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ABSTRACT 

 

ION PROPERTIES FROM HIGH-L RYDBERG ATOM SPECTROSCOPY: 

APPLICATIONS TO NICKEL 

 

 An effective potential model describing high-L Rydberg states was systematically 

derived.  The model assumes that the response of the core ion to the electric field of the Rydberg 

electron is at least approximately adiabatic; in other words, the excitation energies of the core ion 

are large compared to the typical energies of the Rydberg levels.  The resulting model should 

describe a wide variety of high-L Rydberg systems.  It can be used, in combination with 

experimental measurements of fine structure patterns, to extract measurements of core ion 

properties that control long-range interactions between the core and the Rydberg electron.  These 

include permanent electric and magnetic moments, and electric polarizabilities.  As an example 

application of the model, the fine structure pattern in n = 9 Rydberg levels of nickel was 

measured using the Microwave Resonant Excitation Stark Ionization Spectroscopy (RESIS) 

method.  Properties of the 
2
D5/2 ground state of Ni

+
 extracted from these measurements include 

quadrupole and hexadecapole moments  0.4705 2  a.u.Q    and  0.27 9  a.u.  , scalar and 

tensor dipole polarizabilities  ,0 7.925 10  a.u.D   and  ,2 1.043 33  a.u.D  , and scalar 

quadrupole polarizability  ,0 71 9 a.u.Q    In addition, evidence for a permanent magnetic 

octupole moment of Ni
+
 was seen, parameterized by the coefficient  3 0.346 57  a.u.MC    
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Chapter 1: Introduction 

1.1 Motivation 

 A Rydberg state is a state of any atom or positive ion with a highly excited electron 

weakly attached to the positive ion core.  For the study presented here, measurement of the 

nickel n = 9 Rydberg fine structure, the nickel ion looks almost like a proton as seen by the 

Rydberg electron.  This is especially true if the Rydberg electron is a nonpenetrating high-L 

state.  The system, a cartoon of which is shown in Fig. 1.1, looks almost like hydrogen. 

 

 
Figure 1.1:  Diagram of a “hydrogen-like” nickel atom. 

 

The energy levels of the Rydberg electron are in fact dominated by the Coulomb attraction 

between it and the ion core.  However, since the nickel ion has properties that the proton does 

not, such as polarizabilities and permanent moments, there are long-range interactions between 

the Rydberg electron and core ion not present in hydrogen.  Thus the energy levels are not 

exactly hydrogenic, so knowing their positions can lead to measurements of the ion core 

properties responsible for the additional long range interactions.  Many of these properties are 

very difficult to measure for neutral atoms, and consequently the ion properties extracted from 

high-L Rydberg spectroscopy represent a unique probe of atomic structure theory.  Such 

measurements provide valuable tests of calculations of positive ion wave functions, tests that can 

be difficult or impossible for neutral atoms. 
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 In order to use the Rydberg electron as a probe of the core ion, it must have a high 

enough orbital angular momentum, L, that it can be distinguished from the core’s electrons and 

does not penetrate the space of the core.  The centrifugal barrier, 
 

2

1

2

L L

r


, stops the Rydberg 

electron from entering the space of the core electrons and determines the classical turning points 

of the Rydberg electron.  The radial part of the Schrodinger equation for an electron orbiting a 

charge of +Q is given by 

 
 

 
 

   
2

2 2

12
2 0     atomic units

nL

nL

d P r L LQ
E n P r

dr r r

 
    
 

, (1.1) 

where     nL nLP r rR r  and  
2

2

1

2

Q
E n

n
  .  Setting the bracketed portion, which represents the 

kinetic energy of the electron, equal to zero and solving for r gives the classical turning points 

 
 2

2

1
1 1

L Ln
r

Q n

 
   
 
 

, (1.2) 

where the Bohr radius 0 0.0529 nma   is the unit length of atomic units (a.u.).  The inner 

classical turning point is greater than 

 
 1

2
ITP

L L
r

Q


  (1.3) 

and equal to this in the limit of 2 2L n .  Thus a Rydberg electron is considered nonpenetrating 

if ITPr  is much larger than the core ion’s radius.  Typically this requires L ≥ 5 for neutral 

Rydberg atoms. 

 This chapter introduces the basic idea behind the theory describing the interaction 

between a Rydberg electron and an ion core.  It also gives a brief description of Resonant 

Excitation Stark Ionization Spectroscopy (RESIS), the technique used here to measure Rydberg 
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fine structure patterns.  Chapter 2 derives the effective potential model for high-L Rydberg 

atoms, which provides a rigorous framework for extracting positive ion properties from high-L 

Rydberg fine structure measurements.  Chapter 3 explains the experimental setup used for the 

RESIS technique, which makes precise measurements of high-L Rydberg fine structures 

possible.  Chapter 4 presents RESIS measurements for the specific case of nickel and applies the 

effective potential to extract properties of Ni
+
.  Chapter 5 provides a summary. 

 In general, the motivation behind making these measurements of core properties is to 

provide a check on developing atomic theory [1].  Energy levels, unfortunately, are not very 

sensitive to theoretical wave functions.  Lifetimes and transition strengths are useful for testing 

theoretical calculations, but are difficult to measure precisely.  Thus the method presented here 

for measuring and modeling high-L Rydberg energy levels is incredibly useful because of the 

precise core properties that can be extracted. 

1.2 Theoretical Model 

 The theory of high-L Rydberg systems begins with a Hamiltonian which consists of the 

zeroth-order Hamiltonian of a free ion, the zeroth-order Hamiltonian of the hydrogenic Rydberg 

electron orbiting a positive ion core, and the potential representing the interaction between them.  

The spin of the Rydberg electron plays a nearly negligible role in the binding energy of the 

Rydberg system.  To a good approximation the energy eigenstates are characterized by the vector 

sum of cJ , the total angular momentum of the core ion, and L, the orbital angular momentum of 

the Rydberg electron.  This implies that there are 2 cJ  + 1 energies possible for each value of L. 

 The potential is written as a multipole expansion and perturbation theory is applied to 

calculate the energy of the core plus electron system.  It is assumed that the core excitation 

energies are much larger than the Rydberg energy, thus allowing the energy denominators that 
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occur in second-order perturbation theory to be expanded as a series of terms.  In the end the 

perturbation energy is written as the expectation value of an effective potential consisting of a 

sum of increasing negative powers of the Rydberg electron’s radial coordinate whose 

coefficients depend on the matrix elements and energies of the free ion: 

 

 
       

        
       2 2 4 4

3 3

0 1 2 3 4

ˆ ˆ
ˆ

2 4

0 0

eff

c Ryd c Ryd

c c Ryd

c c c c

c c c c

E V

X J C r X J C r
A A L J A A X J T r A

J J J J

J J J J



   
    
         
      
                

,  

  (1.4) 

where the structure parameters are defined as 

 

 

 

 

 

4 6

0 ,0 ,0 ,0

7 8

,0 ,0 ,0 ,0

2 3 6 8

1 ,1 ,1 ,1

3 4 6

2 ,2 ,2 ,2 ,2

7

,2

1 1
6

2 2

18 1
6 72 1

5 2 10

1

2

1 1
6

2 2

8 1

5

D Q DnL nL

D O Q DnL nL

J FS D Q DnL nL nL

D Q D DOnL nL nL

D nL

A r r

L LQ
r r

A g r r r

A Q r r r

Q
r

  

   

   

   



 

 

  

  



   

  
        

  

     

     

 
 

 
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8

,2 ,2 ,2 ,2 ,2
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5 6 8

4 ,4 ,4 ,4 ,4 ,4 ,4
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2 4 10

1 1
6 6

2 2

O Q QH DO D nL

Q DOnL nL

Q DO O Q QH DOnL nL nL

L L
r

A C r r

A r r r
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 

  
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   

        

.  

  (1.5) 

Although there is a lot of information contained within this set of equations, overall there are 

only a few main points to get from it. 

 The first is that the energy has been broken into different tensor orders which consist of 

scalar products of tensor operators.  Each of these products may be simply calculated using 
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known formulas, noting that the possible tensor orders are restricted by cJ  and L.  The 

usefulness of breaking the energy into tensor orders can be understood by looking at the 

dominant structure orders:  scalar and tensor.  The scalar structure, shown on the left of Fig. 1.2, 

simply shifts the energy down from the hydrogenic energy level.  The tensor structure, however, 

splits the energies into multiple levels.  Shown in Fig. 1.2, on the right, is the tensor structure for 

a core ion with cJ  = 5/2 and thus six energy levels for a given n and L. 

 

Figure 1.2:  Scalar and tensor structures (left and right, respectively) where the n = 9 hydrogenic 

energy, shown by the dashed line, has been taken as the zero point.  For comparison, the n = 10 

hydrogenic energy level is nearly 8000 GHz away.  Both plots show L = 6, 7, and 8 (also labeled 

using spectroscopic notation).  The values used to produce these plots are for the particular case 

of nickel. 

 

 Another point is that the core and Rydberg electron dependence has been separated 

within the structure parameters.  The Rydberg dependence has been written as the expectation 

value of the Rydberg radial coordinate.  Since the Rydberg electron’s zeroth-order wave 

functions are hydrogenic, these expressions have well-known formulas and are simple to 

calculate [2].  Additionally, it should be emphasized that the core properties contain all of the 

dependence of the potentially very complex core wave functions.  Many of these coefficients can 

be identified with well-defined properties of the core.  Thus the theory of high-L Rydberg 
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systems can be applied to measurements of Rydberg fine structure patterns in order to extract 

properties of the ion core. 

1.3 RESIS Technique 

 The RESIS technique is a unique form of spectroscopy in which high-L Rydberg states in 

a fast Rydberg beam are resonantly excited by a Doppler-tuned CO2 laser, resolving the fine 

structure pattern of the high-L levels.  It is unique in that it allows access to high-L Rydberg 

states that are not otherwise visible using traditional spectroscopy techniques.  Absorption 

spectroscopy from the ground state of atoms is limited by the selection rule ΔL = ±1 (dipole 

excitation).  Since atoms tend to have ground states with low orbital angular momentum, the 

excited states reached by absorption spectroscopy will also have low L.  The emission spectra of 

L < 3 excited states dominate the emission spectra of atoms and ions since they are most easily 

measured.  The emission of high-L excited states occurs, but at a much lower rate and typically 

in the infrared where it would require high-resolution spectrometers in order to resolve non-

hydrogenic features.  The RESIS method, on the other hand, relies on the upward excitation of 

Rydberg atoms or ions which means that all Ls are accessible.  Figure 1.3 illustrates the basic 

idea of the RESIS technique (a schematic of the apparatus is shown in Fig. 3.1).  

 

 
Figure 1.3:  Illustration of the RESIS technique where a positive ion (Jc) of charge Q captures a 

high-L Rydberg electron (nL).  The electron is excited to some upper state by a Doppler-tuned 

CO2 laser before being Stark ionized and the resulting ion detected.  States of all possible L 

values are formed in the capture process and can be excited upwards by the laser. 
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The optical RESIS technique typically provides the initial mapping of the pattern while the 

microwave RESIS technique gives more precise measurements.  Both begin with an ion beam 

accelerated to a high velocity, 0.001
v

c
 .  A small percentage of the ion beam charge captures a 

highly excited electron from a Rydberg target.  The Rydberg target is created from a thermal 

beam of Rb which is step-wise excited to the 9F state using three diode lasers.  The beam then 

enters the region of the initial stripper where it encounters an electric field strong enough to 

ionize any electrons with 15n   and deflect any remaining ions.  The beam then enters the first 

laser interaction region (LIR) where it intersects a Doppler-tuned CO2 laser beam which excites 

the Rydberg electrons from a low n to a previously depleted upper n'.  The final stripper would 

then be set to Stark ionize states with that particular n'.  In other words, an external field greater 

than that which binds the Rydberg electron to the core is applied, resulting in the ionization of 

the Rydberg electron [3].  The detector then measures the current synchronous with the chopping 

of the CO2 laser.  This current is measured as a function of the Doppler-tuned CO2 laser 

frequency to reveal the optical RESIS spectrum and the high-L binding energies. 

 With the microwave RESIS technique, transitions between Rydberg levels of the same n 

are induced by microwave electric fields and detected by taking advantage of the RESIS 

excitation’s resolution of the fine structure pattern.  Two LIRs are used, both tuned to excite the 

same Rydberg level.  The first LIR depletes the population of that level.  A microwave 

interaction region, between the two LIRs, may replenish that level’s population if it is in 

resonance with a transition to a different fine structure level (same n).  If this occurs, the second 

LIR will excite more atoms to the upper state of the optical RESIS transition, increasing the 

detected Stark ionization current.  The detector is set to measure the current synchronous with 
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the chopping of the microwave field, and this is measured as a function of the microwave 

frequency to reveal the resonance. 

1.4 Past and Present 

 The theoretical framework for high-L Rydberg atoms with a 
cJ  = 0 core has been studied 

for years.  Such a system is described by a scalar potential with leading terms inversely 

proportional to the fourth and sixth powers of the Rydberg electron’s radial coordinate: 

 
0 4 6

61 1
~

2 2c

Q DD
JV

r r

 


 
   

 
. (1.6) 

(a brief history is presented in Section 2.1).  Note that this potential neglects all magnetic 

interactions, so they must be included separately (Section 2.2D).  Early experiments with 

cJ  = 3/2, such as Ne
+
 [4] and Ar

+
 [5], lacked a rigorous derivation of the theoretical framework 

needed to describe the more complicated Rydberg fine structures of these atoms.  The 

experimental study presented here of Ni
+
, chosen because it has a cJ  equal to 5/2, represents the 

most complicated high-L Rydberg atom studied to date.  In addition to the vector and tensor 

terms mentioned in the Ne
+
 and Ar

+
 studies, the higher cJ  of the nickel ion indicates the 

possibility of higher-order tensor terms not previously considered.  It also highlights the need for 

a systematic derivation of the theory describing not just high-L Rydberg states of nickel, but 

generalized to any cJ  and any charge for the positive ion.  The theory derived in Chapter 2 lays 

a solid framework for a wide range of possible studies.  Additionally, the study of Ni
+
 opens up 

the possibility of future experiments on ions with cJ  = 5/2. 



 

9 

 

Chapter 2: Theoretical Model of High-L Rydberg States 

2.1 Introduction 

 The wave functions and energies of a single Rydberg electron bound to an atomic ion 

approach purely hydrogenic values as the angular momentum of the Rydberg electron increases.  

Since the inner classical turning point of the Rydberg electron’s radial motion is greater than  

 
 1

2
ITP

L L
r

Q


 ,  (2.1) 

where L is its angular momentum and Q is the net charge of the core ion, Rydberg electrons of 

sufficiently high L are effectively confined outside of the region of space occupied by the ion 

core.  Their interactions with the ion core are dominated by the fully screened Coulomb 

attraction that binds them in their orbit.  Any additional interactions are weak and long-ranged.  

In the absence of these additional interactions, all high-L Rydberg levels of the same principal 

quantum number would be degenerate except for small relativistic effects.  The presence of the 

weak long-range interactions lifts this degeneracy and produces a pattern of binding energies that 

reflects the strength and character of these interactions.  Measurement of these “fine structure 

patterns” is therefore a convenient probe of the core properties that control the strength of the 

long-range interactions, such as polarizabilities and permanent electric moments. 

 The complexity of these fine structure patterns depends directly on the angular 

momentum of the core ion, cJ .  These patterns represent an example of “pair-coupling” where 

the spin splitting of the Rydberg electron is nearly negligible and the intermediate angular 

momentum, 

 cK J L  , (2.2) 
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describes the eigenstates [6].  In general there are 2 1cJ   energies possible for each value of the 

Rydberg electron’s orbital angular momentum, L.  Consequently, in what follows, K will be 

considered to be the total angular momentum of the Rydberg system and the small effect of the 

Rydberg electron’s spin will be treated separately. 

 The basic idea of using the spectroscopy of nonpenetrating Rydberg levels to extract 

information about the properties of the ion core was discussed very early by Mayer and Mayer in 

1933 [7].  In the case of Rydberg atoms or ions with S-state cores, the deviation of the term 

energies from their hydrogenic values was related to the dipole and quadrupole polarizabilities of 

the ion with a model considering the electric field and field gradient produced by a stationary 

Rydberg electron.  This led to a simple expression for the energy change in terms of the 

expectation value of an effective potential: 

 
0 4 6

1 1

2 2c

QD
J

nL

E
r r


    . (2.3) 

 The two basic assumptions underlying this approach are common to all treatments of high-L 

Rydberg structure, including this work: 

A1.  The Rydberg electron is distinguishable from the electrons in the ion core. 

A2.  The Rydberg electron is always farther from the nucleus than any of the core 

 electrons. 

In He
+
 the assumption that the Rydberg electron is distinguishable appears to be valid for 

H states (L = 5) or higher [8].  For other ions the size of this effect is not clear.  In addition to 

these assumptions, this early approximation neglects the dynamics of the Rydberg electron, 

effectively assuming that the core adjusts adiabatically to the motion of the Rydberg electron.  A 

number of approaches were later advanced to incorporate corrections to this adiabatic 
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model [9, 10, 11].  If the corrections to the adiabatic picture are small, Kleinman, Hahn, and 

Spruch showed that adding a term proportional to 
6r

 to the potential could account 

approximately for the nonadiabatic effects [11]: 

  6Q Q D    , (2.4) 

where D  was an additional core property often referred to as the “nonadiabatic dipole 

polarizability”. 

 A major step in the further development of the effective potential model for high-L 

Rydberg structure was the treatment of Rydberg levels of helium by Drachman [12, 13, 14].  In a 

sequence of papers, he systematically derived an effective potential for helium Rydberg electrons 

that contained additional terms proportional to higher inverse powers of the Rydberg radial 

coordinate up to 
10r

.  The dynamics of the Rydberg electron were found to lead to significant 

deviations from the adiabatic model, and these were systematically included.  Since the core ion 

in this case was He
+
, whose nonrelativistic wave functions were known, all the coefficients 

occurring in the effective potential were calculated analytically.  Although Drachman used the 

Feshbach projection operator technique to organize his calculation, in essence it consisted of 

systematically applying three expansions: 

I. Static perturbation theory. 

II. Multipole expansion of the perturbing term. 

III. A power series expansion of the energy denominators occurring in I, described fully 

below, which is referred to as the “adiabatic expansion” because the leading term 

corresponds to the adiabatic model. 

Because the zeroth-order wave functions of the Rydberg electron satisfy the hydrogenic radial 

equation, it was possible to manipulate the resulting expressions into a form where successive 
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terms were proportional to increasing negative powers of r, yielding the effective potential.  The 

expectation value of each term could be evaluated using standard expressions for the radial 

expectation values of hydrogenic functions.  In the case of helium Rydberg levels, the results of 

this approach were confirmed with completely independent variational calculations [15] and with 

precise experimental measurements [16, 17].  The precision of the predictions obtained with the 

effective potential method is limited by the convergence of the asymptotic series of terms, but 

this approach has the great advantage that it can be applied to any Rydberg level,  nL , without 

the necessity of a specific calculation for that state’s wave function.  The variational method is 

much more computationally intensive. 

 The calculation presented here is modeled after the work of Drachman.  Its key feature is 

use of the adiabatic expansion and manipulation of the perturbation expressions using the 

hydrogenic radial equation satisfied by the zeroth-order Rydberg electron wave function.  

However, the present calculation extends the work of Drachman in two significant ways.  First, 

the core properties that occur in the effective potential are expressed as functions of the matrix 

elements and energies of the core ion instead of being evaluated analytically as was possible for 

the He
+
 core.  Second, the angular momentum of the core ion, cJ , is not restricted.  This gives 

rise to higher rank tensor operators not present in the helium case.  Taken together, these 

extensions make the results applicable to a wide range of Rydberg systems.  Some of the terms 

derived here are well known, such as the terms in Eq. 2.3 and the related tensor polarization 

terms.  Others are new.  Many of the higher-order terms occur in a related treatment of Rydberg 

electrons bound to anisotropic core ions, treated in a coupled-channel approach by Clark, 

Greene, and Miecznik [18].  The approach presented here differs from that calculation in several 

ways.  The main difference is that this report, based on a perturbation expansion, calculates only 
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the differences from the known zeroth-order Rydberg energies.  In contrast, the approach of 

Clark, Greene, and Miecznik depends on a specific calculation of the radial function and full 

energy eigenvalue for each level in the appropriate channel potential.  Another difference 

between the calculations is in the method of including corrections to the adiabatic approximation.  

The effective potential model presented here has the advantage that it is easily applied to 

describe a wide range of high-L Rydberg systems without the need for extensive calculations. 

2.2 Derivation 

 For simplicity, a completely nonrelativistic system of N electrons, bound to a nucleus of 

charge Z, is initially assumed.  Using assumption A1 above, the N
th

 electron is taken to be the 

distinguishable Rydberg electron, and the Hamiltonian is written in a form that makes that 

distinction.  The zeroth-order Hamiltonian is the sum of a Hamiltonian describing the free ion 

and a Hamiltonian describing a hydrogenic Rydberg electron bound by the net charge of the core 

ion.  Everything left over from the full nonrelativistic Hamiltonian represents the perturbation V: 

  0 0

core RydH H H V   , (2.5) 

where 

 

2
1 1

0

1 1

1

2

N N
i

core

i ii ij
j i

p Z
H

r r

 

 


 
    

 
 

  , (2.6) 

 

2

0

2

N

Ryd

N

p Q
H

r
  , (2.7) 

and 

 
 1

1

11N

i iN N

N
V

r r






  , (2.8) 
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and where Z is the nuclear charge, Q = Z - N + 1 is the charge of the ion core, and N - 1 is the 

number of electrons within the ion core.  The further assumption A2 allows the potential to be 

written as a multipole expansion with no scalar (i.e.   = 0) term: 

    
     

   1

1 1
1 1 1

ˆ ˆ
ˆ

N
N N

i i

i N N

C r C r
V r C r M

r r

 

 

 
 

  

 
  

     , (2.9) 

where 

 
     

1

1

ˆ
N

i i

i

M r C r
 





 . (2.10) 

The operators  
M


 with   = 1, 2, 3, 4 represent the dipole, quadrupole, octupole, and 

hexadecapole moment operators acting on the core ion wave function, while 
 

C


 represents a 

spherical th -rank  tensor either in the space of the core  îr  or Rydberg electron  N̂r .  The 

potential is thus the scalar product of tensor orders (see Eq. 5.2.4 of Ref. [19]).  The subscript on 

Nr  may now be dropped since the core electrons’ positions are not explicitly mentioned again. 

 The zeroth-order wave functions are products of the form 

 
0 0 0

core Ryd    ,  

where 
0

core  is the wave function of the free ion core and 
0

Ryd  is the hydrogenic wave 

function of the Rydberg electron.  The core functions are assumed to be eigenstates of parity, 

angular momentum, and 
0

coreH .  They are denoted by , ,c JJ m , where   stands for any 

additional quantum numbers required to specify a particular state.  These functions, of course, 

are known only in the abstract.  The Rydberg functions are specified by , ,n L m  and are the 

well-known hydrogenic wave functions corresponding to a core charge of Q and a reduced mass 

 /e c e cm m m m   .  Ignoring the spin of the electron, these wave functions couple together to 
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form the angular momentum K: 

 cK L J  ,  

where K ranges in integer steps from cL J  to cL J .  In general, an arbitrary state of the 

combined system is denoted as , ;cJ nL K  .  The goal is to describe the energies of Rydberg 

levels that correspond in zeroth-order to states in which the core is in its ground state, denoted as 

cgJ , the Rydberg electron is in the  nL  level, and the total angular momentum, exclusive of 

Rydberg spin, is K.  These levels are denoted as , ;cgJ nL K  or by the shorthand notation KnL . 

2.2A Zeroth- and First-order Energies 

 Applying static perturbation theory, the energy of the KnL  state is given by 

        0 1 2

KE nL E E E    . (2.11) 

The zeroth-order energy is the sum of that of a free ion and a hydrogenic electron: 

    
 

2
[0]

2

1

2

c
c

c e

m Q
E n E gJ

m m n
 


, (2.12) 

where cm  is the core mass and em  is the electron mass.  Note that atomic units are used 

throughout this chapter. 

 The first-order energy perturbation energies come from the permanent electric moments 

of the core ion.  There are no odd permanent moments because of parity constraints.  An ion core 

with angular momentum of cJ  ≥ 1, however, may have a quadrupole moment, while a nonzero 

hexadecapole moment is possible if cJ   2.  Using the methods of Ref. [19] (including 

Eqs. 7.1.6 and 5.4.1) the first-order energy may be evaluated and written in terms of the 

permanent moments: 
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     
   

               

1

1
1

2 2 4 4

3 5

ˆ
, ; , ;

ˆ ˆ

2 4

0 0

K c c

c c

nL nL
c c c c

c c c c

C r
E nL gJ nL K M gJ nL K

r

X J C r X J C r
Q r r

J J J J

J J J J













 

 

 
   

   
   
    



, (2.13) 

where   

 
 2

0, ,c J c c J cQ gJ m J M gJ m J     (2.14) 

is the core’s electric quadrupole moment, and  

 
 4

0, ,c J c c J cgJ m J M gJ m J      (2.15) 

is the core’s electric hexadecapole moment.  
   b

cX J  is a unit b
th

-rank tensor in the space of the 

ion core while 
   ˆb

C r  is a spherical b
th

-rank tensor in the Rydberg electron’s angular position.  

The parentheses    in the denominator represent 3J-symbols [19].  The expectation values of 

the Rydberg radial coordinate are represented by 
s

nL
r

 [2].  The next possible permanent 

moment, of order   = 6, requires cJ  ≥ 3.   

2.2B Second-order Energy (Core Excited Intermediate States) 

 Equation 2.16 shows the general expression for the second-order energies: 

 

   

 
     

   

       

1 2

1 2

1 2

1 2

2

1 1
1 1

, , ,

ˆ ˆ
, ; , ; , ; , ;

c

K

c c c c

J n L c c

E nL

C r C r
gJ nL K M J n L K J n L K M gJ nL K

r r

E gJ E n E J E n

 

 

 
 



 



 

 
 

   



        

          

 



. 

  (2.16) 
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Initially only the portion of the total second-order energy that is due to intermediate states where 

the core is electronically excited is considered.  This excludes intermediate states where the core 

is in its ground electronic state, either the true ground state or an excited fine structure level of 

the ground electronic state.  The total second-order energy is the sum of terms consisting of the 

various multipole orders occurring in the potential V, 

 
       

1 2

2 2

1 2

,

,KE nL E
 

   .  

Using the methods of Ref. [19], the core and Rydberg electron parts of the matrix elements may 

be factored and the partial contribution due to specific multipole terms 1  and 2  written as 

 

   

    

       

     

1 2 1 2

2

1 2

1 2

1 2

1 1
, , ,

,

1 2 1 2 1
0 0 0 0 0 0

c c

c

J J c c

c c

J n L c c c c

c

E

K L J K L J L L L L
L L

J L J L

gJ M J J M gJ nL r n L n L r nL

E J E n E n

   


 

 

 

 



 

   
   



        
              

  
        

      


, 

  (2.17) 

where 

      c c cE J E J E gJ       .  

The curly brackets    represent 6J-symbols while the parentheses    represent 3J-symbols, 

both associated with the coupling of angular momenta [19].  The terms involving angle brackets 

 and the core operators 
 

M


 represent reduced matrix elements of those tensor operators.  

The terms involving angle brackets and the Rydberg radial coordinate 
 1

r
 

 represent radial 

integrals.  Note that, following from the triangle relations [6], only multipole terms with 1 2   

even can contribute to  2
E . 
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 Further simplification of this expression relies upon the “adiabatic expansion”.  This 

expansion is based on the assumption that the energy difference in the denominator is primarily 

due to the core energy difference, allowing the denominator to be expanded as 

 
       

    

  

    

  

2

2 3

1 1

c c c c

E n E n E n E n

E J E n E n E J E J E J   

  
   

            
. (2.18) 

If it is valid, the adiabatic expansion allows the sums over n  to be carried out explicitly using 

the properties of hydrogenic radial functions.  The leading term, for instance, corresponds to the 

adiabatic approximation where the dynamics of the Rydberg electron are neglected.  When this is 

substituted into Eq. 2.17, the only dependence on n  is in the radial matrix elements and the 

completeness of the radial functions for fixed L  allows the summation over n  to be carried 

out: 

 
 

| | | |
s qs q

nL
n

nL r n L n L r nL r
  



     . (2.19) 

Note that in this and similar sums, the sum over n  includes continuum levels of the same L .  

This leads to expressions, described below, for all the adiabatic terms in the effective potential. 

 The second term in the adiabatic expansion also leads to expressions that can be 

simplified using properties of the Rydberg radial functions.  Making use of the radial wave 

equation satisfied by hydrogenic functions, and using repeated application of integration by 

parts, it can be shown that 

           21
| | | | 1 1

2

s qs q

nL
n

E n E n nL r n L n L r nL sq L L L L r
   



              .  

  (2.20) 

The details of this derivation are shown in Appendix A.  This leads to a sequence of terms, 

detailed below, referred to as the 1
st
 nonadiabatic terms. 
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 The expressions obtained by substituting the third term of the adiabatic expansion into 

Eq. 2.17 can also be simplified.  Using the radial equation satisfied by the Rydberg radial 

functions, it can be shown that  

 

    

      

       

             

2

3 4

4

4

| | | |

1
1

1
3 ( 1) 1

4

1
1 1 1 1 1 1

4

s q

n

s q s q

nL nL

s q

nL

s q

nL

E n E n nL r n L n L r nL

sq
Q r L L r

s q

s q s q L L L L r

s s L L L L q q L L L L r

 



     

  

  

     

  
 

        

                     



.

 (2.21) 

The resulting additional terms are referred to in the effective potential as the 2
nd

 nonadiabatic 

terms.  The derivation of Eq. 2.21 is also shown in Appendix A. 

  The second-order energy for a particular 1  and 2  may thus be written as an adiabatic 

term 

 

   

    

   
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E
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J L J L

gJ M J J M gJ
r

E J

 


 

 

 

 

 



 

  
  



        
              

  
    

   


, 

  (2.22) 

a 1
st
 nonadiabatic term 

 

   

    
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 
 



 
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  
     
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  (2.23) 
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and a 2
nd

 nonadiabatic term 
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  (2.24) 

 Taken together this gives a total second-order energy, from electronically excited core levels, of  

 
               

1 2

2 2 2 2

1 2 1 2 1 2AD 1st NA 2nd NA
,

, , ,KE nL E E E
 

        
  . (2.25) 

Note that each successive term in the adiabatic expansion is proportional to higher inverse 

powers of the Rydberg radial coordinate. 

 The contributions to the second-order perturbation energy from a fixed multipole order 

 1 2,   and adiabatic order (AD, 1
st
 NA, 2

nd
 NA) can each be decomposed into contributions of 

different tensor orders.  This decomposition is most easily accomplished by noting that the entire 

dependence on K is contained in the product of two 6J-symbols that occurs in each of the 

expressions above.  The 2 cJ  + 1 dimensional space corresponding to the different values of K 

for a common L is spanned by the basis vectors 

      1 2 1 b = 0,1, 2, ...cJ L K c

b

c

K L J
V K b

b J L

   
   

 
, (2.26) 

which satisfy 

      2 1 b b bb

K

K V K V K    . (2.27) 

The 6J-symbol products that occur in the energy expressions may be written as linear 

combinations of these basis vectors using Eq. 6.2.12 of Ref. [19]: 
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    
01 2

,
c c

b c b

bc c

K L J K L J
a J L V K

J L J L 





   
   

   
 , (2.28) 

where 

        11

22

, 1 1 1 2 1c cL L J J bc c

b c

c

J JL L
a J L b

b Jb L





         
              

      

. (2.29) 

Notice that this substitution factors the dependence on L  and cJ  .  Notice also that the 6J-

symbols restrict the possible tensor orders, b, to between 1 2   and 1 2  , with an upper 

limit of the smaller of 2L and 2 cJ . 

 Substituting this result into the energy expressions allows each to be written as a sum of 

tensor orders: 

 
       2 2

K b K

b

E nL E nL , (2.30) 

where 

 
               

1 2

2 2 2 2

1 2 1 2 1 2AD 1st NA 2nd NA
,

, , ,b K b b bE nL E E E
 

        . (2.31) 

Since the resulting expressions separate the terms involving L , the sum over L  may be 

segregated in each expression, defining the functions  1 21 ,bf   ,  1 22 ,bf   ,  1 23 ,bf   , 

and  1 24 ,bf   .  The adiabatic term becomes 

 

     

   

 

       

1 2

1 2
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c
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c c c cJ c c

b

J c c

b
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nL

gJ M J J M gJJ J
E

b J E J

f b r V K

 



 

 
 

 

 



 

   

            
  

   
 


, (2.32) 

where 
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       1 2 1
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 , (2.33) 

while the 1
st
 nonadiabatic term is written as 
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  

   
 


, (2.34) 

with 
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         


, (2.35) 

and the 2
nd

 nonadiabatic term becomes 
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  (2.36) 

with 
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



      
       

    

  
  

  


 (2.37) 

and 
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.

 

  (2.38) 

Calculations for the “f functions” are shown in Appendix B.  Ref. [19] provides the formulas for 

calculating 3J-symbols and the 6J-symbols when b = 0, 1, and 2.  Ref. [20] gives expressions for 

calculating W coefficients, which can then be related to the 6J-symbols for b = 3 and 4 using 

Eq. 6.2.13 of Ref. [19].  The sum over cJ  , however, becomes part of the core properties ,M b , 

,M b , and ,M b .  The Greek symbols correspond to the different terms in the adiabatic 

expansion:    for the adiabatic term,   for the first nonadiabatic term, and   for the second 

nonadiabatic term.  The first subscript indicates the term in the potential that the parameter 

depends on (D for dipole-dipole, DO for dipole-octupole, etc.) while the second subscript 

denotes the tensor order. 

 To simplify the appearance of the final expressions for the second-order perturbation 

energy, the basis vectors bV  are rewritten in more familiar form.  For example, the scalar basis 

vector  0V K  is simply a constant dependent on L and cJ , 

  0

1 1

2 1 2 1c

V K
J L


 

. (2.39) 

Note that the scalar term requires that 1  equal 2 , allowing the 6J-symbol in the cJ   sum to be 

rewritten as 
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  
1 1

1
0 2 1 2 1

c cJ Jc c

c c

J J

J J



 

   
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  
, (2.40) 

where   has replaced 1  and 2 .  With these substitutions, the scalar terms in the second-order 

energy become: 
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  (2.41) 

where the coefficients in front of the core parameters follow the convention of Ref. [12].  The 

core parameters are given by 
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and 

 

 
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2
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 . (2.47) 

Notice that the summed quantities are positive definite, so each of the scalar coefficients is a 

simple sum of the contributions from the several possible branches characterized by cJ  .  The 

terms proportional to 
4r
 and 

6r
 are well known.  The later terms are analogous to those 

derived by Drachman, but are not restricted to the special case cJ  = 0.  The terms proportional to 

4r
 and 

6r
 agree with the results of Clark, Greene, and Miecznik [18] except that their 

expression for the coefficient analogous to ,0D  contains an additional contribution (the second 

term in their Eq. 28). 

 The vector term of the second-order energy (b = 1) can be written as 

 
      2 6 8

1 ,1 ,1 ,1K D Q D cnL nL
E nL r r L J       , (2.48) 

since 
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, (2.49) 

and 

      
1

1 1 1
2

c c cL J K K L L J J         . (2.50) 

The core parameters are defined by 
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and 
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In this case, the contributions of the several cJ   branches may either add or subtract from the 

total coefficient.  Notice also that there is no adiabatic vector term.  This is due to a cancellation 

between the contributions of adiabatic terms with different L .  A similar cancellation does not 

occur in the nonadiabatic terms because of the extra factors of L and L  that occur in Eqs. 2.20 

and 2.21.  The vector term in high-L Rydberg fine structure has an interesting history, discussed 

later in Section 2.3.  The existence of a vector term in Rydberg electric fine structure was first 

predicted by Zygelman [21].  Its coefficient was first calculated by Clark, Greene, and Miecznik 

[18], who also emphasized its essentially nonadiabatic nature.  The expression for ,1D  agrees 

with their result.  The terms proportional to 
8r

 are new.  In nature these terms compete with a 

much larger vector term due to the magnetic dipole moment of the core electron, discussed in 

Section 2.2D.  Nevertheless, the electric vector structure has been measured in both argon [5] 

and neon [4].   

 For consistency with previous publications and with the leading term from Section 2.2A 

proportional to the quadrupole moment, the b = 2 basis vector is written as proportional to 
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 (2.54) 

given that 
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This leads to tensor terms of the form: 
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  (2.56) 

where the core parameters are given by 
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The term proportional to 
4r

 is standard, and the expression for ,2D  agrees with that first 

described by Angel and Sandars [22].  The terms proportional to 
6r

 agree with the results of 

Clark, Greene, and Miecznik [18], except for an additional term that is included in their Eq. 29.  

The additional terms are new. 

 The portion of  2
E  proportional to the scalar product of third-rank tensors is initially 

found as a multiple of  3V K : 

          3 3

3
ˆ7 cV K X J X r  , (2.66) 

where 
   3

cX J and 
   3

ˆX r  are unit tensors.  Since only matrix elements diagonal in L are 

desired for this term, it is convenient to write it in terms of a specific third-rank tensor 

 
        

 3
3 2

ˆ ˆT r C r L  , (2.67) 

whose reduced matrix elements are given by: 
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The resulting contributions to  2
E  are 

               2 3 38

3 ,3 ,3
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E nL r X J T r     , (2.69) 

with the core parameters defined as 
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and 
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Notice, again, that there is no adiabatic term in the third-rank tensor portion of  2
E .  This is 

similar to the vector term and suggests that all odd-order adiabatic contributions will be zero.  

Prior to the study of nickel presented later in Chapter 4, no experimental evidence of such third-

rank tensor structure had been seen.  As with the vector structure, it is possible that magnetic 

structure, in this case magnetic octupole structure, could compete with third-rank electric fine 

structure.  This would be expected to be proportional to the permanent octupole moment of the 

core ion (requiring cJ  > 1) and to the inverse fifth power of Rydberg radial coordinate. 

 For b = 4, the leading term from Section 2.2A is proportional to the core’s hexadecapole 

moment and is given in Eq. 2.13.  For consistency, the terms in the effective potential of this 

order are also written as proportional to 



 

30 

 

 

       4 4
ˆ

4

0

c

c c

c c

X J C r

J J

J J



 
 
 

, (2.72) 

where 
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The energy thus becomes 
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  (2.74) 

where 
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and 
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The two terms proportional to 
6r
 agree with the results of Clark, Greene, and Miecznik [18].  

The other terms are new. 

 This completes the list of terms which contribute to  2
E  proportional to 

sr
 with s  8, 

as long as cJ  < 3.  This is sufficient to account for all cases studied experimentally to date.  The 

full effective potential to this point consists of the sum of all the second-order terms listed above 

plus the two first-order terms from Eq. 2.13. 

2.2C Rydberg Intermediate States 

 The expression for the second-order perturbation energy derived in Section 2.2B 

excluded the contributions to  2
E  from intermediate states where the core was in its ground 

electronic state.  The number of such states depends on the ion in question.  For an ion with an  

S-state ground electronic state, for example, there is only one ground state.  However, for ions 

with higher angular momentum there may be two or more fine structure levels within the same 

electronic state.  For example, the ion Ar
+
 has a 

2
P3/2 ground state and a 

2
P1/2 excited level within 

the same electronic state.  Any state of the combined system in which the core is in the ground 

electronic state is considered to be a “Rydberg state” and denote it by 

  c KgJ n L   . (2.81) 
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The contribution of such states to the second-order perturbation energy, omitted in Section 2.2B, 

is given by 

    
       

     
2

, ,c

c K c K c K c K

RS K
J n L

c

gJ nL V gJ n L gJ n L V gJ nL
E nL

E gJ E n E n  

     
 

   
  (2.82) 

where the prime on the summation symbol indicates that the intermediate states do not include 

the initial state  c KgJ nL .  This term describes the shift in energy of a particular Rydberg level 

 c KgJ nL  due to its coupling with other Rydberg states, either bound to the same core fine 

structure level  cJ  or to a different fine structure level  cJ  .  Note that only the even operators 

in V give nonzero results given the constraints due to parity.  In low-L Rydberg levels, it is usual 

for these couplings to be strong, leading to perturbation of one Rydberg series by another.  When 

these perturbations are strong compared to the spacing between adjacent Rydberg states, they 

make it necessary to describe the Rydberg structure using the formalism of multi-channel 

quantum defect theory (MCQDT).  In high-L Rydberg levels the effects of these couplings are 

generally very small, partly because all the matrix elements of V decrease rapidly with L.  For 

example, even the diagonal elements of the leading multipole (quadrupole) term in V decrease 

approximately as 
3L
.  Thus as L increases, all the effects of inter-series coupling decrease 

rapidly and become small corrections to the Rydberg energies.  Of course, an exception would 

occur if, by chance, two Rydberg states bound to two different core levels happened to be very 

nearly degenerate so that even a small coupling matrix element would produce a large shift in 

energy.  Another possible near degeneracy arises between Rydberg levels bound to the core 

ground state  cJ  and having the same n but different L.  One might assume that the quadrupole 

term in V would lead to strong coupling between the  c KJ nL  and    2c K
J n L  levels, which 
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are nearly degenerate even after the first-order perturbation energies are applied.  However, in 

this case, the quadrupole coupling is identically zero for hydrogenic wave functions because of 

the selection rule 

 3 , 2 0nL r n L   . (2.83) 

Higher permanent moments could, in principal, couple such levels, but in practice the energies of 

these Rydberg levels differ as a result of the first- and second-order energies discussed in 

Sections 2.2A and 2.2B above.  The weak couplings due to the hexadecapole and higher 

multipoles in V produce only very minor energy shifts even when cJ   = cJ  and n  = n.  The 

main effect of the quadrupole couplings is through nondegenerate intermediate states.  It is given 

by 
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  (2.84) 

Evaluation of this expression requires the off-diagonal matrix elements of the quadrupole 

operator between the ground state fine structure levels.  The diagonal element is easily estimated 

from the gross features of the high-L Rydberg fine structure, which reveal the ground state 

quadrupole moment.  Assuming that the ground state levels are approximately LS-coupled leads 

to an estimate of the off-diagonal element that is typically of sufficient precision.  The selection 

rules for couplings due to the quadrupole term are cJ  = 0, 1, 2, and ΔL = 0, 2. 

 The primary difficulty in evaluating Eq. 2.84 is carrying out the sum over n , which 

includes both discrete and continuum levels.  Because of the quadratic dependence of the 
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centrifugal potential on L , the L  = L + 2 sum is especially dependent on the continuum 

contributions.  The sum may be evaluated by explicit summation over a range of discrete levels 

and integration over continuum levels.  Alternatively, it can be evaluated using the method of 

Dalgarno and Lewis [23] where 

 
     

 
s q

s

n c

nL r n L n L r nL
nL r f r

E gJ E n E n

 





   


   
  (2.85) 

where the function  f r  is the first-order correction to the wave function nL  and satisfies a 

differential equation specific to each  ,cJ L   series [24]. 

 The results of Sections 2.2A and 2.2B can be described as an effective potential in the 

space of Rydberg levels whose expectation value gives the most important contributions to the 

Rydberg energies.  Since the quadrupole term is the leading term in the effective potential and 

Eq. 2.82 describes its effect through mixing different Rydberg levels, it begins to represent 

application of the effective potential in “second-order” within the space of Rydberg levels.  It is 

useful to consider whether other terms in the effective potential could also have significant 

effects of this type. 

 The simplest example of this is the shift caused by application of the leading scalar term 

in effV  proportional to the adiabatic scalar dipole polarizability ,0D .  This was considered by 

Drachman in his treatment of the case of helium Rydberg levels  0cJ  .  He showed that the 

lowest multipole term in the fourth-order perturbation energy containing an intermediate 

Rydberg level corresponded, after making the adiabatic approximation to the two other energy 

denominators, to application of the ,0D  term in second-order, giving the result 
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This led to a significant shift of the energy levels in helium [12].  The shift is a universal function 

of  ,n L  and ,0D , and it was later evaluated analytically by Drake and Swainson [25]. 

 In considering the more general case of cJ   0, the leading terms in the effective 

potential have the form  

 
       2 2

,0 ,2

4 3 4

ˆ1 1

22 2

0

D D c

eff

c c

c c

X J C rQ
V

J Jr r r

J J

   
    

  
 
 

. (2.87) 

The terms proportional to the scalar and tensor dipole polarizabilities also have the potential to 

mix different Rydberg series and produce energy shifts to a particular level.  These energy shifts 

occur formally as parts of the third- and fourth-order perturbation in V.  They are likely the 

largest contributions from third- and fourth-order perturbation since they include contributions of 

one intermediate state where the core is not electronically excited.  Terms proportional to Q  

occur in the third-order perturbation energy while terms proportional to   occur in the fourth-

order perturbation energy.  Both types of terms include one Rydberg intermediate level (denoted 

 c KgJ n L    in Eq. 2.88) and contain the factor 
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  (2.88) 

which can be shown to be equal to 
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where the reduced matrix elements of    2

cX J , both diagonal and off-diagonal in cJ , are equal 

to 1.  The coefficient ,0D  is the usual scalar dipole polarizability, given in Section 2.2B, and the 

term proportional to it satisfies the selection rules cJ  = ΔL = 0.  The coefficient  ,2D cJ   is 

given by the expression 
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  (2.90) 

Note that this reduces to the result shown in Section 2.2B if cJ   = cJ , i.e. for terms diagonal in 

cJ , but it differs for nondiagonal terms.  For example, if cJ  = 5/2, there are contributions to 

,0D  and ,2D  from branches with cJ   =  3/2, 5/2, and 7/2, but an off-diagonal ,2D  coupling to 

levels with cJ   = 3/2 can have no contribution from the cJ   = 7/2 branch.  This restriction is 

enforced by the triangle relations on the 6J-symbol in Eq. 2.90.  This term satisfies the same 

selection rules as the quadrupole term: cJ  = 0, 1, 2, and ΔL = 0, 2. 

 This implies that the leading “second-order” effects of effV  can be written as 
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where 
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in which  ,2D cJ   is given by Eq. 2.90 and 
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where cL  and cS  are the assumed L and S values, respectively, for the core ground electronic 

state.  This expression reduces to the usual quadrupole moment for diagonal terms and gives the 

result indicated by pure LS coupling for the off-diagonal quadrupole coupling. 

 When 
 2

effE  (Eq. 2.91) is evaluated, it reduces to terms analogous to Eq. 2.84 while 

containing sums like Eq. 2.85 with  ,s q  = (3,3), (3,4), and (4,4).  The higher inverse powers 

generally correspond to smaller shifts, and examining the dependence of the calculated shift on 

the total inverse power can provide a clue to the probable precision of a result truncated with 

these terms.  If necessary, higher terms in effV  can also be included. 

2.2D Spin and Relativistic Terms 

 There are several small additional terms not included in the nonrelativistic model 

described above.  The first is the standard relativistic correction to the kinetic energy of a 

hydrogenic Rydberg electron, given by  
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38 

 

where FS  is the fine-structure constant.  This term is due to the “p
4
” contributions to the kinetic 

energy. 

 The next two terms describe the magnetic interaction between the Rydberg electron and 

the core ion’s magnetic moments.  The dominant effect is due to the magnetic dipole moment of 

the core, given by 

 2

CoreM1 3

1

2

J
FS c

g
E L J

r
   , (2.95) 

where Jg  is the core’s g-value.  This term is generally much larger than the electric vector terms 

discussed in Section 2.2B.  Another possible magnetic interaction with the core ion is through its 

permanent magnetic octupole moment.  An octupole moment could occur in any ion with 

3
2cJ   and thus contribute to the Rydberg fine structure through a term similar to the third-order 

tensor terms in effV .  Here the term is simply parameterized as 

       3[3]M3
CoreM3 5

ˆ
c

C
E X J T r

r
  , (2.96) 

where 
   3

ˆT r  is defined in Eq. 2.67. 

 An additional magnetic interaction is with the magnetic moment of the Rydberg electron, 

either through spin-orbit interaction from its own orbital motion or with the magnetic field from 

the core ion’s magnetic moment.  These are given by  

  2

3

1 1
ˆˆ1 3

2RS FS R J c RE L S g J rr S
r

         , (2.97) 

where RS  is the Rydberg spin.  This interaction splits the KnL  level into two states with 

1
2J K  .  Rewriting this gives  
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where 
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and 
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1
1 1 1
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 All of these terms make only small contributions to the energy of a nonpenetrating 

Rydberg electron since such an electron is very nonrelativistic. 

2.3 Discussion 

 The main application of the effective potential model is to provide a framework for 

extracting measurements of core ion properties from experimental measurements of high-L 

Rydberg fine structure patterns.  A good example of this is a recent study of argon Rydberg 

levels [5].  In that study, the relative positions of twenty Rydberg levels within the n = 10 

manifold with 5  L  9 were measured with precision of better than 1 MHz.  This pattern of 

level positions, which spanned a range of more than 25,000 MHz, could be expected to represent 

the expectation value of the effective potential generated by interactions with the Ar
+
 core ion.  

More precisely, this would be the case except for the small level shifts represented by the 

relativistic corrections in Eq. 2.94 and the second-order effects of effV  from Eq. 2.91.  

Calculation of 
 2

effE , of course, requires some level of knowledge of the core parameters.  Rough 
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values of the core parameters may be obtained by initially assuming that 
 2

effE  is zero.  Using 

these approximate numbers, 
 2

effE  may be recalculated and then new values for the core properties 

found.  The process is repeated until consistent.  Table V of Ref. [5] shows the effect of these 

small corrections and the results once they are removed from the observed pattern.  The 

calculated contributions of 
 2

effE   are small and decrease smoothly with L, indicating that the 

influence of mixing between different Rydberg series is relatively minor. 

 Once the corrections were removed, the data pattern could be decomposed into the 

contributions of scalar, vector and tensor orders, defining the structure factors shown in Table VI 

of Ref. [5]:    0A L ,  1A L , and  2A L .  Note that since Ar
+
 has a 

2
P3/2 ground state, a third-

order contribution to the structure is possible.  A satisfactory fit of the data pattern, however, was 

obtained without including this term.  The variation of the structure factors with L was then used, 

in combination with the form of the effective potential, to extract experimental estimates of the 

leading core properties.  For example, the tensor structure factor  2A L  is expected to be 

dominated by a contribution proportional to 
3

nL
r

, with smaller contributions proportional to 

4

nL
r

 and perhaps 
6

nL
r

.  Thus scaling the measured  2A L  factors by 
3

nL
r

 and plotting 

the ratio vs. 
4 3/

nL nL
r r 

 leads to the plot shown in Fig. 7 of Ref. [5], from which core 

properties Q and ,2D  were both determined.  A similar scaled plot of  1A L , Fig. 8 in Ref. [5], 

determined the Jg  value of Ar
+
 and the core property ,1D .  The 0A  plot is slightly more 

complicated since only the relative positions of the twenty levels were measured experimentally.  

Consequently, only differences of  0A L  factors are significant.  Still, a plot of 
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   0 01A L A L   scaled to the difference of expectation values of 
4r

 was used to determine 

,0D  from the experimental measurements, and is shown in Fig. 9 of Ref. [5]. 

 In all cases, the appearance of the scaled plots was completely consistent with the 

expectations based on the form of the effective potential.  The precision of the core properties 

derived in this way is remarkable.  The quadrupole moment, Q, was determined to 0.004% while 

the scalar polarizability, ,0D , was determined to 0.03%.  Measurements of comparable 

properties of neutral atoms are difficult or impossible to obtain at this precision.  Measurements 

of these ion properties pose a challenging test of even the most advanced theoretical methods.  

Confidence in the form of the effective potential is an important factor in analyzing such 

experimental measurements. 

 One limitation of the derivation presented in Section 2.2 is its reliance on the 

convergence of the adiabatic expansion.  Recall that this is based on the dominance of the core 

excitation energy,  cE J  , in the denominator of the second-order perturbation energy as 

compared to the difference of Rydberg energies,    E n E n  , that also occurs there.  It is 

possible to predict the failure of this expansion in a particular case by using the properties of 

Rydberg electrons to estimate the typical value of the second quantity.  Using the case where 

1 2 1    as an example, the “average” Rydberg energy difference can be estimated using 

Eqs.  2.20 and 2.21:   
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If the ratio of this average Rydberg energy difference and the lowest core excitation is small, 

then the adiabatic expansion is likely to converge well.  Take for example the n = 10 and L = 6 

Rydberg level of a neutral Rydberg system.  In this case the average Rydberg energy difference 

is +2897 cm
-1

 if L  = 7 and -1287 cm
-1

 if L  = 5.  If the core ion is He
+
, where the lowest dipole 

excitation is 329,179 cm
-1

, or Ni
+
 where the lowest dipole excitation is at 51,558 cm

-1
, this 

suggests rapid convergence of successive terms of the adiabatic expansion.  If the core ion is Sr
+
, 

where the lowest dipole excitation is 14,556 cm
-1

, convergence is likely to be less rapid.  Of 

course, since the ratio of expectation values of 
6r

 and 
4r

 decreases rapidly with L, sufficiently 

high L Rydberg levels should show good convergence in most systems. 

 Fortunately, if a case of nonconvergence of the adiabatic expansion is encountered, the 

cause is often a single low-lying excited core level with a known position, and this suggests a 

fairly simple solution.  The contribution to the second-order perturbation energy from 

intermediate states containing this single excited core level can be calculated separately and 

added to the expectation value of the effective potential describing the contributions of all other 

intermediate states.  The calculated contribution from states containing the specific low-lying 

core level must be calculated individually for each Rydberg level of interest, and its dependence 

on n, L, and K may be very different from the form predicted by the effective potential.  It is also 

usually known only up to a constant that represents the square of the matrix element coupling the 

core ground state to the low-lying state of interest.  This constant can be treated as an additional 

parameter in matching observed fine structure patterns to the form predicted by the effective 

potential.  This procedure was followed by Gallagher, Kachru, and Tran [10] and Snow and 

Lundeen [26] in their analysis of the barium Rydberg spectrum.  In this case the offending low-

lying level is the 5d level, which dominates the quadrupole polarization energies. 



 

43 

 

 Another issue that has arisen in analysis of Rydberg spectra involves the problem of 

fitting the fine structure pattern’s dependence on L to a sequence of inverse powers of r, as 

briefly described above.  While the expectation value of each successive inverse power of r 

decreases smoothly with L, the variation between 
4r

 and 
6r

 or between 
6r

 and 
8r

 is much 

more dramatic than between 
6r
 and 

7r
.  It may be possible to fit the data pattern to a sum of 

contributions proportional to 
4r
, 

6r
 and 

8r
, but impossible to distinguish possible 

contributions proportional to 
7r
 or to the very similar   81L L r .  This problem is 

exacerbated by the possibility of an additional contribution proportional to 
7r

 coming from the 

lowest multipole adiabatic third-order perturbation energy which gives rise to a term proportional 

to a quantity “ ”, discussed in Ref. [27].  This is most significant when it is desired to extract a 

reliable measurement of the coefficient of 
6r

 in the pattern of experimental energies, as in 

Si
2+

 [27] or Th
3+

 [28]. 

 The effective potential derived here is similar to the potential derived by Clark, Greene, 

and Miecznik in the case of nondegenerate channels (their Eq. 20) [18].  Their potential contains 

terms only up to the inverse sixth power of the Rydberg radial coordinate, and all of their 

adiabatic terms agree with the ones presented here.  Their nonadiabatic terms, however, differ 

slightly from the analogous results shown here.  The potential of their Eq. 20 represents the 

simplest form of their description of high-L Rydberg spectroscopy.  Still, by numerically finding 

the eigenvalues in that potential, one would already include some terms which in the formulation 

derived here would be included in 
 2

effE , i.e. the effects of mixing between Rydberg levels of the 

same L but different n all coupled to the ground state of the ion core.  Clark, Greene, and 

Miecznik continue by describing more complex formalisms in which the coupling to other 
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channels corresponding to different values of L and perhaps cJ , but the same value of K, are also 

included prior to numerical solution of the eigenvalue problem.  Without a doubt, a calculation 

based on these more complex formalisms should be more successful in describing the structure 

of Rydberg levels where coupling between different Rydberg series is significant.  Whether this 

is necessary to describe a particular Rydberg system will depend on the details of the Rydberg 

core interactions. 

 One interesting feature of the effective potential is the presence of odd-order tensor 

interactions, both vector and third-order.  The vector terms in high-L Rydberg structure have an 

extensive history.  The first clear observation of such effects occurred in a study of high-L 

Rydberg states of barium by Gallagher, Kachru, and Tran [10].  In this case the core ion was a 

2
S1/2 state, and large splittings were observed between the two possible values of K = L ± ½.  The 

observed splittings were much larger than could be accounted for by the expected magnetic 

interactions.  Some years later, stimulated by related, but much smaller anomalies in the structure 

of high-L Rydberg levels of Si
2+

, these vector splittings were explained as an indirect effect of 

the spin-orbit splittings in excited 
2
P levels of Ba

+
 [29].  These indirect spin-orbit splittings, or 

K-splittings as they were also called, were later exploited to extract precise measurements of 

dipole and quadrupole transition strengths in Ba
+
 [30, 31, 32].  In the meantime, an apparently 

different type of vector splitting was predicted by Zygelman [21] using a Berry phase argument.  

This splitting was thought to be limited to cases where the core ion had nonzero orbital angular 

momentum.  It was later rederived and calculated more definitively by Clark, Greene, and 

Miecznik [18], who coined the name “vector hyperpolarizability” to describe it.  This is precisely 

the term represented in Eq. 2.48 in Section 2.2B that is proportional to the coefficient ,1D .  

Experimental measurements first in neon [4] and later in argon [5] displayed contributions of this 
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type, vector terms proportional to 
6r
, and confirmed the coefficient calculated by Clark, 

Greene, and Miecznik [18].  The argon measurements also suggested that higher-order terms 

proportional to 
8r
 might be present, as is now predicted by Eq. 2.48 in Section 2.2B.  These 

two types of vector interactions, indirect spin-orbit and vector hyperpolarizability, showed many 

superficial similarities.  They were both proportional to cL J  and 
6r

 in lowest order, and both 

were traced to nonadiabatic response of the core to the Rydberg electron.  However, the vector 

hyperpolarizability was thought to require a nonzero core angular momentum, and would 

therefore be absent in the barium Rydberg states.  In fact they are both described by Eq. 2.48 of 

Section 2.2B.  When the coefficients ,1D  and ,1Q  are evaluated for the case of a 
2
S1/2 core ion, 

they reproduce the results given in Eqs. 15 and 22 of Ref. [29].  Note that for this case, both 

coefficients would be zero in the absence of spin-orbit splittings in the excited states of the core, 

as emphasized by the appearance of Eqs. 15 and 22 of Ref. [29].  Yet, the two effects, thought to 

be quite different, are truly aspects of the same physical effect. 

 Another issue is the completely nonrelativistic derivation of the effective potential.  One 

may question whether it is reasonable to expect that the calculation based on a completely 

nonrelativistic Hamiltonian will describe Rydberg levels in a system where the core ion’s nuclear 

charge is large, thus making the core electrons relativistic even if the Rydberg electron is 

nonrelativistic.  In the absence of a fully relativistic calculation describing the complete Rydberg 

system, there is no way to answer this question definitively.  However, it seems plausible that the 

physical properties of the core, polarizabilities and permanent moments, would exist even for a 

highly relativistic core ion, and would interact in a similar way with the nonrelativistic Rydberg 

electron.  These properties, of course, could never be accurately calculated within the 

nonrelativistic model used in this report, but would instead require much more sophisticated 
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relativistic formulations of atomic structure theory.  There is some circumstantial evidence to 

suggest that the form of the potential is correct even if the core ion is highly relativistic and that 

it is still correct to use the form of the potential to interpret the spectroscopy of nonpenetrating 

Rydberg electrons to extract core properties, even of highly relativistic positive ions.  The 

strongest evidence along these lines is the agreement between the dipole polarizabilities of Pb
2+

 

and Pb
4+

 extracted from spectroscopy of high-L Rydberg levels of PbII and PbIV [33] and the 

calculated values obtained using relativistic many-body perturbation theory [34].  The 

experimental values were 13.62(8) and 3.61(4) a.u. [33] and the calculated values were 13.30 

and 3.63 a.u. [34].  There is, as yet, no comparable comparison for Rydberg states bound to 

highly relativistic core ions with nonzero orbital angular momentum. 

 

 

 

 

 

 

 

 

 

 

 

Note:  The majority of this chapter has been published as 
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Chapter 3: RESIS Experimental Apparatus 

3.1 Introduction 

 Determination of the core parameters presented in the previous chapter can be 

accomplished by precise measurement of the Rydberg fine structure patterns.  The Resonant 

Excitation Stark Ionization Spectroscopy (RESIS) technique can provide such measurements.  

Figure 3.1 shows a schematic of the experimental setup. 

 

 
Figure 3.1:  Experimental apparatus schematic for the microwave RESIS technique.  It begins 

with the ion beam source on the left.  The beam then enters the focusing/beam selection region 

which uses a v B  filter to steer the desired type of ion down the rest of the beamline.  The ions 

capture a Rydberg electron from the Rydberg target (RT), which consists of a thermal plume of 

Rb step-wise excited by three diode lasers.  At the initial stripper all Rydberg atoms with n > 15 

are Stark ionized and deflected, along with any remaining ions.  Both laser interaction regions 

(LIRs) are set to excite the Rydberg electron from a lower n to a higher n' (ex: 919 or 1030), 

while the RF region excites a transition within the lower n.  In the detector, the final stripper 

Stark ionizes states with the upper n' which are then deflected into the channel electron 

multiplier (CEM). 

 

Section 3.2 discusses the creation of the ion beam, along with the focusing and beam selection.  

Section 3.3 describes the Rb Rydberg target, followed by the section detailing the initial stripper.  

Section 3.5 explains the excitation in the optical RESIS technique, while Section 3.6 describes 

the detection.  The microwave RESIS technique is discussed in the section 3.7. 
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3.2 Ion Beam Creation and Selection 

 The RF ion source produces Ni
+
 ions by sputtering from a solid nickel target.  The ions 

are extracted and then accelerated to approximately 9500 V.  The ions are then focused using a 

lens system and mass-separated using a v B  filter.  The RF ion source was manufactured by 

Beam Imagining Solutions while the lens system and v B  filter were manufactured by 

Colutron Corporation.  The source is shown in the following picture. 

 

 
Figure 3.2:  Picture of the RF ion source showing the gas isolator, RF coil, and discharge 

chamber.  For scale, the horizontal length of what is shown is around 5''. 

 

The electrical connections of the source and the v B  filter are shown in Fig. 3.3, which also 

notes the metal sputter target inside the source discharge chamber.  To operate the source, a 

working gas is sent through the discharge chamber and power is applied to the RF coil.  An RF 

power generator and matching network are used to excite the RF coil.  When power is first 

applied to the RF coil, the load and tune capacitors of the matching network are adjusted to 

reduce the reflected power to 0 W.  According to Ref. [35] the source is primarily operated in the 

inductively coupled plasma (ICP) mode.  The time-varying magnetic field around the RF coil, 
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due to the time-varying electric current flowing through it, induces electric currents in the gas 

which lead to a plasma.  The need to once again readjust the load and tune capacitors to reduce 

the reflected power is a sign that the source has started in the ICP mode. 

 

Figure 3.3:  Electrical connections of the source and v B  filter.  Note that this diagram is not to 

scale.  

 

 A typical day would begin by pumping the system down to a pressure of high 10
-7 

T, as 

measured downstream of the source discharge chamber in the region of the v B  filter.  The 

system is then flushed with argon for ten minutes at a pressure of low 10
-4 

T.  During this time, 

the acceleration voltage is turned up to 9500 V and the RF source water cooling turned on.  Note 

that a large acceleration current before the RF power is turned on might mean that the cooling 

water needs to be replaced with fresh distilled water.  The RF forward power is then raised to 

~ 160 W and the tune and load capacitors are adjusted to reduce the reflected power to 0 W.  If 

one is unable to lower the reflected power, one should first check that everything is connected 

properly.  If the source has just been reinstalled, it may also indicate that there is something 

wrong with the RF coil.  For example, it may be that the RF coil is touching the outer shielding 
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or itself, requiring removal of the source and repositioning of the RF coil.  Once the reflected 

power has been lowered, it is now time to get the source “started”.  Usually this involves raising 

the RF power to 300 W for a few seconds before lowering it back to 160 W.  Note that keeping 

the RF power too high for too long can cause, for example, the nickel sputter target to deform 

and possibly block the gas inlet tube.  The main indicators that the source has started are that the 

reflected power and acceleration current suddenly increase.  The next step is to reduce the 

reflected power to 0 W using the tune and load capacitors, while also lowering the forward 

power to the typical running condition of ~ 100 W.  Changing the tune and load capacitors or the 

forward power too quickly can cause the source to “unlight”. 

 The entire process typically took a minimum of ten minutes, although there are many 

reasons why it may take longer.  The source start time usually got longer as the source got 

“dirtier” from repeated sputtering of nickel or if the gas inlet was starting to clog.  At this point, 

one can try increasing the pressure to help get the source started.  Note that increasing the 

pressure too high can cause the accelerator to arc.  If the source does not start after a day or two 

of trying, it may be necessary to uninstall it and clean both the source chamber and the gas inlet 

tube.   

 Once the source has successfully started, the pressure is usually reduced to high 10
-5 

T in 

order to maximize the argon beam.  Typical argon beam sizes at the end of the beamline (note 

that there are various apertures along the way) were 300-500 nA.  The next step is to turn the 

sputter bias up to some low voltage, around -30 V, for about ten minutes in order to sputter off 

any oxide layers on the sputter target.  The sputter bias is then increased to around -60 V.  On a 

good day, the nickel beam would be ~ 20 nA.  A low beam current may indicate that the sputter 

target is mostly gone.  One can temporarily extend the life of the sputter target by increasing the 
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RF power or the sputter bias voltage, but again this may deform the sputter target until it is 

blocking the gas inlet.  If the source is unstable, it may indicate either that the pressure is too low 

or that the source chamber is getting coated with the sputter material and needs to be cleaned. 

 After the RF ion source is the focusing lens and the v B  filter system.  They are used to 

select and focus the desired beam such that it intersects the Rydberg target (Section 3.3) and goes 

through any downstream apertures (such as the initial stripper discussed in Section 3.4).  Typical 

operation of the v B  filter involved setting the electric field voltage to a specific value and 

scanning through the voltage on the magnet’s power supply in order to select either argon or 

nickel.  Figure 3.4 shows a scan of the beam current, measured at the end of the beamline, versus 

“Vmag”. 

 

 
Figure 3.4:  Scan of the magnet voltage (Vmag) versus beam current as measured at the end of the 

beamline.  The nickel beam current peak is clearly visible at Vmag~8.85 and distinguishable from 

the argon peak at Vmag~7.1 (not shown).  (Taken from SW03_135.) 

 

In this figure, the nickel beam current peak is clearly visible in spite of being more than a 

hundred times smaller than the nearby argon beam at Vmag~7.1 (not shown).  Not resolved in this 

particular Vmag scan is the fact that nickel is made up primarily of two isotopes:  
58

Ni at 68% and 
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60
Ni at 26%.  For the optical RESIS technique (Section 3.5), knowledge of which isotope is 

being excited is critical because this determines the calculated speed of the beam and thus the 

excitation energy. 

 There are two basic ways to separate isotopes produced by the ion source.  The first is to 

use the v B  filter to increase the angular separation between the isotopes such that only one 

will be directed down the beamline.  This can be done by increasing the electric field, thus 

increasing the magnetic field needed.  Since the ratio of the magnetic fields for two masses goes 

roughly like the square-root of the masses 

 
60 60

58 58

~ ~ 1.017Ni Ni

Ni Ni

B m

B m
 (3.1) 

the separation between masses is also increased.  One limitation to this method is the size of 

electric and magnetic fields that can be used in the v B  filter, so it may be that the largest 

electric field does not lead to a separation in magnetic fields that is easily measured.  This also 

means that heavier ions cannot be steered down the beamline at large electric fields, which can 

be inconvenient if one needs quick access to such an ion since different electric fields require 

different focusing settings.  Another option for separating isotopes is to place a slit in the 

beamline to physically stop a particular isotope from reaching the detector.  The drawback to this 

method is that imperfect focusing and alignment can also reduce the amount of the desired 

isotope that reaches the detector. 

 Fortunately for the microwave RESIS technique (Section 3.7) the mass difference 

between 
58

Ni and 
60

Ni does not present a problem.  Although the different masses will result in 

different Doppler-shifts, this will be averaged out because each transition is measured in both co- 

and counter-propagating directions.  It would slightly affect the analysis of the measurements, 
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discussed in Chapter 4, since the calculated expectation values of the Rydberg electron’s radial 

coordinate in the effective potential model has a mass dependence.  It can be shown, however, 

that this effect makes a difference at the kHz level and is thus not large enough to be measured. 

3.3 Rydberg State Formation 

 Once the ion beam has been mass-selected, it captures an electron from the Rydberg 

target and passes through the initial stripper where ions that have not captured an electron are 

deflected, and neutral Rydberg atoms with n ≥ 15 are ionized and then deflected.  The Rydberg 

target consists of a thermal plume of rubidium step-wise excited by three diode lasers, all around 

10 mW, to the 9F state.  The excitation scheme in Fig. 3.5 shows the three exciting lasers at 

780.24 nm (L1), 1529.3 nm (L2), and 770 nm (L3).  The diagram in Fig. 3.6 shows the paths that 

the lasers take to the target.  L1 and L2 are co-aligned before being sent into a cell of Rb, where 

a photodiode monitors the fluorescence.  The output voltage of the photodiode is sent to an 

oscilloscope, where a clear peak can be seen when L1 and L2 are on resonance with their 

transitions, thus allowing both to be set before entering the target region.  L3 is sent into the 

target region such that all three lasers intersect at a point in the Rb plume.  Although L3 excites 

up to the 9F state, its population is in fact shared through a mirrorless maser transition with the 

10D level lying just below it [36].  The fluorescence from the transition between the 10D and 5P 

states results in a blue-green glow that can be easily seen by eye.  For more precise tuning, the 

“blue” is monitored using a phototube.  Note that the amount of blue fluorescence depends on 

the amount of rubidium along with the alignment of the diode lasers, both with each other and 

with respect to the rubidium plume. 
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Figure 3.5:  Rb excitation scheme showing the three exciting lasers at 780.24 nm (L1), 

1529.3 nm (L2), and 770 nm (L3).  A mirrorless maser transition transfers population from the 

9F state to the 10D state at approximately 88 μm.  The blue fluorescence from the 10D state to 

the 5P state is monitored using a phototube. 

 

  
Figure 3.6:  Rb excitation optics schematic with three excitation lasers (L1, L2, L3).  L1 and L2 

are aligned and sent through a Rb cell, where a phototube monitors the fluorescence of the two-

step excitation.  They are then sent through a window, along with L3, where they intersect a 

thermal Rb plume.  When the lasers are properly aligned and on-resonance with their respective 

transitions, a blue-green fluorescence can be seen. 
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3.4 Initial Stripper 

 After passing through the Rydberg target, the beam of ions and neutral Rydberg atoms 

then enter the region of the initial stripper.  The purpose of the initial stripper is essentially to 

reduce the background measured in the detector.  One way it does this is by removing from the 

beam any ions that did not capture an electron from the target, thus reducing the possibility of 

Rydberg state formation through means outside the target region.  The other is to ionize any 

neutral atoms with very high n, since those states would be ionized in the detector.  The initial 

stripper (or pre-ionizer), shown in Fig. 3.7, is located within a Conflat-cross, approximately 

20 cm away from the Rydberg target. 

 

 
 

Figure 3.7:  Initial stripper with plates separated by 5 mm, where the upstream plate (left) is 

grounded and the downstream plate (right) is held at a high voltage (HV). 

 

It consists of two plates separated by 5 mm with apertures 3.13 mm in diameter for the beam to 

pass through.  The upstream plate is held at ground while the other plate is held at 10 kV, which 

is large enough to repel any ions, either those left in the primary beam or those ionized by the 

initial stripper.  The electric field required to ionize the states of a given n and Q depends on the 



 

56 

 

energy of the Stark state and how rapidly the atom or ion enters the field, and is approximately 

given by [37] 

 
3 3

9 9V V
cm cmstripper4 4

ionization

1 2
*5.14*10 *5.14*10

9 9

Q Q
F

n n
  . (3.2) 

The resulting field in the initial stripper of 20 kV/cm is large enough to ionize any states of 

n > 15.  There is an additional plate between the Rydberg target and the initial stripper, with a 

hole of diameter ~ 3.65 mm; it is used to prevent the rubidium from coating the initial stripper. 

3.5 Optical RESIS Technique 

 In the optical RESIS technique, the Rydberg atoms are excited by a CO2 laser beam in a 

Laser Interaction Region (LIR), Stark ionized in the final stripper, and then deflected into a 

channel electron multiplier to be detected.  Figure 3.8 shows a simulated nickel spectrum, which 

spans two CO2 laser lines and includes two transitions.  The LIR is set to excite a transition 

between a low n, such as n = 9, and a high n, such as n' = 19 or 20.  Although transitions with 

ΔL = L' - L = ±1 and ΔK = K' - K = 0, ±1 are possible, the dominant transitions are when 

ΔL = ΔK = +1. 
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Figure 3.8:  Simulated Ni optical spectrum showing n = 9 to n' = 19 and 20 for individual Ls.  

The signal (y-axis) has arbitrary units, although the signal heights have been weighted by 

  2 1 2 1K L   to roughly reflect the relative signal sizes that one would expect to see.  The 

dividing line between the two transitions is around 4000 MHz. 
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 First, a CO2 laser beam enters the LIR and initially intersects the atom beam at 

approximately 90°, before reflecting off a mirror at an angle controlled by the stage  s .  The 

reading of S  when the reflected laser intersects the atom beam at exactly 90° is labeled  . 

 
Figure 3.9:  LIR angle diagram showing the ion beam moving to the right.  The CO2 laser beam 

enters from the bottom, initially intersecting the ion beam at an approximate right angle, before 

reflecting off a stage-controlled mirror and intersecting the ion beam again at what is referred to 

as Int . 

 

Knowing these two angles, along with the laser frequency L  and β, the ratio between the 

velocity v and the speed of light c, the laser frequency as seen by the Rydberg atom can be 

calculated with the following: 

    
2 2

1 cos 1 sin 2 2
1 1

L L
L Int s

 
     

 


           
 

, (3.3) 

where 

  90 2Int s     . (3.4) 
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A precise determination of L   would require determining both β and   precisely, as has been 

done previously [38], by making measurements of another atom with known core properties.  

The β of the calibration atom and   could then be extracted, and the β of the atom of interest 

found by knowing the square root of the mass ratio between the two atoms.  As the focus of this 

dissertation is measurements made using the microwave RESIS technique, which do not require 

knowing either β or   exactly, the details of such a calibration will not be presented here. 

 One constraint of the LIR setup is the range of angles that can be scanned.  In practice, 

the maximum s   is less than 30°, meaning that the range of frequencies for a particular 

laser line is approximately 

 0.9L L L     . (3.5) 

For the case of Ni
+
, with βNi ≈ 0.00056, the tuning range is less than 0.1% of a particular CO2 

laser frequency.  Given that the frequencies are on the order of 1000 cm
-1

 and spaced more than 

1 cm
-1

 apart, some frequencies are unavailable.  As such, it may be necessary to look at more 

than one n→n' transition in order to optically map the entire Rydberg fine structure pattern. 

 Another point of concern is the width of the transition signal.  A lower limit is placed on 

it by the transit time through the CO2 laser, which is given by 

 
2

0
CO

sin Int

w
T

c 
 , (3.6) 

where 0w  is the waist of the Gaussian laser beam and has a value of 2.25 mm for the Ultra 

Lasertech PX2500G CO2 laser system used in this experiment.  The full-width half-maximum 

(FWHM) of the transition can then be calculated using 

 

2CO 0

sin2ln 2 1
0.375 ~ 29 MHzInt

transit

c

T w

 



   . (3.7) 
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Equating this to the derivative of Eqn. 3.3 with respect to angle and then solving for Δθ gives a 

minimum linewidth (in 
s ): 

  
0.375

in rad
2

s

o L

c

w



  , (3.8) 

which can be rewritten as 

  
   -1

1 214.86
in deg ~ 0.044

2 in mm in cm
s

o Lw



     

using more convenient units. 

 Figure 3.10 is a typical optical scan.  It shows the 9L7.5-19M8.5 and 9K6.5-19L7.5 peaks, 

along with the degenerate 9L9.5-19M10.5 and 9K8.5-19L9.5 peak. 

 
Figure 3.10:  A typical Ni optical scan in LIR I showing the 9L7.5-19M8.5 and 9K6.5-19L7.5 peaks, 

along with the degenerate 9L9.5-19M10.5 and 9K8.5-19L9.5 peak.  Each peak has been fit to a 

Gaussian.  The tuning rate for this measurement is between 500 and 600 MHz per degree stage.  

(Taken from SW06_121) 

 

  Note that if a signal is fit to a Gaussian of the form 

 

2

01

2

0

by ae

  
  

  ,  
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then the FWHM is related to b by 

 
2.35

FWHM
b  .  

The two peaks on the left have a FWHM of approximately 0.11° while the double peak on the 

right is slightly larger at 0.13°.  Each of these, however, is larger than the estimated minimum 

FWHM of 0.044° mentioned above.  This is most likely due to the angular spread of the ion 

beam. 

3.6 Detection 

 Once the Rydberg electron has been excited, it then moves into the detector where states 

with high n are Stark ionized and deflected into a channel electron multiplier (CEM).  The beam 

passes through both a “short-gap stripper” and a “long-gap stripper”.  Each final stripper consists 

of two plates with an aperture in the center for the beam to go through.  The plates of the “short-

gap stripper” have a separation of 0.8 cm between them.  Typically a potential of 5250 V was 

applied, sufficient enough to ionize states with n ≥ 19.  The “long-gap stripper”, with a 

separation of 2.5 cm and a potential of 3000 V, was used when looking at the Ar electric field 

diagnostic transition with n = 10 to n' = 30, discussed later in Chapter 4.  Ions formed by Stark 

ionization in either stripper are effectively energy tagged by an increase (or decrease in the case 

of a negative potential) in kinetic energy, thus distinguishing them from other ions in the beam 

since they would require different deflection potentials into the CEM.  A lock-in amplifier 

monitors the current in the CEM synchronous with the chopping of the CO2 laser. 

3.7 Microwave RESIS Technique 

 The microwave RESIS technique consists of two LIRs separated by an RF region.  

Figure 3.11 shows a schematic of the RF region used in the study of nickel.  It consists of an 
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inner conductor cylinder with diameter 0.246''  d  inside an outer conductor cylinder of 

diameter 1.290''  D .  Knowing that the centers of the conductors are separated by 0.465''  c  

allows one to calculate the impedance Z using [39] 

  160cosh  Z u  , (3.9) 

where  

 
21 4

2

D d c
u

d D dD

 
   

 
, (3.10) 

to find a value of Z = 49.14 Ω. 

 

 
Figure 3.11:  RF region diagram giving its basic appearance (top) and showing the dimensions of 

the inner and outer conductors (bottom). 

 

 The first step in setting up for an RF measurement is to set LIR I and LIR II to excite the 

proper transitions; typically the LIRs are set to the same transition.  An example transition with 

9K4.5 to 20L5.5 is shown below with the LIR I scan on the top and the LIR II scan on the bottom.  

It is assumed that transitions are saturated. 
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Figure 3.12:  Scans of the Ni 9K4.5 to 20L5.5 transition in LIR I and II.  Each peak has been fit to 

a Gaussian.  LIR I:  θs = -39.393(3)° and b = 0.038(3)°.  LIR II:  μs = 5.563(5) and 

b = 0.024(6) ~ 0.031°.  Note that the LIR I signal (top) is taken from SW03_075 while the LIR II 

signal (bottom) is taken from SW03_076.  Also, LIR II is controlled by a micrometer stage 

where 1 micrometer is approximately 1.27°. 

 

In order to verify that the LIRs are set to excite the same transition, one can do an optical “dip 

scan” by setting LIR II to its peak signal and sweeping through LIR I.  The signal is measured 

with reference to the chopping of the CO2 laser beam entering LIR II.  The laser beam in LIR I is 

not chopped.  An example is shown below in Fig. 3.13, again for the 9K4.5 to 20L5.5 case.  As 
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LIR I moves through the transition frequency, the signal in LIR II dips as the laser beam reduces 

the population of the 9K4.5 state and thus the 20L5.5 state. 
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Figure 3.13:  Dip scan for the Ni 9K4.5 to 20L5.5 transition, taken from SW03_076b.  Note that 

the signal is with reference to the chopping of the CO2 laser beam going into LIR II while 

sweeping through the angle in LIR I (where the laser beam is not chopped).  

 

Note that the fact that the LIR II signal drops to near zero when LIR I is on resonance supports 

the assumption that both regions saturate the transition.  In this particular situation, the proper 

positions of LIR I and LIR II are fairly clear.  In cases where the desired LIR signal overlaps 

with another, it is best to perform a dip scan before moving onto the RF scan. 

 The proper power needed for the RF field can be determined by measuring an RF signal 

at different powers.  An example of such a saturation curve is shown below for an argon 

transition.  The power should be high enough to saturate the transition, although setting the 

power above the transition point can result in power broadening and shifts in the transition 

frequency.  The power is typically set to a level slightly lower than that which gives the peak 

signal.  The power needed for other transitions can then be estimated using information about 

beam energy and z matrix elements. 
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Figure 3.14:  Saturation curve for the Ar 10H4.5 to 10I5.5 transition, taken from SW05_080, as 

measured after the RF region and a -3 dB pad. 

 

 The final step is to sweep through the RF frequencies with both LIRs set to the same 

transition.  Figure 3.15 shows the population manipulation on- and off-signal.  As one can see, 

the population on the upper n' is increased when the RF frequency RF  is on resonant with a 

transition between the lower n levels.  Note that the frequency is Doppler-shifted because of the 

speed of the atoms.  One could calculate the nominal Doppler shift using the following: 
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or 
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 (3.12) 

 

where 0  is the unshifted frequency. 
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Figure 3.15:  RF population diagram showing the RF frequency both on- and off-resonance. 

 



 

67 

 

The preferred method, however, to make the measurements with the RF field both co- and 

counter-propagating with respect to the Rydberg beam, and then average the results.  Figure 3.16 

shows an example of co- and counter-propagating measurements for a particular transition.  

Although the spin-splitting discussed in Section 2.2D can result in an increased width, the 

minimum FWHM of a signal is determined by the transit time through the RF region 

 min

1
FWHM

RF region lengthRF

c

T


  , (3.13) 

which would be approximately 1.3 MHz for the RF region shown in Fig. 3.11 (assuming 

βNi ≈ 0.00056).  The fitted curves of Fig. 3.16 show an average width of 1.4(1) MHz, indicating a 

small contribution from unresolved spin splitting. 
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Figure 3.16:  Ni co- and counter-propagating transition example (9K5.5 to 9L6.5).  The co-

propagating signal is shown with red squares while the counter-propagating signal is shown with 

blue circles.  (Data is taken from SW06_039 for the counter-propagating direction and 

SW06_042 for the co-propagating direction.)  
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 As with the optical RESIS technique, the beam is then Stark ionized in the final stripper 

and deflected into the CEM.  Unlike the optical technique, the CO2 laser beam is not chopped in 

either LIR.  Instead, the RF field is modulated by the RF generator and the CEM current 

synchronous with this modulation is measured as a function of RF frequency. 



 

69 

 

Chapter 4: Measurement of the Nickel Rydberg Fine Structure 

4.1 Introduction 

 Transitions between energy levels of the nickel n = 9 Rydberg fine structure were 

measured using the Microwave Resonant Excitation Stark Ionization Spectroscopy technique.  

Measurement of fourteen transitions were made connecting 15 of the 18 energy levels within 

L = 6, 7, and 8.  Each transition was measured in the co- and counter-propagating directions.  

Examples of each transition measured are shown in Appendix C. 

 The following chapter discusses how each measurement is fit to determine the line center.  

A diagnostic transition is used to measure the electric field at a given point in time and thus 

determine possible DC Stark shifts that a transition experiences.  The AC Stark shift correction, 

applicable to two-photon transitions, is also discussed.  The corrected transitions in the co- and 

counter-propagating directions are averaged and then used to determine the relative positions of 

the energy levels.  These levels are corrected for relativistic and second-order effects, before 

being fit to find the structure parameters.  Finally, the core properties are extracted by scaling 

and plotting the structure parameters.  A flow chart detailing this process is shown in Fig. 4.1. 

4.2 Fitting and Correcting the Observed Transition Frequencies 

 Each transition measurement was fit using two Gaussians separated by the calculated spin 

splitting due to the magnetic moment of the Rydberg electron.  Assume a transition between 

KnL  and KnL 
 ; each level is split into two states with J = K ± ½ (or J' = K' ± ½).  The dominant 

transitions between J and J' are shown in Fig. 4.2.  Note that the states are “normal”, meaning 

that the K+½ state has a higher energy than the K-½ state. 
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Figure 4.1:  Flow chart describing the analysis procedure.  Note that the process must be iterated 

because the second-order corrections depend on the core properties. 
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Figure 4.2:  Diagram showing spin splitting for a K state (J = K ± 1/2) and a K' state 

(J' = K' ± 1/2).  Arrows show the dominant J to J' transitions. 

 

The fitting function took the form of 

 
 
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 

            
          
         

 

, (4.1) 

where the calculated values for the splittings (Eq. 2.98 from Section 2.2D) are shown in 

Table 4.1.  The coefficients  2 2K   and  2K  were included to allow for the slight difference 

in the relative weight of each transition.  Figure 3.16 showed a transition where the spin-splitting 

is unresolved.  Some of the transitions, however, had spin splittings larger than the minimum 

full-width half-maximum (discussed in Section 3.7).  A fit of two independent Gaussians in these 

cases were consistent with the predicted spin splittings.  Figure 4.3 shows an example of such a 

transition, 9I7.5 to 9K7.5, which gives a measured splitting, of 2.24(11) MHz, consistent with the 

predicted value of 2.2858 MHz.  The results of these fits are shown in Table 4.2. 
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Table 4.1:  Calculated spin splittings for n = 9.  Column 1 gives the state.  For clarity, the L and 

K of the state are explicitly written in columns 2 and 3, respectively.  Column 4 gives the 

position of the J = K+½ state and column 5 gives the position of the J = K-½ state, both with 

respect to the center of gravity of the two states.  The difference is in column 6.  All energies are 

in MHz. 

 

State L K S+ S- difference 

9I3.5 6 3.5 1.0881 -1.3990 2.4870 

9I4.5 6 4.5 1.2107 -1.4798 2.6905 

9I5.5 6 5.5 1.5183 -1.7943 3.3126 

9I6.5 6 6.5 2.0211 -2.3321 4.3532 

9I7.5 6 7.5 2.7384 -3.1035 5.8419 

9I8.5 6 8.5 3.6933 -4.1278 7.8210 

      
9K4.5 7 4.5 1.0073 -1.2311 2.2383 

9K5.5 7 5.5 1.1164 -1.3194 2.4359 

9K6.5 7 6.5 1.335 -1.5403 2.8753 

9K7.5 7 7.5 1.6669 -1.8892 3.5561 

9K8.5 7 8.5 2.1207 -2.3702 4.4908 

9K9.5 7 9.5 2.7066 -2.9915 5.6981 

            9L5.5 8 5.5 0.8962 -1.0591 1.9553 

9L6.5 8 6.5 0.9874 -1.1394 2.1268 

9L7.5 8 7.5 1.1471 -1.3000 2.4471 

9L8.5 8 8.5 1.3769 -1.5389 2.9158 

9L9.5 8 9.5 1.681 -1.8580 3.5390 

9L10.5 8 10.5 2.0645 -2.2611 4.3256 
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Figure 4.3:  Ni microwave transition showing resolved spin splitting, specifically the co-

propagating 9I7.5 to 9K7.5 transition.  Calculations predict a splitting of 2.2858 MHz while a 

double Gaussian fit gives a completely consistent value of 2.24(11) MHz.  (Taken from 

SW06_098.) 
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Table 4.2:  Measured Ni transitions.  The table is broken into different sections for each transition.  Each section is headed by the 

specific microwave transition, the optical transitions for each LIR, the predicted spin splitting, the calculated DC Stark shift rate (and 

AC Stark Shift rate for two photon transitions), and the CO2 laser line used.  Column 1 specifies the particular measurement:  the lab 

book and page it was taken on, along with the direction of propagation of the microwaves with respect to the atom beam.  Column 2 

gives the fitted a parameter value and uncertainty while column 3 does the same for the b parameter.  The fitted center is in column 4.  

Each measurement is the average of two passes, except where noted.  The single photon transitions have the DC Stark shift in 

column 5, while the two photon transitions have both the DC Stark shift and the AC Stark shift.  Column 6 is the corrected center.  

Each co- and counter-propagating measurements pair is then Doppler averaged, as shown in column 7.  Those numbers are then 

averaged to find the final transition separation, shown at the bottom of each section.  The error quoted is the internal error except for 

the transitions where the external average is larger.  Notes:  The measurement marked with an 
a
 is the average of two single pass scans 

(SW03_142 and SW03_143).  The measurements marked with an 
1
 are single pass scans.  The 

E
 indicates no electric field diagnostic 

when that particular measurement was taken.  An * indicates an external error.  All energies are in MHz. 

 

 

Calculated DC Stark Shift Rate:  -0.71 MHz/(V/cm)
2

book page direction

04 16 I 0.0018 (2) 0.59 (10) 3297.309 (81) 0.0000 (71) E 3297.309 (81)

04 15 D 0.0017 (1) 0.62 (7) 3293.580 (54) 0.0000 (71) E 3293.580 (54)

06 48 I 0.0017 (2) 0.51 (6) 3297.351 (52) 0.0000 (8) 3297.351 (52)

06 47 D 0.0018 (2) 0.53 (7) 3293.645 (58) 0.0000 (8) 3293.645 (58)

Final: 3295.471 (31)

fitted a

Transition:  9I4.5 to 9K5.5

Predicted Spin Splitting:  0.2547 MHz

Optical Transition (LIR I = LIR II):  9I4.5-20K5.5

fitted b fitted center DC Stark Shift corrected center

Laser Line:  9R(24)

Doppler averaged

3295.445 (49)

3295.498 (39)
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Table 4.2 continued: 

 

 
 

 

Calculated DC Stark Shift Rate:  -4.20 MHz/(V/cm)
2

book page direction

04 42 I 0.0023 (2) 0.78 (9) 1110.620 (58) 0.0000 (46) 1110.620 (58)

04 47 D 0.0029 (2) 0.51 (5) 1109.337 (38) 0.0000 (46) 1109.337 (39)

06 34 I 0.0022 (2) 0.60 (6) 1110.726 (47) 0.0000 (46) 1110.726 (47)

06 37 D 0.0025 (2) 0.46 (6) 1109.299 (50) 0.0000 (46) 1109.299 (50)

Final: 1109.996 (24)

Laser Line:  9P(16)Transition:  9I5.5 to 9K6.5

fitted a fitted b fitted center DC Stark Shift corrected center

Predicted Spin Splitting:  0.4373 MHz

Optical Transition (LIR I = LIR II):  9I5.5-19K6.5

Doppler averaged

1109.979 (35)

1110.013 (34)

Calculated DC Stark Shift Rate:  -1.22 MHz/(V/cm)
2

book page direction

04 45 I 0.0016 (5) 0.46 (19) 2719.626 (126) 0.0000 (13) 2719.626 (126)

04 46 D 0.0019 (4) 0.50 (15) 2716.394 (84) 0.0000 (13) 2716.394 (84)

06 35 I 0.0016 (3) 0.52 (16) 2719.474 (99) 0.0000 (13) 2719.474 (99)

06 36 D 0.0017 (4) 0.36 (8) 2716.663 (87) 0.0000 (13) 2716.663 (87)

Final: 2718.039 (50)

Laser Line:  9P(16)Transition:  9I5.5 to 9K5.5

fitted a fitted b fitted center DC Stark Shift corrected center

Predicted Spin Splitting:  0.9768 MHz

Optical Transition (LIR I = LIR II):  9I5.5-19K6.5

Doppler averaged

2718.010 (76)

2718.068 (66)
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Table 4.2 continued: 

 

 
 

 

Calculated DC Stark Shift Rate:  -0.45 MHz/(V/cm)
2

book page direction

04 56 I 0.0029 (5) 0.37 (7) 118.565 (61) 0.0000 (5) 118.565 (61)

04 53 D 0.0029 (5) 0.37 (7) 118.557 (60) 0.0000 (5) 118.557 (60)

06 15 I 0.0021 (3) 0.46 (9) 118.532 (57) 0.0000 (5) 118.532 (57)

06 12 D 0.0017 (3) 0.45 (11) 118.569 (64) 0.0000 (5) 118.569 (64)

Final: 118.556 (30)

Laser Line:  9P(16)Transition:  9I6.5 to 9K7.5

fitted a fitted b fitted center DC Stark Shift corrected center

Predicted Spin Splitting:  0.7971 MHz

Optical Transition (LIR I = LIR II):  9I6.5-19K7.5

Doppler averaged

118.561 (43)

118.550 (43)

Calculated DC Stark Shift Rate:  -53.06 MHz/(V/cm)
2

book page direction

04 82 I 0.0034 (3) 0.60 (56) 517.477 (50) -0.1246 (582) 517.601 (767)

04 79 D 0.0029 (2) 0.65 (6) 516.768 (52) -0.1246 (582) 516.893 (780)

06 24 I 0.0039 (2) 0.61 (37) 517.581 (34) 0.0000 (575) 517.581 (666)

06 27 D 0.0042 (2) 0.66 (40) 517.034 (31) 0.0000 (575) 517.034 (653)

06 97 I 0.0029 (2) 0.66 (57) 517.588 (44) 0.0000 (575) 517.588 (724)

06 96 D 0.0026 (2) 0.60 (53) 516.972 (50) 0.0000 (575) 516.972 (758)

Final: 517.278 (297)

Optical Transition (LIR I = LIR II):  9I7.5-19K8.5 Laser Line:  9P(16)

fitted a fitted b fitted center DC Stark Shift corrected center

Transition:  9I7.5 to 9K8.5

Predicted Spin Splitting:  1.3510 MHz

Doppler averaged

517.247 (547)

517.307 (466)

517.280 (524)
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Table 4.2 continued: 

 

 
 

 

Calculated DC Stark Shift Rate:  -16.75 MHz/(V/cm)
2

book page direction

04 81 I 0.0017 (2) 0.53 (62) 2346.738 (65) -0.0393 (184) 2346.777 (671)

04 80 D 0.0016 (1) 0.64 (56) 2344.127 (68) -0.0393 (184) 2344.166 (701)

06 25 I 0.0015 (2) 0.60 (67) 2346.736 (77) 0.0000 (181) 2346.736 (793)

06 26 D 0.0012 (2) 0.52 (80) 2344.167 (85) 0.0000 (181) 2344.167 (866)

06 98 I 0.0024 (2) 0.53 (47) 2346.755 (49) 0.0000 (181) 2346.755 (524)

06 95 D 0.0017 (1) 0.54 (44) 2344.209 (47) 0.0000 (181) 2344.209 (508)

Final: 2345.468 (282)

Laser Line:  9P(16)Transition:  9I7.5 to 9K7.5

fitted a fitted b fitted center DC Stark Shift corrected center

Predicted Spin Splitting:  2.2858 MHz

Optical Transition (LIR I = LIR II):  9I7.5-19K8.5

Doppler averaged

2345.472 (485)

2345.452 (587)

2345.482 (365)

book page direction

04 21 I 0.0029 (2) 0.52 (6) 2903.362 (49) 0.0000 (37) E 2903.362 (49)

04 22 D 0.0030 (2) 0.55 (6) 2900.074 (47) 0.0000 (37) E 2900.074 (47)

06 44 I 0.0015 (1) 0.57 (6) 2903.238 (54) 0.0000 (4) 2903.238 (54)

06 45 D 0.0014 (2) 0.56 (9) 2900.006 (76) 0.0000 (4) 2900.006 (76)

06 113 I 0.0022 (2) 0.56 (7) 2903.262 (56) 0.0000 (4) 2903.262 (56)

06 114 D 0.0016 (2) 0.65 (9) 2900.063 (71) 0.0000 (4) 2900.063 (71)

Final: 2901.667 (28) *

Optical Transition (LIR I = LIR II):  9K4.5-20L5.5

Calculated DC Stark Shift Rate:  0.37 MHz/(V/cm)
2

Laser Line:  9R(24)

fitted a

Transition:  9K4.5 to 9L5.5

DC Stark Shiftfitted b fitted center corrected center

Predicted Spin Splitting:  0.2831 MHz

Doppler averaged

2901.718 (34)

2901.622 (47)

2901.662 (45)
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Table 4.2 continued: 

 

 
 

 

Calculated DC Stark Shift Rate:  0.71 MHz/(V/cm)
2

book page direction

04 65 I 0.0026 (2) 0.58 (7) 1425.328 (43) 0.0000 (8) 1425.328 (43)

04 68 D 0.0027 (2) 0.55 (5) 1423.741 (42) 0.0000 (8) 1423.741 (42)

06 42 I 0.0018 (2) 0.54 (6) 1425.301 (51) 0.0000 (8) 1425.301 (51)

06 39 D 0.0024 (1) 0.64 (5) 1423.746 (42) 0.0000 (8) 1423.746 (42)

Final: 1424.529 (22)

Laser Line:  9P(16)

Predicted Spin Splitting:  0.3090 MHz

Optical Transition (LIR I = LIR II):  9K5.5-19L6.5

fitted a fitted b fitted center DC Stark Shift corrected center

Transition:  9K5.5 to 9L6.5

Doppler averaged

1424.535 (30)

1424.524 (33)

Calculated DC Stark Shift Rate:  0.35 MHz/(V/cm)
2

book page direction

04 66 I 0.0015 (2) 0.41 (9) 2128.471 (67) 0.0000 (4) 2128.471 (67)

04 67 D 0.0020 (3) 0.48 (9) 2126.056 (65) 0.0000 (4) 2126.056 (65)

06 41 I 0.0016 (4) 0.24 (7) 2128.568 (54) 0.0000 (4) 2128.568 (54)

06 40 D 0.0013 (2) 0.47 (10) 2126.116 (79) 0.0000 (4) 2126.116 (79)

Final: 2127.303 (39) *

Laser Line:  9P(16)

Predicted Spin Splitting:  0.4805 MHz

Optical Transition (LIR I = LIR II):  9K5.5-19L6.5Transition:  9K5.5 to 9L5.5

DC Stark Shiftfitted a fitted b fitted center corrected center

2127.264 (47)

2127.342 (48)

Doppler averaged
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Table 4.2 continued: 

 

 
 

 

Calculated DC Stark Shift Rate:  -2.98 MHz/(V/cm)
2

book page direction

04 63 I 0.0024 (3) 0.46 (7) 179.817 (56) 0.0000 (32) 179.817 (56)

04 62 D 0.0019 (2) 0.54 (6) 179.575 (49) 0.0000 (32) 179.575 (49)

06 23 I 0.0029 (1) 0.59 (4) 179.735 (29) 0.0000 (32) 179.735 (29)

06 22 D 0.0029 (1) 0.52 (3) 179.593 (24) 0.0000 (32) 179.593 (25)

Final: 179.680 (21)

Laser Line:  9P(16)Transition:  9K6.5 to 9L7.5

fitted a fitted b fitted center DC Stark Shift corrected center

Predicted Spin Splitting:  0.4282 MHz

Optical Transition (LIR I = LIR II):  9K6.5-19L7.5

Doppler averaged

179.696 (37)

179.664 (19)

Calculated DC Stark Shift Rate:  -17.93 MHz/(V/cm)
2

book page direction

04 57 I 0.0023 (2) 0.56 (6) 444.713 (41) 0.0000 (194) 444.713 (45)

04 60 D 0.0025 (2) 0.58 (7) 444.199 (45) 0.0000 (194) 444.199 (49)

06 16 I 0.0033 (2) 0.50 (4) 444.622 (29) 0.0000 (194) 444.622 (35)

06 19 D 0.0040 (2) 0.58 (4) 444.184 (25) 0.0000 (194) 444.184 (31)

06 102 I 0.0024 (1) 0.58 (5) 444.686 (36) 0.0000 (194) 444.686 (41)

06 105 D 0.0040 (1) 0.57 (3) 444.205 (22) 0.0000 (194) 444.205 (29)

Final: 444.435 (16)

Laser Line:  9P(16)Transition:  9K7.5 to 9L8.5

fitted a fitted b fitted center DC Stark Shift corrected center

Predicted Spin Splitting:  0.6403 MHz

Optical Transition (LIR I = LIR II):  9K7.5-19L8.5

Doppler averaged

444.456 (33)

444.403 (23)

444.445 (25)
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Table 4.2 continued: 

 

 

Calculated DC Stark Shift Rate:  -9.60 MHz/(V/cm)
2

book page direction

04 58 I 0.0014 (2) 0.62 (12) 1417.276 (69) 0.0000 (104) 1417.276 (70)

04 59 D 0.0013 (3) 0.35 (8) 1415.731 (100) 0.0000 (104) 1415.731 (101)

06 17 I 0.0011 (2) 0.66 (19) 1417.272 (109) 0.0000 (104) 1417.272 (109)

06 18 D 0.0015 (1) 0.66 (9) 1415.772 (54) 0.0000 (104) 1415.772 (55)

06 103 I 0.0015 (2) 0.64 (13) 1417.046 (75) 0.0000 (104) 1417.046 (76)

06 104 D 0.0016 (2) 0.59 (11) 1415.838 (72) 0.0000 (104) 1415.838 (72)

Final: 1416.489 (34)

Laser Line:  9P(16)Transition:  9K7.5 to 9L7.5

fitted a fitted b fitted center DC Stark Shift corrected center

Predicted Spin Splitting:  1.1090 MHz

Optical Transition (LIR I = LIR II):  9K7.5-19L8.5

Doppler averaged

1416.503 (61)

1416.522 (61)

1416.442 (52)
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Table 4.2 continued: 

 

 

Measured AC Stark Shift Rate:  0.0023(18) MHz/mW

book page direction

DC 0.0000 (27) E

AC 0.0782 (626)

DC 0.0000 (27) E

AC 0.0782 (626)

DC 0.0000 (3)

AC 0.0920 (736)

DC 0.0000 (3)

AC 0.0920 (736)

DC 0.0000 (3)

AC 0.0621 (497)

DC 0.0000 (3)

AC 0.0667 (531)

Final: 4299.218 (29)

Full Transition: 8598.437 (59)

Optical Transition (LIR I, LIR II):  9I3.5-20K4.5, 9L5.5-20M6.5

Calculated DC Stark Shift Rate:  0.27 MHz/(V/cm)
2

The spin splittings and shift rates noted above refer to the measured  transition and 

must be multiplied by two if discussing the full  transition.

-0.0023 (4)

-0.0034 (3)

(70)-0.0018 (2)

-0.0031 (3)

03

-0.0017 (2)

0.32 (4)

4299.216

fitted a fitted b corrected center

0.29 (4)

4301.740 (31)

4296.899

Doppler averaged

4299.242 (51)

4296.821 (73)

Stark Shift

4301.662

4299.198

-0.0028 (4)

(58)

(43)

0.28 (4)

0.27 (5)

0.30 (4)

0.24 (4)

4301.741

4296.875

4301.713

(38)

(28)

(43)

(29)

(34)

03

06

06

06

06

(85)

4301.651 (57)

D

142

145

50

51

108

107

I

D

I

D

I

4296.812

Transition:  9I3.5 to 9L5.5

2 PHOTON

Laser Line:  9R(24)

4296.745 (63)

Predicted Spin Splitting:  0.2659 MHz

fitted center

a

1

1

4301.649 (79)

4296.783
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Table 4.2 continued: 

 

 
 

 

book page direction

DC 0.0818 (191)

AC 0.0810 (171)

DC 0.0818 (191)

AC 0.0756 (160)

DC 0.0000 (377)

AC 0.0713 (150)

DC 0.0000 (377)

AC 0.0713 (150)

Final: 266.170 (25)

Full Transition: 532.340 (50)

The spin splittings and shift rates noted above refer to the measured  transition and 

must be multiplied by two if discussing the full  transition.

Optical Transition (LIR I = LIR II):  9I7.5-19K8.5

Calculated DC Stark Shift Rate:  34.83 MHz/(V/cm)
2

Measured AC Stark Shift Rate:  0.0108(23) MHz/mW

266.287 (46)

266.145 (32)

06 94 D 0.0025 (1) 0.33 (2) 266.075 (20) 266.003 (46)

0.33 (2) 266.359 (22)06 93 I 0.0021 (1)

266.327 (40)

266.195 (38)

04 84 D 0.0010 (1) 0.39 (5) 266.219 (60) 266.062 (65)

0.35 (2) 266.490 (31)04 83 I 0.0022 (2)

Laser Line:  9P(16)

2 PHOTON

Predicted Spin Splitting:  1.1515 MHz

fitted a fitted b fitted center Stark Shift corrected center Doppler averaged

Transition:  9I7.5 to 9L9.5
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 Once the transition centers have been found they must be corrected for DC Stark shifts 

and, if applicable, AC Stark shifts.  The first correction considered is the possibility of a DC 

Stark shift due to stray electric fields.  Measurements of a diagnostic transition, 10H4.5 to 10I5.5 in 

argon, were made often since the field, most likely due to the charging up of surfaces in the RF 

region, varied day-to-day.  Reference [5] referred to this transition as D and determined its zero-

field position, D0, to be 

  0 1398.13 20 MHzD  . (4.2) 

With a shift rate of 184.6 MHz/(V/cm)
2
, this diagnostic transition is more than twice as sensitive 

to stray electric fields as any of the nickel transitions measured.  The square of the electric field 

is thus given by 

 
 

2
0

2
184.6 MHz/ V/cm

D D
E


 . (4.3) 

If the measurement of D was consistent with D0, the shift would be 0 MHz but assigned an 

uncertainty of 

 
 

2

Ni transition shift rate
0.20MHz

184.6 MHz/ V/cm
 . (4.4) 

Note that the 0.20 MHz comes from the uncertainty in the position of D0.  If a nickel transition 

measurement occurred without a measurement of D nearby then it was assigned a 0 MHz shift.  

Its uncertainty, however, was (0.1 V/cm)
2
 times the shift rate.  The value of 0.1 V/cm was chosen 

since it is larger than any value of E  measured throughout this experiment. 

 The second correction considered, affecting only the two-photon transitions, is the 

possibility of AC Stark shifts.  Note that for the two-photon transitions all corrections are made 

to the observed frequency, giving a result that is then doubled to give the full separation between 
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the two energy levels.  Measurements were made in the co-propagating direction at multiple 

powers for both of the two-photon transitions.  By plotting these measurements versus power for 

each transition, once can find the rate at which these transitions shift due to power.  Figure 4.4 

shows such a plot for the nickel 9I3.5 to 9L5.5 transition.  A linear fit to the data gives an AC Stark 

shift rate of 0.0023(18) MHz/mW and thus a shift of less than 0.1 MHz to the observed 

frequencies.  Plotting the 9I7.5 to 9L9.5 transition, Fig. 4.5, gave an AC Stark shift rate of 

0.0108(23) MHz/mW and again a shift of less than 0.1 MHz to the observed frequencies. 
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Figure 4.4:  Ni 9I3.5 to 9L5.5 AC Stark shift plot showing the upward shift of the transition as the 

power increases.  Note that the y-axis shows the measured frequency, thus the full transition 

separation is found by multiplying it by two. 
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Figure 4.5:  Ni 9I7.5 to 9L9.5 AC Stark shift plot showing the upward shift of the transition as the 

power increases.  Note that the y-axis shows the measured frequency, thus the full transition 

separation is found by multiplying it by two. 

 

 Once the corrections were made to the measurements, each set of co- and counter-

propagating measurements were averaged to find the unshifted center.  These centers were then 

averaged to give the final result for each transition.  The internal error of a transition’s final value 

is due to the uncertainty of each day’s measurements and is given by 2

1

1 N

i

iN




 , where N is 

number co- and counter-propagating pairs.  The external error is due to the variation from 

measurement to measurement:  
 

 
2

1

1

1

N

i

i

x x
N N 



 .  The larger of the two was taken as the 

final error. 
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4.3 Energy Level Corrections and Structure Parameters 

 An arbitrary state is chosen to be the zero point in the energy level diagram; for nickel the 

9I5.5 state was chosen.  The positions of the other states are then calculated relative to it.  

Figure 4.6 shows such a level diagram.  Each state is corrected for the relativistic and second-

order effects discussed in Sections 2.2C and 2.2D.  Note that these corrections, shown in 

Table 4.3, are small when compared to the scale of the energy pattern.  The corrected energies 

are then related to the expectation value of the effective potential of Chapter 2. 

 

 

Figure 4.6:  Energy level diagram with 9I5.5 at 0 GHz.  Each state is labeled by its K (next to its 

position) and its L (at the bottom of the plot).  The measured transitions connecting each state are 

also shown:  solid pink lines for ΔK = 1, dashed green lines for ΔK = 0, and dotted blue lines for 

two-photon transitions.  Note that 15 of the 18 energy levels were connected by the measured 

transitions; the positions of the other energy levels were calculated using core property 

measurements. 
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Table 4.3:  Ni n = 9 Rydberg fine structure energy levels and corrections where the 9I5.5 energy level has been taken as the zero point.  

Column 1 gives the observed energy while column 2 gives the measurement uncertainty.  Column 2 gives the calculated relativistic 

energy.  The second-order energies in Veff are given in column 4.  Its uncertainties due to convergence and the core properties are in 

columns 5 and 6, respectively, with the total uncertainty in column 7.  Column 8 gives the observed energies corrected for columns 2 

and 4.  The total uncertainty of the corrected energies, column 9, is the combination of columns 3 and 7.  All energies are in MHz. 

 

State obsE  meas  relE  
 2

effE  conv  prop   2

total  
 1
effE   1

total  

9I3.5 -13443.779 (0.087) -16.945 -5.287 (0.999) (2.771) (2.946) -13421.546 (2.947) 

9I4.5 -6013.510 (0.059) -16.945 9.097 (1.165) (2.355) (2.627) -6005.662 (2.628) 

9I5.5 0 (0.075) -16.945 11.308 (1.347) (1.295) (1.868) 5.637 (1.870) 

9I6.5 2824.721 (0.078) -16.945 2.294 (1.475) (0.076) (1.477) 2839.372 (1.479) 

9I7.5 360.697 (0.077) -16.945 -11.012 (1.455) (1.001) (1.766) 388.654 (1.768) 

9I8.5 ― ― -16.945 -16.789 (1.201) (0.402) (1.266) ― ― 

          9K4.5 -7747.009 (0.070) -12.016 6.862 (0.147) (1.811) (1.817) -7741.855 (1.822) 

9K5.5 -2718.039 (0.050) -12.016 12.650 (0.173) (1.858) (1.867) -2718.673 (1.867) 

9K6.5 1109.996 (0.024) -12.016 8.427 (0.217) (0.941) (0.966) 1113.584 (0.966) 

9K7.5 2706.165 (0.072) -12.016 0.803 (0.249) (0.018) (0.250) 2717.378 (0.260) 

9K8.5 877.975 (0.083) -12.016 -2.956 (0.243) (0.162) (0.292) 892.947 (0.303) 

9K9.5 ― ― -12.016 -4.780 (0.202) (0.086) (0.219) ― ― 

          9L5.5 -4845.342 (0.064) -8.246 -1.883 (0.038) (0.082) (0.090) -4835.213 (0.111) 

9L6.5 -1293.510 (0.055) -8.246 0.010 (0.044) (0.105) (0.113) -1285.274 (0.126) 

9L7.5 1289.676 (0.032) -8.246 0.873 (0.047) (0.049) (0.068) 1297.049 (0.075) 

9L8.5 2261.730 (0.074) -8.246 0.559 (0.048) (0.004) (0.048) 2269.417 (0.088) 

9L9.5 893.037 (0.097) -8.246 -0.589 (0.046) (0.028) (0.054) 901.872 (0.111) 

9L10.5 ― ― -8.246 -1.351 (0.039) (0.018) (0.043) ― ― 
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 As discussed previously, the second-order energies depend on the dominant core 

parameters of the effective potential 

    
       

     
2

, ,c

c K eff c K c K eff c K

eff K
J n L

c

gJ nL V gJ n L gJ n L V gJ nL
E nL

E gJ E n E n  

     


   
 ,  

where 

 
           2 2

,0 ,2

4 3 4

ˆ1 1

22 2

0

D D cc c

eff

c c

c c

JQ J X J C r
V

J Jr r r

J J

    
    

  
 
 

.  

As such, an iterative approach must be taken when calculating these corrections until the core 

parameters found are consistent with those used.  Using the effective potential above, there are 

six second-order energy terms:  QQ , ,0DQ , ,0 ,0D D  , ,2DQ , ,0 ,2D D  , and ,2 ,2D D  .  The 
 2

effE  

calculated for each level, broken down into these six types and the two possible intermediate 

core states, are shown in Table 4.4.  The terms that involve the quadrupole moment tend to 

dominate, but the relative importance of each term varies with L and K. 
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Table 4.4:  Second-order energies in Veff for L = 6, 7 and 8.  The initial state is given in column 1 

and the intermediate state in column 2.  Columns 3 through 8 give the six different terms.  All 

energies are in MHz. 

 

State c cL J   QQ  
,0DQ  ,0 ,0D D   ,2DQ  ,0 ,2D D   ,2 ,2D D   

9I3.5 
D5/2 -5.093 -8.795 -2.641 0.525 0.442 -0.013 

D3/2 7.516 0 0 2.559 0 0.212 

9I4.5 
D5/2 6.367 -2.010 -2.641 -0.556 0.101 0.016 

D3/2 5.466 0 0 2.161 0 0.194 

9I5.5 
D5/2 6.824 3.518 -2.641 -0.612 -0.177 0.019 

D3/2 3.082 0 0 1.189 0 0.105 

9I6.5 
D5/2 -0.555 6.132 -2.641 0.028 -0.308 0.003 

D3/2 -0.289 0 0 -0.071 0 -0.005 

9I7.5 
D5/2 -7.878 3.870 -2.641 0.631 -0.195 -0.014 

D3/2 -3.784 0 0 -0.940 0 -0.061 

9I8.5 
D5/2 -7.593 -5.528 -2.641 0.643 0.278 -0.014 

D3/2 -1.531 0 0 -0.377 0 -0.025 

        
9K4.5 

D5/2 -1.542 -2.118 -0.445 0.111 0.072 -0.002 

D3/2 8.975 0 0 1.729 0 0.082 

9K5.5 
D5/2 2.598 -0.371 -0.445 -0.150 0.013 0.003 

D3/2 9.144 0 0 1.774 0 0.084 

9K6.5 
D5/2 2.501 0.965 -0.445 -0.141 -0.033 0.003 

D3/2 4.636 0 0 0.898 0 0.043 

9K7.5 
D5/2 -0.123 1.526 -0.445 0.017 -0.052 0.000 

D3/2 -0.101 0 0 -0.017 0 -0.001 

9K8.5 
D5/2 -2.451 0.891 -0.445 0.144 -0.030 -0.002 

D3/2 -0.900 0 0 -0.155 0 -0.007 

9K9.5 
D5/2 -2.549 -1.417 -0.445 0.156 0.048 -0.002 

D3/2 -0.484 0 0 -0.082 0 -0.004 

        
9L5.5 

D5/2 -0.555 -0.588 -0.086 0.029 0.014 0.000 

D3/2 -0.615 0 0 -0.079 0 -0.003 

9L6.5 
D5/2 1.118 -0.078 -0.086 -0.042 0.002 0.000 

D3/2 -0.799 0 0 -0.101 0 -0.003 

9L7.5 
D5/2 1.132 0.293 -0.086 -0.040 -0.007 0.000 

D3/2 -0.370 0 0 -0.047 0 -0.002 

9L8.5 
D5/2 0.265 0.433 -0.086 -0.004 -0.010 0.000 

D3/2 -0.034 0 0 -0.004 0 0.000 

9L9.5 
D5/2 -0.491 0.237 -0.086 0.022 -0.005 0.000 

D3/2 -0.237 0 0 -0.028 0 -0.001 

9L10.5 
D5/2 -0.725 -0.412 -0.086 0.033 0.010 0.000 

D3/2 -0.152 0 0 -0.017 0 -0.001 
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 One difficulty in calculating the second-order energies is the off-diagonal tensor dipole 

polarizability  ,2D cJ   (Eqn. 2.90).  Unlike the off-diagonal quadrupole moment of Eqn. 2.93, 

which can be estimated by assuming pure LS coupling,  ,2D cJ   depends on two different 

matrix elements for each intermediate state cJ  : 

     

   

 

1 1

2

,2

,

2 110
2 1 1

0 2 13

c c c

c

c c c c cJ J Jc c c c

D c

Jc c c c

gJ M J J M gJJ J J J
J

J J J E J

 




 

 

       
             

  

and thus knowing their relative sign is necessary for determining the sign of an excited state’s 

contribution to  ,2D cJ  .  Reference [40] provides a list of calculated A-values connecting more 

than 200 core excited states of nickel to its 
2
D5/2 ground state.  Since A-values are proportional to 

the line strength and thus the square of a particular matrix element, the signs cannot be extracted 

from this information.  For LS coupled excited states of the form 
2

cL
cJ  , one may calculate the 

contribution to  ,2D cJ   in terms of the magnitude of the contribution to ,2D  by assuming that 

the states are pure LS coupled.  The result is  

 

5
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5
2

3
2

3
2

2

,2

2

,2

2

,2

2
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2.625*  for 
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D
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D
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















. (4.5) 

For excited states of other forms, determining the ratio between  ,2D cJ   and ,2D  is much 

more difficult.  One may take the information above, however, and make the rough 

approximation that the contribution to  ,2D cJ   is 

 
5

2,2

3
2,2

1.2*  for 

2.0*  for 

D c

D c

J

J





 

 
. (4.6) 



 

91 

 

Using this approximation and the A-values from Ref. [40], one calculates an initial value of 

3.2 a.u.  for  ,2D cJ  .  The accuracy of the information presented in Ref. [40] can be checked 

by calculating ,0D  (Eq. 2.42) and ,2D  (Eq. 2.57), using the energies of Ref. [41] and 

comparing against measurement.  These calculations are presented in Table 4.5.  One can see 

that the calculations overestimate both of the measured core properties, thus it is likely that the 

initial value of  ,2D cJ   = 3.2 a.u.  overestimates its magnitude.  Motivated by this and the 

assumptions that went into the calculation, the magnitude was halved and assigned an 

uncertainty of 100%, resulting in the following 

    ,2 1.6 1.6D cJ    . (4.7) 

This uncertainty is reflected in the core property uncertainty ( prop ) of the second-order 

energies.  Although the uncertainties of the other properties could contribute to prop , their effect 

is generally much smaller.  

 

Table 4.5:  Compares measured core properties values to those calculated using Ref. [40]  

Column 1 labels where the core property value comes from (measurement or calculated).  

Column 2 gives the scalar dipole polarizability, column 3 gives the tensor dipole polarizability, 

and column 4 gives the initial calculated value of the off-diagonal tensor dipole polarizability.  

All values are in atomic units (a.u.). 

 

 ,0D  ,2D   ,2D cJ   

microwave RESIS 7.925(10) 1.043(32) ― 

Ref. [40] 12.97 2.35 -3.2 

 

 An additional source of uncertainty in the second-order energies is due to the issue of 

convergence.  The effective potential above leads to terms in 
   2

eff KE nL  proportional to 
6r

, 
7r

, 

and 
8r
.  The uncertainty due to omitting higher-order terms is estimated to be on the order of 

the last term included.  The value for conv  presented in Table 4.3 is conservatively taken to be ½ 
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the magnitude of the calculated 
8r
 terms.  As mentioned in Section 2.2C, one of the difficulties 

in calculating the second-order energies is the sum of n  which includes both the discrete and 

continuum: 

 
     

s q

n c

nL r n L n L r nL

E gJ E n E n

 



      
   

   
 .  

The method used here is that of Dalgarno and Lewis [23] as laid out by Ref. [24].  Various tests 

indicate a numerical accuracy of approximately six decimal places, which is small enough that 

any uncertainty due to it can be ignored for the purposes of these calculations.  The total 

uncertainty on the second-order energies is thus the quadrature sum of prop  and conv  and is 

labeled 
 2

total . 

 The corrected energy levels are given by 

            1 2

eff K obs K eff K relE nL E nL E nL E nL   , (4.8) 

and the total uncertainty on each level, 
 1
total , is a combination of the uncertainties in the 

measurements and in the second-order energies.  In most cases it is dominated by 
 2

total . 

 The corrected energies are fit to a function of the form 

 

 
       

        
       

1

2 2 4 4

3 3

0 1 2 3 4

ˆ ˆ
ˆ

2 4

0 0

eff eff

c Ryd c Ryd

c c Ryd

c c c c

c c c c

E V
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A A L J A A X J T r A

J J J J

J J J J
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   
    
        
      
                

  

  (4.9) 

in order to find the structure parameters A0, A1, etc.  For clarity the coefficients for each Ab are 

shown in Table 4.6.   
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Table 4.6:  K-dependence of the effective potential for each tensor order (b = 1 through 4).  Note 

that the tensor and fourth-rank tensor terms include the 3J-symbol.  The values shown represent 

the coefficients of Ab in Eq. 4.9. 

 

State b = 1 b = 2 b = 3 b = 4 

9I3.5 -17.5 -0.63636 0.55546 0.84848 

9I4.5 -13 -0.14545 -0.30154 -1.33333 

9I5.5 -7.5 0.25455 -0.47611 0 

9I6.5 -1 0.44364 -0.01190 1.18182 

9I7.5 6.5 0.28000 0.52372 -0.82353 

9I8.5 15 -0.40000 -0.21822 0.17647 

     9K4.5 -20 -0.61538 0.60430 0.75524 

9K5.5 -14.5 -0.10769 -0.39279 -1.32168 

9K6.5 -8 0.28054 -0.53142 0.12217 

9K7.5 -0.5 0.44344 0.03436 1.14027 

9K8.5 8 0.25882 0.60844 -0.86378 

9K9.5 17.5 -0.41176 -0.26956 0.19505 

     9L5.5 -22.5 -0.60000 0.65465 0.69231 

9L6.5 -16 -0.08000 -0.48008 -1.30769 

9L7.5 -8.5 0.29895 -0.58345 0.21053 

9L8.5 0 0.44211 0.08040 1.10526 

9L9.5 9.5 0.24211 0.69141 -0.89474 

9L10.5 20 -0.42105 -0.32158 0.21053 

 

The structure parameters must be found for each L.  Since there are five measured energy levels 

within each L and five structure parameters, a perfect fit results.  As with the energy levels, there 

are uncertainties on the structure parameters due to both the measurements and the second-order 

energies.  The uncertainties due to the measurements are found by first increasing each transition 

energy by its uncertainty from Table 4.2, recalculating the level positions, and refitting to 

Eq. 4.9, thus resulting in fourteen sets of structure parameters in addition to the original values.  

The uncertainty due to measurement error is the square root of the sum of differences squared, 

       
2

originalmeas b b b

i

A A A i   .  
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Since the uncertainties on the second-order energies are correlated, one may increase each 

energy level simultaneously by 
   2

total KnL  and refit to find new structure parameters.  The 

difference between these values and the original structure parameters gives    2 bE
A .  The 

results of these calculations are shown in Table 4.7.  The final uncertainty on each  bA nL  is 

square root of the sum of these uncertainties squared. 

 

Table 4.7:  Fitted structure parameter values.  Column 1 gives the L while column 2 gives the 

structure parameter.  The uncertainty due to the measurement uncertainties is in column 3 and 

the uncertainty due to the second-order energy uncertainties is in column 4.  Column 5 is the 

total uncertainty.  All values are in MHz. 

 

L A0 meas   2
E

  
total  

6 -3833.69 (0.26) (1.64) (1.66) 

7 -1662.60 (0.17) (0.44) (0.47) 

8   -747.28 (0.19) (0.01) (0.19) 

L A1 meas   2
E

  
total  

6 -0.484 (0.034) (0.068) (0.076) 

7 -0.291 (0.020) (0.080) (0.082) 

8 -0.400 (0.019) (0.007) (0.020) 

L A2 meas   2
E

  
total  

6 15065.94 (0.79) (0.11) (0.80) 

7   9882.66 (0.51) (0.23) (0.56) 

8   6826.13 (0.54) (0.16) (0.56) 

L A3 meas   2
E

  
total  

6 -1.53 (0.42) (0.66) (0.78) 

7 -3.02 (0.25) (0.27) (0.37) 

8 -0.84 (0.23) (0.07) (0.24) 

L A4 meas   2
E

  
total  

6 -9.509 (0.074) (0.232) (0.243) 

7 -2.127 (0.054) (0.303) (0.308) 

8 -0.996 (0.060) (0.031) (0.068) 
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4.4 Core Properties 

 The structure parameters are scaled and plotted in order to find the core properties.  For 

the A0, or scalar, plot, one must look at the difference in scalar structure parameters between 

adjacent Ls.  This is because the scalar term represents the shift away from hydrogenic while the 

measurements only give information about energy level differences.  ΔA0 is then scaled by the 

difference in the expectation values of 
4r

 since 
4

nL
r

 appears in the first term of the scalar 

energy (see  Eq. 2.41).  The A0 plot, shown in Fig. 4.7, thus takes the form of 

 
 

6

0 4 6

0 04 4

nL

nL nL

rA nL
B B

r r



 


 

 
, (4.10) 

where the subscript on a particular B represents the tensor order and the superscript represents 

the inverse power of r that B is coefficient of.  Values used to create the plot are shown in 

Table 4.8.  Since the microwave RESIS study focused on L = 6, 7, and 8, this information is 

represented by the two leftmost data points.  To give more confidence to the data pattern, the 

L = 6-5 0A  from the optical RESIS study [38] is included in the plot.  The optical  0 6A L 

must be used with the optical  0 5A L   since the optical study used a difference reference point 

for the energy levels measured (n = 9 hydrogenic rather than 9I5.5 as was done here).  Note that 

the uncertainties on the points are largely uncorrelated since the uncertainty on the L = 6-5 point 

is from the optical study, the L = 7-6 point is primarily from the uncertainty of the L = 6 second-

order energies, and the L = 8-7 point is a combination of multiple sources.  The data is then fit to 

a line to give 
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Figure 4.7:  Scalar A0 plot showing the difference in scalar structure parameters on the y-axis and 

the difference of the expectation values of the inverse sixth power of the Rydberg radial 

coordinate on the x-axis, both divided by the difference in the expectation value of the inverse 

fourth power.  The data points are shown by the black circles.  A linear fit results in the line 

shown, where the intercept is shown by the blue star.  The intercept gives information about the 

scalar dipole polarizability while the slope gives information about the scalar quadrupole 

polarizability. 

 

Table 4.8:  A0 plot values.  Column 1 gives the upper and lower Ls.  Column 2 gives the 

difference in the inverse sixth power of the Rydberg radial coordinate divided by the inverse 

fourth power.  Column 3 gives the difference in the scalar structure parameter divided by the 

inverse fourth power of r.  Column 4 gives the uncertainty on the difference in scalar structure 

parameters divided by the inverse fourth power of r.  All values are in atomic units (a.u.). 
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6-5 4.421004 x10
-03

 -4.005 0.022 

7-6 1.959594 x10
-03

 -3.9805 0.0032 

8-7 0.935261 x10
-03

 -3.9713 0.0022 
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Relating these results to the effective potential gives a value for the scalar dipole polarizability 

  4

,0 02 7.925 10 a.u.D B     (4.12) 

The slope 
6

0B  is related to the adiabatic scalar quadrupole polarizability ,0Q  (Eq. 4.13) and the 

nonadiabatic scalar dipole polarizability ,0D ( Eq. 2.45) 

  6

,0 0 ,0 ,02 6 18 6 6Q D DB       . (4.13) 

The value of ,0D  is related to the same dipole matrix elements that give ,0D  (Eq. 2.42), but 

contains an additional power of the excitation energy in its denominator.  Reference [42] 

calculates partial values of ,0D  or ,0D  using the following excitations 

 

3 4 5

3 4 5 6

3 3

d p p

d f f f

p d

 

  



,  

thus giving the partial values for these two core properties: 

 
 

 

,0

,0

partial 4.829 a.u.

partial 7.714 a.u.

D

D








. (4.14) 

The remainder of the calculated ,0D  is due primarily to higher f levels, including the 

continuum [42]: 

  ,0 remainder 2.91a.u.D   (4.15) 

Equation 4.15 thus places a limit on the remaining portion of ,0D  not calculated by Ref. [42], 

  ,0

lower

2.91
remainder

2*
D

E
 


,  

where lowerE  is the lowest energy of a state included in the calculation of  ,0 remainderD .  

The lowest 3 7d f  state has an energy of 137,519.23 cm
-1

 [41] (or 0.6266 a.u.), resulting in 
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 

   

,0

,0

remainder 2.32 a.u.

remainder 1.2 1.2 a.u.

D

D







 
. (4.16) 

Combining this estimate with Eq. 4.14 gives a total estimation of ,0D , 

  ,0 8.9 1.2 a.u.D   (4.17) 

and leads to a determination of ,0Q , 

  ,0 71 9 a.u.Q   (4.18) 

 In addition to the scalar term, the tensor term also dominates the energy level pattern.  

The A2 plot is shown in Fig. 4.8 and its values are shown in Table 4.9.  The uncertainty in each 

 2A L  is uncorrelated since each one is due primarily to different transitions.  The structure 

parameter plot, referring to Eqs. 2.13 and 2.56, is fit to  
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where the 
6

3
nL

nL

r

r



  term allows for a slight curvature to the data.  The result of this fit is 
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. (4.20) 

Relating this to effV  gives the quadrupole moment (Eq. 2.14) and the adiabatic tensor dipole 

polarizability (Eq. 2.57): 
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Figure 4.8:  Tensor A2 plot showing the tensor structure parameter on the y-axis and the inverse 

fourth power of the Rydberg radial coordinate on the x-axis, both divided by the inverse third 

power.  The data points are shown by the black points.  The line shows a fit allowing for an 

inverse sixth power term, where the intercept is shown by the blue star.  The intercept gives 

information about the quadrupole moment while the initial slope gives information about the 

tensor dipole polarizability. 

 

Table 4.9:  A2 plot values.  Column 1 gives the L.  Column 2 gives the inverse fourth power of 

the Rydberg radial coordinate divided by the inverse third power.  Column 3 gives the inverse 

sixth power of r divided by in the inverse third power.  Column 4 gives the tensor structure 

parameter divided by the inverse third power of r.  Column 5 gives the uncertainty divided by the 

inverse third power of r.  All values are in atomic units (a.u.). 
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 24 x10
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7 20.8925 x10
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 26 x10
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8 14.8147 x10
-03
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-06
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-06

 38 x10
-06
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 Although the other tensor orders (vector, third-rank, and fourth-rank) are small, they 

display the complexity of the nickel ion and the power of the improved precision of the 

microwave RESIS technique over the optical RESIS technique.  The vector structure parameter, 

which depends on Eqs. 2.95 and 2.48, is scaled by 
3

nL
r

, 
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6 8

1 3 6 8

1 1 13 3 3

nL nL

nL nL nL

r rA nL
B B B

r r r

 

  
   . (4.22) 

In the optical RESIS study, the vector term was assumed to be entirely due to the permanent 

magnetic vector term and calculated using the theoretical value of 6/5 for the core’s g-value [38].  

The derivation of the theory in Chapter 2, however, shows the possibility of electric vector terms 

due to the nonadiabatic response of the core to the electric field of the Rydberg electron.  The A1 

plot, shown in Fig. 4.9 with values in Table 4.10, demonstrates the importance of these terms 

although no predictions exist.  A fit of the data where the core’s g-value has been fixed to the 

theoretical value gives 
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. (4.23) 

Once again these results may be compared to the effective potential to determine the core 

properties, in this case the “vector hyperpolarizability” (Eq. 2.51) using the slope: 

  6

,1 1 1.70 40D B   . (4.24) 

Here it is interesting to note that vector hyperpolarizability is not a small correction to the 

magnetic vector term, which was the case for neon [4] and argon [5]. 
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Figure 4.9:  Vector A1 plot showing the vector structure parameter on the y-axis and the inverse 

sixth power of the Rydberg radial coordinate on the x-axis, both divided by the inverse third 

power.  The data points are shown by the black circles.  The line shows a fit allowing for a term 

proportional to the inverse eighth power.  Note that the intercept has been fixed to theoretical 

magnetic vector term with Jg  = 6/5. 

 

Table 4.10:  A1 plot values.  Column 1 gives the L.  Column 2 gives the inverse sixth power of 

the Rydberg radial coordinate divided by the inverse third power.  Column 3 gives the inverse 

eighth power of r divided by in the inverse third power.  Column 4 gives the vector structure 

parameter divided by the inverse third power of r.  Column 5 gives the uncertainty divided by the 

inverse third power of r.  All values are in atomic units (a.u.). 
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 The third-rank tensor, or octupole, term represents the possibility of a permanent 

magnetic octupole moment due to the nickel ion, along with terms due to the nonadiabatic 

response of the core to the Rydberg electron’s electric field.  The octupole structure parameter, 

which depends on Eqs. 2.96 and 2.69, is scaled by 
5

nL
r

, 
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  , (4.25) 

and shown in Fig. 4.10 (values in Table 4.11).  Each L shows significant nonzero octupole 

structure.  A linear fit of the data gives 
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The intercept apparently gives information about the magnetic octupole moment, although no 

predictions of its value or general form are known. 
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Figure 4.10:  Third-rank tensor A3 plot showing the octupole structure parameter on the y-axis 

and the inverse eighth power of the Rydberg radial coordinate on the x-axis, both divided by the 

inverse fifth power.  A linear fit gives the line shown, where the intercept is shown by the blue 

star. 

 

Table 4.11:  A3 plot values.  Column 1 gives the L.  Column 2 gives the inverse eighth power of 

the Rydberg radial coordinate divided by the inverse fifth power.  Column 3 gives the third-rank 

tensor structure parameter divided by the inverse fifth power of r.  Column 4 gives the 

uncertainty divided by the inverse fifth power of r.  All values are in atomic units (a.u.). 
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 The fourth-rank tensor term features the possibility of a permanent hexadecapole moment 

of the ion core.  Referring to Eqs. 2.13 and 2.74, the structure parameter is scaled by 
5

nL
r

 

(Table 4.12), 
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The result, shown in Fig. 4.11, is 

 
 

 

5

4

6

4

-0.266 85

-0.2 2.3

B

B




, (4.28) 

where the error bars on the fit parameters have been expanded to reflect the poor quality of the 

fit.  The intercept can be related to the effective potential to give the hexadecapole momentum 

(Eq. 2.15): 

  5

4 0.27 9B    . (4.29) 
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Figure 4.11:  Fourth-rank A4 plot showing the fourth-rank tensor structure parameter on the y-

axis and the inverse sixth power of the Rydberg radial coordinate on the x-axis, both divided by 

the inverse fifth power.  The data points are shown by the black circles.  The line is the result of 

a linear fit whose intercept is shown by the blue star. 

 

Table 4.12:  A4 plot values.  Column 1 gives the L.  Column 2 gives the inverse sixth power of 

the Rydberg radial coordinate divided by the inverse fifth power.  Column 3 gives the fourth-

rank tensor structure parameter divided by the inverse fifth power of r.  Column 4 gives the 

uncertainty divided by the inverse fifth power of r.  All values are in atomic units (a.u.). 
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4.5 Conclusions and Future Work 

 In summary, the n = 9 Rydberg fine structure of nickel has been measured and applying 

the effective potential model of Chapter 2 resulted in the extraction of core properties.  

Table 4.13 shows the improved precision of the results of the microwave RESIS study as 

compared to the optical RESIS study.  Theoretical estimates of some of the measured properties 

are available.  The hexadecapole moment is within experimental uncertainty while the 

quadrupole moment and scalar dipole polarizability agree within a couple of percent and the 

tensor dipole polarizability within roughly ten percent. 

Table 4.13:  Current results compared to previous measurements and theory.  Column 1 gives the 

property.  Column 2 gives the results of this work while column 3 gives the results of Ref. [38].  

The theoretical numbers are from Ref. [42] (denoted with 
a
) and Ref. [43] (

b
 and 

c
 indicate 

different methods of calculation).  Note that the result for the hexadecapole moment of Ref. [38] 

had a different sign because effV  was defined differently.  All values are in atomic units (a.u.). 

 

Property microwave RESIS optical RESIS theory 

Q  -0.4705(2) -0.474(2) -0.476
a
 

  0.27(9) 0.33(21) 0.285
a
 

,0D  
7.925(10) 7.92(6) 7.9473

b
 7.7782

c
 

,2D  
1.043(33) 1.15(14) 0.728

b
 0.962

c
 

,0Q  
71(9) ― ― 

3MC  -0.346(57) ― ― 

 

As Ref. [1] explains, there have been many measurements of scalar dipole polarizabilities  

 ,0D , but very few measurements of quadrupole moments  Q  or tensor dipole polarizabilities 

 ,2D .  The results for the hexadecapole moment    and magnetic octupole term  3MC , on 

the other hand, represent the first known instance of these properties being measured. 
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 Both the experimental measurements and their analysis are open to improvements.  Due 

to limitations of the RF region, the relative positions of only five out of six energy levels for 

three different Ls could be measured.  Building a new RF region with a higher frequency range 

would allow one to measure transitions to the 6
th

 energy level for each L and complete the 

pattern.  On the other hand, measuring the n = 10 Rydberg fine structure could give information 

about the energy levels of four different Ls which would add an additional point of data to each 

Ab plot.  A better estimate or measurement of the off-diagonal tensor dipole polarizability 

presents perhaps the largest opportunity for improvement over the current analysis.  The current 

estimate for  ,2D cJ   results in uncertainties on the second-order energies that are generally 

greater than the measurement uncertainties and in some cases more than an order of magnitude 

larger. 
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Chapter 5: Summary 

 The work reported here advances both the theory of high-L Rydberg structure and the 

experimental measurements of such structure.  The explicit derivation of the effective potential 

model in Chapter 2 clarifies the origins and limitations of that picture of high-L Rydberg 

structure.  It should provide a convenient framework for interpreting future measurements in a 

wide variety of Rydberg atoms and ions.  Its primary limitation is for core ions with very low-

lying excited levels, where the adiabatic expansion is not convergent.  Even in that case, the 

explicit derivation provides guidance towards exceptional methods that can account for strong 

nonadiabatic effects. 

 The experimental measurements of the n = 9 fine structure in nickel reveal the most 

complex Rydberg fine structure studied to date.  In addition to providing measurements of the 

leading core properties such as quadrupole and hexadecapole electric moments and dipole and 

quadrupole polarizabilities, the measurements provide evidence for significant odd-order tensor 

structure.  The nonadiabatic vector structure is much larger than was observed in previous 

studies, and shows clear evidence of both 
6r
 and 

8r
 contributions.  The leading third-order 

structure is consistent with effects of a permanent magnetic octupole moment of the Ni
+
 ion, a 

property that is well known in nuclear studies but has not been previously considered in atoms 

and ions.  Additional nonadiabatic third-order electric structure is also evident.  Only a very 

limited number of theoretical predictions are presently available for these core properties, but 

future calculations can now be clearly tested against these benchmarks. 
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Appendix A: Derivation of First and Second Nonadiabatic Terms 

 The derivation of the 1
st
 and 2

nd
 nonadiabatic terms both begin with the radial wave 

equation satisfied by the Rydberg radial wave function, 

 

2 2

2 2 2

1 2 ( 1) 1
nL nL

d Q L L
P P

Q dr r r n

   
     

   
, (A.1) 

and the following term 

 
2 2

1 1
| |snL r n L

n n

 
   

 
. (A.2) 

Substitution of the radial wave equation into it gives 
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   (A.3) 
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Integration by parts is performed on the first term: 
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. (A.4) 

It is substituted back in to give 
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.(A.5) 

It is assumed that the Rydberg radial wave function goes to zero at r = 0 and r = ∞, thus placing 

a constraint on the possible values of L. 

A.1 First Nonadiabatic Term 

 The 1
st
 nonadiabatic term is found by multiplying Eq. A.5 by | |qn L r nL   and 

summing over n : 
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The completeness relation, 

      1 2 1 2n L n L

n
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   , (A.7) 

can be used to give the following 
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  (A.8) 

Once again integration by parts can be performed on the first term: 
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Substituting this and combing terms gives  
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which leads to the final form of the 1
st
 nonadiabatic term: 
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. (A.11) 

A.2 Second Nonadiabatic Term 

 The 2
nd

 nonadiabatic term begins by writing Eq. A.5 with -s as the power of r and again 

with -q as the power of r, 
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  (A.12) 

and then multiplying them together and summing over n  to give 
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   (A.13) 

The completeness relation is used to give 
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Integration by parts is performed on the second integral, 
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and on the first integral, 
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Both are substituted back in to give 
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  (A.17) 

Focusing on the first term, the second derivative can be replaced using the wave equation, 
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to give 
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Reference [44] gives the following relation: 
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Substituting –(s + q + 2) for t gives the following 
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which can be substituted back into the main formula 
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Combining terms gives the final equation for the 2
nd

 nonadiabatic term 
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Appendix B: Calculation of “f functions” for Theoretical Model 

 Calculation of the functions  1 21 ,bf    (Eq. 2.33),  1 22 ,bf    (Eq. 2.35),  1 23 ,bf     

(Eq. 2.37), and  1 24 ,bf    (Eq. 2.38): 
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Appendix C: Observed Microwave RESIS Transitions 
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Figure C.1:  Ni 9I4.5 to 9K5.5 co-propagating.  SW06_048
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Figure C.2:  Ni 9I5.5 to 9K6.5 co-propagating.  SW06_034 
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Figure C.3:  Ni 9I5.5 to 9K5.5 counter-propagating.  SW04_046
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Figure C.4:  Ni 9I6.5 to 9K7.5 co-propagating.  SW06_015 
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Figure C.5:  Ni 9I7.5 to 9K8.5 co-propagating.  SW06_097 
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Figure C.6:  Ni 9I7.5 to 9K7.5 counter-propagating.  SW06_095 
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Figure C.7:  Ni 9K4.5 to 9L5.5 co-propagating.  SW06_044 
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Figure C.8:  Ni 9K5.5 to 9L6.5 co-propagating.  SW06_042 
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Figure C.9:  Ni 9K5.5 to 9L5.5 co-propagating.  SW04_066 
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Figure C.10:  Ni 9K6.5 to 9L7.5 counter-propagating.  SW06_022 
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Figure C.11:  Ni 9K7.5 to 9L8.5 co-propagating.  SW06_016 
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Figure C.12:  Ni 9K7.5 to 9L7.5 counter-propagating.  SW06_018 
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Figure C.13:  Ni 9I3.5 to 9L5.5 co-propagating.  SW06_108 

 

Note that the signals are negative because LIR I and LIR II were set to excite different transitions 

(9I3.5-20K4.5 and 9L5.5-20M6.5, respectively).  When the RF region is on resonance, this results in 

less population in the 9L5.5 state and thus less population for LIR II to excite up to n  = 20.  The 

peak on the left appears to be consistent with a resonance that is not Doppler-shifted, which may 

be due to high reflection coefficients and indicate an upper operating frequency limit for this RF 

region. 
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Figure C.14:  Ni 9I7.5 to 9L9.5 co-propagating.  SW06_093 

 

 

 


