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ABSTRACT  

 

SYNTHETIC APPROACH TOWARDS CEPHALEZOMINE A AND 

PHOMOIDRIDE D 

Two synthetic approaches towards cephalezomine A and phomoidride D are 

described separately.  

The first approach towards cephalezomine A invented a new method for the 

synthesis of 3-butoxy-1-chlorobutenone and successful constructed !-O and ß
’ 
-N 

disubstituted dienone for a designed key intermediate of cascade cyclization by 

Eschenmoser coupling of thiolactam and 3-butoxy-1-chlorobutenone.  

The second approach towards phomoidride D systematically studied the 

electronic effects of different ester substituents for the phenolic oxidation and inverse 

electron demand Diels-Alder reaction, which resulted in the synthesis of functionalized 

bicyclic [2.2.1] intermediate. Base on this, a new route for the synthesis of precursor of 

Grob fragmentation has been established towards the total synthesis of phomoidride D by 

samarium diiodide mediated radical cascade cyclization. 
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Chapter 1 

 

Cephalezomine A Chemistry and Biology 

 

1.1 Background and Introduction 

 

1.1.1 Cephalezomines: Isolation and Structural Characterization 

In 2000, Jun'ichi Kobayashi and co-workers reported the isolation and structural 

elucidation of cephalezomines A-F (1-6) from the leaves of Cephalotaxus harringtonine 

var nana in Japan (Figure 1.1.1.1).
1 

Additional compounds, cephalezomines G-M (7-12) 

and bis- cephalezomines A-E (13-17), were isolated and structure elucidated by the same 

group in 2002 and 2004.
2,3

  

 

 

 

 

 

 

 

 

 

 



 2 

Figure 1.1.1.1 Cephalezomines Natural Products 
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Cephalezomines are members of the Cephalotaxus alkaloid family found in 

higher plants of the genus Cephalotexus.
4
 Structurally related Cephalotaxus alkaloids are 

known as drupacine (18),
5
 cephalotaxine (19),

6
 11-hydroxycephalotaxine (20),

5
 

harringtonine (21),
7
 deoxyharringtonine (22)

7
 and homoharringtonine (23)

7
 (Figure 

1.1.1.2). Some of the latter, such as 21, 22 and 23, display potent antileukemic activity 
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upon intraperitoneal injection in mice.
8
 Recently, clinical studies of Cephalotaxus 

alkaloids in China have shown that intravenous administration can affect various types of 

acute leukemia.
9, 10

 

 

Figure 1.1.1.2 Cephalotexus alkaloids 
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1.1.2 Cephalotexus Alkaloids Biosynthesis 

 Ronald Parry and co-workers have utilized the method of isotope-labeled 

precursor incorporation to study the biosynthesis of the Cephalotexus Alkaloids in 

Cephalotaxus harringtonia.
11

 It had been established that in the early stage of 

biosynthesis (from 24, 25 to 28), cephalotaxine  is biosynthesized from one molecule 

each of tyrosine (24) and phenylalanine (25) (Scheme 1.1.2.1). The hypothesis predicted 

that cephalotaxine should come from 24 and 25 via a 1-phenethyltetrahydroisoquinoline 

derivative (26), oxidative phenol coupling product (27) and dienone (28). This hypothesis 

is based on results obtained while investigating the biosynthesis of colchicine.
12

 In the 

late stage of biosynthesis (from 28 to 19), loss of one carbon atom from dienone (28) via 



 4 

a ring contraction formed the D ring of cephalotaxine. It has been suggested that the ring 

contraction of 28 might result from a benzilic acid rearrangement.
13

 

 

Scheme 1.1.2.1 Cephalotaxine Biosynthesis 
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The biosynthesis of the acyl side chain of deoxyharringtonine (21) was proposed 

to involve a pathway that begins with leucine (29) (Scheme 1.1.2.2).
14

 Diacid (31) should 

be an intermediate in the biosynthesis of the acyl side chain of deoxyharringtonine (36) 

and carbon atoms (3-8) of diacid (31) should be derived from leucine. This hypothesis 

was supported by the isolation of labeled 31 by feeding 
14

C leucine (29) to Cephalotaxus 

harringtonia. The latter 
14

C experiment also indicated that diacid 33 lies on the 

biosynthetic pathway to 36.  
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Scheme 1.1.2.2 Acyl Side Chain of Deoxyharringtonine Biosynthesis 
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 The 
14

C labeling experiment also clearly established that the acyl side chain of 

harringtonine is derived in vivo from the acyl side chain of deoxyharringtonine, probably 

by direct oxidative hydroxylation (Scheme 1.1.2.3). The acyl side chain of 

homoharringtonine was predicted to be derived by homologation of the acyl side chain of 

deoxyharringtonine with subsequent oxidative hydroxylation. 

 

Scheme 1.1.2.3 Acyl Side Chains of Harringtonine and Homoharringtonine Biosynthesis 
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1.1.3 Biological Activity of the Cephalezomines 

 Several members of cephalezomine family display potent biological activity. The 

cytotoxicity of cephalezomines A-M and bis-cephalezomines A-E is shown in Table 

1.1.3.
1,2,3

 In general, monomeric cephalezomines display greater potency than the dimeric 

ones. This study also showed that cephalotaxine-type compounds lacking either the side 

chain acid or sugar moiety exhibit weak cytotoxicity.
1
 

 

Table 1.1.3 Cytotoxicity of Cephalezomines 

 

Compound IC50 (µg/mL)

L1210 KB

A 0.067 0.020

B 0.030 0.024

C 0.88 0.078

D 7.6 0.40

E 0.68 0.18

F 0.10 0.084

G 8.0 >30

H 8.6 >30

J 12 5.6

Compound IC50 (µg/mL)

L1210 KB

K 1.2 0.036

L 3.6 0.044

M >30 13

Bis-A 1.9

Bis-B 1.9

Bis-C 2.6

Bis-D 3.1

Bis-E 3.7

 

 

1.2 Cephalezomine A: Structure and Synthesis 

 

1.2.1 Structural Features 

  The structure of cephalezomine A (1) contains a drupacine-type skeleton and an 

acyl side chain (Figure 1.2.1). It is known that drupacine derives from 11-

hydroxycephalotaxine (20).
6
 In terms of reported syntheses towards cephalezomine A (1), 



 7 

the descriptions below will focus on two parts: the acyl side chain and heterocyclic core 

(11-oxidized-cephalotaxine-type skeleton).  

 

Figure 1.2.1 Cephalezomine A Structure Features 

             

O

O

N

O

O

O

OMe
HO

MeO2C

HO
2

1: Cephalezomine A

Acyl side chain

Drupacine-type skeleton

(18 in Figure 1.1.1.2)

 

 

1.2.2 Synthetic Routes to Related Acyl Side Chains 

 In 1973, Weinreb and co-workers reported the synthesis of the acid side chain of 

deoxyharringtonine (Scheme 1.2.2.1).
15

 First, epoxidation of benzylmethylitaconate 41 

by m-CPBA gave epoxide 42. Treatment with an organo-copper reagent prepared from 

isobutyl lithium 43 and cuprous iodide produced tertiary alcohol 44. Finally, 

hydrogenolysis of benzyl ester 44 using Adams’ catalyst produced acid 45. 

 

Scheme 1.2.2.1 Weinreb’s Procedure for the Synthesis of Acid Side Chain 
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(60% yield)
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In 1982, Hudlicky and co-workers reported the synthesis of homoharringtonine 

(23) commencing with cephalotaxine (19).
16

 During the synthesis, they described the 

preparation of acyl side chain (Scheme 1.2.2.2). Ozonolysis of methylcyclohexene 46 

gave an intermediate ketoaldehyde which was subjected to an intramolecular aldol 

condensation, followed by oxidation of the resultant aldehyde to acid 47. Ozonolysis of 

47 gave the ketopyruvate 48. Generation of the acid chloride from substrate 48, followed 

by exposure to cephalotaxine formed cephalotaxine ester 49. This ester was difficult to 

purify by chromatography due to decomposition, therefore no yield was reported. To this 

crude intermediate was added the zinc reagent derived from methyl bromoacetate, 

followed by treatment with MeLi or MeMgBr to produce homoharringtonine (23). 

 

Scheme 1.2.2.2 Hudlicky’s Procedure for the Synthesis of Acid Side Chain 

      

1. O3, Me2S, -78 ºC
2. piperidine/ Et2O

CO2H3. HOAc/ Et2O
4. Ag2O

(four steps: 82% yield)

 O3, Me2S, -78 ºC

CO2H

O O

1. (COCl)2, benzene

2. R, py., DCM O O

R=Cephalotaxine
2. MeLi or MeMgBr, -20 ºC

HO

1. ZnCl2/ K, BrCH2CO2Me

OH

MeO2C

46 47 48

49

23:Homoharringtonine

O

O

O

O
N

OMe

O

O
N

O

OMe
O

 

 

In 2006, as part of reported total synthesis of (-)-deoxyharringtonine (22), Gin 

described the preparation of the acyl side chain (Scheme 1.2.2.3).
17

 Commencing with 
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commercially available D-malic acid 50, acetal 51 was afforded in a two-step procedure. 

Alkylation of 51 followed by acetal opening gave !-hydroxy acid 52. Lactone 53 was 

produced via Yamaguchi lactonization
18 

followed by alkene hydrogenation and removal 

of benzyl group. Coupling of 53 with cephalotaxine via the Yamaguchi protocol yielded 

ester 54. Methanolysis concluded the synthesis of (-)-deoxyharringtonine (22). 

 

Scheme 1.2.2.3 Gin’s Procedure for the Synthesis of Acid Side Chain 
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1.2.3 Synthetic Routes to the Tetracyclic Core of Cephalezomine A 

 The significant anticancer activities and intriguing chemical structures have made 

the Cephalotaxus alkaloids attractive targets for synthetic chemists. Since the report of 

the first total synthesis of cephalotaxine by Weinreb and Semmelhack in 1972,
19,20

 a 

number of innovative synthetic strategies have been developed towards the synthesis of 

the cephalotaxine core ring system. One of the most commonly employed strategic 
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approaches involves forming the B-ring of cephalezomine A core ring system (55) from 

an N-spirocyclic intermediate (56, Scheme 1.2.3.1).  

 

Scheme 1.2.3.1 B Ring Closure of a N-Spiro Cyclic Precursor 

                               

O

O

NA B

C

D

O

O

NA

C

D

56: N-Spiro intermediate55: Cephalezomine A core ring

X

 

 

Typical B ring closure approaches include Friedel-Crafts- and Heck-type cyclization 

strategies. 

Kuehne’s total synthesis of dl-cephalotaxine: Lactam 57 was ring-contracted to 

the spiro C, D ring of 58 in the presence of Pb(OAc)4 (Scheme 1.2.3.2). Further 

transformation of 58 furnished acetate 59 which was utilized as substrate in the illustrated 

palladium mediated coupling to furnish the B-ring of 60.
21

 

 

Scheme 1.2.3.2 Friedel-Crafts Cyclization for B Ring Closure: Kuehne’s Work           
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Sha’s approach towards total synthesis of dl-cephalotaxine: An intramolecular 

cyclization of 61 in the presence of PTSA gave the spiro C, D ring of 62 (Scheme 
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1.2.3.3). Ozonolysis, followed by deprotection produced 63, which, upon alkylation, 

provided cyclization precursor 64. Friedel-Crafts cyclization in the presence of 

polyphosphoric acid completed the construction of 65.
22 

 

Scheme 1.2.3.3 Friedel-Crafts Cyclization for B Ring Closure: Sha’s Work    
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H
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O
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(72% yield)

(56% yield)

61 62 63
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Mori’s total synthesis of (-)-cephalotaxine: Vinyl iodide 66 was cyclized in the 

presence of Me3SiSnBu3 and CsF to form the spirocyclic C, D-ring system in allylic 

alcohol 67 (Scheme 1.2.3.4). The B-ring of 68 was closed by Friedel-Crafts cyclization 

in the presence of polyphosphoric acid.
23

  

 

Scheme 1.2.3.4 Friedel-Crafts Cyclization for B Ring Closure: Mori’s Work    
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Royer’s total synthesis of (-)-cephalotaxine: Expansion of the cyclobutane ring in 

69 under acidic conditions gave ketone 70 which possesses the spirocyclic C, D-ring 

system (Scheme 1.2.3.5). This substrate was further advance to allylic alcohol 71 which 

upon exposure to the Lewis acid SnCl4 underwent B-ring closure to furnish 72.
24

 

 

Scheme 1.2.3.5 Friedel-Crafts Cyclization for B Ring Closure: Royer’s Work    

              

HO
N O
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Li’s formal total synthesis of dl-cephalotaxine: The Li group reported that Friedel-

Crafts type alkylation occurs upon exposure of 72 to TfOH and forms ketone 73 which, 

in five steps can be converted to cephalotaxine (Scheme 1.2.3.6).
25

 

 

Scheme 1.2.3.6 Friedel-Crafts Cyclization for B Ring Closure: Li’s Work    

         

MeO

MeO
N

O

TfOH

MeO
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N

O

(93% yield)

73

5 steps
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72  

 

Hayes’s first formal total synthesis of (-)-cephalotaxine: Hayes reported that 

treatment of 74 with deprotonated TMSCHN2 furnishes carbene intermediate 75, which 

undergoes intramolecular C-H insertion to give the spirocyclic C, D-ring system in 76 
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(Scheme 1.2.3.7). Further transformation of 76 produces an allylic alcohol (78) which, 

upon exposure to Lewis acid SnCl4 undergoes B-ring closure to produce 68.
26 

 

Scheme 1.2.3.7 Friedel-Crafts Cyclization for B Ring Closure: Hayes’s Work    
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Hayes’s second formal total synthesis of (-)-cephalotaxine: An intramolecular C-

H insertion of the vinyl carbene derived from vinyl chloride 78 produced the spirocyclic 

ring of 79 (Scheme 1.2.3.8). Iodination of 79 provided 80 and set the stage for an 

intramolecular Heck cyclization that furnished tetracycle 81.
27

  

 

Scheme 1.2.3.8 Heck Cyclization for B Ring Closure: Hayes’s Work  
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Tietze’s formal total synthesis of (-)-cephalotaxine: Tietze reported that an 

intramolecular amination of the !-allyl intermediate derived from allylic acetate 83 

produces the spirocyclic C, D-ring of 84 (Scheme 1.2.3.9). An intramolecular Heck 

cyclization was then used to close the B-ring and form 82.
28

  

 

Scheme 1.2.3.9 Heck Cyclization for B Ring Closure: Tietze’s Work  
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Stoltz’s total synthesis of (-)-cephalotaxine and (-)-drupacine: Stoltz applied an 

intramolecular Heck cyclization to advance 85 to intermediate 86. One of the unique 

features of the Stoltz synthesis is the inclusion of alcohol at C-11 which allows for 

eventual access to both the cephalotaxine and drupacine ring systems (Scheme 

1.2.3.10).
29 

 

Scheme 1.2.3.10 Heck Cyclization for B Ring Closure: Stoltz’s Work  
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Semmelhack’s total synthesis of dl-cephalotaxine: Semmelhack reported that the 

B-ring in intermediate 87 could be produced upon exposure of 88 to a variety of reaction 

conditions (Scheme 1.2.3.11). The best yield was achieved by photo-SRN
1
 reaction in the 

presence of base.
31 

 

Scheme 1.2.3.11 Semmelhack’s synthesis  
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Conditions:
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B. Base, Ni(0), (30% yield)
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In addition to approaches that assemble the spirocyclic C, D-ring system prior to 

formation of the B-ring, there are, several reports of strategies leading to the 

cephalotaxine ring system wherein construction of the spirocycle occurs at a later stage. 

These include: 

Wienreb’s total synthesis of dl-cephalotaxine: In this synthesis, Friedel-Crafts 

type reaction of aldehyde 90 produced enamine 91 (Scheme 1.2.3.12). In a subsequent 4-

steps 91 was converted to diketone 92 which upon exposure to Mg(OMe)2 underwent 

Nazarov cyclization to furnish 93.
 19, 30 
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Scheme 1.2.3.12 Weinreb’s Synthesis  
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 Hanaoka’s total synthesis of dl-cephalotaxine: Hanaoka reported that exposure of 

carboxylic acid 94 to polyphosphoric acid induced a Friedel-Crafts acylation which 

furnished ketone 95 (Scheme 1.2.3.13). Conversion of 95 in 3-steps to vinyl chloride 96 

set the stage for acid mediated cyclization to furnish 97.
32 

 

Scheme 1.2.3.13 Hanaoka’s synthesis  
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 Fuchs’ total synthesis of dl-cephalotaxine and drupacine:
 

Oxidation of 

hydroxamic acid 98 to the corresponding acylnitroso species followed by intramolecular 
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hetero Diels-Alder reaction formed 99. Intermediate 99 was converted to cephalotaxine 

and drupacine in 10 and 9 steps respectively. (Scheme 1.2.3.14).
33

 

 

Scheme 1.2.3.14 Fuchs’ Synthesis 
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 Bryce’s approach towards the total synthesis of dl-cephalotaxine: Lactam-

aldehyde 100 was cyclized to hemiaminal 102 by treatment with DIBAL-H. The reaction 

was believed to occur through an aluminum complex, which is either monocoordinated 

(to the aldehyde oxygen) or chelated (to both the aldehyde and lactam oxygens). Such a 

complex (e.g., 101) would activate the carbonyl group of the aldehyde to nucleophilic 

attack by the lactam nitrogen. (Scheme 1.2.3.15).
34 

 

Scheme 1.2.3.15 Bryce’s Approach 
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 Mariano’s total synthesis of dl-cephalotaxine: Macrocyclization of 103 gave 

intermediate 104 (Scheme 1.2.3.16). Hydrogenolysis to remove the benzyl protecting 
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group, was followed by transannular conjugate addition of the free amine to provide 

ketone 93.
35 

 

Scheme 1.2.3.16 Mariano’s Synthesis 
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Nagasaka’ formal total synthesis of dl-cephalotaxine: In Nagasaka’s formal 

synthesis it was reported that treatment of isoindoquinoline 105 with SO2Cl2 produces 

ring-expansion product 106 (Scheme 1.2.3.17). Further advancement of 106 furnished "-

keto ester 107 which, upon exposure to TiCl4 and NIS (N-iodosuccinimde) undergoes 

ring-closure to 108.
36

 

 

Scheme 1.2.3.17 Nagasaka’s Synthesis 
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Li’s formal total synthesis of dl-cephalotaxine: In an interesting ring- 

expansion/contraction approach, Li reported that exposure of intermediate 109 to zinc 

and acetic acid rearranged product 110 (Scheme 1.2.3.18).
37

 

 

Scheme 1.2.3.18 Li’s Synthesis 
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 Ishibashi’s total synthesis of (-)-cephalotaxine: In Ishibashi’s total synthesis, a 

radical cascade cyclization was applied to transform aryl iodide 111 to 112 wherein 

construction of the B and C rings has occurred via a sequential 7-endo, 5-endo-trig 

cyclization (Scheme 1.2.3.19).
38 

 

Scheme 1.2.3.19 Ishibashi’s Synthesis 
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 Gin’s total synthesis of (-)-cephalotaxine and (-)-dehydroxyharringtonine: Gin 

reported that the B-ring found in intermediate 113 can be produced from aziridine 114 via 

[3,3]-rearrangement (Scheme 1.2.3.20). Subsequent alkylation with TMSCH2I sets the 

stage for a [2+3] cyclization with vinyl sulfonate to complete the construction of the C 

ring in substrate 115.
39
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Scheme 1.2.3.20 Gin’s Synthesis 
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1.3 Conclusions 

 Many research groups have initiated synthetic studies of the Cephalotaxus 

alkaloids due to their significant biological activities and interesting chemical structures. 

From the investigation of these compact molecular templates, new chemical 

transformations and methodologies have been developed.  
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Chapter 2 

 

Approach Towards the Total Synthesis of Cephalezomine A  

Given that cephalezomine A has dramatic biological activities and is isolated in 

low yield
1
 coupled with the fact that it has yet to succumb to total synthesis, led us to 

target this fascinating and challenging natural product.  

 

2.1 Retrosynthetic Analysis I 

 The retrosynthetic analysis of cephalezomine A (1) is outlined in Scheme 2.1.1. 

Retrosynthetic cleavage of the ester bond in cephalezomine A (1) furnishes the acyl side 

chain (150) and drupacine (18). It is known that drupacine (18) can be prepared from 11-

hydroxycephelotaxine (20) in one step.
2 
In our retro synthetic analysis, 11- 

hydroxycephelotaxine (20) derives from the cyclization of substrate 152. In the forward 

sense, exposure of dienone 152 to Lewis Acid conditions is envisioned to furnish cationic 

intermediate 151 via a Nazarov cylization. This intermediate could, in turn, undergo a 

Friedel- Crafts type cyclization to form 11-hydroxycephelotaxine (20). Disubstituted 

dienone 152 is seen as arising from 153 by nucleophilic addition of an !- lithio vinyl 

ether to Weinreb amide 153 which will derive from the union of epoxide 154 and 

vinylogous urea 155. 
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Scheme 2.1.1 Retrosynthetic Analysis I 
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2.2 Synthesis of Dienone 152 

 

2.2.1 Coupling of an Epoxide and a Vinylogous Amide  

 One of the coupling precursors, epoxide 154 was prepared from piperonal (156) 

in good yield by a Johnson-Corey-Chaykovsky reaction
 
(Scheme 2.2.1).

3
 The remaining 

coupling partner vinylogous urea 155 was prepared by treatment of 2-methyl-1-pyrroline 

(157) with LDA, followed by addition of dimethylcarbamic chloride.  Attempts to couple 

epoxide 154 and vinylogous amide 155 were conducted under numerous conditions. 
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Unfortunately, no desired coupling product 158 was observed and starting material was 

either recovered or decomposed. The poor nucleophile character of the vinylogous urea 

nitrogen was not unexpected and similar reactivity was observed upon exposure of 

pyrrolidin-2-one (159) to epoxide 154. Given that the nucleophile (vinylogous urea 155) 

was seen as the least variable substrate, we next explored alteration of the electrophile. 

 

Scheme 2.2.1 Coupling of Epoxide and Vinylogous amide 
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2.2.2 Coupling of an !-Bromo Ketone and a Vinylogous Urea 

 In considering other possible eletrophiles, we first explored !-bromo ketone 162. 

The preparation of 162 began with addition of MeMgBr to piperonal (156) and oxidation 

of newly formed secondary alcohol to ketone 161 (Scheme 2.2.2). Treatment of ketone 

161 with bromine produced !-bromo ketone 162 in excellent yield
4
 and the latter could 
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be readily protected as its ethylene glycol acetal to provide an additional electrophile 

substrate 163. 

 

Scheme 2.2.2 Preparation of Bromo Ketone  
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 As illustrated in Table 2.2.2, our efforts to engage vinylogous urea 155 with the 

more reactive !-bromo ketone 162 were unsuccessful. Under basic conditions (K2CO3, 

Cs2CO3, n-BuLi), bromo ketone 162 decomposed and vinylogous urea 155 was 

recovered. Under milder conditions (EtOH or Et3N), both of the starting materials were 

recovered. Given these results, we turned to another electrophile: bromide 163, which is 

more stable under harsh conditions; however, only starting material was recovered upon 

exposure to either mild or strong basic conditions. Although less desirable, at this stage 

addressing the nucleophilicity of the vinylogous urea 155 became the next step. 
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Table 2.2.2 Coupling Conditions of Bromo Ketone and Vinylogous Urea 

  

O

O

X

Br conditions

+ N
H

O

N

155

O

O

N

X

N

O

162, X= -O-
163, X=-OCH2CH2O-

164, X= -O-
165, X=-OCH2CH2O-

conditions results

K2CO3, DMF or MeCN, r.t.
162, decomposed;
155, recovered

Cs2CO3,DMF or MeCN, r.t.
162, decomposed;
155, recovered

NaH,THF, r.t.
162, decomposed;
155, recovered

KOH, n-Bu4NI, MeCN or THF, r.t
162, decomposed;
155, recovered

n-BuLi, -78ºC, THF
162, decomposed;
155, recovered

n-BuLi, -78ºC to r.t., THF
162, decomposed;
155, decomposed

EtOH, r.t.
162, recovered;  
155, recovered

Et3N, DCM, r.t.
162, recovered;
155, recovered

AgOAc,or AgOTf or AgNO3,
 Tol/THF or MeCN, r.t

162, decomposed;
155, recovered

K2CO3, DMF, r.t.
163, recovered;  
155, recovered

n-BuLi, -78ºC to r.t., THF
163, recovered;  
155, recovered

 

 

2.2.3 Coupling of an !-Bromo Ketone with an Amide 

 Since pyrrolidin-2-one (159) has been reported to serve effectively as a 

nucleophile in coupling reactions with !-halogenated ketones at room temperature,
5
 we 

decided to explore its coupling with bromo ketone 162. From a retrosynthetic perspective 

(Scheme 2.2.3.1), this change to a less functionalized nucleophile requires further 

manipulation of vinylogous urea 153 to produce requisite dienone 152. To this end, it was 
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envisioned that an Eschenmoser coupling of !-halo amide 166 and thiolactam 167 would 

deliver intermediate 153 via an addition-elimination process. 

 

Scheme 2.2.3.1 Revised Coupling Retrosynthetic Analysis 
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In practice, initial studies on the coupling of 162 and pyrrolidin-2-one (159) to 

yield 168 using NaH were modestly successful (56% yield). Further study revealed that 

using 2-methoxy-1-pyrroline (169)
5
 as nucleophile instead of amide 159 results in a 

significantly improved yield.  Protection of 168 using ethylene glycol gave 170. 

 

 

 

 

 

 

 

 



 35 

Scheme 2.2.3.2 Coupling of Bromo Ketone with Amide 
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Having set the stage for the planned coupling (see 170 to 153 in Scheme 2.2.3.3), 

we first explored the use of lactam 171 to establish our ability to effect a coupling of !-

halo amide 166.  

 

Scheme 2.2.3.3 Proposed Model Study on the Coupling of Substrate 170 with 166 
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 In preliminary studies we explored the direct coupling of 171 to form the 

vinylogous urea 172 or amide 175 (Scheme 2.2.3.4). Different nucleophiles, such as 

depronated N-methoxy-N-methylacetamide 173 and silyl enol ether 174,
6
 were 

investigated. However, no desired product was observed. Coupling also failed when the 

corresponding ammonium salt 176, which was produced by methylation of amide 171. 

 

Scheme 2.2.3.4 Addition and Elimination for the Coupling Study 
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 We next turned to the Eschenmoser Coupling
9
 and set the stage for this coupling 

via the conversion of lactam 171 to thiolactam 177 by treatment with Lawesson’s 

reagent.
7
 Subsequent coupling of 177 with either an !-bromo amide

8
 
 
or ester produced 

the coupling  product (e.g. amide 179 or ester 180 , Scheme 2.2.3.5). However, the 

product 179 was difficult to separate from triphenyl phosophine sulfide, which was 

produced in the coupling reaction. 
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Scheme 2.2.3.5 Model Study on Eschenmoser Coupling  
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 Further optimization of the coupling (Table 2.2.3) identified triethyl phosphite as 

the best phosphorus source; Eschenmoser coupling under these conditions proceeds in 

higher yield and purification of the desired product is greatly simplified. 

 

Table 2.2.3 Optimized Eschenmoser Coupling for Model 
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 As illustrated in Scheme 2.2.3.6, the conditions developed in our model study 

proceeded effectively in the real system. In the event, conversion of lactam 170 to 

thiolactam 167, followed by Eschenmoser coupling gave precursor 182 in excellent yield. 
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Interestingly, purification of this product was easily achieved even when PPh3 was 

employed. 

 

Scheme 2.2.3.6 Eschenmoser Coupling for Real System 
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2.2.4 Efforts to Access Dienone 152 from Weinreb Amide 182 

 Our exploration into the transformation of Weinreb amide 153 to dienone 152 (as 

illustrated in the retrosynthetic analysis scheme 2.2.3.1) began with model substrate 179. 

Exposure of 179 to more than 3 equivalent of lithio vinyl ether
10

 or vinyl magnesium 

bromide
11

 resulted only in isolation of recovered starting material (Table 2.2.4). 
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Table 2.2.4 Nucleophilic Addition Failure in Model for Synthesis of Dienone 
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 Unfortunately, as illustrated in Scheme 2.2.4, similar results were obtained in the 

real system. Since the difficult nucleophilic addition was likely due the decreased 

reactivity of the vinylogous urea, we turned to an alternative wherein  the vinyl group 

would be introduced prior to Eschenmoser coupling. 

 

Scheme 2.2.4 Nucleophilic Addition Failure in Real System for Synthesis of Dienone 
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2.2.5 Changing the Order of Events: Eschenmoser Coupling of Enones 

 Since Eschenmoser Coupling with !-halogenated amides or esters has been 

reported, we were optimistic about coupling the !-halogenated enone 187 with 

thiolactam 167 to form dienone 152 (Scheme 2.2.5.1).  

 

Scheme 2.2.5.1 Revised Coupling Retrosynthetic Analysis 
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Implementation of this idea required preparation of the !-halo ketone 187. To this 

end, our first approach was to attempt the nucleophilic addition of a lithium, magnesium 

or zinc, vinyl metal species to bromoacetyl bromide (188, Scheme 2.2.5.2). 

Unfortunately, no desired product (190) was obtained. 

 

Scheme 2.2.5.2 Approach to Bromo Enone by Vinyl Nucleophile Addition 
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 Turning to an alternative approach involving bromination of an intact enone system 

we were delighted to find several examples of in the literature describing the bromination 

of methyl vinyl ketones. For example, Li demonstrated that vinyl ketone 191 furnished 
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bromide 193 upon treatment with tri[pyrrolidine-2-one] hydrobromide (192) at -78 ºC 

(Scheme 2.2.5.3).
12

 Given our need for a terminal alkenyl ketone, we explored Li’s 

conditions on methyl vinyl ketone 194; however, the undesired dibromide 196 was the 

only observed product. 

 

Scheme 2.2.5.3 Approach to Bromo Enone via Bromination Process I 
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 In a different report, Herman described that treatment of TMS silyl enol ether 197 

with NBS produced bromination product 193 (Scheme 2.2.5.4).
13 

Exploring these 

conditions on TMS silyl enol ether 194, we observed only starting material 

decomposition and no desired product. 
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Scheme 2.2.5.4 Approach to Bromo Enone via Bromination Process II 
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 A more relevant example was found in the work of Danishefsky who reported that 

addition of ethylene (198) to chloroacetyl chloride (199) followed by elimination 

produced product 200 in good yield (Scheme 2.2.5.5).
 14

 In repeating this experiments, 

we did obtain some of the desired product 200.  However, the yield was poor. 

 

Scheme 2.2.5.5 Approach to Chloro Enone via Friedel –Crafts Addition 
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In a more recent report, Ram described that the treatment of allylic alcohol 201 

with cuprous chloride to give !-chloro enone 202 in good yield (Scheme 2.2.5.6).
15 

The 

mechanism is believed to involve a copper(I) carbenoid  mediated 1,2-H shift process. 

Since our coupling target was !-chloro alkoxy-enone 209 or 210, the exploration of 
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Ram’s procedure requires the preparation of alkoxy-allylic alcohol 205 or 206 as 

illustrated in Scheme 2.2.5.6.  Addition of litho vinyl ether 204 to DMF (203) produced 

aldehyde 205 or 206, which upon exposure to chloroform under basic conditions 

furnished the corresponding allylic alcohol 207 or 208 in good yield. At this point we 

were delighted to find that the application of Ram’s procedure to 207 or 208 furnished 

the desired !-Chloro alkoxy-enone 209 or 210 in good yield. Since ethoxyl enone 209 is 

volatile at room temperature, we employed butoxyl enone 210 in subsequent studies. 

 

Scheme 2.2.5.6 Synthesis of Chloro Enone via Copper(I) Carbenoid 1,2 H Shift Process 
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 Impressively, Eschenmoser coupling of 167 with 210 gave the desired key 

precursor 211 and set the stage for investigation of the Nazarov cyclization (Scheme 

2.2.5.7). 
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Scheme 2.2.5.7 Eschenmoser Coupling of 102 with 120 
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2.3 Nazarov Cyclization of Dienone 211 

Recent reports by West
16 

describing the successful tandem Nazarov cyclization/ 

Friedel-Crafts reaction of heavily substituted dienone 213 left us encouraged at prospects 

of employing dienone 211 in a similar reaction (Scheme 2.3.1).  We were additionally 

encouraged by recent studies from Frontier describing the benefits of electron donating 

substituents.
17

 Unfortunately, despite similarity to West’s system and presence of 

additional electron donating substituent’s, the Nazarov cyclization failed for our substrate 

211 under standard Lewis acid conditions (TiCl4 or BF3•OEt2 at room temperature). At 

lower temperature, only starting material was observed and when the temperature was 

increased to 0 ºC, NMR monitoring indicated only decomposition. Given that West’s 

substrates lack both alkoxy and N-substituted functional groups, we decided to 

investigate the Nazarov cyclization on model systems wherein these two dienone 

substituents are present individually. 
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Scheme 2.3.1 Nazarov Cylization Studies on the Real System 

   

West's work:

O

O

O R1

R2

TiCl4

DCM,-78 ºC, 5min

O

O

O

H

R2

R1

R1=Me, R2=H , 99% yield
R1=Et, R2=Me, 99% yield
R1=R2=(CH2)4.,99% yield

212 213

O

O

N
OO

OBuO

211

TiCl4, or BF3•OEt2

O

O
N

OO

O

OBu-n

214

-78 ºC to r.t.

 

 

To explore the effects of an alkoxy substituent, model system dienone 217 was 

prepared by addition of lithio vinyl ether to the Weinreb amide derived from benzoyl 

chloride (Scheme 2.3.2). Additionally, model system 220 was prepared by addition of 

lithiated vinyl ether to piperine (219). Interestingly, both model dienone 217 and 220 

underwent smooth cyclization under Lewis acid conditions. These results indicated that 

alkoxy substituents in the !-position were not deleterious to Nazarov cyclization. 

Noteworthy was the decrease in yield for the cyclization of 220 compared to 217. Based 

on studies by Sharpen this was expected.
18
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Scheme 2.3.2 Nazarov Cylization Model Test for Alkoxy Group 
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 To investigate the effect of the vinylogous amide substituent on Nazarov 

cyclization, we prepared model 175 (Scheme 2.3.3). In a first attempt to this end, 

treatment of acryloyl chloride with lithiated 2-methyl-1-pyrroline (157) gave undesired 

product amide 224 via N-acylation. In a second attempt, acryloyl chloride (225) was 

pretreated with N, O-dimethylhydroxylamine hydrochloride (226) to yield Weinreb 

amide 227.With this substrate, addition of lithiated 2-methyl-1-pyrroline furnished the 

desired vinylogous amide 223 which, upon, methylation delivered dienone 175. 
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Scheme 2.3.3 Synthesis Model with N-Substituted Group for Nazarov Cyclization Test 
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With the model substrate dienone 175 in hand, a variety of conditions were 

explored in order to produce spiro ketone 228 by Nazarov cyclization. Conditions include 

Lewis acid: SiO2,
19a(7)

 AlCl3,
18

 Et2AlCl or Me3Al,
20(1)

 TiCl4 or BF3•OEt2 ,
19a(8)

 

PdCl2(MeCN)2 or Pd(OAc)2 ,
19a(3)

 Sc(OTf)3 ,
19a(9)

 FeCl3 ,
19a(1),a(2)

 Cu(OTf)2 ,
19a(4),

 

Yb(OTf)3 
19a(6)

 TBSOTf ;
19a(5)

 TFA
19b(1),20(1),(2)

 and HCOOH/H3PO4 .
19b(1),(2)

 

Unfortunately, under all of the conditions no desired product was observed. Starting 

material was recovered or  decomposed (Table 2.3). This result led us to believe that the 

vinylogous amide substituent was the culprit in our failed Nazarov cylization. 
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Table 2.3 Nazarov Cyclization Test with N-Substituted Model 175 

                    

N O

175

Conditions

N

O

228

conditions results

SiO2, r.t. S.M. recovered

AlCl3, 0º or r.t. or reflux
S.M. recovered;
decomposed (reflux)

Et2AlCl or Me3Al, -78 ºC to r.t. S.M. recovered

TiCl4 or BF3•OEt3, -78ºC to r.t. decomposed .

PdCl2(MeCN)2 or Pd(OAc)2, r.t. S.M. recovered

Sc(OTf)3 decomposed

FeCl3 decomposed

Cu(OTf)2, r.t. or 50º S.M. recovered

Yb(OTf)3 S.M. recovered

TBSOTf, -78º to r.t. S.M. recovered

TFA, r.t. S.M. recovered

HCOOH, H3PO4 decomposed
 

 

 As a third model system we prepared a dienone containing both of the alkoxy and 

vinylogous amide substituents. To prepare dienone 231, dimethyl carbamic chloride 

(229) was treated with lithiated vinyl ether, followed by addition of lithiated 2-methyl-1-

pyrroline.  Methylation of intermediate 230 gave desired dienone 231 (scheme 2.3.4). 

Nazarov cyclization was only conducted under the TiCl4 conditions that proved 

successful for dienone 217. Unfortunately, only the diketone 233 was produced and none 

of the spiro product 232 was observed. 
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Scheme 2.3.4 Nazarov Cyclization Test with O, N-Substituted Model 231 
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Results from the above studies indicated that altering the electronic nature of  the 

amine might impact the Nazarov cyclization. To investigate this possibility, it was 

decided to attempt converting the vinylogous amide to a vinylogous imide prior to 

Nazarov cyclization. Access to this new Nazarov substrate (235) was gained simple 

through a simple peptide coupling of 234 and 230  (Scheme 2.3.5).
 21

 

 

Scheme 2.3.5 Preparation of Deactivated N-Substituted Dienone 
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Unfortunately, under Lewis acid promoted Nazarov cyclization conditions 235 

was found to deliver none of the desired product 236. Only decomposition of the starting 

material was observed (Scheme 2.3.6). Based on these results the Nazarov cyclization 

route was abandoned and alternatives were considered. 

 

Scheme 2.3.6 Nazarov Cyclization Test with Deactivated N-Substituted Dienone 235 
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2.4 Considering an Alternative Strategy 

 The failure of the Nazarov cyclization approach coupled with recent success with 

tandem radical reactions in the Wood group
22

 led us to consider an alternative approach 

(Scheme 2.4.1). As illustrated in retrosynthetic fashion, this approach relies on the same 

bond construction as the Nazarov cyclization strategy; however in this radical based 

approach one can view bond formation as moving from the aromatic moiety to the 

vinylogous amide system (substrate 239 to 238 to 237). Importantly, although the 

underlying chemistry is quite different, the substrates required for the radical approach 

are fairly similar to those employed in our studies of the Nazarov cyclization. Thus great 

advantage could be taken of previously developed chemistry. 
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Scheme 2.4.1 Alternative Strategy: Radical Cyclization Approach 
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In the forward sense, preparation of the radical cyclization substrate began with 

bromination of piperonal (Scheme 2.4.2). The desired bromide 240 was taken through a 

7-step sequence similar to that employed for substrate 211. In the end, substrate 247 and 

248 were accessed in good yield. 
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Scheme 2.4.2 Preparation for Radical Cyclization   
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With radical cyclization substrates 247 and 248 in hand, we were disappointed to 

find that in the presence of Bu3SnH/ AIBN or SmI2 neither gave the desired product 249 

(Scheme 2.4.2). Under the Bu3SnH/AIBN conditions,
22,23

 reductive debromination 

products were observed whereas under the SmI2 conditions,
22,24

  the starting materials 

were found to  decompose. 

 

Scheme 2.4.2 Radical Cyclization Approach 
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2.5 Conclusions 

 Efforts to assemble the core structure found in 11-hydroxycephalotaxine (20) 

using either a tandem Nazarov/ Friedel-Crafts cyclization or radical cascade sequence 

failed. Despite the failure of the key steps, considerable chemistry was developed in the 

course of the assembling the requisite intermediates. 
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2.6 Experimental Section 

 

2.6.1 Materials and Methods 

General. Unless otherwise stated, reactions were performed under a nitrogen atmosphere 

using freshly dried solvents. Tetrahydrofuran (THF) was dried either by distillation from 

sodium/benzophenone or by passing through activated alumina columns. Methylene 

chloride (DCM), diethyl ether (Et2O), benzene (PhH), toluene (Tol) and acetonitrile 

(MeCN) were dried by passing through activated alumina columns. Dimethylformamide 

(DMF) was dried over activated molecular sieves or by passing through activated 

alumina columns.  MeOH was distilled over magnesium oxide. All other commercially 

obtained reagents were used as received.  All reactions were monitored by thin-layer 

chromatography using EMD/Merck silica gel 60 F254 pre-coated plates (0.25 mm).  

Flash chromatography was performed with indicated solvents using silica gel (particle 

size 0.032-0.063) purchased from Silicycle. Microwave experiments were performed 

using a Biotage Initiator" or CEM Discover microwave reactor.  
1
H NMR spectra were 

recorded at 500 MHz, 400 MHz or 300 MHz using a Bruker AM-500, Bruker Avance 

DPX-500, Bruker AM-400, Varian Inova 400, Varian Inova 300 or Varian Mercury 

Inova 300 instrument. 
13

C NMR spectra were recorded at 125 MHz, 100 or 75 MHz 

using a Bruker AM-500, Bruker Avance DPX-500, Bruker AM-400, Varian Inova 400, 

Varian Inova 300 or Varian Mercury Inova 300 instrument. Chemical shifts are reported 

relative to internal chloroform (
1
H, ! = 7.26, 

13
C, ! = 77.1) as indicated.  Splitting 

patterns are reported as such, app = apparent, br = broad, s = singlet, d = doublet, t = 

triplet, q = quartet, quin = quintet, m = multiplet.  Infrared spectra were recorded on a 
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Nicolet Avatar 320 FT-IR. High-resolution mass spectra were acquired at the Colorado 

State University CIF using an Agilent 6210 TOF LCMS. 

 

2.6.2 Preparative Procedures 

Preparation of vinylogous amide 155 

         

N

LDA, ClC(O)NMe2
N
H

O

N(65 % yield)

157 155

 

  

 To a solution of diisopropylamine (280 µL, 2 mmol, 2.0 equiv.) in THF (1mL) at 

0 ºC was added n-BuLi (1.25 mL, 2 mmol, 2.0 equiv., 1.6 M hexanes solution) dropwise 

over 5 minutes. The resultant mixture was stirred at 0 ºC for 10 minutes and then cooled 

to -78 ºC. To this LDA solution was added 2-methyl-pyrroline (157) (95 µL, 1.00 mmol, 

1 equiv.). The solution was stirred for 1 hour. To this mixture was added 

dimethylcarbamic chloride (180 µL, 2 mmol, 2 equiv.). The reaction was stirred for three 

hours at -78 ºC and quenched by H2O (2 mL). The layers were separated and aqueous 

layer was washed with EtOAc (2 # 2 mL). The combined organic layers were washed 

with brine (4 mL) and dried over Na2SO4, filtered and concentrated under reduced 

pressure. The residue was loaded onto silica and purified by column chromatography 

(gradient elution, 20%- 50% EtOAc/ Hexanes) to yield 155 (101mg, 65%) as brown oil. 

 Vinylogous amide 155: FTIR(NaCl/ thin film) 3343, 2925, 2877, 2361, 2339, 

1624, 1567, 1516, 1369, 1310, 1294, 1144,1059, 762, 685 cm
-1

; 
1
H NMR (400 MHz, 

CDCl3) $ 8.62- 8.49 (m, 1H), 4.66 (s, 1H), 3.43 (t, J=6.8 Hz, 2H), 2.90 (s, 6H), 2.53 (t, 
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J=7.7 Hz, 2H), 1.89 (dd, J=7.3, 14.5 Hz, 2H); 
13

C NMR (100 MHz, CDCl3) $ 171.3, 

164.1, 76.0, 46.8, 36.4, 32.5, 22.1;  HRMS (TOF LCMS) calc’d for C8H14N2O [M+H] 

155.1184, found 155.1178. 

 

Preparation of amide 168 

       

+O

O

O

Br

N
OMe

MeCN, 60 ºC

(quant. yield)

O

O

O

N

O

162 168169  

 

 To a solution of 162 (18.8 g, 49.1 mmol, 1 equiv.) in MeCN (45 mL) was added 

2-Methoxy-1-pyrroline (169) (7.3 g, 73.7 mmol, 1.5 equiv.). The mixture was heated to 

60 ºC and stirred for 2 days.  The reaction was cooled to room temperature and 

concentrated by reducing pressure to yield pure 168 (12.5g) as brown oil. 

 Amide 168: FTIR (NaCl/ thin film) 2911, 1677, 1604, 1504, 1445, 1365, 1289, 

1255, 1141, 1110, 1036, 931, 886 cm
-1

; 
1
H NMR (400 MHz, CDCl3) $ 7.56 (dd, J=1.8, 

8.2 Hz, 1H), 7.41 (d, J=1.6 Hz, 1H), 6.85 (d, J=8.2 Hz, 1H), 6.05 (s, 2H), 6.64 (s, 2H), 

3.49 (t, J=6.9 Hz, 2H), 2.47 (t, J=7.8 Hz, 2H), 2.19-2.01 (m, 2H); 
13

C NMR (100 MHz, 

CDCl3) $ 191.9, 175.9, 152.4, 148.4, 129.8, 124.6, 108.2, 107.8, 102.1, 48.9, 48.0, 30.5, 

18.2; HRMS (TOF LCMS) calc’d for C13H14NO4 [M+H] 248.0923, found 248.0922. 
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Preparation of amide 170 

          

O

O

O

N

O

168

 (quant. yield)

HOCH2CH2OH, PTSA

Benzene, relux
O

O

N

O

OO

170  

 

To a solution of 168 (1.8 g, 7.28 mmol, 1 equiv.) in Benzene (125 mL) was added 

ethyl glycol (4.1 mL, 73.3 mmol, 10 equiv.) and p-Toluenesulfonic acid (180mg, 1.05 

mmol, 0.14 equiv.). The mixture was heated to reflux and stirred for overnight.  The 

mixture was cooled to room temperature and washed by saturated aqueous NaHCO3 (2 # 

20 mL). The organic layer was dried by Na2SO4, filtered through Celite and concentrated 

by reducing pressure to yield pure 170 (2.2g) as brown solid. 

 Amide 170: FTIR (NaCl/ thin film) 2892, 1686, 1488, 1437, 1248, 1175, 1103, 

1036, 1000, 932, 812 cm
-1

; 
1
H NMR (400 MHz, CDCl3) $ 6.98 (dd, J=1.2, 7.2 Hz, 1H), 

6.97 (d, J=0.7 Hz, 1H), 6.76 (d, J=7.4 Hz, 1H), 5.95 (s, 2H), 4.02 (t, J=6.9 Hz, 2H), 3.80 

(t, J=6.5 Hz, 2H), 3.62 (s, 2H), 3.45 (t, J=6.9 Hz, 2H), 2.29 (t, J=8.0, 2H), 1.98-1.87 (m, 

2H); 
13

C NMR (100 MHz, CDCl3) $ 175.5, 147.8, 147.7, 134.3, 119.7, 109.4, 108.0, 

106.8, 101.2, 64.8, 49.8, 49.0, 30.8, 18.6; HRMS (TOF LCMS) calc’d for C15H18NO5 

[M+H] 292.1185, found 292.1178. 
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Preparation of vinylogous amide 180 

                 

O

O
Br

PPh3, Et3N, DCM, r.t.

N

O
O

N
S

177 48% 180

, MeCN
178b

 

 

 To a solution of 177 (230 mg, 2 mmol, 1 equiv.) in MeCN (800 µL) was added 

methyl 2-bromoacetate (178b) (38 µL, 4 mmol, 2 equiv.) at room temperature. The 

mixture was stirred for 1 day and was concentrated by reducing pressure. The residue 

was dissolved in DCM (800 µL) and was added Et3N (340 µL, 2.4 mmol, 1.2 equiv.), 

PPh3 (630mg, 2.4 mmol, 1.2 equiv.). The mixture was stirred for overnight and filtered 

through Celite, concentrated by reducing pressure. The residue was loaded onto silica and 

purified by column chromatography (gradient elution, 20%- 50% EtOAc/ Hexanes) to 

yield 180 (150 mg, 48%) as yellow oil. 

Vinylogous Amide 180: FTIR (NaCl/ thin film) 2969, 2947, 2883, 1675, 1582, 

1456, 1456, 1412, 1375, 1298, 1243, 1135, 1108, 1054, 980, 908, 778 cm
-1

; 
1
H NMR 

(400 MHz, CDCl3) $ 4.46 (s, 1H), 3.61 (d, J=2.4 Hz, 3H), 3.37 (td, J=1.8, 7.8 Hz, 2H), 

3.13 (td, J=1.8, 7.8 Hz, 2H), 3.79 (d, J=1.9 Hz, 3H), 1.99-1.89 (m, 2H); 
13

C NMR (100 

MHz, CDCl3) $ 169.8, 165.8, 77.2, 54.5, 50.0, 33.2, 32.5, 21.0; HRMS (TOF LCMS) 

calc’d for C8H14NO2 [M+H] 156.1025, found 156.1020. 
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Preparation of thiolactam 167 

       

N

O

OO
O

O

170

Lawesson's reagent

THF, r.t.

(81% yield)

N

S

OO
O

O

167

 

 

 To a solution of 170 (675.4 mg, 2.32 mmol, 1 equiv.) in THF (2 mL) was added 

Lawesson’s reagent (562.8 mg, 11.6 mmol, 0.5 equiv.) at room temperature. The mixture 

was stirred for overnight. The reaction was concentrated under reduced pressure. The 

residue was loaded onto silica and purified by column chromatography (gradient elution, 

20%- 50% EtOAc/ Hexanes) to yield 167 (580 mg, 81.4%) as orange solid. 

 Thiol lactam 167: FTIR (NaCl/ thin film) 2892, 1687, 1503, 1488, 1438, 1363, 

1250, 1119, 1036, 934, 993, 812 cm
-1

; 
1
H NMR (400 MHz, CDCl3) $ 6.95 (dd, J=1.6, 

8.4, 1H), 6.95 (d, J=1.7 Hz, 1H), 6.70 (d, J=8.4, 1H), 5.89 (s, 2H), 4.14 (s, 2H), 3.98 (t, 

J=7.2 Hz, 2H), 3.75(t, J=7.1 Hz, 4H), 2.89 (t, J=7.8 Hz, 2H), 1.97-1.84 (m, 2H); 
13

C 

NMR (100 MHz, CDCl3) $ 203.2, 147.7, 147.5, 133.5, 119.4, 108.8, 107.8, 106.6, 101.1, 

64.5, 55.9, 53.7, 44.6, 20.0; HRMS (TOF LCMS) calc’d for C15H18NO4S [M+H] 

308.0957, found 308.0959. 

 

Preparation of vinylogous amide 182 

     

N

S

OO
O

O

167

O

N
OMeBr

PPh3, Et3N, DCM, r.t.

N
OO

O

O
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O

N
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, MeCN
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 To a solution of 167 (190 mg, 0.62 mmol, 1 equiv.) in MeCN (250 µL) was added 

2-bromo-N-methoxy-N-methylacetamide (181) (95 µL, 1 mmol, 1.62 equiv.) at room 

temperature. The mixture was stirred for 1 day and concentrated by reducing pressure. 

The residue was dissolved in DCM (250 µL) and was added Et3N (100 µL mL, 0.74 

mmol, 1.2 equiv.), PPh3 (295 mg, 0.74 mmol, 1.2 equiv.). The mixture was stirred for 

overnight and filtered by Celite, concentrated by reducing pressure. The residue was 

loaded onto silica and purified by column chromatography (gradient elution, 20%- 50% 

EtOAc/ Hexanes) to yield 182 (100 mg, 43%) as yellow oil. 

Vinylogous Amide 182: FTIR (NaCl/ thin film) 2890, 1634, 1573, 1487, 1435, 

1387, 1246, 1168, 1099, 1035, 990 cm
-1

; 
1
H NMR (400 MHz, CDCl3) $ 6.94- 6.88 (m, 

2H), 6.72 (d, J=8.6 Hz, 1H), 5.91 (s, 2H), 5.23 (s, 1H), 3.99- 3.93 (m, 2H), 3.79- 3.73 (m, 

2H), 3.64 (s, 3H), 3.48 (s, 2H), 3.27 (t, J=7.0 Hz, 2H), 3.12-3.05 (m, 5H), 1.83-1.74 (m, 

2H); 
13

C NMR (100 MHz, CDCl3) $ 172.1, 165.3, 147.7, 147.6, 134.5, 119.3, 109.8, 

108.0, 106.5, 101.1, 77.9, 64.9, 61.0, 55.2, 54.1, 33.1, 32.2, 21.8; HRMS (TOF LCMS) 

calc’d for C19H25N2O6 [M+H] 377.1713, found 377.1705. 

 

Preparation of chloro ketone 210 

      

OH

n-BuO Cl

Cl
Cl

208

CuCl, 2,2!-bipyridine

DCM, relux

O

n-BuO Cl

(90% yield) 210  

 

 To a solution of 208 (644 mg, 2.60 mmol, 1 equiv.) in DCM (7 mL) was added 

CuCl (522 mg, 5.25 mmol, 2.02 equiv.) and 2,2’-bipyridine (785 mg, 5.03 mmol, 1.93 

equiv.). The mixture was heated to reflux and stirred for 3 hours. Then the reaction was 
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cooled to room temperature and filtered through Celite by Et2O (2 # 20mL). The solution 

was washed by H2O (40 mL) and dried by Na2SO4, concentrated by reducing pressure. 

The residue was loaded onto silica and purified by column chromatography (gradient 

elution, 10%- 20% EtOAc/ Hexanes) to yield 210 (380 mg, 90%) as brown oil. 

Chloro ketone 210: FTIR (NaCl/ thin film) 2960, 2936, 2874, 1732, 1614, 1465, 

1398, 1368, 1313, 1264, 1062 cm
-1

; 
1
H NMR (400 MHz, CDCl3) $ 5.29 (d, J=2.6 Hz, 

1H), 4.51 (s, 2H), 4.46 (d, J=2.5 Hz, 1H), 3.76 (t, J=7.4 Hz, 2H), 1.82-1.59 (m, 2H), 

1.56- 1.37 (m, 2H), 0.96 (t, J=7.4 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) $ 189.0, 156.3, 

92.1, 68.4, 47.3, 30.9, 19.5, 14.0; HRMS (TOF LCMS) calc’d for C8H14ClO2 [M+H] 

176.0682, found 177.0676. 

 

Preparation of dienone 211               

       

O

O

N

S

OO
+

O

Cl O Bu-n

167 210

O

O

N
OO

OBuO
Et3N, PPh3, DCM, r.t.

211

NaI, MeCN, r.t.

(28% yield)

 

 

 To a solution of 167 (224 mg, 0.73 mmol, 1 equiv.) in MeCN (1.6 mL) was added 

210 (257 mg, 2.03 mmol, 2.8 equiv.) and NaI (240 mg, 1.60 mmol, 2.2 equiv.) at room 

temperature. The mixture was stirred for 1 day and concentrated by reducing pressure. 

The residue was dissolved in DCM (5 mL) and was added Et3N (122 µL, 0.90 mmol, 1.2 

equiv.), PPh3 (230 mg, 0.90 mmol, 1.2 equiv.). The mixture was stirred for overnight and 

filtered by Celite, concentrated by reducing pressure. The residue was loaded onto silica 
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and purified by column chromatography (gradient elution, 50%:1% - 50% :10% EtOAc/ 

Hexanes: MeOH) to yield 211 (84 mg, 28%) as brown oil. 

Dienone 211 (rotamer): FTIR (NaCl/ thin film) 2957, 2890, 1705, 1544, 1487, 

1436, 1287, 1247, 1036, 939, 812 cm
-1

; 
1
H NMR (400 MHz, CDCl3) $ 6.96 (d, J=1.6 Hz, 

1H), 6.95 (s, 1H), 6.75 (dd, J=1.7, 8.7 Hz, 1H), 5.95 (d, J=2.5 Hz, 2H), 5.83 (d, J=45.0 

Hz, 1 H), 5.09 (d, J=1.4 Hz, 1H), 4.19 (d, J=1.3 Hz, 1H), 4.05- 3.93 (m, 2H), 3.86- 3.78 

(m, 2H), 3.74 (t, J=6.3 Hz, 2H), 3.63 (s, 1H), 3.57 (s, 1H), 3.53- 3.38 (m, 2H), 3.24 (t, 

J=7.7 Hz, 2H), 1.99- 1.82 (m, 2H), 1.81- 1.70 (m, 2H), 1.63- 1.43 (m, 2H), 0.99 (t, J=7.5 

Hz, 3H); 
13

C NMR (100 MHz, CDCl3) $ 183.6, 182.9, 171.1, 169.2, 161.0, 148.1, 148.0, 

134.4, 133.9, 119.7, 119.5, 109.8, 109.4, 108.2, 108.2, 106.7, 101.4, 101.3, 86.7, 86.1, 

83.5, 67.5, 65.1, 65.0, 55.0, 55.1, 54.7, 34.0, 33.8, 31.4, 21.6, 21.3, 19.7, 14.1; HRMS 

(TOF LCMS) calc’d for C23H30NO6 [M+H] 416.2073, found 417.2066. 

 

Preparation of dienone 220 

  

O

O

O

N

 tBuLi, , THF -78 ºC to r.t.

OEt

(91% yield)

219

O

O

O

OEt

220

216

 

  

To a solution of vinyl ether (216) (1.60 mL, 16.5 mmol, 6.0 equiv.) in THF 

(20mL) at -78 ºC was added 
t
BuLi (4.85 ml, 8.25 mmol, 3.0 equiv., 1.7 M hexanes 

solution) dropwise over 5 minutes. The resultant mixture was stirred at -78 ºC for 30 

minutes, and then warmed to 0 ºC and stirred for 2 hours. To a solution of piperine (219) 

(784 mg, 2.75 mmol, 1 equiv.) in THF (1 mL) was added lithio vinyl ether solution at -78 
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ºC and stirred for 15 minutes. The mixture was warmed to room temperature and stirred 

for overnight. The reaction was quenched by H2O (5 mL). The layers were separated and 

aqueous layer was washed with EtOAc (2 # 30 mL). The combined organic layers were 

washed with brine (60 mL) and dried over Na2SO4, filtered through Celite and 

concentrated under reduced pressure. The residue was loaded onto silica and purified by 

column chromatography (gradient elution, 10%- 20% EtOAc/ Hexanes) to yield 220 (1 g, 

100%) as brown solid. 

 Dienone 220: FTIR(NaCl/ thin film)  2980, 2900, 1667, 1607, 1575, 1503, 1489, 

1447, 1372, 1329, 1296, 1254, 1217, 1080, 1038, 1001, 930, 853 cm
-1

; 
1
H NMR (400 

MHz, CDCl3) $ 7.53 (dd, J=10.8, 15.1 Hz, 1H), 7.01 (s, 1H), 6.99- 6.71 (m, 5H), 6.00 (s, 

2H), 5.25 (d, J=2.2 Hz, 1H), 4.49 (d, J=2.2 Hz, 1H), 3.85 (q, J=6.9 Hz, 2H), 1.42 (t, 

J=6.9 Hz, 3H) ; 
13

C NMR (100 MHz, CDCl3) $ 186.6, 158.5, 148.9, 148.5, 145.0, 142.0, 

130.9, 125.6, 123.6, 123.4, 108.7, 106.0, 101.6, 91.4, 64.0, 14.6;  HRMS (TOF LCMS) 

calc’d for C16H17O4 [M+H] 273.1127, found 273.1125. 

 

Preparation of unsaturated ketone 221 

             

O

O

O

OEt AlCl3

DCM,  r.t.

O

O

O

OEt

(44% yield)

220 221  

 

 To a solution of 220 (272.3 mg, 1 mmol, 1 equiv.) in DCM (27 mL) was added 

AlCl3 (13.4 mg, 0.1 mmol, 0.1 equiv.) at room temperature. The mixture was stirred for 4 

days, filtered through Celite and concentrated under reduced pressure. The residue was 
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loaded onto silica and purified by column chromatography (gradient elution, 10%- 25% 

EtOAc/ Hexanes) to yield 221 (120 mg, 44%) as orange oil. 

 Ketone 221: FTIR(NaCl/ thin film)  2980, 2895, 17616, 1621, 1503, 1489, 1446, 

1250, 1119, 1037, 965, 927 cm
-1

; 
1
H NMR (400 MHz, CDCl3) $ 6.88 (s, 1H), 6.81- 6.67 

(m, 2H), 6.39 (d, J=15.7 Hz, 1H), 6.26 (d, J=3.0 Hz, 1H), 5.94 (s, 2H), 5.87 (dd, J=8.4, 

15.7 Hz, 1H), 4.01- 3.85 (m, 2H), 3.61- 3.45 (m, 1H), 2.77 (dd, J=6.5, 19.3 Hz, 1H), 2.24 

(dd, J=2.0, 9.2 Hz, 1H), 1.41 (t, J=7.0 Hz, 3H) ; 
13

C NMR (100 MHz, CDCl3) $ 201.9, 

156.6, 148.3, 147.4, 131.3, 130.3, 129.6, 1295, 121.0, 108.5, 105.7, 101.3, 66.0, 40.7, 

37.8, 14.5;  HRMS (TOF LCMS) calc’d for C16H17O4 [M+H] 273.1127, found 273.1122. 

 

Preparation of amine 233 

                   

N , LDA

THF, -78 ºC to r.t.

(63% yield)227

O

N
OMe

O
HN

223

157

 

  

To a solution of diisopropylamine (179 µL, 1.20 mmol, 5.3 equiv.) in THF (1mL) 

at 0 ºC was added n-BuLi (750 µL, 1.20 mmol, 5.3 equiv., 1.6 M hexanes solution) 

dropwise over 5 minutes. The resultant mixture was stirred at 0 ºC for 10 minutes, and 

then cooled to -78 ºC. To this LDA solution was added 2-methyl-pyrroline (157) (100 

µL, 1.05 mmol, 4.6 equiv.). The mixture was stirred at -78 ºC for 1 hour. To this mixture 

was added to 227 (57.5 mg, 0.23 mmol, 1 equiv.) and the mixture was stirred for three 

hours at -78 ºC. The reaction was quenched by H2O (2 mL). The layers were separated 

and aqueous layer was washed with EtOAc (2 # 2 mL). The combined organic layers 



 65 

were washed with brine (4 mL) and dried over Na2SO4, filtered and concentrated under 

reduced pressure. The residue was loaded onto silica and purified by column 

chromatography (gradient elution, 50- 67% EtOAc/ Hexanes) to yield 223 (30 mg, 44%) 

as brown oil. 

 Vinylogous amide 223: FTIR(NaCl/ thin film) 3278, 1607, 1540, 1505, 1396, 

1330, 1298, 1257, 1144, 1045, 987, 939, 806, 774, 739 cm
-1

; 
1
H NMR (400 MHz, 

CDCl3) $ 10.30- 10.10 (m, 1H), 6.27 (dd, J=1.2, 17.3 Hz, 1H), 6.05 (dd, J=1.7, 17.1 Hz, 

1H), 5.39 (d, J=10.4 Hz, 1H), 5.16 (s, 1H), 3.55 (t, J=8.1 Hz, 2H), 2.60 (t, J=7.8 Hz, 2H), 

1.95 (dd, J=7.9, 15.4 Hz, 2H); 
13

C NMR (100 MHz, CDCl3) $ 186.0, 169.4, 137.9, 122.3, 

89.6, 47.4, 32.5, 21.2;  HRMS (TOF LCMS) calc’d for C8H11NO [M+H] 138.0919, 

found 138.0910. 

 

Preparation of vinylogous amide 230 

                             
(71% yield)

O

EtO
HN

230

N , LDA

THF, -78 ºC to r.t.

251

O

N
OMeO

157

           

 

 To a solution of diisopropylamine (340 µL, 2.43 mmol, 1.15 equiv.) in THF 

(2mL) at 0 ºC was added n-BuLi (1.5 ml, 2.32 mmol, 1.1 equiv., 1.6 M hexanes solution) 

dropwise over 5 minutes. The resultant mixture was stirred at 0 ºC for 10 minutes, and 

then cooled to -78 ºC. To this LDA solution was added 2-methyl-pyrroline (157) (200 

µL, 2.11 mmol, 1 equiv.) The mixture was stirred at -78 ºC for 1 hour. To this mixture 

was added 251 (304 mg, 2.11 mmol, 1 equiv.) and the solution was warmed to room 
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temperature and stirred for overnight. The reaction was quenched by H2O (2 mL). The 

layers were separated and aqueous layer was washed with EtOAc (2 # 2 mL). The 

combined organic layers were washed with brine (4 mL) and dried over Na2SO4, filtered 

and concentrated under reduced pressure. The residue was loaded onto silica and purified 

by column chromatography (gradient elution, 20%- 50% EtOAc/ Hexanes) to yield 230 

(240 mg, 62.7%) as brown solid. 

 Vinylogous amide 230: FTIR(NaCl/ thin film) 2978, 1700, 1600, 1534, 1507, 

1377, 1282, 1225, 1127, 1061, 977, 794 cm
-1

; 
1
H NMR (400 MHz, CDCl3) $ 10.3- 10.1 

(m, 1H), 5.71 (s, 1H), 5.11 (s, 1H), 4.24 (s, 1H), 3.79 (q, J=6.9 Hz, 2H), 3.61 (t, J=6.9 

Hz, 2H), 2.00 (t, J =7.7 Hz, 2H), 2.05- 1.93 (m, 2H), 1.36 (t, J=6.9 Hz, 3H) ; 
13

C NMR 

(100 MHz, CDCl3) $ 183.6, 170.2, 159.6, 87.1, 85.4, 63.5, 47.9, 33.0, 21.4, 14.6;  HRMS 

(TOF LCMS) calc’d for C10H15NO2 [M+H] 182.1181, found 182.1176. 

 

Preparation of vinylogous amide 231 

                                   

 Me2SO4, KOtBu
O

EtO
N

THF, r.t.
  (70% yield)

231

O

EtO
HN

230
 

 

 To a solution of 230 (100mg, 0.55 mmol, 1 equiv.) in THF (3 mL) was added 

KO
t
Bu (68mg, 0.61 mmol, 1.1 equiv.) and Me2SO4 (60 µL, 0.63 mmol, 1.1 equiv.) at 

room temperature. The mixture was stirred for 2 days ad quenched by H2O (1mL). The 

layers were separated and aqueous layer was washed with EtOAc (2 # 5 mL). The 

combined organic layers were washed with brine (10 mL) and dried over Na2SO4, filtered 

through Celite and concentrated under reduced pressure. The residue was loaded onto 
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silica and purified by column chromatography (gradient elution, 33%- 67% EtOAc/ 

Hexanes) to yield 231 (75 mg, 69.6%) as orange solid. 

Vinylogous amide 231: FTIR(NaCl/ thin film) 2976, 2919, 1637, 1594, 1493, 

1443, 1376, 1269, 1060, 984, 858, 802 cm
-1

; 
1
H NMR (400 MHz, CDCl3) $ 5.63 (s, 1H), 

5.12 (s, 1H), 4.21 (s, 1H), 3.80 (q, J=6.9 Hz, 2H), 3.46- 3.35 (m, 2H), 3.30 (t, J =7.6, 

2H), 2.92 (s, 3H), 2.03- 1.89 (m, 2H), 1.37 (t, J=6.9 Hz, 3H) ; 
13

C NMR (100 MHz, 

CDCl3) $ 183.1, 168.8, 160.8, 87.0, 84.7, 63.5, 54.8, 33.9, 33.5, 20.9, 14.6;  HRMS (TOF 

LCMS) calc’d for C11H18NO2 [M+H] 196.1338, found 196.1336. 

 

Preparation of diaketone 233 

                

N O

OEt

231

TiCl4, -78 ºC to r.t.
N O

O(88% yield)

233  

 

 To a solution of 231 (28 mg, 0.14 mmol, 1 equiv.) in DCM (15 mL) at -78ºC was 

added TiCl4 (140 µL, 0.14 mmol, 1 equiv.) dropwise. Then the mixture was warmed to 

room temperature and stirred for overnight. The reaction was quenched by H2O (15 mL). 

The organic was dried by Na2SO4 and concentrated by reducing pressure. The residue 

was loaded onto silica and purified by column chromatography (gradient elution, 50%- 

75% EtOAc/ Hexanes) to yield 233 (21 mg, 88%) as orange oil. 

 Diaketone 233: FTIR (NaCl/ thin film) 2924, 1701, 1653, 1559, 1457, 1419, 

1301 cm
-1

; 
1
H NMR (400 MHz, CDCl3) $ 5.69  (s, 1H), 3.51 (t, J=6.4 Hz, 2H), 3.31 (t, 

J=7.8 Hz, 2H), 2.98  (s, 3H), 2.38  (s, 3H), 3.31 (dd, J=7.7, 15.4 Hz, 2H); 
13

C NMR (100 
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MHz, CDCl3) $ 210.7, 201.3, 167.4, 82.5, 55.3, 34.1, 33.8, 24.7, 20.7; HRMS (TOF 

LCMS) calc’d for C9H14NO2 [M+H] 168.1025, found 168.1020. 

 

Preparation of dienone 235  

  

O

EtO
HN

230

O

O O

Cl

OAc

+

234

KHMDS

THF, -78 ºC to r.t.

O

O O

N

OAc

O
OEt

235

(36% yield)

 

  

 To a solution of 230 (87mg, 0.48 mmol, 1 equiv.) in THF (5 mL) was added 

KHMDS (1.05 mL, 0.53 mmol, 1.1 equiv.) at -78 ºC and the mixture was stirred for 

10min. To the mixture was added 234 (186.2mg, 0.73 mmol, 1.5 equiv.) was at -78 ºC 

dropwise over 5 min. Then the mixture was warmed to room temperature and stirred for 

overnight. The reaction was quenched by H2O (1 mL). The layers were separated and 

aqueous layer was washed with EtOAc (2 # 5 mL). The combined organic layers were 

washed with brine (10 mL) and dried over Na2SO4, filtered through Celite and 

concentrated under reduced pressure. The residue was loaded onto silica and purified by 

column chromatography (gradient elution, 20%- 50% EtOAc/ Hexanes) to yield 235 (70 

mg, 36.3%) as yellow oil. 

Dienone 235: FTIR(NaCl/ thin film) 2979, 2895, 1742, 1697, 1666, 1568, 1504, 

1490, 1446, 1393, 1371, 1309, 1232, 1104, 1039, 935, 864, 810 cm
-1

; 
1
H NMR (400 

MHz, CDCl3) $ 8.00 (s, 1H), 6.95 (d, J=1.5 Hz, 1H), 6.90 (dd, J=1.5, 7.9 Hz, 1H), 6.81 

(d, J=7.9 Hz, 1H), 5.99 (s, 2H), 5.98 (s, 1H), 5.16 (d, J=2.3 Hz, 1H), 4.42 (d, J=2.3 Hz, 

1H),  3.90- 3.87 (m, 1H), 3.81 (q, J =7.0 Hz, 2H), 3.54- 3.45 (m, 1H), 3.24- 3.05 (m, 2H), 
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2.17 (s, 3H), 2.04- 1.78 (m, 2H), 1.4 (t, J=7.0 Hz, 3H) ; 
13

C NMR (100 MHz, CDCl3) $ 

188.1, 170.7, 168.1, 159.4, 158.6, 149.1, 148.6, 125.9, 123.3, 109.1, 108.8, 103.9, 101.7, 

90.4, 75.0, 63.8, 49.0, 31.9, 22.0, 20.9, 14.4;  HRMS (TOF LCMS) calc’d for C21H24NO7 

[M+H] 402.1553, found 402.1553. 

 

Preparation of ketone 242 

+O

O

O

Br

N
OMe

MeCN, 60 ºC

(90.6% yield)

O

O

O

N

O

241 242169

Br Br

 

 

 To a solution of 241 (1.75 g, 5.43 mmol, 1 equiv.) in MeCN (3 mL) was added 2-

Methoxy-1-pyrroline (169) (708 mg, 7.15 mmol, 1.3 equiv.). The mixture was heated to 

60 ºC and stirred for 1 day.  The mixture was cooled to room temperature and 

concentrated by reducing pressure to yield pure 242 (1.6g, 90.6%) as orange solid. 

 Ketone 242: FTIR (NaCl/ thin film) 2918, 1680, 1612, 1503, 1480, 1442, 1408, 

1385, 1350, 1243, 1122, 1035, 932 cm
-1

; 
1
H NMR (400 MHz, CDCl3) $ 7.05 (s, 1H), 

7.04 (s, 1H), 6.05 (s, 2H), 4.59 (s, 2H), 3.50 (t, J=6.9 Hz, 2H), 2.45 (t, J=7.0 Hz, 2H), 

2.16-2.04 (m, 2H); 
13

C NMR (100 MHz, CDCl3) $ 196.2, 175.9, 151.0, 147.7, 131.8, 

114.1, 112.2, 109.3, 102.7, 51.7, 47.9, 30.4, 18.2; HRMS (TOF LCMS) calc’d for 

C13H13BrNO4 [M+H] 326.0028, found 302.0024. 
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Preparation of amide 243 

        

O

O

O

N

O

242

 (86% yield)

HOCH2CH2OH, PTSA

Benzene, relux
O

O

N

O

OO

243

Br Br

 

 

To a solution of 242 (580 mg, 1.78 mmol, 1 equiv.) in Benzene (40 mL) was 

added ethyl glycol (1.1 mL, 19.7 mmol, 11 equiv.) and p-Toluenesulfonic acid (44 mg, 

0.257 mmol, 0.14 equiv.). The mixture was heated to reflux and stirred for overnight.  

The mixture was cooled to room temperature and washed by saturated aqueous NaHCO3 

(2 # 10 mL). The organic layer was dried by Na2SO4, filtered through Celite and 

concentrated by reducing pressure to yield pure 243 (565 mg, 86.0%) as brown solid. 

 Amide 243: FTIR (NaCl/ thin film) 2893, 1690, 1502, 1477, 1422, 1286, 1238, 

1196, 1114, 1039, 1009, 931 cm
-1

; 
1
H NMR (400 MHz, CDCl3) $ 7.17 (s, 1H), 7.03 (s, 

1H), 5.97 (s, 2H), 4.03(t, J=6.9 Hz, 2H), 3.87 (s, 2H), 3.80 (t, J=6.7 Hz, 2H), 3.48 (t, 

J=7.0 Hz, 2H), 2.31 (t, J=8.0 Hz, 2H), 2.02-1.83 (m, 2H); 
13

C NMR (100 MHz, CDCl3) $ 

175.7, 148.5, 147.3, 132.2, 114.9, 111.9, 109.4, 108.8, 102.1, 64.7, 49.2, 47.6, 30.8, 18.7; 

HRMS (TOF LCMS) calc’d for C15H17BrNO5 [M+H] 370.0290, found 370.0281. 

 

Preparation of alcohol 252 

  

O

O

O

N

O

242

Br

NaBH4, EtOH, r.t.

(96.5% yield)

O

O

N

O

252

Br

OH
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 To a solution of 242 (510 mg, 1.56 mmol, 1 equiv.) in EtOH (5 ml) was added 

NaBH4 (660 mg, 15.6, 10 equiv.) and the mixture was stirred for overnight at room 

temperature. The reaction was quenched by H2O (10 mL) and washed by EtOAc 2 # 10 

mL). The combined organic layers was dried by Na2SO4, filtered through Celite and 

concentrated by reducing pressure to yield pure 252 (492 mg, 96.5%) 

 Alcohol 252: FTIR (NaCl/ thin film) 3338, 2906, 1664, 1501, 1475, 1421, 1288, 

1237, 1111, 1036, 931, 876 cm
-1

; 
1
H NMR (400 MHz, CDCl3) $ 7.17 (s, 1H), 6.03 (s, 

1H), 5.97 (s, 2H), 5.13 (t, J=5.1 Hz, 1H), 4.90- 4.62 (m, 1H), 3.67- 3.35 (m, 3H), 3.26- 

3.10 (m, 1H), 2.43 (t, J=7.4 Hz, 2H), 2.11-1.86 (m, 2H); 
13

C NMR (100 MHz, CDCl3) $ 

178.1, 147.9, 147.8, 134.3, 112.5, 111.5, 108.0, 101.9, 72.9, 50.7, 49.6, 30.9, 18.6; 

HRMS (TOF LCMS) calc’d for C13H14BrNO4Na [M+Na] 350.0004, found 349.9994. 

 

Preparation of amide 244 

                  

O

O

N

O

252

Br

OH

O

O

N

O

244

Br

OTBS

TBSCl, Imidazole

DCM, r.t.

(78% yield)
 

 

 To a solution of 252 (700 mg, 2.27 mmol, 1 equiv.) in DCM (10 mL) was added 

TBSCl (772 mg, 5.44 mmol, 2.4 equiv.) and imidazole (2.98 g, 45.4 mmol, 20 equiv.) at 

room temperature. The mixture was stirred for 2 days and concentrated by reducing 

pressure. The residue was loaded onto silica and purified by column chromatography 

(gradient elution, 10%- 33% EtOAc/ Hexanes) to yield 244 (735 mg, 78.0%) as white 

solid. 
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Amide 244: FTIR (NaCl/ thin film) 2954, 2928, 2895, 2856, 1692, 1503, 1475, 

1411, 1286, 1237, 1110, 1090, 1035, 940, 836 cm
-1

; 
1
H NMR (400 MHz, CDCl3) $ 7.03 

(s, 1H), 6.91 (s, 1H), 5.96 (dd, J =1.2 Hz, 2H), 5.19 (dd, J=4.3, 7.6 Hz, 1H), 3.56- 3.30 

(m, 3H), 3.17 (dd, J =4.3, 13.7 Hz, 1H), 2.33 (t, J=8.0 Hz, 2H), 2.03-1.91 (m, 2H), 0.86 

(s, 9H), 0.03 (s, 3H), 0.13 (s, 3H); 
13

C NMR (100 MHz, CDCl3) $ 175.2, 147.8, 147.7, 

135.2, 112.2, 111.9, 108.0, 101.8, 71.6, 50.2, 48.8, 31.0, 25.8, 18.3, 18.1, -4.76, -5.02; 

HRMS (TOF LCMS) calc’d for C19H29BrNO4Si [M+H] 442.1049, found 442.1044. 

 

Preparation of thiol lactam 245 

        

O

O

N

O

243

Br

Lawesson's reagent
O

O

N

S

OO

245

Br

THF, r.t.

(58% yield)

OO

 

 

 To a solution of 243 (2.90 g, 8.98 mmol, 1 equiv.) in THF (10 mL) was added 

Lawesson’s reagent (1.90 g, 5.34 mmol, 0.6 equiv.) at room temperature. The mixture 

was stirred for overnight. The reaction was concentrated under reduced pressure. The 

residue was loaded onto silica and purified by column chromatography (gradient elution, 

20%- 50% EtOAc/ Hexanes) to yield 245 (2 g, 58.2%) as orange solid. 

  Thiol lactam 245: FTIR (NaCl/ thin film) 2892, 1501, 1477, 1238, 1201, 1223, 

1033, 951 cm
-1

; 
1
H NMR (400 MHz, CDCl3) $ 7.20 (s, 1H), 7.04 (s, 1H), 5.99 (s, 2H), 

4.44 (s, 2H), 4.11- 3.99 (m, 2H), 3.88- 3.77 (m, 4H), 3.0 (t, J=7.6 Hz, 2H), 2.05- 1.91 (m, 

2H); 
13

C NMR (100 MHz, CDCl3) $ 203.9, 148.7, 147.5, 131.8, 114.9, 112.0, 109.0, 



 73 

108.8, 102.1, 64.6, 56.6, 52.1, 45.0, 20.4; HRMS (TOF LCMS) calc’d for C15H17BrNO4S 

[M+H] 386.0062, found 386.0057. 

 

Preparation of thiol lactam 246 

    

O

O

N

O

244

Br

OTBS

Lawesson's reagent O

O

N

S

246

Br

OTBS

THF, r.t.

(48% yield)
 

  

To a solution of 244 (52 mg, 0.12 mmol, 1 equiv.) in THF (0.2 mL) was added 

Lawesson’s reagent (28.5 g, 0.07 mmol, 0.6 equiv.) at room temperature. The mixture 

was stirred for overnight. The reaction was concentrated under reduced pressure. The 

residue was loaded onto silica and purified by column chromatography (gradient elution, 

20%- 50% EtOAc/ Hexanes) to yield 246 (25 mg, 48.0%) as yellow oil. 

  Thiol lactam 246: FTIR (NaCl/ thin film) 2954, 2928, 2886, 2856, 1503, 1475, 

1409, 1326, 1235, 1110, 1085, 1038, 936, 837 cm
-1

; 
1
H NMR (400 MHz, CDCl3) $ 7.03 

(s, 1H), 6.93 (s, 1H), 5.98 (dd, J=1.4, 10.4 Hz, 2H), 5.50 (dd, J=5.2, 7.5 Hz, 1H), 3.91 

(dd, J=7.6, 13.0 Hz, 1H), 3.84- 3.76 (m, 1H), 3.70 (dd, J=5.2, 10.8 Hz, 1H), 3.56- 3.48 

(m, 1H), 3.0 (t, J=7.9 Hz, 2H), 2.04- 1.95 (m, 2H), 0.87 (s, 9H), 0.06 (s, 3H), 0.11(s, 3H); 

13
C NMR (100 MHz, CDCl3) $ 202.3, 148.1, 147.9, 135.1, 112.4, 112.3, 108.0, 101.9, 

70.4, 57.2, 55.2, 45.1, 25.9, 20.1, 18.0, -4.8; HRMS (TOF LCMS) calc’d for 

C19H19BrNO3SSi [M+H] 458.0821, found 458.0812. 
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Preparation of dienone 247 

  
245

(50% yield)

247

O

O Br

N

S

O

Cln-BuO

Et3N, PPh3, DCM, r.t.

O

O
Br

N

On-BuO

, NaI, MeCNOO

OO

210

 

 

 To a solution of 245 (191 mg, 0.50 mmol, 1 equiv.) in MeCN (4 mL) was added 

3-butoxy-1-chlorobut-3-en-2-one (210) (131 mg, 0.75 mmol, 1.5 equiv.) and NaI (93 mg, 

0.70 mmol, 1.4 equiv.) at room temperature. The mixture was stirred for 1 day and 

concentrated by reducing pressure. The residue was dissolved in DCM (2 mL) and was 

added Et3N (170 µL, 0.60 mmol, 1.2 equiv.), PPh3 (157 mg, 0.60 mmol, 1.2 equiv.). The 

mixture was stirred for overnight and filtered by Celite, concentrated by reducing 

pressure. The residue was loaded onto silica and purified by column chromatography 

(gradient elution, 50%:1% - 50% :10% EtOAc/ Hexanes: MeOH) to yield 247 (100 mg, 

49.7%) as brown oil. 

Dienone 247: FTIR (NaCl/ thin film) 2957, 1709, 1593, 1537, 1502, 1477, 1305, 

1238, 1198, 1119, 1004, 934, 847 cm
-1

; 
1
H NMR (400 MHz, CDCl3) $ 7.14  (s, 1H), 7.02 

(s, 1H), 6.05 (s, 1H), 5.97 (s, 2H), 5.09 (d, J=1.5 Hz, 1H), 4.19 (d, J=1.4 Hz, 1H), 4.02- 

3.95 (m, 2H), 3.84 (s, 2H), 3.82- 3.76 (m, 2H), 3.73 (t, J=6.5 Hz, 2H), 3.51 (t, J=7.3 Hz, 

2H), 3.25 (t, J=7.6 Hz, 2H), 1.95- 1.84 (m, 2H), 1.79- 1.69 (m, 2H), 1.56- 1.44 (m, 2H), 

0.96 (t, J=7.4 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) $ 183.8, 169.3, 161.0, 148.7, 147.5, 

132.2, 114.8, 111.7, 110.0, 108.6, 102.1, 86.7, 86.3, 67.6, 64.9, 54.9, 52.4, 33.8, 31.3, 
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21.6, 19.6, 14.0; HRMS (TOF LCMS) calc’d for C23H29BrNO6 [M+H] 494.1178, found 

494.1176. 

 

Preparation of dienone 248 

  

O

O Br

N

S

OTBS

O

Cln-BuO

Et3N, PPh3, DCM, r.t.

O

O
Br

N

OTBS

On-BuO

246

(54% yield)

248

, NaI, MeCN
210

 

 

To a solution of 246 (60 mg, 0.13 mmol, 1 equiv.) in MeCN (1 mL) was added 3-

butoxy-1-chlorobut-3-en-2-one (210) (46 mg, 0.20 mmol, 1.5 equiv.) and NaI (47 mg, 

0.18 mmol, 1.4 equiv.) at room temperature. The mixture was stirred for 1 day and 

concentrated by reducing pressure. The residue was dissolved in DCM (1 mL) and was 

added Et3N (33 µL, 0.16 mmol, 1.2 equiv.), PPh3 (62 mg, 0.16 mmol, 1.2 equiv.). The 

mixture was stirred for overnight and filtered by Celite, concentrated by reducing 

pressure. The residue was loaded onto silica and purified by column chromatography 

(gradient elution, 50%:1% - 50% :10% EtOAc/ Hexanes: MeOH) to yield 248 (40 mg, 

54.0%) as brown oil. 

Dienone 248: FTIR (NaCl/ thin film) 2956, 2931, 2859, 1547, 1504, 1475, 1400, 

1390, 1288, 1237, 1111, 1094, 1035, 930, 837, 779 cm
-1

; 
1
H NMR (400 MHz, CDCl3) $ 

7.03  (s, 1H), 6.93 (s, 1H), 5.97 (dd, J=1.4, 15.9 Hz, 2H), 5.91 (s, 1H), 5.29 (dd, J=3.7, 

8.5 Hz, 1H), 5.11 (d, J=1.6 Hz, 1H), 4.20 (d, J=1.6 Hz, 1H), 3.73 (td, J=1.2, 6.6 Hz, 2H), 

3.65- 3.57 (m, 1H), 3.48- 3.25 (m, 5H), 2.00- 1.91 (m, 2H), 1.79- 1.71 (m, 2H), 1.53- 
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1.42 (m, 2H), 0.96 (t, J=7.4 Hz, 3H), 0.84 (s, 9H), 0.02 (s, 3H), 0.15 (s, 3H); 
13

C NMR 

(100 MHz, CDCl3) $ 183.4, 168.3, 161.0, 148.1, 148.0, 134.8, 112.3, 111.6, 107.8, 101.9, 

86.8, 85.7, 71.2, 67.7, 54.9, 53.9, 34.2, 31.2, 25.8, 21.1, 19.7, 18.0, 14.1, -4.91, -4.99; 

HRMS (TOF LCMS) calc’d for C27H41BrNO5Si [M+H] 566.1937, found 566.1924. 
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Appendix I: Spectra Relevant to Chapter 2 
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Figure A.2.2 Infrared Spectrum (thin film/NaCl) of compound 155. 

 

 

 
 

 

Figure A.2.3 
13

C NMR (125 MHz, CDCl3) of compound 155. 



2.04

2.04

1.951.95

1.931.93

1.941.94

1.971.97

0.9480.948

0.8580.858

11

0

01122334455667788991010ppm

O

O

O

168

Figure A.2.4 1H NMR (400MHz, CDCl3) of compound 168
N

O



 86 

 
 

Figure A.2.5 Infrared Spectrum (thin film/NaCl) of compound 168 

 

 

 

 

Figure A.2.6 
13

C NMR (125 MHz, CDCl3) of compound 168 
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Figure A.2.8 Infrared Spectrum (thin film/NaCl) of compound 170 

 

 

 
 

Figure A.2.9 
13

C NMR (125 MHz, CDCl3) of compound 170 
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Figure A.2.11 Infrared Spectrum (thin film/NaCl) of compound 180 

 

 

 
 

Figure A.2.12 
13

C NMR (125 MHz, CDCl3) of compound 180 
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Figure A.2.14 Infrared Spectrum (thin film/NaCl) of compound 167 

 

 

 
 

Figure A.2.15 
13

C NMR (125 MHz, CDCl3) of compound 167 
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Figure A.2.17 Infrared Spectrum (thin film/NaCl) of compound 182 

 

 

 

 

Figure A.2.18 
13

C NMR (125 MHz, CDCl3) of compound 182 
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Figure A.2.19 1H NMR (400MHz, CDCl3) of compound 210
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Figure A.2.20 Infrared Spectrum (thin film/NaCl) of compound 210 

 

 

 
 

Figure A.2.21 
13

C NMR (125 MHz, CDCl3) of compound 210 
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Figure A.2.23 Infrared Spectrum (thin film/NaCl) of compound 211 

 

 

 
 

Figure A.2.24 
13

C NMR (125 MHz, CDCl3) of compound 211 
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Figure A.2.26 Infrared Spectrum (thin film/NaCl) of compound 220 

 

 

 

 
 

Figure A.2.27 
13

C NMR (125 MHz, CDCl3) of compound 220 

 



2.86

2.86

1.071.07

1.031.03

11

2.042.04

3.463.46

1.141.14

1.091.09

3.583.58

0

01122334455667788991010ppm

Figure A.2.28 1H NMR (400MHz, CDCl3) of compound 221
O

O

O

OEt

221



 102 

 
 

Figure A.2.29 Infrared Spectrum (thin film/NaCl) of compound 221 

 

 

 
 

Figure A.2.30 
13

C NMR (125 MHz, CDCl3) of compound 221 
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Figure A.2.32 Infrared Spectrum (thin film/NaCl) of compound 223 

 

 

 
 

Figure A.2.33 
13

C NMR (125 MHz, CDCl3) of compound 223 
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Figure A.2.35 Infrared Spectrum (thin film/NaCl) of compound 230 

 

 

 

 
 

Figure A.2.36 
13

C NMR (125 MHz, CDCl3) of compound 230 
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Figure A.2.38 Infrared Spectrum (thin film/NaCl) of compound 231 

 

 

 
 

Figure A.2.39 
13

C NMR (125 MHz, CDCl3) of compound 231 
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Figure A.2.41 Infrared Spectrum (thin film/NaCl) of compound 233 

 

 

 
 

Figure A.2.42 
13

C NMR (125 MHz, CDCl3) of compound 233 
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Figure A.2.44 Infrared Spectrum (thin film/NaCl) of compound 235 

 

 

 
 

Figure A.2.45 
13

C NMR (125 MHz, CDCl3) of compound 235 
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Figure A.2.47 Infrared Spectrum (thin film/NaCl) of compound 242 

 

 

 

 

Figure A.2.48 
13

C NMR (125 MHz, CDCl3) of compound 242 
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Figure A.2.50 Infrared Spectrum (thin film/NaCl) of compound 243 

 

 

 

 

 

Figure A.2.51a 13C NMR (125 MHz, CDCl3) of compound 243 
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Figure A.2.53 Infrared Spectrum (thin film/NaCl) of compound 252 

 

 

 

 

Figure A.2.54 
13

C NMR (125 MHz, CDCl3) of compound 252 
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Figure A.2.56 Infrared Spectrum (thin film/NaCl) of compound 244 

   

 

 
 

Figure A.2.57 
13

C NMR (125 MHz, CDCl3) of compound 244 
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Figure A.2.59 Infrared Spectrum (thin film/NaCl) of compound 245 

 

 

 
 

Figure A.2.60 
13

C NMR (125 MHz, CDCl3) of compound 245 



2.86

2.86

3.033.03

9.19.1

2.292.29

2.092.09

1.711.71

3.823.82

0.9960.996

2.212.21

1.081.08

11

0

01122334455667788991010ppm

246

Figure A.2.61 1H NMR (400MHz, CDCl3) of compound 246
O

O

N

S
Br

OTBS



 124 

 
 

Figure A.2.62 Infrared Spectrum (thin film/NaCl) of compound 246 

 

 

 

 
 

Figure A.2.63 
13

C NMR (125 MHz, CDCl3) of compound 246 
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Figure A.2.65 Infrared Spectrum (thin film/NaCl) of compound 247 

 

 

 

 
 

Figure A.2.66 
13

C NMR (125 MHz, CDCl3) of compound 247 
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Figure A.2.68 Infrared Spectrum (thin film/NaCl) of compound 248 

 

 

 
 

Figure A.2.69 
13

C NMR (125 MHz, CDCl3) of compound 248 
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Chapter 3 

 

Phomoidride Chemistry and Biology 

 

3.1 Background and Introduction 

 

3.1.1 Phomoidrides: Isolation and Structural Characterization 

 In 1995, researchers at Pfizer in Groton, Connecticut reported the isolation and 

characterization of phomoidride A (300) and phomoidride B (301) (Figure 3.1.1) from an 

unidentified fungus discovered on the twigs of Juniperus ashei trees in Dripping Springs, 

Texas.
1
 In 1999, two additional compounds, phomoidride C (302) and phomoidride D 

(303) were found in the fungal broth.
2,3
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Figure 3.1.1 Phomoidrides A-D 
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 The phomoidrides are the members of the nonadride family of natural products. 

The name phomoidride derives from the name of the phoma genus, which exhibits 

characteristics of the phomoidride producing fungus. In addition, the name also reflects 

the classification of these fungal metabolites as nonadrides, a name given by Barton 

based on the observation that these compounds derive from dimerization of two nine-

carbon natural products (nona-), containing bisanhydride rings (-dride).
4
  Other members 

of the nonadride family have been found that are postulated to arise from a similar 

biosynthetic pathways (Figure 3.1.2).
5-10
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Figure 3.1.2 Nonadride Family 
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3.1.2 Phomoidride Biosynthesis 

 In Sulikowski’s biosynthesis study of the phomoidride,
11-15

 decarboxylative 

homodimerization of an unsaturated anhydride 313 is a key step (Scheme 3.1.2). 

Anhydride 313 could be derived from the condensation of oxaloacetyl-CoA (310, derived 

from succinic acid (309)) and diene 312 (derived from acetyl-CoA (311)). Dimerization 

of 313 followed by oxidation would afford the core of phomoidrides (314). Subsequent 

ether formation and thioester hydrolysis would furnish phomoidride B (301). 
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Scheme 3.1.2 Biosynthesis of Phomoidride B 
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3.1.3 Biological Activity of the Phomoidrides 

 The phomoidrides display modest activity against the enzyme squalene synthase 

(phomoidride A IC50 = 43 µM, phomoidride B IC50 = 160 µM),
16 

an enzyme that 

catalyzes the synthesis of squalene (317) from farnesyl pyrophosphate (316) (Scheme 

3.1.3). From a chemotherapy perspective, the inhibition of squalene synthase may serve 

to decrease the level of cholesterol (318) since squalene is a precursor in the biosynthesis 

of cholesterol.
17-19
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Scheme 3.1.3 Biosynthesis of Cholesterol 
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 The phomoidrides also have shown biological activity against ras farnesyl 

transferase (phomoidride A IC50 = 6 µM, phomoidride B IC50 = 20 µM). Mutated forms 

of cellular ras genes are among the most common genetic abnormalities in human 

cancers, occurring in 90% of pancreatic carcinomas, 50% of colon carcinomas, and 20-

30% of acute leukemias. Thus, inhibition of oncogenic ras activity is thought to be useful 

for anticancer treatment. One promising pharmacological approach against oncogenic ras 

activity would be interference of ras membrane localization. The crucial modification 

required for ras membrane association and transformation is the addition of a farnesyl 

moiety to the cysteine residue of a C-terminal CAAX motif in a reaction catalyzed by 

protein farnesyltransferase. Therefore, phomoidrides may have chemotherapeutic 

potential for inhibiting farnesyltransferase.
20-21

 

 

3.2 Phomoidrides: Structure and Synthesis 

 

3.2.1 Structural Features 
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 In addition to their intriguing biological activity, the phomoidrides possess 

interesting structural features. For example, phomoidride D (303) contains a bicyclo 

[4.3.1] decadiene moiety with a maleic anhydride, bridgehead olefin, all-carbon 

quaternary center, bridging lactone ketal, an epimerizable stereocenter and two olefinic 

side chains (Figure 3.2.1). The complicated structure makes phomoidrides challenging 

targets for synthetic chemists. 

 

Figure 3.2.1 Phomoidride D Structural Features 
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3.2.2 Phomoidrides Interconversion 

 Dabrah and co-workers reported the conversion of phomoidride A (300) to 

phomoidride B (301) by treatment with catalytic methanesulfonic acid (scheme 3.2.2.1).
1
 

Correspondingly, Nicolaou’s group found that phomoidride B (301) can be converted to 

phomoidride A (300) upon exposure to LiOH.
22
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Scheme 3.2.2.1 Phomoidride A and B Interconversion 
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 In an epimerization study, Danishefsky and co-workers reported that phomoidride 

B could be epimerized to phomoidride D and phomoidride A can be epimerized to 

phomoidride C (Scheme 3.2.2.2). The reverse epimerization, from phomoidride D to 

phomoidride B or phomoidride C to phomoidride A, does not occur.  However, 

Danishefsky did demonstrate that Phomoidride D can be converted to phomoidride A in 

seven steps (see section 3.2.3.4 for details).
23

 

 

Scheme 3.2.2.2 Phomoidrides Epimerization 
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3.2.3 Synthetic Routes to the Phomoidrides 

 Numerous synthetic efforts have been made towards the total synthesis of the 

phomoidrides. To date, only four groups (Nicolaou, Fukuyama, Shair and Danishefsky) 

have reported completion of the total syntheses. In this dissertation, only the four 

completed total synthesis will be discussed since the other synthetic efforts have been 

summarized in a review article.
24

 

 

3.2.3.1 K. C. Nicolaou’s Route 

 K. C. Nicolaou reported the first total synthesis of phomoidride A and B in 

1999.
22,29-44

 Nicolaou’s synthesis started with dimethyl malonate 320 (Scheme 3.2.3.1.1). 

Bis-alkylation, reduction of the diester and acetal formation gave acetonide 321. 

Ozonolysis of alkene 321 produced an intermediate aldehyde, which underwent a 

modified aldol condensation with aldehyde 322 to yield enal 323. The diene 324 for 

intramolecular Diels-Alder reaction was prepared from aldehyde 323 via PMB ether 

formation, deprotection of the primary alcohol and Parikh-Doering-oxidation. 

 

Scheme 3.2.3.1.1 Nicolaou Diene’s Synthesis 
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 Diels-Alder product 327 was obtained from 325 via aldol addition of the vinyl 

lithium reagent derived from vinyl iodide 326, Dess-Martin oxidation, and aluminum  

Lewis acid catalyzed [4+2] cycloaddition (Scheme 3.2.3.1.2). Removal of the bis TBS 

ethers revealed an intermediate diol which underwent oxidative cleavage in the presence 

of NaIO4 to yield an aldehyde intermediate. Addition of the  litho dithiane reagent 328 to 

this aldehyde gave secondary alcohol 329. 

 

Scheme 3.2.3.1.2 Nicolaou’s Intramolecular Diels-Alder Reaction 
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 Installation of the maleic anhydride moiety commenced with alcohol 329 

(Scheme 3.2.3.1.3). TES ether protection, vinyl triflate formation using Comins reagent, 

and Pd-mediated CO insertion, gave methyl ester 330.  Protecting group exchanged in the 

presence of BTIB and MeOH, followed by ester reduction, directed epoxidation and 

cyanide addition with Nagata’s reagent opened the newly formed epoxide to yield diol 

331. Treatment of diol 331 with MsCl, K2CO3 and oxalic acid furnished the maleic 
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anhydride moiety. Nicolaou believed that the anhydride was formed via the following 

transformations: (1) selective protection of primary alcohol by mesylation; (2) epoxide 

formation under the basic conditions; (3) epoxide opening via !-elimination; (4) 5-exo-

dig cyclization on cyanide in the presence of acid; (5) double oxidation by exposure to air 

(6) hydrolysis to lose ammonia. After removal of dimethyl ketal and reprotection of the 

secondary alcohol as TBS ether, they prepared ketone 332. 

 

Scheme 3.2.3.1.3 Nicolaou’s Maleic Anhydride Synthesis 
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 Treatment of  ketone 332 with DDQ to remove the PMB protecting group was 

followed by PDC oxidation and removal of the acetonide in the presence of acetic acid to 
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give a diol which, underwent cyclization to form a hemiacetal.  Protection of the 

remaining alcohol as a TES ether provided hemiacetal 333 (Scheme 3.2.3.1.4). Bis 

hemiacetal 334 was obtained by exposing 333 to the Dess-Martin reagent followed by 

removal of the TES protecting group and MeSO3H-mediated removal of the TBS ether. 

 

Scheme 3.2.3.1.4 Nicolaou’s Bridging Ketal Synthesis 
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At this stage, oxidation of the primary alcohol, protection of the hemiacetal 

alcohol and Pinnick oxidation yield an intermediate carboxylic acid which underwent 

Arndt-Eistert homologation to furnish carboxylic acid 335 (Scheme 3.2.3.1.5).  

Protection of carboxylic acid 335 as its indoline amide, removal of the TBS group, 

oxidation of the hemiacetal to the corresponding lactone, oxidation of the indoline amide 

to its indole derivative and hydrolysis of the derived indole amide to the acid gave the 

natural product phomoidride A (300). In the presence of MeSO3H, phomoidride A (300) 

was converted to phomoidride B (301). 
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Scheme 3.2.3.1.5 Nicolaou’s Phomoidride A and B Synthesis 
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3.2.3.2 Fukuyama’s Route 

 The second total synthesis of phomoidride B was reported by Fukuyama in 

2000.
45-47

   Fukuyama’s synthesis commenced with the conversion of progargylic 

thioether 340 to the corresponding allene which was followed by nucleophilic addition of 

vinyl cuprate 341, ester alkylation with Mander’s reagent and Michael addition with a 

chiral oxazolidinone to give 342 (Scheme 3.2.3.2.1). Adol reaction between this 

intermediate and aldehyde 343 was followed by oxidation and intramolecular Diels-Alder 

reaction in the presence of ZnCl2•OEt2 to afford cycloaddition product 344. 
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Scheme 3.2.3.2.1 Fukuyama Intramolecular Diels- Alder Reaction 
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 Proceeding forward with Diels- Alder product 344, the chiral oxazolidinone 

functionality is displaced by allyl thioglycolate, followed by intramolecular adol addition, 

decarboxylation catalyzed by Pd(OAc)2 and elimination of the tertiary alcohol to give 

thio lactone 345 (Scheme 3.2.3.2.2). Maleic anhydride formation was achieved by the 

formation of the TBS silyl enolether and  treatment with NIS  in the presence of AgNO3. 

Selective hydrolysis of the less hindered methyl ester, produced carboxylate 346. 
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Scheme 3.2.3.2.2 Fukuyama’s Maleic Anhydride Synthesis 
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As in the Nicoloau’s synthesis, an Arndt- Eistert homologation protocol was 

utilized to install the neopentyl carboxylic acid (Scheme 3.2.3.2.3). To this end, 

carboxylic acid 346 was converted to the corresponding diazoketone by treatment with 

(COCl)2 and CH2N2. In the presence of the silver (I) salt PhCO2Ag, the diazoketone was 

converted to the ketene, which formed the tert-Butyl ester in the presence of 
t
BuOH. 

Turning to the lactones, a Pummerer rearrangement converted the sulfide to its 

corresponding ketone which, upon treatment with acid, produced ketal 347. Jones 

oxidation and deprotection of the tert-butyl ester gave the natural product phomoidride B 

(301). 
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Scheme 3.2.3.2.3 Fukuyam’s Phomoidride B Synthesis 
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3.2.3.3 Shair’s Route 

 In 2000, Shair published the third total synthesis of phomoidride B.
48-50

 Shair’s 

synthesis started with a Stille coupling between vinyl iodide 350 and vinyl stannane 351 

which was followed by cuprate addition and alkylation with Mander’s reagent to give 

ketone 352 (Scheme 3.2.3.3.1). Enantiomerically pure ketone 352 was provided by an 

efficient kinetic resolution using Corey’s oxazaborolidine catalyst and catecholborane. 

The resolved ketone, upon addition of Grignard reagent 353, underwent oxy-Cope 

rearrangement and subsequent transannular Dieckmann cyclization to furnish the [4.3.1] 

core of phomoidride B (354). 
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Scheme 3.2.3.3.1 Shair’s Oxy-Cope Rearrangement/ Transannular Dieckmann Cascade 
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 Treatment of ketone 354 with Mander’s reagent, removal of the PMB group and 

oxidation yielded carboxylic acid 355. The acid was converted to a MOM ester which, 

upon treatment with Mander’s reagent yielded enol carbonate 356. Exposure of 356 to 

TMSOTf and HC(OMe)3 initiated a Fries-like rearrangement to furnish lactone 357. 
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Scheme 3.2.3.3.2 Shair’s Fries Rearrangement  
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Similar to the previous two total syntheses, homologation of carboxylic acid 358 

by mesylation, diazoketone formation and Wolf rearrangement gave tert-butyl ester 359. 

Phomoidride B (301) was completed via enol triflate formation, palladium catalyzed CO 

insertion and deprotection of the tert-butyl ester. 

 

Scheme 3.2.3.3.3 Shair’s Phomoidride B Synthesis 
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3.2.3.4 Danishesky’s Route 

 The fourth total synthesis of the phomoidrides was reported by Danishefsky in 

2000.
51-54

  Danishefsky began by silylation of furan 360 at the 2-position followed by 

iodinating at the 4-position and mesylation of the alcohol (Scheme 3.2.3.4.1). The 

derived mesylate 361 was converted to the corresponding furanoaldehyde, which was in 

turn subjected to an aldol reaction with 362.  Protection of the newly formed alcohol as 

the TBS ether provided 364 which, upon Heck cyclization, ketone reduction and TBS 

protection provided key intermediate 364.  A two-step allylic oxidation/ iodination 

applied to the olefin gave vinyl iodide 365. Palladium mediated coupling of  365 with 

trialkyl borane 366, followed by selective removal of the TBS protecting group and 

Michael addition with allytrimethylsilane yielded olefin 367. 
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Scheme 3.2.3.4.1 Danishefsky’s Heck Reaction to the Bicyclic Core 
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 Reduction of ketone 367 with LAH, oxidation of the less hindered alcohol, 

mesylation, and elimination with DBU gave bridgehead olefin 368 (Scheme 3.2.3.4.2). 

Using Tebbe’s reagent, the ketone was converted to the corresponding exo-methylene, 

which upon [2+2] cycloaddition with 2,2- dichloroketene, reductive removal of the 

chlorine atoms and removal of TBS protecting group produced alcohol 369. The 

unsymmetrical all-carbon quaternary center was constructed via a sequence that began 

with treatment of cyclobutanone 369 with diphenyl disulfide.  This was followed by 

oxidation of the allylic secondary alcohol to the corresponding ketone, Baeyer-Villiger 

oxidation of the cyclobutanone with H2O2 and concomitant oxidation of the phenylsulfide 

to its sulfoxide. The terminal olefin in the resultant intermediate was then oxidized with 
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OsO4 and NMO to yield an intermediate diol the cyclized to the corresponding 

hemiacetal 370. The lactone 371 was formed via base-mediated rearrangement and 

subsequent Swern oxidation. 

 

Scheme 3.2.3.4.2 Danishefsky Ketal synthesis 
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 Danishefsky next turned toward installing the side chains.  To this end aldehyde 

371 was exposed to Grignard reagent 372 to furnish an alcohol which, upon oxidation, 

oxidative removal of benzyl protecting group, oxidation of resultant primary alcohol and 

finally olefin formation by treatment with 1,1- diiodomethane in the presence of CrCl2, 

gave olefin 373 (Scheme 3.2.3.4.3). Singlet oxygen oxidation of the furan ring, followed 

by TPAP oxidation, hydrolysis of the methyl ester and subsequent reclosure of the acetal 
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with MeSO3H furnished the natural product phomoidride D (303). As illustrated, in 

another seven steps, phomoidride D (303) was converted to phomoidride A (300). 

 

Scheme 3.2.3.4.3 Danishefsky Phomoidride A and D synthesis 

  

O

O

TBS

BnO 3

O

371

CHO

O

CO2Me 1.
MgBr

372

2. DMP
3. DDQ, H2O
4. DMP
5. 1,1-diiodoethane, CrCl2

(five steps 20% yield)

O

O

TBS

3

O

373

O

CO2Me

O

1. light, O2, Rose-Bengal, iPr2EtN
2. TPAP, NMO

3. LiOH
4. MeSO3H

O

O

O

3

O

O

CO2H

O

O

303; Phomoidride D

1. TMSCHN2
2. (TMSOCH2)2, TMSOTf

3. LiOH, TMSCHN2
4. DMP, NaHCO3

O
3

CO2Me

CO2Me

O

O

O

MeO2C
MeO2C

374

1. LiAlH(OtBu)3

2. LiOH

3. TFA, H2O

(four steps: 40% yield)
(four steps: 51% yield)

(three steps: 49% yield)
OH

O

O

O

O

O

O

O

OH

OH

300; Phomoidride A (CP-225, 917)

3

 

 

 

 

 

 

 



 150 

3.3 Conclusions 

 To date numerous synthetic efforts have been directed toward the phomoidrides 

and four total syntheses have been completed.  While in part, these investigations were 

motivated by an interesting biological profile, the fascinating structures innovative 

strategies and tactics they inspire are likely the true driving force being these synthetic 

efforts.  Further synthetic studies will likely provide more efficient access to these 

compounds, new structural analogs, and additional advances in both the strategies and 

tactics available to synthetic chemists. 
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Chapter 4 

 

Phomoidride Synthetic Studies from the Wood Group 

 

4.1 Introduction 

 In the Wood Group, a total synthesis of the Phomoidrides has been ongoing for 

about ten years. Graduate students Jón Njardarson, David Spiegel, Ivar McDonald, and 

Barry Twenter, as well as several post-doctoral fellows and undergraduate students have 

worked on this project.1-8 This chapter will first introduce their pioneering research and 

then discuss our current progress towards a total synthesis of the phomoidrides.  

 

4.2 Previous Studies Towards the Total Synthesis of Phomoidrides 

 

4.2.1 Synthetic Approach I: Diester Model  

Illustrated in Scheme 4.2.1 is a retrosynthetic analysis for phomoidride D (303) 

that was under investigation just prior to my joining the project. As indicated, 

phomoidride D (303) was expected to derive from diester 400. Grob fragmentation9 of 

intermediate 401 would give the [4.3.1] bicyclic core and install the bridgehead olefin. 

Opening the acetal in 402 and subsequent dithiane formation, followed by installation of 

a leaving group would yield the fragmentation precursor 401. Intermediate 402 was 

expected to arise from radical cascade cyclization of bromide 403. The latter would  be 

produced from ketone 404 via aldol-type introduction of the carbons needed for 
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exomethylene lactone formation.  Finally, the [2.2.2] bicyclic core found in 404 would be 

delivered through a tandem phenolic oxidation/Diels-Alder sequence applied to phenol 

405 which, in turn, would be available from the coupling of phenol 406 and bromide 407.  

 

Scheme 4.2.1 Retrosynthetic Analysis I of Total synthesis of Phomoidride D 
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4.2.2 Development of Phenolic Oxidation/Diels-Alder Cascade Reaction 

 To investigate the planned synthetic route to the phomoidrides, a model system 

was employed wherein primary alcohol 408 replaced the more elaborate side-chain 

component 407.  Mitsunobu coupling of catechol 410 with 408 gave the corresponding 

mono alkylation product, phenol 411 (Scheme 4.2.2.1). Oxidation of 411 with Pb(OAc)4 

gave the intermediate diene 412 which underwent intramolecular [4+2] cycloaddtion to 

yield ketone 413.12-18 To maintain compatibility in subsequent transformations, the acetyl 

group was replaced by TMS to yield 414.  

 

Scheme 4.2.2.1 Phenolic Oxidation and Diels- Alder Cycloaddition 
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 Aldol addition of enolate 415 
36-39 to ketone 414 gave tertiary alcohol 416 

(Scheme 4.2.2.2). Introduction of the required exomethylene followed by N-oxidation  

(m-CPBA) and Cope elimination. The derived ester (417) was converted to lactone 418 

following removal of the TMS protecting group and exposure to mild acid. 
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Scheme 4.2.2.2 Exo-Methylene Lactone Construction 
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Alkylation of lactone 418 with Stork’s bromoacetal (419) 20-23 gave radical 

cascade cyclization precursor 420 (Scheme 4.2.2.3). Treatment of 420 with SmI2 yielded 

a cyclization product 423 resulting from a sequential 5-endo-trig, 5-exo-tet cyclization.24-

31 The cascade cyclization is highly efficient and is believed to occur via initial reduction 

of the maleate followed by addition to the exomethylene and substitution of the bromine.3 
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Scheme 4.2.2.3 SmI2 Cascade Cyclization 
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Opening of acetal 423 in the presence of BF3•OEt2 and propane-1,3-dithiol gave 

tertiary alcohol 424 (Scheme 4.2.2.4). Reduction of lactone 424 to the corresponding 

hemiacetal (425), followed by methylation gave acetal 426. Treatment of 426 with KH, 

CS2 and MeI furnished xanthate 427. 
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Scheme 4.2.2.4 Tertiary Xanthate Formation 
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After considerable experimentation it was found that treatment of xanthate 427 

with SmI2 and HMPA produces the desired Grob fragmentation9 product 428a, as well as 

the byproduct 428b resulting from reductive removal of the xanthate (Scheme 4.2.2.5).32-

33 Although the derived fragmentation product is the result of a two electron reduction, 

the exact nature of the intermediate undergoing fragmentation (radical or anionic) is not 

known. 

 

Scheme 4.2.2.5 Grob Fragmentation 
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 Numerous attempts were made to convert diester 428a to olefin 429 (Scheme 

4.2.2.6). Unfortunately, all efforts to effect this transformation were unsuccessful. 

 

Scheme 4.2.2.6 Maleic Anhydride Synthesis Approach  
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4.2.3 Synthetic Approach II: Ester and Benzyl Ether Model  

Since attempts to install the maleic anhydride moiety were unsuccessful from 

substrate 428a, an alternative approach targeting !- keto ester 432 as substrate was 

explored. In this approach it was envisioned that the maleic anhydride moiety in 430 

would arise via a Pd(0)-catalyzed CO-insertion applied to the corresponding enol triflate 

431 (Scheme 4.2.3.1).  The requisite ß- Keto ester 432 would derive from a Wharton 

fragmentation 10-11 of tertiary alcohol 433. Using similar procedures as the previous 

diester approach, 433 would be prepared from phenol 434 wherein the aromatic core 

possesses a single methyl ester and a benzyl ether. Alkylation of phenol 435 with iodide 

436 would yield oxidation precursor 434. 
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Scheme 4.2.3.1 Retrosynthetic Analysis II: Model with Ester and OBn Substitution 
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 This approach commenced with 2,4-dihydroxy benzaldehyde (440, Scheme 

4.2.3.2). Selective bis protection of the diphenol followed by Baeyer-Villiger oxidation 

and formate hydrolysis yielded phenol 441. Regioselective bromination34 and phenol 

alkylation with iodide 436
35 gave aryl bromide 442. Lithium-bromide exchange and 

trapping of the resulting aryl lithium species with methyl chloroformate was followed by 

removal of the allyl protecting group to provide 443.40 Phenolic oxidation and Diels-

Alder cycloaddition was performed using Pb(OAc)4 as the oxidant and produced bicycle 

445 in excellent yield. 
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Scheme 4.2.3.2 Phenolic Oxidation and Diels-Alder Cycloaddition 
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Using procedures similar to those employed in the diester approach, ketone 445 

was converted to the corresponding lactone (446) wherein the Stork bromoacetal was 

poised for radical cascade cyclization. In contrast to the diester system, exposure of 446 

to SmI2 resulted in decomposition of the starting material (Scheme 4.2.3.3); however, 

treatment 446 with Bu3SnH and AIBN furnished a 1:1 mixture of the desired 5-exo-trig, 

5-exo-trig product 448 and an undesired 6-endo-trig, 4-exo-trig byproduct 447.  

 

Scheme 4.2.3.3 Bu3SnH Radical Cascade Cyclization 
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 Following previously-established procedures, acetal 448 was converted to 

fragmentation precursor 449 (Scheme 4.2.3.3). However, efforts to fragment intermediate 

449 led only to epimerization product 452, the structure of which was confirmed by X-

ray structure analysis.4 The lack of fragmentation coupled with the observed 

epimerization product 452, suggested the intermediacy of a retro-aldol process. Based on 

this unanticipated retro-aldol epimerization pathway, we reasoned that the ester group, 

although necessary for eventual installation of the maleic anhydride moiety, could not be 

present in the fragmentation substrate. 

 

Scheme 4.2.3.3 Approach to Wharton Fragmentation  
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 In an effort to remove the ester groups deleterious influence on the Wharton 

fragmentation, it was found that treatment of 452 with LAH selectively reduces the ester 

without affecting the lactone (Scheme 4.2.3.4). Importantly, the derived alcohol (453) 

undergoes smooth fragmentation to desired product 454 in good yield upon exposure 

KOH.  
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Scheme 4.2.3.4 Wharton Fragmentation after Reduction of Methyl Ester  
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At this stage, completing the synthesis in the model system required oxidation of 

the primary alcohol 454 to the corresponding acid or aldehyde 455 (Scheme 4.2.3.5). 

Unfortunately, all conditions attempted resulted in recovery or decomposition of starting 

materials. The difficulty in manipulating 454 was further illustrated by several failed 

attempts to simply install a protecting group.  

 

Scheme 4.2.3.5 Attempted Further Modification of the Fragmentation Product  
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4.3 Current Approach Towards the Total Synthesis of the Phomoidrides 

 

4.3.1 Proposed Solution for Removal Carboxylate 

 Given that our prior studies had established the need to remove the ester in 449 

prior to fragmentation (see Scheme 4.2.3.3) and that removing the ester by reduction was 

a dead-end, a more dramatic modification of the synthetic plan was needed.  Thus began 

my involvement with the project and as a first solution the complete removal of the ester 

group was proposed. 

 As illustrated in Scheme 4.3.1, it was envisioned that the proposed 

decarboxylated intermediate 462 could be accessed in two ways. One approach involved 

the decarboxylation of an intermediate similar to that already prepared in previous studies 

(i.e., 460 to 462).  Alternatively, we had the option of leaving out the CO2 unit from the 

outset and bringing the synthesis through a more simplified intermediate 461.  

 

Scheme 4.3.1 Proposed Solution to Remove of Carboxylate 
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4.3.2 Decarboxylation Attempts 

 To determine whether the decarboxylation approach would be viable, we 

attempted to prepare substrate 464 (Scheme 4.3.2); however, hydrolysis of ester 463 to 

carboxylic acid 464 led only to decomposition of the starting material. As an alternative, 

we attempted to prepare acid 464 via an oxidation of the corresponding aldehyde (465). 

To this end, preparation of the 465 began with previously prepared aryl bromide 442. 

Removal of the allyl protecting group, followed by exposure to n-BuLi and trapping of 

the derived dianion with DMF furnished benzaldehyde 466. Oxidation of 466 and 

intramolecular Diels-Alder cycloaddition, yielded aldehyde 465. Unfortunately, attempts 

to oxidize aldehyde 465 to carboxylic acid 464 under Pinnick conditions failed and only 

starting material was recovered.41
 

 

Scheme 4.3.2 Proposed Solution to Remove Carboxylate 
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4.3.3 Initial Studies with Simplified Substrates 

 Given the difficulty of converting aldehyde 465 to carboxylic acid 464, we began 

to consider [2.2.2] bicyclic core structures that were devoid of a caboxylate moiety, such 

as substrate 468. In fact, efforts to prepare this intermediate are illustrative of the inherent 

difficulties associated with this design change.  As can be seen in Scheme 4.3.3, phenol 

467 is readily available from deallylation of 442; however, when 467 is exposed to 

conditions expected to result in the tandem phenolic oxidation/Diels-Alder reaction, the 

only observed product is 469.  Thus, the electronic demands of  the intramolecular Diels-

Alder reaction are not met by this substrate.  

 

Scheme 4.3.3 Phenolic Oxidation and Diels- Alder reaction of bromide phenol 467 
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4.3.4 Tuning of the Diels-Alder Substrate 

When one considers the successful phenolic oxidation/ Diels-Alder reactions of  

di- and mono-ester substrates 411 and 443 in conjunction with the unsuccessful phenolic 

oxidation/Diels-Alder of 467 (Scheme 4.3.4.1, inset), it becomes clear that an electron 

withdrawing group must be present on the diene to enable the inverse electron demand 

Diels-Alder process. Therefore, we began to develop an alternative route wherein an 

electron withdrawing group replaces the benzyl ether at the 3- position (e.g., 470, 

Scheme 4.3.4.1).  In contrast to 443, the C-4 functionalized monoester substrate, the 
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newly envisioned intermediate manifests an aldehyde as the electron withdrawing group.  

The change in oxidation level was made in anticipation of employing a Baeyer-Villiger 

oxidation to cleave the aldehyde and deliver the hydroxyl group required for Wharton 

fragmentation (see 473 to 462 in Scheme 4.3.4.1).  In addition to incorporation of the 

aldehyde, substrate 470 is unfunctionalized at C-4; this change was made to circumvent 

complications akin to those encountered when trying to manipulate the C-4 

hydroxymethyl group in 454 (vide supra, Scheme 4.2.3.5).  Overall, exposure of 470 to 

the tandem penolic oxidation/ Diels-Alder was expected to deliver the [4+2] product 472  

via the intermediacy of acetate 471.  Paralleling our previous routes, 472 would be 

advanced to 473 via radical cascade chemistry applied to an exomethylene lactone. 

Baeyer-Villiger oxidation, thioacetal formation and introduction of a mesylate group 

would deliver 462 and set the stage for the Wharton fragmentation. 

 

Scheme 4.3.4.1 Synthetic Plan Using EWG for Diels- Alder Reaction 
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 To investigate this plan, we set out to prepare phenol 470. In an initial approach 

3,4-dihydroxy benzaldehyde (437) was used as the starting material and selectively 

converted to the corresponding monoacetate (474) upon exposure to AcCl in the presence 

of NaOH (Scheme 4.3.4.2).42  Unfortunately, efforts to alkylate the derived phenol (474) 

with iodide 436 only yielded an undesired bis alkylation product 475. Eventually we 

discovered that, in contrast to acylation, alkylation of 3,4-dihydroxy benzaldehyde 

proceeds selectively at the C-4 phenolic oxygen; thus, simply treating with K2CO3 and 

iodide 436, furnishes desired phenol 470 in reasonable yield.  

 

Scheme 4.3.4.2 Preparation of Phenol 470 
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Proceeding with phenol 470, we observed that the tandem phenolic 

oxidation/Diels-Alder reaction behaves differently at varied temperatures (Table 4.3.4). 

The highest yield for the desired [4+2] product 480 was observed in reactions performed 

at 90 ºC; however, efforts to improve the yield by running the reaction at warmer 

temperatures resulted in increasing amounts of rearomatized  byproduct 481; at 140 °C 

481 was the only observed product. 
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Table 4.3.4 Phenolic Oxidation and Diels- Alder Cycloaddition of Phenol 470 

 

OHC OH

O

Pb(OAc)4

Temperature

O

CHO

O

OAc

OHC OH

O

OAc

+

470 480 481

Temperature Yield(%)

60 ºC 480: 52%

90 ºC 480: 54%

140 ºC 481: 47%
 

 

4.3.5 Chemoselectivity Issues in Advancing 480 

 Although introduction of the aldehyde in 470 had served to meet the electronic 

demands of the Diels-Alder reaction, advancing the cycloadduct 480 required 

differentiation of the aldehyde and newly formed ketone moieties.  This differentiation 

was important given that aldol addition to the ketone with methyl 3-(dimethylamino) 

propanoate enolate was the next step.36-39 Given the potential difficulties associated with 

eventual removal of many carbonyl protecting groups, we chose to first explore 

differentiation of the aldehyde and ketone by nucleophilic addition.  As illustrated in 

Scheme 4.3.5.1, this effort began by removal of the acetate and exposure of the derived 

hemiacetal (482) to either TMSCl followed by MeLi or NaH/MeLi. Given somewhat 

improved efficiency, the latter sequence was employed for material advancement and the 

derived diol 485 was protected as the corresponding bis silyl ether 486.  Unfortunately, 

486 failed to undergo subsequent aldol addition to produce 487.  
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Scheme 4.3.5.1 Intermolecular Addition for Differentiation of Enol 480   
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 After the unsuccessful intermolecular aldol reaction to ketone 486, we decided to 

attempt an intramolecular variant and explored the conversion of hemiacetyl 482, to ester 

488 by exposure to 2-bromoacryloyl chloride; unfortunately this acylation reaction failed 

(Scheme 4.3.5.2). 

 

Scheme 4.3.5.2 Attempted Intramolecular Addition of a Vinyl Bromide 
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In a second attempt at intramolecular addition we explored the use of different 

lead salts such as Pb(O2CCH2CH3)4 494 
43-45 as oxidants in the tandem phenolic 

oxidation/Diels-Alder reaction. Although this approach allowed quick access to the 

desired ester (490), subsequent intramolecular aldol reaction to the lactone (491) failed 

under a variety of different conditions (Scheme 4.3.5.3). 

 

Scheme 4.3.5.3 Intramolecular Addition for Differentiation of Enol 480 by Lead Salt 
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 In a final attempt at intramolecular lactone formation we  exposed hemiacetal 482 

to ylide 497 and were delighted to find that butenolide 492 was produced in modest yield 

(Scheme 4.3.5.4)..47 Mechanistically this transformation is believed to begin with alcohol 

addition to ketene 497 to furnish 493 which, in turn, undergoes  intramolecular Wittig 

olefination 
via intermediate 494.46  Lactone 492 was produced after elimination of 

triphenylphosphine oxide. Encouraged by this success we set out to explore preparation 

of a more functionalized lactone system via treatment of 482 with cumulene 495.  It was 

hoped that the in situ generated cumulene would acylate hemiacteyl 482 and that the 

derived intermediate would undergo intramolecular addition to directly furnish the 

desired exomethylene lactone 489. Unfortunately, these efforts resulted only in 

decomposition of the starting material.  



 182 

Scheme 4.3.5.4 Attempt involving a Ketene and Cumulene  
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 Experiencing only limited success with nucleophilic addition and intramolecular 

additions we next attempted to differentiate the aldehyde and ketone moieties in 480 via 

oxidation (Scheme 4.3.5).  Attempt to transform the aldehyde to ketone 500 via a 

Baeyer-Villiger reaction using m-CPBA, H2O2, or CF3CO3H resulted in either recovery 

or decomposition of starting material.48,49 Attempts to convert  aldehyde 480 to its 
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corresponding carboxylic acid using the Pinnick oxidation resulted only in recovery of 

starting material. 

 

Scheme 4.3.5.5 Attempted Differentiation of Enol 480 via Oxidation 
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 In a last approach to differentiate the carbonyl groups, an effort was made to 

effect conjugate reduction.  To this end, it was hoped that conversion of 482 to the 

corresponding aldehyde 502 would provide a substrate suitable for subsequent Baeyer- 

Villiger oxidation and thus a variety of conditions for conjugate reduction were explored 

that included: L-selectride;50 ([(PPh3)CuH]6;
51 (Ph3P)RhCl, Et3SiH;52 NaBH6, NiCl2;

53 

Mg or Zn/ MeOH;54 Et3SiH, CuCl; Al(O(2,5-Ph) Ph)3, DIBAL, nBuLi;55 Morpholine, 

Hantz reagent;56 9-BBN; pyridine, and; Pd/C, H2 (Table 4.3.5).  As illustrated in Table 

4.3.5 reduction using Pd/C and H2 was the only successful result. Although, this condition 

provided a high yield of the desired product, potential lack of compatibility with the 

olefins present in the side chains in the real system led us to abandon this approach.  
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Table 4.3.5 Reduction for Differentiation of Enol 482 

                                

O

CHO

O

OH

482

O

O

OH

Conditions

CHO

Conditions Results

L-selectride decomposition

([(PPh3)CuH]6 S.M. recovered

(Ph3P)RhCl, Et3SiH S.M. recovered

NaBH6, NiCl2 S.M. recovered

Mg or Zn/ MeOH decomposition

Et3SiH, CuCl S.M. recovered

Al(O(2,5-Ph) Ph)3,DIBAL, n-BuLi dicomposition

Morpholine, Hantz reagent S.M. recovered

9-BBN, Py S.M. recovered

Pd/C, H2 502: 89%

502

 

 

4.3.6 Diels- Alder Reaction of a Triflate-Containing Substrate 

 Efforts thus far have demonstrated the necessity of an electron withdrawing group 

(EWG) on the phenol for success in the phenolic oxidation/inverse electron demand 

Diels-Alder reaction. In addition, deleterious retro-aldol chemistry in attempted 

fragmentation reactions led us toward temporarily placing the EWG at C-3 of the aryl 

substrate.  Although this latter maneuver worked with regard to the electronic demands of 

the Diels-Alder reaction, transforming the EWG (i.e., aldehyde) to a ketone-containing 

substrate  (e.g., 513) suite for a subsequent radical cascade cyclization proved 

unworkable. Based on this growing body of results we decided to explore the affect of 

electron withdrawing substituents attach to the aryl oxygen. If these  “OEWGs” proved 
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capable of meeting the electronic demands of the Diels-Alder reaction, we could avoid 

many of the deleterious issues encountered in our previous studies.  As illustrated 

retrosynthetically in Scheme 4.3.6.1, model system 430 was envisioned to derive from ! 

keto ester 510 via Pd(0) catalyzed CO insertion. Wharton fragmentation would deliver 

510 from 512 which, in turn, would be produced by application of a radical cascade 

reaction to bromo acetyl 513. Following the previous established procedures,  bromo 

acetal 513 would be derived from Diels-Alder product 514 which we hoped could  be 

produced from phenol 515 wherein an OEWG substituent would meet the electronic 

demands of the tandem phenolic oxidation/Diels-Alder sequence.  

 

Scheme 4.3.6.1 Retrosynthetic Analysis III: Model with OEWG Substitution 
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In accord with the above synthetic plan we began our studies by exploring the 

effectiveness of OEWG substituents on the Diels-Alder reaction.  To this end we first 
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explored the affect of incorporating a triflate group. As illustrated in Scheme 4.3.6.2, we 

exposed the previously prepared phenol 470 to allylbromide to furnish benzaldehyde 516. 

Baeyer-Villiger oxidation of 516 in the presence of PhSeSePh and H2O2 produced a 

mixture of the desired phenol 518 and byproduct epoxide 517.
57 Isolation of 518 followed 

by exposure  to triflic anhydride furnished the corresponding triflate 519 which, upon 

exposure to Pd(0) and NaBH4 underwent smooth deallylation to afford 520, the substrate 

needed for the proposed tandem phenolic oxidation/Diels-Alder reaction. To our delight, 

treatment of 520 with Pb(OAc)4 produced desired [4+2] cycloaddition products 521 and 

522 in good yield. This result provided solid evidence that use of OEWG substitution on 

the phenol ring was a suitable strategy in this inverse electronic demand Diels- Alder 

reaction. Moreover, this substrate afforded better yields than previous model systems. 

 

Scheme 4.3.6.2 Preparation 1: Precursor for Phenolic Oxidation and Diels-Alder Reaction 
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 Pb(OAc)4, DCE, reflux

O

OTf

O

OR

R=Ac, 521: 83.5% yield
R=OH, 522: 4.5%  yield

519
(85% yield)

520

(quant. yield)

 

 

Although we were excited by this initial success, the observed over oxidation in 

the Baeyer-Villiger oxidation of 516 left us a bit concerned about compatibility issues 
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with the olefins that would be present in the side chains of the real system  (Scheme 

4.3.6.2, inset).   Thus, rather than forge ahead with the model system we opted to explore 

an alternative route to 518.  As illustrated in Scheme 4.3.6.3, we chose to explore a route 

eminating from 2,4-dihydroxy benzaldehyde (440) which, upon exposure to BOM-Cl can 

be selectively protected at the least hindered phenol to give aldehyde 525. Subsequent 

allylation and Baeyer-Villiger oxidation delivers phenol 526. Coupling of 526 with iodide 

436 delivers phenol ether 527 and removal of the BOM protecting group then completes 

the construction of 518.  Importantly, this approach to 518 is very short, proceeds in 

excellent yield and can be readily adapted to the phomoidride D (303) synthesis by 

simply incorporating a fully functionalized side-chain unit (i.e., 407) in place of 436. 

Having developed an alternative preparation of 518, we turned toward completing the 

model study and advanced the Diels-Alder adduct (521) to the corresponding hemiacetyl 

(522) by exposure to silica gel. 
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Scheme 4.3.6.3 Preparation 2: Precursor for Phenolic Oxidation and Diels- Alder Reaction 

   

OHC

HO OBOM

OHC

HO OH

HO

O OBOM

BOMCl, K2CO3

Acteone, reflux

1. AllyBr, K2CO3,   
    Acteone, reflux

2. m-CPBA, DCM,           
    reflux; K2CO3, MeOH

K2CO3 ,
I

436

Acteone, reflux

O

O OBOM

O

O OH

HCl, MeOH, r.t.

518

1. Tf2O, py., 
    DCM, 0 ºC to r.t.

O

OTf

O

OAc

silica, DCM, r.t.

O

OTf

O

OH

440 525

526 527

521 522

(81% yield)

(3 step: 61% yield)

(55% yield)

(quant. yield)

2. Pd(PPh3)4, NaBH4, 
    EtOH, r.t.

(2 step: 85% yield)

O

O

O

O

O

O

O

O

OH

303: Phomoidride D

4

 

  

As illustrated in Scheme 4.3.6.4, intermediate 522 was advanced by protecting 

the free alcohol as its TMS ether (528), followed by aldol addition and Cope elimination 

to yield olefin 529 (Scheme 4.3.6.4). Removal of the TMS protecting group with TBAF 

and AcOH was followed by spontaneous cyclization to provide lactone 530. 

Unfortunately, efforts to remove the triflate and deliver ketone 531 failed. The undesired 

seco acid 532 was the only product observed. 
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Scheme 4.3.6.4 Lactone Synthesis 

 

O

OTf

O

OH
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O

OTf

O

OTMS
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TMSOTf, Et3N

DCM, -78 ºC

1. LDA, (CH3)NCH2CH2CO2Me,  
    THF, -78 ºC to r.t.

2. m-CPBA, DCM, -78 ºC; Al2O3

TBAF, AcOH

THF, r.t.

529

530

(77% yield; 
BRSM: 92.4% yield)

(two steps: 31% yield)

(81% yield)

THF, H2O, r.t.

LiOH

532: quant. yield531

O
OH

OTMS

O

OMe

OTf

O

OTf

OH

O
O

O

O

OH

O
O

O

OTf

OH

OH

O

OH

 

 

 Somewhat surprised by the resiliency of the enol triflate we decided to explore 

this transformation in a simplified system.  To this end model enoltriflate 535 was 

prepared and the conditions that were explored for its conversion to ketone 536 included: 

A) attempts to saponify under basic conditions (LiOH or KOH); B) initial transformation 

to the corresponding enamine via by Pd (0) or Cu (I) catalysis;58-62 C) addition of amine 

nucleophiles such as  DBU or NaNH2, and;63, 64  D) reductive cleavage of the O-S bond65
 

(Table 4.3.6.1).  Although several of these conditions produced some of the desired 

ketone, a combination of Pd(OAc)2, BINAP, morpholine, and Cs2CO3 proved the most 

effective. 
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Table 4.3.6.1 Triflate Removal Triflate in a Model. 

                                 

OTf

Conditions

O

535 536

Conditions Results

LiOH, r.t. decomposition

Pd(OAc)2, BINAP, morphline, 

NaOtBu, Tol, reflux
decomposition

Pd(OAc)2, BINAP, 
Cs2CO3, Tol, reflux

26%

Pd(OAc)2, BINAP, morphline, 
Cs2CO3, Tol, reflux

46%

DBU, THF, r.t. decomposition

NaNH2, DMF, r.t. 25%

Na(NH3), -78 ºC trace
  

  

 Having had some success with the conversion of 535 to 536, we applied a few of 

the more promising conditions to 528, including: LiOH; Pd(OAc)2, BINAP, morpholine, 

NaOtBu;59 Pd(OAc)2, BINAP, morpholine, Cs2CO3;
61 DBU;63 Na(NH3);

65 Pyridine; 

NaNH2;
64 CuI, proline, morpholine, K3PO4 

62 (Table 4.3.6.2). Unfortunately, no desired 

product (537) was produced and starting material was either recovered or decomposed in 

all cases except the last, wherein an unexpected heterocyclic product (538) was observed.  
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Table 4.3.6.2 Removal Triflate in the Real System 522 

                              

O

OTf

O

OTMS

528

Conditions

Conditions Results

LiOH, THF r.t. to reflux decomposition

Pd(OAc)2, BINAP, morphline, 

NaOtBu, Tol, reflux
decomposition

Pd(OAc)2, BINAP, morphline, 
Cs2CO3, Tol, reflux

decomposition

DBU, THF, r.t. decomposition

Na(NH3), -78 ºC decomposition

Py. r.t. to reflux S.M. recovered

NaNH2, DMF, r.t. decomposition

CuI, (-)-proline, morpholine, 
K3PO4, MeCN, reflux

O

OTf

O

N

538: 39% yield

O

O

O

OH

537

 

 

4.3.7 Investigation of Other OEWG Substituents  

 Due to the difficulties encountered while attempting to remove the triflate group, 

we decided to investigate other OEWG groups.  To this end phenol 518 was acylated 

with different electron withdrawing groups, including: acetate, benzoylate, 

trifluoroacetate, phosphate, mesylate and nosylate to give the corresponding products 540 

to 545, respectively (Table 4.3.7.1). 
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Table 4.3.7.1 Preparation of Substrate for Diels- Alder Reaction: Acylation 

                    

O

OHO

518

O

ORO

conditions

Conditions Results (yield)

AcCl, py., DCM, r.t. R=Ac, 540: quant.

O

HO

NO2

, DCC, DMAP, 
  DCM, r.t.

, 541: 33%R=

O

NO2

(CF3CO)2O, py., DCM, r.t. R=OCCF3, 542

ClP(O)(OEt)2, py, DCM, r.t. R=P(O)(OEt)2, 543: 77 %

MsCl, py., DCM, r.t. R=Ms, 544: 55%

NsCl, py., DCM, r.t. R=Ns, 545: 79%

539

 

  

 As illustrated in Table 4.3.7.2, derivatives 540-545, could be deallylated to the 

corresponding phenols (547-552) using Pd(0) and either NaBH4/EtOH or 

K2CO3/MeOH.40,66  
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Table 4.3.7.2 Preparation of Substrates for Diels-Alder Reaction: Deallylation 

             

O

ORO

O

OHRO

Conditions Results (yield)

Pd(PPh3)4, NaBH4, 
EtOH, r.t

R=H, 546: quant

Pd(PPh3)4, NaBH4, 
EtOH, r.t

R=Ac, 547: 98%

Pd(PPh3)4, NaBH4, 
EtOH, r.t , 548: 10%R=

O

NO2

Pd(PPh3)4, NaBH4, 
EtOH, r.t

R=OCCF3, 549

Pd(PPh3)4, NaBH4, 
EtOH, r.t

R=P(O)(OEt)2, 550: 78 %

Pd(PPh3)4,K2CO3, 
MeOH, r.t.

R=Ms, 551: 100%

Pd(PPh3)4,K2CO3, 
MeOH, r.t.

R=Ns, 552: 92%

conditions

539 553

 

 

With a series of substrates in hand (i.e., 546-552) the subsequent tandem phenolic 

oxidation/Diels-Alder addition was investigated. The first step, phenolic oxidation was 

found to work well for all substrates; however, the subsequent [4+2] cycloaddition was 

observed to proceeded with only three: phenol 550 (phosphate EWG), 551(mesylate 

EWG), and 552 (nosylate EWG)  (Table 4.3.7.3). Of these successful substrates, the 

yield for 552 was best at 77% (combined). 
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 Table 4.3.7.3 Substrates 553 for Phenolic oxidation and Diels- Alder Reaction 

  

O

OHRO

Pb(OAc)4, DCE

reflux, 5min

O

O

OAc (OH)

OR

555553

O

ORO

554

(quant. yield)

results

relux, 1 day

Substrates: 553 D/A product: yield

R=H, 546 0%

R=Ac, 547 0%

R=

O

NO2

, 548
0%

R=OCCF3, 549 0%

R=P(O)(OEt)2, 550 556 (OH): 24%

R=Ms, 551 557(OAc): 42%

R=Ns, 552
 558(OAc): 73%;    
 559(OH):     4%

OAc

 

 

Our next challenge was to convert enolether 555 to the corresponding ketone 560. 

To this end we chose to explore three conditions: LiOH; KOH; PhSH/KOH.67 In the 

event, exposure of 521 (the enoltriflate) and 556-559 to the first two conditions resulted 

in no desired product (Table 4.3.7.4). However, for substrate 558, exposure to 

PhSH/KOH furnished the desired ketone in excellent yield. 
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Table 4.3.7.4 Conversion of Enolate 555 to Ketone 560 

                           

substrates conditions results (yield)

R=Tf, 521(OAc) PhSH, KOH decomposition

R=P(O)(OEt)2, 556(OH) LiOH or KOH or 
PhSH, KOH

decomposition

R=Ms, 557(OAc) LiOH or KOH or 
PhSH, KOH

decomposition

R=Ns, 559(OH) LiOH or KOH decomposition

R=Ns, 558(OAc) LiOH or KOH decomposition

R=Ns, 559(OH) PhSH, KOH 30%

R=Ns, 558(OAc) PhSH, KOH 96%

O

O

OAc (OH)

OR

555

O

O

OAc

O

560

conditions

 

 

Proceeding with ketone 560, our next goal was differentiation of the two ketone 

moieties.  To this end, we began advancing 560 by removal of the acetate to provide 

hemiacetal 537. Reprotection of 537 as the TMS ether (561) was followed by exposure to 

TBSOTf  to produce silyl enolether 563.  With the two carbonyls effectively 

differentiated, the stage was set for the aldol addition/Cope elimination sequence.  To our 

delight, 563 proved  to be a superb substrate and furnished the desired ester 564 in 85% 

overall yield.  Conversion of 564 to the corresponding  exomethylene lactone (531) was 

followed by alkylation with Stork’s bromo acetyl to provide radical cyclization precursor 

513 (Scheme 4.3.7.1) 
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Scheme 4.3.7.1 Synthesis of Lactone 531 

  

O

O

OAc

O

560

O

O

OH

O

537

silica

DCM, r.t.

TMSOTf, Et3N

DCM, -78 ºC

O

O

OTMS

O

1. LDA, (CH3)2NCH2CH2CO2Me

THF, -78 ºC to r.t.

2. m-CPBA, -78 ºC

O
OH

OTMS

O

OMe

564

561

OTBS

TBSOTf, Et3N

DCM,  -78 ºC to r.t.

O

O

OTMS

OTBS

563

TFA, DCM, r.t.

513531

,N,N'-Dimehyl analine
DCM, r.t.

EtO

Br

Br

419

(96% yield) (82% yield) (98% yield)

(85% yield)

(59% yield)

(49% yield;
BRSM: 56% yield)

O

O

OH

O
O

O

O

O

O

OEt

Br

O

 

   

 Treatment of 513 with SmI2 gave tertiary alcohol 512. Having accessed 

cyclization product 512, our next goal was to conduct the Wharton fragmentation. To this 

end, the acetal in 512 was opened and converted to the corresponding dithiane (566) upon 

exposure to BF3•OEt2 and 1,3-propanethiol. Unfortunately mesylation of 566 furnished 

bis mesylate 567, an intermediate which has to date proven unadvancable (Scheme 

4.3.7.2). 
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Scheme 4.3.7.2 Preparation Substrate 567 for Fragmentation 
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HO

O
OEt

O
O

512
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HSCH2CH2CH2SH
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O
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O
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O

566
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O

MsO

OMs

O

S
S

O

567

KOH, THF, r.t.

O

O
O

O

568

S
S

(two steps: 65% yield)

513

SmI2, THF, r.t.

O

O

O

O

OEt

Br

O

(60% yield)

 

 

 Given that selective alcohol funcitionalization had now presented itself as a 

problem we recognized that oxidation of the ethyl ketal to the corresponding lactone 

might provide an intermediate suited for fragmentation.  Unfortunately, although 

conversion of acetal 512 to the corresponding hemiacetyl 570 was successful subsequent 

oxidation to 571 failed under numerous conditions (Scheme 4.3.7.3).  As an alternative 

approach to delivering lactone 571, we explored introduction of an alpha halo ester 

replacement for the bromo acetal.  The derived ester  (585) was seen as a potential 

precursor to 571 for via a radical cyclization akin to that initiated with the corresponding 

bromo acetal.  However, efforts to prepare 585 by treatment of lactone 531 with 2-

chloroacetic anhydride (497) gave undesired product 586, from the product of an 

apparent  [3,3] sigmatropic rearrangement of 585. 
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Scheme 4.3.7.3 Preparation Substrate 571 for Fragmentation 
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The final approach to prepare a substrate for Wharton fragmentation involved 

differentiating the two tertiary alcohols that would result following acetal opening of 

substrate 512 (Scheme 4.3.7.4).  Thus, acylation of  the tertiary alcohol in 512 was 

followed by acetal opening/ dithiane formation, mesylation, and deacylation to furnish 

572.  

 

Scheme 4.3.7.4 Preparation of Substrate 572 for Fragmentation 

                   

O

HO

O
OEt

O
O

512

1. AcCl, Et3N, DMAP, DCM, r.t.
2.BF3•OEt2, HSCH2CH2CH2SH

3. MsCl, Et3N, DCM, r.t.
 (three steps: 43% yield)

O

HO

OMs

O

S
S

O

572

4. K2CO3, MeOH, r.t.
(33% yield)

 



 199 

 

4.4 Future Plans 

 Future studies will focus on the fragmentation of mesylate 572 to the 

corresponding ketone 568. Subsequent completion of the model system begin with 

homologation of 568 using Mander’s reagent.  Conversion of the intermediate ß-keto 

ester to the corresponding enol triflate followed by palladium catalyzed CO insertion, 

will set the stage for dithane removal and oxidation using the Jones Reagent.  

 

Scheme 4.4 Future Plans 
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HO
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S

O

Fragmentation
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O

O

O
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Model: 330  

 

 

4.5 Conclusions 

 In this chapter, the previous Wood group synthetic efforts towards the total 

synthesis of the phomoidrides have been summarized. Based on these previous results, a 

new approach was developed wherein a deleterious ester group was removed and  a 

Wharton fragmentation enabled. Further refinement revealed that subtle electronic effects 

of a tandem phenolic oxidation/Diels-Alder sequence could be addressed by the 

incorporation of electron deficient sulfonates (e.g., a triflate or nosylate).  
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4.6 Experimental Section 

 

4.6.1 Materials and Methods 

General. Unless otherwise stated, reactions were performed under a nitrogen atmosphere 

using freshly dried solvents. Tetrahydrofuran (THF) was dried either by distillation from 

sodium/benzophenone or by passing through activated alumina columns. Methylene 

chloride (DCM), diethyl ether (Et2O), benzene (PhH), toluene (Tol) and acetonitrile 

(MeCN) were dried by passing through activated alumina columns. Dimethylformamide 

(DMF) was dried over activated molecular sieves or by passing through activated 

alumina columns.  MeOH was distilled over magnesium oxide. All other commercially 

obtained reagents were used as received.  All reactions were monitored by thin-layer 

chromatography using EMD/Merck silica gel 60 F254 pre-coated plates (0.25 mm).  

Flash chromatography was performed with indicated solvents using silica gel (particle 

size 0.032-0.063) purchased from Silicycle. Microwave experiments were performed 

using a Biotage Initiator" or CEM Discover microwave reactor.  1H NMR spectra were 

recorded at 500 MHz, 400 MHz or 300 MHz using a Bruker AM-500, Bruker Avance 

DPX-500, Bruker AM-400, Varian Inova 400, Varian Inova 300 or Varian Mercury 

Inova 300 instrument. 13C NMR spectra were recorded at 125 MHz, 100 or 75 MHz 

using a Bruker AM-500, Bruker Avance DPX-500, Bruker AM-400, Varian Inova 400, 

Varian Inova 300 or Varian Mercury Inova 300 instrument. Chemical shifts are reported 

relative to internal chloroform (1H, ! = 7.26, 13C, ! = 77.1) as indicated.  Splitting 

patterns are reported as such, app = apparent, br = broad, s = singlet, d = doublet, t = 

triplet, q = quartet, quin = quintet, m = multiplet.  Infrared spectra were recorded on a 
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Nicolet Avatar 320 FT-IR. High-resolution mass spectra were acquired at the Colorado 

State University CIF using an Agilent 6210 TOF LCMS. 

 

4.6.2 Preparative Procedures 

Preparation of Compound 466 

                       

O

BnO O

Br

442

1. NaBH4, Pd(PPh3)4,
    EtOH, r.t.

2. NaH,n-BuLi, DMF
    THF, -78ºC to r.t.

O

BnO OH

OHC

466

(two steps: 99% yield)

 

  

 To a solution of 442 (403.0 mg, 1 mmol, 1 equiv.) in EtOH (10 mL) was added 

NaBH4 (20 mg, 0.5 mmol, 0.5 equiv.) and Pd(PPh3)4 (29 mg, 0.03 mmol, 0.03 equiv.). 

The mixture was stirred overnight then filtered through Celite and concentrated under 

reducing pressure to give crude phenol (368.2 mg, 100%). 

 To a solution of crude phenol in THF (10 mL) was added NaH (26.4 mg, 1.1 

mmol, 1.1 equiv.). The mixture was stirred for 5 min at room temperature then cooled to   

-78 ºC. The solution was added to n-BuLi (0.75mL, 1.2 mmol, 1.2 equiv., 1.6 M) 

dropwise and stirred for 30 minutes. The mixture was added to DMF (0.23 mL, 3 mmol, 

3 equiv.), stirred for 3 h at -78 ºC then warmed to room temperature. The solution was 

stirred overnight and quenched by H2O (1 mL). The layers were separated and the 

aqueous layer was washed with EtOAc (2 # 2 mL). The combined organic layers were 

washed with brine (4 mL), dried over Na2SO4, filtered and concentrated under reducing 

pressure. The residue was loaded onto silica and purified by column chromatography 
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(gradient elution, 10%- 20% EtOAc/ Hexanes) to yield 466 (308.4 mg, 98.6%) as brown 

solid. 

 Compound 466: FTIR(NaCl/ thin film) 3308, 2935, 2874, 1662, 1585, 1506, 

1456, 1290, 1216, 1138, 1025, 1290, 1216, 1138, 1025, 1024, 968, 736, 696 cm-1; 1H 

NMR (400 MHz, CDCl3) $ 10.37 (s, 1H), 7.53- 7.31 (m, 6H), 6.64 (s, 1H), 6.52- 6.40 (m, 

1H), 5.66- 5.38 (m, 2H), 5.11 (s, 2H),  4.05 (t, J=6.6 Hz, 2H), 2.56- 2.38 (m, 2H), 1.68 (t, 

J=6.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) $ 188.2, 158.2, 153.5, 140.7, 136.2, 128.8, 

128.6, 128.4, 127.5, 126.4, 117.9, 110.4, 100.4, 71.1, 69.4, 32.5, 18.1;  HRMS (TOF 

LCMS) calc’d for C19H21O4 [M-H] 311.1283, found 311.1291. 

 

Preparation of Compound 465 

                             

O

BnO OH

OHC

466

Pb(OAc)4,
DCE, relux

(41% yield)

O

OHC
OBn

OH

OAc

465
 

  

To a solution of 466 (43.5 mg, 0.14 mmol, 1 equiv.) in DCE (4.5 mL) was added 

Pb(OAc)4 ( 225.7 mg, 0.17 mmol, 1.4 equiv.). The solution was heated to reflux and 

stirred overnight. The mixture was cooled to room temperature, filtered through Celite 

and concentrated under reducing pressure. The residue was loaded onto silica and 

purified by column chromatography (gradient elution, 20%- 50% EtOAc/ Hexanes) to 

yield 465 (67.4 mg, 41%) as brown oil. 

Compound 465: FTIR(NaCl/ thin film) 3402, 2959, 2927, 1741, 1662, 1616, 

1456, 1374, 1221, 1178 cm-1; 1H NMR (400 MHz, CDCl3) $ 10.00 (d, J= 4.2 Hz, 1H), 
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7.44- 7.29 (m, 5H), 5.28- 5.06 (m, 2H), 4.11- 3.98 (m, 1H), 3.75- 3.56 (m, 2H), 2.15- 

1.90 (m, 6H), 1.83- 1.72 (m, 1H), 1.66- 1.50 (m, 1H), 1.00 (dd, J=4.2, 6.8 Hz, 3H); 13C 

NMR (100 MHz, CDCl3) $ 199.8, 184.4, 170.1, 169.1, 135.3, 129.0, 127.9, 127.6, 115.7, 

94.0, 72.9, 62.0, 57.2, 38.7, 37.7, 36.9, 28.6, 20.9, 20.9;  HRMS (TOF LCMS) calc’d for 

C21H22O6 [M+H] 371.1495, found 371.1484. 

 

Preparation of Compound 470 

                      

OHC

H

OH

OH

K2CO3

I
OHC

H

OH

O
(52% yield)

470437

436

 

  

To a solution of 3,4-dihydroxy benzaldehyde (437) (6.9 g, 50 mmol, 5 equiv.) in 

acetone (120 mL) was added K2CO3 (6.9 g, 50 mmol, 5 equiv.) and iodide 436 (1.96 g, 

10 mmol, 1 equiv.). The solution was heated to reflux and stirred overnight. The mixture 

was cooled to room temperature, filtered through Celite and concentrated under reducing 

pressure. The residue was loaded onto silica and purified by column chromatography 

(gradient elution, 10%- 20% EtOAc/ Hexanes) to yield 470 (867 mg, 52%) as yellow oil. 

 Compound 470: FTIR(NaCl/ thin film) 3409, 2937, 1686, 1609, 1586, 1569, 

1461, 1276, 1203, 1126, 1015, 969 cm-1; 1H NMR (400 MHz, CDCl3) $ 9.82 (s, 1H), 

7.43 (d, J=1.8 Hz, 1H), 7.40 (dd, J=1.9, 8.1 Hz, 1H), 6.94 (d, J=8.2 Hz, 1H), 5.89 (s, 1H), 

5.72- 5.34 (m, 2H), 4.12 (t, J=6.7 Hz, 2H), 2.57- 2.48 (m, 2H), 1.68 (dd, J=1.1, 6.3 Hz, 

3H); 13C NMR (100 MHz, CDCl3) $ 191.2, 151.3, 146.4, 130.7, 128.8, 125.9, 124.6, 
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114.2, 111.3, 68.9, 32.4, 18.1; HRMS (TOF LCMS) calc’d for C12H13O3 [M-H] 

205.0865, found 205.0867. 

 

Preparation of Compound 482 

       

OHC OH

O

 Pb(OAc)4,
DCE, relux

(54% yield)
O

CHO

O

OH

470 482

 silica

O

CHO

O

OAc

480

(qunat. yield)

 

 

  To a solution of 470 (180 mg, 0.87 mmol, 1 equiv.) in DCE (8.7 mL) was added 

Pb(OAc)4 (394 mg, 0.89 mmol, 1.02 equiv.). The solution was heated to reflux and 

stirred overnight. The mixture was cooled to room temperature, filtered through Celite 

and concentrated under reducing pressure. The residue was loaded onto silica and 

purified by column chromatography (gradient elution, 20%- 50% EtOAc/ Hexanes) to 

yield 480 (119 mg, 54%) as yellow oil. 

To the residue in DCM (8 mL) was added silica (720 mg) and stirred for two 

days. The mixture was filtered through Celite and concentrated under reducing pressure 

to yield crude 482 (110 mg, 100%) as yellow oil.  

Compound 480: FTIR(NaCl/ thin film) 2961, 2925, 1748, 1684, 1623, 1370, 

1211, 1086, 1002 cm-1; 1H NMR (400 MHz, CDCl3) $ 9.60 (s, 1H), 7.20 (dd, J=1.5, 6.8 

Hz, 1H), 4.05 (ddd, J=1.6, 5.9, 12.9 Hz, 1H), 3.93 (dd, J=3.3, 6.8 Hz, 1H), 3.76 (s, 1H), 

3.70 (dd, J=3.4, 12.4 Hz, 1H), 2.12- 1.95 (m, 2H), 1.98 (s, 3H), 1.85- 1.79 (m, 1H), 1.68- 

1.61 (m, 1H), 0.88 (d, J=6.9 Hz, 3H); 13C NMR (100 MHz, CDCl3) $ 201.7, 188.6, 
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168.8, 147.9, 141.5, 92.9, 62.7, 50.7, 43.1, 37.3, 34.8, 28.2, 21.7, 20.1;  HRMS (TOF 

LCMS) calc’d for C14H17O5 [M+H] 265.1076, found 265.1071. 

Compound 482: FTIR(NaCl/ thin film) 3419, 2961, 2927, 2871, 1742, 1680, 

1622, 1374, 1092, 1064, 1008 cm-1; 1H NMR (400 MHz, CDCl3) $ 9.62 (s, 1H), 7.36 (dd, 

J=1.7, 6.8 Hz, 1H), 3.95 (ddt, J=1.2, 5.8, 12.6 Hz, 1H), 3.75 (t, J=2.1 Hz, 1H), 3.67 (td, 

J=3.0, 12.7 Hz, 1H), 3.59 (s, 1H), 3.06 (dd, J=2.3, 6.7 Hz, 1H), 2.23- 2.11 (m, 1H), 2.05- 

1.90 (m, 1H), 1.89- 1.81 (m, 1H), 1.73- 1.62 (m, 1H), 0.92 (d, J=6.9 Hz, 3H); 13C NMR 

(100 MHz, CDCl3) $ 208.5, 188.6, 151.1, 139.7, 89.9, 61.7, 50.5, 45.0, 37.0, 33.8, 28.5, 

19.9;  HRMS (TOF LCMS) calc’d for C12H13O4 [M-H] 221.0814, found 221.0818. 

 

Preparation of Compound 481 

                   

OHC OH

O

Pb(OAc)4,
Xylene, relux

(47% yield)

OHC OH

O

OAc

470 481  

  

To a solution of 470 (4.12 mg, 0.02 mmol, 1 equiv.) in xylene (1.0 mL) was 

added Pb(OAc)4 (8.9 mg, 0.02 mmol, 1.02 equiv.). The solution was heated to reflux and 

stirred overnight. The mixture was cooled to room temperature, filtered through Celite 

and concentrated under reducing pressure. The residue was loaded onto silica and 

purified by column chromatography (gradient elution, 10%- 20%EtOAc/ Hexanes) to 

yield 481 (2.5 mg, 47%) as yellow solid. 

Compound 481: FTIR(NaCl/ thin film) 2922, 2854, 1776, 1656, 1504, 1445, 

1299, 1257, 1202, 1102, 969 cm-1; 1H NMR (400 MHz, CDCl3) $ 11.27 (d, J=2.4 Hz, 



 206 

1H), 9.74 (d, J=2.3 Hz, 1H), 7.40 (dd, J=2.4, 8.8 Hz, 1H), 6.61 (dd, J=2.3, 8.8 Hz, 1H), 

5.66- 5.34 (m, 2H), 4.06 (td, J=2.2, 6.7 Hz, 2H), 2.47 (q, J=6.7 Hz, 2H), 2.34 (d, J=2.4 

Hz, 3H), 1.68 (d, J=6.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) $ 194.9, 168.4, 157.9, 

155.1, 132.6, 128.6, 127.3, 125.9, 116.3, 104.7, 69.0, 32.4, 20.4, 18.2;  HRMS (TOF 

LCMS) calc’d for C14H15O5 [M-H] 263.0920, found 263.0923. 

 

Preparation of Compound 483 

    

O

CHO

O

OH

482

TMSCl, Et3N
THF, r.t

O

CHO

O

OTMS

483

(21% yield)

    

  

 To a solution of 482 (74 mg, 0.33 mmol, 1 equiv.) in THF (3.3 mL) was added 

TMSCl (84 µL, 0.66 mmol, 2 equiv.) and Et3N (0.19 mL, 0.33 mmol, 2 equiv.) at room 

temperature. The solution was stirred for 3 days. The mixture was filtered through Celite 

and concentrated under reducing pressure. The residue was loaded onto silica and 

purified by column chromatography (gradient elution, 10%- 20%EtOAc/ Hexanes) to 

yield 483 (20 mg, 21%) as yellow oil. 

Compound 483: FTIR(NaCl/ thin film) 2960, 2927, 2872, 1750, 1684, 1507, 

1249, 1151, 995, 847 cm-1; 1H NMR (400 MHz, CDCl3) $ 9.62 (s, 1H), 7.28 (dd, J=1.7 

Hz, 6.8, 1H), 3.87 (dd, J=5.7, 12.7 Hz, 1H), 3.63 (s, 1H), 3.58 (dd, J=2.8, 12.7 Hz, 1H), 

2.85 (dd, J=3.2, 6.8 Hz, 1H), 2.11- 2.02 (m, 1H), 1.93- 1.82 (m, 1H), 1.74- 1.70 (m, 1H), 

1.59- 1.52 (m, 1H), 0.86 (d, J=7.0 Hz, 3H), 0.08 (s, 9H); 13C NMR (100 MHz, CDCl3) $ 
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206.6, 189.0, 151.8, 139.6, 91.7, 61.5, 51.2, 48.4, 37.1, 34.4, 28.6, 20.0, 1.7;  HRMS 

(TOF LCMS) calc’d for C15H23O4Si [M+H] 295.1366, found 295.1396. 

 

Preparation of Compound 484 

                                       

O

CHO

O

OTMS

483

MeLi, THF,
-78 ºC

O

O

OTMS

OH

484

(quant. yield)

 

  

 To a solution of 483 (14 mg, 0.048 mmol, 1 equiv.) in THF (0.5 mL) was added 

MeLi (0.1 mL, 0.17 mmol, 3.5 equiv., 1.6M) at -78 ºC and the mixture was stirred for 1 

hour. The reaction was quenched by H2O (1 mL). The layers were separated and the 

aqueous layer was washed with EtOAc (2 # 2 mL). The combined organic layers were 

washed with brine (4 mL), dried over Na2SO4, filtered through Celite and concentrated 

under reducing pressure. The residue was loaded onto silica and purified by column 

chromatography (gradient elution, 20%- 33% EtOAc/ Hexanes) to yield 484 (15 mg, 

100%) as yellow oil. 

Compound 484: FTIR(NaCl/ thin film) 3452, 2925, 2854, 1738, 1453, 1374, 

1248, 1192, 1154, 1092, 1070, 990, 844 cm-1; 1H NMR (400 MHz, CDCl3) $ 6.14 (dd, 

J=2.4 Hz, 6.8, 1H), 4.36- 4.28 (m, 1H), 3.83 (dd, J=4.6, 11.4 Hz, 1H), 3.60 (td, J=2.9, 

12.4 Hz, 1H), 3.09 (s, 1H), 2.51 (dd, J=3.3, 6.7 Hz, 1H), 2.05- 1.97 (m, 1H), 1.90- 1.79 

(m, 1H), 1.69- 1.68 (m, 1H), 1.56- 1.44 (m, 2H), 1.24 (d, J=6.9 Hz, 3H), 0.97 (d, J=6.9 

Hz, 3H), 0.1 (d, J=1.1 Hz, 9H); 13C NMR (100 MHz, CDCl3) $ 209.1, 141.7, 126.8, 92.4, 
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69.0, 61.3, 55.4, 45.6, 37.7, 34.2, 29.5, 21.9, 20.8, 1.8;  HRMS (TOF LCMS) calc’d for 

C16H26O4SiNa [M+Na] 33.1498, found 33.1492. 

 

Preparation of Compound 485 

                                      

O

CHO

O

OH

482

NaH, MeLi, THF,
-78 ºC

(48% yield)

O

O

OH

485

OH

 

  

 To a solution of 482 (98.9 mg, 0.45 mmol, 1 equiv.) in THF (4.5 mL) was added 

NaH (11.2 mg, 0.47 mmol, 1.1 equiv.) at room temperature. To this solution was added 

MeLi (0.83 mL, 1.35 mmol, 3 equiv., 1.6M) at -78 ºC and the mixture was stirred for 1 

hour. The reaction was quenched by H2O (2 mL). The layers were separated and the 

aqueous layer was washed with EtOAc (2 # 4 mL). The combined organic layers were 

washed with brine (8 mL), dried over Na2SO4, filtered and concentrated under reducing 

pressure. The residue was loaded onto silica and purified by column chromatography 

(gradient elution, 20%- 50% EtOAc/ Hexanes) to yield 485 (51.3 mg, 48%) as yellow oil. 

Compound 485: FTIR(NaCl/ thin film) 3402, 2967, 2928, 2870, 1733, 1456, 

1374, 1170, 1088, 1023, 973 cm-1; 1H NMR (400 MHz, CDCl3) $ 6.25 (dt, J=1.2 Hz, 6.8, 

1H), 4.32 (ddd, J=1.1, 6.4, 12.8 Hz, 1H), 3.67 (td, J=3.3, 12.2 Hz, 1H), 3.11 (s, 1H), 2.70 

(dd, J=3.3, 6.6 Hz, 1H), 2.14- 2.05 (m, 1H), 1.99- 1.88 (m, 1H), 1.78- 1.72 (m, 1H), 1.67- 

1.59 (m, 1H), 1.27 (d, J=6.4 Hz, 3H), 1.00 (d, J=6.9 Hz, 3H); 13C NMR (100 MHz, 

CDCl3) $ 210.3, 142.6, 126.2, 90.6, 69.0, 61.6, 55.2, 42.5, 37.4, 33.4, 29.4, 21.6, 20.5;  

HRMS (TOF LCMS) calc’d for C13H17O4 [M-H] 237.1127, found 237.1127. 
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Preparation of Compound 490 

                        

Pb(O2CCH2CH3)4
OHC

H

OH

O

470

DCE, reflux

O

CHO

O

O

490

O

492

(27% yield)

 

  

 To a solution of 470 (33 mg, 0.16 mmol, 1 equiv.) in DCE (1.6 mL) was added 

Pb(O2CCH2CH3)4 (492) (112 mg, 0.22 mmol, 1.4 equiv.). The solution was heated to 

reflux and stirred overnight. The mixture was cooled to room temperature, filtered 

through Celite and concentrated under reducing pressure. The residue was loaded onto 

silica and purified by column chromatography (gradient elution, 20%- 50% EtOAc/ 

Hexanes) to yield 490 (8.5 mg, 27%) as yellow oil.  

Compound 490: FTIR(NaCl/ thin film) 2927, 1748, 1683, 1456, 1362, 1166, 

1131, 1080 cm-1; 1H NMR (400 MHz, CDCl3) $ 9.64 (s, 1H), 7.21 (dd, J=2.5 Hz, 6.8, 

1H), 4.10 (ddd, J=2.0, 5.1, 11.2 Hz, 1H), 4.00 (dd, J=3.3, 12.2 Hz, 1H), 3.81 (s, 1H), 3.76 

(td, J=3.6, 12.4 Hz, 1H), 2.30 (q, J=7.7, 2H), 2.19- 2.00 (m, 2H), 1.88- 1.82 (m, 1H), 

1.73- 1.63 (m, 1H), 1.07 (d, J=7.6 Hz, 3H), 0.92 (d, J=7.0 Hz, 3H); 13C NMR (100 MHz, 

CDCl3) $ 201.7, 188.5, 169.0, 147.8, 141.6, 92.9, 62.7, 50.7, 43.2, 37.4, 34.8, 28.3, 28.2, 

20.1, 8.9;  HRMS (TOF LCMS) calc’d for C15H19O5 [M+H] 279.1233, found 279.1222. 

 

Preparation of Compound 492 

                                   

O

CHO

O

OH

482

Ph3P=C=C=O

O

O
O

CHO

492

497

Tol, -78 ºC to r.t.

(36% yield)
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 To a solution of 482 (45 mg, 0.49 mmol, 1 equiv.) in Tol (5 mL) was added 

phosphorus ketene 497 (164 mg, 0.54 mmol, 1.1 equiv.) at -78 ºC. The solution was 

warmed to room temperature and stirred overnight. The mixture was filtered through 

Celite and concentrated under reducing pressure. The residue was loaded onto silica and 

purified by column chromatography (gradient elution, 20%- 50% EtOAc/ Hexanes) to 

yield 492 (16 mg, 36%) as yellow oil.  

Compound 492: FTIR(NaCl/ thin film) 2958, 2926, 1783, 1680, 1649, 1453, 

1358, 1166, 1150, 1117, 974, 876 cm-1; 1H NMR (400 MHz, CDCl3) $ 9.45 (s, 1H), 7.12 

(dd, J=1.2, 6.4 Hz, 1H), 5.39 (s, 1H), 4.20 (s, 1H), 4.06- 3.97 (m, 2H), 3.35 (dd, J=2.4, 

6.5 Hz, 1H), 2.27- 2.19 (m, 1H), 2.07- 1.97 (m, 1H), 1.91- 1.82 (m, 1H), 1.58- 1.52 (m, 

1H), 0.80 (d, J=7.0 Hz, 3H); 13C NMR (100 MHz, CDCl3) $ 187.5, 172.9, 172.7, 149.7, 

147.9, 109.8, 104.8, 62.0, 40.1, 40.0, 39.1, 35.4, 27.9, 20.4;  HRMS (TOF LCMS) calc’d 

for C14H15O4 [M+H] 247.0970, found 247.0961. 

 

Preparation of Compound 502 

                                

O

CHO

O

OH

480

O

O

OH

Pd/C, H2, THF, r.t.

CHO

502

(89% yield)

 

 

 To a solution of 480 (mg, mmol, equiv.) in THF (mL) was added Pd/C (mg, 

mmol, mL), H2 (1 atm) and the mixture was stirred overnight at room temperature. The 

mixture was filtered through Celite and concentrated under reducing pressure. The 
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residue was loaded onto silica and purified by column chromatography (gradient elution, 

20%- 50% EtOAc/ Hexanes) to yield 502 (160 mg, 89%) as orange solid.  

Compound 502: FTIR(NaCl/ thin film) 3406, 2957, 2927, 2876, 1738, 1376, 

1158, 1120, 1085, 1057 cm-1; 1H NMR (400 MHz, CDCl3) $ 9.80 (s, 1H), 3.91 (dd, 

J=5.9, 12.5 Hz, 1H), 3.54 (td, J=3.1, 12.5 Hz, 1H), 3.00 (s, 1H), 2.65 (t, J=8.8 Hz, 1H), 

2.28- 2.19 (m, 1H), 2.12- 2.07 (m, 1H), 2.01 (ddd, J=1.9, 8.0, 14.0 Hz, 1H), 1.97- 1.89 

(m, 2H), 1.81- 1.75 (m, 1H), 1.42- 1.35 (m, 1H), 1.00 (d, J=7.3 Hz, 3H); 13C NMR (100 

MHz, CDCl3) $ 213.6, 201.5, 94.0, 62.1, 49.9, 44.6, 38.5, 38.3, 31.9, 31.2, 21.9, 20.8;  

HRMS (TOF LCMS) calc’d for C12H15O4 [M-H] 223.0970, found 223.0974. 

 

Preparation of Compound 516 

                   

OHC O

O

516

OHC OH

O

470

AllyBr, K2CO3

Acetone, reflux

(quant. yield)

 

 

 To a solution of 470 (1.15 g, 5.55 mmol, 1 equiv.) in acetone (11 mL) was added 

allyl bromide (0.60 mL, 7.21 mmol, 1.3 equiv.) and K2CO3 (1.54 g, 1.11 mmol, 2 equiv.) 

at reflux. The solution was stirred overnight and cooled to room temperature, filtered 

through Celite and concentrated under reducing pressure. The residue was loaded onto 

silica and purified by column chromatography (gradient elution, 10%- 20% EtOAc/ 

Hexanes) to yield 516 (1.41 g, 100%) as brown solid.  

Compound 516: FTIR(NaCl/ thin film) 2936, 2728, 1688, 1596, 1584, 1436, 

1270, 1168, 1133, 1014, 969, 929, 808 cm-1; 1H NMR (400 MHz, CDCl3) $ 9.83 (s, 1H), 

7.45 (d, J=1.9 Hz, 1H), 7.41 (dd, J=1.7, 8.0 Hz, 1H), 6.96 (d, J=8.2 Hz, 1H), 6.00 (ddt, 
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J=5.2, 10.4, 20.0 Hz, 1H), 5.66- 5.48 (m, 2H), 5.45 (dq, J=1.6, 17.4 Hz, 1H), 5.30 (dq, 

J=1.6, 17.4 Hz, 1H), 4.64 (dt, J=1.4, 5.1 Hz, 2H), 4.09 (t, J=7.1 Hz, 2H), 2.60- 2.50 (m, 

2H), 1.68 (dd, J=1.2, 7.4 Hz, 3H); 13C NMR (100 MHz, CDCl3) $ 191.0, 154.6, 148.9, 

132.9, 130.0, 128.5, 126.9, 126.2, 117.9, 112.0, 111.9, 69.9, 68.9, 32.4, 18.2; HRMS 

(TOF LCMS) calc’d for C15H19O3 [M+H] 247.1334, found 247.1327. 

 

Preparation of Compound 517, 518 

 

OHC O

O

516

H2O2, PhSeSePh
HO O

O
O

+

HO O

O

517: 19% yield 518: 50% yield

DCM, r.t.

 

                  

O

O OBOM

HCl, MeOH, r.t.

527

(quant. yield)

O

O OH

518
 

  

 Method 1: to a solution of 516 (131 mg, 0.53 mmol, 1 equiv.) in DCM (8 mL) 

was added PhSeSePh (6.8 mg, 0.02 mmol, 0.04 equiv.), H2O2 (0.70 ml, 0.86 mmol, 1.25 

equiv., 30%) and the mixture was stirred at room temperature overnight. To the solution 

was added 10% aqueous Na2S2O3 (2mL). The layers were separated and the aqueous 

layer was washed with DCM (2 # 8 mL). The combined organic layers were washed with 

brine (16 mL), dried over Na2SO4, filtered and concentrated under reducing pressure. The 

residue was loaded onto silica and purified by column chromatography (gradient elution, 

20%- 50% EtOAc/ Hexanes) to yield 517 (20 mg, 19%) as orange solid and 518 (47.4 

mg, 50%) as pale yellow oil. 
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 Method 2: to a solution of 527 (4.3 g, 12.13 mmol, 1 equiv.) in MeOH (350 mL) 

was added HCl (35 mL, conc.) and stirred at room temperature for 3h. The solution was 

neutralized by NaOH (90 mL, 2N). MeOH was removed under reducing pressure. The 

aqueous layer was washed with EtOAc (2 # 200 mL). The combined organic layers were 

washed with brine (400 mL) and dried over Na2SO4, filtered and concentrated under 

reducing pressure. The residue was loaded onto silica and purified by column 

chromatography (gradient elution, 20%- 50% EtOAc/ Hexanes) to yield 518 (3.0 g, 

100%) as pale yellow oil. 

Compound 517: FTIR(NaCl/ thin film) 3380, 2965, 2928, 1603, 1511, 1455, 

1288, 1603, 1511, 1455, 1288, 1219, 1172, 1124, 1022, 931, 834 cm-1; 1H NMR (400 

MHz, CDCl3) $ 6.70 (d, J=8.6 Hz, 1H), 6.56- 6.51 (m, 1H), 6.43 (d, J=2.6 Hz, 1H), 6.31 

(dq, J=2.5, 8.4 Hz, 1H), 6.00 (ddt, J=5.2, 10.4, 20.2 Hz, 1H), 5.38- 5.30 (m, 1H), 5.24- 

5.18 (m, 1H), 4.48 (d, J=5.0 Hz, 2H), 4.08- 3.99 (m, 2H), 2.97- 2.87 (m, 2H), 2.14- 2.02 ( 

m, 1H), 1.93- 1.82 (m, 1H), 1.30 (d, J=5.1 Hz, 3H); 13C NMR (100 MHz, CDCl3) $ 

151.3, 149.7, 142.1, 133.2, 117.7, 116.4, 106.8, 102.7, 69.7, 67.2, 57.7, 55.4, 32.2, 17.6; 

HRMS (TOF LCMS) calc’d for C14H17O4 [M-H] 249.1127, found 247.1130. 

Compound 518: FTIR(NaCl/ thin film) 3401, 2918, 1604, 1510, 1451, 1288, 

1219, 1122, 1015, 968 cm-1; 1H NMR (400 MHz, CDCl3) $ 6.70 (d, J=8.6 Hz, 1H), 6.45 

(d, J=2.7 Hz, 1H), 6.33 (dd, J=2.8, 8.6 Hz, 1H), 6.04 (ddt, J=5.2, 10.5, 20.1 Hz, 1H), 

5.62- 5.45 (m, 2H), 5.40 (dq, J=1.6, 17.3 Hz, 1H), 5.26 (dq, J=1.2, 10.6 Hz, 1H), 4.90 (s, 

1H), 4.52 (dd, J=1.4, 5.1 Hz, 2H), 3.94 (t, J=7.0 Hz, 2H),  2.50- 2.42 (m, 2H), 1.67 (d, 

J=6.7 Hz, 3H); 13C NMR (100 MHz, CDCl3) $ 150.6, 150.0, 143.0, 133.4, 127.7, 127.0, 
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117.7, 116.5, 106.9, 103.1, 70.5, 70.6, 32.9, 18.2; HRMS (TOF LCMS) calc’d for 

C14H19O3 [M+H] 234.1334, found 235.1331. 

 

Preparation of Compound 519 

                   

HO O

O

518

Tf2O, py.

DCM, 0 ºC to r.t.

TfO O

O

519
(85% yield)

 

  

 To a solution of 518 (447.1 mg, 1.90 mmol, 1 equiv.) in DCM (4 mL) was added 

Tf2O (0.35 mL, 2.10, 1.1 equiv.) and pyridine (0.31 mL, 3.80 mmol, 2 equiv.) at 0 ºC. 

The solution was warmed to room temperature and stirred overnight. The solvent was 

removed under reducing pressure. The residue was loaded onto silica and purified by 

column chromatography (gradient elution, 9%- 15% EtOAc/ Hexanes) to yield 519 

(592.3 mg, 85%) as pale yellow oil. 

Compound 519: FTIR(NaCl/ thin film) 2923, 1608, 1508, 1422, 1217, 1142, 

1018, 956, 860 cm-1; 1H NMR (400 MHz, CDCl3) $ 6.88- 6.71 (m, 3H), 6.02 (ddt, J=5.1, 

10.4, 20.8 Hz, 1H), 5.62- 5.44 (m, 2H), 5.40 (dq, J=1.5, 17.4 Hz, 1H), 5.29 (dq, J=1.0, 

10.6 Hz, 1H), 4.56 (dt, J=1.3, 5.2 Hz, 2H), 3.98 (t, J=6.9 Hz, 2H),  2.53- 2.43 (m, 2H), 

1.66 (dd, J=1.2, 6.7 Hz, 3H); 13C NMR (100 MHz, CDCl3) $ 149.3, 149.0, 143.0, 132.6, 

128.3, 126.5, 118.4, 113.6, 113.5, 108.2, 70.4, 69.4, 32.6, 18.2; HRMS (TOF LCMS) 

calc’d for C12H12O3 [M-C3H5] 325.0358, found 325.0361. 
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Preparation of Compound 520, 522 

      

TfO O

O

519

Pd(PPh3)4, 
NaBH4

EtOH, r.t.

TfO OH

O

1. Pb(OAc)4, 
DCE, reflux

O

OTf

O

OH

522520

(quant. yield))
2. Siliica

 

  

 To a solution of 519 (592 mg, 1.62 mmol, 1 equiv.) in EtOH (1.6 mL) was added 

NaBH4 (30.6 mg, 0.81 mmol, 0.5 equiv.) and Pd(PPh3)4 (56 mg, 0.04 mmol, 0.03 equiv.). 

The mixture was stirred overnight then filtered through Celite and concentrated under 

reducing pressure to give crude phenol 520 (527 mg, 100%). 

 To a solution of crude phenol in DCE (16 mL) was added Pb(OAc)4 (1.0 g, 2.27 

mmol, 1.4 equiv.) at reflux. After stirring for 5 minuets, additional DCE (80 ml) was 

added. The mixture was stirred overnight. NaBH4 (20 mg, 0.5 mmol, 0.5 equiv.) and 

Pd(PPh3)4 (29 mg, 0.03 mmol, 0.03 equiv.). The reaction was cooled to room temperature 

then filtered through Celite and concentrated under reducing pressure. To this residue in 

DCM (20 mL) was added silica (2.0 g) and stirred at room temperature overnight. The 

mixture was filtered through Celite and concentrated under reducing pressure. The 

residue was loaded onto silica and purified by column chromatography (gradient elution, 

20%- 50% EtOAc/ Hexanes) to yield 522 (383.4 mg, 81%) as brown oil.  

Compound 520: FTIR(NaCl/ thin film) 3521, 2937, 1608, 1505, 1422, 1275, 

1219, 1142, 1106, 1019, 957, 866 cm-1; 1H NMR (400 MHz, CDCl3) $ 6.88- 6.64 (m, 

3H), 5.88- 5.72 (m, 1H), 5.68- 5.34 (m, 2H), 4.03 (t, J=6.5 Hz, 2H), 2.53- 2.35 (m, 2H), 

1.67 (dd, J=1.2, 6.3 Hz, 3H); 13C NMR (100 MHz, CDCl3) $ 146.9, 145.8, 143.4, 128.8, 
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126.1, 112.7, 112.0, 108.4, 69.3, 32.5, 18.1; HRMS (TOF LCMS) calc’d for C12H12O3 

[M-H] 325.0358, found 325.0364. 

Compound 522: FTIR(NaCl/ thin film) 3392, 2965, 2932, 2876, 1751, 1653, 

1425, 1217, 1140, 1096, 901, 840 cm-1; 1H NMR (400 MHz, CDCl3) $ 6.23 (dd, J=2.6, 

7.6 Hz, 1H), 3.92 (dd, J=6.7, 12.6 Hz, 1H), 3.60 (td, J=3.0, 12.6 Hz, 1H), 3.62- 3.58 (m, 

1H), 3.17 (q, J=2.5 Hz, 1H), 2.84 (dd, J=3.2, 7.6 Hz, 1H), 2.22- 2.12 (m, 1H), 2.05- 1.84 

(m, 2H), 1.71- 1.66 (m, 1H), 1.15 (d, J=6.8 Hz, 3H); 13C NMR (100 MHz, CDCl3) $ 

205.4, 145.1, 119.7, 90.1, 61.6, 57.8, 43.0, 37.2, 35.2, 28.7, 20.2; HRMS (TOF LCMS) 

calc’d for C12H12F3O3S [M-H] 341.0307, found 341.0310. 

 

Preparation of Compound 525 

                     

OHC

HO OBOM

OHC

HO OH

BOMCl, K2CO3

Acteone, reflux

440 525
(40% yield)

 

 

 To a solution of 2,4-dihydroxy benzaldehyde (440) (37 g, 267.9 mmol, 1 equiv.) 

in acetone (1.4 L) was added BOMCl (25 g, 160.7 mmol, 0.6 equiv.) and K2CO3 (37 g, 

267.9, 1 equiv.) at reflux. The mixture was stirred overnight. The reaction was cooled to 

room temperature then filtered through Celite and concentrated under reducing pressure. 

The residue was loaded onto silica and purified by column chromatography (gradient 

elution, 5%- 10% EtOAc/ Hexanes) to yield 525 (15.1 g, 40%) as orange solid.  

Compound 525: FTIR(NaCl/ thin film) 2923, 2854, 1651, 1629, 1578, 1501, 

1453, 1216, 1157, 1087, 996, 957 cm-1; 1H NMR (400 MHz, CDCl3) $ 11.37 (s, 1H). 
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9.75 (s, 1 H), 7.46 (d, J=8.6 Hz, 1H), 7.42- 7.30 (m, 5H), 6.69 (dd, J=2.2, 8.6 Hz, 1H), 

6.65 (d, J=2.1 Hz, 1H), 5.34 (s, 2H), 4.72 (s, 2H); 13C NMR (100 MHz, CDCl3) $ 194.8, 

164.6, 164.3, 136.9, 135.9, 128.7, 128.3, 128.2, 116.2, 109.3, 103.7, 92.1, 70.7; HRMS 

(TOF LCMS) calc’d for C15H13O4 [M-H] 257.0814, found 257.0819. 

 

Preparation of Compound 526, 527 

             

OHC

HO OBOM

1. AllyBr, K2CO3,   
    Acteone, reflux

2. m-CPBA, DCM, relux; 
    K2CO3, MeOH

525

HO

O OBOM

526

HO

O OBOM

K2CO3 ,
I

336

Acteone, reflux

O

O OBOM

526 527

(3 step: 61% yield)

 

 

 To a solution of 525 (2.9 g, 11.2 mmol, 1 equiv.) in acetone (23 mL) was added 

allyl bromide (1.23 mL, 14.6 mmol, 1.3 equiv.) and K2CO3 (3.1g, 22.4 mmol, 2 equiv.) at 

reflux. The mixture was stirred overnight. The reaction was cooled to room temperature 

then filtered through Celite and concentrated under reducing pressure. To this residue in 

DCM (82 mL) was added m-CPBA (4 g, 16.3 mmol, 1.4 equiv.) at reflux and stirred for 3 

hours. The reaction was cooled to room temperature. DCM was removed under reducing 

pressure. To this residue in MeOH (20 mL) was added saturated aqueous Na2CO3 (200 

mL) and stirred at room temperature overnight. The aqueous layer was washed with 

EtOAc (2 # 200 mL). The combined organic layers were washed with brine (400 mL), 

dried over Na2SO4, filtered and concentrated under reducing pressure to yield crude 426 

(2.7 g, 100%).  
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 To a solution of crude 526 in acetone (41 mL) was added Cs2CO3 (9.4 g, 29.0 

mmol, 2.5 equiv.), iodide 436 (5.55g, 29.0 mmol, 2.5 equiv.) at reflux and stirred 

overnight. The reaction was cooled to room temperature then filtered through Celite and 

concentrated under reducing pressure. The residue was loaded onto silica and purified by 

column chromatography (gradient elution, 20%- 33% EtOAc/ Hexanes) to yield 4527 

(2.5 g, 61%) as yellow oil.  

Compound 526: FTIR(NaCl/ thin film) 3532, 3065, 3031, 2895, 1613, 1509, 

1455, 1380, 1264, 1227, 1170, 1085, 1024, 933, 837 cm-1; 1H NMR (400 MHz, CDCl3) $ 

7.41- 7.28 (m, 5H), 6.87 (d, J=8.5 Hz, 1H), 6.70 (d, J=2.6 Hz, 1H), 6.57 (dd, J=2.6, 8.6 

Hz, 1H), 6.08 (ddt, J=5.2, 10.5, 20.9 Hz, 1H), 5.34 (s, 2H), 5.39 (d, J=1.6 Hz, 1H), 5.32 

(dd, J=1.2, 10.4 Hz, 1H), 5.24 (s, 2H), 4.75 (s, 2H), 4.57 (dd, J=1.2, 5.4 Hz, 1H); 13C 

NMR (100 MHz, CDCl3) $ 151.2, 146.0, 141.2, 137.6, 132.9, 128.7, 128.2, 128.1, 118.7, 

114.7, 109.1, 102.9, 93.6, 70.0, 70.0; HRMS (TOF LCMS) calc’d for C17H17O4 [M-H] 

285.1127, found 285.1131. 

Compound 527: FTIR(NaCl/ thin film) 2918, 2866,  1595, 1508, 1436, 1421, 

1261, 1221, 1174, 1086, 928 cm-1; 1H NMR (400 MHz, CDCl3) $ 7.45- 7.29 (m, 5H), 

6.82 (d, J=8.6 Hz, 1H), 6.80 (d, J=2.8 Hz, 1H), 6.63 (dd, J=2.6, 8.5 Hz, 1H), 6.05 (ddt, 

J=5.2, 10.5, 20.9 Hz, 1H), 5.56-5.48 (m, 2H), 5.46- 5.37 (m, 1H), 5.31-5.24 (m, 1H), 5.22 

(s, 2H), 4.72 (s, 2H), 4.60- 4.53 (m, 2H), 3.92 (t, J=6.9 Hz, 2H), 2.53- 2.43 (m, 2H), 1.68 

(d, J=5.8 Hz, 3H); 13C NMR (100 MHz, CDCl3) $ 165.9, 152.2, 149.7, 144.3, 137.5, 

133.5, 128.6, 128.2, 128.0, 127.7, 127.0, 117.6, 115.7, 108.0, 104.8, 93.3, 70.1, 70.0, 

32.9, 18.2; HRMS (TOF LCMS) calc’d for C22H27O4 [M+H] 355.1909, found 355.1896. 
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Preparation of Compound 528 

                             

O

OTf

O

OH

522

O

OTf

O

OTMS

528

TMSOTf, Et3N

DCM, -78 ºC

(77% yield; 
BRSM: 92.4% yield)

 

  

 To a solution of 522 (348 mg, 1.02 mmol, 1 equiv.) in DCM (10 mL) was added 

TMSOTf (0.2 mL, 1.12 mmol, 1.1 equiv.) and Et3N (0.17 mL, 1.12, 1.1 equiv.) at -78 ºC 

and stirred for 5 min. The reaction was quenched by aqueous NaHCO3 (0.5 mL). The 

aqueous layer was washed with DCM (2 # 20 mL). The combined organic layers were 

washed with brine (40 mL) and dried over Na2SO4, filtered and concentrated under 

reducing pressure. The residue was loaded onto silica and purified by column 

chromatography (gradient elution, 20%- 33% EtOAc/ Hexanes) to yield 528 (349.4 mg, 

77%) as green oil and recover starting material 522 (73.4 mg).  

Compound 528: FTIR(NaCl/ thin film) 2962, 2931, 2875, 1575, 1653, 1427, 

1218, 1141, 1092, 934, 847 cm-1; 1H NMR (400 MHz, CDCl3) $ 6.15 (dd, J=2.8, 7.7 Hz, 

1H), 3.86 (dd, J=5.7, 12.7 Hz, 1H), 3.52 (td, J=2.9, 12.8 Hz, 1H), 3.07 (t, J=2.7 Hz, 1H), 

2.66 (dd, J=3.2, 7.7 Hz, 1H), 2.12- 2.04 (m, 1H), 1.94- 1.73 (m, 2H), 1.60- 1.51 (m, 1H), 

1.11 (d, J=6.9 Hz, 3H), 0.11 (s, 9H); 13C NMR (100 MHz, CDCl3) $ 203.8, 145.2, 119.3, 

91.8, 61.3, 58.3, 45.9, 37.2, 35.6, 28.7, 20.2, 1.57; HRMS (TOF LCMS) calc’d for 

C15H21F3O6SSi [M+Na] 437.0678, found 437.0677. 
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Preparation of Compound 529 

                       

O

OTf

O

OTMS

528

1. LDA, (CH3)NCH2CH2CO2Me,  
    THF, -78 ºC to r.t.

2. m-CPBA, DCM, -78 ºC; Al2O3

529

(two steps: 31% yield) O OH
OTMS

O

OMe

OTf

 

  

To a solution of diisopropylamine (0.62 mL, 4.42 mmol, 5.25 equiv.) in THF (3.4 

mL) at –20 ºC was added n-BuLi (2.2 mL, 3.54 mmol, 4.2 equiv., 1.6 M hexanes 

solution) dropwise over 5 minutes.  The resultant mixture was stirred at –20 ºC for 5 

minutes, and then cooled to –78 ºC for 30 minutes. To this mixture was added methyl-3-

(dimethylamino)propionate (0.73 mL, 3.0 mmol, 3.5 equiv.) dropwise over five minutes.  

The reaction mixture was stirred at –78 ºC for thirty minutes, 0 ºC for 15 min, and room 

temperature for 15 min, and then cooled to –78 ºC.  

A solution of 528 (349 mg, 0.84 mmol) in THF (8.4 mL) was addedenolate 

dropwise over 1 minute at –78 °C.  The solution was slowly warmed to room temperature 

and stirred for  1 hour.  The reaction was quenched with 1M AcOH in THF (5mL) and 

allowed to warm to room temperature.  At which point the reaction mixture was treated 

with H2O (5mL) and EtOAc (5mL).  The aqueous layer was extracted with EtOAc (2 x 

10mL), and the combined organic layers were washed with brine (20 mL), dried over 

Na2SO4, and concentrated under reducing pressure.  

To the solution of this residue solution in DCM (8.5 mL) was added m-CPBA 

(312 mg, 1.27 mmol, 1.5 equiv.) at -78 ºC and the mixture was stirred for 20 minutes. To 

the solution was added basic Al2O3 (400 mg) and stirred overnight at room temperature. 

The mixture was filtered through Celite and concentrated under reducing pressure. The 
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residue was loaded onto silica and purified by column chromatography (gradient elution, 

5%- 10% EtOAc/ Hexanes) to yield 529 (132.6, mg, 31%) as colorless oil.  

Compound 529: FTIR(NaCl/ thin film) 3440, 2959, 2926, 1710, 1663, 1424, 

1323, 1214, 1143, 1055 cm-1; 1H NMR (400 MHz, CDCl3) $ 5.88 (dd, J=2.7, 7.7 Hz, 

1H), 5.85 (s, 1H), 5.62 (s, 1H), 5.50- 5.47 (m, 1H), 4.66 (td, J=4.7, 12.3 Hz, 1H), 3.92 

(ddd, J=0.7, 7.1, 11.8 Hz, 1H), 3.77 (s, 1H), 2.76 (t, J=2.5 Hz, 1H), 2.58- 2.51 (m, 1H), 

2.44 (dd, J=3.8, 7.6 Hz, 1H), 1.88- 1.66 (m, 3H), 1.05 (d, J=7.0 Hz, 3H), 0.09 (s, 9H); 

13C NMR (100 MHz, CDCl3) $ 167.6, 148.5, 143.4, 119.4, 114.7, 99.1, 82.3, 63.2, 52.1, 

50.6, 47.1, 39.5, 29.1, 28.7, 20.9, 1.8; HRMS (TOF LCMS) calc’d for C19H26F3O8SSi 

[M-H] 499.1070, found 499.1081. 

 

Preparation of Compound 530 

                          

TBAF, AcOH

THF, r.t.

530

(81% yield) O

OTf

OH

O
O

529

O
OH

OTMS

O

OMe

OTf

 

  

To a solution of 529 (132.6 mg, 0.27 mmol, 1 equiv.) in THF (2.6 mL) was added 

TBAF (1.32 mL, 1.35 mmol, 5 equiv.) and AcOH (76 µL, 1.35 mmol, 5 equiv.) at room 

temperature. The mixture was stirred overnight. The reaction was quenched by H2O (2 

mL). The aqueous layer was extracted with EtOAc (2 x 5mL), and the combined organic 

layers were washed with brine (10 mL), dried over Na2SO4, and concentrated under 

reducing pressure. The residue was loaded onto silica and purified by column 
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chromatography (gradient elution, 20%- 50% EtOAc/ Hexanes) to yield 530 (85.1 mg, 

31%) as yellow solid.  

Compound 530: FTIR(NaCl/ thin film) 3421, 2963, 2928, 1773, 1653, 1423, 

1283, 1214, 1141, 1078, 1005, 907 cm-1; 1H NMR (400 MHz, CDCl3) $ 6.46 (s, 1H), 

6.01 (s, 1H), 5.86 (dd, J=2.7, 7.7 Hz, 1H), 4.47 (td, J=4.2, 11.3 Hz, 1H), 4.15- 4.05 (m, 

1H), 3.28- 3.22 (m, 1H), 2.86 (dd, J=2.6, 7.4 Hz, 1H), 2.44- 2.33 (m, 1H), 2.06- 1.92 (m, 

1H), 1.83- 1.71 (m, 2H), 1.07 (d, J=7.0 Hz, 3H); 13C NMR (100 MHz, CDCl3) $ 167.4, 

166.2, 149.7, 140.6, 127.3, 113.3, 104.1, 64.2, 52.6, 42.6, 38.8, 31.4, 28.3, 20.7; HRMS 

(TOF LCMS) calc’d for C15H16F3O7S [M+H] 397.0569, found 397.0559. 

 

Preparation of Compound 538 

                       

O

OTf

O

OTMS

528

CuI, (-)-proline, morpholine, 
K3PO4, MeCN, reflux

O

OTf

O

N

538

(39% yield)

 

 

To a solution of 528 (53.6 mg, 0.13, 1 equiv.) in MeCN (1.30 mL) was added CuI 

(22mg, 0.13, 1 equiv.), (-)-proline (30mg, 0.26, 2 equiv.), NH4OAc (22.5 mg, 0.26, 2 

equiv.), K3PO4 (55 mg, 0.26, 2 equiv.) and morpholine (0.12 mL, 0.17 mmol, 1.1 equiv.). 

The mixture was heated to reflux and stirred overnight. The reaction was cooled to room 

temperature, filtered through Celite and concentrated under reducing pressure. The 

residue was loaded onto silica and purified by column chromatography (gradient elution, 

20%- 50% EtOAc/ Hexanes) to yield 538 (20 mg, 39%) as yellow solid.  
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Compound 538: FTIR(NaCl/ thin film) 2927, 2874, 1737, 1656, 1420, 1211, 

1142, 1079, 834, 612 cm-1; 1H NMR (400 MHz, CDCl3) $ 9.25 (dd, J=2.7, 7.6 Hz, 1H), 

5.06 (t, J=3.3 Hz, 1H), 4.03 (dd, J=7.2, 12.5 Hz, 1H), 3.78 (td, J=3.2, 12.9 Hz, 1H), 3.31 

(d, J=3.3 Hz, 1H), 3.19- 3.06 (m, 1H), 2.89- 2.77 (m, 1H), 2.69 (q, J=2.7 Hz, 1H), 2.62 

(dd, J=2.8, 7.6 Hz, 1H), 1.96- 1.72 (m, 5H), 1.69- 1.54 (m, 2H), 1.53- 1.43 (m, 1H), 1.01 

(d, J=6.9 Hz, 3H); 13C NMR (100 MHz, CDCl3) $ 151.0, 114.6, 110.4, 102.1, 72.7, 63.1, 

57.7, 48.7, 44.5, 39.0, 35.0, 33.0, 28.3, 23.6, 21.0; HRMS (TOF LCMS) calc’d for 

C16H21F3NO5S [M+H] 395.1093, found 395.1096. 

 

Preparation of Compound 546 

              

O

OHO

518

Pd(PPh3)4, NaBH4, EtOH, r.t.

(quant. yield)

O

OHHO

546  

  

To a solution of 518 (156 mg, 0.67 mmol, 1 equiv.) in EtOH (4.7 mL) was added 

Pd(PPh3)4 (15.6 mg, 0.02 mmol, 0.03 equiv.) and NaBH4 (8.8 mg, 0.34 mmol, 0.5 equiv.) 

at room temperature. The mixture was stirred overnight, filtered through Celite and 

concentrated under reducing pressure. The residue was loaded onto silica and purified by 

column chromatography (gradient elution, 20%- 33% EtOAc/ Hexanes) to yield 546 (150 

mg, 100%) as brown oil.  

Compound 546: FTIR(NaCl/ thin film) 3404, 2936, 1607, 1510, 1469, 1386, 

1296, 1219, 1148, 1117, 1022, 965, 846, 791 cm-1; 1H NMR (400 MHz, CDCl3) $ 6.72 

(d, J=8.6 Hz, 1H), 6.47 (d, J=1.9 Hz, 1H), 6.28 (dd, J=1.9, 8.7 Hz, 1H), 5.69- 5.41 (m, 

2H), 4.80- 4.30 (m, 2H), 3.98 (t, J=6.5 Hz, 2H), 2.45 (q, J=6.2 Hz, 2H), 1.69 (d, J=6.2 
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Hz, 3H); 13C NMR (100 MHz, CDCl3) $ 150.6, 147.1, 140.2, 128.5, 126.8, 113.9, 106.1, 

102.9, 69.9, 32.8, 18.2; HRMS (TOF LCMS) calc’d for C11H13O3 [M-H] 193.0865, found 

193.0864. 

 

Preparation of Compound 540 

                

O

OHO

518

O

OAcO

AcCl, py., DCM, r.t.

540

(81.2% yield)

 

  

To a solution of 518 (94 mg, 0.40 mmol, 1 equiv.) in DCM (1 mL) was added 

AcCl (31 µL, 0.44 mmol, 1.1 equiv.) and pyridine (65 µL, 0.80 mmol) at room 

temperature. The mixture was stirred overnight, filtered through Celite and concentrated 

under reducing pressure. The residue was loaded onto silica and purified by column 

chromatography (gradient elution, 10%- 20% EtOAc/ Hexanes) to yield 540 (90 mg, 

81.2%) as orange oil.  

Compound 540: FTIR(NaCl/ thin film) 2919, 2869, 1763, 1602, 1508, 1423, 

1369, 1263, 1203, 1154, 1017 cm-1; 1H NMR (400 MHz, CDCl3) $ 6.83 (d, J=8.5 Hz, 

1H), 6..62 (dd, J=2.6, 5.4 Hz, 1H), 6.59 (d, J=2.6 Hz, 1H), 6.03 (ddt, J=5.1, 10.5, 20.9 

Hz, 1H), 5.61- 5.43 (m, 2H), 5.39 (dq, J=1.5, 17.4 Hz, 1H), 5.24 (dq, J=1.3, 10.5 Hz, 

1H), 4.53 (dt, J=1.5, 5.2 Hz, 2H), 3.96 (t, J=7.0 Hz, 2H), 2.50- 2.42 (m, 2H), 2.23 (s, 

3H), 1.65 (dd, J=1.1, 5.9 Hz, 3H); 13C NMR (100 MHz, CDCl3) $ 169.8, 149.0, 146.8, 

144.4, 133.1, 12.8, 126.7, 117.6, 114.1, 113.5, 108.5, 70.1, 69.4, 32.7, 21.1, 18.1; HRMS 

(TOF LCMS) calc’d for C16H21O4 [M+H] 277.1440, found 277.1440. 
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Preparation of Compound 547 

                   

Pd(PPh3)4, NaBH4, 
EtOH, r.t.

O

OHAcO

547

(98% yield)

O

OAcO

540
 

  

To a solution of 540 (59 mg, 0.21 mmol, 1 equiv.) in EtOH (2 mL) was added 

Pd(PPh3)4 (7.5 mg, 0.006 mmol, 0.03 equiv.) and NaBH4 (4 mg, 0.11 mmol, 0.5 equiv.) 

at room temperature. The mixture was stirred overnight, filtered through Celite and 

concentrated under reducing pressure. The residue was loaded onto silica and purified by 

column chromatography (gradient elution, 20%- 33% EtOAc/ Hexanes) to yield 547 

(49.3 mg, 98%) as brown solid.  

Compound 547: FTIR(NaCl/ thin film) 3451, 2935, 1762, 1605, 1505, 1370, 

1280, 1207, 1140, 1015, 968 cm-1; 1H NMR (400 MHz, CDCl3) $ 6.81 (d, J=8.7 Hz, 1H), 

6..68 (d, J=2.8 Hz, 1H), 6.55 (d,d J=2.6, 8.7 Hz, 1H), 5.76- 5.74 (m, 1H), 5.67- 5.42 (m, 

2H), 4.02 (t, J=6.7 Hz, 2H), 2.50- 2.42 (m, 2H), 2.26 (s, 3H), 1.65 (dq, J=1.2, 6.2 Hz, 

3H); 13C NMR (100 MHz, CDCl3) $ 169.9, 146.6, 144.9, 143.9, 128.5, 126.5, 112.6, 

112.3, 108.7, 69.3, 32.7, 21.2, 18.1; HRMS (TOF LCMS) calc’d for C16H15O4 [M-H] 

235.090, found 235.0974. 

 

Preparation of Compound 541 

     

O

OHO

518

O

OO

,DCC, DMAP, DCM, r.t.

541

(33% yield)

NO2

O

OH O

NO2
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To a solution of 2-methyl-3-nitrobenzoic acid in DCM (1 mL) was added DCC 

(247.6 mg, 1.2 mmol, 1.2 equiv.) and DMAP (12.2 mg, 0.1 mmol, 0.1 equiv.) at room 

temperature. The mixture was stirred for 10 minutes. Then 518 (230 mg, 1 mmol, 1 

equiv.) was added and stirred overnight. The reaction was filtered through Celite and 

concentrated under reducing pressure. The residue was loaded onto silica and purified by 

column chromatography (gradient elution, 10%- 20% EtOAc/ Hexanes) to yield 541 (128 

mg, 33%) as brown oil.  

Compound 541: FTIR (NaCl/ thin film) 3083, 2920, 2869, 1742, 1603, 1530, 

1506, 1251,1215, 1152, 1102, 1082, 1022 cm-1; 1H NMR (400 MHz, CDCl3) $ 8.23 (dd, 

J=1.2, 8.0 Hz, 1H), 7.90 (dd, J=1.1, 8.1 Hz, 1H), 7.46 (t, J=8.1 Hz, 1H),6.92 (dd, J=1.7, 

7.4 Hz, 1H), 6.77 (s, 1H), 6.76 (dd, J=2.7, 8.5 Hz, 1H), 6.07 (ddt, J=5.2, 10.2, 20.9 Hz, 

1H), 5.66- 5.47 (m, 2H), 5.43 (dq, J=1.5, 17.2 Hz, 1H), 5.29 (dq, J=1.4, 10.5 Hz, 1H), 

4.60 (dt, J=1.5, 5.2 Hz, 2H), 4.03 (t, J=7.0 Hz, 2H), 2.71 (s, 3H), 2.55- 2.49 (m, 2H), 1.69 

(dd, J=1.1, 5.9 Hz, 3H); 13C NMR (100 MHz, CDCl3) $ 167.4, 165.0, 152.3, 149.3, 

147.3, 144.2, 134.2, 134.0, 133.1, 132.5, 128.0, 127.4, 126.7, 117.9, 114.3, 113.6, 108.4, 

70.3, 69.6, 32.7, 18.2, 16.4; HRMS (TOF LCMS) calc’d for C22H24NO6 [M+H] 

398.1604, found 398.1595. 

 

Preparation of Compound 548 

        

Pd(PPh3)4, NaBH4, 
EtOH, r.t.

(10% yield)

O

OO

541

O

NO2

O

OO

548

O

NO2
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To a solution of 541 (128 mg, 0.33 mmol, 1 equiv.) in EtOH (3 mL) was added 

Pd(PPh3)4 (11.4 mg, 0.01 mmol, 0.03 equiv.) and NaBH4 (6.2 mg, 0.16 mmol, 0.5 equiv.) 

at room temperature. The mixture was stirred overnight, filtered through Celite and 

concentrated under reducing pressure. The residue was loaded onto silica and purified by 

column chromatography (gradient elution, 20%- 33% EtOAc/ Hexanes) to yield 548 

(11.6 mg, 97%) as brown solid.  

Compound 548: FTIR(NaCl/ thin film) 3465, 2924, 2855, 1742, 1605, 1536, 

1504, 1354, 1276, 1217, 1141, 1022, 966 cm-1; 1H NMR (400 MHz, CDCl3) $ 8.22 (dd, 

J=2.4, 7.8 Hz, 1H), 7.91 (dd, J=2.5, 8.1 Hz, 1H), 7.47 (td, J=3.6, 7.9 Hz, 1H), 6.89(dd, 

J=3.7, 8.6 Hz, 1H), 6.83- 6.79 (m, 1H), 6.72- 6.67 (m, 1H), 5.84- 5.80 (m, 1H), 5.69- 

5,42 (m 2H), 4.12- 4.00 (m, 2H), 2.71 (d, J=1.5 Hz, 3H), 2.57- 2.44 (m, 2H), 1.74- 1.67 

(m, 3H); 13C NMR (100 MHz, CDCl3) $ 165.1, 152.4, 146.9, 144.7, 144.3, 134.2, 134.0, 

132.7, 128.7, 127.4, 126.8, 126.5, 112.6, 112.4, 108.7, 69.4, 32.7, 18.2, 16.5; HRMS 

(TOF LCMS) calc’d for C19H18NO6 [M-H] 356.1134, found 356.1141. 

 

Preparation of Compound 543 

    

O

OHO

518

O

OO

543

(77% yield)
P

OClP(O)(OEt)2, py, DCM, r.t.

EtO

EtO

 

   

To a solution of 518 (295 mg, 1.26 mmol, 1 equiv.) in DCM (2 mL) was added 

ClP(O)(OEt)2 (0.36 mL, 2.52 mmol, 2 equiv.) and pyridine (0.2 mL, 2.52 mmol, 2equiv.) 

at room temperature. The reaction was stirred overnight, filtered through Celite and 

concentrated under reducing pressure. The residue was loaded onto silica and purified by 
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column chromatography (gradient elution, 33%- 50% EtOAc/ Hexanes) to yield 543 

(140.3 mg, 77%) as brown oil.  

Compound 543: FTIR(NaCl/ thin film) 2984, 2933, 1601, 1508, 1263, 1221, 

1164, 1029, 981 cm-1; 1H NMR (400 MHz, CDCl3) $ 6.88- 6.68 (m, 3H), 6.05 (ddt, 

J=5.3, 10.5, 21.3 Hz, 1H), 5.63- 5.47 (m, 2H), 5.42 (dq, J=1.5, 17.4 Hz, 1H), 5.28 (dq, 

J=1.3, 10.4 Hz, 1H), 4.56 (dd, J=1.3, 5.2 Hz, 2H), 4.26- 4.14 (m, 4H), 3.97 (t, J=6.9 Hz, 

2H), 2.53- 2.45 (m, 2H), 1.67 (dd, J=0.9, 6.0 Hz, 3H), 1.34 (t, J=7.0 Hz, 6H); 13C NMR 

(100 MHz, CDCl3) $ 149.3, 146.3, 144.8, 133.2, 127.9, 126.8, 117.8, 114.6, 112.0, 107.3, 

70.1, 69.7, 64.7, 64.7, 32.8, 18.2, 16.3, 16.2; HRMS (TOF LCMS) calc’d for C18H28PO6 

[M+H] 371. 1624, found 371.1615. 

 

Preparation of Compound 550 

         

O

OO

543

P

O

EtO

EtO

Pd(PPh3)4, NaBH4, EtOH, r.t

(78%  yield)

O

OHO

550

P

O

EtO

EtO

 

 

To a solution of 543 (80 mg, 0.22 mmol, 1 equiv.) in EtOH (2 mL) was added 

Pd(PPh3)4 (7.5 mg, 0.007 mmol, 0.03 equiv.) and NaBH4 (4.1 mg, 0.11 mmol, 0.5 equiv.) 

at room temperature. The mixture was stirred overnight, filtered through Celite and 

concentrated under reducing pressure. The residue was loaded onto silica and purified by 

column chromatography (gradient elution, 50%- 67% EtOAc/ Hexanes) to yield 550 (70 

mg, 78.4%) as brown solid.  
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Compound 550: FTIR(NaCl/ thin film) 3399, 2985, 1602, 1507, 1257, 1238, 

1031, 987 cm-1; 1H NMR (400 MHz, CDCl3) $ 6.85- 6.66 (m, 3H), 5.86- 5.71 (m, 1H), 

5.71- 5.39 (m, 2H), 4.29- 4.14 (m, 4H), 4.01 (t, J=7.5 Hz, 2H), 2.53- 2.39 (m, 2H), 1.69 

(d, J=6.2 Hz, 3H), 1.35 (t, J=7.0 Hz, 6H); 13C NMR (100 MHz, CDCl3) $ 146.8, 145.0, 

143.4, 128.6, 126.6, 112.7, 111.0, 107.4, 69.4, 64.7, 64.7, 32.7, 18.2, 16.3, 16.2; HRMS 

(TOF LCMS) calc’d for C15H22PO6 [M-H] 329.1154, found 329.1165. 

 

Preparation of Compound 544 

        

O

OHO

518

O

OMsO

544

(55%  yield)

MsCl, py, DCM, r.t.

 

 

To a solution of 518 (69 mg, 0.29 mmol, 1 equiv.) in DCM (0.6 mL) was added 

MsCl (0.45 mL, 0.58 mmol, 2 equiv.) and pyridine (0.2 mL, 0.58 mmol, 2equiv.) at room 

temperature. The reaction was stirred overnight, filtered through Celite and concentrated 

under reducing pressure. The residue was loaded onto silica and purified by column 

chromatography (gradient elution, 20%- 33% EtOAc/ Hexanes) to yield 544 (48.6 mg, 

55%) as brown oil.  

Compound 544: FTIR(NaCl/ thin film) 2938, 1601, 1508, 1422, 1366, 1262, 

223, 1183, 1140, 1013, 968 cm-1; 1H NMR (400 MHz, CDCl3) $ 6.93- 6.77 (m, 3H), 6.04 

(ddt, J=5.0, 10.6, 22.0 Hz, 1H), 5.64- 5.46 (m, 2H), 5.42 (dq, J=1.8, 17.2 Hz, 1H), 5.29 

(dq, J=1.0, 10.6 Hz, 1H), 4.58 (d, J=5.2 Hz, 2H), 4.00 (t, J=7.0 Hz, 2H), 3.10 (s, 3H), 

2.54- 2.46 (m, 2H), 1.67 (d, J=6.0 Hz, 3H); 13C NMR (100 MHz, CDCl3) $ 149.3, 148.3, 
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142.9, 132.9, 128.2, 126.6, 118.2, 114.1, 113.9, 109.0, 70.3, 69.5, 37.2, 32.7, 18.2; 

HRMS (TOF LCMS) calc’d for C15H21O5S [M+H] 313.1110, found 313.1105. 

 

Preparation of Compound 551 

          

O

OMsO

544

Pd(PPh3)4, K2CO3, MeOH, r.t

(100%  yield)

O

OHMsO

551

 

 

To a solution of 544 (37 mg, 0.12 mmol, 1 equiv.) in MeOH (1.2 mL) was added 

Pd(PPh3)4 (4 mg, 0.003 mmol, 0.03 equiv.) and K2CO3 (49 mg, 0.36 mmol, 3 equiv.) at 

room temperature. The mixture was stirred for 3 hours, filtered through Celite and 

concentrated under reducing pressure. The residue was loaded onto silica and purified by 

column chromatography (gradient elution, 33%- 50% EtOAc/ Hexanes) to yield 551 (35 

mg, 100%) as brown solid.  

Compound 551:FTIR(NaCl/ thin film) 3466, 2938, 1604, 1505, 1366, 1277, 

1230, 1180, 1129, 1020, 959, 832 cm-1; 1H NMR (400 MHz, CDCl3) $ 6.94- 6.72 (m, 

3H), 5.88- 5.75 (m, 1H), 5.70- 5.36 (m, 2H), 4.04 (t, J=7.6 Hz, 2H), 3.11 (s, 3H), 2.62- 

2.36 (m, 2H), 1.69 (dd, J=1.3, 6.3 Hz, 3H); 13C NMR (100 MHz, CDCl3) $ 146.9, 145.2, 

128.8, 126.3, 113.5, 112.3, 109.1, 69.3, 37.2, 32.6, 182.2; HRMS (TOF LCMS) calc’d for 

C12H17O5S [M+H] 273.0797, found 273.0795. 
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Preparation of Compound 545 

               

O

OHO

518

O

ONsO

545

(77%  yield)

NsCl, py, DCM, r.t.

 

 

To a solution of 518 (5.5 g, 23.5 mmol, 1 equiv.) in DCM (46 mL) was added 

NsCl (10.4 g, 47 mmol, 2 equiv.) and pyridine (9.5 mL, 117.5 mmol, 5 equiv.) at room 

temperature. The reaction was stirred overnight, filtered through Celite and concentrated 

under reducing pressure. The residue was loaded onto silica and purified by column 

chromatography (gradient elution, 20%- 50% EtOAc/ Hexanes) to yield 545 (7.6 g, 79%) 

as yellow oil.  

Compound 545: FTIR(NaCl/ thin film) 3097, 2919, 1594, 1547, 1506, 1383, 

1262, 1191, 1125, 852 cm-1; 1H NMR (400 MHz, CDCl3) $ 7.97- 7.75 (m, 3H), 7.68- 

7.54 (m, 1H), 6.81- 6.63 (m, 3H), 5.94 (ddt, J=5.2, 10.4, 21.0 Hz, 1H), 5.60- 5.40 (m, 

2H), 5.33 (dq, J=1.3, 17.2 Hz, 1H), 5.21 (dq, J=1.3, 10.6 Hz, 1H), 4.46 (dt, J=1.3, 5.2 Hz, 

2H), 3.93 (t, J=7.0 Hz, 2H), 2.49- 2.41 (m, 2H), 1.64 (dd, J=1.2, 6.1 Hz, 3H); 13C NMR 

(100 MHz, CDCl3) $ 149.1, 148.9, 148.4, 142.6, 135.5, 132.8, 132.5, 132.9, 128.4, 128.2, 

126.5, 124.9, 118.1, 114.5, 113.5, 108.9, 70.1, 69.3, 32.7, 10.2; HRMS (TOF LCMS) 

calc’d for C20H22NO7S [M+H] 420.1117, found 420.1105. 

 

Preparation of Compound 552 

          

O

ONsO

545

Pd(PPh3)4, K2CO3, MeOH, r.t

(92%  yield)

O

OHNsO

552
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To a solution of 545 (1.16 g, 2.77 mmol, 1 equiv.) in MeOH (28 mL) was added 

Pd(PPh3)4 (161 mg, 0.14 mmol, 0.05 equiv.) and K2CO3 (1.15 g, 8.31 mmol, 3 equiv.) at 

room temperature. The mixture was stirred for 3 hours, filtered through Celite and 

concentrated under reducing pressure. The residue was loaded onto silica and purified by 

column chromatography (gradient elution, 50%- 67% EtOAc/ Hexanes) to yield 552 

(972.8 mg, 92.2%) as brown solid.  

Compound 552: FTIR(NaCl/ thin film) 3501, 2939, 1604, 1546, 1503, 1443, 

1276, 1230, 1192, 1124, 1109, 960, 832 cm-1; 1H NMR (400 MHz, CDCl3) $ 7.90 (d, J= 

8.5, 3H), 7.84- 7.78 (m, 2H), 7.70- 7.62 (m, 1H), 6.74 (d, J=2.5 Hz, 1H), 6.72 (s, 1H), 

6.65 (dd, J=2.5, 8.9 Hz, 1H), 5.63- 5.39 (m, 2H), 3.99 (t, J=6.5 Hz, 2H), 2.57- 2.40 (m, 

2H), 1.66 (dd, J=1.0, 6.3 Hz, 3H); 13C NMR (100 MHz, CDCl3) $ 148.9, 146.7, 145.4, 

143.0, 135.7, 132.4, 132.2, 128.7, 128.4, 126.3, 125.0, 113.6, 112.1, 109.2, 69.2, 32.6, 

18.2; HRMS (TOF LCMS) calc’d for C17H16NO7S [M-H] 378.0648, found 378.0656. 

 

Preparation of Compound 556 

 

O

OHO

550

P

O

EtO

EtO

Pb(OAc)4, DCE

reflux, 1 day

O

O

OH

OP(O)(OEt)2

556: 24%

+

O

O(EtO)2(O)PO

476: 44%
 

 

To a solution of 550 (89.3 mg, 0.22 mmol, 1 equiv.) in DCE (2.2 mL) was added 

Pb(OAc)4 (135 mg, 0.31 mmol, 1.4 equiv.). The solution was heated to reflux and stirred 

overnight. The mixture was cooled to room temperature, filtered through Celite and 
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concentrated under reducing pressure. The residue was loaded onto silica and purified by 

column chromatography (gradient elution, 50%- 67% EtOAc/ Hexanes) to yield 556 (20 

mg, 24%) as yellow oil and 476 (35.5 mg, 44%) as yellow oiled. 

 Compound 556: FTIR(NaCl/ thin film) 3418, 2963, 2928, 1745, 1651, 1372, 

1268, 1170, 1087, 1025, 972 cm-1; 1H NMR (400 MHz, CDCl3) $ 5.90 (ddd, J= 1.6, 2.5, 

7.4 Hz, 1H), 4.27- 4.09 (m, 4H), 3.90 (dd, J=5.3, 13.4 Hz, 1H), 3.61 (dt, J=3.2, 12.4 Hz, 

1H), 3.08 (t, J=2.6 Hz, 1H), 2.70 (dd, J=3.3, 7.4 Hz, 1H), 2.14- 1.80 (m, 4H), 1.72- 1.58 

(m, 1H), 1.41- 1.29 (m, 6H), 1.14 (d, J=6.9 Hz, 3H); 13C NMR (100 MHz, CDCl3) $ 

207.8, 132.3, 111.3, 90.6, 65.1, 64.9, 61.5, 58.2, 42.2, 37.8, 34.8, 29.3, 20.2, 16.3, 16.2; 

HRMS (TOF LCMS) calc’d for C15H23PO7 [M-H] 345.1103, found 345. 1113. 

 

Preparation of Compound 557 

                             

O

OHMsO

551

Pb(OAc)4, DCE

reflux, 1 day

O

O

OAc

OMs

557

(42% yield)

 

 

To a solution of 551 (158 mg, 0.58 mmol, 1 equiv.) in DCE (5.8 mL) was added 

Pb(OAc)4 (362 mg, 0.81 mmol, 1.4 equiv.). The solution was heated to reflux and stirred 

overnight. The mixture was cooled to room temperature, filtered through Celite and 

concentrated under reducing pressure. The residue was loaded onto silica and purified by 

column chromatography (gradient elution, 50%- 67% EtOAc/ Hexanes) to yield 557 (20 

mg, 42.1%) as brown oil. 
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 Compound 557: FTIR(NaCl/ thin film) 2961, 2936, 1743, 1650, 1368, 1183, 

1120, 972, 817 cm-1; 1H NMR (400 MHz, CDCl3) $ 5.99 (dd, J= 2.5, 7.6 Hz, 1H), 4.02 

(dd, J=2.1, 12.5 Hz, 1H), 3.66 (td, J=3.6, 12.3 Hz, 1H), 3.54 (dd, J=3.4, 7.6 Hz, 1H), 3.16 

(q, J=2.4 Hz, 1H), 3.12 (s, 3H), 2.13- 1.94 (m, 2H), 2.02 (s, 3H), 1.90- 1.84 (m, 1H), 

1.67- 1.58 (m, 1H), 1.13 (d, J=6.9 Hz, 3H); 13C NMR (100 MHz, CDCl3) $ 200.4, 168.8, 

146.7, 112.5, 93.5, 62.3, 57.9, 41.3, 38.2, 37.5, 35.9, 28.4, 21.6, 20.3; HRMS (TOF 

LCMS) calc’d for C14H19O7S [M+H] 331.0852, found 331.0848. 

 

Preparation of Compound 558, 559 

              

O

OHNsO

551

Pb(OAc)4, DCE

reflux, 1 day

O

O

OAc

ONs

558: 73%

+

O

O

OH

ONs

559: 4%

 

 

To a solution of 551 (972.8 mg, 2.56 mmol, 1 equiv.) in DCE (25 mL) was 

addedPb(OAc)4 (1.59 , 3.58 mmol, 1.4 equiv.). The solution was heated to reflux and 

stirred overnight. The mixture was cooled to room temperature, filtered through Celite 

and concentrated under reducing pressure. The residue was loaded onto silica and 

purified by column chromatography (gradient elution, 50%- 67% EtOAc/ Hexanes) to 

yield 558 (814.5 mg, 72.7%) as brown oil and 559 (45.2 mg, 4.2%) as yellow solid. 

 Compound 558: FTIR(NaCl/ thin film) 3418, 2959, 2926, 1743, 1545, 1385, 

1251, 1193, 1110, 1022, 820 cm-1; 1H NMR (400 MHz, CDCl3) $ 8.16- 8.02 (m, 1H), 

7.91- 7.72 (m, 3H), 6.04 (dd, J=2.5, 7.6 Hz), 4.03 (ddd, J= 2.3, 6.6, 13.5 Hz, 1H), 3.76 

(dd, J=2.2, 7.6 Hz, 1H), 3.62 (td, J=2.6, 12.2 Hz, 1H), 3.16 (t, J= 2.5 Hz, 1H), 2.07- 2.02 
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(m, 2H), 2.00 (s, 3H), 1.90- 1.5 (m, 1H), 1.67- 1.59 (m, 1H), 1.13 (d, J=6.9 Hz, 3H); 13C 

NMR (100 MHz, CDCl3) $ 200.0, 168.6, 146.0, 135.8, 132.4, 132.2, 128.5, 125.3, 117.0, 

116.0, 93.4, 62.5, 57.4, 40.5, 37.3, 35.9, 28.4, 21.8, 20.2; HRMS (TOF LCMS) calc’d for 

C19H19NO9SNa [M+Na] 460.0678, found 460.0677. 

 Compound 559: FTIR(NaCl/ thin film) 3383, 2959, 2930, 1741, 1718, 1220, 

1169, 1154, 1088, 1057 cm-1; 1H NMR (400 MHz, CDCl3) $ 4.01 (dd, J= 5.1, 13.8 Hz, 

1H), 3.68 (td, J=3.2, 12.0 Hz, 1H), 3.63- 3.63 (m, 1H), 3.51 (td, J=2.9, 12.5 Hz, 1H), 3.18 

(t, J=3.5 Hz, 1H), 2.68 (dd, J=3.2, 7.4 Hz, 1H), 2.13- 2.04 (m, 1H), 1.95- 1.78 (m, 2H), 

1.64- 1.56 (m, 1H), 1.12 (d, J=6.9 Hz, 3H); 13C NMR (100 MHz, CDCl3) $ 206.6, 148.5, 

144.6, 135.9, 133.3, 132.4, 127.7, 125.1, 119.7, 90.2, 61.5, 57.8, 42.8, 37.1, 34.9, 28.8, 

20.2; HRMS (TOF LCMS) calc’d for C17H21N2O8S [M+NH4] 413.1019, found 

413.1025. 

 

Preparation of Compound 537 

                                

O

O

OAc

ONs

O

O

OH

O

1. KOH, PhSH, MeCN, r.t.

2. silica, DCM, r.t.

558 537

(96% yield)

 

  

To a solution of 558 (470 mg, 1.08 mmol, 1 equiv.) in MeCN (5.4 mL) was added 

PhSH (0.88 mL, 8.64 mmol, 8 equiv.) and KOH (120 mg, 2.16 mmol, 2 equiv.) at room 

temperature. The mixture was stirred for 30 minutes and quenched by aqueous HCl (2 

mL, 1N). The aqueous layer was washed by EtOAc (2 x 6mL), and the combined organic 
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layers were washed with brine (12 mL), dried over Na2SO4, and concentrated under 

reducing pressure. The residue was loaded onto silica and purified by column 

chromatography (gradient elution, 20%- 50% EtOAc/ Hexanes) to remove PhSH.  

To the product mixture in DCM (20 mL) was added silica (2 g) and stirred at 

room temperature for 2 days. The solution was filtered through Celite and concentrated 

under reducing pressure. The residue was loaded onto silica and purified by column 

chromatography (gradient elution, 33%- 67% EtOAc/ Hexanes) to yield 537 (370.5 mg, 

96%) as brown oil. 

 Compound 537: FTIR(NaCl/ thin film) 3389, 2961, 1744, 1478, 1193, 1112, 

1089, 822 cm-1; 1H NMR (400 MHz, CDCl3) $ 8.01 (d, J= 7.7 Hz, 1H), 7.87- 7.80 (m, 

2H), 7.76- 7.68 (m, 1H), 6.03 (dd, J=2.5, 7.6 Hz, 1H), 3.85 (dd, J=5.5, 12.5 Hz, 1H), 

3.68- 3.55 (m, 1H), 3.22 (d, J=2.8 Hz, 1H), 2.85 (dd, J=3.6, 20.5 Hz, 1H), 2.40- 2.28 (m, 

2H), 2.27- 2.17 (m, 1H), 2.14- 1.99 (m, 2H), 1.64- 1.54 (m, 1H), 1.11 (d, J=7.2 Hz, 3H); 

13C NMR (100 MHz, CDCl3) $ 206.7, 203.6, 93.5, 71.0, 61.9, 39.7, 39.1, 37.3, 33.8, 30.8, 

21.1; HRMS (TOF LCMS) calc’d for C22H28NaO8 [M+M+Na] 443.1682, found 

443.1687. 

 

Preparation of Compound 561 

                                        

O

O

OH

O

537

TMSOTf, Et3N

DCM, -78 ºC

O

O

OTMS

O

561

(82% yield)
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To a solution of 537 (89 mg, 0.42 mmol, 1 equiv.) in DCM (4.2 mL) was added 

TMSOTf (0.17 mL, 0.92 mmol, 2.2 equiv.) and Et3N (0.14 mL, 0.92 mmol, 2.2 equiv.) at 

-78 ºC. The mixture was stirred for 5 min and quenched by saturated aqueous NaHCO3 

(0.5 mL). The aqueous layer was washed by DCM (2 x 5mL) and the combined organic 

layers were washed with brine (10 mL), dried over Na2SO4, and concentrated under 

reducing pressure. The residue was loaded onto silica and purified by column 

chromatography (gradient elution, 20%- 33% EtOAc/ Hexanes) to yield 561 (98.2 mg, 

82.2%) as yellow oil. 

 Compound 561: FTIR(NaCl/ thin film) 2958, 1755, 1728, 1458, 1400, 1354, 

1315, 1250, 1092, 939, 847 cm-1; 1H NMR (400 MHz, CDCl3) $ 3.97 (dd, J= 4.8, 14.1 

Hz, 1H), 3.63 (td, J=3.0, 12.5 Hz, 1H), 3.16 (d, J=3.0 Hz, 1H), 2.83 (dd, J=2.9, 19.7 Hz, 

1H), 2.26 (dd, J=3.2, 19.6 Hz, 1H), 2.18- 2.11 (m, 2H), 2.06- 1.95 (m, 2H), 1.55- 1.49 

(m, 1H), 1.08 (d, J=7.2 Hz, 3H), 0.15 (s, 9H); 13C NMR (100 MHz, CDCl3) $ 205.1, 

204.8, 95.5, 71.9, 61.9, 42.2, 39.8, 37.4, 34.3, 30.9, 21.3, 1.8; HRMS (TOF LCMS) 

calc’d for C14H22NaO4Si [M+Na] 305.1185, found 305.1186. 

 

Preparation of Compound 563 

                                

O

O

OTMS

O

561

TBSOTf, Et3N

DCM,  -78 ºC to r.t.

(98% yield0
O

O

OTMS

OTBS

563
 

 

To a solution of 561 (60 mg, 0.21 mmol, 1 equiv.) in DCM (2.1 mL) was added 

TBSOTf (0.24 mL, 1.1 mmol, 5 equiv.) and Et3N (0.16 mL, 1.1mmol, 5 equiv.) at -78 ºC. 
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The mixture was warmed to room temperature and stirred overnight. The reaction  was 

quenched by saturated aqueous NaHCO3 (0.5 mL). The aqueous layer was washed by 

DCM (2 x 2 mL), and the combined organic layers were washed with brine (4 mL), dried 

over Na2SO4, and concentrated under reducing pressure. The residue was loaded onto 

silica and purified by column chromatography (gradient elution, 5%- 10% EtOAc/ 

Hexanes) to yield 563 (77.8 mg, 92.3%) as yellow oil. 

 Compound 563: FTIR(NaCl/ thin film) 2957, 2929, 1749, 1725, 1643, 1250, 

1193, 1153, 1091, 844 cm-1; 1H NMR (400 MHz, CDCl3) $ 5.10 (dd, J= 2.2, 7.3 Hz, 1H), 

3.82 (dd, J=6.1, 12.2 Hz, 1H), 3.55 (td, J=2.2, 12.7 Hz, 1H), 2.73 (t, J=2.3 Hz, 1H), 2.39 

(dd, J=3.2, 7.3 Hz, 1H), 2.01- 1.92 (m, 1H), 1.91- 1.80 (m, 1H), 1.75- 1.70 (m, 1H), 1.53- 

1.49 (m, 1H), 1.07 (d, J=7.0 Hz, 3H), 0.9 (s, 9H), 0.17 (s, 6H), 0.14 (s, 9H); 13C NMR 

(100 MHz, CDCl3) $ 208.2, 149.7, 103.9, 93.2, 61.4, 44.8, 38.5, 34.9, 29.8, 25.7, 20.3, 

18.1, 1.9, -4.4, -4.6; HRMS (TOF LCMS) calc’d for C20H37O4Si2 [M+H] 397.2230, 

found 397.2223. 

 

Preparation of Compound 564 

                      

1. LDA, (CH3)2NCH2CH2CO2Me

THF, -78 ºC to r.t.

2. m-CPBA, -78 ºC

O
OH

OTMS

O

OMe

564

OTBS

O

O

OTMS

OTBS

563

(85% yield)

 

 

To a solution of diisopropylamine (0.14 mL, 1.03 mmol, 5.25 equiv.) in THF (1 

mL) at –20 ºC was added n-BuLi (0.43 mL, 0.84 mmol, 4.2 equiv., 1.9 M hexanes 

solution) dropwise over 5 minutes.  The resultant mixture was stirred at –20 ºC for 5 
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minutes, and then cooled to –78 ºC for 30 minutes.  To this mixture was added methyl-3--

(dimethylamino)propionate (0.1 mL, 0.70 mmol, 3.5 equiv.) dropwise over five minutes.  

The reaction mixture was stirred at –78 ºC for thirty minutes, 0 ºC for 15 min, and room 

temperature for 15 min, and then cooled to –78 ºC.  

A solution of 563 (77.8 mg, 0.2 mmol, 1equiv.) in THF (2 mL) was added enolate 

dropwise over 1 min at –78 °C.  The solution was slowly warmed to room temperature 

and stirred for  1 hour.  The reaction was quenched with 1M AcOH in THF (5mL) and 

allowed to warm to room temperature.  At which point the reaction mixture was treated 

with H2O (2 mL) and EtOAc (2 mL).  The aqueous layer was extracted with EtOAc (2 x 

5mL), and the combined organic layers were washed with brine (10 mL), dried over 

Na2SO4, and concentrated under reducing pressure.  

To the solution of this residue solution in DCM (8.5 mL) was added m-CPBA 

(170 mg, 0.70 mmol, 3.5 equiv.) at -78 ºC and stirred for 20 minutes. To the solution was 

added basic Al2O3 (200 mg) and stirred overnight at room temperature. The mixture was 

filtered through Celite and concentrated under reducing pressure. The residue was loaded 

onto silica and purified by column chromatography (gradient elution, 5%- 10% EtOAc/ 

Hexanes) to yield 564 (80.2, mg, 84.7%) as colorless oil.  

 Compound 564: FTIR(NaCl/ thin film) 3451, 2955, 1705, 1652, 1322, 1258, 

1180, 1023, 938, 911, 842 cm-1; 1H NMR (400 MHz, CDCl3) $ 6.01 (s, 1H), 5.77 (s, 1H), 

5.44- 5.31 (m, 1H), 4.74 (dd, J= 2.4, 7.1 Hz, 1H), 4.64 (td, J=4.4, 12.1 Hz, 1H), 3.85 (dd, 

J=6.7, 11.4 Hz, 1H), 3.74 (s, 3H), 2.44 (t, J=2.3 Hz, 1H), 2.35 (ddd, J=2.3, 4.4, 9.2 Hz, 

1H), 2.12 (dd, J=2.8, 7.1 Hz, 1H), 1.83- 1.73 (m, 1H), 1.67- 1.59 (m, 1H), 1.43- 1.37 (m, 

1H), 0.95 (d, J=7.0 Hz, 3H), 0.93 (s, 9H), 0.18 (s, 3H), 0.14 (s, 3H), 0.06 (s, 9H); 13C 
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NMR (100 MHz, CDCl3) $ 170.7, 153.0, 144.1, 119.7, 1006, 100.1, 82.3, 63.1, 52.9, 

51.8, 45.9, 40.9, 29.7, 28.5, 25.7, 21.3, 18.0, 1.8, -4.8; HRMS (TOF LCMS) calc’d for 

C24H41O6Si2 [M-H] 481.2442, found 481.2455. 

 

Preparation of Compound 531 

                             

O
OH

OTMS

O

OMe

564

OTBS

TFA, DCM, r.t.

(59% yield)

531

O

O

OH

O
O

 

 

To a solution of 564 (80 mg, 0.17 mmol, 1 equiv.) in THF (1.6 mL) was added 

TBAF (1.67 mL, 1.7 mmol, 10 equiv.) and AcOH (95 µL, 1.7 mmol, 10 equiv.) at room 

temperature. The mixture was stirred overnight. The reaction was quenched by H2O (2 

mL). The aqueous layer was extracted with EtOAc (2 x 5mL). The combined organic 

layers were washed with brine (10 mL), dried over Na2SO4, and concentrated under 

reducing pressure. The residue was loaded onto silica and purified by column 

chromatography (gradient elution, 20%- 50% EtOAc/ Hexanes) to yield 531 (26 mg, 

59%) as yellow solid.  

 Compound 531: FTIR(NaCl/ thin film) 3431, 2924, 1780, 1733, 1289, 1264, 

1175, 1076, 1003 cm-1; 1H NMR (400 MHz, CDCl3) $ 6.05 (s, 1H), 5.98 (s, 1H), 4.49 

(ddd, J= 5.8, 9.1, 14.5 Hz, 1H), 4.23 (ddt, J=5.2, 11.5, 17.0 Hz, 1H), 3.42- 3.36 (m, 1H), 

2.71 (d, J=2.2 Hz, 1H), 2.43- 2.37 (m, 2H), 2.20  (dd, J=3.4, 11.3 Hz, 1H), 2.14- 2.02 (m, 

1H), 1.85- 1.73 (m, 2H), 1.31- 1.20 (m, 1H), 1.02 (d, J=7.2 Hz, 3H); 13C NMR (100 
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MHz, CDCl3) $ 208.6, 166.0, 135.3, 130.1, 104.7, 74.6, 64.1, 61.8, 38.6, 38.3, 37.4, 31.0, 

29.9, 20.8; HRMS (TOF LCMS) calc’d for C14H15O5 [M-H] 263.0920, found 263.0922. 
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To a solution of 531 (76 mg, 0.29 mmol, 1 equiv.) in DCM (3 mL) was added 519 

(0.37 mL, 2.9 mmol, 10 equiv.) and N,N’-Dimthyl analine (0.39 mL, 2.9 mmol, 20 

equiv.) at room temperature. The mixture was stirred for 2 days and concentrated by  

reducing pressure. The residue was loaded onto silica and purified by column 

chromatography (gradient elution, 20%- 50% EtOAc/ Hexanes) to yield 513 (58.4 mg, 

49%) as brown oil and starting material 531 (10 mg).  

 Compound 513 (diastereomer): FTIR(NaCl/ thin film) 2972, 2929, 1777, 1732, 

1286, 1189, 1106, 1071, 1039, 1066, 977 cm-1; 1H NMR (400 MHz, CDCl3) $ 6.69 (s, 

1H), 6.62 (s, 1H), 6.00 (s, 1H), 5.85 (s, 1H), 4.85 (t, J=4.3, 1H), 4.71 (dd, J=4.4, 16, 1H), 

4.62 (dd, J= 6.1, 12.3 Hz, 1H), 4.53 (dd, J=6.1, 12.3 Hz, 1H), 4.14 (dd, J=6.6, 12.1 Hz, 

2H), 3.56- 3.31 (m, 8H), 2.87 (d, J=2.4, 1H), 2.76 (J=2.4, 1H), 2.62- 2.48 (m, 2H), 2.26- 

1.96 (m, 8H), 1.85- 1.78 (m, 2H), 1.72- 1.61 (m, 2H), 1.19  (t, J=7.1 Hz, 3H), 1.12 (t, 

J=7.0 Hz, 3H), 1.02 (d, J=1.7 Hz, 3H), 1.01 (d, J=1.7Hz, 3H); 13C NMR (100 MHz, 

CDCl3) $ 208.7, 208.6, 165.8, 135.8, 135.4, 132.5, 130.3, 106.1, 97.3, 80.1, 79.7, 62.0, 
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61.8, 61.5, 61.4, 40.8, 40.4, 38.8, 38.3, 38.6, 38.5, 31.9, 31.8, 29.7, 29.6, 28.7, 28.2, 20.9, 

25.2, 15.0; HRMS (TOF LCMS) calc’d for C18H23NaBrO6 [M+Na] 437.0576, found 

437.0568. 

 

Preparation of Compound 512 
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 To a solution of I2 (216.2 mg, 0.85 mmol, 1 equiv.) in THF (12 mL) was added 

samarium (186 mg, 0.94, 1.1 equiv.) at room temperature. The mixture was heated to 

reflux for 3 hours then cooled to room temperature. 0.07 M SmI2 was ready for reaction. 

To a solution of 513 (16 mg, 0.039 mmol, 1 equiv.) in THF (0.4 mL) was added 

SmI2 solution (2.7 mL, 0.20 mmol, 5 equiv.) at room temperature. The mixture was 

stirred for 1 hour then quenched by saturated aqueous NH4Cl (0.5 mL) and HCl (0.1 mL, 

1 N). At which point the reaction mixture was treated with H2O (2 mL) and EtOAc (2 

mL).  The aqueous layer was extracted with EtOAc (3 x 5mL), and the combined organic 

layers were washed with brine (10 mL), dried over Na2SO4, and concentrated under 

reducing pressure to yield crude 512. 

To a solution of 512 (half amount of last step rude product) in DCM (0.2 mL) was 

added BF3•OEt2 (6 µL, 0.048   mmol, 2.5 equiv.) and propane-1,3-dithiol (5 µL, 0.048 

mmol, 2.5 equiv.) at 0 ºC. The mixture was warmed to room temperature and stirred 
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overnight. The reaction was quenched by H2O (10 µL). At which point the reaction 

mixture was treated with H2O (1 mL) and EtOAc (1 mL).  The aqueous layer was 

extracted with EtOAc (3 x 1mL), and the combined organic layers were washed with 

brine (3 mL), dried over Na2SO4, and concentrated under reducing pressure. The residue 

was loaded onto silica and purified by column chromatography (gradient elution, 25%- 

50% EtOAc/ Hexanes) to yield 566 (5 mg, 65%) as yellow oil.  

Compound 512: FTIR(NaCl/ thin film) 3457, 2918, 1778, 1726, 1480, 1462, 

1451, 1358, 1327, 1299, 1273, 1174, 1109, 1080, 1027, 980 cm-1; 1H NMR (400 MHz, 

CDCl3) $ 5.47 (dd, J=2.2, 5.7 Hz, 1H) 4.20 (td, J=3.1, 12.5 Hz, 1H), 3.99 (dd, J=6.0, 12.0 

Hz, 1H), 3.78 (ddd, J=7.2, 9.8, 14.3 Hz, 1H), 3.53 (ddd, J=7.0, 9.8, 14.1 Hz, 1H), 2.72 

(dd, J=6.8, 14.2 Hz, 1H), 2.32 (d, J =3.3 Hz, 1H), 2.30 (s, 1H), 2.19 (dd, J=2.3, 13.8 Hz, 

1H),  2.13 (dd, J=2.2, 14.2 Hz, 1H), 2.10-2.07 (m, 1H), 2.01- 1.90 (m, 3H), 1.81 (q, J=3.4 

Hz, 1H), 1.75- 1.65 (m, 2H), 1.48 (dt, J=3.2, 16.5 Hz, 1H), 1.28 (d, J=7.5 Hz, 3H), 1.22 

(t, J=7.2 Hz, 3H) ;13C NMR (100 MHz, CDCl3) $ 177.7, 109.5, 106.9, 95.9, 77.9, 64.0, 

63.0, 57.0, 53.9, 52.1, 44.3, 39.4, 38.4, 37.8, 30.7, 27.8, 21.0, 15.4; HRMS (TOF LCMS) 

calc’d for C16H19O5 [M-C2H5O] 291.1233, found 291.1236. 

 

Preparation of Compound 586 
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To a solution of 531 (16 mg, 0.06 mmol, 1 equiv.) in DCM (0.6 mL) was added 2-

chloroacetic anhydride (20.5 mg, 0.12, 2 equiv.) and pyridine (20 µL, 0.02 mmol, 0.3 

equiv.) at room temperature. The mixture was stirred overnight and concentrated under 

reducing pressure. The residue was loaded onto silica and purified by column 

chromatography (gradient elution, 25%- 67% EtOAc/ Hexanes) to yield 586 (2 mg, 10%) 

as yellow oil.  

Compound 586: FTIR(NaCl/ thin film) 2960, 2361, 2339, 1743, 1546, 1439, 

1387, 1194, 1088, 1023 cm-1; 1H NMR (400 MHz, CDCl3) $ 4.89 (dd, J=14.0, 22.5 Hz, 

1H) 4.20 (s,  2H), 4.14- 4.10 (m, 1H), 4.09 (d, J=3.2 Hz, 1H), 3.61 (d, J=1.8, Hz, 1H), 

2.75 (q, J=2.2 Hz, 1H), 2.44- 2.36 (m, 1H), 2.32 (d, J=2.2 Hz, 1H), 2.25 (d, J =3.5 Hz, 

1H), 2.30 (s, 1H), 1.99- 1.91 (m, 2H), 1.72- 1.65 (m, 1H), 1.01 (d, J=8.2 Hz, 3H),;13C 

NMR (100 MHz, CDCl3) $ 203.1, 171.3, 167.0, 158.9, 123.6, 105.8, 61.7, 57.6, 56.3, 

40.5, 39.0, 38.0, 36.9, 32.5, 29.4, 19.4; HRMS (TOF LCMS) calc’d for C16H19O5 

[M+Na] 363.0611, found 363.0611. 
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To a solution of 477 (100 mg, 0.22 mmol, 1 equiv.) in DCM (3 mL) was added 

419 (0.32 mL, 4.40 mmol, 20 equiv.) and N,N’-Dimthyl analine (0.30 mL, 4.40 mmol, 20 
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equiv.) at room temperature. The mixture was stirred for 2 days and concentrated by  

reducing pressure. The residue was loaded onto silica and purified by column 

chromatography (gradient elution, 20%- 50% EtOAc/ Hexanes) to yield 580 (60 mg, 

50%) as brown oil and starting material 477 (50 mg).  

Compound 580 (diastereomer): FTIR(NaCl/ thin film) 2974, 2928, 1775, 1651, 

1547, 1390, 1367, 1284, 1195, 1123, 1075,905, 824 cm-1; 1H NMR (400 MHz, CDCl3) $ 

8.04 (dd, J=4.6, 7.7 Hz, 2H), 7.91- 7.82 (m, 4H), 7.79 (td, J=1.5, 7.3 Hz, 2H), 6.24 (s, 

1H), 6.19 (s, 1H), 5.79 (s, 1H), 5.82 (s, 1H), 5.75 (ddd, J=2.6, 5.8, 7.9 Hz, 2H), 4.73 

(ddd, J=4.0, 5.9, 8.0 Hz, 2H),  4.59 (td, J=3.6, 12.9 Hz, 1H), 4.47 (td, J=3.8, 12.1 Hz, 

1H), 4.00 (q, J=5.6 Hz, 2H),  3.54- 3.32 (m, 8H),  3.00 (t, J=1.9 Hz, 1H), 2.84 (t, J=2.1 

Hz, 1H), 2.63 (ddd, J=2.4, 7.7, 9.3 Hz, 2H), 2.46- 2.37 (m, 2H), 2.01-1.85 (m, 2H), 1.75- 

1.58 (m, 4H), 1.22 (t, J=7.0 Hz, 3H), 1.07 (t, J=6.9 Hz, 3H), 0.98 (d, J=7.0 Hz, 6H);13C 

NMR (100 MHz, CDCl3) $ 166.3, 149.6, 149.5, 148.5, 135.9, 135.2, 132.9, 131.7, 129.2, 

129.0, 126.7, 125.3, 110.6, 110.5, 105.4, 104.8, 97.9, 97.0, 82.4, 81.9, 63.9, 63.6, 62.5, 

61.2, 52.4, 52.3, 44.1, 43.6, 40.0, 39.7, 32.3, 32.0, 29.9, 29.6, 28.4, 20.8, 15.2, 15.0 ; 

HRMS (TOF LCMS) calc’d for C24H26NBrO10NaS [M+Na] 622.0359, found 622.0358. 
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To a solution of 580 (31 mg, 0.052 mmol, 1 equiv.) in MeCN (0.7 mL) was added 

PhSH (71 µL, 0.52 mmol, 10 equiv.) and KOH (7.5 mg, 0.10 mmol, 2 equiv.) at room 

temperature. The mixture was stirred for 20 minutes then added H2O ( 1mL). The 

aqueous layer was extracted with EtOAc (3 x 1mL), and the combined organic layers 

were washed with brine (3 mL), dried over Na2SO4, and concentrated under reducing 

pressure. The residue was loaded onto silica and purified by column chromatography 

(gradient elution, 25%- 50% EtOAc/ Hexanes) to yield 582 (22 mg, 100%) as colorless 

solid.  

Compound 582: FTIR(NaCl/ thin film) 3456, 2958, 2927, 1778, 1728, 1200, 

1057, 994, 740 cm-1; 1H NMR (400 MHz, CDCl3) $ 7.48- 7.27 (m, 5H), 4.98- 4.75 (m, 

1H), 4.45- 4.35 (m, 1H), 4.30- 4.15 (m, 1H), 3.38 (s, 1H), 3.36 (d, J=2.1 Hz, 1H), 2.87 (d, 

J=2.2 Hz, 1H), 2.57- 2.51 (m, 2H), 2.41- 2.30 (m, 3H), 2.14- 2.01 (m, 1H),.1.92- 1.71 (m, 

2H), 1.01 (d, J=7.2 Hz, 3H),;13C NMR (100 MHz, CDCl3) $ 209.6, 173.1, 134.6, 131.1, 

129.4, 127.4, 105.4, 76.2, 63.8, 63.6, 50.0, 38.6, 36.7, 36.5, 33.0, 31.1, 29.8, 20.7; HRMS 

(TOF LCMS) calc’d for C20H23O5S [M+H] 375.1266, found 375.1268. 
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Appendix II: Spectra Relevant to Chapter 4 
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Figure A.4.2 Infrared Spectrum (thin film/NaCl) of compound 466. 

 

 

 

 
 

Figure A.4.3 
13

C NMR (125 MHz, CDCl3) of compound 466. 
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Figure A.4.5 Infrared Spectrum (thin film/NaCl) of compound 465. 

 

 

 

 
 

Figure A.4.6 
13

C NMR (125 MHz, CDCl3) of compound 465. 
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Figure A.4.8 Infrared Spectrum (thin film/NaCl) of compound 470. 

 

 

 

 
 

Figure A.4.9 
13

C NMR (125 MHz, CDCl3) of compound 470. 
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Figure A.4.11 Infrared Spectrum (thin film/NaCl) of compound 480. 

 

 

 

 
 

Figure A.4.12 
13

C NMR (125 MHz, CDCl3) of compound 480. 
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Figure A.4.14 Infrared Spectrum (thin film/NaCl) of compound 482. 

 

 

 

 
 

Figure A.4.15 
13

C NMR (125 MHz, CDCl3) of compound 482. 
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Figure A.4.17 Infrared Spectrum (thin film/NaCl) of compound 481. 

 

 

 

 
 

Figure A.4.18 
13

C NMR (125 MHz, CDCl3) of compound 481. 
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Figure A.4.20 Infrared Spectrum (thin film/NaCl) of compound 483. 

 

 

 

 
 

Figure A.4.21 
13

C NMR (125 MHz, CDCl3) of compound 483. 
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Figure A.4.23 Infrared Spectrum (thin film/NaCl) of compound 484. 

 

 

 

 
 

Figure A.4.24 
13

C NMR (125 MHz, CDCl3) of compound 484. 
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Figure A.4.26 Infrared Spectrum (thin film/NaCl) of compound 485. 

 

 

 

 
 

Figure A.4.27 
13

C NMR (125 MHz, CDCl3) of compound 485. 
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Figure A.4.29 Infrared Spectrum (thin film/NaCl) of compound 490. 

 

 

 

 
 

Figure A.4.30 
13

C NMR (125 MHz, CDCl3) of compound 490. 
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Figure A.4.32 Infrared Spectrum (thin film/NaCl) of compound 492. 

 

 

 

 
 

Figure A.4.33 
13

C NMR (125 MHz, CDCl3) of compound 492. 
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Figure A.4.35 Infrared Spectrum (thin film/NaCl) of compound 502. 

 

 

 

 
 

Figure A.4.36 
13

C NMR (125 MHz, CDCl3) of compound 502. 
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Figure A.4.38 Infrared Spectrum (thin film/NaCl) of compound 516. 

 

 

 

 
 

Figure A.4.39 
13

C NMR (125 MHz, CDCl3) of compound 516. 
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Figure A.4.41 Infrared Spectrum (thin film/NaCl) of compound 517. 

 

 

 

 
 

Figure A.4.42 
13

C NMR (125 MHz, CDCl3) of compound 517. 
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Figure A.4.44 Infrared Spectrum (thin film/NaCl) of compound 518. 

 

 

 

 
 

Figure A.4.45 
13

C NMR (125 MHz, CDCl3) of compound 518. 
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Figure A.4.47 Infrared Spectrum (thin film/NaCl) of compound 519. 

 

 

 

 
 

Figure A.4.48 
13

C NMR (125 MHz, CDCl3) of compound 519. 
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Figure A.4.50 Infrared Spectrum (thin film/NaCl) of compound 520. 

 

 

 

 
 

Figure A.4.51 
13

C NMR (125 MHz, CDCl3) of compound 520. 
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Figure A.4.53 Infrared Spectrum (thin film/NaCl) of compound 522. 

 

 

 

 
 

Figure A.4.54 
13

C NMR (125 MHz, CDCl3) of compound 522. 
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Figure A.4.56 Infrared Spectrum (thin film/NaCl) of compound 525. 

 

 

 

 
 

Figure A.4.57 
13

C NMR (125 MHz, CDCl3) of compound 525. 
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Figure A.4.59 Infrared Spectrum (thin film/NaCl) of compound 526. 

 

 

 

 
 

Figure A.4.60 
13

C NMR (125 MHz, CDCl3) of compound 526. 
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Figure A.4.61 1H NMR (400MHz, CDCl3) of compound 527
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Figure A.4.62 Infrared Spectrum (thin film/NaCl) of compound 527. 

 

 

 

 
 

Figure A.4.63 
13

C NMR (125 MHz, CDCl3) of compound 527. 
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Figure A.4.65 Infrared Spectrum (thin film/NaCl) of compound 528. 

 

 

 

 
 

Figure A.4.66 
13

C NMR (125 MHz, CDCl3) of compound 528. 
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Figure A.4.67 1H NMR (400MHz, CDCl3) of compound 529
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Figure A.4.68 Infrared Spectrum (thin film/NaCl) of compound 529. 

 

 

 

 
 

Figure A.4.69 
13

C NMR (125 MHz, CDCl3) of compound 529. 
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Figure A.4.70 1H NMR (400MHz, CDCl3) of compound 530
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Figure A.4.71 Infrared Spectrum (thin film/NaCl) of compound 530. 

 

 

 

 
 

Figure A.4.72 
13

C NMR (125 MHz, CDCl3) of compound 530. 
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Figure A.4.73 1H NMR (400MHz, CDCl3) of compound 538
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Figure A.4.74 Infrared Spectrum (thin film/NaCl) of compound 538. 

 

 

 

 
 

Figure A.4.75 
13

C NMR (125 MHz, CDCl3) of compound 538. 
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Figure A.4.77 Infrared Spectrum (thin film/NaCl) of compound 546. 

 

 

 

 
 

Figure A.4.78 
13

C NMR (125 MHz, CDCl3) of compound 546. 
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Figure A.4.80 Infrared Spectrum (thin film/NaCl) of compound 540. 

 

 

 

 
 

Figure A.4.81 
13

C NMR (125 MHz, CDCl3) of compound 540. 
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Figure A.4.82 1H NMR (400MHz, CDCl3) of compound 547
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Figure A.4.83 Infrared Spectrum (thin film/NaCl) of compound 547. 

 

 

 

 
 

Figure A.4.84 
13

C NMR (125 MHz, CDCl3) of compound 547. 
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Figure A.4.86 Infrared Spectrum (thin film/NaCl) of compound 541. 

 

 

 

 
 

Figure A.4.87 
13

C NMR (125 MHz, CDCl3) of compound 541. 
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Figure A.4.89 Infrared Spectrum (thin film/NaCl) of compound 548. 

 

 

 

 
 

Figure A.4.90 
13

C NMR (125 MHz, CDCl3) of compound 548. 
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Figure A.4.91 1H NMR (400MHz, CDCl3) of compound 543
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Figure A.4.92 Infrared Spectrum (thin film/NaCl) of compound 543. 

 

 

 

 
 

Figure A.4.93 
13

C NMR (125 MHz, CDCl3) of compound 543. 
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Figure A.4.94 1H NMR (400MHz, CDCl3) of compound 550
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Figure A.4.95 Infrared Spectrum (thin film/NaCl) of compound 550. 

 

 

 

 
 

Figure A.4.96 
13

C NMR (125 MHz, CDCl3) of compound 550. 
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Figure A.4.97 1H NMR (400MHz, CDCl3) of compound 544
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Figure A.4.98 Infrared Spectrum (thin film/NaCl) of compound 544. 

 

 

 

 
 

Figure A.4.99 
13

C NMR (125 MHz, CDCl3) of compound 544. 
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Figure A.4.100 1H NMR (400MHz, CDCl3) of compound 551
MsO OH
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Figure A.4.101 Infrared Spectrum (thin film/NaCl) of compound 551. 

 

 

 

 
 

Figure A.4.102 
13

C NMR (125 MHz, CDCl3) of compound 551. 
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Figure A.4.103 1H NMR (400MHz, CDCl3) of compound 545
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Figure A.4.104 Infrared Spectrum (thin film/NaCl) of compound 545. 

 

 

 

 
 

Figure A.4.105 
13

C NMR (125 MHz, CDCl3) of compound 545. 
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Figure A.4.106 1H NMR (400MHz, CDCl3) of compound 552
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Figure A.4.107 Infrared Spectrum (thin film/NaCl) of compound 552. 

 

 

 

 
 

Figure A.4.108 
13

C NMR (125 MHz, CDCl3) of compound 552. 
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Figure A.4.109 1H NMR (400MHz, CDCl3) of compound 556
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Figure A.4.110 Infrared Spectrum (thin film/NaCl) of compound 556. 

 

 

 

 
 

Figure A.4.111 
13

C NMR (125 MHz, CDCl3) of compound 556. 
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Figure A.4.112 1H NMR (400MHz, CDCl3) of compound 557
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Figure A.4.113 Infrared Spectrum (thin film/NaCl) of compound 557. 

 

 

 

 
 

Figure A.4.114 
13

C NMR (125 MHz, CDCl3) of compound 557. 
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Figure A.4.115 1H NMR (400MHz, CDCl3) of compound 558
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Figure A.4.116 Infrared Spectrum (thin film/NaCl) of compound 558. 

 

 

 

 
 

Figure A.4.117 
13

C NMR (125 MHz, CDCl3) of compound 558. 
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Figure A.4.118 1H NMR (400MHz, CDCl3) of compound 559
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Figure A.4.119 Infrared Spectrum (thin film/NaCl) of compound 559. 

 

 

 

 
 

Figure A.4.120 
13

C NMR (125 MHz, CDCl3) of compound 559. 
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Figure A.4.121 1H NMR (400MHz, CDCl3) of compound 537
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Figure A.4.122 Infrared Spectrum (thin film/NaCl) of compound 537. 

 

 

 

 
 

Figure A.4.123 
13

C NMR (125 MHz, CDCl3) of compound 537. 
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Figure A.4.124 1H NMR (400MHz, CDCl3) of compound 561
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Figure A.4.125 Infrared Spectrum (thin film/NaCl) of compound 561. 

 

 

 

 
 

Figure A.4.126 
13

C NMR (125 MHz, CDCl3) of compound 561. 
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Figure A.4.127 1H NMR (400MHz, CDCl3) of compound 563
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Figure A.4.128 Infrared Spectrum (thin film/NaCl) of compound 563. 

 

 

 

 
 

Figure A.4.129 
13

C NMR (125 MHz, CDCl3) of compound 563. 
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Figure A.4.130 1H NMR (400MHz, CDCl3) of compound 564



 345 

 
 

Figure A.4.131 Infrared Spectrum (thin film/NaCl) of compound 564. 

 

 

 

 
 

Figure A.4.132 
13

C NMR (125 MHz, CDCl3) of compound 564. 
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Figure A.4.133 1H NMR (400MHz, CDCl3) of compound 531
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Figure A.4.134 Infrared Spectrum (thin film/NaCl) of compound 531. 

 

 

 

 
 

Figure A.4.135 
13

C NMR (125 MHz, CDCl3) of compound 531. 
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Figure A.4.137 Infrared Spectrum (thin film/NaCl) of compound 513. 

 

 

 

 
 

Figure A.4.138 
13

C NMR (125 MHz, CDCl3) of compound 513. 
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Figure A.4.139 1H NMR (400MHz, CDCl3) of compound 512



 351 

 
 

Figure A.4.140 Infrared Spectrum (thin film/NaCl) of compound 512. 

 

 

 

 
 

Figure A.4.141 
13

C NMR (125 MHz, CDCl3) of compound 512. 
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Figure A.4.142 1H NMR (400MHz, CDCl3) of compound 586
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Figure A.4.143 Infrared Spectrum (thin film/NaCl) of compound 586. 

 

 

 

 
 

Figure A.4.144 
13

C NMR (125 MHz, CDCl3) of compound 586. 
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Figure A.4.146 Infrared Spectrum (thin film/NaCl) of compound 580. 

 

 

 

 
 

Figure A.4.147 
13

C NMR (125 MHz, CDCl3) of compound 580. 
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Figure A.4.148 1H NMR (400MHz, CDCl3) of compound 582
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Figure A.4.149 Infrared Spectrum (thin film/NaCl) of compound 582. 

 

 

 

 
 

Figure A.4.150 
13

C NMR (125 MHz, CDCl3) of compound 582. 
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