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ABSTRACT 
 
 
 

DEVELOPMENT OF PAPER-BASED ANALYTICAL  

DEVICES FOR PARTICULATE METALS IN WELDING FUME 

 
 
 

Exposure to metal-containing particulate matter places a tremendous burden on human health. 

Studies show that exposures lead to cardiovascular disease, asthma, flu-like illnesses, other 

respiratory disorders, and to increased morbidity. Individuals who work in occupations such as 

metalworking, construction, transportation, and mining are especially susceptible to unsafe 

exposures because of their proximity to the source of particle generation. Despite the risk to worker 

health, relatively few are routinely monitored for their exposure due to the time-intensive and cost-

prohibitive analytical methods currently employed. The current paradigm for chemical speciation 

of workplace pollution is outdated and inefficient.  

 

Paper-based microfluidic devices, a new type of sensor technology, are poised to overcome issues 

associated with chemical analysis of particulate matter, specifically the cost and timeliness of 

exposure assessment. Paper sensors are designed to manipulate microliter liquid volumes and 

because flow is passively driven by capillary action, analysis costs are very low. The objective of 

this work was to develop new technology for rapidly measuring Ni, Cu, Fe, and Cr in welding 

fume using easy-to-use paper devices. This dissertation covers the development of two techniques 

for quantifying metal concentration: spot integration and distance-based detection. Metal 

concentrations as low as 0.02 ppm are reported. A method for controlling reagent deposition as 

well as a new interface for multiplexed detection of metals, is discussed.  
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CHAPTER 1: INTRODUCTION 
 
 
 
Stricter regulations on waste disposal methods and cleaner manufacturing processes have reduced 

the incidence of both acute and chronic discharges of metals to waterways and the release of metals 

in air. Despite these changes, the current paradigms for environmental monitoring have largely 

remained the same for the last several decades. Methods for analyzing metals in environmental 

media (i.e., in water and air) such as inductively coupled plasma optical emission spectrometry 

(ICP-OES) and atomic absorption spectrometry (AAS) boast sub part-per-billion sensitivity, but 

are cost and labor intensive. For example, chemical speciation of five different metals with ICP-

OES can exceed $150 for just one sample. Moreover, most conventional instruments lack the 

portability required for effective hazard communication and remediation at the point-of-need. The 

work presented in this dissertation describes the development of two paper-based microfluidic 

sensors for quantifying metals using two different techniques for analyzing colorimetric reaction 

products: spot integration and distance-based detection. Both methods are ultra-low cost (< $0.20 

per sample), simple, portable, and disposable. Device application was demonstrated for 

quantifying the metal content in welding fumes collected onto air sampling filters. Spot integration 

is performed with a desktop scanner and open-source computer software while distance-based 

detection requires no external instrumentation for analysis of collected samples. 

 

Atmospheric Aerosols 

Microscopic particles floating in air, termed aerosols, come from many sources and are generated 

in several ways: soil, mineral and road dust, incomplete combustion of fossil fuels, salt from ocean 

spray, ice, photochemical conversion processes, and cloud formation.43 Throughout the 
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dissertation, the terms aerosol and airborne PM are used interchangeably. The physical and 

chemical characteristics of aerosols are as diverse as their sources of generation; suspended 

particles have diameters (dp) that vary over six orders of magnitude (10-9-10-4 m), from small 

molecules and viruses at the smallest, to bacteria and pollen at the largest.48 Although generally 

comprised of a mixture of water, salts, metal oxides, silicates, and carbonaceous material, the 

characteristics of aerosols are both a function of the source (natural/anthropogenic), and other 

physical and chemical reactions (e.g. oxidation, condensation, nucleation) that occur once in the 

atmosphere. Globally, airborne PM is generated from natural sources (e.g. sea salt, dust), though 

anthropogenically-derived PM typically dominates in urban and industrialized zones and can be 

further classified as indoor or outdoor.49 Both indoor and outdoor PM are generated from a number 

of sources: domestic or industrial cooking (i.e. combustion), building materials, air conditioning, 

consumer products, and heating, to name a few. Although the relative ratios of indoor/outdoor PM 

constituencies vary, the predominant chemical components are similar. Examples include 

polycyclic aromatic hydrocarbons, organic dusts, tobacco, metals, and sulfates.55, 56 Despite 

epidemiological evidence associating both acute and chronic exposure to ambient PM with adverse 

health outcomes in humans (especially for children and the elderly), fundamental uncertainty still 

persists regarding the physical and chemical properties of particles that govern their effect on 

health. Complex associations between exposure and aerosol composition, coupled with expensive 

analytical methods limit the size and scope of epidemiological (and toxicological) studies, making 

the development (and implementation) of exposure regulations challenging.58  

 

Aerosols present a unique health risk because their size generally dictates whether they are 

inhalable (50% cutoff at dae = 100 µm), and if so, where they ultimately deposit in the body. 
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Assuming a steady inhalation rate of 1 L s-1, approximately 60-90% of particles with aerodynamic 

diameters (dae) between 2.5 and 10 µm (termed coarse PM) deposit via impaction between the 

trachea and terminal bronchus in humans.61 Stopping distances are comparatively large for coarse 

particles, especially for those near airway walls, where air streamlines suddenly change directions 

(i.e. at lung bifurcations). For example, a dae =10 µm particle in the trachea has a stopping distance 

of ~120 mm, much greater than the average diameter of the trachea (~18 mm); it’s no surprise 

then, that most particles as large as 10 µm deposit in the upper lung and head airways. Fine particles 

(dae < 2.5 µm) tend to deposit both in head airway spaces, as well as deeper in the lung (i.e. alveoli). 

The Brownian motion of fine and ultrafine particles (dae < 0.1 µm) leads to an increased likelihood 

they will deposit in small airways by diffusion, where tube diameters are short and air residence 

times are long (~0.5 s). Approximately 10% of ultrafine particles deposit in upper airways as 

well.63 The danger for particles that reach alveolar space is the potential for access to the 

bloodstream via the blood-air exchange barrier, where they can be transported to virtually every 

organ, including the brain.64 Particle shape too, can dictate particle toxicity; tube-like structures 

such as asbestos fibers are an excellent example of shape-induced toxicity.67  

 

The impact of aerosol chemistry on particle toxicity is not well understood.69 Chemical 

components of PM are highly diverse, ranging from neutral and highly soluble substances (NaCl, 

(NH4)2SO4) to sooty, carbonaceous, insoluble species. Toxicological evidence has shown that 

bioavailable metals, for example, influence PM toxicity. The mechanism proposed is that metals 

are redox-active and can catalyze reactions that lead to the production of free radicals, inducing 

cellular damage.69 For example, oil fly ash containing a substantial proportion of transition metals 

(Fe, Cu, Ni, V, Zn) augmented pulmonary hypertension and mortality rates when lavage fluids 
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were analyzed in murine models.70 Lead air quality standards, for example, have been among the 

most stringent of any bioaccessible metal due to its adverse impact on human health (action level 

is 10 µg dL-1).71 In most air pollution/ source apportionment studies, total elemental concentrations 

are determined; however, the ability to identify specific elemental fractions could provide 

information about PM emission sources or their potential bioavailability (if chemical oxidation 

states were determined).72 It is also important to consider (and monitor) the site of particle origin 

because chemical speciation of airborne metal-containing PM is known to vary. For example, one 

particular study of urban and industrial sites in Greece found that although particle mass 

concentrations were similar for both, total metal concentrations (and metal type) were significantly 

different.71 This case study highlighted the necessity for site-to-site chemical monitoring, and that 

emission sources of metal-containing PM are unique to the type, location, and duration of the 

specific technique.  

 

Occupational Exposure to Metals in Particulate Matter  

Mass concentrations of workplace aerosols are typically higher than in ambient air (whether 

indoors or outdoors).73 Many of the processes that generate metal-containing PM are industrial 

combustion and vapor condensation processes; much of this fraction of PM can be categorized as 

fine particulate matter. Because the size distribution of fine PM is < 2.5 µm, it remains airborne 

for long periods of time and can penetrate indoor air environments. Occupations such as 

metalworking, construction, transportation, and mining are at elevated risk because chronic 

inhalation of toxic metal particulates can lead to a number of cardiovascular and respiratory 

diseases, and even early death. The resulting healthcare costs associated with occupational 

respiratory diseases alone exceed $10B each year in the United States and result in approximately 
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425,000 premature deaths annually world-wide.74 Metals present in PM (e.g. Cu, Cr, Ni) are 

identified as contributing factors to daily morbidity and mortality. Studies indicate that 

bioavailable metal particulates mediate cardiopulmonary injury in healthy individuals and induce 

chronic inflammation via cellular oxidative stress.70, 75 Of particular concern is exposure to 

welding fumes, known to contain hazardous levels of particulate metals such as Cr(VI), Ni, Cu, 

Mn, and Pb.76 The aerosol generated from welding contains both gases and fumes consisting of 

metal oxide PM (among others); the specific contents of which are dependent on the welding 

technique, filler wire and flux composition, and the material on which the welding is performed.77-

80 Worldwide, the most common substrate for welding is stainless steel because of its anti-

corrosion, anti-rust, and anti-staining properties.81 Epidemiological studies have linked 

occupational welding exposure to respiratory diseases, lung and bladder cancer, asthma, chronic 

bronchitis, and DNA damage in lymphocytes.82-86 For example, a study performed in 2007 

revealed that worker exposure to Mn within the range 0.01-2.67 mg m-3 could induce subclinical 

effects on the nervous system such as increased emotional irritability, dysmnesia, sleepiness, loss 

of concentration, and limb paresthesia.87, 88 Bridge welders working in confined spaces with mean 

exposures to Mn between 0.11-0.46 mg m-3 showed a high rate (~80%) of sleep disturbance.89 

Welders also have a high incidence rate of cardiovascular mortality, specifically ischemic heart 

disease.90-93 Even with local ventilation and respirator protection, welders can still be exposed to 

potentially harmful levels of metal-containing PM, especially if one considers chronic exposure 

over the course of a working lifetime (~30-40 years).94 
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Techniques for Quantifying Metal Exposures in the Workplace 

In workplace settings the chemical composition of PM is usually characteristic of the processes 

generating the aerosol, a metaphorical “chemical fingerprint” of chemical concentrations. The 

current paradigm for regulatory workplace monitoring by organizations like the U.S. Occupational 

Safety and Health Administration is an air sample taken near the breathing zone of an individual 

over the course of an eight-hour shift. Exposure assessment at the individual level is designed to 

accomplish the following: 1) to maintain regulatory compliance and monitor continued 

performance, 2) to determine if a health risk exists by comparison with established legal limits, 3) 

to ascertain the reason for the health risk, 4) to implement safe practices if necessary, 5) to check 

control systems for quality assurance (e.g. personal protective equipment, HVAC, ventilation), and 

6) to gather exposure data for epidemiological studies.95 Exposure monitoring at the individual 

level is critical for risk assessment because measuring PM from group data (i.e. an area-wide 

measurement), in many cases, improperly depicts personal exposures (and risks).96 Personal 

exposure rates are often distributed log-normally with respect to mass concentration and are known 

to vary in duration and location, even within similar job titles and economic sectors. Sampling 

equipment (e.g. filters, pumps, impaction cassettes) placed on the individual is designed to estimate 

health-relevant exposure during a work shift. For risk evaluation, exposure assessment should be 

aimed at measuring biologically relevant exposures, however the overall cost of analysis – 

especially if one considers repeated measures – often precludes routine monitoring. Chemical 

speciation (and concentration analysis) is performed offsite at a central facility; however, the time 

from sample collection to reporting (i.e. hazard communication) is typically several weeks.  
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Techniques for quantifying toxic metals and metalloids in bulk date back to the 1950’s, when flame 

atomic absorption spectroscopy (FAAS) was modernized.96 Elemental composition in FAAS is 

determined by analyzing the absorption of optical radiation by free metal atoms in gases. Electrons 

are promoted to higher orbitals when excited using a lamp source. Free atoms are produced in 

FAAS when a nebulized spray of metal analytes is passed through a high-temperature (2300-2700 

°C) air/acetylene or nitrous-oxide/acetylene flame; the light source is incident with metal atoms 

passing through the flame. Every metal atom absorbing light emits radiation at a unique 

wavelength characteristic of that element; the radiation flux measured in the presence and absence 

of the sample is then used to determine analyte concentration. Today, the most widely used 

techniques for trace metal determination are electrothermal atomic absorption spectrometry 

(ETAAS), atomic fluorescence spectrometry (AFS), graphite furnace atomic absorption 

spectrometry (GFAAS), X-ray fluorescence spectrometry (XRF), and inductively couple plasma 

– mass spectrometry (ICP-MS). Sample matrix, pre-treatment steps, and analyte concentration in 

the sample are all considerations that can determine which technique to choose; typical detection 

ranges are shown in Figure 1-1. For analysis of metal-containing PM in the workplace, ICP-OES 

is perhaps the most commonly used method (OSHA standard ID-125G). ICP-OES is sensitive and 

capable of high-throughput, multiplexed detection of several transition metals. However the cost 

of ICP analysis ($100-$200 per sample) often precludes routine monitoring of personal 

exposures.97 According to the Department of Labor, in 2012 there were approximately 350,000 

welders, cutters, solderers, and brazers in the U.S.98 The analytical costs (not including personnel 

time and equipment) to assess each welder’s exposure once to only a single metal species would 

exceed $33,000,000 per year. In the developed world, such costs tend to preclude routine exposure 

assessment; in the developing world, these costs render exposure assessments practically 
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impossible. Consequently, there is a  need for rapid, sensitive, and cost-friendly alternatives for 

monitoring workers’ exposure to PM metals that would enable broader screening of occupational 

exposures.99  

 

Paper-Based Microfluidic Devices 

Paper has been used as a substrate material in analytical testing for millenia. As early as 23 to 79 

A.D., paper saturated with extract from gallnuts was used for detecting the presence of ferrous 

sulfate in verdigris, the bluish patina that forms on copper, brass, and bronze surfaces from 

oxidation.100 Some of the earliest scientific reports date back to litmus paper in the early 1800s.101 

As a substrate material, paper (and related porous hydrophilic materials) has many unique 

advantages over traditional substrates (i.e. glass, silicon, and polymers); paper provides power-

free fluid transport via capillary action, has high surface-to-volume ratio for chemical interaction 

and detection, is lightweight (~10 mg cm-2), and also has the capacity for storing reagents in active 

form within the fiber network.102-105 Properties of paper are compared to more traditional 

 

Figure 1-1 | Detection limits for analytical methods commonly used for determination of trace metals. 
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substrates in Table 1-1.105 These benefits culminate in a broad range of applications suitable for  

analysis with paper devices, such as blood glucose monitoring,106 foodborne pathogen testing,107 

and screening for toxic metals in air or water.108, 109 Besides acid/base chemistry, paper has long 

played an important role in the development of early chromatographic and electrophoretic 

Table 1-1 | Properties of cellulosic (paper) substrates compared to glass, silicon, and PDMS. Adapted 
from ref. 15 with permission from Springer. 

Property Material         
  Glass Silicon PDMS Paper Impact 

Flexibility None None Some High 

Multi-layer construction; less 
likely to become damaged 
during transport, handling, 

and repeated use 

Permeability Solid Solid Gas Gas/liquid 

Permeable materials are 
amenable for cell culture, 

multi-layer construction, gas 
sensing applications 

Surface-to-
volume ratio 

Low Low Low High 
Paper provides more surface 
area for chemical reactions 

per unit area/volume 

Fluid control 
(primarily) 

Active Active Active Passive 

Active pumping requires 
external instrumentation. 

Imbibition in paper is 
controlled by capillary action. 

Biocompatibility Yes Yes Yes Yes 
Amenable for biological 

applications 

Optical 
transparency 

Yes No Moderate No 
Not compatible with many 

optical microscopy 
techniques 

Biodegradability No No Limited Yes Recyclable; can incinerate 

Ease of 
fabrication 

Moderate Difficult Moderate Easy 
Commercially available 
resources can be used for 

fabrication 
Fabrication 
throughput 

High High Low High 
Lower cost of fabrication per 

device 

Functionalization Difficult Moderate Moderate Simple 
Ability to change surface 

properties for unique 
chemical applications 

Chemical 
homogeneity 

Yes Yes Yes No 
Changing surface chemistry 
can decrease assay precision 

Material cost Moderate High Moderate Low 
Very low cost per device 

factor 
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separations.110, 111 To control fluid flow during analyte separation experiments, hydrophobic 

materials like paraffin were embedded into porous substrates, a practice which dates back to 

1902.112 One of the earliest reports on the development of a paper-based semi-quantitative “spot 

(or ring) colorimetry” test was in 1937 for estimating nickel and copper concentrations in water.113-

115 Analyte losses from reagent spreading was prevented by the inclusion of a wax barrier to 

confine reagents within a uniform area. Hydrophobic paraffin rings embedded in paper were made 

by applying a heated metal plate (10×5×1.3 cm) containing an array of predrilled holes (of 

appropriate diameter) to the surface of a paraffin slab, transferring molten paraffin to the plate. 

Paraffin coated the plate on all non-drilled surfaces. After transferring paraffin from the plate to 

paper, an array of analyte sensing zones were created and ready for reagent storage. Barrier width 

was determined by filter pore size, contact time, pressure, and temperature of the metal tool, 

variables which are relatively easy to control. Paraffin’s chemical inertness and compatibility with 

cellulosic materials make it an excellent material for preventing cross contamination between 

reagent zones.115-118 Barrier materials comprised of rosin, waxes, cellulose esters, ethyl cellulose, 

fluoropolymers, silicones, and polystyrene have also been proposed.15, 40, 119-121 As Figure 1-2 

demonstrates, the physical footprint of early devices was significantly larger than paper sensors 

today, despite the fact that early µPADs were typically one or two-dimensional and functionally 

less complex.122 Improvements to some of the earliest paper-based devices eventually led to some 

important contributions in medicine, specifically for point-of-need “early diagnosis” detection. 

Seminal work to develop the first paper device for semi-quantitative detection of glucose in urine 

(1956)123 led to modern immunochromatographic test strips (called lateral-flow immunoassays or 

“dipstick” tests) such as the home pregnancy test or glucose monitoring for diabetics.124-126 A 

typical lateral-flow assay strip (or LFA) consists of a sample pad, a reagent pad, and a test 
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“capture” line for sample quantification. Analyte is added to the sample pad and flows along a 

hydrophilic cellulosic membrane, binding to antigen-specific antibodies at the reagent pad, before 

ultimately binding to capture agents (e.g. gold nanoparticles, latex microspheres) that are pre-

patterned on the test line. Analysis is rapid, straightforward, and amenable for measuring a range 

of disease biomarkers.127-129 Although reliable, LFAs are generally limited in their analysis to a 

discreet (i.e. quantized) “yes/no” output. In many circumstances, however, knowing (with 

reasonable uncertainty) how much analyte is present is important, for example, when measuring 

the concentration of polycyclic aromatic hydrocarbons in the atmosphere.130 

 

Material Choice and Fabrication Methods 

In the last several years there has been a shift in the paper sensing community from rudimentary 

design and fabrication concepts to more advanced techniques. In 2007, Martinez et al. reported the 

first microfluidic paper-based analytical device (µPAD) for multiplexed chemical analysis. The 

 

Figure 1-2 | A comparison of a µPADs from the early (A) 20th and (B) 21st centuries. Hash marks in 
the device on the left represent hydrophobic paraffin; open circles represent open hydrophilic pores. 
Reprinted with permission from ref 114. Copyright 2015 American Chemical Society. The sensor on 
the right contains multiple layers embedded with a hydrophobic photoresist; layers are stacked to 
create a 3D µPAD. Black scale bars each represent 1 cm. Reprinted with permission from ref 122. 
Copyright 2015 National Academy of Sciences.  
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breakthrough in their work stemmed from the creation of a multi-branch tree-shaped µPAD where 

three different reagents were spotted for glucose and protein assays; previous demonstrations 

included only single-analyte detection (per sample).131 Although some debate persists as to the 

reason for paper’s increasing popularity as an analytical substrate; the answer might arise from the 

development of new microfabrication technologies, enabling fabrication of new types of 

devices.132 There are a variety of substrate materials available to the user, such as cellulose paper, 

nitrocellulose, glass fiber, and various polyester filters; however, choice is primarily based on 

application and method of fabrication. The majority of the paper community uses cellulosic filter 

paper/membranes, specifically Whatman 1 (~11 µm pore diameter), 4 (~22 µm pore diameter), 

and nitrocellulose (~0.5 µm pore diameter). Whatman filter paper is popular because it is 

affordable (~0.001 cents cm-2), nearly chemically homogeneous with zero additives (≥ 98% α-

cellulose), has a relatively smooth surface (micrometer root mean squared roughness),133 is 

compatible with most solvents, scatters light abundantly (high contrast between paper background 

and colorimetric assays), has good mechanical stiffness, and wicks fluid in a defined manner.28, 

105, 134-140 Filter paper is also an excellent substrate for storing dry reagents during 

shipping/transport because it is less labile in changing environmental conditions. Moreover, 

biomolecules exhibit a high degree of non-specific adsorption towards membranes/filters 

composed of nitrocellulose, which has consequently propelled the use of these membranes for 

immobilization of enzymes,141, 142 proteins,143 DNA,144 and RNA144, 145 in biomedical applications. 

Interestingly, standard photocopy paper – although inexpensive and abundant – has not been well-

utilized in the literature, possibly because liquid penetration (i.e. flow velocity) is extremely slow 

due to small (~100 nm146) pore sizes. Flow velocities in Whatman 1 (~2 mm min-1) and 4 (~3 mm 

min-1) filter paper are moderate to fast, respectively, compared to photocopy paper. Moreover, 
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copy paper typically contains ~10% alkyl ketene dimer, rendering the surface partially 

hydrophobic, which is disadvantageous for many applications requiring moderate to rapid fluid 

wicking.147      

 

There are many fabrication techniques reported in the literature for patterning defined boundaries 

in paper substrates; the most popular are given in Table 1-2. To date, the most widely used 

techniques for creating hydrophobic barriers are those involving wax patterning.103 Whether by 

printing, dipping, or screen-printing, wax-based fabrication methods are amenable for laboratory-

scale µPAD processing. Unlike photolithography – which is a cross-over technique for fabricating 

PDMS microfluidic devices – wax patterning is rapid (results in under 5 min), inexpensive (10x 

cheaper per 100 cm2 than SU-8 patterning)104, requires minimal technical expertise, and can be 

performed outside of a controlled laboratory environment. For these reasons, wax patterning is 

typically better suited for point-of-need applications than other approaches.148 Regardless of the 

specific technique, all wax-based approaches rely on the spread of molten wax to create 3D 

hydrophobic barriers; wax is typically heated above 120 °C for ~60 s to fully penetrate the paper 

substrate (~50-200 µm thick). A disadvantage of this method is that wax spreads laterally (and 

vertically), decreasing channel resolution in the process. Fortunately, wax spreading is predictable. 

As is the case for modeling fluid movement in capillary fibers, Washburn’s equation can be used 

to describe the spreading (�) of molten wax in paper:   

4η
γDcosθ

 =dL/dt      (1.1) 

where the change in penetration distance with time (��/��) of the fluid front is a function of fluid 

surface tension  (�), average pore radius (�), fiber contact angle (ߠ), and viscosity (ߟ).149 In many 

instances, the contact angle between the eluent (H2O) and substrate (cellulose) is approximately 
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Table 1-2 | µPAD fabrication techniques, arranged by method. 

Fabrication 
Technique 

Channel 
Resolution 

(µm) 
Cost Advantages Limitations 

Wax patterning1-7 ~ 500 Low 

High throughput, 
solid ink printers are 

commercially 
available 

Low patterning 
resolution, paper requires 

heating (150 °C), 
incompatible with organic 

solvents 

Inkjet printing8-14 ~ 300 Low 

Versatile, one-step 
reagent and 

hydrophobic barrier 
printing 

Cost can be high 
depending on reagents 

Flexographic 
printing15 

~ 500 Moderate 
High throughput 
(300 m min-1) 

Complex, requires 
specialized equipment, 
multi-step, limited to 

single reagent printing 

Screen printing17, 18 ~ 600-700 Low 
High throughput, 

versatile 

Inter-device 
reproducibility is low, low 

resolution 

Laser printing/ 
cutting22-26 

~ 500 High 

No backing material 
needed, Cuts 

through multiple 
materials 

Very expensive 

Photolithography17, 

27-32 
~ 100-200 High 

High resolution 
(narrow) channels, 
chemical resistivity 

Expensive, requires 
organic solvents, paper 
can change mechanical 

properties 

Paper 
cutting/shaping33-37 

~ 100 Low 
High throughput, No 

chemicals are 
required for printing 

Low mechanical stability, 
rely on solid supports, 

expensive 

Drawing2, 28, 31 Very low Very low 
Simple, compatible 

with a variety of 
substrate materials 

Low resolution, low 
precision 

Dip-coating38, 39 Very low Low 
Rapid, simple, 
homogeneous 

reagent deposition 

Consumes a lot of 
reagent, low precision 

Vapor deposition40-

42 
~ 800 Medium 

One-step process, 
solventless, 
substrate 

independent 

Requires expensive 
deposition masks, 

vacuum, time-intensive, 
low precision 

Stamping44-46 ~ 600 Low 
Rapid, low cost, 

special training not 
required 

Lower resolution than 
other methods, requires 

thick (> 1mm thick 
hydrophobic barriers) 
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zero and can be ignored in equation 1.1; when valid, this assumption describes a substrate as being 

“fully wetted”.150-152 It should also be noted that melting time and the amount of applied heat also 

impact wax viscosity, meaning that final barrier width is also a function of the initial amount of 

wax present and the temperature at which it’s melted. When patterning wax to delineate the borders 

of a hydrophilic channel in a porous material, the inner channel width (��) can be defined as the 

following: 

2LWW pc      (1.2) 

where �� is the printed hydrophobic barrier width and � is any additional distance molten wax 

spreads laterally through the substrate (perpendicular to substrate thickness).28 A couple solutions 

have been proposed in the literature to increase patterning resolution, for example, nitrocellulose 

contains smaller, more uniform, pore sizes for more precise control over the melting process; 

channels as narrow as 300 µm have been fabricated with nitrocellulose.1 Wax spreading can also 

be minimized by applying vacuum to the substrate.9 No matter what technique a researcher or 

manufacturer chooses, consideration should be given to factors like fabrication complexity, 

equipment availability, material costs, solvent/reagent compatibility, and the intended application 

of the analytical test. Some methods however, are far more versatile than others. Recent 

advancements in printing technology have increased the utility of inkjet printing for µPADs, 

beyond the fabrication methods listed in Table 1-2, to now include reagent patterning with high 

spatial resolution.    

 

Reagent Deposition by Inkjet Printing 

Inkjet printing has emerged as a powerful tool for patterning and depositing assay reagents on 

paper substrates. Picoliter-sized droplets create well-defined patterns (µm to cm) on the substrate, 
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and repeated printing cycles of one or more reagents can create layered patterns on paper. 

Furthermore, any commercial desktop printer is capable of printing multiple reagents 

simultaneously from four (magenta/yellow/cyan/black) or more color cartridges. Intense 

commercial interest has essentially led to two main modes of printing: continuous and drop-on-

demand (DOD). There are advantages and limitations to each printing mode (including sub-modes) 

depending on end-user application. In continuous inkjet printing, droplet creation/ejection from a 

nozzle is constant and controlled by a high-pressure pump vibrating a piezoelectric crystal, 

commonly made from lead zirconium titanate. Signals from the printer selectively charge a 

fraction of the droplets, which deflect away from the printer nozzle and recirculate through the 

printer (no waste generated). Uncharged droplets get ejected onto the substrate (to form an 

image).153 Continuous printing is efficient, particularly at high speeds, which is conducive for 

industrial applications requiring large volume printing. For laboratory-scale research and design, 

however, continuous printing systems are not cost effective. In contrast to continuous inkjet 

printing, DOD-mode printers eject reagent droplets only when necessary, are more cost feasible, 

print at higher patterning resolutions, consume less reagent (~ 20 µm droplet diameter), and do not 

require droplets to be charged for printing.154 Only two modes of DOD printing have been used 

for µPAD research to date, thermal and piezoelectric, although thermal printing is seldom used 

because temperatures inside the ink cavity of a thermal-jet printer can reach 300 °C.155 

Biomolecules (e.g. proteins), which are commonly patterned on paper, can denature at much lower 

temperatures (40-80 °C).156, 157 To accommodate the printing of proteins, piezoelectric printers are 

used in which droplets are ejected by a voltage-induced pressure wave inside the ink cavity. Little 

heat is generated in the process, which protects heat-sensitive reagents. To date, most applications 

involving reagent printed materials – where the printed feature of the µPAD is not a hydrophobic 
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barrier – are biomedical;154, 158-161 very few demonstrations have been made of inkjet patterning 

for detecting analytes from environmental sources. Reported assay targets include: metals,162 

volatile organic compounds,163, 164 phenolic compounds,165 volatile food products,166 and 

explosives.167 Although important because they show the broad spectrum of reagents that can be 

deposited via inkjet printing, most of these works fail to showcase a unique advantage that 

automated inkjet patterning has compared with other patterning methods: simultaneous printing of 

multiple reagents. The presence of multiple ink cartridges would theoretically allow a user to 

configure the printer using the color dimension/intensity feature to achieve various outcomes: to 

deposit multiple reagents, to with varying reagent concentration (i.e., color transparency), to print 

a mixture/ratio of reagents from different cartridges, or to print a reagent gradient onto the 

substrate.154 As recently demonstrated, only one example of multiple reagent mixing by printing 

has been shown.168 In their work, Zhang et al. used inkjet printing to optimize the ratio of two 

enzyme combinations (glucose oxidase/horseradish peroxidase and diaphrose/alcohol 

dehydrogenase) to achieve the most effective bienzymatic colorimetric reactions. Printing reduced 

both optimization time and workload compared to standard procedures.  

 

In work for my dissertation, I show for the first time that gradients of colorimetric reagents can be 

printed on paper substrates for improving measurement performance simply by adjusting color 

patterns in graphical software. Creating a gradient of patterned reagents with micrometer 

resolution using other application methods has proved very challenging to date. As shown in 

Figure 1-3, a colorimetric indicator can be deposited on filter paper where the change in indicator 

concentration per unit length (dC/dx) varies according to a user-defined continuous or piece-wise 

function. Small incremental changes in reagent concentration produce more (quantitative) data 
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from an assay compared with a technique like “zone printing”, where reagents are spotted on the 

substrate as zones of homogeneous concentration. In this manner, the gradient elicits more 

information for the user than the zone approach, which essentially compresses information into 

“bins” of data. For biomedical applications, gradient printing also more closely mimics in vivo 

biology, where chemotaxis is often controlled via gradients of signaling molecules. 

 

 

 

Figure 1-3 | Continuous and step-wise functions demonstrate the capacity of inkjet printing for precisely 
depositing reagents on a paper substrate.  Plots depict printed ink intensity along a length of Whatman 
1 filter paper; images show actual printouts in monochrome above each graph. 
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Detectors and Readout 

For paper sensors to have an impact on the future of point-of-need medical or environmental 

diagnostics, data collection (i.e. assay readout), must be simple, inexpensive, and rapid. Early 

LFAs were popular because they provided a quick “yes/no” answer; however, lack of quantitative 

information has limited the reach of LFA technology. Although colorimetry – the most common 

analytical method of contemporary µPADs – is relatively simple, perception of color (i.e. hue) is 

subjective, which can lead to inaccuracies (false positives/ negatives) during analysis. 

Consequently, market demand has increased for measurement strategies that are not only 

inexpensive and portable, but also exhibit high detection sensitivity, throughput, automation, and 

inter-device reproducibility. Devices for detection and analysis that have been reported in the 

literature or in commercial space broadly fit into three categories: digital cameras/smartphones, 

handheld readers, and non-instrumented systems. A visual representation of some available 

technologies that fit into these categories is presented in Figure 1-4.  

 

Bulky, benchtop instrumentation is typically too expensive for application in point-of-need 

settings. For instance, some µPAD technologies still use benchtop potentiostats, which can cost in 

excess of $10,000, with commercially available handheld units costing >$1000. If µPAD 

technology is to have an impact in the medical or environmental community, the cost-structure 

system for detectors must be much lower. To this end, several groups have designed custom 

handheld devices that are inexpensive and user-friendly for a variety of applications. Zhao et al.169 

built a custom low-cost eight-channel potentiostat for amperometric detection of glucose, lactate, 

and uric acid. The authors included a custom holder for a paper sensor with eight individual 

electrochemical wells. Though their design was based on previous work,170 this system was the 
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first of its kind to incorporate the detection of multiple electrochemical assays simultaneously and 

from the same analyte sample. The current sensitivity ranged from 10’s of nA to over 1 mA and 

the total unit cost was ~$90. More recently, the number of channels in a handheld potentiostat was 

increased to 48.171 Other off-the-shelf handheld devices have also been reported for measuring 

water contamination electrochemically,172 or explosives via fluorometry.173   

 

The potential of telemedicine using µPADs was first demonstrated in 2008 for the determination 

of clinically relevant concentrations of glucose and protein in artificial urine.106, 174 Due to their 

market penetration and worldwide ubiquity, smartphones have created new opportunities for 

analysis in resource-limited settings either through on-site processing or remote data transfer to a 

centralized facility. Moreover, increased device data storage capacity enables information to be 

collected on-site and stored for transport to a central location without requiring sample relocation. 

Because modern smartphones possess both a light source (LED flash) and a digital camera for 

detection, they are also amenable for tasks typically performed with more expensive 

spectrophotometers, fluorometers, or silicon photodetectors.175 Camera phones have recently been 

demonstrated for detection of phage and bacterial pathogens,176-180 pharmaceuticals,181, 182 

biomarkers,183-187 explosives,188 and toxic metals.108, 189 Although smartphones are superior to 

flatbed scanners with regards to portability, they suffer from changing ambient light conditions, 

rendering image intensities inconsistent. Recently, several groups addressed this problem by 

developing intensity-correction software for smartphones or by creating devices to physically 

block ambient light during image acquisition. In these examples, the phone’s flash provides a 

(near) constant source of illumination by which to quantify assay results. For example, instead of 

using typical RGB intensity for quantification, Shen et al.190 used chromaticity values to construct 
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Figure 1-4 | Examples of devices and techniques for semi-quantitative to quantitative assay readout. 
Portable, handheld devices (A) Electrochemical biosensor array. Reproduced with permission from ref 
144. Copyright 2013 IOP Publishing. (B) Handheld potentiostat. Reproduced with permission from ref 
170. Copyright 2011 PLOS One. (C) Optical imaging of nanoscale objects with a cellphone. 
Reproduced with permission from ref 179. Copyright 2014 American Chemical Society. (D) An adapter 
on a smartphone measures fluorescence of albumin in urine. Reproduced with permission from ref 184. 
Copyright 2013 Royal Society of Chemistry. (E) Smartphone used to measure 
electrochemiluminescence. Reproduced with permission from ref 188. Copyright (2013), with 
permission from Elsevier. (F) Paper device using ‘time’ as a readout. Reproduced from ref 68 with 
permission from Royal Society of Chemistry. (G) Multiple colorimetric indicators for glucose. 
Reproduced with permission from ref 174 with permission from Elsevier.  (H) Distance-based detection 
of nickel. Reproduced with permission from ref 66. Copyright 2013 with permission from the Royal 
Society of Chemistry. (I) Bar-code device. Reproduced with permission from ref 195. Copyright 2012 
Wiley-VCH Verlag GmbH & Co. KGaA Weinheim. 
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a reference chart with known color spaces to compensate for measurement errors due to ambient 

light. To overcome their ambient light problem, Thom and coworkers191 modified a commercially 

available iPhone 4S case with a polyethylene tube designed to eliminate most incident light and 

ensure the most appropriate focal length for every acquired image. In a similar fashion, the 

Erickson laboratory181, 184 has used a modified attachment to a smartphone that included an internal 

reference to minimize lighting effects for quantifying biomarkers in sweat, saliva, and blood.  

 

Although much work has been done to reduce the cost and increase the portability of external 

readers, another goal (particularly for point-of-need applications) is the development of accurate 

and easy-to-use devices that do not require external instrumentation. One approach for non-

instrumented analysis is use of a visual color intensity comparator integrated with the device. 

Calibration standards can be external (e.g. reference card), or on-device.192, 193 Weaver et al.182 

developed an inexpensive “color tab” test for rapid screening of potentially low-quality 

pharmaceutical drugs. Discreet patches of a colorimetric reagent reacted with a pharmaceutical 

wiped across the device; the intensity of the subsequent reaction (if any) was indicative of a 

counterfeit analyte. Another strategy called “barcode” reading has been developed that breaks the 

continuous flow path into discrete segments; the number of segments that change color are then 

counted to provide an indication of analyte concentration. In this case, the number of segments 

tallied is proportional to analyte concentration. This semi-quantitative approach has gained 

popularity due to its simplicity and applicability to a wide variety of chemistries. Since the first 

reported method for a paper-based digital readout,194 groups have expanded this technique for 

other analytes.45, 195 Quantifying analyte concentration using “time” is another alternative detection 

method where the time taken for signal to develop is the performance metric. Lewis et al.195 
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developed a system for quantifying active enzyme concentrations with high sensitivity using this 

timed readout approach. A control region was implemented to account for temperature, pressure, 

relative humidity, and sample viscosity effects. For example, if the recorded ambient temperature 

during the assay were <15°C, one additional minute was added to the vertical axis of the calibration 

curve to elicit the correct analyte measurement.  

 

For my dissertation, I propose an alternate measurement strategy called distance-based detection 

for quantitative assessment of transition metals. Originally developed in 1985 by Zuk et al.196 for 

measuring drugs in biological fluids, distance-based detection is a quantitative measurement 

technique relies on reading the length of a colored reaction product along a paper channel with the 

unaided eye. Each µPAD contains a sample reservoir and channel patterned with a colorimetric 

indicator specific for an analyte of interest. As analyte flows down the channel, insoluble 

complexes formed between metal and indicator precipitate, generating a colored band with a length 

proportional to analyte mass. Visual quantification is aided by a ruler printed beside each device, 

similar to reading temperature on a thermometer. The advantage this detection strategy has over 

instrumented methods is that it is highly amenable for mass distribution at the point of need. Large 

sample-size testing is more feasible with distance-based quantification methods compared with 

devices requiring instrumentation for analysis.   

 

Determination of Transition Metals with µPADs 

Paper-based approaches for environmental monitoring are attractive because accurate, low-cost 

monitoring is pivotal for environmental applications where routine testing is performed, such as 

for the analysis of river/soil contamination, occupational exposures, or air pollution. As shown in 
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Table 1-3, noted works have been published on detection of metal ions, chemical warfare agents, 

and reactive oxygen species using colorimetric,16, 162, 197-200 electrochemical,59 fluorescent,201 and 

other analytical approaches.202 Samples were sourced from water, soil, and air (i.e. PM, PAHs). 

Colorimetry is easily the most widely used analytical technique for µPADs because in many cases, 

Table 1-3 | Analytical methods for quantifying metals with µPADs. 

Measurement 
Technique 

Method 
Simplicity 

Metal Species LOD 
Multiplexed 
Detection 

Sample Matrix 

Colorimetric 
Easy-

Moderate 
Fe2+, Ni2+, 

Cu2+ 
1-1.5 µg Yes 

medical 
incineration ash16 

    
Fe2+, Ni2+, 
Cu2+, Cr 

0.12-
0.75 µg 

Yes 
road dust, welding 

fumes19-21 

    Cu2+ 
0.06 
ppm 

No 
tap water, mine 

tailings47 

    

Hg2+, Cd2+, 
Pb2+, Ag+, 
Ni2+, Cu2+, 
Zn2+, Co2+ 

10 ppm Yes sewage water50 

    Hg2+ 
0.01 
ppm 

No 
pond and river 

water51, 52 

    As3+ 
1×10-3 
ppm 

No tap water53 

Electrochemical  Moderate Pb2+, Cd2+ 0.25 ng Yes road dust20, 54 

  Au3+ 1 ppm No 
gold-refining 

waste57 

  Pb2+, Zn2+ 
1×10-3 
ppm 

Yes aqueous solution59 

Potentiometric 
Moderate-
Difficult 

Pb2+, Cd2+, Cl- 
~ 1×103 

ppm 
No 

juice, rainfall, 
soil60 

ECL Difficult Pb2+, Hg2+ 
2.1×10-7 

ppm 
Yes lake water62 

Distance (this 
work) 

Easy 
Fe2+, Ni2+, 

Cu2+ 
1-5 µg Yes 

medical 
incineration ash, 

welding fumes65, 66 

Time Easy Hg2+, Pb2+ 
1×10-3 
ppm 

Yes tap water68 
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a simple “yes/no” semi-quantitative result is sufficient for a point-of-need application. For many 

years it was the simplest (and least expensive) analytical method for paper-based detection because 

the only tools required for analysis are for image capture (e.g. scanner, camera-phone) and 

recording image intensity. New methods have been developed recently that challenge the notion 

that external instrumentation is necessary for analysis; methods based on recording the distance of 

a colored reaction with a ruler or by the timing of a colored reaction have lowered the cost of 

analysis and increased device portability.65, 66, 68   

 

In this dissertation, I describe the development of two µPADs for colorimetric and distance-based 

detection of Cu, Ni, Fe, and Cr from welding fumes. The work described in the following chapters 

represents an attempt to address the shortcomings of traditional analytical methods for measuring 

the chemical composition of metals in workplace aerosols, namely, the cost and timeliness of 

exposure assessment. Chapter 2 discusses the creation of a four-arm µPAD that was applied for 

colorimetrically quantifying metals in three different welding techniques, tungsten inert gas, metal 

inert gas, and stick (arc) welding. Filter samples acquired from welders were subjected to acid 

digestion methods outlined by the Occupational Safety and Health Administration and the 

Environmental Protection Agency. In chapters 3 and 4, distance-based detection of metals in 

welding fumes is demonstrated in single and multi-channel device formats. Single channel devices 

were developed to demonstrate the applicability of the method for metals, small molecules, and 

enzymatic assays. A three-channel µPAD is shown in chapter 4 for simultaneously measuring Fe, 

Cu, and Ni from a single drop. Colorimetric reagents were deposited via inkjet printing as 

concentration gradients to offset nonlinear flowrates observed in capillary networks. Important 

variables that contribute to an analytical model describing the distance-based responses of chapters 
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3 and 4 is described in chapter 5. The intent of this work is to establish a theoretical framework for 

future research on the determination of metals with distance-based detection. Finally, the progress 

of the field in paper sensors is detailed in chapter 6, with emphasis on where the future of the 

technology is headed.   
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CHAPTER 2: RAPID DETECTION OF TRANSITION METALS IN WELDING FUMES 

USING PAPER-BASED ANALYTICAL DEVICES 

 
 
Chapter Overview 

The overall goal of the research presented in this dissertation is to reduce the cost and timeliness 

of personal exposure assessment to metal-containing PM in welding fumes. One step towards that 

goal is described in this chapter with the development of a four-zone µPAD for quantifying the 

content of Fe, Ni, Cu, and total Cr in welding fumes. Samples were acquired from various sources, 

analyzed, and results verified independently by ICP-OES. The work was published in The Annals 

of Occupational Hygiene and is reproduced here.1 The color intensities of formation complexes 

between the metal analyte and detection reagents were analyzed by integrating the grayscale color 

intensity of the complex via desktop scanner. This demonstrated that inexpensive analysis of 

metals was feasible using paper-based analytic devices.  

 

Metals in particulate matter (PM) are considered a driving factor for many pathologies. Despite 

the hazards associated with particulate metals, personal exposures for at-risk workers are rarely 

assessed due to the cost and effort associated with monitoring. As a result, routine exposure 

assessments are performed for only a small fraction of the exposed workforce. The objective of 

this research was to evaluate a relatively new technology, microfluidic paper-based analytical 

devices (µPADs), for measuring the metals content in welding fumes in an occupational health 

setting. Fumes from three common welding techniques (shielded metal arc, metal inert gas, and 

tungsten inert gas welding) were sampled in two welding shops. Concentrations of acid extractable 

Fe, Cu, Ni, and Cr were measured and independently verified using inductively coupled - optical 
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emission spectrometry (ICP-OES). Results from the µPAD sensors agreed well with ICP-OES 

analysis; the averages of the two methods agreed within 25% for all samples analyzed. Analytical 

costs for the µPAD technique were approximately 50 times lower than market-rate costs with ICP-

OES. Furthermore, the µPAD method was capable of providing same-day results (as opposed 

several weeks for ICP laboratory analysis). Results of this work suggest that µPAD sensors are a 

viable and inexpensive alternative to traditional analytic methods for transition metals in welding 

fume particulate matter. These sensors have potential to enable substantially higher levels of 

hazard surveillance for a given resource cost, especially in resource-limited environments. 

 

Introduction  

Human exposure to metal-containing particulate matter (PM) in industries such as mining, 

construction, and manufacturing significantly impacts worker health. Occupational respiratory 

diseases cost approximately $10B each year in the United States and result in approximately 

425,000 premature deaths annually world-wide, though it is unknown the direct impact that metal 

exposures have on these figures.2 Known pathologies include pneumoconiosis,3, 4 respiratory 

impairment and cardiovascular disease,5-8 ‘metal fume fever’,9-11 and lung cancer.12-14 Of particular 

concern is exposure to welding fumes, known to contain hazardous levels of particulate metals 

such as hexavalent chromium, nickel, copper, nitrous oxide, manganese, and lead.15 Despite the 

risks posed by these inhalation hazards, welders’ exposure to particulate metals is infrequently 

assessed due to the high cost and effort associated with personal exposure measurement.6 

Regulatory compliance monitoring for welding fumes calls for an 8-hr filter sample (collected 

within the worker’s breathing zone) followed by chemical analysis via flame atomic absorption or 

inductively coupled plasma emission spectrometry.16 Both of these techniques require large and 
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expensive instrumentation and highly trained staff, resulting in analysis costs of over $100 per 

sample (depending on the number of analytes measured). These costs include sample preparation, 

sample analysis, and personnel time. In the developed world, such costs tend to preclude routine 

exposure assessments; in the developing world, these costs render the exposure assessment 

practically impossible. Furthermore, because collected samples must be shipped to a central 

laboratory for analysis, the time from sample collection to reporting (i.e., hazard communication) 

is typically on the order of several weeks. Consequently, there is a need for simple, sensitive, and 

cost-friendly alternatives for monitoring workers’ exposure to PM metals that would enable 

broader screening of occupational exposures.17, 18 This need is particularly evident since such 

exposures tend to be spatiotemporally variable and log-normally distributed.19 

 

There is growing demand for new exposure measurement approaches that are both affordable and 

available for use at the point-of-need. An emerging technology that may address this demand is 

microfluidic paper-based analytical devices (µPADs),20-22 a new technology platform for 

extremely low-cost sensing applications. The µPAD concept is similar to ‘lab-on-a-chip’ 

technology, but in this case the ‘chip’ consists of cellulosic paper. In a typical µPAD, hydrophobic 

barriers, printed onto the paper, define fluidic circuits that control liquid (sample) transport. These 

fluidic circuits are chemically modifiable and are therefore amenable to a variety of physical, 

chemical, and biological measurement applications.23 Relative to traditional chemical assays, 

µPADs require low reagent volumes (typically microliters), are simple to operate, portable, and 

inexpensive.24-27 Even at low production numbers, these devices often cost less than $0.05 to 

produce. As a consequence of using small sample volumes, mass-based detection sensitivities in 



38 

 

paper devices are often comparable to or better than analogous detection moieties in traditional 

assays.28, 29  

 

One of the most common techniques for quantifying analytes on paper is colorimetry. Colorimetric 

sensors are attractive for analytical measurements because they offer a high-contrast signal that is 

easy to quantify with an external optical reader such as a scanner, camera, or smartphone.30-35 

Several reports have focused on the detection of metals in water using nanoparticle aggregation36-

40 and enzymatic action.40 Our group was one of the first to extend colorimetry to paper devices 

for the measurement of Fe, Cu, and Ni in combustion ash samples.41 Functionalized AgNPs have 

been used to measure Cu on paper substrates with a reported linear detection range of 0.5 – 4×10-

6 µg mL-1.40 Lateral flow chromatography systems have also been developed for measuring Cu, 

Cr, and Ni with 0.02, 0.15, and 0.23 µg mL-1 detection sensitivities respectively.36       

 

The objective here is to extend the application of colorimetric µPADs to welding fumes and to the 

detection of total Cr. To demonstrate the utility of our method a paper sensor capable of measuring 

concentrations of acid-soluble Fe, Ni, Cu, and Cr with punches taken from air sampling filters was 

developed. A series of filter samples was taken at several welding facilities and analyzed 

concurrently using the µPAD method and a standard technique: inductively coupled plasma – 

optical emission spectrometry (ICP-OES). Samples were collected from three separate welding 

processes (Tungsten Inert Gas [TIG], Metal Inert Gas [MIG], and Shielded Metal Arc Welding 

[SMAW]) with several common SAE stainless steel (SS) grades (304, 308, 309, and 17-4 PH). 

Analytical costs to quantify concentrations of 28 analytes and samples, combined, were on the 

order of $20 for the µPAD, compared to ~$1000 using laboratory ICP-OES.  



39 

 

Methods 

Chemicals and Materials 

All chemicals were analytical grade and used as received without further purification. Iron(III) 

chloride hexahydrate, nickel(II) sulfate hexahydrate, aluminum(III) sulfate hydrate, copper(II) 

sulfate pentahydrate, phthalic anhydride, dimethylglyoxime (DMG), sodium acetate trihydrate, 

sodium fluoride, cerium (IV) ammonium nitrate, 1,5-diphenylcarbazide (1,5-DPC), and 

polydiallyldimethylammonium chloride (PDDA, medium molecular weight) were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). Tris-hydrochloride and ammonium hydroxide were 

purchased from Mallinckrodt Baker, Inc. (Phillipsburg, NJ, USA). Glacial acetic acid was 

purchased from Fisher Scientific (Pittsburgh, PA, USA). Nitric acid (18.4 M) was purchased from 

EMD Millipore (Billerica, MA, USA). Milli-Q water from a Millipore deionized water generator 

(R ≥ 18.β MΩ cm−1) was used for all experiments. Mixed cellulose ester (MCE) filters were 

purchased from Fisher Scientific Company (Pittsburgh, PA, USA). Whatman No. 1 qualitative-

grade filter paper was purchased from General Electric Company (Schenectady, New York).   

 

Welding Fume Sampling  

Samples were collected from SMAW, MIG, and TIG welding processes. Each welding technique 

used a different stainless steel alloy of varying composition of Cr, Fe, Cu, and Ni (Table 2-1). 

Information from the table comes from the manufacturer. Specifically, 304 SS was used for TIG 

welding, alloys of 304, 309-EL, and 17-4 PH were used for SMAW, and 304, 308, and 17-4 PH 

SS alloys were used for MIG welding. Area samples were taken on multiple days in the vicinity 

of each welding operation. Aerosol was sampled onto 37 mm mixed cellulose ester (MCE) filters  

(0.8 µm pore size) using a size-selective sampler (PM10 PEM, SKC, Fullerton, CA, USA) designed 
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to collect particles less than 10 µm in aerodynamic diameter. The sample air flow rate was 4 L 

min-1 and sampling duration lasted approximately eight hours. In total, 15 filters were collected, 

extracted, and analyzed. Method validation was performed independently by ICP-OES on seven 

10 mm punches taken from 37 mm diameter filters (Technology Laboratories, Fort Collins, CO, 

USA). To compare both µPAD and ICP-OES methods, filter punches were analyzed from the same 

filter. One of our assumptions was that PM was homogeneously distributed across the filter 

because two filter punch samples from the same filter (tested by ICP-OES) differed by less than 

0.02 µg for each metal. For example, the measured levels of Cr, Ni, Fe, and Cu were 0.43 and 

0.42, 0.17 and 0.19, 0.85 and 0.86, and less than 0.05 µg, respectively. Sample preparation and 

ICP-OES analysis followed EPA Methods 3050B and 6010B respectively. Metal content on the 

field blank filters was below the detection limit of the ICP instrument. 

 

µPAD Fabrication and Colorimetric Assay 

Paper devices were designed in CorelDraw and Adobe Illustrator and fabricated as shown in Figure 

2-1a. Briefly, wax barriers were printed onto filter paper using a commercial wax printer (Xerox 

Colorqube 8870); these barriers were then melted into the paper (creating a 3D hydrophobic 

channel) by placing the paper onto a 150°C hotplate for 60 s.42, 43 After cooling, packing tape was 

Table 2-1 | Percent composition of Ni, Cr, Cu, and Fe in the stainless steel alloys (SAE grade) used for 
collecting of welding fumes. Table information was provided from the manufacturer.  

Alloy % 
Nickel 

% 
Chromium 

% 
Copper 

% Iron 

304 8-10.5 18-20 0-1 > 50 
308 10-12 19-21 Trace > 50 

309-EL 12-15 22-24 Trace > 50 
17-4 PH 3-5 15-17.5 3-5 > 50 
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applied to one side of the filter paper to prevent reagents from leaking through the device. A picture 

of the device is provided (Figure 2-1c). Previously described reagent deposition protocols for 

detection of Fe, Ni, and Cu were followed.41 For determination of total acid extractable Cr, 0.5-

µL ceric (IV) ammonium nitrate (0.35 mM) was first added to the pretreatment zone twice, 

followed by 0.5 µL of PDDA (5% w/v) which stabilized the Cr-1,5-DPC reaction product and 

decreased the mobility of the product complex in the detection zone.44 A mixture of 15 mg mL-1 

1,5-DPC and 40 mg mL-1 phthalic anhydride was prepared in acetone and deposited once on the 

detection zone (0.5 µL). The pretreatment and detection zones were dried between additions of 

reagent. In the presence of Cr (VI), the colorimetric reagent 1,5-DPC oxidizes to form 

diphenylcarbazone (DPCO); this compound then reacts with trivalent Cr to produce an intensely 

purple-hued complex, which easily discernable from the paper background. (Figure 2-1b).45, 46    

 

Filter Extraction and µPAD Analysis 

Following sample collection, 10 mm punches were taken from each filter and subjected to 

microwave-assisted acid digestion (Figure 2-2). Wetting and extraction efficiency was enhanced 

by pipetting 20 µL of surfactant (SDS, 5 mM) onto each punch followed by air drying prior to 

sample digestion. To digest the metals in the welding fume, 5 µL of concentrated HNO3/SDS (5 

mM) was added to the punch along with 30 µL deionized water. Each punch was placed in a 

microwave (1100 W) for 15 s. A second water/SDS (5 mM) mixture (30 µL) was again added to 

the punch (to keep the filter wet), followed by another 15 s in the microwave; this 

wetting/microwave step was repeated twice. After digestion, the filter punch was neutralized by 

adding 10 µL of sodium bicarbonate (0.5 M, pH 9.5), dried, and placed on the sample zone of the 

µPAD. For each test, a PDMS lid, designed to reduce eluent evaporation and to distribute pressure 
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evenly across the paper surface, was placed on top of filter-punch/µPAD. The lid also contained 

openings above the sample (3 mm diameter) and detection (5 mm diameter) zones for 

solvent/buffer addition. Acetate buffer (40 µL, 0.1 M, pH 4.5) was next added to the sample zone 

and a 300 g weight was placed on the PDMS lid to help stabilize flow across the device. Metal 

detection was accomplished in approximately 20 minutes after the eluent had completely dried. 

Devices were then analyzed using a common flatbed scanner. 

 
 

Figure 2-1 | Schematic showing specific zones within a µPAD. (a) A filter punch is placed on the 
sample zone where metals are eluted off the filter, onto the sample zone, and then outwards through the 
pretreatment and detection zones (red arrows). Reagents deposited in the pretreatment zone control 
solution pH and complex interferences that may be present in the sample. Colorimetric reagents in the 
detection zone complex with each metal analyte. The filter and device can be thrown away after use. 
(b)Image of actual device used for the detection of total acid extractable Cr. (c) Two µPADs are shown 
next to a U.S. penny for size comparison. 
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Image Processing 

For quantitation, devices were scanned using a desktop flatbed scanner (XEROX DocuMate 3220), 

providing a high resolution, well-focused image. This detection method was chosen because office 

scanners are available worldwide and because scanned images are typically unaffected by external 

lighting conditions. A color thresholding window was applied to each image using Image J 

software47 to remove background interferences from the paper. Wax backgrounds were chosen to 

 
 
Figure 2-2 | Schematic demonstrating steps to measure particulate metals. A 10 mm filter punch is 
subjected to microwave acid digestion, neutralized, and water is used to elute metals from the filter 
punch outward to detection zones at the periphery. µPAD dimensions are approximately 2.7 x 2.7 cm. 
A PDMS cover is used to control addition of eluent and to displace liquid evenly across the device. In 
the schematic, Mn+ refers to metals in an oxidized state from M, a lower state of oxidation. 
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be the complementary color of the hue of the analyte complex being measured. A complementary 

colored background was easiest to remove using the thresholding window. Image intensity units 

selected for the thresholding window for each metal were: Fe (18-230), Ni (10-210), Cu (35-225), 

and Cr (0-180). Pure white and black backgrounds were considered 255 and 0 pixel intensity, 

respectively. After thresholding, images were inverted and the color intensity at each detection 

zone was measured as the arithmetic mean of pixel intensity. Measurements from all four detection 

zones were then averaged to yield a single result for each metal of interest. The process used for 

image analysis is detailed in Appendix 1. 

 

Data Analysis 

Outliers were discarded when identified using Grubb’s test for outliers.48 Assumptions of 

normality and unequal variance were verified using chi-squared and F distribution tests. Minimum 

sample sizes for establishing calibration curves were determined using a power analysis (1-β ≥ 

0.75, ɑ = 0.05, using G*Power v3.1.9.β software). Weighted linear regression was used to fit 

calibration curve data (N ≥  4). Deming regression was used to account for error for both µPAD 

and ICP-OES detection methods; a software add-on package was installed for fitting the data 

(Excel 2010). Three filter punch samples were analyzed when comparing both methods.   

 

Results 

Metal Determination Using µPADs 

Calibration curves and analytic figures of merit were generated for each metal of interest. Iron was 

measured by the intensity of the reddish ferroin complex [Fe(phen)3]2+ after complexation with 

1,10-phenanthroline.49 The detection limit for Fe was 1.1 µg with a linear range between 1.1 – 10 
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µg (Figure 2-3a) with a relative standard deviation of 7.7% (number of samples N ≥ 4). Above 10 

µg Fe, the color signal begins to saturate and a detection threshold is reached around 15 µg. Further 

increases in linear range could be achieved using different sized detection zones but this step was 

not required here. The range of measurement for µPAD-based quantification of Fe is 7.8 - 107 µg 

m-3 as a time weighted average (TWA) air concentration (based on a 4 L min-1 sample collected 

over 8 hours). We also tested the inter-device variability of our method with Fe and Ni as the 

analyte (Figure 2-4). Over the course of nine days, calibration curves were generated across the 

 
 
Figure 2-3 | Typical response curves obtained for the measurement of acid extractable (a) iron, (b) 
nickel, (c) chromium, and (d) copper.  The linear response generated for each metal was 1.1-10 µg Fe, 
1-10 µg Ni, 0.15-6 µg Cr, and 1.5-8 µg Cu. µPAD error bars are based on measurements between 
samples (n ≥ 4). Colorimetric intensity was determined using a desktop scanner. Raw samples images 
for each metal are included to the right of each calibration graph.     
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working range of the assay. Reagents were made fresh each time. For Fe and Ni, the average 

difference in the slope for all linear regressed fits was 4.8 ± 4.4 % and 9.7 ± 5.2 % respectively. 

The average difference in measured intensity per mass of metal for Fe and Ni was 5.6 ± 5.7 and 

1.5 ± 0.59 respectively.      

 

Nickel was measured by recording the intensity of the magenta-colored complex formed by 

reaction with DMG (Figure 2-3b).50 Acetic acid and NaF were added to the pretreatment zone as 

masking agents for Fe, Cu, and Co; as a result, these metals are sequestered upstream of the Ni 

detection zone. Analyte intensity was log linear with respect to Ni mass with a dynamic range of 

1.1 – 9.0 µg (7.8 – 64.2 µg m-3 TWA) and a relative standard deviation of 17.9% (N = 4). There 

 
 
Figure 2-4 | Inter-device variability for Fe (top) and Ni (bottom) detection over three to four weeks. 
Intensity values are background subtracted. For Fe and Ni, the average difference in the slope for all 
linear regressed fits was 4.8 ± 4.4 % and 9.7 ± 5.2 % respectively. The average difference in measured 
intensity per mass of metal for Fe and Ni was 5.6 ± 5.7 and 1.5 ± 0.59 respectively.  
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was no discernible color produced when a single filter punch was analyzed, so two punches were 

stacked, placed in the sample zone of the device and analyzed (Table 2-2). While this method 

decreases analytical precision somewhat, the inter-device relative standard deviation remains less 

than 20%. The largest detectable mass prior to color intensity saturation was 20 µg, however this 

upper limit was outside the dynamic linear range of the test. 

 

Total, acid-extractable Cr was measured using 1,5-DPC as the detection reagent (Figure 2-3c).51 

The measured intensity was linear with respect to Cr mass with a range between 0.37 and 6 µg and 

a relative standard deviation of 8.2% among repeated measurements. Three filter punches were 

stacked and analyzed simultaneously for one of the SMAW samples (Table 2-2), but only one 

punch was used for each of the other two welding fume samples for which Cr was measured. This 

method provided quantitative measurements of Cr air concentrations (based on an 8-hr TWA at a 

Table 2-2 | Chemical validation by ICP-OES compared to µPAD measured metal content for each 10 
mm filter punch. Particulate metal samples from three different welding processes (TIG, SMAW, and 
MIG) were collected and evaluated. Cu was not detected in any sample with either the µPAD or the 
ICP instrument (0.05 µg limit of detection). The content of all four transition metals of a filter blank 
was below ICP detection limits.        
 
 

Metal Welding 
Type 

ICP-OES ± SD 
(µg) 

µPAD ± SD 
(µg) 

Recovery 
% 

Relative Standard 
DeviationµPAD % 

Fe 
SMAW 9.52 ± 1.43 9.45 ± 1.00 99.3 10.6 

MIG 2.77 ± 0.42 2.25 ± 0.07 81.2 3.15 
TIG 1.55 ± 0.23 1.21 ± 0.11 78.1 9.42 

Ni MIGc 1.53 ± 0.23 1.50 ± 0.39 98.0 25.7 

Cr 
SMAW 1b 2.01 ± 0.30 1.81 ± 0.44 90.0 24.4 

SMAW 2 0.86 ± 0.13 0.81 ± 0.35 94.0 43.8 
MIG 0.36 ± 0.05 0.41 ± 0.06 115.0 13.8 

Cu   < 0.05 Too low - - 
 
b Three filter punches used for analysis   
c Two filter punches used for analysis   
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4 L min-1 sample flow) in the range of 2.6 – 42.8 µg m-3. The detection limit was almost an order 

of magnitude lower for Cr than for Fe, due in part to the larger molar absorptivity of the Cr-1,5-

DPC product (4.6x104 L mol-1 cm-1) compared to Fe-1,10-Phen (1.1x104 L mol-1 cm-1).52, 53  

 

For the detection of copper, bathocuproine was used to produce an orange-brown complex with 

Cu2+ (Figure 2-3d).41, 54, 55 We were able to detect Cu reproducibly at masses as low as 1.5 µg. The 

dynamic range for analyte measurement as a TWA is 10.7 – 121.2 µg m-3. The PEL for Cu 

exposure is 100 µg m-3, which is within the dynamic range of the test. However, Cu was not 

detected on any field samples by either the ICP-OES or paper-based methods. The PAD sensors 

are stable when stored (in the dark and at 25°C) for 7 – 30 days, depending on which reagents are 

added to the PAD. The PADs for detection of Cr can be stored and used for up to 30 days, whereas 

the PADs for Cu can be stored for up to seven days without significant loss of functionality.56 

 

Method Validation 

Filter samples were collected from three SS welding processes (TIG, MIG, and SMAW) using 

three of the most commonly used SS alloys (304, 309, and 17-4 PH) in the welding industry. Levels 

of Fe, Ni, Cu, and total (acid extractable) Cr were then quantified using both µPAD and ICP-OES 

methods. In total, 28 analytes were measured from seven filter punches. Results of these tests are 

presented in Table 2-2 and shown in a 1:1 plot in Figure 2-5. For all seven punches analyzed, the 

average metal mass determined by µPAD detection was within 25% of the ICP-OES-determined 

average. According to the National Institute for Safety and Health handbook of analytical methods, 

a viable method for determining concentrations of airborne metals must have over 75% accuracy 

for 95% of samples measured, for which the paper sensing method is in compliance.57 Detectable 
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levels of Cu were not seen using either method, indicating that Cu levels were below the detection 

limit of the ICP instrument (0.4 µg L-1). This result was not surprising because Cu is only present 

in significant quantity in few SS alloys and as a result, personal exposure to Cu is not considered 

a primary danger to welders.     

 

 
 
Figure 2-5 | (a) Paper-based measurement of Fe, Ni, and Cr compared with independent validation by 
ICP-OES. Cu was present below the detection limit of both measurement methods and was thus not 
presented. (b) An expanded view of the graph above shows that on small a smaller mass scale, method 
correlation is slightly worse (R2 ~ 0.98), however this value is still within acceptable limits according 
to the NIOSH manual of analytical methods.  
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Discussion 

This is the first reported method, to our knowledge, for speciating metal aerosols quickly and at 

low-cost. Similar to gas detector tubes, our method requires little lab turnaround time, is simple to 

operate, and was developed specifically to make exposure assessment quicker, easier, and cost 

effective. The dynamic range of our screening method (two orders of magnitude) does not yet 

match traditional instrumentation such as ICP, however there remains great potential for µPAD 

techniques to offer rapid, on-site analysis (similar to gas detection tubes) enabling more frequent 

and thorough monitoring of occupational environments.    

   

Currently, the cost and time associated with occupational exposure assessment represent a 

significant impediment towards adequate hazard surveillance. According to the Department of 

Labor, in 2012 there were approximately 329,710 welders, cutters, solderers, and brazers in the 

U.S.58 The analytical costs (not including personnel time and equipment) to assess each 

individual’s exposure just once and to a single metal species would exceed $33,000,000 per year. 

In contrast, the µPAD method described here has the potential to reduce analytical costs by a factor 

of 50. This method is also amenable for rapid, on-site detection immediately following sample 

collection. Results presented here are encouraging, from the standpoints of detection sensitivity 

and method repeatability. 

 

The linear detection range for Fe is sufficient for occupational exposure assessment, given that the 

personal exposure limit (PEL) stipulated by the OSHA is 10,000 µg m-3 for Fe. Because each test 

uses a single 10 mm filter punch, several assays can be performed from a single 37 mm MCE filter 

should it be necessary to re-evaluate filter samples (or send samples to a lab for independent 
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validation). We were not able to assess method accuracy for Cu, since all samples were below the 

detection limit. For Fe, Ni, and Cu, the relationship between colorimetric intensity and analyte 

mass is presented as log-linear due to the characteristics of color saturation on paper. It is important 

to note that the dynamic ranges reported in Figure 2-3 do not represent the entire dynamic range 

of the method, but only the range necessary for the processed samples.   

 

The dynamic range of the µPAD method (for all four analytes) reported here is constrained by 

molar absorptivity of the colorimetric reagent (lower end) and signal saturation (upper end), 

highlighting a limitation of colorimetric sensing on paper. When the paper surface becomes 

saturated with analyte (as is the case in the detection zones), the resulting intensity reaches a 

threshold limit. Although the detection limits reported here are adequate for monitoring personal 

exposure at levels below the OSHA regulated limits, a larger dynamic detection range may be 

desired, especially for short-term sampling. The upper end of the dynamic range may be extended 

by increasing the size of the detection zone; larger paper surface area equates to slower surface 

saturation (more area for color development). In addition, multiple punches may be analyzed 

simultaneously (i.e., stacked onto the µPAD) to extend the detection limit to lower masses.56 Yet 

another option for improving device sensitivity is to design a µPAD with multiple detection zones 

of varying size.    

 

Although we report total Cr mass here, the 1,5-DPC reagent is specific to hexavalent chromium 

(Cr-VI) and thus, future application of this technology could assess exposures to the more toxic 

Cr-VI. Unfortunately, the ICP validation method we chose could not speciate between different 

Cr oxidation states. To measure Cr(VI) via µPAD, the same protocol could be followed, but 
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tetravalent cerium (Ce(IV)) could be excluded from the pretreatment zone. Tetravalent cerium 

oxidizes soluble Cr(III) to Cr(VI) for complexation with 1,5-DPC, and thus, in the absence of 

Ce(IV), only Cr(VI) from the original sample is measured.51 As a result, this method shows 

promise for measurement of total soluble Cr or soluble Cr(VI).  Future work will investigate Cr 

speciation using µPADs.  

 

Several interfering metals present in welding fumes have the ability to complex with the 

chromophores in the detection zones. In previous work, we discussed our approach to ‘masking’ 

these interferences on paper using pre-treatment zones.41 For Cr VI, we investigated potential 

interferences from Mg, Mn, Zn, Al, Ba, V, Co, Cu, Fe, and Ni, and found that there was no 

significant effect for determination of Cr VI when other metals were present in metal:Cr VI ratios 

less than 4:1.56 This concentration ratio is reasonable for welding fume because Fe is usually the 

largest constituent in most welding fumes and is almost never present at four times the 

concentration of Cr, which typically represents 15-22% of welded metals. Examination of the 1:1 

plot in Figure 2-5 indicates that interferences from other metals presented only a minor influence 

for analyte detection on paper, if at all.        

 

Conclusions 

The µPAD presented here offers a much simpler and less expensive alternative for measuring 

human exposure to toxic metals than current methods. Colorimetric detection provides a 

convenient, portable, and rapid way to quantify exposure at the point of need, whereas current 

methods require more expensive and lengthy, offsite analyses. This µPAD sensor enables sensitive 

determination of Fe, Cu, Ni, and Cr for ~50 times less cost than ICP-based methods. Consequently, 
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µPADs show great potential as an enabling technology for low-cost, high throughput sensing. 

Future work will focus on method modifications to improve sensitivity, quantitative range, and 

functionality, in addition to extending this method to other species. Ultimately, paper-based 

sensors may enable more comprehensive hazard recognition and surveillance worldwide. This 

technology appears well suited for resource limited environments, where improvements in 

workplace safety can be challenging.  However, several obstacles must be overcome before 

exposure assessment costs are low enough for more widespread sampling and analysis; for 

example, the costs associated with personal sampling pumps and size-selective inlets are still 

relatively high. Additionally, sample preparation included microwave-assisted acid digestion 

which, in its current state of development, is not field-ready. Future improvements must be made 

to control liquid handling of strong bases and acids such that a minimally trained individual in the 

field can perform all sample preparation processes without undue risk to themselves. The vision 

for the future of µPAD-based assessment of airborne metals is that field analysis of metal analytes 

on filters could be performed by industrial hygienists having little technical training in chemistry 

or microfluidic fields.    

 

Closing Comments 

Further efforts were made after the completion of this work on the development of detection 

chemistry for manganese (Mn), a metal toxic in high doses, commonly found both in aquatic and 

occupational environments.59 Welding is a recognized source of exposure to Mn. Although Mn is 

an essential trace metal, elevated concentrations (> 5 mg m-3) of Mn are associated with 

neurotoxicity and diseases with Parkinson’s-like symptoms.60 Even low exposure levels (< 0.5 mg 

m-3) have been linked with some systematic neurological changes in individuals like mood swings, 
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short term memory loss, and lower hand-eye coordination/ reaction time. Establishing a causative 

link between Mn exposure and associated health effects has proven difficult because resource and 

fiscal costs associated with workplace sampling are simply too high for large-scale studies. For 

this work, spot tests on paper were developed for measuring soluble Mn in aqueous media using 

1-(2-pyridylazo)-2-napthol (PAN), a colorimetric reagent known to chelate Co, Cu, Pd, V, U, and 

Mn (Figure 2-6).61 With this method, as little as 5 µg Mn was detectable via the desktop scanner. 

      

  

 
 
Figure 2-6 | The complex between PAN and Mn produces a pinkish-red precipitate that is readily 
detectable at single microgram masses. Detection is aided by a large peak absorbance (ɛ = 4.4×104 L 
mol-1 cm-1) of the colored complex.   
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CHAPTER 3: SIMPLE, DISTANCE-BASED MEASUREMENT 

FOR PAPER ANALYTICAL DEVICES 

 

Chapter Overview 

The paper-based device described in Chapter 2 required external equipment (e.g. scanner, 

computer, camera) for quantitative analysis of metals, adding cost, complexity, and inhibiting 

sensor portability. Furthermore, intensity-based measurements were limited for even semi-

quantitative detection (in the absence of optical instrumentation) because color hue was interpreted 

differently from person-to-person. Here, a new method for quantitative measurement of metals 

(and other analytes) using paper-based sensors is described wherein analysis is performed based 

on visual determination of color distance. Contrary to other visual techniques based on metal-

ligand complex color changes, distance-based detection is open to less interpretation and is 

applicable to a wide range of analytes, both organic and inorganic. The work described in this 

chapter was published in Lab on a Chip and is reproduced here with minor modifications and 

updates.1 The results presented in this chapter were developed with Wijitar Dungchai, a visiting 

scholar in the Henry laboratory. I developed the methods for measuring nickel and assisted Wijitar 

with method development for measuring glucose and reduced glutathione.  

 

Paper-based analytical devices (PADs) represent a growing class of elegant, yet inexpensive 

chemical sensor technologies designed for point-of-need applications. Most PADs, however, still 

utilize some form of instrumentation such as a camera for quantitative detection. We describe here 

a simple technique to render PAD measurements more quantitative and straightforward using the 

distance of color development as a detection motif. The so-called distance-based detection enables 
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PAD chemistries that are more portable and less resource intensive as compared to classical 

approaches that rely on the use of peripheral equipment for quantitative measurement.  We 

demonstrate the utility and broad applicability of this technique with measurements of glucose, 

nickel, and glutathione using three different detection chemistries: enzymatic reactions, metal 

complexation, and nanoparticle aggregation, respectively.  

 

Introduction 

Methods to measure chemical composition, a fundamental need in virtually all science and 

engineering disciplines, have undergone rapid technological development in recent years. For 

example, single gene analyses that once took days to complete can now be conducted in minutes 

using instruments that quantify thousands of genes simultaneously. Most technological 

advancements in the field of measurement science focus on increasing sample throughput, and/or 

reducing sample detection limit.2-8 Although such technological advancements have enhanced our 

understanding of chemistry and biology, they are often limited to laboratory use by highly trained 

scientists. Consequently, there is a growing recognition of the need to augment contemporary 

analytical tools with low-cost methods designed for point-of-need applications.9-12  

 

Point-of-need measurement technologies are often simple and inexpensive but sacrifice detection 

limit and operating range for sensitivity, specificity, and speed.13-17  Point-of-need technologies 

are also attractive because they are low cost and require minimal user training. Such technologies 

can have great impact on science and also in society. Examples include litmus paper and the home 

pregnancy test, both of which have diffused far into everyday societal contexts.  Common to each 

of these point-of-need devices is their reliance on simple capillary-based flow for the analytics. 
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Paper-based analytical devices (PADs), first introduced by the Whitesides group in 2007, are a 

type of point-of-need technology that uses porous cellulose (i.e., common filter paper) to store 

reagents and the addition of water to generate flow via capillary action.18 Hydrophobic materials 

printed onto the paper define circuits that control flow path.17, 19-22  Unlike traditional analytical 

techniques making use of paper as a substrate, the use of patterning in these devices increases the 

overall functionality. To conduct chemical analysis, colorimetric reagents are added to specific 

zones within the paper, with analyte detection and quantification carried out by changes in color 

hue and/or intensity.17 Although straightforward, this detection method has limitations, including 

user variability when distinguishing changes in reagent hue and intensity.23-27 Consequently, even 

with PADs, precise and accurate quantification can require the use of peripheral technologies such 

as digital scanners, cameras, or other optical techniques.17, 27, 28 Instrumented techniques, such as 

electrochemistry, can also help improve PAD performance.29-31 Ladder-based barcode assays have 

also been developed which reduce the requirement for color differentiation by the user.32-35  

 

Presented here is a simplified technique for quantitative PAD detection with broad chemical 

applicability, referred to as distance-based detection or chemometer. In this approach, colorimetric 

reagents, designed to precipitate or aggregate on reaction with the analyte, are deposited along the 

capillary flow path. Consequently, as flowing analyte reacts with reagent, color develops along the 

flow line until all of the analyte is consumed. Quantification is achieved by measuring color length, 

thus eliminating the need to differentiate hues and intensities by the user (as is typical with existing 

PAD devices). Measuring length instead of color intensity produces fewer user errors from device 

to device and renders the analytical measurement largely independent of the operator.  
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Distance-based detection on paper has been demonstrated previously. Zuk et al. quantified 

theophylline levels in whole blood and serum by distance-based detection using antibody-activated 

chromatography paper.36, 37 Since then, few applications have been reported using this detection 

motif.38, 39 In 1990, Allen and co-workers developed a similar enzyme-based method for measuring 

cholesterol levels on paper.40 Chatterjee et al. developed a PDMS microfluidic device using biotin-

modified channels and flow distance as the detection motif for fluorescently labelled streptavidin.28  

A complimentary strategy was recently demonstrated by Lewis et al. for point-of-care (POC) 

paper-based detection using individual strips of paper that turn color in response to the presence 

of an analyte. Quantification is determined by counting the number of strips that turn color.41 

 

The method described here extends distance-based detection on paper beyond the use of 

immobilized enzymes and antibodies. The technique is simplified and broadened in scope, 

requiring fewer steps to complete the analysis and can be applied to a broader class of analytes. In 

addition, device fabrication with via wax printing (vs. paper strips) is amenable to multiplexing. 

The sensor presented here couples the cost effectiveness and simplicity of printed hydrophobic 

barriers, which scales well for mass fabrication. This form of distance-based PAD detection can 

be applied to analytes beyond the biotinylation and immunoassays described previously. 

 

In this work, non-instrumented analysis is demonstrated using distance-based detection of a broad 

range of analytes using three different detection motifs: nanoparticle aggregation, metal 

complexation, and enzymatic activity. To demonstrate the utility of the method, assays for 

detection of nickel, reduced glutathione (GSH), and glucose were developed. These three analytes 

represent compounds found in environmental (Ni) and biological (GSH, glucose) samples. Chronic 
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or even acute exposure to Ni is associated with a number of toxic effects.42-45 Glutathione is an 

endogenous marker of oxidative stress and can impart useful information about the health of an 

individual.46-50 Glucose monitoring is essential for controlling blood sugar levels in diabetic 

patients. Analyte measurements were accurate and precise, with detection sensitivities for Ni, 

GSH, and glucose of 0.7 µg m-3, 0.12 nmol, and 11 mg dL-1 respectively. Once developed, the 

distance-based PADs were used to quantify each analyte in a relevant biological (serum) or 

environmental (incineration ash) sample. We found no significant difference between values 

measured using device and known levels demonstrating the applicability of this method to real-

world samples. 

 

Experimental Methods 

Materials and Equipment 

Glutathione (reduced form), glutathione disulfide, cysteine, cysteine, and homocysteine, 

dimethylglyoxime (DMG, 50 mM), sodium acetate trihydrate, and sodium fluoride (0.5 M), D-

(+)-glucose, glucose oxidase (GOx, from Aspergillus niger, 5 U mg-1) and peroxidase Type I 

(HRP, from Horseradish, 100 U/mg) were purchased from Sigma-Aldrich (St. Louis, MO). The 

silver nanoparticle solution (AgNPs) was obtained from the Sensor Research Unit at the 

Department of Chemistry, Chulalongkorn University, Thailand. Tris-hydrochloride and 

ammonium hydroxide were purchased from Mallinckrodt Baker, Inc. (Phillipsburg, NJ).  Glacial 

acetic acid and potassium phosphate were purchased from Fisher Scientific (Pittsburgh, PA). Nitric 

acid (18.4 M) was purchased from EMD Millipore (Billerica, MA, USA). The 3, 3’-

diaminobenzidine (DAB) in peroxidase substrate kit was obtained from Vector Laboratories, Inc. 

(Burlingame, CA). All chemicals were used as received without further purification. An 
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industrial incineration ash sample (RTC-CRM012-100) certified for heavy metals content was 

obtained from LGC Standards (Teddington, UK). Whatman No. 1 qualitative-grade filter paper 

was purchased from General Electric Company (Schenectady, New York). CorelDraw and Adobe 

Illustrator software were used to design the hydrophobic wax barrier for all three assay types. 

Hydrophobic wax barriers were printed on filter paper using a commercial wax printer (Xerox 

Colorqube 8870). 

 

Device Operation 

The operational concept is shown in Figure 3-1 along with three detection chemistries selected to 

demonstrate application pathways. The microfluidic flow circuit, which closely resembles a 

thermometer, was designed using graphics software and printed onto cellulosic filter paper using 

wax ink. A circular reservoir at the bottom accommodates sample addition; filter paper in the 

reservoir may be retained (e.g., to hold reagents for sample pre-treatment) or removed to facilitate 

sample transfer into the detection zone. Colorimetric detection reagents were deposited along the 

flow channel by spray application or pipetting. Spray application used a nebulizer to deposit 

reagent droplets uniformly along the channel. This process was fast but inefficient, as significant 

amounts of reagent were deposited onto the surrounding paper (outside the flow circuit). Reagents 

in the surrounding paper did not, however, affect experimental results because they were separated 

from the flow channel by a wax barrier. Alternatively, reagents may be pipetted onto the paper in 

minute (0.5 µL) increments. This process consumed less reagent but was somewhat tedious and 

time-intensive. Once the reagents were dry, the device was ready for use. An aqueous sample 

extract was added to the sample reservoir and then carried by capillary action along the flow 

channel. As the analyte reacted with its reagent, a colored product developed. Once all of the 
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analyte was consumed, the color development stopped (even though eluent proceeded to wick 

along the channel). Analyte quantification is as simple as measuring the length of the colored 

region in the flow channel, typically with a ruler either be held up to or printed directly along the 

channel. No computer software was required for analyte quantification. A desktop scanner and 

computer software (Xerox DocuMate 3220 Scanner, color photo setting, 600 dpi) were also used 

to quantify color distance but only for the purpose of experimental validation.  

 

After adding an analyte/eluent mixture to the sample zone of the device, assay measurement was 

performed once the eluent completely evaporated (~15–20 min), however a reading could be 

accomplished in less than 10 min once the channel became completely saturated and the flow 

velocity approached zero. In the 10 min needed for the eluent to reach the end of the channel, all 

upstream color formation (i.e. analyte complexes with reagents) had already occurred. 

 

The flow Reynolds number along the sample channel was low (~10), favouring laminar flow. 

Color distance was measured from the beginning of the channel near the sample zone to the most 

downstream tip of detectable color (i.e., the apex of the parabolic flow profile). Albeit somewhat 

arbitrary, the tip of color was chosen for detection instead of the farthest color region spanning the 

 
 

Figure 3-1 | Operational concept of the device. Device fabrication and use are simple, inexpensive, and 
fast, consisting of printing a hydrophobic barrier on filter paper, patterning reagents, and adding a 
sample for analysis.  
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width of the channel because both methods provided approximately the same level of 

reproducibility (6.1 and 6.5% RSD respectively), and the difference in analyte concentration (< 3 

µg) in choosing one method over the other was lower than the limit of quantification (5-10 µg) for 

each assay. We chose to measure to the tip of color formation because this procedure improved 

detection sensitivity. 

 

Glutathione Detection 

The paper assay for glutathione detection consisted of a circular reservoir for sample addition (6 

mm diameter) and a baffled flow channel (3×60 mm) divided into 14 equal sections (0.3×2mm). 

The flow baffles were used to decrease the capillary flow velocity along the channel, maximizing 

reaction time between glutathione and the AgNPs. The AgNP solution (0.5 L) was spotted onto 

each of the 14 sections along the channel. For each assay, 20 L of sample solution was added to 

the sample reservoir. Complete sample analysis took approximately 10 minutes. Assay selectivity 

was investigated by addition of 20 L of standard thiol solution (0.5 nmol), which did not form a 

colored reaction product along the paper channel. 

 

Glucose Detection 

The paper-based assay for glucose detection consisted of a wax-printed circular reservoir (5 mm 

diameter) for GOx and HRP enzyme modification and a straight channel (2×40 mm) for measuring 

glucose reaction with peroxidase and DAB. Aliquots (0.5 L) of 600 U mL-1 GOx and 500 U mL-

1 HRP were spotted on the sample reservoir and 0.5 L of DAB was pipetted onto the straight 

channel every five millimeters to account for reagent spreading along the channel length. For each 

assay, 20 L of the standard or sample solution was added to the sample reservoir.  
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Analysis of Glutathione and Glucose in Human Serum 

Human control serum samples (levels I and II) for both GSH and glucose were obtained from 

Pointe Scientific (Canton, MI). Levels of analytes were provided by the supplier. Before analysis, 

unwanted protein was removed by filtration (10 KDa MWCO) and centrifugation at 10,000 rpm 

for 20 and 10 minutes, respectively, for glucose and GSH. A solution of 5% 5-sulfosalicylic acid 

was added prior to centrifugation for GSH.   

 

Nickel Detection 

A nebulizer was used to saturate the paper surface with DMG (50 mM). The deposited reagents 

were then air dried. The paper was uniformly coated with ammonium hydroxide (pH 9.5) because 

the rate and extent of Ni2+–DMG complexation are pH dependent with the fastest rate occurring at 

pH 9. To prevent user contamination and excess solvent evaporation, the filter paper was passed 

through a desktop laminator at 150°C (Model No. 92499, Gordon) twice on each side. Laminating 

the paper also provided better mechanical stability for assay handling. A 6.4mm (ID) hole was 

punched through the sample reservoir and masking tape was applied to one side to prevent sample 

loss from leakage during use. For analysis, 20µL of a Ni standard solution (1000 ppm) was 

deposited onto the sample reservoir. The Ni–DMG complex is reddish pink and precipitates upon 

formation. Color development is rapid and total sample analysis was performed in <10 min. 

 

Analysis of Ni in Combustion Incineration Ash 

An incineration ash sample was purchased for assay validation. Briefly, incineration ash along 

with 1 mL concentrated nitric acid was heated in a 20 mL scintillation vial for 5 min at ~250°C on 

a hotplate until complete acid evaporation. A 262 µL solution containing deionized water (250 
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µL), sodium fluoride, acetic acid (2:1:1 v/v %), and 12 µL sodium hydroxide (12 M) was added 

to the vial. After homogenous mixing with a pipette for several seconds, the solution was 

centrifuged for 10 min at 14,000 RPM. For each assay, 20 µL of the supernatant was added to the 

sample reservoir. 

 

Results and Discussion 

Glucose Quantification  

Detection of glucose is shown in Figure 3-βa using glucose oxidase, 3,3’-diaminobenzidine (DAB) 

and peroxidase. In this reaction, glucose oxidase produces hydrogen peroxide that further reacts 

with DAB in the presence of peroxidase to form a brown, insoluble product (polyDAB). DAB is 

colorless but forms a highly colored and easily visualized product after reacting with the analyte. 

To demonstrate method viability, levels of glucose in a serum standard were quantified. Test 

results, along with device photographs, are shown in Figure 3-2b (calibration data is shown as blue 

squares). The plot depicts sample reaction length as a logarithmic function of the known analyte 

concentration.  For glucose detection, the length of the colored range is proportional to the amount 

of glucose added over the range of 7 to 200 nmol. Negative controls (zero sample concentration) 

produced no discernible color change. The linear range obtained for glucose in our system is 

approximately 11–270 mg dL-1, having a slightly lower detection limit than commercially 

available point-of-care blood glucose meters (~ 20 mg dL-1).51 The upper range in our system is 

limited however, and is approximately half the level of commercial systems (500 mg dL-1).    

 

Method variability is relatively low as seen by the small error bars (representing standard 

deviations of repeat measures) around each datum. We tested this system using serum samples 
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Figure 3-2 | (a) Glucose oxidase reacts with DAB and peroxidase to form a brown precipitate in 
approximately five minutes. (b) Analyte flow of standard solutions compared with real (complex) serum 
samples. Standard curves show the distance of color development is proportional to the amount of 
glucose added (closed blue squares). The extent of the reaction is easily visualized within the linear 
range of the reaction. Photos of the complete reaction are included for each calibration data point. 
Reaction distance for complex serum samples (open red squares) show good agreement with standard 
calibration curves (closed blue squares). Error bars represent one standard deviation (n = 6).  
 



69 
 

known to contain either normal or abnormal glucose levels. Such commercially-available control 

samples are widely used for assay validation because they have all the complexity of normal serum 

without the worry of blood-borne pathogens. Glucose concentrations within the control serum 

samples are shown as open red squares; their alignment with the calibration curve shows the ability 

of this method to measure glucose accurately and precisely in a relatively complex sample matrix. 

 

Quantification of Nickel in a Combustion Ash Sample 

Detection of nickel (Ni2+) using dimethylglyoxime (DMG) as an example assay for toxic metals is 

shown in Figure 3-3a. In this assay, DMG is placed in the channel and reacts with Ni2+ to form a 

pinkish-red product. Ni(DMGH)2 is poorly soluble and immediately precipitates from solution. 

Solutions containing Ni2+ are colorless in the absence of DMG. For Ni detection, the concentration 

that linearly corresponds to color length is 0.7–92 µg m-3. The legal limit for exposure to Ni in 

occupational settings is 1,000 µg m-3, for which our detection limits are clearly sufficient.35 We 

are continuing to investigate methods for improving the dynamic range of the assay. We envision 

this test could develop into a very cost effective, ‘first-pass’ evaluation tool for personal exposure 

to aerosol pollution containing Ni compounds. We next established the sensitivity of the assay to 

the amount of DMG deposited on the device (Figure 3-3b). As the amount of DMG increases, the 

sensitivity of the assay decreases. The assay can detect nmol levels of Ni2+ in the presence of other 

transition and heavy metals making it useful for a range of application areas from water analysis 

to particulate matter composition studies.52     

 

Levels of aqueous Ni2+ concentrations were evaluated in a certified combustion incineration ash 

sample as part of an on-going program to develop fast, inexpensive environmental measurement 
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Figure 3-3 | (a) Formation of a bright red precipitate is easily visualized when DMG-Ni2+ complexation 
occurs. The reaction product is formed immediately, and complete analysis in the concentration range 
studied took approximately 15 minutes. (b) Assay sensitivity decreases as the concentration of DMG 
increases. [Insert] The limit-of-detection (LOD) for the Ni assay increases as the concentration of DMG 
increases from 40mM (closed blue squares) to 50mM (open red squares) to 60mM (closed grey 
triangles).  (c) Standard curves show the distance of color development is proportional to the amount 
of Ni added (closed blue squares). A sample of incineration ash was tested for method validation (open 
red squares). Error bars represent one standard deviation (n = 8).  
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tools. Combustion incineration ash is a by-product of medical, municipal, and industrial 

incineration processes and can be a significant contributor to local and regional air, water, and soil 

pollution. For this assay, DMG was deposited uniformly along the flow channel and solutions 

containing known amounts of nickel (in 20µL aliquots), first dissolved in concentrated HNO3, 

were added to the inlet to prepare calibration curves. The Ni-DMG complex gave a highly colored 

product that was readily distinguished from the clear sample solution.53 Various dilutions of the 

resulting solution were analyzed and the results shown as open red squares in Figure 3-3c. Good 

agreement was obtained between measured and known Ni concentrations, demonstrating the 

ability of the chemometer method to carry out these measurements in complex sample matrices.41 

Our lab continues to evaluate strategies for mobilizing the acid digestion process. The color 

intensity that developed down the paper channel remained essentially constant. This was 

unexpected since we assumed the color intensity would soften as the Ni remaining in solution 

reacted with DMG. One possible explanation for this phenomenon is that Ni(DMGH)2 becomes 

highly concentrated in a confined space on the paper (solvent evaporation drives this process) 

causing irregular particle clusters to form, which saturates the surface. No discernible color 

changes or reaction products were observed in negative controls.  

 

GSH Quantification Assay 

Detection of GSH using a silver nanoparticle (AgNP) aggregation assay is shown in Figure 3-4a. 

In this assay, AgNPs aggregate in the presence of GSH to form a reddish-brown product that is 

distinguished from the orange color of the AgNPs in the absence of glutathione. AgNPs (11 nm 

diameter) were spotted onto the detection channel, turning it a dark orange color. These 

nanoparticles aggregate in the presence of glutathione, which causes a color shift from orange to 
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deep red on the paper (Figure 3-4b).54 The filled blue squares represent calibration data of known 

GSH concentration. A color change from orange to light orange was also observed when only 

buffer was added. The buffer effect, however, was easily distinguished from the dark red of the 

glutathione specific product. The shift in absorbance maximum in the presence of buffer is 

hypothesized to result from weak non-specific aggregation of the AgNPs.   

 

The ability to measure glutathione spiked in serum samples (open red squares in Figure 3-4b) was 

also determined. As can be seen, the distances measured with serum samples (4.2 and 5.7 mm) 

agree well with those of the standard solutions (3.7 and 5.3 mm) for glutathione concentrations 

0.25 and 0.5 nmol, respectively (Table 3-1). Detection of glutathione was log-linear for the 

concentration range tested (0.12–2.0 nmol). The detection limits for this assay are on the same 

order as conventional measurement methods for GSH, however the dynamic range for the most 

sensitive assays extends a few orders of magnitude higher. The assay selectivity against other thiols  

(cysteine and homocysteine) and disulfides (cystine, homocystine, and glutathione disulfide) was 

also investigated (Figure 3-5). 

 

Cysteine and homocysteine did cause a similar color change but the length of color development 

was much less than for glutathione. None of the disulfides tested produced any color change. For 

all three assays, color formation and bulk flow along the channel was observed to follow the Lucas-

Washburn equation for flow in capillary tubes (Figure 3-6). Reaction kinetics for each assay were 

assumed to be rapid compared with solvent flow rate, so the length of color production along a 

channel should be driven predominantly by flow rate.  
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We have demonstrated this method using three representative compounds commonly found in 

environmental and biological matrices, but this method should be easily extendable to a much 

larger range of analytes because of the possibility for cellulose modification.55 Even without 

substrate modification, our detection motif is applicable for analysis of a variety of transition and 

 
 
Figure 3-4 | (a) AgNPs aggregate in the presence of glutathione and produce a reddish-brown color, 
easily distinguishable by the naked eye. Reaction kinetics were slow, so wax baffles were used to divert 
flow in a serpentine pattern as capillary action flowed liquid through the channel. For one assay, the 
detection of glutathione within the concentration range tested took approximately 10 minutes. (b) 
Standard curves show the distance of color development is proportional to the amount of glutathione 
added (blue squares). Spiked serum samples were evaluated for method validation (open red squares). 
Error bars represent one standard deviation (n = 4). 
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Table 3-1 | Determination of glucose and glutathione in human serum (aSD: standard deviation, n = 3). 
 
 

 
 

 
 
Figure 3-5 | Selectivity study of AgNPs aggregation for glutathione determination against other thiols: 
cystine (Csy-), cysteine (Cys+), homocystine (Hcy-), homocysteine (Hcy+), and glutathione oxidized 
form at 0.5 nmol.  Error bars represent one standard deviation (n = 3).  
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heavy metals, including Fe, Mn, Cr, Cu, Hg, and Pb. Many biological compounds should also be 

quantifiable with this method via nanoparticle aggregation, including lysine, heparin, thrombin, 

and DNA.56-60   

 

Conclusions 

The distanced-based detection concept represents a new and dramatically simplified technique for 

quantitative PAD detection that eliminates peripheral instrumentation during sample analysis. This 

technology is adaptable to suit different detection chemistries and multiple analytes, including 

those from complex environmental and biological matrices where analyte specificity is critical.  

One challenge that must be overcome with our method is the current requirement for the sample 

to be solubilized; however we are developing new methods of analysis that will accommodate 

samples in multiple formats and with various solvents. The assays described herein were 

developed in controlled laboratory conditions with small variability in temperature and relative 

 
 
Figure 3-6 | Fluid wicking in porous networks is modeled by the Lucas Washburn equation which states 
that wicking distance is proportional to t1/2. Experimental data (n ≥ 3) shows that flow velocity can be 
approximated by the LW equation. 
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humidity (25 °C and ~30 % relative humidity), however if studies were conducted in a less 

controlled environment (i.e. for environmental monitoring), large changes in ambient conditions 

could affect wicking velocity and alter results. We plan to investigate these and other variables 

further to improve assay reproducibility in a wider range of ambient conditions.  

 

Paper-based analytical devices hold great potential for application at the point-of-need. The 

analytical technique presented here is minimally instrumented for device portability and is highly 

cost effective; excluding fabrication equipment (computer, drawing software, printer, pipette), a 

single assay costs approximately $0.04.52 Since analyte quantification is immediate and can be 

performed on-site, processing time is dramatically reduced when compared to other centralized 

measurement techniques, which often sacrifice processing speed for detection sensitivity.  Like 

most PAD technologies, this technique sacrifices dynamic range for cost, speed, and ease of use.  

However, we have shown that devices can be tuned to detect different analyte concentration ranges 

by modulating reagent concentrations in the flow channel, thus, accommodating different reaction 

stoichiometries. 
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CHAPTER 4: MULTIPLEXED PAPER ANALYTICAL DEVICE FOR QUANTIFICATION 

OF METALS USING DISTANCE-BASED DETECTION 

 
 

Chapter Overview 

The purpose of chapter 3 was to demonstrate the viability of and highlight the range of uses for 

distance-based detection as an analytical tool. In this chapter, distance-based detection is 

investigated specifically for determining the content of metals present in welding fume samples. 

Furthermore, reagent deposition techniques are investigated not only as a means for precisely 

defining the placement of reagents but also as a method for tailoring the output of distance-based 

detection. The concentration of colorimetric reagents/buffers/masking agents can be deposited as 

a function (1st, 2nd, 3rd order, etc.) of distance to alter the response curve according to the point-of-

need application. For instance, if the concentration of analyte is expected to vary widely (over 

several orders of magnitude), a log-linear response curve can be established to cover this need. 

Work from this chapter was published in Lab on a Chip and reproduced here with minor 

modifications and updates.1  

 

Exposure to metal-containing aerosols has been linked with adverse health outcomes for almost 

every organ in the human body. Commercially available techniques for quantifying particulate 

metals are time-intensive, laborious, and expensive; often sample analysis exceeds $100. We 

report a simple technique, based upon a distance-based detection motif, for quantifying metal 

concentrations of Ni, Cu, and Fe in airborne particulate matter using microfluidic paper-based 

analytical devices. Paper substrates are used to create sensors that are self-contained, self-timing, 

and require only a drop of sample for operation. Unlike other colorimetric approaches in paper 
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microfluidics that rely on optical instrumentation for analysis, distance-based detection provide 

quantification visually based on the distance of a colorimetric reaction, similar to reading 

temperature on a thermometer. To demonstrate the effectiveness of this approach, Ni, Cu, and Fe 

were measured individually in single-channel devices; detection limits as low as 0.1, 0.1, and 0.05 

µg were reported for Ni, Cu, and Fe. Multiplexed analysis of all three metals was achieved with 

detection limits of 1, 5, and 1 µg for Ni, Cu, and Fe. The dynamic range for multi-analyte detection 

was also extended by printing concentration gradients of colorimetric reagents using an off-the-

shelf inkjet printer. Analyte selectivity was demonstrated for common interferences. To prove 

method utility, Ni, Cu, and Fe were measured from samples of certified welding fume; levels 

measured with paper sensors matched known values determined gravimetrically.      

 

Introduction 

Human exposure to metal-containing particulate matter (PM) has been studied extensively. 

Epidemiological studies of metal exposure in the workplace have found that occupations such as 

metalworking, construction, transportation, and mining place individuals at increased risk to 

numerous cardiovascular and respiratory health issues, even to early death.2 For example, inhalable 

aerosols containing Ni are listed by the International Agency for Research on Cancer as probably 

carcinogenic (Group 2B) to humans and animals.3 Tens of thousands of individuals are exposed to 

metal-containing PM in their workplace, yet relatively few are routinely monitored for their 

exposure due to the time-intensive sampling and cost-prohibitive analytical methods currently 

available.4 Common measurement methods for metals include inductively coupled plasma optical 

emission spectroscopy, mass spectrometry, and atomic absorption spectroscopy.5, 6 These analytic 
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methods have high precision, sensitivity, and low detection limits, but they are expensive (> $100 

per sample) and require trained specialists for operation.    

 

Low-cost, point-of-need sensors have been highlighted as key for improving exposure 

assessment.7 Towards this goal, microfluidic paper-based analytical devices, or µPADs, show 

promise for overcoming technical and financial obstacles that, traditionally, have impeded more 

widespread exposure assessment. One major limitation of current exposure analysis 

methodologies is cost; therefore, detection strategies need to be minimally instrumented to enable 

routine monitoring. Paper sensors are attractive as an analytical tool because sample flow is 

passively driven by capillary action, microliter sample and reagent volumes are needed, and 

devices (typically) are disposable. To date, paper sensors have been developed for environmental 

exposure analysis of various agents, including: metals,8-12 pesticides,13 explosive residues,14, 15 and 

reactive oxygen species,16, 17 among others. However, μPADs still have limitations; they often 

require external equipment, trained personnel, and are not geared for multiplexed analyses.  

 

To date, the most common detection motif for paper sensors has been colorimetry.18, 19 Although 

straightforward, accurate quantification of color intensity on paper requires an external optical 

detector (e.g. camera, scanner, etc.) and image quality has been known to vary based on lighting 

conditions.20 Alternatively, visual detection using a color/intensity comparator can be used; 

however, color hue and brightness perception may differ from person to person, complicating 

analysis and increasing measurement uncertainty. Several groups have made attempts to simplify 

quantitative readout by removing all external instrumentation. One strategy employed by Lou et 

al.21 involved counting the number of segments (along a flow path) that reacted with analyte, where 
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the number of segments was proportional to analyte concentration. This detection motif has since 

been applied for measuring hydrogen peroxide.22, 23 Using time as an analytical readout has also 

been explored.24 A timing element (e.g. stopwatch, phone app) measured the time elapsed for a 

chemical reaction that took place between an analyte and indicator. A complementary approach 

originally developed by Zuk et al. in 1985,25 and later expanded by our group, is distance-based 

detection.1 This technique relies on reading the length of a colored reaction product along a paper 

channel with the unaided eye. Each device essentially contains one sample reservoir and a flow 

channel patterned with a colorimetric indicator specific for an analyte of interest. As analyte flows 

down the channel, complexes formed between analyte and indicator precipitate, generating a color 

band with length that is proportional to the amount of analyte. Visual quantification is aided by a 

ruler printed alongside each device, similar to reading temperature on a thermometer. In this 

approach, analyte is measured completely with the unaided eye; no electronic readers or timers are 

necessary. 

 

A key step in consistent color formation on paper is reagent deposition. In porous networks, color 

formation is dependent on wicking rate, which decreases nonlinearly with both time and 

penetration distance across the paper substrate.26, 27 In distance-based detection, analytical dynamic 

range is heavily influenced by wicking behavior. Slower flow rates allow more time for reaction 

in a given zone, ultimately leading to a shorter band of color along the detection channel and a 

smaller dynamic range. To address this limitation, concentration gradients of a chromophoric 

indicator were printed along the channel using a modified piezoelectric printer.28, 29 Inkjet printing 

has become a common fabrication technique for defining the location and concentration of 

chemical reagents on paper surfaces.30 Many of the reported printing techniques for µPADs use 
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hydrophobic barriers for confining reagents, 31-34 though it is becoming more common to pattern 

reagents directly on the substrate surface.35-37 Reagent printing is advantageous because it greatly 

improves device reproducibility, functionality, and flexibility compared to manual deposition 

methods such as pipetting, nebulizing, or dip coating. Small droplet volumes from the printer (~1.5 

pL) lead to high patterning resolution and little reagent is wasted in the manufacturing process. 

Moreover, inkjet printing is scalable for mass production.  

 

In this work, a distance-based μPAD was developed for simultaneous measurement of Fe(II), 

Ni(II), and Cu(II) from aerosolized particulate matter. These metals were selected due to their high 

prevalence in welding fumes. Typically, metals are extracted from filter samples for chemical 

speciation, but in this work we utilized certified welding fumes in powder form. Hydrophobic 

barriers and colorimetric reagents were printed for controlling fluid transport and for quantifying 

metals. Reagent deposition by inkjet printing provided better assay reproducibility than manual 

deposition (6.3% vs. 11.4% relative standard deviation). The limit of detection for Ni, Cu, and Fe 

in single and multi-channel devices was 0.1, 0.1, 0.05 µg (6.7, 6.7, 3.3 ppm) and 5, 5, 1 µg (100, 

100, 20 ppm), respectively. Chemical gradients were printed to extend the dynamic range of each 

assay; improvements of 50.0% and 41.2% were observed for Ni and Cu. Signal interference from 

non-target metals was also investigated. Metal constituents common to most welding alloys (e.g. 

stainless and mild steel) had minimal impact on results. Finally, a welding fume standard certified 

for Fe, Ni, Zn, and Mn was used to demonstrate the efficacy of distance-based detection for 

measuring metal particulates in samples with complex matrices. Concentrations of Zn and Mn 

were not evaluated here.  
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Experimental Methods 

Materials and Equipment 

All reagents were analytical grade. Ultrapure water (18.β MΩcm) from a Mill-Q system (Merck 

Millipore, Darmstadt, Germany) was used throughout. Laboratory containers were rinsed with 

H2O prior to use. Standard solutions of all metals (lead(II) nitrate, cadmium(II) nitrate tetrahydrate, 

potassium dichromate(VI), iron(III) chloride hexahydrate, nickel(II) sulfate hexahydrate, 

copper(II) sulfate pentahydrate, manganese(II) chloride tetrahydrate, magnesium(II) chloride 

hexahydrate, iron(II) sulfate heptahydrate, aluminum(III) sulfate hydrate, barium(II) chloride, 

vanadium(III) chloride, and cobalt(II) sulfate pentahydrate) were purchased from Sigma-Aldrich 

(St. Louis, MO, USA). L-ascorbic acid (97%), L-cysteine, Tris base (99.9%), bathophenanthroline 

(97%), dimethylglyoxime (99%), dithiooxamide (98.5%), and sodium fluoride were purchased 

from Sigma-Aldrich. Sodium acetate, ammonium acetate, hydrochloric acid, sodium hydroxide, 

and glacial acetic acid were obtained from Fisher Scientific (Pittsburgh, PA, USA). Whatman 

(grade 1) filter paper was purchased from Apollo Presentation Products (Booneville, MS, USA).  

 

Device Fabrication and Operation 

Distance-based detection with μPADs has been described previously.1 The operational concept for 

multiplexed distance-based detection is shown in Figure 4-1. Briefly, a wax barrier designed in a 

shape resembling a thermometer was printed onto Whatman 1 filter paper. To preserve channel 

resolution, wax barriers were printed on both sides of the filter paper. Each flow lane of the device 

served as a detection channel for a single metal. Analyte was added to the device at a circular 

reservoir at the bottom of the device, which formed a common flow inlet for all three channels. 

Filter paper containing either pretreatment reagents or the analyte may also be added to the 
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reservoir to facilitate sample transfer into the detection zone. In this work, a piezoelectric printer 

(Epson R280) was used to deposit colorimetric detection reagents along the flow channel 

homogeneously or as a gradient. The primary component of the printed ink solution was 

isopropanol, so evaporation after printing was nearly instantaneous at the small volumes printed. 

 
Figure 4-1 | Schematic of distance-based detection in a multi-layer device. Colorimetric reagents, 
buffers, and masking agents are inkjet printed in the detection and pretreatment zones. A colorimetric 
indicator was printed on the back of the device, functioning as a passive timer. Analyte mass was 
quantified when a metal-ligand complex precipitated on the substrate, generating a band of color with 
a length proportional to the amount of metal present. Quantification in single and multi-channel devices 
was achieved in ~30 and ~40 min, respectively. 
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Before adding sample, the devices were laminated (Apache AL13P) at 170 °C to create an 

encapsulating hydrophobic barrier to prevent solvent evaporation along the channel during 

analysis. A sample reservoir was punched using an 8-mm biopsy punch (Robbins Instruments, 

Chatham, NJ, USA) and backed with transparent tape to prevent leakage of solvent. As aqueous 

sample (50 µL) was added to the device via the sample reservoir, capillary action carried solution 

along the flow channel (the 3D wax barrier served to confine and direct sample flow). As analyte 

reacted with the colorimetric reagent deposited along the flow channel, a colored precipitate 

formed. Color development ceased once all the analyte had been consumed, though the eluent 

continued to proceed along the flow channel. Analyte quantification was achieved by measuring 

the distance of color development along the flow channel using a ruler printed beside each channel. 

A desktop scanner and computer software (Xerox DocuMate 3220 Scanner, color photo setting, 

600 dpi) were also used to quantify color distance for experimental validation.    

 

After sample addition, the eluent flowed along each channel until reaching a circular indicator 

zone at the end of the channel. Each indicator zone was pre-patterned with blue dye on the bottom 

of the device. When dry, the dye was not visible from the top of the sensor. Once wetted, dye in 

the indicator zone migrated from the bottom of the device to the top, indicating assay completion. 

The time from sample addition to appearance of the indicator dye was 40 ± 6 min (n = 10).  

 

As described previously, the Reynolds number along the sample channel was low (~10), indicating 

laminar flow.1 Color distance was measured from the beginning of the ruler printed beside each 

channel to the most downstream tip of detectable color (i.e., the apex of the colored flow profile). 

The tip of color was chosen for detection rather than the furthest region spanning the width of the 
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channel because both methods provided approximately the same level of reproducibility (6.1 and 

6.5% RSD respectively), and the difference in analyte concentration in choosing one method over 

the other was lower than the limit of quantification for each assay.1 

 

Inkjet Cartridge Modification and Reagent Printing 

A piezoelectric inkjet printer (Epson Model R280) was selected for reagent printing, as described 

earlier, with modifications.28, 38 The purpose of inkjet printing was twofold: 1) printing offered 

superior control (vs. spraying) over the volume and droplet resolution of deposited material, and 

2) this method enabled printing of non-uniform reagent concentrations onto the paper substrate. 

To modify the printer, stock Epson ink cartridges were replaced with third-party refillable 

cartridges (Inkproducts.com) which had been modified to fit 200 µL (non-filtered) pipette tips. For 

the cartridges, a Dremel® tool was first used to cut off the plastic-covered outlet protruding from 

the cartridge. A hole was then drilled from the bottom of the cartridge towards the top with bits of 

increasing size (1/4” and 19/64”); care was taken not to extend the bit beyond the top of the 

cartridge. The sides of the cartridge remained intact. Compressed air was used to remove plastic 

remnants from inside the cartridge. Pipette tips used as ink reservoirs were cut to fit on nozzles 

over the print head (Figure 4-2). The tips were designed to fit tightly over the nozzles (i.e. without 

leaking). Inkjet reservoirs were cleaned with filtered H2O, methanol, ethanol, and isopropanol, 

according to previous reports.38 Approximately 100 µL of reagent solution (the composition varied 

according to each metal species) was injected into the pipette reservoir and pushed through the 

print head via pipette until solution was dispensed onto a paper towel placed below the print head. 

After this ‘priming step’, another 180 µL of reagent solution was added to the reservoir. Adobe 

Illustrator CS3 software was used for device design and printing control. For reagent printing, the 
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highest available print quality was selected, and high-speed printing, edge-smoothing, and 

grayscale printing were deselected. Adobe RGB 2.2 was used for color control.  

 

For each metal, reagent concentration gradients were printed along the channel according to an 

empirically derived equation. Reagent concentration (i.e., the number of successive overprints 

across a substrate) varied for each metal; for gradients, the concentration of reagent deposited was 

highest near the sample zone and decreased along the channel’s longitudinal axis. A consequence 

of gradient printing was that the response curve for each metal was more linear, according to a 

residual sum of squares regression. As reagent concentration increased, the slope of the response 

 
Figure 4-2 | To create a reservoir for inkjet printing, the end of a 200 µL pipette tip was cut and placed 
over a nozzle for each color channel. Third-party refillable cartridges were cored to create space for the 
pipette tip. The reservoir holds approximately 180 µL of printable liquid. 
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curve (i.e. sensitivity) decreased (Figure 4-3). For each metal, the concentration of printed reagents 

were chosen to provide the highest linear dynamic range according to Tukey’s range test and a test 

of non-linearity at 95% confidence. After reagents were added, each print head reservoir was 

flushed with ≥ 10 mL of H2O, methanol, ethanol, and isopropanol to ensure complete removal of 

residual reagent. 

 

Ink Formulation and Gradient Creation 

A solution composed of 95/5% (w/v) isopropyl alcohol/H2O was used for all experiments as the 

solvent for colorimetric reagents, buffers, masking agents, and the indicator dye. Solution 

formulation was based on the reciprocal of the Ohnesorge number Z = Oh-1:  


 2/1)(d

Oh  

 
Figure 4-3 | Operational concept of the device. Device fabrication and use are simple, inexpensive, and 
fast, consisting of printing a hydrophobic barrier on filter paper, patterning reagents, and adding a 
sample for analysis.  
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which is a function of the print head diameter d, and the fluid properties of surface tension 

γ,  density ρ, and dynamic viscosity η. Much of the literature agrees that a Z value from 1-10 is 

ideal for producing consistent drops with minimal satellite spray, though debate persists about how 

large Z can be while maintaining high-quality droplet formation.39 In this work, several organic 

solvents (isopropanol, ethanol, methanol, dimethylsulfoxide, xylene) were evaluated as candidates 

for printing; their Z values are listed in Table A2-1. The Z value of isopropanol (16.4) was closest 

to ideal and was selected for printing. H2O (5% w/v) was added to the isopropanol ink to increase 

solution surface tension.  

 

Fluid velocity in porous networks is nonlinear, and because distance-based detection is velocity-

dependent, the response (i.e., color distance) generated for a range of metal masses is also non-

linear. To counter this non-linearity in response, we developed equations for printing concentration 

gradients of colorimetric reagents on paper. The general process for creating a printed reagent 

gradient for detection of each metal was as follows: 1) measure the location of the eluent flow 

front, xi, as a function time, t, along the longitudinal flow axis, 2) create a curve fit of xi vs. t, 3) 

non-dimensionalize flow distance vs. time by creating parameters ��∗ =  ���� and �∗ =  ���, where the 

variables �� and �� represent the maximum recorded distance ��, of the fluid front at time ��, 4) 

develop a new function representing the change in pixel intensity vs. distance (in pixels) along the 

channel [�ሺ�ሻ =  ʹ55 × �∗] where � = ʹͳ5 × �∗ represents the distance of the fluid front in 

pixels. The coefficients 255 and 215 represent the maximum pixel intensity (in RGB space) and 

channel distance (in our system), respectively, 5) generate a counter function, � = ʹ55 −  �ሺ�ሻ, 

to be the complement of I(D), 6) convert the counter function into a colored image using a custom-

designed LabVIEW VI, and 7) print the gradient on the substrate at the desired concentration 
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determined by the counter function (Figure A2-1). For gradient deposition, intensity equations 

used to create the gradients are provided in Appendix 2. Colorimetric reagent concentration was 

optimized for each metal to produce the greatest linear dynamic range and lowest limit of detection. 

Statistical treatment of the data excluded outliers; a weighted linear regression was applied to each 

response curve due to unequal variance present in the sample measurement (Excel and LabVIEW 

software). 

 

Nickel Detection 

Detection chemistry for Ni was used as previously reported, with modifications.1 A solution 

composed of dimethylglyoxime (100 mM) and Tris base (50 mM, pH 10.2) was made in 95/5% 

isopropanol/H2O solvent. Masking agents (1 M NaF and 6 M ammonium acetate) were mixed 2:1 

(%w/v) and applied to the pretreatment zone of the Ni detection channel five times via pipette 

(0.35 µL increments). The presence of sodium and ammonium acetate helped create a more visible 

color band in the channel and also served to mask potential interferences from Co and Fe.8 The 

DMG solution was printed six times on each device (~3 µmol DMG per 20 devices) for both 

gradient and non-gradient reagent deposition. Sample volumes of 15 and 50 µL were deposited in 

the sample zone for analysis of Ni using the single-channel and multi-channel devices, 

respectively. For analysis, 1000 or 2000 ppm solutions of Ni(II), Cu(II), or Fe(II) were made and 

diluted with H2O to appropriate concentrations. The Ni(DMG)H2 complex is reddish pink and 

precipitates upon formation. 
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Copper Detection 

Measurement of Cu was carried out using dithiooxamide, a common ligand used for complexing 

Co, Ni, and Cu.40 For detection, a solution composed of dithiooxamide (30 mM), sodium acetate 

buffer (pH 4.0, 20 mM), and 1% (w/w) hydroxylamine was made in 95/5% (w/v) IPA/H2O solvent. 

For masking, a solution of higher hydroxylamine concentration (10% w/w in H2O) was made and 

added via pipette to the pretreatment zone of the Cu detection channel once (0.35 µL). At low pH, 

the binding constant for Ni to dithiooxamide was reduced, preventing much of the Ni from 

interfering with Cu measurement. Quantitative recovery of Ni with dithiooxamide has been 

typically performed from pH 7-9.41 Chemical gradients for detection of Cu were printed seven 

times (~1 µmol dithiooxamide per 20 devices). 

 

Iron Detection 

Measurement of Fe was carried out using 4,7-diphenyl-1-1,10-phenanthroline 

(bathophenanthroline), a common colorimetric indicator for Fe corrosion.42, 43 

Bathophenanthroline (Bphen) was selected as the chromogenic reagent for Fe over other common 

1,10-phenanthroline derivatives because 1) Bphen is approximately two times more sensitive to 

Fe than 1,10-phenanthroline, 2) the ferrous-Bphen complex has low solubility in H2O, and 3) 

Bphen has fewer interferences than 1,10-phenanthroline for Fe detection. A solution composed of 

Bphen (10 mM), sodium acetate buffer (pH 4.5, 20 mM), and 1% (w/w) L-ascorbic acid was made 

in 95/5% (w/v) IPA/H2O solvent and printed twenty times along the Fe detection channel (~1 µmol 

Bphen per 20 devices). Ascorbic acid (5% w/w) was added to the pretreatment zone via pipette 

(0.5 µL) to reduce soluble Fe(III) to Fe(II) for complexation with Bphen.  
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Welding Fume Standard Reference Material 

A reference material derived from stainless steel welding fume (HSL SSWF), certified for Fe and 

Ni, was obtained from the Health and Safety Laboratory (Harpur Hill, Buxton, UK). 

Approximately 1 mg of the HSL SSWF was weighed and added to a 1.5 mL centrifugation tube, 

followed by acid digestion under 10 µL HCl (15.4 M) and 15 µL H2O. Each aliquot was then 

microwaved (1100 W) for 6 min, before adding 25 µL NaOH (3 M). Aliquots were centrifuged 

for 3 min at 10,000 RPM. Extracted supernatant (volume varied) was diluted with H2O to a total 

volume of 50 µL prior to use. Control tests were conducted in parallel using standard metal 

solutions. 

 

Data Analysis 

Measurements were recorded with half-millimeter resolution using rulers printed beside each 

detection channel; distances measured visually were later verified with Image J software using 

images obtained from a scanner. Outliers were discarded when identified using Grubb’s test for 

outliers.44 Assumptions of normality and unequal variance were verified using chi-squared and F 

distribution tests. Minimum sample sizes for testing were determined using a power analysis (1-β 

≥ 0.8, ɑ = 0.05, using G*Power v3.1.9.2 software). Due to the presence of increasing variance with 

metal mass, we applied a weighting factor to each linear model (Figure A-2). In this work, 

weighting (w) was given according to inverse distance (yi
-1), according to the equation: 
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where n is the number of samples in the calibration data set. Further details on the 

weighting statistics used for analysis are provided in Appendix 2. 
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Results and Discussion 

Detection of Fe, Ni, and Cu in Single Channels 

For each metal, single-channel devices were fabricated and patterned with reagents to determine 

detection sensitivity, detection limits, and operating range. Quantitative values are provided in 

units of mass because the target sample comes from air pollution; equivalent concentration units 

are provided in parenthesis throughout the paper. Initial studies were performed by nebulizing 

colorimetric reagents on the paper substrate, as described previously,1 to ensure uniform coverage 

along the detection channel. Standard metal solutions from 0.01-100 µg (0.7-7×103 ppm) were 

made for each metal; for each test 15 µL was added to the sample zone of the device. The dynamic 

ranges for Ni, Cu, and Fe were 0.1-5, 0.1-10, and 0.05-7 µg, respectively (n ≥ 10). The upper limit 

of the range for each metal was determined by applying the Tukey-Kramer range test. Limit of 

detection was determined by the lowest measurable distance of the color band that precipitated a 

minimum of 1 mm from the beginning of the detection channel (as identified by a 0 mm datum 

printed onto device). Relative standard deviations ranged from 9.5-13%, which is typical with 

µPADs.14 A higher molar extinction coefficient for the complex was hypothesized as the reason 

for a 50% improvement in detection limit for Fe(II)-Bphen (2.2×104 M-1 cm–1) compared to 

Ni(DMG)H2 (3x103 M-1 cm–1) and Cu-dithiooxamide (750 M-1 cm–1).45-47 The observed solubility 

of the Ni(DMG)H2 complex was higher than the Cu-dithiooxamide product, which was suspected 

as the reason why detection sensitivity of Ni was not higher than Cu.  

 

Extending Dynamic Range 

A constant reduction in wicking rate was a factor limiting the upper range of detection; over time, 

the rate of flow approached zero, ceasing new color formation along the detection channel. To 
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overcome this limitation, two approaches were tested: 1) control channel geometry, and 2) control 

colorimetric reagent concentration.  

  

Varying Channel Width  

The hydrophilic surface available for reagent-analyte complexation influenced the slope of the 

analyte response curve. More paper surface (per unit distance along the flow channel) led to a 

lower sensitivity (less positive slope) than when less paper surface was available (more positive 

slope). However, because the flow in the paper channel followed Lucas-Washburn theory48, 

sample flow rate eventually approached zero (in our system this occurred ~60 mm down the 

channel). As the sample flow rate approached zero, further growth of the color band ceased. As a 

result, a tradeoff exists between dynamic range and sensitivity for distance-based detection with 

μPADs. This tradeoff (lower dynamic range for higher sensitivity and vice versa) is depicted using 

two hypothetical traces in Figure 4-4. In the figure, the linear dynamic range of trace 1 (1-34 µg) 

is approximately 48% smaller than the linear dynamic range of trace 2 (1-70 µg). To minimize 

upper-bound losses, a study was performed with single-channel devices with widths starting at 4.7 

mm and decreased in 25% increments (e.g. 4.7, 3.5, and 2.6 mm). Channel width was defined prior 

to melting the wax barrier (Figure 4-5). According to previous work, 2.6 mm was subjectively 

chosen as the narrowest channel width for which a visual reading of the color band could be 

accomplished without difficulty by the naked eye.1 The maximum channel width was limited to 

4.7 mm because detection range for wider channels was unacceptably low. As demonstrated in 

Figure 4-5, the slope of the response curve for Fe decreased in devices from the narrowest to widest 

channel, as anticipated. The detection limit was not influenced by channel width in this study and 

was equal for all three experiments. We suspect this was due to a threshold of analyte mass that 
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must be present before color formation is visible with the unaided eye. A channel width of 3.5 mm 

was chosen for this study because it produced a response curve with the best sensitivity and largest 

dynamic range for Fe. Although the dynamic range of 4.7 mm wide channels was slightly larger 

(Figure 4-5b), the slope of the response curve was low, prompting our decision to pursue testing 

with 3.5 mm channels. Further alterations of channel geometry were not considered for this study 

but could potentially provide a larger overall dynamic range for metals. Narrow channels produce 

higher sensitivity (good for low analyte levels), but were non-ideal for larger analyte 

concentrations because less surface available for analyte-reagent complexation produced a longer 

band of color. Due to a constant reduction in eluent flow rate with penetration distance in the 

channel, long (i.e. > 50 mm) color bands were undesirable because eluent velocity beyond 50 mm 

was approximately zero. 

 
 
Figure 4-4 | Hypothetical curves showing changes in dynamic range as a result of slope. The lines on 
the horizontal were drawn to intersect the vertical axis at 40 mm, which represented the distance at 
which the eluent velocity was approximately zero.  
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Distance-Based Detection of Ni, Cu, and Fe in Single Channels 

Gradients of colorimetric reagents were printed 1-25 times in odd-numbered increments; devices 

were tested with the same analyte range (0.1-20 µg) for all three metals (n ≥ 5). If two or more 

concentrations produced the same linear dynamic range, preference was given to the concentration 

that produced the highest sensitivity (slope). The dynamic ranges for Ni, Cu, and Fe were 0.1-10, 

0.1-17, and 0.05-7 µg, respectively (n ≥ 10). Relative standard deviations ranged from 6.0-6.6% 

(Figure 4-6). From an exposure perspective, these linear ranges correspond to metal aerosol 

concentrations (as time-weighted averages) from 1.43-143, 1.43-242, and 0.710-99.8 µg m–3 

 
 
Figure 4-5 | (a) Detection sensitivity for Fe(II) varied as a function of channel width. (b) Quantitative 
data from (a). As channel width increased, the sensitivity (slope) of Fe(II) measurement decreased. 
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assuming analysis is performed using a 10-mm filter punch extracted from a 37-mm filter 

operating at 2 L min-1 of air flow for an 8-hr workshift.49 Time-weighted averages are used in 

occupational air sampling to calculate a welder’s exposure to a hazardous substance, averaged over 

an 8-hr shift.49 When compared to the minimum action level for a substance, the time-weighted 

average exposure determines if a person has been exposed to a toxic concentration of a metal 

species (action levels vary by metal). If the average exposure is above the action level, corrective 

action such as more frequent exposure monitoring and medical surveillance must be taken to 

mitigate undue risk.49 A comparison between the analyte ranges that were measurable between 

gradient printing and manual reagent deposition (spraying) showed that printing extended the 

dynamic range by 50, 41, and 0% for Ni, Cu, and Fe, respectively. Results are displayed for all 

three metals in Figure 4-6. The difference in Fe performance compared to Ni and Cu is unclear 

and is under investigation. However, the linearity of the Fe assay was still improved. Response 

curve data near the LOD does not cross the vertical axis at zero because a band of color is not 

visible (and therefore measurable) when analyzing analyte masses below the LOD. By extending 

the dynamic ranges for Ni and Cu, a greater range of exposures can be analyzed. The TWA’s for 

Ni, Cu, and Fe are all below the permissible exposure limits (1,000, 100, and 1,000 µg m–3, 

respectively) established by the Occupational Safety and Health Administration.49 This means that 

shorter sampling times can be used to capture task-based exposures instead of relying on an 

ensemble average over the course of a full day. Reagent printing also exhibited a significant 

improvement in relative standard deviation (from 11.4 to 6.4% on average) compared to manual 

deposition. Visual differences for the detection of Cu (1-13 µg) between devices in the presence 

and absence of a colorimetric reagent gradient are demonstrated in Figure 4-7. For a given Cu 

mass, the measured color band was longer in the presence of a gradient. This difference was 
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Figure 4-6 | Distance-based detection of (a) Ni, (b) Cu, and (c) Fe. Analyte was transported along the 
detection channel and precipitated upon complex formation with colorimetric reagents. Once analyte 
was consumed, color formation ceased and the distance from the beginning to the end of the color band 
was measured. Wicking distance was proportional to analyte mass. Printing a concentration gradient 
increased the linear dynamic range of Ni and Cu by 50 and 41%, respectively, than in the absence of a 
gradient. Inkjet printing was also more reproducible than manual reagent deposition. (n ≥ 4). 
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magnified at higher Cu masses. The average differences between band distance for devices with 

and without gradients for Cu masses of 1, 4, 8, and 13 µg were 3.6, 7.9, 10.7, and 15.2 mm, 

respectively.               

 

For single-channel µPADs, the limit of detection is much higher for Ni, Fe, and Cu (7, 3, and 7 

ppm), respectively, than for ICP-OES (1-10 ppb), which is the most common detection technique 

for heavy and transition metal detection. ICP-OES is certainly sensitive, however the cost of 

analysis (on a per-sample basis) is several orders of magnitude higher than for the µPAD technique 

presented here. Another common analytical method, X-ray fluorescence spectroscopy, is less 

expensive than ICP-OES, but detection limits are not appreciably better than with µPADs (sub 10 

ppm).  

 

 
 

Figure 4-7 | In the presence of a reagent gradient, the distance of the color band increased as a function 
of the mass of Cu added. For each set of devices, the left and right images were in the absence or 
presence of a reagent gradient. In the absence of a gradient, reagents were deposited evenly across the 
substrate surface. 
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Sensor performance is affected by ambient temperature and percent relative humidity (%RH). At 

high temperatures/low %RH, it is possible that the sample well could evaporate before most of the 

analyte has entered the µPAD. Moreover, low temperatures/high %RH could pose additional 

complications. Experiments were performed with single-channel devices to establish conditions 

under which performance was unaffected by changes in temperature or %RH (Figure 4-8). For the 

first assay, 0.1-13 µg Cu was measured with dithiooxamide from 23-51 °C (at 25 %RH). In the 

second assay, 0.1-13 µg Cu was measured with dithiooxamide from 20-80 ± 4% RH (at 20 °C). In 

both assays, solutions in devices were allowed to dry completely before analysis. Dithiooxamide 

was printed homogeneously along the substrate wicking channel. As demonstrated in Figure 4-8, 

significant differences were observed in the distance of color development between low and high 

temperatures at Cu masses of 8 and 13 µg (n = 4). Experiments of %RH were not repeated, so 

definitive conclusions cannot be made based on the data shown in the figure, but it appears that 

significant differences in measured distance begin to appear above 60 %RH.   

 

Simultaneous Distance-Based Detection of Ni, Cu, and Fe  

Multi-Channel Device Geometry 

Device inlet geometry was investigated for the multi-channel format. At neutral pH, the overall 

charge at the surface of cellulose was negative, which could hinder cation transport in the device 

through electrostatic interaction. We hypothesized that a device with more inlet surface area led to 

higher metal detection limits because, when present at low mass, metal analyte was sufficiently 

hindered by the cellulose matrix (and thus, some proportion of each sample failed to reach the 

detection zone). Two devices with varying inlet surface areas, A and B, were tested; reagent 

concentrations, solution pH, masking agents, and detection channel geometry were equivalent 



 

103 
 

between both devices (Figure 4-9). Device A had approximately 66% more inlet surface area than 

device B. The mass of Ni tested for both devices ranged from 5-80 µg. The limits of detection for 

devices A and B were 20 and 5 µg, respectively. Both devices responded similarly (i.e. not 

statistically differently) above 35 µg Ni. 

 

A droplet of solution added to the sample zone wicked towards the detection channels as a result 

of capillary action. The path length from the sample zone to either Ni or Cu channels was longer 

than for Fe. The result was that fluid fronts for Ni and Cu significantly lagged (i.e. minutes) behind 

 
 
Figure 4-8 | Effect of (a) temperature and (b) percent relative humidity on measurement outcomes. *p 
< 0.05; **p < 0.001.    
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the front for Fe. Two approaches were sought to produce equivalent volumetric flow rates in all 

channels: 1) increase the length of the flow path to the Fe channel, and 2) decrease the width of 

the flow path to the Fe channel, creating a constriction that limited the flow rate of eluent to the Fe 

channel. An elongated flow path extended the time for the fluid front to travel from the sample to 

detection zone; however, we observed significant analyte losses to the capillary network as a result 

of chemical interactions between cationic metals and cellulose. We opted for the second method, 

testing a variety of lengths and widths of constriction channels bounded by wax barriers, before 

settling on a channel 500×750 µm (W×L) after melting with a laminator. Channels narrower than 

500 µm were not reproducible.      

 

Analyte Measurements 

Three single-channel devices were combined in parallel for simultaneous measurement of Ni, Cu, 

and Fe. Design changes implemented in the multi-channel device were: dual rulers printed between 

detection channels for easy analyte quantitation, a larger sample well to accommodate higher-

 
Figure 4-9 | Dynamic range increased for multi-channel detection of Ni when the inlet surface area was 
reduced.  
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volume droplets and larger samples (3 vs. 8 mm), wide wax barriers (4.2 mm before melting) 

between channels to mitigate cross-contamination, and a passive timer. The passive timer was 

composed of a blue dye (food coloring) printed at the end of each detection channel on the 

underside of the device and allowed to dry. When eluent reaches the end of the detection channel, 

the dye was solubilized and quickly migrated to the top of the device. Thus, the presence of blue 

dye indicates assay completion. A time lapse of detection is presented in Figure 4-10a for 5, 5, and 

15 µg Ni, Cu, and Fe, respectively. This automated indicator system is simple, removes all external 

 
 

Figure 4-10 | (a) Time lapse of 15, 5, and 5 µg Fe, Ni, and Cu. (b) Response curves for Cu, Ni, and Fe 
in the multi-channel device. 
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timing mechanisms, and reduces any potential error due to assay timing. Moreover, timing for 

each channel is independent of the others; complications in any one channel will not impede 

analyte measurement in the other two. 

 

Eluent flow rates were measured in the multi-channel system to establish empirical equations for 

reagent gradient printing. Future efforts will be directed towards establishing predictive flow 

models in these devices, eliminating the need for empirical fits. Linear dynamic range, detection 

limits, and device reproducibility were investigated using serially diluted analytical standards 

(2,000 ppm). Metal ranges varied from 1 to 100 µg. The linear dynamic ranges presented in Figure 

4-10b for Ni, Cu, and Fe were 5-55, 1-65, and 5-65 µg, respectively (20 ≤ n ≤ 32 per mass). 

Relative standard deviations ranged from 6.7-8.4% (7.6% average). For aerosol exposure 

monitoring, time-weighted averages for these range values are 71.3-784, 14.3-927, and 71.3-927 

µg m-3, respectively. The relative standard deviation was slightly higher (7.6%, up from 6.4%) for 

the multi-channel device than for assays conducted in single channels likely due to greater variance 

present in device fabrication (e.g. variation in width of constriction channel). A comparison 

between single- and multi-channel devices is presented in Table 4-1. The mass of analyte that was 

measurable was likely higher for the multi-channel device due to analyte losses from flow in paper 

and from analyte splitting as a result of operating parallel channels. In the multi-channel format, 

analyte was split between three channels. Ni and Cu channels each occupy ~25% of the available 

surface area for detection meaning that the mass of analyte entering either channel was decreased 

(vs. a single-channel device) by ~75%. 
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To quantify intra- and inter-device variability, assays were conducted for all three metals with 

large sample sizes (i.e. n > 100). A minimum of three independent reagent solutions were made, 

and at least three separate sheets of devices were fabricated. Reagent printing was performed over 

the course of one week. Weighted confidence and prediction intervals (α = 0.05) are provided in 

Figure A2-2 for Ni, Cu, and Fe. Capturing the variability present in solution preparation, reagent 

printing, and device fabrication enabled us to quantify the error around the measurement of a single 

unknown sample, which is relevant for actual use in the field. When measuring Ni, for example, 

if the nominal mass being measured were 15 µg (lower end of dynamic range), we would expect 

the multi-channel device to measure distances ranging from 9–13 mm, corresponding to a 

measured Ni mass between 12-18 µg, which is ±20% (n = 140). If the nominal mass measured 

were 45 µg (higher end of the dynamic range), we would expect distances between 23-30.5 mm 

(37-53 µg Ni, which is ±18%).  

Table 4-1 | Comparison of dynamic range and percent relative standard deviation for single and multi-
channel devices for analyte mass (concentration). n ≥ 100 
 

Metal 
Single Channel  

(µg) 
(ppm) 

Multi-Channel 
(µg) 

(ppm) 

Single-Channel 
(Multi-Channel) %RSD 

(n ≥ 10) 

Ni 
0.10 – 10 

(6.7 – 670) 
5.0 – 55 

(100 – 1100) 
6.5 % 

(6.7 %) 

Fe 
0.05 - 7.0 

(3.3 – 470) 
1.0 – 65 

(20 – 1300) 
6.6 % 

(7.7 %) 

Cu 
0.10 – 17 

(6.7 – 1100) 
5.0 – 65 

(100 – 1300) 
6.0 % 

(8.4 %) 
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Interferences 

Welding fumes contain numerous metal and gaseous compounds. Respirable fume composition 

varies based on the welding technique performed and on the composition of the welding rod, flux, 

shielding gas, and metal substrate being welded.50 Stainless steel, perhaps the most common 

commercially welded metal, contains large quantities of Ni (6-15% wt%), Cr (16-24% wt%), and 

Fe (≥ 50% wt%). A short list of common metal alloys and their chemical composition is provided 

in Table 4-2. The complexity of the welding-fume matrix suggests that other metal species may 

interfere with our analysis, so a tolerance study was performed. The tolerance ratio is defined as 

the mass of metals that generates no more than a 10% change in the distance measured versus the 

control, for Fe, Ni, and Cu.51 Analytes, Fe, Ni, and Cu, were held at 10 µg while the mass of each 

interfering metal species was varied according to the ratio (µg interference / µg analyte) presented 

in Table 4-3. Interfering metals were not evaluated above 10× the analyte mass. From the results, 

it was determined that Ni(II), Fe(II), Zn(II), Co(III), Cd(II), Pb(II), Mn(II), V(III), Mg(II), Al(III), 

or Ba(II) did not interfere with distance-based detection of Fe, Ni, or Cu based on the average 

Table 4-2 | Common metal alloys used for welding and their chemical composition (% m/m). 
 
  

Alloy  % Nickel % Chromium  % Copper % Iron  % Manganese % Zinc  

 SS301 6-8 16-18 Trace > 70 0-2 Trace 

SS304 8-10.5 18-20 0-1 > 60 0-2 Trace 

SS308 10-12 19-21 Trace > 65 0-2 Trace 

SS309-EL  12-15 22-24 Trace > 55 0-2 Trace 

SS17-4 PH 3-5 15-17.5 3-5 > 60 0-1 Trace 

SS20 32-38 19-21 3-4 > 30 0-2 Trace 

Brass 0.2-1 Trace 55-95 0-2 0-1.8 4-43.5 

INCONEL®  
(Ni alloy) 

72 15.5 0.5 8 1 Trace 
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chemical composition of stainless or mild steel. The relative percent composition of Ni in most 

metal alloys is not expected to reach 0.5× of Fe. Similarly for Co(II), the percent composition 

should rarely meet or exceed that of Ni. When Fe(III) was present at more than 5× the mass of Ni, 

competition occurs for ligand coordination with DMG.52 For example, if 50 µg Fe(III) were added 

in the presence of 10 µg Ni, the resulting color band for Ni would travel ~20 ± 2 mm (vs. ~7 mm 

for 10 µg Ni alone). This was likely a consequence of the higher solubility of the Fe(DMG)2(OH)2 

Table 4-3 | Matrix interferences evaluated by tolerance ratios. Analytes, Fe, Ni, and Cu, were held at 
10 µg and the mass of each interfering metal species was varied according to the ratio (µg 
interference / µg analyte). 
 

 
Interfering Ion  

10% Tolerance Ratio 

Ni Cu Fe 

Ni(II) -- ≥ 10 0.5 

Fe(II) ≥ 10 ≥ 10 -- 

Fe(III) 5 ≥ 10 ≥ 10 

Cu(II) 1 -- ≥ 10 

Zn(II) ≥ 10 ≥ 10 1 

Co(III) 1 ≥ 10 1 

Cd(II) ≥ 10 ≥ 10 ≥ 10 

Pb(II) ≥ 10 ≥ 10 ≥ 10 

Mn(II) ≥ 10 ≥ 10 ≥ 10 

V(III) 1 ≥ 10 1 

Cr(VI) 10 5 0.5 

Mg(II) ≥ 10 ≥ 10 ≥ 10 

Al(III) 1 ≥ 10 5 

Ba(II) ≥ 10 ≥ 10 ≥ 10 
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complex, based on infrared absorbance spectra data, than the Ni(DMG)H2 complex.52 Of interest 

however, was that the distance traveled by the color band was predictable, suggesting that a 

correction factor could be implemented to account for the presence of Fe(III). It should be noted, 

however, that in practice, a 10% change in sensor response is not large from an exposure stance. 

For example, if the permissible exposure limit (PEL) for soluble Fe compounds is 10,000 µg m-3 

(OSHA), it is unlikely to matter whether the response of the paper sensor has an error of even 20%. 

If the nominal concentration of Fe being measured were 20 µg m-3, for example, it is insignificant 

if the sensor reported a concentration that ranged from 16-24 µg m-3 (± 20%).  

 

Welding Fume Reference Material 

A certified stainless steel reference fume was digested and assayed for Fe, Ni, and Cu with the 

multi-channel device. Results are presented in Table 4-4. Three different fume samples were 

tested, each in triplicate. In the first sample, trace levels of Cu were below the detection limit of 

the device. Standard addition of 5 µg Cu was used for two other samples. Percent recovery was 

close to 100%. The percent error for detection of low (< 10 µg) metal mass was due to high relative 

percent error. This represents a limitation of our system when measuring analyte mass near the 

detection limit. Reference samples used for testing were in powder form, but typically, welding 

fumes would be collected through collection of the fume onto air sampling filters. Metals would 

Table 4-4 | Ni, Cu, and Fe detection from certified welding fumes. Reference fume was certified for 
Fe, Mn, and Zn. n = 3 
  

WF 
Sample 

Actual Level (μg) Measured Level (μg) Percent Recovery (%) 
Fe Ni Cu Fe Ni Cu Fe Ni Cu 

119_11 59.6 7.4 Trace 57 ± 4.5 6.9 ± 1.6 -- 96 ± 7.6 93 ± 21 -- 
119_21 59.6 7.4 5.0 65 ± 4.7 7.5 ± 0.9 4.5 ± 2.0 109 ± 7.9 102 ± 12 90 ± 40 
119_31 15.0 6.9 5.0 15 ± 2.1 9.0 ± 4.5 5.1 ± 1.5 99 ± 14 131 ± 66 102 ± 30 
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be subject to acid digestion procedures, as described previously.11 Although additional sample 

preparation would be necessary in this event, digestion would be carried out with small filters (1-

10 mm diameter), which would require small (µL) reagent volumes and some power (e.g. low-

wattage microwave), both which represent improvements over traditional preparation methods. 

 

Conclusions 

Paper microfluidics presents many advantages over traditional analytical instruments for exposure 

monitoring, such as portability, cost, ease-of-use, and complexity of operation. Colorimetric 

detection is one of the most commonly utilized detection motifs in paper microfluidics; however, 

the need for external detection tools makes the technique less ideal for on-site application. 

Distance-based detection captures the simplicity of colorimetric measurement but is more cost 

effective for widespread deployment. In this work, we utilized the precision and gradient-printing 

capabilities of commercial inkjet printing to extend the dynamic range of distance-based detection 

for Ni and Cu, and improve the linearity for Fe. As was demonstrated, the multi-channel device 

can measure Ni, Cu, and Fe simultaneously from many sources of metal particulates (e.g. welding 

fumes) with minimal matrix effects on the analytical signal.  
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CHAPTER 5: EMPRICAL OBSERVATIONS ON FLOW RATE AND ANALYTE 

DEPOSITION FOR DISTANCE-BASED DETECTION 

 
 
Chapter Overview 

This chapter covers important variables that influence bulk flow and analyte deposition during 

µPAD analysis of Ni, Cu, and Fe. Flow through porous networks is considered first, and theoretical 

flow models are compared with empirical flow data. The influence of hydrophobic barriers, 

lamination, and reaction kinetics are also covered. This chapter is intended to lay the foundation 

of future efforts to approximate wicking distance as a function of metal-ligand complex chemistry.  

 

Capillary-Driven Flow in Porous Media 

Filter paper has been used for centuries to extract, separate, trap, and inhibit chemical species of 

interest due to paper’s unique physical and chemical composition. High surface-to-volume ratios 

of cellulosic fibers are particularly adept at trapping chemical agents while spontaneously wicking 

hydrophilic (or hydrophobic depending on fiber chemistry) media through a complicated fibrous 

network. Modeling the flow of a liquid in a porous membrane is complex, as such flows depend 

on average pore size of the fibrous network, pore size distribution, thickness, and porosity as well 

as the properties of the fluid. The pore size distribution refers to the range of pore sizes in the 

membrane. Filter papers with identical average pore size can have significantly different pore size 

distributions; consequently, capillary flow rate is determined more by pore size distribution than 

on average pore size.1 As the aggregate pore size increases, however, capillary flow rate increases 

as well. Porosity is the volume occupied by air in a membrane and is typically given as a percentage 

of the membrane’s total volume. For example, a strip of paper measuring 1 × 1 × 180 µm (i.e. a 
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square sheet of Whatman 1 paper) has a volume of 180 µm3 (~1 nL). The porosity (or void fraction) 

of Whatman 1 paper, as published by the manufacturer, is ~68%, hence the volume occupied by 

air in the membrane is ~0.68 nL (0.68 × 1 nL). Alternatively, porosity ( ) can be estimated based 

on the basis weight of paper (0m ), density of cellulose (c ), and paper thickness (b ) as

b
m

c 01 .2 The density of cellulose is ~1540 kg m-3. The void fraction can also be used to 

calculate the volume of liquid required to completely “wet” the membrane.   

 

The most well-known models for understanding imbibition, or the spontaneous movement of a 

liquid into a porous medium, were postulated by Lucas, Washburn, Darcy, and Poiseuille.3-6 The 

relation between wicking rate and the square root of time was found to be linear, i.e.matL  where 

L  is wicked mass or height, a  is a proportionality constant, and m is approximately 0.5.7 

Assumptions made for simple, one-dimensional modeling include treating the porous structure as 

a bundle of aligned (parallel) capillary tubes and neglecting effects from inertia and gravity. 

Groups have since derived relationships to take effects from these forces into account; however, 

in some cases, the resulting equations were nonlinear, second order, and could not be solved 

analytically.8 In certain cases, such as when fluid displacement occurs over much larger distances 

(~cm) than the pore size (~µm), local flow through small pore spaces can be overlooked.9 The 

flow rate in the devices described in this dissertation can be modeled by Darcy’s law in 1D: 

dx

dpk
xv )( where v  is fluid velocity in the direction of flow x, k is the permeability of the 

substrate (and is treated as a constant),  is fluid viscosity, and 
dx

dp
is the change in pressure along 
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the direction of flow. Substrate permeability can be estimated empirically.10, 11 Additional 

conditions of the system include: 

1. Macroscopic flow is stationary and free of inertia 

2. System is isothermal 

3. Low Reynolds numbers 

4. Force due to gravity is negligible  

5. Fluid is incompressible 

6. Evaporation and condensation effects are negligible 

7. Substrate is isotropic, macroscopically homogeneous, and rigid  

8. Fiber swelling effects are negligible 

9. Hydrodynamic resistance is negligible 

10. ɣ, reff, and θ are constant 

In the model system, capillary action drives flow in one direction with an average velocity)(xv , 

where the capillary pressure (cp ) at the location of the fluid front is expressed by Laplace’s 

equation: 
eff

atmc r
pp

 cos2 where   is the liquid-air surface tension,   is liquid-solid contact 

angle, and effr is the effective pore radius (essentially the average pore radius) in the substrate. 

Elizalde et al.,9 used Darcy’s law as described above to estimate the position of the liquid front, l, 

versus time, t, according to: t
pk

dl
xA

dx
lAdllA

k l l l





   '

)(
)()(

0 0

'

0

''' , where A(l ) is the cross 

sectional area of the porous channel and because channels in my experiments have constant width, 

A(x) is constant (5 mm in Figure 5-1c). A fit of experimental parameters for both Darcy and 

Washburn models is shown in Figure 5-2. Although the fit is fairly predictive of flow behavior, 
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some incongruities (especially for low values of t) could stem from systematic errors in the 

experiment such as incorrectly estimating the time elapsed for the fluid front to reach the first 5 

mm mark in each channel. 

 

 

 

 

Figure 5-1 | (A) Schematic of the experimental setup for measuring acqueous flow through porous 
membranes (B) Image capturing the flow of water through Whatman 1 filter paer. The image was 
acquired after ~2 min from the start time, t0. (C) Different experimental conditions were examined for 
their effect(s) on overall flow rate in Whatman 1 paper. The variables tested included bordering 
hydrophilic paper channels with hydrophobic wax, passing the entire device through heated lamination 
rollers, turning the filter paper vertical, and performing the flow rate characterization in fibers oriented 
perpendicularly with the control experiment where fibers were aligned parallel (D) Flow rates are 
compared in different types of filter paper (Whatman 1 and 4). The thicknesses and pore sizes for paper 
types 1 and 4 are 180, 240 µm and 11, 22 µm, respectively. 
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Influence of Variables 

Gravity 

For flow through a single capillary tube, the influence of gravity versus capillary forces scales with 

the Bond number, gldBo , which is a function of fluid density (ρ), gravitational acceleration 

( g ), capillary diameter (d ), penetration distance (l), and surface tension (σ).12 For a wicking 

distance of 50 mm (typical for experiments described in chapters 3 and 4), Bo ~ 10-2 for Whatman 

paper 1 and 4, hence gravitational effects are negligible. Demonstrated in Figure 5-1c is the 

difference in penetration distance for colored water in vertical and horizontal strips of Whatman 1 

paper. Flow in vertical strips is against the force of gravity, which is approximately two orders of 

magnitude weaker than the capillary force. Other constants such as capillary diameter (d ) and 

porosity ( ) play an important role in determining flow velocity (Figure 5-1d). Typical values for 

d  and   in Whatman 1 and 4 paper are d =11, 22 µm and  =0.686, 0.691, respectively.   

 

  

 

Figure 5-2 | Two models of flow in porous networks is compared with experimental data obtained using 
Whatman 1 filter paper.  
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Wax Boundaries 

Water imbibition is commonly described in the literature by Washburn’s equation describing the 

dynamics of one-dimensional fluid flow through a cellulose matrix, provided that gravitational and 

inertial effects are negligible.3, 13-15 Washburn’s equation deduced that imbibition distance l  is 

given by tkl  , where k  is a proportionality constant,   is surface tension,  is dynamic 

viscosity, and t is time. Although wicking phenomena through a cellulose network has been 

described with this model, recently, several groups have observed imbibition dynamics that are 

inconsistent with Washburn’s model, especially for flow in narrow channels bordered by 

hydrophobic walls. 16-18 The inconsistency is likely due to the fact that Washburn’s model 

anticipates that wicking speed is independent of channel width; however, observations suggest that 

wicking speed in narrow channels (bordered by a hydrophobic barrier) was lower than as predicted 

by Washburn’s model. This effect was also observed in my experiments for 1.5 mm wide channels 

in Whatman 1 paper, bordered by a wax barrier (Figure 5-1c). My hypothesis for this observed 

flow rate reduction is that the contact angle between an imbibing fluid (e.g. water) and a 

hydrophobic barrier (e.g. wax) is greater than 90°, whereas the contact angle between water and 

capillaries in bulk is less than 90°. Strong ionic interactions between polar water molecules and 

the hydroxide groups of linked glucose units in cellulose produce better capillary action than when 

channels are bordered by wax, where repulsive forces between water and wax impede flow 

velocity. Hong et al.19 introduced an empirically-determined constant in their model, β, to consider 

the length of an advancing fluid front in contact with wax boundaries. The form they derived for 

predicting imbibition length,ml , was t
w

dkl b
m 

 )
cos
cos

1( 3/1 , which is a function of 

surface tension , viscosity , capillary diameterd , contact angle of the fluid-capillary , contact 
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angle of the fluid-boundaryb , channel widthw , and paper porosity . The ratio 
b  is greater than 

1.0 in my devices because the contact angle at the fluid-wax boundary is greater than 90°, as shown 

in Figure 5-3a, suggesting that narrow channels bordered by wax will tend to have reduced flow 

velocity compared with a channel without hydrophobic barriers. The above equation was fitted to 

experimental data from Figure 5-1c where flow velocity in a narrow (~1.5 mm wide) channel was 

observed over time. The proportionality constant, k was decreased by ~25% (from 0.264 to 0.200) 

to ensure the fit was accurate. Because the proportionality constant was determined empirically 

(for Whatman 1 paper) by Hong et al., it’s feasible that k  should also be determined for my system, 

where differences in experimental protocol could account for a 25% change ink .      

 

Lamination 

Lamination has been used to fabricate microfluidic devices since the 1990’s,20, 21 but it was not 

until 2008 when lamination for µPADs was first reported.22, 23 Patterning with hydrophobic 

chemicals (e.g. wax, fluoropolymers, AKD)13, 24, 25 or forming physical boundaries (e.g. laser or 

 

Figure 5-3 | (A) Static contact angle measured for a 2 µL water droplet on wax that was printed and 
melted into Whatman 1 filter paper. The mean static angle (degrees) for the drops on wax was 130 ± 
1.2° (N = 5). (B) Predicted wicking distance (red line) as a function of time for channels bordered by 
wax (open circles) compared with a control (filled circles). 
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craft cutting)26, 27 provides limited mechanical stability to paper, especially when wet (it is 

considerably worse if the wetted surface area is large relative to the overall sheet size). To address 

this concern, groups have turned to clamps,28 tape,29 additional layers of paper,30 and printing 

toner31 not only to provide additional support for the paper substrate (except for the toner), but also 

to prevent solvent evaporation and reagent contamination from the environment. Although these 

methods have merit, certain adhesives dissolve in organic solvents, and clamps are not practical 

for large-volume manufacturing. In this work, devices were laminated to strengthen the paper 

substrate during chemical analysis, to prevent solvent evaporation, and to protect the user from 

contacting reagents printed on the devices. The effect of lamination on flow velocity was studied 

using Whatman 1 filter paper with the same geometry as described above. Briefly, paper devices 

cut via laser cutter were passed through a laminator at 340 °F once. Thermal lamination sheets are 

coated with an adhesive designed to melt at temperatures below 100 °F; with filter paper, the 

adhesive penetrates into cellulose fibers, which further holds the laminate and paper together. The 

results of the flow rate study are shown in Figure 5-1c (N = 5). After 15 and 55 mm, the average 

flow velocity for unbonded channels was 0.17 and 0.06 mm s-1, respectively (a 2.7× reduction), 

whereas after the same distance, the average flow velocity for bonded (laminated) channels was 

0.12 and 0.04 mm s-1, respectively (a 3.2× reduction). The average time delay for the wicking front 

to reach 15 and 55 mm between unbonded and bonded channels was 36 and 576 s, respectively.   

 

Reduced flow velocity in bonded channels was initially thought to be due to increased resistance 

from the hydrophobic lamination sheet in contact with the carrier fluid. However, water contact 

angles determined for lamination sheets both before and after lamination, as shown in Figure 5-4, 

demonstrated that the surface energy of the sheet was fairly low (contact angle ~65°). Another 
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hypothesis is that paper fibers are compressed by the rollers during lamination. If paper is not 

allowed to re-expand – as is the case here because the thermal lamination sheet prevents it – then 

the effective capillary radius of the fibers decreases, resulting in a decrease in flow rate.3 Cassano 

et al. demonstrated that flow rate could be controlled by changing the distance between rollers 

during device lamination; they found that smaller spacing (38.1 vs. 1 mm) between rollers 

produced the largest compression force on paper and the greatest reduction in flow rate.32 Roller 

temperature was also investigated for its influence on flow rate; however, it was determined to be 

negligible as long as the temperature was sufficient to melt adhesive on the laminate sheets. Any 

small gaps formed at the edges of the paper by the lamination process are also inconsequential 

because the wax barrier completely contains the analyte solution in the hydrophilic channel (i.e. 

no leaking). Encapsulating the device may also increase back pressure by not allowing air to escape 

from the paper matrix, which could decrease flow rate. During the melting process, adhesive may 

also be partially blocking pores in the paper.  

 

 

Figure 5-4 | Static contact angles measured for 2 µL water drops before and after thermal lamination. 
The mean static angle (degrees) for the drops on the left and right images was 83 ± 2.5° (N = 4) and 
65.4 ± 8.9° (N = 3), respectively. 
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Determining capillary flow rate is important for laminated devices because the effective 

concentration (C ) of analyte in any given sample is inversely proportional to the square of the 

change in flow rate.1 In other words,
2





bonded

unbondedC 


, where unbonded  and bonded  are linear flow 

rates for non-laminated and laminated paper channels. Using the flow rates obtained from Figure 

5-1c, the effective analyte concentration at 15 mm, for example, would be ~2× higher in a bonded 

device compared with one that is unbonded. This implies that the location of reagent deposition is 

important to consider regarding assay sensitivity because flow velocity is always decreasing with 

penetration distance (and time) in paper. If reagents are deposited further from the location of 

analyte introduction, the volume of sample that physically passes through the reagent zone 

decreases, lowering detection sensitivity of the entire assay.     

 

Reaction Rate Constants 

Determining the rate constants for reactions between analyte and metal is important for effectively 

modeling the rate at which an analyte precipitates on the substrate for distance-based detection. 

Slow (or fast) reaction kinetics could change how frequently collisions between product and 

reaction occur, which could dictate the location of complex precipitation in the detection channel. 

The amount of complex (C), formed is generally defined as ]][[ BAkC   wherek  is a rate constant 

and A, B are the concentrations of the metal ion and the colorimetric reagent, respectively. In this 

example, the rate of the reaction is 1st order. An assumption here is that reagent B becomes 

immobilized on the paper surface because its solubility in water (the eluent) is very low. 
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Perhaps the most well-characterized chemistry of Ni is in the +2 oxidation state.33 The reagent 

used in this work for the detection of soluble Ni is dimethylglyoxime (dmgH2), the dioxime 

derivative of diketone butane-2,3-dione. The conjugate base (dmgH-) is responsible for forming 

metal-ligand charge-transfer complexes with divalent Ni to form a bright pink-red complex 

Ni(dmgH)2.34 Poor solubility in aqueous media facilitates rapid precipitation of the complex, 

which was why it was an attractive analyte for distance-based detection (Chapters 3, 4). Nitrogen 

atoms in dmgH2 are sp2 hybridized and gives rise to a five-member, square-planar geometric 

complex with Ni. The specificity of dimethylglyoxime for Ni is pH dependent; a UV-Vis analysis 

of the complex has concluded that the maximum absorption peak occurs between pH 9.3-9.5. The 

overall reaction for Ni with DMG is 2
2 )(2 DMGNiDMGNi

k  is considered pseudo-first order 

with respect to Ni concentration with the overall reaction rate being expressed as 

]][[
])([ 2 DMGNik

dt

DMGNid  where [DMG] >> [Ni] in solution.35 Integrating both sides with 

respect to t produces an expression for kteDMGDMGNi 02 ][])([  where the overall rate constant 

measured using adsorptive differential pulse cathodic stripping voltammetry is ~3x105 s-1.36 

 

Less characterized are colored ligand-metal exchange processes concerning Cu and Fe with the 

colorimetric reagents dithiooxamide and bathophenanthroline used in chapters 3 and 4. 

Dithiooxamide (rubeanic acid) is tetradentate and forms a linear coordination complex with 

weakly acidic Cu(III) salt solutions in water.37 One hypothesis for the formation complex between 

Cu and dithiooxamide is that the metal atom is heavily shielded inside a coordinated polymer 

structure, potentially forming a linear polymer.38 The 1:1 reaction is very selective for Cu at low 

pH; sub ppm detection sensitivities have been reported for spectroscometric determination of Cu 
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at 650 nm, even in the presence of other metals.39 Dithiooxamide is known to exist in a 

tautomerization equilibrium depending on solution pH, but the acid form must be deprotonated to 

form metal-ligand complexes.40, 41 The solubility product constant of the metal-ligand precipitate 

is ~7.7x10-15.42 A common reagent for spectrophotometrically determining Fe(II) in solution is 

bathophenanthroline (4,7-diphenyl-1,10-phenanthroline, Bphen), forming a red complex that is 

highly insoluble in water. The Fe(II)-Bphen complex has a high molar extinction coefficient of 

~22,400 M-1 cm-1 at 533 nm, which contributes to its high detection sensitivity for Fe species in 

solution. Solution pH plays an important role for detection specificity; groups have found that a 

solution pH of 4-5.5 produces the most sensitive results.43 It has been postulated that the nitro-

group in nitroferroin diminishes the basicity of the nitrogen atom to increase the stability of the 

Fe-Bphen complex, enabling detection in strongly acidic media.44 The equilibrium constant for the 

first order reaction between Fe and Bphen is ~2.5×106 s-1.44         

 

Closing Comments 

To develop an analytical model that describes analyte complexation, precipitation, and detection 

requires knowledge of capillary wicking, reaction kinetics, and molecular transport. This chapter 

was intended to be a foundation for future modeling efforts using distance-based detection. In this 

chapter, certain environmental and substrate-specific variables were not considered, some of which 

may contribute significantly to the response of the device, depending on the application. For 

instance, evaporation of the analyte droplet was not considered. In certain cases where long flow 

residence times or if the analyte drop volume is small (~ single microliters), solvent evaporation 

could lead to significant variability in the device. Evaporation was not considered in this work, 

however, because experiments performed in chapter 3 demonstrated that even with an analyte drop 
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volume of 15 µL, ambient temperature was insignificant from 20-50° C. Above 50°C, evaporation 

became an issue to the point that analyte was not being carried into the detection channel. There 

are two solutions to this problem: 1) develop calibration curves which account for ambient 

temperature/relative humidity effects (evaporation of known a volume and analyte concentration 

is quantitative), or 2) enclose the device to control solvent evaporation and condensation,45 Neither 

the Darcy or Washburn theoretical models of flow accounted for fiber swelling due to fluid wetting 

or a non-constant effective pore radius. Although not absolutely necessary to approximate flow in 

the channels in my experiments, being able to account for these effects would still improve the 

accuracy of the model. Both variables have been investigated by other groups and models have 

been developed that account for both effects.46, 47    
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CHAPTER 6: CONCLUSIONS AND CONSIDERATIONS FOR THE FUTURE OF 

MICROFLUIDIC PAPER-BASED ANALYTICAL DEVICE TECHNOLOGY 

 
 

Chapter Overview 

This section presents alternative applications for µPAD technology and suggestions for improving 

the technology presented in Chapters 2–4 of this dissertation. Work in this chapter was not 

published at the time of writing, but may be included in future publications. Improvements in 

surface modification, reagent immobilization, substrate/support materials, inkjet-printing 

chemistry, and new modeling theory have opened many doors for future efforts in the field. The 

work in this dissertation describes measurement techniques that can be applied for rapid, on-site 

detection of targeted analytes, which is critical for understanding sources, transformations, and 

fates of environmental contaminants. This technology represents a step towards empowerment of 

the ‘citizen scientist’ - the idea that people will not only be able to monitor their exposure to 

harmful pollutants on a personal level but can also rapidly identify sources of pollution for 

scientific evaluation and remediation. 

 

Improving µPAD Detection of Metals 

Chemical Modification of the Substrate 

The paper-based methods described in preceding chapters for determining metal concentrations in 

air pollution have detection limits as low as 0.71 µg m-3 (based on 37 mm sample filter, 4 L min-

1, 8 hr work-day) without additional substrate modification or sample pre-concentration. Although 

the reported detection limits are adequate in environments like in the occupational sector where 

acute exposure levels to toxic metals can exceed 2 mg m-3,1 ambient exposure levels are typically 
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10–1000x lower.2, 3 In drinking water for example, average Ni concentrations range from 5.5×10-

4–0.025 mg m-3.4 Therefore, methods for improving detection sensitivity and selectivity could 

extend the µPAD technology presented in this dissertation to applications where metals are 

expected to be present at low (near background) levels (e.g. home kitchens, drinking water, 

roadside emissions).5 Separating metals of interest from complexes and complicated matrices is 

vital for improving method sensitivity. My approach (Chapters 2-4) utilized masking chemistry to 

reduce the binding constants of interfering metal cations for the colorimetric reagent via: 1) an 

oxidizing or reducing agent (e.g. hydroxylamine hydrochloride reduced Fe(III) to Fe(II), 

preventing interference for Ni detection), and 2) altering solution pH.6, 7 Solution chemistry is 

powerful, but the signal-to-noise ratio can be further improved; other methods have been reported 

recently for chemically and physically altering the paper substrate itself. Fortunately, cellulose is 

a relatively forgiving substrate for modifying surface chemistry to entrap chemicals. There are 

many methods for activating cellulose, usually with a small molecule or polymer, to generate 

surface functional groups suitable for analyte immobilization or physical adsorption.8 Depending 

on the application, methods have been reported for covalently linking aldehyde, epoxy, amines, 

benzophenones, phosphates, and carboxylic acid groups on the surface of paper.8-12 “Bioactive 

paper”, a term recently coined to describe paper sensors with activated surfaces for bioanalytical 

applications, has been developed using immobilized β-Galactosidase and CPRG for multiplexing 

the detection of Hg(II), Ag(I), Cu(II), Cd(II), Pb(II), Cr(VI), and Ni(II).13 The advantage of 

modifying the substrate to immobilize the analyte is that it enables parallel detection; complexation 

chemistry that is not carried in the solution phase as analyte is transported through the device 

means multiple processes can occur sequentially. Instead of needing to separate chemical 

processes for each metal (as was the case in Chapter 4), multiplexed detection can occur within 
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the same channel or physical zone in a device. Chemical immobilization will not automatically 

lower detection limits for every device, though, because buffer chemistry (and ionic strength) play 

very important roles in detection sensitivity and selectivity. Physical separation of detection 

chemistry may still be required, even if reagents are immobilized. 

 

Introducing electrostatic attractive/repulsive chemistry between an analyte and the surface has also 

become a common approach for pre-concentrating the sample and improving signal-to-noise. For 

example, a passive sampling method for waterborne Zn(II) was recently developed by Almeida et 

al.14 where a polymer inclusion membrane functionalized with di-2-(ethylhexyl) phosphoric acid 

facilitated transport of divalent Zn from aquatic systems, through a sorbent membrane, to a 

receiving solution for collection and analysis. A similar approach has been used by others for 

selective determination of Cu(II) from samples of urban water.15 The reported detection limit of 

the method was 1×10-4 mg m-3. Additionally, multiple charged species can be sequentially added 

to the surface of paper in a layer-by-layer assembly to build or trap/enclose polar analytes within 

the poly-layer.16 Other promising possibilities for improving detection sensitivity includes 

imparting chelation, adsorption, hydrophilic, or hydrophobic properties to paper.  

 

Physical Modification of the Substrate 

During paper wetting, analytes become homogenously distributed throughout the thickness of the 

porous medium. For µPADs, where quantification is commonly based on integrating the intensity 

of a colored product, vertical analyte transport can inhibit accurate (colorimetric) quantitation 

because visible light readily scatters off most paper types, meaning that much of the colored 

“signal” is lost beyond the first ~50 µm of the paper surface.17 To improve detection efficiency, 
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analyte can be confined to a smaller surface area (assuming paper thickness remains constant), 

increasing analyte density and generating a higher colorimetric signal.7 The benefits of this 

approach have been reported for detecting gold nanorods at < 10-18 M using surface-enhanced 

Raman scattering.18 In this work, the authors designed an octagonal star-shaped sensor where 

analyte added to the device wicked radially from the center of the device to the tip of each point, 

resulting in an extreme increase in analyte concentration.   

 

Moving Away from the Benchtop 

The sensor presented in Chapter 2 has only been tested in the laboratory, but of course, the ultimate 

goal for any µPAD technology is field deployment at the point-of-need. Two primary limitations 

impeding its portability are analyte quantification by desktop scanning and the need to physically 

compact the sample filter punch and device during operation. The first problem is easily 

addressable now that acceptance of camera phones is nearly ubiquitous worldwide.19 Details of 

camera phone-based applications for µPADs are discussed in Chapter 1. To quantify metal 

particulate sampled from air pollution, a pretreatment process (Chapter 2), must be performed 

which degrades the physical integrity of the sampling filter. The result of this process is an uneven 

(non-flat) filter. We found that interdevice reproducibility was improved if the filter punch 

(containing the metals of interest) was in as much contact with the cellulose substrate as possible. 

For early attempts, a couple textbooks (~5 lbs total) provided sufficient weight to press the filter 

flat; however, alternative methods are necessary if a truly field-deployable sensor is to be 

realized.20 Figure 6-1 is a schematic of a 3D-printed cassette holder which houses a µPAD 

sandwiched between two poly(methyl methacrylate) (PMMA) layers. The PMMA layers were cut  
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with a CO2 laser in strategic areas such that eluent could be added while preventing the filter punch 

from losing contact with the paper surface.      

 

Potential Pitfalls Inhibiting Widespread Use 

Future improvements must be made to control liquid handling of strong bases and acids such that 

a minimally trained individual in the field can perform all sample preparation processes without 

undue risk to themselves. The vision for the future of µPAD-based assessment of airborne metals 

 

Figure 6-1 | A PMMA/ 3D-printed cassette holder for colorimetric detection of Ni, Cu, Fe, and Cr is 
shown. (A) The exploded view of the holder contains three layers, a top PMMA transparent sheet, the 
paper device, and a PMMA back to secure correct placement of the sensor. (B) Grooves cut into the 
PMMA sheets ensure the device is locked in the same position every time. The PMMA holders are then 
slid into an acetyl butyl styrene 3D-printed sleeve. The sleeve is designed to produce the same 
compressive force on the device every time. (C) After eluent is added, the devices can be carried or 
stored, even during operation. (D) Average relative standard deviation (%) between devices measuring 
the same metal concentration where the compressive force was due to a book and a 5 lb. weight placed 
on the device, and the compression sleeve (N = 3).  
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is that field analysis of metal analytes on filters could be performed by industrial hygienists having 

little technical training in chemistry or microfluidic fields.  

 

A major reason µPADs may have trouble translating from the benchtop to the field is lack of a true 

market need. In order for individuals to adopt any new technology, there must be a considerably 

motivating factor driving change. The low cost of paper sensors and convenience, as was the case 

for the at-home pregnancy test strip, may ultimately bridge the gap for other µPADs. For now, 

significant limitations exist in emerging µPAD assays such as detection sensitivity, selectivity, and 

sample size. Detection methods are continuing to improve, but how long will it be before assays 

can measure clinically relevant bio-analytes (in the biomedical case), or epidemiologically relevant 

contamination in drinking water? Current µPADs are typically not stable or robust enough to 

handle complicated sample matrices, which is why they are relegated to the benchtop, for now. At 

present, there have been a few case studies where groups have attempted to commercialize new 

µPAD technology, such as Microchips Biotech, Inc., Diagnostics For All, Optofluidics, Inc., 

Access Sensor Technologies, RainDance Technologies, Inc., and Smart Holograms Ltd. The 

market presence of these companies varies thus far, but because this field is still in its infancy, it 

will take a few more decades before µPADs find their niche.     

 

Considerations for the Future 

The intent of paper-based analytical device technology is to change the paradigm of exposure 

assessment and biomedical diagnosis, driving costs down while simultaneously increasing the 

throughput of testing. In the end, the success or failure of μPADs will likely be determined by their 

use outside of academic research laboratories, much like traditional microfluidic devices. While 
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significant attention has rightfully been placed on the potential for improved clinical diagnostics, 

there remain many other areas for future expansion. Particularly exciting is the potential for 

application of μPADs for large epidemiology studies where analytical measurements have 

traditionally been a cost limiting factor. In a similar fashion, the low cost and ease of use may open 

the door to wide spread analytical measurements thereby enabling the growing field of citizen 

science. In fashion similar to precipitation monitoring in the United States by everyday citizens,21 

μPADs may open the door to wide spread environmental monitoring with spatial resolution that 

has never been achieved in previous studies.22 To achieve these endpoints, however, requires 

continued development of the basic chemistry of sensing with μPADs. 
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APPENDIX 1: RECORDING COLORIMETRIC INTENSITY 

FOR QUANTIFYING METALS WITH µPADS 
 
 
 
Colorimetric intensity from reaction complexes in paper devices was quantified with a desktop 

scanner (XEROX DocuMate 3220) in TIFF format at 600 dpi to preserve image quality. Average 

pixel intensity was measured with public domain software (Image J, National Institutes of Health) 

in which the average pixel intensity contributed by red, green, and blue pixels was recorded at each 

detection zone. The process for analyzing paper devices by colorimetry is detailed here and is 

shown graphically in Figure A1-1. 

1. Access the “Color Threshold” context menu in Image J through “Image/Adjust/Color 

Threshold”. 

2. Select HSB detection mode which enables adjustment of image saturation, brightness, 

and hue. 

3. Hue was adjusted empirically and the values for each metal are provided in Table A1-

1. 

4. Before integrating color intensity, images were inverted such that a pixel intensity value 

of 255 (range 0-255) corresponded to high metal concentration. If the images are not 

inverted, a brighter (or darker) color spot (i.e. high analyte concentration) would appear 

darker. Although technically correct, this method of analysis is less intuitive. 

5. The mean intensity was measured by selecting “limit to threshold” in the “set 

measurements window”. The areas to be measured were selected via the wand tool 

which finds a grouping of similar pixels based on average pixel intensity.   
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Figure A1-1 | (A) Image J protocol for quantifying colorimetric intensity of colored reaction products 
for detection of Fe, Ni, and Cu. The wax background of a paper sensor for Ni (B) is removed (C) using 
threshold values shown in Table A1-1. The wand tool selects only colored product in the detection zone 
(D). The image is inverted such that high analyte concentration values appear as whiter pixel intensities. 
 

A 

B 

C 

D 
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Interdevice variability was measured for four paper sensors for Fe using desktop scanning and 
Image J for analysis. New solutions were made for each set of experiments over the course of 
seven days. The same protocol was followed for each analysis; results of the scan are given in 
Figure A1-2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table A1-1 | Threshold values for four metals using Image J software. The range of pixel intensity 
units is given for each metal, as well as the time-weighted average concentration for each. The TWA 
is the average concentration for which a person can be exposed for 8 hr per day over a career without 
measurable ill effects. 

Analyte 
µPAD Signal Intensity 

Range (PIUa ± SD) 
Color Hue Thresholding 

Window Applied 
TWAb Detection 

Range (µg m-3 ± SD) 

Fe 18.7-121 ± 6.5 18 - 230 7.80-107 ± 6.9 

Cu 27.0-79.3 ± 5.6 35 - 225 10.7-121 ± 8.9 

Ni 19.1-48.0 ± 5.6 10 - 210 7.80-64.2 ± 5.8 

Cr 17.7-87.9 ± 3.7 0 - 180 2.66-42.8 ± 3.9 
a Pixel Intensity Unit   
b Time Weighted Average   

 

 

 

 

 

Figure A1-2 | Interdevice variability for Fe detection across four paper devices. The average difference 
in measured intensity per Fe mass (slope) was 4.8 ± 4.4 % across all curves. 
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APPENDIX 2: PRINTING COLORIMETRIC REAGENTS FOR DISTANCE-BASED 

DETECTION OF MULTIPLE METALS 

 
 
 

A list of common solvents and a few of their properties is given in table A2-1. The surface tension, 

viscosity, and density are important parameters which determine how well a solution can be printed 

with common desktop thermal and piezoelectric printers. Another important factor to consider is 

solution vapor pressure because printing resolution is directly related to how quickly a droplet 

evaporations after deposition. For instance, under isothermal conditions, drops composed entirely 

of water (17.5 torr) will not evaporate as readily as isopropyl alcohol (32.4 torr) and will wick for 

a longer time in porous media. Ink formulations that were deemed “printable” were developed 

according to the reciprocal of the Ohnesorge number Z = Oh-1 where  2/1)(dOh  and is a 

function of print head diameterd , surface tension γ, density ρ, and dynamic viscosity η.  

 

Creating Reagent Gradients  

A reagent gradient was printed onto paper to change the distance-based output of metal detection. 

The method used to determine which gradient function was appropriate for printing is outlined in 

Figure A2-1. Briefly, the flow rate of several devices over a range of concentrations for a given 

metal were measured. A counter function was created such that it mirrored the best fit curve of the 

before-measured flow rates. A reagent gradient was printed according to the mirrored function, 

where the concentration of reagents were determined empirically.  
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Table A2-1 | Z values for common solvents. Values were quantified using Oh−1 based on a print head 
nozzle diameter of 90 µm. 
 

Solvent Name Vapor Pressure 
(Torr)  

Viscosity 

(N s/m
2
) 

Density 

(kg/m
3
) 

Surface Tension 
(N/m) Z value 

n-Butyl Alcohol 4.4 0.00298 809.7 0.02457 14.1994 
Isobutyl Alcohol 8.8 0.00285 801.6 0.02298 14.2866 

Isopropyl Alcohol 32.4 0.0024 785.4 0.02179 16.3525 
n-Propyl Alcohol 15 0.0023 803.7 0.0237 18.0017 

Dimethyl Acetamide 1.3 (25°C) 0.00214 941.5 0.03243 24.4958 
2-Methoxyethanol 6.2 0.00172 964.6 0.0318 30.5478 
Dimethylsulfoxide 0.42 0.00199 1100 0.04354 32.992 

Ethanol 40 0.001144 789 0.0221 34.6282 
Ethyl Alcohol 43.9 0.0011 789.2 0.02232 36.1967 
1,4-Dioxane 29 0.00137 1033.6 0.03445 41.3211 
Cyclohexane 77.5 0.001 778.5 0.02498 41.8357 

o-Dichlorobenzene 1.2 0.00132 1305.8 0.02684 42.5478 
o-Xylene 6.6 0.000812 880 0.0301 60.1298 
Pyridine 18 0.00095 983.2 0.03688 60.1332 
o-Xylene 6 0.00081 880.2 0.03003 60.215 

n-Butyl Acetate 7.8 0.00074 879.6 0.02509 60.2258 
N,N-Dimethylformamide 2.7 0.00092 948.7 0.03676 60.8956 

Methanol 97 0.00059 791.3 0.02255 67.9224 
Iso-Octane 41 0.0005 691.9 0.01877 68.3762 

Methyl Isobutyl Ketone 16 0.00058 800.8 0.02364 71.1671 
Chlorobenzene 8.8 0.0008 1105.8 0.03328 71.9385 

m-xylene 8.3 0.00062 860 0.0289 76.283 
Ethylene Dichloride 83.35 0.00079 1253 0.03223 76.3132 

Toluene 28.5 0.00059 866.9 0.02853 79.9659 
Water 17.54 0.001 998.2 0.0728 80.8715 
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Figure A2-1 | Steps to create a printable reagent gradient. 
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Empirically derived equations given below were used to print colorimetric gradients for measuring 

Ni, Cu, and Fe. For each equation, eluent flow rates were first measured in the multi-channel device 

for several analyte concentrations. The equations below were normalized to 255, the maximum 

intensity in RGB space for a given color. For the following equations, the units on the vertical and 

horizontal axes were RGB intensity and distance in pixels, respectively. 

 

Equation for Ni: ݕ =  −͹.͸ × ͳͲ−8�ସ +  Ͷ.Ͷ × ͳͲ−ହ�ଷ −  ͳ.Ͳ × ͳͲ−ଶ�ଶ + ʹ.ͳ� + 5.͹ 

Equation for Cu: ݕ =  −͹.Ͳ × ͳͲ−8�ସ +  Ͷ.Ͳ × ͳͲ−ହ�ଷ −  ͳ.ͳ × ͳͲ−ଶ�ଶ + ʹ.ʹ� + ͸.͵ 

Equation for Fe: ݕ =  −͸.Ͳ × ͳͲ−8�ସ +  Ͷ.Ͳ × ͳͲ−ହ�ଷ −  9.͸ × ͳͲ−ଷ�ଶ + ʹ.ͳ� + Ͷ.ͳ 

 

Statistical Analysis of Distance-Based Detection  

For analysis in this work, weighting was given to distance (y) to the −1 power, according to: 

�ݓ = ∑ଵ−�ݕ�  ଵ��=ଵ−�ݕ  

 

Confidence and prediction intervals were calculated from the following equations with respect to 

the best-fit regression line. 

�ܥ =  ±�� ଶ⁄ ,஽�ி̂ݏ√ͳ� + ሺ� − �̅ሻଶ���   
ܲ� =  ±�� ଶ⁄ ,஽�ி̂ݏ√ ͳݓ� + ͳ� + ሺ� − �̅ሻଶ���  
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Here, �� ଶ⁄ ,஽�ி corresponds to a two-tail distribution of the t distribution and DOF are the degrees 

of freedom equal to n-2 for linear fits. S-hat is a function of the sum of squared error (SSE), given 

by:  

ݏ̂ =  √ ��ா�ܱ� 

X-bar corresponds to the weighted x-centroid given by: 

�̅ =  ∑ ∑ଵ=�����ݓ ଵ=���ݓ  

Sxx corresponds to the weighted sum of squares between xi and x-bar, given by: ��� =  ∑ ��ሺ�ݓ − �̅ሻଶ�=ଵ  

 

Ink chemistry was investigated as a means of precisely controlling reagent deposition; however, 

not all reagents are compatible with inkjet printing. In previous efforts, bathocuproine was utilized 

as a complexing agent for Cu detection, but it was discovered that the rapid-prototyped plastic 

housing comprising the ink reservoirs in the printer were incompatible with bathocuproine. An 

alternative solution was found with dithiooxamide, a ligand for Cu that was compatible with the 

Epson R280 model used here. A comparison between ligands and their effect on distance-based 

detection of Cu is shown in Figure A2-3. 
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Figure A2-2 | Unweighted (A, C, E) and weighted (B, D, F) linear regression fits for Ni, Cu, and Fe 
showing 95% prediction (blue) and confidence (green) intervals.  
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Figure A2-3 | The hydrophobicity of the ligand-metal complex affects the “sharpness” of the colored 
formation front. Dithiooxamide (left panel) forms a more delineated front edge than bathocuproine 
(middle panel); dithiooxamide is also more compatible with inkjet printing than bathocuproine. 
Magnified views of the two formation fronts are shown in the panel on the right.  
 


	Preliminaries final 2
	Chapter 1 final
	Chapter 2 final_committee changes 3
	Chapter 3 final 3
	Chapter 4 final 3
	Chapter 5 final 2
	Chapter 6 final 2
	Appendix 1 final
	Appendix 2 final

