compatibility 

for the new data format.  Phase 0 simply parses raw CSV files, verifies the CSV file format, 

and writes out the data into .mat files.  It should also be noted that parallel processing was not 

implemented in the Phase 1 MATLAB code so it takes about a full day to process any of the 

available datasets on a single core.  More details about exactly how Phase 1 is implemented are 

provided in Subsection 5.2. 

Phase 2 of 3 is a MapReduce function written in Java.  This MapReduce function was 

run on a Linux computer cluster in the Computer Science department here at CSU.  The goal of 

Phase 2 is to read in each of the CSV files created by Phase 1 that represent about 90-seconds 

of drive data and reduce each file into a single line of data.  The Phase 2 output contains 

information about the fuel economy, ambient temperature, kinetic intensity, whether the AC 

was on, etc. Only a mapper in the MapReduce framework is needed to perform this reduction.  

Since this code can run in parallel and is scalable to large computer clusters, this analysis only 



86  

takes about an hour to run on a Hadoop computer cluster with 15-20 machines.  More details 

about exactly how Phase 2 is implemented are provided in Subsection 5.3. 

Phase 3 of 3 is where the regression model, visualizations, and any final filtering steps 

are implemented.  The input to Phase 3 is a single CSV file produced from the output to Phase 

2.  Graphs and regressions can then be created based on the raw data.  A few different Phase 3 

implementations were created.  The first Phase 3 implementation uses MATLAB to plot the 

vehicle efficiency against other variables, such as ambient temperature, kinetic intensity, cabin 

temperature, etc. The second Phase 3 implementation is written in MapReduce and performs a 

linear-regression model with k-fold validation.  The advantage of the MapReduce 

implementation is that it is scalable to much larger datasets, but the disadvantage is that much 

of the regression calculation has to be programmed from scratch using linear algebra so the 

regression model could be calculated in pieces running on parallel computers.  The third 

implementation of Phase 3 was written in R and this is likely the best implementation of Phase 

3.  The R implementation is similar to the MATLAB implementation, except that R provides 

better statistical tools to calculate confidence intervals on the regression line and other statistics 

of interest.  Other function shapes besides a linear model were also experimented with in R and 

these produced slightly better results.  More details about exactly how Phase 3 is implemented 

are provided in Subsection 5.4 and sample results are provided in Subsection 5.5. 

I would like to thank Joseph Minicucci and Mike Reid for helping me write the 

software to implement the algorithms that I developed to perform this analysis.  A large 

amount of software development was required to produce these results and I would not have 

had time to do everything myself.  This was a very large project and it would not have been 

possible without a group effort. 
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5.2 Details of Phase 1 Analysis Implementation – Data Cleaning, Filtering, and 

Splitting 

This subsection is divided into two additional lower-level subsections.  The first 

subsection (5.2.1) details the data filtering and processing algorithm that was implemented in 

the Phase 1 analysis software.  The second subsection (5.2.2) presents and reviews some of the 

data validation tools that were developed to provide more information about the impact of each 

data processing step in the Phase 1 implementation. 

 

5.2.1 Details of the Phase 1 Analysis Algorithm 

The Phase 1 script was written in MATLAB and can operate on four different datasets.  

Both the Odyne and Via platforms have an old dataset and a new dataset.  However, only the 

old Odyne dataset is used for most of the results presented later in Subsections 5.5 and 5.6.  A 

small portion of the presented results used the new Via dataset as well.   

Like the Analyze_all_data function described in Subsection 2.3, controlling variables 

are defined at the beginning of the script.  The user also has the option to toggle diagnostic 

plots on and off.  If the data is organized in subdirectories, the user has the option to define the 

subdirectory folder names.  It was a lot easier to just hard code the subdirectory names for this 

application than program MATLAB to search through all of the file folders.   

The script will loop through each individual .mat data file and process each of the files 

separately.  These .mat data files are created from the raw CSV files using the Phase 0 / Data 

Extraction Script which is not discussed here.  See Subsection 2.2 for more information about 

the data parsing and extraction process used to create the .mat files.  If  the raw data file does 

not have at least 1000 data points when all of the different signals are counted together, the file 
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will be skipped.  Each raw data file should contain data from one vehicle for one month, or if 

the data size for one vehicle month is too large then the Phase 0 / Data Extraction Script could 

have produced multiple .mat data files for one vehicle month.  Then, each raw CAN-

communication bus signal is parsed from the raw data format so that the data points from each 

signal can be saved into a separate vector.  The script produces an error if there were no data 

points for a signal name.   

In the new data formats for Odyne and Via which are not extensively used in the 

presented analysis results, each raw signal needs to be sorted by timestamp to ensure that all of 

the data points are in a sequential order.  In the new data, most timestamps are ordered 

sequentially in local groupings, but these local groupings are also not arranged sequentially.  

This might be a result of the Hadoop system used by EPRI’s contractor to manage the raw 

data, as Hadoop software has a tendency to write output data in a random order.  Fortunately, 

in the old datasets used for most of this analysis, the raw data was already pre-sorted.   

After each individual CAN signal is sorted, another filter removes data points with 

values outside of a realistic range of values for that signal.  This is also referred to as “Filter 1” 

in the next Subsection 5.2.2 and Table 5.1 where the impact of each data filter is quantified.  

The exact values of the realistic range are just determined by using basic engineering 

judgement and common sense.  There is no formula used to derive these values.  For example, 

an ambient temperature of 100 degrees Celsius does not make sense in the real world as we 

know that the atmosphere is not at boiling temperature.  Below are the acceptable value ranges 

that were chosen to filter each signal in the dataset.  Data points outside of these ranges are 

deleted.   
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 Ambient Temperature: [-30, 50] deg C 

 Battery Voltage: [0, 600] Volts 

 Battery Current: [-400, 400] Amps 

 Battery State of Charge (SOC): [0, 100] Percent 

 Vehicle Speed: [0, 200] kph 

 Odometer: [0, 500000] miles 

 Cabin Temperature: [-30, 50] deg C 

 

After the range of each signal is checked, the next step is to count the number of data 

points in each signal in the data file.  If any of the above signals have less than 100 data points 

in a data file, the data file will be skipped.  This is also referred to as “Filter 2” in the next 

Subsection 5.2.2 and Table 5.1. 

Next the data is run through a filter to remove duplicate timestamps.  This is also 

referred to as “Filter 3” in the next Subsection 5.2.2 and Table 5.1.  There is an uncommon 

glitch in the data where a sensor will report two different values for the same timestamp and 

this causes execution problems later in the software if the duplicate timestamps are not 

removed.   

Again, the length of every signal in the data file is checked after the duplicate time 

stamp filter to see if the filter reduced the data size below the required threshold of 100 data 

points per signal.  In this case, no additional data files were removed, but it is good to check 

one final time after any filter that removes data because it is always possible that a data file 

will be made too short.  This is also referred to as “Filter 4” in the next Subsection 5.2.2 and 

Table 5.1. 
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After duplicate timestamps are removed, all of the CAN signals are then interpolated 

onto the speed timestamp values.  The vehicle speed timestamps were chosen to be the 

projection target because these data points are generally recorded when the vehicle is driving.  

This aligns the asynchronous data collection from multiple sensors onto the same set of 

timestamps so different signals can be compared directly using the same timestamp values.  

This is very similar to the process used and described previously in Subsection 4.3.3.   

Then, the drive event identification algorithm previously explained in Section 4 is used 

to identify where charge-depleting drive events occurred with some adjustments to the 

algorithm parameters.  Here are the parameters that were used to tune the performance of the 

algorithm from Subsection 4.3.3 for this situation: 

 Minimum Speed to Identify Drive Event = 0.01 kph 

 Minimum SOC for Charge-Depleting mode = 6 % (Odyne) 

 Minimum Allowable Drive Event Duration = 90 secs 

 Minimum Allowable Time Gap Between Drive Events = 30 secs 

 Minimum Number of Data Points Allowed in an Event = 20  

 

In addition, to simplify the analysis, charge-depleting and charge-sustaining modes are 

not redefined based on additional available information for each drive event such as the change 

in SOC and the fuel injection rate, as explained in Subsection 4.3.3.  This is a difference 

between the analysis methodologies presented in Subsection 4.3.3.  In this analysis, the 

blended driving mode of the Odyne trucks is considered to be a charge-depleting mode and is 

referred to as such in this section.   
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Once each charge-depleting drive event is identified, the algorithm splits up each drive 

events into approximately 90-second drive segments that can later be reduced into single data 

points in a regression model.  The goal is to discretize continuous data.  For this discussion, a 

drive event is defined as the data from when the vehicle started driving to when it stopped 

driving (while ignoring short, brief stops by the vehicle).  A drive segment is defined as an 

approximately 90-second interval of data within a drive event.   

The length of each drive segment varies depending on the length of each drive event as 

it is normally not possible to divide a drive event up into perfect 90-second intervals.  It was 

decided that it is better to have slightly uneven drive segment times than drive segments with 

large amounts of non-driving time beyond the end of the drive event.  Including a large amount 

of non-driving time in a drive segment would essentially amount to a very short drive segment 

and give unequal weighting to that short time period at the end of the drive event in the 

regression model.   

To check that the data interpolation is working properly across the drive segments and 

events, the software counts the number of pre-interpolation data points for each CAN signal 

after “Filter 4” that are contained within the drive interval.  This is to see if the interpolated 

estimations for each CAN signal are based on nearby data points of actual recorded data for 

that signal.  This is one improvement over the analysis methodology presented in Subsection 

4.3.3.  If a drive event or segment does not contain any actual pre-interpolation data points, the 

interpolation over that drive event or segment is not going to be accurate.   

Any drive event that does not have at least one actual data point for ambient 

temperature, AC switch state (on/ off), heater switch state (on/off), or cabin temperature is 

ignored and output for that event is suppressed.  These are referred to as the “long-term 
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signals.”  Any drive segment within a drive event that does not have at least 20 data points for 

engine fuel injection rate, battery voltage, battery current, and battery state of charge is ignored 

and output for that event is suppressed.  These are referred to as the “short-term signals.”  

These two categories of checking the entire drive event vs. the drive segment are based on how 

quickly the signal values generally change and are recorded by the data collection system.  

Signals such as the ambient temperature and whether the heater is on or off tend to be longer-

term signals that are generally more stable over longer periods of time, so their values can be 

more safely extrapolated across the larger time range of an entire drive event.  The other 

signals change more rapidly and must have data points recorded in each individual drive 

segment.  Note that not all versions of the data and vehicle models record all of these signals, 

so if a platform does not have all of the mentioned signals in the raw data, the software only 

checks for the signals that are available and the final data analysis is adjusted accordingly.   

If a drive segment of approximately 90 seconds of length has all of the required drive 

signals during the data interpolation check, the different signals are compiled and written out 

into a unique CSV file that only contains data from that drive segment.  In this CSV file each 

CAN-communication signal is placed into a separate column and the timestamp values are 

used as the row labels.  Each CSV file should have approximately 90 rows of data.  A unique 

key that can be used as a key in the MapReduce Framework is also generated for each drive 

segment.  The key contains unique identifying information for each drive segment in a text 

string so the individual drive segments can be kept separate if needed. 

This completes the description of the Phase 1 data processing algorithm.  After the CSV 

files are written out by this process, they need to be uploaded onto a Hadoop Cluster (which 

uses the HDFS file system) so they can be processed by the Phase 2 MapReduce function.  
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Section 5.2.2 provides a description of some of the data validation tools that were built into the 

MATLAB Phase 1 software and provides an initial quantitative assessment of the impact from 

the data filtering steps described in this section. 

 

5.2.2 Review of the Validation Tools That Were Built Into the Phase 1 Process and What 

They Reveal About Data Filtering 

During the MATLAB Phase 1 process, a number of validation tools were built into the 

software to verify that each data processing and filtering step was working correctly.  The goal 

was to produce some diagnostic output for the intermediate data processing steps to better 

understand how those steps were impacting the real-world data in practice.  This helped 

prevent the software from becoming a “black-box” algorithm where only input and output data 

would be accessible and the inner workings of the software would be obscured. 

For example, a number of graphs can be generated for each data file to visually verify 

that the process is working correctly.  A graph of speed vs. time for each drive event is 

produced and vertical-red lines indicate where the drive event is being split into the 

approximately 90-second drive segments.  An example of one of these graphs is shown in 

Figure 5.2.  Note that the timestamps on the x-axis are in a MATLAB serial date format.  This 

tool was very helpful to debug the software and it helped identify problems in the first versions 

of the software where the start and end timestamps for each drive event did not line up with the 

actual data. 

By looking through the collection of these graphs it is easy to visually identify where 

drive segments are not being appropriately identified or divided.  Since there are a large 

number of data files, it was not practical to have a human examine every single graph.  
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However, as a collection, it is easy to flip through a few hundred of these graphs in the 

Windows Photo Viewer to identify common problems that affect a large number of data files.  

In addition, if an individual data file produces an error, these graphs provide a specific source 

of information that can be referenced for any individual data file if needed.   

 

Figure 5.2 - Speed vs. Time Graph Showing Drive Segment Divisions for a Drive Event 

 

In addition, for each data file, graphs are made of each individual raw CAN-

communication signal vs. time to get an understanding of how the data is structured.  These are 

helpful to identify CAN-communication signals that may have bad raw data.  As discussed for 

the previous example presented in Figure 5.2, a large number of these graph data files were 

generated since there are a large number of raw data files.  Figures 5.3 and 5.4 below show 

examples of what some of these raw CAN signals look like.  Note that some information on 

these graphs has been “whited out” to protect driver privacy and anonymize the data. 
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Figure 5.3 – Battery SOC Signal (in %) vs. Time 

 

 

Figure 5.4 - Current from the Main Vehicle Battery (Amps) vs. Time 
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A number of additional graphs that plot multiple signals on top of each other are also 

produced by the software to see how the different sensor signals align before the data 

interpolation step.  These graphs help to better understand how the data is being interpolated 

during the data interpolation step.  See Figures 5.5 and 5.6 below for examples of these graphs.  

The point of this diagnostic tool is to overlay all of the signals that are needed to analyze drive 

events when vehicle speed data points are being recorded.  It can be seen that most of the raw 

signals that are used in the drive event data analysis are only recorded when the vehicle speed 

is greater than zero.  In this graph, the red points are vehicle speed, the green points are AC 

switch state, the cyan points are ambient temperature, the magenta points are cabin 

temperature, and the dark blue data points are heater switch states.  Note that some of the 

signals have been multiplied by a constant so the different signals all scale to a similar size 

when they are superimposed onto the same graph.  The purpose of these graphs is not to see the 

true quantitative values of the signals.  It is to see when the data points are being recorded 

relative to the other signals.   
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Figure 5.5 - Thermal Systems Signals 

 

 

Figure 5.6 - Thermal Systems Signals (Zoomed in) 
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Finally, in addition to the visual graphs that are generated by the software to aid in the 

debugging process, the data analysis script contains counter variables to track how many data 

points, data files, drive events, and approximately 90-second drive segments remained after the 

different data-filtration steps.  This provides information about the actual impact these data 

filtering steps have when applied to the real-world vehicle data.  The final counter values after 

all of the Odyne data was processed are presented in the following three tables (Tables 5.1, 5.2, 

and 5.3) and one figure (Figure 5.7). 

Table 5.1 shows the number of data points remaining for each individual CAN signal 

before those data points are projected onto the same time stamp values in the data interpolation 

step.  Note that data is asynchronous and each unique CAN signal has a different number of 

data points.  Table 5.2 shows the number of raw data files that were loaded initially and the 

number of data files that had enough signals to actually be used for the analysis.  Table 5.3 

summarizes the data filtering steps after all of the CAN signals are interpolated onto the same 

set of timestamp values. 
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Table 5.1 – Number of Data Points Remaining After Each Individual Data Filtering Step 

Before the Time Stamp Interpolation 

 

 

 

 

 

 

 

CAN Signals 

used in Analysis

RAW - 
Number of Data 

points for each 

specific signal in all 

raw data files before 

any data filtering

FILTER 1 - 
Number of data 

points after Filter 1, 

which checks that 

each data point falls 

within an acceptable 

range for the signal 

and remove outliers

FILTER 2 - 
Number of data 

points after Filter 2, 

which removes any 

data files where any 

CAN signal in that file 

has less than the 

required number of 

data points after 

Filter 1

FILTER 3 - 
Number of data 

points after Filter 3, 

which removes 

Duplicate Time 

Stamps

FILTER 4 - 
Number of data 

points after Filter 4, 

which removes any 

data files where any 

CAN signal in that 

file has less than the 

required number of 

data points after 

Filter 1

AC 19120068 N/A 11682104 11519643 11519643

Heat 19118643 N/A 11681989 11519512 11519512

Fuel Injection Rate 35236325 35236325 26823526 26349674 26349674

Ambient 

Temperature
7143466 7142968 4436786 4368418 4368418

Battery Voltage 216268335 216268335 133843107 131597486 131597486

Battery Current 216268374 216228533 133843020 131597423 131597423

Odometer 10213277 10211332 8770931 8585474 8585474

SOC 80218917 80218917 52429475 51117262 51117262

Speed 5525692 5525692 5383072 5247686 5247686

Cabin 

Temperature
7143466 7130675 4428884 4360654 4360654

Total Data Points 

from All Signals
616256563 616201488 393322894 386263232 386263232

Data Filtration Steps

Direction of Data Processing Flow 
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Table 5.2 – Data File Filtering Summary 

 
 

Table 5.3 – Data Filtering Steps After the Linear Interpolation Step 

 
 

 

Data File Filtering Summary

Total data files loaded initially
753

Total data files fully processed and written out - No processing 

errors such as too few data points
397

Data Filtering Steps after all CAN signals are 

interpolated onto the same set of time stamps 

(listed in sequence of processing order)

Total number of unique time stamps after interpolation (same 

as the vehicle speed data point count after Filter 4) 5247686

Total number of Charge Depleating events identified

14391

Total number of Charge Sustaining events identified

2227

Total number of unique time stamps in all identified CD drive 

events 3864768

Total number of Charge Depleating events that had sufficient 

pre-interpolation data points between the start and end 

timestamps for what are defined as "long-term" signals

13708

Total number of approximately 90-second drive segments 

calculated from all remaining CD events after the previous  

long-term pre-interpolation data point check

41951

Drive Segment Filter 1 - Total number of approximately 90-

second drive segments that contained enough short-term pre-

interpolation data points for all short-term signals

39157

Drive Segment Filter 2 - Total number of approximately 90-

second drive segments that contained the minimum number of 

interpolated data points

39157
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In addition, the results in Table 5.1 were plotted into a bar chart using MS Excel for 

easier visualization.  See Figure 5.7 below: 

 

Figure 5.7 – Results Plotted from Table 5.1: Data Points Remaining After Pre-Interpolation 

Data Filtration Steps 

 

Notable details related to the data presented here in Tables 5.1 - 5.3 and Figure 5.7 are 

listed below: 

 In Table 5.1, the total raw data point count does not include small data files that 

were initially ignored because they contained less than the minimum required 
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number of data points, which was 1000 data points for all signals combined.  Since 

these files only have a few data points, leaving them out of the raw data point count 

at the beginning should not significantly decrease the number of raw data points 

recorded in the first column of Table 5.1. 

 In Table 5.1, note that the AC and Heat signal data point counts under Filter 1 are 

listed as “N/A.”  This is because the range filter does not apply to AC and Heat 

signals since they are discrete on/off values instead of continuous data.  For the total 

number of data points in Table 5.1 and Figure 5.7, the raw AC and Heat data point 

count is also used as the count after Filter 1.   

 In Table 5.2, the total number of data files loaded initially does include the small 

data files that are immediately ignored because they contained less than the 

minimum required number of data points, which was 1000 data points from all 

signals combined. 

 Not all of the numbers presented in Table 5.3 are counts of individual data points.  

This table also includes some statistics about the number of drive events and the 

drive segments that each event is split into. 

 In Table 5.3, the number of charge-sustaining events is only included for reference.  

Charge-sustaining events are not used in the data analysis process. 

 See Section 5.2.1 for more details about each specific step in the data-filtration 

process and the sequence of data processing and filtering steps. 
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After reviewing the results of the data-filtration step counters presented above, here are some 

notable observations: 

1) When referencing Figure 5.7, it is surprising that so few vehicle speed data points 

were collected.  This is important because all of the other signals are interpolated 

onto these timestamps.  It is possible that the data collection system could be 

improved by collecting more of these data points to improve the interpolation 

accuracy.  Unfortunately, it is unlikely that any other CAN signal timestamps could 

have been used for the interpolation target in this situation.  It might be possible to 

use the fuel injection rate on Odyne, but since these vehicles also have an electric 

motor that can be used for propulsion, it is possible that in some situations the fuel 

injector would not be used when the vehicle is driving.  The Odometer signal is 

known to have some faulty data on Via so this might not be the best signal to use 

for the interpolation projection target either.  Some of the electrical signals such as 

SOC, battery current, and battery voltage are recorded for other truck operation 

modes in addition to driving, such as Odyne’s stationary and charging mode, so 

these would not be a good choice for the interpolation target either.   

2) The raw number of data points removed by each filtration step should not be the 

only consideration when determining that filter’s effectiveness.  For example, 

although Filter 3 in Table 5.1 only removed a small number of data points, the data 

interpolation step later in the process would have crashed if the software did not 

filter these duplicate timestamps. 

3) Filter 2 removed the largest number of data points when it is compared to the other 

data-filtration steps.  This filter removes entire data files that do not contain the 



104  

minimum number of data points for each signal, which in this case is 100 data 

points.  This means that a large number of data files are missing at least one of the 

required signals listed in Table 5.1 and there could be an opportunity to improve the 

reliability of the data collection system on Odyne Vehicles.  It is unknown why so 

many signals were missing from the original dataset.   

4) Filter 4 in Table 5.1 did not remove any data points.  This is because the previous 

duplicate time stamp filter only removed a small amount of data and no individual 

CAN signal in any individual data file dropped below the minimum number of 

required data points after Filter 3.  However, it is still a good idea to include Filter 4 

in the overall process when analyzing other datasets because it is possible that a few 

files may still need to be removed when the algorithm is used in other applications. 

5) In Table 5.3, it can be seen that checking if each drive event or segment contains 

enough pre-interpolation data points for each individual signal removes a 

significant number of drive events and segments.  About 5% of the drive events 

were removed because they did not contain enough long-term signal data points 

such as the AC on/off CAN signal.  Then, once the remaining drive events were 

split into drive segments, about 7% of those segments were removed because they 

did not contain enough short-term signal data points such as the battery current 

CAN signal.  It is possible that the removed percentage of data is large enough to 

have a significant impact on the final results, depending on the level of accuracy 

desired in the calculation.   
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5.3 Details of the Phase 2 Analysis Implementation – Reducing Drive Segments Into 

Single Data Points 

For this portion of the analysis the Hadoop MapReduce framework is used and 

MapReduce functions are written in Java [29, 33].  Hadoop is a Distributed File System (DFS) 

that runs on a Linux computer cluster and it is commonly known as the Hadoop Distributed 

File System (HDFS).  MapReduce is a data analysis framework that runs on top of Hadoop to 

efficiently process large amounts of data in parallel.  To use MapReduce, one generally writes 

a mapper function that parses the data files, a reducer function that combines the output of the 

mapper function, and a main driver function that controls the job parameters and overall 

execution.  Data is organized into key / value pairs where the key is used to group the data and 

the value represents the actual data values.  For this analysis only a mapper function was used 

and the input was set to a whole file input format that would read in the entire CSV file for 

each drive segment into a single mapper.  The MATLAB code in Phase 1 was used to pre-split 

the data to avoid heap space errors that can be encountered when using a whole file input 

format in the mappers. 

The algorithm for the Phase 2 process is much simpler than for the Phase 1 process.  In 

Phase 2, a mapper in the MapReduce framework is used to reduce each of the CSV data files 

that are output from the Phase 1 process into a single data point.  The mapper function first 

parses each CSV file to identify the individual signals.  Then, trapezoidal integration is used to 

calculate fuel consumption, electricity consumption, and total distance traveled using the fuel 

injection rate, speed, battery voltage, and battery current signals.  Battery power is calculated 

by multiplying the voltage and current signals from the battery and then integrating.  Other 

values, such as ambient temperature, AC on / off (0 or 1 values), and the battery state of charge 
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are just averaged over the 90-second drive segment to produce a single data point for that drive 

segment.  Kinetic intensity is also calculated during this step to give another value to which the 

efficiency data could be correlated [46].  Kinetic intensity can be used to measure driver 

aggressiveness.  The goal is to provide a number of different predictor variables that can be 

correlated against the response vehicle-efficiency variable. 

An equivalent vehicle efficiency is then calculated using the electric and fuel 

efficiency.  This is done by using the energy equivalency of diesel fuel.  The conversions used 

are 1 gallon of gasoline = 33.44 kWh [61, 62] and 1 gallon of diesel has 113% the energy 

density of 1 gallon of gasoline by volume [63].   

All of this data is output by the mapper function into individual files that each 

contained a single line of data.  These are then combined into a single CSV file that contains all 

of the fleet data using Hadoop’s getmerge command.  Alternatively, a basic reducer function 

can also be switched on in the main driver class of the MapReduce code to combine the 

mapper output into any number of data files.  It should be noted that MapReduce writes output 

in a random order so there is no defined sequence in the order of the output data.  Once this 

single CSV file is created for all of the fleet data, it can be analyzed using the Phase 3 code to 

produce regression results and other statistics of interest. 

I would like to give special thanks to Joseph Minicucci for implementing the Phase 2 

algorithm into Java code for MapReduce.  He did a great job of organizing the code and 

creating a clean script to execute this algorithm effectively.  The results presented later would 

not have been possible without his implementation. 
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5.4 Details of the Phase 3 Analysis Implementation – Regression Models 

Once the data reaches the Phase 3 analysis software, it is no longer a “big data” 

problem due to the data reduction and summarization steps in Phases 1 and 2.  However, all of 

the data still resides in a CSV file with about 30,000 lines of data and a process is still needed 

to interpret this data.  Three different frameworks were created to do this.  Alternatively, it 

would also have been possible to analyze the Phase 2 output data using Microsoft Excel, 

although that option was not pursued for this project. 

The first Phase 3 framework is written using MATLAB.  It plots all of the data points 

and creates a number of linear-regression models to check how vehicle efficiency might 

correlate against other variables.  On the Odyne trucks the equivalent fuel economy is 

compared against ambient temperature, AC switch states, cabin temperature, heater switch 

states, kinetic intensity, and vehicle calibration.  The electric only fuel economy is also 

compared to ambient temperature.  Vehicle calibration is a control state that is programmed 

into only the Odyne trucks and it is either mild or aggressive.  A mild calibration slows down 

the rate of battery depletion and uses more gasoline during the charge-depleting mode to 

extend the battery range, while an aggressive calibration does the opposite [15].  Discrete 

values, such as vehicle calibration, AC on/off, and heater on/off are represented by zero or one 

values so a regression can be drawn.  Drive segments where the switch state transitions from 

off to on are represented as fractional values that represent the proportion of time that the 

switch state was on or off.  In addition, a few other statistics such as the average fuel economy 

for both mild and aggressive calibrations are calculated.  Finally, extreme outliers are filtered 

out from the input data for this script before the regression models are calculated.  The 
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description of the Phase 3 R framework later in this subsection has more information about this 

outlier filtering process. 

The second Phase 3 framework was developed for the CS435 Big Data analysis class at 

CSU and it uses MapReduce to calculate a linear-regression model piecewise.  The least 

squares equation from linear algebra is used in a way that allows regression models to be 

calculated on subsets of the data.  The regression models for the subsets can then be added 

together in the reducer phase to produce the entire regression model.  This framework also 

performs k-fold testing.  For scientific work, this framework is not used to publish results, as 

the data is not large enough to justify parallel computations and the other single core methods 

are much simpler, easier to debug, and troubleshoot.  K-fold validation is also not used in the 

presented scientific results in this document. 

The third framework developed for the Phase 3 analysis component is similar to the 

MATLAB framework except that it was developed using the R programming language.  In 

addition, the R framework implements a final data filtering step before the regression was run.  

For the ambient temperature signal, any Odyne data points outside the range of -10 to 49 

degrees C are removed from the regression model.  In addition, any equivalent fuel economy 

data points outside the range of -10 to 50 miles per gallon are removed from the regression 

model.  These outliers are considered beyond the expected realistic range of values for this 

data.  It is not clear why the Phase 1 and 2 software produced these outlier data points, but it is 

believed that they can be safely removed from the regression model as they only represent 

about 1% of the data in the old Odyne dataset and do not fall within a realistic range of values.  

Before this final filtering step on the Odyne dataset, R had 39,153 data points loaded from the 

Phase 2 CSV output file.  After this filtering, 38,761 data points remained.  These filters were 
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then applied to the MATLAB script described previously that can be run as an alternative to 

the R script.  Finally, additional models besides a linear model are fitted to the data, such as a 

semi-log and quadratic model, to see if a better fit could be achieved. 

 

5.5 Sample Results from the Vehicle Efficiency Correlations 

Results from the Phase 3 R script are presented using the old Odyne dataset.  There is a 

new dataset for both Odyne and Via that contains data collected from a wider range of dates, 

but only a little of the analysis on the new Via dataset is presented in Subsection 5.5.6 and it 

did not produce meaningful results.  The new dataset is required to correlate ambient 

temperature to vehicle efficiency for Via as the ambient temperature signal is not present in the 

old Via dataset.  Hopefully, future work can present higher quality results based on this new 

data.  The old Odyne dataset was the same dataset that was used for the results in Section 4 so 

refer to that section for more details about the data used for this analysis. 

 

5.5.1 Vehicle Efficiency vs. Ambient Temperature – Linear and Quadratic Models for Odyne  

First, all of the data points from the approximately 90-second drive intervals are plotted 

on a graph of equivalent fuel economy (mi/gal) vs. ambient temperature (deg C).  Both linear 

and quadratic models are fit to this data.  The quadratic model tests if the data has the same 

trend at both low- and high-ambient temperatures, but results show that the quadratic function 

is very close to the linear function with a slight curve.  The scatterplot with these regressions is 

presented in Figure 5.8 below: 
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Figure 5.8 - Trend in Equivalent Fuel Economy vs. Ambient Temperature for Odyne Trucks 

 

On the linear model, the p-values for the regression coefficients are less than 2x10-16 

where the null hypothesis is that the true coefficient is equal to zero.  On the quadratic model 

the p-values are higher but still very small.  The R-squared values are also small.  The linear 

model has an R-squared of 0.005780 and the quadratic model has an R-squared of 0.006234.  

Since the p-values on the regression model are small and the R-squared values are low, it can 

be concluded that the models are poor predictors for any individual data point, but they also do 

represent the overall average trend seen in the global collection data points.  Therefore, this 

model could be used as an average to represent the overall fleet performance at these different 
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temperatures, but it could not be used to predict the fuel economy of any individual driver for 

any individual trip or 90-second drive interval.  Below (in Figure 5.9, Figure 5.10, Table 5.4, 

and Table 5.5) is the console output from R with these results, as well as a table that 

summarizes key parameters from the console output: 

> summary(Fit) 

 

Call: 

lm(formula = 1/equivalentFuelEconGalPerMile ~ avgAmbientTempInC,  

 data = filteredData) 

 

Residuals: 

Min   1Q      Median  3Q     Max  

-6.925  -2.249  -0.653  1.467  43.013  

 

Coefficients: 

                   Estimate  Std. Error  t value  Pr(>|t|)  

(Intercept)        6.10060   0.04582     133.13   <2e-16 *** 

avgAmbientTempInC  0.02702   0.00180     15.01    <2e-16 *** 

--- 

Signif.  codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 3.541 on 38751 degrees of freedom 

Multiple R-squared: 0.00578, Adjusted R-squared: 0.005755  

F-statistic: 225.3 on 1 and 38751 DF, p-value: < 2.2e-16 

 

Figure 5.9 - R Code Console Output for the Linear Regression Model 

 
 

Table 5.4 - Coefficients and Values for the Linear-Regression Model of Vehicle Efficiency vs. 

Ambient Temperature 

Parameter Estimated value p-value 
y-intercept 6.10060 (mi/gal) Less than 2x10-16 
slope 0.02702 (mi/(gal*C)) Less than 2x10-16 
R-squared 0.00578 N/A 
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> summary(Fit2) 

 

Call: 

lm(formula = 1/equivalentFuelEconGalPerMile ~ poly(avgAmbientTempInC,  

 2, raw = TRUE), data = filteredData) 

 

Residuals: 

 Min    1Q      Median  3Q     Max  

-6.837  -2.252  -0.651  1.469  42.961  

  

Coefficients: 

                                         Estimate    Std. Error  t value  Pr(>|t|)  

(Intercept)                              5.8764362   0.0702665   83.631   <2e-16 *** 

poly(avgAmbientTempInC, 2, raw = TRUE)1  0.0539407   0.0066461   8.116    4.95e-16 *** 

poly(avgAmbientTempInC, 2, raw = TRUE)2  -0.0006267  0.0001489  -4.208    2.59e-05 *** 

--- 

Signif.  codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 3.54 on 38750 degrees of freedom 

Multiple R-squared: 0.006234, Adjusted R-squared: 0.006183  

F-statistic: 121.6 on 2 and 38750 DF, p-value: < 2.2e-16 

Figure 5.10 - R Code Console Output for the Quadratic Regression Model 

 

 

Table 5.5 - Coefficients and Values for the Quadratic-Regression Model of Vehicle Efficiency 

vs. Ambient Temperature 

Parameter Estimated value p-value 
a - intercept 5.8764362 (mi/gal) Less than 2x10-16 
b – linear term 0.0539407 (mi/(gal*C)) 4.95x10-16 
c – quadratic term -0.0006267 (mi/(gal*C2)) 2.59x10-5 
R-squared 0.006234 N/A 

 Equation is of the form: y = a + bx + cx2 = equivalent fuel economy 
 

Next, a residual and QQ-plot were constructed for the linear model explained above.  

This is shown below in Figure 5.11.  It shows that the data is skewed and not normally 

distributed.   
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Figure 5.11 - Residual and QQ-Plot for the Linear Model of Ambient Temperature vs. 

Equivalent Fuel Economy 

 

5.5.2 Vehicle Efficiency vs. Ambient Temperature – Semi-Log Model for Odyne 

To correct the problem of skewed and non-normally distributed data in the previous 

Subsection 5.5.1, the data was replotted on a semi-log scale based on a natural logarithm and 

the linear-regression model was redrawn.  The graphs and table below (Figures 5.12 – 5.14, 

and Table 5.6) show the new regression, residual plot, and QQ-plot.  These graphs show that 

the semi-log transformation improves the assumptions behind the linear model, but it is still not 

perfect.  The trend of lower fuel economy at higher temperatures remains in the semi-log 

regression model.  It is unclear what kind of regression model would create a near-perfect QQ-

plot. 
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Figure 5.12 – Semi-Log Regression of Equivalent the Fuel Economy vs. Ambient Temperature  

 

 

Figure 5.13 – Residual and Normal QQ-Plot for the Semi-Log Regression Model of Ambient 

Temperature vs. Equivalent Fuel Economy 
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> summary(Fit3) 

 

Call: 

lm(formula = log(1/equivalentFuelEconGalPerMile) ~ avgAmbientTempInC, data = filteredData) 

 

Residuals: 

 Min     1Q       Median  3Q      Max  

-3.5584  -0.2876  0.0177  0.3175  2.1402  

 

Coefficients: 

                   Estimate   Std. Error  t value  Pr(>|t|)  

(Intercept)        1.7035909  0.0064891   262.53   <2e-16 *** 

avgAmbientTempInC  0.0035091  0.0002549   13.77    <2e-16 *** 

--- 

Signif.  codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 0.5015 on 38751 degrees of freedom 

Multiple R-squared: 0.004866, Adjusted R-squared: 0.00484  

F-statistic: 189.5 on 1 and 38751 DF, p-value: < 2.2e-16 

Figure 5.14 - R Code Console Output for the Semi-Log Regression Model 

 

 

Table 5.6 - Coefficients and Values for the Semi-Log Regression Model of Vehicle Efficiency 

vs. Ambient Temperature 

Parameter Estimated value p-value 
y-intercept (a) 1.7035909 ( ln(mi/gal) ) Less than 2x10-16 
Slope (b) 0.0035091 ( ln(mi/gal)/C ) Less than 2x10-16 
R-squared 0.004866 N/A 

 Model is: ln(y) = a + bx = ln( equivalent fuel economy ) 

 

The trends seen in these graphs for vehicle efficiency follow the same pattern as the 

trends for conventional gasoline vehicles established in the 1980’s [64].  In this EPA sponsored 

report titled Temperature Correction Formulas for Adjusting Estimates of Automobile Fuel 

Consumption [64] it can be seen on page 8 that fuel consumption is higher at lower 

temperatures, which corresponds to the lower fuel economy in miles per gallon seen in the 

Odyne fuel economy regression lines that were calculated by CSU.  This makes sense, as the 

Odyne truck is still mostly a gasoline powered vehicle with mild-electric hybridization [15].  
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Therefore, the general qualitative ambient temperature trends from conventional gasoline 

vehicles can still be applied to mild hybrid PHEV vehicles such as Odyne Medium Duty Work 

Trucks.  The similarities between the CSU model and this EPA model are further explored 

later in Subsection 5.6.1. 

 

5.5.3 Vehicle Efficiency vs. Kinetic Intensity for Odyne 

In addition to the ambient temperature results, vehicle efficiency was also regressed 

against other variables to look for other correlations.  The most significant trend was found in 

the kinetic intensity [46].  Kinetic intensity (KI) can be used as a measure of driver 

aggressiveness with higher kinetic intensity values corresponding to more aggressive driving 

behavior.  As would be expected, vehicle efficiency decreases as driver aggressiveness 

increases.  The R plot below (Figure 5.15) shows this trend. 
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Figure 5.15 - Vehicle Equivalent Efficiency vs. Kinetic Intensity 

 

The regression model for ambient temperature vs. kinetic intensity has the following 

parameters and R-console output (Figure 5.16 and Table 5.7): 
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> summary(Fit4) 

 

Call: 

lm(formula = 1/equivalentFuelEconGalPerMile ~ kinematicIntensityOneOverKm,  

 data = filteredData) 

 

Residuals: 

 Min    1Q      Median  3Q     Max  

-5.568  -2.003  -0.590  1.258  42.127  

 

Coefficients: 

                             Estimate  Std. Error  t value  Pr(>|t|) 

(Intercept)                  6.1539    0.0171      359.85   <2e-16 *** 

kinematicIntensityOneOverKm  -1.1784   0.0375     -31.42    <2e-16 *** 

---  

Signif.  codes:  

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 3.157 on 38759 degrees of freedom 

Multiple R-squared: 0.02484, Adjusted R-squared: 0.02482  

F-statistic: 987.3 on 1 and 38759 DF, p-value: < 2.2e-16 

 

Figure 5.16 - R Code Console Output for the Linear-Regression Model of Fuel Economy vs. 

Kinetic Intensity 

 

 

Table 5.7 - Coefficients and Values for the Linear-Regression Model of Kinetic Intensity vs. 

Ambient Temperature 

Parameter Estimated value p-value 
y-intercept 6.1539 (mi/gal) Less than 2.2x10-16 
slope -1.1784 (mi*km/gal) Less than 2.2x10-16 
R-squared 0.02482 N/A 

 

The residual and QQ-plot for the equivalent fuel economy vs. kinetic intensity model 

are shown below in Figure 5.17.  Like the previous linear model for ambient temperature vs. 

equivalent fuel economy, although the linear model is not the best model for the data, it does 

highlight that the basic trend is that fuel efficiency decreases as kinetic intensity increases.  

This is the expected qualitative result. 
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Figure 5.17 - Residual and QQ-Plot for the Linear Model of Equivalent Fuel Economy vs. 

Kinetic Intensity 

 

 

5.5.4 Correlations between Vehicle Fuel Economy and Vehicle Drivetrain Calibration for 

Odyne 

Another factor that was investigated to understand its correlation to the Odyne vehicle 

efficiency is the powertrain calibration.  When an Odyne truck is programmed with a mild 

calibration, the vehicle uses more gasoline during its charge-depleting mode to save battery 

power.  When the truck is programmed with an aggressive calibration, the vehicle uses less 

gasoline and more battery power during its charge-depleting mode.  Since all of the collected 

data falls into these two discrete categories, a 2-sample-t-test is used to calculate the mean 

value for each category and the p-value.  Before the statistical test was run, it was expected that 

the results would be statistically significant due to the very large sample size.  The t-test is just 

an extra measure to ensure the significance of the results. 
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The two sample t-test shows that the fuel economy for the mild and the aggressive 

calibrations are very similar.  The Welch-Satterthwaite method is used.  The fuel economy 

during the charge-depleting mode for a vehicle programmed with a mild calibration is 6.705 

mpg.  The fuel economy during the charge-depleting mode for a vehicle programmed with an 

aggressive calibration is 6.791 mpg.  These results are statistically significant as the p-value is 

0.02345.  However, since the calculated values are so similar, it is likely that this difference is 

not the most significant factor that influences vehicle fuel economy in the real world and is of 

debatable practical importance.   

It should also be noted that filtering outliers has a large impact on all of the above 

results.  For example, if the unfiltered data is instead used for the vehicle calibration 2-sample 

t-test, the mild calibration gets a fuel economy of 9.947 mpg and the aggressive calibration gets 

a fuel economy of 6.745 mpg.  However, the p-value of p = 0.2921 for these results is not 

generally considered to be statistically significant.   

A different result with a much larger p-value is also true for some of the other 

regression models presented in earlier subsections before the filtering was implemented, 

although the exact values for each regression model without this filtering are not presented in 

this thesis.  However, as removing outliers is generally considered to be an acceptable 

statistical practice and the removed data points did not have realistic values, we believe that 

these results still meet acceptable statistical practices [65].  This filtering process was 

explained previously in more detail. 
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5.5.5 Correlations between Vehicle Efficiency and Other Variables for Odyne 

In addition, some of the other signals are investigated for trends against the equivalent 

fuel economy in the old Odyne dataset.  These include the HVAC signals and the cabin 

temperature signal. 

Cabin temperature showed a similar correlation to vehicle efficiency as ambient 

temperature, which makes sense as the temperature inside the vehicle is often similar to the 

temperature outside the vehicle.  The data from these results will not be directly presented in 

this thesis, but it is worth mentioning that they were investigated as well. 

It was discovered that the heater and AC signals are not turned on enough to calculate 

any meaningful trend.  It is theorized that AC and heater use might have an impact on vehicle 

efficiency in cold and warm temperatures and there are other studies that support that AC use 

impacts vehicle efficiency [42, 43].   

 

5.5.6 Vehicle Efficiency vs. Ambient Temperature for Via 

Of particular interest is the correlation between the electric fuel economy (in 

miles/kWh) of Via’s pure-electric charge depleting mode and ambient temperature.  Some 

initial evidence from work published by Tugce Yuksel and Jeremy J.  Michalek suggests that 

the driving efficiency of pure electric vehicles has a different correlation to ambient 

temperature than gasoline vehicles [56].   

To investigate this correlation in our own dataset, we used the same algorithm for 

Odyne with some minor code modifications to make it run on the new Via dataset.  Unlike 

most of the other analysis presented in this paper, the new Via dataset that was hosted on AWS 

was used since that was the only way to access the ambient temperature signal.  Unfortunately, 
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the final results from this analysis did not make sense.  After the 90-second drive segments 

with a battery SOC of less than 22% were removed, the majority of the 90-second drive 

segments still had significant gasoline fuel usage reported by the algorithm.  This contradicts 

what we understand about the Via powertrain from EPRI’s report [15] and the Via Corporate 

Website [21, 22] which both state that Via operates with a pure-EV charge depleting mode.   

Below in Figure 5.18 is a histogram that shows the distribution of the gasoline-only fuel 

economy in Via’s charge-depleting mode without the equivalent electric fuel use included into 

the fuel economy calculation.  It can be seen that a large number of the 90-second drive 

segments show significant fuel consumption.  If data points where the reported fuel economy is 

greater than 0.001 gal/mile are removed from this dataset, the number of data points decreases 

from 121984 to 23205 which is about an 80% reduction.  CSU concluded that this filtration 

step is removing too many data points for there to be confidence in final results so final results 

will not be presented here. 
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Figure 5.18 – Problem With the Via Recorded Gasoline Consumption in Charge Depleting 

Mode 

 

It is unclear why so much fuel consumption is being reported for the Via platform when 

it is supposed to be in a pure-EV charge depleting mode.  It is possible that the algorithm does 

not work when it is applied to other vehicle platforms or it is possible that our team could have 

introduced a bug into the software when it was converted to run on the Via dataset.  It is also 

possible that there is a problem with the Via onboard data collection system or that we do not 

fully understand how the Via hybrid powertrain is operating in the real world.  Or, it is also 

possible that some of the new Odyne data got mixed into the new Via data in the new database 

storage system that was only used for the Via analysis presented here.  Finally, the general 
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impression of the Odyne vs. the Via dataset was that Odyne contained more accurate and 

complete data than Via so that could be part of the problem as well.  All of these possibilities 

might be contributing to the problem. 

Since there is uncertainty in these results, the correlation between equivalent fuel 

economy and ambient temperature for Via will not be presented.  Hopefully future research can 

resolve these issues as the results of a pure-EV electric efficiency vs. ambient temperature are 

expected to be significant for the research community. 

 

5.6 Discussion 

5.6.1 Comparison of Odyne Fuel Economy vs. Ambient Temperature Trends to a 

Conventional Vehicle 

We can use the Odyne results to understand the effect that ambient temperature has on 

the fuel economy of these vehicles.  In this discussion section, we compare the fuel economy 

sensitivity to ambient temperature correlation that is calculated in this study for Odyne to the 

correlation calculated in another study.   

First of all, in the 1980’s the EPA commissioned a study to understand the effects of 

ambient temperature on conventional vehicle fuel economy [64] and the Odyne results 

presented here follow the same trend.  The EPA study shows that at cold temperatures, vehicles 

in general use more fuel.  At 0 degrees F in the EPA study, the gasoline engine uses 

approximately 1.14 times more fuel than it does when it is operating in the standard FTP 

temperature range of 68 deg F to 86 deg F [64]2.  This difference disappears once the ambient 

temperature reaches the lower bound of the FTP temperature range in the EPA study as the 

                                                            
2
 Data from the EPA study was derived graphically by using logarithmic interpolation on the graph presented on 

page 8 of this study. Results from the graphical interpolation are approximate. 
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number is a ratio to the FTP fuel consumption.  This can be compared to our ambient 

temperature results from the EPRI Odyne dataset by dividing the predicted miles per gallon 

value from a point within the FTP temperature range ( in this case (68 + 86) / 2 = 77 deg F ) by 

the predicted miles per gallon at 0 degrees F.  At 0 degrees F our semi-log model from the 

EPRI data predicts a fuel economy of 5.161 mpg.  At 77 degrees F our semi-log model predicts 

a fuel economy of 5.997 mpg.  This calculation results in a cold temperature increase in fuel 

consumption of 1.16 times when the cold-temperature fuel consumption is compared to the 

fuel consumption in the middle of the FTP temperature range.  Again, these results are based 

on our real-world data model.  As you can see, the fuel consumption increase of 1.16 times for 

Odyne is reasonably similar to the fuel consumption increase of 1.14 calculated in the EPA 

report for the same temperature [64].   

Table 5.8 below shows a comparison of this ratio between our Odyne dataset and the 

EPA data over a range of other temperatures: 

 

Table 5.8 - Comparison of the Fuel Economy vs. Ambient Temperature Results  

Temperature 
(deg F) 0 20 40 60 80 100 

EPA FE Ratio – 
For Conventional 
Gasoline Engines 

[64] 
 

1.14 1.11 1.06 1.02 0.99 1.00 

FE Ratio from our 
EPRI data (semi-
log model) – for 

mild-hybrid 
electric Odyne 

trucks 

1.16 1.12 1.07 1.03 0.99 0.96 
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It can be seen in Table 5.8 above that our Odyne dataset closely follows the EPA 

dataset.  The biggest divergence occurs at 100 deg F because the EPA study uses a different 

semi-log model for temperatures about the FTP range whereas our study used a single semi-log 

model for the entire data range. 

Since the Odyne truck is a mild hybrid and still produces most of its torque and power 

using a conventional diesel engine, it makes sense that the Odyne truck would follow the same 

general trend as a conventional vehicle.  The electric motor on the Odyne truck only provides a 

small power assist to improve the fuel economy. 

 

5.6.2 How Ambient Temperature Could Impact Fuel Economy at Temperature Extremes 

According to EPRI the Odyne Trucks have a fuel economy rating of 6.07 mpg on the 

CILCC drive cycle when they are programed with a mild-calibration setting that depletes the 

battery more slowly [15].  Assuming that this drive cycle test was performed at room 

temperature (23 deg C), our semi-log model from the EPRI Odyne data suggests that 

temperature could influence the fuel economy results by increasing the equivalent fuel 

economy by 6% when the temperature is increased to 40 deg C or lowering the equivalent fuel 

economy by 11% when the temperature is reduced to -10 deg C.  These differences could have 

meaningful real-world impacts.  These percentages are calculated from our semi-log model 

where the fuel economy at 23 deg C is 5.955 mpg, the fuel economy at 40 deg C is 6.321 mpg, 

and the fuel economy at -10 deg C is 5.304 mpg.  Percentage results for Odyne are calculated 

by dividing the extreme temperature fuel economy by the standard fuel economy at 23 deg C. . 
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5.6.3 The Potential Impact of HVAC on Fuel Economy 

 In addition, as discussed earlier in Subsection 5.5.5, the AC and heater were almost 

never turned on according to the data analysis of the old Odyne dataset so our real-world data 

is expected to be closer to the type of data in the EPA report that is based on drive cycle 

testing.  HVAC is generally not accounted for during an EPA drive cycle test.  However, it is 

known that AC can impact the fuel economy of a vehicle so if the heater and AC were used in 

the Odyne Trucks these results could have been much different.  In work published by Kiran 

Kambly and Thomas H.  Bradley [42, 43], the effects of ambient temperature and HVAC use 

on vehicle efficiency were investigated.  In Detroit Michigan, it was shown that the all-EV 

range of PHEVs varied between 65 and 79 miles and this variation was due to differences in 

ambient temperature conditions and HVAC use [43].  Therefore, if the HVAC systems of the 

Odyne trucks were more widely used, this could impact the equivalent fuel economy vs. 

ambient temperature curve by lowering the fuel economy at extreme cold and hot ambient 

temperature conditions.  Another dataset with more HVAC usage would be needed to 

quantitatively determine the impact of HVAC on Odyne fuel economy and verify that it 

changes the fuel economy in this situation.  Or, it is also possible that there is a glitch in our 

data analysis software and that is why we are seeing these results. 
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SECTION 6 

DISCUSSION 

 

6.1 Why the Methodologies behind Big Transportation Fleet Data Analysis Need to be 

Better Defined 

Many studies have presented the final results of fleet data analysis [1, 15, 43, 48, 49, 

50, 51, 52, 53, 54, 55, 56, and 57] but few of these studies really provide a detailed description 

of the analysis methodologies, assumptions, and intermediate data processing steps that were 

used to draw their conclusions.  Having done this type of fleet data analysis work myself at 

Colorado State University, my experience has been that the final results can be dependent on 

the assumptions, filtering techniques, data manipulations, and other intermediate steps that are 

used to produce the results.  More work is needed to understand the impact of these data 

processing steps, how they affect the final results, and what data processing steps represent the 

“best practice” for analyzing vehicle fleet-tracking big data. 

 

6.1.1 The Impact of Outlier Filtering Just before the Regression Model is Calculated 

For example, as previously discussed in Subsections 5.4 and 5.5.4, if outliers are not 

filtered out in the intermediate data after the Phase 2 processing and just before the regression 

model is drawn, different results that are not statistically significant are generated.  If the 

unfiltered data is instead used for the vehicle calibration 2-sample t-test, the mild calibration 

gets a fuel economy of 9.947 mpg and the aggressive calibration gets a fuel economy of 6.745 

mpg with a p-value of p = 0.2921.  This is very different than the mild-calibration fuel 

economy of 6.705 mpg, the aggressive-calibration fuel economy of 6.791 mpg, and the p-value 
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of p = 0.02345 that were calculated when outlier data filtering was applied.  Table 6.1 below 

summarizes these differences: 

 

Table 6.1 - Comparison of Fuel Economy and P-Values With and Without Outlier Filtering 

 With Outlier 
Filtering 

Without Outlier 
Filtering 

Mild-Calibration Fuel 
Economy (mpg) 

6.705 9.947 

Aggressive-Calibration 
Fuel Economy (mpg) 

6.791 6.745 

p-value 0.02345 0.2921 

 

6.1.2 The Impact of Continuously Evaluating the Drive Condition in the Data Analysis 

Software  

The above example about removing outliers is a common statistical practice that is 

fairly well known.  However, to process vehicle fleet-tracking data our team also had to 

develop a number of more obscure methods that are very specific to this type of data analysis.  

For example, another known problem with the raw data is the data collection system only 

collects data when the vehicle is operating.  Therefore, data collection may begin a few 

seconds after the vehicle turns on and recorded values such as the vehicle speed and battery 

current do not start at zero like you would expect in perfect theoretical data.  The graph below 

in Figure 6.1 shows an example from the raw Odyne data where the battery current signal does 

not start at zero.  You can see how MATLAB interpolates the battery current in a straight line 

over a time span of about two days, because the first battery current data point collected was 

approximately -40 Amps when the vehicle turned on again.  However, since the vehicle only 
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uses battery power when the vehicle is on, the true battery current that occurs immediately 

when the vehicle turns on should be very close to zero. 

 

Figure 6.1 - Raw Battery Current Signal (Amps) Does Not Start at Zero as Seen in the 

Interpolation Error 

 

This is a very specific problem with vehicle tracking data.  The next question is, what 

problems can this cause and how do we deal with it?  In our process described in Section 4, the 

analysis code does not look for trigger events when a threshold is crossed, such as when the 

vehicle speed transitions from a near zero to positive value, to identify when the vehicle starts 

and stops driving.  Instead, the analysis code defines a continuous condition that is applied to 

all of the data points to check if the vehicle speed is greater than zero.  This way, if the data 

collection system misses the initial few seconds when vehicle speed transitions from 0 mph to 

positive, the driving event identification algorithm can still figure out that the vehicle is driving 
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even if the first driving speed data point is at, let’s say, 30 mph.  This is a very subtle 

difference in the analysis methodology, but it can have real impacts on the results.   

For example, the data in Figure 6.2 below shows drive event summary data that was 

compiled by a different, preliminary algorithm while it was still under development at another 

EPRI contractor (independent of CSU).  This algorithm had problems properly identifying 

where charging events should occur as can be seen in the below results.  In Figure 6.2 below 

that shows the event summary data, there should be a charging event between the highlighted 

driving events, especially when the second drive event begins with the battery mysteriously 

recharged.  After conversations with EPRI’s software contractor, CSU realized that one of the 

reasons behind these problems was that their algorithm only checked if the signal was 

transitioning across a threshold and did not consider if the initial value was already beyond the 

threshold.   
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Figure 6.2 - Event Summary List That is Missing Charging Events Between Driving Events.   

 

On the other hand, the CSU algorithm had a continuous logic condition that would 

evaluate every data point to see if it was above the threshold so it would not get confused if the 

raw data was missing the initial transition from a zero to positive value.  We found that our 

own algorithm produced much better results.  These little details in the data analysis 

methodology can make a significant difference. 

 

6.1.3 The Impact of Fuel Economy Averaging Techniques and Other Differences between 

CSU and EPRI Fuel Economy Results 

Finally, one additional example will be presented.  EPRI independently analyzed the 

same dataset and they came up with slightly different fuel economy results for the Odyne 

trucks than were calculated here at CSU.  In addition, EPRI calculated two different fuel 

economy values in their report that were based on different analysis methodologies [15].  In 
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EPRI’s report on their Figure 3-28 [15] (NOT Figure 3-28 in this thesis), they list the mild-

calibration fuel economy as 5.8 (± 1.5) mpg and the aggressive-calibration fuel economy as 6.1 

(± 1.6) mpg for Odyne.  However in the EPRI report on their Figure 3-41, they list the mild-

calibration fuel economy as 6.19 mpg and the aggressive-calibration fuel economy as 6.65 

mpg.  In addition, for comparison, CSU calculated the mild-calibration equivalent fuel 

economy to be 6.71 mpg and the aggressive-calibration equivalent fuel economy to be 6.79 

mpg based on the data analysis process described in Section 5 of this thesis.   

If everyone is using the same data to calculate these results, why are all of these 

numbers different?  One difference between the EPRI and CSU analysis is that CSU is 

reporting an equivalent fuel economy that factors the electricity usage into the fuel economy 

whereas EPRI is reporting the diesel only fuel economy.  However, if the EPRI fuel and 

electric fuel economies from their Figure 3-28 [15] are combined into an equivalent fuel 

economy, we still see a difference between the EPRI and CSU fuel economy values.   

By using data from EPRI’s Figure 3-28 in their report [15], the mild-calibration 

equivalent fuel economy was calculated to be 5.58 mpg and the aggressive-calibration 

equivalent fuel economy was calculated to be 5.53 mpg.  This calculation was performed by 

combining the diesel only fuel economy with the average drive energy / distance data that is 

provided in the same table.  The same formula that was used for the CSU equivalent fuel 

economy calculation in the Phase 2 MATLAB process described in Subsection 5.3 was applied 

to the EPRI data.  Note that fuel economy decreases when electric energy is accounted for, as 

more energy use is being reported.  Our equivalent fuel economy calculations could have 

possibly been improved by accounting for fuel vs. electric efficiency ratios as well, but this 

was not implemented into our software. 



134  

Table 6.2 below compares these different fuel economy numbers for all of the different 

situations described above.  It should be noted that all of the different reported fuel economy 

values fall within EPRI’s reported tolerance range for the data reported in Figure 3-28 in their 

report [15] so this is a positive indication that the different results provide a reasonable 

approximation of the true fleet fuel economy. 

 

Table 6.2 - Comparison of Different Odyne Fuel Economies Calculated Using the Odyne Real-

world Data 

 CSU Analysis 
Results 

EPRI 
Analysis 

Results from 
their Figure 
3-41 (diesel 

only fuel 
economy) [15] 

EPRI 
Analysis 

results from 
their Figure 
3-28 (diesel 

only fuel 
economy) [15] 

Calculated 
equivalent 

fuel economy 
from EPRI 
results in 

their Figure 
3-28 [15] 

Mild-Calibration 
Fuel Economy 
(mpg) 

6.71 6.19 5.8 ± 1.5 5.58 

Aggressive-
Calibration Fuel 
Economy (mpg) 

6.79 6.65 6.1 ± 1.6  5.53 

 

Another difference between the different methodologies developed by EPRI and CSU 

is how the data is being averaged.  In EPRI’s Figure 3-28 in their report [15], the average fuel 

economy is calculated by dividing the total number of miles driven by the fleet by the total 

amount of gasoline used by the fleet.  However, in EPRI’s Figure 3-41 in their report [15], they 

are averaging the daily average fuel economies presented as a distribution in their histogram.  

Although neither of these two methods is necessarily “right” or “wrong”, they are also not 

mathematically equivalent and should be considered different statistical measures.  For another 

comparison, the CSU fuel economy calculation used neither of the two EPRI methods 
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described above.  At CSU, we averaged the average fuel economies over 90-second drive 

intervals, which is different than averaging the average-daily fuel economies.  This raises some 

questions.  How should average fuel economies be reported for this type of work and do these 

differences matter?  It will be left to future researchers to answer this question. 

There are other differences between the EPRI and CSU data analysis processes as well 

since they were developed independently.  For example, EPRI calculated drive events by using 

the key on/off signal to identify where a drive event was occurring whereas CSU checked if the 

vehicle speed signal was greater than zero.  Or, CSU only used data from charge depleting 

(CD) drive events whereas EPRI used all drive data.  In addition, EPRI may have a wider range 

of data as CSU only used a subset of the total dataset.  There could be other unknown 

methodology differences between the EPRI and CSU results as well.   

Overall, all of these methodology differences could be contributing to the difference in 

the final results.  Depending on the accuracy needed, it will be left up to the reader and future 

researchers to determine if the differences between these fuel economy numbers is practically 

significant enough to pose a risk to their application or reported fuel economy results.  The 

good thing is that all of the presented numbers are reasonably close to each other so they could 

each be used as a valid estimator of the unknown real-world fuel economy. 

 

6.1.4 Conclusion: Why More Data Analysis Methods Need to be Better Defined 

A few examples of why methodologies need to be defined for analyzing vehicle fleet-

tracking data were presented with evidence.  As can be seen in Sections 4 and 5, there are 

many other data processing steps that could influence the final results which are not discussed 

in this discussion section.  A flaw in any of these steps could produce inaccurate scientific 
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results that would mislead policy makers, fleet owners, and vehicle designers.  My research 

team believes that there needs to be a published “cookbook” of methodologies for analyzing 

vehicle fleet-tracking data and we hope that the work presented in this thesis can lay an initial 

foundation to begin a discussion about how these best practices should be defined.  There is 

plenty of room for future researchers to build on the work in this thesis by evaluating the 

effectiveness and impact of each individual data processing step and by developing new data 

analysis techniques. 

 

6.2 Advantages of Making Decisions Based on Real-World Fleet Data 

This section outlines some of the potential benefits of using real-world fleet data to 

make operational and policy decisions.  Real-world data can provide an alternate evaluation 

method to EPA drive cycles and it can also be used to calculate the real-world utility factor. 

 

6.2.1 Real-World Data Provides an Alternate Evaluation Method to EPA Drive Cycles 

Historically, the standard method to evaluate vehicle emissions and fuel economy was 

testing the vehicle on an EPA drive cycle [66].  These drive cycles define exactly what speed 

the vehicle should be driving at over time and are typically 700 to 1000 seconds long.  The 

tests are normally performed on a dyno setup, which is a highly controlled environment.  This 

provides great experimental repeatability for different vehicle platforms to be tested against.  

However, there are also disadvantages to using EPA drive cycles.   

One disadvantage of EPA drive cycles is the assumption that a 10-minute test can 

accurately represent real-world driving behavior.  Other studies have investigated this and 

many have found that drive cycles often produce different results than those produced using 
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real-world data [11, 52, 67, and 68].  In theory, results calculated from real-world data should 

accurately represent how the vehicles performed in the real world so real-world data has the 

potential to provide more accurate information about vehicle use, emissions, and fuel economy 

to policy makers.  It is debatable if a 1000-second drive cycle can fully capture all of the 

intricacies of driving behavior and vehicle use such as the weather conditions experienced, 

differences in driving behavior between individual drivers, local traffic laws, variations in 

traffic conditions, and changes in vehicle performance due to aging.  However, collecting real-

world data accounts for all of the factors that can possibly affect vehicle performance whether 

those factors are known or unknown.  Below is some sample data from our own work to 

demonstrate this. 

For example, according to EPRI the Odyne Trucks have a fuel economy rating of 6.07 

mpg [15] on the CILCC drive cycle [69] when they are programed with a mild-calibration 

setting that depletes the battery more slowly [15].  Odyne trucks programmed with an 

aggressive-calibration setting have a fuel economy rating of 7.72 mpg on the same drive cycle 

[15].  On drive cycle tests, the aggressive calibration gets better fuel economy than the mild 

calibration.  However, in our final data calculation from the code described in Section 5, CSU 

found that the fuel economy was very similar for the mild and aggressive calibrations.  The 

average equivalent fuel economy for a mild calibration was 6.71 mpg and the average 

equivalent fuel economy for an aggressive calibration was 6.79 mpg based on the data analysis 

work performed at CSU on the real-world Odyne truck dataset.  This illustrates that the fuel 

economy can be different when it is calculated using an EPA drive cycle vs. using real-world 

data. 
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In addition, different EPA drive cycles produce different fuel economy results.  On the 

OCTA drive cycle the Odyne trucks get an average fuel economy of 4.44 mpg for a mild 

calibration and an average fuel economy of 5.57 mpg for an aggressive calibration [15].  Or, on 

the HHDDT drive cycle [69] the Odyne Trucks get an average fuel economy of 5.46 mpg for a 

mild calibration and an average fuel economy of 7.09 mpg for an aggressive calibration [15].  

The differences between the different EPA drive cycle results raises the question of which EPA 

drive cycle most accurately represents real-world driving.  The fuel economy from all of these 

EPA drive cycle tests and our real-world results are summarized below in Figure 6.3.  As can 

be seen, there are differences between our real-world fuel economy calculations and the fuel 

economy calculations from the different EPA drive cycles. 

 

Figure 6.3 - Real World vs. EPA Drive Cycle Fuel Economy Comparison [15] 

 

Finally, real-world data collection is important because EPA drive cycles are 

susceptible to cheating, such as in a recent incident involving Volkswagen that was heavily 
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publicized in the news [70, 71].  In this scandal, Volkswagen programmed their vehicles to run 

the engine differently to reduce emissions when its control system recognized an EPA drive 

cycle pattern.  These discrepancies were first noticed when researchers started measuring the 

emissions of vehicles driving in the real world.  Therefore, real-world data such as the EPRI 

data used in this study can be used to verify that OEM’s are not programming their vehicles to 

cheat EPA drive cycle tests.  When large-scale real-world data collection is implemented, 

OEM’s who build vehicles have to make their vehicles emit appropriate emissions because it is 

very difficult to cheat the real world. 

 

6.2.2 Real-World Data Can be Used to Calculate Real-World Utility Factors 

A utility factor, such as the utility factor (UF) curves presented in Section 4.4.1 and 

presented in previous work [1, 41, 49, 55, and 60], is needed to calculate the environmental 

impact of a range-extending vehicle such as a PHEV.  Utility factor is a proportion that tells 

what proportion of driving distance is being powered in a charge-depleting drive mode where 

electric energy from the utility grid is used.  For example, a utility factor of 80% means that 

80% of the driving distance occurs in a charge-depleting mode that is using power from the 

electric utility grid.  If the PHEV has an all-EV charge depleting mode, the utility factor 

represents the actual proportion of the driving distance that was only powered by the electric 

utility grid. 

Utility factor is frequently presented as a graph of UF vs. the charge-depleting range of 

the battery (RCD) so vehicle designers can make trade-off decisions about what battery size is 

needed in the vehicle.  A large onboard battery will increase the UF as the vehicle will then be 

able to make longer trips on a single charge.  However, there are also diminishing returns in 
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UF improvement as the battery size continues to increase as there are generally fewer and 

fewer people making longer and longer trips.  Utility factor is also highly dependent on driving 

behavior, as drivers who mostly take very short trips and recharge in between will have a much 

higher UF than drivers who take their PHEV vehicles on long-distance trips across the country.   

The SAE J2841 standard is commonly used to define UF [60], but different vehicle 

platforms and real-world effects can influence the UF to be different in specific situations [41].  

Real-world driving data is needed to determine how a specific subset of vehicles might differ 

from the SAE J2841 standard UF curve.  In addition, the SAE J2841 standard UF curve was 

based on NHTS data which is self-reported by drivers in the study [47] so vehicle sensor data 

such as the data used in our study may provide more accurate results and eliminate human 

error. 

For example, the following figure (repeated from Subsection 4.4.1 and relabeled Figure 

6.4) shows how the Odyne UF curve that was calculated from our dataset differs from the 

standard SAE J2841 UF curve. 
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Figure 6.4 - Odyne Utility Factor Curves 

 

In addition, the Via UF graph (repeated from Subsection 4.4.1 and relabeled as Figure 

6.5) shows that there is a smaller difference from the standard UF curve than is seen in the 

Odyne UF graph.  However, there is still a difference.  For a Via battery with 25 miles of 

range, the standard SAE2841 curve indicates that the vehicle would power approximately 56% 

of its driving using power from the electricity grid.  However, the UF curve calculated using 

real-world data indicates that the Via vehicle would power approximately 52% of its driving 

using power from the electricity grid using the same sized battery.  This difference could still 

be large enough to make a real-world impact depending on the required accuracy. 
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Figure 6.5 - Via Utility Factor Curves 

 

6.3 How Valid Are These Final Data Analysis Results? 

After considering the presented information and the discussion so far, considering if the 

results are valid is a fair question to ask.  The short answer to this question is: maybe, but more 

work is needed to better define and understand the data processing methodologies for vehicle 

fleet tracking data. 

 

6.3.1 Reasons Why Our Final Results Might Be Valid 

In addition to the discussion presented previously in Subsection 6.2 about the benefits 

of using real-world fleet tracking datasets, one could argue that since our results for the 

ambient temperature vs. vehicle efficiency calculation are so similar to the previous EPA study 

for conventional vehicles, this is a positive indication that the results could be reasonably 

accurate.  Odyne did not produce any outrageous results that were totally unrealistic so this is 
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also a good indication that supports the validity of our results.  For example, our real-world 

average fuel economy (presented previously in Figure 6.3) falls within the range of the 

different EPA drive cycle tests so it may be a valid estimator of real-world fuel economy.   

Since our fuel economy results are close to the EPA drive cycle results and the 

independent EPRI analysis on the same dataset, this provides additional evidence that our 

analysis method is providing a reasonable approximation for the average fuel economy.  These 

results were discussed previously in Subsection 6.1.3. 

Finally, because the Via is likely driven in a similar manner to other light-duty vehicles, 

it seems reasonable that its utility factor curve (presented earlier in Figure 6.5) is close to the 

J2841 standard utility factor curve.  As documented in this thesis, a large number of data 

filtering, quality control steps, and intermediate data output were built into the data analysis 

process so this should help improve the accuracy of the results.   

In addition, 2 years of software development work was invested into implementing this 

algorithm and my research advisor Dr. Bradley has a lot of experience doing this type of 

research in other studies [1, 8, 41, 42, 43, 49, and 55].  Therefore, I had some time to perfect 

and iterate the data analysis software, and the broader expertise of my lab group to draw on. 

 

6.3.2 Reasons Why Our Final Results Might NOT Be Valid 

On the other hand, as discussed previously in Subsection 6.1, there is really no standard 

process or methodology to analyze this kind of data.  Many of the controlling values in the 

script, such as the 90-second target chunk size output by the Phase 1 MATLAB data 

processing module described in Subsection 5.2, were just determined holistically to provide a 

starting point.  A strict analytical procedure was not used to derive most of the controlling 



144  

values in the filtration and data manipulation process.  It is possible that a more rigorous 

scientific process could optimize and refine these parameters.  In addition, the sensitivity of the 

results when the individual data filtering parameters are changed was not evaluated.  This adds 

uncertainty to results. 

Additional data validation could improve the confidence in the results.  An independent 

software development effort to re-write the implementation of the algorithms described in this 

thesis would help verify that results are not being influenced by a software bug.  In addition, 

independent measurements could be taken on the vehicles using a different data collection 

process to confirm that the data collection system and this algorithm are producing realistic 

results for a small number of vehicles. 

In addition, the fundamental usage patterns of the Odyne and Via fleets could be biased 

and not representative of the entire population of vehicles, so unknown inaccuracies in the 

results could be a function of the raw dataset itself.  Although the vehicles are scattered around 

the continental United States, they are also mostly owned by electric utility companies.  It is 

possible that other commercial applications would result in different usage patterns for these 

vehicles.  Currently, it is unknown what other biases may be present in the EPRI Commercial 

Truck dataset.  The only conclusion that can be made with confidence is that the Odyne and 

Via datasets are representative of how Odyne and Via trucks were used during this study.  An 

open question is how representative the EPRI Commercial Truck dataset really is for light- and 

medium-duty trucks in general.  Additional analysis work using other datasets could help 

clarify how representative our results are of light- and medium-duty trucks. 

The failure to apply the data analysis methodology for the ambient temperature vs. 

equivalent fuel economy calculation to the new Via dataset raises some questions as well (see 
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Subsection 5.5.6 for more details).  Is the significant fuel usage in the Via results when it is 

supposed to be driving in an all EV-CD mode due to a problem with the data analysis 

methodology?  Or is this due to a problem with the data collection system, or even an 

incomplete understanding of how the Via hybrid powertrain operates?  More work is needed to 

answer this question. 

Finally, there could be unknown errors and problems in EPRI’s custom data collection 

system or the CAN-communication systems that were installed by Odyne and Via.  At CSU, 

we were not responsible for installing the data collection system or decoding the CAN signals.  

All of that work was performed by EPRI and its contractors.  Therefore, all of our work is 

based on the assumption that this data collection work was done to an acceptable standard of 

quality.   

 

6.3.3 Conclusions About the Overall Level of Confidence in These Results 

It will be left up to the reader and the expertise of future researchers to make their own 

conclusions about the validity of the results presented here.  For example, although the data 

analysis methodology could be further developed and validated, maybe the final results 

generated by this study are still good enough to use until better data becomes available.  On the 

other hand, if the open questions about our data collection and analysis methodology invalidate 

the presented results, this also potentially calls into question the results presented in many other 

research studies that rely on vehicle fleet-tracking big data [1, 15, 43, 48, 49, 50, 52, 53, 54, 55, 

56, and 57].  Some of the studies cited here do not even mention what software / programming 

language was used to analyze their data [48, 54, 55, and 56].  In addition, it is possible to find 
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many other studies that rely on vehicle fleet-tracking data that are not cited here.  Many of 

these studies need to do a better job of defining their data analysis methodologies. 

It should also be mentioned that some of studies referenced here use different types of 

datasets other than CAN-communication bus data.  These datasets include information such as 

GPS tracking data [50, 54, and 57] or driver reported data from a dataset such as the NHTS 

survey [43, 47, 49, 55, and 56] so different methodologies may be needed for these different 

types of datasets.  Although the EPRI Commercial truck dataset contained both CAN and GPS 

data, only the CAN data was used for the results presented in this thesis.  Finally, many of 

these studies are based on data collected from a larger number of vehicles than were available 

for the results presented in this study [48, 49, 50, and 54] so more data processing and analysis 

was potentially needed in these situations.   

What all of the papers cited in the previous two paragraphs have in common is that they 

are all trying to derive conclusions from real-world vehicle data.  Other studies do make an 

effort to define some of the methodologies and data collection systems that can be used to 

collect and process this type of data [51, 52, 54, 57, and 72].  Overall however, the lack of 

detail provided by the research community makes it hard to evaluate the rigor of the 

methodologies used by other researchers and compare them to our own methods.  More details 

and documentation of the data analysis methodologies, assumptions, and data-filtration steps 

used for this type of research need to be provided. 

It is proposed that future researchers doing this type of work should publish more 

information about their intermediate data processing, filtering, and manipulation steps, as well 

as the underlying assumptions went into their calculations.  This will help facilitate a 

conversation about what techniques are best to analyze vehicle fleet tracking data by providing 



147  

more information and improving transparency.  It is hard to determine what different methods 

could be in use when there is no published information about these techniques. 

Further evaluation and development of the data analysis methodologies presented in 

this thesis is also recommended, so the confidence in future scientific results can be improved.  

The next chapter (Section 7) provides a list of future work that could be completed to improve 

the confidence in and the accuracy of the final results produced by the data analysis 

methodologies presented in this thesis.  Many of the additional steps listed in this next section 

address the potential concerns listed here about the validity of the results. 
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SECTION 7 

FUTURE WORK 

 

This work has raised additional questions.  For example, is the presented data analysis 

methodology even valid?  Or is using real-world vehicle fleet tracking big data really the best 

approach to answer questions about fleets of vehicles?  Below is a list of future work that, in 

my opinion, could be taken to further advance the work presented in this thesis. 

1) A sensitivity analysis should be conducted on each individual data processing and 

filtering step to determine how much a change in any individual step can affect the 

final results.  This could be done in potentially two different ways, depending on 

the data processing or filtering step: 

a. Remove the data processing or filtering step if possible and rerun the 

analysis to see how the results change when that step is missing. 

b. If the filtering step depends on a numeric parameter, such as a SOC cutoff 

limit for the CD / CS drive mode transition, vary that parameter in both the 

positive and negative directions and then rerun the analysis. 

2) Test the data analysis methodology presented in this thesis on additional datasets to 

see if it creates similar or different results.  This will accomplish a few different 

objectives: 

a. It will check if the methodology continues to be robust on different datasets 

collected from different vehicle platforms and data collection systems. 
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b. It will help identify which data-processing steps are specifically needed for 

only the Odyne dataset and which data-processing steps are more universal 

to all vehicle fleet tracking data. 

c. It will help identify new data filtering steps that are needed for errors that 

are not present in the Odyne dataset but are common in other similar 

datasets. 

d. It could help identify unknown biases in the Odyne dataset and vehicle 

usage that could be influencing the final results.  It is not guaranteed that the 

Odyne fleet represents the average usage of medium-duty utility work 

trucks. 

3) Continue to develop the foundational software to process this kind of vehicle fleet-

tracking data.  A more detailed list of software changes is presented in Subsection 

2.4.  Although additional software development work will postpone the work to 

answer additional research questions, building a stronger foundational toolset to 

manage this type of data will also benefit this future work when it is conducted.  

See Appendix A.7 for a longer discussion about what should be considered when 

choosing a data management framework and/or data analysis software.  Some of the 

perceived advantages and disadvantages of using both the custom MATLAB 

framework and Hadoop MapReduce on the EPRI dataset are discussed in the 

appendix. 

4) Final results, such as drive and charge event summaries, should be verified 

independently using other data and/or methods.   
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a. For example, a first step would be for a dedicated researcher to drive an 

Odyne or Via truck around for a few days and meticulously record all of 

their driving and vehicle usage in a paper log similar to the NHTS survey.  

Then data from that vehicle’s CAN system could be run through the 

algorithms to see if the results were in agreement with the manually 

recorded driving log.  Unfortunately, CSU did not have physical access to 

any of the Odyne or Via trucks so we could not perform the work here 

ourselves.   

b. An alternative method would be to try and calculate some of the same 

results using different CAN signals.  For example, vehicle Odometer could 

be used to verify that speed integration was producing a reasonable distance 

results.  Section 3 can be referenced for ideas about different signal 

combinations that could have been used to answer some of these questions. 

5) The software could be re-written from scratch by another programmer based on the 

process and algorithms outlined in this document.  If the new software gets the 

same results it will help verify that there are no “bugs” in the original analysis 

software that was created here at CSU.  Or if this algorithm is used on a new 

dataset, it is highly recommended to pursue two independent software development 

efforts to implement the algorithm if there are enough resources and people 

available to do so.  This will help validate the final results and reduce the risk of a 

software bug.  Unfortunately, due to the limited time and funding here at CSU, we 

were only able to write one version of the software that we used for this project. 
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6) Additional data processing and filtering steps could be added on top of what has 

already been outlined in this document.  There may be other vehicle-tracking 

datasets with other errors or problems that require a different approach.  CSU 

implemented as many data-processing and filtering steps as time and resources 

permitted, but there are likely additional undiscovered problems in the EPRI 

Commercial Truck dataset that are not being addressed. 

7) The data-processing steps presented here could be optimized to reduce the computer 

processing power and the time required to generate results.  For example, maybe 

some of the data processing steps could be reordered in a way that does not affect 

the final results but reduces the computational run time.  The main focus of this 

study was to generate an algorithm that produced meaningful and accurate results, 

not a fully optimized algorithm that ran as quickly as possible.  Although some 

optimization was implemented into our software as convenient, this was not the 

primary focus of the software development effort. 

8) An effort should be made to understand why the Via dataset is reporting significant 

fuel usage when Via is supposed to be driving in an all-EV Charge Depleting mode 

(see Subsection 5.5.6).  In addition, more work to understand the effects that 

ambient temperature has on the efficiency of an all-electric powertrain is 

recommended in general. 

9) An updated version of this vehicle fleet-tracking big data analysis methodology 

should be published if  some of the future work recommendations outlined here are 

implemented.  CSU believes that there should be a vehicle-fleet data analysis “cook 

book” that describes all of the methods that can be used to analyze and process this 
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kind of data.  An entire book could easily be written about the subject and it will 

likely need to be very lengthy as this kind of data analysis is highly complex and 

nuanced.  We welcome future research that builds upon what we have published in 

this thesis. 

 

Finally, I would like to say that everyone on my team (all previously mentioned in the 

Acknowledgements section) worked very hard on this project.  We did the best job we could to 

develop these data-analysis methodologies as much as possible with our available resources.  

However, a complete effort to fully implement all of the future work recommendations 

outlined above would likely be a very large undertaking.  It would likely require a large team 

of researchers, a large budget, and more time.  Although these resources were not available 

here at Colorado State University for this thesis, it is our hope that we have provided a starting 

point for this type of larger project in the future.  One of the main goals of this work is to start a 

conversation, not to provide answers for every open question that was raised by this research.   
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CONCLUSION 

 

This thesis has defined and completed a series of tasks to address the primary research 

challenges associated with the collection, processing, and analysis of large datasets from the 

CAN systems of PHEV’s operating in real-world conditions.  The primary contributions of this 

thesis are presented below: 

 A documentation and description of the analysis methodologies, assumptions, and 

intermediate data processing steps for constructing vehicle fleet-tracking big data 

analysis software. 

 A synthesis of the research questions available, the challenges, and the requirements 

associated with answering those questions on the basis of transportation fleet “big 

data.” 

 A case study of the collection, processing, validation, and analysis of big-data 

collected from PHEV’s in real-world operation.   

 Sample results from our data processing software, including but not limited to: 

utility factor curves, fuel economy, and a correlation between the fuel economy and 

ambient temperature. 

 The medium-duty truck utility factor curves and the correlation between ambient 

temperature and fuel economy for a mild-hybrid medium duty truck are unique and 

have not been previously published. 

 The assumptions and uncertainties behind the data-analysis methodologies and 

results presented in this thesis are discussed. 
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 A list of open questions that need to be resolved and future work that needs to be 

conducted to improve the confidence in the results from this type of data analysis is 

presented.   

 

It was demonstrated in Section 6 that different data-analysis methodologies and 

intermediate data processing steps can influence final results.  One major contribution of this 

work is that it completely outlines the data analysis methodologies used to produce final results 

so the methods can be further developed, validated, and defined in future work.  In addition, 

some of the software used to produce these results was described. 

A list of potential research questions was compiled and approaches to solving the 

problems were theorized in Section 3.  One important challenge in fleet data analysis is 

identifying the appropriate CAN signals and methods that are needed to answer certain 

research questions, so this list should provide a starting point for future research projects.  A 

subset of the reviewed questions was later answered in this thesis. 

A methodology for generating a summarized list of driving and charging events from 

second-by-second fleet data was developed and presented in Section 4.  The drive-event results 

were then used to generate utility factor curves for the Odyne and Via truck fleets as well as 

other statistics of interest.  These utility factor curves are the first that have been published 

using medium-duty truck data, so the results are unique. 

Another methodology was developed to discretize the continuous-driving data from a 

drive event into approximately 90-second driving intervals so a regression model could be 

plotted.  This methodology was presented in Section 5.  Sample results, such as the correlation 

between ambient temperature and fuel economy, were also presented.  These results from the 
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mild-hybridized Odyne truck are similar to the ambient temperature vs. fuel consumption 

trends seen in conventional vehicles.  However, as the HVAC system was not frequently used 

in the Odyne trucks, these results could be different if HVAC use was different. 

The importance of using this kind of real-world vehicle tracking data was demonstrated 

in Subsection 6.2 by showing: 

1) How the real-world fuel economy can differ from the fuel economy calculated on 

EPA drive cycles. 

2) How the real-world utility factor can vary from the standard utility factor curve 

based on different subcategories of vehicle. 

 

In addition, real-world data can identify trends that may not exist in a controlled 

laboratory experiment and it can prevent companies from cheating on EPA drive cycle tests.  

These benefits are also discussed in Subsection 6.2.   

However, potential pitfalls of using real-world vehicle big data are also presented and 

the uncertainties and assumptions behind the results presented in this document are also 

discussed in Section 6.  More work is needed to better define the methods and feasibility of 

using this kind of vehicle fleet tracking big data and a list of future work recommendations is 

presented in Section 7. 

Overall, this work provides a detailed description of the data analysis methodologies 

used to process and analyze vehicle fleet-tracking big data as well as sample results that show 

real-world applications for this type of analysis.  The hope is that this thesis can help start a 

conversation about what data analysis methodologies are considered to be the “best-practice” 

so future researchers can generate better results from vehicle fleet-tracking data. 
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APPENDIX A 

GENERAL CONSIDERATIONS FOR COLLECTING AND ANALYSING VEHICLE 

FLEET-TRACKING DATA 

 

Although the discussion in this appendix is not central to the research objectives and 

conclusions presented in this thesis, it offers some generalized advice and considerations to 

anyone thinking about collecting and analyzing data from a fleet of vehicles.  Topics include 

how to interpret data, potential glitches in the data, privacy and security considerations, etc. 

This appendix is not meant to provide complete solutions to all of these issues, but instead 

intends to make future researchers a high-level awareness of potential challenges that may be 

faced. 

 

A.1 Information Reported by the Onboard CAN System May Not Be Entirely 

Accurate 

First of all, a major challenge is discovering any potential flaws in the dataset as there 

can be unknown glitches and errors in the manufacturers CAN system configuration.  Since 

collecting data from CAN systems for entire vehicle fleets is a relatively new practice, 

unknown bugs in the CAN system are often discovered when extremely large quantities of 

information becomes available from the system.  Many OEM’s likely do not test their CAN 

systems with the quantity of data collected from real-world fleet tracking.  For example, during 

this project EPRI and its contractors would often follow up with the vehicle OEM’s to report 

bugs that were found in the CAN system data and try to get them resolved to improve future 

data collection efforts.  That is likely a full time job just by itself, so we are thankful that EPRI 
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and its contractors had the resources to do this kind of work outside of Colorado State 

University.   

 

A.2 Additional Background Information, Sometimes Proprietary, Is Needed to 

Interpret the Raw CAN System Data Collected from Vehicle Platforms 

Next, information about what exactly the different CAN signals are is needed so they 

can be decoded and interpreted.  Some of this information is available in lengthy engineering 

standards such as the SAE J1939 [23] and ISO 15765-2 [24] standards, while other CAN 

signals require proprietary information that is specific to individual vehicle platforms.  

Information may be needed from the manufacturer to properly configure the system for 

manufacturer specific CAN signals.  EPRI and its contractors performed much of this work and 

a team of people is likely required just to figure out how to collect data from the CAN system.  

When the CAN signals are recorded, information about the signal units, data collection rate, 

and a description about what each CAN signal measures is also needed.  Most CAN signals are 

labeled with hexadecimal PID keys when they are read directly from the vehicles CAN-

communication bus, so these should be mapped to text string labels that are more human 

readable such as “vehicle speed.” 

 

A.3 Fleet Data Often Has a Time Dependency, So It Often Needs to Be Processed in 

Time Order 

Another challenge to analyzing vehicle fleet data is that much of the data is time 

dependent, so computations often cannot just occur in a random order when the data runs on 

something like the Hadoop framework where by default data is read and written in a random 
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order.  The data often needs to stay sorted in a time-sequential order so the time dependencies 

can be observed.   

As the data grows larger, it may be necessary to split up this sequence of events into 

multiple files for memory management.  However, if the data analysis script is looking for 

high-level events such as a vehicle trip, these trips may get split into two different pieces 

depending on how the splitting process works.  Our process just tried to make the split sizes 

large enough that a few splits are unlikely to significantly impact results.  Another approach 

that could have been used would have been to split the data files at midnight or early in the 

morning as vehicle generally are not driving during these times.  Finally, a third approach 

might be to write software that remembers if the analysis was in the middle of a vehicle event 

at the end of the data file so it could then load the next consecutive data file and continue the 

analysis to see if the event continues.  This last approach is likely the most accurate as it would 

remove the effect of the data splits.  However, the last approach would also require much more 

sophisticated software to be developed, which increases cost and development time. 

 

A.4 The Privacy of Individual Drivers in the Fleet Could Be Put at Risk 

Since fleet-tracking data records the habits of individual drivers and their vehicles, 

privacy and security is another concern that must be considered.  In many circumstances, all 

raw information collected from the vehicle needs to be protected from public disclosure.  

Timestamped GPS coordinates and VIN numbers are examples of especially sensitive 

information that could be abused the wrong hands.  For example, maps can be created that 

track an individual’s driving patterns and history as GPS is accurate enough to see exactly 

where and when the vehicle was driven or parked.  Or, it would be possible to determine if an 
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individual is not following the speed limit or driving recklessly.  None of our studies reveal any 

of this information publically, but if the data were hacked, stolen, misplaced, or transferred to a 

rouge third party, these types of data analysis are technically feasible.  As the scale of data 

collection efforts increases, privacy and security risks also increase.   

To combat some of these privacy concerns, any results published from this kind of 

dataset needs to be anonymized so it can never be traced back to an individual driver, owner, or 

vehicle without their permission.  Aggregating the data from all drivers and creating fleet-level 

summary statistics that include all vehicles is an excellent way to anonymize data if there are a 

sufficient number of vehicles in the fleet.  In addition, legal authorization is likely needed to 

collect this kind of information from a fleet of vehicles and drivers should at least be aware that 

their vehicles are being monitored.  In our study, the vehicles were owned by utility companies 

and not private individuals, so this reduced some but not all of the privacy concerns.   

In addition, it is strongly recommended that transportation fleet data is collected, 

transferred, and analyzed in a secure computing environment where the information is difficult 

for malicious third parties to hack, steal, and eavesdrop on.  The specific security precautions 

implemented by Colorado State University, EPRI, and EPRI’s contractors to protect the 

datasets used in our research will not be discussed in this document to protect our own security.  

However, it is strongly recommended that anyone who is attempting to collect, store, and 

analyze this type of data on a large scale should consult with a security IT professional to draft 

computer security requirements and precautions before the data collection begins.  In general, 

everyone responsible for handling the raw or processed vehicle data should be aware of their 

specific responsibilities for protecting the data and keeping it secure.   
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It should also be noted that no computer security system can ever be perfect.  Even if 

very strong computer security is implemented, it is probably impossible to ensure that all 

vehicle fleet data will always be 100% secure using current computing technology.  Despite 

this, strong computer security precautions can still significantly reduce the risk of a data breech 

when collecting transportation fleet data.   

When transportation fleet data is collected, these privacy and security risks need to be 

weighed against the other benefits of collecting this data so an informed decision about how to 

proceed can be made by project managers.  However, it should never be assumed that there is 

zero risk of confidential data being stolen or accidentally published and it is recommended that 

risk management plans should be drafted. 

 

A.5 The Security and Autonomy of the Vehicle CAN System Could Be Compromised 

by a Third Party 

In addition to the privacy risks related to large-scale data collection discussed in the 

previous Appendix Section A.4, an addition security risk is the potential for vehicle CAN 

system hacking [73, 74].  Although it is unknown how great of a security risk this might pose 

as it is a relatively new risk and there are no known malicious examples of CAN system hacks, 

it is possible for an attacker who gains access to the onboard CAN network to take control of a 

vehicle, disable safety-critical systems, override driver input, disable the brakes, etc. [74].  

When CAN networks were first built, they were isolated computer systems that required 

physical access to the vehicle in order to establish a connection.  However, as more and more 

systems are networked onto the vehicle, it is now possible to access this CAN system remotely, 

but its original architecture was not designed with a potential cyber-attacker in mind.  When 
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the CAN system of a vehicle is networked to a data collection system using the OBD-II  port, 

similar to how the data for our studies was collected, it is theoretically possible for an attacker 

to infiltrate the data collection system and use that at an entry point into the vehicles on board 

computer system.  Examples of CAN hacking to date have mostly been done in security 

demonstrations, as it is a relatively new security risk that is just now being understood. 

 How to understand and mitigate the risks of CAN network hacking could be the topic 

of an entirely different research paper or thesis.  However, as the goal of this appendix is to 

give an overview of other considerations for fleet data tracking, this risk should at least be 

mentioned as it could become a greater risk in the future.  Work could be done to make the 

internal CAN system of the vehicles more resilient to attack, or the existing CAN system could 

be placed behind strong firewalls so it is difficult to for an attacker to penetrate the fleet data 

collection system that is networked with the CAN system.  Of course, as the scale of fleet-

tracking data collection increases, the risks and consequences of a security breach will also 

increase.   

 

A.6 Data Collected from Real-World Vehicle Tracking Systems Is an Observational 

Study, Not an Experimental Study 

Any results collected from vehicle tracking systems are considered to be an 

observational study, not an experimental study.  This is important, because it is generally much 

harder to establish a cause and effect relationship in observational data since it is not being 

collected from a controlled environment.  Often, only correlations can be discovered in 

observational data.  For example, our data can show the correlation between fuel economy and 

ambient temperature, but truly understanding the reasons behind these trends would most likely 
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require additional information from outside of the dataset.  An experimental study on the other 

hand is performed in a controlled environment and generally only a single variable is changed 

at a time.  Therefore, any other variables affected by that change in the experimental setup 

likely indicates causation.   

A major challenge of interpreting the correlations found in vehicle fleet-tracking data 

will be to determine the underlying causes of those correlations, and that might be the harder 

part of the problem to solve.  However, this does not mean that identifying correlations is not 

useful, as finding strong correlations can still provide clues about where to start looking next.  

They can also be used in predictive models. 

 

A.7 Summary of Our Experiences Working With Different Data Management 

Software and General Considerations for Determining What Type of Software to Use 

At the beginning of any data analysis project, one of the first decisions that need to be 

made is what type of data management framework and / or software should be used to process 

the data.  In this work, both a custom MATLAB framework and Hadoop MapReduce were 

used for different pieces of the big data processing challenge and it was found that there were 

advantages and disadvantages to using both systems.  Here is a list of some general 

considerations for choosing a data management framework and/or software to conduct data 

analysis on vehicle fleet tracking big data based on our experience: 

 

1) It needs to be determined which data management framework is the best suited for 

the type of data being processed.  For example, is the most ideal tool a custom 

MATLAB framework like the one described in this thesis, Hadoop MapReduce, or 
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some other big data management system?  Although it is hard to answer this 

question without a better understanding of the specific data processing application, 

here is a list of our experiences using both MATLAB and Hadoop MapReduce for 

our project: 

a. The custom MATLAB framework potentially offers greater flexibility and 

customizability than Hadoop.  Writing your own software also gives you a 

deeper understanding of how the software works, so it can be easier to 

debug later on. 

b. However, using a custom MATLAB framework also requires more software 

development work and it is hard to write custom software to the same high 

quality industry standards that a widely available framework such as 

MapReduce is developed to.   

c. MATLAB offers some advantages in terms of processing time-dependent 

data as well, as it does not by default read in data points in a random order 

as MapReduce does.  Data often must be maintained in chronological order 

to conduct vehicle fleet-tracking data analysis. 

d. Java heap errors are another common problem encountered when using 

MapReduce software, so that is one of the reasons that MATLAB was first 

used in Section 5 to pre-split the data files in the Phase 1 processing step 

before the data was passed onto the Phase 2 processing step where 

MapReduce was used.  It was unclear if a whole file input format could be 

used in the mapper stage with up to 1 GB CSV data files. 
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e. One advantage of MapReduce is that it already has a lot of useful features 

built into the framework, such as error tracking, parallelization, and fault 

tolerance that would have to be manually programmed into a custom 

MATLAB framework. 

2) Depending on the data size, parallel processing may or may not be needed.  Parallel 

processing offers many advantages in terms of much faster computation run times, 

but it also likely requires more computer hardware and software development time.  

MapReduce is already designed to run in parallel.  MATLAB can be theoretically 

be programmed to run in parallel on a computer cluster [34, 35], but CSU did not 

spend much time implementing parallel MATLAB code. 

3) The data analysis framework should have flexibility to adapt to different data 

formats and it should be easy to add new data analysis code into the framework 

without interfering with any of the data management code.  Rapidly changing 

requirements and tight deadlines can be a challenge to any project and a flexible 

software design can go a long way towards relieving some of the pressures created 

by rapidly changing project requirements or input data formats.   

 

Other commonly used big data management frameworks and tools that were not used 

for data analysis work at CSU are listed in Section 1.5 - Overview of “Big Data” as a Concept 

Beyond Fleet Data.  These include Google File System [29], Tableau [31], NoSQL [31], 

Amazon Web Services [31], and Storm [31].  In addition, other programming languages such 

as R or Python could also be considered for this type of work [75].  Although some R was used 

in our work for post processing, this post processing only occurred when the data was in a 
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highly reduced final format where it probably can no longer be considered to be a big data 

problem.   

Since big data is a relatively new and upcoming field, it is recommended that future 

researchers who are conducting this type of vehicle-fleet big data analysis perform their own 

research on big data processing frameworks and software at the beginning of their project.  The 

commonly used commercial big data management frameworks listed in this document could 

become obsolete within even a few years and there could be other tools available to future 

researchers.  Overall, the technology to process big data is rapidly advancing and the choice of 

a data processing tool at the beginning of a project can have a large impact on the final results 

and success of that project. 
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LIST OF ABBREVIATIONS 

 

1Q – First Quartile (a statistical term) 

3Q – Third Quartile (a statistical term) 

A – Amps (unit of electrical current) 

AC – Alternating Current (or see alternate definition) 

AC – Air Conditioning 

aka. – Also Known As 

AWS – Amazon Web Services 

BASF - Badische Anilin und Soda Fabrik (a German chemical manufacturing company) 

BMW - Bayerische Motoren Werke AG (a German automotive OEM) 

C – Celsius (unit of temperature – deg C) 

CAN – Controller Area Network (commonly used on vehicles to network various sensors and 
processors) 

CD – Charge-Depleting (Drive mode where battery is losing charge.  Also see alternate 
definition of CD.) 

CD – Current Directory (alternate definition) 

CDMA – Code-Division Multiple Access (radio transmission technology commonly used in 
cell phones) 

CILCC – Combined International Local and Commuter Cycle 

CS – Charge-Sustaining (drive mode where battery charge is maintained) 

CS – Computer Science (alternate definition) 

CS435 – Course Number for Big Data Analysis class in the Computer Science Department at 
Colorado State University in Spring 2016 

CSU – Colorado State University 

CSV – Comma-Separated Values (common file format for data storage) 
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DC – Direct Current 

deg – Degrees  

DF – Degrees of Freedom (a statistical term) 

DFS – Distributed File System 

Dr. - Doctor 

EPA – U.S.  Environmental Protection Agency 

EPP – Emerging Professionals Program 

EPRI – Electric Power Research Institute (sponsor for this research) 

EV – Electric Vehicle 

EVS29 – Electric Vehicle Symposium 29 

F – Fahrenheit (unit of temperature – deg F)  

FC – Fuel Consumption 

FCCC – Freightliner Custom Chassis Corporation 

FE – Fuel Economy 

ft – feet (English unit of distance) 

FTP – Federal emissions Test Procedure 

FUF - Fleet Utility Factor 

gal – US Gallons (English unit of volume) 

GB – Gigabyte  

GMT – Greenwich Mean Time 

GPS – Global Positioning System 

GSM – Global System of Mobile communications (radio transmission technology commonly 
used in cell phones) 

HDFS – Hadoop Distributed File System 

HEV – Hybrid Electric Vehicle 
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HHDDT – Heavy-Heavy Duty Diesel Truck 

hr – Hours (unit of time) 

HVAC – Heating, Ventilation, and Air Conditioning 

ISO – International Standards Organization 

IT – Information Technology 

KI – Kinetic Intensity (see citation [46]) 

km – Kilometers (metric unit of distance) 

kph – Kilometers per Hour 

kW – Kilowatt (unit of power) 

kWh – Kilowatt Hour (unit of energy - generally used to measure electrical energy) 

.mat – MATLAB data file format 

MATLAB – Matrix Laboratory (a numerical computing environment and programming 
language) 

MB – Megabyte 

mi – Miles (English unit of distance) 

min – Minutes (unit of time) 

mpg – Miles per Gallon  

mph – Miles per Hour 

MS – Microsoft 

N/A – Not Applicable 

NHTS - National Household Travel Survey (a government sponsored survey of driving 
behavior in the United States [47]) 

NREL – National Renewable Energy Laboratory (U.S. Department of Energy Facility) 

NoSQL – Not Only SQL 

OBD (and OBDII) – On Board Diagnostic system 

OCTA – Orange County Transport Authority 
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ODY - Odyne 

OEM – Original Equipment Manufacturer 

PHEV – Plug-in Hybrid Electric Vehicle 

PID – On-Board Diagnostic Parameter ID (a hexadecimal key that identifies unique signals in 
vehicle CAN systems) 

Pr(>|t|) – p-value for a t-test as notated in R-console output 

QQ-Plot (or Q-Q Plot) – Quantile-Quantile Plot 

R – A statistical programming language 

RAM – Random Access Memory 

RCD – Range Charge Depleting 

RPM – Rounds per Minute (rotational speed) 

R-squared – a statistical measure (not to be confused with R) 

SAE – Society of Automotive Engineers 

sec (or secs) – Seconds (unit of time) 

SOC – State of Charge (% charge level of the primary battery in an electric vehicle) 

SQL – Structured Query Language (a computer database language) 

UF – Utility Factor 

US – United States (of America) 

V – Volts (unit of electrical voltage) 

VIN – Vehicle Identification Number 

vs - Versus 

 

 


