Characterization of diffraction gratings by use of a

tabletop soft-x-ray laser
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We have demonstrated the use of a high-repetition-rate 46.9-nm tabletop laser to characterize diffraction
gratings designed for grazing-incidence operation in the soft-x-ray spectral region. The efficiencies for
various diffraction orders were measured as a function of angle of incidence and compared with the
results of model simulations. This measurement technique provides benchmarks with which to improve
electromagnetic codes used in the design of soft-x-ray diffraction gratings. The results illustrate the
potential of compact tabletop soft-x-ray lasers for use as a new tool for characterization of short-
wavelength optics at the manufacturer’s site. © 2001 Optical Society of America
OCIS codes: 340.0340, 140.7240, 350.2770.

1. Introduction

Diffraction gratings designed for efficient operation
at wavelengths below 50 nm are finding increased
use in monochromators for synchrotron beam lines
and high-order harmonic sources of short-wavelength
coherent radiation,’2 in vacuum spectrographs for
plasma diagnostics, and in soft-x-ray interferom-
eters.34 Accurate measurement of the diffraction ef-
ficiency and development of electromagnetic codes for
grating design®¢ are of significant interest for cost-
effective manufacturing of gratings for various appli-
cations.

The recent advent of compact high-repetition-rate
tabletop soft-x-ray lasers with milliwatt average pow-
er”® opens the opportunity for making, in a tabletop
setup, a detailed characterization of such diffraction
gratings. In this paper we report the use of a high-
repetition-rate tabletop laser operating at 46.9 nm to
characterize the diffraction efficiency of two diffrac-
tion gratings designed for grazing-incidence opera-
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tion at that wavelength. Other schemes for
performing these measurements could be imple-
mented with a synchrotron radiation source, a laser-
created plasma, or a discharge-pumped soft-x-ray
lamp. However, when measurements at multiple
wavelengths are not necessary, the capillary dis-
charge laser offers the advantages of its high average
power, highly directional beam, and compact size.

Measurements of the diffraction efficiencies that
correspond to various diffraction orders were com-
pared with the simulations of an electromagnetic
code. The code is based on a class of theoretical
methods known in the literature as differential.?
The term “differential” refers to the fact that the
rigorous computation of the electromagnetic field dif-
fracted by the grating is reduced in these methods to
the resolution of a system of ordinary differential
coupled equations.

The rest of this paper is organized as follows: In
section 2 we describe the experimental setup used in
measuring the diffraction efficiency. In Section 3 we
describe the numerical code used to simulate the per-
formance of the gratings, and in Section 4 we com-
pare the experimental and theoretical results.

2. Experimental Setup and Description of Gratings

Two gold-coated diffraction gratings designed for op-
eration at 46.9 nm were characterized. Each grat-
ing was ruled on a borosilicate substrate by a
diamond ruling engine. The first grating had a rul-
ing of 1800 lines/mm and was blazed at 10.028 deg.
The second was ruled with a line density of 300
lines/mm at a blaze angle of 1.33 deg. This grating
was designed to split the beam intensity evenly be-
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Fig. 1. Atomic-force microscope image of the groove profile corre-
sponding to the 300-line/mm diffraction grating and (top) trace of
the image.

tween the 0 order and the —1 order for use as a beam
splitter in an amplitude division soft-x-ray inter-
ferometer.? Each grating had a gold coating that
was electron-beam evaporated over a chromium
layer. The groove profiles were measured with an
atomic-force microscope. Figure 1 shows the mea-
sured profile of the 300-line/mm grating. The pro-
file can be observed to have a triangular shape,
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measure the intensities of the various diffraction orders.
incident laser beam.
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justifying the use of ideal triangular profiles in the
model calculations.

Figure 2 is a schematic illustration of the setup
with which we measured the diffraction efficiency.
The gratings were illuminated with a beam of
46.9-nm radiation produced by a tabletop capillary
discharge neonlike argon laser operating at 46.9 nm.
The characteristics of this tabletop laser were dis-
cussed in recent publications.”® Laser amplification
occurs by collisional excitation of the 3p 1S,-3s P,
transition of the neonlike argon ion in an elongated
plasma column that is generated by excitation of a
capillary channel with a fast current pulse. The
magnetic force of the current pulse rapidly com-
presses the plasma to form a dense and hot column
with a length-to-diameter ratio approaching 1000:1,
in which the conditions for amplification by colli-
sional excitation occur near the end of the compres-
sion.1® To characterize the diffraction gratings, we
generated laser pulses with an energy of approxi-
mately 0.1 mdJ and pulse widths of ~1.2 ns at a rep-
etition rate of 1-2 Hz, with an 18.2-cm-long capillary
discharge plasma column. The resultant laser beam
divergence was ~4.5 mrad. The laser that we used
is very compact; it occupies an optical table area of
only 0.4 m X 1 m, a size comparable with that of
many widely used visible and ultraviolet gas lasers.
Such a compact size opens the opportunity for con-
ducting this type of measurement at the grating man-
ufacturer’s site.

The measurements were conducted in a vacuum
chamber placed ~1.5 m from the exit of the laser.
The diffraction gratings were mounted upon the axis
of a rotational stage that allowed for selection of the
angle of incidence. The intensity of the diffracted
beam was recorded with a vacuum photodiode (Pho-
todiode B in Fig. 2). This detector was mounted
upon a lever arm driven by a stepper motor that
allowed, without breaking vacuum, positioning of the
photodiode at each of the angles that corresponds to
a diffracted order. To allow for measurements at
large angles of incidence we reduced the laser beam
size by placing a 1-mm-diameter pinhole at the en-

Diffraction Grating

Photodiode B

Fig. 2. Experimental setup used to characterize the efficiency of diffraction gratings at 46.9 nm. Vacuum Photodiode B is rotated to

Photodiode A is used to monitor the shot-to-shot variation of the intensity of the



trance of the chamber. With the objective of reduc-
ing the scattering of the data caused by shot-to-shot
intensity variations of the laser, we normalized the
intensity of the refracted beam to the intensity of the
incident beam for each laser pulse. For this purpose
we generated a reference signal by reflecting part of
the incident laser beam with a 50% transmissive
gold-plated grid into a fixed reference vacuum photo-
diode (Photodiode A in Fig. 2). To obtain absolute
values of the diffraction efficiency we calibrated the
signal of the reference photodiode with respect to the
intensity of the beam transmitted by the grid. We
accomplished this calibration by removing Photo-
diode B from the lever arm and placing it in front of
the grating. This calibration was repeated before
and after each series of measurements. The photo-
diode signals were recorded and stored for every laser
shot by a 500-MHz analog bandwidth digital oscillo-
scope (Hewlett-Packard Model 54825A). The effi-
ciency of each of the diffraction orders was measured
by averaging of 30 laser shots.

The main contributor to the statistical error asso-
ciated with the measurements is the electromagnetic
noise produced by firing of the fast electrical dis-
charge that generates the laser pulse, which affects
the signal produced by the vacuum photodiodes.
The standard deviation of several series of measure-
ments (each consisting of 30 laser shots) of the zero-
order and first-order diffraction intensities taken for
a fixed angular position of the grating was ~10% of
the mean value. All measurements fell within
+13% of the mean. Possible sources of systematic
error include saturation of the vacuum photodiode
signal and failure of the active area of the detector to
collect the entire laser beam when the detector is
placed at a certain position. We checked the linear-
ity of the detectors by measuring the response of the
detectors as a function of applied voltage (increased
voltage across the vacuum photodiodes decreased
saturation by reducing the electron space charge).
Based on these measurements, we placed thin-film
aluminum filters at the inputs of the photodiodes and
selected a sufficiently high-bias voltage to ensure
their linearity to better than 5% over the entire range
of intensities used in these measurements.

As was mentioned above, a pinhole was placed at
the entrance of the measurement chamber to limit
the beam diameter to 1 mm. This ensured that we
could detect the entire beam at all positions. Also,
attention was paid to the digitization error intro-
duced by the insufficiently fast sampling rate of the
oscilloscope. To overcome this problem we slowed
the photodiode signals, using a passive electronic cir-
cuit before digitization. The overall relative error of
the measurements can be conservatively estimated to
be less than +13%.

3. Simulation of the Grating Performance

The classic formulation of the differential method
used to simulate the grating performance® is dis-
cussed below. To handle polarization effects, it is
convenient to analyze two independent cases sepa-

rately: that of an incident electric field parallel to
the grooves (s, E|, or TE polarization) and that of an
incident magnetic field parallel to the grooves (p, H,
or TM polarization). In the first case, the total (in-
cident and diffracted) electric field is parallel to the
grating grooves, whereas in the second case it is the
total magnetic field that is parallel to the grating
grooves. Taking into account that the differential
method is well documented in the literature (see Ref.
9 and references therein) and that the main idea of its
formulation is similar for both polarization cases, we
give the relevant details for the E; case only. Re-
cently, a new formulation of the differential method
in TM polarization that removes numerical instabil-
ities associated with deep gratings and highly reflect-
ing materials was presented.1!

We chose a rectangular coordinate system (x, y, z)
in such a way that the grating surface is described by
the periodic function y = g(x) = g(x + d), where d is
the period, with min g(x) = 0 and max g(x) = h (h is
the groove height). This surface separates two iso-
tropic and homogeneous media, each one character-
ized by dielectric permittivity ¢; (j = 1,2). We
assume that the magnetic permeability is every-
where equal to that of vacuum. The grooves of this
grating lie along the z axis, and the interface is illu-
minated from medium 1 by a monochromatic plane
wave of frequency . The plane of incidence (plane
containing the wave vector of the incident wave and
normal to the mean grating surface) coincides with
the main section of the grating (plane perpendicular
to the grating grooves). In this case, the wave vec-
tors of the diffracted orders are all contained in the
same plane. The components of k (the wave vector
of the incident wave) can be written as k = vy x + B,
y, where vy, = k4 sin 6, By, = k4 cos 0, 6 is the angle of
incidence measured from the normal to the mean
grating surface, k£, = €, w/c, and c is the speed of light
in vacuum.

The formulation of the method is based on the fact
that, with the assumptions expressed above, the elec-
tromagnetic properties of the diffraction grating can
be described by a coordinate-dependent dielectric
permittivity €(x, y) with the following properties:
(a) it is a real or a complex function; (b) it is indepen-
dent of the z coordinate; (c) it is constant and equal to
€, if y > g(x); (d) it is constant and equal to &, if y <
g(x); and (e) for a fixed value of y, 0 <y < h, function
€(x, 1) is periodic (period d), piecewise, and continu-
ous with respect to x.

Outside the modulated zone 0 <y < h, the dielec-
tric permittivity is constant, and Maxwell’s equations
give the following analytical solutions for the total
electric field f(x, y):

£, ) = fue2, y) + >, R, expi(y,x + B,y), y>h,

flx,y) = >, T, expi(y,x + b,y), y <0,

where f(x, y) represents the electric field in the E;
case or the magnetic field in the H| case, corre-

inc
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sponds to the incident field, v,, = vy, + n2w/d, B,, =
(k12 - 'Ynz)l/z’ d)n = (k22 - yn2)1/27 k2 = 82(1)/C, and Rn
and T, are the complex amplitudes of the reflected
and transmitted diffracted orders, respectively.

In the modulated zone, Maxwell’s equations give
the following propagation equation for f(x, y):

Vf(x, y) + alx, y) f(x, y) =0, (1)

where « (x, y) = (0/c)? &(x,y). The periodic nature
of the grating allows us to expand the functions
a(x, y) and f(x, y) in the following manner:

Flx,y) =2 fu(y)expily,x), (2)

a(x,y) = S a,(yexpi(n2mx/d).  (3)

n

By introducing these expansions into propagation
equation (1), we finally obtain a system of ordinary
differential coupled equations for the unknown func-
tions f,,(y), n = —oo. . .00

fn” = 0Lnfn - 2 0Lnfmfm' (4)

Continuity of the electric field at y = O andy = A
imposes four relations among f7,(0), 1,,(0), f.(h), and
f.(h) and the complex amplitudes R, and 7,,. We
can use two of these functions to integrate numeri-
cally the differential system in the interval 0 <y < h:

£1(0) = =i, f,(0), (5)

and, after integration, the other two functions give
the correct values of the complex amplitudes:

Rn = fn(h)exp(_LBnh) - eXp(_2anh)80n’ (7)
T, =1.0). 8

Finally, the efficiencies of the reflected and transmit-
ted orders can be obtained asr,, = B, |R,,|*/B, and ¢, =
b, |T,[?/b,, respectively.

To implement this differential formalism numeri-
cally we must assume that the field f(x, y) is accu-
rately represented by N components of its series
[fromn = —N_ton =N, in Eq. (2), with N = N_ +
N, + 1], and truncate the infinite set of differential
equations to order N. Standard algorithms, such as
those of Runge—Kutta and Noumerov, can be used to
integrate the system of Eq. (4). However, it should
be noted that these algorithms start with known val-
ues of the function and its derivative at y = 0 and
proceed with the integration up to y = A (or vice
versa), but, in fact, these values are not known (we
know only the incident field at y = ). To eliminate
this difficulty we proceed in the following manner:
First we find a basis for the space of solutions to
system (4) together with condition (5) (the dimension
of the space is N). Let us call the nth component of
the mth vector of this basis £,"(y) (n,m = —-N_,. . .,
0,...,N,). To construct this basis, it is sufficient to
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integrate N times system (4) together with condition
(5), choosing N linearly independent vectors f™ (0),
for example, £, (0) = 3,,,,. Thus the desired solu-
tion to system (4) together with conditions (5) and (6)
can be written in terms of this basis as

£.(9) =2 Suf (). (9)

To find the constants S,, we force this expression to
satisfy relation (6), obtaining in this manner a linear
system with S,, as unknowns:

> S, L™ () = iB.f ™ (h)] = —2iB,

Once this linear system has been inverted, we are
ready to calculate the total electric field f(x, y) every-
where. In particular, the complex amplitudes of the
reflected orders R,, can be calculated from Eq. (7).
The numerical code that we used to obtain the
simulations presented in Section 4 was checked by
use of several criteria such as power balance, reci-
procity theorems, convergence and stability of the
results with N, and length of the integration step.
Furthermore, the results of the code for a large num-
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Fig. 3. Comparison of measured and computed absolute diffrac-
tion efficiencies of a 1800-line/mm gold-coated diffraction grating
as a function of grazing-incidence angle. The angles between the
facets and the mean surface are A = 10.028 deg and B = 60 deg.
(a) Data for first and second diffraction orders; (b) zero-order data.
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Fig. 4. Comparison of measured and computed diffraction effi-
ciencies of the M = 0 and M = —1 diffraction orders of a 300-
line/mm gold-coated diffraction grating as a function of incidence
angle. The angles between the facets and the mean surface are A
= 1.33 deg and B = 80 deg.

ber of grating configurations were compared with
those given by other codes, based on widely different
techniques, such as the Chandezon coordinate trans-
formation method® and the modal method developed
by Li.6 Although we observed good agreement be-
tween these methods for gratings that support a
number of diffracted orders (such as those used in the
visible region of the electromagnetic spectrum) that is
not too great, the differential method sketched above
was the only one to produce stable results for gratings
that support a large number of diffracted orders.
Because of this particular capability, which has al-
ready been reported in the literature,® we chose the
differential method to simulate the performance of
gratings designed for grazing-incidence operation in
the soft-x-ray region. The wavelength-to-period ra-
tios for the gratings considered here are \/d =
0.01407 (300 lines/mm) and \/d = 0.08442 (1800
lines/mm), which give a total of 143 and 24 propa-
gating orders, respectively. Although propagating
and nonpropagating orders are both, in principle,
fundamental to representing the correct field, the
number of propagating orders can be used as a first
estimation for the numerical parameters N, N_, and
N_.. We chose the final values for these parameters
by considering convergence and stability criteria.
Note that gratings with large numbers of propagat-
ing orders can usually be excessively demanding for
any theoretical method. This is so because the di-
minishing exponential terms associated with evanes-
cent orders can lead to bad conditioning of the N X N
matrix to be inverted [Eq. (10)]. Considering that
our code is almost at the limit of its possibilities for
values of N beyond ~170, for the 300-line/mm grat-
ing we were not able to include many nonpropagating
orders in the truncated series. However, we have
observed that better-conditioned matrices with con-
vergence of the results up to 10~ 2 are obtained when
not all the propagating orders are included. This
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Fig. 5. Comparison of measured and computed diffraction effi-
ciencies of the 300-line/mm gold-coated diffraction grating as a
function of incidence angle and for several values of angle B. The
blaze angle is 1.33 deg.

behavior of the differential method, which is not gen-
erally valid and could seem counterintuitive, could be
a consequence of the fact that for the 300-line/mm
grating most of the diffracted power is concentrated
about the zero order.

4. Comparison of Measurements and Simulations

In our calculations we have assumed ideal triangular
profiles. For the angles A and B between the groove
facets and the mean grating surface we used the
values A = 10.028 deg and B = 60 deg for the 1800-
line/mm grating and A = 1.33 deg and B = 80 deg for
the 300-line/mm grating.

Figure 3 compares the measured diffraction effi-
ciency of the 1800-line/mm grating with the model
simulation results for incidence angles of 78—86 deg.
The refractive index of gold was chosen as v = 0.89 +
0.07i. The measured efficiency of the first and sec-
ond diffraction orders (M = —1, M = —2) is marked
by triangles in Fig. 3(a). The curves represent the
results of the simulations. Figure 3(b) shows the
results for order 0 (M = 0). Excellent agreement is
observed between measurements and theory for all
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the diffraction orders over the entire range of inci-
dence angles. The measured absolute diffraction ef-
ficiency values for the first and second diffraction
orders are within 1.5% of the computed values.

The results for the 300-line/mm grating are shown
in Fig. 4. The measurements cover angles of inci-
dence of 74—-84 deg. The agreement between the
measured and computed values is not so good as for
the 1800-line/mm grating. The simulation overes-
timates the absolute diffraction efficiency of the first
order by as much as 8.5%. To illustrate the effect of
possible departures from the ideal profile, we re-
peated the calculations for the 300-line/mm triangu-
lar grating but used different values for angles A and
B in the vicinity of the nominal values given above.
We observed that, for the angles of incidence consid-
ered, the efficiencies remain almost unchanged when
angle B is varied from 71 to 89 deg and angle A
remains fixed at the nominal value 1.33. The calcu-
lations, however, depend much more on angle A
(blaze angle), which in the manufacturing process
has been controlled within a 10% error. The influ-
ence of this shape variation is illustrated in Fig. 5,
where we compare the experimental results with
those obtained for various values of angle B (0.9, 1.0,
1.1, and 1.2 deg).

As was discussed in Section 3, the poorer agree-
ment in this case could be due to the large number of
modes supported by the 300-line/mm grating, which
approaches the limit of the capabilities of the present
code, or to an overestimation of angle B.

5. Conclusions

In summary, we have used a tabletop laser to mea-
sure the efficiency with which gratings diffract 46.9
nm radiation. The measurements were compared
with the results of an electromagnetic code based on
the classic formulation of the differential method.
The measurements indicate that the code accurately
predicts grating performance when the number of
propagating modes is relatively small (e.g., 24 prop-
agating modes, 1800-line/mm grating). When the
number of propagating modes is large (e.g., 143 prop-
agating modes, 300-line/mm grating) the code is less
accurate. The results illustrate the significant po-
tential of tabletop soft-x-ray lasers as a new powerful
characterization tool for short-wavelength optics.
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