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ABSTRACT 

The secondary flow in the developing boundary layer of a square 

duct is investigated experimentally . Measurements of the horizontal 

components of secondary flow were made for free stream velocities of 

3, 6 . 1 , and 12 . 2 m/ s, corresponding to Reynolds numbers based upon the 

hydraulic diameter of 3 . 6 x 105 , 7 .2 x 105 , and 1 .4 x 106 at a ratio 

of L/Dh of 6 . 7 . Measurements of the developing boundary layer 

parameters and turbulence quantities in a corner were made for the 

inte rmedi a t e Reynolds number . 

The secondary flow and turbulence distribution in a corner are 

discussed and compared with the fully developed flow situation . The 

r es ults i ndi cate the maximum secondary flow velocity is less than 2% 

of the free stream velocity, and further, that the secondary flow may 

encompass the entire cross section . 

The turbulence distribution was found to not differ fundamentally 

from t hose found in fully developed flow . 

A cri terion for two dimensionality of wind tunnel flow is 

exami ned and a correction for three dimensionality is evaluated from 

t he experimental data . 
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Chapter I 

INTRODUCTION 

Turbulent flow in ducts of noncircular cross section is generally 

of a three - dimensional nature , The mean velocity vector consists of a 

primary component in the axial direction and a transverse component in 

the plane perpendicular to the axial direction . The turbulence prop-

erti es of these flows are also generally of a three - dimensional nature , 

The mos t obvious characteristic of the three - dimensionality is 

t he now commonly accepted distortion of the lines of constant velocity ~ 

or i sovels , particularly in the region of a corner . Nikuradse (20 ) 

was t he f i rst to observe experimentally that the isovels were dis -

p l aced t owar d the walls in corner regions and away from the walls at 

th e mi d-points between corners of a triangular duct . Some of 

Nikuradse 's results are sketched in Fig . 1 . From this fact , 

Prandtl (23 ) concluded that a flow component must exist perpendicular 

to the isovels at points of nonuniform isovel curvature and be directed 

from t he concave side to the convex side of an isovel . The effect of 

the transverse flow was to convect higher momentum fluid into the 

corner regions and lower momentum fluid into the center region of the 

duct at mi d- points between corners . These transverse currents have 

since become known as secondary flows and are generally regarded as 

superi mposed upon the axial mean flow or primary flow . 

The effect of the secondary flow on wall shear stress in non-

circul ar ducts is to cause a more uniform distribution around the 

peri phery . Hoagland (12) has measured the wall shear stress in a 
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square duct wi th a Preston tube and compared his results with an 

analyt ical solution given by Deissler and Taylor (5) wherein secondary 

flow effects have been neglected . The measured wall shear stress is 

considerably higher i n the region of the corner compared with Deissler 

and Taylor ' s result , A more recent numerical solution involving the 

use of a computer has been given by Liggett, Chiu and Miao (16) in 

which the wall shear stress in the corner was calculated accounting 

for secondary flow , This result was compared by the authors with 

Hoagland's experimental values and found to be more realistic, Fig . 2 . 

Further effects of t he three- dimensional nature of turbulent 

flow in noncircular ducts are of engi neering interest , In the cor-

ners of a rectangular duct, the heat transfer coefficients have been 

found t o be as much as thirty percent higher than the predicted 

values for uniform wall temperatures (5) , 

Sediment transport in r i vers and canals i s another example 

where secondary flow effe~ts are significant , Delleur and McManus (7) 

have measured the pri mary velocity profi les in an open channel flow . 

Their resu lts show an isovel distort i on in the corner regions indi -

cating secondary flows simi lar to t hose observed in the corners of 

rec t angular wind tunnels , Leopold (14) describes ribbons of sediment 

moving along the floor of an open channel attr i buted to secondary 

flows , 

The above effects are due to the local characteristics of the 

turbulent flow field and any solution to the above problems will have 

to account for secondary flows to not only be qualitatively correct, 

but to be quantitatively correct , 
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With the exception of one study performed by Pletcher and 

McManus (22) on the entrance region of a rectangular duct, the pre-

vious studies of secondary flows have been restricted to the fully 

devel oped flow case. The present investigation is intended to examine 

f urther the case of a developing turbulent flow, in particular the 

boundary layer developing along the floor of a wind tunnel with the 

emphasis placed upon experimentally determining the regions of secon-

dary f l ow and gaining a greater understanding of the three - dimensional 

nature of a developing turbulent boundary layer . 
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Chapter II 

ANALYTICAL BACKGROUND 

In this chapter the basic equations will be presented in a 

general form for later reference . Subsequently the case of secondary 

flow for fully developed flow systems will be described . Much of the 

description will follow that presented in previous work but it will 

be included here for completeness and for emphasis . Next, the case 

of the developing boundary layer is described and compared to the 

fully developed flow case . The remainder of the chapter is devoted 

to summarizing significant measurements . 

2.1 Generali zed Governing Eguations 

The equat i ons governing a general flow are the turbulent Navier-

Stokes equations of motion and the equation of continuity. Under the 

restrictions of steady and i ncompressible flow, the momentum equation 

is in tensor notation 

aui ap 
pU j F, = - 'ax:"" + µ 

J l. 

a 
- p F. 

J 
(u . u . ) 

l. J 
(2 - 1) 

for i , j=l, 2, and 3 . The U. are the mean velociti es in the three 
l. 

coordinate directions defined in Fig . 3 and the last term is the 

apparent Reynolds' stresses . The other symbols have their standard 

meaning . 

Similarly , the continuity equation for the mean flow is 

au . 
l. = 0 ax. 
l. 

(2-2) 
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and for the turbulent components, it is 

au. 
1 = 0 ax. 
1 

(2-3) 

Equations (2 - 1) through (2 - 3) with the appropriate boundary 

conditions do not form a complete set of equations from which a solu-

t ion could be obtained. Missing is a relationship between the turbu-

lent shear stresses and the mean velocities . At this time an adequate 

relat ionship is not available, thus, an analytic solution is not 

possible . 

By operating on equation (2-1) with the curl operator and 

manipulating with the continuity equations, the vorticity equation 

may be obtained , It is 

(2 - 4) 

au. 
where 1 

QQ, = EjiQ, ax.°' 
J 

is the mean vorticity vector about the Q, 

direction and Ej iQ, is the alternating third order permutation ten-

sor . A turbulent vorticity can be defined analogous to the mean 

vorticity from which 

where as above 
au. 

1 
W = E 

Q, j iQ, ax."' 
J 

(2-5) 

Derivations of the above equat ions can be found in Hinze (11). 

Although the complete turbulent Navier-Stokes equations cannot 

presently be solved, much information can be gained from an examination 
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of their terms together with some simplifications due to the geometry 

of the flow. 

2 , 1.1 Fully Developed Flow: Momentum Equations - When the 

flow is fully developed, some simplification of the governing equa-

tions is possible . For the case here, fully developed flow is taken 

to mean that all variables are constant in the axial, or mean flow 

direction, i . e . , derivatives in the x1 direction are zero , With 

this simplification equation (2-1) through equation (2 -4) can be 

written 

( 
a2u 

3 
).l - + 

ax 2 
2 

a
2
u1 ) 

ax 2 
3 

a
2
u2 ) 

ax 2 
3 

a2u3 ) 

ax 2 
3 

(2-6) 

where the components of equation (2 - 1) have been written out for the 

three coordinate directions . The continuity equations are written as 
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au2 au3 0 ax2 
+ ax3 

= 

and (2 - 7) 
au2 au3 0 ax2 

+ ax3 
= 

General solutions to equations (2- 6) and (2 - 7) appear to be as 

unapproachab le as solutions to the full equations . It is interesting 

to note , however, that several attempts at solving these equations 

for the case of fully developed secondary flow in a corner have met 

with some success , Delleur and McManus (7) attempted to obtain a 

solution by a simplified mathematical flow model for an open channel 

utilizing an assumed mixing length relation between the mean velocity 

gradients and the turbulent sheari ng stresses . Their model evidently 

was overly simplified for the ir solut i on does not agree with any 

experimenta l measurements . 

More recently Li ggett, Ch i u and Mi ao (16) used a semi -

t heoretical approach wherein the axial equation of motion was trans -

formed into an equation in coordinates corresponding to the isovels 

of the mean axial flow and their perpendiculars . The measured axial 

mean velocity profiles were used with von Karman's equation for shear 

in a finite difference form of the transformed equations of motion to 

ob t ain a numerical solution from a computer for the flow in a 90° 

corner " The difficulty with this method is that the isovel distribu-

tion must be very accurately determined since the coordinate trans -

formation to be made must be determined in an analytical form from 

t hese measurements " The example computed by the authors appears to 
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give reasonable results but is very cumbersome and not well suited 

to other applications , Their computer solution did compare very 
0 favorably with their experimental measurements for a 90 "V" open 

channel . The method was extended later by Chiu and McSparran (4) to 

an open channel with sediment transport. Again, the results were 

favorable . 

2 . 1.2 Fully Developed Flow: Vorticity Equation - The vorticity 

equation has been discussed by many investigators of secondary flows 

for the fully developed flow case , What is included here is a sum-

mary of the important contributions from these discussions and an 

analysis to determine the apparent conditions under which secondary 

flows cannot exist and .under which secondary flows can exist , 

The vorticity equation for fully developed flow is from 

equation (2 - 4) 

+ 

(pu 2 
3 

~i ax 2 
3 

( 
32 32 ) 

- ax~ - ax~ 

(2-8) 

which does not include the axial mean velocity , The interpretation 

of vorticity is that of angular rotation of a fluid element about 

some axis , Equation (2 -8 ) is a description of the rotational behavior 

of a fluid element in the plane perpendicular to the axial direction . 

The terms on the left side represent the convection of mean vorticity 

in the plane by the mean lateral velocities and the last term on the 
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right hand side represents the diffusion and dissipation of mean 

vorticity by the viscous forces . The remaining terms on the right 

side are due to the turbulent nature of the flow . The first of these 

invo lves t he normal turbulent intensities and the second involves the 

turbulent shear stress, and are commonly thought of as the source of 

vorticity production . 

If u 2 = u3 = 0 there is no secondary flow by definition , and 

t here is no axial vorticity since ~l = au
3
;ax2 - au 2/a x3 Con-

versely , when ~l = 0 u 2 and u 3 then satisfy Laplaces two-

dimensional equation and therefore must also be zero; hence, zero 

vorticity i mpl ies the absence of secondary flow; consequently, the 

left side of equation (2 - 8) vanishes . Vanishing of the left side of 

equation (2 - 8) provides a restrictive condition on the turbulent 

stress terms of equation (2-8) that i s 

tion 

u2 = 

aw 
ax 2 

(u·2 
3 

u2) 
2 

When turbulent stress terms are 

(2-9), and the stream function, 

= 0 (2-9) 

set equal to zero as in equa-

lj; , is introduced such that 

aw/a x3 and u3 = - aiJ; / ax2 then equation (2-8) transforms to 

[ a' 
ax~ 

+ \l 

( :!3 ) 
a2 

+ --
ax2 

3 

a2 

ax2 
2 

(
~ + 
ax2 

2 

( :!3 ) ] a; [ a' 
ax3 ax~ 

(
~ + 
ax2 

2 

( :!2 ) 
a2 

+ 
ax2 

3 

~J = 0 
ax2 

3 

/:!2) J 

(2 - 10) 
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Maslen (19) utilized the boundary condi tions a~ / ax3 = a~ /ax 2 = O at 

the boundaries to show that ~ satisfies Laplace's two-dimensional 

equation and is therefore constant throughout the flow~ which implies 

u2 = u3 = 0. Equation (2 - 9), therefore provides a necessary and 

sufficient condition for the nonexistence of secondary flows . Equa-

tion (2 - 8), without the terms of equation (2 - 9) , is the laminar vor-

ticity equation which Maslen used to show that secondary currents 

cannot exist in steady, fully developed laminar flow . 

Einstein and Li (8) also discussed equation (2 - 8) and arrived 

at the same conclusion, equation (2 -9), from physical arguments as 

did Brundrett and Baines (2) . 

The condition under which secondary flows do, or do not exist 

in steady, fully developed flow is thus completely determined by 

equation (2 - 9) . The conditions under which equation (2 - 9) vanishes 

may be stipulated, but the condit i ons for which it does not vanish 

are much more complicated , Obviously equation (2 - 9) vanishes identi -

cally for laminar flow which is the case analyzed by Maslen . 

When the flow is turbulent, but isotropic and homogeneous 

u~ = u~ and the first term in equation (2 - 9) is zero . The lateral 

correlations are zero by definition, thus the second term is zero, and 

equation (2 - 9) vanishes " 

For steady, fully developed flow in a straight circular tube 

the lateral correlations ulu3 J u3ul 'u2u3 and u3u2 are zero , 

-and ulu2 = u2ul , thus the last term in equation (2 - 9) is zero . The 

transverse intensities u2 
3 and u2 

2 approach equal values at the 

centerline of the tube, but near the wall they are not equal . From 
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symmetry arguments, the mixed derivatives are equal and thus, the 

first term in equation (2 - 9) is also zero . Because of symmetry of 

the turbulence field, secondary flows cannot exist in steady, fully 

developed turbulent circular tube flow . 

2 . 1 . 3 Fully DeveloEed Flow: Stress Tensor - Arguments of 

symmetry similar to those mentioned for circular tube flow have been 

us ed by Gessner (10 ) to predict the boundaries of secondary flow cells 

in fully developed square duct flow , Brundrett and Baines (2) gave 

a similar discussion and extended it to determine the terms of the 

turbulent stress tensor at different locations in the cross section 

of a square duct. 

The bisectors of the walls, the bisectors of the corners, or 

diagonals , and the centerline are locations where simplified forms of 

the tensor may be written by inspection when considering conditions 

of symmetry at these locations. By inspection of the conditions 

shown in Fig . 4, the tensor has the following forms at the designated 

locations . 

( ~l 
0 

~ ) On centerline u2 
2 

0 0 u2 
2 

(2-11) 

u2 ulu2 ulu2 i 

On corner diagonal ( u1~2 u2 u2u3 J 2 

ulu 2 u 2u3 u2 
2 

(2-12) 

J 



On x2 axis 

On x3 axis 

u 2 

k:3 

12 

0 

0 

u 2 
2 

0 

: ) 
u 2 

3 

(2-13) 

(2-14) 

Brundrett and Baines (2) designated the turbulent terms of 

equation (2 - 9) as the turbulent vorticity production terms in accor-

dance with Townsend (27) and commented that if the second of the two 

turbulence terms were smaller than the first, then vorticity in region 

I of Fig . 4 would be negative . Experimental evaluation of the two 

terms by Brundrett and Bai nes has shown this to be true . The physical 

action of each of the turbulence vorticity production terms has been 

discussed by Einstein and Li (8 ) with the gradients of the term 

ui - u~ interpreted as a fluctuating normal pressure, which when 

unbalanced creates a rotation of a fluid element . The term 

is interpreted as a t urbulent shear stress on a surface in the x1- x3 

plane directed i n the x2 di rection, or on a surface in the x1- x2 

plane directed in the x3 direction . An unbalance in the gradient 

of this last term also would produce a rotation of a fluid element , 

Tracy (28) argues that this last term is a result of the vorticity 

and would be zero if there were no vorticity, and thus the on l y terms 

which can produce rotation are the normal intensity terms . 
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2 . 2 Developing Flow 

The developing flow case to be described in the foll owing 

section is much more complex than the fully developed flow discussed 

above , This type of flow is found in the entrance regions of non-

circular wind tunnels and is characterized by two regions of flow; 

the potential core or free stream, and the boundary layers which 

develop along the walls . The complexity of this flow over that just 

discussed is due to several fundamental differences . 

The entrance conditions greatly influence the characteristics 

of the flow in the potential core region, and to a lesser extent , in 

the boundary layers . The turbulence characteristics of the free 

stream are dependent upon the characteristics of the fluid before it 

enters the duct , and it also depends upon the physical structures 

which are located in the entrance . Although correlations between the 

entrance conditions and the turbulence characteristics directly down-

stream from them have been studied, it has never been determined how 

to relate them to solutions of the flow field . The entrance condi -

tions at the beginning of the boundary layer affect their properties 

for some distance downstream, although, at sufficient distances from 

the beginning these effects decay and the boundary layer approaches 

an equilibrium boundary layer . 

Interaction between the free stream and the outer edges of the 

boundary layer creates further complications . Intermittency of tur-

bulence is a characteristic of this interaction between the two 

regimes about which little is actually known, except that it is 
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dependent upon the free stream turbulence level and upon the external 

pressure gradient of the free stream . 

2. 2 , 1 Developing Flow: Momentum Equations - The mathematical 

description of secondary flow in a three- dimensional boundary layer 

becomes extremely complex due to two complications . The simplifica-

tion that was accomplished earlier for fully developed flow is no 

longer allowed , and there now exists an upper boundary to the boundary 

layer which distinguishes the boundary layer from the free stream . 

On either side of this external boundary exist two decidedly different 

regimes of flow , In the most general sense, however, equations (2 - 1) 

and (2 - 3) are applicable on either side of this boundary and through 

this external boundary . 

In general , equations (2 - 1) and (2 - 3) cannot be simplified and 

must be dealt with in their entirety . The simplification used in 

section 2, 1 no longer applies since the variables are now allowed to 

vary in the x1 direction . Boundary layer approximations to reduce the 

complexity of the equations of motion are not applicable because these 

approximations generally assume the flow field to be of a two-

dimensional nature . Three - dimensional boundary layer equations have 

been developed by Mager (18) and Sears (25), but these apply specifi -

cally to the region of the boundary layer and are restricted to 

regions away from any wall effects . Indications are that the secon-

dary flow is not limited to the boundary layer, but exists simulta-

neously in the free stream and in the boundary layer . Introducing 

secondary flow of this nature into the boundary layer equations would 

require modification of the boundary conditions of the external 
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boundary of the boundary layer in the form of making these conditions 

be of a functional nature, thereby increasing the degree of the com-

plexity for solution . 

2 . 2.2 De_vel oping_ Flow: Vorticity Equation - It is interesting 

to consider the vorticity equation for the case of a developing flow . 

As mentioned above, the simplification afforded by the vanishing of 

x1 derivatives is no longer allowed . Without th is simplification, 

equation ( 2- 4) must be taken in its entirety . The equation for vor-

tic i ty in the x1 direction is 

+ + 

I~ 
ell\ 

V" 2 (1 1 
a2 

(u~ u2) .. 
?x3 

= + 
ax.i x3 3 L .) 2 

(2-15) 

which now contains the axial mean velocity and its gradients on the 

left side . The additional terms on the left involving the velocity 

gradients, Qk au 1; axk , are terms describing the change in vorticity 

due to the stretching or contracting of a stream tube . Additional 

terms appearing on the right side involve two turbulent shear terms, 

the gradients of which are no longer zero in the axial direction . 

The other :idditional terms appearing are the axial convection of axial 
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vorticity and axial dissipation of axial vorticity . The equations 

for mean vorticity in the lateral directions are 

v11 2n 32 (u2 - u2) ( 32 32 ) = + + ulu3 2 3x13x3 3 1 3x2 3x2 
1 3 

32 
(u2u3) 

32 _ 
(ul u2) + 3x13x3 

- 3x33x2 
and 

3n3 3n3 3n3 3u3 3U 3 3U 3 
ul 3x

1 
+ u 2 3x

2 
+ u - - n - - n -- n -= 3 3x3 1 3x1 2 3x2 3 3x3 

v11 2n3 + 
32 

(u2 - u2) + ( 32 32 )_ 32 
(ul u3) = - ulu2 + 3x13x2 1 2 3x2 3x2 3xz3x3 2 1 

32 
(u2u3) 3x13x3 

In addition to equation (2-4) for vorticity, a continuity 

equation for mean vorticity is available (13) , It i s 

0 

(2-16) 

(2- 17) 

As in the continuity equation for velocity, if all the terms are zero , 

then a constant uniform vorticity field exists . If one of the terms 

is non-zero, then at least two of them must be non-zero, that is, 

there must be a change in mean vorticity in two directions simulta-

neously. If the flow is considered to enter a square duct with zero 



17 

vorticity , then vorticity will dev elop and continue to change until 

t he condition of fully developed f low is attained . Under the restric-

tion of equation (2 - 17), the vorticity must develop simultaneously 

in at least two directions, and by symmetry in a square duct, it must 

deve lop in all three coordinate direct i ons when considering the com-

pl ete cross section . Assuming that the total vorticity vector is 

zero when the f low enters the duct, equation (2 - 17) indicates that 

t he vorticity in the lateral directions must change in an opposite 

sense to t hat of the axi a l vorticity , Discussions by Gessner (10) 

and Brundret t and Baines (2 ) indicate that the axial vorticity is 

limited to cells in the cross section for fully developed flow which 

are bounded by the coordinate axes and the corner bi sectors . They 

have further indicated, and substant iated by measurement, that the 

axial vorticity is of different sign, depending upon which of these 

cells is being considered . In consideration of the above discussion 

t hen , it wou ld seem that the l ateral vort ic ity should change sign in 

a corresponding manner . The flow is i ndeed complex , 

2 . 2 . 3 Developing_ Flow: Stress Tensor - The arguments of 

symmetry that were applied in section 2 , 1 .2 to the square duct for 

f u lly deve loped flow are also val i d for a square duct with developing 

flow since th e agreements were bas ed strictly upon geometrical con-

siderations . The only change which occurs is due to the nature of 

the t urbulence of the entering f low. If th e entering flow is con-

sidered to be laminar , then the stress components are zero by defini -

tion until the boundary layer is reach ed . If the enteri ng flow is 

turbulent , then the tensors presumably would take the f orm of (2 - 11 ) 
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unless the positions considered were in the boundary layer . Under 

this kind of a restriction it would be natural to conclude that the 

secondary flow is limited to the regions of the boundary layer since 

the terms in the vorticity equation attributed to vorticity production 

involve the difference of the turbulent stresses u2 and 3 u 2 which 2 

are presumably equal in this region . Evidently secondary flows are 

not limited to the boundary layers only as experimental measurements 

by Pletcher and McManus (22) indicate the presence of secondary flow 

components in the free stream region of a developing flow . In this 

case the tensors would assume the forms already given . 

2. 3 Additional Literature 

In addition to the theoretical material contributed to the 

subject of secondary f l ow by those authors which have already been 

mentioned, a substantial amount of experimental measurements con-

cerning secondary flows have been contributed . Table I contains a 

summary of the experimental studies that have been performed and 

published on secondary flow which this author has encountered during 

the present investigation 

present study . 

Included in this tabulation is the 

With the exception of the study conducted by Pletcher and 

McManus, the studies listed in Table I all deal with fully developed 

flows . This fact coupled with the degree of success evident on a 

theoretical level, as exemplified by the preceding section, provided 

the stimulus for an experimental program to examine the secondary flow 

in a boundary layer . This program is described in the next chapter . 
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Chapter III 

EXPERIMENTAL PROGRAM AND PROCEDURES 

The experimental work was performed in the rectangular test 

section of the large U. S . Army Mi crometeorological wind tunnel in the 

Fluid Dynamics and Diffusion Laboratory at Colorado State University . 

The primary objective of the experiment was to examine secondary flow 

in the developing boundary layer along the floor of this tunnel . In 

this chapter are described the tunnel facility, the instrumentation, 

and t he measurement techni ques. 

3 1 Wind Tunnel 

Th e U.S . Army Micrometeorological wind tunnel, Fig . 5, was 

designed to simulate atmospheric boundary layer effects . The test 

section of approximately 30 meters in length constituted one side of 

t he recirculating system with the driving motor and heating- cooling 

coils located on the opposite side . Air left the three meter diam-

et er , four bladed airplane propeller, passed through the heating -

cooling coils and turned through two 90 degree corners with turning 

vanes to a stilling chamber . From the stilling chamber the air passed 

through four fine mesh screens of stainless steel mesh having a wire 

diamet er of 0 . 19 millimeters and 9.45 by 9 . 45 meshes per square 

centimeter , through a nine to one contraction and entered the test 

section . Around the entrance to the 1 . 8 by 1 . 8 meter test section 

was a gravel roughness 1 .3 centimeters high and 1 . 2 meters in length 

followed by a 3 . 8 centimeter high sawtooth fence used to trip the 

boundary layer . 
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The test section gradually expanded in width at the rate of 

2 . 54 centimeters every 2 . 44 meters to maintain a zero pressure gra-

dient the length of the test section . Variation of the pressure 

gradient was possible with the adjustable ceiling. Following the 

test section, two more 90 degree corners with turning vanes brought 

the flow back to the drive motor , 

In addition, the test section was equipped with a carriage 

device which allowed remote placi ng of probes in the flow and travers-

ing of t he cross section . Casters, which ran on rails fixed to the 

inside walls of the test section, Fig . 6, were mounted on the carriage 

and allowed it to be pos i tioned at any desired cross section . Vari-

able speed D. C. motors were mounted on the carriage to provide hori -

zontal and vertical motion of the carriage boom which was equipped 

with potentiometers to monitor the respective positions of each 

motion. Positioni ng of the carriage was through a control unit 

located outside of the wind tunnel . 

Air speed through the tunnel was controlled by means of the 

variable speed D. C. drive motor wi th a variable pitch airplane pro-

peller . A more detailed des cription of this facility has been given 

by Plate and Cermak (21) , 

3 . 2 Instrumentation 

3 . 2 . 1 Secondary Flow Instrumentation - For secondary flow 

direction measurements, a rotating constant temperature hot - wire 

anemometer technique similar to that used by Hoagland (12) , 

Gessner (10) , and Brundrett and Baines (2) was utilized , This 
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technique employed the following physical characteristic of the hot -

wire: when a hot wire operated at constant temperature is parallel 

to t he flow direction, a minimum heat loss from the wire to the fluid 

occurs, and therefore, a minimum voltage output is obtained . Yawing 

of the wire about the position where the wire is parallel to the flow 

direction produces, for a well constructed hot wire, a voltage output 

which i s symmetrical about the flow direction, Fig . 7 . To determine 

t he flow direction the hot wire is rotated either clockwise, or 

counterclockwise, about an axis which is normal (usually the probe 

axis ) t o the wire axis until the wire is yawed approximately twenty 

degrees from the approximate direction of flow and the voltage output 

is recorded , The wire is then rotated in the opposite direction 

until the same angle of yaw is approximately achieved, Fig . 8 . The 

second yaw angle is determined exactly by matching the voltage output 

with the value recorded from the first yaw pos i t i on, thus the flow 

di rec tion is determined by half the total angular change from, for 

e ample, t he cl ockwise yaw position to the counterclockwise yaw 

posit ion , Accuracy of the method is limited by the turbulence level 

of the flow passing by the wire (6) and, to a greater degree, by the 

ab ility t o accurately determine the angular pos ition of the hot wire 

itself . 

Angular measurements, from which the hori zontal components of 

secondary flow were determined, required a reference direction from 

which to measure the angles to the flow direction . Pletcher and 

McManus (22) indicated that the flow i n the entrance region of their 

duct was not symmetrical and, therefore, the flow direction did not 
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necessarily parallel the geometrical centerline of the duct at points 

located on the centerline. In the wind tunnel used in this study 

(see previous section), the flow was not fully developed and was 

required to turn two 90 degree corners before entering the test sec-

tion . In addition, preliminary mean velocity measurements indicated 

that the flow was skewed relative to the direction of the centerline 

in the boundary layer. For these reasons, the primary reference 

direction was initially chosen as the geometrical centerline of the 

tunnel with the direction of the free stream to be determined rela-

tive to the tunnel centerline . The reference position of the hot 

wire was then defined as the position in which the hot wire was 

parallel to the geometrical centerline of the tunnel , All flow direc-

tion angles were then measured relative to this reference. 

Preliminary attempts at determining the reference position of 

hot wire employed a direct observation of the hot-wire filament through 

a surveyor's transit telescope to align the probe with the line of 

sight of the transit , The transit was a K & E with an internal focus 

and magnification of twenty- four , The hot - wire filament was a plati -

num wire 10.2 microns in diameter and 13 millimeters in length mounted 

on a probe with prongs 2. 6 centimeters in length, Fig . 9 , Accuracy 

of repositioning the wire was ± 1/4 degree with respect to the center-

line of the tunnel . 

To achieve greater accuracy in aligning the hot wire, either a 

longer wire, or greater magnification was necessary . In an effort 

to achieve both, another technique was developed which involved pro-

jecting a shadow of two wires side by side on a screen through a lensP 
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the hot -wire filament itself and another wire used as a secondary 

reference line , Figs . 10 and 11 . The secondary reference line was a 

plat i num wire 10 . 2 microns in diameter stretched across two supports 

12 7 centimeters apart , It was aligned by the transit with the 

centerline of the tunnel . A quartz iodide spot lamp was used as the 

light source . The light was positioned above the two wires and 

reflected from a mirror past the two wires through a SO millimeter 

camera lens focused on a screen located on the ceiling of the tunnel, 

producing images of the two wires . The hot wire was then rotated 

unt i l the two images on the tunnel ceiling were parallel, thus the 

hot wire was parallel with the centerline of the tunnel. 

The spot lamp, lens , and secondary reference line were fixed 

to the tunnel carriage as a unit and could be removed and replaced 

without disturbing the hot wire probe and its support, Fig. 11 . 

Accuracy of aligning the secondary reference line with the transit 

was cons i stently within ± 0.02 degrees of rotation and the accuracy 

of aligning the hot wire with the secondary reference wire was con-

s istent ly within ± 0 ,03 degrees of rotation . Repeatability of mea-

suring a flow direction with the complete system was experimentally 

determined to be within ± 0 . 05 degrees of rotation . For later refer-

ence , t his technique is designated the shadow- graph technique . A 

more compl ete di scussion of the technique above, and below, is given 

i n Appendix A. 

The following method of probe alignment was used to measure the 

flow direction from which the horizontal components of the total 

vel oci ty vector were calculated. The free stream direction in the 
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tunnel was used as the reference direction for determining the 

reference position of the hot-wire probe. This reference was used 

since preliminary measurements in the free stream of the tunnel using 

the shadow-graph technique indicated that the free stream direction 

coincided with the geometrical centerline of the tunnel . 

To determine the reference position of the probe, hereafter 

called the zero position, the probe was posit ioned in the free stream 

in the approximate center of the tunnel, Fig . 12 . The exact location 

of the probe in the tunnel during this operation was known each time 

the probe was zeroed, but it varied depending upon where the probe 

was to be positioned for a flow direction measurement after the 

zeroing operation . The zero position was found by first adjusting 

the line of sight of the transit to the centerline of the tunnel. 

The secondary reference wi re used in the shadow- graph technique, 

which had been mounted on the base of the probe rotating stand, was 

then aligned with the transit , The hot wire was then rotated in the 

free stream, the voltage output of which determined the zero position 

relative to the rotating stand . All of the zeroing operations were 

performed with a free stream velocity of 6 , 1 meters per second . 

With the zero position of the probe established, the transit 

was then aligned on a line parallel with the centerline and passing 

through one of the data positions. The rotating stand was then 

aligned with the transit using the secondary reference wire fixed 

to the base of the stand, repositioning the probe in a known position 

relative to the free stream direction, but at a point in the cross 

section of the tunnel where the flow direction was to be determined. 
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After the flow direction had been determined, the probe was again 

placed in the free stream and re-zeroed. Comparison of the initial 

zero with the final zero indicated reproduction of the zero position 

within ± 0 . 05 degrees of rotation. 

For angle measurements the probe was mounted in a 33 centimeter 

holder 6 . 35 millimeters in diameter held in a vertical position above 

the floor . A plastic union coupled the holder to the output shaft 

of a gear train connected to a variable speed D. C. motor . Gear reduc~ 

tion from the motor to the probe was 4550:1 in two steps of 70:1 and 

65:1 . A ten- turn, 1000 ohm linear potentiometer was connected through 

a gear to the first reduction in the gear train . The potentiometer, 

excited at 1 . 000 volts with a l.S volt dry cell battery and voltage 

divider, allowed the angular position of the probe to be determined 

to± 0.04 degrees. The motor-gear mechanism and probe were mounted 

on a heavy stand with 30 centimeter legs threaded through the base. 

The legs were utilized because it was feared that the secondary flow 

might be affected by any obstacle placed on the floor of the tunnel 

that was of finite height. The legs raised the base from the floor 

to reduce blockage .effects near the boundary, Fig. 12 . Vertical 

attitude of the probe on the stand was established with the transit, 

and the attitude of the stand was maintained with a portable preci~ 

sion bubble tube placed on the base . The height of the probe above 

the floor of the tunnel was adjustable to within 2 millimeters . 

The instrumentation associated with the secondary flow measure-

ments is shown in Fig. 13. A block diagram of the system is given 

in Fig . 14. 
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3 , 2. 2 Mean Velocity and Turbulence Instrumentation - For the 

determination of the mean velocity profiles and the longitudinal 

turbulence intensity a single hot wire was used normal to the flow 

in a horizontal position . The wire used was a 5.1 micron diameter 

tungsten wire approximately 2. 5 millimeters in length. The probe to 

which the wire was silver soldered was similar to the probe used for 

angular measurements, Fig. 9. 

An x-wire probe was used for the measurement of Reynolds' 

stresses . The probe and holder were made by Disa, models 55A32 145 

and 55A30, respectively, Fig. 9 . The tungsten wires were 5.1 micron 

diameter and each was approximately 2.5 millimeters in length , Con-

siderable effort was expended to orient the wires at right angles to 

each other. 

The hot wires were operated with Colorado State University 

Constant Temperature Hot -Wire Anemometers, model HW300B (9). The 

root -mean- square values were recorded from a Band K, model 2409 

true RMS meter . These instruments used to measure the turbulent 

quantities are shown in Fig. 15, the block diagram is given in Fig . 16 , 

A 3.2 millimeter outside diameter pitot static probe Type 

PAC- 12- KL from United Sensor and Control Corporation was used in con-

junction with a Transonics Equibar Type 120 electronic manometer to 

monitor the free stream velocity and to make several velocity profile 

surveys . This pitot stat ic tube was compared with the one calibrated 

by Tieleman (26) and later used by Zoric (31) as a velocity standard , 

The present probe was considered sufficiently accurate to serve as a 

velocity standard for the present study. The hot wires des cribed 
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above were calibrated using this pitot static probe as the standard . 

The calibrations were performed in the free stream of the tunnel 

where the turbulence level was a minimum. 

For surveys with the probes across the tunnel cross section, 

the probes were mounted on the remote control carriage of the tunnel . 

3 , 3 Measurements 

Mean velocity profiles were taken on the centerline of the test 

section at stations 3.0, 6.1, 9.1, 10.7, 12 , 2 and 13.7 meters from 

the sawtooth roughness with the pitot static tube for a free stream 

velocity of 6.1 meters per second. The data from the electronic 

manometer were recorded on an electronic x-y recorder and mean values 

were obtained graphically from the recorded data. 

The remainder of the data were obtained at a station 12. 2 meters 

from the sawtooth roughness and in one quadrant of the cross section. 

The quadrant studied was th e lower right -hand quadrant of the cross 

section when observing it in the stream-wise direction. 

Vertical mean velocity profiles were obtained at points across 

the test quadrant with the single hot wire for free stream speeds of 

3 . 0, 6.1 and 12.2 meters per second. The mean values were obtained 

graphically from a continuous recording obtained with an electronic 

x-y recorder. 

Turbulence measurements were obtained in the test quadrant for 

a free stream velocity of 6.1 meters per second. The longitudinal 

intensity was obtained from the single, normal hot wire. The RMS 

values were recorded directly from the Band K true RMS meter . 
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Reynolds stress es were determined using the x-wire at the same points 

in the test quadrant as for the longitudinal intensities. The x-wire 

was positioned in the two planes normal to the axial direction, thus 

only seven components of the stress tensor were determined. 

Horizontal components only of the secondary flow were measured 

using the long, single rotating wire in the test quadrant. Mean 

values of the turbulent voltage signal from the anemometer were 

obtained using an electronic integrator of the same design as t h ti.: 

described by Tieleman (26) . The horizontal secondary flow component ,; 

were determined for these free stream velocities: 3. 0 , 6.1 and 12 . 2 

meters per second corresponding to Reynolds numbers, R = U
00

Dh/ v 

of 3 .6 X 105 5 7.2 X 10 and 6 1. 4 X 10 . The positions at which 

data were obtained in the test quadrant are indicated in Fig. 17, 
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Cahpter IV 

RESULTS AND DISCUSSIONS 

In this chapter the results of the experimental investigation 

described in t he preceding chapter are presented and discussed. 

4 , 1 Calibrations 

Calibrations of the various instruments were obtained whenever 

a measuring device did not provide data in a direct fashion , Several 

of the transducers operated in such an indirect manner. The pitot 

static tube was compared with the one calibrated by Tieleman (26 ) 

and found to give i dentical results. It was subsequently utilized 

as the velocity standard in this experiment. The hot wires used 

were calibrated i n the free stream region of the wind tunnel with 

the pitot static tube. A typical plot of the hot -wire response is 

given in Fig . 20 . The hot - wire calibration plots were also fitted 

to an equation of the form of King's law to facilitate the calcula-

tion of the quantities in the turbulent stress tensor . This proce -

dure has been carried out for the wire of Fig . 18 and the results 

i ncluded in the figure . 

Calibration of the mechanism for measuring the secondary flow 

directions consisted of comparing the resulting voltage s i gnal of 

the linear potentiometer with the number of revolutions of the drive 

motor determined by a counter, reduced to angular degrees of rotation 

of the probe through the known gear ratios , 
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4. 2 Boundary Layer Parameters 

This experiment was performed in the developing boundary layer 

of a wind tunnel . As such, it is necessary to specify under what 

conditions the boundary layer developed and to provide some informa-

tion which characterizes the particular boundary layer . Veloci ty 

profiles were obtained at a series of points on the centerline of the 

tunnel for a free stream velocity of 6 .1 meters per second . The data 

were obtained on an electronic x-y recorder from the electronic equi -

bar micromanometer in conjunction with a pitot static tube . Traverses 

were made with the pitot tube from near the floor of the tunnel, 

through the boundary layer into the free stream. A nondimensional 

plot of these profiles is pres ent ed in Fig . 19 . u1/U
00 

is the ratio 

of the local mean velocity to the free stream velocity. x2/ o is 

the ratio of the vertical coordinate measured from the floor to the 

boundary layer thickness on the centerline of the tunnel . o corre -

sponds to the vertical coordinate where the local velocity, u1 
has obtained 99 percent of the free stream velocity , u 

00 
Down-

stream from station 6.1 meters, the condition of centerline similarity 

is a good assumption . 

From these profiles, the several boundary layer parameters 

were calculated and are tabulated in Table II. These parameters are 

defined in Appendix B. These parameters have been plotted as func-

tions of x1 in Fig , 22 . The shape factor, H becomes reasonably 

constant with a mean of 1. 289 , which is close to the value of 1.286 

for a zero pressure gradient given by von Doenhoff and Tetervin (29). 
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This may be taken as confirmation of a zero pressure gradient in the 

region where secondary flow measurements were taken in the cross 

section . 

The momentum thickness, 8 , became linear with x 1 after 

station 9 meters. Von Karm~n's momentum integral equation for t he 

conditiou of a zero pressure gradient is 

= 2 d 8 
dx

1 
( 4-1) 

Cf calculated from (4-1) is given in Table II as 0 , 00326 . Ludwieg 

and Tillmann (17) have given an empirical relation for the case of a 

flat plate with zero pressure gradient . They give Cf as 

Cf= 0 . 123 x lo- 0 ·678 H 
U 8'-0 . 268 

CX) -V 

The first column of C f in Table II gives values of Cf 

( 4-2) 

computed 

according to (4-29. The mean value of Cf according to (4-2) over 

the given stations in Table II, Cf ,has been compared with the value 

* -given by (4-2) as Cf= Cf/Cf= 1.24 , Zoric (31) and Tieleman (26) 

have measured these same quantities. c; from Zoric's data ranges 

from 1.1 to 3 . 0 . In addition to the above measurements, Tieleman 

also performed shear plate measurements . The shear plate measurements 

* agreed with equation (4-2) and Cf was observed to range from 2.5 

to three. Tieleman attributed this discrepancy to the three-

dimensionality of the flow in the nature of secondary flows, which 

von Karman's equation, of course, does not incorporate (see Appendix 

B) . 
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Cl auser 1 s method for determining the friction velocity was 

applied to the lower portion of the velocity profiles to determine 

Cf The second column of Cf in Table II was determined this way , 

4 , 3 Secondary Flow 

Secondary flow measurements were performed in a portion of one 

quadrant (Fig . 17) of the wind tunnel , Profiles of the primary 

velocity at the station 12 .2 meters indicated the mean f low was not 

symmetrical with respect to the geometrical centerline of the tunnel. 

There were two aspects of this nonsymmetrical behavior which should 

be cmph as i zecl. First, the mean motion was displaced approximately 

six to eight centimeters from the centerline of the tunnel as indi-

cated in Fig. 21. It appeared this condition existed throughout the 

length of the test section of the tunnel . Secondly , the boundary 

layers on the tunnel boundaries grew at different rates. That is, 

the boundary- layers on the vertical \\ ,L1 ls dj Eered from that on the 

floor of the tunnel . Hence, complete symmetry of mean properti es 

about the corner bisector did not exist . 

4.3.1 Isovels - From the primary velocity profiles, an isovel 

map was constructed and is presented in Fig , 21. The penetration of 

the isovels into the corner and the displacement from the wall at the 

centerline are characteristic of secondary flow (Fi g , 1). Several of 

the primary velocity profiles are presented in Fig . 22, where the 

ordinate is normalized by the boundary layer thickness at the center-

line . During the course of the experiment, these profiles were mea-

sured several times and exhibited consistent repeatability . 
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Utilizing Clauser's method applied to the lower portion of the 

velocity profile in the cross sect ion, the distribution of T / t 
0 0 ' 

the wall shear, was determined. Values of Cf i n the cros s section 

are given in Table II . The values of 1
0
/T

0 
= Cf/Cf are plotted in 

Fig. 2 for compar i son with the data from other ducts. Of note is 

the maintenance of a high wall shear into the corner. 

4 , 3,2 Horizontal Components - The direction of the resultant 

velocity vector lying in the horizontal, or x1-x3 plane, was deter-

mined by the rotating hot wire previously described , At each data 

location, integrated hot -wire signals were obtained at several posi -

tions about the fl ow direction. In each case a minimum of four 

integrated signals comprised a s et . These values were plotted on a 

rectangular grid with the integrated ho t -wire signal as the ordinate 

and the posi tion vo ltage as the abscissa, as given in Fig. 23 . The 

complete hot -wire ~es ponse was assumed to be of the fo rm shown in 

Fig . 7. For each measurement location in the tunnel cross section, 

four. points on the curve were determined, one on the clockwise side 

and three, or more, on the counterclockwise side of the direction of 

flow , Subtracting the original value of pos i tion for the clockwise 

direction from the counterclockwise position that was graphically 

determined then gave the total included angle of probe rotation about 

the flow direction . Dividing this by two and subtracting it from the 

zero pos ition gave the direction of the resultant horizontal velocity 

vector in terms of voltage of the position , This value in volts was 

then multiplied by the slope of the calibration curve of the position 

potentiometer, as determined by a least square curve fitting, yielding 
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th e deviation in degrees of rotation and is the angle a which 

appears in Fig . 8 . 

The angle a was then multiplied by the local mean velocity to 

obtain the velocity component in the x 3 direction . This procedure 

obviously contains two assumptions, first that the angle in radians 

equals the sine of the angle, and second, the magnitude of the resul -

tant horizontal velocity v~ctor is given by the magnitude of the 

component in the x 1 direction as determined i n the mean velocity 

measurements . The first assumption is justified since almost all of 

the measured angles were less than one degree . The second assumption 

is reasonable since 

compared with uf . 

3 
luJ 2 = I 

i=l 

2 
u. 

1 
and u2 

3 
u2 

2 can be neglected 

The horizontal secondary flow velocities , u3 , have been 

plotted in Fig , 24 for each point where they were measured directly , 

The ordinate is the nondimensional height above the floor, non-

dimensionalized by the corresponding boundary layer thickness at the 

centerline. The abscissa is the nondimens i onal horizontal velocity i 

nondimensionalized by the free stream or centerline veloc i ty , 

Figure 25 shows the same plots wi th the boundary layer thickness 

replaced by the half height of the tunnel as the nondimensionalizing 

parameter , The data points appear to collapse better in general in 

Fig . 24 . However, in the corner the data collapses better in Fig . 25 . 

This implies that the flow distribution away from the corner is 

influenced more by the boundary layers, whereas the flow distribution 

in ~he corner is i nfluenced more by the geometry of the corner . 
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Figure 26 is a plot of the horizontal velocity, u3/U
00

, versus 

the lateral coordinate, x3/d3 for several values of the vertical 

coordinate , It is interesting to compare this figure with the sketch 

of Fig , 27 which is an idealized case representing fully developed 

flow in a square duct as presented by Hoagland (12), Gessner (10), 

and Brundrett and Baines (2) , In this sketch, no attempt has been 

made to establish any magnitudes although a reasonable estimate of the 

abscissa intercepts was attempted , It is interesting to note the 

similar shape for the corresponding curves . 

4.3.3 Calculated Vertical Components - Information of the 

form of Fig. 26 was used to obtain an estimation of the vertical 

component of the secondary motion through a graphical integration 

of the three - dimensional continuity equation , 

C 4- 3) 

Approximate values of 

au 3;ax3 were obtained graphically from fig . 34 , 

An estimation of an average value for au1/ax1 was obtained 

by differentiating the displacement thickness with respect to x1 
t o obtain 

u 
00 * ao (4-4) 

Equation ( 4- 3) thus becomes 
x2 au 3 u * r 00 ao ( 4- 5) u2 (x2) = - J - dn +T ax"1 x2 

0 
ax3 



36 

Th i s equation was used to calculate the vertical component of the 

secondary flow which is shown in Fig . 28 for different relative posi -

tions from the centerline . Also plotted in this figure ar.e tw,o 

esitmates of the vertical motions on the centerline associated with 

an equivalent two - dimensional continuity equation using the flat 

plate, zero pressure gradient, 1/7 power law . Integration of the 

two - dimensional continui t y equation produces 

u 
00 

) 

8/7 

( :2 (4-6) 

Values for 6 and ao/ ax1 were obtained two ways . They were 

evaluated first from data for 6 versus x presented previ ously ; 

and secondly , they were evaluated from the flat plate relatio11 

ao 
= ax1 

- 1/5 

( 
U x 1 ) 0 , 296 7 ( 4-7) 

corresponding t o the 1/ 7 power law for velocity , After insert i n~ 

equation (4 - 7) into equation (4 -6), the vertical velocity on the 

centerline is 

= 

8/7 
0~037 ( x6

2 ) 
-1/5 

(~) (4 - 8) 

Values of u2 are plotted in Fig , 28 , These values are the two-

dimensional equivalent of the data shown in the figure for x3/d3 = 

0 . There is an obvi ous difference between the data from th is experi -

ment and that calculated from the 1/7 power law, which is attributecl 

to secondary motions , The vertical velocity has been plotteJ :ln 

Fig , 29 as a function of x3/d3 for two values of x2;a2 The 
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distribution is similar to what has been observed except for the 

region of positive (upward) velocity at x3/d3 = 0 , 55 . That this 

region of upward vertical velocity appears is not surprising since 

the streamlines of secondary flow have generally been observed to be 

inclined to the boundary, but that it is of the same magnitude as 

the vertical velocity at the centerline is surprising . 

4.3.4 Flow in the Corner - Figure 30 presents a comparison 

of the measured lateral secondary flow component and the computed 

vertical secondary flow component , If the secondary flow is symmetric 

~out the corner bisector, the two profiles would be expected to be 

identical . Figure 30 does not show this to be the case in this 

investigation . There are three possible explanations for this . The 

first has been mentioned previously and involves the accuracy with 

which the vertical components were obtained . Second, the possibility 

exists that the comparison was made in a region sufficiently removed 

from the corner such that t l1e dj strib11 t ion is under the influence of 

the relative boundary layers on the wall and on the floor of the 

tunnel. Comparison further into the corner was precluded due to 

equipment limitations , This resulted from the physical dimensions 

of probe mechanism, which also suggests the third poss ibility , 

An obstacle in the flow near the wall produces an asymmetrical 

disturbance of the flow field in the vicinity of the obstacle . Con-

sequently , a measurement of horizontal velocity component may consist 

of a secondary flow component plus a probe - obstacle interference 

component , Correction procedures for this effect were used by 

Hoagland (12) and Gessner (10) to correct their data near a wall . 
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Their corrections were in the f orm of an experimentally determined 

curve relating t he di ameter of the probe and distance from the wall 

to the angular error due to the presence of the probe , The probe 

arrangement used i n this experiment was more complex than a simple 

cylinder; nevertheless, an estimation of the effect was obtained 

from a potential flow calculation of uniform flow around a large 

cylinder next to a wall , Figure 31 is the result of the calculation 

compared with the experimental curves obtained by Hoagland (12) and 

Gessner (10) , Calculations were then performed for different points 

in the flow field to determi ne the effect of the presence of the 

probe mechanism , The di ameters of each of the component parts of 

the probe mechani sm were used to compute a correction due to that 

particul ar component , Superpos i tion of all the corrections did not 

produce a s i gnificant correct ion, therefore, no corrections were 

applied to any of t he hori zontal components . In conclusion . the 

observed asymmetry in Fi g , 30 is attributed to an actual asymmetric 

behavior of t he flow in the corner possibly due to the interaction 

of the corner region with the respect ive boundary layer regions . 

4 , 3 , 5 ComEarison wit~_?ther Data = A comparison of data from 

the present experiment and some of those previously mentioned is 

displayed in Fig , 32 , The data from Pletcher and McManus (22) i s 

for fu l ly developed flow , as are the data shown from other investi -

gators, but is from a 3:1 aspect ratio duct , The coordinates for 

this data were nondimensionalized us ing only the half width for the 

minor dimension . The data from the present study is seen to be 

generally of a l arger magnitude at the corresponding height above 
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the floor, wJ, 1 ch corresponds to flow away from the wal 1 . Calculations 

discu~s ed prev ious l y indicated this increased magnitude cannot be 

interpreted as probe blockage . The data of Fig . 32 for x 3;d3 = 0.77 

confirms this conclusion as a greater total correction would have to 

be app lied, yet the data near the floor compares favorably, and 

would require no ~orrection . The flow farther from the floor is 

very complex due to the interference of the boundary layers along 

the wall and along the floor . 

4 ., 3.6 Resultant Secondary Flow - Figures 33, 34, and 35 

display the resu l tant velocity vector in the x2- x3 plane . The three 

diagrams are for axial velocities of 3, 6 . 1 and 12 , 2 meters per 

second . In t he corner th e flow is similar for all three velocities; 

however , farther from the corner (x3; d3 = 0 . 3 and x 2/ d2 = 0 , 3). 

The velocity data 1s reversed for 3 m/s compared to the 6 , 1 and 12 . 2 

m/ s velocity data . Further , the trend of an increase in velocity 

magn itude as the floor 1s approached is also reversed for the 3 m/s 

data, and a de crease 1n magnitude is observed . The absolute value 

of the secon dary velocities 1n this area were very small, indicating 

weak secondar y currents . At the two higher speeds t the secondary 

flow strengthened and was much better behaved . Of note is the fact 

that the secondary components are all less than two percent of the 

free stream speed at the point where they were determined , 

In the cor ner region along the vertical wall (x 3;d3 ~ 0 , 8 and 

x2Jd 2 : 0. 3) a strong flow away from the wall is observed , Compari -

son of this r eg i on with the same region along the floor (symmetry of 

the co ne r ) i ndica t es the flow in the two regions are obviously not 

simila r . 
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Th e continuity equation f or full y developed flow is two -

dimensional, thus a single stream functi on may be defined (see 

Chapter II ) for all cros s sections . The corresponding streamlines 

are closed with i n each axial section, i.e . , the mass flow toward the 

wall must equal th e mass flow away from the wall . Gessner (10) 

reported that continuity in the cross section was satisfied by his 

data within 20 percent . Hoagland (12) makes a similar statement. 

If these streamlines are plotted for the cross section, they provide 

a graphi cal picture of the secondary flow cells . Such an exercise 

is not possible f or a developing flow because the streamlines must 

begin and end upstream and downstream of the cross section under 

consideration and are not constant from one cross section to the 

next cross section . Hence, for a specific cross section, the flow 

toward the wall need not equal the flow away from the wall . This 

follows from the three-dimensional continuity equation, which re -

quires the change of the boundary layer displacement thickness with 

succeeding cross sections . Nevertheless, the concept of a cell is 

an attractive means to describe secondary flows . Figures 33, 34, 

and 35 present a general pattern of motion in which several zones of 

the fluid appear to rotate about a longitudinal axis . 

The ques tion arises as to whether any secondary flow cell would 

be limited to the boundary region in developing flows . Figures 26 

through 35 appear to imply that secondary flow cells should extend 

over the entire quadrant of flow and encompass not only the boundary 

layers, but the free stream as well . Indeed, if the secondary flow 

were limited to the boundary layers, the horizontal velocity, u3 
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should change sign on or near the centerline and should be positive 

over a significant portion of the boundary layer near the outer edges , 

This conclusion is also supported by the large magnitude of the verti-

cal velocity at the centerline (upward) and along the corner bisector 

(downward) , Figures 34 and 35 strongly suggest such full section 

cells since it is apparent that if closed cells are imagined to exist, 

they must be completed outs ide the boundary layer , In terms of the 

turbulence equations of Chapter II, the turbulence level is essen-

tially zero in the free stream, thus the terms for vorticity produc -

tion cannot exist , This does not preclude connection by the secon-

dary flows themselves or by the interaction of the boundary layer 

with the free stream . A pressure distribution must accompany the 

secondary flow in the free stream although it must be small, it pre -

cludes the existence of the classical potential flow core , 

Leutheusser (15) has measured the static pressure distribution in a 

fully developed flow and found it to vary slightly , 

The mean vorticity in the x1 direction is 

al= (4 - 9) 

Given the distribution of u2 and u3 with respect to x2 and 

values of a1 might be calculated . However, a sufficient amount of 

data to make the process of taking graphical derivatives reasonably 

accurate is required , The data here in was not considered sufficient 

for this purpose , 
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4 . 4 Turbulence 

Measurements of turbulence were obtained in the same region as 

the secondary flow measurements for a free stream speed of 6 . 1 meters 

per second only . Three hot -wire anemometers were used in conjunction 

with a single, normal wire and a cross wire, the output from which 

five of the six terms of the turbulent stress tensor were determined . 

The signal from the normal hot wire was integrated to obtain a mean 

voltage and the root -mean - square fluctuation voltage was obtained 

from each of the wires . The turbulence calculations and measurements 

are explained further in Appendix C. 

Figure 36 is the distribution of u 2;u 2 1 00 
in the region of the 

cross section investigated , The distribution is in general, similar 

to that given by previous experimenters with two distinct differences . 

First, the intensity approaches zero at the outer edge of the boundary 

layer; and second, better symmetry about the corner bisector was 

observed in the data of the literature , 

The existence of the free stream with an essentially zero tur-

bulence level requires that all the turbulence quantities approach 

zero at the outer edge of the boundary layer , The asymmetry exhibited 

by agrees with what has already been mentioned concerning sym-

metry in the corner , It is interesting to point out that the con-

tours penetrate farther into the corner along the bisector than 

elsewhere . This penetration i nto the corner is more severe than 

what has been observed in fully developed flow. This is because the 

fluid convected into the corner has little turbulence in it and 

suppresses the turbulence growing outward from the walls , 
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The distribution of u 2;u z 
2 00 

is given in Fig . 37 , The penetra-

tion of the corner contours a~ain occurs well off the corner bisector , 

Figure 37 may be compared with Fig . 38 for the distribution of 

u3
2/ U

00

2 . According to the discussion of Chapter II, Fig . 38 should 

be a mirror image to Fig. 37 about the corner bisector for a symmet-

rical flow . This is not satisfied about the corner bisector in 

Figs . 37 and 38 and it is not evident whether it is satisfied about 

any other line extending from the corner . 

Figure 39 displays the di stribution of the turbulent shearing 

stress It is typical of previous measurements of such 

a distribution with the above mentioned exceptions of symmetry . 

Shown in Fig 40 is the distribution of A great deal 

of confusion apparently exists in the published literature on its 

distribution in a corner . Gessner (10) presented an exhaustive 

study of fully developed turbulent flow in a square duct in which 

measurements of this term were presented in the same form as given 

here . His data exhibits no change of sign when progressing across 

the cross section . In contrast, Brundrett and Baines (2) performed 

an equally exhaustive set of turbulence measurements and indicate a 

distribution similar to that given here in regard to the variation 

of the change in sign of the turbulent shearing stress , Tracy (28) 

has also observed a similar change in sign of this quantity , 
3 

Figure 41 shows the distribution of the quantity I u? 
i j=l 

which is equal to the total turbulent kinetic energy per uni t mass . 

It is a direct composite of Figs . 36, 37, and 38 and reflect s the 

characteristics of each , Pletcher and McManus (22) observed that 
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the direction of secondary flow in t he corner region coincided well 

with grad(u1
2 ) • They fur ther speculated that the secondary flow 

direction in the corner wou ld coincide with the gradient of turbulence 

energy . Away from the corner, the correlation between the direction 

of secondary flow and grad(u 1
2 ) breaks down as the secondary flow 

direction changes to become perpendicular to the gradient of turbulence 

energy . 

The distribution of (u3
2 - u 2)/U 2 is given in Fig . 42 . 2 00 

Symmetry of the flow in the corner requires that along the corner 

bisector u 2 = u 2 
2 3 , thus u 2 - u 2 

3 2 should be zero along the 

bisector . In view of the asymmetry which has been demonstrated, the 

occurrence of a ze ro contour along the corner bisector i s surprising . 

In fully developed flow, the mixed second derivatives of 

(u3
2 - u2

2)/U
00

2 , (see equation (2 - 8)) , are called the vorticity 

production terms . The Laplacian of the turbulent shearing stress 

u2u3 either makes a positive i negative or zero contribution to the 

mean vorticity . Brundrett and Baines (2) measured the term u2u3 

and found it sufficiently small to be neglected in its contributi on 

to mean vorticity . Tracy (28) argued that the stress could only 

exist if secondary flow were present; and, that as such, it would not 

make a positive contribution to the mean vorticity . The distribution 

of was not determined in this experiment , The term that re-

the production 

term. Unfortunately, the data presented in Fig , 42 is not suffi --

ciently accurate, or abundant, to give any validity to the process 
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of graphically obtaining second derivatives , Thus ~ the actual 

production term has not been determined , 

Under the condition of developing flow, other terms remain 

undetermined herein from the axial mean vorticity equation, as seen 

in equat ion (2- 15) . Again, second derivatives are required, one of 

which is the space derivative in the axial direction which was not 

measured , 
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Chapter V 

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY 

Secondary flow has been studied in a region along the floor of 

a wind tunnel with a developing boundary layer . The differences 

which exist between the fully developed flow case and the developing 

flow case have been discussed in terms of the equations which describe 

the fluid motions and in terms of the physical motion of the fluid , 

Experimental information of the existing secondary flow has been 

obtained and discussed , Turbulence measurements in a corner region 

have also been obtained and discussed , 

5 .1 Conclusions 

In summary, as a consequence of the results and discussions of 

this study the following conclusions are appropriate : 

1) Secondary flows do exist in the entrance region of this 

wind tunnel facility with an L/Dh 

Reynolds numbers of 3.6 x 105 to 

ratio of only 6 . 7 at the high 
6 1 , 4 X 10 , 

2) The maximum secondary velocity measured was less than 

two percent of the free stream velocity in all cases studied " 

3) The secondary flows found do not differ fundamentally 

from those which have been found i n ducts of various aspect ratios 

with fully developed flows . In the vicinity of the corner the secon-

dary flow is into the corner along the corner bisector . This ten-

dency is stronger farther into the corner and weaker farther out 

from the corner along the corner bisector . The flow along the walls 

adjacent to a corner are found to be away from the corner . 
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4) The strength of the secondary flows may be influenced by 

an interaction of the relative boundary layer thicknesses and the 

geometry of the corner. The two effects cannot be separated; however , 

immediately at the corner the geometry of the corner predominates . 

S) The evidence of this study suggests that in a developing 

flow with boundary layers and a zero turbulence level free stream, 

the secondary flow may connect the two regions of flow, and is not 

limited to the boundary layers exclusively . 

6) The distribution of turbulence quantities within the 

boundary layers is found to be very similar to the distribution in 

fully developed flow. 

7) The similarity of the turbulence distribution implies 

that the mechanism of vorticity production in developing flow does 

not differ fundamentally from that of fully developed flow . 

5 , 2 Recommendations for Further Study 

As is evident in the chapter on results and discussion, the 

evidence from which some of the preceding conclusions are drawn is 

not as sound as is desirable , Consequently, the following recommenda-

tions in regard to any further studies of secondary flows in a devel -

oping flow situation are set down in the hopes that the difficulties 

and omissions found in this study will be overcome , 

For any further study upon the subject of secondary fl ows in a 

developing flow, it is recommended that: 

1) Probe design should be as precise as possible, yet 

inherently simple and easy to manipulate . Measurements must be 

quickly taken and duplicatable , 
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2) A simple configuration of the probe and its support 

should be maintained to allow rigorous blockage corrections . 

3) The vertical as well as the horizontal components of 

secondary flows should be measured . 

4) The turbulence field should be well defined with the 

expectation of performing a momentum balance and a vorticity balance. 

This would require data suitably accurate and sufficient to obtain 

second derivatives with respect to all three spatial coordinates , 
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APPENDIX A 

DISCUSSION OF ROTATING HOT-WIRE ACCURACY FOR 
DETERMINING FLOW DIRECTION 

In section 3 . 2.l, the method of flow direction measurement 

utilizing a rotating hot wire was described briefly . This method has 

been used successfully by Hoagland (12) , Gessner ( 10 ) , Brundrett and 

Baines (2) , Pletcher and McManus (22), and Tracy (28) , The same 

method was used in conjunction with a hot film by Liggett, Chiu, and 

Miao (16) to obtain measurements in water . The probe apparatus was, 

in each case mounted on a large, rigid traversing mechanism located 

outside the fluid flow confines . The conditions studied for this 

report did not permit the use of a rigid traversing bench , The reason 

for this was the physical size of the flow facility . Consequently 0 

another means of probe support and orientation was sought . 

Section 3 , 2, 1 contains a brief description of several of the 

techniques that were investigated . Once a technique was operational, 

it was examined to determine its accuracy and dependability . Two of 

these methods subsequently used in the course of the experiment are 

discussed below. 

Resolution 

De lleur (6) has studied the ability of a rotating hot wire to 

determine flow direction in a turbulent stream , He concludes that 

flow directions may be determined 

a turbulence level of Y u1
2 /U

00 
= 

within t 0 .05 

0 . 10 or less . 

degree in a flow with 
r-

Above V u 2 /U = 1 a: 

0 , 12 the resolution is limited to r 0 . 10 degreP- . This is , of course, 
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provided the mechanism is equipped with a position 1nd1 cator of 

sufficient resolution. The above values were obtained by repeating 

measurements several times . For this experiment described in the 

ma1n text, the same technique was used . 

Two wires of the same diameter, but different lengths , were 

rotated on the center line of a 15 centimeter diameter pipe for air 

flowing at 6 1 meters per second with a turbul ence level -V u~;~U~ 

of approximately 9%. The wires were the same as those described in 

section 3 ,2 . land 3 . 2 . 2 . The wires were operated with a constant 

temperature anemometer, and the signal was averaged with time by the 

integration procedure previously described . It was possible to 

determine the position to within 0 . 0002 degree . The response of the 

wires is given in Fig . 43 in terms of the integrated hot ~wire voltage 

versus an angular position relative to an arbitrary reference , The 

longer hot wire had a much greater sensitivity to angular motion in 

terms of a change in integrated voltage . The indicated symmetry was 

used to determine the direction of flow , 

Several examples of repetit ion of wire position were obtained , 

It was soon apparent that it was possible to orient the hot wire 1n 

the flow with sufficient accuracy . Table IV lists the results of 

five of these repetition procedures for the longer wire and three for 

the shorter wire, which was subsequently discarded from any further 

consideration . 

Platform Alignment 

One of the techniques for wire alignment in the tunnel discussed 

briefly in sec tion 3 .2. 1 employed the use of a secondary reference 
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line. It consisted of a wire of the same composition and diameter as 

the filament of th •! hot wire stretcheci across two s upports 12. 7 centi-

meters apart , Alignment of the reference line to the tunnel axis was 

made with a surveyors t ransi t, Direct comparison of the hot - wire 

filament with the reference line was then required , Initially a 20 

power microscope was positioned above the two wires and the hot wi re 

rotated until the two wires . the reference line and the hot -wire 

filament, were parallel , This proved to be an adequate alignment 

method, but time consuming . For example, the probe alignment fre-

quently required between two and three hours . 

The second methoJ of Jirect comparis on between the reference 

line and the hot -wire filament was called the shadow graph techniques . 

It has been described in section 3 . 2.1. 

Either of these methods depends upon fo ur components; tl' 'll'.!'>i t 

alignment, reference line ali _gnment, ho t -wire alignment, anci hot -wire 

resoluti on - eaci1 predjcated upon the one before . A simpl e calcula-

tion for transit alignment indicated an error of ± 0 .005 degree or 

less in the line of sight . 

Alignment of the reference line with the transit was examined 

by determining the reproducibility that could be expected , The transit 

was locked on an arbitrary position and a movable plast ic platform 

equipped with a mirror and a scribed line was positioned 3. 7 meters 

away. A scale was positioned one half this distance from the mirror 

such that it could be read through the mirror by ch anging the focus 

of the transit . The arrangement is shown i n Fig . 44. The length of 

the scribed line was about 10 cent i meters . The scribed line was 



57 

aligned with the transit by means of the adjustment screws , and the 

pos ition was read on the scale through the mirror, The scribed line 

position was then altered and the procedure repeated . Table V con-

tains the tabulated results of th i s procedure, The values presented 

suggest a standard deviation of 0 . 0053 cm with the maximum deviation 

being i 0.1 cm. If it is assumed rotation of the mirror occurred 

about the same axis as rotation of the scribed line, then the values 

in Table V represent twice the change in arc length that would be 

experienced by the scribed line at the same radius. Thus, the maxi -

mum deviation of ! 0.1 cm corresponds to ! 0 . 016 degree . 

Hot-Wire Alignment 

Alignment of the hot-wire filament with the reference line was 

determined in a similar fashion. The microscope method described 

above produced a value of ± 0.026 degree for the maximum deviation 

from the mean over a series of 10 repetitions for the longer wire . 

The magnification of the microscope was 20 , The shadow graph 

technique achieved a magnification of 32 ! 6 depending upon how far 

from the tunnel floor the probe was located since the screen was 

fixed to the top of the tunnel " Table VI lists position values f or 

the shadow graph repetition experiments , Each unit of the HP dial 

mounted on the drive motor corresponded to 0,0002 degree of probe 

rotation .. The maximum deviation listed in Table VI then corresponds 

to t 0.024 degree . 
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Overa l l Error 

Using the following values for each of the four error components 

transit 0.005° 

reference 0 . 016° 

filament 0 .024° 

reso lution 0 . 020° 

and considering them to be random, the square root of the sum of their 

squares is then± 0.035 degree for an overall maximum probable error 

in any one alignment , 

During application to secondary flow measurement in the wind 

tunnel, the method of position monitoring was changed from the direct 

observation of the numbers on the several dials of the gear train to 

the potentiometer arrangement described in section 3 . 2 , 1 , This pro -

vided for a readout in terms of voltage from the potentiometer, but 

it added to the error tb be expected in a measurement , This was due 

to the construction of the potentiometer, bacause it was insensitive 

to any angular change in probe direction less than 0 . 04 degree . 

Hence, the total maximum probable error to be expected in any one 

measurement reported is± 0 ,053 degree . 

Section 3.2.1 mentioned that the shadow graph technique was 

used to determine the direction of the free stream with respect to 

the J~ometrical centerline of the wind tunnel . Five such measurements 

at station x1 = 12 . 2 meters and 71 centimeters from the floor indi-

cated the two coincided. Four of the five were zero with the fifth 

being 0.05 degree , Thus, the free stream was subsequently used as 

a reference direction for aligning the probe . This provided the 
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opportuni t y to check the repr oducibility of the entire system and 

compare it with th e values predicted above 

Measurement of the flow direction angle, a , was repeated at 

the following points with the indicated results . 

u x/ d3 X/d 2 a 
00 

3 .. 1 m/ s 0 0.0 28 0 . 20 deg 0 , 25 deg 
6 . 1 m/ s 0 0 . 028 0 . 20 deg 0 . 20 deg 

12 . 2 mis 0 0 ,028 0 . 20 deg 0 , 20 deg 
6 , 1 m/ s 0 . 63 0 . 028 LOS deg L 10 deg 

12 . 2 m/ s 0.63 0 , 028 L 10 deg 1 . 10 deg 

Hence , t he va lues f or a wer e assumed accurate to the nearest 0 . 05 

degree in view of the discussion above . 

Measurements were normally taken in a sequence such that the 

probe remained at the same elevation from the floor . A check of the 

zero position between each lateral measurement position should give 

the same value of potentiometer reading. The data shows this to have 

been the case to within ± 0.04 degree , 
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APPENDIX B 

TWO - AND THREE-DIMENSIONALITY OF WIND 
TUNNEL FLOWS 

A variety of fluid mechanic experiments have been performed in 

the Army Meteorological Wind Tunnel . For example, studies of the 

action of winds on buildings in the atmospheric surface layeri instane~ 

ous and continuous diffusion from line and point sources with a variety 

of stratification and roughness conditions, and basic boundary layer 

research have been conducted i n this facility , In most cases, the 

flow is assumed to be two - di mensional in nature , This precipitates 

a simplification in the governing equations and often relieves the 

problem of determining the three - dimensional characteristics of the 

flow. The question naturally arises then, under what circumstances 

may the flow accurately and effectively be termed two - dimensional? 

Tracy (28) suggest ed a value of five for the width to depth 

ratio required to assure that two -dimensional flow is closely 

approached in the central region , He determined that secondary flows 

which exist in the central region of a 6 1 : 1 aspect ratio duct were 

very small , The turbulence field was also reasonably uniform, but 

more characteristic of a three - dimensional flow , 

The usual criterion is that the momentum transport is either 

constant, or zero in one of the three coordinate directions . For true 

two- dimensional flow restricted to the x1- x2 plane, the turbulent 

shearing stresses are all zero except for u 1u 2 , and gradients in 

the x3 direction are nonexistent , At the midpoints of the walls 

and are zero and x3 derivatives are zero because of 
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symmet ry , This point, however, is indeed a point, and not an area of 

the flow, consequently, it is difficult in many cases to find and not 

really useful in terms of studying the flow over two or three-

dimensional models in the flow field . In terms of the turbulence , 

the region of flow which may be used as an alternative to the exact 

point of symmetry is that region where 

which occur at approximately x3/d3 = 0 , 3 . 

and are minima, 

In terms of mean quantities two-dimensionality in the x1- x2 
plane requires that au3/ ax3 = 0 , that is, either u3 is constant 

or equal to zero . In a boundary layer, it is interesting to examine 

this term as it enters the momentum integral equation , For a region 

sufficiently removed from the side boundaries and near the floor i the 

momentum equation in the x1 direction can be written as 

1 
p (B - 1) 

with the usual boundary layer approximations , The continuity equation 

is retained in its three - dimensional form as 

An order of magnitude study revealed that 
au 1 

U - was one order 3 ax3 
smaller than either of the remaining convective terms, and that , 1 3 • 
may be neglected for the same reason . 
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Following the same deve l opment as that given by van Karman, 

with the addi t ion of the au3/ ax3 term to the continuity equation, 

the momentum i ntegra l equation for this case is 

d8 
dx1 

+ 

where the 

h 

n 

* 0 

8 

H 

dU h 
00 8 1 au3 cf 

J (H+2 ) - + ax3 
(U

00 
-u 1) dn = T u xl 00 u 2 0 

00 

followi ng definitions have been employed: 

= 

= 

= 

= 

= 

= 

some point such that h > x2 = o 

int egration variable for x2 
1 

0 

.!, pU 2 
2 00 

, skin friction 

1 
u 2 

00 

* 0 
T 

, displacement thickness 

h 
Jr (U 2 -u 2 ) dn , momentum thickness 

00 1 
0 

, shape fac t or . 

(B-3) 

When aU
00

/ ax1 = 0 , or for a zero external pressure gradient , 

equation (B-3) becomes 

d8 
- + dx 1 

1 
u 2 

00 

h 
f (B - 4) 
0 

Von Karman's momentum integral equation for two-dimensional flow and 

zero pressure gradient is in section 4 . 2: 

(B - 5) 
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The obvious difference between equations (B-4) and (B-5) is the term 

K = 1 
u 2 

00 

h 
J (B-6) 
0 

which represents the additional momentum loss in a developing boundary 

layer due to the three-dimensionality of the flow field. Specifically, 

it represents the loss or gain , in momentum in terms of convection of 

momentum in the transverse direction, x3 , In a two-dimensional flow 

au3/ ax3 = 0 , thus, the convection of momentum in the transverse 

direction is either constant or zero, and K does not contribute . 

The value of K has been determined from the secondary flow measure -

ments obtained for U
00 

= 6 .1 meters per second and is plotted in 

Fig . 54 as a function of x3/d3 . The point where K = 0 is x3/d3 = 

0 . 29 which corresponds closely to the point x3/d3 = 0 . 3 where u1u3 , 

is a minimum . 

In section 4.2, values of Cf de termined by several means 

were presented . Cf determined from equation (B-4) is given below 

with the corresponding values at x1 = 12 . 2 m and x3 = 0 for 

U = 6 .1 m/s taken from Table II . 
00 

Eq , (4 - 1) 

Eq . (4-2 ) 

Clauser's method 

Eq . (B-4) 

0 . 00326 

0 . 00257 

0 . 00154 

0.00206 

Thus K a correction term to be added to von Karman's 

momentum integral equation, is seen tq be in the proper direction, 
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but appears to be too large compared to the Ludwieg and Tillmann 

value; and too small compareJ to the value from Clauser's method . 
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APPENDIX C 

TURBULENCE CALCULATIONS 

The equations and operation procedures for single and cross-

wire turbulence measurements have been well documented in the litera-

ture and will not be rigorously presented here . What is presented 

below is included only to indicate th e application of a recent result 

due to Arya and Pl ate (1) whi ch relates the two sensitivities of a 

single inclined wire . 

The mean-square voltage response from a hot wire inclined 

(yawed) in a turbulent flow is 

= = a 2~ 
1 1 + + (C- 1) 

and are usually termed the wire sensitivities and are related 

to the mean velocity of the flow and angl e of inclination by 

clE 
al = au (C- 2) 

1 clE 
a2 = fj a¢ (C- 3) 

where the mean voltage , E is relat ed to U through a ca lculat i on 

curve as in Fig . 20 . When a single inclined wire is used which ro -

tates, a2 can be determined independently of a1 . Tieleman (26) 

and Zoric (31) followed this procedure and gave a discussion of its 

consequences. With a rigid cross wire, the common assumption is that 

the responses of the two inclined wires are identical, and it is 

further assumed commonly that and are equal in magnitude. 
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The first assumption is reasonable if the two wires are matched in 

their characteristics . The second assumption is reasonable provided 

the wires are operated at the correct angle of inclination . 

Arya and Plate (1) have observed that over a significant range 

of yaw angle about 45 degrees, the relation 

= (l-k2) cot <j> 
l+k 2 cot 2<j> 

(C-4) 

is valid. The k appearing in equation (C-4) is the same as given 

in Hinze's (11) form of the effective cooling velocity for hot wires . 

= (C-5) 

Webster (30) and Champagne (3) have studied the variation of 

k with wire sizes and ve locities . Webster did not obtain any con-

sistent variation and suggested an average value of 0 , 2 . Champagne 

observed a definite trend although it was based on less data . For 

the two wires used in this experiment, values of k from Champagne 

were k1 = 0.15 and k2 = 0.14 . 

The equation corresponding to equation (4 - 8) for the second 

wire is 

2 = b 2u2 + blb2ulu2 + b 2 u2 (C-6) e2 1 1 1 2 2 ' 

Given an independent determination of u2 
1 ' equations (C - 1) and 

(C - 6) may be solved to give ulu2 and u2 2 This procedure was 

followed to obtain the components of the stress tensor, except u2u3 

This was computerized and required an analytic form of the wire 

. 
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calibration curve from which uE/aU could be ob t ained. For this 

an equation of the form of "King's Law", 

was fitted to the hot-wire calibration curves by a least squares 

curve fitting process. 
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TABLES 



TABLE I ADD ITIONAL CONTRIBUTIONS 

Measurements Turbulence 

Uuct 
oh L/Oh 

Friction Wall Secondary u2 ~ u2 ul u 2 ulu3 u2u3 R u 1 2 3 Reference Shape e max Isovels Factor Shear Flow 

2 D 3 in . 260 8 . 3 X 10 4 66 fps X X X X X X X 

5 06 Calculated 2.4 X 104 
90 X 104 X X X 

15 X 10: 
-.....J 

10 D 8 in . 40 87 X X I-' 

30 X 10 
[D] 60 5 X 10: 127 X X X X X X X X X 

30 X 10 
12 [ill 5 in. 75 7 .5 X 104 60 X X X X 

[IJJ 2 X 104 

15 D 3 in . 4 8.2 X 104 X X X 

9.2 X 10 X X X 

16 V 6.6 in . 2. 2 X 105 2.6 X X X 

22 [JJ 6 in. 10 . 3 38 . 2 X 104 157 .9 X X X 

39 . 6 12.6 X 104 

28 IT] 8.7 in . 30 7. 2 X 105 40 X X X X X X X X 

Author D 6 ft 6.7 20 X X X X X X X X X X 
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TABLE II BOUNDARY LAYER PARAMETERS 
U = 6 . 1 m/s 

00 

(C xl03)l (Cfx10 3/ * x1 (m) x (cm) 6(cm) 6 (cm) e(cm) H 
3 f 

3 0 2.67 21.6 3 . 68 2 . 74 1.343 
6 . 1 0 2.63 1.68 31.6 4 . 88 3.76 1. 297 
9 . 1 0 2.60 1.62 38 . 5 5.51 4.28 1 . 284 

10. 7 0 2.62 1.54 41.6 5 . 74 4.52 1 . 270 
12.2 0 2.57 1.54 43.8 5.98 4.70 1 . 276 
13.7 0 2.36 1.51 44 . 9 6.62 5 .05 1. 310 

0 3.26 

12 . 2 0 1.65 
12.2 30.5 1.92 
12.2 45.8 1.86 
12 . 2 61.0 1. 80 
12 . 2 76 .3 1. 72 

12.2 84 ,0 1. 72 

12.2 91.5 1. 70 

1 Calculated from equation ( 4-2) 
2 Calculated using Clauser ' s method. 
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TABLE III ORIGINAL DATA 

x3 x2 Uoo u1 Ct u3 
(in.) (in . ) (fps) (fps) (deg) (fps) 

0 1 10 6 . 65 -0 . 20 - 0 . 023 
12 10 9 . 32 -0 . 15 -0 , 024 

1 20 13 . 3 -0.20 -0 . 047 
12 20 19 , 0 0 . 0 o . o 

1 40 26 . 6 - 0 . 20 - 0 .093 
12 40 39 .o - 0 .05 - 0 , 034 

12 1 10 6 . 9 - 0 . 15 - 0 . 018 
2 7 . 5 -0 . 25 - 0 . 033 
9 9 . 2 +0 . 35 0 , 056 

12 9 . 6 - 0 . 35 - 0 . 059 
18 10 . 05 - 0 . 10 - 0 . 017 

1 20 14 . 0 - 0. 70 -0 . 171 
2 15 . 2 - 0 . 60 - 0 . 160 
9 18 . 8 - 0 . 40 - 0 . 132 

12 19 . 6 - 0 . 30 -0 . 102 
18 19 .9 +0 . 05 +0 , 018 

1 40 29 . 0 -0 0 70 - 0 . 354 
2 32 . 4 -0 . 65 - 0 , 366 
9 37 . 8 -0 . 30 - 0 , 196 

12 39 . 4 -0 . 20 - 0 . 138 
18 40 . 0 +0 . 05 +0 .035 
32 20 20 . 05 o . o 0 . 0 

40 39 ,96 0 . 0 o . o 

18 2 10 7 . 5 - 0 . 25 - 0 , 033 
9 9 . 12 +0 . 30 +0 . 048 

1 20 13 .9 - 0 . 60 - 0 . 146 
2 15 . 1 - 0 . 90 - 0 . 141 
9 18 . 8 -0 . 30 - 0 . 098 

1 40 26 . 2 - 0 . 35 - 0 . 160 
2 29 . 4 - 0 . 80 -0 . 412 
9 35 . 7 - 0 . 15 -0 . 093 

32 20 20 . 06 o . o o . o 
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TABLE III ORIGINAL DATA - Continued 

X3 x2 u u1 a u3 (X) 

(in .) (in . ) (fps) (fps) (deg) (fps) 

24 1 10 6 . 79 - 0 .90 - 0 . 107 
2 7 . 43 - 0 . 85 - 0 . llO 
6 8 . 62 +0 . 15 +O . 023 
9 9 , 18 -0 . 80 - 0 . 128 

12 9 , 67 +O . 10 +0 ,017 
18 10 . 0 - 0 . 30 - 0 .052 

1 20 13 , 8 - 1. 10 - 0 . 265 
2 15 , 0 - 1.05 - 0.158 
6 17 .7 0 , 0 0 
9 18 , 8 - 0 .25 - 0 , 082 

12 19 . 6 +0 . 05 +0 . 017 
18 20.0 +0 , 35 +0 , 122 

1 40 27 . 5 -1.10 - 0 . 528 
2 29 , 4 - 1 . 00 ~0 , 511 
6 33 . 8 - 0 . 05 - 0 , 029 
9 36.3 - 0 . 20 - 0 , 127 

12 37 . 8 +0 , 15 +0.099 
18 40 , 0 +0 . 15 +0 , 105 

30 1 10 6 . 68 - 1.30 - 0 . 152 
2 7 . 39 - 0 . 70 - 0 , 090 
3 7 . 81 - 0.30 - 0 . 041 
6 8 . 5 +0 . 15 +0 , 022 
9 8 . 7 - 0 . 40 - 0 . 061 

12 8 , 8 - 0 . 40 - 0 , 063 

1 20 13 . 6 - 1.25 =0 . 29 7 
2 14 .9 - 0 , 70 - 0 . 182 
3 15 , 6 - 0 . 30 - 0 , 081 
6 16 .. 3 +0 . 30 +0 . 085 
9 15 .9 - 0 . 10 - 0 . 028 

12 15 ,9 - 0 . 30 - 0 . 083 

1 40 28 . 0 - 1 . 30 - 0 . 635 
2 30.5 - 0 . 70 - 0 . 372 
3 31.9 -0 . 40 -0 . 223 
6 34.4 +0 . 10 +0 . 060 
9 35 , 3 -0 . 30 ... o . 184 

12 35 . 7 - 0 . 40 - 0 . 249 
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TABLE III ORIGINAL DATA - Continued 

x3 x2 u ul a u3 co 

(in.) (in.) (fps) (fps) (deg) (fps) 

33 1 10 6 .70 -1.05 -0.122 
2 7.39 -0 . 15 -0.019 
3 7.61 -0.05 -0 . 007 
6 8 .22 +0.15 +0 . 022 
9 8.12 -0.40 -0 . 057 

12 7.98 -0.40 - 0 . 056 

1 20 13 .6 -1.15 -0 . 273 
2 14 .9 - 0.15 - 0 . 039 
3 15.6 +0.40 +0 . 109 
6 16 . 35 +0.45 _+0.128 
9 15.9 - 0 . 60 -0.183 

12 15.9 -0 . 45 -0 . 125 

1 40 27.9 -1.05 -0 , 510 
2 30. 2 -0 . 15 - 0 , 079 
3 31. 5 +0 . 05 +0 . 027 
6 32.9 +0.10 +0 ,056 
9 32.4 -0 .90 -0 , 141 

12 32 .9 -0 . 40 - 0 . 230 



TABLE IV 

Probe Zero 
Angle 

1 20. 59° 
1 20.59° 
1 20.59° 
1 121.44° 
1 121. 44° 

2 110 . 73° 
2 110.73° 
2 110. 73° 

1 wire length= 12 .7 mm 
2 wire length= 2.54 mm 
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HOT-WIRE RESOLUTION 

Zero 
Angle Difference 
Repeat 

20.59° 00 

20.59° 00 

20.55° -0 . 04° 
121.44° 00 

121. 45° 0 . 01° 

111.17° 0 . 44° 
108. 72° -2 . 01° 
110 . 20° -0 . 53° 
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TABLE V REFERENCE LINE REPRODUCIBILITY 

Scale Deviation 
Trial Rdg from Mean 

1 18.2 cm 0 
2 18.2 0 
3 18 .2 0 
4 18.3 0.1 cm 
5 18.1 -0.1 cm 

Mean 18 . 2 
6 12 .9 cm -0.1 
7 13 .0 0 
8 13.0 0 
9 12.9 -0. 1 

10 13.0 0 
11 13 . 1 0.1 
12 13 . 0 0 
13 12. 9 -0. 1 
14 13 .1 0 . 1 
15 13 .1 0 . 1 

Mean 13.0 
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TABLE VI SHADOW GRAPH REPRODUCIBILITY 

HP Deviation 
Trial Dial from Mean 

1 305 - 55 
2 395 35 
3 240 =120 
4 310 - 50 
5 340 - 20 
6 330 - 30 
7 480 120 
8 380 20 
9 400 40 

10 440 80 
Mean 362 
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FIGURES 
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Triangular Duct 

Rectangular Duct 

Open Channel 

Fig. 1. Isovels of various cross section, (20), (23) 
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Fig , 8 . Sket ch of rotating hot wire in a three-dimensiona l flow 
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Fig. 9. Probes, Top to bottom, and left to right: 
pitot static tube, single hot wire, long 
single hot wire, x-wire, x-wire probe holder, 
six inch scale, and single wire probe holder 
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Fig. 11. Shadow graph technique 
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Fig. 12. Rotating probe and stand in wind tunnel 
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Fig. 13. Secondary flow instruments , Left to right: 
Tran-sonic pressure meter, rotating hot wire 
control, CSU anemometer, Hewlett Packard 
digital volt meter, CSU voltage source, 
CSU integrator, and Dynamics Corp. amplifier 
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Fig. 15. Turbulence instrumentation, Left to right: 
Tran-sonic pressure meter, dual channel CSU 
anemometer, single channel CSU anemometer, 
B&K true RMS meter, Hewlett Packard digital 
volt meter, and CSU integrator. 
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Fig. 16. Block diagram for turbulence instrumentation 
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