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ABSTRACT

DYNAMICS AND PARAMETERIZATION OF STABLY STRATIFIED TURBULENCE:

IMPLICATIONS FOR ESTIMATES OF MIXING IN GEOPHYSICAL FLOWS

This research focuses on the relationship between the observed length scales of overturns

in stably-stratified shear-flow turbulence and the fundamental length scales constructed from

dimensional analysis of basic physical quantities. In geophysical flows such as the ocean,

overturns are relatively easy to observe while the basic quantities are not. As such, overturns

provide a means of inferring basic quantities if the relationship between the observed and

fundamental scales are known. In turn, inferred values of the basic quantities, namely the

the turbulent kinetic energy k, and the dissipation rate of turbulent kinetic energy ε, can be

used to estimate diapycnal diffusivity (i.e. turbulent mixing). Most commonly, the observed

Thorpe length scale, LT , is assumed to scale linearly with the fundamental Ozmidov scale,

LO = (ε/N3)1/2, so that inferred values of ε can be obtained and used to estimate mixing

from the Osborn formulation for diapycnal diffusivity. A major goal of this research is

to re-examine this and other possible scalings using dimensional analysis, direct numerical

simulation (DNS), laboratory data, and field observations.

The preliminary chapters constitute a fresh approach at dimensional analysis that presents

the fundamental length scales, time scales, and dimensionless parameters relevant to the

problem. The relationship between LT and the fundamental length scales is then examined

for the simple case of homogeneously stratified turbulence (without shear) using DNS. A key

finding is that the common practice of inferring ε from LT ∼ LO, is valid at the transition

between a buoyancy-dominated regime and an inertia-dominated regime where the time scale

of the buoyancy oscillations, N−1, roughly matches that of the inertial motions, TL = k/ε.

Regime definition is made possible using a non-dimensional buoyancy strength parameter

NTL = Nk/ε.
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Next, the problem is generalized to consider mean shear, and thus, a shear strength

parameter, STL = Sk/ε, and the gradient Richardson number, Ri = N2/S2, are considered

along with NTL to define three regimes available to high Reynolds number stratified shear-

flow turbulence: a buoyancy-dominated regime (NTL & 1.7, Ri & 0.25), a shear-dominated

regime (STL & 3.3, Ri . 0.25), and an inertia-dominated regime (NTL . 1.7, STL .

3.3). The regimes constitute a multi-dimensional parameter space which elucidates the

independent influences that shear and stratification have on the turbulence. Using a large

database of DNS and laboratory results, overturns are shown to have unique scalings in

the various regimes. Specifically, LT ∼ k1/2N−1, LT ∼ k1/2S−1, and LT ∼ k3/2ε−1 in the

buoyancy-, shear-, and inertia-dominated regimes, respectively. LT ∼ LO is found only for

the case of NTL = O(100) and STL . 3.3, or for NTL = O(100), STL ≈ 3.3 and Ri ≈ 0.25

when shear is present. In all three regimes, LT is found to generally indicate k rather than ε.

An alternative parameterization of turbulent diffusivity is developed based on inferred values

of k with a practical eye toward field applications. When tested with DNS and laboratory

data, the new model is shown to be more accurate than estimates based on inferred values

of ε.

The multi-parameter framework is broadened with consideration for the turbulent Reynolds

number, ReL, thus allowing for an evaluation of existing parameterizations of diapycnal mix-

ing efficiency, R∗f . Select DNS and laboratory data sets are used in the analysis. A key

finding is that descriptions of R∗f based on a single-parameter are generally insufficient. It

is found that Ri is an accurate parameter in the shear-dominated regime but fails in the

inertia-dominated regime where turbulence is generated by external forcing (rather than

mean shear). In contrast, the turbulent Froude number, FrT = (LO/LT )2/3, is an accu-

rate parameter in the inertia-dominated regime but looses accuracy in the shear-dominated

regime. Neither Ri or FrT sufficiently describe R∗f in the buoyancy-dominated regime where

additional consideration for ReL is needed. Another key finding is that the popular buoyancy

Reynolds number, Reb = ReL(NTL)−2, is a particularly misleading parameter for describing

iii



R∗f because it fails to distinguish between (i) a low-Reynolds number, weakly stratified regime

of low efficiency (low ReL, low NTL, low R∗f ) typical of DNS flows and (ii) a high-Reynolds

number, strongly stratified regime of high efficiency (high ReL, high NTL, high R∗f ) typical

of geophysical flows.

Finally, oceanic observations from Luzon Strait and the Brazil Basin are featured to

examine the relationship between LT and LO in geophysical flows where turbulence is driven

by overturns that are very large by open ocean standards. LT is found to increase with

respect to LO as a function of the normalized overturn size L̂T = LTN
1/2ν−1/2. When large

overturns are present, dissipation rates inferred from LT ∼ LO are generally larger than

measured values on average. The overestimation is quantified over a spring tidal period at

Luzon Strait where depth- and time-integration of inferred and measured values show that

inferred energy dissipation is four times too large.
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Chapter 1

Introduction

1.1 Motivation

Turbulence is characterized as the small-scale motions within a flow that are seemingly

random and chaotic. In geophysical flows, such as those of the ocean and atmosphere,

turbulence is influenced by the competing effects of larger-scale shear and stratification;

shearing of the mean flow acts to promote turbulence while mean stratification generally

has a dampening effect since most geophysical flows are stably-stratified. The resulting

turbulence feeds back into the mean flow through the mixing of momentum and density. This

dynamic interaction between small- and larger-scale motions makes turbulent mixing in the

ocean and atmosphere critically relevant to global-scale, geophysical processes that govern

Earth’s climate. The dramatic range of scales characterizing this phenomenon precludes

full resolution of the rich dynamics of turbulence in numerical ocean or climate models;

therefore, the role of turbulent mixing must be parameterized, or approximated, in terms

of more readily observed or computed quantities. The overarching goal of this research

is to improve the fundamental understanding of stratified shear-flow turbulence so that

dynamically appropriate, physically-based parameterization schemes can be developed for

describing turbulent mixing in geophysical settings. Of particular focus will be the use of

observed overturning motions to infer basic, but difficult to measure, quantities necessary for

estimates of diapycnal diffusivity (i.e. turbulent mixing of density) in the ocean. The spatial

scales of interest will be considered sufficiently small so that planetary rotational effects can

be ignored (i.e., large Rossby number, Ro� 1).
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It is through dimensional analysis that the relationship between overturning and mixing

will be examined. Dimensional analysis is a powerful tool for gaining fundamental insight into

turbulence wherein the basic physical quantities (e.g., characteristic length, velocity, or time

scales, molecular viscosity, kinetic energy, etc.) are grouped into dimensionless parameters

that explain some aspect of flow behavior. Physically, these parameters represent competing

forces or processes within a flow. For example, the Reynolds number, Re = UL/ν, is a widely

used parameter expressing the competition of inertial forces, ρU2L2, to viscous forces, µUL.

Here, U and L are characteristic velocity and length scales for the motions of interest, ν is the

kinematic viscosity of the fluid, ρ is fluid density, and µ = ρν is the fluid’s dynamic viscosity.

In this sense, motions with Re� 1 are influenced by their own inertia and are relatively free

from the dampening effects of viscosity. This is, thus, a necessary (although not sufficient, as

will be shown) condition for the existence turbulence. Other equally important dimensionless

parameters relevant to overturning and mixing will be discussed as part of the current work.

Dimensional analysis also facilitates an understanding of turbulence through the formula-

tion of fundamental time and length (or velocity) scales. Like dimensionless parameters, such

scales are groupings of the basic physical quantities characterizing the flow. These groupings

carry the units of either time or length. Because fundamental scales and dimensionless pa-

rameters are constructed from the same quantities, the latter is often expressed as a ratio of

the former. Depending of the constituent quantities, a particular time or length scale may

have a physical analogue in the flow and, thus, may denote a point in the spatio-temporal

spectrum of motion where something of fundamental importance is occurring. For example,

a length scale grouping involving ν might indicate the eddy size below which viscous dissi-

pation of turbulence is important. In this dissertation, particular focus will be on the largest

turbulent eddies of the flow that are readily observed in field studies. Since these eddies

are strongly influenced by shear and stratification, fundamental length scales involving the

mean shear rate, S, and the mean buoyancy frequency, N (defined later) will be featured.

A comparison of observed and fundamental scales is central to the discussion, and relevant
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dimensionless parameters are used to describe regimes of correlation or lack thereof. Agree-

ment between observed and fundamental scales allows for inference of the basic quantities

that can then be used to estimate diapycnal diffusivity.

Theoretically, a holistic picture of overturning and the related mixing is complete if the

influences of shear, stratification, inertia, viscosity, and scalar diffusivity are all considered

using a comprehensive set of parameters and fundamental scales. It is with this holistic

mindset that the current research seeks to better understand stably-stratified shear-flow

turbulence.

Specific motivators for this research are

• A need to parameterize turbulent mixing : Turbulent mixing of momentum and density

are typically represented as diffusivity coefficients. As will be discussed, these coeffi-

cients are important for (1) characterizing and communicating the “state” of turbulence

in environmental flows and (2) numerical modeling of such flows. Various parameter-

izations for turbulent diffusivity exist, however, none have been universally accepted

due to a lack of a unified description of stably-stratified shear-flow turbulence.

• A need for practical methods of inferring turbulent quantities : Quantities such as turbu-

lent kinetic energy, k, or turbulent dissipation rate, ε, are fundamental to flow behavior

such as mixing but remain very difficult and expensive to measure in environmental

flows. In oceanography, correlations are often assumed to exist between observed scales

of motion and fundamental scales constructed through dimensional analysis. These as-

sumed correlations allow for inferences on the turbulent quantities. The validity of

these assumptions has yet to be assessed from a fundamental, holistic viewpoint.

• A need to link laboratory and numerical findings to geophysical flows : Much of what

is known about stratified shear-flow turbulence comes from well controlled laboratory

or numerical experiments. These experiments, however, are performed at relatively

low Reynolds numbers when compared to the geophysical flows they are intended to
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represent. Thus, parameterizations of flow behavior based on these experiments should

be applied with caution to larger scale flows. A holistic understanding of the relevant

length and time scales and dimensionless parameters is needed to properly scale-up

experimentally based parameterizations.

1.2 Objectives

As stated above, the overarching goal of this research is to improve our fundamental

understanding of stably-stratified shear-flow turbulence in an effort to better understand

and improve parameterizations of turbulent mixing in geophysical settings. The key tool

for doing so will be dimensional analysis tempered by physical reasoning so that relevant

dimensionless parameters and fundamental length and time scales of the turbulence can

be relied upon to describe the overturns that drive mixing. Data used in the analysis will

include a combination of results from direct numerical simulations (DNS), laboratory data

of classic studies, and oceanic field data. The main objectives of this research are as follows:

1. To determine the fundamental scaling relationships for overturns in stably-

stratified shear-flow turbulence. The first major contribution of this dissertation

is an analysis of the length scales of overturning in stably-stratified turbulence for the

simple case of decaying, shear-free turbulence discussed in chapter 5. The analysis

is then broadened to include mean shear, and thus growing turbulence, in chapter 6.

In both chapters, correlations between the overturn size and the relevant fundamental

length scales are determined and discussed in terms of the non-dimensional parameters

of chapter 4. This objective is motivated by the common, yet insufficiently validated,

practice of inferring the dissipation rate of turbulent kinetic energy, ε, from oceanic

observations of overturns, where ε is a basic quantity used to estimate diapycnal dif-

fusivity. The findings of chapters 5 and 6 have important implications with regard to

this common practice.
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2. To develop a multi-parameter framework for parameterizing overturning

and mixing in stably-stratified shear-flow turbulence. Herein lies the crux of

this dissertation: a multi-parameter, multi-regime parameter space is developed in

chapter 6 to describe the fundamental scaling relationships of overturning in the pres-

ence of both shear and stratification. To date, no such parameter space has been

presented that explicitly and independently considers both of these influences. The

paramter space serves as a framework to generally conceptualize turbulence and, in

chapter 7, is used successfully to describe the efficiency of mixing in DNS and geophys-

ical flows.

3. To compare the Thorpe and Ozmidov length scales using oceanic data. In

chapter 8, the fundamental groundwork laid by the bulk of this research will be called

upon in an analysis of various oceanic data sets. Emphasis will be on data sets featuring

overturns that are large by open ocean standards. Using this data, the Thorpe length

scale (an observable measure of overturn size) will be compared to the Ozmidov length

scale (a fundamental scale involving ε) to evaluate the validity of the common practice

of inferring ε from overturns (mentioned in objective 1). To date, this practice is largely

unvalidated in regions of large overturns. This objective serves to partially bridge the

gap between theory, experiments, and field observations.

1.3 Dissertation Layout

The chapters of this dissertation each include brief discussions of background material so

that the chapters may be read as stand-alone works. As such, some concepts and definitions

found in the literature review and elsewhere will be repeated in later chapters. The layout

of the dissertation is as follows:

• Chapter 2 represents a review of the full set of governing equations and the approxi-

mations typically used in the context of small-scale geophysical flows.
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• Chapter 3 represents a review of classical literature pertaining to the dimensional

analysis of sheared and/or stratified turbulence. More recent literature regarding the

use of dimensionless ratios and fundamental scales to parameterize ocean turbulence

will also be discussed.

• Chapter 4 presents the fundamental scales and parameters relevant to the rest of the

dissertation.

• Chapter 5 is an analysis of the size of overturns in shear-free stratified turbulence using

DNS. This chapter is directly motivated by objective 1 above.

• Chapter 6 addresses objectives 1, and 2 and is the centerpiece of the dissertation. A

wide array of numerical and laboratory data is considered in constructing a conceptual

framework and a parameterization scheme for ocean mixing is suggested.

• Chapter 7 addresses objective 2 and extends the framework to an analysis of mixing

efficiency.

• Chapter 8 directly addresses objective 3 using data from regions of the world’s oceans

where turbulent mixing by overturning is intense.

• Finally, chapter 9 briefly summarizes the main findings and relevant contributions of

the dissertation.
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Chapter 2

Governing Equations

In any environment, the behavior of fluid flow (and turbulent motions) is governed by

conservation laws. Specifically the conservation of mass, momentum (Newton’s second law),

and energy (first law of thermodynamics). These laws compose a closed set of equations that

can theoretically be solved for an exact description the flow. However, to completely resolve

a highly turbulent field becomes practically impossible due to the fine-scale structure of

turbulence - hence the need for parameterizations. Nevertheless, the governing conservation

laws are presented in this section to lay the fundamental groundwork for further discussion.

2.1 Conservation of Mass

Taking a system to be a set of fluid particles that constitute a deformable volume, V (t),

the derivation of any conservation equation for some extensive variable, B (the total amount

of some quantity contained within the volume), begins with the Reynolds transport theorem,

(
DB

Dt

)

SY S

=

˚

V

∂(ρβ)

∂t
dV +

‹

S

ρβ(U · n)dS, (2.1)

where β is the intensive (per unit mass) representation of B, ρ is the density of the fluid, U

is the velocity of the system boundary, and n is the unit vector normal (outward positive)

to the control volume surface1. The left hand side of (2.1) is the material derivative of the

property B following the system. The first term on the right hand side is the time rate of

change of B within V at the instant of consideration, t. The second term on the right hand

side is the time rate of change due to deformations in the system volume. Alternatively, with

1B = ρV β only if ρ and β are uniform over the control volume.
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a flux-based perspective, the first and second right hand terms are the change while the fluid

is within a fixed control volume and the change due to a net flux through a non-deformable

control surface, respectively. With the Gauss divergence theorem and an infinitesimal system

volume, (2.1) becomes

ρ
Dβ

Dt
=
∂(ρβ)

∂t
+∇ · (ρβU). (2.2)

When considering mass as the property of interest, β = 1 and the left hand side of (2.2)

goes to zero (i.e., mass cannot be created or destroyed within the system). The conservation

of mass can then be written in non-conservative form as

1

ρ

Dρ

Dt
+∇ ·U = 0, (2.3)

where Dρ/Dt = ∂ρ/∂t + U · ∇ρ is the material change in density following a fluid particle

and can be nonzero due to changes in pressure, temperature, or salinity.

2.2 Conservation of Momentum

For a system of fluid particles, momentum is conserved in the sense of Newton’s second

law. That is, the change in system momentum, DP/Dt, equals the sum of the forces acting

on the system. In integral form, this may be written as

(
DP

Dt

)

SY S

=

˚

V

∂(ρU)

∂t
dV +

‹

S

ρU(U ·n)dS = −
‹

S

pndS+

˚

V

ρfdV +

‹

S

n ·τijdS, (2.4)

where the left half of the equation follows from (2.1) with β = U and the three right hand

terms are the net forces from pressure (normal), p, body forces, ρf (per unit volume), and

viscous shear stress, represented by the second rank tensor τij. Evoking the Gauss divergence
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theorem and (2.3) This can be written in differential form as

ρ
DU

Dt
= −∇p+ ρf +∇ · τij, (2.5)

which is essentially a restatement of Newton’s second law per unit volume of the fluid.

If density is assumed constant (for the time being), (2.3) and (2.5) represent four equa-

tions involving ten unknowns (i.e., U, p, τ11, τ22, τ33, τ12 = τ21, τ13 = τ31, and τ23 = τ32).

Closure to the system is provided by a constitutive relationship relating stress to strain in the

fluid. Stokes hypothesis provides the needed closure, which for incompressible Newtonian

fluids (i.e., those of the flows considered here) is:

τij = 2µSij, (2.6)

where µ is the dynamic viscosity of the fluid and Sij = 1
2

(
∂Ui

∂xj
+

∂Uj

∂xi

)
is the strain rate tensor.

Substitution of (2.6) into (2.5) yields the Navier-Stokes equations for an incompressible fluid

of nearly constant viscosity and a body force due solely to gravity (i.e., f = g = −kg, where

g is the acceleration due to gravity):

ρ
DU

Dt
= −∇p+ ρg + µ∇2U. (2.7)

2.3 Conservation of Energy

In general, (2.3) and (2.7) do not constitute a closed system even with Stokes hypothesis

because density is not necessarily a known constant. The thermodynamic equation and an

equation of state are then needed to complement (2.3) and (2.7).

The first law of thermodynamics states that changes in the total energy of a system

are due to heat transfer with the surroundings and work done by/to the system on/by the

surroundings. For a system of fluid particles, the specific total energy is E = e+ 1
2
U ·U+ Φ,
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where the constituent terms represent internal, kinetic, and potential (i.e., −gk = −∇Φ)

energy, in that order. Thus, the net change in a system’s energy is represented by (2.1) with

β = E . To satisfy energy conservation, this is then set equal to terms describing work done

by surface forces and net heat transfer. In differential form this is

ρ
DE

Dt
= −∇ · (q + pU− τij ·U), (2.8)

where q is the heat flux per unit area, pU and −τij ·U are the pressure and viscous work

done by the surroundings on the system. For the purposes here, we will neglect viscous

work. Through consideration for enthalpy, energy conservation can then be written in terms

of temperature, T :

DT

Dt
= κT∇2T, (2.9)

where κT is the coefficient of thermal diffusivity (see Kundu, 1990). Using an equation of

state of the form ρ = ρ(T ), this can be rewritten in terms of density. Generally, however,

the density can also be affected by changes in salinity, S , so that ρ = ρ(T,S ). In this case,

the conservation of energy in terms of density is

Dρ

Dt
= κρ∇2ρ, (2.10)

where κρ is a bulk molecular diffusivity of density that considers diffusion of density due to

diffusion of both temperature and salinity. In the ocean, however, heat diffuses roughly 100

times faster than salt so that κρ ≈ κT is often assumed.

2.4 Boussinesq Approximations

The governing equations can be simplified if it is assumed that density changes due to

pressure, temperature, or salinity are small. First consider the equation for the conservation

of mass. In many geophysical applications, the fluid of interest can be considered incom-
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pressible so that ∇ ·U ≈ 0. Furthermore, typical coefficients of thermal or haline expansion

are small enough so that ρ−1Dρ/Dt� ∇ ·U. In this case, (2.3) can be written as

∇ ·U = 0. (2.11)

Now consider conservation of momentum. Both density and pressure can be decomposed

into background and perturbation components: ρ(x, t) = ρ0 + δρ(x, t) and p(x, t) = p0(z) +

δp(x, t), where the background pressure is assumed hydrostatic (i.e., ∇p0 = ρ0g). Here is is

assumed that density perturbations, δρ, are due to changes in temperature or salinity (not

pressure). Perturbations in pressure are interpreted as any departures from the reference hy-

drostatic pressure. In most geophysical applications, δρ� ρ0, so that (2.7) can be rewritten

as

DU

Dt
= − 1

ρ0

∇δp+
δρ

ρ0

g + ν∇2U. (2.12)

Herein lies the most profound tenet of the Boussinesq approximation. That is, variations

in density can be neglected except when multiplying gravity. The resultant term, (δρ/ρ0)g,

is known as the buoyancy term or reduced gravity and embodies the role of density as an

“active” scalar.

Finally, decomposition and simplification of the density equation (2.10) yields

Dδρ

Dt
= κρ∇2δρ. (2.13)

Here we see that, although the material change in density may be small, Dδρ/Dt 6= 0 due to

the possibility of adiabatic heat exchange or small changes in salinity.

(2.11), (2.12), and (2.13) represent the complete set of governing equations under the

Boussinesq approximations. These constitute the equation set typically referenced in many

geophysical flow applications - especially ocean applications where the density perturbations

within seawater are relatively small. At larger scales where the earth’s rotation is influential,
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Coriolis terms must be included in the momentum equation to account for the apparent

forces.

The Boussinesq approximations break down if pressure changes are strong enough to

affect density. This can occur if the speed of the fluid is large compared to the speed of

shock waves (i.e., large Mach number, Ma � 1) or if hydrostatic pressures are very large.

In the ocean, typical flow velocities are on the order of U ≈ 1 ms−1 while the speed of sound

corresponding to shock wave velocity is c ≈ 1470 ms−1. This gives Ma = U2/c2 ∼ 10−7.

This value is significantly smaller than Ma = 0.3, which is the minimum value required for

compressibility effects to be important (see Kundu 1990). For variations in density due to

hydrostatic pressure to be negligible, the vertical scale of consideration must be less than c2/g,

where g is the acceleration due to gravity (see Kundu 1990). In the ocean, c2/g ≈ 200 km,

which is much larger than the scales considered here so the Boussinesq approximations hold.

2.5 Reynolds Decomposition: The Turbulence Frame-

work

Turbulent flows are instantaneously satisfied by (2.11)-(2.13) so long as the assumptions

of the Boussinesq approximations are appropriate (usually so in geophysical flows). Even

with these approximations, however, the detail of turbulent length and time scales make

direct solution of the equations impractical for all but simple, weakly turbulent examples.

The practical solution is thus to decompose the velocity, pressure, and scalar (i.e., density)

fields into mean and fluctuating components and then solve only for the mean field. The so

called “Reynolds decompositions” are

U(x, t) = 〈U(x, t)〉+ u(x, t), (2.14)

p(x, t) = 〈p(x, t)〉+ p′(x, t), (2.15)
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ρ(x, t) = 〈ρ(x, t)〉+ ρ′(x, t), (2.16)

where 〈〉 indicates temporal averaging for a point in space, and u, p′, and ρ′ are the fluctuating

(i.e., turbulent) velocity pressure, and density. The δ-notation of 2.4 has been dropped

from pressure and density for convenience but both still indicate departure from a static

background reference condition.

Substituting these decompositions into (2.11)-(2.13) and time averaging yields equations

for the mean field (shown here in tensor notation):

∂Ui
∂xi

= 0, (2.17)

D〈Ui〉
Dt

= − 1

ρ0

∂〈p〉
∂xi
− 〈ρ〉

ρ0

gδi3 +
∂

∂xj

[
ν
∂〈Ui〉
∂xj

− 〈uiuj〉
]
, (2.18)

D〈ρ〉
Dt

=
∂

∂xj

[
κρ
∂〈ρ〉
∂xj
− 〈ujρ′〉

]
, (2.19)

where j is the repeated index for a given direction, i (e.g., for an equation evaluated in the x-

direction, i = 1 and j = 1, 2, 3), and δi3 is the third column of the 3x3 Kronecker tensor (i.e.,

δ13 = δ23 = 0, δ33 = 1, where i = 3 indicates the vertical direction). These equations are the

direct analogues to (2.11)-(2.13), with the exception of the additional turbulent fluctuation

terms in (2.18) and (2.19). These new terms are the Reynolds stress tensor, −〈uiuj〉, and the

turbulent density flux, −〈ujρ′〉. The Reynolds stresses are “apparent” stresses felt by the

mean flow due to the transfer of mean momentum by the turbulent motions. The turbulent

density flux is the flow rate per unit area of density due to turbulent motions. These two

terms create a closure problem for solving the mean equations - the ultimate “turbulence

closure problem”. The Reynolds stress tensor introduces six new variables, and the turbulent

density flux introduces three.

Common parameterizations of the Reynolds stresses and turbulent density fluxes involve

evoking turbulent diffusivities that essentially describe turbulent transport as analogous to
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molecular transport. That is,

−〈uiuj〉 = Km

(
∂〈Ui〉
∂xj

+
∂〈Uj〉
∂xi

)
− 2

3
kδij, (2.20)

where k is the turbulent kinetic energy (see next section), and

−〈ujρ′〉 = Kd
∂〈ρ〉
∂xj

. (2.21)

These equations embody the turbulent-viscosity and gradient diffusion hypotheses, respec-

tively, and represent the nine additional equations required to close the system. It is impor-

tant to note, however, that the “eddy viscosity”, Km, and the turbulent density diffusivity,

Kd, are properties of the flow, not the fluid. Therefore, it is possible that they are direction-

ally dependent. With these hypotheses, the task of closure is now simplified to prescribing

Km and Kd.

2.6 Turbulent Kinetic Energy Budget

Reynolds decomposition of the governing equations has created a user-defined framework

to study turbulent flows. Namely, the instantaneous motions have been filtered into mean

and turbulent fields so that the turbulent field can be modeled with some parameterization

such as through turbulent diffusivities. As such, accurate parameterizations rely on an

understanding of the fundamental nature of the turbulent field. The key tool for gaining

such an understanding is the kinetic energy budget of the turbulent motions, where turbulent

kinetic energy per unit mass is half the trace of the Reynolds stress tensor:

k ≡ 1

2
〈uiui〉. (2.22)
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The budget, or evolution, equation for k is obtained by first subtracting the mean equation

(2.18) from the instantaneous equation (2.12) to get an equation for the turbulent velocity,

ui. Multiplication by ui and then averaging yields the kinetic energy equation:

Dk

Dt
=
∂k

∂t
+ 〈Uj〉

∂k

∂xj
= T + P +B − ε, (2.23)

where T , P , B, and ε are the transport, production, buoyancy flux, and dissipation of

turbulent kinetic energy as defined by:

T ≡ − ∂

∂xj

[
1

ρ0

〈p′uj〉+ 〈kuj〉 − 2ν〈uisij〉
]

(2.24)

P ≡ −〈uiuj〉
∂〈Ui〉
∂xj

(2.25)

B ≡ − g

ρ0

〈uiρ′〉δi3 (2.26)

ε ≡ 2ν〈sijsij〉 = ν

〈
∂ui
∂xj

∂ui
∂xj

+
∂ui
∂xj

∂uj
∂xi

〉
, (2.27)

where sij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the fluctuation strain rate tensor. The transport term, T ,

describes the transport of k due to pressure fluctuations, turbulent advection, and viscous

diffusion, but is often small and, in fact, zero for homogeneous turbulence.

The remaining three terms are relatively more interesting. The production term, P ,

represents the transfer of kinetic energy from the mean field by way of the Reynolds stress

working against the mean shear. This term is usually positive, indicating a “production” of

turbulent kinetic energy and a loss of kinetic energy from the mean field.

The buoyancy flux term, B, represents the conversion between turbulent kinetic and

turbulent potential energy (defined in section 2.7) and can generally be positive or negative.

For stably-stratified flows (i.e., ∂〈ρ〉/∂x3 < 0, where x3 is the vertical spatial coordinate),

a negative buoyancy flux indicates a positive density flux and a “loss” of kinetic energy.

In this case, kinetic energy is expended on the mixing of density against the influence of
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gravity. It is important to note, though, that the process is reversible. That is, turbulent

potential energy can convert back into kinetic form if a negative density flux occurs before

molecular diffusion of density fluctuations can occur. Such is the case with counter-gradient

fluxes associated with linear internal gravity waves.

Finally, the dissipation term, ε, represents the irreversible loss of turbulent kinetic energy

to internal energy due to the viscosity of the fluid. This term is always positive, and −ε is,

therefore, always a sink term in (2.23). The second term in braces on the right hand side of

(2.27) is typically negligible so that ε is often approximated as

ε̃ = ν

〈
∂ui
∂xj

∂ui
∂xj

〉
, (2.28)

where ε̃ is known as “pseudo-dissipation”.

2.7 Turbulent Potential Energy Budget

As stated in the previous section, turbulent kinetic energy is typically introduced from

the mean field through P , and lost to internal energy through ε or to turbulent potential

energy through B. It was also stated that the loss through B is reversible since turbulent

potential energy can convert back into kinetic form. In that sense turbulent potential energy

is often referred to as “available” potential energy, or simply APE, in that it is available to

the turbulence. To better understand this phenomenon an evolution equation for turbulent

potential energy will now be introduced.

Turbulent potential energy occurs in a stratified flow when turbulent motions act to lift

heavy fluid over light, but only exists during the time prior to irreversible molecular mixing

of density or motions leading to counter-gradient flux (i.e., net negative density flux). The

definition (per unit mass) is given by

EPE ≡
〈

1

ρ0

ˆ
ρ′gdz′

〉
=

g

ρ0

〈ˆ (
−∂〈ρ〉
∂z

z′
)

dz′
〉

= −1

2

g

ρ0

(
∂〈ρ〉
∂z

)−1

〈ρ′2〉, (2.29)
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where the turbulent average density fluctuation of a given fluid parcel is a function of its

vertical turbulent departure, z′, from an otherwise stable density profile: ρ′ = −(∂〈ρ〉/∂z)z′.

In the absence of molecular mixing or viscous effects, a parcel displaced as such would

oscillate vertically about its original (i.e., stable) position with a frequency, N . This so-

called buoyancy frequency is defined by

N2 ≡ − g

ρ0

∂〈ρ〉
∂z

, (2.30)

where z ≡ x3 is the vertical spatial coordinate. Turbulent potential energy can then be

redefined as

EPE = N2

(
∂〈ρ〉
∂z

)−2 〈
1
2
ρ′2
〉
. (2.31)

It is now obvious that an equation for EPE is essentially an equation for half the density

variance, 〈ρ′2/2〉. Such an equation is the scalar analogue to the turbulent kinetic energy

equation, (2.23), and is derived similarly. First, an equation for the density fluctuations is

derived by subtracting the mean equation, (2.19), from the instantaneous equation, (2.13).

The variance equation is then achieved by multiplying by ρ′/2 and taking the mean:

D
〈

1
2ρ
′2〉

Dt
=
∂
〈

1
2ρ
′2〉

∂t
+ 〈Uj〉

∂
〈

1
2ρ
′2〉

∂xj
=

1

2

(
κρ
∂2〈ρ′2〉
∂xj∂xj

− ∂〈ujρ′2〉
∂xj

)
− 〈ujρ′〉

∂〈ρ〉
∂xj

− ερ, (2.32)

where the first two terms on the right hand side are molecular and turbulent transport terms,

respectively, that decrease in significance with increasing homogeneity of the turbulence. The

third term is the production of variance due to the turbulent density flux working against

the mean density gradient. The final term is the dissipation of density variance defined by

ερ = κρ

〈
∂ρ′

∂xj

∂ρ′

∂xj

〉
, (2.33)

and represents a molecular smoothing of density fluctuations.
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Multiplying (2.32) by N2(∂〈ρ〉/∂z)−2 gives the equation for turbulent potential energy.

Neglecting the transport terms and assuming mean density changes only in the vertical

direction (i.e., ∂〈ρ〉/∂x = ∂〈ρ〉/∂y = 0, where x ≡ x1 and y ≡ x2 are the lateral spatial

coordinates), this can be written as

DEPE
Dt

≈ g

ρ0

〈ujρ′〉δj3 −N2ερ

(
∂〈ρ〉
∂z

)−2

= −B − εPE, (2.34)

where εPE is the irreversible conversion of turbulent potential energy to background potential

energy due to molecular diffusion and is given by

εPE = N2ερ

(
∂〈ρ〉
∂z

)−2

. (2.35)

In light of equations (2.23) and (2.34), we now explicitly see that the role of the buoyancy

flux, B, is to transfer energy between kinetic and potential forms; a negative buoyancy flux

(i.e., positive density flux) leads to a temporary decrease in k and a temporary increase in

EPE. The decrease in k becomes permanent only if the increase in EPE is subsequently

dissipated through εPE and the negative buoyancy flux is sustained. Such a process leads to

an increase in the background potential energy (i.e., mixing of the mean density field) at the

expense of turbulent kinetic energy.
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Chapter 3

Literature Review

3.1 Length and Time Scales of Turbulence

Turbulence is often conceptualized as a field of three-dimensional motions known as

eddies. Analogous to the two-dimensional swirling motions observed on the surface of a

river in the wake of a bridge pier, these motions are considered “semi-coherent” in that they

are characterized by an identifiable length scale, l (e.g., the eddy diameter). An eddy of size

l is then characterized by a velocity scale, u(l) (e.g., the eddy’s rotational speed), and a time

scale, τ(l) ≡ l/u(l) (see Pope, 2000). The space occupied by a given eddy can also contain

smaller eddies, thus giving rise to the chaotic detail that is ubiquitous to turbulent flows.

The largest eddies in the turbulent field have scales that are set by the mean flow or physical

boundaries, while the smallest scales are influenced by the arresting effects of the fluid’s

viscosity. How turbulent kinetic energy is transferred across this spectrum of motion is of

fundamental importance to turbulent dynamics so a conceptual framework for this process

will be presented first. Common length and time scales constructed through dimensional

analysis will then be discussed in the context of this framework for the cases of unforced,

sheared, and stratified turbulence.

3.1.1 The Energy Cascade

The traditional framework used to describe the transfer of energy among the various

scales of turbulence was put forth by Richardson (1922). Richardson conceptualized that

kinetic energy is introduced to the turbulent field at the scales of the largest eddies and

is then transferred to successively smaller eddies via inertia as larger eddies breakup. The

process is viewed to continue down to the smallest eddies where inertial transfer gives way
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to viscous dissipation. At the smallest eddies kinetic energy is converted to internal energy

(i.e., heat). Richardson eloquently summarized this “energy cascade” as follows:

Big whorls have little whorls,

Which feed on their velocity;

And little whorls have lessor whorls,

And so on to viscosity

(in the molecular sense).

An important aspect of this framework is that dissipation occurs at the end of the cascade

and is, thus, dependent on the rate at which the largest eddies receive kinetic energy from

the mean flow. If the kinetic energy of the largest eddies scales with the square of their

characteristic velocity, u2
0, then the transfer rate should go as u2

0/τ0, where τ0 is the large

eddy time scale. Thus, if the flow is in equilibrium: ε ∼ u2
0/τ0 = u3

0/l0 (see Pope, 2000). For

this to be so, the time scale of the smallest eddies (which depend on viscosity) must adjust

to, and be less than, that of the larger eddies. In other words, for the cascade to continue

uninterrupted small eddies must have transfer rates that at least exceed the rate at which

they receive energy from larger scales. But what are these scales, both large and small? How

is energy distributed across the length scale spectrum? How do shear and buoyancy effect

this process? Classical answers to these questions are addressed in the next sections.

3.1.2 Unforced Turbulence

3.1.2.1 Kolmogorov’s Hypotheses

The foundation of modern turbulence theory may be attributed largely to the hypothe-

ses of Kolmogorov (1941). Kolmogorov reasoned that the largest scales of turbulence are

anisotropic due to mean flow and boundary conditions, but directional information is lost

as these eddies breakup into successively smaller eddies. The end result is that isotropy is
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achieved at sufficiently small scales when Reynolds number is sufficiently high. In this sense,

the small scales have universal characteristics in high-Reynolds number flows.

To characterize the smallest scales where dissipation occurs in earnest, Kolmogorov pro-

posed the variables of consideration to be ν and ε. Through simple dimensional analysis he

reasoned that the smallest eddies have the following characteristic length, velocity, and time

scales:

η ≡
(
ν3

ε

)1/4

(3.1)

uη ≡ (εν)1/4 (3.2)

τη ≡
(ν
ε

)1/2

. (3.3)

Interestingly, this reasoning implies that ν and ε are independent quantities, despite the

obvious dependence of the latter on the former. Here, ε is assuming the role of a transfer rate

from larger scales as set by the scaling introduced previously (i.e., ε ∼ u3
0/l0). Kolmogorov

considered (3.1)-(3.3) to describe the smallest eddies possible. That is, η is the length scale

at which an eddy’s inertial overturning cannot overcome the arresting effect of viscosity.

Between the large and small scales, Kolmogorov hypothesized that there exists an inertial

subrange through which kinetic energy is transferred via inertia in accordance with the

cascade theory of Richardson (1922). As with the dissipation range, motions of the inertial

subrange were also assumed to be universal among flows of high Reynolds number. Unlike

the dissipative eddies, however, Kolmogorov hypothesized that eddies of the inertial subrange

are dependent only upon ε, and are independent of ν. That is, they are small enough to

be isotropic but have enough inertia to overwhelm viscosity. With this reasoning, the net

transfer rate through the inertial range is constant and equal to ε for a flow in equilibrium.

Thus, ε ∼ u3
0/l0 ∼ u(l)3/l, for all eddies of size l within the inertial subrange.

Kolmogorov used the notion of a constant transfer rate to investigate the distribution of

energy across the scales of the inertial subrange. In essence, he hypothesized that an eddy

of size, l, is associated with a specific amount of energy, k(l) ∼ u(l)2. Then for the inertial
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subrange, the energy of a specific eddy increases with its size according to k(l) ∼ (εl)2/3.

The distribution of energy is typically discussed in wave-number space where an eddy’s

wavenumber, κl, is the inverse of the eddy’s length scale (i.e., κl ∼ 1/l)2. The energy density

(energy per unit wavenumber) for the inertial subrange is then:

E(κl) ∼
k(κl)

κl
∼ ε2/3κ

−5/3
l . (3.4)

This is the famous “−5/3” law of Kolmogorov that has been shown to hold for highly

turbulent experimental flows (e.g., Saddoughi and Veeravalli, 1994). In logarithmic plots

of E(κl) for data of sufficiently high Reynolds number, the inertial subrange is identifiable

as the bandwidth for which the spectrum is linear and of −5/3 slope. Typical spectrum

plots become non-linear above and below this bandwidth. The bandwidth above the inertial

subrange (i.e., small wavenumbers) is known as the energy-containing range because the

energy density is high. The bandwidth below the inertial subrange (i.e., high wavenumbers)

is known as the dissipative range because inertial transfer is giving way to viscous loss.

The preceding hypotheses are widely accepted for sufficiently small scales of sufficiently

high Reynolds number flows (i.e., those of the inertial subrange and smaller). Now consider

the larger scales. Generally, larger scales are assumed to be set by forcing of the mean flow

or by boundary conditions and cannot be uniquely determined from ν and ε. But what if

the flow is unforced? That is, what are the largest scales if the entire field is isotropic? Such

a flow could exist if shear, stratification, and boundary effects are absent. The turbulent

kinetic energy equation represented in (2.23) then implies that the turbulence freely decays

and the only remaining variable to consider for dimensional analysis is the kinetic energy

itself, k. Since k represents the total kinetic energy of the turbulence as summed over eddies

of all sizes (i.e., k =
´
E(κl)dκl), scales constructed from k are considered “integral scales”.

2κl is not to be confused with κρ or κT which are molecular diffusivities.
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Simple dimensional analysis shows these to be:

Lkε ≡
k3/2

ε
(3.5)

uL ≡ k1/2 (3.6)

TL ≡
k

ε
. (3.7)

These are often considered the length, velocity, and time scales of the largest eddies (if mean

flow and boundary effects are ignored) due to the integral nature of k (see Pope, 2000; Durbin

and Reif, 2001). In-depth physical interpretations of these scales will be given in chapter 4.

3.1.2.2 Taylor Microscale

The Taylor microscale is another, less physically based, length scale of frequent use in

studies of isotropic turbulence. Its derivation arises from a scaling of the isotropic simplifi-

cation of the dissipation rate given in (2.27):

ε = 15ν〈(∂u1/∂x1)2〉 = 15ν〈u2
1〉/λ2

g = 15νu2
rms/λ

2
g, (3.8)

where 〈u2
1〉 = u2

rms in isotropic flow and λg is the Taylor microscale. λg can be interpreted

as the length scale that allows for

urms = λg 〈∂u1/∂x1〉 (3.9)

(Tennekes and Lumley, 1974). This scale can also be formulated on the basis of the velocity

autocorrelation function (see Pope, 2000). Interestingly, λg is defined with the assistance of

the large-scale velocity, urms ∼ k1/2, therefore it does not characterize the small scales where

dissipation is actually occurring. Nonetheless, λg remains popular due to the frequent use of

autocorrelations by observationalists.
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3.1.3 Scales of Shear-flow Turbulence

The hypotheses of Kolmogorov are considered strictly valid for sufficiently small scales

that can be considered isotropic. The larger scales, on the other hand, are anisotropic due to

the influence of external forcing. In general, this forcing can be due to boundary conditions,

mean shear, or stratification. Because boundary conditions are flow-specific, the current

research will focus on the latter two fundamental mechanisms.

First, consider unstratified flow when mean shear, S = ∂〈Ui〉/∂xj, is present. With

reference to (2.23), the production term is active and the variables available to dimensional

analysis are k, ε, ν, and S. Again, the inclusion of both ε and ν emphasizes the role of ε as

a down-spectrum transfer rate.

The obvious question is then: over what bandwidth of the energy spectrum is mean shear

causing anisotropy? In other words, what determines the upper end (i.e., large-scale extent)

of the inertial subrange? In a classical effort to address these questions, Corrsin (1958)

viewed the problem in the context of competing time scales. Corrsin, in essence, compared

the time scales of inertial transfer and viscous dissipation to that of the mean strain (i.e.,

shear), S−1. The mean shear time scale can be thought of as an external time scale imposed

on the turbulence, while the inertial and viscous dissipation time scales can vary by eddy

size. Prior to making any assumptions based on Kolmogorov’s hypotheses, Corrsin defined

the eddy-wise inertial transfer time scale as

τa(κl) =
k(κl)

u(κl)3/l
=

∆κlE(κl)

(∆κlE(κl))3/2κl
= (κ3

lE(κl))
−1/2, (3.10)

where u(κl)
2 = k(κl) and k(κl) = ∆κlE(κl) is the kinetic energy associated with the eddies

in the ∆κl bandwidth. If a geometric scaling is assumed, ∆κl ≈ κl, then k(κl) is the energy

of the eddies with size κl. Corrsin went on to define the eddy-wise dissipation time scale as

τc(κl) =
k(κl)

νu(κl)2/l2
=

∆κlE(κl)

ν∆κlE(κl)κ2
l

= (νκ2
l )
−1, (3.11)
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where νu(κl)
2/l2 is the dissipation rate of a given eddy size and dimensionally consistent

with (2.27). Again, no assumptions regarding ε have been evoked so (3.10) and (3.11) are

generally true for the entire spectrum.

Corrsin then proposed local isotropy to be possible only for τa � S−1 at scales where

inertial transfer is relevant (i.e., for τa � τc), or for τc � S−1 at scales where viscous dissi-

pation is relevant (i.e., for τa � τc). The second case pertains to the dissipative region and

implies κl � (S/ν)1/2 is needed there for the shear to be of no influence. The corresponding

length scale defining this transition is then

LνS =
( ν
S

)1/2

. (3.12)

The first case is less straight forward in that it requires specification of E(κl). For this,

Corrsin adopted the Kolmogorovian scaling of (3.4), thus giving the requirement κl �

(S3/ε)1/2. The corresponding length scale is often referred to as the “Corrsin” length scale:

LC =
( ε

S3

)1/2

. (3.13)

Because the scaling of Kolmogorov has been evoked, this scale must be related to the inertial

subrange. If the inertial subrange is taken to be isotropic, then LC may be interpreted as

its upper end (i.e., small wavenumber limit). In a study of high-Reynolds number flow in

a wind tunnel, Saddoughi and Veeravalli (1994) found that local isotropy, as determined by

correlation coefficient spectra, occurs for scales smaller than approximately 0.65LC .

In the region where both inertial transfer and viscous dissipation are relevant, Corrsin

argued that τa ≈ τc ≈ τη and that local isotropy is, therefore, possible when τη � S−1 ⇒

S(ν/ε)1/2 � 1. In such a case, LνS � LC , which implies that the requirement l � LνS for

local isotropy is moot. What then is the physical significance of LνS? Furthermore, what

is the physical significance of scales constructed with S and k? These questions will be

addressed in chapter 4.
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3.1.4 Scales of Stratified Turbulence

As with mean shear, stratification induces anisotropy at the larger scales of the turbulent

field. And like the efforts of Corrsin, classic works by Ozmidov (1965) and Dougherty (1961)

sought to determine the largest locally isotropic scales. Dougherty, for example, idealized

this to be roughly the scale at which an eddy’s contribution to turbulent potential energy

balances its turbulent kinetic energy. That is,

1

2

g

ρ0

∂ρ

∂z
l2 ∼ κlE(κl)⇒ l ∼

(
κlE(κl)

N2

)1/2

. (3.14)

As with the formulation of LC , the −5/3 law can be evoked for E(κl) to yield the so-called

“Ozmidov” length scale:

LO =
( ε

N3

)1/2

. (3.15)

Again, the inclusion of ε by way of the Kolomogorov scaling inherently ties this scale to the

inertial subrange where ε is relevant as a down-spectrum transfer rate. Near and above this

scale, however, it is presumed that the tendency for vertical suppression of eddies is realized

and (3.4) ceases to hold. In this sense, LO is the largest isotropic scale and the upper end of

the inertial subrange when shear is absent and stratification is the only forcing mechanism.

It is worth noting that (3.15) can also be derived in the fashion shown above for achieving

(3.13) with consideration for the time scale of the mean stratification N−1 (in place of S−1).

Furthermore, a scale formulation analogous to (3.12) is possible, but not frequently referenced

in literature. A physical interpretation for this scale will be given in chapter 4.

Due to the well-known anisotropic nature of stratified turbulence, an additional length

scale is often formulated using the vertical component of the turbulent velocity, w. This is

the buoyancy length scale

Lb =
w

N
, (3.16)
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which conceptually represents the vertical distance traveled by a fluid particle if its initial

kinetic energy, w2/2, is converted to potential, N2L2
b/2 (see, e.g., Hopfinger, 1987).

3.1.5 Scales of the Turbulent Scalar Field

The dimensional analysis discussed thus far characterizes turbulent motions using quan-

tities influencing the evolution of turbulent kinetic energy. These being the quantities of

(2.23) (i.e., k, ε, ν, and S) and the buoyancy frequency, N . While N does not explicitly

appear in (2.23), its inclusion in the analysis is intuitive because it represents the external

influence of stratification. Because (2.23) is essentially a result of momentum conservation,

the scales derived from its quantities describe the mixing of momentum. An alternative

is to characterize turbulent eddies through examining how the scalar field is responding to

turbulence of the velocity field.

When the scalar of interest is density, there is a coupling of the momentum and scalar

dynamics due to buoyancy effects. These effects act in the vertical direction, so particular

interest is given to the scales of turbulent overturns, where an overturn can be thought of as

the vertical component of an eddy that lifts heavy fluid above light. A commonly accepted

measure of overturning is the length scale proposed by Ellison (1957),

LE =
〈ρ′2〉1/2
∂ρ/∂z

, (3.17)

where ρ′ is the turbulent density fluctuation about the some mean background density, ρ,

that varies with depth3. LE may be thought of as a statistical measure of the vertical dis-

tance traveled by fluid parcels before returning toward an equilibrium position or irreversibly

mixing with surrounding fluid. In a statistical sense, LE is proportional to the largest eddies

of the flow (Stillinger et al., 1983).

3From henceforth, overbar notation will denote a quantity of the mean field, while 〈〉 will denote a spatial
or temporal averaging of turbulent quantities.
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A closely related scale used in oceans and lakes is the Thorpe length scale, LT (Thorpe,

1977). The Thorpe scale can be calculated from an observed instantaneous density profile

and is a relatively simple and objective measure of large overturns. Discrete density mea-

surements from the instantaneous profile are monotonically sorted to give a gravitationally

stable profile. The vertical distance a sample must be moved adiabatically in this process is

its Thorpe displacement, δT . For the vertical region of interest (e.g., the vertical extent of a

turbulent patch), the Thorpe scale is then calculated as the root-mean-square (rms) δT for

that region given by

LT = 〈δ2
T 〉1/2. (3.18)

The notable difference between the Thorpe and Ellison scales is the meaning of the 〈〉 opera-

tor. Because LT is typically based on individual vertical profiles of density, a one-dimensional

spatial average is taken over a vertical extent. Whereas, a three-dimensional spatial averag-

ing is typically associated with the Ellison scale. Nonetheless, a strong agreement between

LE and LT has been confirmed in both experiments (Itsweire, 1984) and numerical simula-

tions (Itsweire et al., 1993) for all but the most strongly stratified flows, where internal wave

motions influence LE but not LT because of the differences in averaging. This is because

a lateral component of ensemble averaging in the presence of internal waves will tend to

increase 〈ρ′2〉, and thus LE, from what would be expected from a vertical ensemble alone.

Thus, LE can be biased toward larger values due to non-overturning wave motions, while

LT truly reflects vertical overturns. The bias increases with stratification as internal waves

become more prominent relative to overturns.

It can easily be shown that LE and LT are equivalent if vertical averaging is used for

both 〈ρ′2〉 and 〈δ2
T 〉, and the background and sorted density profiles are equal and uniform.

This is done be substituting the first order approximation, ρ′ = (∂ρ/∂z)δT , into (3.17).
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3.2 Dimensionless Parameters

Dimensional quantities relevant to turbulence (e.g., characteristic length, velocity, or time

scales, molecular viscosity, kinetic energy, etc.) can grouped into dimensionless parameters

that explain some aspect of flow behavior. These parameters represent competing forces or

processes within a flow and can be used to delineate regimes in a behavior of interest.

3.2.1 Turbulent Reynolds Number

The Reynolds number, Re = UL/ν, is a widely used parameter expressing the compe-

tition of inertial forces, ρU2L2, to viscous forces, µUL. Here, U and L are characteristic

velocity and length scales for the motions of interest and µ = ρν is the fluid’s dynamic

viscosity. In this sense, motions with Re � 1 are influenced by their own inertia and are

relatively free from the dampening effects of viscosity. This is thus a necessary (although

not sufficient, as will be shown) condition for turbulence.

The various choices for the characteristic velocity and length scales lead to an array of

Reynolds number formulations. If concerned with the mean flow, for example, U may be a

free-stream or average velocity while L is set by bounding geometry. The goal here, however,

is to characterize the turbulent field so choices for U and L should be based on turbulent

scales. That is, Re = u(l)l/ν, where u(l) decreases with l so that Re decreases toward

the smallest dissipative scales. With Kolmogorov’s reasoning, Reη = ηuη/ν = 1 implying

a cessation of turbulence for scales smaller than η. This is a rather trivial statement that

cannot be used to distinguish different turbulent flows. For this, obvious choices become

scales of the largest eddies. In an isotropic sense these are l = Lkε and u(Lkε) = k1/2. The

turbulent Reynolds number is then

ReL ≡
k2

εν
=

(
Lkε
η

)4/3

=

(
TL
Tη

)2

. (3.19)

Here we see that ReL represents a competition between inertia and viscosity, but also the
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ratio of large to small scales (Pope, 2000). It therefore becomes clear that highly turbulent

flows (i.e., high ReL) have dramatic scale ranges. Hence the difficulty in achieving direct

numerical solutions of the unfiltered governing equations.

An alternative Reynolds number is that based on the Taylor microscale,

Reλ =
urmsλg
ν

, (3.20)

which is frequently used to describe isotropic turbulence. If the isotropic approximation of

(3.8) is used to estimate ε, and the flow is assumed unstratified and stationary (i.e., P ≈ ε),

scaling arguments show that

Reλ ≈
(

20

3
ReL

)1/2

. (3.21)

Furthermore, the relationships between λg and the other isotropic scales are shown by Pope

(2000) to be

λg
η
≈
√

10Re
1/4
L (3.22)

λg
Lkε
≈
√

10Re
−1/2
L . (3.23)

3.2.2 Turbulent Shear Parameter

The effects that mean shear has on the turbulence can be characterized with the ratio of

an inertial time scale of the turbulence, l/u, to the time scale of mean deformation by shear,

S−1:

S∗ =
l/u

S−1
=
Sl

u
. (3.24)

A large value of S∗, thus indicates that the rate of deformation exceeds the inertial “turn-

over” rate of an eddy of size l. In such a case, the eddy would be expected to be anisotropic.

Typically, the inertial scaling of Kolmogorov is assumed (i.e., ε ∼ u3/l) and the characteristic
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velocity is taken as u ∼ q ≡
√

2k so that the ratio can be formulated as:

S∗ =
Sq2

ε
. (3.25)

With this formulation, S∗ � 1 implies a strong, anisotropic influence at the large scales

of the flow. Lee et al. (1990) found this parameter to be useful in describing the highly

anisotropic structure of turbulence in both homogeneous and wall-bounded DNS simulations.

In wall-bounded turbulence, S∗ peaks near the wall in the buffer layer where the flow is

rapidly sheared and production of turbulent kinetic energy greatly exceeds dissipation. In

the logarithmic-layer, S∗ drops to a constant (S∗ ≈ 7) and production balances dissipation

(i.e., P ≈ ε) so that the flow is locally stationary (for the unstratified case). This was

shown by Lee et al. (1990) and later in Pope (2000) with the DNS data of Kim et al. (1987).

The wind tunnel data of Saddoughi and Veeravalli (1994) indicate that the stationarity

requirement, S∗ ≈ 7, holds even in very high-Reynolds number, homogeneous turbulence.

3.2.3 Turbulent Froude Number

In a fashion analogous to the shear parameter, the turbulent Froude number compares

an inertial time scale of the turbulence to the time scale imposed by mean stratification,

N−1:

Fr =
N−1

l/u
=

u

Nl
. (3.26)

In a sense, the turbulent Froude number compares an inertial velocity, u, to the velocity of

gravity perturbations, Nl. Thus, a large Froude number indicates that the flow is primarily

influenced by inertial forces, while a low Froude number characterizes strongly stratified flow

in which inertial (i.e., turbulent) motions are suppressed by buoyancy.

Many interpretations of the turbulent Froude number exist given due to various inter-

pretations of u and l. For example, the anisotropy of strongly stratified turbulence has led

many to differentiate between horizontal and vertical Froude numbers by specifying l to be
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characteristic of horizontal or vertical motions, respectively. Using scaling arguments, Billant

and Chomaz (2001) argue that, in the limit of very small horizontal Froude numbers (i.e.,

Frh → 0; strongly stratification), the vertical Froude number approaches unity and the size

of vertical motions scales with Uh/N , where Uh is argued to be a characteristic horizontal

velocity.

Lindborg (2006) went on to specify that the turbulent horizontal velocity (defined by the

inertial scaling uh = (εlh)
1/3) can be used so that Frh = ε1/3/Nl

2/3
h . In strongly stratified,

stationary, shear-free flow, Lindborg argues that Frh is an indicator of the ratio of vertical

to horizontal inertial scales in the flow (i.e., lv/lh ∼ Frh,) and that the relationships between

the horizontal inertial scale and the Ozmidov scale is lv/LO ∼ Fr
−1/2
h . In turn, this implies

lh/LO ∼ Fr
−3/2
h . Thus, the ratio of vertical to horizontal scales decreases with increasing

stratification, and both inertial scales become larger than LO as stratification increases.

Ivey and Imberger (1991) also used inertial scaling to specify the velocity scale, but used

the three-dimensional rms turbulent velocity so that urms ∼ (εl)1/3, where l is assumed to

scale with large overturns observed in density profiles and is similar to LT . Because l is chosen

to be a vertical scale, they formulate a sort of vertical Froude number. Their formulation

implies lv/LO ∼ Fr−3/2, where the −3/2 dependence is a direct result of using the same

length scale in both the scaling of velocity and the denominator of the Froude number

definition (c.f. lh/LO ∼ Fr
−3/2
h shown by Lindborg (2006). The use of a vertical length

scale to define the Froude number is intuitively appealing because Fr then represents the

competition between kinetic energy, represented generally by u2
rms/2, and potential energy,

represented by N2l2v/2. However, the scaling of Ivey and Imberger (1991) implies lv ∼

u3/ε, which contradicts the notion that the vertical scale should be influenced by buoyancy

through dependence on N (Billant and Chomaz, 2001; Lindborg, 2006). Nonetheless, Ivey

and Imberger (1991) measure lv, N , and ε, to calculate Fr and a Reynolds number (i.e.,

lv/η ∼ Re3/4). Both parameters are then used to characterize mixing, thus allowing for the

explicit consideration of both buoyancy and viscous effects relative to inertia.
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Alternatively, the velocity scale can be taken to scale with the turbulent kinetic energy so

that u ∼ urms ∼ k1/2, and l is simply some length scale characteristic of large inertial eddies

with no specification of direction (Gregg, 1987). Using the inertial scaling for velocity, one

can easily show that the turbulent Froude number can be written as:

Frk ≡
ε

Nk
=
N−1

TL
. (3.27)

In this sense, l is equivalent to the “isotropic potential” scale, Lkε.

3.2.4 Gradient Richardson Number

When dealing with flows subjected to both mean shear and stratification, one’s intuition

likely favors a parameter that considers the relative strength of these influences. This is, of

course, the gradient Richardson number,

Ri =
N2

S2
, (3.28)

which can be interpreted as the square of the ratio of mean shear to buoyant timescales.

Low Ri indicates that the timescale of buoyancy perturbations is larger than that of mean

deformation by shear; in other words, deformation due to shear occurs before buoyancy

perturbations can have much influence on the flow as Ri → 0. Conversely, as Ri → ∞,

stratification becomes strong relative to shear, and buoyancy perturbations are of more

influence on the flow than deformation by shear.

Conspicuously missing in (3.28) is any reference to the turbulent flow field. That is, direct

reference to any inertial scale internal to the turbulent field is missing, making Ri a “global”

or “external” parameter. Nonetheless, Ri is a popular parameter for describing turbulence

due to its reliance on mean parameters that are relatively easy to measure (compared to

inertial scales) - especially in geophysical settings.
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Since S acts to promote turbulence through the production term, (2.25), and N acts

to remove turbulence through irreversible mixing of density, (2.35), Ri is often used to

parameterize the temporal evolution of stratified turbulence. In homogeneous stratified

shear-flow experiments, Rohr et al. (1988) found that a critical gradient Richardson number,

Ri = Ric ≈ 0.25, demarks the transition from decaying to growing turbulence (i.e., ∂k/∂t ≈

0). For flows of lesser Ri turbulence was found to grow, while higher Ri indicated decaying

turbulence. Interestingly, their numerical value for Ric matches the theoretical value for

marginal stability of a shear layer between inviscid, non-diffusive fluids of different density

(Miles, 1961; Howard, 1961).

However, subsequent studies indicate that Ric is not a simple constant. Holt et al. (1992)

used scaling arguments to show that Ric (for stationarity) depends on a turbulent Reynolds

number, Re, turbulent shear parameter, S∗, and the molecular Prandtl number, Pr = ν/κρ.

Using DNS of homogeneous stratified shear-flow they went on to show a weak dependence on

Pr, but a significant dependence on Re at low values of S∗. Ric was found to increase with

increasing Re and approached an asymptotic limit near the inviscid theoretical value of Miles

(1961). The reasoning provided being that viscous dissipation is less effective in balancing

production at high Re; therefore, increased stratification (i.e., higher Ric) is required to

control the growth of turbulent kinetic energy.

For high values of S∗, Holt et al. (1992) effectively claim Ric to be an irrelevant concept

since rapid distortion of the flow by shear prevents nonlinear interaction (i.e., turbulence).

However, Piccirillo and Van Atta (1997) and Jacobitz et al. (1997) found a significant de-

pendence of Ric on S∗ below this rapid-distortion-theory (RDT) limit using experiments

and DNS, respectively. In fact, Piccirillo and Van Atta (1997) indicate Ric to be more

dependent on S∗ than on Re for their range of Re. Both studies highlight that Ric is an

increasing function of S∗ for relatively constant Re when the flow is below the RDT limit.

They also highlight that Ric reaches an asymptotic limit that is near, but slightly less than

0.25. Piccirillo and Van Atta (1997) argue S∗ ∼ P/ε and, therefore, an increase in S∗ can
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be interpreted as production becoming more dominant than dissipation. They presume that

an increase in stratification, and thus an increased Ric, is needed to balance the excess

production (presumably through increased diapycnal mixing) and maintain stationarity.

Shih et al. (2000) extended the simulations of Jacobitz et al. (1997) to slightly higher

Reynolds numbers, but still Reλ ∼ O(101)− O(102), and again find dependence on S∗, but

indicate that the dependency decreases with increasing Reynolds number. For their highest

Reynolds number run of Reλ ≈ 90, they find Ric ≈ 0.17 despite variation in the initial shear

parameter, S∗0 , of up to 12. Furthermore, this finding implies the RDT limit increases with

increasing Reynolds number.

More recently, Chung and Matheou (2012) performed even higher Reynolds number sim-

ulations (Reλ ∼ O(102) − O(103)) of stationary, stratified shear-flow turbulence. They too

found asymptotic behavior of Ric toward a value slightly lower than the inviscid limit. Sim-

ilar to Shih et al. (2000), they did not report an RDT limit despite maximum values of S∗

near 12.

As a final note, the data of Piccirillo and Van Atta (1997) and Chung and Matheou

(2012) indicate stationary runs in the unstratified limit (i.e., Ric → 0) are associated with

S∗ ≈ 7 − 8. This happens to be in agreement with the stationary value found for high-

Reynolds number, unstratified turbulence in the wind tunnel of Saddoughi and Veeravalli

(1994) and the log-layer of unstratified channel flow (see Pope, 2000).

3.2.5 Buoyancy Reynolds Number

In studies of stratified flows, a good deal of research has been done in investigating the

collapse of turbulence due to the combined dampening effect of buoyancy and viscosity. Sem-

inal work by Gibson (1980) defined a theoretical criterion for collapse of “active” turbulence

as the point at which the strain rate of the smallest eddies, γ ∼ uτ/η = τ−1
η = (ε/ν)1/2,

becomes less than the rate of dampening due to buoyancy, N . Thus, he states that active

turbulence in a stratified fluid ceases if the dissipation rate is below some critical value,
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i.e., if ε < 30νN2 = εc, where the particular constant of proportionality is derived from an

assumption of local isotropy and Ri = 0.25 at the dissipative scales. Gibson argues that

when ε ≤ εc turbulence has collapsed, and fluctuations observed in the scalar field represent

“fossilized turbulence” from a past mixing event (Gibson uses a jet contrail as an example

of fossil turbulence). The experimental work of Stillinger et al. (1983) and Itsweire et al.

(1986), wherein towed grids are used to generate a sudden turbulent event, are in approx-

imate agreement with Gibson’s theory. These studies found εc ≈ 25 and 15, respectively.

Interestingly, the grid tow experiments of Rohr et al. (1988) reveal similar results even when

shear is present. In light of these findings the intensity of the turbulence is frequently given

by:

Reb =
ε

νN2
. (3.29)

This parameter has also been evoked to describe local isotropy. Analogous to Corrsin’s

criterion of S(ν/ε)1/2 � 1 in unstratified shear flow, it can be argued that N(ν/ε)1/2 � 1,

i.e., Reb � 1 is needed for local isotropy in stratified turbulence. Since Reb = (LO/η)4/3,

local isotropy is seen to depend on a sufficient separation between the smallest scale and the

largest scale for which buoyancy effects are minimal. Gargett et al. (1984) used measurements

of tidal flows over an estuarine sill to imply that Reb > 200 (i.e., LO > 50η) is required for

local isotropy at the dissipative scales, while Reb > 43000 (i.e., LO > 3000η) is needed for

the existence of an inertial subrange. As one would expect, these values are larger than those

required for the turbulence to simply be “active”.

As popular as Reb is among researchers of stratified turbulence, it is a non-unique param-

eter in that it considers the relationship that inertia has with both viscosity and buoyancy.

For example, Reb is often considered a sort of buoyancy Reynolds number because of the

reference to inertial and viscous effects (see Gibson, 1987; Smyth and Moum, 2000), while

others interpret this parameter as a small-scale Froude number in that it compares a (sup-

posedly) inertial scale in γ−1, to a buoyancy scale in N−1 (e.g., Luketina and Imberger, 1989;
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Ivey and Imberger, 1991). This non-unique nature is clear by restating the parameter as

Reb = Fr2
kReL. (3.30)

Clearly, high values of Reb can imply either (1) high Reynolds number (strong turbulence)

or (2) high Froude number (weak stratification). The non-uniqueness was pointed out by

Gargett (1988) using scaling arguments. She goes on to imply that Reb scales with the

square of a Froude number when Reynolds number is low, but should scale directly with

Reynolds number when that parameter is high.

Yamazaki (1990) also highlighted the non-unique nature of Reb and showed oceanic data

that agree with the arguments of Gargett (1988). Specifically, that Reb ∼ ReL for large

values of ReL (i.e., Frk → 1), while Reb also depends on Frk when ReL is low. He goes

on to conclude that it is the low-Reynolds number case in which ReL and Frk from oceanic

data are comparable to the laboratory experiments of Itsweire et al. (1986). He specifically

cautions using Reb to scale laboratory results to oceanic predictions when Reb > O(102).

Beyond this limit, high laboratory values of Reb are likely due to weak stratification (i.e.,

high Frk) rather than strong turbulence; laboratory data is limited to case (2) above, while

ocean data may fall under case (1).

As with laboratory experiments, DNS also suffer from practical limitations on Reynolds

number. Brethouwer et al. (2007) used artificially forced (i.e., shear-free but stationary)

DNS to show that turbulent structures are absent for Reb < 1, but admit that the dynamics

of geophysical flows at high Reb are difficult to simulate because those flows fall into a regime

of low Froude number and high Reynolds number.

3.2.6 Shear Reynolds Number

Corrsin’s criterion of S(ν/ε)1/2 � 1 for local isotropy in unstratified shear flow was

reviewed in section 3.1.3 and mentioned in parallel to Gibson’s criterion of N(ν/ε)1/2 � 1
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for stratified flow. In turn, one can formulate a shear Reynolds number as

Res =
ε

νS2
∼ S∗−2ReL. (3.31)

Since Res = (LC/η)4/3, the arguments of Corrsin (1958) can be restated. Specifically, local

isotropy demands a sufficient separation between the smallest scale, η, and the largest scale

for which shear effects are minimal, LC . While Res may be a worthy parameter in this

context (assuming stratification is absent), it suffers from a lack of uniqueness as does Reb

because it combines two more fundamental parameters.

3.3 Mixing

3.3.1 Relevance to Numerical Modeling

In numerical modeling of mesoscale flows of the ocean and atmosphere, the turbulent

mixing (i.e., fluxes) of momentum and density are considered subgrid-scale process and, as

such, often parameterized in terms of eddy diffusivities using equations (2.20) and (2.21). In

turn, however, the eddy diffusivities, Km and Kd, must be specified. In the case of neutral

stratification (i.e., density is considered a passive scalar), a multitude of closure models exist

to describe Km. The most common of these being those of two-equation form such as vari-

ations of the k-ε model (see Durbin and Reif, 2001). Once Km is estimated, Kd is typically

obtained through a turbulent Prandtl number, Prt = Km/Kd, that is often considered of

order unity for neutral stratification. Stratification, however, complicates matters. Early

work of Munk and Anderson (1948) provided empirical corrections for both Km and Kd

when stratification is active using the gradient Richardson number, Ri. The current “indus-

try standard” closure model by Mellor and Yamada (1982) also depends on Ri. Ri-based

parameterizations are popular because Ri is composed of external, or grid-scale variables

in N and S. However, discrepancies among such works hint at over simplification when
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stratification is strong (i.e., high Ri). For example, an Ri-based parameterization of Prt

by Peters et al. (1988) indicates asymptotic behavior in strongly stratified turbulence, while

that of Venayagamoorthy and Stretch (2010) indicates an unbounded increasing of Prt with

Ri. Understanding how to properly parameterize turbulent mixing remains a gap in the

current knowledge base.

3.3.2 Diapycnal Mixing

Apart from their importance to numerical modeling, eddy diffusivities are valuable for

characterizing the “state” of geophysical turbulence. In oceanic settings where stable strati-

fication is dominant, vertical eddy diffusivity of density has become a primary diagnostic of

turbulent mixing and is key to understanding large-scale ocean circulation (Thorpe, 2005).

In essence, the vertical mixing of density by turbulence requires a local vertical flux of fluid

across a horizontal density surface, or isopycnal, followed by molecular diffusion of density

(i.e., salt and/or heat) between the fluxed fluid and that at the new elevation. Once molecu-

lar diffusion has taken place, the mixing is considered “irreversible” or “diapycnal”. This is

fundamentally different than advective transport or “stirring” due to non-turbulent internal

wave motions; while passage of an internal wave indeed causes a vertical flux of fluid, a lack

of turbulence prevents the sharp gradients needed for diffusion of density across an isopycnal.

Rather, the isopycnal is locally perturbed but returns to its original elevation without any

true mixing.

This processes can be described using the evolution equations for turbulent kinetic (2.23)

and potential energy (2.34). The initial flux of otherwise stably-stratified fluid is represented

in a negative buoyancy flux, B, that temporarily increases turbulent potential energy at the

expense of turbulent kinetic energy. The mixing becomes irreversible if the new turbulent

potential energy is then converted to background (i.e., mean) potential energy by way of

εPE. If the initial flux is due to non-turbulent internal wave motions, εPE is negligible and

buoyancy flux becomes positive as fluid returns to its original position without mixing.
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Because the gradient-diffusion hypothesis definition of Kd described by (2.21) involves a

density flux that can be either positive or negative, there is no way to distinguish between

irreversible and reversible contributions if only the flux, −〈wρ′〉, is measured. As an alterna-

tive, vertical diffusivity of density is often referred to in terms an irreversible form derived

from the homogeneous, steady state formulation of the density variance equation (2.32):

0 = −〈wρ′〉∂ρ
∂z
− ερ, (3.32)

which upon substitution of (2.21) becomes

K∗d =
ερ

(∂ρ/∂z)2
. (3.33)

Note that the superscript is used to distinguish K∗d as an irreversible diapycnal diffusivity

that is different from the flux-based formulation. Although (3.33) was derived from a steady

state assumption, it remains valid for evolving flows per the arguments of Winters and

D’Asaro (1996) and Venayagamoorthy and Stretch (2006).

In many oceanic flows the diffusivity of density, K∗d , is nearly equal to that of heat, K∗T ,

thus

K∗T =
χ

2(∂T/∂z)2
(3.34)

is often used in lieu of (3.33), where χ = 2κT 〈(∂T ′/∂xi)2〉 is the analogue of ερ and repre-

sents the rate of diffusive smoothing of temperature fluctuations. Here, κT is the molecular

diffusivity of heat and T ′ is the turbulent temperature fluctuation. This formulation was

originally presented by Osborn and Cox (1972) and is appealing to oceanographers because

it consists of conventionally measured quantities.
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3.3.3 Mixing Efficiency

One can also arrive at formulations for vertical diffusivities using the steady-state, ho-

mogeneous turbulent kinetic energy equation:

0 = −〈uw〉∂U
∂z
− g

ρ0

〈wρ′〉 − ε. (3.35)

Substitution of the turbulent viscosity hypothesis, (2.20), yields

Km =

(
1

1−Rf

)
ε

S2
, (3.36)

while substitution of the gradient diffusion hypothesis, (2.21), yields

Kd =

(
Rf

1−Rf

)
ε

N2
, (3.37)

(Osborn, 1980), where Rf is the flux Richardson number defined by

Rf ≡
−B
P
. (3.38)

The flux Richardson number represents the fraction of turbulent kinetic energy doing work

against gravity (i.e., vertical flux of density) versus the total being produced. In this sense,

Rf represents the efficiency of mixing. An alternative representation of mixing efficiency is

Γ ≡ −B
ε

=
Rf

1−Rf

, (3.39)

which effectively compares the two mechanism through which turbulent kinetic energy is

lost. High values of Γ indicate that a large amount of the ambient turbulent kinetic energy

is being converted into turbulent potential energy versus being lost to heat.
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Per the discussion above, it is important to note that the reversible nature of B due to

internal wave motions may lead to misleading values of Rf or Γ if one is interpreting these

quantities as a mixing efficiencies. These coefficients are truly mixing efficiencies only if the

turbulent potential energy created via −B is irreversibly converted to background potential

energy via εPE. Alternative irreversible formulations given by Venayagamoorthy and Stretch

(2010) are:

R∗f =
εPE

ε+ εPE
(3.40)

and

Γ∗ =
εPE
ε
. (3.41)

Substituting (3.40) into (3.37) recovers the irreversible, or diapycnal density diffusivity of

(3.33). Thus,

K∗m =

(
1

1−R∗f

)
ε

S2
= (1 + Γ∗)

ε

S2
(3.42)

and

K∗d =

(
R∗f

1−R∗f

)
ε

N2
= Γ∗

ε

N2
(3.43)

are irreversible formulations and generally valid for non-stationary flows (Venayagamoorthy

and Stretch, 2010), although Gregg (1987) warns that such a formulation for Km is only

valid for large values of mean shear, S. For low shear, equation 3.42 may lead to erroneously

high values of K∗m.

3.4 Parameterizations of Mixing

The mixing of density as embodied in Kd (or alternatively KT ) is of critical importance

to understanding and modeling geophysical flows, but upon what does mixing depend? That

is, how can this quantity be parameterized? Is it constant or does it depend on dimensionless

parameters? If the latter, then which dimensionless parameters are relevant? These questions

have been the focus of numerous studies since the early 20th century yet remain relevant and
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largely unanswered today. This section presents a brief overview of field studies that have

directly observed mixing in the ocean and the laboratory and numerical studies that have

sought further insight into the underlying physics. Discrepancies between observed and

modeled mixing will be discussed.

3.4.1 Oceanic Observations

Prior to extensive measurements of mixing, Munk (1966) proposed that the vertical eddy

diffusivity of heat in the abyssal (i.e., far from boundaries) ocean should be KT ≈ 10−4m2s−1

based on a simple one-dimensional advection-diffusion equation and global estimates for

vertical temperature gradient and upwelling velocity. This value is 1000 times greater than

the molecular value, implying that large-scale ocean currents must be driven by mechanical

processes of heat transfer, i.e., turbulence. Munk’s work spawned a generation of research

investigating the nature and sources of this turbulence.

The advent of “microstructure” (MS) instrumentation in the early 1970’s (e.g., Osborn,

1974) was a major breakthrough in that it allowed observationalists to test Munk’s theory

and canonical value of vertical diffusivity. Still widely used today, MS techniques allow

for the measurement of small-scale velocity gradients needed for estimation of ε required

by (3.37) as well as small-scale temperature gradients needed for estimation of χ required

by (3.34). Since density is dominantly a function of temperature in the ocean, this gives

oceanographers two methods of estimating Kd provided some knowledge of Rf (or Γ) exists4.

The behavior of mixing efficiency, frequently represented by Rf or Γ has received a great

deal of attention because of its relation to diffusivity, but also because it is a non-dimensional

embodiment of a fundamental aspect of mixing. Furthermore, Wunsch and Ferrari (2004)

point out that the efficiency at which energy is transfer from large-scale tidal forcing to

small-scale turbulence is critical to understanding global energy budgets! Early theory of

4In theory, one could of course estimate KT or Kd by directly measuring fluxes; however, this method is
not frequently used due to the reversible nature of the fluxes and the inhomogeneous nature, or “patchiness”,
of oceanic turbulence (Ivey et al., 2008)
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Ellison (1957) suggests that mixing efficiency of turbulence is limited to a maximum value

of Rf,crit ≈ 0.15. Subsequently, laboratory measurements by Britter (1974) suggest similar

values, Rf,crit ≈ 0.18− 0.2. A critical value less than unity is quite intuitive if one considers

that turbulent kinetic energy can be dissipated to heat via all three directional components

but to potential energy (i.e., mixing) only via the vertical component. Values of Rf or Γ

beyond critical values may be possible but indicate too much energy is going into buoyancy

flux and turbulence must be suppressed (Osborn, 1980).

This early theory has been tested extensively by way of oceanic measurements starting,

most notably, with the work of Osborn (1980). Osborn used MS data from various oceanic

settings to show that Γ ≈ 0.2 (i.e., Rf ≈ 0.15) indeed appears to be an upper limit on mixing

efficiency and, thus, Kd ≤ 0.2ε/N2 seems reasonable. Oakey (1982) went on to explicitly

show that a formulation for Γ can achieved by equating (3.34) and (3.37) to give

Γ ≈ χN2

2ε(∂T/∂z)2
. (3.44)

Using this formulation and MS measurements off the coast of Scotland, Oakey (1982) re-

ported an average mixing efficiency of Γ = 0.24, but with a rather large standard deviation

of 0.14. Similar observations have been made by many others (e.g., Gregg et al., 1986; Peters

and Gregg, 1988; Moum, 1996) that all indicate Γ ≈ 0.2 to be a frequently achieved upper

bound (see Thorpe, 2005) but that a great deal of variation is possible.

The variation in mixing efficiency below and about its apparent threshold value has

garnered much attention. The scaling arguments of Gargett (1988), for example, suggest

that Γ should vary inversely with Reb when the turbulent Reynolds number is low. Ocean

observations by Peters and Gregg (1988), however, are in disagreement, showing relatively

constant mixing efficiency over a wide range in Reb (100 < Reb < 105); however scatter in

the data is high and Reynolds numbers may be large. Others suggest that mixing efficiency

is a function of the gradient Richardson number. For example, Mellor and Yamada (1982)
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use observations to suggest that Rf increases with the Ri and reaches a constant value

for sufficiently high Ri. More recently, Pardyjak et al. (2002) provided data from a stably-

stratified atmospheric boundary layer that agree with this trend for Ri < 1, but suggest that

Rf decreases at sufficiently high Ri after reaching a maximum value Rf ≈ 0.4 at Ri ≈ 1.

3.4.2 Experimental and Numerical Studies

More detailed and controlled investigations into the behavior of mixing efficiency have

been carried out in both physical experiments and numerical studies. Of particular interest

has been the validity of Γ ≈ 0.2 as a maximum efficiency and the dependency of mixing

efficiency on various dimensionless parameters, most frequently Reb and Ri.

The gradient Richardson number, Ri, and the buoyancy Reynolds number, Reb, are

popular parameters in oceanography because the former depends only on mean quantities

and the latter can be obtained with microsturcture techniques that allow estimation of ε.

Therefore, most studies focus on the variation of mixing efficiency as a function of these

parameters. From a practical standpoint, Ri-based parameterizations are appealing because

N and S are mean quantities that are resolved at the grid-scale of numerical models. Let us

first consider laboratory and numerical studies that have focused on Ri dependency.

Laboratory investigations on the variation of mixing efficiency with Ri are quite numerous

(e.g., Linden, 1980; McEwan, 1983; Britter, 1985; Rottman, 1986; Rohr and Van Atta, 1987;

Strang and Fernando, 2001b; Rehmann and Koseff, 2004). Due to practical limitations,

however, most of these works involve evolving turbulence and not the stationary case implicit

in the assumptions of Osborn and Cox (1972) and Osborn (1980). Furthermore, only Rohr

and Van Atta (1987) actually induce homogeneous shear to allow for turbulent growth. All

of the other studies mentioned involve grid-generated turbulence that freely decays. Because

these studies lack mean shear they effectively formulate a gradient Richardson number based
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on velocity and length scales set by initial conditions,

Ri0 =
N2

(U0/L0)2
, (3.45)

where U0 and L0 are the velocity and bar spacing of a the grid (note that such a parameter can

be loosely interpreted as an inverse Froude number). Despite their limitations, such studies

have formed a basis for the current understating of mixing efficiency so select findings will

be quickly reviewed here.

Common to all of these studies is the finding that mixing efficiency increases with the

gradient Richardson number for low values of that parameter (i.e., strong shear and weak

stratification). This is true regardless of the formulation for Ri (compare Linden (1980) and

Rohr and Van Atta (1987)) In this regime, efficiency increases with Ri because increased

stratification offers an opportunity for increased buoyancy flux while turbulent intensity is

not yet inhibited by the stratification. This general trend is in agreement with the oceanic

and atmospheric observations cited above.

In the regime of high Ri (i.e., stable stratification), most studies indicate that mixing

efficiency achieves an optimal value when Ri ∼ 1 before decreasing with further increase in

Ri. Using DNS of decaying turbulence, Stretch et al. (2010) imply that the optimal value and

the subsequent decrease may be due Prandtl number effects (i.e., due to molecular diffusion)

that become important when Reynolds number is small - a general characteristic of both

laboratory and DNS flows. They find that, when Ri0 > 1, time integrated (i.e., irreversible)

mixing efficiency decreases with increasing Pr. This can be explained with the irreversible

formulation for mixing efficiency:

Γ∗ =
εPE
ε

= f
(κρ
ν
, ...
)

= f
(
Pr−1, ...

)
. (3.46)

For example, at low Reynolds numbers, heat (Pr = 7) mixes much more efficiently than salt

(Pr = 700) because turbulent mixing of heat is augmented by a relatively high contribution
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from molecular diffusion. For Ri < 1 shear is strong enough to generate sufficient turbulent

mixing, thus, Pr effects are negligible even if Reynolds number is low. Clearly, a simple

Ri-based parameterization for mixing efficiency does not capture the range of behavior due

to low Reynolds number.

As an alternative to Ri, Reb has emerged as an alternative parameter to describe mixing

due to its popularity within the oceanography community. Barry et al. (2001), for example,

used grid-tow experiments of an un-sheared saltwater bath to investigate the behavior of

Kd (based on irreversible mixing) with Reb, which they interpret as an intensity parameter.

Their data suggests that mixing efficiency decreases with increasing Reb in an “energetic”

regime where Reb > 300. Only for a “weakly energetic” regime of Reb < 300 do they claim

mixing efficiency to be constant near the value of Osborn (1980). Here mixing efficiency

is seen to depend strongly on Pr as per the discussion above with Γ∗ ≈ 0.08 for salt and

Γ∗ ≈ 0.40 for heat.

Similar result were found by Shih et al. (2005) using DNS that included homogeneous

mean shear. They classify a “diffusive” regime for Reb < 7, an “intermediate” regime for

7 < Reb < 100, and an “energetic” regime for Reb > 100. They find that diffusivity reaches

its molecular value in the diffusive regime, Γ ≈ 0.2 in the intermediate regime, and find that

efficiency effectively decreases with increasing Reb in the energetic regime as did Barry et al.

(2001). This remains a puzzling characteristic of both works. Recalling Reb = Fr2Re, the

reduction in mixing efficiency could be due to either Froude or Reynolds number effects. A

lingering question is: what happens in geophysical flows where stratification remains strong

(i.e., small Fr) but high Reynolds numbers place the flow in the “energetic” regime of Barry

et al. (2001) and Shih et al. (2005)? Does mixing efficiency really decrease in this case?

Ivey and Imberger (1991) investigated the independent effects of turbulent Reynolds and

Froude numbers using a compilation of lab data. Their formulations are Fr = u/NLC and

Re = ulv/ν, where isotropic inertial scaling is used for the velocity scale, u ∼ (εlv)
1/3, and

lv is an observed overturning scale. Using a flux-based definition for Rf they show that
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this quantity increases with Froude number for Fr < 1 and then decreases for Fr > 1. An

optimal value of Rf ≈ 0.15− 0.25 at Fr ≈ 1 is in agreement with Osborn (1980). The non-

monotonic behavior is in agreement with studies involving Ri; at very low Fr (or high Ri)

mixing efficiency is low due to dampening of turbulent flux by stratification, while at high

Fr (or low Ri), there is a high capacity for turbulent flux but a lack of density variation to

be fluxed. Ivey and Imberger (1991) found that mixing efficiency in the high Froude number

regime is independent of Reynolds number provided Re is sufficiently large. For low Froude

number, there is considerable scatter in the data that may be due to low Reynolds number

effects or internal wave effects since Rf is calculated from buoyancy flux (i.e., reversible).

Again, the lingering question is: what happens to mixing efficiency for strong stratification

(i.e., small Fr) but high Reynolds number as are found in geophysical flows? Will high

Reynolds number flows support Rf ≈ 0.15 even if stratification is strong? Or, is there

some structural mechanism (i.e., Kelvin-Helmholtz billowing discussed next) that prevents

Fr from decreasing below unity while the flow remains turbulent?

Specifying mixing efficiency is further complicated by the inhomogeneous and nonsta-

tionary nature of natural flows. Such conditions, in fact, violate the popular Osborn-Cox

(1972) model of (3.34) and the Osborn (1980) model of (3.37). This shortcoming is pointed

out by Ivey et al. (2008) who argue the importance of understanding the “spatial, temporal,

and dynamical character of the mixing events themselves” before we can correctly interpret

ocean observations. They highlight work by Smyth et al. (2001) who point out that mixing

efficiency is function of the specific mechanism driving the turbulence and the temporal evo-

lution of that mechanism. Using DNS, Smyth et al. (2001) focus specifically on the evolution

of billow-like structures, known as Kelvin-Helmholtz instabilities, that form on shear layers

between fluids of different density. They show that a pre-turbulent phase of Γ ≈ 0.8 precedes

a collapse of the billow into three-dimensional turbulence where mixing efficiency falls into

agreement with the canonical value of Γ ≈ 0.2. The high efficiency of the pre-turbulent

phase is due to a laminar convection. That is, as the billow rolls up, density flux is high, but
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ε is low because the flow is not yet turbulent. Understanding the signature of such events

in microstructure data is key to properly interpreting those data and, thus, understanding

mixing in the ocean.

3.5 Overturning

The advent of microstructure techniques to measure ε has revolutionized our understand-

ing of oceanic turbulence and the mixing therein via models such as Kd = Γε/N2 of Osborn

(1980). The difficulty and cost of such measurements, however, remains quite high compared

to measurements of larger-scale quantities such as N , S, and ∂ρ/∂z. Therefore, there has

been considerable effort to indirectly determine ε from more easily measurable quantities.

The most common method emerged from the work of Dillon (1982) who found apparently lin-

ear correlation between the Thorpe overturn scale, LT , and the fundamental Ozmidov scale,

LO. This apparent agreement implies that the inferred dissipation, εT , can be determined

from

εT = a2L2
TN

3, (3.47)

where a is an order-one constant of proportionality found empirically to be 0.80 by Dillon

(1982). Once a is specified, LT and N are determined from vertical profiles of density which

can be routinely collected from a ship-mounted or bottom-moored conductivity-temperature-

density (CTD) profilers. Because LT ∼ LO has been assumed, (3.47) implies that large

scale overturns are fundamentally associated with small scale dissipation. In other words,

large overturns are somehow associated with the inertial subrange despite the possibility of

large-scale forcing that would violate this condition. Using measurements from the Strait

of Gibraltar, Wesson and Gregg (1994) found significant variation in the proportionality

constant within the range 0.0625 < a2 < 16. This data suggests that a true linear relationship

between LT and LO may not be universal. Nonetheless, inferring ε from overturns remains

commonplace in the field of oceanography (e.g., Ferron et al., 1998; Alford et al., 2011).
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Using artificially forced (i.e., shear-free but stationary) DNS, Waite and Bartello (2006)

suggest that vertical overturns scale more closely with the length scale, urms/N , than with

LO and that LO increasingly underestimates overturning with increasing stratification (i.e.,

decreasing Froude number). This is in qualitative agreement with the scaling arguments

of Billant and Chomaz (2001) who also consider strongly stratified, shear-free turbulence.

Including the influence of mean shear, Itsweire et al. (1993) performed a DNS study that

indicates agreement between the overturning scale, LE, and LO occurs for Ri ≈ 0.2. They too

find that LO underestimates overturning in strong stratification (i.e., large Ri). In weaker

stratification (i.e., small Ri) they find the opposite to be true. They do not suggest an

alternative predictor of overturning in either regime. Smyth et al. (2001) find that LO only

agrees with the size of overturns shortly after the breakdown of a K-H billow simulated with

DNS. They find that overturning, represented by LT , is in better agreement with Lb = w/N ,

where w is the rms vertical turbulent velocity. The validity of the assumption leading to

(3.47) is a major focus of this dissertation and is addressed in chapters 5, 6, and 8.

3.6 Basis for Study

This chapter has presented common length scales, time scales, and dimensionless pa-

rameters used to describe geophysical turbulence. Moreover, it has presented a review of

relevant literature that references these quantities in descriptions of mixing and mixing effi-

ciency. As such, some knowledge gaps have been revealed. These knowledge gaps correlate

strongly with the objectives of chapter 1 and serve as the basis for the current work. More

specifically, these gaps are summarized into the following areas:

• An array of length and time scales have been constructed through dimensional anal-

ysis; however, physical interpretations of these scales vary. A cohesive presentation

of isotropic, sheared, and stratified scales is needed along with meaningful physical

interpretations.
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• Characterizing large-scale overturning motions in stratified shear flows using funda-

mental length scales has both fundamental and practical implications, yet agreement

between theoretical, experimental, and field studies is lacking. Further investigation

into the nature of overturning in both experimental and natural flows is needed.

• Many dimensionless parameters with various formulations have been proposed to ex-

plain the phenomena of turbulence under the influence of mean shear and/or stratifica-

tion; however, no unifying framework exists. A fresh approach at dimensional analysis

tempered by physical reasoning is needed to provide a concise, yet comprehensive set

of parameters.

• An array of parameterizations for mixing have been proposed based largely on low

Reynolds number experiments and numerical simulations. Many of these rely on a

single parameter to describe efficiency. In light of the multiple parameters relevant

to stratified shear-flow turbulence, a more holistic description of mixing efficiency is

needed for the improvement of mixing predictions.
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Chapter 4

Dimensional Analysis

This chapter represents a coherent and comprehensive presentation of the fundamental

scales and parameters relevant to the rest of the dissertation. Some scales presented in chap-

ter 3 will be revisited and less common scales will be introduced. Dimensionless parameters

will be formulated using dimensional analysis. The formulations used here will be related to

those already presented in chapter 3. The first section is a thorough discussion of the dimen-

sionless parameters and scales of unstratified shear-flow turbulence that will set the stage

for an analogous discussion of shear-free stratified turbulence in the second section. Shear

and stratification will be considered separately to provide a basis for the work of chapter 6

that focuses on the combined effects of these two “forcing” mechanisms.

4.1 Unstratified Shear-Flow Turbulence

It is well known that a key characteristic of turbulent flows is the range of length, time,

and velocity scales present in the flow. Classically, the quantities employed to define these

scales, and thus the “state” of turbulence, are the turbulent kinetic energy, k, the dissipation

rate of turbulent kinetic energy, ε, and the kinematic viscosity of the fluid, ν. These three

quantities can be combined to define the well known length scales, Lkε and η, and the time

scales, TL and Tη, that characterize the canonical case of homogeneous isotropic turbulence

(Kolmogorov, 1941). While foundational to our understanding of turbulence, Kolmogorovian

theory is incomplete in that it does not consider turbulence’s raison d’être: mean shear.

Shear acts not only to produce k, via the production term of (2.23), but also to induce

anisotropy at the larger scales of the flow. Clearly then, S should be included as a relevant

quantity in construction of dimensionless parameters, length, and time scales. Accordingly,
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Corrsin (1958) suggests that S should be considered along with the the three classic quantities

of isotropic turbulence for a more general characterization that includes the additional length

scales LC and LνS and the time scale S−1. In what follows, isotropic and shear scales will

be revisited and their physical relevance in the context of the energy cascade process will

be discussed. For the interested reader, the physical relevance of the various scales and

parameters will be discussed in the context of boundary layer turbulence in appendix A.

4.1.1 Isotropic Scales Revisited

4.1.1.1 Classical large scales, Lkε = k3/2/ε & TL = k/ε

The classic theory of Kolmogorov was strictly intended to describe the smallest scales of

the flow where the assumption of isotropy is reasoned to hold. In the absence (or neglect)

of other large scale quantities, consideration for total kinetic energy, k, as a fundamental

quantity allows for an extension of this theory to large-scale descriptions. Strictly speaking,

the large eddy size should scale with bounding geometry or some anisotropic mechanism of

the mean flow, but a “backdoor” approach to describe the large eddies would be to first define

large velocity, u0, and time scales, τ0, and then back out a length scales using l0 = u0τ0.

A natural velocity scale for the largest motions is k1/2. A natural time scale would be the

eddy turnover time, but this requires an implicit knowledge of the eddy size. Alternatively,

the rate at which that energy is being passed down the cascade, T0, can be evoked to define

the time scale from T0 ∼ k/τ0. Under the assumption that T0 ∼ ε as per Kolmogorov’s

hypothesis, the time scale and length scales become τ0 ∼ TL = k/ε and l0 ∼ Lkε = k3/2/ε.

At this point, it is interesting to note that in these formulations, the scales appear to be

dependent upon the inertial transfer rate, ε. Generally, however, they would be independent

variables imposed by boundary or mean flow conditions and would, thus, govern the transfer

rate (hence the reference to this being a “backdoor” approach). In this sense, Lkε can be

considered an “isotropic potential” length scale that may or may not be realized within
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the flow depending on presence of other large scale influences such as boundaries or shear.

Because the formulation of Lkε assumes a constant down-spectrum transfer rate that is

equal to ε, Lkε may also be considered the large-scale cut-off of the inertial subrange if mean

forcing and physical confinement are absent. TL can be interpreted as the time needed to

inertially transfer the ambient kinetic energy to smaller scales if anisotropic forcing were to

be suddenly shut off. If the characteristic velocity is taken as a rotational speed of the large

unforced eddies, and Lkε scales like an eddy diameter, TL can alternatively be thought of

as a “turnover time” of the large unforced eddies. More basically, it can be thought of as

an inertial time scale that is “internal” to the flow (i.e., free of the “external” influences of

boundaries, shear, or stratification).

4.1.1.2 Classical small scales, η = (ν3/ε)1/4 & Tη = (ν/ε)1/2

Under the first similarity hypothesis of Kolmogorov, flows of sufficiently high Reynolds

number have small scale motions uniquely determined by ν and the rate at which the small

scales receive energy. Equating this latter quantity to the dissipation rate, ε, is reasonable

under the assumption of a constant down-spectrum transfer rate of kinetic energy to the

small-scale end of the inertial region. Assuming ν and ε are the most relevant quantities for

describing small scale motions, the “Kolmogorov” length, time, and velocity scales can be

constructed as was shown in section 3.1.2.

The Kolmogorov length scale, η, can be thought of as the scale in the cascade process,

denoted by a wavenumber κl, at which the eddy-wise inertial time scale (κ3
lE(κl))

−1/2 equals

the eddy-wise viscous time scales (νκ2
l )
−1, where E(κl) ∼ ε2/3κ

−5/3
l is the eddy-wise kinetic

energy density (note that this becomes a questionable assumption outside of the inertial

subrange). At scales smaller than η, the viscous time scale is less than the inertial, therefore,

energy is dissipated before it can be transferred to smaller scales.
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4.1.1.3 New sub-Kolmogorov scales5, Lkν = (ν2/k)1/2 & Tkν = ν/k

At this point it is worthwhile to take pause and think about the reasoning behind using

ε to describe the small scales. Viscous dissipation occurs at small scales, so combining ν and

ε in the fashion above appeals to one’s initial sense of reasoning. However, if one considers

that small scales adjust to large scale influences, then dissipation rate could be a function of

the turbulent kinetic energy present and the imposed large length scale, i.e., ε ∼ k3/2/lo. In

this sense, ε is dependent on k, making k the more fundamental parameter. Dimensionally,

additional length and time scales can be constructed by combining k and ν. These being

Lkν =

(
ν2

k

)1/2

(4.1)

and

Tkν =
ν

k
. (4.2)

Comparing these scales to the traditional small scales, it is easily shown that η = Re
1/4
L Lkν

and Tη = ReLTkν . Thus, Lkν is indeed the smallest length scale if the flow is turbulent

(i.e., ReL � 1), and eddies of that scale, if they exist, adjust rapidly (i.e., Tη � Tkν).

The remaining issue is, of course, if these scales have physical relevance. This has yet be

established in the literature, however, recent studies do show that fluctuations about η exist

and that the range between η and the smallest scales increases with Reynolds number (e.g.,

Schumacher, 2007). The physical relevancy of these scales may lie in characterizing the

intermittency about η.

5The ideas presented here were proposed in an unpublished report entitled “A new sub-Kolmogorov
length scale in turbulent flows” by S K. Venayagamoorthy and L. P. Dasi (2011).
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4.1.2 Shear Scales Revisited

4.1.2.1 Large shear scales, LkS = (k/S2)1/2 & S−1

In deriving the isotropic large length scale, Lkε, the choice for a velocity scale was limited

to k1/2. Acknowledgment of mean shear as a relevant parameter, however, allows the formu-

lation of an alternative velocity scale in u(l) = Sl. Sl may be conceptualized as the velocity

difference (i.e., fluctuation) across an eddy of diameter l in the presence of a mean velocity

gradient that scales like S. Unlike the strictly large-scale velocity, k1/2, Sl scales with eddy

size and can be thought of as an anisotropic contribution to an eddy’s overall velocity scale,

k(l)1/2 = κlE(κl) (note that k is the total turbulent kinetic energy integrated over all scales

of the flow, while k(l) is an eddy-wise turbulent kinetic energy at some scale, l (or κl), in the

flow). At the largest scales, a reasonable assumption is that characteristic velocity is wholly

of anisotropic nature, and thus, a large eddy’s characteristic velocity is fully determined by

Sl. Thus, Sl ∼ k1/2. Solving for the eddy size gives the characteristic length scale of the

largest shear-driven eddies:

LkS =

(
k

S2

)1/2

. (4.3)

It is worth noting that the formulation of LkS avoids making any assumptions about energy

transfer rate as was necessary in formulating Lkε; the time scale of eddies of size LkS is

simply determined by the mean flow to be S−1. Thus, LkS is not tied to a description of the

inertial subrange. This scale is not widely referenced in the literature, but the recent work

of Venayagamoorthy and Stretch (2010) suggests a correlation with the overturning length

scale, LE, that depends on Ri.

4.1.2.2 Corrsin scale, LC = (ε/S3)1/2

In formulating LkS, the key assumption was that the large-scale characteristic velocity

is fully determined by Sl. This assumption is reasonable so long as the rate of shearing is

far greater than the rate at which energy is inertially transferred to smaller scales. In other
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words, the shear time scale, S−1, should be much less than the eddy-wise inertial time scale,

τa(κl) = (κ3
lE(κl))

−1/2. In the down-scale direction, the scale at which this assumption

ceases to hold was shown by Corrsin (1958) to be LC (see section 3.1.3). Since Corrsin

assumed E(κl) ∼ ε2/3κ
−5/3
l , the scale also represents the large-scale extent of the inertial

subrange. At scales smaller than LC , there is a tendency toward isotropy as mean forcing by

shear becomes less influential with decreasing eddy size (i.e., increasing κl). In this range,

u(l) ∼ Sl is no longer strictly valid. Rather, Sl should be thought of as the anisotropic

contribution to an eddy’s characteristic velocity.

4.1.2.3 Small shear scale, LνS = (ν/S)1/2

Corrsin (1958) implies that the point in the energy cascade where the eddy-wise dissipa-

tion time scale, τc = (νκ2
l )
−1, falls below the mean shear time scale occurs at LνS. At smaller

scales, dissipation occurs before mean shear has the opportunity to have any influence. In

this sense, shear remains influential (albeit perhaps minor and diminishing) throughout the

inertial subrange. It follows that shear-driven production must cease below LνS.

Alternatively, LνS can be thought of as the scale at which the viscous force (per unit

mass) acting across an eddy, u∗2/l = (τ/ρ)/l = (νS)/l, equals the inertial force (per unit

mass) due to shear acting across the eddy (Sl)2/l. In other words, the Reynolds number

that considers only the anisotropic contribution to an eddy’s velocity, Sl, goes to unity:

(Sl)l/ν ∼ 1 ⇒ l ∼ (ν/S)1/2. Interestingly, this is a condition that occurs irregardless of ε,

so LνS is not necessarily tied to the inertial subrange.

4.1.3 Dimensionless Parameters

Unstratified isotropic turbulence involves three independent quantities (i.e., k, ε, and ν)

with two fundamental dimensions (length and time) so that, according to the Buckingham

Pi Theorem, a single dimensionless grouping is needed to characterize the physics of the

flow. This is, of course, the turbulent Reynolds number, ReL = k2/εν, discussed in section
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3.2.1. Inclusion of S then necessitates an additional grouping in

STL =
Sk

ε
, (4.4)

which is the ratio of the “internal” inertial time scale, TL, to the “external” time scale of the

forcing, S−1. STL is simply half the shear parameter, S∗, previously discussed; however, the

formulation of (4.4) will be used herein because it explicitly uses the variable, k.

Two interesting physical insights can be drawn through consideration of the Reynolds

number and shear parameter. (1) Turbulence cannot exist for Re � 1. Reynolds number

less than unity implies that the overall inertial transfer rate of energy down the cascade,

T−1
L , is greater than the potential rate at which energy can be dissipated through molecular

viscosity, T−1
η . Since small-scale dissipative processes rapidly adjust to match large scale

inertial supply, this implies a physically impossible condition in a turbulent flow that is

reasonably stationary. (2) Anisotropic turbulence cannot exist for STL � 1. This would

imply that the inertial transfer rate is much greater than the mean strain rate of the fluid.

For such a condition, fluid motions would be influenced predominately by energy supplied

from larger scales and not by energy produced as a direct result of shear. Without significant

production, turbulence would decay. Conversely, STL � 1 implies that turbulence decays

slower than the fluid is strained and will, therefore, grow.

Figure 4.1 represents an enlightening interpretation of the energy cascade process in terms

of the six length scales and two dimensionless parameters considered here to be pertinent to

shear-flow turbulence. The range in scales at which shear, and thus production, is proposed

to be relevant is shown in red, while the range of expected isotropy is shown in blue. Shear is

shown to fade in the down-scale direction through the inertial subrange until LνS is reached.
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Figure 4.1: Schematic of energy cascade with length scale spectrum for shear-flow. Ratios
of subsequent scales are shown in terms of dimensionless parameters. Scale order is shown for
the case of all parameters being greater than unity.

Also included in figure 4.1 is the Taylor microscale, λg. Placement of this scale is deter-

mined from LνS/η ∼ Re
1/4
L (STL)−1/2 and the isotropic relation of (3.22). The exact constant

of proportionality in (3.22) is likely influenced by the presence of shear. More importantly,

however, is that λg is likely larger than LνS when shear is relevant.

4.2 Stratified (shear-free) Turbulence

In section 4.1 it was argued that S should be considered along with the classic quantities,

k, ε, and ν to give a comprehensive description of shear-flow turbulence. When stratification

is present, the additional quantity to consider is the buoyancy frequency, N . In this section,

scales involving N are interpreted and analyzed in the context of the energy cascade process

and overturning motions.

4.2.1 Buoyancy Scales Revisited

4.2.1.1 Large buoyancy scales, LkN = (k/N2)1/2 & N−1

As with inclusion of S, the inclusion of N introduced a new time scale, N−1, and a new

velocity scale, Nl. Taking N to be the frequency at which a displaced fluid particle oscillates

vertically about its gravitationally-stable position, Nl would scale like the mean vertical
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velocity if the particle was displaced vertically some distance l. If l is loosely considered an

eddy diameter, Nl is the characteristic velocity of the eddy. This velocity scales with eddy

size and can be thought of as the anisotropic component of an eddy’s overall velocity scale,

k(l)1/2. Assuming the largest eddies have characteristic velocities wholly determine by the

anisotropic forcing of buoyancy, then Nl ∼ k1/2. The length scale of these largest eddies of

purely stratified turbulence is then

LkN =

(
k

N2

)1/2

. (4.5)

As with the formulation of LkS, this formulations makes no assumptions of energy transfer

rate. Therefore, LkN is not necessarily tied to the inertial subrange as are Lkε for isotropic

turbulence, LC for sheared turbulence, and LO of stratified turbulence (discussed next).

Using artificially forced (i.e., shear-free but stationary) DNS, Waite and Bartello (2006)

suggest that vertical overturns scale closely with the similar length scale, urms/N .

4.2.1.2 Ozmidov scale, LO = (ε/N3)1/2

Down-scale of LkN in a fully turbulent flow, Nl no longer fully characterizes eddy velocity

below LO. At LO, the inertial subrange begins and there is a tendency toward isotropy as

large scale forcing due to buoyancy is “forgotten”. In this range Nl is the anisotropic

component of an eddy’s characteristic velocity. LO is sometimes interpreted as the largest

scale possible in a stratified flow instead of LkN . This interpretation is addressed in chapter

5.

4.2.1.3 Small buoyancy scale, LνN = (ν/N)1/2

Analogous to LνS in shear flow, LνN is the length scale at which the viscous time scale,

τc becomes less than the external forcing time scale. At smaller scales, viscous dissipation

occurs too rapidly for buoyancy perturbations to be relevant. This implies that buoyancy
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is relevant (albeit minor and diminishing) throughout the inertial subrange. The Reynolds

number that considers only the anisotropic component of an eddy’s velocity, Nl, goes to

unity at LνN : (Nl)l/ν ∼ 1⇒ l ∼ (ν/N)1/2.

4.2.2 Dimensionless Parameters

Analogous to shear-flow turbulence, purely stratified turbulence requires ReL and an

additional dimensionless grouping for full description. That additional grouping is typically

a turbulent Froude number as discussed in section 3.2.3. The formulation used here is the

inverse turbulent Froude number,

NTL =
Nk

ε
, (4.6)

which is the ratio of the internal inertial timescale, TL, to the external time scale of the forcing

N−1. This formulation is used to conform with the formulation of the shear parameter, STL.

When NTL > 1, anisotropic motions due to gravitational perturbations occur rapidly (i.e.,

on a short time scale) relative to inertial motions of existing turbulence. Thus, buoyancy

effects are strong relative to inertia. Conversely, NTL < 1 characterizes a flow regime where

it is inertial motions that are rapid and, thus, act to “smear-out” the motions of slower

gravitational perturbations. Anisotropy increases with NTL.

It can easily be shown that LkN/LO = (NTL)1/2. Furthermore, NTL links these two

buoyancy scales to the isotropic large scale: Lkε/LkN = NTL, and thus, Lkε/LO = (NTL)3/2.

For strong stratification where NTL > 1, this implies that Lkε > LkN > LO. For the

special case of “critical” flow, NTL = 1, all the three length scales equate. The buoyancy

length scales are compared in figure 4.2, which also includes the shear scales previously

discussed. Each buoyancy scale can be related to its analogous shear scale by some factor

of the gradient Richardson number, Ri. It is reasonable to suggest that buoyancy scales

assume the roles discussed in this section when Ri is large. Because shear is necessary for

sustained turbulence, however, turbulence decays and the energy spectrum collapses if Ri
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Figure 4.2: Schematic of energy cascade with length scale spectrum for stratified shear-flow.
Ratios of subsequent scales are shown in terms of dimensionless parameters. Scale order is
shown for the case of all parameters being greater than unity.

becomes much larger than its critical value. When Ri is small, it is the shear scales that are

physically relevant to the energy cascade process (e.g., LO is the upper scale of the inertial

subrange for Ri & 1, while LC assumes this role for Ri . 1).

The “activity parameter” or buoyancy Reynolds number, Reb = ε/νN2 is another popular

dimensionless parameter and was discussed extensively in section 3.2.5. In this discussion, the

ambiguity of Reb is pointed out; it represents the effects of inertia relative to the combined

dampening effects of buoyancy and viscosity. This becomes clear when formulating the

activity parameter in terms of its more fundamental constituents,

Reb = ReL(NTL)−2. (4.7)

When parameterizing aspects of the flow (e.g., mixing efficiency) on Reb alone, care should

be taken to ensure that observed trends are not dependent on trajectory through an NTL−

ReL parameter space. Otherwise, Reb based parameterizations should be qualified with

accompanying valid ranges of ReL and/or NTL.
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4.3 Summary

The scales and parameters formulated in this chapter will be relied upon in those that

follow. The next chapter will focus on the scales of overturns in stratified turbulence in the

absence of shear so that the role of stratification can be isolated.
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Chapter 5

Overturning in Stably-Stratified

Turbulence6

5.1 Introduction

A relatively simple and objective measure of large-scale vertical overturns in turbulent

oceanic flows is the Thorpe length scale, LT (Thorpe, 1977). Beyond its ability to indicate

vertical eddy size from density profiles, however, LT is of limited use in more fully charac-

terizing turbulence unless some relationship with fundamental quantities of the flow can be

determined. In stably-stratified turbulence, these fundamental quantities include turbulent

kinetic energy, k, dissipation rate of turbulent kinetic energy, ε, buoyancy frequency, N ,

mean shear rate S, and molecular kinematic viscosity, ν. Dougherty (1961) and Ozmidov

(1965) originally suggested the length scale constructed from ε and N should indicate the

size of the largest eddy unaffected by buoyancy in stratified turbulence — this, of course

being the well-known Ozmidov length scale, LO = (ε/N3)1/2. Subsequent interpretations of

this early work popularized LO as an outer limit on eddy size for a given level of turbulence,

as reflected by ε, acting against a stably-stratified background density profile, reflected in

N , and thus should be related to LT (e.g., Thorpe, 1977; Dillon, 1982). In this light, LO has

become the preferred fundamental counterpart to the directly measured LT and, therefore,

6The research presented in this chapter has been published in Physics of Fluids under the title, “Relevance
of the Thorpe length scale in stably stratified turbulence” (Mater et al., 2013). The publication was awarded
the 2014 François Frenkiel Award for Fluid Mechanics by the American Physical Society (Division of Fluid
Dynamics). Background information and literature relevant to this chapter are presented again so the
chapter may be read as a stand-alone work. The chapter is written in a collective “we” voice to acknowledge
collaboration with co-authors. Simon M. Schaad contributed substantially to this effort by running the DNS
and providing the data considered herein.
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often serves as the critical link between a relatively unsophisticated observation and a fun-

damental aspect of turbulence embodied in ε.

Reliance on a common scaling between LO and LT is commonplace in the field of oceanog-

raphy where direct measurement of ε with microstructure profilers is far more difficult than

that of density profiles from standard Conductivity, Temperature, Depth (CTD) profilers

needed for calculation of N and LT (see Dillon, 1982; Thorpe, 2005). Accurate inferences of

ε from vertical density profiles, however, inherently require dissipation at small scales to be

in phase with the observed large scale motions at the instant of sampling. In other words, the

outer scales of the flow must be directly determining the rate of dissipation at the smallest

scales. In this study we use direct numerical simulations (DNS) of decaying stably-stratified

turbulence and physical reasoning to argue that this commonly held assumption is only valid

for the special case when turbulence and buoyancy time scales are approximately equal, i.e.,

NTL ≈ 1, where TL = k/ε is the turbulence time scale or turbulence decay time. We can

refer to this as the critical case since the turbulent Froude number (discussed later) which is

simply given by (NTL)−1 is approximately unity. For flows strongly influenced by buoyancy

(i.e., NTL > 1), we argue that an overturn size more truly reflects the instantaneous turbu-

lent kinetic energy and show that LT more generally agrees with a length scale constructed

from this quantity, LkN = (k/N2)1/2. In such cases, the outer scales of the flow are larger

than the scale of buoyancy control as set by LO and, instead, are strongly anisotropic and

decoupled from ε.

In what follows, we provide a brief discussion of the physical interpretations of the funda-

mental length scales, describe the generation and sampling of numerical data, and explicitly

show the performance of various fundamental length scales in predicting LT under different

levels of stratification. We conclude with a discussion of the theoretical and practical impli-

cations of predicting k from measured Thorpe scales and consider our results in the context

of other DNS, laboratory, and field studies.
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5.2 Relevant Length and Time Scales

Here, we discuss the calculation of the Thorpe scale and the physical interpretations of

LO and other fundamental length scales commonly used to describe stratified turbulence.

By combining k, ε, N , S, and ν two at a time, one can easily construct nine length scales

through dimensional analysis. Because we are only concerned with large-scale motions at

sufficiently high Reynolds number, we assume that molecular effects are negligible and, thus,

consider only those five length scales that exclude ν.

5.2.1 Thorpe Length Scale

The Thorpe scale can be calculated from an observed instantaneous density profile, such

as that provided by CTD measurements in the field. Discrete density measurements from

the instantaneous profile are monotonically sorted to give a gravitationally stable profile.

The vertical distance a sample must be moved adiabatically in this process is its Thorpe

displacement, δT . For the vertical region of interest (e.g., the vertical extent of the DNS

domain or, in an oceanic setting, the depths just encompassing a turbulent patch), the

Thorpe scale is then calculated as the root-mean-square (rms) δT for that region given by

LT = 〈δ2
T 〉1/2, (5.1)

where 〈〉 denotes a spatial average in the vertical. For a more thorough explanation of this

process see Thorpe (1977). Further details are also given in Section 3.

A closely related measure of overturning is the Ellison length scale, defined as

LE =
〈ρ′2〉1/2
∂ρ/∂z

, (5.2)

where ρ′ is the turbulent density fluctuation about some mean background density, ρ. LE

may be thought of as a statistical measure of the vertical distance traveled by fluid parcels
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before returning toward an equilibrium position or irreversibly mixing with surrounding fluid

(Ellison, 1957). For the case when the sorted density profile exhibits a uniform gradient and

〈 〉 represents a vertical ensemble averaging applied to both ρ′2 and δ2
T , LE is exactly equal

to LT . Agreement between LE and LT was confirmed in the grid tow experiments of Itsweire

(1984) and the DNS of Itsweire et al. (1993) for all but the most strongly stratified flows. In

the runs with highest stratification, it was correctly proposed that LE became larger than

LT due to the effects of internal gravity waves, despite relatively uniform background (i.e.,

sorted) density gradients. This may be attributed to differences in the averaging schemes

used for 〈ρ′2〉 and 〈δ2
T 〉 in the calculation of LE and LT , respectively. Specifically, ρ′2 was

averaged over both vertical and lateral (i.e., temporal under Taylor’s hypothesis) extents,

while δ2
T was averaged only in the vertical. A lateral component of ensemble averaging in

the presence of internal waves will tend to increase 〈ρ′2〉, and thus LE, from what would be

expected from a vertical ensemble alone. Thus, LE can be biased toward larger values due

to non-overturning wave motions, while LT is free of reversible motions and, therefore, truly

reflects vertical overturns. The bias increases with stratification as internal waves become

more prominent relative to overturns. We use the traditional three-dimensional averaging

scheme to calculate LE, then use the comparison between LT and LE as an indicator of

internal wave intensity in the present simulations.

5.2.2 Fundamental Scales

Dimensionally, five length scales can be constructed from k, ε, N , and S. Those most

common in literature include the turbulent length scale, Lkε = k3/2/ε (Pope, 2000), the

Ozmidov length scale, LO = (ε/N3)1/2 (Ozmidov, 1965), and the Corrsin length scale, LC =

(ε/S3)1/2 (Corrsin, 1958). The remaining two link turbulent kinetic energy to buoyancy

frequency and mean shear respectively: LkN = (k/N2)1/2 and LkS = (k/S2)1/2.

Physically, the turbulent length scale, Lkε, can be thought to represent the largest eddies

present in a flow when the effects of shear or buoyancy are negligible (i.e., isotropic turbu-
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lence). This interpretation assumes that such eddies are characterized by the velocity scale,

k1/2, and inertially transfer kinetic energy to smaller scales at a rate equal to ε. The latter

assumption stems from the second similarity hypothesis of Kolmogorov (Kolmogorov, 1941)

and implies that Lkε should be a measure of the large-scale extent of the inertial subrange

given truly isotropic flow.

When mean shear or stratification are not negligible, large-scale motions become increas-

ingly anisotropic and have length scales that depart from the isotropic prediction of Lkε. The

validity of Kolmogorov’s hypothesis and the inertial subrange are then relegated to length

scales smaller than LO or LC for buoyancy or shear-dominated flow, respectively. The largest

eddy for which ε is a valid estimate of down-scale energy transfer is then LO when Ri > Ric

or LC when Ri < Ric, where Ric is some critical value of the gradient Richardson number,

Ri = N2/S2, that delineates the two regimes. The associated velocity scales are (ε/N)1/2

and (ε/S)1/2.

Physical interpretations of the final two fundamental length scales need not rely on any

assumptions about the transfer rate of turbulent kinetic energy to smaller scales and, there-

fore, are not concerned with ε. Rather, the focus remains on k. The only argument needed

to bring physical significance to these scales is that their characteristic velocities are set by

k1/2 with corresponding time scales given by N−1 and S−1, respectively. In this sense, LkN

and LkS more generally describe large-scale motions in their respective regimes of buoyancy-

and shear-dominated flows than their counterparts LO and LC .

In this study we focus on buoyancy-dominated turbulence that is free of shear and,

therefore, will emphasize the roles played by LO and LkN in describing overturning motions.

Considering the fundamental quantities of interest, the dimensionless parameters needed to

characterize such flows are the turbulent Reynolds number, ReL = k2/εν, and the turbulent

Froude number, Frk = ε/(Nk). If one considers the turbulent time scale, TL, the Froude

number may be rewritten as Frk = (NTL)−1. This alternative formulation explicitly rep-

resents the competition of inertial and buoyancy time scales; therefore, we choose to make
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reference to NTL, rather than Frk, throughout this chapter. When NTL > 1, motions due

to gravitational perturbations occur rapidly (i.e., on a short time scale) relative to inertial

motions of existing turbulence. Thus, we will classify this as a “subcritical” regime (i.e.,

buoyancy effects are strong). Conversely, flow regimes with NTL < 1 will be classified as

“supercritical” (i.e., buoyancy effects are weak). In this state, it is the inertial motions that

are rapid and, thus, act to mitigate the motions from the slower gravitational instabilities.

It can easily be shown that LkN/LO = (NTL)1/2. Furthermore, NTL links these two

buoyancy scales to the isotropic large scale: Lkε/LkN = NTL, and thus, Lkε/LO = (NTL)3/2.

For NTL > 1, this implies that Lkε > LkN > LO. For the special case of “critical” flow,

NTL = 1, all the three length scales equate.

The turbulent Reynolds number indicates the competition of inertial and viscous forces

in the flow and provides a measure of the range of scales present. The latter interpretation

is strictly valid for isotropic flow and follows from ReL = k2/εν = (Lkε/η)4/3, where η =

(ν3/ε)1/4 is the Kolmogorov length scale. When buoyancy introduces anisotropy, the large

scales are limited to values less than the isotropic potential expressed in Lkε. What the

actual outer scale is remains to be seen and is the subject of the current work.

While NTL and ReL are the only parameters needed to fully characterize a purely strat-

ified flow on dimensional grounds, a third parameter that frequently appears in literature is

the buoyancy Reynolds number or “activity parameter”, Reb = ε/(νN2) (e.g., Gibson, 1980;

Shih et al., 2005; Stillinger et al., 1983), which may be interpreted as a relative measure of

turbulent stirring (i.e., inertia) to combined stabilizing effects from buoyancy and viscosity

(Ivey et al., 2008). The utility of this parameter is limited by the inherent ambiguity elu-

cidated in this interpretation. For example, an increase in Reb could represent increased

inertial effects relative to viscosity (increased ReL) just as it could represent increased iner-

tial effects relative to buoyancy (decreased NTL). This becomes clear when formulating the

activity parameter in terms of its more fundamental constituents, i.e., Reb = ReL(NTL)−2.

When parameterizing aspects of the flow (e.g., mixing efficiency) on Reb alone, care should be
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taken to ensure that observed trends are not dependent on trajectory through an NTL−ReL
parameter space. Otherwise, Reb-based parameterizations should be qualified with accom-

panying valid ranges of ReL and/or NTL.

The activity parameter may be written as Reb = (LO/η)4/3, and thus also indicates the

range of scales free from the anisotropic effects of buoyancy. It follows that Reb describes

the full range of turbulent scales only in the special case that LO coincides with the largest

scale of the flow. Obviously, Reb loses significance (from a physical standpoint) for weakly

stratified turbulence (N → 0) in which LO far exceeds outer dimensions of the flow.

5.3 Numerical Approach

5.3.1 Set-up

Direct numerical simulations (DNS) were used to simulate decaying homogeneous stably-

stratified turbulence without further production (i.e., shear-free turbulence). This idealized

condition is akin to a breaking internal gravity wave or other intermittent disturbance leading

to turbulence that is isolated from boundaries and free of sustained mean shear. An isotropic

energy spectrum is initially imposed, and the resulting turbulence is allowed to subsequently

decay free from any other external sourced of kinetic energy. The laboratory equivalent is

the grid-tow experiment in which a bi-lateral mesh is towed through a stratified bath.

The numerical simulations performed for this study were carried out using the pseudo-

spectral code developed by Riley et al. (1981). This code simulates a flow field that is periodic

in all three spatial directions, with a constant background density gradient (since the flow

is homogeneous) with a buoyancy frequency N2 = (−g/ρ0)(∂ρ/∂z) (see Riley et al. (1981)

and Venayagamoorthy and Stretch (2006) for further details). The turbulence is initialized

as a Gaussian, isotropic, solenoidal field with initial length and velocity scales L0 and u0,

respectively. The flow domain is a cube with dimensions L = 2π with a 2563 grid-point

resolution. After the first eddy turnover period, 1L0/u0, the dissipation peaks and begins

70



to decay. We interpret this as a signature of fully developed turbulence. Prior to this time,

the statistics are not representative of decaying stratified turbulence and, thus, these initial

transients were ignored in this study. The duration of all simulations was 5L0/u0

5.3.2 Parameter Values

The strength of stratification can be characterized by an initial Richardson number de-

fined as Ri0 = (NL0/u0)2. To more specifically investigate temporal variance in flow char-

acteristics, however, we must turn to NTL. For this work, seven DNS runs were performed

with Ri0 varying from 0.01 to 158. The Prandtl number Pr = ν/κρ = 1 in order to ensure

accurate resolution of the smallest scales of the density field. During the runs, ReL varied

narrowly around O(103), and NTL varied from O(10−1) to O(102). The peak value of Reb

varied from O(100) to O(105).

Using DNS of slightly lower ReL values (O(101) to O(103)) and a narrower range in NTL

(O(100) to O(101)), Shih et al. (2005) showed that flows could be categorized into three

distinct Reb-regimes based on the behavior of mixing efficiency: a “diffusive” regime where

ε/(νN2) < 7, an “intermediate” regime where 7 < ε/(νN2) < 100, and an “energetic” regime

where ε/(νN2) > 100. Because of the aforementioned ambiguity in Reb, the universality of

these regime limits remains uncertain (e.g., if mixing efficiency were to become independent

of viscosity in high ReL flows typical of the ocean, the intermediate-energetic transition

would shift to higher values of Reb). Nonetheless, we can conceptualize the turbulent state

of the current simulations according to the regimes of Shih et al. (2005) and the stratification

parameter NTL.

Turbulent regimes are illustrated in Figure 5.1 where a line at NTL = 1 has been included

to tentatively delineate weak (NTL < 1) and strong (NTL > 1) stratification. Recall, weak

stratification implies flows that are not affected by buoyancy forces and in the context of

these simulations are more or less isotropic, while the converse is true for strong stratification.

Quadrant I represents strongly stratified flows at high values of ReL. Flows in this quadrant
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Figure 5.1: Peak Reb (ε/(νN2)) values and corresponding NTL values plotted over the Reb
regimes defined by Shih et al. (2005) and NTL regimes reported in the current study.

are energetic while at the same time influenced by buoyancy forces. This regime characterizes

geophysical flows. Quadrant II represents flows that are energetic but the stratification is

weak. In the limit of zero stratification, this regime marks the classical isotropic turbulence

limit. Flows in quadrant III are characterized by low ReL and are considered “diffusive” in

that transport of both momentum and scalar occurs dominantly through molecular diffusion

as the laminar limit is approached. Flows in quadrant IV are also characterized as “diffusive”,

despite higher ReLvalues, due to the suppression of turbulence by strong buoyancy effects.

The ultimate quest is to understand the physics of strongly stratified energetic flows as

denoted by quadrant I. Data points for the current study are barely in the lower end of this

range.

5.3.3 Thorpe Sorting

As discussed in Section 5.2.1, the Thorpe scale is calculated by adiabatically sorting

density profiles for gravitational stability. Following Smyth and Moum (2000), there are
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Figure 5.2: Instantaneous and sorted density profiles for; (a) moderate and (b) strong strat-
ification.

two alternative sorting techniques; density is known for all points (x,y,z) in the domain,

therefore, we are free to sort values for one-dimensional profiles at each (x,y) or sort the

entire domain in a three-dimensional sense as was suggested by Winters et al. (1995).

One-dimensional sorting provides profile-based displacements, δT = (z − zsort) for each

grid point, where zsort is the depth at which a fluid parcel originating from depth z would

be gravitationally stable within a given profile. Typical instantaneous and stable density

profiles are plotted in Figure 5.2 for two different strengths of stratification. This figure

also illustrates the homogeneous nature of the turbulence and the lack of coherent turbulent

patches typical of shear layers, etc. Thus, we are not concerned with identifying vertical

regions for Thorpe scale calculations as was done by Smyth et al. (2001). Instead, we treat

the entire domain as one turbulent patch. Periodic boundary conditions allow for inclusion

of all grid points in these calculations.

In three-dimensional sorting, a fluid parcel is moved to a stable depth relative to all

vertical and lateral neighbors and associated with a displacement δT3D = (z−zsort3D), where

zsort3D is the gravitationally stable depth if sorting is also monotonic in the lateral directions

(i.e., lateral density gradients are also minimized); thus a parcel’s stable position is not

73



10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

L = 2π

LT 3D

LT

(a)

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

L = 2π

LE

 

 

(b) Ri0 = 0.01

Ri0 = 0.10

Ri0 = 0.39

Ri0 = 1.58

Ri0 = 10.0

Ri0 = 39.5

Ri0 = 158

Figure 5.3: One-dimensional Thorpe scale, LT , versus (a) three-dimensional Thorpe scale,
LT3D, and (b) Ellison length scale, LE . Computational domain extents are indicated by dash-
dotted line.

necessarily directly above or below its point of origin. Isopycnal planes of the sorted flow

field will be free of internal wave crenulations — the same cannot be said for the isopycnals

resulting from one-dimensional sorting.

Once sorting has been performed, the Thorpe scale can be calculated as the rms of

either displacement set. Here we distinguish one-dimensional and three-dimensional values

as LT and LT3D, respectively. Because δT3D can be influenced by non-overturning wave

motions (through allowing fluid parcels to be “moved” laterally), LT3D provides a measure

of general scalar fluctuations. In contrast, LT is a specific measure of unstable overturning.

As such, LT < LT3D when internal waves are significant (Smyth and Moum, 2000). The

one-dimensional and three-dimensional Thorpe scales are compared in Figure 5.3a. Wave

effects appear minimal, even for very stable simulations. An objective of this work is to

present practically relevant data to the oceanography community in which field sampling is

more analogous to the methods leading to the one-dimensional Thorpe scale. Considering

this, and the relatively good agreement between LT and LT3D, we will refer exclusively to

LT in the rest of this chapter.
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5.4 DNS Results

5.4.1 Thorpe vs. Ellison Scales

Prior to investigating fundamental length scales, we first focus on the correlation between

the Ellison and Thorpe length scales as a simple check on the nature of the overturns. Figure

5.3b shows excellent agreement between LE and LT . The density fluctuations due to non-

overturning internal waves appear to be of minimal influence on LE (see Figure 5.3a).

5.4.2 Thorpe vs. Ozmidov Scales

Following the work of Dillon (1982), the Thorpe scale, LT , has become a popular predictor

of the Ozmidov scale, LO (or vice versa). Field observations and laboratory experiments

imply a linear dependency of the form LO = αLT with common estimates of α agreeing

with Dillon’s value of 0.8 (Itsweire, 1984; Ferron et al., 1998). DNS of stratified turbulence

have also revealed correlation between LO and LT , but indicate the relationship is nonlinear

and perhaps a function of the gradient Richardson number, Ri, (e.g., Itsweire et al., 1993)

or a function of overturn age in the case of a shear layer with Kelvin-Helmholtz billows

(Smyth and Moum, 2000; Smyth et al., 2001). As shown in Figure 5.4a, we too find a

nonlinear dependency between the two length scales for our shear-free simulations. Since the

current simulations effectively lack mean shear, the appropriate non-dimensional parameter

to further investigate this trend with is NTL (rather than Ri). Hypothetically, one could

also investigate Reynolds number effects; however, the current study is limited to a single

order of magnitude range in ReL (i.e., O(103)). As such, we implicitly assume Reynolds

number independence in the remainder of this discussion.

In Figure 5.4b we see a clear dependence of LT/LO on NTL over possibly two regimes

delineated by NTL ≈ 1. In the weakly stratified regime (NTL < 1), the size of observed

overturns is less than LO, theoretically indicating negligible influence of buoyancy at the

outer scales of the flow. At the regime break LO becomes smaller than the overturn size,
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Figure 5.4: Ozmidov length scale, LO, versus Thorpe scale, LT : (a) direct comparison, and
(b) plotted against the dimensionless stratification parameter, NTL.

and here we expect an onset of buoyancy control. While the general slope of the data points

does decrease in the strongly stratified regime (NTL > 1), it does not completely flatten

nor does the ratio of scales go to unity. Thus, contrary to common assertions, the Ozmidov

scale does not appear to be the limiting size of overturns in strongly stratified turbulence

except for the special case of NTL ≈ 1. Beyond this regime break, overturn size continues

to increase beyond LO as a function of NTL.

5.4.3 Thorpe vs. Turbulent Kinetic Energy Scale

Next, we investigate LkN as an alternative predictor of LT . Direct comparison is shown

in Figure 5.5a. Unlike the Ozmidov scale, LkN shows a strongly linear trend with LT through

all but the three runs with lowest Ri0. Further investigation of NTL dependency is shown

in Figure 5.5b. Again, two regimes delineated by NTL ≈ 1 are apparent, and LT is less

than the buoyancy-dependent scale in the weakly stratified regime. The ratio, LT/LkN ,

however, reaches a constant near unity for the strongly stratified regime. It appears, then,

that LkN is a better indicator of overturning events than LO in buoyancy dominated stratified
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Figure 5.5: Kinetic energy length scale, LkN , versus Thorpe scale, LT : (a) direct comparison,
(b) plotted against the dimensionless stratification parameter, NTL.

turbulence (NTL > 1). Referring back to Figure 5.4b, this result is reflected in LT/LO data

closely following the line of (NTL)1/2 for NTL > 1 (cf. LkN/LO = (NTL)1/2).

5.4.4 Thorpe vs. Isotropic Large Scale

Finally, LT is compared with the isotropic large scale, Lkε, for the main purpose of in-

vestigating their relationship in the weakly stratified regime. Direct comparison is given in

Figure 5.6a. Clearly, Lkε overestimates LT in runs of strong stratification, and the discrep-

ancy increases with Ri0. In this regime, Figure 5.6b shows that LT/Lkε data closely follow

the line of (NTL)−1. This is a direct result of LT ∼ LkN for NTL > 1 (cf. Lkε/LkN = NTL).

Only for weakly stratified runs does there appear to be close correlation. Agreement in the

weakly stratified regime is clearly shown in Figure 5.6b, where for NTL < 1, the ratio is near

unity.
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Figure 5.6: Kinetic energy isotropic length scale, Lkε, versus Thorpe scale, LT : (a) direct
comparison, (b) plotted against the dimensionless stratification parameter, NTL.

5.5 Discussion

5.5.1 Physical Interpretations

For strongly stratified turbulence, the lack of correlation between LT and LO implies that

the rate of dissipation, ε, is not fundamental in describing the outer scales of the flow. It

should not necessarily come as a surprise that ε under-performs in this regard. Recall, the

seminal works of Dougherty (1961) and Ozmidov (1965) sought not to determine the outer

scale of the flow, but rather to define the largest scale that could remain isotropic in the

presence of buoyancy forces (i.e., the large-scale extent of the inertial subrange). This early

theory is entirely compatible with the possibility of anisotropic overturns larger than LO in

strongly stratified flows. Such eddies would exist at scales larger than those of the inertial

subrange and transfer energy to other scales at rates different than ε. In other words, these

eddies do not adhere to the second similarity hypothesis of Kolmogorov and, as such, do not

have a form determined by ε.
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Instead, the outer scales of strongly stratified turbulence are more indicative of the total

turbulent kinetic energy, k, as implied by the linear relationship between LT and LkN for

NTL > 1. This essentially validates the physical reasoning that the time scale of these eddies

scales with N−1, and the velocity goes unequivocally with k1/2, not (ε/N)1/2. In order for

these eddies to exist, N−1 must be shorter than the turbulent decay time, TL (i.e., anisotropic

eddies larger than LO cannot exist if turbulence decays quicker than the eddy can turn over).

In the weakly stratified regime where NTL < 1, the lack of correlation between LT and

LO is due to the negligible influence of buoyancy. In other words, the flow is nearly isotropic

at all scales and the time scale of the largest eddies is much shorter than N−1. Instead,

even the large eddies are associated with length and time scales dependent on ε — these, of

course, being Lkε and TL, respectively. It is important to note that this would only be the

case in flows free of mean shear or the influences of boundaries. The influence of shear or

boundaries could induce anisotropic motions even when NTL < 1.

5.5.2 Implications

The linear relationship between LT and LkN has both practical and theoretical impli-

cations. An important theoretical implication of a linear relationship between LT and

LkN is that the ratio of the turbulent potential to the turbulent kinetic energy is likely

a constant value in strongly stratified turbulence, where the turbulent potential energy is

EPE = −(g/ρ0)〈ρ′2〉/(2∂ρ/∂z). This is a direct implication of LE ∼ LT ∼ LkN . From

the definition of the Ellison length scale, the turbulent potential energy can be rewritten

as EPE = N2L2
E/2. Similarly, from the definition of LkN , the turbulent kinetic energy can

written as k = N2L2
kN . Taking the ratio we see that EPE/k = (LE/LkN)2/2. Assuming

the conditions for LE ∼ LT are valid (i.e., internal wave effects are minimal) and NTL > 1,

our results imply that EPE/k ≈ 1/2. This result is confirmed in Figure 5.7 for the cases of

strong stratification.
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Figure 5.7: Ratio of turbulent potential energy, EPE , to turbulent kinetic energy, k, versus
NTL.

For weak stratification, the relationship, LT ∼ Lkε, gives k ∼ (εLT )2/3. This is in agree-

ment with the theory of Luketina and Imberger (1989) and later shown to hold for energetic

stages of grid turbulence in various laboratory settings by Ivey and Imberger (1991). In this

regime, the ratio of potential to kinetic energy becomes EPE/k = N2ε−2/3(LE/L
1/3
kε )2/2, or

EPE/k ∼ N2ε−2/3L
4/3
T /2. Clearly then, energy partitioning is not given by a simple constant

when NTL < 1.

The most obvious implication of LT ∼ LkN for NTL > 1 from a practical standpoint is

the resulting ability to infer turbulent kinetic energy from observed overturns in a density

profile. This would preclude the need for high resolution measurements of three-dimensional

velocity fluctuations and, instead, require only the use of a CTD profiler. It is important

to note that this fundamentally differs from the common practice of inferring dissipation

from density profiles using the assumption of LT ∼ LO — dissipation must still be measured

from microstructure profiling if N and TL are not equal. If microstructure measurements

are available and are collected simultaneously with density measurements, then estimates of

both k and ε can be obtained. In turn, the dimensionless parameters, NTL and ReL, can be

calculated. Access to NTL and ReL provides a more insightful description of the flow than
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that provided by the commonly used “activity parameter”, Reb, under the reasoning stated

in Section 5.2.2.

So far, we have considered shear-free flow. Inclusion of shear would necessitate an addi-

tional dimensionless parameter to fully characterize the flow. Through dimensional analysis

this parameter can be shown to be STL = Sk/ε or, alternatively, Ri. Now, the analysis

is no longer cleanly restricted to two regimes based on NTL, but rather a two-dimensional

parameter space involving some paired combination of NTL, STL, and Ri as axes. This

could be, for example, an Ri−NTL parameter space. With this approach, the two previous

NTL regimes can each be subdivided into two Ri-based regimes (assuming a critical value of

Ri exists for describing flow behavior and Reynolds number independence). While we find

LT ∼ LkN for NTL > 1 when shear is absent, the behavior likely changes for low values

of Ri — even if NTL remains high. Indeed, Venayagamoorthy and Stretch (2010) used the

shear-flow DNS of Shih et al. (2005) to show that the overturning scale, as represented by

LE, correlates linearly with LkS, rather than LkN , when NTL > 1 and Ri < 0.25.

The applicability of our DNS results to turbulence in the open ocean is yet to be deter-

mined. To do so would require simultaneous measurements of density and the fundamental

quantities from which the length scales of interested can be calculated. These, of course,

being k, ε, N , and S. Since non-stationarity and inhomogeneity exist in ocean turbulence,

it would be ideal for all these quantities to be measured from a common sampler on a single

cast. Herein lies a practical challenge to the technical oceanographic community. If overcom-

ing this challenge were to indeed validate our findings, it would then be up to the investigator

in the field to determine in which regime the flow of interest belongs. This, of course, would

necessitate the calculation of perhaps NTL and Ri. While Ri is a mean flow parameter that

is relatively easy to obtain, NTL includes k — the very quantity for which an inferred value

is being sought. Because of the difficulty in directly measuring k and ε, common values

of NTL — or more specifically the decay time, TL — are not readily available for ocean

turbulence. It is important to note, however, that the common practice of linearly relating
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Thorpe and Ozmidov scales implicitly assumes NTL ≈ 1. As the strength of stratification

relative to TL and S increases in the ocean, the error of assuming LT ∼ LO increases, while

that of LT ∼ LkN remains valid (given common values in Reynolds number).

5.5.3 Comparisons with Previous Studies

The study of Itsweire et al. (1986) represents a laboratory-based analogue to the current

work and, thus, warrants mention. In their experiments, turbulence was generated free of

shear using a bilateral mesh and allowed to decay in the presence of stable stratification. As

in the current simulations, the density gradient was initially uniform. Their data suggest that

the buoyancy parameter, NTL, is less than unity near the grid where turbulence is intense

relative to buoyancy. The parameter then grows monotonically with distance from the grid

(i.e., turbulence age) to values greater than unity as turbulence decays while buoyancy effects

persist due to incomplete mixing of the ambient density gradient. The growth of NTL is

also observed in the current simulations where N remains fixed. Length scale comparisons

from their data are shown in Figure 5.8, where LE is taken to be an approximation of LT . In

agreement with the current findings, LE ∼ Lkε when NTL . 1 (young turbulence proximal

to grid), and that LE ∼ LkN when NTL & 1 (old turbulence distal to grid). The best

agreement between LO and LE occurs just as the flow is transitioning between these two

stages (i.e., NTL ≈ 1).

We now briefly compare our results with the shear-layer DNS of Smyth and Moum (2000)

and Smyth et al. (2001). In their simulations, gradients in mean velocity and density are

isolated to a finite layer within the flow that becomes turbulent via Kelvin-Helmholtz (K-

H) instabilities that are thought to be frequent in the deep ocean. Following breakup of

the pre-turbulent K-H billow, both scales are shown to decrease, with LT decreasing most

rapidly so that the ratio, LO/LT , increases nearly monotonically with time. This leads

the authors to suggest that the ratio can be used as an “observational clock” of event age.

Smyth et al. (2001) also find that LT is in fair agreement with the length scale, Lb = wrms/N
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(≈
√

2
3
LkN), early and is in excellent agreement with Lkε late. Early correlation between LT

and Lb is also shown by Smyth and Moum (2000) (larger values of their Figure 10b). These

findings are suggestive that NTL decreases with the age of K-H turbulence and, thereby,

evolves in the opposite sense of the uniform-gradient case. Apparently, any increase in TL

as K-H turbulence decays is mitigated by reduced N as mixing takes place. Thus, the flow

approaches the weakly stratified regime. In the current work and the experiments of Itsweire

et al. (1986), N is constant or decreases minimally so that stratification becomes dominant

as inertial motions decay. The growth of TL for K-H turbulence may also be suppressed by

some lingering production due to shear.

Smyth et al. (2001) also highlight the effects of variation in Prandtl number. Their

data suggest that length scale ratios become dependent on Pr late in the simulation if

isotropy is assumed (e.g., if, say, Lkε is approximated by w3
rms/ε). Interestingly, however, the

dependence on Pr vanishes when the assumption of isotropy is lifted, and data from runs

of high Pr collapse upon those for which Pr = 1. Runs of high Pr appear most affected by

the assumption of isotropy, while the run with Pr = 1 is relatively insensitive. This is could

be a Reynolds number effect; due to practical limitations on grid resolution, the high Pr
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runs are limited to low Re. At low Re the vertical turbulent motions are more susceptible

to dampening by buoyancy even if buoyancy effects are small (i.e., NTL ≈ 1 ). Hence, the

isotropic assumption is less valid for runs of high Pr simply because Re is low.

In oceanic applications, Prandtl number is indeed greater than unity, however, the

Reynolds number of these flows is also large so that turbulent advection dominates molecular

diffusion of density and Prandtl number effects can often be neglected. The current work

sacrifices high Pr for high Re with the hopes that the simulations are more representative

of oceanic turbulence. This, of course, remains difficult to prove conclusively due to the

practical limitations of DNS.

Finally, the data set of Moum (1996) can be used to compare the current work to ac-

tual observations of deep-ocean turbulence. These observations indicate good agreement

between LT , LO, and Lb over the range of turbulent patches chosen (i.e., LT ≈ 1.1LO and

LT ≈ 1.0Lb). The observed oceanic relation LT ∼ Lb is consistent with the present results.

Moum’s measurements of the ratio LO/LT vary by about half an order of magnitude, possi-

bly consistent with our finding that this ratio varies with NTL. Comparison with our Figure

5.4b suggests that NTL varies between about 1/2 and 10 in the deep-ocean turbulent events

observed in that study.

5.6 Conclusions

The utility of the Thorpe length scale, LT , in describing the physics of stratified turbu-

lence is dramatically increased when it can be related to a length scale constructed from

fundamental quantities of the flow. In light of the findings here, Thorpe scales of decaying,

shear-free stratified turbulence exhibit behavior belonging to one of two regimes defined by

ranges in the stratification strength parameter, NTL. This is applicable for the range of

ReL investigated. Our results show that LT correlates closely with the fundamental length

scales, LkN and Lkε, in the cases of strong stratification (NTL > 1) and weak stratification
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(NTL < 1), respectively. In neither regime does LT have a linear relationship with the

Ozmidov scale, LO; only for the special case of NTL ≈ 1 does LO describe LT .

The most obvious implication of the current study is that the utility of the Thorpe scale

lies in its ability to indicate the turbulent kinetic energy, rather than the rate of its dissipation

when stratification is relevant. This is of practical pertinence from the standpoint that k can

be inferred using density profile measurements alone, whereas, accurate estimates of ε must

be obtained from more direct methods such as microstructure profiling. It should be noted

that direct measurement of k is not trivial due to contamination by wave motions and hence

the ability to infer k from density profile measurements will be a major breakthrough. When

complemented by direct measurements of ε, inferred values of k allow for the calculation of

ReL and NTL — dimensionless parameters upon which aspects of the flow (e.g., mixing

efficiency) can be parameterized. Such parameterizations may be more insightful than those

based on the activity parameter, Reb, which ambiguously combines the influences of ReL

and NTL and is independent of k.

Despite our findings, there exists a long history of studies that find acceptable agreement

between LT and LO. This is perhaps attributed to measured flows having values of NTL

close to unity. If this is indeed the case, the current findings support the common practice of

inferring ε. More importantly, the current findings suggest that k can also be inferred since

LO ∼ LkN ∼ LT when NTL ≈ 1. To verify this assertion and the general findings of this

study, independent measurements of k, ε, and density profiles are required for high Reynolds

number flows. Being able to make these measurements simultaneously and from the same

sampler is ideal, yet not widely carried out due to technical challenges.

Finally, the results presented here are for shear-free flows. Inclusion of mean shear would

necessitate consideration for an additional dimensionless parameter (STL or Ri) to fully char-

acterize the flow. Predicting the behavior of overturning in stratified shear-flow, therefore,

requires consideration for regimes additional to those defined by NTL. Despite this added

complication, we predict that the outer scales of the flow will remain more linearly correlated
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with length scales constructed from k than those involving ε, so long as the outer scales are

sufficiently anisotropic. This issue is investigated in the next chapter which broadens the

discussion of overturn to include turbulent regimes where mean shear is relevant.
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Chapter 6

A Unifying Framework7

6.1 Introduction

Turbulent phenomena, such as mixing in the ocean or atmospheric boundary layer, com-

monly manifest in response to the competing influences of background shear and stratifica-

tion. Shear in the mean flow acts to promote turbulence while stratification has a dampening

effect if stable (i.e., non-convective). In this regard, the parameter of choice for describing

such flows is typically the gradient Richardson number, Ri = N2/S2, in which the role of

shearing is represented in the mean shear rate, S = ∂U/∂z for a uni-directional shear flow,

and that of stratification is represented in the buoyancy frequency, N =
√

(−g/ρ0)(∂ρ̄/∂z).

Implicit in Ri-based parameterizations, however, is knowledge of how the turbulence is re-

sponding to these background influences. A more comprehensive description would thus

entail explicit reference to the inertial timescale of the turbulence, l/u, where u is some

measure of the turbulent velocity fluctuations and l is a characteristic length scale who’s

precise definition varies among researchers. Direct comparisons of this internal time scale to

those imposed externally by the mean flow are then embodied in a turbulent Froude number,

u/Nl, and an (inversely) analogous shear parameter, Sl/u.

The turbulent Froude number has been widely used in studies of stratified turbulence

(e.g., Luketina and Imberger, 1989; Ivey and Imberger, 1991; Brethouwer et al., 2007), while

the shear parameter has typically been reserved for studies of unstratified shear flows (e.g.,

Rogallo, 1981; Lee et al., 1990; Saddoughi and Veeravalli, 1994). Examples of studies evoking

7The research presented in this chapter has been published in Physics of Fluids under the title, “A
unifying framework for parameterizing stably stratified shear-flow turbulence” (Mater and Venayagamoorthy,
2014b). Background information and literature relevant to this chapter are presented again so the chapter
may be read as a stand-alone work. The chapter is written in a collective “we” voice to acknowledge
collaboration with Dr. S. K. Venayagamoorthy.
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the latter in discussions of stratified shear-flow include the direct numerical simulations of

Holt et al. (1992), Jacobitz et al. (1997), Shih et al. (2000), and Chung and Matheou (2012)

and the experiments of Piccirillo and Van Atta (1997) in which the stationary value of

the gradient Richardson number, Ris, was found to increase with Sl/u and the Reynolds

number. In these studies the inertial velocity and length scales were chosen to be u ∼ k1/2

and l ∼ k3/2/ε, respectively, with k being the turbulent kinetic energy and ε being the

dissipation rate of k.

Recently, the individual effects of shear and stratification were investigated in the context

of mixing efficiency by Shimizu (2012). In this reanalysis of laboratory and numerical data

sets of homogeneous flows, mixing efficiency was found to vary with both u/Nl and Sl/u

where, like other researchers, he chose u ∼ k1/2 and l ∼ k3/2/ε to be used in the definition

of both parameters.

In the current work, we seek to broaden the independent consideration for shear and

stratification into a unifying framework that allows for a general description of stratified

shear-flow turbulence. This will be done with an eye toward oceanic applications in which a

behavior of primary importance is diapycnal mixing at high Reynolds number. Since mixing

is fundamentally connected to overturning motions and overturns can be readily observed

in the field, an investigation of the length scales of these motions will serve as the basis for

construction of the conceptual framework.

This approach is practically motivated by the need for accurate inferences of fundamental

turbulence quantities, namely k and ε, from more easily observed large-scale overturning,

the size of which is typically taken to be the Thorpe length scale, LT , in ocean applications

(Thorpe, 1977). This is made possible if LT is properly scaled with the length scales con-

structed through dimensional analysis. As the influences of shear and stratification change,

so too must the scaling arguments for LT . Herein lies the practical need for a unifying

framework that considers all possible flow regimes.
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This work is a direct extension to the shear-free direct numerical simulation (DNS) work

of Mater et al. (2013) who show that LT ∼ Lkε ≡ k3/2/ε in a weakly stratified regime

(high Froude number) and LT ∼ LkN ≡ k1/2/N in a strongly stratified regime (low Froude

number), where Lkε and LkN are constructs of dimensional analysis. They go on to show

that LT approximates the Ozimidov scale, LO ≡ (ε/N3)1/2, only at the transition between

regimes when the Froude number is near unity. The practical implications being that LT

can be used to infer turbulent kinetic energy, k — a notoriously difficult quantity to measure

in field studies — and that the common practice of inferring ε from LT ∼ LO made popular

by the work of Dillon (1982) is conditioned upon Fr ≈ 1. Because their study involved

shear-free turbulence, however, only regimes in the Froude number space were investigated.

With consideration for shear, we now bring the discussion closer to the realm of realistic

flows in which turbulence can be decaying or growing and are forced to consider additional

regimes using the shear parameter and/or Ri. We now too must consider other fundamental

scales involving S, namely LkS ≡ k1/2/S and the Corrsin scale, LC ≡ (ε/S3)1/2.

As with Mater et al. (2013), the inertial length scale of the turbulence will be defined as

l ∼ Lkε ≡ k3/2/ε making the inertial time scale TL ≡ k/ε. The parameters of interest then

become

NTL ≡ Nk/ε,

STL ≡ Sk/ε,

ReL ≡ k2/(εν),

P r ≡ ν/κρ, (6.1)

where NTL is an inverse turbulent Froude number, STL is the shear parameter, ReL is

the turbulent Reynolds number, and Pr is the molecular Prandtl number with κρ as the

molecular diffusivity of density. For minimal influence of Pr, a three-dimensional parameter

space can be conceptualized with each axis representing the strength of stratification, mean
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Figure 6.1: Conceptual three-dimensional parameter space for interpreting stratified shear-
flow turbulence assuming minimal influence from molecular diffusion.

shear, or viscosity relative to the inertia of the turbulence (figure 6.1). For high Reynolds

number flows such as those in most geophysical settings of interest, the space simplifies to an

NTL−STL plane. It is with this conceptual framework that the current study seeks to explore

stratified shear-flow turbulence with special emphasis on the length scales of overturning and

diapycnal mixing. Because field data sets involving all of the fundamental quantities needed

to define the parameters in (6.1) are rare, we turn to existing laboratory and numerical data

sets for our analysis.

The layout of this chapter is as follows. Section 6.2 revisits the dimensional analysis of

stratified shear-flow turbulence. Here, the relevant non-dimensional parameters and funda-

mental length and time scales will be discussed. In section 6.3, we present the data sets

considered and use their plotting positions to begin a discussion of the NTL − STL space

and the physical relevance of the regimes within. The dimensionally-constructed scales are

compared with the overturning scale to investigate regime-wise scalings in section 6.4. The

implications of these results for parameterizations of diapycnal mixing are discussed in sec-

tion 6.5. In this section, the relevance of our findings to ocean applications where only Ri is

available will be discussed. A brief conclusion is presented in section 6.6.
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6.2 Dimensional Analysis

6.2.1 A Conceptual Framework

First let us consider the reasoning behind the selection of the parameter set of (6.1). In

the absence of mean shear or stratification, turbulence decays and is theoretically isotropic

at all scales. The two important mechanisms working in this condition are the inertial

transfer of energy from large to small scales and the viscous dissipation of kinetic energy

at the smallest scales. Thus, the three quantities setting the state of the turbulence are

the total turbulent kinetic energy per mass, k ≡ 1
2
〈uiui〉, the down-spectrum transfer rate,

ε ≡ 2ν〈sijsij〉, and the viscosity of the fluid, ν. In the definitions above, ui is the three-

dimensional turbulent velocity and sij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the fluctuating strain rate tensor.

Evoking these three particular quantities assumes the Kolmogorovian reasoning that energy

cascades from large to small scales through an isotropic inertial subrange at the same rate

as its conversion to internal energy, hence the dual role of ε as a both a loss and transfer

rate (see Durbin and Reif, 2001). The time scale of the large, purely inertial eddies is then

given by TL and that of the smallest dissipative eddies by Tη ≡ (ν/ε)1/2. The ratio of these

two time scales is then the only dimensionless grouping needed to describe this kind of flow

and is the turbulent Reynolds number, ReL = (TL/Tη)
2.

More generally, turbulence is anisotropic at the largest scales due to background shear

and stratification. Therefore, a more comprehensive description of the turbulence depends on

the additional “external” time scales, S−1 and N−1. Comparison of these time scales to that

of the largest inertial eddies gives rise to the shear and buoyancy parameters, STL = TL/S
−1

and NTL = TL/N
−1.
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One may also arrive at ReL, NTL, and STL upon non-dimensionalizing the evolution

equation for k (shown here assuming homogeneous turbulence and one-dimensional shear),

∂k

∂t
= −〈uw〉S − 〈ρ′w〉 g

ρ0

− 2ν〈sijsij〉, (6.2)

with the scaling arguments t ∼ TL, u ∼ w ∼ k1/2, sij ∼ k1/2/η, and ρ′ ∼ (∂ρ/∂z)LE, where

η ≡ (ν3/ε)1/4 is the Kolmogorov length scale and LE is the outer scale of the scalar field to

be discussed later. The scaled equation becomes

∂k+

∂t+
= −〈u+w+〉STL − 〈ρ′+w+〉LE

Lkε
(NTL)2 − 2〈s+

ijs
+
ij〉Re1/2

L , (6.3)

where the non-dimensional variables are indicated with + superscripts. Also appearing is

the ratio of the scalar length scale, LE, and the momentum length scale, Lkε. If LE scales

with any of the fundamental scales, Lkε, LkN , or LkS to be discussed in subsection 6.2.2, this

ratio can be cast in terms of NTL and/or STL.

For completeness the Prandtl number has also been included in (6.1), however, the influ-

ence of that parameter will not be of particular focus in the current work as we are motivated

by geophysical flows at high Reynolds number (i.e., high Peclet number) for which turbu-

lent advection of density occurs on a much shorter time scale than its molecular diffusion.

Molecular effects in the laboratory and numerical flows analyzed here are no doubt present

but will be of secondary concern in our study of overturning at large-scales where turbulent

advection is strong.

Simple dimensional analysis dictates that with the six kinematic quantities considered

here, i.e., k, ε, ν, κρ, S, and N , four dimensionless groupings are needed for a comprehensive

yet non-redundant description of the flow. The set of (6.1) is only one possible descrip-

tion, but chosen here because of explicit reference to TL. Other popular parameters can be
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formulated in terms of those considered here. They include the gradient Richardson number,

Ri ≡ N2/S2 = (NTL/STL)2, (6.4)

the buoyancy Reynolds number,

Reb ≡ ε/(νN2) = (TN/Tη)
2 = (NTL)−2ReL, (6.5)

the shear Reynolds number

Res ≡ ε/(νS2) = (TS/Tη)
2 = (STL)−2ReL, (6.6)

and the Peclet number

PeL ≡ k2/(εκρ) = PrReL. (6.7)

Although Ri lacks an explicit reference to TL and is not dimensionally required given (6.1), we

will retain this popular parameter as an important delineator between regimes of buoyancy

dominance and shear dominance when both influences are very strong (i.e., when TN �

TL and TS � TL). Reb is another popular parameter in oceanic field studies where well

established techniques for measurement of N and ε exist. This parameter, however, is also

non-unique in that it is effectively a comparison of inertial effects to the lumped effects of

buoyancy and viscosity. While this characteristic may be useful in predicting the arrest

or fossilization of turbulence (Gibson, 1980), high values of Reb may be misleading. That

is, Reb can be high due to weak stratification (i.e., NTL � 1) or strong turbulence (i.e.,

ReL � 1). Because of this ambiguity, we choose not to include this parameter as one of

primary significance. This same reasoning is extended to Res. Finally, PeL, could have been

included in (6.1), but is less popular than Pr, hence our selection of the latter in (6.1).

Upon neglecting molecular effects in the limit of high ReL, our description of the flow

reduces to the NTL − STL space represented in Figure 6.2 through which lines of constant
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Ri can be constructed. Within this conceptual framework, we have assumed critical values

in NTL, STL, and Ri so that the two-dimensional space is delineated into the well-cited

regimes of shear and buoyancy dominance, but also a regime in which these background

influences are absent or minimal that we entitle the “unforced” regime. In this regime the

flow trends toward isotropy in that any sustained “forcing” by shear or stratification is not

felt. In such a state, Ri becomes an irrelevant concept. A common example of this kind

of flow is unstratified turbulence generated by a grid. Critical values in the parameters are

initial estimates informed by classical studies on flow stability and stationarity. The choice

of Ric ≈ 0.25 follows from classic shear layer stability analysis (Miles, 1961) and has been

shown to be a criterion for stationarity in homogeneous shear flows (e.g., Rohr et al., 1988).

Choice of a critical value in the shear parameter follows from findings that STL,c ≈ 3.3 in the

log layer of unstratified channel flow where production and dissipation are in approximate

balance (see Pope, 2000) and at mid-depth in stationary wind tunnel turbulence (Saddoughi

and Veeravalli, 1994). Recently, Chung and Matheou (2012) published data suggesting this

value is approached in the unstratified limit of stationary homogeneous turbulence. The

typical values chosen for Ric and STL,c imply NTL,c = O(100) which is in agreement with

the findings of Mater et al. (2013) regarding the behavior of the Thorpe scale in the stratified,

shear-free limit.

6.2.2 Relevant Length Scales

Dimensionally, nine length scales of the momentum field can be constructed from k, ε,

ν, N , and S. Since an objective of the current work is to parameterize large scale motions,

we will place special attention on the five of those scales that are independent of ν. These

“large” scales, mentioned previously, are the turbulent length scale, Lkε ≡ k3/2/ε (Pope,

2000), the Ozmidov length scale, LO ≡ (ε/N3)1/2 (Dougherty, 1961; Ozmidov, 1965), the

Corrsin length scale, LC ≡ (ε/S3)1/2 (Corrsin, 1958), and two scales linking turbulent kinetic

energy to buoyancy frequency and mean shear, LkN ≡ (k/N2)1/2 and LkS ≡ (k/S2)1/2.
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Figure 6.2: Parameter space for interpretation of high-Reynolds number stratified shear-
flow turbulence. Growing turbulence (Dk/Dt > 0) shown in green, stationary turbulence
(Dk/Dt ≈ 0) shown in black, and decaying turbulence (Dk/Dt < 0) shown in red. Select data
points have been offset from NTL = 0 or STL = 0 for clarity. Lines delineating regimes are
first order approximations.
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Physically, the turbulent length scale, Lkε, can be thought to represent the largest eddies

present in a flow when the effects of shear or buoyancy are negligible (i.e., isotropic turbu-

lence). Under this assumption, the presence of ε indicates that the down-spectrum transfer

rate of turbulent kinetic energy is constant at even the largest scales of isotropic turbulence.

In other words, the inertial subrange begins at Lkε and ends at the Kolmogorov length scale,

η.

When mean shear or stratification are not negligible, the down-spectrum transfer rate

of k at large scales should no longer be a constant equal to ε since k can be added via

shear or subtracted via buoyancy along the way. In other words, the timescale needed

for inertial transfer to and from an eddy of wave number κl (i.e., “eddy-wise” transfer),

given by ε−1/3κ
−2/3
l , is longer than the imposed timescales of either k addition, S−1, or

removal, N−1. For increasing wave number (decreasing eddy size) the rate of eddy-wise

inertial transfer increases if the turbulence is in approximate equilibrium so that the process

becomes dominant at scales smaller than LC or LO and the “gross” transfer rate becomes ε.

In this sense, the upper (i.e., large scale) end of the inertial subrange is theoretically LC or

LO for small or large values of Ri, respectively.

Given this reasoning, the largest scales in forced flow should be independent of ε. On

dimensional grounds, the remaining possible predictors are then those that depend on kinetic

energy: LkN and LkS. Eddies of this size have the velocity scale, k1/2, and a time scale set

by the dominant forcing mechanism, N−1 or S−1. Because no assumptions about transfer

rate are made, LkN and LkS more generally describe large scale motions in their respective

regimes of buoyancy- and shear-dominated flows than their counterparts LO and LC .

All of the fundamental scales can be related by the three dimensionless parameters high-

lighted above. This is demonstrated in the schematic energy spectrum of Figure 6.3, where

the labeled “spectral gaps” are ratios between a given length scale and its next smallest

neighbor. The specific order shown in Figure 6.3 is but one possibility, as all parameters are

assumed greater than unity. For example, LO is shown to be setting the upper end of the
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Figure 6.3: Schematic of energy cascade with length scale spectrum. Ratios of subsequent
scales are shown in terms of dimensionless parameters. The specific scale order shown is but
one possibility since all parameters are assumed greater than unity.

inertial subrange, but a switch to shear dominance (i.e., Ri � 1) would have LC assuming

this role. Another scenario would be isotropic turbulence where NTL and STL → 0. In this

limit, anisotropic scales would be infinitely large relative to the actual scales of turbulent

motion, thus, Lkε would be left as the only reasonable measure of both the largest physical

scales and the upper end of the inertial subrange. Note that in the scenario of Figure 6.3,

Lkε is the largest of all scales, but likely has no physical analogue in the flow because it

does not consider anisotropic effects. For this reason, Lkε can be thought of as the “isotropic

potential” large scale in forced flow. Whatever the scenario, we see that the large scales are

interrelated through NTL and STL, while ReL describes the separation of large and small

scales. If we reason that the largest overturns in the flow should fall somewhere in the range

of large fundamental scales, then we can neglect scales involving ν as well as ReL in the

current analysis. Of course, it may not be acceptable to neglect ReL when attempting to

parameterize behavior other than inviscid overturning (e.g., mixing efficiency) unless the

flow is sufficiently turbulent.
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6.2.3 A Note on Anisotropy

Thus far, we have taken a simplified approach to dimensional analysis that does not

distinguish between vertical and horizontal length scales. This distinction has been made

by other researchers of strongly stratified turbulence. Lindborg (2006), for example, uses

artificially-forced (i.e., shear-free) DNS to investigate the ratio of an observed characteristic

vertical length scale, lv, to the imposed horizontal scale of forcing, lh. He found the hori-

zontal energy spectrum to be of the form ε2/3κ
−5/3
h , where κh is the horizontal wave number,

even at horizontal scales larger than LO when stratification is strong. It was thus implied

that lh ∼ u3
h/ε, where uh is the horizontal velocity scale and a measure of the horizontal

turbulent kinetic energy. Furthermore, Lindborg finds lv/lh ∼ Frh ≡ ε1/3/(Nl
2/3
h ), where

Frh is a horizontal Froude number, which in turn implies lv ∼ uh/N in accordance with the

scaling arguments of Billant and Chomaz (2001). The first finding implies that Lkε indeed

has a physical analogue in the horizontal motions. Since we are currently concerned with

overturning, however, we retain the concept that Lkε has no physical analogue in the vertical

direction unless the flow is isotropic.

The second finding is more relevant to the current work in that it implies overturns should

scale with LkN , which was indeed shown by Mater et al. (2013) when NTL & 1. Appealing

to the more Lagrangian perspective that the vertical length scale should be a function of

the vertical turbulent kinetic energy, other researchers define the proper scaling to be w/N ,

where w is the vertical turbulent velocity. Moum (1996), for example, finds that such a scale

also correlates closely with overturning in the ocean. Interestingly, the choice of velocity

scale (i.e., uh, k
1/2, or w) appears to be of secondary importance. We therefore have selected

k1/2 out of generality as well as its applicability to descriptions of unstratified flow.
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6.2.4 Observed Length Scales

To test the NTL−STL framework and our physical interpretations of fundamental length

scales, these scales will be compared to outer motions of the flow as observed in the scalar

field. A commonly accepted measure of overturning is the length scale proposed by Ellison

(1957),

LE =
〈ρ′2〉1/2
∂ρ̄/∂z

, (6.8)

where ρ′ is the turbulent density fluctuation about some mean background density, ρ̄, and 〈〉

represents spatial or temporal averaging. LE may be thought of as a statistical measure of

the vertical distance traveled by fluid parcels before returning toward an equilibrium position

or irreversibly mixing with surrounding fluid. In a statistical sense, LE is proportional to

the largest eddies of the flow (e.g., Stillinger et al., 1983).

A closely related scale used in oceans and lakes is the Thorpe length scale, LT (Thorpe,

1977). A relatively simple and objective measure of large overturns, LT is determined from

observed instantaneous vertical density profiles. Agreement between LE and LT has been

confirmed in both experiments (Itsweire, 1984) and numeric simulations (Itsweire et al.,

1993) for all but the most strongly stratified flows, where internal wave motions influence

LE but not LT . Because LT is not reported in many of the data sets reported here, we

compare fundamental scales to LE, with the anticipation that results may be applicable to

oceanic studies where LT is more popular.

6.3 Data Sources

Our objective is to explore the NTL − STL space to the greatest extent possible using

available numerical and laboratory data. Accordingly, consideration is given to data sets that

include both mean shear and stratification, but also those in which one or both influences

are absent. In the flows considered, stratification and mean velocity are of uniform gradient

with the exception of the channel flow data of Garcia-Villalba and del Alamo (2011) (GVA)
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where the presence of a wall results in inhomogeneous shear. In unstratified cases, overturns

are observed in a passive scalar field. Basic information on all of the chosen data sets is

provided in Table 6.1. Only records with Reb > 1 will be considered if stratification is

present. Admittedly, this rather low threshold and the relatively low Reynolds numbers do

not ensure a lack of viscous effects, making our exclusion of ReL in the subsequent analysis

an undoubted oversimplification. However, because highly turbulent geophysical data sets

rarely, if ever, include k, we are limited to the data of less turbulent numerical and laboratory

flows. With this limitation, we proceed under the assumption that overturning at the outer

scales is only minimally influenced by viscosity and that the parameters most descriptive of

this behavior are NTL and STL.

In Figure 6.2 we see the data sets plotted within the NTL − STL space. Given these

plotting positions and knowledge of experimental setups, we can begin to interpret the

physical relevance of the three regimes. Perhaps most evident is the relevance of the regimes

as they relate to growth and decay of turbulence. For turbulence to be stationary there

must be some balance between the time scale driving production, S−1, and those driving

its loss rate - either through transfer to smaller scales, TL, conversion to potential energy,

N−1, or both. In the unstratified limit, STL is the ratio of relevance, and as expected,

stationary data falls at the transition between “unforced” and “shear-dominated” regimes

where TL ≈ 3.3S−1. This is clearly demonstrated by the mid-depth wind tunnel data of

Saddoughi and Veeravalli (1994) and the homogeneous DNS of Chung and Matheou (2012).

For higher values of STL, shear forcing occurs on a shorter time scale than that of inertial

energy transfer to smaller scales so that energy essentially accumulates at the largest scales

and turbulence grows. This is demonstrated in the DNS data of Rogers et al. (1989) and

the wind tunnel data of Tavoularis and Corrsin (1981) where STL > STL,c. For lower values

of STL of the unforced regime, production cannot maintain pace with inertial transfer and

turbulence freely decays as is demonstrated in the data of Sirivat and Warhaft (1983) and

Mydlarski (2003) with STL = 0.
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For the unstratified stationary channel flow simulation of GVA, data from the log-region

clusters near STL,c due to the approximate balance between production and dissipation

and negligible net transport of k there. Above and below the log-region, however, the

inhomogeneous nature of the flow results in significant net transport of turbulent kinetic

energy k so that STL 6= STL,c yet local stationarity is maintained. Near the wall, strong

shear results in production exceeding dissipation so the flow is locally shear-dominated (i.e.,

TL � S−1), however, “excess” k is transported away from the wall so that local stationarity

is maintained. Far from the wall, dissipation outpaces shear-driven production so the flow

locally trends toward an “unforced” state (i.e., TL � S−1), however, local stationary is

maintained due the supply of k originating from the near wall region.

Now consider stratified shear flow where the evolution of turbulence is a function of STL

but also NTL as in (6.3). When the flow is approximately homogeneous, the particular

balance between S−1 and TL needed for stationarity is regulated by the time scale at which

k is lost to potential energy, N−1, in such a way that Ri becomes an approximate constant.

We denote this constant value as Ris and note the subtle distinction between Ris, which

denotes stationarity, and Ric, which denotes the canonical critical value we have used to

delineate between shear- and buoyancy-dominated regimes. So long as Ri = Ris, stationarity

can exist for STL > STL,c because any additional production of kinetic energy is negated

by a conversion to potential energy. As pointed out by others (e.g., Holt et al., 1992;

Piccirillo and Van Atta, 1997; Jacobitz et al., 1997; Shih et al., 2000), however, Ris is only

an approximate constant and is likely an increasing function of ReL and STL for low ReL.

With this reasoning and a given value of ReL, stationarity should occur along a curve within

the shear-dominated region of the NTL − STL space that approaches the horizontal line,

STL = STL,c, in the unstratified limit (small NTL) and the inclined line, Ri = Ric, in the

strongly stratified limit (large NTL). As ReL increases, the curve likely converges upon these

asymptotes more rapidly until it becomes effectively coincidental with STL,c and Ric. The

notion of a “stationary curve” is supported by the data of Chung and Matheou (2012) and
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the log-region data of GVA (densely spaced points). Furthermore, the remaining data sets

indicate that the transition between growth and decay occurs along a similar curve that is

in apparent agreement with the curve set by the log-region channel data.

In general, turbulence can occupy more than one regime during the course of its evolution.

For the non-stationary stratified cases considered here, turbulence moves from the unforced

regime into one of the other two. For example, consider the stratified shear-flow experiments

of Rohr and Van Atta (1987) and Keller and Van Atta (2000) (KV) in which turbulence was

initialized by a grid while mean shear and stratification (i.e., Ri) remained approximately

constant with distance downstream. The sudden pulse of grid-generated turbulence results

in rapid inertial motions (i.e., TL � N−1 and TL � S−1) immediately downstream of the

grid so that the influence of ambient stratification and shear are minimal and, thus, Ri is

effectively an irrelevant concept. Indeed, turbulence initially decayed for all runs irrespective

of Ri. In Figure 6.2 we see that only as the flow transitions out of the unforced regime does

Ri become relevant to the long term growth or decay of k. This occurs at sufficient distance

downstream of the grid where TL becomes comparable to N−1 and/or S−1. The trend is

reflected in the DNS of Shih et al. (2005) (SKIF) where the initial conditions are analogous

to an initial grid disturbance.

It is also reasonable that flows with different initial conditions could have different trajec-

tories through the space. Although unavailable to the current study, turbulence generated

by Kelvin-Helmholtz (K-H) instabilities (e.g., Smyth et al., 2001) may very well evolve in

the opposite sense to homogeneous grid turbulence. That is, such a flow may begin near

the interface between shear- and buoyancy-dominated regimes and then move toward the

unforced regime as N and S decrease due to thickening of the shear layer. Indeed, Smyth

et al. (2001) use DNS to show that the overturning in late-stage K-H turbulence scales with

Lkε. As will be shown here, this is a key characteristic of turbulence in the unforced regime.
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6.4 Observed vs. Fundamental Length Scales

Each fundamental length scale is compared to the overturn scale, LE, in Figures 6.4-6.6

for the noted data sets of Table 6.1. Data points have been color-coded in accordance with

their plotting positions of Figure 6.2.

First, consider the shear scales LkS and LC . Linear correlations of the form LkS = βkSLE

and LC = βCLE are apparent in Figures 6.4 (a)-(d) and (e)-(h), respectively, when flow is

in the shear-dominated region (salmon colored points). Generally, the linear nature of the

relationship with LE is stronger and the constant of proportionality closer to unity with

LkS than with LC . Noting that LkS/LC = βkS/βC = (STL)1/2 and LkS ≈ LE leads to

βC ≈ (STL)−1/2. Thus, variation in STL within and among the data sets is seen to be the

reason for LC ∼ LE being slightly weaker than LkS ∼ LE. However, the variation in STL is

slight and indicates that there is a relatively consistent range of scales, LC < l < LkS ≈ LE,

that occurs above the inertial subrange in shear-dominated flow.

Next, consider the buoyancy scales LkN and LO shown in Figure 6.5. For points in the

buoyancy-dominated region (purple), the DNS data of SKIF and Mater et al. (2013) most

clearly indicate that LE is linearly related to LkN with a constant of proportionality that is

approximately one (Figures 6.5 (a) and (c)), i.e., LkN = βkNLE with βkN ≈ 1. The same

data indicate a non-linear relationship with LO (Figures 6.5 (e) and (g)). As discussed in

Mater et al. (2013), agreement between LO and LE is limited to the transition between the

buoyancy-dominated and isotropic regimes (blue-purple) in their data. The same trend is

observable in the data of SKIF. In the buoyancy-dominated regime, LO becomes less than

LE as the inertial subrange becomes truncated to scales smaller than those of the overturning

motions. In the other regions, both LkN and LO become large as N decreases. In the right

panels of Figure 6.5 we see the trend replicated, albeit with more scatter, by the laboratory

data. Note that βkN appears to vary between data sets.
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Finally, consider the fundamental isotropic scale, Lkε, shown in Figure 6.6. For nearly

all data points in all regimes, we find Lkε to be larger than the overturning length scale, LE,

thus supporting the notion that Lkε is an isotropic potential that is not physically realized

in the vertical motions when anisotropy is present. Only for points in the unforced regime

(blue), is there a trend toward agreement. Taken as a whole these points represent a weak

linear correlation of the form Lkε = βkεLE. Interestingly, the same could be said for points

from the shear-dominated regime (salmon colored) in Figure 6.6 with a relation of the form

Lkε = αLE, where α is an apparent constant that is larger than βkε. This is especially

apparent in the data of SKIF and GVA. Again assuming LkS ≈ LE in the shear-dominated

regime, we see that the apparent linear relationship (i.e., the consistency of α) is due to the

narrow range in STL for such flows; for the shear-dominated points, Lkε = αLE ≈ αLkS so

that α ≈ Lkε/LkS = STL.

6.5 Discussion

6.5.1 Relevancy to Conceptual Interpretations of Length Scales

From the qualitative analysis of section 6.4, we see that the concept of an NTL − STL
space is indeed useful for interpreting large scale turbulent overturning, and that frequently

cited critical values in Ri and STL appear to be good first order approximations of regime

thresholds. Furthermore, it appears that scales involving turbulent kinetic energy gener-

ally appear to be better predictors of overturns than those without. In other words, the

magnitude of k appears fundamental to overturn size in all regimes, while the relevance of

ε is less general. In shear-dominated flow, LkS ∼ LE > LC supports the suggestion that

the Corrsin scale defines an upper limit of the inertial subrange that is somewhat smaller

than the largest scales of the flow. Likewise, LkN ∼ LE > LO supports the same assertion

regarding the Ozmidov scale in buoyancy-dominated flow. These findings are in accord with

the original arguments leading to the derivation of LC (Corrsin, 1958) and LO (Dougherty,
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Figure 6.4: Comparisons of the fundamental shear length scales, LkS and LC , to LE . Left
panels show DNS data in normalized units (a,c,e,g); right panels show experimental data in cm
(b,d,f,h). Data of SKIF and Rogers et al. (1989) have been shifted to the right by 101 and 102,
respectively in (c) and (g). Data of KV and Tavoularis and Corrsin (1981) have been shifted
to the right by 101 and 102, respectively in (d) and (h). Shifts were done for clarity. Symbols
are noted in Figure 6.2 with the exception of SKIF which are shown as dots.
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Figure 6.5: Comparisons of the fundamental buoyancy length scales, LkN and LO, to LE .
Left panels show DNS data in normalized units (a,c,e,g); right panels show experimental data
in cm (b,d,f,h). Data of SKIF and Mater et al. (2013) have been shifted to the right by 101

and 102, respectively in (c) and (g). Data of KV Itsweire et al. (1986), and Stillinger et al.
(1983) have been shifted to the right by 101, 102, and 103, respectively in (d) and (h). Shifts
were done for clarity. Symbols are noted in Figure 6.2 with the exception of SKIF which are
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Figure 6.6: Comparisons of the fundamental isotropic length scale, Lkε, to LE . Left panels
show DNS data in normalized units (a,c); right panels show experimental data in cm (b,d).
Data of SKIF, Mater et al. (2013), and Rogers et al. (1989) have been shifted to the right
by 101, 102, and 102, respectively in (c). Data of KV, Itsweire et al. (1986), Tavoularis and
Corrsin (1981), and Stillinger et al. (1983) have been shifted to the right by 101, 102, 102, and
103, respectively in (d). Shifts were done for clarity. Symbols are noted in Figure 6.2 with the
exception of SKIFwhich are shown as dots.
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1961; Ozmidov, 1965) that sought not to determine the outer scale of the flow, but to define

the largest scale that could remain isotropic in the presence of shear or stratification. These

early theories are entirely compatible with the possibility of anisotropic overturns larger

than LC or LO as realized in the current data. In the unforced regime, where S,N → 0 and

LE ∼ Lkε, all scales involving forcing approach infinity, and thus lack any physical analogue

in the flow.

6.5.2 Relevancy to Oceanic Measurements

A main implication of the current findings is that inferences of turbulent kinetic energy

and its dissipation rate can be made from observations of overturning. Specifically,

k ∼





(εLT )2/3 if STL < STL,c and NTL < NTL,c (unforced)

(SLT )2 if STL ≥ STL,c and Ri ≤ Ric (shear-dominated)

(NLT )2 if NTL ≥ NTL,c and Ri ≥ Ric (buoyancy-dominated)

(6.9)

and

ε ∼





N3L2
T if STL < STL,c and NTL ≈ NTL,c (unforced/buoyancy-dominated)

N3L2
T if STL ≥ STL,c, Ri ≤ Ric and STL ≈ (NTL)3/2 (shear-dominated)

S3L2
T if NTL ≥ STL,c, Ri ≥ Ric and STL ≈ (NTL)2/3 (buoyancy-dominated) ,

(6.10)

where we have assumed LT ≈ LE. Note that the second line of relation (6.10) results

from the possibility of LT ∼ LkS = LO in the shear-dominated regime despite, as claimed

here, that LO is of less physical relevance than LkS or its analogue, LC , in this regime;

theoretically, it is LC , instead of LO, that determines the upper end of the inertial subrange

while LkS determines the largest scale of the flow. As Ri decreases below Ric in the shear-

dominated regime, LO grows relative to LC and will thus become coincident with LT when
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Ri ≈ (NTL)−1, or STL ≈ (NTL)3/2, despite becoming an irrelevant concept physically.

Analogously, the third line of relation (6.10) results from the possibility of LT ∼ LkN = LC

in the buoyancy-dominated regime; as Ri increases, LC grows relative to the more physically

relevant LO and becomes coincident with LT when Ri ≈ STL ≈ (NTL)2/3.

Selection of the proper relation from (6.9) or (6.10) requires determination of flow regime

— a not so trivial task in practice since TL is not known a priori. One possible solution

is an iterative approach to determine k if microstructure measurements of ε are available.

Specifically, the flow can be initially assumed to be shear- or buoyancy-dominated depending

on the value of Ri made available through mean measurements of N and S. Next, a pre-

liminary value for k can be inferred from either the second or third condition of (6.9). With

measurements of ε, corresponding values of NTL and STL can then be determined along with

the suggested regime. If the suggested regime agrees with that guessed initially, the prelimi-

nary value for k can be considered an accurate inference. Otherwise, the flow is likely in the

unforced regime and the first relation of (6.9) is needed to infer k. If validated, a method

such as this stands to be a major breakthrough in the field of observational oceanography

due to the practical difficulties in directly measuring all three components of the fluctuating

velocity that define k. Moreover, by inferring k from a purely overturning scale in LT , the

kinetic energy due to non-overturning internal waves is effectively filtered out making the

inferred value representative of purely turbulent kinetic energy.

Beyond providing access to elusive quantities, the current findings have implications for

estimates of diapycnal mixing of density and momentum in the open ocean. In the absence

of microstructure measurements, accurate inference of ε is especially relevant to estimations

of density diffusivity based on the popular formulation of Osborn (1980),

Kd = Γ
ε

N2
, (6.11)

110



and to estimations of momentum diffusivity using an analogous formulation,

Km = (1 + Γ)
ε

S2
, (6.12)

(see Gregg, 1987) where Γ ≡ −B/ε is the mixing efficiency defined in terms of the buoyancy

flux, B ≡ −〈ρ′w〉g/ρ0. The diffusivities above are typically estimated using some assumed

value or parameterization for Γ and an inferred value of ε obtained under the assumption of

LT ∼ LO without explicit knowledge of the flow regimes outlined here. In light of the current

findings, we see that this may lead to over-estimations of mixing in buoyancy-dominated flow

or under-estimations in the weakly stratified regimes (not considering errors in estimating

Γ).

Now consider an alternative approach where (6.11) and (6.12) are re-cast in terms of k

which, according to a comparison of (6.9) and (6.10), can be more generally inferred than ε.

Without loss of generality, the equations become

Kd = Γ
L2
kN

TL
=

(
Γ

STL

)
Ri−1/2 k

N
, (6.13)

and

Km = (1 + Γ)
L2
kS

TL
=

(
1 + Γ

STL

)
Ri1/2

k

N
. (6.14)

In the present data we see that STL rarely exceeds about 10 with most of the stratified shear-

flow data falling near or slightly above STL,c. This is in accordance with the discussion of

Jacobitz et al. (1997), who indicated that there exists a maximum value of STL above which

rapid distortion of the flow reduces nonlinear interactions, thereby limiting the production of

turbulence. The lack of data with STL � STL,c is likely due to the rapid rate at which such

turbulence would decay. If it is assumed that oceanic turbulence exhibits a similarly narrow

range in STL, then that parameter can be replaced in (6.13) and (6.14) by some average

constant in the interest of practicality. Let this constant be defined as ŜTL. Furthermore, if
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ocean turbulence is assumed to be predominately shear- and/or buoyancy-dominated, then

k can be inferred upon knowing solely Ri and using the latter two relations of (6.9) so that

the inferred value, k̂, is given by

k̂ =





(βkSLTS)2 if Ri < Ric

(βkNLTN)2 if Ri > Ric.

(6.15)

where βkS and βkN are constants of order O(100) from the relations LkS = βkSLT and

LkN = βkNLT . With this simplification, (6.13) and (6.14) can be approximated as simple

functions of the readily measurable LT , N , and S, and a parameterized mixing efficiency, Γ̂:

K̂d =





Γ̂

ŜTL
N(βkSLT )2Ri−3/2 if Ri < Ric

Γ̂

ŜTL
N(βkNLT )2Ri−1/2 if Ri > Ric

(6.16)

K̂m =





1+Γ̂

ŜTL
N(βkSLT )2Ri−1/2 if Ri < Ric

1+Γ̂

ŜTL
N(βkNLT )2Ri1/2 if Ri > Ric

(6.17)

where hat notation (̂) has been used to denote parameterized or assumed values. Presently,

we will leave a discussion of mixing efficiency within the context of the current framework for

chapter 7 but note that, in practice, this quantity is typically assumed to be an increasing

function of Ri (e.g., Mellor and Yamada, 1982) or simply a constant of approximately 0.20

(e.g., Ferron et al., 1998). The advantage of (6.16) and (6.17) is that the diffusivities are

approximated with a more robust interpretation of LT .

To employ the simplified models of (6.16) and (6.17), we can assume ŜTL = 4 based on

the central tendency of the considered data. Also, we will approximate mixing efficiency with

the simple exponential that mimics the fit of Mellor and Yamada (1982). However, because

counter-gradient buoyancy fluxes are present in some data sets, we carefully redefine the
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mixing efficiency to be

Γ∗ = εPE/ε (6.18)

where εPE ≡ N2ερ/(∂ρ̄/∂z)2 is the irreversible dissipation of available (turbulent) potential

energy (i.e., the rate at which background potential energy is irreversibly increased) with

ερ ≡ κρ〈 ∂ρ
′

∂xj

∂ρ′

∂xj
〉 representing the dissipation of scalar variance. In using Γ∗, instead of the

traditional Γ, reversible stirring effects are avoided. In (6.18) and elsewhere, the superscript

∗ indicates the irreversible (i.e., diapycnal) nature of the term. We note that the two forms, Γ

and Γ∗, are equal for stationary, homogeneous flows and that an irreversible flux Richardson

number can be defined as R∗f ≡ εPE/(εPE + ε) = Γ∗/(1 + Γ∗). In lieu of a more formal

parameterization of R∗f or Γ∗ we use a simple exponential form,

R̂∗f = 0.17(1− exp(−7.5Ri)), (6.19)

where we have assumed the asymptotic value of the flux Richardson number to be 0.17 (Os-

born, 1980). For subsequent calculations, K̂∗d and K̂∗m denote the values from (6.16) and

(6.17) when mixing efficiency is defined by (6.18). Our choice for (6.19) as a parameteriza-

tion for R∗f is no doubt an oversimplification, but is used here as a simple demonstration

that provides an acceptable fit to the data (not shown) and is practically relevant. The

proportionality constants needed for determining k̂, namely βkS and βkN , were determined

for each data set and are order one. To determine βkS for a given data set, only points within

the shear-dominated regime were considered. Likewise, βkN is determined only using points

within the buoyancy-dominated regime.

The new models can be compared to the actual diapycnal diffusivities. Assuming ap-

proximately stationary, homogeneous turbulence, these are

K∗d =
εPE
N2

, (6.20)
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and

K∗m = (ε+ εPE)
ε

S2
, (6.21)

which result from substitution of (6.18) into (6.11) and (6.12), respectively. We note that

(6.20) is simply the Osborn-Cox formulation (Osborn and Cox, 1972) and (6.21) is its ana-

logue for momentum diffusivity. The comparisons are shown in Figures 6.7(a) and 6.8(a) for

the data sets which include εPE.

For comparison, conventional diffusivity estimates that rely on LO = LE ⇒ ε = N3L2
E

for use in (6.11) and (6.12) are plotted against the actual values in Figures 6.7(b) and

6.8(b). Since we are not currently concerned with the best method for parameterizing mixing

efficiency, we use (6.19) in both new and conventional estimates for consistency. Clearly,

the lack of a linear relationship between LO and LE leads to weaker performance of the

conventional method when compared to that of the proposed alternative.

The relative agreement between actual and inferred diffusivities under the proposed

method is quite encouraging. The scatter in the data is primarily due to STL values that

differ from the assumed constant and departures in R∗f from the simple prediction of (6.19).

This can be examined further upon inspection of the ratios

K̂∗d
K∗d

=

(
Γ̂∗

Γ∗

)
Sk̂/ε

ŜTL
(6.22)

and

K̂∗m
K∗m

=

(
1 + Γ̂∗

1 + Γ∗

)
Sk̂/ε

ŜTL
, (6.23)

where the approximated or assumed quantities are again differentiated with hats. It can be

seen from the factors in parentheses that the performance of K̂∗d is more sensitive to the

parameterization of mixing efficiency than is K̂∗m. Evoking βkS and βkN leads to k̂ ≈ k so

that the second factor is essentially the ratio of actual STL to its assumed value.
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Figure 6.7: Comparisons of estimated and actual density diffusivity, K∗d , normalized by ν.

In (a), the estimated diffusivity, K̂∗d , is calculated from (6.16) with Γ∗ from (6.19), ŜTL = 4,
and βkS = 0.76, 0.83, 0.88 and βkN = 1.37, 1.65, 1.90 for the data of SKIF, GVA, and KV,
respectively. In (b), the estimate Γ∗(L2

EN) is based on the conventional assumption, LE ≈ LO.
Symbols are as indicated in Figure 6.2 with the exception of the SKIFdata which are shown
as dots. Points are colored according to the regimes of Figure 6.2. For the evolving turbulence
of SKIFand KV, only data after the shear-normalized time of St = 6 (for SKIF) or the grid-
normalized distance of x/M = 50 (for KV) were considered to lessen the influence of initial
conditions (i.e., the flow is no longer in the unforced regime).
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Figure 6.8: Comparisons of estimated and actual momentum diffusivity, K∗m, normalized

by ν. In (a), the estimated diffusivity, K̂∗m, is calculated from (6.17) with Γ∗ from (6.19),

ŜTL = 4, and βkS = 0.76, 0.83, 0.88 and βkN = 1.37, 1.65, 1.90 for the data of SKIF, GVA,
and KV, respectively. In (b), the estimate (1 + Γ∗)(L2

EN)Ri is based on the conventional
assumption, LE ≈ LO. Symbols are as indicated in Figure 6.2 with the exception of SKIFdata
which are shown as dots. Points are colored according to the regimes of Figure 6.2. For the
evolving turbulence of SKIFand KV, only data after the shear-normalized time of St = 6 (for
SKIF) or the grid-normalized distance of x/M = 50 (for KV) were considered to lessen the
influence of initial conditions (i.e., the flow is no longer in the unforced regime).
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6.6 Conclusions

Using dimensional analysis and physical reasoning we have argued that NTL, STL, ReL,

and Pr form a comprehensive set of dimensionless parameters that generally describes stably-

stratified shear-flow turbulence. In the interest of geophysical applications where molecular

effects are minimal, we have proposed that the description simplifies to a two-dimensional

parameter space defined by NTL and STL. While not needed from a strictly dimensional

analysis standpoint, we have also evoked the popular mean parameter, Ri. With these three

parameters we see that the flow can potentially occupy three conceptual regimes of “shear-

dominated”, “buoyancy-dominated”, and “unforced” turbulence. While the first two regimes

are commonly cited and delineated using Ri, consideration for the third regime allows for

the unifying framework presented here. Foundational to the framework is that knowledge of

the time scale of the turbulence, TL, is needed along with the imposed timescales, S−1 and

N−1, for a complete description of the turbulence. Using DNS and experimental data, we

have shown such a description to be particularly enlightening with regard to the growth of

turbulence and the length scale of overturning. In the shear-dominated regime, turbulence

grows and the size of the overturns is determined by LkS, while turbulence decays in the

buoyancy-dominated and unforced regimes where the overturns are determined by LkN and

Lkε, respectively. These insights would not be possible using a single parameter such as Ri.

These findings have several implications for oceanic studies. Most obviously, they imply

that turbulent kinetic energy can be inferred from observed overturns and mean quantities

if some idea of flow regime exists. Due to the notorious difficulties involved in measuring k,

oceanic data have not been plotted within the NTL − STL space and, therefore, generalities

of oceanic flow regimes are lacking. However, it is reasonable that oceanic flows are strongly

influenced by both mean shear and stratification so that Ri becomes the only parameter

needed for inference of k. In this sense, inference of k becomes more general than inference

of ε since the latter also requires knowledge of NTL. This has serious implications for field
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estimations of diapycnal mixing when only Ri is typically available. Because inference of

ε without knowledge of NTL is apparently less robust than inference of k, we have re-cast

the traditional Osborn formulations for density and momentum diffusivity in terms of k.

Upon exploiting the apparently narrow range in STL so that this parameter is assumed to

be some constant value, the diffusivities become approximate functions of LT , Ri, and Γ∗. A

simple Ri-based parameterization for Γ∗ is employed to allow evaluation of this new model.

A comparison of the model to the quasi-stationary prediction of the Osborn-Cox formulation

yields encouraging results and shows improved performance over the traditional method of

inferring ε from LT . The next step toward verifying and applying this unifying framework to

oceanic (and atmospheric) turbulence will require independent but concurrent measurements

of k, ε, S, and N for high Reynolds number flows.

In the next chapter, we will employ the multi-dimensional framework in a study of mixing

efficiency. The Ri−based description used in this chapter (equation 6.19) will be evaluated

along with several others commonly used in defining turbulent diffusivities. Both DNS and

field data will be relied upon.
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Chapter 7

Parameterizations of Mixing

Efficiency8

7.1 Introduction

The efficiency at which turbulent kinetic energy is irreversibly converted to background

potential energy in a stratified fluid is of fundamental importance to estimates of diapyc-

nal mixing in geophysical settings. In both observational studies and numerical models of

oceanic and atmospheric flows, diapycnal mixing is typically represented using the turbulent

diffusivity formulation of Osborn (1980) for stationary, homogeneous turbulence,

Kd =

(
Rf

1−Rf

)
ε

N2
, (7.1)

where ε is the dissipation rate of turbulent kinetic energy, N =
√

(g/ρ0)∂ρ/∂z is the buoy-

ancy frequency, and the mixing efficiency is represented as the flux Richardson number,

Rf =
−B
P
≈ −B
−B + ε

, (7.2)

where B = −(g/ρ0)〈uiρ′〉δi3 is the vertical buoyancy flux and P = −〈uiuj〉S is the production

of turbulent kinetic energy (TKE) that is a function of the Reynolds stress tensor, 〈uiuj〉,

and the mean shear, S = ∂Ui/∂xj. The approximate equivalence in equation 7.2 arises from

the same assumptions underpinning the formulation of equation 7.1 (see Gregg, 1987). A

8This chapter constitutes a manuscript that has been published in Geophysical Research Letters under
the title, “The quest for an unambiguous parameterization of mixing efficiency in stably stratified geophysical
flows” (Mater and Venayagamoorthy, 2014a). Background information and literature relevant to this chapter
are presented again so the chapter may be read as a stand-alone work. The chapter is written in a collective
“we” voice to acknowledge collaboration with Dr. S. K. Venayagamoorthy.
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related representation of the mixing efficiency is the flux coefficient Γ = −B/ε = Rf/(1−Rf ),

however, the current work will refer exclusively to Rf as the “mixing efficiency”.

The widespread use of equation 7.1 in both modeling and observational campaigns has

promoted a great deal of research on understanding the variability of Rf about the canonical

maximum value of Rf ≈ 0.17 (Γ ≈ 0.2) theorized by Ellison (1957), shown experimentally

by Britter (1974), and inferred in the ocean by Osborn (1980). Because of the difficul-

ties in directly measuring Rf in the field (i.e., non-stationarity, counter-gradient buoyancy

fluxes, poor spatial resolution, etc.) and the general complexity of geophysical flows, our

current understanding of mixing efficiency is primarily founded upon well-controlled labora-

tory experiments and direct numerical simulations (DNS). However, even within the context

of these simple flows, no single parameterization for Rf in terms of broadly relevant non-

dimensional parameters has received widespread acceptance. This lack of a unified descrip-

tion of mixing efficiency is largely due to certain ambiguities that arise when only a single

non-dimensional parameter is employed to describe Rf . The goal of this chapter is to explain

key ambiguities that plague three popular single-parameter approaches. We will generally

consider approaches based on the gradient Richardson number, Ri = N2/S2, the turbu-

lent Froude number, Fr = u/(Nl), and the buoyancy Reynolds number, Reb = ε/(νN2),

where u and l are the velocity and length scales that characterize the inertial motions (i.e.,

energy-containing eddies) of the turbulence and ν is the kinematic viscosity of the fluid.

Because we wish to examine the efficiency at which turbulent kinetic energy is being irre-

versibly converted to background potential energy, we will only consider the down-gradient

component of the buoyancy flux that leads to mixing. Therefore, we will consider an alter-

native measure of irreversible mixing efficiency that is defined using the positive-definite

dissipation rate of available (turbulent) potential energy, εPE = N2ερ(∂ρ/∂z)−2, where

ερ = κρ〈 ∂ρ
′

∂xj

∂ρ′

∂xj
〉 is the molecular smoothing of density fluctuations and κρ is the molec-

ular diffusivity of density. Similar to other investigations of evolving flows (e.g., Peltier

and Caulfield, 2003; Venayagamoorthy and Stretch, 2010), we define the irreversible mixing
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efficiency to be

R∗f =
εPE

εPE + ε
, (7.3)

where the superscript indicates the diapycnal (irreversible) nature of the term.

7.2 A Unifying Framework

Ambiguities that arise using solely Ri, Fr, or Reb to describe R∗f will be highlighted using

the multiple-parameter approach of Mater and Venayagamoorthy (2014b). They present

a conceptual framework which explicitly considers the independent influences that shear,

stratification, and viscosity have on the inertial scales of the turbulence using a shear strength

parameter,

STL =
Sk

ε
, (7.4)

a buoyancy strength parameter,

NTL =
Nk

ε
, (7.5)

and the turbulent Reynolds number,

ReL =
k2

νε
=

(
TL
Tη

)2

, (7.6)

where k = 1
2
〈uiui〉 is the turbulent kinetic energy, TL = k/ε is the time scale of the inertial

motions (i.e., largest eddies in an isotropic sense), and Tη = (ν/ε)1/2 is the Kolmogorov time

scale (i.e., that of the smallest eddies). We note that NTL = Fr−1
k , where Frk is a Froude

number with u ∼ k1/2 and l ∼ k3/2/ε. In the interest of geophysical flows, an assumption of

Reynolds number independence allows the framework to be simplified to a two-dimensional

parameter space based on NTL and STL that, with consideration for the gradient Richardson

number, is divided into “unforced”, “shear-dominated”, and “buoyancy-dominated” regimes.

The NTL−STL parameter space is represented here in figure 7.1 in which we have re-named
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the “unforced” regime to be the “inertia-dominated” regime due to the possibility of decaying

turbulence generated by un-sustained forcing mechanisms (i.e., external forcing by a sudden

disturbance not related to mean shear). Turbulence generally grows in the shear-dominated

regime and decays in the buoyancy-dominated regime. Mater and Venayagamoorthy (2014b)

find the regimes to be relevant for scaling the vertical overturns observed in a large database

of numerical and laboratory flows. In the current chapter, we wish to extend the discussion

to include mixing efficiency of low Reynolds number flows and, as such, complement the

NTL − STL plane with the ReL − NTL plane that frequently appears (in related forms)

in studies of stratified turbulence (figure 7.2). We explore the behavior of mixing efficiency

within the framework of figures 7.1 and 7.2 using the the homogeneously-stratified shear-flow

DNS data of Shih et al. (2005). Select comparisons with the atmospheric boundary layer

data collected during the Vertical Transport and Mixing Experiment (VTMX) (Monti et al.,

2002; Princevac et al., 2008) will also be made. Particular focus will be on the subset of

the VTMX data presented in Lozovatsky and Fernando (2013). Because turbulent kinetic

energy, k, is rarely measured in field studies such as the VTMX experiment, only the DNS

data of Shih et al. (2005) are plotted in figures 7.1 and 7.2.
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Figure 7.1: Parameter space for interpretation of high-Reynolds number turbulence from
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Figure 7.2: Parameter space for interpretation of stratified turbulence assuming minimal
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7.3 Ambiguities of Single-Parameter Approaches

7.3.1 Ri−based Approaches

Ri−based approaches characteristically assume that the mean time scales, N−1 and S−1,

are relevant to the small-scale turbulent dynamics that lead to mixing. We can generally

represent such descriptions using the simplified scheme of Karimpour and Venayagamoorthy

(2014) that mimics the popular parameterization of Yamada (1975) and Mellor and Yamada

(1982) (as presented in Pardyjak et al. (2002)) given by,

Rf = R∞f {1− exp(−7.5Ri)} , (7.7)

where R∞f is the maximum, asymptotic value of the flux Richardson number that is ap-

proached in strongly stratified turbulence (Ri� Ric ≈ 0.25).

The irreversible mixing efficiency for the DNS data is plotted against Ri in figure 7.3

along with the simple parameterization of equation 7.7 using R∞f ≈ 0.25. Also plotted are

the VTMX boundary layer data from Lozovatsky and Fernando (2013) along with their fit,

Γ = 0.005 + 1.7Ri− 1.1Ri2, under the assumption Γ ≈ R∗f/(1−R∗f ).

7.3.1.1 Ri < 0.25

First consider the behavior at low Ri where both the field-based fit and the Ri-based

parameterization of equation 7.7 are in approximate agreement. The agreement between the

predictions and the two data sets is encouraging, however, a systematic deviation from the

Ri−based parameterizations is observable in the DNS data when points are identified by

their respective regimes in figure 7.1. Specifically, equation 7.7 shows excellent agreement

with the DNS data when the flow is in the shear-dominated regime, but over-predicts R∗f

in the inertia-dominated regime. Turbulence is inertia-dominated early in the simulations

due to the sudden, shear-independent, injection of energy specified by the initial conditions
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Figure 7.3: Diapycnal mixing efficiency, R∗f , versus the gradient Richardson number, Ri,
for the DNS data of Shih et al. (2005) and the geophysical data of Lozovatsky and Fernando
(2013).

which leads to TL � S−1 and TL � N−1. Only after the initial disturbance decays and TL

grows do the ambient shear and stratification take over in determining the efficiency. This

phenomenon is analogous to low-efficiency mixing that occurs immediately downstream of

a grid (e.g., observed by Keller and Van Atta (2000)) or immediately following a sudden

introduction of non-local energy into an otherwise homogeneously-sheared flow, say by a

breaking internal wave. In such cases of external forcing, Ri is not the proper diagnostic

because the turbulent kinetic energy present in the flow has been generated by mechanisms

other than mean shear. The ambiguity of Ri in this regard has been discussed by Chang

et al. (2005) and Xu et al. (2006) in the context of turbulent diffusivity, with Zaron and

Moum (2009) finding that consideration for the mean kinetic energy gives an improved

parameterization.
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It is important to note that the temporal evolution of R∗f demonstrated by grid-like tur-

bulence is likely different from other mechanisms such as K-H billows in which R∗f decreases

with time (Smyth et al., 2001; Mashayek et al., 2013). It is conceivable that K-H turbulence

evolves in the opposite sense of grid turbulence, with a transition into the inertia-dominated

regime occurring later as rapid homogenization of the flow causes S, N , and R∗f to decrease.

7.3.1.2 Ri > 0.25

Next consider R∗f at high Ri where the field data exhibits a higher efficiency than the DNS

data and there is considerably more scatter about equation 7.7. If weak turbulence is possible

in this regime, the additional parameters to logically consider are the turbulent Reynolds

number, ReL, and the molecular Prandtl number, Pr = ν/κρ (if comparing flows of different

fluids). Unfortunately, a quantitative analysis of Reynolds number dependence is precluded

because k is not available from the field data. However, physical reasoning suggests that for

strong stratification, efficiency may be increased by increasing the molecular diffusion rate

of the scalar (via decreasing Pr) or by increasing the small-scale gradients across which the

molecular diffusion acts (via increasing ReL). Because the DNS and field data have similar

Prandtl numbers (Pr ≈ 0.7), the increased Reynolds number of the field data is a likely

explanation for the higher efficiency.

As Ri increases for a given flow, the importance of ReL and Pr in describing mixing

efficiency should become more pronounced. Likewise, the efficiency at a high value of Ri

should change with ReL (and/or Pr), thus implying that the oft-observed non-monotonic

decrease in efficiency at high Ri (e.g., Phillips, 1972; Strang and Fernando, 2001a; Mashayek

et al., 2013) is intimately related with the Reynolds number of the flow. Physical reasoning

suggests that the decrease in efficiency in strongly stratified flow could be forestalled to higher

values of Ri by increasing the Reynolds number so that the small-scale overturning structure

responsible for mixing (e.g., richness of secondary instabilities with K-H billows discussed by

Mashayek and Peltier (2013)) is maintained. From observations of high Reynolds number
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shear instabilities in a strongly stratified estuary, Geyer et al. (2010) suggest the efficiency

should maintain its optimal value for sufficiently high Reynolds number. Clearly then, a

description of R∗f at high Ri without consideration for ReL (and Pr if comparing different

fluids) is likely ambiguous. Furthermore, it is quite possible that ReL and Ri are not totally

independent and that the precise relationship between the two parameters at high Ri likely

depends on the mechanism which drives the turbulence.

7.3.2 Fr−based Approaches

Whereas Ri is restricted to descriptions of shear-driven turbulence in which the mean

shear is easily defined, the turbulent Froude number, generically defined as Fr = u/(Nl),

is more broad in its applicability so long as the inertial scales u and l — or alternatively

the time scale of the turbulence, l/u — can be identified. Identification of l/u is, however,

a nontrivial matter. Most generally, l/u ∼ TL ≡ k/ε so that Fr = Frk = (NTL)−1 in line

with the approach of Mater and Venayagamoorthy (2014b). However, because k is not easily

obtained in the field a more practical approach is to assume l ∼ LT and u ∼ (εLT )1/3 so

that Fr = FrT ≡ (LO/LT )2/3 as was proposed by Luketina and Imberger (1989), where LT

is the observed overturning scale (see Thorpe, 1977) and LO = (ε/N3)1/2 is the Ozmidov

scale which may be interpreted as the large-scale bound on the inertial subrange (Ozmidov,

1965).

7.3.2.1 FrT > 1

For weakly stratified sheared and shear-free laboratory turbulence with FrT > 1, Ivey

and Imberger (1991) show that the simple scheme,

Rf = (1 +R−1
ρwFr

−2
T )−1, (7.8)
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Figure 7.4: Diapycnal mixing efficiency, R∗f , versus the overturn Froude number, FrT , for the
DNS data of Shih et al. (2005). The parameterization of Ivey and Imberger (1991) for FrT > 1
(equation 7.8) is plotted using Rρw = 0.42.

provides for an excellent description of the decrease in Rf that occurs with increasing FrT ,

where Rρw = 〈ρ′w′〉/(〈ρ′〉〈w′〉) is the density flux correlation coefficient which is assumed

constant for a given Prandtl number. We too find that equation 7.8 accurately represents

R∗f in the weakly stratified (i.e., FrT > 1) data of Shih et al. (2005) when a representative

value of Rρw ≈ 0.4 is chosen (figure 7.4). These data correspond to the inertia- and shear-

dominated regimes of figure 7.1. In contrast with the performance of the Ri−based scheme

of equation 7.7, equation 7.8 is able to capture the inertia-dominated behavior, while slightly

overestimating R∗f in the shear-dominated regime where shear-induced anisotropy leads to

a departure from the assumed scaling, u ∼ (εLT )1/3 (Mater and Venayagamoorthy, 2014b).

As such, FrT appears as the proper diagnostic in the inertia-dominated regime, while Ri

properly diagnoses shear-dominated turbulence.
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7.3.2.2 FrT < 1

Analogous to the decrease in Rf at high Ri, Ivey and Imberger (1991) show Rf to decrease

with decreasing FrT for FrT < 1. In agreement with the discussion of section 7.3.1.2, they

suggest Rf to be additionally dependent on the Reynolds number of the turbulence, which

they define as ReT = (LT/η)4/3, where η = (ν3/ε)1/4 is the Kolmogorov length scale. Their

proposed parameterization for FrT < 1 (not plotted) employs both ReT and FrT in an

empirical fit to laboratory data. Unfortunately, the empirical nature of the fit limits its

general applicability to other flows. Piccirillo and Van Atta (1997) for example show a

large amount of scatter about the parameterization in their wind tunnel data, which they

attribute to intermittent turbulent events. More recently, Dunckley et al. (2012) tested the

parameterization using oceanic data with similarly discouraging results. In light of these

findings, the Ivey and Imberger parameterization for FrT < 1 is conceptually promising,

but perhaps lacks universality due to the variety of turbulent mechanisms that can affect

the FrT − ReT interdependence as well as the intermittent nature of strongly stratified

geophysical flows.

7.3.3 Reb−based Approaches

As a parameter that includes an explicit, measurable quantification of the turbulence

in ε, Reb is a dynamic alternative to Ri that is available from field-based microstructure

measurements. Furthermore, Reb is unequivocally defined unlike the Froude number which

has various definitions depending on the choice of u and l. Given these apparent advantages,

recent efforts have attempted to employ Reb as a diagnostic of mixing efficiency. A well-

cited example is the work of Shih et al. (2005) who find Rf to agree with the canonical value

(≈ 0.17) for a so-called “intermediate” regime of 7 < Reb < 100, before decreasing in an

“energetic” regime of Reb > 100 according to the empirical fit,

Rf = 1.5Re
−1/2
b . (7.9)
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Figure 7.5: Diapycnal mixing efficiency, R∗f , versus the buoyancy Reynolds number, Reb,
for the DNS data of Shih et al. (2005) and the geophysical data of Lozovatsky and Fernando
(2013). The Ri−based scheme has been plotted assuming different values of STL and ReL
(solid lines) or Ri (dotted lines).

Recently, Lozovatsky and Fernando (2013) show an alternative fit for the VTMX field data

given by Γ = 50Re
−1/2
b or

Rf = (1 + 0.02Re
1/2
b )−1. (7.10)

Equations 7.9 and 7.10 are plotted in figure 7.5 along with R∗f for the DNS and field data.

The Ri−based scheme considered in section 7.3.1 is also projected in noting that equation

7.7 may be re-written as

Rf = R∞f
{

1− exp(−7.5ReL(STL)−2Re−1
b )
}
. (7.11)

The curves shown are projected for different values of ReL with STL held constant.
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First consider the DNS data. Immediately obvious is that the roll-off limb (i.e., the

“energetic regime” of Shih et al. (2005)) is composed of points from the shear-dominated or

inertia-dominated regimes. Thus, mixing efficiency apparently decreases with Reb primarily

because of decreasing Ri as shown in figure 7.3 or decreasing NTL (i.e., increasing FrT

beyond FrT = 1 as shown in figure 7.4). This is shown quite clearly by superimposing the

Ri−based scheme for constant ReL and STL. ReL for data constituting the falling limb

ranges from approximately 160 late in the run with Ri ≈ 0.2 to approximately 500 late in

the run with Ri ≈ 0.05 (ReL plot not shown). In both runs, STL ≈ 5 late in the run (see

figure 7.1). Substituting these values into equation 7.11 gives two curves that bracket the

falling limb data, thus reiterating that the data are well explained with the simple Ri−based

description.

The ability of inviscid parameters (Ri and NTL) to describe high-Reb data raises an

interesting and important question regarding the universality of the proposed fit of Shih

et al. (2005) and Reb−based parameterizations in general. Specifically, is there a universal

relationship between the intensity of turbulence (ReL) and the strength of the stratification

(Ri or NTL) that supports an unambiguous description of mixing efficiency based on Reb?

This is a particularly important question to consider when employing DNS-based parameter-

izations to describe geophysical turbulence. In the former, high Reb is most easily achieved

with weak stratification due to computational limitations on ReL. In the latter, however,

turbulence can be sustained in the presence of strong stratification due to high Reynolds

numbers. For example, consider the geophysical data of Lozovatsky and Fernando (2013)

plotted in figure 7.5. In contrast to the prediction of Shih et al. (2005), the field data sug-

gests that the trend of decreasing mixing efficiency may shift toward higher Reb (into the

“energetic regime”) by least three orders of magnitude. High mixing efficiency despite high

Reb implies that geophysical flows occupy a high ReL, high NTL regime not achieved in the

DNS simulations.
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Brethouwer et al. (2007) highlight the strongly stratified, high-Reynolds number regime

that characterizes geophysical flows using a two-dimensional parameter space similar to figure

7.2 that features their formulations for the turbulent Reynolds and Froude numbers. An

analogous figure is presented in Ivey and Imberger (1991). Assuming minimal influence from

shear, figure 7.2 further demonstrates that the transition from “intermediate” to “energetic”

turbulence proposed by Shih et al. (2005) based on their data coincides with the transition

from buoyancy-dominated (strongly stratified) to weakly stratified flow (either shear- or

inertia-dominated) that occurs at NTL ≈ 1.7 (see figure 7.1). It is likely that the particular

ReL−NTL relationship, and thus the intermediate-energetic regime transition, is unique to

the trajectory of their data through the ReL −NTL space. In comparing the DNS and field

data in figure 7.5, it is likely that different trajectories are possible for geophysical flows that

shift the falling limb to higher values of Reb. To validate this hypothesis, reliable estimates

of ReL and NTL in geophysical flows are needed.

7.4 Relevance to Field Observations

As discussed by Mater and Venayagamoorthy (2014b), a major gap remains in validating

and extending the multi-parameter space used here to geophysical flows due to the current

inability to accurately quantify the time scale of the turbulence, TL, in the field. This is

due mainly to difficulties associated with isolating the turbulent contribution to the three-

dimensional velocity field used to quantify k. Mater and Venayagamoorthy (2014b), however,

suggest a possible method for estimating k from observable quantities, N , S, and ε and LT .

They suggest making an initial estimate of flow regime based on Ri (i.e., either buoyancy-

dominated or shear-dominated) followed by an estimation of k from either k ∼ (NLT )2

(for Ri > 0.25) or k ∼ (SLT )2 (for Ri < 0.25). Concurrent microstructure measurements

of ε then allow for estimation of NTL and STL which, in turn, are to be used to check
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that the flow is indeed in the regime initially guessed. If the flow is found to fall into the

inertia-dominated regime, the estimate of k, and thus NTL and STL, are to be revised using

k ∼ (εLT )2/3. Such an approach likely works best for well-developed stratified turbulence

forced by shear, in which Ri is a calculable and relevant quantity (i.e. flows near the shear-

buoyancy-dominated transition). These flows may occur in the thermocline (Moum, 1996)

and a specific example may be “marginally stable” turbulence of the equatorial undercurrent

recently studied by Smyth and Moum (2013).

When turbulence is forced by mechanisms other than mean shear, say by convective

collapse of topographically induced lee waves, the flow likely falls into either the buoyancy-

dominated or inertia-dominated regime, implying that k should be inferred from k ∼ (LTN)2

or k ∼ (εLT )2/3, respectively. Noting NTL ≈ Fr−1
T in the former regime and NTL ≈

Fr−3
T in the latter, FrT provides a practical means of determining which scaling is most

relevant. In the case of a breaking wave, it is likely that the first scaling applies for youthful

turbulence (FrT < 1) and the latter applies in older turbulence where mixing has sufficiently

reduced the stratification (FrT > 1). It is important to note, however, that such mechanisms

quite possibly demonstrate a pre-turbulent period similar to that found for K-H billows

(Smyth et al., 2001) where the available potential energy, EPE = −(g/ρ0)〈ρ′2〉/(2∂ρ/∂z) ≈

N2L2
T/2, exceeds k. Instantaneous observations of LT in youthful turbulence may then lead

to overestimation of k. It remains unclear if temporal averaging in convectively-generated

turbulence, say that of the Luzon Strait observed by Alford et al. (2011), leads to 〈EPE〉 ∼ 〈k〉

as is suggested by the findings of (Moum, 1996) for small shear-driven overturns of the

thermocline.

7.5 Concluding Remarks

The inherent complexity of stratified shear-flow turbulence necessitates a multi-parameter

description of mixing efficiency. Because of this complexity, single parameter schemes are
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afflicted by certain ambiguities that limit their general application to numerical models or

field estimations of diapycnal mixing. Using the simple example of turbulence in the presence

of homogeneous shear and stratification, we have identified several ambiguities associated

with descriptions based solely upon the gradient Richardson number (Ri), the turbulent

Froude number (FrT ), and the buoyancy Reynolds number (Reb) using a multi-parameter

framework. For weakly stratified turbulence (i.e., shear-dominated or inertia-dominated),

our findings suggest that an Ri-based description of mixing efficiency, such as equation

7.7, may be highly effective if complemented with a Froude number-based scheme such as

equation 7.8 to account for forcing mechanisms other than mean shear (i.e., those leading to

TL � S−1). For the DNS considered here, Ri governs when STL > 3.3 while FrT governs for

STL < 3.3. Neither scheme, however, is sufficient when stratification is strong and turbulence

is weak, with the decrease in mixing efficiency at high Ri or low FrT (high NTL) likely being

dependent the Reynolds number and the nature of the dominant turbulent mechanism. The

tendency of R∗f to increase with increasing Reynolds numbers at high Ri or low FrT is an

important concept that remains an open area of research due to the practical restraints of

numerical and laboratory flows. Finally, parameterizations based on Reb should be viewed

with caution since the interdependence of the constituent parameters, ReL and NTL, is not

likely universal.

Extension of the multi-dimensional framework to the interpretation of turbulence in the

field remains a challenge due to the lack of reliable estimates of k. While promising, the

indirect estimates of k discussed in section 7.4 for either shear-driven or convectively-driven

turbulence, will remain unvalidated until direct quantification of k in the field becomes a

reality. As such the quest for an unambiguous parameterization of mixing efficiency in

geophysical flows persists due to an incomplete set of calculable parameters.

Nonetheless, the current work provides motivation and direction for this quest in the

context of observational oceanography. Furthermore, the ambiguities pointed out here have

immediate implications for numerical models in which both k and ε are calculated as part
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of turbulence closure routines, thus allowing access to the framing parameters of figures 7.1

and 7.2.

The next chapter switches our focus back to the relevancy of overturning, but in the con-

text of observed flows and measurable quantities. The concepts embodied in the framework

of this chapter and last are relied upon to help explain the observed results.
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Chapter 8

Oceanic Observations of Overturning

and Dissipation9

8.1 Introduction

Vertical density overturns are commonly used to indirectly determine the dissipation rate

of turbulent kinetic energy, ε, and in turn diapycnal diffusivity in the ocean following the

seminal works of Thorpe (1977) and Dillon (1982). In an investigation of turbulence within

the thermocline, Dillon (1982) provides observational evidence suggesting a linear relation-

ship between the size of observed overturns as quantified by the Thorpe length scale, LT

(Thorpe, 1977), and the dimensionally-constructed Ozmidov length scale, LO ≡ (ε/N3)1/2

(Dougherty, 1961; Ozmidov, 1965), where N ≡
√
−(g/ρ0)∂ρ/∂z is the ambient buoyancy fre-

quency determined from the background density gradient, ∂ρ/∂z. Subsequent observations

in the ocean thermocline (Moum, 1996) and in topographically-driven turbulence (Wesson

and Gregg, 1994; Ferron et al., 1998) seem to agree with Dillon’s findings and have largely

popularized the use of

εT = a2L2
TN

3 (8.1)

as a method for inferring the mean dissipation rate from a given set of conventionally-

measured density profiles, where the overbar represents an ensemble average in time and/or

space. If valid for the flow and sample set of interest, equation 8.1 serves as a measure of

9A manuscript based on the work of this chapter has been submitted to the Journal of Physical Oceanog-
raphy. The title of the work is, “Biases in Thorpe scale estimation of turbulence dissipation from large over-
turns in the ocean.” Background information and literature relevant to this chapter are presented again so
the chapter may be read as a stand-alone work. The chapter is written in a collective “we” voice to acknowl-
edge collaboration with Dr. S. K. Venayagamoorthy, Dr. Lou St. Laurent of Woods Hole Oceanographic
Institution, and Dr. James N. Moum of Oregon State University
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dissipation that is more simple and accessible than direct measurements using microstruc-

ture shear profilers. The constant of proportionality, a, is determined from an arithmetic

mean of LO/LT (Dillon, 1982) or log(LO/LT ) (Ferron et al., 1998) and is generally sug-

gested to be close to unity. Widespread appeal of equation 8.1 has naturally led to its use

in the study of flows characterized by large overturns. For example, Alford et al. (2011)

employ the method to investigate temporal and spatial evolution of turbulence driven by

topographically-influenced overturns in Luzon Strait of the South China Sea where over-

turns over 100 m in height have been observed. The method has also been employed in a

numerical sub-grid routine to parameterize diapycnal mixing due to large overturning lee

waves by Klymak and Legg (2010). Approaches such as these apply equation 8.1 to instan-

taneous realizations of the density field (i.e., a given profile or time step), and as such, are

susceptible to error incurred from temporal variability from the physical conditions support-

ing LT ∼ LO. Perhaps more importantly, it remains unclear if the fundamental arguments

supporting LT ∼ LO even hold on average for such flows, given that the work of Thorpe

(1977) and Dillon (1982) focused on relatively weak turbulence and small overturns (< 10m)

driven by different processes. If the fundamental arguments do not hold, equation 8.1 may

be unreliable regardless of the amount of averaging in time and space.

The goal of this chapter is to evaluate the relationship between LT and LO, and thus

the appropriateness of equation 8.1, in environments where intense turbulence is driven by

the collapse of large overturns. Both sampling issues and fundamental arguments will be

discussed in an analysis of the results. Of particular interest are observations from Luzon

Strait in the South China Sea and those from the Brazil Basin in the southern Atlantic

Ocean. Common to such environments is the tidally-driven accumulation of available poten-

tial energy (APE) in large amplitude, topographically-influenced overturns that convectively

destabilize into turbulent kinetic energy (TKE). The TKE is then dissipated to heat and/or

is converted to mean potential energy via diapycnal mixing. Henceforth, the turbulence

associated with this process will be referred to as “convectively-driven.” A third data set
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from the northern Atlantic Ocean will be featured to examine overturning where dissipation

rates are more representative of the relatively quiescent ocean interior.

8.2 Fundamentals of the Thorpe-Ozmidov relation

Fundamentally, LT is related to the APE that is stored in a patch of turbulence at the

instant of sampling. This can be shown in defining the APE in terms of the Ellison length

scale, LE ≡ 〈ρ′2〉1/2(∂ρ/∂z)−1, such that

APE ≡ 1

2
N2L2

E ≈
1

2
N2L2

T . (8.2)

In a strict sense, the definition proposed in equation 8.2 is valid if the rms density fluctuation,

〈ρ′2〉1/2, is calculated using perturbations from the stable reference state that is obtained by

three-dimensionally re-sorting the density field to a state of minimum potential energy as

proposed by Winters et al. (1995). The reference state should also be that which defines

N . In the one-dimensional limit represented by a single profile, LT then approximates

LE and the two length scales are equivalent if the reference density profile is linear. Given

equation 8.2, the arguments needed to support LT ∼ LO are (i) that APE within an overturn

scales with the total turbulent kinetic energy, k, so that LT ∼ k1/2N−1 and (ii) that the

overturns inertially transfer their kinetic energy down-spectrum at a rate equal to ε so that

k ∼ (εLT )2/3. Combining these two assumptions gives

1

2
N2L2

T ∼ (εLT )2/3 ⇒ LT ∼ LO, (8.3)

In other words, the turbulent Froude number defined by Frk ≡ ε/(kN) is assumed to be

O(1).
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There is considerable evidence from laboratory experiments and direct numerical sim-

ulations (DNS) to suggest that these assumptions should not hold on an instantaneous,

or sample-wise basis for well-developed, shear-driven turbulence. For example, Rohr et al.

(1988) demonstrate LT/LO to be an increasing function of the gradient Richardson number,

Ri ≡ N2/S2, in laboratory flows where the mean shear, S, and stratification are uniform. In

their experiments, they find LT/LO ≈ 1 only when Ri ≈ 0.25. Mater and Venayagamoorthy

(2014b) who, using a large database of homogeneous DNS and laboratory results, suggest

additional dependence on the inverse Froude number, Fr−1
k , and the shear strength param-

eter, Sk/ε. Specifically, they find LT/LO ≈ 1 at Ri ≈ 0.25 only when the time scales of

the shear and buoyancy fluctuations are comparable to those of the inertial motions (i.e.,

Sk/ε = O(1) and Fr−1
k = Nk/ε = O(1)). When shear is absent or of limited influence (i.e.,

Sk/ε � 1), they find LT/LO to be an increasing function of Fr−1
k , and that LT/LO ≈ 1

only when Fr−1
k = O(1) as suggested by the arguments above. Only at this transition from

a buoyancy-dominated to a well-mixed, inertia-dominated (quasi-isotropic) regime are as-

sumptions (i) and (ii) simultaneously satisfied so that the outer motions of the flow scale

with both ε and N . Unfortunately, the exact dependence of LT/LO on Ri, Frk or Sk/ε in the

ocean has not been widely reported; however, the recent findings of Smyth and Moum (2013)

that strongly stratified turbulence of the equatorial undercurrent demonstrates marginal sta-

bility on average, i.e., 〈Ri〉 ≈ 0.25, seems to support the use of equation 8.1, in an average

sense, for long time series observations of well-developed, shear driven turbulence.

Oceanic turbulence, however, is driven by both mean shear and the intermittent, con-

vective collapse of large overturns. Use of equation 8.1 — in even an average sense — with

regard to the latter mechanism is largely unvalidated. This additional mechanism brings

additional possibilities for violation of assumptions (i) and (ii), with assumption (i) being

particularly dubious on a sample-wise basis because APE and TKE may be strongly out of

phase. In an investigation of Kelvin Helmholtz (K-H) billows, Smyth et al. (2001) clearly

demonstrate that LT/LO should monotonically decrease over time as a billow collapses into
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turbulence. They find LT > LO for young turbulence characterized by APE > TKE and

LT < LO for older, well-developed turbulence that has effectively drained the APE stored

in the initial overturn. Qualitatively, the phase difference between APE and TKE in K-H

turbulence is similar to what occurs during intermittent convectively-unstable overturning

that characterizes regions such as Luzon Strait and the Brazil Basin.

8.3 Data Sets

This section describes some basic and pertinent details of each of the three data sets

considered. All data sets have been provided complements of Dr. Lou St. Laurent of Woods

Hole Oceanographic Institution. Study site locations are shown in figure 8.1.

BBTRE

IWISENATRE

 180° W  135° W   90° W   45° W    0°     45° E   90° E  135° E  180° E 

 90° S 

 45° S 

  0°   

 45° N 

 90° N 

Figure 8.1: Study site locations.
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8.3.1 Luzon Strait (IWISE)

Luzon Strait, separating Taiwan to the north and the Philippines to the south, is char-

acterized by strong tidal currents and relatively strong stratification that interact with dra-

matic seafloor topography in the form of approximately parallel ridges running north-south

across the strait (figure 8.2). These features make the area unique in its ability to convert

Figure 8.2: Bathymetry and profile locations for IWISE. Profiles were taken directly over
each of the parallel ridges spanning the strait. Contours are shown at 1000 m intervals.
Bathymetretic data is from Smith and Sandwell (1997).

barotropic energy (that of the surface tide) to baroclinic energy in the form of large ampli-

tude internal waves that propagate into the South China Sea as well as break locally in the

form of large overturns (Alford et al., 2011). In 2011, ship-based surveys were conducted at
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sites along both ridges as part of the Internal Waves In Straits Experiment (IWISE) funded

by the U.S. Office of Naval Research to study the generation, propagation, and dissipation

of internal waves in Luzon Strait. Hydrographic (i.e., temperature, salinity) and turbulence

data (i.e., microstructure shear for calculation of dissipation) were collected at the station

locations shown in figure 8.2. Details of the survey are reported in St Laurent (2012). “M”

stations are clustered at the crest of the east ridge at roughly the 1000m isobath. These four

stations (M1-M4) were each occupied twice (∼ 36hr intervals) during opposite phases of the

spring-neap cycle of the tide. The first occupations were during the neap tidal period, while

the second occupations were during the spring tidal period when tidal currents are relatively

high. The N2 station is on the western ridge at the 1800 m isobath and was occupied during

the spring tidal period. Turbulence profiling was conducted at each site using a free-falling

vertical microstructure profiler (VMP) that is capable of measuring horizontal shear at the

scales of the turbulence, thus allowing for direct estimates of ε. The VMP was also equipped

with conductivity and temperature probes that allow for vertical descriptions of the den-

sity field needed for calculation of LT and N through an equation of state. Most casts of

the VMP were accompanied by a quasi-simultaneously lowered Conductivity-Temperature-

Depth (CTD) profiler for high resolution vertical density profiles. However, we only consider

data from the VMP platform in the current study to avoid possible errors associated with

spatial and temporal variability between density profiles from the CTD and dissipation pro-

files from the VMP. VMP data considered here has been previously filtered to a resolution

of 1 db so that the minimum Thorpe scale resolved is LT,min ≈ 1 m. Following elimination of

certain profiles due to dubious temperature data, a total of 71 out of 78 profiles were used

in the current study. These profiles extend to within ∼ 75 m of the seafloor. Henceforth, we

will refer to this data set as “IWISE”.
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8.3.2 Brazil Basin (BBTRE)

The Brazil Basin is a region of the southern Atlantic Ocean bordered by the Mid-Atlantic

Ridge (MAR) to the east and the South American continent to the west (figure 8.3). Near

Figure 8.3: Bathymetry and profile locations for BBTRE. The Mid Atlantic Ridge runs
north-south to the east of the profile locations which are located over latitudinally-oriented
ridges and canyons leading to the MAR. Contours are shown at 1000 m intervals. Bathymetric
data is from Smith and Sandwell (1997).

the MAR, the seafloor is dissected by a large number of east-west oriented fracture zones

with ridge-canyon bathymetry. Bathymetric relief is dramatic, with ridge crests rising up

to 1 km above canyon floors. As such, turbulence is greatly enhanced near the bottom

(St Laurent et al., 2001). The Brazil Basin Tracer Release Experiment (BBTRE), funded

by the U.S. National Science Foundation (NSF), was initiated in 1996 with the release of
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110 kg of sulfur hexafluoride near 21.7◦S, 18.4◦W on the western flank of the MAR to

study mixing and stirring over the rough bathymetry of the Brazil Basin. Accompanying

hydrographic/turbulence surveys were conducted in 1996 and 1997 (for details see Polzin

et al., 1997; Ledwell et al., 2000). In the current study, we will analyze a subset of data

collected in 1997 that is featured in St Laurent et al. (2001). A total of 89 vertical profiles

of temperature, salinity, and microstructure dissipation will be used. All profiles extend to

within ∼ 20 m of the seafloor. As with IWISE, all variables considered were collected from

a single profiler so that hydrographic and dissipation measurements are contemporaneous in

time and space. The vertical resolution of the data is 0.5 db, however, only LT > 1 db ≈ 1 m

will be considered to be consistent with the IWISE analysis. Henceforth, we will refer to

this data set as “BBTRE”.

8.3.3 North Atlantic (NATRE)

To contrast with the enhanced turbulence of Luzon Strait and the fracture zone of the

Brazil Basin, we will consider data collected as part of the North Atlantic Tracer Release

Experiment (NATRE) in the Canary Basin where the seafloor is relatively smooth and

turbulence is generated from the background internal wave field (figure 8.4). Here, dissipation

rates are more representative of the relatively quiescent ocean interior (Toole et al., 1994) and

convectively-driven turbulence due to large overturns is absent. In the absence of significant

turbulence, molecular effects become increasingly important in the diffusion of heat and

salinity. Given these scalars diffuse at different rates, this process is known as “double

diffusion” and can result in the formation of vertical “salt fingers” (Schmitt, 1994; St. Laurent

and Schmitt, 1999). This has serious implications for estimates of LT which will discussed

in section 8.4. To characterize the hydrographic and turbulent properties of the experiment

area, 155 vertical profiles using a VMP were collected (for details see St. Laurent and Schmitt,

1999). Sample locations are mapped in figure 8.4. Of these profiles, 150 were available to the

current study. Most profiles terminate at ∼ 2000 m, with 25 shallower profiles terminating
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Figure 8.4: Bathymetry and profile locations for NATRE. Profiles were taken over mildly
sloping topography of the West African Shelf in a roughly 500km by 500km rectilinear pattern.
Additional profiles were taken near the dye injection point. Contours are shown at 1000 m
intervals. Bathymetric data is from Smith and Sandwell (1997).

at ∼ 1000 m, 10 deeper profiles extending to ∼ 3000 m, and 3 very deep profiles extending

to ∼ 4000 m. The deeper profiles do not reveal bottom enhanced dissipation rates as is seen

in the BBTRE data. The vertical resolution of the data is 0.5 db, yet we will only consider

LT > 1 db ≈ 1 m for consistency among data sets.
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8.4 Methods

8.4.1 Thorpe scale calculations for turbulent patches

The process proposed by Thorpe (1977) for determining LT involves re-sorting an instan-

taneously observed vertical profile of potential density, σ, such that the profile is monoton-

ically increasing with depth (i.e., gravitationally stable). This is done while keeping track

of the displacement required of each data point. For a given depth, zi, this displacement

is calculated as δTi = zi − zsorted, where zsorted is the depth to which the sample taken at

zi must be moved to achieve a stable profile. In this sense δT reflects the displacements

needed of samples in the original profile. For an individual overturn in quiescent fluid, δT

is large and negative at the upper boundary, increases with depth, and is large and positive

at the lower boundary so that a“reverse Z” signature appears in the profile of δT (assuming

zi is positive and increases with depth). The root mean square of δT for the depth range

exhibiting this signature then determines LT of the overturn:

LT = 〈(δT )2〉1/2. (8.4)

Because overturns are observed at various stages of development, and thus coherency, the

reverse Z pattern is not always easy to distinguish. As such, we objectively identify “tur-

bulent patches” for Thorpe scale calculations as vertical segments of the profile over which

δT values sum to zero. Patch boundaries are determined using a top-down cumulative sum,
n∑
j=1

δTj, where j = 1 corresponds to a beginning value at the top of the profile and j = n

corresponds to the end value near the bottom of the profile. For most of the water column

the density profile is stable so that
∑
δT = 0 because δT = 0. Over an overturning patch,

however,
∑
δT decreases from zero as a function of depth in the uplifted heavy fluid before

increasing back to zero as a function of depth in the down-welled light fluid. The depths

where
∑
δT = 0 on either side of the overturning fluid delineate the patch. It is over these
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Figure 8.5: Example of density (first panel), Thorpe displacement (second panel), top-down
cumulative sum of Thorpe displacements (third panel), and dissipation (fourth panel) profiles
for a turbulent patch. The patch is objectively delineated using the bounds on non-zero ΣδT .

delineated vertical segments that corresponding averages of buoyancy frequency and dissi-

pation rate are taken for calculation of LO. The process of identifying a turbulent patch is

shown in figure 8.5.

8.4.2 Temperature-salinity relationships

Because of concern over the reliability of salinity measurements, we use potential tem-

perature, Θ, as a surrogate for potential density. We note, however, that in weakly energetic

(low Reynolds number) flows such as those sampled in NATRE, inversions in Θ(z) may not

be true overturns in that they are compensated by salinity in such as way that the water col-

umn is stable. Such conditions favor double diffusive transport through salt fingering rather
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Figure 8.6: Temperature-salinity (T-S) diagram for IWISE, BBTRE, and NATRE data.

than turbulent mixing (Schmitt, 1994; St. Laurent and Schmitt, 1999). Data susceptible to

salt fingering appears as spread along a line of constant σ in a temperature-salinity (T-S) dia-

gram (Schmitt, 1999). Figure 8.6 shows a T-S diagram for the data considered here. Spread

in the T-S relationship, typically referred to as “spice”, can be seen for σ < 1026 kgm−3

in the BBTRE data which correspond to the upper 200 m of near-surface water that is

susceptible to atmospheric influence. Some spice is also seen for σ . 1026.5 kgm−3 in the

NATRE data which also roughly corresponds to the upper 200 m. Spice can also be seen

for 1027.25 . σ . 1027.75 kgm−3 in both BBTRE and NATRE, which corresponds to water

from approximately 750− 2000 m in BBTRE and from 600− 2000 m in NATRE. Data from

these depth ranges, lightly shaded in figure 8.6, are omitted from our calculations. In con-

trast, IWISE data exhibits less spice due to more intense turbulent mixing throughout the

water column. The T-S relationship for IWISE suggests that density is strongly a function

of temperature for most of the water column.
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8.4.3 Calculation of buoyancy frequency

In accordance with the arguments of section 8.2, the buoyancy frequency, N , should be

that which characterizes the background stratification against which a particular overturn

is working; that is, the density profile used to calculate ∂ρ/∂z (or more strictly, ∂σ/∂z)

should characterize the background potential energy so that perturbations from ρ(z) (or

σ(z)) characterize the potential energy available for conversion to turbulence. Unfortunately,

the limitations of field sampling and the non-stationary, inhomogeneous nature of natural

flows make determination of a background N nontrivial. Most commonly, the Thorpe-sorted

density profile is used as a surrogate for that of the background state, and the gradient of

the profile across a turbulent patch is calculated in some fashion. In the current work, a

“bulk” density gradient is calculated from the Thorpe-sorted profile using the method of

Smyth et al. (2001), wherein the approximate equivalence of the Thorpe and Ellison scales

is exploited to yield: (
∂σ

∂z

)

bulk

≡ 〈σ
′2〉1/2
LT

. (8.5)

The density perturbation, σ′, is determined as the difference between the instantaneous and

sorted values at a given depth, the square of which is averaged over the vertical extent of

the event (see figure 8.5). Since we use potential temperature as a surrogate for potential

density, a “pseudo” potential density profile is used to determine σ′. The pseudo potential

density profile is computed directly from the temperature profile using a constant arbitrary

salinity and an approximation to the non-linear the equation of state (see Gill, 1982). As

such, the profile effectively provides accurate values of the temperature-sorted equivalent

density gradient needed for N , but not true values of density.

8.4.4 Estimation of dissipation

To allow a straight-forward comparison between data sets, we assume a = 1 in calculating

the inferred dissipation rate, εT , from equation 8.1. The actual value of a (in a statistical
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Table 8.1: Patch-wise statistics

Data set 〈log LT

LO
〉 std(log LT

LO
) 10〈log(LT /LO)〉 a

IWISE -0.12 0.49 0.77 [0.42, 4.03]
BBTRE -0.03 0.35 0.93 [0.48, 2.38]
NATRE 0.26 0.54 1.84 [0.16, 1.88]

Ferron et al. (1998) 0.04 0.30 1.10 [0.46, 1.82]

sense) for each data set will be given separately in section 8.5. The dissipation rate used

in calculation of LO for a given patch is an arithmetic average of the VMP measurements

over the vertical extent of the patch (see figure 8.5). This patch-averaged dissipation will

be denoted as εO, while the un-averaged VMP measurements will simply be denoted as ε.

Select profiles of Θ, N , LT , LO, εO, εT , and ε are included in appendix B for each study site.

8.5 Direct comparisons

First, consider the direct comparison of LT and LO for the ensemble of turbulent patches

as identified by the criteria of section 8.4. The relationship is portrayed as a two-dimensional

histogram of observations from individual patches (figure 8.7).

As do Wesson and Gregg (1994), we find that the data cluster near LT ≈ LO but with

considerably more scatter than reported by Dillon (1982). LT/LO is lognormally distributed

with statistics for each data set reported in table 8.1 along with those from Ferron et al.

(1998) who also report lognormal behavior. With the exception of NATRE, the statistics

compare well across data sets and the constant of proportionality is comparable to that

found by Ferron et al. (1998). For NATRE, LT is roughly twice as large as LO on average

— a finding that we elaborate on below. εT and εO are compared in figure 8.8.

To further investigate scatter in the Thorpe-Ozmidov relationship, LT/LO and εT/εO

are plotted in figure 8.9 and 8.10, respectively, against the normalized overturn size, L̂T ≡

LT/LνN , where LνN ≡ (ν/N)1/2 is a dimensionally-constructed small scale that is indepen-
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Figure 8.7: Scatter plot comparisons of the Thorpe (LT ) and Ozmidov (LO) scales calculated
from turbulent patches for IWISE (top), BBTRE (middle), and NATRE (bottom). Point
density is represented by colorbars.
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Figure 8.8: Scatter plot comparison of the Thorpe-inferred dissipation (εT ) and the patch-
averaged measured dissipation (εO) from turbulent patches for IWISE (top), BBTRE (middle),
and NATRE (bottom). Point density is represented by colorbars.
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dent of the turbulence. LνN physically represents the length scale over which the viscous

diffusion of momentum occurs on time scale N−1. Given constant viscosity, L̂T expresses

the size of an overturn with respect to the background stratification and allows for the con-

ceptual distinction between young overturns that have yet to mix the fluid (i.e., high N , large

L̂T ) from those occurring in older turbulence where significant mixing has already occurred

(i.e., low N , small L̂T ). That is, L̂T is conceptually a surrogate for the (inverse) age of the

turbulence. Under this reasoning, all three data sets suggest LT/LO should decrease with

event age in apparent agreement with the K-H turbulence studied by Smyth et al. (2001).

This trend appears as a positive correlation between LT/LO and L̂T in figure 8.9. It is

important to note, however, that the data sets do not collapse upon one another; L̂T seems

to indicate relative age for a given set of observations, but does not allow for comparison of

event age between data sets. Segregation of the data is likely due to forcing by the mean flow,

with data from strong forcing (e.g., IWISE) shifting to higher values of L̂T . This apparent

shift suggests L̂T is also a general indicator of mean forcing.

Distributions of LT/LO and εT/εO are shown as histograms in the right panels of figure

8.9 and 8.10, respectively, for quartiles of the data delineated by L̂T . Quartile delineations

are indicated in the left panels with the first quartile starting at L̂T = 24 to avoid resolution

errors (discussed later). These results may be encouraging for use of equation 8.1 in a highly

averaged sense, however, the skewness toward large εT/εO when L̂T is large hints that bias

is possible if sampling includes large overturns in strongly forced flows.

Further interpretation of the data is possible considering various physical regimes present

in figure 8.9. First note that

LT
LO

= Re
−1/2
b L̂T (8.6)

so that lines of constant buoyancy Reynolds number, Reb ≡ ε/(νN2), may be constructed

through the space. Following the suggestion of Gibson (1980), a line corresponding to Reb =

30 has been drawn to approximately delineate “active” turbulence (Reb > 30; below line)

from “fossil” turbulence (Reb < 30; above line). A number of overturns observed in NATRE
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Figure 8.9: Comprison of LT /LO with the normalized overturn scale, L̂T = LT /LνN , for
IWISE (top), BBTRE (middle), and NATRE (bottom). Conceptual regimes are labeled A
(strongly forced, presumably young turbulence and large overturns), B (weakly forced, strongly
stratified turbulence and small overturns) and C (weakly forced, weakly stratified turbulence
and small overturns; old convectively-driven turbulence). Point density is represented by col-
orbars. Quartile distributions of the data are shown in the right panels.
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Figure 8.10: Comprison of εT /εO with the normalized overturn scale, L̂T = LT /LνN , for
IWISE (top), BBTRE (middle), and NATRE (bottom). Point density is represented by color-
bars. Quartile distributions of the data are shown in the right panels.
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fall into the fossil regime, possibly due to non-turbulent salt fingering that persists despite our

elimination of depths characterized by obvious spice in the T-S relationship. Furthermore,

equation 8.6 shows that the data segregation seen by comparing the left panels of figure 8.9

(discussed above) is due to differences in Reb between the study sites; strongly turbulent

IWISE data clusters along Reb ∼ O(104) while weakly turbulent NATRE data clusters

closer to the fossil-active transition. BBTRE, which features weak dissipation rates high

in the water column and strong dissipation rates near bottom topography, spans a wider

range in Reb and overlaps with both NATRE and IWISE data. The apparent consistency of

Reb for a given data set suggests that this parameter is not particularly useful in describing

LT/LO.

Next, note that

LT
LO

= Re
−3/2
T L̂T

3
, (8.7)

where ReT ≡ (LT/η)4/3 is the Reynolds number of the overturns presented by Luketina

and Imberger (1989) and η ≡ (ν3/ε)1/4 is the Kolmogorov length scale. Since the minimum

resolved Thorpe scale is approximately 1 m and the approximate shear probe noise level is

O(10−11 m2s−3), we cannot hope to resolve turbulence with ReT . 215. Using this value,

equation 8.7 is plotted in figure 8.9 to indicate where the data has been truncated due

to these restrictions. There may well be some weakly turbulent overturns above this line

that are not resolved. In recognition of this truncation, the quartile distributions do not

consider data with L̂T < 24 which results from equations 8.6 and 8.7 given Reb,min = 30 and

ReT,min = 215; for L̂T & 24, LT/LO is limited physically by the stratification rather than

artificially by measurement resolution.

Now consider the three regimes loosely labeled A-C in figure 8.9. The labels are positioned

to aid in a qualitative discussion of data and are not intended to quantitatively delineate

regimes. In regime A, forcing is strong with respect to the stratification (large L̂T ) and

LT > LO suggests that stratification is strong with respect to the turbulence. This regime is

populated by large, presumably young overturns of the IWISE and BBTRE data sets. The
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Figure 8.11: Example turbulent patch from BBTRE. The patch falls within regime A (L̂T =
2400 and LT /LO = 8.8) and demonstrates a large coherent overturn suggestive of a youthful
billow. The bottom of the overturn was not measured by the VMP cast, likely resulting in a
somewhat smaller LT than actual existed.

convective nature of these overturns suggests LT > LO in regime A is likely due to APE > k,

i.e., violation of assumption (i). Assumption (ii) is also expected to be violated because the

turbulence is, presumably, not yet fully developed and is strongly anisotropic at the outer

scales. The near-bottom patch from BBTRE shown in figure 8.11 is exemplary of an event

from regime A. The patch demonstrates a coherent overturn shape suggestive of a young

overturn. In contrast, a less coherent and presumably older overturn from a nearby station

is shown in figure 8.12. This patch is representative of the transition from regime A to C.

IWISE and BBTRE data extend from regime A into regime C where overturns are

presumably due to older, developed turbulence that has mixed the flow and reduced the
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Figure 8.12: Example turbulent patch from BBTRE. The patch represents a transitional
regime between regimes A and C (L̂T = 1100 and LT /LO = 1.2) and demonstrates an incoher-
ent structure and higher dissipation rates. These characteristics are suggestive of older, more
developed turbulence.

stratification such that LT < LO. This regime likely corresponds with either the “un-

forced/isotropic” or “shear-dominated” regimes of Mater and Venayagamoorthy (2014b) who

investigated well-developed homogeneous turbulence. They find LT to be better correlated

with Lkε ≡ k3/2ε−1 for unforced/isotropic flow or LkS ≡ k1/2S−1 for shear-dominated flow.

The former finding suggests possible adherence to assumption (ii) in regime C. LT < LO in

regime C is then due to a breakdown in assumption (i) as stratification becomes weak. The

DNS results of Mater et al. (2013) support this, showing APE � k in the weakly stratified

limit (i.e., Frk � 1), as might be expected.
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Regime B is populated with the weakly forced, small overturns of NATRE and BBTRE

data. This regime is perhaps analogous to the “buoyancy-dominated” regime of Mater and

Venayagamoorthy (2014b) who show the regime to be characterized by LT ∼ k1/2N−1 in

support of assumption (i) but also LT > LO — a finding they suggest is due to buoyancy-

induced anisotropy at the outer scales that effectively truncates the inertial subrange10 to

smaller scales, i.e., violation of assumption (ii). Along with possible fossil overturns or

compensation of temperature inversions by salinity, the violation of assumption (ii) due to

strong stratification and weak turbulence is a possible explanation for relatively large values

of 〈LT/LO〉 (i.e., small values of a) reported for NATRE (see table 8.1). Nonetheless, taken

together, weakly forced data of regimes B and C indicate a central tendency of LT ≈ LO in

agreement with Dillon (1982) and Moum (1996) who examined data from the thermocline

where mean forcing is relatively weak and turbulence is due to mean shear or low amplitude

internal waves rather than large convective instabilities.

8.6 Mean profiles

Comparisons of the previous section indicate that there is perhaps a central tendency

for LT/LO ≈ 1 when all data sets are considered despite an obvious dependency on the

normalized overturn size, L̂T . Next, consider the use of equation 8.1 to determine the av-

erage vertical distribution of dissipation rate, which is an important consideration for ocean

circulation models (Melet et al., 2013). For all data sets, patch-wise length scales, buoyancy

frequency, and dissipation rates were averaged in 100 m vertical bins across profile ensembles.

These ensemble-averaged values are denoted with angled brackets 〈〉 and are shown as a func-

tion of depth in figures 8.13, 8.14, 8.15, and 8.16 for IWISE M stations, IWISE station N2,

BBTRE data, and NATRE data, respectively. Turbulence at BBTRE is bottom-enhanced,

therefore, average values are shown as a function of distance above the local bottom.

10In stratified turbulence, the inertial subrange is the range of eddy sizes, LO & l & η, for which the
inertial scaling l ∼ k(l)3/2ε−1 is valid, with k(l) being the eddy-wise kinetic energy.
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Figure 8.13: Mean values as a function of depth for IWISE M stations during spring tide.
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Figure 8.14: Mean values as a function of depth for IWISE station N2.
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Figure 8.15: Mean values as a function of height above bottom for BBTRE.
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Figure 8.16: Mean values as a function of depth for NATRE.
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In qualitative agreement with Ferron et al. (1998), the average inferred dissipation rate,

〈εT 〉, is generally larger than, but within an order of magnitude of the average measured

dissipation rate, 〈εO〉. Agreement is relatively poor for BBTRE close to the bottom where

〈LT 〉 > 〈LO〉 and 〈εT 〉 > 〈εO〉 may be due to the presence of large, young overturns associated

with bathymetric ridges (regime A of figure 8.9).

〈εT 〉 > 〈εO〉 also characterizes the mid-depths of the IWISE data. This may be due

to the occurrence of large overturns and strong advection near the base of the Kuroshio

Current (see St Laurent, 2012). Interestingly, however, near-bottom agreement at IWISE

N2 is better than what is observed for near-bottom data of BBTRE despite a strong influence

from bottom roughness. This difference may be due to the fact that IWISE stations were

occupied over the course of at least a single tidal cycle so that both young (〈εT 〉 > 〈εO〉) and

old (〈εT 〉 < 〈εO〉) turbulence could be sampled with repeated VMP casts. Another possible

explanation is that bottom-induced drag at IWISE N2 is also leading to high dissipation

as a result of strong near-bottom mean shear. Spatial variability may also be reduced at

this station due to the fact that turbulent fluid near the bottom is advected back and forth

across the ridge during the course of a tidal cycle rather than being swept downstream. In

contrast, the flow over topography observed in BBTRE is predominately unidirectional.

Agreement is relatively good in the NATRE data set. Interestingly, the bias toward

εT > εO observed in figure 8.10 is not reflected in the mean profile due to the scarcity of

large overturns.

Because dissipation is not necessarily zero outside of identified patches, ensemble averag-

ing was also done for continuous (as opposed to patch-wise) VMP measurements of ε. Profiles

of 〈ε〉 are shown as a light gray line in the second panel of figures 8.13 - 8.16. In general,

〈εO〉 & 〈ε〉 which indicates that dissipation is concentrated in overturns. A notable exception

to this is the near-bottom data from IWISE N2 where, as discussed above, bottom-enhanced

shear or non-local turbulence due to flow reversal may be playing a role in increasing the

dissipation occurring outside of overturns.

164



The results of this section generally support the use of equation 8.1 in an ensemble

averaged sense, but indicate a potential bias toward 〈εT 〉 > 〈εO〉 in portions of the water

column characterized by large overturns and when temporal averaging is limited (e.g., near-

bottom BBTRE). This has important implications for time series (e.g., see Alford et al.,

2011) or time-integrated estimates of dissipation (discussed next) in which contributions by

individual overturns are important.

8.7 Time integration: energy budgets

Of particular importance to ocean circulation models is the correct budgeting of kinetic

energy between various sources and sinks so that models are energetically consistent. The two

important sinks are, of course, viscous dissipation and conversion to mean potential energy

via diapycnal buoyancy flux. Commonly, the latter is related to the former using a prescribed

mixing efficiency (see Osborn, 1980). As such, time integration of ε in turbulent regions of the

ocean provides a means for estimating the total energy consumed by the turbulence during a

given period of time. Therefore, time integrated values provide valuable information for the

calibration and validation of numerical models. In this section we consider the possibility

of using εT for this purpose and evaluate the effectiveness of time integration in smoothing

over the phase difference between APE of the large overturns and TKE of the subsequent

turbulence. Data from IWISE M sites during the spring tidal period are considered (direct

comparison of LT and LO is shown in figure B.9 of appendix B). A time series of the true

dissipation rate measured by the VMP, ε, is shown as a function of depth for each profile in

figure 8.17.

Integration of measured dissipation values with respect to depth for each profile gives a

time series of the the power lost to viscous dissipation per unit surface area of the ocean.

Time integration then gives the unit energy dissipated. With the assumption of constant

density11, ρ0, the vertically, time-integrated dissipation (i.e., unit energy) is estimated from

11The change is density across the depth is at most (1028 − 1021)kgm−3/1021kgm−3 × 100% = 0.7%,
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Figure 8.17: Time series of dissipation rates for profiles taken during the spring tidal cycle
at IWISE M stations.

VMP measurements using

Unit Energy (patches) ≈ ρ0

n∑

i=1

m∑

j=1

(εO∆zpatch)j,i ∆ti, (8.8)

where n is the total number of profiles (n = 36 for IWISE M during the spring tidal period),

m is the total number of patches with LT > 1 m in a given profile, ∆zpatch,j is the vertical

extent of a given patch, and ∆ti is the central differenced time increment allotted to each

profile (∆t ≈ 4 hr for IWISE M). Analogously, Thorpe-inferred unit energy is estimated

using

Unit Energy (Thorpe) ≈ ρ0

n∑

i=1

m∑

j=1

(εT∆zpatch)j,i ∆ti. (8.9)

Depth and time integrated values of εO and εT are shown in figure 8.18. Measured unit

power (shown as green bars) demonstrates high temporal variability and is extremely high

by ocean interior standards12, with some values approaching or exceeding 0.5 Wm−2. While

roughly in phase with measured values, the Thorpe-inferred unit power (shown as blue bars)

exceeds direct measurements by over an order of magnitude for several of the profiles and

whereas ε can vary by several orders of magnitude. Therefore, the error in assuming constant density is
considered small.

12For comparison, the mean power for NATRE for similar depths and over a comparable time period is
≈ 2.2× 10−4 Wm−2. A time series plot of ε from NATRE profiles is included as figure B.10 in appendix B.
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is greater than the measured power for all but three profiles (middle panel). This dramatic

overestimation occurs partly because of the lognormal nature of LT/LO which allows for rare

but large overturns for which εT � εO (see figure 8.10) to heavily weight estimates of power

for an individual profile. The bias is further magnified as a result of effectively weighting

εT by patch size; since ∆zpatch correlates with LT (not shown), the bias toward εT > εO

that occurs at large LT is magnified in the estimates of power from
m∑
j=1

(εT∆zpatch)j. Consis-

tent overestimation of unit power by the Thorpe-based method results in a time-increasing

overestimation of the dissipated energy shown in the bottom panel. Over the course of the

spring tidal period, the energy inferred to have dissipated (147 Jm−2) is approximately six

times greater that that which was directly measured within turbulent patches (24 Jm−2)

and approximately four times greater than that which was measured over the total depth

(39 Jm−2; not plotted)13.

Apparently, the large overestimation by the Thorpe-based method seen in some profiles

is not balanced by underestimation in others. A possible explanation for this may be that

lateral advection of turbulent fluid away from the M sites prevents temporal integration

from capturing both young and old turbulence. Perhaps more concerning, however, may be

that temporal integration smooths over the lag between APE and TKE, but assumption (ii)

remains invalid in the mean. That is, while LT quite possibly indicates the TKE present in

the flow on average — as suggested by the results of Moum (1996) and Mater and Venayag-

amoorthy (2014b) — it remains unclear whether it is also representative of the dissipation

of TKE, even in a time-integrated sense.

8.8 Conclusion

Using data sets from three different oceanic settings, we have shown that LT increases

with respect to LO as a function of overturn size. In drawing an analogy with the DNS

13For perspective, the M sites collectively represent about 10 km2 of ocean so that the total energy
consumed during the site occupation is roughly 4 × 105 kJ or 100 kWhr — this is enough energy to run a
laptop operating at 100 W for over 40 days!
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findings of Smyth et al. (2001) which focused specifically on K-H billows, we suggest that

this trend reflects the temporal evolution of the large overturns that have been observed

at sites such as Luzon Strait and the fracture zone of the Brazil Basin. The dependencies

indicated here suggest that equation 8.1 is significantly biased by the state and/or age of the

observed overturns. Hence, incomplete sampling (a particularly vexing problem in observing

naturally-occurring geophysical flows) leads to biases in dissipation estimates from Thorpe

scales.

While it may be tempting to employ equation 8.1 when overturns are an obvious feature

of the turbulence, the apparent bias shown here has serious implications for estimations

of energy budgets based on profile-wise use of the equation and may lead to field-based

inferences and numerical models that are too dissipative. A much needed next step in

the evaluation of equation 8.1 is a campaign focused on sampling the full cycle of several

turbulent events in a manner that tracks the turbulent fluid in space so that temporal

and spatial variability can be separated from variability due to violation of the physical

arguments. Until such resolution is achieved, the findings of this chapter suggest that the

use of equation 8.1 in regions characterized by large overturns that convectively drive the

turbulence should be approached with caution, especially for small sample sizes.
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Chapter 9

Summary & Conclusions

9.1 Summary of Investigation

This dissertation represents a three-pronged approach to studying the dynamics of stably-

stratified shear-flow turbulence using (1) dimensional analysis, (2) direct numerical simula-

tions and laboratory data, and (3) field observations. Of particular focus has been the link

between the basic physical quantities that characterize turbulent mixing (i.e., k, ε, ν, N ,

and S) and the length scale of overturning motions that can be readily quantified from

observations, LT .

Using dimensional analysis, the basic quantities were combined in chapter 4 to form a

suite of fundamental length scales, time scales, and dimensionless parameters of physical

relevance.

In chapter 5, the relationships between LT and the fundamental length scales were de-

termined using DNS for the simple case of homogeneously-stratified turbulence that decays

in the absence of shear.

In chapter 6, the relationships between LT and the fundamental length scales were deter-

mined using a large database of DNS and laboratory results for the general case of stably-

stratified shear-flow turbulence. For the first time, LT was shown to correlate with specific

fundamental length scales in specific regimes of a multi-parameter, multi-regime framework

that independently considers the strength of both shear and stratification with respect to the

inertia of the turbulence. Independent consideration for shear and stratification was made

possible by comparing the time scales S−1 and N−1 to that of the inertial motions, TL = k/ε,

using the dimensionless parameters STL and NTL. These parameters were considered along

with Ri to form a unifying description of high Reynolds number turbulence.
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Inclusion of the turbulent Reynolds number, ReL, allowed the multi-parameter framework

to be used in chapter 7 in an evaluation of common single-parameter descriptions of diapycnal

mixing efficiency. Single-parameter schemes based on based on Ri, the turbulent Froude

number, FrT , and the buoyancy Reynolds number, Reb, were generally considered. The

multi-parameter framework was used to explain specific shortcomings of these schemes.

Finally, the commonly assumed scaling, LT ∼ (ε/N3)1/2, was tested in chapter 8 using

various oceanic data sets. Emphasis was placed on observations from Luzon Strait and the

Brazil Basin where turbulence is driven by overturns that are very large by open ocean stan-

dards. An alternative forcing mechanism, convective destabilization of overturning billows,

was considered in recognition that not all turbulence in the ocean is produced simply by

mean shear.

9.2 Conclusions on Key Findings

The following is a brief description of the main outcomes of this study:

• The Thorpe length scale, LT , is a simple and objective measure of overturning whose

fundamental relevance changes with the relative strengths of shear and stratification.

The DNS of homogeneously-stratified turbulence in the absence of shear revealed LT ∼

k1/2N−1 in a strongly stratified regime characterized by NTL & 1 and LT ∼ k3/2ε−1

in a weakly stratified regime characterized by NTL . 1, where NTL = Nk/ε is the

buoyancy strength parameter (i.e., inverse Froude number). Only for NTL ≈ 1 was LT

found to agree with the Ozmidov scale, LO = (ε/N3)1/2.

• Consideration for both stratification and mean shear motivated the construction of an

ReL − NTL − STL parameter space, where ReL = k2/(εν) and STL = Sk/ε are the

turbulent Reynolds number and shear strength parameter, respectively. The space was

simplified to a NTL−STL plane in the interest of intense geophysical turbulence where

observable overturns are minimally influenced by viscosity. A buoyancy-dominated
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regime (NTL & 1.7, Ri & 0.25), a shear-dominated regime (STL & 3.3, Ri . 0.25),

and an inertia-dominated regime (NTL . 1.7, STL . 3.3) were first conceptualized

and then found to be relevant in scaling LT for a large database of DNS and laboratory

flows. Specifically, it was found that LT ∼ k1/2N−1, LT ∼ k1/2S−1, and LT ∼ k3/2ε−1

in the buoyancy-, shear-, and inertia-dominated regimes, respectively. LT ∼ LO was

found only for the case of NTL = O(100) and STL . 3.3, or for NTL = O(100),

STL ≈ 3.3 and Ri ≈ 0.25 when shear is present.

• The various scalings for LT indicate that the common practice of inferring dissipation

from LT ∼ LO ⇒ ε ∼ L2
TN

3 is not strictly valid. Instead, it is generally more appro-

priate to infer k so long as the turbulence is well-developed as it is in the experimental

flows considered here. Inference of k is practical for stratified flows in which Ri is an

effective diagnostic (i.e., turbulence is due to well-defined mean shear). In such flows,

k can be inferred from easily observed quantities using k ∼ (LTS)2 for Ri . 0.25 and

k ∼ (LTN)2 for Ri & 0.25. Recasting the Osborn formulation for diapycnal diffusivity

in terms of k and Ri makes inferred values of k relevant to mixing. The new model

was shown to be more accurate than estimates of diffusivity based on inferred values

of ε when tested with select DNS and laboratory data.

• An investigation of diapycnal mixing efficiency in stratified shear-flow turbulence re-

vealed that the accuracy of a given single-parameter description of R∗f depends on the

regime to which the flow belongs. Ri is an accurate diagnostic in the shear-dominated

regime but fails in the inertia-dominated regime where turbulence is generated by exter-

nal forcing (rather than mean shear). On the other hand, FrT , is an accurate diagnostic

in the inertia-dominated regime where l ∼ LT and u ∼ (εLT )1/3 are the correct charac-

teristic length and velocity scales, respectively, that can account for external forcing.

FrT looses accuracy, however, in the shear-dominated regime where u ∼ SLT is more

appropriate. Neither Ri or FrT sufficiently describe R∗f in the buoyancy-dominated
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regime where additional consideration for ReL, Pr, and the turbulent mechanism are

needed. This remains an important area of research in the quest for an unambiguous

description of mixing efficiency.

• The investigation of diapycnal mixing efficiency also showed that the buoyancy Reynolds

number, Reb = ReL(NTL)−2, is a misleading parameter for describing R∗f because it

fails to distinguish between (i) a low-Reynolds number, weakly stratified regime of low

efficiency (low ReL, low NTL, low R∗f ) and (ii) a high-Reynolds number, strongly strat-

ified regime of high efficiency (high ReL, high NTL, high R∗f ). In case (i), efficiency is

low at high Reb due to weak stratification (i.e., there is nothing to mix). In case (ii),

efficiency is high at high Reb because strong stratification and strong turbulence coex-

ist to allow for sustained mixing. DNS and laboratory turbulence is restricted to case

(i) due to computational limitations on ReL, while geophysical turbulence falls under

case (ii). The clear implication of this finding is that Reb−based parameterizations

developed for low-Reynolds number experimental flows are not universal or appropri-

ate for geophysical flows. This is confirmed through comparison of the DNS results

of Shih et al. (2005) with the atmospheric boundary layer observations of Lozovatsky

and Fernando (2013). The decrease in R∗f that occurs at Reb ≈ 100 in the DNS data

is not observed in the observations. Rather, the observations demonstrate R∗f values

well above the canonical value of 0.17 up to Reb ≈ 105.

• For the two oceanic data sets exhibiting large overturns, LT is found to increase with re-

spect to LO as a function of the normalized overturn size, L̂T = LTN
1/2ν−1/2. This was

presumed to be a function of age of turbulent patches, with younger patches exhibit-

ing larger L̂T and LT � LO. When sampling favors large overturns, overestimation

of turbulent diffusivity will occur if ε ∼ L2
TN

3 is assumed. This bias is especially

relevant to time series representations of inferred mixing. The bias persists despite

spatio-temporal averaging of the data considered here. The bias is quantified over a
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spring tidal period at Luzon Straight where depth- and time-integration of inferred

and measured values of ε show that inferred energy dissipation is four times too large.

9.3 Suggestions for Further Research

The multi-dimensional framework that is at the heart of this research remains to be

validated using high-Reynolds number geophysical data. This is primarily because direct

quantification of k in the field is hindered by the current inability to accurately filter non-

turbulent motions of internal waves from those of the turbulence which actually lead to

diapycnal mixing. This is a fundamental issue that remains to be solved for the benefit of,

not just the current work, but for the small-scale physical oceanography community in general

given the fundamental relevance of k. A promising device for approaching this problem is a

Pitot tube capable of measuring microscale velocity fluctuations in three dimensions that is

current being deployed on ocean moorings and profiling bodies by the Ocean Mixing Group at

Oregon State University. The response frequency of this device is sufficiently high as to allow

for the construction of energy spectra which represent the energy-containing scales and most

of the inertial subrange for typical ocean turbulence (J. Moum, personal communication,

December 2013). Filtering issues aside, deployment of the Pitot tube on a platform that

affords contemporaneous measurement of ε, N , S, and ρ(z) is a possible means of validating

the findings of this dissertation regarding the scaling of LT .

Additionally, the current work has focused primarily on well-developed turbulence and

has emphasized the productive role of an imposed homogeneous mean shear. While this

viewpoint has guided many classic studies, geophysical turbulence is often generated inter-

mittently by mechanisms such as Kelvin-Helmholtz billows where the mean shear is dynam-

ically linked to the turbulence and evolves with time. It would be greatly interesting and

informative to examine such flows using the proposed framework to see if scalings of LT are

consistent with the homogeneous case. This could be done using data from K-H DNS such

as that of Smyth and Moum (2000).
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Furthermore, chapter 8 of this dissertation has highlighted that geophysical turbulence

can be generated by mechanisms other than mean shear, with special focus on the convective

destabilization of large overturning billows. Until these motions become fully turbulent, they

may be difficult to classify within the context of the proposed framework. As such, overturns

in environments such as the Luzon Strait demand further attention in line with the work

of chapter 8. Specifically, a sampling campaign aimed at capturing the full evolution of a

turbulent billow in time and space would reveal whether the apparent bias of LT > LO is

physically based (as proposed here) or is a result of insufficient sampling.
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Appendix A

Length Scales of the Unstratified

Boundary Layer14

In chapter 4, the scales and energy spectrum of unstratified shear-flow turbulence were

discussed in the context of homogeneous shear (i.e., STL and ReL do not vary with location).

In natural flows, however, the presence of boundaries induces heterogeneity in the flow as

mean velocity decreases rapidly toward the bounding surface. Very near the surface, or

“wall”, shear is high but so too are viscous effects so that local values of STL and ReL vary

dramatically with position. The interaction of these two counteracting influences gives rise

to complex turbulent dynamics that have received much attention. The famous Prandtl

mixing length hypothesis supposes that the turbulent velocity fluctuations near the wall

scale with the anisotropic velocity scale: v ∼ u ∼ Slmix, where lmix is a mixing length

that Von Karman (1930) suggested should increase in a linear fashion away from the wall

(i.e., lmix = κz, where κ ≈ 0.41 is a constant and z is the wall-normal distance). These

suggestions combine to give the famous “log-law”, or logarithmic profile of mean velocity

that empirically holds for z+ & 30, where z+ = z/δν is the wall-normal coordinate normalized

by the viscous length scale, δν = ν/u∗. This viscous length scale is essentially LνS at the

wall (i.e., δν = ν/u∗ = ν/
√
τ0/ρ = ν/

√
νS0 = (ν/S0)1/2, where u∗ =

√
τ0/ρ is the shear

velocity and τ0 = ρνS0 is the shear stress at the wall). Closer to the wall, the “log-law”

breaks down. 5 < z+ < 30 is often characterized as a “buffer layer” where both STL

and turbulent production peaks, relative to dissipation. z+ < 5 is typically considered the

“viscous sublayer” where Reynolds stress (i.e., turbulence) is negligible compared to viscous

14Many of the ideas presented here were initially proposed in an unpublished report entitled “Relevant
length scales in wall-bounded turbulent flows” by L. P. Dasi and S. K. Venayagamoorthy (2010).
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stress and the mean velocity profile is linear. In these regions, the “log-law” breaks down

because lmix ∼ z is no longer valid.

What then is the behavior of lmix and can this behavior be explained using the fundamen-

tal length scales? Moreover, what do the fundamental scales tell us about the boundary layer

regions based on the physical interpretations of section 4.1.2? The unstratified channel-flow

DNS of Hoyas and Jiménez (2006) provides an excellent data set for such an investigation.

They simulated uni-directional flow over a smooth wall for Reτ = 180, 550, 950, and 2003,

where Reτ = u∗δ/ν is the “friction” Reynolds number and δ is the half depth of the chan-

nel (full depth if free surface). In what follows, this data set is examined to determine the

behavior of the fundamental length scales. Hopefully, this will provide a new framework for

interpreting near wall dynamics.

The six fundamental length scales are plotted in figure A.1 as they vary from the wall.

Both the length scales and the wall normal distance have been normalized by the viscous

length scale at the wall, δν . The boundary layer can be delineated into regions based on

length scale “cross-over” points. The physical significance of these regions is proposed below.

• z+ < 1.3: Very near the wall Lkν > η > LνS > LC > LkS > Lkε. Taking Lkν to

be the smallest possible scale as per the reasoning of section 4.1.1 (or alternatively

η in the classical sense), this implies that turbulence is not possible and the flow is

laminar. As shown in figure A.2, the local Reynolds number based on LkS is much less

than unity (i.e., k1/2LkS/ν = LkS/Lkν � 1), as is the traditional Reynolds number

(i.e., ReL = (Lkε/η)4/3 � 1). Also, STL < 1, however, this parameter is not of much

use since the flow is laminar (i.e., small TL is more indicative of k → 0 than rapid

turbulence). In this region, the mean velocity profile is linear as to be expected in the

viscous sublayer (see figure A.3). Also note that Lkν = δν as expected.

• 1.3 ≤ z+ < 3: At z+ ≈ 1.3, LkS becomes larger than LC , i.e., STL > 1. The decay time

of the turbulence, TL, has increased, indicating an increased presence of turbulence;

however, the Reynolds number, k1/2LkS/ν, remains less than unity. Moreover, LkS
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Figure A.1: Wall normal profiles of the fundamental length scales computed from DNS of
unstratified channel flow. Data for the computations has been provided by Hoyas and Jiménez
(2006). Only Reτ = 2003 case shown for clarity.
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Figure A.2: Wall normal profiles of dimensionless parameters computed from DNS of un-
stratified channel flow. Data for the computations has been provided by Hoyas and Jiménez
(2006). Only Reτ = 2003 case shown for clarity.
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remains less than LνS; if LkS is the largest eddy in the flow, and LνS is the smallest

scale for which production is possible (as argued in section 4.1.2), then no production

is possible in this region. Without sufficient Reynolds number or local production, it is

likely that turbulent kinetic energy is being transported from more distal regions due

to heterogeneity of the flow.

• 3 ≤ z+ < 5: At z+ ≈ 3, LkS becomes larger than Lkν and LνS. If Lkν is taken as the

smallest scale possible, this signifies the possibility of the existence of locally shear-

driven turbulence. That is, the local turbulent Reynolds number based on LkS exceeds

unity k1/2LkS/ν = LkS/Lkν > 1 (so too does ReL). If LνS is taken as the small-

scale bound on production, this point also indicates the onset of local production.

The range of scales available for production, LkS > l > LνS, increases monotonically

with distance from the wall. LkS remains less than η, however, so no down-spectrum

cascade of energy is possible; rather, turbulence is immediately arrested at the scale it

is produced. It is also interesting to note that the velocity profile is no longer linear

for 3 . z+, which is well inside the conventional outer limit of the viscous sublayer,

z+ = 5 (see figure A.3). This may be due to the increasing presence of locally produced

turbulence.

• 5 ≤ z+ < 15: At z+ ≈ 5, LkS becomes larger than η signifying that a down-spectrum

cascade of energy is possible. Since η > LνS, however, there is essentially an overlap

of production and dissipative ranges, so cascading energy does not do so in a purely

inertial fashion as envisaged in the theory of Kolmogorov. Also note that η is classically

considered the smallest possible scale, not Lkν . Taking LkS to be the largest scale,

classic theory then implies turbulence can only exist for z+ & 5, not z+ & 3. This

aligns with the classic view that the viscous sublayer extends to z+ ≈ 5. With the

new interpretation, however, the viscous sublayer ends and the buffer layer begins at

z+ ≈ 3, not z+ ≈ 5.
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• z+ ≥ 15: At z+ ≈ 15, LνS becomes larger than η, indicating that a purely inertial (free

of shear) cascade of energy is possible from LνS to η. Also, LC becomes larger than η

(i.e., Res = (LC/η)4/3 = (LC/LνS)2 > 1), indicating that the classic inertial subrange

becomes possible down-scale of LC . Beyond z+ ≈ 15, the order of scales agrees with

that conceptualized for homogeneous shear-flow turbulence in figure 4.1.

• “Log-law” region: If it is assumed that the turbulent velocity fluctuations scale with

the square root of the turbulent kinetic energy (i.e., v ∼ u ∼ k1/2), a good guess for a

predictor of lmix is LkS. Then, taking LkS ∼ lmix ∼ z to be a necessary condition for a

logarithmic mean velocity profile, the profile of LkS can be examined to predict where

the “log-law” might fail. The profile for Reτ = 2003 is shown in figure A.4. While

a large portion of the profile is indeed linear, the lower extent of the linear portion

is at z+ ≈ 60 rather than z+ ≈ 30 as shown in the profile of mean velocity of figure

A.3. Furthermore, the slope of this portion is 0.68, which is somewhat higher than the

classic value of 0.41. It appears, then, that lmix ∼ LkS is not strictly valid; while LkS

may correlate with the largest eddies, it is not exactly the mixing length as defined by

Prandtl.

If it is instead assumed that the turbulent velocity fluctuations scale with the Corrsin

velocity scale, (ε/S)1/2, then LC becomes an alternate candidate for predicting lmix.

The profile of this scale is also shown in figure A.4 and has a slope of 0.32, which is

slightly less than the classic value of 0.41. Clearly, lmix is underestimated by LC , but

overestimated by LkS. The failure of both scales to predict lmix is likely due to complex

anisotropic nature of the flow (i.e., deviation from v ∼ u).
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Appendix B

Select Field Observations

B.1 IWISE M profiles (spring tidal period)
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Figure B.1: IWISE profile 8042 from station M2 during the spring tidal period. Turbulent
patches with LT ≥ 1m are identified in the left panel. Four events with LT > 10m and εT > εO
are observed at 350 m, 425 m, 500 m and 700 m. The two most energetic events, occuring at
425 m and 500 m, are comparable in size but are occuring in different density gradients. The
overturn at 425 m is associated with a larger N value, a more coherent shape (left panel), and
a larger overestimation by εT . This overturn is likely younger than the less coherent weakly
stratified overturn at 500 m.
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Figure B.2: IWISE profile 10013 from station M4 during the spring tidal period. Turbulent
patches with LT ≥ 1 m are identified in the left panel. Three events with LT > 10 m are
observed below 600 m. εT > εO for all three overturns, and the magnitude of overestimation is
seen to be a function of patch size and LT .
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B.2 IWISE N2 profiles (spring tidal period)
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Figure B.3: IWISE profile 10023 from station N2 during the spring tidal period. Bottom
enhanced turbulence is demonstrated in the right panel. A large turbulent patch demonstrating
εT ≈ εO is observed at 1400m. This agreement occurs despite relatively large LT due to intense
near-bottom dissipation. This phenomena is unique to station N2 and may be the result of
increased shear near the bottom.
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Figure B.4: IWISE profile 10030 from station N2 during the spring tidal period. As with
profile 10023 from station N2 (figure B.3), dissipation is enhanced near the bottom and a large
turbulent patch demonstrating εT ≈ εO is observed near 1400 m.
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B.3 BBTRE profiles
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Figure B.5: BBTRE profile 68 for the lower ≈ 2000 m where the fluid is predominately
temperature-stratified. Dissipation is enhanced near the bottom and a large turbulent patch
demonstrating εT � εO is observed near 4700 m. The patch demonstrates a the shape of a
coherent overturn (see figure 8.11), thus suggesting a young overturn.
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Figure B.6: BBTRE profile 80 for the lower ≈ 2000 m where the fluid is predominately
temperature-stratified. Like profile 68 (see figure B.5), dissipation is enhanced near the bottom
and a large turbulent patch is observed. However, unlike the near-bottom patch of profile 68,
this patch demonstrates εT ≈ εO due to higher ε. This, along with the lack of a coherent
overturn-shape (see figure 8.12), suggests the patch is more developed and older than that
observed near the bottom in profile 68.
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B.4 NATRE profiles
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Figure B.7: NATRE profile 39 from 200 m to 600 m where salinity compensation of tem-
perature inversions is expected to be minimal. Dissipation, overturn size, and the number
of overturns are far less than for IWISE or BBTRE, while N is comparable or larger. This
suggests the observed tendency for εT � εO is due to strong anisotropy which is preventing the
inertial transfer of energy to smaller scales from matching ε (i.e viloation of assumption (ii)).
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Figure B.8: NATRE profile 40 from 200 m to 600 m where salinity compensation of temper-
ature inversions is expected to be minimal. Again, NATRE data is characteristically weakly
turbulent with small and few overturns. Like the overturns in profile 39 (see figure B.7), the
overturns in this profile demonstrate εT � εO despite their relatively small size. These over-
turns fall into the strongly stratified, weakly forced regime B of figure 8.9 where overturns likely
scale better with k than with ε due to strong anisotropy.
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B.5 Additional figures
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Figure B.9: Comparison of Thorpe, LT , and Ozmidov, LO, scales for IWISE M stations
during the spring tidal period.

Figure B.10: Time series of dissipation rates for NATRE profiles taken near the dye injection
location. Dissipation rates are more typical of those of the open ocean than the high rates
observed at Luzon Strait (see figure 8.17).
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