DISSERTATION

SYNTHETIC APPROACH TOWARDS CEPHALEZOMINE A AND

PHOMOIDRIDE D

Submitted by
Ping Dong
Department of Chemistry

In partial fulfillment of the requirements
For the Degree of Doctor of Philosophy
Colorado State University

Fort Collins, Colorado

Spring 2011

Doctoral Committee:

Advisor: John L. Wood
Robert M. Williams
Tomislav Rovis
Elliot R. Bernstein
Kathryn M. Partin

Copyright by Ping Dong 2011 All rights reserved

ABSTRACT
 SYNTHETIC APPROACH TOWARDS CEPHALEZOMINE A AND PHOMOIDRIDE D

Two synthetic approaches towards cephalezomine A and phomoidride D are described separately.

The first approach towards cephalezomine A invented a new method for the synthesis of 3-butoxy-1-chlorobutenone and successful constructed $\alpha-O$ and $\beta^{\prime}-N$ disubstituted dienone for a designed key intermediate of cascade cyclization by Eschenmoser coupling of thiolactam and 3-butoxy-1-chlorobutenone.

The second approach towards phomoidride D systematically studied the electronic effects of different ester substituents for the phenolic oxidation and inverse electron demand Diels-Alder reaction, which resulted in the synthesis of functionalized bicyclic [2.2.1] intermediate. Base on this, a new route for the synthesis of precursor of Grob fragmentation has been established towards the total synthesis of phomoidride D by samarium diiodide mediated radical cascade cyclization.

To my parents and friends

Acknowledgments

I would like to thank my Ph.D. advisor, Professor John L. Wood for his support, advice, and encouragement during my six years' study and research. I would also thank my committee member: Professor Robert M. Williams; Professor Tomislav Rovis; Professor Elliot R. Bernstein and Professor Kathryn M. Partin for their advice and reviewing of my dissertation.

I would like to thank the members of the phomoidride project (in order of appearance): Dr. Jon Njardarson, Dr. David Spiegel, Dr. Ivar McDonald, Dr. Nobuaki Taniguchi, Dr. Tatsuya Shirahata, Dr. Hideyuki Kitamura, Youhei Tanaka, Toshikatsu Maki, Dr. Barry Twenter, Dr. Graham Murphy and Tao Nancy. Their outstanding work lightened me. It is my honor and pleasure to follow their footprints to try to complete this project.

I would like to thank my senior colleagues who moved from Yale to CSU in 2005: Dr. Barry Twenter, Dr. Elnaz Menhaji, Dr. Josh Day and Dr. Matt Medeiros. Thank you for your kindness, patience and assistance during my first several years' study and research in Wood lab.

I would like to thank the members of Wood Group who I worked with: Jennifer Howell, Genessa Smith, Dr. Ke Kong, Aaron Bedermann, Sarah Stevens, Dr. Graham Murphy, Dave Freeman, Dr. Matt Haley, Dr. Christopher Schneider, Brett Prigaro, Samantha Levine and Travis McMahon. Thank you for spending time with me struggling and having fun. Especially thank Dr. Christopher Schneider Dr. Ke Kong for their reviewing and correcting on my dissertation writing.

At last, I would also like to thank my friends and my family. Thank you for your love and support. Life is exciting and wonderful because of you.

Table of Contents

Dedication iii
Acknowledgements v
Table of Contents vi
List of Figures ix
List of Schemes xvii
List of Tables xxiii
List of Abbreviation xxiv
Chapter 1, Cephalezomine A Chemistry and Biology 1
1.1 Background and Introduction 1
1.1.1 Cephalezomines: Isolation and Structural Characterization. 1
1.1.2 Cephalotexus Alkaloids Biosynthesis 3
1.1.3 Biological Activity of the Cephalezomines. 6
1.2 Cephalezomine A: Structure and Synthesis 6
1.2.1 Structural Features 6
1.2.2 Synthetic Routes to Related Acyl Side Chains 7
1.2.3 Synthetic Routes to the Tetracyclic Core of Cephalezomine A 9
1.3 Conclusions 20
1.4 Notes and References 21
Chapter 2, Approach Towards the Total Synthesis of Cephalezomine A 29
2.1 Retrosynthetic Analysis I 29
2.2 Synthesis of Dienone 152 30
2.2.1 Coupling of an Epoxide and a Vinylogous Amide 30
2.2.2 Coupling of an α-Bromo Ketone and a Vinylogous Urea 31
2.2.3 Coupling of an α-Bromo Ketone with an Amide 33
2.2.4 Efforts to Access Dienone $\mathbf{1 5 2}$ from Weinreb Amide $\mathbf{1 8 2}$ 38
2.2.5 Changing the Oder of Events: Eschenmoser Coupling of an Enone 40
2.3 Nazarov Cyclization of Dienone 211 44
2.4 Considering an Alternative Strategy 50
2.5 Conclusions 53
2.6 Experimental Section 54
2.6.1 Materials and Methods 54
2.6.2 Preparative Procedures 55
2.7 Notes and References 77
Appendix I, Spectra Relevant to Chapter 2 82
Chapter 3, Phomoidride Chemistry and Biology 129
3.1 Background and Introduction 129
3.1.1 Phomoidrides: Isolation and Structural Characterization 129
3.1.2 Phomoidride Biosynthesis 131
3.1.3 Biological Activity of the Phomoidrides. 132
3.2 Phomoidrides: Structure and Synthesis 133
3.2.1 Structural Features 133
3.2.2 Phomoidrides Interconversion 134
3.2.3 Synthetic Routes to the Phomoidrides. 136
3.2.3.1 K. C. Nicolaou's Route 136
3.2.3.2 Fukuyama's Route. 140
3.2.3.3 Shair's Route. 143
3.2.3.4 Danishesky's Route. 146
3.3 Conclusions 150
3.4 Notes and References 151
Chapter 4, Phomoidride Synthetic Studies from the Wood Group 163
4.1 Introduction 163
4.2 Previous Studies Towards the Total Synthesis of Phomoidrides 163
4.2.1 Synthetic Approach I: Diester Model 163
4.2.2 Development of Phenolic Oxidation/Diels-Alder Cascade Reaction 165
4.2.3 Synthetic Approach II: Ester and Benzyl Ether Model 169
4.3 Current Approach Towards the Total Synthesis of the Phomoidrides. 174
4.3.1 Proposed Solution for Removal Carboxylate 174
4.3.2 Decarboxylation Attempts 175
4.3.3 Initial Studies with Simplified Substrates 176
4.3.4 Tuning of the Diels-Alder Substrate 176
4.3.5 Chemoselectivity Issues in Advancing 480. 179
4.3.6 Diels- Alder Reaction of a Triflate-Containing Substrate 184
4.3.7 Investigation of Other OEWG Substituents. 191
4.4 Future Plans 199
4.5 Conclusions 199
4.6 Experimental Section 200
4.6.1 Materials and Methods 200
4.6.2 Preparative Procedures 201
4.7 Notes and References 247
Appendix II, Spectra Relevant to Chapter 4 257

List of Figures

Chapter 1

Figure 1.1.1.1 Cephalezomines Natural Products 2
Figure 1.1.1.2 Cephalotexus alkaloids 3
Figure 1.2.1 Cephalezomine A Structure Features 7
Appendix I
Figure A.2.1 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 155 83
Figure A.2.2 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 155 84
Figure A.2.3 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 5 5}$ 84
Figure A.2.4 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 168 85
Figure A.2.5 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 168 86
Figure A.2.6 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 168 86
Figure A.2.7 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 170 87
Figure A.2.8 Infrared Spectrum (thin film/ NaCl) of compound 170. 88
Figure A.2.9 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 170 88
Figure A.2.10 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 8 0}$ 89
Figure A.2.11 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{1 8 0}$ 90
Figure A.2.12 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 8 0}$. 90
Figure A.2.13 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 167. 91
Figure A.2.14 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 167 92
Figure A.2.15 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 167. 92
Figure A.2.16 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 8 2}$ 93
Figure A.2.17 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 182 94
Figure A.2.18 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 182 94
Figure A.2.19 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 1 0}$. 95
Figure A.2.20 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 210 96
Figure A.2.21 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 210 96
Figure A.2.22 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 211. 97
Figure A.2.23 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 211 98
Figure A.2.24 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 211. 98
Figure A.2.25 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 2 0}$. 99
Figure A.2.26 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{2 2 0}$ 100
Figure A.2.27 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 2 0}$. 100
Figure A.2.28 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 221 101
Figure A.2.29 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 221 102
Figure A.2.30 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 221 102
Figure A.2.31 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 223 103
Figure A.2.32 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 223. 104
Figure A.2.33 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 223 104
Figure A.2.34 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 3 0}$ 105
Figure A.2.35 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 230. 106
Figure A.2.36 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 230 106
Figure A.2.37 ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 3 1}$. 107
Figure A.2.38 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 231 108
Figure A.2.39 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 231 108
Figure A.2.40 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 233 109
Figure A.2.41 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 233. 110
Figure A.2.42 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 233 110
Figure A.2.43 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 235. 111
Figure A.2.44 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 235 112
Figure A.2.45 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 3 5}$ 112
Figure A.2.46 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 242. 113
Figure A.2.47 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 242 114
Figure A.2.48 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 242 114
Figure A.2.49 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 249 115
Figure A.2.50 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 249 116
Figure A.2.51 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 249 116
Figure A.2.52 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 252 117
Figure A.2.53 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 252. 118
Figure A.2.54 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 252 118
Figure A.2.55 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 244 119
Figure A.2.56 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 244 120
Figure A.2.57 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 244. 120
Figure A.2.58 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 245. 121
Figure A.2.59 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 245. 122
Figure A.2.60 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 245. 122
Figure A.2.61 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 246. 123
Figure A.2.62 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 246 124
Figure A.2.63 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 246. 124
Figure A.2.64 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 247 125
Figure A.2.65 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 247 126
Figure A.2.66 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 247. 126
Figure A.2.67 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 248. 127
Figure A.2.68 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 248 28
Figure A.2.69 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 248 128
Chapter 3
Figure 3.1.1 Phomoidrides A-D 130
Figure 3.1.2 Nonadride Family 131
Figure 3.2.1 Phomoidride D Structural Features. 134
Appendix II
Figure A.4. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 466 258
Figure A.4.2 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 466 259
Figure A.4.3 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 466 259
Figure A.4.4 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 465 260
Figure A.4.5 Infrared Spectrum (thin film/ NaCl) of compound 465. 261
Figure A.4.6 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 465. 261
Figure A.4. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 470. 262
Figure A.4.8 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 470. 263
Figure A.4.9 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 470 263
Figure A.4.10 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{4 8 0}$ 264
Figure A.4.11 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{4 8 0}$. 265
Figure A.4.12 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 480 265
Figure A.4.13 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 482. 266
Figure A.4.14 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 482. 267
Figure A.4.15 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 482 267
Figure A.4.16 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 481 268
Figure A.4.17 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 481 269
Figure A.4.18 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 481 269
Figure A.4.19 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 483. 270
Figure A.4.20 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 483. 271
Figure A.4.21 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 483 271
Figure A.4.22 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 484. 272
Figure A.4.23 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 484 273
Figure A.4.24 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 484 273
Figure A.4.25 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 485 274
Figure A.4.26 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 485. 275
Figure A.4.27 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 485 275
Figure A.4.28 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 450 276
Figure A.4.29 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 450 277
Figure A.4.30 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 450 277
Figure A.4.31 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 492. 278
Figure A.4.32 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 492 279
Figure A.4.33 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 492 279
Figure A.4.34 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{5 0 2}$ 280
Figure A.4.35 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{5 0 2}$. 281
Figure A.4.36 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 0 2}$. 281
Figure A.4.37 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{5 1 6}$. 282
Figure A.4.38 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 516 283
Figure A.4.39 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 516 283
Figure A.4.40 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{5 1 7}$ 284
Figure A.4.41 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 517. 285
Figure A.4.42 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 517 285
Figure A.4.43 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 518. 286
Figure A.4.44 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 518. 287
Figure A.4.45 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 518 287
Figure A.4.46 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 519 288
Figure A.4.47 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 519 289
Figure A.4.48 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 519 289
Figure A.4.49 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{5 2 0}$. 290
Figure A.4.50 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 520 291
Figure A.4.51 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 2 0}$ 291
Figure A.4.52 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{5 0 2}$ 292
Figure A.4.53 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{5 0 2}$ 293
Figure A.4.54 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 0 2}$ 293
Figure A.4.55 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{5 2 5}$. 294
Figure A.4.56 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{5 2 5}$ 295
Figure A.4.57 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 2 5}$ 295
Figure A.4.58 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 526. 296
Figure A.4.59 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 526. 297
Figure A.4.60 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 2 6}$ 297
Figure A.4.61 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 527 298
Figure A.4.62 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 527. 299
Figure A.4.63 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 2 7}$. 299
Figure A.4.64 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 528. 300
Figure A.4.65 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 528. 301
Figure A.4.66 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 528. 301
Figure A.4.67 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 529 302
Figure A.4.68 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 529 303
Figure A.4.69 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 2 9}$ 303
Figure A.4.70 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{5 3 0}$. 304
Figure A.4.71 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 530 305
Figure A.4.72 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 3 0}$ 305
Figure A.4.73 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 538. 306
Figure A.4.74 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 538. 307
Figure A.4.75 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 538 307
Figure A.4.76 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{5 4 6}$ 308
Figure A.4.77 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 546 309
Figure A.4.78 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 546. 309
Figure A.4.79 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{5 4 0}$. 310
Figure A.4.80 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{5 4 0}$ 311
Figure A.4.81 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 540. 311
Figure A.4.82 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{5 4 7}$ 312
Figure A.4.83 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{5 4 7}$ 313
Figure A.4.84 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 547. 313
Figure A.4.85 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{5 4 1}$ 314
Figure A.4.86 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 541 315
Figure A.4.87 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 4 1}$. 315
Figure A.4.88 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 548. 316
Figure A.4.89 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 548 317
Figure A.4.90 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 548. 317
Figure A.4.91 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 543. 318
Figure A.4.92 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 543 319
Figure A.4.93 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 543 319
Figure A.4.94 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{5 5 0}$. 320
Figure A.4.95 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 550 321
Figure A.4.96 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 550 321
Figure A.4.97 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 554 322
Figure A.4.98 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 554 323
Figure A.4.99 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 5 4}$ 323
Figure A.4.100 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 551 324
Figure A.4.101 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 551 325
Figure A.4.102 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 5 1}$ 325
Figure A.4.103 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 545. 326
Figure A.4.104 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 545 327
Figure A.4.105 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 545 327
Figure A.4.106 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 552. 328
Figure A.4.107 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 552 329
Figure A.4.108 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 552 329
Figure A.4.109 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{5 5 6}$. 330
Figure A.4.110 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 556 331
Figure A.4.111 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 5 6}$ 331
Figure A.4.112 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 557 332
Figure A.4.113 Infrared Spectrum (thin film/ NaCl) of compound 557. 333
Figure A.4.114 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 557. 333
Figure A.4.115 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 558. 334
Figure A.4.116 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 558 335
Figure A.4.117 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 558. 335
Figure A.4.118 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 559. 336
Figure A.4.119 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 559 337
Figure A.4.120 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 5 9}$ 337
Figure A.4.121 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 537. 338
Figure A.4.122 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 537 339
Figure A.4.123 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 537 339
Figure A.4.124 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 561 340
Figure A.4.125 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 561 341
Figure A.4.126 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 6 1}$ 341
Figure A.4.127 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 563 342
Figure A.4.128 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 563 343
Figure A.4.129 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 6 3}$ 343
Figure A.4.130 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 564. 344
Figure A.4.131 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 564 345
Figure A.4.132 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 6 4}$ 345
Figure A.4.133 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 531 346
Figure A.4.134 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 531 347
Figure A.4.135 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 3 1}$ 347
Figure A.4.136 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 513. 348
Figure A.4.137 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 513 349
Figure A.4.138 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 1 3}$ 349
Figure A.4.139 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{5 1 2}$ 350
Figure A.4.140 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 512 351
Figure A.4.141 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 1 2}$. 351
Figure A.4.142 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 8 6}$ 352
Figure A.4.143 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 586 353
Figure A.4.144 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 8 6}$ 353
Figure A.4.145 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 8 0}$ 354
Figure A.4.146 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 580 355
Figure A.4.147 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 8 0}$. 355
Figure A.4.148 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 582. 356
Figure A.4.149 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 582 357
Figure A.4.150 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 8 2}$ 357

List of Schemes

Chapter 1
Scheme 1.1.2.1 Cephalotaxine Biosynthesis. 4
Scheme 1.1.2.2 Acyl Side Chain of Deoxyharringtonine Biosynthesis 5
Scheme 1.1.2.3 Acyl Side Chains of Harringtonine Biosynthesis 5
Scheme 1.2.2.1 Weinreb's Procedure for the Synthesis of Acid Side Chain. 7
Scheme 1.2.2.2 Hudlicky's Procedure for the Synthesis of Acid Side Chain 8
Scheme 1.2.2.3 Gin's Procedure for the Synthesis of Acid Side Chain 9
Scheme 1.2.3.1 B Ring Closure of a N-Spiro Cyclic Precursor. 10
Scheme 1.2.3.2 Friedel-Crafts Cyclization for B Ring Closure: Kuehne’s Work. 10
Scheme 1.2.3.3 Friedel-Crafts Cyclization for B Ring Closure: Sha's Work 11
Scheme 1.2.3.4 Friedel-Crafts Cyclization for B Ring Closure: Mori’s Work 11
Scheme 1.2.3.5 Friedel-Crafts Cyclization for B Ring Closure: Royer's Work 12
Scheme 1.2.3.6 Friedel-Crafts Cyclization for B Ring Closure: Li’s Work. 12
Scheme 1.2.3.7 Friedel-Crafts Cyclization for B Ring Closure: Hayes's Work. 13
Scheme 1.2.3.8 Heck Cyclization for B Ring Closure: Hayes's Work. 13
Scheme 1.2.3.9 Heck Cyclization for B Ring Closure: Tietze's Work. 14
Scheme 1.2.3.10 Heck Cyclization for B Ring Closure: Stoltz's Work 14
Scheme 1.2.3.11 Semmelhack's synthesis. 15
Scheme 1.2.3.12 Weinreb's Synthesis 15
Scheme 1.2.3.13 Hanaoka's synthesis. 16
Scheme 1.2.3.14 Fuchs's Synthesis. 16
Scheme 1.2.3.15 Bryce's Approach 17
Scheme 1.2.3.16 Mariano's Synthesis 17
Scheme 1.2.3.17 Nagasaka's Synthesis. 18
Scheme 1.2.3.18 Li's Synthesis 18
Scheme 1.2.3.19 Ishibashi's Synthesis 19
Scheme 1.2.3.20 Gin's Synthesis 19
Chapter 2
Scheme 2.1.1 Retrosynthetic Analysis I 30
Scheme 2.2.1 Coupling of Epoxide and Vinylogous amide 31
Scheme 2.2.2 Preparation of Bromo Ketone. 32
Scheme 2.2.3.1 Revised Coupling Retrosynthetic Analysis. 34
Scheme 2.2.3.2 Coupling of Bromo Ketone with Amide. 35
Scheme 2.2.3.3 Proposed Model Study on the Coupling of Substrate 170 with 166 35
Scheme 2.2.3.4 Addition and Elimination for the Coupling Study 36
Scheme 2.2.3.5 Model Study on Eschenmoser Coupling. 37
Scheme 2.2.3.6 Eschenmoser Coupling for Real System. 38
Scheme 2.2.4 Nucleophilic Addition Failure in Real System for Synthesis of Dienone. 39
Scheme 2.2.5.1 Revised Coupling Retrosynthetic Analysis. 40
Scheme 2.2.5.2 Approach to Bromo Enone by Vinyl Nucleophile Addition 40
Scheme 2.2.5.3 Approach to Bromo Enone via Bromination Process I. 41
Scheme 2.2.5.4 Approach to Bromo Enone via Bromination Process II 42
Scheme 2.2.5.5 Approach to Chloro Enone via Friedel -Crafts Addition 42
Scheme 2.2.5.6 Synthesis of Chloro Enone via Copper Carbenoid 1,2 H Shift Process. 43
Scheme 2.2.5.7 Eschenmoser Coupling of $\mathbf{1 0 2}$ with $\mathbf{1 2 0}$ 44
Scheme 2.3.1 Nazarov Cylization Studies on the Real System 45
Scheme 2.3.2 Nazarov Cylization Model Test for Alkoxy Group 46
Scheme 2.3.3 Synthesis Model with N-Substituted Group for Nazarov Cyclization 47
Scheme 2.3.4 Nazarov Cyclization Test with O, N-Substituted Model 231 49
Scheme 2.3.5 Preparation of Deactivated N-Substituted Dienone. 49
Scheme 2.3.6 Nazarov Cyclization Test with Deactivated N-Substituted Dienone 235... 50
Scheme 2.4.1 Alternative Strategy: Radical Cyclizaion Approach. 51
Scheme 2.4.2 Preparation for Radical Cyclizaion. 52
Scheme 2.4.2 Radical Cyclizaion Approach 52
Chapter 3
Scheme 3.1.2 Biosynthesis of Phomoidride B. 132
Scheme 3.1.3 Biosynthesis of Cholesterol 133
Scheme 3.2.2.1 Phomoidride A and B Interconversion. 135
Scheme 3.2.2.2 Phomoidrides Epimerization 135
Scheme 3.2.3.1.1 Nicolaou Diene's Synthesis 136
Scheme 3.2.3.1.2 Nicolaou's Intramolecular Diels-Alder Reaction. 137
Scheme 3.2.3.1.3 Nicolaou's Maleic Anhydride Synthesis 138
Scheme 3.2.3.1.4 Nicolaou's Bridging Ketal Synthesis. 139
Scheme 3.2.3.1.5 Nicolaou's Phomoidride A and B Synthesis 140
Scheme 3.2.3.2.1 Fukuyama Intramolecular Diels- Alder Reaction 141
Scheme 3.2.3.2.2 Fukuyama's Maleic Anhydride Synthesis 142
Scheme 3.2.3.2.3 Fukuyam's Phomoidride B Synthesis 143
Scheme 3.2.3.3.1 Shair's Oxy-Cope Rearrangement/ Transannular Dieckmann 144
Scheme 3.2.3.3.2 Shair's Fries Rearrangement 145
Scheme 3.2.3.3.3 Shair's Phomoidride B Synthesis 145
Scheme 3.2.3.4.1 Danishefsky's Heck Reaction to the Bicyclic Core 147
Scheme 3.2.3.4.2 Danishefsky Ketal synthesis 148
Scheme 3.2.3.4.3 Danishefsky Phomoidride A and D synthesis 149
Chapter 4
Scheme 4.2.1 Retrosynthetic Analysis I of Total synthesis of Phomoidride D 164
Scheme 4.2.2.1 Phenolic Oxidation and Diels- Alder Cycloaddition. 165
Scheme 4.2.2.2 Exo-Methylene Lactone Construction 166
Scheme 4.2.2.3 SmI_{2} Cascade Cyclization 167
Scheme 4.2.2.4 Tertiary Xanthate Formation 168
Scheme 4.2.2.5 Grob Fragmentation. 168
Scheme 4.2.2.6 Maleic Anhydride Synthesis Approach 169
Scheme 4.2.3.1 Retrosynthetic Analysis II: Model with Ester and OBn Substitution. 170
Scheme 4.2.3.2 Phenolic Oxidation and Diels-Alder Cycloaddition. 171
Scheme 4.2.3.3 $\mathrm{Bu}_{3} \mathrm{SnH}$ Radical Cascade Cyclization 171
Scheme 4.2.3.3 Approach to Wharton Fragmentation. 172
Scheme 4.2.3.4 Wharton Fragmentation after Reduction of Methyl Ester 173
Scheme 4.2.3.5 Attempted Further Modification of the Fragmentation Product 173
Scheme 4.3.1 Proposed Solution to Remove Carboxylate. 174
Scheme 4.3.2 Proposed Solution to Remove Carboxylate. 175
Scheme 4.3.3 Phenolic Oxidation and Diels- Alder reaction of bromide phenol 467 176
Scheme 4.3.4.1 Synthetic Plan Using EWG for Diels- Alder Reaction 177
Scheme 4.3.4.2 Preparation of Phenol 470 178
Scheme 4.3.5.1 Intermolecular Addition for Differentiation of Enol 480 180
Scheme 4.3.5.2 Attempted Intramolecular Addition of a Vinyl Bromide. 180
Scheme 4.3.5.3 Intramolecular Addition for Differentiation of Enol 480 by Lead Salt. 181
Scheme 4.3.5.4 Attempt involving a Ketene and Cumulene 182
Scheme 4.3.5.5 Attempted Differentiation of Enol 480 via Oxidation. 183
Scheme 4.3.6.1 Retrosynthetic Analysis III: Model with OEWG Substitution 185
Scheme 4.3.6.2 Preparation 1: Precursor for Phenolic Oxidation and Diels-Alder
Reaction 186
Scheme 4.3.6.3 Preparation 2: Precursor for Phenolic Oxidation and Diels- Alder Reaction 188
Scheme 4.3.6.4 Lactone Synthesis 189
Scheme 4.3.7.1 Synthesis of Lactone 531 196
Scheme 4.3.7.2 Preparation Substrate 567 for Fragmentation 197

Scheme 4.3.7.3 Preparation Substrate 571 for Fragmentation............................... 198
Scheme 4.3.7.4 Preparation Substrate 572 for Fragmentation.............................. 198
Scheme 4.4 Future Plans... 199

List of Tables

Chapter 1
Table 1.1.3 Cytotoxicity of Cephalezomines 6
Chapter 2
Table 2.2.2 Coupling Conditions of Bromo Ketone and Vinylogous Urea. 33
Table 2.2.3 Optimized Eschenmoser Coupling for Model 37
Table 2.2.4 Nucleophilic Addition Failure in Model for Synthesis of Dienone 39
Table 2.3 Nazarov Cyclization Test with N -Substituted Model 175 48
Chapter 4
Table 4.3.4 Phenolic Oxidation and Diels- Alder Cycloaddition of Phenol 470 179
Table 4.3.5 Reduction for Differentiation of Enol 482 184
Table 4.3.6.1 Triflate Removal Triflate in a Model. 190
Table 4.3.6.2 Removal Triflate in the Real System $\mathbf{5 2 2}$ 191
Table 4.3.7.1 Preparation of Substrate for Diels- Alder Reaction: Acylation. 192
Table 4.3.7.2 Preparation of Substrates for Diels-Alder Reaction: Deallylation. 193
Table 4.3.7.3 Substrates 553 for Phenolic oxidation and Diels- Alder Reaction 194
Table 4.3.7.4 Conversion of Enolate $\mathbf{5 5 5}$ to Ketone $\mathbf{5 6 0}$ 195

List of Abbreviations

AcOH	acetic acid
aq.	aqueous
Bn	benzyl
BTIB	bis(trifluoroacetoxy)-iodobenzene
Bu	butyl
C	carbon
${ }^{\circ} \mathrm{C}$	degree Celsius
calcd'	calculated
CDCl_{3}	chloroform- d
$\mathrm{CH}_{2} \mathrm{~N}_{2}$	diazomethane
$\mathrm{CH}_{3} \mathrm{CN}$	acetonitrile
CHCl_{3}	chloroform
m-CPBA	3-chloroperoxybenzoic acid
δ	chemical shift in ppm downfield from $\mathrm{Me}_{4} \mathrm{Si}$
DCM	dichloromethane
DCE	dichloroethane
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCC	1,3-dicyclohexylcarbodiimide
dd	doublet of doublets
ddd	doublet of doublets of doublets
DDQ	2,3-dichloro-5,6-dicyanobenzoquinone
DEAD	diethyl azodicarboxylate
DIBAL-H	diisobutylaluminum hydride
DIEA	N,N-diisopropylethylamine
DMAP	4-(dimehylamino)pyridine
DMF	dimethyl formamide

DMSO	dimethyl sulfoxide
dt	doublet of triplets
equiv.	equivalent
Et	ethyl
$\mathrm{Et}_{2} \mathrm{O}$	ethyl ether
EtOAc	ethyl acetate
$\mathrm{Et}_{3} \mathrm{~N}$	triethylamine
FTIR	Fourier transform infrared
g	gram(s)
h	hours
H	Hydrogen
Hz	Hertz
HCl	Hydrochloric acid
KHMDS	potassium bis(trimethylsilyl) amide
HMPA	hexamethylphosphoric triamide
HRMS	high-resolution mass spectrum
J	coupling constant
L	liter(s)
LAH	lithium aluminum hydride
LDA	lithium diisopropylamide
Lawesson's reagent	2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane2,4-disulfide
LiOH	lithium hydroxide
μ	micro
m	milli, multiplet(NMR)
M	moles per liter
Me	methyl
MeOH	methanol

mol	moles
MS	mesylate
m / z	mass to charge ratio
NMO	4-methylmorpholine N-oxide
NMR	nuclear magnetic resonance
Ns	nosylate (2-nitrobenzenesulfonate)
O	oxygen
OAC	acetate
PivCl	pivaloyl Chloride
PMB	p-methoxybenzyl
PPh	triphenylphosphine
PTSA	p-Toluenesulfonic acid
py.	pyridine
q	quartet
SmI	samarium diiodide
t	trimethylpropyl ammonium perruthenate
Td	triplet
TBAF	triplet of doublets
TBS	tertrahydrofuran
TBSO	tert-buty

Chapter 1

Cephalezomine A Chemistry and Biology

1.1 Background and Introduction

1.1.1 Cephalezomines: Isolation and Structural Characterization

In 2000, Jun'ichi Kobayashi and co-workers reported the isolation and structural elucidation of cephalezomines A-F (1-6) from the leaves of Cephalotaxus harringtonine var nana in Japan (Figure 1.1.1.1). ${ }^{1}$ Additional compounds, cephalezomines G-M (7-12) and bis- cephalezomines A-E (13-17), were isolated and structure elucidated by the same group in 2002 and 2004. ${ }^{2,3}$

Figure 1.1.1.1 Cephalezomines Natural Products

Cephalezomine A-B
1: $n=2, R_{1}=O H, A$ 2: $n=2, R_{1}=H, B$

9: Cephalezomine J

Cephalezomine C-F
3: $\mathrm{n}=1, \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{H}$; C 4: $n=1, R_{1}=O H, R_{2}=H, R_{3}=O H$; 5: $n=2, R_{1}=O H, R_{2}=O H, R_{3}=H ; E$ 6: $n=2, R_{1}=H, R_{2}=O H, R_{3}=H ; F$

Cephalezomine K-L
10: $\mathrm{R}_{6}=\mathrm{OH}, \mathrm{R}_{7}=\mathrm{H}, \mathrm{K}$
11: $\mathrm{R}_{6}=\mathrm{H}, \mathrm{R}_{7}=\mathrm{OH}, \mathrm{L}$

Cephalezomine G-H
7: $\mathrm{R}_{4}=\mathrm{H}, \mathrm{R}_{5}=\mathrm{OH}, \mathrm{G}$
8: $\mathrm{R}_{4}=\mathrm{OH}, \mathrm{R}_{5}=\mathrm{H}, \mathrm{H}$

12: Cephalezomine M

Bis Cephalezomine A-E
13: $n_{1}=2, n_{2}=1, R_{8}=R_{9}=O H$, Bis-A
14: $n_{1}=1, n_{2}=2, R_{8}=R_{9}=O H$, Bis-B
15: $n_{1}=n_{2}=1, \quad R_{8}=R_{9}=O H, \quad$ Bis-C
16: $n_{1}=2, n_{2}=1, R_{8}=O H, R_{9}=H$, Bis-D
17: $n_{1}=1, n_{2}=2, R_{8}=H, R_{9}=O H$, Bis-E

Cephalezomines are members of the Cephalotaxus alkaloid family found in higher plants of the genus Cephalotexus. ${ }^{4}$ Structurally related Cephalotaxus alkaloids are known as drupacine (18), ${ }^{5}$ cephalotaxine (19), ${ }^{6}$ 11-hydroxycephalotaxine (20), ${ }^{5}$ harringtonine (21), ${ }^{7}$ deoxyharringtonine (22) ${ }^{7}$ and homoharringtonine (23) ${ }^{7}$ (Figure
1.1.1.2). Some of the latter, such as 21, 22 and $\mathbf{2 3}$, display potent antileukemic activity
upon intraperitoneal injection in mice. ${ }^{8}$ Recently, clinical studies of Cephalotaxus alkaloids in China have shown that intravenous administration can affect various types of acute leukemia. ${ }^{9,10}$

Figure 1.1.1.2 Cephalotexus alkaloids

18: Drupacine

20:11-Hydroxycephalotaxine

19: Cephalotaxine

21: $\mathrm{n}=1, \mathrm{R}=\mathrm{OH}$; Harringtonine 22: $n=1, R=H$; Deoxyharringtonine
23: $n=2, R=O H$; Homoharringtonine

1.1.2 Cephalotexus Alkaloids Biosynthesis

Ronald Parry and co-workers have utilized the method of isotope-labeled precursor incorporation to study the biosynthesis of the Cephalotexus Alkaloids in Cephalotaxus harringtonia. ${ }^{11}$ It had been established that in the early stage of biosynthesis (from 24, 25 to 28), cephalotaxine is biosynthesized from one molecule each of tyrosine (24) and phenylalanine (25) (Scheme 1.1.2.1). The hypothesis predicted that cephalotaxine should come from 24 and $\mathbf{2 5}$ via a 1-phenethyltetrahydroisoquinoline derivative (26), oxidative phenol coupling product (27) and dienone (28). This hypothesis is based on results obtained while investigating the biosynthesis of colchicine. ${ }^{12}$ In the late stage of biosynthesis (from 28 to 19), loss of one carbon atom from dienone (28) via
a ring contraction formed the D ring of cephalotaxine. It has been suggested that the ring contraction of $\mathbf{2 8}$ might result from a benzilic acid rearrangement. ${ }^{13}$

Scheme 1.1.2.1 Cephalotaxine Biosynthesis

The biosynthesis of the acyl side chain of deoxyharringtonine (21) was proposed to involve a pathway that begins with leucine (29) (Scheme 1.1.2.2). ${ }^{14}$ Diacid (31) should be an intermediate in the biosynthesis of the acyl side chain of deoxyharringtonine (36) and carbon atoms (3-8) of diacid (31) should be derived from leucine. This hypothesis was supported by the isolation of labeled $\mathbf{3 1}$ by feeding ${ }^{14} \mathrm{C}$ leucine (29) to Cephalotaxus harringtonia. The latter ${ }^{14} \mathrm{C}$ experiment also indicated that diacid 33 lies on the biosynthetic pathway to 36 .

Scheme 1.1.2.2 Acyl Side Chain of Deoxyharringtonine Biosynthesis

The ${ }^{14} \mathrm{C}$ labeling experiment also clearly established that the acyl side chain of harringtonine is derived in vivo from the acyl side chain of deoxyharringtonine, probably by direct oxidative hydroxylation (Scheme 1.1.2.3). The acyl side chain of homoharringtonine was predicted to be derived by homologation of the acyl side chain of deoxyharringtonine with subsequent oxidative hydroxylation.

Scheme 1.1.2.3 Acyl Side Chains of Harringtonine and Homoharringtonine Biosynthesis

1.1.3 Biological Activity of the Cephalezomines

Several members of cephalezomine family display potent biological activity. The cytotoxicity of cephalezomines A-M and bis-cephalezomines A-E is shown in Table 1.1.3. ${ }^{1,2,3}$ In general, monomeric cephalezomines display greater potency than the dimeric ones. This study also showed that cephalotaxine-type compounds lacking either the side chain acid or sugar moiety exhibit weak cytotoxicity. ${ }^{1}$

Table 1.1.3 Cytotoxicity of Cephalezomines

Compound	$\mathrm{IC}_{50}(\mu \mathrm{~g} / \mathrm{mL})$		Compound	$\mathrm{IC}_{50}(\mu \mathrm{~g} / \mathrm{mL})$	
	L1210	KB		L1210	KB
A	0.067	0.020	K	1.2	0.036
B	0.030	0.024	L	3.6	0.044
C	0.88	0.078	M	>30	13
D	7.6	0.40	Bis-A	1.9	
E	0.68	0.18	Bis-B	1.9	
F	0.10	0.084	Bis-C	2.6	
G	8.0	>30	Bis-D	3.1	
H	8.6	>30	Bis-E	3.7	
J	12	5.6			

1.2 Cephalezomine A: Structure and Synthesis

1.2.1 Structural Features

The structure of cephalezomine A (1) contains a drupacine-type skeleton and an acyl side chain (Figure 1.2.1). It is known that drupacine derives from 11hydroxycephalotaxine (20). ${ }^{6}$ In terms of reported syntheses towards cephalezomine A (1),
the descriptions below will focus on two parts: the acyl side chain and heterocyclic core (11-oxidized-cephalotaxine-type skeleton).

Figure 1.2.1 Cephalezomine A Structure Features

1.2.2 Synthetic Routes to Related Acyl Side Chains

In 1973, Weinreb and co-workers reported the synthesis of the acid side chain of deoxyharringtonine (Scheme 1.2.2.1). ${ }^{15}$ First, epoxidation of benzylmethylitaconate 41 by m-CPBA gave epoxide 42 . Treatment with an organo-copper reagent prepared from isobutyl lithium 43 and cuprous iodide produced tertiary alcohol 44. Finally, hydrogenolysis of benzyl ester $\mathbf{4 4}$ using Adams' catalyst produced acid $\mathbf{4 5}$.

Scheme 1.2.2.1 Weinreb's Procedure for the Synthesis of Acid Side Chain

In 1982, Hudlicky and co-workers reported the synthesis of homoharringtonine (23) commencing with cephalotaxine (19). ${ }^{16}$ During the synthesis, they described the preparation of acyl side chain (Scheme 1.2.2.2). Ozonolysis of methylcyclohexene 46 gave an intermediate ketoaldehyde which was subjected to an intramolecular aldol condensation, followed by oxidation of the resultant aldehyde to acid 47. Ozonolysis of 47 gave the ketopyruvate 48 . Generation of the acid chloride from substrate 48, followed by exposure to cephalotaxine formed cephalotaxine ester 49. This ester was difficult to purify by chromatography due to decomposition, therefore no yield was reported. To this crude intermediate was added the zinc reagent derived from methyl bromoacetate, followed by treatment with MeLi or MeMgBr to produce homoharringtonine (23).

Scheme 1.2.2.2 Hudlicky's Procedure for the Synthesis of Acid Side Chain

In 2006, as part of reported total synthesis of (-)-deoxyharringtonine (22), Gin described the preparation of the acyl side chain (Scheme 1.2.2.3). ${ }^{17}$ Commencing with
commercially available D-malic acid $\mathbf{5 0}$, acetal $\mathbf{5 1}$ was afforded in a two-step procedure. Alkylation of $\mathbf{5 1}$ followed by acetal opening gave γ-hydroxy acid 52. Lactone $\mathbf{5 3}$ was produced via Yamaguchi lactonization ${ }^{18}$ followed by alkene hydrogenation and removal of benzyl group. Coupling of $\mathbf{5 3}$ with cephalotaxine via the Yamaguchi protocol yielded ester 54. Methanolysis concluded the synthesis of (-)-deoxyharringtonine (22).

Scheme 1.2.2.3 Gin's Procedure for the Synthesis of Acid Side Chain

53

R=Cephalotaxine

54

22:deoxyharringtonine

1.2.3 Synthetic Routes to the Tetracyclic Core of Cephalezomine A

The significant anticancer activities and intriguing chemical structures have made the Cephalotaxus alkaloids attractive targets for synthetic chemists. Since the report of the first total synthesis of cephalotaxine by Weinreb and Semmelhack in 1972, ${ }^{19,20}$ a number of innovative synthetic strategies have been developed towards the synthesis of the cephalotaxine core ring system. One of the most commonly employed strategic
approaches involves forming the B-ring of cephalezomine A core ring system (55) from an N-spirocyclic intermediate (56, Scheme 1.2.3.1).

Scheme 1.2.3.1 B Ring Closure of a N-Spiro Cyclic Precursor

55: Cephalezomine A core ring

56: N -Spiro intermediate

Typical B ring closure approaches include Friedel-Crafts- and Heck-type cyclization strategies.

Kuehne's total synthesis of dl-cephalotaxine: Lactam 57 was ring-contracted to the spiro C, D ring of $\mathbf{5 8}$ in the presence of $\mathrm{Pb}(\mathrm{OAc})_{4}$ (Scheme 1.2.3.2). Further transformation of $\mathbf{5 8}$ furnished acetate $\mathbf{5 9}$ which was utilized as substrate in the illustrated palladium mediated coupling to furnish the B-ring of $\mathbf{6 0} .{ }^{21}$

Scheme 1.2.3.2 Friedel-Crafts Cyclization for B Ring Closure: Kuehne's Work

Sha's approach towards total synthesis of dl-cephalotaxine: An intramolecular cyclization of $\mathbf{6 1}$ in the presence of PTSA gave the spiro C, D ring of $\mathbf{6 2}$ (Scheme
1.2.3.3). Ozonolysis, followed by deprotection produced 63, which, upon alkylation, provided cyclization precursor 64. Friedel-Crafts cyclization in the presence of polyphosphoric acid completed the construction of $\mathbf{6 5}$. ${ }^{22}$

Scheme 1.2.3.3 Friedel-Crafts Cyclization for B Ring Closure: Sha's Work

Mori's total synthesis of (-)-cephalotaxine: Vinyl iodide 66 was cyclized in the presence of $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and CsF to form the spirocyclic C, D-ring system in allylic alcohol 67 (Scheme 1.2.3.4). The B-ring of 68 was closed by Friedel-Crafts cyclization in the presence of polyphosphoric acid. ${ }^{23}$

Scheme 1.2.3.4 Friedel-Crafts Cyclization for B Ring Closure: Mori's Work

Royer's total synthesis of (-)-cephalotaxine: Expansion of the cyclobutane ring in 69 under acidic conditions gave ketone 70 which possesses the spirocyclic C, D-ring system (Scheme 1.2.3.5). This substrate was further advance to allylic alcohol 71 which upon exposure to the Lewis acid SnCl_{4} underwent B-ring closure to furnish 72. ${ }^{24}$

Scheme 1.2.3.5 Friedel-Crafts Cyclization for B Ring Closure: Royer's Work

Li's formal total synthesis of dl-cephalotaxine: The Li group reported that FriedelCrafts type alkylation occurs upon exposure of $\mathbf{7 2}$ to TfOH and forms ketone $\mathbf{7 3}$ which, in five steps can be converted to cephalotaxine (Scheme 1.2.3.6). ${ }^{25}$

Scheme 1.2.3.6 Friedel-Crafts Cyclization for B Ring Closure: Li’s Work

Hayes's first formal total synthesis of (-)-cephalotaxine: Hayes reported that treatment of $\mathbf{7 4}$ with deprotonated TMSCHN_{2} furnishes carbene intermediate $\mathbf{7 5}$, which undergoes intramolecular C-H insertion to give the spirocyclic C, D-ring system in 76
(Scheme 1.2.3.7). Further transformation of 76 produces an allylic alcohol (78) which, upon exposure to Lewis acid SnCl_{4} undergoes B-ring closure to produce 68 . ${ }^{26}$

Scheme 1.2.3.7 Friedel-Crafts Cyclization for B Ring Closure: Hayes's Work

Hayes's second formal total synthesis of (-)-cephalotaxine: An intramolecular CH insertion of the vinyl carbene derived from vinyl chloride $\mathbf{7 8}$ produced the spirocyclic ring of 79 (Scheme 1.2.3.8). Iodination of 79 provided 80 and set the stage for an intramolecular Heck cyclization that furnished tetracycle 81. ${ }^{27}$

Scheme 1.2.3.8 Heck Cyclization for B Ring Closure: Hayes's Work

Tietze's formal total synthesis of (-)-cephalotaxine: Tietze reported that an intramolecular amination of the π-allyl intermediate derived from allylic acetate $\mathbf{8 3}$ produces the spirocyclic C, D-ring of 84 (Scheme 1.2.3.9). An intramolecular Heck cyclization was then used to close the B-ring and form $\mathbf{8 2}$. ${ }^{28}$

Scheme 1.2.3.9 Heck Cyclization for B Ring Closure: Tietze's Work

Stoltz's total synthesis of (-)-cephalotaxine and (-)-drupacine: Stoltz applied an intramolecular Heck cyclization to advance $\mathbf{8 5}$ to intermediate 86. One of the unique features of the Stoltz synthesis is the inclusion of alcohol at $C-11$ which allows for eventual access to both the cephalotaxine and drupacine ring systems (Scheme 1.2.3.10). ${ }^{29}$

Scheme 1.2.3.10 Heck Cyclization for B Ring Closure: Stoltz's Work

Semmelhack's total synthesis of dl-cephalotaxine: Semmelhack reported that the B-ring in intermediate $\mathbf{8 7}$ could be produced upon exposure of $\mathbf{8 8}$ to a variety of reaction conditions (Scheme 1.2.3.11). The best yield was achieved by photo- $\mathrm{S}_{\mathrm{RN}}{ }^{1}$ reaction in the presence of base. ${ }^{31}$

Scheme 1.2.3.11 Semmelhack's synthesis

In addition to approaches that assemble the spirocyclic C, D-ring system prior to formation of the B-ring, there are, several reports of strategies leading to the cephalotaxine ring system wherein construction of the spirocycle occurs at a later stage. These include:

Wienreb's total synthesis of dl-cephalotaxine: In this synthesis, Friedel-Crafts type reaction of aldehyde 90 produced enamine 91 (Scheme 1.2.3.12). In a subsequent 4steps 91 was converted to diketone 92 which upon exposure to $\mathrm{Mg}(\mathrm{OMe})_{2}$ underwent Nazarov cyclization to furnish 93. ${ }^{19,30}$

Scheme 1.2.3.12 Weinreb's Synthesis

Hanaoka's total synthesis of dl-cephalotaxine: Hanaoka reported that exposure of carboxylic acid 94 to polyphosphoric acid induced a Friedel-Crafts acylation which furnished ketone 95 (Scheme 1.2.3.13). Conversion of $\mathbf{9 5}$ in 3-steps to vinyl chloride 96 set the stage for acid mediated cyclization to furnish $97 .{ }^{32}$

Scheme 1.2.3.13 Hanaoka's synthesis

Fuchs' total synthesis of dl-cephalotaxine and drupacine: Oxidation of hydroxamic acid $\mathbf{9 8}$ to the corresponding acylnitroso species followed by intramolecular
hetero Diels-Alder reaction formed 99. Intermediate 99 was converted to cephalotaxine and drupacine in 10 and 9 steps respectively. (Scheme 1.2.3.14). ${ }^{33}$

Scheme 1.2.3.14 Fuchs'Synthesis

Bryce's approach towards the total synthesis of dl-cephalotaxine: Lactamaldehyde $\mathbf{1 0 0}$ was cyclized to hemiaminal $\mathbf{1 0 2}$ by treatment with DIBAL-H. The reaction was believed to occur through an aluminum complex, which is either monocoordinated (to the aldehyde oxygen) or chelated (to both the aldehyde and lactam oxygens). Such a complex (e.g., 101) would activate the carbonyl group of the aldehyde to nucleophilic attack by the lactam nitrogen. (Scheme 1.2.3.15). ${ }^{34}$

Scheme 1.2.3.15 Bryce's Approach

Mariano's total synthesis of dl-cephalotaxine: Macrocyclization of $\mathbf{1 0 3}$ gave intermediate 104 (Scheme 1.2.3.16). Hydrogenolysis to remove the benzyl protecting
group, was followed by transannular conjugate addition of the free amine to provide ketone 93. ${ }^{35}$

Scheme 1.2.3.16 Mariano’s Synthesis

Nagasaka' formal total synthesis of dl-cephalotaxine: In Nagasaka's formal synthesis it was reported that treatment of isoindoquinoline $\mathbf{1 0 5}$ with $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ produces ring-expansion product 106 (Scheme 1.2.3.17). Further advancement of $\mathbf{1 0 6}$ furnished β keto ester 107 which, upon exposure to TiCl_{4} and NIS (N-iodosuccinimde) undergoes ring-closure to $\mathbf{1 0 8} .^{36}$

Scheme 1.2.3.17 Nagasaka's Synthesis

Li's formal total synthesis of dl-cephalotaxine: In an interesting ringexpansion/contraction approach, Li reported that exposure of intermediate $\mathbf{1 0 9}$ to zinc and acetic acid rearranged product 110 (Scheme 1.2.3.18). ${ }^{37}$

Scheme 1.2.3.18 Li's Synthesis

Ishibashi's total synthesis of (-)-cephalotaxine: In Ishibashi's total synthesis, a radical cascade cyclization was applied to transform aryl iodide $\mathbf{1 1 1}$ to $\mathbf{1 1 2}$ wherein construction of the B and C rings has occurred via a sequential 7-endo, 5-endo-trig cyclization (Scheme 1.2.3.19). ${ }^{38}$

Scheme 1.2.3.19 Ishibashi's Synthesis

Gin's total synthesis of (-)-cephalotaxine and (-)-dehydroxyharringtonine: Gin reported that the B-ring found in intermediate $\mathbf{1 1 3}$ can be produced from aziridine $\mathbf{1 1 4}$ via [3,3]-rearrangement (Scheme 1.2.3.20). Subsequent alkylation with $\mathrm{TMSCH}_{2} \mathrm{I}$ sets the stage for a $[2+3]$ cyclization with vinyl sulfonate to complete the construction of the C ring in substrate $\mathbf{1 1 5}$. ${ }^{39}$

Scheme 1.2.3.20 Gin's Synthesis

1.3 Conclusions

Many research groups have initiated synthetic studies of the Cephalotaxus alkaloids due to their significant biological activities and interesting chemical structures. From the investigation of these compact molecular templates, new chemical transformations and methodologies have been developed.

1.4 Notes and References

1. Morita, H.; Arisaka, M.; Yoshida, N.; Kobayashi, J., Cephalezomines A-F, potent cytotoxic alkaloids from Cephalotaxus harringtonia var. nana. Tetrahedron 2000, 56, (19), 2929-2934.
2. Morita, H.; Yoshinaga, M.; Kobayashi, J., Cephalezomines G, H, J, K, L, and M, new alkaloids from Cephalotaxus harringtonia var. nana. Tetrahedron 2002, 58, (27), 54895495.
3. Yoshinaga, M.; Morita, H.; Dota, T.; Kobayashi, J., Bis-cephalezomines A-E from Cephalotaxus harringtonia var. nana. Tetrahedron 2004, 60, (36), 7861-7868.
4. For reviews of the Cephalotaxus alkaloids, see: (1) Miah, M. A. J.; Hudlicky, T.; Reed, J. W. In The Alkaloids; Cordell, G. A., Ed.; Academic Press: New York, 1998, 51, 99; (2) Huang, L.; Xue, Z. In The Alkaloids; Brossi, A., Ed.; Academic Press: New York, 1984, 23, 157.
5. Powell, R. G.; Madrigal, R. V.; Smith, C. R.; Mikolajc. Kl, Alkaloids of Cephalotaxusharringtonia var Drupacea 11-Hyrdoxycephalotaxine and Drupacine. Journal of Organic Chemistry 1974, 39, (5), 676-680.
6. Paudler, W. W.; McKay, J.; Kerley, G. I., Alkaloids of Cephalotaxus Drupacea and Ceohalotaxus fortunei. Journal of Organic Chemistry 1963, 28, (9), 2194-2197.
7. Powell, R. G., Weisleder, D.; Smith, C. R. Jr.; Rohwedder, W. K., Structures of harringtonine, isoharringtonine, and homoharringtonine. Tetrahedron Letter 1970, 11, (11), 815-818.
8. Mikolajc. Kl; Smith, C. R.; Powell, R. G., Deoxyharringtonine, a new antitumor alkaloid from Cephalotaxus-structure and sythentic studies. Tetrahedron 1972, 28, (7), 1995-2001.
9. Chinese People's Liberation Army 187th Hospital, Hua Hsueh Hsueh Pao 1976, 34, 283-293.
10. Delfel, N. E., Alkaloid distibution and catabolism in Cephalotaxus-harringtonia. Phytochemistry 1980, 19, (3), 403-408.
11. Parry, R. J.; Chang, M. N. T.; Schwab, J. M.; Foxman, B. M., Biosynthesis of the Cephalotaxus alkaloids- investigation of the early and late stages of cephalotaxine biosynthesis. Journal of the American Chemical Society 1980, 102, (3), 1099-111.
12. Battersby, A. R.; McDonald, E.; Milner, J. A.; Johns, S. R.; Lamberton, J. A.;

Sioumis, A. A., Biosynthesis of schelhammeridine- mode of specific incorporation of 2-

C-14 tyrosine. Tetrahedron Letters 1975, (39), 3419-3422.
13. Stinard, P. S.; Nevins, D. J., Distribution of non- cellulosic beta-D-glucas in grass and other monocots. Phytochemistry 1980, 19, (7), 1467-1468.
14. Strassman, M.; Ceci, L. N., Enzymatic formation of alpha- isopropylmalic acid, an intermediate in leucine biosynthesis. Journal of Biological Chemistry 1963, 238, (7), 2445-2452.
15. Auerbach, J.; Ipaktchi, T.; Weinreb, S. M., Synthesis of diacid sidechain of deoxyharringtonine. Tetrahedron Letters 1973, (46), 4561-4564.
16. Hiranuma, S.; Hudlicky, T., Synthesis of homoharringtonine and its derivative by partial esterification of cephalotaxine. Tetrahedron Letters 1982, 23, (34), 3431-3434.
17. Eckelbarger, J. D.; Wilmot, J. T.; Gin, D. Y., Strain-release rearrangement of N-vinyl-2-arylaziridines. Total synthesis of the anti-leukemia alkaloid (-)deoxyharringtonine. Journal of the American Chemical Society 2006, 128, (32), 1037010371.
18. Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M., Rapid esterification by means of mixed anhydride and its application to large-ring lactonization. Bulletin of the Chemical Society of Japan 1979, 52, (7), 1989-1993.
19. Auerbach, J.; Weinreb, S. M., Total synthesis of cephalotaxine. Journal of the American Chemical Society 1972, 94, (20), 7172-7173.
20. Semmelhack,.M. F.; Chong, B. P.; Jones, L. D., Total synthesis of Cephalotaxus alkaloids. Journal of the American Chemical Society 1972, 94, (24), 8629-8630.
21. Kuehne, M. E.; Bornmann, W. G.; Parsons, W. H.; Spitzer, T. D.; Blount, J. F.; Zubieta, J., Total synthesis of (+/-)-cephalotaxine and (+/-)-8-oxocephalotaxine. Journal of Organic Chemistry 1988, 53, (15), 3439-3450.
22. Sha, C. K.; Young, J. J.; Yeh, C. P.; Chang, S. C.; Wang, S. L., A Friedel-Crafts cyclization approach toward cephalotaxine. Journal of Organic Chemistry 1991, 56, (8), 2694-2696.
23. Isono, N.; Mori, M., Total synthesis of (-)-cephalotaxine. Journal of Organic Chemistry 1995, 60, (1), 115-119.
24. Planas, L.; Perard-Viret, J.; Royer, J., Stereoselective synthesis of (-)-cephalotaxine and C-7 alkylated analogues. Journal of Organic Chemistry 2004, 69, (9), 3087-3092.
25. Li, W. D. Z.; Wang, X. W., Novel formal synthesis of cephalotaxine via a facile Friedel-Crafts cyclization. Organic Letters 2007, 9, (7), 1211-1214.
26. Hameed, A.; Blake, A. J.; Hayes, C. J., A second generation formal synthesis of (-)cephalotaxine. Journal of Organic Chemistry 2008, 73, (20), 8045-8048.
27. Esmieu, W. R.; Worden, S. M.; Catterick, D. C.; Wilson, C.; Hayes, C. J., A formal synthesis of (-)-cephalotaxine. Organic Letters 2008, 10, (14), 3045-3048.
28. (1) Tietze, L. F.; Schirok, H., Enantioselective highly efficient synthesis of (-)cephalotaxine using two palladium-catalyzed transformations. Journal of the American Chemical Society 1999, 121, (44), 10264-10269;
(2) Tietze, L. F.; Schirok, H.; Wohrmann, M., Palladium-catalyzed synthesis of cephalotaxine analogues. Chemistry-a European Journal 2000, 6, (3), 510-518.
29. Liu, Q.; Ferreira, E. M.; Stoltz, B. M., Convergency and divergency as strategic elements in total synthesis: The total synthesis of (-)-drupacine and the formal total synthesis of (+/-)-Cephalotaxine, (-)-cephalotaxine, and (+)-cephalotaxine. Journal of Organic Chemistry 2007, 72, (19), 7352-7358.
30. Weinreb, S. M.; Auerbach, J., Total synthesis of Cephalotaxus alkaloidscephalotaxine, cephalotaxinone, and demethylcephalotaxinone. Journal of the American Chemical Society 1975, 97, (9), 2503-2506.
31. (1) Semmelhack, M. F.; Chong, B. P.; Jones, L. D., Total synthesis of Cephalotaxus alkaloids. Journal of the American Chemical Society 1972, 94, (24), 8629-8630;
(2) Semmelhack, M. F.; Chong, B. P.; Stauffer, R. D.; Rogerson, T. D.; Chong, A.; Jones, L. D., Total synthesis of Cephalotaxus alkaloids-problem in nucleophilic aromaticsubstitution. Journal of the American Chemical Society 1975, 97, (9), 2507-2516.
32. Yasuda, S.; Yamada, T.; Hanaoka, M., A novel and stereoselective synthesis of (+/-)cephalotaxine and its analog. Tetrahedron Letters 1986, 27, (18), 2023-2026.
33. (1) Burkholder, T. P.; Fuchs, P. L., Total synthesis of d,l-cephalotaxine- the first exmple of an intramolecular 4+2 cyclo-addition where the dienophile has been delivered from the face opposite to the tethering moiety. Journal of the American Chemical Society 1988, 110, (7), 2341-2342;
(2) Burkholder, T. P.; Fuchs, P. L., Total synthesis of the Cephalotaxus alkoloids dlcephalotaxine, dl-11-hydroxycephalotaxine, and dl-druoacine. Journal of the American Chemical Society 1990, 112, (26), 9601-9613.
34. Gardiner, J. M.; Bryce, M. R.; Bates, P. A.; Hursthouse, M. B., Cephalotaxine analogs-stereospecific synthesis of spiro-fused 3-benzazepine and 1,3-benzodiazepine derivatives. Journal of Organic Chemistry 1990, 55, (4), 1261-1266.
35. (1) Lin, X. D.; Kavash, R. W.; Mariano, P. S., A cephalotaxine synthesis found on a mechanistically interesting, quasi-biomimetic strategy. Journal of the American Chemical Society 1994, 116, (21), 9791-9792;
(2) Lin, X. D.; Kavash, R. W.; Mariano, P. S., Two interrelated strategies for cephalotaxine synthesis. Journal of Organic Chemistry 1996, 61, (21), 7335-7347.
36. Koseki, Y.; Sato, H.; Watanabe, Y.; Nagasaka, T., A formal total synthesis of (+/-)cephalotaxine using sequential N -acyliminium ion reactions. Organic Letters 2002, 4, (6), 885-888.
37. Li, W. D. Z.; Wang, Y. Q., A novel and efficient total synthesis of cephalotaxine. Organic Letters 2003, 5, (16), 2931-2934.
38. (1) Taniguchi, T.; Ishita, A.; Uchiyama, M.; Tamura, O.; Muraoka, O.; Tanabe, G.; Ishibashi, H., 7-endo selective aryl radical cyclization onto enamides leading to 3benzazepines: Concise construction of a cephalotaxine skeleton. Journal of Organic Chemistry 2005, 70, (5), 1922-1925;
(2) Taniguchi, T.; Yokoyama, S.; Ishibashi, H., Asymmetric Total Synthesis and Revised Structure of Cephalezomine H. Journal of Organic Chemistry 2009, 74, (19), 7592-7594.
39. Eckelbarger, J. D.; Wilmot, J. T.; Gin, D. Y., Strain-release rearrangement of N-vinyl-2-arylaziridines. Total synthesis of the anti-leukemia alkaloid (-)deoxyharringtonine. Journal of the American Chemical Society 2006, 128, (32), 1037010371.

Chapter 2

Approach Towards the Total Synthesis of Cephalezomine A

Given that cephalezomine A has dramatic biological activities and is isolated in low yield ${ }^{1}$ coupled with the fact that it has yet to succumb to total synthesis, led us to target this fascinating and challenging natural product.

2.1 Retrosynthetic Analysis I

The retrosynthetic analysis of cephalezomine A (1) is outlined in Scheme 2.1.1. Retrosynthetic cleavage of the ester bond in cephalezomine A (1) furnishes the acyl side chain (150) and drupacine (18). It is known that drupacine (18) can be prepared from 11hydroxycephelotaxine (20) in one step. ${ }^{2}$ In our retro synthetic analysis, 11hydroxycephelotaxine (20) derives from the cyclization of substrate 152. In the forward sense, exposure of dienone $\mathbf{1 5 2}$ to Lewis Acid conditions is envisioned to furnish cationic intermediate 151 via a Nazarov cylization. This intermediate could, in turn, undergo a Friedel- Crafts type cyclization to form 11-hydroxycephelotaxine (20). Disubstituted dienone $\mathbf{1 5 2}$ is seen as arising from $\mathbf{1 5 3}$ by nucleophilic addition of an α - lithio vinyl ether to Weinreb amide $\mathbf{1 5 3}$ which will derive from the union of epoxide $\mathbf{1 5 4}$ and vinylogous urea 155.

Scheme 2.1.1 Retrosynthetic Analysis I

2.2 Synthesis of Dienone 152

2.2.1 Coupling of an Epoxide and a Vinylogous Amide

One of the coupling precursors, epoxide 154 was prepared from piperonal (156) in good yield by a Johnson-Corey-Chaykovsky reaction (Scheme 2.2.1). ${ }^{3}$ The remaining coupling partner vinylogous urea 155 was prepared by treatment of 2-methyl-1-pyrroline (157) with LDA, followed by addition of dimethylcarbamic chloride. Attempts to couple epoxide 154 and vinylogous amide 155 were conducted under numerous conditions.

Unfortunately, no desired coupling product 158 was observed and starting material was either recovered or decomposed. The poor nucleophile character of the vinylogous urea nitrogen was not unexpected and similar reactivity was observed upon exposure of pyrrolidin-2-one (159) to epoxide 154 . Given that the nucleophile (vinylogous urea 155) was seen as the least variable substrate, we next explored alteration of the electrophile.

Scheme 2.2.1 Coupling of Epoxide and Vinylogous amide

2.2.2 Coupling of an α-Bromo Ketone and a Vinylogous Urea

In considering other possible eletrophiles, we first explored α-bromo ketone 162. The preparation of $\mathbf{1 6 2}$ began with addition of MeMgBr to piperonal (156) and oxidation of newly formed secondary alcohol to ketone 161 (Scheme 2.2.2). Treatment of ketone 161 with bromine produced α-bromo ketone 162 in excellent yield ${ }^{4}$ and the latter could
be readily protected as its ethylene glycol acetal to provide an additional electrophile substrate 163.

Scheme 2.2.2 Preparation of Bromo Ketone

As illustrated in Table 2.2.2, our efforts to engage vinylogous urea $\mathbf{1 5 5}$ with the more reactive α-bromo ketone 162 were unsuccessful. Under basic conditions $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right.$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, n - BuLi), bromo ketone $\mathbf{1 6 2}$ decomposed and vinylogous urea 155 was recovered. Under milder conditions (EtOH or $\mathrm{Et}_{3} \mathrm{~N}$), both of the starting materials were recovered. Given these results, we turned to another electrophile: bromide 163, which is more stable under harsh conditions; however, only starting material was recovered upon exposure to either mild or strong basic conditions. Although less desirable, at this stage addressing the nucleophilicity of the vinylogous urea $\mathbf{1 5 5}$ became the next step.

Table 2.2.2 Coupling Conditions of Bromo Ketone and Vinylogous Urea

conditions	results
$\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF or MeCN, r.t.	162, decomposed; 155, recovered
$\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{DMF}$ or MeCN , r.t.	162, decomposed; 155, recovered
NaH,THF, r.t.	162, decomposed; 155, recovered
$\mathrm{KOH}, n-\mathrm{Bu}_{4} \mathrm{NI}, \mathrm{MeCN}$ or THF, r.t	162, decomposed; 155, recovered
n-BuLi, -78 ${ }^{\circ} \mathrm{C}$, THF	162, decomposed; 155, recovered
$n-B u L i,-78{ }^{\circ} \mathrm{C}$ to r.t., THF	162, decomposed; 155, decomposed
EtOH, r.t.	162, recovered; 155, recovered
$E t_{3} \mathrm{~N}, \mathrm{DCM}$, r.t.	162, recovered; 155, recovered
AgOAc, or AgOTf or AgNO_{3}, Tol/THF or MeCN, r.t	162, decomposed; 155, recovered
$\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, r.t.	163, recovered; 155, recovered
n-BuLi, $-78{ }^{\circ} \mathrm{C}$ to r.t., THF	163, recovered; 155, recovered

2.2.3 Coupling of an α-Bromo Ketone with an Amide

Since pyrrolidin-2-one (159) has been reported to serve effectively as a nucleophile in coupling reactions with α-halogenated ketones at room temperature, ${ }^{5}$ we decided to explore its coupling with bromo ketone 162. From a retrosynthetic perspective (Scheme 2.2.3.1), this change to a less functionalized nucleophile requires further manipulation of vinylogous urea 153 to produce requisite dienone 152. To this end, it was
envisioned that an Eschenmoser coupling of α-halo amide 166 and thiolactam 167 would deliver intermediate $\mathbf{1 5 3}$ via an addition-elimination process.

Scheme 2.2.3.1 Revised Coupling Retrosynthetic Analysis

In practice, initial studies on the coupling of 162 and pyrrolidin-2-one (159) to yield 168 using NaH were modestly successful (56% yield). Further study revealed that using 2-methoxy-1-pyrroline (169) ${ }^{5}$ as nucleophile instead of amide $\mathbf{1 5 9}$ results in a significantly improved yield. Protection of $\mathbf{1 6 8}$ using ethylene glycol gave $\mathbf{1 7 0}$.

Scheme 2.2.3.2 Coupling of Bromo Ketone with Amide

Having set the stage for the planned coupling (see 170 to 153 in Scheme 2.2.3.3), we first explored the use of lactam $\mathbf{1 7 1}$ to establish our ability to effect a coupling of α halo amide 166.

Scheme 2.2.3.3 Proposed Model Study on the Coupling of Substrate 170 with 166

Proposed Real System:

Proposed Model:

In preliminary studies we explored the direct coupling of $\mathbf{1 7 1}$ to form the vinylogous urea 172 or amide 175 (Scheme 2.2.3.4). Different nucleophiles, such as depronated N -methoxy- N -methylacetamide 173 and silyl enol ether $\mathbf{1 7 4},{ }^{6}$ were investigated. However, no desired product was observed. Coupling also failed when the corresponding ammonium salt 176, which was produced by methylation of amide 171.

Scheme 2.2.3.4 Addition and Elimination for the Coupling Study

.

176

We next turned to the Eschenmoser Coupling ${ }^{9}$ and set the stage for this coupling via the conversion of lactam 171 to thiolactam $\mathbf{1 7 7}$ by treatment with Lawesson's reagent. ${ }^{7}$ Subsequent coupling of $\mathbf{1 7 7}$ with either an α-bromo amide ${ }^{8}$ or ester produced the coupling product (e.g. amide $\mathbf{1 7 9}$ or ester $\mathbf{1 8 0}$, Scheme 2.2.3.5). However, the product $\mathbf{1 7 9}$ was difficult to separate from triphenyl phosophine sulfide, which was produced in the coupling reaction.

Further optimization of the coupling (Table 2.2.3) identified triethyl phosphite as the best phosphorus source; Eschenmoser coupling under these conditions proceeds in higher yield and purification of the desired product is greatly simplified.

Table 2.2.3 Optimized Eschenmoser Coupling for Model

As illustrated in Scheme 2.2.3.6, the conditions developed in our model study proceeded effectively in the real system. In the event, conversion of lactam $\mathbf{1 7 0}$ to thiolactam 167, followed by Eschenmoser coupling gave precursor 182 in excellent yield.

Interestingly, purification of this product was easily achieved even when PPh_{3} was employed.

Scheme 2.2.3.6 Eschenmoser Coupling for Real System

2.2.4 Efforts to Access Dienone 152 from Weinreb Amide 182

Our exploration into the transformation of Weinreb amide $\mathbf{1 5 3}$ to dienone 152 (as illustrated in the retrosynthetic analysis scheme 2.2.3.1) began with model substrate $\mathbf{1 7 9}$. Exposure of $\mathbf{1 7 9}$ to more than 3 equivalent of lithio vinyl ether ${ }^{10}$ or vinyl magnesium bromide ${ }^{11}$ resulted only in isolation of recovered starting material (Table 2.2.4).

Table 2.2.4 Nucleophilic Addition Failure in Model for Synthesis of Dienone

Unfortunately, as illustrated in Scheme 2.2.4, similar results were obtained in the real system. Since the difficult nucleophilic addition was likely due the decreased reactivity of the vinylogous urea, we turned to an alternative wherein the vinyl group would be introduced prior to Eschenmoser coupling.

Scheme 2.2.4 Nucleophilic Addition Failure in Real System for Synthesis of Dienone

2.2.5 Changing the Order of Events: Eschenmoser Coupling of Enones

Since Eschenmoser Coupling with α-halogenated amides or esters has been reported, we were optimistic about coupling the α-halogenated enone 187 with thiolactam 167 to form dienone 152 (Scheme 2.2.5.1).

Scheme 2.2.5.1 Revised Coupling Retrosynthetic Analysis

Implementation of this idea required preparation of the α-halo ketone $\mathbf{1 8 7}$. To this end, our first approach was to attempt the nucleophilic addition of a lithium, magnesium or zinc, vinyl metal species to bromoacetyl bromide (188, Scheme 2.2.5.2). Unfortunately, no desired product (190) was obtained.

Scheme 2.2.5.2 Approach to Bromo Enone by Vinyl Nucleophile Addition

Turning to an alternative approach involving bromination of an intact enone system we were delighted to find several examples of in the literature describing the bromination of methyl vinyl ketones. For example, Li demonstrated that vinyl ketone 191 furnished
bromide 193 upon treatment with tri[pyrrolidine-2-one] hydrobromide (192) at $-78{ }^{\circ} \mathrm{C}$ (Scheme 2.2.5.3). ${ }^{12}$ Given our need for a terminal alkenyl ketone, we explored Li's conditions on methyl vinyl ketone 194; however, the undesired dibromide 196 was the only observed product.

Scheme 2.2.5.3 Approach to Bromo Enone via Bromination Process I

In a different report, Herman described that treatment of TMS silyl enol ether 197 with NBS produced bromination product 193 (Scheme 2.2.5.4). ${ }^{13}$ Exploring these conditions on TMS silyl enol ether 194, we observed only starting material decomposition and no desired product.

Scheme 2.2.5.4 Approach to Bromo Enone via Bromination Process II

A more relevant example was found in the work of Danishefsky who reported that addition of ethylene (198) to chloroacetyl chloride (199) followed by elimination produced product 200 in good yield (Scheme 2.2.5.5). ${ }^{14}$ In repeating this experiments, we did obtain some of the desired product 200. However, the yield was poor.

Scheme 2.2.5.5 Approach to Chloro Enone via Friedel -Crafts Addition

In a more recent report, Ram described that the treatment of allylic alcohol 201 with cuprous chloride to give α-chloro enone 202 in good yield (Scheme 2.2.5.6). ${ }^{15}$ The mechanism is believed to involve a copper(I) carbenoid mediated $1,2-\mathrm{H}$ shift process. Since our coupling target was α-chloro alkoxy-enone $\mathbf{2 0 9}$ or 210, the exploration of

Ram's procedure requires the preparation of alkoxy-allylic alcohol $\mathbf{2 0 5}$ or $\mathbf{2 0 6}$ as illustrated in Scheme 2.2.5.6. Addition of litho vinyl ether 204 to DMF (203) produced aldehyde $\mathbf{2 0 5}$ or 206, which upon exposure to chloroform under basic conditions furnished the corresponding allylic alcohol $\mathbf{2 0 7}$ or $\mathbf{2 0 8}$ in good yield. At this point we were delighted to find that the application of Ram's procedure to $\mathbf{2 0 7}$ or $\mathbf{2 0 8}$ furnished the desired α-Chloro alkoxy-enone $\mathbf{2 0 9}$ or $\mathbf{2 1 0}$ in good yield. Since ethoxyl enone 209 is volatile at room temperature, we employed butoxyl enone $\mathbf{2 1 0}$ in subsequent studies.

Scheme 2.2.5.6 Synthesis of Chloro Enone via Copper(I) Carbenoid 1,2 H Shift Process

Impressively, Eschenmoser coupling of $\mathbf{1 6 7}$ with $\mathbf{2 1 0}$ gave the desired key precursor 211 and set the stage for investigation of the Nazarov cyclization (Scheme

2.2.5.7).

Scheme 2.2.5.7 Eschenmoser Coupling of 102 with 120

2.3 Nazarov Cyclization of Dienone 211

Recent reports by West ${ }^{16}$ describing the successful tandem Nazarov cyclization/ Friedel-Crafts reaction of heavily substituted dienone $\mathbf{2 1 3}$ left us encouraged at prospects of employing dienone 211 in a similar reaction (Scheme 2.3.1). We were additionally encouraged by recent studies from Frontier describing the benefits of electron donating substituents. ${ }^{17}$ Unfortunately, despite similarity to West's system and presence of additional electron donating substituent's, the Nazarov cyclization failed for our substrate 211 under standard Lewis acid conditions $\left(\mathrm{TiCl}_{4}\right.$ or $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ at room temperature). At lower temperature, only starting material was observed and when the temperature was increased to $0^{\circ} \mathrm{C}$, NMR monitoring indicated only decomposition. Given that West's substrates lack both alkoxy and N-substituted functional groups, we decided to investigate the Nazarov cyclization on model systems wherein these two dienone substituents are present individually.

Scheme 2.3.1 Nazarov Cylization Studies on the Real System

To explore the effects of an alkoxy substituent, model system dienone 217 was prepared by addition of lithio vinyl ether to the Weinreb amide derived from benzoyl chloride (Scheme 2.3.2). Additionally, model system 220 was prepared by addition of lithiated vinyl ether to piperine (219). Interestingly, both model dienone 217 and 220 underwent smooth cyclization under Lewis acid conditions. These results indicated that alkoxy substituents in the α-position were not deleterious to Nazarov cyclization. Noteworthy was the decrease in yield for the cyclization of $\mathbf{2 2 0}$ compared to 217. Based on studies by Sharpen this was expected. ${ }^{18}$

Scheme 2.3.2 Nazarov Cylization Model Test for Alkoxy Group

220
221

To investigate the effect of the vinylogous amide substituent on Nazarov cyclization, we prepared model 175 (Scheme 2.3.3). In a first attempt to this end, treatment of acryloyl chloride with lithiated 2-methyl-1-pyrroline (157) gave undesired product amide 224 via N-acylation. In a second attempt, acryloyl chloride (225) was pretreated with N, O-dimethylhydroxylamine hydrochloride (226) to yield Weinreb amide 227.With this substrate, addition of lithiated 2-methyl-1-pyrroline furnished the desired vinylogous amide 223 which, upon, methylation delivered dienone 175.

Scheme 2.3.3 Synthesis Model with N-Substituted Group for Nazarov Cyclization Test

Route 2:

With the model substrate dienone $\mathbf{1 7 5}$ in hand, a variety of conditions were explored in order to produce spiro ketone $\mathbf{2 2 8}$ by Nazarov cyclization. Conditions include Lewis acid: $\mathrm{SiO}_{2},{ }^{19 a(7)} \mathrm{AlCl}_{3},{ }^{18} \mathrm{Et}_{2} \mathrm{AlCl}$ or $\mathrm{Me}_{3} \mathrm{Al},{ }^{20(1)} \mathrm{TiCl}_{4}$ or $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2},{ }^{19 a(8)}$ $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$ or $\mathrm{Pd}(\mathrm{OAc})_{2},{ }^{19 \mathrm{a}(3)} \mathrm{Sc}(\mathrm{OTf})_{3},{ }^{19 \mathrm{a}(9)} \mathrm{FeCl}_{3},{ }^{19 \mathrm{a}(1), \mathrm{a}(2)} \mathrm{Cu}(\mathrm{OTf})_{2},{ }^{19 \mathrm{a}(4),}$ $\mathrm{Yb}(\mathrm{OTf})_{3}{ }^{19 a(6)}$ TBSOTf$;{ }^{19 a(5)} \mathrm{TFA}^{19 b(1), 20(1),(2)}$ and $\mathrm{HCOOH} / \mathrm{H}_{3} \mathrm{PO}_{4} .{ }^{19 b(1),(2)}$

Unfortunately, under all of the conditions no desired product was observed. Starting material was recovered or decomposed (Table 2.3). This result led us to believe that the vinylogous amide substituent was the culprit in our failed Nazarov cylization.

Table 2.3 Nazarov Cyclization Test with N-Substituted Model 175

As a third model system we prepared a dienone containing both of the alkoxy and vinylogous amide substituents. To prepare dienone 231, dimethyl carbamic chloride (229) was treated with lithiated vinyl ether, followed by addition of lithiated 2-methyl-1pyrroline. Methylation of intermediate 230 gave desired dienone 231 (scheme 2.3.4). Nazarov cyclization was only conducted under the TiCl_{4} conditions that proved successful for dienone 217. Unfortunately, only the diketone $\mathbf{2 3 3}$ was produced and none of the spiro product 232 was observed.

Scheme 2.3.4 Nazarov Cyclization Test with O, N-Substituted Model 231

229

(two steps: 71\% yield)

232

Results from the above studies indicated that altering the electronic nature of the amine might impact the Nazarov cyclization. To investigate this possibility, it was decided to attempt converting the vinylogous amide to a vinylogous imide prior to Nazarov cyclization. Access to this new Nazarov substrate (235) was gained simple through a simple peptide coupling of $\mathbf{2 3 4}$ and $\mathbf{2 3 0}$ (Scheme 2.3.5). ${ }^{21}$

Scheme 2.3.5 Preparation of Deactivated N-Substituted Dienone

Unfortunately, under Lewis acid promoted Nazarov cyclization conditions 235 was found to deliver none of the desired product 236. Only decomposition of the starting material was observed (Scheme 2.3.6). Based on these results the Nazarov cyclization route was abandoned and alternatives were considered.

Scheme 2.3.6 Nazarov Cyclization Test with Deactivated N-Substituted Dienone 235

2.4 Considering an Alternative Strategy

The failure of the Nazarov cyclization approach coupled with recent success with tandem radical reactions in the Wood group ${ }^{22}$ led us to consider an alternative approach (Scheme 2.4.1). As illustrated in retrosynthetic fashion, this approach relies on the same bond construction as the Nazarov cyclization strategy; however in this radical based approach one can view bond formation as moving from the aromatic moiety to the vinylogous amide system (substrate 239 to 238 to 237). Importantly, although the underlying chemistry is quite different, the substrates required for the radical approach are fairly similar to those employed in our studies of the Nazarov cyclization. Thus great advantage could be taken of previously developed chemistry.

Scheme 2.4.1 Alternative Strategy: Radical Cyclization Approach

20: 11-hydroxyCephalotaxine

239

In the forward sense, preparation of the radical cyclization substrate began with bromination of piperonal (Scheme 2.4.2). The desired bromide 240 was taken through a 7-step sequence similar to that employed for substrate 211. In the end, substrate 247 and 248 were accessed in good yield.

Scheme 2.4.2 Preparation for Radical Cyclization

With radical cyclization substrates 247 and 248 in hand, we were disappointed to find that in the presence of $\mathrm{Bu}_{3} \mathrm{SnH} / \mathrm{AIBN}$ or SmI_{2} neither gave the desired product 249 (Scheme 2.4.2). Under the $\mathrm{Bu}_{3} \mathrm{SnH} / \mathrm{AIBN}$ conditions, ${ }^{22,23}$ reductive debromination products were observed whereas under the SmI_{2} conditions, ${ }^{22,24}$ the starting materials were found to decompose.

Scheme 2.4.2 Radical Cyclization Approach

2.5 Conclusions

Efforts to assemble the core structure found in 11-hydroxycephalotaxine (20) using either a tandem Nazarov/ Friedel-Crafts cyclization or radical cascade sequence failed. Despite the failure of the key steps, considerable chemistry was developed in the course of the assembling the requisite intermediates.

2.6 Experimental Section

2.6.1 Materials and Methods

General. Unless otherwise stated, reactions were performed under a nitrogen atmosphere using freshly dried solvents. Tetrahydrofuran (THF) was dried either by distillation from sodium/benzophenone or by passing through activated alumina columns. Methylene chloride (DCM), diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$, benzene (PhH), toluene (Tol) and acetonitrile (MeCN) were dried by passing through activated alumina columns. Dimethylformamide (DMF) was dried over activated molecular sieves or by passing through activated alumina columns. MeOH was distilled over magnesium oxide. All other commercially obtained reagents were used as received. All reactions were monitored by thin-layer chromatography using EMD/Merck silica gel 60 F254 pre-coated plates (0.25 mm). Flash chromatography was performed with indicated solvents using silica gel (particle size 0.032-0.063) purchased from Silicycle. Microwave experiments were performed using a Biotage Initiator ${ }^{\circledR}$ or CEM Discover microwave reactor. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at $500 \mathrm{MHz}, 400 \mathrm{MHz}$ or 300 MHz using a Bruker AM-500, Bruker Avance DPX-500, Bruker AM-400, Varian Inova 400, Varian Inova 300 or Varian Mercury Inova 300 instrument. ${ }^{13} \mathrm{C}$ NMR spectra were recorded at $125 \mathrm{MHz}, 100$ or 75 MHz using a Bruker AM-500, Bruker Avance DPX-500, Bruker AM-400, Varian Inova 400, Varian Inova 300 or Varian Mercury Inova 300 instrument. Chemical shifts are reported relative to internal chloroform $\left({ }^{1} \mathrm{H}, \delta=7.26,{ }^{13} \mathrm{C}, \delta=77.1\right)$ as indicated. Splitting patterns are reported as such, app $=$ apparent, $\mathrm{br}=\operatorname{broad}, \mathrm{s}=\operatorname{singlet}, \mathrm{d}=\operatorname{doublet}, \mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quin $=$ quintet, $\mathrm{m}=$ multiplet. Infrared spectra were recorded on a

Nicolet Avatar 320 FT-IR. High-resolution mass spectra were acquired at the Colorado State University CIF using an Agilent 6210 TOF LCMS.

2.6.2 Preparative Procedures

Preparation of vinylogous amide 155

To a solution of diisopropylamine ($280 \mu \mathrm{~L}, 2 \mathrm{mmol}, 2.0$ equiv.) in THF (1 mL) at $0^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(1.25 \mathrm{~mL}, 2 \mathrm{mmol}, 2.0$ equiv., 1.6 M hexanes solution) dropwise over 5 minutes. The resultant mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes and then cooled to $-78^{\circ} \mathrm{C}$. To this LDA solution was added 2-methyl-pyrroline (157) $(95 \mu \mathrm{~L}, 1.00 \mathrm{mmol}$, 1 equiv.). The solution was stirred for 1 hour. To this mixture was added dimethylcarbamic chloride ($180 \mu \mathrm{~L}, 2 \mathrm{mmol}, 2$ equiv.). The reaction was stirred for three hours at $-78^{\circ} \mathrm{C}$ and quenched by $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The layers were separated and aqueous layer was washed with EtOAc $(2 \times 2 \mathrm{~mL})$. The combined organic layers were washed with brine (4 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 20\%-50\% EtOAc/ Hexanes) to yield 155 (101mg, 65\%) as brown oil.

Vinylogous amide 155: $\mathrm{FTIR}(\mathrm{NaCl} /$ thin film) 3343, 2925, 2877, 2361, 2339, 1624, 1567, 1516, 1369, 1310, 1294, 1144, 1059, 762, $685 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.62-8.49(\mathrm{~m}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 3.43(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{~s}, 6 \mathrm{H}), 2.53(\mathrm{t}$,
$J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{dd}, J=7.3,14.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3$, 164.1, 76.0, 46.8, 36.4, 32.5, 22.1; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]$ 155.1184, found 155.1178 .

Preparation of amide 168

To a solution of $\mathbf{1 6 2}(18.8 \mathrm{~g}, 49.1 \mathrm{mmol}, 1$ equiv.) in $\mathrm{MeCN}(45 \mathrm{~mL})$ was added 2-Methoxy-1-pyrroline (169) ($7.3 \mathrm{~g}, 73.7 \mathrm{mmol}, 1.5$ equiv.). The mixture was heated to $60{ }^{\circ} \mathrm{C}$ and stirred for 2 days. The reaction was cooled to room temperature and concentrated by reducing pressure to yield pure $168(12.5 \mathrm{~g})$ as brown oil.

Amide 168: FTIR ($\mathrm{NaCl} /$ thin film) 2911, 1677, 1604, 1504, 1445, 1365, 1289, $1255,1141,1110,1036,931,886 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56$ (dd, $J=1.8$, 8.2 Hz, 1H), 7.41 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.05$ (s, 2H), 6.64 (s, 2H), $3.49(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-2.01(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 191.9,175.9,152.4,148.4,129.8,124.6,108.2,107.8,102.1,48.9,48.0,30.5$, 18.2; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}] 248.0923$, found 248.0922.

Preparation of amide 170

To a solution of $\mathbf{1 6 8}(1.8 \mathrm{~g}, 7.28 \mathrm{mmol}, 1$ equiv.) in Benzene (125 mL) was added ethyl glycol ($4.1 \mathrm{~mL}, 73.3 \mathrm{mmol}, 10$ equiv.) and p-Toluenesulfonic acid ($180 \mathrm{mg}, 1.05$ mmol, 0.14 equiv.). The mixture was heated to reflux and stirred for overnight. The mixture was cooled to room temperature and washed by saturated aqueous $\mathrm{NaHCO}_{3}(2 \times$ 20 mL). The organic layer was dried by $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through Celite and concentrated by reducing pressure to yield pure $\mathbf{1 7 0}(2.2 \mathrm{~g})$ as brown solid.

Amide 170: FTIR ($\mathrm{NaCl} /$ thin film) 2892, 1686, 1488, 1437, 1248, 1175, 1103, $1036,1000,932,812 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.98(\mathrm{dd}, J=1.2,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.97(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 2 \mathrm{H}), 4.02(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.80$ (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 3.45(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{t}, J=8.0,2 \mathrm{H}), 1.98-1.87(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.5,147.8,147.7,134.3,119.7,109.4,108.0$, 106.8, 101.2, 64.8, 49.8, 49.0, 30.8, 18.6; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{5}$ [M+H] 292.1185, found 292.1178.

Preparation of vinylogous amide 180

To a solution of $177(230 \mathrm{mg}, 2 \mathrm{mmol}, 1$ equiv.) in $\mathrm{MeCN}(800 \mu \mathrm{~L})$ was added methyl 2-bromoacetate (178b) ($38 \mu \mathrm{~L}, 4 \mathrm{mmol}, 2$ equiv.) at room temperature. The mixture was stirred for 1 day and was concentrated by reducing pressure. The residue was dissolved in $\mathrm{DCM}(800 \mu \mathrm{~L})$ and was added $\mathrm{Et}_{3} \mathrm{~N}(340 \mu \mathrm{~L}, 2.4 \mathrm{mmol}, 1.2$ equiv.), PPh_{3} (630mg, $2.4 \mathrm{mmol}, 1.2$ equiv.). The mixture was stirred for overnight and filtered through Celite, concentrated by reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 20\%-50\% EtOAc/ Hexanes) to yield $\mathbf{1 8 0}$ ($150 \mathrm{mg}, 48 \%$) as yellow oil.

Vinylogous Amide 180: FTIR (NaCl/ thin film) 2969, 2947, 2883, 1675, 1582, $1456,1456,1412,1375,1298,1243,1135,1108,1054,980,908,778 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.46(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.37(\mathrm{td}, J=1.8,7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 3.13 (td, $J=1.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8,165.8,77.2,54.5,50.0,33.2,32.5,21.0$; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]$ 156.1025, found 156.1020.

Preparation of thiolactam 167

To a solution of $\mathbf{1 7 0}$ ($675.4 \mathrm{mg}, 2.32 \mathrm{mmol}, 1$ equiv.) in THF (2 mL) was added Lawesson's reagent ($562.8 \mathrm{mg}, 11.6 \mathrm{mmol}, 0.5$ equiv.) at room temperature. The mixture was stirred for overnight. The reaction was concentrated under reduced pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, $20 \%-50 \% \mathrm{EtOAc} /$ Hexanes $)$ to yield $167(580 \mathrm{mg}, 81.4 \%)$ as orange solid.

Thiol lactam 167: FTIR ($\mathrm{NaCl} /$ thin film) 2892, 1687, 1503, 1488, 1438, 1363, $1250,1119,1036,934,993,812 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.95(\mathrm{dd}, J=1.6$, $8.4,1 \mathrm{H}), 6.95(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.4,1 \mathrm{H}), 5.89(\mathrm{~s}, 2 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.89(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.84(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 203.2,147.7,147.5,133.5,119.4,108.8,107.8,106.6,101.1$, 64.5, 55.9, 53.7, 44.6, 20.0; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]$ 308.0957, found 308.0959.

Preparation of vinylogous amide 182

To a solution of $167(190 \mathrm{mg}, 0.62 \mathrm{mmol}, 1$ equiv.) in $\mathrm{MeCN}(250 \mu \mathrm{~L})$ was added 2-bromo-N-methoxy-N-methylacetamide (181) ($95 \mu \mathrm{~L}, 1 \mathrm{mmol}, 1.62$ equiv.) at room temperature. The mixture was stirred for 1 day and concentrated by reducing pressure. The residue was dissolved in $\mathrm{DCM}(250 \mu \mathrm{~L})$ and was added $\mathrm{Et}_{3} \mathrm{~N}(100 \mu \mathrm{~L} \mathrm{~mL}, 0.74$ mmol, 1.2 equiv.), PPh_{3} ($295 \mathrm{mg}, 0.74 \mathrm{mmol}, 1.2$ equiv.). The mixture was stirred for overnight and filtered by Celite, concentrated by reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 20\%-50\% EtOAc/ Hexanes) to yield $\mathbf{1 8 2}$ ($100 \mathrm{mg}, \mathbf{4 3 \%}$) as yellow oil.

Vinylogous Amide 182: FTIR ($\mathrm{NaCl} /$ thin film) 2890, 1634, 1573, 1487, 1435, 1387, 1246, 1168, 1099, 1035, $990 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.94-6.88(\mathrm{~m}$, $2 \mathrm{H}), 6.72(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 2 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 3.99-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.79-3.73(\mathrm{~m}$, $2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 3.27(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.12-3.05(\mathrm{~m}, 5 \mathrm{H}), 1.83-1.74(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.1,165.3,147.7,147.6,134.5,119.3,109.8$, 108.0, 106.5, 101.1, 77.9, 64.9, 61.0, 55.2, 54.1, 33.1, 32.2, 21.8; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]$ 377.1713, found 377.1705.

Preparation of chloro ketone 210

To a solution of 208 ($644 \mathrm{mg}, 2.60 \mathrm{mmol}, 1$ equiv.) in $\mathrm{DCM}(7 \mathrm{~mL})$ was added $\mathrm{CuCl}(522 \mathrm{mg}, 5.25 \mathrm{mmol}, 2.02$ equiv.) and 2,2'-bipyridine ($785 \mathrm{mg}, 5.03 \mathrm{mmol}, 1.93$ equiv.). The mixture was heated to reflux and stirred for 3 hours. Then the reaction was
cooled to room temperature and filtered through Celite by $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$. The solution was washed by $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ and dried by $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated by reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, $10 \%-20 \% \mathrm{EtOAc} /$ Hexanes $)$ to yield $210(380 \mathrm{mg}, 90 \%)$ as brown oil.

Chloro ketone 210: FTIR ($\mathrm{NaCl} /$ thin film) 2960, 2936, 2874, 1732, 1614, 1465, 1398, 1368, 1313, 1264, $1062 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.29(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.46(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.59(\mathrm{~m}, 2 \mathrm{H})$, 1.56-1.37 (m, 2H), $0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.0,156.3$, 92.1, 68.4, 47.3, 30.9, 19.5, 14.0; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{ClO}_{2}[\mathrm{M}+\mathrm{H}]$ 176.0682, found 177.0676.

Preparation of dienone 211

To a solution of $\mathbf{1 6 7}(224 \mathrm{mg}, 0.73 \mathrm{mmol}, 1$ equiv.) in $\mathrm{MeCN}(1.6 \mathrm{~mL})$ was added 210 ($257 \mathrm{mg}, 2.03 \mathrm{mmol}, 2.8$ equiv.) and $\mathrm{NaI}(240 \mathrm{mg}, 1.60 \mathrm{mmol}, 2.2$ equiv.) at room temperature. The mixture was stirred for 1 day and concentrated by reducing pressure. The residue was dissolved in $\operatorname{DCM}(5 \mathrm{~mL})$ and was added $\mathrm{Et}_{3} \mathrm{~N}(122 \mu \mathrm{~L}, 0.90 \mathrm{mmol}, 1.2$ equiv.), PPh_{3} ($230 \mathrm{mg}, 0.90 \mathrm{mmol}, 1.2$ equiv.). The mixture was stirred for overnight and filtered by Celite, concentrated by reducing pressure. The residue was loaded onto silica
and purified by column chromatography (gradient elution, $50 \%: 1 \%-50 \%: 10 \% \mathrm{EtOAc} /$ Hexanes: MeOH) to yield $211(84 \mathrm{mg}, \mathbf{2 8 \%})$ as brown oil.

Dienone 211 (rotamer): FTIR ($\mathrm{NaCl} /$ thin film) 2957, 2890, 1705, 1544, 1487, 1436, 1287, 1247, 1036, 939, $812 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.96(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=1.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.83(\mathrm{~d}, J=45.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.86-3.78$ (m, 2H), $3.74(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 1 \mathrm{H}), 3.53-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.43(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 183.6,182.9,171.1,169.2,161.0,148.1,148.0$, 134.4, 133.9, 119.7, 119.5, 109.8, 109.4, 108.2, 108.2, 106.7, 101.4, 101.3, 86.7, 86.1, $83.5,67.5,65.1,65.0,55.0,55.1,54.7,34.0,33.8,31.4,21.6,21.3,19.7,14.1 ;$ HRMS (TOF LCMS) calc'd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}] 416.2073$, found 417.2066.

Preparation of dienone 220

To a solution of vinyl ether (216) ($1.60 \mathrm{~mL}, 16.5 \mathrm{mmol}, 6.0$ equiv.) in THF (20mL) at $-78{ }^{\circ} \mathrm{C}$ was added ${ }^{t} \mathrm{BuLi}(4.85 \mathrm{ml}, 8.25 \mathrm{mmol}, 3.0$ equiv., 1.7 M hexanes solution) dropwise over 5 minutes. The resultant mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 minutes, and then warmed to $0^{\circ} \mathrm{C}$ and stirred for 2 hours. To a solution of piperine (219) ($784 \mathrm{mg}, 2.75 \mathrm{mmol}, 1$ equiv.) in THF (1 mL) was added lithio vinyl ether solution at -78
${ }^{\circ} \mathrm{C}$ and stirred for 15 minutes. The mixture was warmed to room temperature and stirred for overnight. The reaction was quenched by $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The layers were separated and aqueous layer was washed with EtOAc $(2 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine (60 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through Celite and concentrated under reduced pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 10\%-20\% EtOAc/ Hexanes) to yield $\mathbf{2 2 0}$ (1 g , 100%) as brown solid.

Dienone 220: $\mathrm{FTIR}(\mathrm{NaCl} /$ thin film $) 2980,2900,1667,1607,1575,1503,1489$, 1447, 1372, 1329, 1296, 1254, 1217, 1080, 1038, 1001, 930, $853 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{dd}, J=10.8,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.99-6.71(\mathrm{~m}, 5 \mathrm{H}), 6.00(\mathrm{~s}$, $2 \mathrm{H}), 5.25(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 186.6,158.5,148.9,148.5,145.0,142.0$, $130.9,125.6,123.6,123.4,108.7,106.0,101.6,91.4,64.0,14.6 ;$ HRMS (TOF LCMS) calc'd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]$ 273.1127, found 273.1125.

Preparation of unsaturated ketone 221

To a solution of $\mathbf{2 2 0}$ ($272.3 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv.) in $\mathrm{DCM}(27 \mathrm{~mL})$ was added AlCl_{3} ($13.4 \mathrm{mg}, 0.1 \mathrm{mmol}, 0.1$ equiv.) at room temperature. The mixture was stirred for 4 days, filtered through Celite and concentrated under reduced pressure. The residue was
loaded onto silica and purified by column chromatography (gradient elution, 10\%-25\% EtOAc/ Hexanes) to yield 221 ($120 \mathrm{mg}, ~ 44 \%$) as orange oil.

Ketone 221: $\mathrm{FTIR}(\mathrm{NaCl} /$ thin film) 2980, 2895, 17616, 1621, 1503, 1489, 1446, 1250, 1119, 1037, 965, $927 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.81-6.67$ (m, 2H), 6.39 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 2 \mathrm{H}), 5.87$ (dd, $J=8.4$, $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=6.5,19.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ (dd, $J=2.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 201.9$, $156.6,148.3,147.4,131.3,130.3,129.6,1295,121.0,108.5,105.7,101.3,66.0,40.7$, 37.8, 14.5; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]$ 273.1127, found 273.1122.

Preparation of amine 233

To a solution of diisopropylamine ($179 \mu \mathrm{~L}, 1.20 \mathrm{mmol}, 5.3$ equiv.) in THF (1 mL) at $0{ }^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(750 \mu \mathrm{~L}, 1.20 \mathrm{mmol}, 5.3$ equiv., 1.6 M hexanes solution) dropwise over 5 minutes. The resultant mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 minutes, and then cooled to $-78{ }^{\circ} \mathrm{C}$. To this LDA solution was added 2-methyl-pyrroline (157) (100 $\mu \mathrm{L}, 1.05 \mathrm{mmol}, 4.6$ equiv.). The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 hour. To this mixture was added to 227 ($57.5 \mathrm{mg}, 0.23 \mathrm{mmol}, 1$ equiv.) and the mixture was stirred for three hours at $-78{ }^{\circ} \mathrm{C}$. The reaction was quenched by $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The layers were separated and aqueous layer was washed with EtOAc $(2 \times 2 \mathrm{~mL})$. The combined organic layers
were washed with brine $(4 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 50-67\% EtOAc/ Hexanes) to yield 223 ($30 \mathrm{mg}, 44 \%$) as brown oil.

Vinylogous amide 223: $\mathrm{FTIR}(\mathrm{NaCl} /$ thin film) 3278, 1607, 1540, 1505, 1396, 1330, 1298, 1257, 1144, 1045, 987, 939, 806, 774, $739 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 10.30-10.10(\mathrm{~m}, 1 \mathrm{H}), 6.27(\mathrm{dd}, J=1.2,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dd}, J=1.7,17.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.39(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 1.95 (dd, $J=7.9,15.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 186.0,169.4,137.9,122.3$, 89.6, 47.4, 32.5, 21.2; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}[\mathrm{M}+\mathrm{H}]$ 138.0919, found 138.0910.

Preparation of vinylogous amide 230

To a solution of diisopropylamine ($340 \mu \mathrm{~L}, 2.43 \mathrm{mmol}, 1.15$ equiv.) in THF $(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(1.5 \mathrm{ml}, 2.32 \mathrm{mmol}, 1.1$ equiv., 1.6 M hexanes solution) dropwise over 5 minutes. The resultant mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 minutes, and then cooled to $-78{ }^{\circ} \mathrm{C}$. To this LDA solution was added 2-methyl-pyrroline (157) (200 $\mu \mathrm{L}, 2.11 \mathrm{mmol}, 1$ equiv.) The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 hour. To this mixture was added 251 ($304 \mathrm{mg}, 2.11 \mathrm{mmol}, 1$ equiv.) and the solution was warmed to room
temperature and stirred for overnight. The reaction was quenched by $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The layers were separated and aqueous layer was washed with EtOAc $(2 \times 2 \mathrm{~mL})$. The combined organic layers were washed with brine $(4 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 20\%-50\% EtOAc/ Hexanes) to yield $\mathbf{2 3 0}$ ($240 \mathrm{mg}, 62.7 \%$) as brown solid.

Vinylogous amide 230: $\operatorname{FTIR}(\mathrm{NaCl} /$ thin film) 2978, 1700, 1600, 1534, 1507, 1377, 1282, 1225, 1127, 1061, 977, $794 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 10.3-10.1$ $(\mathrm{m}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}), 2.00(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.05-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 183.6,170.2,159.6,87.1,85.4,63.5,47.9,33.0,21.4,14.6 ;$ HRMS (TOF LCMS) calc'd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]$ 182.1181, found 182.1176.

Preparation of vinylogous amide 231

To a solution of $\mathbf{2 3 0}(100 \mathrm{mg}, 0.55 \mathrm{mmol}, 1$ equiv.) in THF (3 mL) was added $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}$ ($68 \mathrm{mg}, 0.61 \mathrm{mmol}, 1.1$ equiv.) and $\mathrm{Me}_{2} \mathrm{SO}_{4}(60 \mu \mathrm{~L}, 0.63 \mathrm{mmol}, 1.1$ equiv.) at room temperature. The mixture was stirred for 2 days ad quenched by $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. The layers were separated and aqueous layer was washed with EtOAc $(2 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine $(10 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through Celite and concentrated under reduced pressure. The residue was loaded onto
silica and purified by column chromatography (gradient elution, 33\%-67\% EtOAc/ Hexanes) to yield 231 ($75 \mathrm{mg}, 69.6 \%$) as orange solid.

Vinylogous amide 231: $\mathrm{FTIR}(\mathrm{NaCl} /$ thin film) 2976, 2919, 1637, 1594, 1493, 1443, 1376, 1269, 1060, 984, 858, $802 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.63(\mathrm{~s}, 1 \mathrm{H})$, $5.12(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.46-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{t}, J=7.6$, 2H), $2.92(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 183.1,168.8,160.8,87.0,84.7,63.5,54.8,33.9,33.5,20.9,14.6$; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]$ 196.1338, found 196.1336.

Preparation of diaketone 233

To a solution of $\mathbf{2 3 1}\left(28 \mathrm{mg}, 0.14 \mathrm{mmol}, 1\right.$ equiv.) in DCM $(15 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{TiCl}_{4}(140 \mu \mathrm{~L}, 0.14 \mathrm{mmol}, 1$ equiv.) dropwise. Then the mixture was warmed to room temperature and stirred for overnight. The reaction was quenched by $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. The organic was dried by $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 50\%$75 \% \mathrm{EtOAc} /$ Hexanes) to yield 233 ($21 \mathrm{mg}, 88 \%$) as orange oil.

Diaketone 233: FTIR ($\mathrm{NaCl} /$ thin film) 2924, 1701, 1653, 1559, 1457, 1419, $1301 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.69(\mathrm{~s}, 1 \mathrm{H}), 3.51(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{dd}, J=7.7,15.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.7,201.3,167.4,82.5,55.3,34.1,33.8,24.7,20.7$; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]$ 168.1025, found 168.1020.

Preparation of dienone 235

To a solution of $\mathbf{2 3 0}$ ($87 \mathrm{mg}, 0.48 \mathrm{mmol}, 1$ equiv.) in THF (5 mL) was added KHMDS ($1.05 \mathrm{~mL}, 0.53 \mathrm{mmol}, 1.1$ equiv.) at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 10 min . To the mixture was added $234\left(186.2 \mathrm{mg}, 0.73 \mathrm{mmol}, 1.5\right.$ equiv.) was at $-78{ }^{\circ} \mathrm{C}$ dropwise over 5 min . Then the mixture was warmed to room temperature and stirred for overnight. The reaction was quenched by $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. The layers were separated and aqueous layer was washed with EtOAc $(2 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine (10 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through Celite and concentrated under reduced pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 20\%-50\% EtOAc/ Hexanes) to yield 235 (70 $\mathrm{mg}, 36.3 \%$) as yellow oil.

Dienone 235: FTIR(NaCl/ thin film) 2979, 2895, 1742, 1697, 1666, 1568, 1504, $1490,1446,1393,1371,1309,1232,1104,1039,935,864,810 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=1.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 2 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.90-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{q}, ~ J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.54-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.05(\mathrm{~m}, 2 \mathrm{H})$,
$2.17(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.4(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 188.1, 170.7, 168.1, 159.4, 158.6, 149.1, 148.6, 125.9, 123.3, 109.1, 108.8, 103.9, 101.7, 90.4, $75.0,63.8,49.0,31.9,22.0,20.9,14.4$; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{7}$ $[\mathrm{M}+\mathrm{H}]$ 402.1553, found 402.1553 .

Preparation of ketone 242

To a solution of $\mathbf{2 4 1}(1.75 \mathrm{~g}, 5.43 \mathrm{mmol}, 1$ equiv.) in $\mathrm{MeCN}(3 \mathrm{~mL})$ was added 2-Methoxy-1-pyrroline (169) ($708 \mathrm{mg}, 7.15 \mathrm{mmol}, 1.3$ equiv.). The mixture was heated to $60{ }^{\circ} \mathrm{C}$ and stirred for 1 day. The mixture was cooled to room temperature and concentrated by reducing pressure to yield pure 242 ($1.6 \mathrm{~g}, 90.6 \%$) as orange solid.

Ketone 242: FTIR ($\mathrm{NaCl} /$ thin film) 2918, 1680, 1612, 1503, 1480, 1442, 1408, 1385, 1350, 1243, 1122, 1035, $932 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.05(\mathrm{~s}, 1 \mathrm{H})$, $7.04(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 2 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, 2.16-2.04 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 196.2,175.9,151.0,147.7,131.8$, $114.1,112.2,109.3,102.7,51.7,47.9,30.4,18.2$; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrNO}_{4}[\mathrm{M}+\mathrm{H}]$ 326.0028, found 302.0024.

Preparation of amide 243

To a solution of $242(580 \mathrm{mg}, 1.78 \mathrm{mmol}, 1$ equiv.) in Benzene (40 mL) was added ethyl glycol ($1.1 \mathrm{~mL}, 19.7 \mathrm{mmol}, 11$ equiv.) and p-Toluenesulfonic acid (44 mg , $0.257 \mathrm{mmol}, 0.14$ equiv.). The mixture was heated to reflux and stirred for overnight. The mixture was cooled to room temperature and washed by saturated aqueous NaHCO_{3} $(2 \times 10 \mathrm{~mL})$. The organic layer was dried by $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through Celite and concentrated by reducing pressure to yield pure 243 ($565 \mathrm{mg}, 86.0 \%$) as brown solid.

Amide 243: FTIR (NaCl/ thin film) 2893, 1690, 1502, 1477, 1422, 1286, 1238, 1196, 1114, 1039, 1009, $931 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~s}$, $1 \mathrm{H}), 5.97(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.02-1.83(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $175.7,148.5,147.3,132.2,114.9,111.9,109.4,108.8,102.1,64.7,49.2,47.6,30.8,18.7 ;$ HRMS (TOF LCMS) calc'd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{BrNO}_{5}[\mathrm{M}+\mathrm{H}] 370.0290$, found 370.0281.

Preparation of alcohol 252

To a solution of $\mathbf{2 4 2}$ ($510 \mathrm{mg}, 1.56 \mathrm{mmol}, 1$ equiv.) in $\mathrm{EtOH}(5 \mathrm{ml})$ was added NaBH4 ($660 \mathrm{mg}, 15.6,10$ equiv.) and the mixture was stirred for overnight at room temperature. The reaction was quenched by $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and washed by EtOAc 2×10 $\mathrm{mL})$. The combined organic layers was dried by $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through Celite and concentrated by reducing pressure to yield pure 252 ($492 \mathrm{mg}, 96.5 \%$)

Alcohol 252: FTIR (NaCl/ thin film) 3338, 2906, 1664, 1501, 1475, 1421, 1288, 1237, 1111, 1036, 931, $876 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~s}$, $1 \mathrm{H}), 5.97(\mathrm{~s}, 2 \mathrm{H}), 5.13(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.62(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.35(\mathrm{~m}, 3 \mathrm{H}), 3.26-$ $3.10(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.11-1.86(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $178.1,147.9,147.8,134.3,112.5,111.5,108.0,101.9,72.9,50.7,49.6,30.9,18.6 ;$ HRMS (TOF LCMS) calc'd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{BrNO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]$ 350.0004, found 349.9994.

Preparation of amide 244

To a solution of $\mathbf{2 5 2}$ ($700 \mathrm{mg}, 2.27 \mathrm{mmol}, 1$ equiv.) in $\mathrm{DCM}(10 \mathrm{~mL})$ was added $\operatorname{TBSCl}(772 \mathrm{mg}, 5.44 \mathrm{mmol}, 2.4$ equiv.) and imidazole ($2.98 \mathrm{~g}, 45.4 \mathrm{mmol}, 20$ equiv.) at room temperature. The mixture was stirred for 2 days and concentrated by reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 10\%-33\% EtOAc/ Hexanes) to yield 244 ($735 \mathrm{mg}, 78.0 \%$) as white solid.

Amide 244: FTIR ($\mathrm{NaCl} /$ thin film) 2954, 2928, 2895, 2856, 1692, 1503, 1475, 1411, 1286, 1237, 1110, 1090, 1035, 940, $836 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.03$ $(\mathrm{s}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{dd}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{dd}, J=4.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.30$ (m, 3H), 3.17 (dd, $J=4.3,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.33$ (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-1.91$ (m, 2H), 0.86 (s, 9H), $0.03(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 175.2, 147.8, 147.7, $135.2,112.2,111.9,108.0,101.8,71.6,50.2,48.8,31.0,25.8,18.3,18.1,-4.76,-5.02$; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{BrNO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}] 442.1049$, found 442.1044.

Preparation of thiol lactam 245

To a solution of $\mathbf{2 4 3}$ ($2.90 \mathrm{~g}, 8.98 \mathrm{mmol}, 1$ equiv.) in THF (10 mL) was added Lawesson's reagent ($1.90 \mathrm{~g}, 5.34 \mathrm{mmol}, 0.6$ equiv.) at room temperature. The mixture was stirred for overnight. The reaction was concentrated under reduced pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 20\%-50\% EtOAc/ Hexanes) to yield 245 ($2 \mathrm{~g}, 58.2 \%$) as orange solid.

Thiol lactam 245: FTIR (NaCl/ thin film) 2892, 1501, 1477, 1238, 1201, 1223, 1033, $951 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 2 \mathrm{H})$, $4.44(\mathrm{~s}, 2 \mathrm{H}), 4.11-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.77(\mathrm{~m}, 4 \mathrm{H}), 3.0(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.05-1.91(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 203.9, 148.7, 147.5, 131.8, 114.9, 112.0, 109.0,
108.8, 102.1, 64.6, 56.6, 52.1, 45.0, 20.4; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{BrNO}_{4} \mathrm{~S}$ [M+H] 386.0062, found 386.0057.

Preparation of thiol lactam 246

To a solution of $\mathbf{2 4 4}$ ($52 \mathrm{mg}, 0.12 \mathrm{mmol}, 1$ equiv.) in THF (0.2 mL) was added Lawesson's reagent ($28.5 \mathrm{~g}, 0.07 \mathrm{mmol}, 0.6$ equiv.) at room temperature. The mixture was stirred for overnight. The reaction was concentrated under reduced pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, $20 \%-50 \% \mathrm{EtOAc} /$ Hexanes $)$ to yield 246 ($25 \mathrm{mg}, 48.0 \%$) as yellow oil.

Thiol lactam 246: FTIR ($\mathrm{NaCl} /$ thin film) 2954, 2928, 2886, 2856, 1503, 1475, 1409, 1326, 1235, 1110, 1085, 1038, 936, $837 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.03$ (s, 1H), $6.93(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{dd}, J=1.4,10.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.50(\mathrm{dd}, J=5.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ (dd, $J=7.6,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.76$ (m, 1H), 3.70 (dd, $J=5.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.48$ $(\mathrm{m}, 1 \mathrm{H}), 3.0(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-1.95(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 202.3,148.1,147.9,135.1,112.4,112.3,108.0,101.9$, $70.4,57.2,55.2,45.1,25.9,20.1,18.0,-4.8 ;$ HRMS (TOF LCMS) calc'd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BrNO}_{3} \mathrm{SSi}[\mathrm{M}+\mathrm{H}] 458.0821$, found 458.0812.

Preparation of dienone 247

To a solution of 245 ($191 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ equiv.) in MeCN (4 mL) was added 3-butoxy-1-chlorobut-3-en-2-one (210) ($131 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv.) and $\mathrm{NaI}(93 \mathrm{mg}$, $0.70 \mathrm{mmol}, 1.4$ equiv.) at room temperature. The mixture was stirred for 1 day and concentrated by reducing pressure. The residue was dissolved in DCM (2 mL) and was added $\mathrm{Et}_{3} \mathrm{~N}\left(170 \mu \mathrm{~L}, 0.60 \mathrm{mmol}, 1.2\right.$ equiv.), $\mathrm{PPh}_{3}(157 \mathrm{mg}, 0.60 \mathrm{mmol}, 1.2$ equiv.). The mixture was stirred for overnight and filtered by Celite, concentrated by reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, $50 \%: 1 \%-50 \%: 10 \%$ EtOAc/ Hexanes: MeOH) to yield 247 (100 mg, 49.7\%) as brown oil.

Dienone 247: FTIR (NaCl/ thin film) 2957, 1709, 1593, 1537, 1502, 1477, 1305, $1238,1198,1119,1004,934,847 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.02$ (s, 1H), 6.05 (s, 1H), 5.97 (s, 2H), 5.09 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ (d, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-$ $3.95(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 3.82-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.25$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.84$ (m, 2H), 1.79-1.69 (m, 2H), 1.56-1.44 (m, 2H), $0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 183.8,169.3,161.0,148.7,147.5$, $132.2,114.8,111.7,110.0,108.6,102.1,86.7,86.3,67.6,64.9,54.9,52.4,33.8,31.3$,
21.6, 19.6, 14.0; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{BrNO}_{6}[\mathrm{M}+\mathrm{H}] 494.1178$, found 494.1176.

Preparation of dienone 248

To a solution of $\mathbf{2 4 6}$ ($60 \mathrm{mg}, 0.13 \mathrm{mmol}, 1$ equiv.) in $\mathrm{MeCN}(1 \mathrm{~mL})$ was added 3-butoxy-1-chlorobut-3-en-2-one (210) ($46 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.5$ equiv.) and $\mathrm{NaI}(47 \mathrm{mg}$, $0.18 \mathrm{mmol}, 1.4$ equiv.) at room temperature. The mixture was stirred for 1 day and concentrated by reducing pressure. The residue was dissolved in $\mathrm{DCM}(1 \mathrm{~mL})$ and was added $\mathrm{Et}_{3} \mathrm{~N}$ ($33 \mu \mathrm{~L}, 0.16 \mathrm{mmol}, 1.2$ equiv.), $\mathrm{PPh}_{3}(62 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.2$ equiv.). The mixture was stirred for overnight and filtered by Celite, concentrated by reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, $50 \%: 1 \%-50 \%: 10 \% \mathrm{EtOAc} /$ Hexanes: MeOH) to yield $248(40 \mathrm{mg}$, 54.0%) as brown oil.

Dienone 248: FTIR ($\mathrm{NaCl} /$ thin film) 2956, 2931, 2859, 1547, 1504, 1475, 1400, $1390,1288,1237,1111,1094,1035,930,837,779 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.03(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 5.97$ (dd, $J=1.4,15.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 5.29$ (dd, $J=3.7$, $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{td}, J=1.2,6.6 \mathrm{~Hz}, 2 \mathrm{H})$, 3.65- $3.57(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.25(\mathrm{~m}, 5 \mathrm{H}), 2.00-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.53-$
$1.42(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 183.4,168.3,161.0,148.1,148.0,134.8,112.3,111.6,107.8,101.9$, $86.8,85.7,71.2,67.7,54.9,53.9,34.2,31.2,25.8,21.1,19.7,18.0,14.1,-4.91,-4.99$; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{BrNO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]$ 566.1937, found 566.1924.

2.7 Notes and References

1. Morita, H.; Arisaka, M.; Yoshida, N.; Kobayashi, J., Cephalezomines A-F, potent cytotoxic alkaloids from Cephalotaxus harringtonia var. nana. Tetrahedron 2000, 56, (19), 2929-2934.
2. Hudlicky, T.; Kwart, L. D.; Reed, J. W., In Alkaloids: Chemical and Biological Perspectiues. John Wiley and Sons, Inc.: New York, 1987, 5, 639-690.
3. (1) Johnson, A. W.; Lacount, R. B., Chemistry of ylids. 6. Dimethylsulfonium fluorenylide - a synthesis of epoxides. Journal of the American Chemical Society 1961, 83, (2), 417-423; (2) Corey, E. J.; Chaykovsky, M., Dimethylsulfonium methylide, a reagent for selective oxirane synthesis from aldehydes and ketones. Journal of the American Chemical Society 1962, 84, (19), 3782-3783; (3) Corey, E. J.; Chaykovs, M., Dimethyloxosulfonium methylide $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SCH}_{2}\right)$ formation and application to organic synthesis. Journal of the American Chemical Society 1965, 87, (6), 1353-1364.
4. Ibrahim, S. S., Uses of o-hydroxybenzoylacetone in the synthesis of some substituted 2-methylchromones, chelating agents, and related materials. Industrial \& Engineering Chemistry Research 2001, 40, (1), 37-39.
5. Fujii, T.; Yoshifuji, S.; Yamada, K., Lactams. 13. Alkylation of lactim ethers - novel synthetic route to N-(2-arylethyl) lactans from N-unsubstituted lactams. Chemical \&

Pharmaceutical Bulletin 1978, 26, (7), 2071-2080.
6. Mukaiyam.T; Narasaka, K.; Banno, K., New aldol type reaction. Chemistry Letters 1973, 9, 1011-1014.
7. Thomsen, I.; Clausen, K.; Scheibye, S.; Lawesson, S. O., Thiation with 2,4-Bis(4-methoxyphenyl)-1,3,2,4-Dithiadiphosphetane 2,4-disulfide: N-Methylthiopyrrolidone, Organic Syntheses 1990, (7), 372-373.
8. Nahm, S.; Weinreb, S. M., N-methoxy- N-methylamides as effective acylating agents. Tetrahedron Letters 1981, 22, (39), 3815-3818.
9. (1) Gotschi, E.; Hunkeler, W.; Wild, H. J.; Schneide.P; Fuhrer, W.; Gleason, J.; Eschenmoser, A., Variation of sulfide contraction procedure for synthesis of corrinoid systems. Angewandte Chemie-International Edition in English 1973, 12, (11), 910-912; (2) Singh, R. K.; Sinha, N. S.; Jain, S.; Salman, M.; Naquvi, F.; Anand, N., A convenient and new approach to the synthesis of ω-heterocyclic amino acids from carboxy lactams through ring- chain- transformation. Part 2: synthesis of (2R)-/(2S)-2-aminomethyl-3-(1-aryl-/1,5-diaryl-1H-pyrazol-3-yl)-propionic acid. Tetrahedron 2005, 61, 8868-8874.

10 Boeckman, R. K., Jr.; Bruza, K. J.; Baldwin, J. E.; Lever, O. W., Jr., Copper ate complexes of α-ethoxyvinyllithium. Reagents for coupling and 1,4-addition of a masked
acyl anion. Journal of the Chemical Society, Chemical Communications 1975, 13, 519520.
11. Waters. S. J.; Tian, Y.; Li, Y.M.; Danishefsky, S. J., Total synthesis of (-)-scabronine G, an inducer of neurotrophic factor production. Journal of the American Chemical Society 2005, 127, (39), 13514-13515.
12. Babu, K. S.; Li, Xing-Cong; Jacob, M. R.; Zhang, Qifeng; Khan, S. I.; Ferreira, D.; Clark, A. M., Synthesis, antifungal activity, and structure-activity relationships of coruscanone analogues. Journal of Medicinal Chemistry 2006, 49, 7877-7886.
13.Herman, T; Carison, R., Nouvelle voie d'acces au squelette cyclopentenoidique. Tetrahedron Letter 1989, (30), 3657-3658.
14. Frontier, A. J.; Danishefsky, S. J.; Koppel, G. A.; Meng D. F., A useful $\alpha, \alpha^{\prime}-$ annulation reaction of enamines. Tetrahedron 1998, (54), 12721-12736.
15. Ram, R. N.; Manoj, T. P., Copper(I)-promoted synthesis of chloromethyl ketones from trichloromethyl carbinols. Journal of Organic Chemistry 2008, 73, (14), 5633-5635
16. Browder, C. C.; Marmsater, F. P.; West, F. G., Highly efficent trapping of the Nazarov intermediate with substitueted arenes. Organic Letters 2001, 3, (19), 3033-3035.
17. (1) He, W.; Herrick, I. R.; Atesin, T. A.; Caruana, P. A.; Kellenberger, C. A.; Frontier, A. J., Polarizing the Nazarov cyclization: the impact of dienone substituation pattern on reactivity and selectivity. Journal of the American Chemical Society 2008, 130, (3), 1003-1011; (2) Liang G. X.; Gradi, S. N.; Trauner, D., Efficient Nazarov cyclizations of 2-alkoxyl-1,4-pentadien-3-ones. Organic Letters 2003, 5, (26), 49314934; (3) Pellissier, H., Recent developments in the Nazarov process. Tetrahedron 2005, (61), 6479-6517; (4) Frontier, A. J.; Collison, C. The Nazarov cyclization in organic synthesis. Recent advances Tetrahedron 2005, (61), 7577-7606.
18. Marcus, A. P.; Lee, A. S.; Davis, R. L.; Tantillo, D. J.; Sarpong, R., Pronounced steric effects of substituent's in the Nazarov cyclization of aryl dienyl ketones. Angewandte Chemie International Edition 2008, 47, 6379-6383.
19. For different Nazarov reaction conditions: (a) Lewis acid: (1) Denmark, S. E.; Wallace, M. E.; Walker, C. B. Jr., Silicon-directed Nazarov cyclizations. 8. stereoslectronic control of torquoeselectivity. Journal of Organic Chemistry 1990, 55, (1), 5543-5545; (2) Wang, Y.; Arif, A. M.; West, F. G. A Novel cycloisomerization of tetraenones: $4+3$ trapping of the Nazarov oxyally intemediate. Journal of the American Chemical Society 1999, 121, 876-877; (3) Bee, C.; Leclerc, E.; Tius, M. A., The palladium(II)-catalyzed Nazarov reaction. Organic Letters 2003, 5, (26), 4927-4930; (4) He, W.; Sun, X. F.; Frontier, A. J., Polarizing the Nazarov cyclization: efficient catalysis under mild conditions. Journal of American Chemistry Society 2003, 125, 14278-14279;
(5) Liang, G.; Ian, Y. X.; Seiple, B.; Trauner, D., Synthesis of taiwaniaquinoids via

Nazarov triflation. Journal of American Chemistry Society 2006, 128, (34), 11022-11023;
(6) Batson, W. A.; Sethumadhavan, D.; Tius, M. A., α-Hydroxy cyclopentenones from α-diketones. Organic Letters 2005, 7, (13), 2771-2774; (7) Dhoro, F.; Tius, M. A., Interrupted Nazarov cyclization on silica gel. Journal of American Chemistry Society 2005, 127, 12472-12473; (8) Giese, S.; Mazzola, R. D, Jr..; Amann, C. M.; Arif, A. M.; West, F. G., Unexpected participation of an unconjugated olefin during Nazarov cyclizaion of bridged bicyclic dienonones. Angewandte Chemie International Edition 2005, 47, 6546-6549; (9) Liang, G.; Gradl, S. N.; Trauner, D., Efficient Nazarov cyclizations of 2-alkoxy-1,4-pentadien-3-ones. Organic Letters 2003, 5 (26), 49314934; (b) Protic acid: (1) Amere, M.; Blanchet, J.; Lasne, M. C.; Rouden, J., 4Toluenesulfonic acid: an environmentally benign catalyst for Nazarov cyclizations. Tetrahedron Letters 2008, 49, 2541-2545; (2) Oda, M.; Kajioka, T.; Haramoto, K.; Miyatake, R.; Kuroda, S., A Divergent method for preparing 1-aryl- and 1,3diarylazulenes from ethyl 3-(cyclohepta-1,3,5-trien-1-yl)-3-oxopropionate. Synthesis 1999, 8, 1349-1353.
20. For N-substituted Nazarov reaction: (1) Kim, S. H.; Cha, J. K., Synthetic studies toward cephalotaxine: functionalization of tertiary N-acylhemiaminals by Nazarov cyclization. Synthesis 2000, 14, 2113-2116; (2) Prandi, C.; Ferrali, A.; Guarna. A.; Venturello, P.; Occhiato, E. G., New synthetic approach to cyclopenta-fused heterocycles based upon a mild Nazarov reaction. 2. Further studies on the torquoselectivity. Journal of Organic Chemistry 2004, 69, 7705-7709.
21. Bolm, C.; Zani, L.; Rudoph, J.; Scheiffers, I., New chiral ligands derived from mandelic acid: Synthesis and application in the asymmetric phenyl transfer reaction to an aromatic aldehyde. Synthesis, 2004, 13, 2173-2180.
22. (1) Njardarson, J. T.; Wood, J. L., Evolution of a synthetic approach to CP-263,114. Organic Letters 2001, 3, (16), 2431-2434; (2) Njardarson, J. T.; McDonald, I. M.; Spiegel, D. A.; Inoue, M.; Wood, J. L., An expeditious approach toward the total synthesis of CP-263,114 Organic Letters 2001, 3, (16), 2435-2438.
23. (1) Beckwith, A. L. J.; Bowry, V. W.; Bowman, W. R.; Mann, E.; Parr, J.; Storey, J. M., The mechanism of $\mathrm{Bu}_{3} \mathrm{SnH}$-mediated homolytic armatic substitution. Angewandte Chemie International Edition 2004, 43, 95-98; (2) Clayden, J.; Greeves, N.; Warren, S.; Wothers, P., In Organic Chemistry, 2000, OUP, Oxford, 39, 1040-1041.
24. Molander, G. A.; Harris, C. R., Sequencing reactions with samarium(II) iodide. Chemical Reviews 1996, 96, 307-338.

Appendix I: Spectra Relevant to Chapter 2

Figure A.2.1 1H NMR (400MHz, CDCl_{3}) of compound 155

Figure A.2.2 Infrared Spectrum (thin film/ NaCl) of compound 155.

Figure A.2.3 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 155.

Figure A.2.4 1H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 168

Figure A.2.5 Infrared Spectrum (thin film/NaCl) of compound $\mathbf{1 6 8}$

Figure A.2.6 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 168

Figure A.2.7 1H NMR (400MHz, CDCl_{3}) of compound 170

Figure A.2.8 Infrared Spectrum (thin film/ NaCl) of compound 170

Figure A.2.9 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 170

Figure A.2.10 1H NMR ($\mathbf{4 0 0 \mathrm { MHz } , \mathrm { CDCl } _ { 3 } \text {) of compound } 1 8 0}$

Figure A.2.11 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{1 8 0}$

Figure A.2.12 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 8 0}$

Figure A.2.13 1H NMR (400MHz, CDCl_{3}) of compound 167

Figure A.2.14 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 167

Figure A.2.15 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 167

Figure A.2.16 1H NMR (400MHz, CDCl_{3}) of compound 182

Figure A.2.17 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{1 8 2}$

Figure A.2.18 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 182

Figure A.2.19 1H NMR (400MHz, CDCl $_{3}$) of compound 210

Figure A.2.20 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 210

Figure A.2.21 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 210

Figure A.2.22 1H NMR (400MHz, $\mathbf{C D C l}_{3}$) of compound 211

Figure A.2.23 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 211

Figure A.2.24 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 211

Figure A.2.25 1H NMR (400MHz, $\mathbf{C D C l}_{3}$) of compound 220

Figure A.2.26 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 220

Figure A.2.27 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 2 0}$

Figure A.2.28 1H NMR (400MHz, $\mathbf{C D C l}_{3}$) of compound 221

Figure A.2.29 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 221

Figure A.2.30 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 221

Figure A.2.31 1H NMR ($\mathbf{4 0 0 \mathrm { MHz } , \mathrm { CDCl } _ { 3 } \text {) of compound } 2 2 3}$

Figure A.2.32 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 223

Figure A.2.33 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 2 3}$

Figure A.2.34 1H NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) of compound 230

Figure A.2.35 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 230

Figure A.2.36 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 3 0}$

Figure A.2.37 1H NMR (400MHz, $\mathbf{C D C l}_{3}$) of compound 231

Figure A.2.38 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 231

Figure A.2.39 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 3 1}$

Figure A.2.40 1H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 233

Figure A.2.41 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 233

Figure A.2.42 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 233

Figure A.2.43 1H NMR (400MHz, CDCl $_{3}$) of compound 235

Figure A.2.44 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 235

Figure A.2.45 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 3 5}$

Figure A.2.46 1H NMR (400MHz, CDCl $_{3}$) of compound 242

Figure A.2.47 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 242

Figure A.2.48 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 242

Figure A.2.49 1H NMR (400MHz, CDCl $_{3}$) of compound 243

Figure A.2.50 Infrared Spectrum (thin film/ NaCl) of compound $\mathbf{2 4 3}$

Figure A.2.51a ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 4 3}$

Figure A.2.52 1H NMR (400MHz, CDCl_{3}) of compound 252

Figure A.2.53 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 252

Figure A.2.54 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 252

Figure A.2.55 1H NMR (400MHz, CDCl_{3}) of compound 244

Figure A.2.56 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 244

Figure A.2.57 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 244

Figure A.2.58 1H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 245

Figure A.2.59 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 245

Figure A.2.60 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 245

Figure A.2.61 1H NMR ($\mathbf{4 0 0 \mathrm { MHz } , \mathrm { CDCl } _ { 3 } \text {) of compound } 2 4 6}$

Figure A.2.62 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 246

Figure A.2.63 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 246

Figure A.2.64 1H NMR (400MHz, CDCl $_{3}$) of compound 247

Figure A.2.65 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 247

Figure A.2.66 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 247

Figure A.2.67 1H NMR (400MHz, CDCl_{3}) of compound 248

Figure A.2.68 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{2 4 8}$

Figure A.2.69 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 248

Chapter 3

Phomoidride Chemistry and Biology

3.1 Background and Introduction

3.1.1 Phomoidrides: Isolation and Structural Characterization

In 1995, researchers at Pfizer in Groton, Connecticut reported the isolation and characterization of phomoidride $A(\mathbf{3 0 0})$ and phomoidride B (301) (Figure 3.1.1) from an unidentified fungus discovered on the twigs of Juniperus ashei trees in Dripping Springs, Texas. ${ }^{1}$ In 1999, two additional compounds, phomoidride C (302) and phomoidride D (303) were found in the fungal broth. ${ }^{2,3}$

300: Phomoidride A (CP-225, 917)

302: Phomoidride C

301: Phomoidride B (CP-263, 114)

303: Phomoidride D

The phomoidrides are the members of the nonadride family of natural products. The name phomoidride derives from the name of the phoma genus, which exhibits characteristics of the phomoidride producing fungus. In addition, the name also reflects the classification of these fungal metabolites as nonadrides, a name given by Barton based on the observation that these compounds derive from dimerization of two ninecarbon natural products (nona-), containing bisanhydride rings (-dride). ${ }^{4}$ Other members of the nonadride family have been found that are postulated to arise from a similar biosynthetic pathways (Figure 3.1.2). ${ }^{5-10}$

Figure 3.1.2 Nonadride Family

304: Glaucanic acid

305: Cordyanhydride A

306: Cornexisitin

307: Rubratoxin A

308: Byssochlamic acid

3.1.2 Phomoidride Biosynthesis

In Sulikowski's biosynthesis study of the phomoidride, ${ }^{11-15}$ decarboxylative homodimerization of an unsaturated anhydride $\mathbf{3 1 3}$ is a key step (Scheme 3.1.2).

Anhydride $\mathbf{3 1 3}$ could be derived from the condensation of oxaloacetyl-CoA (310, derived from succinic acid (309)) and diene 312 (derived from acetyl-CoA (311)). Dimerization of $\mathbf{3 1 3}$ followed by oxidation would afford the core of phomoidrides (314). Subsequent ether formation and thioester hydrolysis would furnish phomoidride B (301).

Scheme 3.1.2 Biosynthesis of Phomoidride B

3.1.3 Biological Activity of the Phomoidrides

The phomoidrides display modest activity against the enzyme squalene synthase (phomoidride $\mathrm{A} \mathrm{IC}_{50}=43 \mu \mathrm{M}$, phomoidride B $\mathrm{IC}_{50}=160 \mu \mathrm{M}$), ${ }^{16}$ an enzyme that catalyzes the synthesis of squalene (317) from farnesyl pyrophosphate (316) (Scheme 3.1.3). From a chemotherapy perspective, the inhibition of squalene synthase may serve to decrease the level of cholesterol (318) since squalene is a precursor in the biosynthesis of cholesterol. ${ }^{17-19}$

Scheme 3.1.3 Biosynthesis of Cholesterol

The phomoidrides also have shown biological activity against ras farnesyl transferase (phomoidride ${\mathrm{A} \mathrm{IC}_{50}}=6 \mu \mathrm{M}$, phomoidride $\mathrm{B}_{\mathrm{IC}}^{50}$ $=20 \mu \mathrm{M}$). Mutated forms of cellular ras genes are among the most common genetic abnormalities in human cancers, occurring in 90% of pancreatic carcinomas, 50% of colon carcinomas, and 20$30 \%$ of acute leukemias. Thus, inhibition of oncogenic ras activity is thought to be useful for anticancer treatment. One promising pharmacological approach against oncogenic ras activity would be interference of ras membrane localization. The crucial modification required for ras membrane association and transformation is the addition of a farnesyl moiety to the cysteine residue of a C-terminal CAAX motif in a reaction catalyzed by protein farnesyltransferase. Therefore, phomoidrides may have chemotherapeutic potential for inhibiting farnesyltransferase. ${ }^{20-21}$

3.2 Phomoidrides: Structure and Synthesis

3.2.1 Structural Features

In addition to their intriguing biological activity, the phomoidrides possess interesting structural features. For example, phomoidride D (303) contains a bicyclo [4.3.1] decadiene moiety with a maleic anhydride, bridgehead olefin, all-carbon quaternary center, bridging lactone ketal, an epimerizable stereocenter and two olefinic side chains (Figure 3.2.1). The complicated structure makes phomoidrides challenging targets for synthetic chemists.

Figure 3.2.1 Phomoidride D Structural Features

303: Phomoidride D

3.2.2 Phomoidrides Interconversion

Dabrah and co-workers reported the conversion of phomoidride A (300) to phomoidride B (301) by treatment with catalytic methanesulfonic acid (scheme 3.2.2.1). ${ }^{1}$ Correspondingly, Nicolaou's group found that phomoidride B (301) can be converted to phomoidride $\mathrm{A}(\mathbf{3 0 0})$ upon exposure to $\mathrm{LiOH} .{ }^{22}$

Scheme 3.2.2.1 Phomoidride A and B Interconversion

300: Phomoidride A (CP-225, 917)

301: Phomoidride B (CP-263, 114)

In an epimerization study, Danishefsky and co-workers reported that phomoidride B could be epimerized to phomoidride D and phomoidride A can be epimerized to phomoidride C (Scheme 3.2.2.2). The reverse epimerization, from phomoidride D to phomoidride B or phomoidride C to phomoidride A, does not occur. However, Danishefsky did demonstrate that Phomoidride D can be converted to phomoidride A in seven steps (see section 3.2.3.4 for details). ${ }^{23}$

Scheme 3.2.2.2 Phomoidrides Epimerization

300: Phomoidride A (CP-225, 917)

301: Phomoidride B (CP-263, 114)

302: Phomoidride C

303: Phomoidride D

3.2.3 Synthetic Routes to the Phomoidrides

Numerous synthetic efforts have been made towards the total synthesis of the phomoidrides. To date, only four groups (Nicolaou, Fukuyama, Shair and Danishefsky) have reported completion of the total syntheses. In this dissertation, only the four completed total synthesis will be discussed since the other synthetic efforts have been summarized in a review article. ${ }^{24}$

3.2.3.1 K. C. Nicolaou's Route

K. C. Nicolaou reported the first total synthesis of phomoidride A and B in 1999. ${ }^{22,29-44}$ Nicolaou's synthesis started with dimethyl malonate 320 (Scheme 3.2.3.1.1). Bis-alkylation, reduction of the diester and acetal formation gave acetonide $\mathbf{3 2 1}$. Ozonolysis of alkene $\mathbf{3 2 1}$ produced an intermediate aldehyde, which underwent a modified aldol condensation with aldehyde 322 to yield enal 323. The diene $\mathbf{3 2 4}$ for intramolecular Diels-Alder reaction was prepared from aldehyde $\mathbf{3 2 3}$ via PMB ether formation, deprotection of the primary alcohol and Parikh-Doering-oxidation.

Scheme 3.2.3.1.1 Nicolaou Diene's Synthesis

Diels-Alder product $\mathbf{3 2 7}$ was obtained from $\mathbf{3 2 5}$ via aldol addition of the vinyl lithium reagent derived from vinyl iodide 326, Dess-Martin oxidation, and aluminum Lewis acid catalyzed [4+2] cycloaddition (Scheme 3.2.3.1.2). Removal of the bis TBS ethers revealed an intermediate diol which underwent oxidative cleavage in the presence of NaIO_{4} to yield an aldehyde intermediate. Addition of the litho dithiane reagent 328 to this aldehyde gave secondary alcohol 329.

Scheme 3.2.3.1.2 Nicolaou's Intramolecular Diels-Alder Reaction

325

(three steps: 40% yield)

328
(three steps: 65\% yield)

329

Installation of the maleic anhydride moiety commenced with alcohol 329 (Scheme 3.2.3.1.3). TES ether protection, vinyl triflate formation using Comins reagent, and Pd-mediated CO insertion, gave methyl ester 330. Protecting group exchanged in the presence of BTIB and MeOH , followed by ester reduction, directed epoxidation and cyanide addition with Nagata's reagent opened the newly formed epoxide to yield diol 331. Treatment of diol $\mathbf{3 3 1}$ with $\mathrm{MsCl}, \mathrm{K}_{2} \mathrm{CO}_{3}$ and oxalic acid furnished the maleic
anhydride moiety. Nicolaou believed that the anhydride was formed via the following transformations: (1) selective protection of primary alcohol by mesylation; (2) epoxide formation under the basic conditions; (3) epoxide opening via β-elimination; (4) 5-exodig cyclization on cyanide in the presence of acid; (5) double oxidation by exposure to air (6) hydrolysis to lose ammonia. After removal of dimethyl ketal and reprotection of the secondary alcohol as TBS ether, they prepared ketone 332.

Scheme 3.2.3.1.3 Nicolaou's Maleic Anhydride Synthesis

331

332

Treatment of ketone $\mathbf{3 3 2}$ with DDQ to remove the PMB protecting group was followed by PDC oxidation and removal of the acetonide in the presence of acetic acid to
give a diol which, underwent cyclization to form a hemiacetal. Protection of the remaining alcohol as a TES ether provided hemiacetal 333 (Scheme 3.2.3.1.4). Bis hemiacetal 334 was obtained by exposing 333 to the Dess-Martin reagent followed by removal of the TES protecting group and $\mathrm{MeSO}_{3} \mathrm{H}$-mediated removal of the TBS ether.

Scheme 3.2.3.1.4 Nicolaou's Bridging Ketal Synthesis

At this stage, oxidation of the primary alcohol, protection of the hemiacetal alcohol and Pinnick oxidation yield an intermediate carboxylic acid which underwent Arndt-Eistert homologation to furnish carboxylic acid 335 (Scheme 3.2.3.1.5).

Protection of carboxylic acid $\mathbf{3 3 5}$ as its indoline amide, removal of the TBS group, oxidation of the hemiacetal to the corresponding lactone, oxidation of the indoline amide to its indole derivative and hydrolysis of the derived indole amide to the acid gave the natural product phomoidride $\mathrm{A}(\mathbf{3 0 0})$. In the presence of $\mathrm{MeSO}_{3} \mathrm{H}$, phomoidride $\mathrm{A}(\mathbf{3 0 0})$ was converted to phomoidride B (301).

Scheme 3.2.3.1.5 Nicolaou's Phomoidride A and B Synthesis

1. indoline, EDC, DMAP
$\xrightarrow[\text { 3. DMP, } \mathrm{NaHCO}_{3}]{\text { 2. TFA, } \mathrm{H}_{2} \mathrm{O}}$
2. p-Chloranil 5. LiOH five steps: 37\% yield)

300: Phomoidride A (CP-225, 917)

301: Phomoidride B (CP-263, 114)

3.2.3.2 Fukuyama's Route

The second total synthesis of phomoidride B was reported by Fukuyama in 2000. ${ }^{45-47}$ Fukuyama's synthesis commenced with the conversion of progargylic thioether $\mathbf{3 4 0}$ to the corresponding allene which was followed by nucleophilic addition of vinyl cuprate 341, ester alkylation with Mander's reagent and Michael addition with a chiral oxazolidinone to give 342 (Scheme 3.2.3.2.1). Adol reaction between this intermediate and aldehyde $\mathbf{3 4 3}$ was followed by oxidation and intramolecular Diels-Alder reaction in the presence of $\mathrm{ZnCl}_{2} \cdot \mathrm{OEt}_{2}$ to afford cycloaddition product $\mathbf{3 4 4}$.

Scheme 3.2.3.2.1 Fukuyama Intramolecular Diels- Alder Reaction

Proceeding forward with Diels- Alder product 344, the chiral oxazolidinone functionality is displaced by allyl thioglycolate, followed by intramolecular adol addition, decarboxylation catalyzed by $\operatorname{Pd}(\mathrm{OAc})_{2}$ and elimination of the tertiary alcohol to give thio lactone 345 (Scheme 3.2.3.2.2). Maleic anhydride formation was achieved by the formation of the TBS silyl enolether and treatment with NIS in the presence of AgNO_{3}. Selective hydrolysis of the less hindered methyl ester, produced carboxylate 346.

Scheme 3.2.3.2.2 Fukuyama's Maleic Anhydride Synthesis

As in the Nicoloau's synthesis, an Arndt- Eistert homologation protocol was utilized to install the neopentyl carboxylic acid (Scheme 3.2.3.2.3). To this end, carboxylic acid 346 was converted to the corresponding diazoketone by treatment with $(\mathrm{COCl})_{2}$ and $\mathrm{CH}_{2} \mathrm{~N}_{2}$. In the presence of the silver (I) salt $\mathrm{PhCO}_{2} \mathrm{Ag}$, the diazoketone was converted to the ketene, which formed the tert-Butyl ester in the presence of ${ }^{t} \mathrm{BuOH}$. Turning to the lactones, a Pummerer rearrangement converted the sulfide to its corresponding ketone which, upon treatment with acid, produced ketal 347. Jones oxidation and deprotection of the tert-butyl ester gave the natural product phomoidride B (301).

Scheme 3.2.3.2.3 Fukuyam's Phomoidride B Synthesis

3.2.3.3 Shair's Route

In 2000, Shair published the third total synthesis of phomoidride B. ${ }^{48-50}$ Shair's synthesis started with a Stille coupling between vinyl iodide $\mathbf{3 5 0}$ and vinyl stannane $\mathbf{3 5 1}$ which was followed by cuprate addition and alkylation with Mander's reagent to give ketone 352 (Scheme 3.2.3.3.1). Enantiomerically pure ketone 352 was provided by an efficient kinetic resolution using Corey's oxazaborolidine catalyst and catecholborane. The resolved ketone, upon addition of Grignard reagent 353, underwent oxy-Cope rearrangement and subsequent transannular Dieckmann cyclization to furnish the [4.3.1] core of phomoidride B (354).

Scheme 3.2.3.3.1 Shair's Oxy-Cope Rearrangement/ Transannular Dieckmann Cascade

1. $\mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{PPh}_{3}$,

2. $\mathrm{Li}\left(\mathrm{PMBOCH}_{2}\right) \mathrm{Cu}$ (thiophene) $\mathrm{CN}, \mathrm{TMSCl}$
3. n-BuLi, $\mathrm{NCCO}_{2} \mathrm{Me}$
350
(three steps: 53\% yield)

353
(53\% yield)

354

Treatment of ketone $\mathbf{3 5 4}$ with Mander's reagent, removal of the PMB group and oxidation yielded carboxylic acid $\mathbf{3 5 5}$. The acid was converted to a MOM ester which, upon treatment with Mander's reagent yielded enol carbonate 356. Exposure of $\mathbf{3 5 6}$ to TMSOTf and $\mathrm{HC}(\mathrm{OMe})_{3}$ initiated a Fries-like rearrangement to furnish lactone $\mathbf{3 5 7}$.

Scheme 3.2.3.3.2 Shair's Fries Rearrangement

Similar to the previous two total syntheses, homologation of carboxylic acid $\mathbf{3 5 8}$ by mesylation, diazoketone formation and Wolf rearrangement gave tert-butyl ester $\mathbf{3 5 9}$. Phomoidride B (301) was completed via enol triflate formation, palladium catalyzed CO insertion and deprotection of the tert-butyl ester.

Scheme 3.2.3.3.3 Shair's Phomoidride B Synthesis

3.2.3.4 Danishesky's Route

The fourth total synthesis of the phomoidrides was reported by Danishefsky in 2000. ${ }^{51-54}$ Danishefsky began by silylation of furan $\mathbf{3 6 0}$ at the 2-position followed by iodinating at the 4-position and mesylation of the alcohol (Scheme 3.2.3.4.1). The derived mesylate $\mathbf{3 6 1}$ was converted to the corresponding furanoaldehyde, which was in turn subjected to an aldol reaction with 362. Protection of the newly formed alcohol as the TBS ether provided 364 which, upon Heck cyclization, ketone reduction and TBS protection provided key intermediate 364. A two-step allylic oxidation/ iodination applied to the olefin gave vinyl iodide 365. Palladium mediated coupling of 365 with trialkyl borane 366, followed by selective removal of the TBS protecting group and Michael addition with allytrimethylsilane yielded olefin 367.

Scheme 3.2.3.4.1 Danishefsky's Heck Reaction to the Bicyclic Core

365
367

Reduction of ketone 367 with LAH, oxidation of the less hindered alcohol, mesylation, and elimination with DBU gave bridgehead olefin 368 (Scheme 3.2.3.4.2). Using Tebbe's reagent, the ketone was converted to the corresponding exo-methylene, which upon $[2+2]$ cycloaddition with 2,2- dichloroketene, reductive removal of the chlorine atoms and removal of TBS protecting group produced alcohol 369. The unsymmetrical all-carbon quaternary center was constructed via a sequence that began with treatment of cyclobutanone 369 with diphenyl disulfide. This was followed by oxidation of the allylic secondary alcohol to the corresponding ketone, Baeyer-Villiger oxidation of the cyclobutanone with $\mathrm{H}_{2} \mathrm{O}_{2}$ and concomitant oxidation of the phenylsulfide to its sulfoxide. The terminal olefin in the resultant intermediate was then oxidized with
OsO_{4} and NMO to yield an intermediate diol the cyclized to the corresponding hemiacetal 370. The lactone 371 was formed via base-mediated rearrangement and subsequent Swern oxidation.

Scheme 3.2.3.4.2 Danishefsky Ketal synthesis

Danishefsky next turned toward installing the side chains. To this end aldehyde 371 was exposed to Grignard reagent 372 to furnish an alcohol which, upon oxidation, oxidative removal of benzyl protecting group, oxidation of resultant primary alcohol and finally olefin formation by treatment with 1,1- diiodomethane in the presence of CrCl_{2}, gave olefin 373 (Scheme 3.2.3.4.3). Singlet oxygen oxidation of the furan ring, followed by TPAP oxidation, hydrolysis of the methyl ester and subsequent reclosure of the acetal
with $\mathrm{MeSO}_{3} \mathrm{H}$ furnished the natural product phomoidride D (303). As illustrated, in another seven steps, phomoidride $D(\mathbf{3 0 3})$ was converted to phomoidride $A(\mathbf{3 0 0})$.

Scheme 3.2.3.4.3 Danishefsky Phomoidride A and D synthesis

371
1.

(five steps 20\% yield)

303; Phomoidride D

(three steps: 49\% yield)

300; Phomoidride A (CP-225, 917)

3.3 Conclusions

To date numerous synthetic efforts have been directed toward the phomoidrides and four total syntheses have been completed. While in part, these investigations were motivated by an interesting biological profile, the fascinating structures innovative strategies and tactics they inspire are likely the true driving force being these synthetic efforts. Further synthetic studies will likely provide more efficient access to these compounds, new structural analogs, and additional advances in both the strategies and tactics available to synthetic chemists.

3.4 Notes and References

1. Dabrah, T. T.; Kaneko, T.; Massefski, W.; Whipple, E. B., CP-225,917 and CP263,114: Novel raReferenceslation inhibitors from an unidentified fungus .2. Structure elucidation. Journal of the American Chemical Society 1997, 119, (7), 1594-1598.
2. Meng, D. F.; Tan, Q.; Danishefsky, S. J., Discovery through total synthesis Epimerization at C7 in the CP compounds: Is (7S)-CP-263,114 a fermentation product? Angewandte Chemie-International Edition 1999, 38, (21), 3197-3201.
3. Spencer, P.; Agnelli, F.; Sulikowski, G. A., Investigations into the production and interconversion of phomoidrides A-D. Organic Letters 2001, 3, (10), 1443-1445.
4. Barton, D. H. R.; Sutherla.Jk, Nonadrides .I. Introduction and General Survey. Journal of the Chemical Society 1965, (MAR), 1769-1770.
5. Baldwin, J. E.; Barton, D. H. R.; Sutherla.Jk, Nonadrides .4. Constitution and Stereochemistry of Byssochlamic Acid. Journal of the Chemical Society 1965, (MAR), 1787-1788.
6. Barton, D. H. R.; Godinho, L. D. S.; Sutherla.Jk, Nonadrides .3. Absolute Configuration of Glauconic and Glaucanic Acids. Journal of the Chemical Society 1965, (MAR), 1779-1780.
7. Barton, D. H. R.; Jackman, L. M.; Rodrigue.L; Sutherla.Jk, Nonadrides .2.

Constitutions of Glauconic and Glaucanic Acids. Journal of the Chemical Society 1965, (MAR), 1772-1773.
8. Buchi, G.; Sander, K. M.; White, J. D.; Gougouta.Jz; Singh, S., Structures of Rubratoxin-a and Rubratoxin-B. Journal of the American Chemical Society 1970, 92, (22), 6638-6639.
9. Isaka, M.; Tanticharoen, M.; Thebtaranonth, Y., Cordyanhydrides A and B. Two unique anhydrides from the insect pathogenic fungus Cordyceps pseudomilitaris BCC 1620. Tetrahedron Letters 2000, 41, (10), 1657-1660.
10. Nakajima, M.; Itoi, K.; Takamatsu, Y.; Sato, S.; Furukawa, Y.; Furuya, K.; Honma, T.; Kadotani, J.; Kozasa, M.; Haneishi, T., Cornexistin - a New Fungal Metabolite with Herbicidal Activity. Journal of Antibiotics 1991, 44, (10), 1065-1072.
11. Spencer, P.; Agnelli, F.; Williams, H. J.; Keller, N. P.; Sulikowski, G. A., Biosynthetic studies on the fungal secondary metabolites CP-225,917 and CP-263,114. Journal of the American Chemical Society 2000, 122, (2), 420-421.
12. Sulikowski, G. A.; Agnelli, F.; Corbett, R. M., Investigations into a biomimetic approach toward CP-225,917 and CP-263,114. Journal of Organic Chemistry 2000, 65, (2), 337-342.
13. Sulikowski, G. A.; Agnelli, F.; Spencer, P.; Koomen, J. M.; Russell, D. H., Studies on the biosynthesis of phomoidride B (CP-263,114): Evidence for a decarboxylative homodimerization pathway. Organic Letters 2002, 4, (9), 1447-1450.
14. Sulikowski, G. A.; Liu, W. D.; Agnelli, F.; Corbett, R. M.; Luo, Z. S.; Hershberger, S. J., Progress toward a biomimetic synthesis of phomoidride B. Organic Letters 2002, 4, (9), 1451-1454.
15. Sulikowski, G. A.; Pongdee, R., Elucidation of the Biosynthetic pathway leading to the complex nonadride phomoidride B. Synlett 2006, (3), 354-363.
16. Dabrah, T. T.; Harwood, H. J.; Huang, L. H.; Jankovich, N. D.; Kaneko, T.; Li, J. C.; Lindsey, S.; Moshier, P. M.; Subashi, T. A.; Therrien, M.; Watts, P. C., CP-225,917 and CP-263,114, novel Ras farnesylation inhibitors from an unidentified fungus .1.

Taxonomy, fermentation, isolation, and biochemical properties. Journal of Antibiotics 1997, 50, (1), 1-7.
17. Endo, A.; Hasumi, K., Biochemical Aspect of Hmg Coa Reductase Inhibitors. Advances in Enzyme Regulation 1989, 28, 53-64.
18. Endo, A.; Hasumi, K., Hmg-Coa Reductase Inhibitors. Natural Product Reports 1993, 10, (6), 541-550.
19. Maron, D. J.; Fazio, S.; Linton, M. F., Current perspectives on statins. Circulation 2000, 101, (2), 207-213.
20. Gibbs, J. B., Ras C-Terminal Processing Enzymes - Minireview New Drug Targets. Cell 1991, 65, (1), 1-4.
21. Gibbs, J. B.; Oliff, a.; Kohl, N. E., Farnesyltransferase Inhibitors - Ras Research Yields a Potential Cancer Therapeutic. Cell 1994, 77, (2), 175-178.
22. Nicolaou, K. C.; Baran, P. S.; Zhong, Y. L.; Fong, K. C.; He, Y.; Yoon, W. H.; Choi, H. S., Total synthesis of the CP molecules CP-225,917 and CP-263,114-Part 2: Evolution of the final strategy. Angewandte Chemie-International Edition 1999, 38, (11), 1676-1678.
23. Tan, Q.; Danishefsky, S. J., The synthesis of CP-263,114 and CP-225,917: Striking long-range stereocontrol in the fashioning of C7. Angewandte Chemie-International Edition 2000, 39, (24), 4509-4510.
24. Spiegel, D. a.; Njardarson, J. T.; McDonald, I. M.; Wood, J. L., The art of innovation in organic chemistry: Synthetic efforts toward the phomoidrides. Chemical Reviews 2003, 103, (7), 2691-2727.
25. Ashenhurst, J. A.; Gleason, J. L., CP-225,917 synthetic studies: unusual hydroboration regioselectivity influenced by remote functional groups. Tetrahedron Letters 2008, 49, 504-507.
26. Castagner, B.; Leighton, J. L., A modified approach to the phomoidrides: synthesis of a late-stage intermediate containing a key carbon quaternary stereocenter. Tetrahedron 2007, 63, (26), 5895-5902.
27. Clive, D. L. J.; Zhang, J. H., Model studies related to CP-225,917: Stereocontrolled generation of the quaternary center. Tetrahedron 1999, 55, (41), 12059-12068.
28. Yoshimitsu, T.; Sasaki, S.; Arano, Y.; Nagaoka, H., Studies on the total synthesis of (-)-CP-263,114. Journal of Organic Chemistry 2004, 69, (26), 9262-9268.
29. Nicolaou, K. C.; Baran, P. S., The CP molecule labyrinth: A paradigm of how endeavors in total synthesis lead to discoveries and inventions in organic synthesis. Angewandte Chemie-International Edition 2002, 41, (15), 2679-2720.
30. Nicolaou, K. C.; Baran, P. S.; Jautelat, R.; He, Y.; Fong, K. C.; Choi, H. S.; Yoon, W. H.; Zhong, Y. L., A novel route to the fused maleic anhydride moiety of CP molecules. Angewandte Chemie-International Edition 1999, 38, (4), 549-552.
31. Nicolaou, K. C.; Baran, P. S.; Zhong, Y. L., Novel solution- and solid-phase chemistry of alpha-sulfonated ketones applicable to combinatorial chemistry. Journal of the American Chemical Society 2000, 122, (41), 10246-10248.
32. Nicolaou, K. C.; Baran, P. S.; Zhong, Y. L.; Choi, H. S.; Fong, K. C.; He, Y.; Yoon, W. H., New synthetic technology for the synthesis of hindered alpha-diazoketones via acyl mesylates. Organic Letters 1999, 1, (6), 883-886.
33. Nicolaou, K. C.; Baran, P. S.; Zhong, Y. L.; Choi, H. S.; Yoon, W. H.; He, Y.; Fong, K. C., Total synthesis of the CP molecules CP-263,114 and CP-225,917-Part 1: Synthesis of key intermediates and intelligence gathering. Angewandte ChemieInternational Edition 1999, 38, (11), 1669-1675.
34. Nicolaou, K. C.; Baran, P. S.; Zhong, Y. L.; Fong, K. C.; Choi, K. S., Total synthesis of the CP-molecules (CP-263,114 and CP-225,917, phomoidrides B and A). 2. Model studies for the construction of key structural elements and first-generation strategy. Journal of the American Chemical Society 2002, 124, (10), 2190-2201.
35. Nicolaou, K. C.; Harter, M. W.; Boulton, L.; Jandeleit, B., Synthesis of the
bicyclic core of CP-225,917 and CP-263,114 by an intramolecular Diels-Alder reaction. Angewandte Chemie-International Edition 1997, 36, (11), 1194-1196.
36. Nicolaou, K. C.; He, Y.; Fong, K. C.; Yoon, W. H.; Choi, H. S.; Zhong, Y. L.; Baran, P. S., Novel strategies to construct the gamma-hydroxy lactone moiety of the CP molecules. Synthesis of the CP-225,917 core skeleton. Organic Letters 1999, 1, (1), 6366.
37. Nicolaou, K. C.; Jung, J.; Yoon, W. H.; Fong, K. C.; Choi, H. S.; He, Y.; Zhong, Y. L.; Baran, P. S., Total synthesis of the CP-molecules (CP-263,114 and CP-225,917, phomoidrides B and A). 1. Racemic and asymmetric synthesis of bicyclo[4.3.1] key building blocks. Journal of the American Chemical Society 2002, 124, (10), 2183-2189.
38. Nicolaou, K. C.; Jung, J. K.; Yoon, W. H.; He, Y.; Zhong, Y. L.; Baran, P. S., The absolute configuration and asymmetric total synthesis of the CP molecules (CP-263,114 and CP-225,917, Phomoidrides B and A). Angewandte Chemie-International Edition 2000, 39, (10), 1829-1830.
39. Nicolaou, K. C.; Montagnon, T.; Baran, P. S., HIO3 and I2O5: Mild and selective alternative reagents to IBX for the dehydrogenation of aldehydes and ketones. Angewandte Chemie-International Edition 2002, 41, (8), 1386-1389.
40. Nicolaou, K. C.; Montagnon, T.; Baran, P. S., Modulation of the reactivity profile of IBX by ligand complexation: Ambient temperature dehydrogenation of aldehydes and ketones to alpha,beta-unsaturated carbonyl compounds. Angewandte ChemieInternational Edition 2002, 41, (6), 993-994.
41. Nicolaou, K. C.; Montagnon, T.; Ulven, T.; Baran, P. S.; Zhong, Y. L.; Sarabia, F., Novel chemistry of alpha-tosyloxy ketones: Applications to the solution- and solid-phase synthesis of privileged heterocycle and enediyne libraries. Journal of the American Chemical Society 2002, 124, (20), 5718-5728.
42. Nicolaou, K. C.; Postema, M. H. D.; Miller, N. D.; Yang, G., A novel approach to the CP-225,917 and CP-263,114 core. Angewandte Chemie-International Edition 1997, 36, (24), 2821-2823.
43. Nicolaou, K. C.; Vassilikogiannakis, G.; Kranich, R.; Baran, P. S.; Zhong, Y. L.; Natarajan, S., New synthetic technology for the mild and selective one-carbon
homologation of hindered aldehydes in the presence of ketones. Organic Letters 2000, 2, (13), 1895-1898.
44. Nicolaou, K. C.; Zhong, Y. L.; Baran, P. S.; Jung, J.; Choi, H. S.; Yoon, W. H., Total synthesis of the CP-molecules (CP-263,114 and CP-225,917, phomoidrides B and A). 3. Completion and synthesis of advanced analogues. Journal of the American Chemical Society 2002, 124, (10), 2202-2211.
45. Waizumi, N.; Itoh, T.; Fukuyama, T., Total synthesis of (-)-CP-263,114 (phomoidride B). Journal of the American Chemical Society 2000, 122, (32), 7825-7826.
46. Hayashi, Y.; Itoh, T.; Fukuyama, T., A new synthetic route to phomoidride B and its derivatives. Organic Letters 2003, 5, (13), 2235-2238.
47. Waizumi, N.; Itoh, T.; Fukuyama, T., Synthetic studies on CP-225,917 and CP263,114. Tetrahedron Letters 1998, 39, (33), 6015-6018.
48. Chen, C.; Layton, M. E.; Sheehan, S. M.; Shair, M. D., Synthesis of (+)-CP-263,114. Journal of the American Chemical Society 2000, 122, (30), 7424-7425.
49. Chen, C.; Layton, M. E.; Shair, M. D., Stereospecific synthesis of the CP-263,114 core structure. Journal of the American Chemical Society 1998, 120, (41), 10784-10785.
50. Sheehan, S. M.; Lalic, G.; Chen, J. S.; Shair, M. D., A highly efficient and convergent reaction for the synthesis of bridgehead enone-containing polycyclic ring systems. Angewandte Chemie-International Edition 2000, 39, (15), 2714-2715.
51. Frontier, A. J.; Danishefsky, S. J.; Koppel, G. A.; Meng, D. F., A useful alpha,alpha 'annulation reaction of enamines. Tetrahedron 1998, 54, (42), 12721-12736.
52. Kwon, O. Y.; Su, D. S.; Meng, D. F.; Deng, W.; D'Amico, D. C.; Danishefsky, S. J., Total syntheses of CP-225,917 and CP-263,114: Creation of a matrix structure by sequential aldol condensation and intramolecular Heck ring closure. Angewandte Chemie-International Edition 1998, 37, (13-14), 1877-1880.
53. Kwon, O. Y.; Su, D. S.; Meng, D. F.; Deng, W.; D'Amico, D. C.; Danishefsky, S. J., A stereospecific geminal alkylation scheme en route to CP-225,917 and CP-263,114. Angewandte Chemie-International Edition 1998, 37, (13-14), 1880-1882.
54. Meng, D. F.; Danishefsky, S. J., Stereospecific sulfur-mediated cleavage of a spirocyclobutanone: Synthesis of a fully functional precursor to the CP compounds. Angewandte Chemie-International Edition 1999, 38, (10), 1485-1488.

Chapter 4

Phomoidride Synthetic Studies from the Wood Group

4.1 Introduction

In the Wood Group, a total synthesis of the Phomoidrides has been ongoing for about ten years. Graduate students Jón Njardarson, David Spiegel, Ivar McDonald, and Barry Twenter, as well as several post-doctoral fellows and undergraduate students have worked on this project. ${ }^{1-8}$ This chapter will first introduce their pioneering research and then discuss our current progress towards a total synthesis of the phomoidrides.

4.2 Previous Studies Towards the Total Synthesis of Phomoidrides

4.2.1 Synthetic Approach I: Diester Model

Illustrated in Scheme 4.2.1 is a retrosynthetic analysis for phomoidride D (303) that was under investigation just prior to my joining the project. As indicated, phomoidride D (303) was expected to derive from diester 400. Grob fragmentation ${ }^{9}$ of intermediate 401 would give the [4.3.1] bicyclic core and install the bridgehead olefin. Opening the acetal in $\mathbf{4 0 2}$ and subsequent dithiane formation, followed by installation of a leaving group would yield the fragmentation precursor 401. Intermediate 402 was expected to arise from radical cascade cyclization of bromide 403. The latter would be produced from ketone 404 via aldol-type introduction of the carbons needed for
exomethylene lactone formation. Finally, the [2.2.2] bicyclic core found in $\mathbf{4 0 4}$ would be delivered through a tandem phenolic oxidation/Diels-Alder sequence applied to phenol 405 which, in turn, would be available from the coupling of phenol 406 and bromide 407.

Scheme 4.2.1 Retrosynthetic Analysis I of Total synthesis of Phomoidride D

4.2.2 Development of Phenolic Oxidation/Diels-Alder Cascade Reaction

To investigate the planned synthetic route to the phomoidrides, a model system was employed wherein primary alcohol 408 replaced the more elaborate side-chain component 407. Mitsunobu coupling of catechol 410 with $\mathbf{4 0 8}$ gave the corresponding mono alkylation product, phenol 411 (Scheme 4.2.2.1). Oxidation of 411 with $\mathrm{Pb}(\mathrm{OAc})_{4}$ gave the intermediate diene 412 which underwent intramolecular [4+2] cycloaddtion to yield ketone 413. ${ }^{12-18}$ To maintain compatibility in subsequent transformations, the acetyl group was replaced by TMS to yield 414.

Scheme 4.2.2.1 Phenolic Oxidation and Diels- Alder Cycloaddition

Aldol addition of enolate $\mathbf{4 1 5}^{36-39}$ to ketone $\mathbf{4 1 4}$ gave tertiary alcohol 416
(Scheme 4.2.2.2). Introduction of the required exomethylene followed by N-oxidation (m-CPBA) and Cope elimination. The derived ester (417) was converted to lactone 418 following removal of the TMS protecting group and exposure to mild acid.

Scheme 4.2.2.2 Exo-Methylene Lactone Construction

Alkylation of lactone 418 with Stork's bromoacetal (419) ${ }^{20-23}$ gave radical cascade cyclization precursor 420 (Scheme 4.2.2.3). Treatment of $\mathbf{4 2 0}$ with SmI_{2} yielded a cyclization product $\mathbf{4 2 3}$ resulting from a sequential 5-endo-trig, 5-exo-tet cyclization. ${ }^{24-}$ ${ }^{31}$ The cascade cyclization is highly efficient and is believed to occur via initial reduction of the maleate followed by addition to the exomethylene and substitution of the bromine. ${ }^{3}$

Scheme 4.2.2.3 SmI I_{2} Cascade Cyclization

422
423

Opening of acetal 423 in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and propane-1,3-dithiol gave tertiary alcohol 424 (Scheme 4.2.2.4). Reduction of lactone 424 to the corresponding hemiacetal (425), followed by methylation gave acetal 426. Treatment of 426 with KH, CS_{2} and MeI furnished xanthate 427.

Scheme 4.2.2.4 Tertiary Xanthate Formation

After considerable experimentation it was found that treatment of xanthate $\mathbf{4 2 7}$ with SmI_{2} and HMPA produces the desired Grob fragmentation ${ }^{9}$ product 428a, as well as the byproduct 428b resulting from reductive removal of the xanthate (Scheme 4.2.2.5). ${ }^{32-}$ ${ }^{33}$ Although the derived fragmentation product is the result of a two electron reduction, the exact nature of the intermediate undergoing fragmentation (radical or anionic) is not known.

Scheme 4.2.2.5 Grob Fragmentation

428b: 25\% yield

Numerous attempts were made to convert diester 428a to olefin 429 (Scheme
4.2.2.6). Unfortunately, all efforts to effect this transformation were unsuccessful.

Scheme 4.2.2.6 Maleic Anhydride Synthesis Approach

4.2.3 Synthetic Approach II: Ester and Benzyl Ether Model

Since attempts to install the maleic anhydride moiety were unsuccessful from substrate 428a, an alternative approach targeting β - keto ester 432 as substrate was explored. In this approach it was envisioned that the maleic anhydride moiety in 430 would arise via a $\operatorname{Pd}(0)$-catalyzed CO-insertion applied to the corresponding enol triflate 431 (Scheme 4.2.3.1). The requisite β - Keto ester 432 would derive from a Wharton fragmentation ${ }^{10-11}$ of tertiary alcohol 433. Using similar procedures as the previous diester approach, $\mathbf{4 3 3}$ would be prepared from phenol 434 wherein the aromatic core possesses a single methyl ester and a benzyl ether. Alkylation of phenol $\mathbf{4 3 5}$ with iodide 436 would yield oxidation precursor 434.

Scheme 4.2.3.1 Retrosynthetic Analysis II: Model with Ester and OBn Substitution

433

435

436

This approach commenced with 2,4-dihydroxy benzaldehyde (440, Scheme 4.2.3.2). Selective bis protection of the diphenol followed by Baeyer-Villiger oxidation and formate hydrolysis yielded phenol 441. Regioselective bromination ${ }^{34}$ and phenol alkylation with iodide $\mathbf{4 3 6}^{35}$ gave aryl bromide 442. Lithium-bromide exchange and trapping of the resulting aryl lithium species with methyl chloroformate was followed by removal of the allyl protecting group to provide $443 .{ }^{40}$ Phenolic oxidation and DielsAlder cycloaddition was performed using $\mathrm{Pb}(\mathrm{OAc})_{4}$ as the oxidant and produced bicycle 445 in excellent yield.

Scheme 4.2.3.2 Phenolic Oxidation and Diels-Alder Cycloaddition

Using procedures similar to those employed in the diester approach, ketone 445 was converted to the corresponding lactone (446) wherein the Stork bromoacetal was poised for radical cascade cyclization. In contrast to the diester system, exposure of 446 to SmI_{2} resulted in decomposition of the starting material (Scheme 4.2.3.3); however, treatment 446 with $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN furnished a 1:1 mixture of the desired 5-exo-trig, 5-exo-trig product 448 and an undesired 6-endo-trig, 4-exo-trig byproduct 447.

Scheme 4.2.3.3 Bu ${ }_{3} S n H$ Radical Cascade Cyclization

Following previously-established procedures, acetal 448 was converted to fragmentation precursor 449 (Scheme 4.2.3.3). However, efforts to fragment intermediate 449 led only to epimerization product 452 , the structure of which was confirmed by Xray structure analysis. ${ }^{4}$ The lack of fragmentation coupled with the observed epimerization product $\mathbf{4 5 2}$, suggested the intermediacy of a retro-aldol process. Based on this unanticipated retro-aldol epimerization pathway, we reasoned that the ester group, although necessary for eventual installation of the maleic anhydride moiety, could not be present in the fragmentation substrate.

Scheme 4.2.3.3 Approach to Wharton Fragmentation

In an effort to remove the ester groups deleterious influence on the Wharton fragmentation, it was found that treatment of $\mathbf{4 5 2}$ with LAH selectively reduces the ester without affecting the lactone (Scheme 4.2.3.4). Importantly, the derived alcohol (453) undergoes smooth fragmentation to desired product 454 in good yield upon exposure KOH .

Scheme 4.2.3.4 Wharton Fragmentation after Reduction of Methyl Ester

At this stage, completing the synthesis in the model system required oxidation of the primary alcohol 454 to the corresponding acid or aldehyde 455 (Scheme 4.2.3.5). Unfortunately, all conditions attempted resulted in recovery or decomposition of starting materials. The difficulty in manipulating $\mathbf{4 5 4}$ was further illustrated by several failed attempts to simply install a protecting group.

Scheme 4.2.3.5 Attempted Further Modification of the Fragmentation Product

4.3 Current Approach Towards the Total Synthesis of the Phomoidrides

4.3.1 Proposed Solution for Removal Carboxylate

Given that our prior studies had established the need to remove the ester in 449 prior to fragmentation (see Scheme 4.2.3.3) and that removing the ester by reduction was a dead-end, a more dramatic modification of the synthetic plan was needed. Thus began my involvement with the project and as a first solution the complete removal of the ester group was proposed.

As illustrated in Scheme 4.3.1, it was envisioned that the proposed decarboxylated intermediate $\mathbf{4 6 2}$ could be accessed in two ways. One approach involved the decarboxylation of an intermediate similar to that already prepared in previous studies (i.e., $\mathbf{4 6 0}$ to $\mathbf{4 6 2}$). Alternatively, we had the option of leaving out the CO_{2} unit from the outset and bringing the synthesis through a more simplified intermediate 461.

Scheme 4.3.1 Proposed Solution to Remove of Carboxylate

4.3.2 Decarboxylation Attempts

To determine whether the decarboxylation approach would be viable, we attempted to prepare substrate 464 (Scheme 4.3.2); however, hydrolysis of ester $\mathbf{4 6 3}$ to carboxylic acid 464 led only to decomposition of the starting material. As an alternative, we attempted to prepare acid 464 via an oxidation of the corresponding aldehyde (465). To this end, preparation of the 465 began with previously prepared aryl bromide 442 . Removal of the allyl protecting group, followed by exposure to n-BuLi and trapping of the derived dianion with DMF furnished benzaldehyde 466. Oxidation of 466 and intramolecular Diels-Alder cycloaddition, yielded aldehyde 465. Unfortunately, attempts to oxidize aldehyde 465 to carboxylic acid 464 under Pinnick conditions failed and only starting material was recovered. ${ }^{41}$

Scheme 4.3.2 Proposed Solution to Remove Carboxylate

4.3.3 Initial Studies with Simplified Substrates

Given the difficulty of converting aldehyde 465 to carboxylic acid 464 , we began to consider [2.2.2] bicyclic core structures that were devoid of a caboxylate moiety, such as substrate 468. In fact, efforts to prepare this intermediate are illustrative of the inherent difficulties associated with this design change. As can be seen in Scheme 4.3.3, phenol 467 is readily available from deallylation of $\mathbf{4 4 2}$; however, when 467 is exposed to conditions expected to result in the tandem phenolic oxidation/Diels-Alder reaction, the only observed product is $\mathbf{4 6 9}$. Thus, the electronic demands of the intramolecular DielsAlder reaction are not met by this substrate.

Scheme 4.3.3 Phenolic Oxidation and Diels- Alder reaction of bromide phenol 467

4.3.4 Tuning of the Diels-Alder Substrate

When one considers the successful phenolic oxidation/ Diels-Alder reactions of di- and mono-ester substrates 411 and 443 in conjunction with the unsuccessful phenolic oxidation/Diels-Alder of 467 (Scheme 4.3.4.1, inset), it becomes clear that an electron withdrawing group must be present on the diene to enable the inverse electron demand Diels-Alder process. Therefore, we began to develop an alternative route wherein an electron withdrawing group replaces the benzyl ether at the 3- position (e.g., 470, Scheme 4.3.4.1). In contrast to $\mathbf{4 4 3}$, the C-4 functionalized monoester substrate, the
newly envisioned intermediate manifests an aldehyde as the electron withdrawing group. The change in oxidation level was made in anticipation of employing a Baeyer-Villiger oxidation to cleave the aldehyde and deliver the hydroxyl group required for Wharton fragmentation (see 473 to $\mathbf{4 6 2}$ in Scheme 4.3.4.1). In addition to incorporation of the aldehyde, substrate $\mathbf{4 7 0}$ is unfunctionalized at $\mathrm{C}-4$; this change was made to circumvent complications akin to those encountered when trying to manipulate the $\mathrm{C}-4$
hydroxymethyl group in $\mathbf{4 5 4}$ (vide supra, Scheme 4.2.3.5). Overall, exposure of $\mathbf{4 7 0}$ to the tandem penolic oxidation/ Diels-Alder was expected to deliver the [4+2] product 472 via the intermediacy of acetate 471. Paralleling our previous routes, $\mathbf{4 7 2}$ would be advanced to $\mathbf{4 7 3}$ via radical cascade chemistry applied to an exomethylene lactone. Baeyer-Villiger oxidation, thioacetal formation and introduction of a mesylate group would deliver 462 and set the stage for the Wharton fragmentation.

Scheme 4.3.4.1 Synthetic Plan Using EWG for Diels- Alder Reaction

467, no D/A reaction

To investigate this plan, we set out to prepare phenol 470. In an initial approach 3,4-dihydroxy benzaldehyde (437) was used as the starting material and selectively converted to the corresponding monoacetate (474) upon exposure to AcCl in the presence of NaOH (Scheme 4.3.4.2). ${ }^{42}$ Unfortunately, efforts to alkylate the derived phenol (474) with iodide $\mathbf{4 3 6}$ only yielded an undesired bis alkylation product 475 . Eventually we discovered that, in contrast to acylation, alkylation of 3,4-dihydroxy benzaldehyde proceeds selectively at the C-4 phenolic oxygen; thus, simply treating with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and iodide 436, furnishes desired phenol 470 in reasonable yield.

Scheme 4.3.4.2 Preparation of Phenol 470

Route 1:

Route 2:

437
470

Proceeding with phenol 470, we observed that the tandem phenolic oxidation/Diels-Alder reaction behaves differently at varied temperatures (Table 4.3.4). The highest yield for the desired [4+2] product $\mathbf{4 8 0}$ was observed in reactions performed at $90^{\circ} \mathrm{C}$; however, efforts to improve the yield by running the reaction at warmer temperatures resulted in increasing amounts of rearomatized byproduct $\mathbf{4 8 1}$; at $140^{\circ} \mathrm{C}$ 481 was the only observed product.

Table 4.3.4 Phenolic Oxidation and Diels- Alder Cycloaddition of Phenol 470

4.3.5 Chemoselectivity Issues in Advancing 480

Although introduction of the aldehyde in $\mathbf{4 7 0}$ had served to meet the electronic demands of the Diels-Alder reaction, advancing the cycloadduct $\mathbf{4 8 0}$ required differentiation of the aldehyde and newly formed ketone moieties. This differentiation was important given that aldol addition to the ketone with methyl 3-(dimethylamino) propanoate enolate was the next step. ${ }^{36-39}$ Given the potential difficulties associated with eventual removal of many carbonyl protecting groups, we chose to first explore differentiation of the aldehyde and ketone by nucleophilic addition. As illustrated in Scheme 4.3.5.1, this effort began by removal of the acetate and exposure of the derived hemiacetal (482) to either TMSCl followed by MeLi or $\mathrm{NaH} / \mathrm{MeLi}$. Given somewhat improved efficiency, the latter sequence was employed for material advancement and the derived diol 485 was protected as the corresponding bis silyl ether 486. Unfortunately, 486 failed to undergo subsequent aldol addition to produce 487.

Scheme 4.3.5.1 Intermolecular Addition for Differentiation of Enol 480

Silica, r.t.
(quant. yield)

$\mathrm{NaH}, \mathrm{MeLi}, \mathrm{THF}$, $78^{\circ} \mathrm{C}$ to r.t. (48\% yield)

485

486

487

After the unsuccessful intermolecular aldol reaction to ketone 486, we decided to attempt an intramolecular variant and explored the conversion of hemiacetyl 482, to ester 488 by exposure to 2-bromoacryloyl chloride; unfortunately this acylation reaction failed (Scheme 4.3.5.2).

Scheme 4.3.5.2 Attempted Intramolecular Addition of a Vinyl Bromide

In a second attempt at intramolecular addition we explored the use of different lead salts such as $\mathrm{Pb}\left(\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{CH}_{3}\right)_{4} \mathbf{4 9 4}{ }^{43-45}$ as oxidants in the tandem phenolic oxidation/Diels-Alder reaction. Although this approach allowed quick access to the desired ester (490), subsequent intramolecular aldol reaction to the lactone (491) failed under a variety of different conditions (Scheme 4.3.5.3).

Scheme 4.3.5.3 Intramolecular Addition for Differentiation of Enol 480 by Lead Salt

In a final attempt at intramolecular lactone formation we exposed hemiacetal 482 to ylide 497 and were delighted to find that butenolide 492 was produced in modest yield (Scheme 4.3.5.4).. ${ }^{47}$ Mechanistically this transformation is believed to begin with alcohol addition to ketene 497 to furnish 493 which, in turn, undergoes intramolecular Wittig olefination via intermediate $494 .{ }^{46}$ Lactone 492 was produced after elimination of triphenylphosphine oxide. Encouraged by this success we set out to explore preparation of a more functionalized lactone system via treatment of 482 with cumulene 495. It was hoped that the in situ generated cumulene would acylate hemiacteyl 482 and that the derived intermediate would undergo intramolecular addition to directly furnish the desired exomethylene lactone 489. Unfortunately, these efforts resulted only in decomposition of the starting material.

Scheme 4.3.5.4 Attempt involving a Ketene and Cumulene

$\mathrm{Ph}_{3} \mathrm{P}=\mathrm{C}=\mathrm{C}=\mathrm{O}$ Route:

Proposed $\mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{O}$ Route:

Experiencing only limited success with nucleophilic addition and intramolecular additions we next attempted to differentiate the aldehyde and ketone moieties in $\mathbf{4 8 0}$ via oxidation (Scheme 4.3.5). Attempt to transform the aldehyde to ketone $\mathbf{5 0 0}$ via a Baeyer-Villiger reaction using m - $\mathrm{CPBA}, \mathrm{H}_{2} \mathrm{O}_{2}$, or $\mathrm{CF}_{3} \mathrm{CO}_{3} \mathrm{H}$ resulted in either recovery or decomposition of starting material. ${ }^{48,49}$ Attempts to convert aldehyde $\mathbf{4 8 0}$ to its
corresponding carboxylic acid using the Pinnick oxidation resulted only in recovery of starting material.

Scheme 4.3.5.5 Attempted Differentiation of Enol 480 via Oxidation

In a last approach to differentiate the carbonyl groups, an effort was made to effect conjugate reduction. To this end, it was hoped that conversion of $\mathbf{4 8 2}$ to the corresponding aldehyde $\mathbf{5 0 2}$ would provide a substrate suitable for subsequent BaeyerVilliger oxidation and thus a variety of conditions for conjugate reduction were explored that included: L-selectride; $;{ }^{50}\left(\left[\left(\mathrm{PPh}_{3}\right) \mathrm{CuH}\right]_{6} ;{ }^{51}\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{RhCl}, \mathrm{Et}_{3} \mathrm{SiH} ;{ }^{52} \mathrm{NaBH}_{6}, \mathrm{NiCl}_{2} ;{ }^{53}\right.$ Mg or $\mathrm{Zn} / \mathrm{MeOH} ;{ }^{54} \mathrm{Et}_{3} \mathrm{SiH}, \mathrm{CuCl} ; \mathrm{Al}(\mathrm{O}(2,5-\mathrm{Ph}) \mathrm{Ph})_{3}$, DIBAL, nBuLi; ${ }^{55}$ Morpholine, Hantz reagent; ${ }^{56} 9-\mathrm{BBN}$; pyridine, and; $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ (Table 4.3.5). As illustrated in Table 4.3.5 reduction using Pd / C and H_{2} was the only successful result. Although, this condition provided a high yield of the desired product, potential lack of compatibility with the olefins present in the side chains in the real system led us to abandon this approach.

Table 4.3.5 Reduction for Differentiation of Enol 482

4.3.6 Diels- Alder Reaction of a Triflate-Containing Substrate

Efforts thus far have demonstrated the necessity of an electron withdrawing group (EWG) on the phenol for success in the phenolic oxidation/inverse electron demand Diels-Alder reaction. In addition, deleterious retro-aldol chemistry in attempted fragmentation reactions led us toward temporarily placing the EWG at C-3 of the aryl substrate. Although this latter maneuver worked with regard to the electronic demands of the Diels-Alder reaction, transforming the EWG (i.e., aldehyde) to a ketone-containing substrate (e.g., 513) suite for a subsequent radical cascade cyclization proved unworkable. Based on this growing body of results we decided to explore the affect of electron withdrawing substituents attach to the aryl oxygen. If these "OEWGs" proved
capable of meeting the electronic demands of the Diels-Alder reaction, we could avoid many of the deleterious issues encountered in our previous studies. As illustrated retrosynthetically in Scheme 4.3.6.1, model system 430 was envisioned to derive from β keto ester $\mathbf{5 1 0}$ via $\operatorname{Pd}(0)$ catalyzed CO insertion. Wharton fragmentation would deliver 510 from 512 which, in turn, would be produced by application of a radical cascade reaction to bromo acetyl 513. Following the previous established procedures, bromo acetal 513 would be derived from Diels-Alder product 514 which we hoped could be produced from phenol 515 wherein an OEWG substituent would meet the electronic demands of the tandem phenolic oxidation/Diels-Alder sequence.

Scheme 4.3.6.1 Retrosynthetic Analysis III: Model with OEWG Substitution

In accord with the above synthetic plan we began our studies by exploring the effectiveness of OEWG substituents on the Diels-Alder reaction. To this end we first
explored the affect of incorporating a triflate group. As illustrated in Scheme 4.3.6.2, we exposed the previously prepared phenol $\mathbf{4 7 0}$ to allylbromide to furnish benzaldehyde $\mathbf{5 1 6}$. Baeyer-Villiger oxidation of $\mathbf{5 1 6}$ in the presence of PhSeSePh and $\mathrm{H}_{2} \mathrm{O}_{2}$ produced a mixture of the desired phenol $\mathbf{5 1 8}$ and byproduct epoxide $\mathbf{5 1 7}{ }^{57}$ Isolation of $\mathbf{5 1 8}$ followed by exposure to triflic anhydride furnished the corresponding triflate $\mathbf{5 1 9}$ which, upon exposure to $\operatorname{Pd}(0)$ and NaBH_{4} underwent smooth deallylation to afford $\mathbf{5 2 0}$, the substrate needed for the proposed tandem phenolic oxidation/Diels-Alder reaction. To our delight, treatment of $\mathbf{5 2 0}$ with $\mathrm{Pb}(\mathrm{OAc})_{4}$ produced desired $[4+2]$ cycloaddition products $\mathbf{5 2 1}$ and 522 in good yield. This result provided solid evidence that use of OEWG substitution on the phenol ring was a suitable strategy in this inverse electronic demand Diels- Alder reaction. Moreover, this substrate afforded better yields than previous model systems.

Scheme 4.3.6.2 Preparation 1: Precursor for Phenolic Oxidation and Diels-Alder Reaction

Although we were excited by this initial success, the observed over oxidation in the Baeyer-Villiger oxidation of $\mathbf{5 1 6}$ left us a bit concerned about compatibility issues
with the olefins that would be present in the side chains of the real system (Scheme 4.3.6.2, inset). Thus, rather than forge ahead with the model system we opted to explore an alternative route to 518. As illustrated in Scheme 4.3.6.3, we chose to explore a route eminating from 2,4-dihydroxy benzaldehyde (440) which, upon exposure to $\mathrm{BOM}-\mathrm{Cl}$ can be selectively protected at the least hindered phenol to give aldehyde 525. Subsequent allylation and Baeyer-Villiger oxidation delivers phenol 526. Coupling of $\mathbf{5 2 6}$ with iodide 436 delivers phenol ether 527 and removal of the BOM protecting group then completes the construction of 518. Importantly, this approach to $\mathbf{5 1 8}$ is very short, proceeds in excellent yield and can be readily adapted to the phomoidride $\mathrm{D}(\mathbf{3 0 3})$ synthesis by simply incorporating a fully functionalized side-chain unit (i.e., 407) in place of 436. Having developed an alternative preparation of 518, we turned toward completing the model study and advanced the Diels-Alder adduct (521) to the corresponding hemiacetyl (522) by exposure to silica gel.

As illustrated in Scheme 4.3.6.4, intermediate $\mathbf{5 2 2}$ was advanced by protecting the free alcohol as its TMS ether (528), followed by aldol addition and Cope elimination to yield olefin 529 (Scheme 4.3.6.4). Removal of the TMS protecting group with TBAF and AcOH was followed by spontaneous cyclization to provide lactone 530.

Unfortunately, efforts to remove the triflate and deliver ketone 531 failed. The undesired seco acid $\mathbf{5 3 2}$ was the only product observed.

Scheme 4.3.6.4 Lactone Synthesis

Somewhat surprised by the resiliency of the enol triflate we decided to explore this transformation in a simplified system. To this end model enoltriflate $\mathbf{5 3 5}$ was prepared and the conditions that were explored for its conversion to ketone $\mathbf{5 3 6}$ included: A) attempts to saponify under basic conditions (LiOH or KOH); B) initial transformation to the corresponding enamine via by $\mathrm{Pd}(0)$ or $\mathrm{Cu}(\mathrm{I})$ catalysis; $\left.{ }^{58-62} \mathrm{C}\right)$ addition of amine nucleophiles such as DBU or NaNH_{2}, and; ${ }^{63,64} \mathrm{D}$) reductive cleavage of the $\mathrm{O}-\mathrm{S}$ bond ${ }^{65}$ (Table 4.3.6.1). Although several of these conditions produced some of the desired ketone, a combination of $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{BINAP}$, morpholine, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ proved the most effective.

Table 4.3.6.1 Triflate Removal Triflate in a Model.

535	536
Conditions	Results
LiOH, r.t.	decomposition
$\mathrm{Pd}(\mathrm{OAc})_{2}$, BINAP, morphline, $\mathrm{NaO}^{\dagger} \mathrm{Bu}$, Tol, reflux	decomposition
$\mathrm{Pd}(\mathrm{OAc})_{2}$, BINAP, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, Tol, reflux	26\%
$\mathrm{Pd}(\mathrm{OAc})_{2}$, BINAP, morphline, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, Tol, reflux	46\%
DBU, THF, r.t.	decomposition
NaNH_{2}, DMF, r.t.	25\%
$\mathrm{Na}\left(\mathrm{NH}_{3}\right),-78{ }^{\circ} \mathrm{C}$	trace

Having had some success with the conversion of $\mathbf{5 3 5}$ to 536, we applied a few of the more promising conditions to $\mathbf{5 2 8}$, including: $\mathrm{LiOH} ; \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{BINAP}$, morpholine, $\mathrm{NaO}{ }^{\mathrm{t}} \mathrm{Bu} ;{ }^{59} \mathrm{Pd}(\mathrm{OAc})_{2}$, BINAP, morpholine, $\mathrm{Cs}_{2} \mathrm{CO}_{3} ;{ }^{61} \mathrm{DBU} ;{ }^{63} \mathrm{Na}\left(\mathrm{NH}_{3}\right) ;{ }^{65}$ Pyridine;
$\mathrm{NaNH}_{2} ;{ }^{64} \mathrm{CuI}$, proline, morpholine, $\mathrm{K}_{3} \mathrm{PO}_{4}{ }^{62}$ (Table 4.3.6.2). Unfortunately, no desired product (537) was produced and starting material was either recovered or decomposed in all cases except the last, wherein an unexpected heterocyclic product (538) was observed.

Table 4.3.6.2 Removal Triflate in the Real System 522

528
537

Conditions	Results
LiOH, THF r.t. to reflux	decomposition
$\mathrm{Pd}(\mathrm{OAc})_{2}$, BINAP, morphline, $\mathrm{NaO}^{\dagger} \mathrm{Bu}$, Tol, reflux	decomposition
$\mathrm{Pd}(\mathrm{OAc})_{2}$, BINAP, morphline, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, Tol, reflux	decomposition
DBU, THF, r.t.	decomposition
$\mathrm{Na}\left(\mathrm{NH}_{3}\right),-78{ }^{\circ} \mathrm{C}$	decomposition
Py. r.t. to reflux	S.M. recovered
NaNH_{2}, DMF, r.t.	decomposition

CuI, (-)-proline, morpholine, $\mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{MeCN}$, reflux

538: 39% yield

4.3.7 Investigation of Other OEWG Substituents

Due to the difficulties encountered while attempting to remove the triflate group, we decided to investigate other OEWG groups. To this end phenol $\mathbf{5 1 8}$ was acylated with different electron withdrawing groups, including: acetate, benzoylate, trifluoroacetate, phosphate, mesylate and nosylate to give the corresponding products $\mathbf{5 4 0}$ to 545, respectively (Table 4.3.7.1).

Table 4.3.7.1 Preparation of Substrate for Diels- Alder Reaction: Acylation

As illustrated in Table 4.3.7.2, derivatives 540-545, could be deallylated to the corresponding phenols (547-552) using $\mathrm{Pd}(0)$ and either $\mathrm{NaBH}_{4} / \mathrm{EtOH}$ or $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{MeOH} .{ }^{40,66}$

Table 4.3.7.2 Preparation of Substrates for Diels-Alder Reaction: Deallylation

With a series of substrates in hand (i.e., 546-552) the subsequent tandem phenolic oxidation/Diels-Alder addition was investigated. The first step, phenolic oxidation was found to work well for all substrates; however, the subsequent [4+2] cycloaddition was observed to proceeded with only three: phenol 550 (phosphate EWG), 551(mesylate EWG), and 552 (nosylate EWG) (Table 4.3.7.3). Of these successful substrates, the yield for $\mathbf{5 5 2}$ was best at 77\% (combined).

Table 4.3.7.3 Substrates 553 for Phenolic oxidation and Diels- Alder Reaction

Our next challenge was to convert enolether $\mathbf{5 5 5}$ to the corresponding ketone $\mathbf{5 6 0}$. To this end we chose to explore three conditions: $\mathrm{LiOH} ; \mathrm{KOH} ; \mathrm{PhSH} / \mathrm{KOH} .{ }^{67}$ In the event, exposure of $\mathbf{5 2 1}$ (the enoltriflate) and 556-559 to the first two conditions resulted in no desired product (Table 4.3.7.4). However, for substrate 558, exposure to $\mathrm{PhSH} / \mathrm{KOH}$ furnished the desired ketone in excellent yield.

Table 4.3.7.4 Conversion of Enolate 555 to Ketone 560

	conditions	
substrates	conditions	results (yield)
$\mathrm{R}=\mathrm{Tf}$, 521(OAc)	$\mathrm{PhSH}, \mathrm{KOH}$	decomposition
$\mathrm{R}=\mathrm{P}(\mathrm{O})(\mathrm{OEt})_{2}, \mathbf{5 5 6}(\mathrm{OH})$	LiOH or KOH or $\mathrm{PhSH}, \mathrm{KOH}$	decomposition
$\mathrm{R}=\mathrm{Ms}, 557(\mathrm{OAc})$	LiOH or KOH or $\mathrm{PhSH}, \mathrm{KOH}$	decomposition
R=Ns, 559(OH)	LiOH or KOH	decomposition
R=Ns, 558(OAc)	LiOH or KOH	decomposition
R=Ns, 559(OH)	$\mathrm{PhSH}, \mathrm{KOH}$	30\%
$\mathrm{R}=\mathrm{Ns}, 558(\mathrm{OAc})$	$\mathrm{PhSH}, \mathrm{KOH}$	96\%

Proceeding with ketone 560, our next goal was differentiation of the two ketone moieties. To this end, we began advancing $\mathbf{5 6 0}$ by removal of the acetate to provide hemiacetal 537. Reprotection of $\mathbf{5 3 7}$ as the TMS ether (561) was followed by exposure to TBSOTf to produce silyl enolether 563. With the two carbonyls effectively differentiated, the stage was set for the aldol addition/Cope elimination sequence. To our delight, $\mathbf{5 6 3}$ proved to be a superb substrate and furnished the desired ester $\mathbf{5 6 4}$ in 85% overall yield. Conversion of $\mathbf{5 6 4}$ to the corresponding exomethylene lactone (531) was followed by alkylation with Stork's bromo acetyl to provide radical cyclization precursor

513 (Scheme 4.3.7.1)

563

564

531

513

Treatment of $\mathbf{5 1 3}$ with SmI_{2} gave tertiary alcohol 512. Having accessed cyclization product 512, our next goal was to conduct the Wharton fragmentation. To this end, the acetal in $\mathbf{5 1 2}$ was opened and converted to the corresponding dithiane (566) upon exposure to $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and 1,3-propanethiol. Unfortunately mesylation of $\mathbf{5 6 6}$ furnished bis mesylate 567, an intermediate which has to date proven unadvancable (Scheme

4.3.7.2).

Scheme 4.3.7.2 Preparation Substrate 567 for Fragmentation

Given that selective alcohol funcitionalization had now presented itself as a problem we recognized that oxidation of the ethyl ketal to the corresponding lactone might provide an intermediate suited for fragmentation. Unfortunately, although conversion of acetal $\mathbf{5 1 2}$ to the corresponding hemiacetyl $\mathbf{5 7 0}$ was successful subsequent oxidation to 571 failed under numerous conditions (Scheme 4.3.7.3). As an alternative approach to delivering lactone 571, we explored introduction of an alpha halo ester replacement for the bromo acetal. The derived ester (585) was seen as a potential precursor to $\mathbf{5 7 1}$ for via a radical cyclization akin to that initiated with the corresponding bromo acetal. However, efforts to prepare $\mathbf{5 8 5}$ by treatment of lactone $\mathbf{5 3 1}$ with 2chloroacetic anhydride (497) gave undesired product 586, from the product of an apparent $[3,3]$ sigmatropic rearrangement of $\mathbf{5 8 5}$.

Scheme 4.3.7.3 Preparation Substrate 571 for Fragmentation

The final approach to prepare a substrate for Wharton fragmentation involved differentiating the two tertiary alcohols that would result following acetal opening of substrate 512 (Scheme 4.3.7.4). Thus, acylation of the tertiary alcohol in $\mathbf{5 1 2}$ was followed by acetal opening/ dithiane formation, mesylation, and deacylation to furnish 572.

Scheme 4.3.7.4 Preparation of Substrate 572 for Fragmentation

4.4 Future Plans

Future studies will focus on the fragmentation of mesylate $\mathbf{5 7 2}$ to the corresponding ketone 568. Subsequent completion of the model system begin with homologation of $\mathbf{5 6 8}$ using Mander's reagent. Conversion of the intermediate β-keto ester to the corresponding enol triflate followed by palladium catalyzed CO insertion, will set the stage for dithane removal and oxidation using the Jones Reagent.

Scheme 4.4 Future Plans

572
Fragmentation
568

Model: 330

4.5 Conclusions

In this chapter, the previous Wood group synthetic efforts towards the total synthesis of the phomoidrides have been summarized. Based on these previous results, a new approach was developed wherein a deleterious ester group was removed and a Wharton fragmentation enabled. Further refinement revealed that subtle electronic effects of a tandem phenolic oxidation/Diels-Alder sequence could be addressed by the incorporation of electron deficient sulfonates (e.g., a triflate or nosylate).

4.6 Experimental Section

4.6.1 Materials and Methods

General. Unless otherwise stated, reactions were performed under a nitrogen atmosphere using freshly dried solvents. Tetrahydrofuran (THF) was dried either by distillation from sodium/benzophenone or by passing through activated alumina columns. Methylene chloride (DCM), diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$, benzene (PhH), toluene (Tol) and acetonitrile (MeCN) were dried by passing through activated alumina columns. Dimethylformamide (DMF) was dried over activated molecular sieves or by passing through activated alumina columns. MeOH was distilled over magnesium oxide. All other commercially obtained reagents were used as received. All reactions were monitored by thin-layer chromatography using EMD/Merck silica gel 60 F254 pre-coated plates (0.25 mm). Flash chromatography was performed with indicated solvents using silica gel (particle size 0.032-0.063) purchased from Silicycle. Microwave experiments were performed using a Biotage Initiator ${ }^{\circledR}$ or CEM Discover microwave reactor. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at $500 \mathrm{MHz}, 400 \mathrm{MHz}$ or 300 MHz using a Bruker AM-500, Bruker Avance DPX-500, Bruker AM-400, Varian Inova 400, Varian Inova 300 or Varian Mercury Inova 300 instrument. ${ }^{13} \mathrm{C}$ NMR spectra were recorded at $125 \mathrm{MHz}, 100$ or 75 MHz using a Bruker AM-500, Bruker Avance DPX-500, Bruker AM-400, Varian Inova 400, Varian Inova 300 or Varian Mercury Inova 300 instrument. Chemical shifts are reported relative to internal chloroform $\left({ }^{1} \mathrm{H}, \delta=7.26,{ }^{13} \mathrm{C}, \delta=77.1\right)$ as indicated. Splitting patterns are reported as such, app $=$ apparent, $\mathrm{br}=\operatorname{broad}, \mathrm{s}=\operatorname{singlet}, \mathrm{d}=\operatorname{doublet}, \mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quin $=$ quintet, $\mathrm{m}=$ multiplet. Infrared spectra were recorded on a

Nicolet Avatar 320 FT-IR. High-resolution mass spectra were acquired at the Colorado State University CIF using an Agilent 6210 TOF LCMS.

4.6.2 Preparative Procedures

Preparation of Compound 466

To a solution of 442 ($403.0 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv.) in $\mathrm{EtOH}(10 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(20 \mathrm{mg}, 0.5 \mathrm{mmol}, 0.5$ equiv. $)$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(29 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.03$ equiv. $)$. The mixture was stirred overnight then filtered through Celite and concentrated under reducing pressure to give crude phenol ($368.2 \mathrm{mg}, 100 \%$).

To a solution of crude phenol in THF (10 mL) was added $\mathrm{NaH}(26.4 \mathrm{mg}, 1.1$ $\mathrm{mmol}, 1.1$ equiv.). The mixture was stirred for 5 min at room temperature then cooled to $-78{ }^{\circ} \mathrm{C}$. The solution was added to $n-\mathrm{BuLi}(0.75 \mathrm{~mL}, 1.2 \mathrm{mmol}, 1.2$ equiv., 1.6 M$)$ dropwise and stirred for 30 minutes. The mixture was added to DMF ($0.23 \mathrm{~mL}, 3 \mathrm{mmol}$, 3 equiv.), stirred for 3 h at $-78^{\circ} \mathrm{C}$ then warmed to room temperature. The solution was stirred overnight and quenched by $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. The layers were separated and the aqueous layer was washed with EtOAc $(2 \times 2 \mathrm{~mL})$. The combined organic layers were washed with brine (4 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography
(gradient elution, 10\%-20\% EtOAc/ Hexanes) to yield 466 (308.4 mg, 98.6\%) as brown solid.

Compound 466: $\mathrm{FTIR}(\mathrm{NaCl} /$ thin film) 3308, 2935, 2874, 1662, 1585, 1506, $1456,1290,1216,1138,1025,1290,1216,1138,1025,1024,968,736,696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 10.37(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.31(\mathrm{~m}, 6 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.52-6.40(\mathrm{~m}$, $1 \mathrm{H}), 5.66-5.38(\mathrm{~m}, 2 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.05(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.56-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{t}$, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 188.2,158.2,153.5,140.7,136.2,128.8$, 128.6, 128.4, 127.5, 126.4, 117.9, 110.4, 100.4, 71.1, 69.4, 32.5, 18.1; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{4}[\mathrm{M}-\mathrm{H}]$ 311.1283, found 311.1291.

Preparation of Compound 465

To a solution of $\mathbf{4 6 6}(43.5 \mathrm{mg}, 0.14 \mathrm{mmol}$, 1 equiv.) in DCE (4.5 mL) was added $\mathrm{Pb}(\mathrm{OAc})_{4}(225.7 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.4$ equiv.). The solution was heated to reflux and stirred overnight. The mixture was cooled to room temperature, filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 20\%-50\% EtOAc/ Hexanes) to yield 465 ($67.4 \mathrm{mg}, 41 \%$) as brown oil.

Compound 465: $\mathrm{FTIR}(\mathrm{NaCl} /$ thin film) 3402, 2959, 2927, 1741, 1662, 1616, $1456,1374,1221,1178 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.00(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H})$,
7.44-7.29 (m, 5H), 5.28-5.06 (m, 2H), 4.11-3.98(m, 1H), 3.75-3.56 (m, 2H), 2.15$1.90(\mathrm{~m}, 6 \mathrm{H}), 1.83-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{dd}, J=4.2,6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 199.8,184.4,170.1,169.1,135.3,129.0,127.9,127.6,115.7$, 94.0, 72.9, 62.0, 57.2, 38.7, 37.7, 36.9, 28.6, 20.9, 20.9; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}] 371.1495$, found 371.1484 .

Preparation of Compound 470

To a solution of 3,4-dihydroxy benzaldehyde (437) ($6.9 \mathrm{~g}, 50 \mathrm{mmol}$, 5 equiv.) in acetone (120 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(6.9 \mathrm{~g}, 50 \mathrm{mmol}$, 5 equiv.) and iodide $436(1.96 \mathrm{~g}$, $10 \mathrm{mmol}, 1$ equiv.). The solution was heated to reflux and stirred overnight. The mixture was cooled to room temperature, filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 10\%-20\% EtOAc/ Hexanes) to yield 470 ($867 \mathrm{mg}, 52 \%$) as yellow oil.

Compound 470: FTIR(NaCl/ thin film) 3409, 2937, 1686, 1609, 1586, 1569, 1461, 1276, 1203, 1126, 1015, $969 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.82(\mathrm{~s}, 1 \mathrm{H})$, $7.43(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=1.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H})$, 5.72-5.34 (m, 2H), $4.12(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.57-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{dd}, J=1.1,6.3 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 191.2,151.3,146.4,130.7,128.8,125.9,124.6$,
114.2, 111.3, 68.9, 32.4, 18.1; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]$ 205.0865, found 205.0867.

Preparation of Compound 482

To a solution of $\mathbf{4 7 0}$ ($180 \mathrm{mg}, 0.87 \mathrm{mmol}, 1$ equiv.) in DCE $(8.7 \mathrm{~mL})$ was added $\mathrm{Pb}(\mathrm{OAc})_{4}$ ($394 \mathrm{mg}, 0.89 \mathrm{mmol}, 1.02$ equiv.). The solution was heated to reflux and stirred overnight. The mixture was cooled to room temperature, filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 20\%-50\% EtOAc/ Hexanes) to yield $\mathbf{4 8 0}$ ($119 \mathrm{mg}, 54 \%$) as yellow oil.

To the residue in DCM (8 mL) was added silica (720 mg) and stirred for two days. The mixture was filtered through Celite and concentrated under reducing pressure to yield crude 482 ($110 \mathrm{mg}, 100 \%$) as yellow oil.

Compound 480: $\mathrm{FTIR}(\mathrm{NaCl} /$ thin film) 2961, 2925, 1748, 1684, 1623, 1370, 1211, 1086, $1002 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.60(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=1.5,6.8$ Hz, 1H), 4.05 (ddd, $J=1.6,5.9,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.93$ (dd, $J=3.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (s, 1H), $3.70(\mathrm{dd}, J=3.4,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.68-$ $1.61(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.7$, 188.6,
$168.8,147.9,141.5,92.9,62.7,50.7,43.1,37.3,34.8,28.2,21.7,20.1 ;$ HRMS (TOF LCMS) calc' d for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]$ 265.1076, found 265.1071.

Compound 482: $\mathrm{FTIR}(\mathrm{NaCl} /$ thin film) 3419, 2961, 2927, 2871, 1742, 1680, 1622, 1374, 1092, 1064, $1008 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.62(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{dd}$, $J=1.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95$ (ddt, $J=1.2,5.8,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75$ (t, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ (td, $J=3.0,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=2.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.05-$ $1.90(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.62(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 208.5,188.6,151.1,139.7,89.9,61.7,50.5,45.0,37.0,33.8,28.5$, 19.9; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{4}[\mathrm{M}-\mathrm{H}] 221.0814$, found 221.0818.

Preparation of Compound 481

To a solution of $\mathbf{4 7 0}$ ($4.12 \mathrm{mg}, 0.02 \mathrm{mmol}$, 1 equiv.) in xylene (1.0 mL) was added $\mathrm{Pb}(\mathrm{OAc})_{4}(8.9 \mathrm{mg}, 0.02 \mathrm{mmol}, 1.02$ equiv.). The solution was heated to reflux and stirred overnight. The mixture was cooled to room temperature, filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 10\%-20\%EtOAc/ Hexanes) to yield 481 ($2.5 \mathrm{mg}, 47 \%$) as yellow solid.

Compound 481: $\operatorname{FTIR}(\mathrm{NaCl} /$ thin film) 2922, 2854, 1776, 1656, 1504, 1445, $1299,1257,1202,1102,969 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.27(\mathrm{~d}, J=2.4 \mathrm{~Hz}$,
$1 \mathrm{H}), 9.74(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=2.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=2.3,8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 5.66-5.34 (m, 2H), 4.06 (td, $J=2.2,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 3 \mathrm{H}$), 1.68 (d, J=6.2 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) δ 194.9, 168.4, 157.9, 155.1, 132.6, 128.6, 127.3, 125.9, 116.3, 104.7, 69.0, 32.4, 20.4, 18.2; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{5}[\mathrm{M}-\mathrm{H}]$ 263.0920, found 263.0923.

Preparation of Compound 483

To a solution of $\mathbf{4 8 2}$ ($74 \mathrm{mg}, 0.33 \mathrm{mmol}, 1$ equiv.) in THF (3.3 mL) was added $\mathrm{TMSCl}\left(84 \mu \mathrm{~L}, 0.66 \mathrm{mmol}, 2\right.$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}(0.19 \mathrm{~mL}, 0.33 \mathrm{mmol}, 2$ equiv. $)$ at room temperature. The solution was stirred for 3 days. The mixture was filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 10\%-20\%EtOAc/ Hexanes) to yield 483 ($20 \mathrm{mg}, 21 \%$) as yellow oil.

Compound 483: $\operatorname{FTIR}(\mathrm{NaCl} /$ thin film) 2960, 2927, 2872, 1750, 1684, 1507, 1249, 1151, $995,847 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.62(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=1.7$ $\mathrm{Hz}, 6.8,1 \mathrm{H}), 3.87(\mathrm{dd}, J=5.7,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=2.8,12.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.85(\mathrm{dd}, J=3.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.70(\mathrm{~m}, 1 \mathrm{H})$, 1.59-1.52 (m, 1H), $0.86(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$206.6,189.0,151.8,139.6,91.7,61.5,51.2,48.4,37.1,34.4,28.6,20.0,1.7$; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]$ 295.1366, found 295.1396.

Preparation of Compound 484

To a solution of $\mathbf{4 8 3}(14 \mathrm{mg}, 0.048 \mathrm{mmol}, 1$ equiv.) in THF (0.5 mL) was added $\operatorname{MeLi}(0.1 \mathrm{~mL}, 0.17 \mathrm{mmol}, 3.5$ equiv., 1.6 M$)$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 1 hour. The reaction was quenched by $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. The layers were separated and the aqueous layer was washed with EtOAc $(2 \times 2 \mathrm{~mL})$. The combined organic layers were washed with brine (4 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 20\%- 33\% EtOAc/ Hexanes) to yield 484 (15 mg , 100%) as yellow oil.

Compound 484: $\mathrm{FTIR}(\mathrm{NaCl} /$ thin film) 3452, 2925, 2854, 1738, 1453, 1374, 1248, 1192, 1154, 1092, 1070, 990, $844 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.14$ (dd, $J=2.4 \mathrm{~Hz}, 6.8,1 \mathrm{H}), 4.36-4.28(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=4.6,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{td}, J=2.9$, $12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=3.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.79$ (m, 1H), 1.69-1.68(m, 1H), 1.56-1.44 (m, 2H), $1.24(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}), 0.1(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) δ 209.1, 141.7, 126.8, 92.4,
69.0, 61.3, 55.4, 45.6, 37.7, 34.2, 29.5, 21.9, 20.8, 1.8; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]$ 33.1498, found 33.1492 .

Preparation of Compound 485

To a solution of $\mathbf{4 8 2}$ ($98.9 \mathrm{mg}, 0.45 \mathrm{mmol}$, 1 equiv.) in THF (4.5 mL) was added $\mathrm{NaH}(11.2 \mathrm{mg}, 0.47 \mathrm{mmol}, 1.1$ equiv.) at room temperature. To this solution was added $\operatorname{MeLi}(0.83 \mathrm{~mL}, 1.35 \mathrm{mmol}, 3$ equiv., 1.6 M$)$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 1 hour. The reaction was quenched by $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The layers were separated and the aqueous layer was washed with EtOAc $(2 \times 4 \mathrm{~mL})$. The combined organic layers were washed with brine (8 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 20\%-50\% EtOAc/ Hexanes) to yield 485 ($51.3 \mathrm{mg}, 48 \%$) as yellow oil.

Compound 485: FTIR(NaCl/ thin film) 3402, 2967, 2928, 2870, 1733, 1456, 1374, 1170, 1088, 1023, $973 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.25(\mathrm{dt}, J=1.2 \mathrm{~Hz}, 6.8$, $1 \mathrm{H}), 4.32$ (ddd, $J=1.1,6.4,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ (td, $J=3.3,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.11$ (s, 1H), 2.70 (dd, $J=3.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.67-$ $1.59(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 210.3,142.6,126.2,90.6,69.0,61.6,55.2,42.5,37.4,33.4,29.4,21.6,20.5 ;$ HRMS (TOF LCMS) calc'd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{4}[\mathrm{M}-\mathrm{H}]$ 237.1127, found 237.1127.

Preparation of Compound 490

To a solution of $\mathbf{4 7 0}$ ($33 \mathrm{mg}, 0.16 \mathrm{mmol}, 1$ equiv.) in DCE (1.6 mL) was added $\mathrm{Pb}\left(\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{CH}_{3}\right)_{4}(492)(112 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.4$ equiv.). The solution was heated to reflux and stirred overnight. The mixture was cooled to room temperature, filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 20\%-50\% EtOAc/ Hexanes) to yield 490 ($8.5 \mathrm{mg}, 27 \%$) as yellow oil.

Compound 490: FTIR(NaCl/ thin film) 2927, 1748, 1683, 1456, 1362, 1166, 1131, $1080 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.64(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=2.5 \mathrm{~Hz}, 6.8$, $1 \mathrm{H}), 4.10(\mathrm{ddd}, J=2.0,5.1,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=3.3,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 1 \mathrm{H}), 3.76$ (td, $J=3.6,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{q}, J=7.7,2 \mathrm{H}), 2.19-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.82(\mathrm{~m}, 1 \mathrm{H})$, 1.73-1.63(m, 1H), $1.07(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 201.7,188.5,169.0,147.8,141.6,92.9,62.7,50.7,43.2,37.4,34.8,28.3,28.2$, 20.1, 8.9; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}] 279.1233$, found 279.1222.

Preparation of Compound 492

To a solution of $\mathbf{4 8 2}$ ($45 \mathrm{mg}, 0.49 \mathrm{mmol}, 1$ equiv.) in Tol (5 mL) was added phosphorus ketene 497 ($164 \mathrm{mg}, 0.54 \mathrm{mmol}, 1.1$ equiv.) at $-78^{\circ} \mathrm{C}$. The solution was warmed to room temperature and stirred overnight. The mixture was filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 20\%-50\% EtOAc/ Hexanes) to yield $492(16 \mathrm{mg}, 36 \%)$ as yellow oil.

Compound 492: $\mathrm{FTIR}(\mathrm{NaCl} /$ thin film) $2958,2926,1783,1680,1649,1453$, $1358,1166,1150,1117,974,876 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.45(\mathrm{~s}, 1 \mathrm{H}), 7.12$ (dd, $J=1.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 4.06-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{dd}, J=2.4$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.52(\mathrm{~m}$, $1 \mathrm{H}), 0.80(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 187.5,172.9,172.7,149.7$, $147.9,109.8,104.8,62.0,40.1,40.0,39.1,35.4,27.9,20.4 ;$ HRMS (TOF LCMS) calc'd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]$ 247.0970, found 247.0961.

Preparation of Compound 502

To a solution of $\mathbf{4 8 0}$ (mg , mmol, equiv.) in THF (mL) was added Pd / C (mg , $\mathrm{mmol}, \mathrm{mL}), \mathrm{H}_{2}(1 \mathrm{~atm})$ and the mixture was stirred overnight at room temperature. The mixture was filtered through Celite and concentrated under reducing pressure. The
residue was loaded onto silica and purified by column chromatography (gradient elution, 20\%-50\% EtOAc/ Hexanes) to yield $502(160 \mathrm{mg}, 89 \%)$ as orange solid.

Compound 502: $\mathrm{FTIR}(\mathrm{NaCl} /$ thin film) 3406, 2957, 2927, 2876, 1738, 1376, 1158, 1120, 1085, $1057 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{dd}$, $J=5.9,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{td}, J=3.1,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 1 \mathrm{H}), 2.65(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.28-2.19 (m, 1H), 2.12-2.07 (m, 1H), 2.01 (ddd, $J=1.9,8.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.89$ $(\mathrm{m}, 2 \mathrm{H}), 1.81-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 213.6,201.5,94.0,62.1,49.9,44.6,38.5,38.3,31.9,31.2,21.9,20.8 ;$ HRMS (TOF LCMS) calc'd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{4}[\mathrm{M}-\mathrm{H}]$ 223.0970, found 223.0974.

Preparation of Compound 516

To a solution of $\mathbf{4 7 0}(1.15 \mathrm{~g}, 5.55 \mathrm{mmol}, 1$ equiv.) in acetone (11 mL) was added allyl bromide ($0.60 \mathrm{~mL}, 7.21 \mathrm{mmol}, 1.3$ equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.54 \mathrm{~g}, 1.11 \mathrm{mmol}, 2$ equiv.) at reflux. The solution was stirred overnight and cooled to room temperature, filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 10\%-20\% EtOAc/ Hexanes) to yield 516 ($1.41 \mathrm{~g}, 100 \%$) as brown solid.

Compound 516: FTIR(NaCl/ thin film) 2936, 2728, 1688, 1596, 1584, 1436, $1270,1168,1133,1014,969,929,808 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.83(\mathrm{~s}, 1 \mathrm{H})$, 7.45 (d, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ (dd, $J=1.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.00$ (ddt,
$J=5.2,10.4,20.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.66-5.48(\mathrm{~m}, 2 \mathrm{H}), 5.45(\mathrm{dq}, J=1.6,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{dq}$, $J=1.6,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{dt}, J=1.4,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-2.50(\mathrm{~m}$, $2 \mathrm{H}), 1.68$ (dd, $J=1.2,7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 191.0,154.6,148.9$, $132.9,130.0,128.5,126.9,126.2,117.9,112.0,111.9,69.9,68.9,32.4,18.2 ;$ HRMS (TOF LCMS) calc'd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]$ 247.1334, found 247.1327.

Preparation of Compound 517, 518

Method 1: to a solution of $\mathbf{5 1 6}$ ($131 \mathrm{mg}, 0.53 \mathrm{mmol}, 1$ equiv.) in $\mathrm{DCM}(8 \mathrm{~mL})$ was added $\mathrm{PhSeSePh}(6.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.04$ equiv. $), \mathrm{H}_{2} \mathrm{O}_{2}(0.70 \mathrm{ml}, 0.86 \mathrm{mmol}, 1.25$ equiv., 30%) and the mixture was stirred at room temperature overnight. To the solution was added 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$. The layers were separated and the aqueous layer was washed with DCM $(2 \times 8 \mathrm{~mL})$. The combined organic layers were washed with brine (16 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 20\%- 50\% EtOAc/ Hexanes) to yield 517 ($20 \mathrm{mg}, 19 \%$) as orange solid and 518 (47.4 $\mathrm{mg}, 50 \%$) as pale yellow oil.

Method 2: to a solution of $\mathbf{5 2 7}$ ($4.3 \mathrm{~g}, 12.13 \mathrm{mmol}, 1$ equiv.) in MeOH (350 mL) was added HCl (35 mL , conc.) and stirred at room temperature for 3 h . The solution was neutralized by $\mathrm{NaOH}(90 \mathrm{~mL}, 2 \mathrm{~N})$. MeOH was removed under reducing pressure. The aqueous layer was washed with $\operatorname{EtOAc}(2 \times 200 \mathrm{~mL})$. The combined organic layers were washed with brine $(400 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 20\%- $50 \% \mathrm{EtOAc} /$ Hexanes) to yield 518 (3.0 g , 100%) as pale yellow oil.

Compound 517: FTIR(NaCl/ thin film) 3380, 2965, 2928, 1603, 1511, 1455, $1288,1603,1511,1455,1288,1219,1172,1124,1022,931,834 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.70(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.56-6.51(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.31$ (dq, $J=2.5,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{ddt}, J=5.2,10.4,20.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.38-5.30(\mathrm{~m}, 1 \mathrm{H}), 5.24-$ $5.18(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.08-3.99(\mathrm{~m}, 2 \mathrm{H}), 2.97-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.02$ ($\mathrm{m}, 1 \mathrm{H}), 1.93-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 151.3, 149.7, 142.1, 133.2, 117.7, 116.4, 106.8, 102.7, 69.7, 67.2, 57.7, 55.4, 32.2, 17.6; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{4}[\mathrm{M}-\mathrm{H}]$ 249.1127, found 247.1130.

Compound 518: FTIR(NaCl/ thin film) 3401, 2918, 1604, 1510, 1451, 1288, $1219,1122,1015,968 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.70(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.45$ (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J=2.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{ddt}, J=5.2,10.5,20.1 \mathrm{~Hz}, 1 \mathrm{H})$, 5.62-5.45 (m, 2H), $5.40(\mathrm{dq}, J=1.6,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{dq}, J=1.2,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~s}$, $1 \mathrm{H}), 4.52(\mathrm{dd}, J=1.4,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.50-2.42(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 150.6,150.0,143.0,133.4,127.7,127.0$,
117.7, 116.5, 106.9, 103.1, 70.5, 70.6, 32.9, 18.2; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}] 234.1334$, found 235.1331.

Preparation of Compound 519

To a solution of $\mathbf{5 1 8}$ ($447.1 \mathrm{mg}, 1.90 \mathrm{mmol}$, 1 equiv.) in $\mathrm{DCM}(4 \mathrm{~mL})$ was added $\mathrm{Tf}_{2} \mathrm{O}\left(0.35 \mathrm{~mL}, 2.10,1.1\right.$ equiv.) and pyridine ($0.31 \mathrm{~mL}, 3.80 \mathrm{mmol}, 2$ equiv.) at $0{ }^{\circ} \mathrm{C}$. The solution was warmed to room temperature and stirred overnight. The solvent was removed under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, $9 \%-15 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) to yield $\mathbf{5 1 9}$ ($592.3 \mathrm{mg}, 85 \%$) as pale yellow oil.

Compound 519: FTIR(NaCl/ thin film) 2923, 1608, 1508, 1422, 1217, 1142, $1018,956,860 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.88-6.71(\mathrm{~m}, 3 \mathrm{H}), 6.02(\mathrm{ddt}, J=5.1$, $10.4,20.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.62-5.44(\mathrm{~m}, 2 \mathrm{H}), 5.40(\mathrm{dq}, J=1.5,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dq}, J=1.0$, $10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dt}, J=1.3,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.53-2.43(\mathrm{~m}, 2 \mathrm{H})$, 1.66 (dd, $J=1.2,6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.3,149.0,143.0,132.6$, 128.3, 126.5, 118.4, 113.6, 113.5, 108.2, 70.4, 69.4, 32.6, 18.2; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3}$ [M-C3H5] 325.0358, found 325.0361.

Preparation of Compound 520, 522

To a solution of $\mathbf{5 1 9}$ ($592 \mathrm{mg}, 1.62 \mathrm{mmol}, 1$ equiv.) in $\mathrm{EtOH}(1.6 \mathrm{~mL})$ was added NaBH_{4} ($30.6 \mathrm{mg}, 0.81 \mathrm{mmol}, 0.5$ equiv.) and $\mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right)_{4}(56 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.03$ equiv.). The mixture was stirred overnight then filtered through Celite and concentrated under reducing pressure to give crude phenol 520 ($527 \mathrm{mg}, 100 \%$).

To a solution of crude phenol in $\mathrm{DCE}(16 \mathrm{~mL})$ was added $\mathrm{Pb}(\mathrm{OAc})_{4}(1.0 \mathrm{~g}, 2.27$ mmol, 1.4 equiv.) at reflux. After stirring for 5 minuets, additional DCE (80 ml) was added. The mixture was stirred overnight. $\mathrm{NaBH}_{4}(20 \mathrm{mg}, 0.5 \mathrm{mmol}, 0.5$ equiv.) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(29 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.03$ equiv.). The reaction was cooled to room temperature then filtered through Celite and concentrated under reducing pressure. To this residue in DCM (20 mL) was added silica (2.0 g) and stirred at room temperature overnight. The mixture was filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, $20 \%-50 \%$ EtOAc/ Hexanes) to yield 522 ($383.4 \mathrm{mg}, 81 \%$) as brown oil.

Compound 520: FTIR(NaCl/ thin film) 3521, 2937, 1608, 1505, 1422, 1275, $1219,1142,1106,1019,957,866 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.88-6.64(\mathrm{~m}$, 3H), 5.88-5.72 (m, 1H), 5.68-5.34 (m, 2H), $4.03(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.53-2.35(\mathrm{~m}, 2 \mathrm{H})$, 1.67 (dd, $J=1.2,6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 146.9,145.8,143.4,128.8$,
126.1, 112.7, 112.0, 108.4, 69.3, 32.5, 18.1; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3}$ [M-H] 325.0358, found 325.0364.

Compound 522: $\operatorname{FTIR}(\mathrm{NaCl} /$ thin film) 3392, 2965, 2932, 2876, 1751, 1653, $1425,1217,1140,1096,901,840 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.23$ (dd, $J=2.6$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=6.7,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{td}, J=3.0,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.58(\mathrm{~m}$, $1 \mathrm{H}), 3.17$ (q, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=3.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.84$ (m, 2H), 1.71-1.66(m, 1H), $1.15(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 205.4, 145.1, 119.7, 90.1, 61.6, 57.8, 43.0, 37.2, 35.2, 28.7, 20.2; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}-\mathrm{H}] 341.0307$, found 341.0310 .

Preparation of Compound 525

To a solution of 2,4-dihydroxy benzaldehyde (440) (37 g, $267.9 \mathrm{mmol}, 1$ equiv.) in acetone (1.4 L) was added $\mathrm{BOMCl}\left(25 \mathrm{~g}, 160.7 \mathrm{mmol}\right.$, 0.6 equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(37 \mathrm{~g}$, 267.9, 1 equiv.) at reflux. The mixture was stirred overnight. The reaction was cooled to room temperature then filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 5\%-10\% EtOAc/ Hexanes) to yield 525 (15.1 g, 40\%) as orange solid.

Compound 525: FTIR(NaCl/ thin film) 2923, 2854, 1651, 1629, 1578, 1501, 1453, 1216, 1157, 1087, 996, $957 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.37(\mathrm{~s}, 1 \mathrm{H})$.
$9.75(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.69(\mathrm{dd}, J=2.2,8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.65(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 2 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 194.8$, 164.6, 164.3, 136.9, 135.9, 128.7, 128.3, 128.2, 116.2, 109.3, 103.7, 92.1, 70.7; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{4}[\mathrm{M}-\mathrm{H}] 257.0814$, found 257.0819.

Preparation of Compound 526, 527

To a solution of $\mathbf{5 2 5}(2.9 \mathrm{~g}, 11.2 \mathrm{mmol}, 1$ equiv.) in acetone (23 mL) was added allyl bromide (1.23 mL , $14.6 \mathrm{mmol}, 1.3$ equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($3.1 \mathrm{~g}, 22.4 \mathrm{mmol}$, 2 equiv.) at reflux. The mixture was stirred overnight. The reaction was cooled to room temperature then filtered through Celite and concentrated under reducing pressure. To this residue in DCM (82 mL) was added m-CPBA ($4 \mathrm{~g}, 16.3 \mathrm{mmol}, 1.4$ equiv.) at reflux and stirred for 3 hours. The reaction was cooled to room temperature. DCM was removed under reducing pressure. To this residue in $\mathrm{MeOH}(20 \mathrm{~mL})$ was added saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (200 mL) and stirred at room temperature overnight. The aqueous layer was washed with EtOAc $(2 \times 200 \mathrm{~mL})$. The combined organic layers were washed with brine (400 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reducing pressure to yield crude 426 (2.7 g, 100\%).

To a solution of crude 526 in acetone (41 mL) was added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(9.4 \mathrm{~g}, 29.0$ mmol, 2.5 equiv.), iodide $436(5.55 \mathrm{~g}, 29.0 \mathrm{mmol}, 2.5$ equiv.) at reflux and stirred overnight. The reaction was cooled to room temperature then filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 20\%-33\% EtOAc/ Hexanes) to yield $\mathbf{4 5 2 7}$ ($2.5 \mathrm{~g}, 61 \%$) as yellow oil.

Compound 526: $\operatorname{FTIR}(\mathrm{NaCl} /$ thin film) $3532,3065,3031,2895,1613,1509$, $1455,1380,1264,1227,1170,1085,1024,933,837 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.41-7.28 (m, 5H), $6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J=2.6,8.6$ Hz, 1H), 6.08 (ddt, $J=5.2,10.5,20.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.34$ (s, 2H), 5.39 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.32$ (dd, $J=1.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 4.57(\mathrm{dd}, J=1.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 151.2,146.0,141.2,137.6,132.9,128.7,128.2,128.1,118.7$, 114.7, 109.1, 102.9, 93.6, 70.0, 70.0; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{4}[\mathrm{M}-\mathrm{H}]$ 285.1127, found 285.1131.

Compound 527: FTIR(NaCl/ thin film) 2918, 2866, 1595, 1508, 1436, 1421, 1261, 1221, 1174, 1086, $928 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.29(\mathrm{~m}, 5 \mathrm{H})$, $6.82(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=2.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.05$ (ddt, $J=5.2,10.5,20.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.56-5.48(\mathrm{~m}, 2 \mathrm{H}), 5.46-5.37(\mathrm{~m}, 1 \mathrm{H}), 5.31-5.24(\mathrm{~m}, 1 \mathrm{H}), 5.22$ (s, 2H), 4.72 (s, 2H), 4.60-4.53 (m, 2H), $3.92(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.53-2.43(\mathrm{~m}, 2 \mathrm{H}), 1.68$ (d, $J=5.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.9,152.2,149.7,144.3,137.5$, $133.5,128.6,128.2,128.0,127.7,127.0,117.6,115.7,108.0,104.8,93.3,70.1,70.0$, 32.9, 18.2; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}] 355.1909$, found 355.1896.

Preparation of Compound 528

To a solution of $\mathbf{5 2 2}$ ($348 \mathrm{mg}, 1.02 \mathrm{mmol}, 1$ equiv.) in $\mathrm{DCM}(10 \mathrm{~mL})$ was added $\operatorname{TMSOTf}(0.2 \mathrm{~mL}, 1.12 \mathrm{mmol}, 1.1$ equiv. $)$ and $\mathrm{Et}_{3} \mathrm{~N}(0.17 \mathrm{~mL}, 1.12,1.1$ equiv. $)$ at $-78{ }^{\circ} \mathrm{C}$ and stirred for 5 min . The reaction was quenched by aqueous $\mathrm{NaHCO}_{3}(0.5 \mathrm{~mL})$. The aqueous layer was washed with $\mathrm{DCM}(2 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine (40 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 20\%- 33\% EtOAc/ Hexanes) to yield 528 (349.4 mg, 77%) as green oil and recover starting material 522 (73.4 mg).

Compound 528: FTIR(NaCl/ thin film) 2962, 2931, 2875, 1575, 1653, 1427, $1218,1141,1092,934,847 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.15(\mathrm{dd}, J=2.8,7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.86(\mathrm{dd}, J=5.7,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{td}, J=2.9,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.66(\mathrm{dd}, J=3.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.51(\mathrm{~m}, 1 \mathrm{H})$, $1.11(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.8,145.2,119.3$, 91.8, 61.3, 58.3, 45.9, 37.2, 35.6, 28.7, 20.2, 1.57; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]$ 437.0678, found 437.0677.

Preparation of Compound 529

To a solution of diisopropylamine ($0.62 \mathrm{~mL}, 4.42 \mathrm{mmol}, 5.25$ equiv.) in THF (3.4 mL) at $-20^{\circ} \mathrm{C}$ was added n - $\mathrm{BuLi}(2.2 \mathrm{~mL}, 3.54 \mathrm{mmol}, 4.2$ equiv., 1.6 M hexanes solution) dropwise over 5 minutes. The resultant mixture was stirred at $-20^{\circ} \mathrm{C}$ for 5 minutes, and then cooled to $-78^{\circ} \mathrm{C}$ for 30 minutes. To this mixture was added methyl-3(dimethylamino)propionate ($0.73 \mathrm{~mL}, 3.0 \mathrm{mmol}, 3.5$ equiv.) dropwise over five minutes. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for thirty minutes, $0^{\circ} \mathrm{C}$ for 15 min , and room temperature for 15 min , and then cooled to $-78^{\circ} \mathrm{C}$.

A solution of $\mathbf{5 2 8}(349 \mathrm{mg}, 0.84 \mathrm{mmol})$ in THF $(8.4 \mathrm{~mL})$ was addedenolate dropwise over 1 minute at $-78^{\circ} \mathrm{C}$. The solution was slowly warmed to room temperature and stirred for 1 hour. The reaction was quenched with 1 M AcOH in THF (5 mL) and allowed to warm to room temperature. At which point the reaction mixture was treated with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and EtOAc $(5 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc (2 x 10 mL), and the combined organic layers were washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reducing pressure.

To the solution of this residue solution in $\mathrm{DCM}(8.5 \mathrm{~mL})$ was added m-CPBA ($312 \mathrm{mg}, 1.27 \mathrm{mmol}, 1.5$ equiv.) at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 20 minutes. To the solution was added basic $\mathrm{Al}_{2} \mathrm{O}_{3}(400 \mathrm{mg})$ and stirred overnight at room temperature. The mixture was filtered through Celite and concentrated under reducing pressure. The
residue was loaded onto silica and purified by column chromatography (gradient elution, 5\%-10\% EtOAc/ Hexanes) to yield 529 (132.6, mg, 31\%) as colorless oil.

Compound 529: $\mathrm{FTIR}(\mathrm{NaCl} /$ thin film) $3440,2959,2926,1710,1663,1424$, 1323, $1214,1143,1055 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.88(\mathrm{dd}, J=2.7,7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 5.50-5.47(\mathrm{~m}, 1 \mathrm{H}), 4.66(\mathrm{td}, J=4.7,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.92$ (ddd, $J=0.7,7.1,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 1 \mathrm{H}), 2.76(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.51(\mathrm{~m}, 1 \mathrm{H})$, 2.44 (dd, $J=3.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 167.6,148.5,143.4,119.4,114.7,99.1,82.3,63.2,52.1$, 50.6, 47.1, 39.5, 29.1, 28.7, 20.9, 1.8; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{O}_{8} \mathrm{SSi}$ [M-H] 499.1070, found 499.1081.

Preparation of Compound 530

To a solution of $\mathbf{5 2 9}(132.6 \mathrm{mg}, 0.27 \mathrm{mmol}, 1$ equiv.) in THF (2.6 mL) was added TBAF ($1.32 \mathrm{~mL}, 1.35 \mathrm{mmol}, 5$ equiv.) and $\mathrm{AcOH}(76 \mu \mathrm{~L}, 1.35 \mathrm{mmol}, 5$ equiv.) at room temperature. The mixture was stirred overnight. The reaction was quenched by $\mathrm{H}_{2} \mathrm{O}$ (2 $\mathrm{mL})$. The aqueous layer was extracted with EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reducing pressure. The residue was loaded onto silica and purified by column
chromatography (gradient elution, $20 \%-50 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) to yield $530(85.1 \mathrm{mg}$, $31 \%)$ as yellow solid.

Compound 530: FTIR(NaCl/ thin film) 3421, 2963, 2928, 1773, 1653, 1423, 1283, 1214, 1141, 1078, 1005, $907 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.46(\mathrm{~s}, 1 \mathrm{H})$, $6.01(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{dd}, J=2.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{td}, J=4.2,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.05(\mathrm{~m}$, $1 \mathrm{H}), 3.28-3.22(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=2.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.92(\mathrm{~m}$, 1H), 1.83-1.71 (m, 2H), $1.07(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.4$, 166.2, 149.7, 140.6, 127.3, 113.3, 104.1, 64.2, 52.6, 42.6, 38.8, 31.4, 28.3, 20.7; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]$ 397.0569, found 397.0559.

Preparation of Compound 538

To a solution of $\mathbf{5 2 8}(53.6 \mathrm{mg}, 0.13,1$ equiv.) in $\mathrm{MeCN}(1.30 \mathrm{~mL})$ was added CuI (22mg, $0.13,1$ equiv.), (-)-proline ($30 \mathrm{mg}, 0.26,2$ equiv.), $\mathrm{NH}_{4} \mathrm{OAc}(22.5 \mathrm{mg}, 0.26,2$ equiv.), $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($55 \mathrm{mg}, 0.26,2$ equiv.) and morpholine ($0.12 \mathrm{~mL}, 0.17 \mathrm{mmol}, 1.1$ equiv.). The mixture was heated to reflux and stirred overnight. The reaction was cooled to room temperature, filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 20\%-50\% EtOAc/ Hexanes) to yield 538 ($20 \mathrm{mg}, 39 \%$) as yellow solid.

Compound 538: FTIR(NaCl/ thin film) 2927, 2874, 1737, 1656, 1420, 1211, 1142, 1079, 834, $612 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.25(\mathrm{dd}, J=2.7,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.06(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=7.2,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{td}, J=3.2,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.31$ (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{q}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.62$ (dd, $J=2.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.72(\mathrm{~m}, 5 \mathrm{H}), 1.69-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.01$ (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.0,114.6,110.4,102.1,72.7,63.1$, 57.7, 48.7, 44.5, 39.0, 35.0, 33.0, 28.3, 23.6, 21.0; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]$ 395.1093, found 395.1096.

Preparation of Compound 546

To a solution of $\mathbf{5 1 8}(156 \mathrm{mg}, 0.67 \mathrm{mmol}, 1$ equiv.) in $\mathrm{EtOH}(4.7 \mathrm{~mL})$ was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($15.6 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.03$ equiv.) and $\mathrm{NaBH}_{4}(8.8 \mathrm{mg}, 0.34 \mathrm{mmol}, 0.5$ equiv.) at room temperature. The mixture was stirred overnight, filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 20\%-33\% EtOAc/ Hexanes) to yield 546 (150 $\mathrm{mg}, 100 \%$) as brown oil.

Compound 546: $\mathrm{FTIR}(\mathrm{NaCl} /$ thin film) $3404,2936,1607,1510,1469,1386$, 1296, 1219, 1148, 1117, 1022, 965, 846, $791 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.72$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dd}, J=1.9,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.69-5.41$ (m, $2 \mathrm{H}), 4.80-4.30(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{q}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{~d}, J=6.2$
$\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 150.6, 147.1, 140.2, 128.5, 126.8, 113.9, 106.1, 102.9, 69.9, 32.8, 18.2; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}] 193.0865$, found 193.0864.

Preparation of Compound 540

To a solution of $\mathbf{5 1 8}(94 \mathrm{mg}, 0.40 \mathrm{mmol}, 1$ equiv.) in $\mathrm{DCM}(1 \mathrm{~mL})$ was added $\mathrm{AcCl}(31 \mu \mathrm{~L}, 0.44 \mathrm{mmol}, 1.1$ equiv.) and pyridine ($65 \mu \mathrm{~L}, 0.80 \mathrm{mmol}$) at room temperature. The mixture was stirred overnight, filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 10\%-20\% EtOAc/ Hexanes) to yield 540 (90 mg , 81.2%) as orange oil.

Compound 540: FTIR(NaCl/ thin film) 2919, 2869, 1763, 1602, 1508, 1423, $1369,1263,1203,1154,1017 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6 . .62(\mathrm{dd}, J=2.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{ddt}, J=5.1,10.5,20.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.61-5.43(\mathrm{~m}, 2 \mathrm{H}), 5.39(\mathrm{dq}, J=1.5,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dq}, J=1.3,10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.53$ (dt, $J=1.5,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.50-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{~s}$, $3 \mathrm{H}), 1.65(\mathrm{dd}, J=1.1,5.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8,149.0,146.8$, 144.4, 133.1, 12.8, 126.7, 117.6, 114.1, 113.5, 108.5, 70.1, 69.4, 32.7, 21.1, 18.1; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}] 277.1440$, found 277.1440.

Preparation of Compound 547

To a solution of $\mathbf{5 4 0}$ ($59 \mathrm{mg}, 0.21 \mathrm{mmol}, 1$ equiv.) in EtOH (2 mL) was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(7.5 \mathrm{mg}, 0.006 \mathrm{mmol}, 0.03\right.$ equiv.) and $\mathrm{NaBH}_{4}(4 \mathrm{mg}, 0.11 \mathrm{mmol}, 0.5$ equiv.) at room temperature. The mixture was stirred overnight, filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 20\%-33\% EtOAc/ Hexanes) to yield 547 (49.3 mg, 98\%) as brown solid.

Compound 547: FTIR(NaCl/ thin film) 3451, 2935, 1762, 1605, 1505, 1370, 1280, 1207, 1140, 1015, $968 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.81(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6 . .68(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, \mathrm{~d} J=2.6,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.76-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.67-5.42(\mathrm{~m}$, $2 \mathrm{H}), 4.02(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.50-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{dq}, J=1.2,6.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.9,146.6,144.9,143.9,128.5,126.5,112.6$, 112.3, 108.7, 69.3, 32.7, 21.2, 18.1; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{4}[\mathrm{M}-\mathrm{H}]$ 235.090, found 235.0974 .

Preparation of Compound 541

To a solution of 2-methyl-3-nitrobenzoic acid in DCM (1 mL) was added DCC ($247.6 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2$ equiv.) and DMAP ($12.2 \mathrm{mg}, 0.1 \mathrm{mmol}, 0.1$ equiv.) at room temperature. The mixture was stirred for 10 minutes. Then 518 ($230 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv.) was added and stirred overnight. The reaction was filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 10\%- 20\% EtOAc/ Hexanes) to yield 541 (128 $\mathrm{mg}, 33 \%$) as brown oil.

Compound 541: FTIR (NaCl/ thin film) 3083, 2920, 2869, 1742, 1603, 1530, $1506,1251,1215,1152,1102,1082,1022 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23(\mathrm{dd}$, $J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=1.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ (dd, $J=1.7$, $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=2.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.07$ (ddt, $J=5.2,10.2,20.9 \mathrm{~Hz}$, 1H), 5.66-5.47 (m, 2H), 5.43 (dq, $J=1.5,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dq}, J=1.4,10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.60(\mathrm{dt}, J=1.5,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}), 2.55-2.49(\mathrm{~m}, 2 \mathrm{H}), 1.69$ (dd, $J=1.1,5.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4,165.0,152.3,149.3$, $147.3,144.2,134.2,134.0,133.1,132.5,128.0,127.4,126.7,117.9,114.3,113.6,108.4$, 70.3, 69.6, 32.7, 18.2, 16.4; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]$ 398.1604, found 398.1595.

Preparation of Compound 548

To a solution of 541 ($128 \mathrm{mg}, 0.33 \mathrm{mmol}, 1$ equiv.) in $\mathrm{EtOH}(3 \mathrm{~mL})$ was added $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(11.4 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.03$ equiv. $)$ and $\mathrm{NaBH}_{4}(6.2 \mathrm{mg}, 0.16 \mathrm{mmol}, 0.5$ equiv.) at room temperature. The mixture was stirred overnight, filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 20\%-33\% EtOAc/ Hexanes) to yield 548 ($11.6 \mathrm{mg}, 97 \%$) as brown solid.

Compound 548: FTIR(NaCl/ thin film) 3465, 2924, 2855, 1742, 1605, 1536, 1504, 1354, 1276, 1217, 1141, 1022, $966 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{dd}$, $J=2.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{dd}, J=2.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{td}, J=3.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}$, $J=3.7,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.79(\mathrm{~m}, 1 \mathrm{H}), 6.72-6.67(\mathrm{~m}, 1 \mathrm{H}), 5.84-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.69-$ 5,42 (m 2H), 4.12-4.00(m, 2H), $2.71(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.57-2.44(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.67$ (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.1,152.4,146.9,144.7,144.3,134.2,134.0$, 132.7, 128.7, 127.4, 126.8, 126.5, 112.6, 112.4, 108.7, 69.4, 32.7, 18.2, 16.5; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{6}[\mathrm{M}-\mathrm{H}] 356.1134$, found 356.1141 .

Preparation of Compound 543

To a solution of $\mathbf{5 1 8}$ ($295 \mathrm{mg}, 1.26 \mathrm{mmol}, 1$ equiv.) in DCM (2 mL) was added $\mathrm{ClP}(\mathrm{O})(\mathrm{OEt})_{2}(0.36 \mathrm{~mL}, 2.52 \mathrm{mmol}, 2$ equiv.) and pyridine ($0.2 \mathrm{~mL}, 2.52 \mathrm{mmol}$, 2equiv.) at room temperature. The reaction was stirred overnight, filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by
column chromatography (gradient elution, 33\%-50\% EtOAc/ Hexanes) to yield $\mathbf{5 4 3}$ ($140.3 \mathrm{mg}, 77 \%$) as brown oil.

Compound 543: FTIR(NaCl/ thin film) 2984, 2933, 1601, 1508, 1263, 1221, 1164, 1029, $981 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.88-6.68(\mathrm{~m}, 3 \mathrm{H}), 6.05(\mathrm{ddt}$, $J=5.3,10.5,21.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.63-5.47(\mathrm{~m}, 2 \mathrm{H}), 5.42(\mathrm{dq}, J=1.5,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{dq}$, $J=1.3,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=1.3,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.26-4.14(\mathrm{~m}, 4 \mathrm{H}), 3.97(\mathrm{t}, J=6.9 \mathrm{~Hz}$, 2H), 2.53-2.45 (m, 2H), 1.67 (dd, $J=0.9,6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 149.3,146.3,144.8,133.2,127.9,126.8,117.8,114.6,112.0,107.3$, 70.1, 69.7, 64.7, 64.7, 32.8, 18.2, 16.3, 16.2; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{PO}_{6}$ $[\mathrm{M}+\mathrm{H}] 371.1624$, found 371.1615.

Preparation of Compound 550

To a solution of $\mathbf{5 4 3}$ ($80 \mathrm{mg}, 0.22 \mathrm{mmol}, 1$ equiv.) in $\mathrm{EtOH}(2 \mathrm{~mL})$ was added $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(7.5 \mathrm{mg}, 0.007 \mathrm{mmol}, 0.03$ equiv. $)$ and $\mathrm{NaBH}_{4}(4.1 \mathrm{mg}, 0.11 \mathrm{mmol}, 0.5$ equiv.) at room temperature. The mixture was stirred overnight, filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, $50 \%-67 \% \mathrm{EtOAc} /$ Hexanes) to yield $\mathbf{5 5 0}$ (70 $\mathrm{mg}, 78.4 \%$) as brown solid.

Compound 550: FTIR(NaCl/ thin film) 3399, 2985, 1602, 1507, 1257, 1238, 1031, $987 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.85-6.66(\mathrm{~m}, 3 \mathrm{H}), 5.86-5.71(\mathrm{~m}, 1 \mathrm{H})$, 5.71-5.39 (m, 2H), 4.29-4.14 (m, 4H), 4.01 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.53-2.39(\mathrm{~m}, 2 \mathrm{H}), 1.69$ (d, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.8,145.0$, 143.4, 128.6, 126.6, 112.7, 111.0, 107.4, 69.4, 64.7, 64.7, 32.7, 18.2, 16.3, 16.2; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{PO}_{6}[\mathrm{M}-\mathrm{H}] 329.1154$, found 329.1165.

Preparation of Compound 544

To a solution of 518 ($69 \mathrm{mg}, 0.29 \mathrm{mmol}, 1$ equiv.) in $\mathrm{DCM}(0.6 \mathrm{~mL})$ was added $\mathrm{MsCl}(0.45 \mathrm{~mL}, 0.58 \mathrm{mmol}, 2$ equiv.) and pyridine ($0.2 \mathrm{~mL}, 0.58 \mathrm{mmol}$, 2equiv.) at room temperature. The reaction was stirred overnight, filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 20\%-33\% EtOAc/ Hexanes) to yield 544 (48.6 mg , 55\%) as brown oil.

Compound 544: FTIR(NaCl/ thin film) 2938, 1601, 1508, 1422, 1366, 1262, 223, 1183, 1140, 1013, $968 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.93-6.77(\mathrm{~m}, 3 \mathrm{H}), 6.04$ (ddt, $J=5.0,10.6,22.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64-5.46(\mathrm{~m}, 2 \mathrm{H}), 5.42(\mathrm{dq}, J=1.8,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ (dq, $J=1.0,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H})$, 2.54-2.46(m, 2H), $1.67(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.3,148.3$,
$142.9,132.9,128.2,126.6,118.2,114.1,113.9,109.0,70.3,69.5,37.2,32.7,18.2$;
HRMS (TOF LCMS) calc'd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}] 313.1110$, found 313.1105.

Preparation of Compound 551

To a solution of $\mathbf{5 4 4}(37 \mathrm{mg}, 0.12 \mathrm{mmol}, 1$ equiv.) in $\mathrm{MeOH}(1.2 \mathrm{~mL})$ was added $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(4 \mathrm{mg}, 0.003 \mathrm{mmol}, 0.03\right.$ equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(49 \mathrm{mg}, 0.36 \mathrm{mmol}, 3$ equiv.) at room temperature. The mixture was stirred for 3 hours, filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, $33 \%-50 \% \mathrm{EtOAc} /$ Hexanes) to yield 551 (35 $\mathrm{mg}, 100 \%$) as brown solid.

Compound 551:FTIR(NaCl/ thin film) 3466, 2938, 1604, 1505, 1366, 1277, 1230, 1180, 1129, 1020, 959, $832 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.94-6.72(\mathrm{~m}$, 3H), 5.88-5.75 (m, 1H), 5.70-5.36 (m, 2H), $4.04(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}), 2.62-$ $2.36(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{dd}, J=1.3,6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.9,145.2$, $128.8,126.3,113.5,112.3,109.1,69.3,37.2,32.6,182.2$; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]$ 273.0797, found 273.0795.

Preparation of Compound 545

To a solution of 518 ($5.5 \mathrm{~g}, 23.5 \mathrm{mmol}, 1$ equiv.) in DCM (46 mL) was added $\mathrm{NsCl}(10.4 \mathrm{~g}, 47 \mathrm{mmol}, 2$ equiv.) and pyridine ($9.5 \mathrm{~mL}, 117.5 \mathrm{mmol}, 5$ equiv.) at room temperature. The reaction was stirred overnight, filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 20\%-50\% EtOAc/ Hexanes) to yield 545 (7.6 g, 79\%) as yellow oil.

Compound 545: FTIR(NaCl/ thin film) 3097, 2919, 1594, 1547, 1506, 1383, 1262, 1191, 1125, $852 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97-7.75(\mathrm{~m}, 3 \mathrm{H}), 7.68-$ $7.54(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.63(\mathrm{~m}, 3 \mathrm{H}), 5.94(\mathrm{ddt}, J=5.2,10.4,21.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.60-5.40(\mathrm{~m}$, $2 \mathrm{H}), 5.33$ (dq, $J=1.3,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dq}, J=1.3,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dt}, J=1.3,5.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.93(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.49-2.41(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{dd}, J=1.2,6.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 149.1,148.9,148.4,142.6,135.5,132.8,132.5,132.9,128.4,128.2$, 126.5, 124.9, 118.1, 114.5, 113.5, 108.9, 70.1, 69.3, 32.7, 10.2; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]$ 420.1117, found 420.1105.

Preparation of Compound 552

To a solution of $\mathbf{5 4 5}(1.16 \mathrm{~g}, 2.77 \mathrm{mmol}, 1$ equiv.) in $\mathrm{MeOH}(28 \mathrm{~mL})$ was added $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(161 \mathrm{mg}, 0.14 \mathrm{mmol}, 0.05\right.$ equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.15 \mathrm{~g}, 8.31 \mathrm{mmol}, 3$ equiv.) at room temperature. The mixture was stirred for 3 hours, filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 50\%-67\% EtOAc/ Hexanes) to yield 552 ($972.8 \mathrm{mg}, 92.2 \%$) as brown solid.

Compound 552: FTIR(NaCl/ thin film) 3501, 2939, 1604, 1546, 1503, 1443, $1276,1230,1192,1124,1109,960,832 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=$ $8.5,3 H), 7.84-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.62(\mathrm{~m}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H})$, $6.65(\mathrm{dd}, J=2.5,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.63-5.39(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.57-2.40(\mathrm{~m}$, $2 \mathrm{H}), 1.66$ (dd, $J=1.0,6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.9,146.7,145.4$, $143.0,135.7,132.4,132.2,128.7,128.4,126.3,125.0,113.6,112.1,109.2,69.2,32.6$, 18.2; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{7} \mathrm{~S}$ [M-H] 378.0648, found 378.0656.

Preparation of Compound 556

To a solution of $\mathbf{5 5 0}$ ($89.3 \mathrm{mg}, 0.22 \mathrm{mmol}, 1$ equiv.) in DCE (2.2 mL) was added $\mathrm{Pb}(\mathrm{OAc})_{4}(135 \mathrm{mg}, 0.31 \mathrm{mmol}, 1.4$ equiv.). The solution was heated to reflux and stirred overnight. The mixture was cooled to room temperature, filtered through Celite and
concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, $50 \%-67 \% \mathrm{EtOAc} /$ Hexanes) to yield 556 (20 $\mathrm{mg}, 24 \%)$ as yellow oil and 476 ($35.5 \mathrm{mg}, 44 \%$) as yellow oiled.

Compound 556: FTIR(NaCl/ thin film) 3418, 2963, 2928, 1745, 1651, 1372, $1268,1170,1087,1025,972 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.90$ (ddd, $J=1.6,2.5$, $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.09(\mathrm{~m}, 4 \mathrm{H}), 3.90(\mathrm{dd}, J=5.3,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ (dt, $J=3.2,12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.08(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=3.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.58$ $(\mathrm{m}, 1 \mathrm{H}), 1.41-1.29(\mathrm{~m}, 6 \mathrm{H}), 1.14(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $207.8,132.3,111.3,90.6,65.1,64.9,61.5,58.2,42.2,37.8,34.8,29.3,20.2,16.3,16.2$; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{PO}_{7}[\mathrm{M}-\mathrm{H}]$ 345.1103, found 345. 1113.

Preparation of Compound 557

To a solution of $\mathbf{5 5 1}$ ($158 \mathrm{mg}, 0.58 \mathrm{mmol}, 1$ equiv.) in DCE (5.8 mL) was added $\mathrm{Pb}(\mathrm{OAc})_{4}(362 \mathrm{mg}, 0.81 \mathrm{mmol}, 1.4$ equiv.). The solution was heated to reflux and stirred overnight. The mixture was cooled to room temperature, filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 50\%-67\% EtOAc/ Hexanes) to yield 557 (20 $\mathrm{mg}, 42.1 \%$) as brown oil.

Compound 557: FTIR(NaCl/ thin film) 2961, 2936, 1743, 1650, 1368, 1183, $1120,972,817 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.99(\mathrm{dd}, J=2.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02$ (dd, $J=2.1,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{td}, J=3.6,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=3.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.16$ (q, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 2.13-1.94(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.84(\mathrm{~m}, 1 \mathrm{H})$, 1.67-1.58(m, 1H), $1.13(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.4,168.8$, 146.7, 112.5, 93.5, 62.3, 57.9, 41.3, 38.2, 37.5, 35.9, 28.4, 21.6, 20.3; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]$ 331.0852, found 331.0848.

Preparation of Compound 558, 559

To a solution of 551 ($972.8 \mathrm{mg}, 2.56 \mathrm{mmol}, 1$ equiv.) in DCE (25 mL) was added $\mathrm{Pb}(\mathrm{OAc})_{4}(1.59,3.58 \mathrm{mmol}, 1.4$ equiv.). The solution was heated to reflux and stirred overnight. The mixture was cooled to room temperature, filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 50\%-67\% EtOAc/ Hexanes) to yield 558 ($814.5 \mathrm{mg}, 72.7 \%$) as brown oil and 559 ($45.2 \mathrm{mg}, 4.2 \%$) as yellow solid.

Compound 558: $\mathrm{FTIR}(\mathrm{NaCl} /$ thin film) $3418,2959,2926,1743,1545,1385$, $1251,1193,1110,1022,820 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16-8.02(\mathrm{~m}, 1 \mathrm{H})$, 7.91-7.72 (m, 3H), 6.04 (dd, $J=2.5,7.6 \mathrm{~Hz}$), 4.03 (ddd, $J=2.3,6.6,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (dd, $J=2.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{td}, J=2.6,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-2.02$
$(\mathrm{m}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.5(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 200.0,168.6,146.0,135.8,132.4,132.2,128.5,125.3,117.0$, $116.0,93.4,62.5,57.4,40.5,37.3,35.9,28.4,21.8,20.2$; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{9} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}] 460.0678$, found 460.0677.

Compound 559: FTIR(NaCl/ thin film) 3383, 2959, 2930, 1741, 1718, 1220, $1169,1154,1088,1057 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.01(\mathrm{dd}, J=5.1,13.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.68(\mathrm{td}, J=3.2,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{td}, J=2.9,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.18$ (t, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=3.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.78(\mathrm{~m}, 2 \mathrm{H})$, 1.64-1.56(m, 1H), $1.12(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.6,148.5$, $144.6,135.9,133.3,132.4,127.7,125.1,119.7,90.2,61.5,57.8,42.8,37.1,34.9,28.8$, 20.2; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}$ [M+NH4] 413.1019, found 413.1025.

Preparation of Compound 537

To a solution of $\mathbf{5 5 8}$ ($470 \mathrm{mg}, 1.08 \mathrm{mmol}$, 1 equiv.) in $\mathrm{MeCN}(5.4 \mathrm{~mL})$ was added PhSH ($0.88 \mathrm{~mL}, 8.64 \mathrm{mmol}, 8$ equiv.) and $\mathrm{KOH}(120 \mathrm{mg}, 2.16 \mathrm{mmol}, 2$ equiv.) at room temperature. The mixture was stirred for 30 minutes and quenched by aqueous HCl (2 $\mathrm{mL}, 1 \mathrm{~N})$. The aqueous layer was washed by EtOAc ($2 \times 6 \mathrm{~mL}$), and the combined organic
layers were washed with brine (12 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, $20 \%-50 \% \mathrm{EtOAc} /$ Hexanes) to remove PhSH .

To the product mixture in $\mathrm{DCM}(20 \mathrm{~mL})$ was added silica $(2 \mathrm{~g})$ and stirred at room temperature for 2 days. The solution was filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, $33 \%-67 \% \mathrm{EtOAc} /$ Hexanes) to yield $537(370.5 \mathrm{mg}$, $96 \%)$ as brown oil.

Compound 537: FTIR(NaCl/ thin film) 3389, 2961, 1744, 1478, 1193, 1112, 1089, $822 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.80(\mathrm{~m}$, 2H), 7.76-7.68 (m, 1H), 6.03 (dd, $J=2.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=5.5,12.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.68-3.55 (m, 1H), $3.22(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=3.6,20.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.28(\mathrm{~m}$, 2H), 2.27-2.17 (m, 1H), 2.14-1.99 (m, 2H), 1.64-1.54 (m, 1H), 1.11 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 206.7,203.6,93.5,71.0,61.9,39.7,39.1,37.3,33.8,30.8$, 21.1; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NaO}_{8}[\mathrm{M}+\mathrm{M}+\mathrm{Na}]$ 443.1682, found 443.1687.

Preparation of Compound 561

To a solution of $\mathbf{5 3 7}(89 \mathrm{mg}, 0.42 \mathrm{mmol}, 1$ equiv.) in DCM (4.2 mL) was added TMSOTf ($0.17 \mathrm{~mL}, 0.92 \mathrm{mmol}, 2.2$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.14 \mathrm{~mL}, 0.92 \mathrm{mmol}, 2.2$ equiv.) at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 5 min and quenched by saturated aqueous NaHCO_{3} $(0.5 \mathrm{~mL})$. The aqueous layer was washed by DCM $(2 \mathrm{x} 5 \mathrm{~mL})$ and the combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, $20 \%-33 \% \mathrm{EtOAc} /$ Hexanes) to yield 561 (98.2 mg , 82.2%) as yellow oil.

Compound 561: FTIR(NaCl/ thin film) 2958, 1755, 1728, 1458, 1400, 1354, $1315,1250,1092,939,847 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.97(\mathrm{dd}, J=4.8,14.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.63(\mathrm{td}, J=3.0,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=2.9,19.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.26(\mathrm{dd}, J=3.2,19.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.49$ $(\mathrm{m}, 1 \mathrm{H}), 1.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 205.1, 204.8, 95.5, 71.9, 61.9, 42.2, 39.8, 37.4, 34.3, 30.9, 21.3, 1.8; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NaO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]$ 305.1185, found 305.1186.

Preparation of Compound 563

To a solution of 561 ($60 \mathrm{mg}, 0.21 \mathrm{mmol}, 1$ equiv.) in $\mathrm{DCM}(2.1 \mathrm{~mL})$ was added TBSOTf ($0.24 \mathrm{~mL}, 1.1 \mathrm{mmol}, 5$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}\left(0.16 \mathrm{~mL}, 1.1 \mathrm{mmol}, 5\right.$ equiv.) at $-78{ }^{\circ} \mathrm{C}$.

The mixture was warmed to room temperature and stirred overnight. The reaction was quenched by saturated aqueous $\mathrm{NaHCO}_{3}(0.5 \mathrm{~mL})$. The aqueous layer was washed by DCM ($2 \times 2 \mathrm{~mL}$), and the combined organic layers were washed with brine (4 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 5\%-10\% EtOAc/ Hexanes) to yield $\mathbf{5 6 3}$ ($77.8 \mathrm{mg}, \mathbf{9 2 . 3 \%}$) as yellow oil.

Compound 563: FTIR(NaCl/ thin film) 2957, 2929, 1749, 1725, 1643, 1250, 1193, 1153, 1091, $844 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.10(\mathrm{dd}, J=2.2,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.82 (dd, $J=6.1,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{td}, J=2.2,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.39$ (dd, $J=3.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.53-$ $1.49(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.9(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 6 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 208.2,149.7,103.9,93.2,61.4,44.8,38.5,34.9,29.8,25.7,20.3$, 18.1, 1.9, -4.4, -4.6; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]$ 397.2230, found 397.2223.

Preparation of Compound 564

To a solution of diisopropylamine ($0.14 \mathrm{~mL}, 1.03 \mathrm{mmol}, 5.25$ equiv.) in THF (1 $\mathrm{mL})$ at $-20^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(0.43 \mathrm{~mL}, 0.84 \mathrm{mmol}, 4.2$ equiv., 1.9 M hexanes solution) dropwise over 5 minutes. The resultant mixture was stirred at $-20^{\circ} \mathrm{C}$ for 5
minutes, and then cooled to $-78^{\circ} \mathrm{C}$ for 30 minutes. To this mixture was added methyl-3-(dimethylamino)propionate ($0.1 \mathrm{~mL}, 0.70 \mathrm{mmol}, 3.5$ equiv.) dropwise over five minutes. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for thirty minutes, $0^{\circ} \mathrm{C}$ for 15 min , and room temperature for 15 min , and then cooled to $-78^{\circ} \mathrm{C}$.

A solution of $\mathbf{5 6 3}$ ($77.8 \mathrm{mg}, 0.2 \mathrm{mmol}$, lequiv.) in THF (2 mL) was added enolate dropwise over 1 min at $-78^{\circ} \mathrm{C}$. The solution was slowly warmed to room temperature and stirred for 1 hour. The reaction was quenched with 1 MAcOH in THF (5 mL) and allowed to warm to room temperature. At which point the reaction mixture was treated with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and EtOAc (2 mL). The aqueous layer was extracted with EtOAc (2 x $5 \mathrm{~mL})$, and the combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reducing pressure.

To the solution of this residue solution in $\mathrm{DCM}(8.5 \mathrm{~mL})$ was added $m-\mathrm{CPBA}$ ($170 \mathrm{mg}, 0.70 \mathrm{mmol}, 3.5$ equiv.) at $-78^{\circ} \mathrm{C}$ and stirred for 20 minutes. To the solution was added basic $\mathrm{Al}_{2} \mathrm{O}_{3}(200 \mathrm{mg})$ and stirred overnight at room temperature. The mixture was filtered through Celite and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 5\%-10\% EtOAc/ Hexanes) to yield 564 ($80.2, \mathrm{mg}, 84.7 \%$) as colorless oil.

Compound 564: FTIR(NaCl/ thin film) 3451, 2955, 1705, 1652, 1322, 1258, 1180, 1023, 938, 911, $842 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H})$, 5.44-5.31 (m, 1H), $4.74(\mathrm{dd}, J=2.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{td}, J=4.4,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}$, $J=6.7,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{ddd}, J=2.3,4.4,9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.12(\mathrm{dd}, J=2.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.37(\mathrm{~m}$, $1 \mathrm{H}), 0.95(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR (100 MHz, CDCl_{3}) $\delta 170.7,153.0,144.1,119.7,1006,100.1,82.3,63.1,52.9$, $51.8,45.9,40.9,29.7,28.5,25.7,21.3,18.0,1.8,-4.8$; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{O}_{6} \mathrm{Si}_{2}[\mathrm{M}-\mathrm{H}] 481.2442$, found 481.2455 .

Preparation of Compound 531

To a solution of $\mathbf{5 6 4}$ ($80 \mathrm{mg}, 0.17 \mathrm{mmol}, 1$ equiv.) in THF (1.6 mL) was added TBAF ($1.67 \mathrm{~mL}, 1.7 \mathrm{mmol}, 10$ equiv.) and $\mathrm{AcOH}(95 \mu \mathrm{~L}, 1.7 \mathrm{mmol}, 10$ equiv.) at room temperature. The mixture was stirred overnight. The reaction was quenched by $\mathrm{H}_{2} \mathrm{O}$ (2 $\mathrm{mL})$. The aqueous layer was extracted with EtOAc ($2 \times 5 \mathrm{~mL}$). The combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 20\%-50\% EtOAc/ Hexanes) to yield 531 (26 mg , 59\%) as yellow solid.

Compound 531: FTIR(NaCl/ thin film) 3431, 2924, 1780, 1733, 1289, 1264, 1175, 1076, $1003 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.05(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 4.49$ (ddd, $J=5.8,9.1,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{ddt}, J=5.2,11.5,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.36(\mathrm{~m}, 1 \mathrm{H})$, 2.71 (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{dd}, J=3.4,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.02(\mathrm{~m}$, $1 \mathrm{H}), 1.85-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.6,166.0,135.3,130.1,104.7,74.6,64.1,61.8,38.6,38.3,37.4,31.0$, 29.9, 20.8; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{5}$ [M-H] 263.0920, found 263.0922.

Preparation of Compound 513

To a solution of $\mathbf{5 3 1}$ ($76 \mathrm{mg}, 0.29 \mathrm{mmol}$, 1 equiv.) in DCM (3 mL) was added $\mathbf{5 1 9}$ $(0.37 \mathrm{~mL}, 2.9 \mathrm{mmol}, 10$ equiv.) and N, N '-Dimthyl analine ($0.39 \mathrm{~mL}, 2.9 \mathrm{mmol}, 20$ equiv.) at room temperature. The mixture was stirred for 2 days and concentrated by reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, $20 \%-50 \% \mathrm{EtOAc} /$ Hexanes) to yield 513 (58.4 mg , 49\%) as brown oil and starting material 531 (10 mg).

Compound 513 (diastereomer): FTIR(NaCl/ thin film) 2972, 2929, 1777, 1732, 1286, 1189, 1106, 1071, 1039, 1066, $977 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.69(\mathrm{~s}$, $1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{t}, J=4.3,1 \mathrm{H}), 4.71(\mathrm{dd}, J=4.4,16,1 \mathrm{H})$, $4.62(\mathrm{dd}, J=6.1,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=6.1,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=6.6,12.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.56-3.31(\mathrm{~m}, 8 \mathrm{H}), 2.87(\mathrm{~d}, J=2.4,1 \mathrm{H}), 2.76(J=2.4,1 \mathrm{H}), 2.62-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.26-$ $1.96(\mathrm{~m}, 8 \mathrm{H}), 1.85-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 208.7,208.6,165.8,135.8,135.4,132.5,130.3,106.1,97.3,80.1,79.7,62.0$,
$61.8,61.5,61.4,40.8,40.4,38.8,38.3,38.6,38.5,31.9,31.8,29.7,29.6,28.7,28.2,20.9$, 25.2, 15.0; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NaBrO}_{6}[\mathrm{M}+\mathrm{Na}] 437.0576$, found 437.0568.

Preparation of Compound 512

To a solution of $\mathrm{I}_{2}(216.2 \mathrm{mg}, 0.85 \mathrm{mmol}$, 1 equiv.) in THF (12 mL) was added samarium ($186 \mathrm{mg}, 0.94,1.1$ equiv.) at room temperature. The mixture was heated to reflux for 3 hours then cooled to room temperature. $0.07 \mathrm{M} \mathrm{SmI}_{2}$ was ready for reaction.

To a solution of $\mathbf{5 1 3}$ ($16 \mathrm{mg}, 0.039 \mathrm{mmol}, 1$ equiv.) in THF (0.4 mL) was added SmI_{2} solution ($2.7 \mathrm{~mL}, 0.20 \mathrm{mmol}, 5$ equiv.) at room temperature. The mixture was stirred for 1 hour then quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(0.5 \mathrm{~mL})$ and $\mathrm{HCl}(0.1 \mathrm{~mL}$, $1 \mathrm{~N})$. At which point the reaction mixture was treated with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and EtOAc (2 mL). The aqueous layer was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$), and the combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reducing pressure to yield crude 512.

To a solution of $\mathbf{5 1 2}$ (half amount of last step rude product) in $\mathrm{DCM}(0.2 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(6 \mu \mathrm{~L}, 0.048 \mathrm{mmol}, 2.5$ equiv.) and propane-1,3-dithiol ($5 \mu \mathrm{~L}, 0.048$ mmol, 2.5 equiv.) at $0{ }^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred
overnight. The reaction was quenched by $\mathrm{H}_{2} \mathrm{O}(10 \mu \mathrm{~L})$. At which point the reaction mixture was treated with $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and EtOAc $(1 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc (3 x 1 mL), and the combined organic layers were washed with brine (3 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 25\%$50 \% \mathrm{EtOAc} /$ Hexanes) to yield $566(5 \mathrm{mg}, 65 \%)$ as yellow oil.

Compound 512: FTIR(NaCl/ thin film) 3457, 2918, 1778, 1726, 1480, 1462, 1451, 1358, 1327, 1299, 1273, 1174, 1109, 1080, 1027, $980 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.47(\mathrm{dd}, J=2.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}) 4.20(\mathrm{td}, J=3.1,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=6.0,12.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.78 (ddd, $J=7.2,9.8,14.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.53 (ddd, $J=7.0,9.8,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (dd, $J=6.8,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 1 \mathrm{H}), 2.19(\mathrm{dd}, J=2.3,13.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.13(\mathrm{dd}, J=2.2,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.81(\mathrm{q}, J=3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{dt}, J=3.2,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.22$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 177.7,109.5,106.9,95.9,77.9,64.0$, $63.0,57.0,53.9,52.1,44.3,39.4,38.4,37.8,30.7,27.8,21.0,15.4$; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{5}$ [M-C2H5O] 291.1233, found 291.1236.

Preparation of Compound 586

To a solution of 531 ($16 \mathrm{mg}, 0.06 \mathrm{mmol}, 1$ equiv.) in DCM (0.6 mL) was added 2chloroacetic anhydride ($20.5 \mathrm{mg}, 0.12$, 2 equiv.) and pyridine ($20 \mu \mathrm{~L}, 0.02 \mathrm{mmol}, 0.3$ equiv.) at room temperature. The mixture was stirred overnight and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 25\%-67\% EtOAc/ Hexanes) to yield 586 ($2 \mathrm{mg}, 10 \%$) as yellow oil.

Compound 586: FTIR(NaCl/ thin film) 2960, 2361, 2339, 1743, 1546, 1439, 1387, 1194, 1088, $1023 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.89(\mathrm{dd}, J=14.0,22.5 \mathrm{~Hz}$, $1 \mathrm{H}) 4.20(\mathrm{~s}, 2 \mathrm{H}), 4.14-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=1.8, \mathrm{~Hz}, 1 \mathrm{H})$, 2.75 (q, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.30(\mathrm{~s}, 1 \mathrm{H}), 1.99-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 203.1,171.3,167.0,158.9,123.6,105.8,61.7,57.6,56.3$, 40.5, 39.0, 38.0, 36.9, 32.5, 29.4, 19.4; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{5}$ [M+Na] 363.0611, found 363.0611.

Preparation of Compound 580

To a solution of 477 ($100 \mathrm{mg}, 0.22 \mathrm{mmol}, 1$ equiv.) in $\mathrm{DCM}(3 \mathrm{~mL})$ was added 419 ($0.32 \mathrm{~mL}, 4.40 \mathrm{mmol}, 20$ equiv.) and N, N '-Dimthyl analine ($0.30 \mathrm{~mL}, 4.40 \mathrm{mmol}, 20$
equiv.) at room temperature. The mixture was stirred for 2 days and concentrated by reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 20\%-50\% EtOAc/ Hexanes) to yield 580 (60 mg , 50%) as brown oil and starting material $477(50 \mathrm{mg})$.

Compound 580 (diastereomer): $\operatorname{FTIR}(\mathrm{NaCl} /$ thin film) 2974, 2928, 1775, 1651, 1547, 1390, 1367, 1284, 1195, 1123, 1075,905, $824 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.04 (dd, $J=4.6,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.91-7.82(\mathrm{~m}, 4 \mathrm{H}), 7.79(\mathrm{td}, J=1.5,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.24(\mathrm{~s}$, 1H), 6.19 (s, 1H), 5.79 (s, 1H), $5.82(\mathrm{~s}, 1 \mathrm{H}), 5.75$ (ddd, $J=2.6,5.8,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.73$ (ddd, $J=4.0,5.9,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{td}, J=3.6,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{td}, J=3.8,12.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.00(\mathrm{q}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.54-3.32(\mathrm{~m}, 8 \mathrm{H}), 3.00(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{t}, J=2.1$ Hz, 1H), 2.63 (ddd, $J=2.4,7.7,9.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.46-2.37$ (m, 2H), 2.01-1.85 (m, 2H), 1.75$1.58(\mathrm{~m}, 4 \mathrm{H}), 1.22(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 166.3,149.6,149.5,148.5,135.9,135.2,132.9,131.7,129.2$, $129.0,126.7,125.3,110.6,110.5,105.4,104.8,97.9,97.0,82.4,81.9,63.9,63.6,62.5$, $61.2,52.4,52.3,44.1,43.6,40.0,39.7,32.3,32.0,29.9,29.6,28.4,20.8,15.2,15.0$;

HRMS (TOF LCMS) calc'd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NBrO}_{10} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}] 622.0359$, found 622.0358.

Preparation of Compound 582

To a solution of $\mathbf{5 8 0}$ ($31 \mathrm{mg}, 0.052 \mathrm{mmol}$, 1 equiv.) in $\mathrm{MeCN}(0.7 \mathrm{~mL})$ was added PhSH ($71 \mu \mathrm{~L}, 0.52 \mathrm{mmol}, 10$ equiv.) and $\mathrm{KOH}(7.5 \mathrm{mg}, 0.10 \mathrm{mmol}, 2$ equiv.) at room temperature. The mixture was stirred for 20 minutes then added H 2 O (1 mL). The aqueous layer was extracted with EtOAc (3 x 1 mL), and the combined organic layers were washed with brine (3 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reducing pressure. The residue was loaded onto silica and purified by column chromatography (gradient elution, 25\%-50\% EtOAc/ Hexanes) to yield 582 ($22 \mathrm{mg}, 100 \%$) as colorless solid.

Compound 582: FTIR(NaCl/ thin film) 3456, 2958, 2927, 1778, 1728, 1200, 1057, 994, $740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.98-4.75(\mathrm{~m}$, $1 \mathrm{H}), 4.45-4.35(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.30(\mathrm{~m}, 3 \mathrm{H}), 2.14-2.01(\mathrm{~m}, 1 \mathrm{H}), .1 .92-1.71(\mathrm{~m}$, 2H), $1.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.6,173.1,134.6,131.1$, $129.4,127.4,105.4,76.2,63.8,63.6,50.0,38.6,36.7,36.5,33.0,31.1,29.8,20.7$; HRMS (TOF LCMS) calc'd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}] 375.1266$, found 375.1268 .

4.7 Notes and References

1. Spiegel, D. A. Synthetic Approaches to the Phomoidride Carbocyclic Core and Applications. Yale University, New Haven, CT, 2005.
2. Njardarson, J. T. The Development of a Synthetic Strategy for the Total Synthesis of Phomoidride A (CP-225,917) and Phomoidride B (CP-263,114) Yale University New Haven, CT, 2001.
3. McDonald, I. M. Progress Toward the Total Synthesis of the Phomoidrides. Yale University, New Haven, CT, 2005.
4. Twenter, B. M. Synthetic Approaches Toward The Phomoidrides. Yale University, New Haven, CT, 2008.
5. Njardarson, J. T.; Wood, J. L., Evolution of a synthetic approach to CP-263,114. Organic Letters 2001, 3, (16), 2431-2434.
6. Njardarson, J. T.; McDonald, I. M.; Spiegel, D. A.; Inoue, M.; Wood, J. L., An expeditious approach toward the total synthesis of CP-263,114 Organic Letters 2001, 3, (16), 2435-2438.
7. Spiegel, D. A.; Njardarson, J. T.; Wood, J. L., CP-263,114 synthetic studies. Construction of an isotwistane ring system via rhodium carbenoid C-H insertion Tetrahedron 2002, 58, (32), 6545-6554.
8. Spiegel, D. A.; Wiberg, K. B.; Schacherer, L. N.; Medeiros, M. R.; Wood, J. L., Deoxygenation of alcohols employing water as the hydrogen atom source Journal of the American Chemical Society 2005, 127, (36), 12513-12515.
9. (1) Grob, C. A.; Schiess, P. W., Heterolytic Fragmentation . A Class of Organic Reactions. Angewandte Chemie-International Edition 1967, 6, (1), 1-2. 35. (2) Grob, C. A.; Baumann, W., Die 1,4-Eliminierung Unter Fragmentierung. Helvetica Chimica Acta 1955, 38, (3), 594-610.
10. Wharton, P. S., Stereospecific Synthesis of 6-Methyl-Trans-5-Cyclodecenone. Journal of Organic Chemistry 1961, 26, (11), 4781-4782.
11. Caine, D., Wharton Fragmentations of Cyclic 1,3-Diol Derivatives - a Review. Organic Preparations and Procedures International 1988, 20, (1-2), 1-2.
12. Yates, P.; Auksi, H., Synthesis of Bicyclo[2.2.2]Octenones Via Intra-Molecular Diels-Alder Reactions of Modified Wessely Oxidation-Products. Canadian Journal of Chemistry-Revue Canadienne De Chimie 1979, 57, (21), 2853-2863.
13. Yates, P.; Macas, T. S., Tandem Wessely Oxidation and Intramolecular Diels-Alder Reactions .3. Synthesis of Isotwistanes. Canadian Journal of Chemistry-Revue Canadienne De Chimie 1988, 66, (1), 1-10.
14. Chu, C. S.; Lee, T. H.; Liao, C. C., One-Flask Preparations of 3,3-Dialkoxybicyclo[2.2.2]Oct-5-En-2-One Derivatives from Methyl Vanillate, Methyl Isovanillate, and 2-Methoxy-4-Methylphenol. Synlett 1994, (8), 635-636.
15. Chu, C. S.; Lee, T. H.; Rao, P. D.; Song, L. D.; Liao, C. C., Tandem oxidative acetalization-intramolecular Diels-Alder reactions of 2-methoxyphenols. Simple synthesis of bicyclo[2.2.2] octenone derivatives. Journal of Organic Chemistry 1999, 64, (11), 4111-4118.
16. Lai, C. H.; Shen, Y. L.; Liao, C. C., Synthesis of stable bromo-substituted masked obenzoquinones and their application to the synthesis of bicyclo[2.2.2]octenones. Synlett 1997, (12), 1351-1352.
17. Liao, C. C.; Chu, C. S.; Lee, T. H.; Rao, P. D.; Ko, S.; Song, L. D.; Shiao, H. C., Generation, stability, dimerization, and Diels-Alder reactions of masked obenzoquinones. Synthesis of substituted bicyclo[2.2.2]octenones from 2-methoxyphenols. Journal of Organic Chemistry 1999, 64, (11), 4102-4110.
18. Rao, P. D.; Chen, C. H.; Liao, C. C., Stereoselective synthesis of highly functionalized cis-decalins from masked o-benzoquinones. Chemical Communications 1998, (1), 155-156.
19. Stork, G.; LaClair, J. J.; Spargo, P.; Nargund, R. P.; Totah, N., Stereocontrolled synthesis of (+/-)-12a-deoxytetracycline. Journal of the American Chemical Society 1996, 118, (22), 5304-5305.
20. Stork, G.; Kahn, M., Control of Ring Junction Stereochemistry Via Radical Cyclization. Journal of the American Chemical Society 1985, 107, (2), 500-501.
21. Stork, G.; Mook, R., Vinyl Radical Cyclization .2. Dicyclization Via Selective Formation of Unsaturated Vinyl Radicals by Intramolecular Addition to Triple Bonds -

Applications to the Synthesis of Butenolides and Furans. Journal of the American Chemical Society 1983, 105, (11), 3720-3722.
22. Stork, G.; Mook, R.; Biller, S. A.; Rychnovsky, S. D., Free-Radical Cyclization of Bromoacetals - Use in the Construction of Bicyclic Acetals and Lactones. Journal of the American Chemical Society 1983, 105, (11), 3741-3742.
23. Stork, G.; Sher, P. M., A Catalytic Tin System for Trapping of Radicals from Cyclization Reactions - Regiocontrolled and Stereocontrolled Formation of 2 Adjacent Chiral Centers. Journal of the American Chemical Society 1986, 108, (2), 303-304.
24. Molander, G. A.; Harris, C. R., Sequencing reactions with samarium(II) iodide. Chemical Reviews 1996, 96, (1), 307-338.
25. Ananthanarayan, T. P.; Gallagher, T.; Magnus, P., Samarium Diiodide - a Useful Electron-Donor in Organic-Synthesis. Journal of the Chemical Society-Chemical Communications 1982, (12), 709-710.
26. Fang, J. M.; Chen, M. Y.; Shiue, J. S.; Lu, L.; Hsu, J. L., Samarium diiodidemediated asymmetric reactions of 8-phenylmenthyl esters. Tetrahedron Letters 2000, 41, (23), 4633-4636.
27. Cabrera, A.; Alper, H., Samarium(Ii) Iodide-Hmpa - a Very Efficient System for the Selective Reduction of Alpha,Beta-Unsaturated Carbonyl-Compounds. Tetrahedron Letters 1992, 33, (35), 5007-5008.
28. Fukuzawa, S.; Tsuchimoto, T., Samarium(Ii) Diiodide Induced Intramolecular Coupling Reaction of Halocetals Leading to the Synthesis of Gamma-Lactones. Synlett 1993, (10), 803-804.
29. Inanaga, J.; Handa, Y.; Tabuchi, T.; Otsubo, K.; Yamaguchi, M.; Hanamoto, T., A Facile Reductive Dimerization of Conjugated Acid-Derivatives with Samarium Diiodide. Tetrahedron Letters 1991, 32, (45), 6557-6558.
30. Inanaga, J.; Sakai, S.; Handa, Y.; Yamaguchi, M.; Yokoyama, Y., Selective Conjugate Reduction of Alpha,Beta-Unsaturated Esters and Amides Via Smi2-Promoted Electron-Transfer Process. Chemistry Letters 1991, (12), 2117-2118.
31. Shinohara, I.; Okue, M.; Yamada, Y.; Nagaoka, H., Samarium(II) iodide-induced tandem reductive coupling-Dieckmann condensation reaction: one-step synthesis of bicyclic oxacyclopentanecarboxylate from bis-alpha,beta-unsaturated esters. Tetrahedron Letters 2003, 44, (25), 4649-4652.
32. Medeiros, M. R.; Schacherer, L. N.; Spiegel, D. A.; Wood, J. L., Expanding the scope of trialkylborane/water-mediated radical reactions Organic Letters 2007, 9, (22), 44274429.
33. Spiegel, D. A.; Wiberg, K. B.; Schacherer, L. N.; Medeiros, M. R.; Wood, J. L., Deoxygenation of alcohols employing water as the hydrogen atom source Journal of the American Chemical Society 2005, 127, (36), 12513-12515.
34. Raiford, L. C.; Ravely, M. F., Action of bromine on vanillin, isovanillin, and some of their derivatives, and modification of the directive influence of hydroxyl in these compounds. Journal of Organic Chemistry 1940, 5, (2), 204-211.
35. Hrubie, R. T.; Smith, M. B., Regioselective Route to Sterically Hindered Cyclopropylcarbinyl Halides. Journal of Organic Chemistry 1984, 49, 431-435.
36. Yu, L. C.; Helquist, P., A Beta-Amino Ester Enolate as an Acrylate Anion Equivalent. Tetrahedron Letters 1978, (37), 3423-3426.
37. Yu, L. C.; Helquist, P., A Beta-Amino Ester Enolate as an Acrylate Anion Equivalent for the Synthesis of Alpha-Methylene Esters, Acids, and Lactones. Abstracts of Papers of the American Chemical Society 1980, 180, (AUG), 290-ORGN.
38. Yu, L. C.; Helquist, P., Beta-Amino Ester Enolate as an Acrylate Anion Equivalent for the Synthesis of Alpha-Methylene Esters, Acids, and Lactones. Journal of Organic Chemistry 1981, 46, (22), 4536-4541.
39. Yu, L. C.; Helquist, P., Use of Methyl 3-(N,N-Dimethylamino) Propionate as a Synthon for the Construction of Alpha-Methylene Gamma-Butyrolactones. Synthetic Communications 1981, 11, (7), 591-597.
40. Guibe, F., Allylic protecting groups and their use in a complex environment - Part II: Allylic protecting groups and their removal through catalytic palladium pi-allyl methodology. Tetrahedron 1998, 54, (13), 2967-3042.
41. Lindgren, B. Q, Nilsson, T., Preparation of carboxylic acids from aldehydes (including hydroxylated benzaldehydes) by oxidation with chlorite. Acta Chemica Scandinavica 1973, 27, 888-890.
42. Sawayama, A. M.; Tanaka, H.; Wandless, T. J., Total Synthesis of Ustiloxin D and Considerations on the Origin of Selectivity of the Asymmetric Allylic Alkylation. Journal Organic Chemistry 2004, 69, (25), 8810-8820.
43. Austin, P. R., Studies of Organic Lead Compounds. I. Action of Acids on Lead Aryls. Journal of American Chemical Society 1931, 53, 1543-1547.
45. Batchman, G. B.; Wittmann, J. W., The Oxidation of Carboxylic Acids to Esters by Tetravalent Lead. Journal Organic Chemistry 1963, 28, (1), 65- 68.
46. Wittig, G.; Schöllkopf, U., Über Triphenyl-phosphin-methylene als olefinbildende Reagenzien I. Chemische Berichte 1954, 87, 1318.
47. Schobert, R. Preparation of (Triphenylphosphoranylidene)-ketene From (Methoxycarbonylmethylene)-triphenylphosphorane. Organic Synthesis, 2005, 8, 140143.
48. Meunier, B.; Renz, M., 100 Years of Baeyer- Villiger Oxidations. European Journal of Organic Chemistry 1999, 4, 737-750
49. Demnitz, F. W. J.; Philippini, C.; Raphael, R. A., Unexpected Rearrangement in the Peroxytrifluoroacetic Acid-Mediated Bayer- Villiger Oxidation of trans-3 β-Hydroxy-4,4,10乃-trimethyl-9-decalone Forming a 7-Oxabicyclo [2.2.1]helptane. Struture Proof
and Total Synthesis of Farnesiferol-C ${ }^{1}$. Journal Organic Chemistry 1995, 60, 51145120.
50. (1) Cha, K.; Lee, K., Formal Synthesis of (+)-Phorbol. Journal of American Chemical Society 2001, 123, 5590-5591. (2) Ganem, B.; Fortunato, J. M., Lithium and Potassium Trialkylborohydrides. Reagents for Direct Reduction of α, β - Unstaturated Carbonyl Compounds to Synthetically Versatile Enolate Anions. Journal of Organic Chemistry 1976, 41, (12), 2194-2199.
51. Mahoney, W. S.; Brestensky, D. M.; Stryker, J. F., Selective Hydride-Mediated Conjugate Reduction of α, β - Unstaturated Carbonyl Compounds Using $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{CuH}\right]_{6}$. Journal of American Chemical Society 1998, 110, 291-293.
52. Nicolaou, K. C.; Chakraborty, T. K.; Piscopio, A. D.; Minowa, N.; Bertinato, P., Total synthesis of rapamycin. Journal of American Chemical Society 1993, 115, 10, 4419-4420.
53. Molander, G. A.; Quirmbach, M. S.; Silva, L. F.; Spencer, K. C. Jr.; Balsells, J., Toward the Total Synthesis of Variecolin, Organic Letters 2001, 3 (15), 2257-2260.
54. Das, B.; Madhusudhan, P., Transformation of the conjugated dienamide system of some natural alkamides to the β, γ-unsaturated amide function using $\mathrm{Zn} / \mathrm{HOAc}$. Tetrahedron Letters 1998, 39, (49), 9099-9100.
55. Saito, S.; Yamamoto, H., Efficient Conjugate Reduction of α, β - Unstaturated Carbonyl Compounds by Complexation with Aluminum Tris (2,6-diphenylphenoxide). . Journal of Organic Chemistry 1996, 61, (12), 2928-2929.
56. Quellet, S. G.; Walji, A. M.; Macmillan, D. W. C., Enantioselective Organocatalytic Transfer Hydrogenation Reactions using Hantzsch Esters. Accounts of Chemical Research 2007, 40, 1327-1339.
57. Jung, M. E.; Lazarova, T. I., Efficient Synthesis of Selectively Protected L-Dopa Derivatives from L-Tyrosine via Reimer- Tiemann and Dakin Reaction. Journal of Organic Chemistry 1997, 62, (5), 1553-1555.
58. Muci, A. R.; Bulchwald S. L., Practical Palladium Catalyst For C-N and C-O Bond Formation. Topics in Current Chemistry, 2002, 219, 131-209.
59. Zhang, X.; Sui, Z., An efficient synthesis of novel estrieno[2.3-b] and [3.4-c]pyrroles. Tetrahedron Letters 2003, 44, 3071-3073.
60. Willis, M. C.; Chauhan, J.; Whittingham, W. G., A new reactivity pattern for vinyl bromides: cine-substitution via palladium catalysed C-N coupling/ Michael addition reactions. Organic \& Biomolecular Chemistry 2005, 3, 3094-3095
61. Wills, M. C.; Brace, G. N., Palladium catalysed enamine synthesis from vinyl triflates. Tetrahydron Letters 2002, 43, 9085-9088.
62. Pan, Y.; Lu, H.; Fang, Y.; Chen, L.; Qian, J.; Wang, J., Synthesis of Pyrroles via Copper- Catalyzed Coupling of Amines with Bromoenones. Synthesis 2007, 8, 12421246.
63. Cook, G. K.; McDonald, J. H.III; Alborn, W. Jr.; Boyd, D. B.; Eudaly, J. A.;

Indelicato, J. M.; Johnson, R.; Kasher, J. S.; Pasini, C. E.; Preston, D. A.; Wu, E. C. Y., 3- Quanternary Ammonium 1- carba-1- dethiacephems. Journal of American Chemical Society 1989, 32, (11), 2444-2450.
64. Awad, L. F.; Ashry, E. S. H.; Schuerch, C., A Synthesis of Methyl 3-o-(β-D-Mannopyranosyl)- α-D-mannopyranoside from Sulfonate Intermediate. Bulletin of the Chemical Society of Japan 1986, 59, 1587-1592.
65. Lewandowska, E.; Neschadimenko, V.; Wnuk, S. F.; Robins, M. Efficient Removal of Sugar O-Tosyl Groups and Heterocycle Halogens from Purine Nucleosides with Sodium Naphthalenide. Tetrahedron 1997, 53, (18), 6295-6312.
66. Vutukuri, D. R.; Bharathi, P.; Yu, Z.; Rajasekaran, K.; Tran, M.; Thayumanavan, S., A Mild Deprotection Strategy for Ally- Protecting Groups and Its Implication in Sequence Specific Dendrimer Synthesis. Journal of Organic Chemistry, 2003, 68, 11461149.
67. Fukuyama, T.; Jow, C.; Cheung, J. M., 2- and 4-Nitrobenzenesulfonamides:

Exceptionally versatile means for preparation of secondary amines and protection of amines. Tetrahedron Letters 1995, 6373-6374

Appendix II: Spectra Relevant to Chapter 4

Figure A.4.2 Infrared Spectrum (thin film/NaCl) of compound 466.

Figure A.4.3 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 466.

Figure A.4.4 ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0 \mathrm { MHz } , \mathrm { CDCl } _ { 3 } \text {) of compound } 4 6 5}$

Figure A.4.5 Infrared Spectrum (thin film/ NaCl) of compound 465.

Figure A.4.6 ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 465.

Figure A.4.7 ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0 \mathrm { MHz } , \mathrm { CDCl } _ { 3 } \text {) of compound } 4 7 0}$

Figure A.4.8 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 470.

Figure A.4.9 ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 470.

Figure A.4.10 ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400MHz, $\mathrm{CDCl}_{\mathbf{3}}$) of compound 480

Figure A.4.11 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 480.

Figure A.4.12 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{4 8 0}$.

Figure A.4.13 ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400MHz, CDCl_{3}) of compound 482

Figure A.4.14 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 482.

Figure A.4.15 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 482.

Figure A.4.16 ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0 \mathrm { MHz } , \mathrm { CDCl } _ { 3 } \text {) of compound } 4 8 1 ~}$

Figure A.4.17 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 481.

Figure A.4.18 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 481.

Figure A.4.19 ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 483

Figure A.4.20 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 483.

Figure A.4.21 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 483.

Figure A.4.22 ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 484

Figure A.4.23 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 484.

Figure A.4.24 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 484.

Figure A.4.25 ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 485

Figure A.4.26 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 485.

Figure A.4.27 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 485.

Figure A.4.28 ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0 \mathrm { MHz } , \mathrm { CDCl } _ { 3 } \text {) of compound } 4 9 0}$

Figure A.4.29 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 490.

Figure A.4.30 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 490 .

Figure A.4.31 ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400MHz, CDCl_{3}) of compound 492

Figure A.4.32 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 492.

Figure A.4.33 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 492.

Figure A.4.34 ${ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(\mathbf{4 0 0 M H z}, \mathrm{CDCl}_{3}\right)$ of compound 502

Figure A.4.35 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 502.

Figure A.4.36 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 502.

Figure A.4.37 ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400MHz, CDCl_{3}) of compound 516

Figure A.4.38 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 516.

Figure A.4.39 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 516.

Figure A.4.40 ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400MHz, $\mathbf{C D C l}_{\mathbf{3}}$) of compound 517

Figure A.4.41 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 517.

Figure A.4.42 ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(125} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 517.

Figure A.4.43 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 518

Figure A.4.44 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 518.

Figure A.4.45 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 518.

Figure A.4.46 ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0 \mathrm { MHz } , \mathrm { CDCl } _ { 3 } \text {) of compound } 5 1 9 ~}$

Figure A.4.47 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 519.

Figure A.4.48 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 519.

Figure A.4.49 ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400MHz, $\mathrm{CDCl}_{\mathbf{3}}$) of compound 520

Figure A.4.50 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{5 2 0}$.

Figure A.4.51 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 520.

Figure A.4.52 ${ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 502

Figure A.4.53 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 522.

Figure A.4.54 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 522.

Figure A.4.55 ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400MHz, CDCl_{3}) of compound 525

Figure A.4.56 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 525.

Figure A.4.57 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 525.
CoBOM,

Figure A.4.58 ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400MHz, CDCl_{3}) of compound 526

Figure A.4.59 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 526.

Figure A.4.60 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 526.

Figure A.4.61 ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400MHz, CDCl_{3}) of compound 527

Figure A.4.62 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 527.

Figure A.4.63 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 527.

528

Figure A.4.64 ${ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 528

Figure A.4.65 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 528.

Figure A.4.66 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 528.

Figure A.4.67 ${ }^{1} \mathrm{H}$ NMR (400MHz, CDCl_{3}) of compound 529

Figure A.4.68 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 529.

Figure A.4.69 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 2 9 .}$

Figure A.4.70 ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0 \mathrm { MHz } , \mathrm { CDCl } _ { 3 } \text {) of compound } 5 3 0}$

Figure A.4.71 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 530.

Figure A.4.72 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 3 0}$.

Figure A.4.74 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 538.

Figure A.4.75 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 538.

Figure A.4.76 ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0 \mathrm { MHz } , \mathrm { CDCl } _ { 3 } \text {) of compound } 5 4 6}$

Figure A.4.77 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 546.

Figure A.4.78 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 546.

Figure A.4.79 ${ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(\mathbf{4 0 0 M H z}, \mathrm{CDCl}_{3}\right)$ of compound 540

Figure A.4.80 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 540.

Figure A.4.81 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 540.

Figure A.4.82 ${ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(\mathbf{4 0 0 M H z}, \mathrm{CDCl}_{3}\right)$ of compound 547

Figure A.4.83 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 547.

Figure A.4.84 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 547.

Figure A.4.85 ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0 \mathrm { MHz } , \mathrm { CDCl } _ { 3 } \text {) of compound } 5 4 1 ~}$

Figure A.4.86 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 541.

Figure A.4.87 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 541.

Figure A.4.88 ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 548

Figure A.4.89 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 548.

Figure A.4.90 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 548.

Figure A.4.91 ${ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 543

Figure A.4.92 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 543.

Figure A.4.93 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 543.

Figure A.4.95 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 550.

Figure A.4.96 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 550.

Figure A.4.97 ${ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(\mathbf{4 0 0 M H z}, \mathrm{CDCl}_{3}\right)$ of compound 544

Figure A.4.98 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 544.

Figure A.4.99 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 544.

Figure A.4.100 ${ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 551

Figure A.4.101 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 551.

Figure A.4.102 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 551.

Figure A.4.104 Infrared Spectrum (thin film/NaCl) of compound 545.

Figure A.4.105 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 545.

Figure A.4.106 ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 552

Figure A.4.107 Infrared Spectrum (thin film/NaCl) of compound 552.

Figure A.4.108 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 552.

Figure A.4.109 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 556

Figure A.4.110 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 556.

Figure A.4.111 ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 556.

Figure A.4.112 ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0 \mathrm { MHz } , \mathrm { CDCl } _ { 3 } \text {) of compound } 5 5 7}$

Figure A.4.113 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 557.

Figure A.4.114 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 557.

Figure A.4.115 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 558

Figure A.4.116 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 558.

Figure A.4.117 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 558.

Figure A.4.118 ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0 \mathrm { MHz } , \mathrm { CDCl } _ { 3 } \text {) of compound } 5 5 9 ~}$

Figure A.4.119 Infrared Spectrum (thin film/NaCl) of compound 559.

Figure A.4.120 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 559.

Figure A.4.121 ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400MHz, $\mathrm{CDCl}_{\mathbf{3}}$) of compound 537

Figure A.4.122 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 537.

Figure A.4.123 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 537.

Figure A.4.124 ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0 \mathrm { MHz } , \mathrm { CDCl } _ { 3 } \text {) of compound } 5 6 1 ~}$

Figure A.4.125 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 561.

Figure A.4.126 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 561.

Figure A.4.127 ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0 \mathrm { MHz } , \mathrm { CDCl } _ { 3 } \text {) of compound } 5 6 3}$

Figure A.4.128 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 563.

Figure A.4.129 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 563.

Figure A.4.131 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound $5 \mathbf{5 6 4}$.

Figure A.4.132 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 564.

Figure A.4.133 ${ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 531

Figure A.4.134 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 531.

Figure A.4.135 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 531.

Figure A.4.136 ${ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(\mathbf{4 0 0 M H z}, \mathrm{CDCl}_{3}\right)$ of compound 513

Figure A.4.137 Infrared Spectrum (thin film/NaCl) of compound 513.

Figure A.4.138 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 513.

Figure A.4.140 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 512.

Figure A.4.141 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 512.

Figure A.4.142 ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0 \mathrm { MHz } , \mathrm { CDCl } _ { 3 } \text {) of compound } 5 8 6}$

Figure A.4.143 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 586.

Figure A.4.144 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 586.

Figure A.4.145 ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0 \mathrm { MHz } , \mathrm { CDCl } _ { 3 } \text {) of compound } 5 8 0 ~}$

Figure A.4.146 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 580.

Figure A.4.147 ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{5 8 0}$.

Figure A.4.149 Infrared Spectrum (thin film $/ \mathrm{NaCl}$) of compound 582.

Figure A.4.150 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 582.

Abstract

About the Author Ping Dong was born on July 13, 1978 to Jinghuan Zhang and Wangliang Dong. Ping Dong was raised in Fushun city of Liaoning province at the northeast of China. Ping Dong began his education at Fushun Town $4^{\text {th }}$ elementary school. After 6 years study, he enter Fushun City $25^{\text {th }}$ middle school for 3 years study. After passing the high school entrance examination in 1994, he was admitted to Fushun City $2^{\text {nd }}$ middle school for further education.

After 3 years' study, Ping passed the national undergraduate entrance examination to begin his undergraduate study at Xiamen University in 1997. In this peaceful and beautiful coast city in the southeast of China, Ping spent 4 years on studying in chemistry. For his interest on the new arising research field of nano-chemistry at that time, he decided to pursue a graduate study on nano materials synthesis by electronic chemistry in Xiamen University. In 2001, Ping joined Professor Zhonhua Lin's research group for studying the synthesis and growth mechanism of nano polyanaline in alumina template by electronic chemistry method where he began to show some interest on organic chemistry. After 3 years graduate study, he received M.S. degree in chemistry in 2004.

In the fall of 2005, Ping Dong joined Professor Fraser Fleming's research group for organic graduate study in Duquesne University, Pittsburg of PA. He spent a year for studying the Grignard reagent addition on substrates containing nitrile group and found out that he was really fascinated on the total synthesis of nature products. Therefore, Ping joined Colorado State University at Fort Collins, CO in the fall of 2006 where luckily he
began his graduate study and research on the total synthesis of nature products in Wood Lab. Ping Dong will receive his Doctorate Degree at fall in 2010.

