DISSERTATION

APPLICATION-AWARE TRANSPORT SERVICES FOR

SENSOR-ACTUATOR NETWORKS

Submitted by
Tarun Banka

Department of Electrical and Computer Engineering

In partial fulfillment of the requirements
For the Degree of Doctor of Philosophy
Colorado State University
Fort Collins, Colorado

Summer 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3279490

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 3279490
Copyright 2007 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

COLORADO STATE UNIVERSITY
MAY 15, 2007

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER
OUR SUPERVISION BY TARUN BANKA ENTITLED APPLICATION-AWARE
TRANSPORT SERVICES FOR SENSOR-ACTUATOR NETWORKS BE ACCEPTED
AS FULFILLING IN PART REQUIREMENTS FOR THE DEGREE OF DOCTOR OF

PHILOSOPHY.

Committee on Graduate Work

T
Committee Member

Committeﬂef??em er /

O\/W\/\.r———————\

Adv1sok/ﬁ Q X A

Co- AdV1sor

'W/\/\/)/\/\/\/C\‘

Department Head

il

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT OF DISSERTATION

APPLICATION-AWARE TRANSPORT SERVICES FOR
SENSOR-ACTUATOR NETWORKS

Many emerging mission-critical sensor actuator network applications rely on the best-
effort service provided by the Internet for data dissemination. This dissertation
investigates the paradigm of application-aware networking to meet the QoS requirements
of the mission-critical applications over best-effort networks that do not provide end-to-
end QoS support. An architecture framework is proposed for application-aware data
dissemination using overlay networks. Using the proposed architecture framework, an
overlay network based application-aware one-to-many high-bandwidth data
dissemination application is implemented. The application-aware architecture framework
enables application-aware processing at overlay nodes in the best-effort network to meet
the QoS requirements of the heterogeneous end users of mission-critical sensor-actuator
network applications. Some of the examples of application-aware processing at overlay
nodes include application-aware rate adaptation during congestion control, and selective
packet forwarding/drops within the network. An application-aware congestion control
protocol performs data selection and real-time scheduling of data for transmission while
considering different bandwidth and data quality requirements of heterogeneous end

users. A packet-marking scheme is proposed that enables application-aware selective

il

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

drop and forwarding of packets at intermediate overlay nodes during network congestion
to further enhance the QoS received by the end users under dynamic network conditions.
Effectiveness of the transport services based on application-aware architecture
framework is demonstrated by one-to-many high-bandwidth time-series radar data
dissemination protocol for CASA (Collaborative Adaptive Sensing of the Atmosphere)
application. Performance analysis is performed using Internet based Planetlab test bed
and emulation test bed. Experiment results demonstrate that under similar network
conditions and available bandwidth, application-aware processing at overlay nodes
significantly improves the quality of the time-series radar data delivered to the end users
compared to case when no such application-aware processing is performed. Moreover, it
is shown that application-aware congestion control protocol is friendly to the already
existing TCP cross-traffic on the network as long as bandwidth requirements of the
mission-critical applications are met. Scalability analysis of application-aware congestion
control protocol shows that it is able to schedule data at cumulative rates of more than
700Mbps without degrading the QoS received by multiple end users.

Freshness of the data received by end users is an important QoS parameter for
mission-critical sensor network applications. A model for tardiness of data is developed
for evaluating the impact of network dynamics such as packet losses, random delay,
packet reordering caused by random delays or multiple paths selection, and sampling rate
on the freshness of the data in sensor networks. Tardiness profiles can be generated using
this model for a given sensor network, which are useful for analyzing the suitability of
the network infrastructure/configuration for a given mission-critical application.

Alternatively, applications may use the tardiness model to adapt network operating

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

parameters such as transmission power and sampling rate to achieve the application-
specific freshness of the data. Tradeoffs between energy consumption and tardiness of the
data in a wireless sensor network are also investigated. Tardiness model based result
shows that it is significantly more energy efficient to achieve the desired freshness of data
by adapting transmission power instead of sampling rate. It is shown that in a multi-hop
wireless network there exists an optimal number of relay nodes between source and sink
node that Jeads to minimum tardiness of data. Applications of tardiness model include (i)
the estimation of error in the end results due to use of stale data in computations, and (ii)
performance analysis of sensor network routing protocols by comparing tardiness of data
due to selection of different paths by different routing protocols between source and sink

nodes.

Tarun Banka

Department of Electrical and
Computer Engineering

Colorado State University

Fort Collins, CO 80523

Summer 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

I would hke to express my sincere gratitude to my advisor Prof. Anura P. Jayasumana for all his
support and guidance during my research. My sincere thanks to my co-advisor Prof. V.
Chandrasekar for being so helpful at all times and providing me with an opportunity to become
part of his research group. Special thanks to my cormmittee members Prof. Wim Bohm and Prof.
Sanjay Rajopadhye for their valuable suggestions and critiques that motivated me to perform my
best in my research. I take this opportunity to thank my research collaborator Prof. Jim Kurose at
University of Massachusetts, Amherst for his valuable advice and for showing unstinted
confidence in my abilities as a researcher.

This research would not have been possible without the support of many of the peer graduate
students with whom I had the privilege to work in last 4 years. My special thanks to Panho Lee
for helping me conduct many experiments and in implementation of different proposed
algorithms. I would like to thank other peer graduate students Aditya Maroo, Nitin Bharadwayj,
and Nischal Piratla for their help and suggestions during the course of my research. I owe a
special thanks to Department of Computer Science and ACNS for supporting me financially
during the first year as a doctorate student. This work is supported by the Engineering Research
Centers Program of the National Science Foundation under NSF award number 0313747,

Last but not the least I thank every member of my family in India who have stood with me
and provided me with all their support and encouragement since last 6 years during my life as a

graduate student.

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DEDICATION

To my grand mother, parents, uncle, aunt, brothers, sister, sister-in-law, and my niece Prisha

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONTENTS

ABSTRACT OF DISSERTATION iii
ACKNOWLEDGMENTS vi
DEDICATION vii
CONTENTS viii
LIST OF FIGURES Xxii
LIST OF TABLES XVvi
LINTRODUCTION. .o e e e |
1.} Distributed Collaborative Adaptive Sensing (DCAS) Systems..................... 4
1.2 Overlay-Based Application-Aware Transport Protocols and Architecture for
DO A S 5
1.3 Freshness of the Datain DCAS......... 6
1.4 Scope of Dissertation and ObJectives.............ooiiiiiiiiiii i, 7
1.5 Dissertation OUtlNe.o e 8

2. QUALITY OF SERVICE IN BROADBAND AND WIRELESS SENSOR NETWORKS....11

2.1 Collaborative Adaptive Sensing of the Atmosphere (CASA)..................... 13

2.2 QoS Requirements in Broadband Sensor Networks...............ooii 15

2.3 QoS Support for Broadband Sensor Networks...........oooooiiiiiiiiiii i 17

2.4 Transport Protocols for High-Bandwidth Wired Networks........................ 18

2.5 QoS Requirements in Wireless Sensor Networks (WSN)........c..cocoiienn 21

2.6 Protocols for QoS Support for Wireless Sensor Networks........................ 22
viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.7 QoS Support Using Overlay Networks..........ooooviiiiiiiiii 26
2.8 Freshness of Data as a QoS Performance Parameter...............cccccceeeeneennn .29

2.0 R EIMIAIKS ottt 30

3. PROBLEM STATEMENT

3.1 Research Goals. ..o i 33
3.2 Research OBJectiVeS.ottt 34
3.2.1 Application-aware Transport SErvices............oovvviiiiiiiiiiiiinnnn 34
3.2.1.1 Objectives tor Application-aware Transport Protocol......... 35
3.2.1.2 Framework for Measuring QoS received by End Users....... 36
4. APPLICATION-AWARE CONGESTION CONTROL PROTOCOL................ooinin. 37
4.1 Transport Protocols for Mission-Critical DCAS..............cooi 39
4.2 Digitized Radar Signals..... ... 41
4.3 Application-Aware Sample Selection Scheme...................oo 44
4.4 Impact of Integration of Application-Aware Data Selection Scheme........... 46

and TRABOL Congestion Control Protocol
4.5 Performance Results............ooo e 49

4.0 REmarKS . o 54

5. DOOM PROTOCOL FOR APPLICATION-AWARE ONE-TO-MANY DATA

DATA DISSEMINATION USING OVERLAY NETWORKS..........ccooiviinnnin, 55
5.1 DOOM: Deterministic Overlay One-to-Many Protocol.......................... 56
5.2 Performance Evaluation. ..., 61
53 Remarks.o 76

6. CONTENT-AWARE PACKET MARKING FOR APPLICATION-AWARE

PROCESSING IN OVERLAY NETWORKS......... 77
6.1 Application-Aware Packet Marking............ooooviiiiiiiiiiiiie 79
6.2 Packet Marking for Radar Data - An Example..........................o. 84
6.3 Applications of Packet Marking.............c..ooiiiiiiiii 85
6.3.1 Token Bucket Based Rate Control....................cociiii 86

6.3.1.1 Multicast Node.........cccoitiiiiiiiiiniii 86

6.3.1.2 Forwarding Node............oooooiiiiiiiiiii i 88

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4 Performance Evaluation. ... 89

6.5 REITIaATKS . oot e 95

7. AWON ARCHITECTURE FOR DEPLOYMENT OF APPLICATION-AWARE

SERVICES USING OVERLAY NETWORKS........cc0eiviovoieeiioieiieeiieen, 98
7.1 IMIOIVALION . ..t 100
7.2 Application aWare Overlay Network (AWON) Architecture................. 102
7.3 Application Programming Interface..................... 104

7.4 AWON Implementation Example for the CASA Application................105
7.5 Performance Evaluation.................o.ooo 108

7.6 REIMIATK S oo vttt e 117

8. TARDINESS MEASURE FOR CHARACTERIZATION OF SENSOR NETWORK

PERFORMANCEttt e e e, 119
8.1 Tardiness MEASUTE.vuveueit ittt 122
8.1.1 Tardiness under Dynamic Network Conditions...................... 125

8.1.1.1 Tardiness Measure under Random Delay and No
Network Packet 1.oss......cooovenciiiii 125
8.1.1.2 Tardiness Measure under Random Delay and
Network Packet Loss........oooovviviicii i, 127
8.2 Analytical Model for Tardiness of Data in Process
Monitoring Sensor Network...............o 128
8.2.1 Tardiness of Data from a Single Source............................... 129
8.2.2 Aggregate Tardiness of Data from Multiple Sources
toa Single Sink......ooo 132
8.2.3 Consideration for Re-ordered Packets at a Sink Node................ 132
8.3 Verification of Analytical Model for Tardiness....................ccvie 137
8.4 Tradeoffs between Energy Consumption and Tardiness of Data................ 142
8.5 Remarks. 150

9. IMPACT OF MULTI-HOP COMMUNICATION ON TARDINESS OF DATA IN

WIRELESS SENSOR NETWORKS. ..., 152

9.1 Multi-Hop Communication Analysis...........oooiiiiiiiiiiii . 153

9.2 Impact of Multi-Hop Communication on Tardiness........................... 155
X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93 Comparison of Routing Protocol Performance Using Tardiness

MEASUTE. ... e 160

9.4 Impact of Tardiness on the Accuracy ot the Results.......................... 164

9.5 ReMarks. ..o oo 167

LO. CONCLUSIONS . e e 168
BIBLIOGRAPHY ..o 172
APPENDIX A: Computing Tardiness of Data in Sensor Networks..................oooooo 187
APPENDIX B: Estimating Probability of In-order Arrival..............coooiiiin, 202
APPENDIX C: Implementation of DOOM Protocol..................o 204

X1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.
Fig.

Fig.

2.1

2.2

4.1

4.2

4.3

4.4

4.5

4.6

5.1

5.2

5.3

54

5.5

LIST OF FIGURES

Need for CASA based monitoring system (a) Limitation of current...........14
state of the art in observing atmospheric phenomena {Cas]
(b) Network of short-range radars for observing lower

Different data transfer scenarios in a CASA network........................... 15

(a) Radar operations (b) Digitized radar signal (DRS) block 40
generated by radar for each scanning direction (fixed azimuth and
elevation angle)

Sample dependency types (a) Type | Single Sample 42
(b) Type 2 Pair of Samples

Sample selection schemes while considering sample dependency............ 43
and sample drop requirements of end user applications

Emulation network to compare performance of application-aware 48
TRABOL, TCP and UDP

Impact of sample selection schemes using UDP and TRABOL 50
on the radar data quality (a) SD in reflectivity with single

sample group under uniform and contiguous pattern packet loss

(b) SD in reflectivity with sample pair group under uniform

and contiguous pattern packet losses

Impact of sample selection schemes using UDP and TRABOL. 51
on the radar data quality (a) SD in velocity with single sample

group under uniform and contiguous pattern losses (b) SD in

velocity with sample pair group under uniform and contiguous

losses

DOOM rate control for multiple end users using TRABOL 57
congestion control protocol

DOOM support for multiple data quality requirements58
DOOM algorithm for one-to-many data dissemination 60
Network emulation testbed ... 62
DOOM performance in meeting heterogeneous rate requirements 64

of multiple end users simultaneously with different ACK delays
(a) Sensor heart-beat is 170ms, and (b) Sensor heart-beat is 20ms

X1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

5.7

5.8

5.10

5.11

6.1

6.2

6.3

6.4

6.5

6.6

6.7

DOOM performance in meeting rate requirements of ditferentend 68
users with similar and different rate requirements (data generation

rate = 10Mbps, heart-beat = 220ms). For similar rate requirement,

TR = 3Mbps, MR=1Mbps

Effect of DOOM protocol on data quality for different end users 68
with similar and different rate requirements

Friendliness of DOOM protocol (a) to TCP cross traffic streams......... 70
(Bottleneck bandwidth = 250Mbps and RTT = 50ms) (b) to

DOOM traffic streams sharing the same bottleneck

hink (RTT=10ms)

DOOM performance in meeting similar data quality requirements............ 73
of multiple end users under varying bottleneck bandwidth conditions

(a) When four end users have similar Type 2 and uniform drop

data quality requirement for reflectivity computation algorithm,

(b) When four end users have similar Type 2 and uniform drop

data quality request for Doppler velocity computation

Performance of DOOM in meeting different data quality requirements....... 74
when four users have different Type | and Type 2 with uniform drop
data quality requirements for reflectivity computation

DOOM server performance under variable number of users 76
Overlay network for application-aware data dissemination...................... 78

Figure 6.2 Rate based packet marking. Each non-white color represent......80
rate for which packet is marked .i.e., rate R1-R8 (a) Marking of packets
when maximum transmission rate is R1, (b) Marking of packets when
maximum transmission rate is R3

Applications of packet marking. (a) On-the-fly data selection based......... 83
on packet marking (b) On-the-fly compensation for missing
marked packets to meet bandwidth and data quality requirements

Packet marking for radar data when current transmission rate................. 85
is 8Mbps. Sample is application data unit (ADU) for the radar data

Architecture of a multicast node. Three end user’s current 87
transmission rates are 8Mbps, 7TMbps, and 3Mbps and arrival rate

of the data at multicast node is 8Mbps. Initial number of tokens in

the bucket depends on the end user current transmission rate

Token bucket based packet compensation to meet bandwidth and............ 88
data quality requirement

Emulation network for application-aware multicasting of weather............ 89
radar data

Xiit

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

6.8

6.9

. 6.10

.0.11

7.1

.72

7.3

7.4

7.5

7.6

7.7

8.1

8.2

83

8.4

8.5

8.6

Receiver throughputs of the-end users with different rate requirements...... 91

Effect of the application-aware selective drop and packet-marking........... 93
on data quality for the end user with TR=4Mpbs, MR=2Mbps

Effect of packet compensation on the receiver throughput at the.............. 96
end users

Effect of packet compensation on the data quality at the end users............ 96
Overlay network for application-aware data dissemination.................... 100
AWON architecture of a overlay node for application-aware data............ 101

dissemination using overlay networks — An example node with
multiple plug-ins

Implementation example based on AWON architecture....................... 105

Application-aware framing and packet marking, where each................. 106
non-white color represent rate for which packet is marked ,
i.e., rate R1-R8 [12]

Planetlab test-bed for application-aware multicasting....................c...... 109

Impact of application-aware architecture on the content quality.............. 113
delivered to the end users (a) Standard deviation of data for end

user 5 with low bandwidth requirement TR=4, MR=2, (b) Standard

deviation of data for end user 1 with high bandwidth requirement

TR=7, MR=4

Impact of application-aware processing on the delivery of.................... 115
application-specific relevant packets (a) Marked packet frequency
tor end user 5, (b) Marked packet frequency for end user 1

Process monitoring sensor network..............coooi 120

Tardiness measure due to random network delay in process.................. 123
monitoring sensor networks

Tardiness measure under random data loss in process monitoring............ 124
sensor networks

Analytical model for tardiness measure.............ocoiiiiiii 128
Verification of Tardiness model under for different network loss............ 139
rates and network delays, Case 1 corresponds to random losses and

no packet reordering, Case 2 and Case 3 corresponds to random

network losses and high to very high degree of reordering

Impact of mean delay and standard deviation on the packet.................. 140

re-ordering under different network packet loss conditions

X1V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ig. 8.7

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

. 8.8

.8.10

8.11

8.12

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

Verification of tardiness model with varying sampling interval..............
Network with 225 nodes in a 15m x 15m grid, sink at X=7, Y=7............
Tardiness and energy consumption profile of a sensor network field.........

Application of Tardiness measure in Adapting Sampling Rate of

source nodes to achieve the desired Tardiness 2.81 seconds with
standard deviation =0

Application of Tardiness measure in adapting transmission power......

of source nodes to achieve the desired tardiness 2.81 seconds with
standard deviation =0

Comparison of total energy consumption in a 500 second interval

for three ditferent sensor network configurations with similar
average tardiness characteristics

Single-hop and multi-hop communication (a) Single-hop:.....................

communication, (i1) Multi-hop communication

(a) Impact of multi-hop communication on tardiness under varying.....

node transmission power when distance between source and sink
node = 100m, S=5.0 seconds, (b) Optimal number of relay nodes
to achieve minimum tardiness for varying transmission power
of a node

Multi-hop linear network topology..............ooi

(a) Impact of varying transmission power on tardiness on................

a multi-hop path between source and sink node. (b) Impact
of transmission power on energy consumption. Source and
Sink nodes are separated by 38 m

Comparison of routing protocols performance for real-time..............

sensing applications using tardiness measure

Impact of Path Length on the Tardiness of the Data (maximum...............

distance between two adjacent nodes is Sm)

Effect of tardiness on end applications..............ccoovviiiii i,

Physical process under observation.............cooviieiiiiiiiiiiiii i,

XV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

144

146

148

....161

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Table 5.0

Table 5.7

Table 5.8

Table 5.9

Table 6.1

Table 6.2

Table 0.3

LIST OF TABLES

DOOM performance in meeting bandwidth requirements of................... 63
multiple heterogeneous end users under variable bottleneck
BW when heart-beat interval is 170ms

DOOM performance in meeting bandwidth requirements of................... 63
multiple heterogeneous end users under variable bottleneck BW
when heart-beat interval is 20ms

Planetlab based result of DOOM performance in meeting....................... 66
bandwidth requirements of multiple end users

Planetlab based result of DOOM performance in meeting data.................67
quality requirements of multiple end users

TCP Friendliness of DOOM protocol when bottleneck bandwidth............ 69
is 250Mbps

Fairness of DOOM streams to each other...................c.oo i, 72
Effect of bottleneck bandwidth on quality of time-series data.................. 72

delivered to end user for Doppler velocity computation (All end
users have Type 2 with uniform drop data requirement). Standard
deviation in the moment parameters is used to measure the quality
of the data

Effect of bottleneck bandwidth on quality of time-series data.................. 72
delivered to end user for Reflectivity Computation (Stream | and

Stream 2 have Type 2 with uniform drop data requirement, Stream 3

and Stream 4 have Type 1 with uniform drop requirement). Standard
deviation in the moment parameters is used to measure the quality of

the data

Instantaneous throughput performance (TR = 80Mbps and..................... 75
MR = 20Mbps)
Impact of different degree of application-aware processing on the............ 91

throughput of multiple end users with different bandwidth requirement
Impact of different degree of application-aware processing on................ 93
the quality of the time-series data. Standard deviation in moment

parameters is used for data quality estimation

Impact of packet marking based compensation scheme on the................. 94
recetver throughput for multiple end users. (TR, MR, and

Xvil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.4

Table 7.1

Table 7.2

Table 7.3

Table 7.4

Table 8.1

Table 8.2

Table 8.3

Table 8.4

Table 8.5

Table 8.6

Table 9.1

Receiver throughput in Mbps)

Impact of packet marking based compensation scheme on the quality........ 95
of the time-series data for multiple end users. Standard deviation

in moment parameters is used for data quality estimation

Impact of AWON based implementation on the data quality of.............. 112
time-series data for End User 1 under varying degree of

application-aware processing

Impact of AWON based implementation on the data quality of.............. 112
time-series data for End User 5 under varying degree of

application-aware processing

Impact of AWON based implementation on frequency of packet............ 114
with desired marking for end user 1

Impact of AWON based implementation on frequency of packet............ 114
with desired marking for end user 2

Parameters for tardiness analytical model................co.c 126
Tardiness Model Verification under different network loss and 138

delay conditions, Case 1 Mean exponential delay=0.1 second,
Case 2 Mean exponential delay= 20.0 seconds, and Case 3 mean
exponential delay = 50.seconds when sampling interval S= 5.0 seconds

Impact of packet delay, and loss probability on the packet reordering.......139

when sampling interval $=5.0 seconds

Tardiness model verification under varying sampling interval S............. 140

Parameters to determine packet reception rate for MICA2 platform.........
CC1000 radio current consumption at different transmission power.........
Impact of Tx. Power on Tardiness and Energy consumption in...............
a multi-hop network, for 100 packets generated with packet time

23.3ms, operating voltage = 3V for CC1000 radio
(extrapolated Tx power)

Xvil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1
INTRODUCTION

Sensing is a process of sampling the environment to help us measure, process, interpret and react
based on the sensed phenomena. Need for sensing is being felt in many real-world applications
for environmental control, structure monitoring, weather monitoring, patient health monitoring,
and much more [Ma02, Xu04b]. Associated benefits of near real-time sensing and ability to
process and take actions based on the sensed information have led to the emergence of sensor
actuator/actor networks [AkO4]. In this dissertation the terms sensor networks and sensor
actuator/actor networks are used interchangeably.

Most of the sensor network applications are “highly specialized and highly mission-specitic”
[Ku06]. These sensor network applications are driven by the end user defined mission-specific
goals. For such sensor network applications, sensing, computing and communication
infrastructure should be adapted to meet overall goals of the applications {Ku06]. There exists
broad spectrum of emerging sensor network applications. At one end of the spectrum are low
bandwidth (tens of Kbps) sensor networks that use short-range wireless links for communication.
On the other end of spectrum are very high bandwidth (hundreds of Mbps) sensor networks that
consist of sensors such as radars and radio telescopes that use both wired and wireless network
infrastructure for the communication. Alternatively, there are emerging medium bandwidth (tens
of Mbps) sensor networks based on sensors such as cameras that may also use both wired and

wireless network infrastructure for communication [Yu04]. Many of these sensor network

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

apphcations are specialized and mission-specific. In such applications, QoS requirements of the
end users such as bandwidth requirements, acceptable losses, and delay tolerance need to be met
under available network resources and dynamic network conditions. CASA (Collaborative
Adaptive Sensing of the Atmosphere) [Cas, Chi, Do05, Mc05] is an emerging high-bandwidth
sensor network application that requires distribution of mission-critical sensor data from multiple
weather radars to multiple end users with distinct QoS requirements over a best-effort network
such as Internet. The key challenge is to meet diverse set of QoS requirements such as bandwidth
requirements and data quality requirements of multiple end users under severe network resource
constraints and dynamic network conditions. Moreover, for real-time sensor network applications
it is also desired to measure the quality of data in terms of freshness of data. Freshness of the data
at receiver node is one of key QoS parameter for evaluating the quality of service received by end
users in real-time sensor networks. A framework is required that relates different network
conditions to the perceived freshness of data available to the end users in such systems.

The focus of this dissertation is on adaptive use of communication infrastructure to meet the
QoS requirements of the end user defined application’s requirements for real-time sensing
applications such as CASA. To realize the goal of adaptive communication infrastructure this
dissertation proposes application-aware transport services for the sensor actuator networks. An
application-aware overlay network based multicast protocol is proposed that performs real-time
scheduling of the data for transmission/drop from a weather radar node for multiple end users
while meeting both bandwidth and data quality requirements. A content-aware packet marking
scheme is proposed that allows in-network processing to be performed at overlay nodes in the
network for meeting end users QoS requirements. A token-bucket based rate control algorithm is
integrated with the packet marking scheme to select most appropriate subset of the data for
forwarding/drop at intermediate overlay multicast node to meet end user QoS bandwidth and data
quality requirements. AWON (Application-aWare Overlay Network) overlay node architecture

framework is presented for development of such application-aware protocols and services using

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

overlay networks. Performance analysis of the AWON based application-aware multicast
protocol is performed using network emulation test-bed and Planetlab test-bed. Experiment
results demonstrate the effectiveness of the application-aware multicast protocols in meeting
heterogeneous QoS requirements under dynamic network conditions. Performance results shows
that packet-marking based data selection and drop at intermediate overlay delivers better quality
data compared to when no application-aware processing is performed at intermediate overlay
nodes in the network.

In order to measure the quality of the data delivered to the end users this dissertation proposes
a framework for measuring freshness of the data in sensor networks. Tardiness measure capture
the impact of different network dynamics such as network delay, packet losses, packet reordering
and sampling rate on the freshness of data. The model is validated using simulation results and it
is shown that tardiness measure can be used to investigate tradeoffs between treshness of data and
energy consumption in sensor networks. We also show that tardiness measure can be used to
compare performance of different energy constrained routing protocols based on the freshness of
the data delivered to the end users.

Design of application-aware transport services spans two key areas of research (i)
Development of application-aware transport protocols and architecture to meet QoS requirements
of the applications, and (ii) Framework for the evaluation of QoS delivered to the end user.
Section 1.1 describes emerging distributed collaborative adaptive sensing (DCAS) systems and
their QoS requirements. Section 1.2 provides the motivation for application-aware protocols and
architectures. Section 1.3 describes the need for framework for measurement of the
freshness/tardiness of the data as a QoS parameter in DCAS. In Section 1.4 we discuss scope of

the dissertation and the objectives. Section 1.5 presents outline of the dissertation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1 Distributed Collaborative Adaptive Sensing (DCAS) Systems

Distributed collaborative adaptive sensing (DCAS) systems [Mc03] are an emerging class of
sensor networks that are increasingly used for applications such as weather monitoring, sniper
tracking, and distributed target tracking [AkO4, Es02, Ku00, 1i02, Si04a]. The QoS requirements,
e.g., required bandwidth, latency, acceptable data quality, and reliability are interdependent, and
critical to the operation of DCAS systems. Collaborative Adaptive Sensing of the Atmosphere
(CASA) [Cas, Mc05] is an example of the DCAS systems. CASA is based on a dense network of
low-power X-band radars that operate in a distributed, collaborative and adaptive manner to
detect tornadoes and other hazardous atmospheric conditions [ChO1, Mc05, Ku06]. In such
systems variety of mission-critical data must be distributed in real time to multiple end users such
as emergency managers and researchers at distant and distributed geographical locations. These
data streams and end users have differing QoS requirements for the data based on the ultimate use
of the data. CASA relies on dedicated network links as well as shared Internet based
infrastructure for large-scale dissemination of weather related data. The underlying network
infrastructure itself may be affected by such adverse weather conditions, and as such one cannot
rely on ISP-provided QoS guarantees or service-level agreements. Network traffic may suffer
congestion that may lead to random drop of weather radar data in the network. Under these
conditions the partial data delivered to end users may be useless for the application. Some of the
possible effects of random drop of information may lead to inability of the emergency managers
to make reliable and precise prediction about the hazardous weather events in real-time. CASA
application software must thus monitor the underlying network, link availability, link quality, and
other performance measures, and then use this information to adapt its operation in real-time to
get the best possible service out of the available network facilities. An adaptive networking

infrastructure is needed that is cognizant of the requirements of the application {He99, He00].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 Overlay-Based Application-Aware Transport Protocols and Architectures for

DCAS

Today’s best-effort Internet does not provide end-to-end QoS to the real-time sensor network
applications. As mentioned in Section 1.1 there is a need for CASA application to adapt its
operation to extract the best QoS performance trom the available networking infrastructure and
dynamic network conditions. Some examples of the application-aware adaptation include
application-aware rate adaptation and data selection for transmission during network congestion.
During network congestion packet losses may be controlled by selecting most relevant data for
transmission at available bandwidth as per end user’s bandwidth and data quality requirements.
Moreover, such an adaptation may take place at source nodes or within the network at
intermediate nodes on the path between source and the receiver node.

Late 90’s saw the emergence of overlay network concept that provides a practical deployment
path for new protocols and services over the already existing networks without the need for
changing underlying network infrastructure [An01, To02]. Moreover, overlay networks provide a
scalable solution for supporting application specific QoS requirements as it is not always efficient
to support such requirements for every application at the IP layer. Beside that overlay nodes are
special nodes in the overlay network with significantly more resources in terms of computation,
memory and storage. It enables complex application-specific operations as well as transport
oriented operations to be performed at the overlay node level rather than performing them at the
router level in case of Internet. Under normal operating conditions, an ISP can be relied upon to
meet end user specific critical QoS requirements using a scheme such as DiffServ [Ni98]. As
mentioned before CASA like system often has to operate under adverse conditions, such as
severe weather or tornados that can potentially disrupt services provided by some of the links or
ISP’s. These systems need to be designed to operate even under adverse conditions, adapting to

degradation of service in parts of the network. Some of the current applications of overlay

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

networks include selection of alternate bandwidth rich paths, and ability to adapt to available
bandwidth in an application specific manner [AnO1, Su04]. Thus overlay-network based transport
solutions have the potential to meet the application-specific QoS requirements of the DCAS
systems. There is also a need to develop an architecture framework for deployment of

application-specific services on overlay networks.

1.3 Freshness of the Data in DCAS

In DCAS systems, one of the key QoS requirements is the freshness of the data that is delivered
to the end users for real-time actuation and decision making. Input data may be useless for such
applications if it arrives and is processed after a critical deadline. There may be application-
specific bounds on the desired freshness of the data. Therefore, it is important to be aware of the
age of the data that is used for processing and computing results. Freshness of the data thus can
be characterized as an important QoS parameter for measuring the quality of the data in sensor
actuator network applications. There are different network dynamics that may impact the
freshness of the data. For e.g., network delay suffered and losses encountered in the network may
impact the age of the data at the receiver node. Different protocols such as transport protocols,
routing protocols, and MAC protocols may impact the delay and losses suffered by packets in the
network. There is a need to understand precisely how different network dynamics may impact the
age of the data aka freshness of the data in sensor-actuator networks. Having models that relate
different network parameters to the perceived age of the data help in controlling network
dynamics and achieving timing and accuracy goals of applications. Moreover, it helps in the
design of application-aware protocols to meet the freshness QoS requirements of sensor actuator

network applications and other real-time applications in general.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.4 Scope of Dissertation and Objectives

The goal of this dissertation is to develop application-aware transport services to meet QoS
requirements of mission-critical sensor network applications. This dissertation spans two key
arcas of research under application-aware transport services for sensor networks. First area of
research is focused on the design and development of application-aware transport protocols and
an architecture framework for the deployment of application-aware protocols/services in overlay
networks. Under this application-aware congestion control protocol is developed that performs
rate based congestion control while meeting end user specific bandwidth constraints and selects
the most relevant subset of the sensor data for transmission in real-time under available
bandwidth conditions. This application-aware congestion control protocol is then extended to
serve multiple end users with heterogeneous bandwidth and data quality requirements. A sender-
driven application-aware multicast protocol DOOM (Deterministic Overlay One-to-Many)
protocol is proposed that uses a time-multiplexed scheduling scheme to dynamically select most
appropriate subset of the sensor data for transmission at source node for multiple end users at
different available bandwidth [Ba05d, Ba06]. This dissertation then explores the effectiveness of
performing application-aware processing at intermediate nodes in the overlay network for
enhancing quality of service received by multiple end users in sensor networks. A packet
marking scheme is proposed that marks the packet at the source node which enables
application-aware data selection for forwarding and drop at intermediate overlay nodes during
network congestion. A variant of DOOM protocol is designed that uses packet-marking at
intermediate multicast node to perform on-the-fly data selection of data for forwarding or drop for
multiple end users while considering available bandwidth for each end user [Le06]. This
dissertation then defines a generic node architecture framework AWON (Application-aWare
Overlay Networks) for deployment of different application-specific protocols at overlay nodes in

the overlay networks [Ba07b]. Effectiveness of the AWON based implementation is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

demonstrated for the CASA application for distributing weather radar data to multiple
heterogeneous end users with diverse QoS requirements [Ba05a, BaO5b]. Performance of the
application-aware protocols is analyzed in the real-world Internet environment using Planetlab
test-bed, and additional performance evaluations are performed over an emulation network
environment.

Second key contribution of this dissertation is the development of a framework for measuring
QoS in terms of freshness of data delivered to end users. A model is presented for the tardiness of
data, a measure relating network dynamics to the age of the data delivered to the end users
[Ba07a]. The random process corresponding to the age of the data delivered to the end user is
modeled as the expectation of the age of the data is derived as a function of mean network delay,
probability of random losses perceived by the end user application, and sampling rate at the
sensor node. The model is then extended to consider additional losses due to packet reordering for
applications that do not accept out-of-order packets. Tardiness model is used to investigate
tradeoffs between energy consumption and the tardiness. This dissertation then demonstrates the
application of tardiness model for estimating error in the end computation due to tardiness of
data. Performance of wireless sensor network routing protocols is compared based on the
difference in the tardiness of data due to difference in the characteristics of the paths selected

between source and sink nodes by different routing algorithms.

1.5 Dissertation Outline

As mentioned in Section 1.4 the focus of our research is on application-aware transport services
for sensor actuator networks. Under that we develop application-aware protocols and architecture
and propose a framework for understanding and evaluating the impact of network dynamics on

the QoS delivered to the end users in terms of freshness of the data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2 provides background on current state of the art in QoS over Internet and resource
constrained sensor networks in general. Different transport layer solutions are compared to
understand their effectiveness and limitations for emerging DCAS applications. We then
investigate current state of the art in the overlay networks and QoS aware architecture for
deployment of applications on overlay networks. We describe current research in the study of
data freshness in the context of information systems such as data integration systems (DIS), and
Data Warehouses [Bo0O4].

Chapter 3 defines the problem statement. Two key areas are identified as enabler for
providing application-aware transport services for DCAS networks, i.e. Overlay network based
application-aware protocols and (ii) Framework for measuring freshness of data for evaluating
QoS received by end users in DCAS systems.

Chapter 4 describes a framework for application-aware congestion control protocols. It
describes the proposed integration of application-aware, dynamic data-selection scheme with the
TRABOL [Bg02, Bg03a, Bg03b, Bg03c] based congestion control protocol. Effectiveness of the
application-aware congestion control protocol is demonstrated for the CASA application using
results obtained over an emulation testbed.)

Chapter 5 proposes the application-aware DOOM (Deterministic Overlay One-to-Many)
multicast protocol that performs application-aware congestion control for multiple heterogeneous
end users. A time-multiplexed scheduling algorithm is described that selects the most appropriate
subset of the data for transmission for multiple end users under dynamic network congestion
conditions while considering their data quality and bandwidth QoS requirements. Performance of
the DOOM protocol based approach is analyzed using planetlab [Pe02] and an emulation testbed.

Chapter 6 illustrates the use of in-network processing for DCAS systems. An application-
aware packet marking scheme is presented, that marks the packets based on the usefulness of the
data it contains for the end users considering constraint imposed by the available bandwidth.

Effectiveness of the packet marking scheme is demonstrated by performing on-the-fly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

application-aware data selection for forwarding/drop during network congestion at intermediate
overlay DOOM multicast node in a planetlab testbed.

Chapter 7 presents AWON (Application aWare Overlay Network) architecture for
deployment of application-aware services, as explained in Chapter 4-6, at overlay nodes.
Effectiveness of the architecture framework is demonstrated by implementing distributed DOOM
multicast protocol over a planetlab testbed.

In Chapter §, a tardiness measure is proposed for understanding the impact of network
dynamics on the QoS received by end users in terms of freshness of the data in real-time sensor
actuator networks. An analytical model is derived for the tardiness measure relating different
network operating parameters such as random network delay, packet losses, packet reordering,
and sensor sampling rate to the freshness of data available to end users in sensor actuator
networks. Tardiness model is validated using simulation results and tradeoffs between energy
consumption and tardiness is also investigated.

Chapter 9 investigates the impact of multi-hop communication on the tardiness of the data in
sensor networks. Application of the tardiness measure is demonstrated by comparing performance
of different routing protocols for wireless sensor networks. Usefulness of the tardiness measure is
demonstrated in estimating errors in the end results due to tardiness of data.

Chapter 10 presents the conclusions of the dissertation.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

QUALITY OF SERVICE IN BROADBAND AND WIRELESS
SENSOR NETWORKS

There exists a broad spectrum of sensor network applications. Advances in sensing technologies,
power sources, and emergence ot high bandwidth wireless links are changing the landscape of
sensor networks. These technologies have hastened the arrival of broadband sensor network
applications [Cha02]. The broadband sensor network applications have medium to high
bandwidth requirements. Each sensor in these networks may generate data at rate in order of tens
of Mbps to hundreds of Mbps and these networks are rich in energy and computation resources.
Moreover, physical scale of the sensor network is increasing, there are emerging applications
where sensors will be deployed in a significantly larger physical area and Internet has the
potential to play a critical role in supporting communication for such worldwide sensor networks
such as Iristnet, and Sensorweb [Chi05, Gi03]. CASA [Cas, Mc05] in an emerging broadband
sensor network application for real-time monitoring of hazardous weather conditions.

On the other end of spectrum, sensor networks consist of power constrained, low bandwidth
sensing nodes with short range wireless communication links between them. Example of such
wireless sensor network applications include environment monitoring, structural monitoring, and
target tracking systems [Ak04, Es02, Ku06, Li02]. Most of these sensor networks are required to

operate for years without the need for maintenance or changing power sources. Thus, majority of

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the research in resource constrained sensor networks is motivated by the need for energy efficient
hardware and software design solutions.

Many of these emerging broadband and wireless sensor network applications are mission-
critical and have certain QoS requirements such as bandwidth requirement and latency
requirements of end users that need to be met tor their proper operation. There is very limited
research that has focused on providing QoS support in sensor networks. A wide spectrum of
sensor network applications offers significant challenges for providing generic solutions for
meeting QoS requirements in such systems. This chapter highlights QoS requirements in a
broadband sensor networks such as CASA and provides motivation for the application-aware
transport services for broadband sensor networks. In mission-critical sensor networks it is also
tmportant to measure the QoS delivered to the end users to understand the effectiveness ot the
networking infrastructure in meeting requirements of the application. Freshness of data is one
such key QoS parameter that is crucial for the success of real-time mission-critical sensor
networks operation. This chapter investigates the current state of the art in measuring freshness of
the data in the context of information systems and data warehouses.

Section 2.1 describes the CASA broadband sensor network application. Section 2.2 describes
QoS requirements of broadband sensor networks. Section 2.3 shows current state of the art in
QoS support for wired broadband sensor networks. Section 2.4 compares different transport
protocols for high-bandwidth wired networks. Section 2.5 describes QoS requirements of
resource constrained wireless sensor networks. Section 2.6 describes current state of the art in
QoS support tor wireless sensor networks. Section 2.7 provides motivation for need for overlay
network based transport services for meeting QoS requirements of broadband sensor networks.
Section 2.8 describes the prior work on need for understanding freshness of data in the context of

information systems and data warehouses. Concluding remarks are presented in Section 2.9.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Collaborative Adaptive Sensing of the Atmosphere (CASA)

The vision of the CASA is to revolutionize our ability to observe lower troposphere through
Distributed Collaborative Adaptive Sensing (DCAS), vastly improving our ability to detect,
understand, and predict severe storms, tornados, floods, and other atmospheric and airborne
hazards [Cas, Mc05]. Fig. 2.1(a) shows the limitations of current state of the art for observing
atmospheric phenomena using long-range autonomous radars. Current technology in weather
monitoring is unable to monitor the lower troposphere due to earth curvature limitations. In
CASA, a network of short range radars is used instead to sample the previously unobserved
region of the atmosphere as shown in Fig. 2.1(b). CASA network forms a tightly coupled network
of radar and processing nodes. Some of the key features of CASA network include presence of
heterogeneous network infrastructure such as mix of both wired and wireless links, both resource
rich and resource constrained sensor nodes.

Historically radars have been designed and operated in a “central unit” environment where
the radar transmitter/receiver and information processing were all carried out at the radar node.
Due to advances in high-speed networking, there is no need to do computation at the radar node
itself any more. Moreover, multiple smaller, cheaper radars can be networked to sample the
atmosphere in an efticient manner and can be deployed over rooftops or cell towers as shown in
Fig. 2.1(b). A network of small radars provide more flexibility by enabling re-tasking of the radar
for effective sampling of the atmosphere based on the existing atmospheric conditions. Moreover,
different radars can now operate in different scanning modes/bands unlike static operations of
autonomous long-range radars. This system is a sensor-actuator network in that the radars sense
the atmosphere, yet the scanning strategies of radars are controlled dynamically iﬁ real-time
depending on the features being sensed and the requirements of the end-users. Depending on the

radar operating parameters, it can generate data at rates of tens of Mbps to hundreds of Mbps.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

"Thare s insufficiant knowledge abaut whatis actually happening
tog iz likely o happen) atthe Earth’s surface whera people live.”
-NRC 1933

Short range multi radar network enables
observation of troposphere below 1 km

Earth Surface

‘Short range radars

(b)

Figure 2.1 Need for CASA based monitoring system (a) Limitation of current state of the
art in observing atmospheric phenomena [Cas] (b) Network of short-range radars for
observing lower troposphere

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

End Users/
Applications

Figure 2.2 Different data transfer scenarios in a CASA network

Under certain scenarios it is required to transmit high bandwidth data to the remote end users. In
certain cases, this high bandwidth data can be processed at the radar node and only low

bandwidth processed data transmitted over the network.

2.2 QoS Requirements in CASA Broadband Sensor Networks

In a CASA network shown in Fig. 2.2, there are heterogeneous QoS requirements that need to be
satisfied by transport services for the proper operation of the system [Ba05a]. The solid red and
dotted blue circles in Fig. 2.2 show different regions of the CASA network with different QoS
requirements. The blue dotted circle highlights the part of the network that supports
communication between radar nodes and the distributed processing/storage nodes. Depending on
the resources available at the radar node, data can be locally processed or transmitted over the
network (which may consist of both wired and wireless links) in real time for remote processing.
In this case sustained data rates may be in order of tens of Mbps to hundreds of Mbps. At the

same time, low bandwidth streams like command and control signals, monitoring probes, and

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

radar health tratfic streams share the bottleneck links with high bandwidth radar data streams.
Thus the transport protocols need to be friendly to the cross traffic streams in the network.
Moreover it is necessary to support one-to-many, many-to-one and many-to-many data transfer
scenarios for both high and low bandwidth data. For example, many-to-one communication will
be required to gather data from multiple radars for integration at a central server. Radar data
streaming from the radar nodes to the points of computation also has unique QoS requirements: a
minimum acceptable rate based on the end application (CASA needs to support multiple
applications with different requirements simultaneously), better accuracy of end results with
higher bandwidth, a bound on delivery time beyond which data is not useful, a bound on bursty
losses, and more.

The solid red circle in Fig. 2.2 highlights the network that provides communication between
processing/storage nodes and the end users. In CASA one-to-many communication may be
required to deliver high-bandwidth radar data to multiple heterogeneous users such as emergency
managers and researchers in real-time. Each of these end users may have different bandwidth
requirement and latency requirements. Many of these end users may tolerate certain types of
losses in the transmitted data based on the desired accuracy in the end results. Each end user may
thus specify heterogeneous real-time and data framing requirements for acceptable data accuracy
due to variable resources like bandwidth and computation resources availability at receiver end.
End users may send request for real-time processed or unprocessed data; similarly non real-time
access of archived data may be requested. In certain cases, depending on the mode of operation
and end user requests, reliability of data may be important. It is imperative to meet diverse set of
QoS requirements of CASA like applications to achieve the goals of the system. There are
different QoS solutions that are required for broadband and wireless sensor networks. Next
sections investigate current state of the art in meeting QoS requirements for broadband and

wireless sensor networks.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 QoS Support for Broadband Senor Networks

This section investigates the current state of the art in QoS support for wired networks that may
be used for providing QoS in broadband sensor networks. There are multiple proposed solutions
to ensure QoS in wired networks for instance, over provisioning of computation and networking
resources helps application meet its QoS requirement [Ni02]. The limitation of this approach is
that all end users of an application receive similar type of QoS, for example available bandwidth
is equally shared among all users. This may not be acceptable for certain applications where
multiple end users have heterogencous end user requirements which are typical case for emerging
mission-critical broadband sensor network applications. Network traffic may vary and as a result
QoS received by end users may degrade during peak traffic conditions because of increase in
jitter. Moreover, over-provisioning may not be always cost effective when number of end users
increases significantly. Alternative approaches are resource reservation and reservation-less based
approach. As the name suggests, in resource reservation based approach end-to-end resources in
terms of computation and bandwidth are reserved for a particular application. In this case
application uses Resource Reservation Protocol (RSVP) [Br97] to request and reserve networking
resources. IntServ [Br94, Ma99, Sh05] based model uses the resource reservation based approach
to deliver desired QoS to the end users. However, this requires intermediate routers/switches to
manage state of the sessions that requires resource reservation. Like over-provisioning IntServ
‘approach also suffers from scalability limitations. In the case of reservation-less approach, as the
name suggests no resource reservation is performed for the application in the network. Instead,
mechanisms such as traffic classes, traffic shaping, queuing mechanism, admission control, and
policy managers are used [Ni02]. Diffserv [B198, Sh05] model uses reservation-less based
approach to provide the desired QoS to the end users. In DiffServ model packets are marked
according to type of the service they need. This marking is then used at the DiffServ enabled

routers/switches to select appropriate queuing mechanism to deliver the desired QoS performance

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

indicated by the packet marking. Note that desired QoS service s achieved when traffic confirms
to the service level agreement (SLA) agreed between end users and the service providers.

Due to lack of end-to-end deployment of above mentioned QoS architecture, there are no
guarantees to meet QoS requirements of applications like CASA on a best-effort Internet
infrastructure. This dissertation explores effectiveness of application-aware transport services in
meeting QoS requirements of broadband sensor networks over a best-effort network. One of key
component of the application-aware transport services includes application-aware congestion
control protocol for meeting bandwidth and data quality requirements of the end users. Next

section compares different transport protocols available for the high-bandwidth wired networks.

2.4 Transport Protocols for High-Bandwidth Wired Networks

Emergence of broadband sensor network application is changing the paradigm of protocols that
might be used for the sensor network applications. Most of the high speed transport protocol
research has been done while considering Internet as the communication medium. This section
surveys of high-speed transport protocols for the wired networks such as Internet.

TCP is the dominating reliable transport protocol over the Internet that has been extremely
successful in keeping the current Internet working quite efficiently. However, TCP is shown to be
significantly inefficient over network with high bandwidth-delay product. As new high bandwidth
applications are emerging and network speeds are increasing, it offers significant challenge for
the TCP in future to meet needs of the evolving Internet. This has led to the research and
development of transport protocols for high speed networks that include High speed TCP[FI104],
Scalable TCP[Ke03], Fast TCP[Ji04], H-TCP[Sh04], BIC-TCP{Xu04], and TRABOL [Bg02,
Bg03a, Bg03b]. Except TRABOL, all other above mentioned protocols are reliable transport

protocols. All these reliable transport protocols are variants of TCP protocol as they have their

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

own window based distinct congestion control mechanisms. One of the key requirements for the
deployment of these emerging protocols on the Internet is that they should offer tangible benefits
without degrading the performance of already existing protocols on the network.

Different congestion control algorithms have different ways for adjusting the congestion
windows [Ch89]. In case of Scalable-TCP, basic idea is to make the recovery time independent of
the window size. Scalable-TCP uses AIMD based congestion control and it updates the current

TCP cwnd sending window as follows

ACK :cewnd < cwnd + o

2.1
LOSS :cwnd ¢ cwnd X 8 2.1

where oz and £ are 0.01 and 0.873, respectively.

High Speed TCP congestion control is also based on AIMD based congestion control mechanism
and unlike Scalable-TCP, it uses current cwnd as an indication of the bandwidth-delay product on

the path. AIMD increase and decrease functions are varied as follows.

[, (ewnd)
cwnd 2.2)
LOSS :cwnd < cwnd X g s (cwnd)

ACK :ewnd < cwnd +

folcwnd)and g,(cwnd)are the logarithmic functions such that f,(cwnd)increases and
gs(cwnd) decreases with increase in cwnd.

H-TCP protocol determines the path bandwidth-delay product based on the elapsed time A since

the last congestion event rather than cwnd as done with Scalable-TCP and HS-TCP.

2(1=5) [(D)
cwnd 2.3)
LOSS :cwnd <~ cwnd X g 4(B)

ACK :cwnd — cwnd +

where, f,(A)and g;(B) are defined in [Sh04]. Similarly, FAST TCP has a different congestion

control algorithm for the TCP. It is equation based algorithm that eliminates packet-level

oscillations. Unlike other congestion measure schemes based on losses or buffer occupancy, it

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

uses queuing delay as a measure of congestion. It achieves proportional fairness and does not
penalize flows with larger RTT.

We have seen different TCP variants for high speed networks, which ensure reliable transter
of data over high bandwidth-delay product networks. Alternatively, there are many applications
that do not require reliable transfer of data and can tolerate certain types of losses. These
protocols include Rate Adaptation Protocol (RAP) [Re99] and TCP Friendly Rate Adaptation
Based On Losses (TRABOL). RAP protocol uses AIMD based increase/decrease algorithm for
rate adaptation. In the absence of packet loss transmission rate is increased periodically in a step-
like fashion, Inter-packet gap (IPG) is used to adapt the transmission rate. RAP adjusts the
transmission rate every estimated RTT. This approach of fine tuning the sending rate every RTT
can make RAP more aggressive for flows with shorter round trip time, resulting in unfairness
among the TCP and RAP flows. In case packet loss is detected, RAP decreases its rate by
increasing the IPG, and it can safely ignore reacting to packet losses if they all are part of same
burst loss.

TRABOL is a UDP based congestion control protocol. TRABOL has been designed for
broadband sensor networks where data is generated at very high rates and is required to be
transmitted to the loss tolerant end users with critical minimum rate and target rate QoS
requirements. Key feature of TRABOL protocol is that on congestion detection, transmission rate
is decreased in one step to the end user specific minimum rate requirement. This is an important
feature of TRABOL, as none of the above mentioned high speed transport protocols consider
such application specific minimum and target rate requirements. In many mission critical
broadband sensor network applications, different end users can have different minimum rate
requirements for their proper operation. Thus TRABOL is a suitable protocol for such sensor
network applications. In TRABOL, packet loss is used as an indication of presence of congestion
on the network. In absence of packet loss, transmission rate is increased additively and it does not

exceed end user specific target rate requirement [Tr06]. Rate adaptation is based on the

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

knowledge that end users are able to tolerate certain types of losses. This protocol is shown to be
TCP friendly as long as minimum rate requirements of end users are met. Alternatively, TFRC
(TCP-Friendly Rate Control) [Ha03] is an application layer congestion control mechanism that
has smoother rate variation compared to TCP. TFRC is suitable for real-time applications such as
voice and video that cannot tolerate high degree of variation in the transmission rate during
network congestion. However, like TCP, TFRC does not guarantee that transmission rate do not

fall below the minimum rate requirements of the end users.

2.5 QoS Requirements in Wireless Sensor Networks (WSN)

QoS mechanisms that are used for the wired networks cannot be directly applied to wireless
sensor networks because of bandwidth constraints and dynamic network topology. There are
different QoS solutions available for wireless ad-hoc networks. Support for QoS in ad-hoc
network includes QoS signaling for resource reservation, QoS routing, and QoS MAC. For e.g.,
QoS routing can be used in ad-hoc network that searches for path with enough resources to meet
application needs. Once paths with sufficient resources are found, QoS signaling is used to
reserve those resources.

However, QoS solutions for wireless ad-hoc network do not consider energy efficiency as
their key goal which is critical to the operation of resource constrained wireless sensor networks.

Some of the key challenges for wireless sensor networks are as follows [Che04].

1. Resource constraints in WSN: It involves bandwidth, memory, computation constraints. This
requires that QoS support mechanism in wireless sensor network should be simple and less

resource consuming.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Unbalance traffic: In most wireless sensor networks, traffic is mainly from large number of
sensor to small finite number of sink nodes. Thus QoS mechanism should be considerate of
such scenarios in sensor networks.

3. Spatiotemporal dependency of data: There can be redundancy in the data from a single sensor
or a group of sensors. This can lead to unnecessary wastage of sensor resources thus require
QoS support mechanism to be cognizant of such cases.

4. Network dynamics: Links can fail or degrade thus QoS support can become complex in such
an environment.

5. Scalability: Sensor network can grow from tens of nodes to thousands of nodes, thus QoS
support tor sensor network should also scale with parameters like number of nodes, density of
nodes.

6. Multiple end users: There are heterogeneous end users with different bandwidth, latency, data
quality requirements. It is required to concurrently meet QoS requirements of multiple end
users for mission critical sensor networks.

7. Multiple priorities: Multiple traffic streams with ditferent priority can traverse the sensor
network for e.g., in CASA different traffic streams are raw time-series data, health
monitoring signals, command and control signals. QoS support should be considerate of such

requirements.

2.6 Protocols for QoS Support for Wireless Sensor Networks

Different solutions have been proposed to meet QoS requirements in wireless sensor networks.
Sequential Assignment Routing (SAR) [So00] is one of the earliest protocols for wireless sensor
network that considers QoS while routing packets. When there are multiple paths towards the

sink node, SAR considers energy resources, QoS availability, and priority of packets for selecting

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

path for the packets towards the sink node. SPEED [He03] is a stateless QoS routing protocol that
provides soft real-time guarantees to the end users. It achieves the soft real-time bound by
combination of feedback control and non-deterministic geographical forwarding. SPEED aims to
provide uniform delivery speed between source-sink patrs such that end-to-end delay is
proportional to the distance between sources and sink nodes. Alternatively different protocols
have been proposed that provides end-to-end reliability in wireless sensor networks [BhOIL,
De03a, De03b]. In service differentiation based approach for sensor networks [BhO1] priority is
assigned to each packet based on the content and per-hop-behavior (PHB) is determined based on
the packet marking to meet reliability and latency requirement of the application.

A sensor network may under go varying degree of network congestion due to sudden
occurrence of events in the network. This has the potential to degrade the QoS received by end
users in the wireless sensor networks. Need for congestion control in wireless sensor networks is
emphasized in [Ti02]. It was shown that exceeding network capacity can be detrimental to the
observed goodput and thus can degrade the performance of the end application. It is thus
imperative to deal with the congestion in sensor networks. Many sensor network applications
cannot tolerate loss of data, e.g., command and control information or re-tasking of the sensors
operations. It is thus required for transport protocols to ensure reliability of the data for certain
applications under high loss conditions due to wireless link errors or congestions.

One of the earliest solutions that address the congestion problem in wireless sensor network
is CODA [Wa03]. It is an energy efficient congestion avoidance and detection algorithm for
effectively dealing with both transient and persistent congestion scenarios. For congestion
detection, CODA uses a combination of past and present channel loading conditions, and the
current buffer occupancy. Once the congestion is detected, actions are taken to recover from the
congestion using backpressure mechanism. Open-loop backpressure, a protocol to recover from
transient congestion includes hop-by-hop propagation of slow-down signal to upstream nodes

until congestion is detected on the corresponding downstream node. For persistent congestion

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

control, CODA asserts congestion control over multiple sources from a single sink using closed-
loop multi-source rate regulation. In this case, source expects to receive ACKs at slow rate from
the sink, thus sink can control the transmission rate of the source by adjusting ACKs rate.

SenTCP [Wa05] is an open-loop hop-by-hop congestion control protocol for WSN, in
addition to buffer occupancy like CODA, it uses inter arrival packet gap and service time for
congestion detection. This approach helps in effectively differentiating between losses due to
congestion or link errors. Both CODA and SenTCP reduces source traffic during network
congestion. Alternatively, recent novel approach recommends dynamically adapting resource
allocation to alleviate network congestion [Ka04] instead of dynamic traffic rate control. Basic
idea of this algorithm is based on the fact that in most sensor networks under dormant conditions,
a large number of nodes remain in the sleep state for energy conservation. As soon as the
congestion is detected, these nodes are transitioned to active state and are made part of alternate
paths known as path multiplexing to the sink node. Congested node later distributes the extra
traffic over these alternate paths to alleviate the congestion. Alternate paths can result in increase
in energy consumption, so it is recommended to switch off the nodes on the alternate paths as
soon as congestion is alleviated. Advantage of this kind of resource provisioning is that it is able
to maintain the required throughput at the application under network congestion. It is also shown
that when congestion is transient, increasing resources by creating multiple alternate paths around
the hotspots effectively increases the packet delivery as well as consume less energy by avoiding
collisions and retransmissions.

In some wireless sensor network applications, it is required to reliably deliver data from
source to sink or from sink to source. Pump Slowly, Fetch Quickly (PSFQ) [Wa02] is one of the
earliest reliable transport protocol proposed to meet some of these goals. Design of PSFQ require
the sender to transmit the data at slow speed (“Pump Slowly”), but in case of loss of data nodes
are allowed to fetch any missing data from its neighboring nodes very aggressively (‘“Fetch

Quickly”). The motivation behind this simple approach is to achieve loose delay bounds while

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

minimizing the recovery cost by opting for localized recovery due to any lost segment. One of the
drawbacks of the PSFQ is that it assumes loss occurrence is because of transmission error due to
poor quality of the wireless links rather than the network congestion. This limits its applicability
to sensor network that generate light traffic.

Event to Sink Reliable Transport (ESRT) [Sa03] is a transport protocol with a dual goal of
providing reliability and congestion control from source to sink. Key difference between PSFQ
and ESRT is that beside congestion control ESRT proposes notion of event to sink reliability, and
provides solution for achieving end application specific desired reliability with minimum energy
expenditure. However, PSFQ guarantee end-to-end reliability by recovering from data loss at
intermediate node and is focused on sink to source reliability instead. ESRT is aimed at reliably
delivering occurrence of event information in some region of the network to the sink nodes. In
many sensor network applications, individual sensors data are correlated and thus can tolerate
certain types of losses and delivers event information to the sinks with subset of data. ESRT does
not guarantee end-to-end delivery of each event data due to spatiotemporal dependency of the
data in the sensor network. ESRT goal is to achieve the optimal event reporting rate of the source
node so that the required event detection reliability R is met at the sink node with minimum
resource utilization. For congestion control, ESRT monitors the local buffer of the sensor nodes
and in case buffer overflows, sets the congestion bit in the packets forwarded to the sink node.
When sink node detects that congestion bit is set, then it broadcast a slow down signal with high
energy to the sources to throttle down their sending rate. Disadvantage of this approach is that
any on-going transmission would be disrupted by high power signal. Moreover, all sources will
be forced to reduce their rate irrespective of the source of the congestion. As described before,
CODA approach of selective throttling of the sources of the congestion mitigates the problem of

ESRT congestion control; without the need for transmission of high energy slow down signal.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.7 QoS Support Using Overlay Networks

This section focuses on the current state of the art in the overlay networks and their suitability in
meeting QoS requirements of emerging mission-critical sensor network applications. As
mentioned in Section 2.3 there have been ongoing efforts for providing QoS on Internet using
IntServ and DiffServ models. However, due to lack of end-to-end deployment of IntServ and
DiffServ models Internet still provides best-effort services to the applications. There are two key
alternative schools of thought in the networking community that support two different
mechanisms for enhancing QoS support in the Internet.

In the first school of thought researchers have proposed using overlay network based
solutions for deploying new protocols and application-specific functionalities to enhance the QoS
support available on the best-effort Internet. This does not require change in the underlying IP
infrastructure and provides application-developers enhanced ability to adapt their operation in an
application-friendly manner under varying network conditions.

Overlay networks [Pe02] enable applications to have more control over the routing decision
thus helps in selecting paths that would meet application specific constraints (delay, bandwidth,
etc.). The Internet itself began as an overlay network above the traditional telephone network,
using the long-distance telephone links to connect remote routers. Emerging overlay networks are
similarly using the existing Internet to route data between the overlay nodes. Overlay nodes
allows implementing application specific functionality and thus overlay networks have the
potential to hasten the deployment of new applications without waiting for years for the
underlying routers to change. Some of the well known examples of overlay networks include
Resilient Overlay Networks (RON), QoS-Aware Routing in Overlay Networks (QRON),
Application-layer multicast, and Content distribution networks [Aka, An01, Ch00, Zh04a]. RON
uses overlay networks to improve the failure resilience of the Internet. The RON nodes monitors

the functioning and quality of internet paths among themselves, and under path outage or

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

degradation it can decide to route packets through other RON nodes instead of default Internet
paths. This protocol architecture is shown to avoid 50% of the Internet outages by this approach.
QRON tries to meet QoS requirements of the application by selecting alternate paths when ever
performance of existing path degrades. Alternatively, it distributes the overlay tratfic among the
overlay broker nodes such that application should not suffer significantly due to varying cross-
traffic. Overlay Multicast [Ch00, Ke02, Fa03] is the one of the promising applications for
distributing content to multiple end users over a wide-area. End system multicast [ChOO]
successfully demonstrated that overlay multicast solution can be practical solution and is easy to
deploy compared to TP multicast. Overlay networks based packet recovery at overlay nodes
during network losses and rapid rerouting during link failure is shown to be effective in
delivering VolP quality in par with PSTN networks [Am06].

Recently different overlay architectures have been proposed with a goal of deployment of
application-aware services to enhance the QoS received by the end users. OverQoS [Su04], an
overlay-based architecture can provide a variety of QoS-enhancing in-network services in the
intermediate nodes of overlay networks, such as eliminating the loss bursts, prioritizing packets
within a flow, and statistical bandwidth and loss guarantees. Our current work on AWON
[BaO7b] architecture is motivated by the same vision of enhancing QoS support within the
network without the support from IP routers. An important difference between the AWON and
the OverQoS architectures is that in the AWON-based approach, quality of service provided to an
application is enhanced by performing application-aware processing within the network.
Moreover, the AWON architecture is highly flexible and can accommodate QoS requirements of
large class of applications. OCALA [Jo06] and Oasis [Ma06] enable the users of legacy
applications to leverage overlay functionality without any modifications to their applications and
operating systems. Opus [BrO2b}, which is motivated by active networking, provides a large-scale
common overlay platform and the necessary abstractions to service multiple distributed

applications. In contrast to our work, Opus focuses on the wide-area issues associated with

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

simultaneously deploying and allocating resources for competing applications in a large-scale
overlay networks. XPORT ([Pa06] is a tree-based overlay network, which can create
dissemination trees based on diverse performance requirements of the applications.

Second school of thought in the research community recommends clean slate solution to
enhance the functionality of the Internet. The motivation behind this approach is that incremental
solutions build upon the existing Internet network infrastructure such as overlay networks may
not be able to solve the fundamental limitations such as QoS and security of the current Internet
architecture. Mid 1990s saw emergence of active networks that focused on solving the problem of
difficult and lengthy process of introducing new protocols and services in the network using the
concept of programmable network nodes. Active networks allows switches/routers to perform
computation on the end user data that is being routed through them as well as it gives the ability
to the end users to tailor the operations of these intermediate nodes to perform sophisticated
application-specific operations such as customized fusion algorithm, or data compression [Sc99,
Te96, Te97, We98]. In [Ke00] it is shown that active network based application-aware processing
such as video content scaling during network congestion has the potential to significantly enhance
the quality of the video delivered to multiple end users. It is shown that active network enabled
routers can be configured to select most appropriate subset of video packets for forwarding on-
the-fly based on tag information. It helps in delivering acceptable video quality under severe
network congestion conditions. More recently under clean slate based approach, GENI (Global
Environment for Network Innovation) [Gen] has been started with a hope that it will facilitate
validation and deployment of new protocols/services on the next generation secure network to
meet the needs of the 21 century applications. One of the key goals of the GENI is to develop a
world-wide secure and trustworthy network environment bottoms-up for current and future
applications.

For emerging applications such as CASA, overlay network based solutions provide an

immediate practical deployment path without having to wait for deployment of clean-slate based

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

solutions. The focus of this dissertation is on developing overlay network based application-
aware transport services to provide enhanced QoS to the end users in DCAS [Cas, Mc05] systems

such as CASA.

2.8 Freshness of Data as a QoS Performance Parameter

Freshness of data is considered as an important data quality parameter for many real-time systems
and information systems [Or98, BoO4]. Consider an example where multiple copies of the
WebPages may be maintained at different distributed remote locations. It is important for such
applications to keep the most updated recent copy of the webpage at all different locations. To
meet this requirement effective page refresh policies tor web crawlers have been proposed to
achieve the freshness requirements of such applications. In such systems data is considered fresh
when local copy of the data is same as the remote sources [Cho03]. However, there are different
definitions of the freshness that have been proposed depending on the applications where data is
used. Traditional definition of freshness of data is known as currency [Bo04] in information
systems and it describes how stale the local copy of the data is with respect to remote. An
alternate definition of freshness also considers timeliness of the data as a data quality parameter,
which captures age of the data available at the user node. This aspect of alternate dimensions of
freshness of data has been studied in greater detail in [Bo04]. There are ditferent factors that may
impact the freshness of data such as rate of change of data, network delays, and synchronization
policies. In the context of mission-critical sensor network applications, it is imperative to be
aware of freshness of the data received at a sink node. However, there exists minimal focus on
understanding factors that may impact the freshness of data in sensor networks. In the context of
information systems, there are recent efforts on developing framework for understanding different

factors that may impact the freshness of the data [Cho03, Bo04]. In [Ch03] analytical model is

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

proposed that relates the rate of change of data at source nodes and synchronization policies to the
freshness and age of the data. There is a need for similar framework to understand the freshness
of data in the context of sensor networks. However, in the context of sensor networks there are
multitade of network dynamics that play an important role in determining the freshness or age of
the data available at the sink node. There is a need to understand the complex interplay between
different network dynamics such as random network delay, network losses, packet reordering,
and sampling rate on the age of the data. In this dissertation we use freshness and age of the data
interchangeably in the context of sensor networks. This framework has the potential to help
application-developer to control certain network parameters to best meet the application-specific
data freshness requirements. Moreover, framework for freshness of data for sensor networks can
be used to evaluate the performance of application-aware transport services in meeting end user

data freshness requirements

2.9 Remarks

This chapter describes the current state of the art in QoS support available in broadband and
wireless sensor networks. There are alternate school of thoughts for improving the performance
of best-effort Internet based on Incremental approach and clean slate approach. For emerging
broadband sensing applications like CASA we make an argument in favor of suitability of
overlay network based approach for developing application-aware transport services for such
systems. We then discuss current state of the art in overlay networks and transport protocols for
both wired and wireless environment.

Freshness of data is considered as an important performance parameters for real-time sensor
networks. We discuss the existing work in the field of information systems on understanding the

freshness of data. There is a need to develop a framework to understand the freshness of data in

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sensor network that relates different network parameters to the freshness of the data at the sink

node.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

PROBLEM STATEMENT

Mission-critical broadband sensor network applications such as CASA requires effective
transport services for meeting heterogeneous QoS requirements of multiple end users in such
systems. QoS requirement of different end users in broadband sensor networks include bounded
end-to-end delay, bandwidth requirement, and acceptable loss threshold which are critical to their
operation. Moreover, these QoS requirements may vary from one user to another in such systems.
Heterogeneity of broadband sensor networks due to presence of both wired and wireless links,
sensor nodes with data generation rates from tens of Mbps to hundred of Mbps offer significant
challenges for providing effective transport services to multiple heterogeneous end users. In
broadband sensor network CASA multiple radar data streams with different QoS requirements
may concurrently share the common bottleneck links in the network, e.g., raw time-series radar
data, cross-traffic, sensor health status signals, and command and control signals can share the
same bottleneck link. It is desired that transport services be cognizant of multiple different
streams traversing the networks and should adapt to meet heterogeneous QoS requirements for
different streams under dynamic network conditions while remaining friendly to cross-traffic
streams. As mentioned in Chapter 2, Internet may play a critical role as a communication
infrastructure for broadband sensor network applications. Current Internet operates on the

principles of best effort service with no end-to-end QoS guarantee. For mission-critical

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

broadband sensor network applications, best-effort shared networks like Internet may not always
meet the end user QoS requirements. However, due to ubiquitous nature of the Internet and its
global reach, it is imperative to leverage this infrastructure tor deployment of large scale
broadband sensor network applications. As mentioned in Chapter 2, overlay network enables
development and deployment of new protocols and services on the Internet without the need for
changing underlying network infrastructure. This dissertation proposes and demonstrates
effectiveness of overlay network based transport services in meeting QoS requirement of the
CASA like sensor networks using Internet. One of key challenge for overlay network based
transport services is to steer their operations in an application-aware manner based on the existing
network conditions and the feedback received from the end user about the received data.
Moreover it is necessary that application-aware adaptation performed by transport services for
meeting QoS requirements of broadband sensor network applications should not degrade the

performance of other applications sharing the network.

3.1 Research Goals

The goal of this research is to design and demonstrate effectiveness of application aware transport
services in meeting the end user QoS requirements for the broadband sensor networks. Following
are the key requirements that transport services should meet:
e Adapt to prevailing network traffic conditions and steer protocols and sensor
operations to best meet QoS requirements of the application.
e Meet end user requirements for both low bandwidth and very high bandwidth over
wired and wireless network infrastructure while efficiently using server and network

resources.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* Concurrently meet distinct time constraints of multiple end users for their real-time
operations.

e Concurrently meet heterogeneous data quality QoS requirements of multiple end
users.

e Scale with parameters such as the number of sensing nodes, number of end users, and
bandwidth requirements in the sensor network.

® Measure QoS received by end users for application-aware operations.

3.2 Research Objectives

Application awareness is at the heart of design of proposed transport services. For application
aware transport services, research objective will traverse two key areas application aware
Transport protocols and Framework for evaluating QoS received by end users. This section
further identifies key objectives that need to be accomplished by application aware transport
protocols and framework for QoS evaluation in order to realize the goals of application-aware

transport services.

3.2.1 Application-aware Transport Services

Application awareness is at the heart of design of proposed transport services. For application
aware transport services, research objective will traverse two key areas (i) Design of application-
aware transport protocols, and (ii) Framework for measuring QoS received by end users. In this
section, we further identify key objectives that need to be accomplished to realize the goals of
application aware transport services. Following section lists individual objectives for the

application-aware transport protocol, and framework for measuring QoS received by end users.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.1.1 Objectives for Application-aware Transport Protocol

Application-aware transport protocols form the first pillar of transport service design. Network
may suffer congestion because of either high bandwidth requirements of many end users or when
burst of traffic is generated in the sensor network due to sudden event occurrence. It is desired
that transport protocol adapt to the congestion in an application-aware manner while remaining
friendly to other cross-traffic streams on the shared links. In this research, out objective is to
design, develop, and demonstrate overlay network based application-aware transport protocols

that performs application-aware congestion control for multiple end users in real-time.

(1) One-to-many Data Dissemination: This type of data transfer support is required in
sensor network when multiple end users are interested in receiving data from a single sensor. In
one-to-many data transfer scenario, transport protocol should meet heterogeneous real-time as
well as distinct data quality needs of multiple end users. It should support both high bandwidth
and low bandwidth requirements of the end users. Moreover, it is also necessary for multiple
sensor data streams to be fair to each other when sharing a common bottleneck bandwidth link.

(i) Architecture for Deployment of Application-aware Protocols in Overlay Networks:
Applications relying on overlay-based implementations to achieve performance, reliability and
other application specific requirements must be able to configure overlay nodes to perform in-
network application-aware processing. A flexible, efficient approach for the deployment of QoS-
sensitive applications using overlay networks should facilitate the monitoring of the QoS received
by an application in the overlay network, and allow easy deployment of application-aware
processing at intermediate overlay nodes. The architecture framework should be flexible to
consider all the above mentioned requirements for development and deployment of application-

aware transport protocols on the overlay networks.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.1.2 Framework for Measuring QoS received by End Users

There is a need for a framework to evaluate the QoS received by end users in mission-critical
broadband sensor network applications. There are different ways in which QoS may be measured,;
some of these metrics can be application specific such as error in the end results after
computation or generic metrics like freshness of the data received at the processing node. In
CASA context, for e.g., end algorithms can compute quality of the received data based on the
standard deviation [Ba0S5b] in the end results. A generic measure such as freshness of data
received by the end users may provide signiticant amount of information about the quality of the
data that are critical to the operation of real-time sensor network applications. It is also important
to understand how different network dynamics may impact the freshness of data delivered to the
end users in sensor network. One of the key goals of the dissertation is to develop a model to
understand the precise relationship between network dynamics such as packet loss rate, network

delay to the freshness of the data delivered to end users.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

APPLICATION-AWARE CONGESTION CONTROL
PROTOCOL

Network dynamics such as packet drops and delay may degrade the perceptual quality of the
applications [Ji00, Am06]. Ubiquitous transport protocol like TCP and UDP are not sufficient by
themselves for meeting real-time rate and data framing requirements of multiple end users under
dynamic network conditions [Ba05b]. There is a need for development of application-aware
congestion control algorithm that adapts their transmission rate in an application friendly as well
as network friendly manner. In the case of video transmission NAIVE encoding scheme enables
graceful degradation of video quality under network congestion [Br99}. This chapter proposes an
application-aware congestion control protocol for high-bandwidth data dissemination using
overlay networks. This chapter considers a weather monitoring application CASA for distributing
high-bandwidth time-series radar data to one or more heterogeneous end users. Radar time-series
data is required to detect a meteorological signal and make estimates of the fundamental moment
parameters like reflectivity, Doppler velocity, and spectral width [BrO1]. There are different ways
in which time-series data can be requested by the end users. It may be required to stream time-
series radar data in real-time or in non real-time. For real-time time-series data streaming the

bandwidth requirement could be orders of magnitude higher than common Internet applications

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

like Voice/Video streaming. In case of voice transfer, bandwidth requirements can vary from 6
Kbps to 128 Kbps, and for video streaming, bandwidth requirement can vary from 50 Kbps to 6
Mbps. Alternatively, bandwidth requirement of real-time time-series radar data is in the order of
tens of Mbps to hundreds of Mbps.

Quality of the time-series data delivered to end users has the potential to impact performance
of the end users. Number of time-series samples received for a resolution volume determines the
accuracy of the end moment parameters; higher the number of samples higher is the accuracy.
Many end algorithms have a limit on the errors that they can tolerate in the moment parameters.
Maximum acceptable error in the moment parameters determines. the minimum number of time-
series samples required per resolution volume. Due to real time requirements of end algorithms, it
is necessary to deliver the minimum number of samples in a bounded time. This determines the
minimum bandwidth required for the end algorithm. Therefore it is necessary for protocols to
always transmit data at or above this minimum rate for a particular algorithm. It is possible that
network becomes a bottleneck due to limited bandwidth availability. Under these scenarios, the
transport protocol should not transmit data at a rate that the network cannot support; it would not
only aggravate the network congestion but may lead to high losses for the end applications as
well. Similarly depending on the resources available at the destination, an application can dictate
the maximum rate at which it can receive data from the radar server. An end algorithm may
dictate sample requirements depending on the acceptable error in the moment parameters. We use
TRABOL congestion protocol proposed in [Bg02, Bg03a, Bg03b, Bg03c] to determine the
current transmission rate during network congestion while considering minimum rate and
maximum rate requirement.

One of the key contributions of the work presented in this chapter is that it proposes
application-aware congestion control framework by coupling TRABOL congestion control
protocol with the application-aware data selection scheme for transmission of high-bandwidth

sensor data. Subsequently this application-aware congestion control framework is extended in

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5 to propose a DOOM (Deterministic Overlay One-to-Many) protocol for high
bandwidth weather radar data dissemination to multiple heterogeneous end users with distinct
bandwidth and data quality requirements. Section 4.1 provides goals for the application-aware
congestion control for DCAS Systems. Section 4.2 describes the radar data format. Section 4.3
describes schemes for selection of the subset of radar data for transmission during network
congestion. Section 4.4 investigates the impact of integration of TRABOL congestion control and
data selection scheme on the quality of data delivered to the end users. Experiment results are

presented in Section 4.5. Concluding remarks about this chapter are presented in Section 4.6.

4.1. Application-Aware Congestion Control for Mission-Critical DCAS Systems

The application-aware congestion control protocols for a mission critical DCAS system such as
CASA needs to meet following key goals:

1. Ensure that the application specific minimum data rates (MR) and its time constraints

are met. This is of paramount importance in a mission critical system where failure

can affect property and lives. Furthermore, receiving data at rates below this

minimum rate (MR) renders the received data essentially useless;

[

Be TCP friendly to the maximum extent possible without violating Goal 1;

3. Provide the application its desired data transmission capacity for best quality. While
radar applications can operate with minimum threshold of data, the accuracy of end
results will improve with higher data rates, up to the target rate (TR). Thus the
protocol should have the ability to provide improved data rates, provided it can be
done without violating Goal 2; and

4. It should facilitate the application to select appropriate subset of the data generated by

the sensor node for transmission at lower rates during network congestion.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

\
AT R TR A
LY 3 ‘FNCI itation
vy y N {eiRitation
Ao “‘\\\\\\\\\\\\\\\\\
. . \ \ \
Received Signal VAN AR A
[N .

\ RN VNN
\ AR A
R T U R N
[S S N O O T T T T Y

Receiver Sampling

\
oy
A Y
A

Radar Sensor

(@)
m=500 Temporal Sample n=64
Gates >
Gate 1 Sample 1 Sample 2 Sample 64
Gate 2 Sample 1 Sample 2 Sample 64
Gate 499| Sample 1 Sample 2 Sample 64
Gate 500 Sample 1 Sample 2 Sample 64
(b)

Figure 4.1 Weather Radar Data Generation (a) Radar operations (b) Digitized Radar
Signal (DRS) block generated by radar for each scanning direction (fixed azimuth and
elevation angle)

TRABOL meets the above goals while overcoming the limitations of both TCP and UDP

protocol by providing application level congestion control such that bandwidth

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Spatial Sample

oy
-

requirements of the end users are met while remaining friendly to the TCP cross-traffic.
The key feature of the TRABOL is that during network congestion, it performs rate
adaptation while considering end user specific minimum and target rate requirements.
TRABOL adapts the transmission rate such that during congestion it does not fall below
the required minimum rates. Similarly, when bandwidth is available, TRABOL increases
rate to target rate. As mentioned in before for such mission-critical sensing systems it is
not sufficient to receive data at the required bandwidth but it is also important to select

most appropriate subset of the data for transmission at the current rate.

4.2. Digitized Radar Signals

Radar is a high-speed sensor that generates data at rates of tens of Mbps to hundreds of Mbps. In
a typical operating scenario, radar transmits short pulses of energy, which are scattered back by
the target, received by the receiver, and digitized for further signal processing [BrO1, Ch04]. Fig.
4.1(a) shows the radar operation and Fig. 4.1(b) shows a block of data, corresponding to a ray,
while scanning a particular direction in the atmosphere. The transmitter radiates one pulse every
Pulse Repetition Time (PRT), which is usually about one millisecond. The received signal is
sampled, typically at sampling rates of 1 MHz to 4 MHz. The sampled signal at the receiver is
referred to as Digitized Radar Signal or DRS. The regularly spaced times are referred to as gates
or range gates and there would typically be 500 to 1000 gates in a ray [BrO1, Ch05, Chi]. The
distance between consecutive measurements in a radial direction, typically between 100-500m, is
called ‘range resolution’ and this gives the number of gates in a ray. For example for a pulse
duration of 1 us, pulse length corresponds to 150m (using the formula, r = ¢t /2, where 1 is

distance and ‘¢’ is the speed of light and ‘7’ is the pulse duration). For each transmitted pulse, one

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<4—— Samples —»
3

1 2 64
1 S1 S2 S3 S64
Packet Header Sample Data l——2) S1 } 52 | 83 S64
3l st Is2]s3 64
S64
Packet 1 SLj] sz | S3
s1) s2 | s3 S64
e b o | « S64
Packet Header Sample Data <= s1
I
= S1 . . .
Packet 2 Ll
S1 S2 S3 S64
Packet Header Sample Data -
S1 S2 S3 S64
SOOI)] 2 | 3 S64
Packet m
(a) DRS Block
<4—— Samples —»
1 2 3 64
Packet Header Sample Data - 1 Y's1 m S3 S64
2 S1 S2 S3 S64
Packet 1
3 Sl S2 S3 S64
Packet Header Sample Data -
S1 y 83 S64
Si S2 S3 S64
Packet 2
S1 S2 S3 S64
w * ° - -
3 . .
< . .
&
l S1 S2 S3 S64
N
Packet Header Sample Data e 51 52 \ 53 Se4
st [2f S64
Packet n
(b) DRS Block

Figure 4.2 Sample Dependency Type (a) Type 1 Single Sample (b) Type 2 Pair of Samples

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

CASE 1
Type 1 and Uniform Drop

R P NP
o — o— o—
T2T

CASE 2
Type 2 and Uniform Drep Adjacent samples in

T T A 4 @" » the same packet
o———©

<+

T

2T

CASE 3
Type 1 and Contiguous Drop

R
LLT'T'H-
CASE 4

Type 2 and Contiguous Drop

I I

Figure 4.3 Sample selection schemes while considering sample dependency and sample drop
requirements of end user applications

sample per gate is generated, which is known as range sample data set. A collection of the
multiple range sample data sets corresponding to » transmitted pulses is referred to as a
ray digitized radar signal (DRS) block. Time taken generate 1 DRS block of data is
known as dwell time or heart-beat of the radar. In Fig. 4.1(b), DRS block has m (=500)
gates and n (=64) pulses. Note that data is generated by column, and the ray DRS block

can be conceptually visualized as a two-dimensional array. The maximum range that the

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

radar can scan is divided in to a number of range gates also known as resolution volume.
A row represents all the samples of a given gate. The position of the data in each column
indicates the distance of the “object” from the radar. The collection of all the rays for a
fixed elevation angle or azimuth angle is referred to as a sweep, and a complete set of
sweeps is referred to as a volume scan as it generally contains a complete 3-D view of a

storm.

4.3 Application-Aware Sample Selection Scheme

During network congestion network may drop packets randomly, which has the potential to
degrade performance of the end users. With congestion control, when all the information cannot
be transmitted over the network in real-time then subset of the data may be selected for
transmission based on its usefulness for the end users. In case of time-series radar data, the subset
of the samples in the DRS block shown in Fig. 4.1(b) may be selected at lower transmission rate
for each gate during network congestion [C190]. Different radar end user applications may have
different sample requirements, e.g., Doppler velocity computation needs adjacent samples for
processing and reflectivity computation can be done using single sample at a time. Sample
selection scheme proposed in this section describes different mechanism of selecting subset of the
data from the DRS block during network congestion while considering end user/algorithm
requirements. There are two factors that are considered for selecting subset of the data from the
DRS block during network congestion. The first factor is known as dependency type, which
determines if a selected sample in a DRS block is usetul for the end user computation in case it’s
adjacent or other neighboring samples do not arrive at the destination node due to network losses

or selective drop at the sender node or at intermediate nodes within the network. At present two

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dependency types are considered based on the requirements specified by end users of the CASA,
i.e., (i) Type 1, and (ii) Type 2.

(i) Type 1: In this case end user application can perform computation on-the-fly with one sample
at a time, e.g. reflectivity computation. As shown in Fig. 4.2(a), a single sample from multiple
resolution volumes is included in the same packet. Advantage of the proposed approach is that
under lossy network conditions, when a packet is dropped only one sample for any resolution
volume is lost thus not impacting the quality of the end result significantly.

(ii) Type 2: This type is required for end user applications that need two adjacent samples for
performing the computation, e.g., Doppler velocity computation. As shown in Fig. 4.2(b), a pair
of adjacent sample for multiple resolution volumes is included in the same packet. In case of
packet loss, samples are dropped in pairs for a particular resolution volume. Whenever packets
are received, they always have samples in pairs.

Second factor known as sample drop scheme considers which samples can be dropped within
the DRS block without significantly degrading the performance of the end user. When all the
samples cannot be transmitted because of network bandwidth or client end limitations, then it is
required to transmit less number of samples to the destination. Thus it is necessary to drop some
samples at the sender end; there are difterent ways in which samples can be dropped within DRS
block, e.g., uniformly spaced drop, drop in contiguous group, or random drops. Each of these
sample drop scheme may have different impact on the accuracy of the moment parameters. So
algorithms may specify different sample drop schemes requirement that would minimize the
errors in the moment parameters. We consider two sample drop schemes, i.e., (i) Uniform Drop
and (ii) Contiguous Drop.

These sample drop schemes are used to select samples to be dropped for each gate, i.e.,
resolution volume in a DRS block at the source node during network congestion. Fig. 4.3 explains
the sample drop schemes, each arrow in Fig. 4.3 represents a transmitted sample, adjacent arrows

(dashed or solid) represent samples that are included in the same packet and dot represents a

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sample that is dropped at the sender end. Each end user may specify its Type 1 or Type 2
requirements along with sample drop schemes to the radar data server, which is then used to

select appropriate subset of the samples during network congestion.

(i) Uniform drop: In this sample drop scheme, sample are dropped at a regular interval within a
given resolution volume. In Fig. 4.3, Case 1 shows sample drops using uniform drop scheme. All
the samples that are selected for transmission using this scheme also meet the sample selection
requirement Type 1 or Type 2 of the application. This means that, while samples are dropped at
regular interval within a resolution volume, at the same time they are transmitted either as Type |
or Type 2 as shown in Fig. 4.3 under Case 1 and Case 2.

(ii) Contiguous drop: In this drop scheme, a single cluster of adjacent samples is dropped.
Number of samples to be dropped in a single cluster is determined by the rate at which data is to
be transmitted. Remaining samples are transmitted using the user specified dependency type
requirement. Fig. 4.3, Case 3 and Case 4 shows the sample drops using contiguous drop scheme

while meeting the sample selection requirement of the application.

4.4 Impact of Integration of Application-Aware Data Selection Scheme and TRABOL

Congestion Control Protocol

This section investigates the impact of integration of data selection scheme with the TRABOL
congestion control protocol. Effectiveness of the application-aware congestion control protocol is
illustrated by comparing the performance of TCP, UDP, and TRABOL based implementations.

In case of TCP, all samples are delivered to the destination; therefore sample selection
scheme is not required for the transmission. In case of UDP, dependency type requirement of end

users is considered during the transmission. However, UDP does not drop packets at the sender

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end to avoid network congestion, thus no sample drop requirements are considered with the UDP.
Instead packets are dropped randomly in the network during network congestion. Alternatively, it
is possible to select both sample dependency and sample drops schemes as per the end application
needs with TRABOL. Since TRABOL can dynamically adapt its transmission rate, it increases its
transmission rate by increasing the number of samples to be transmitted as per the sample
dependency and sample drop requirement of the end user. Similarly transmission rate can be
reduced by sending less number of samples while considering both sample dependency and
sample drop requirements. Note that in [BaO5b] sample dependency scheme is referred as sample
group requirement and sample drop scheme is referred as sample pattern requirement.

Effect of different protocols on the quality of data is determined using application-specific
metric standard deviation for weather radar data.
Standard deviation in moment parameters: We consider a case when sender node sends
multiple realizations of simulated radar data [Ch86], where each realization corresponds to a DRS
block of data for the same azimuth and elevation angle. For each realization that is delivered to
the end user, moment parameters such as reflectivity and Doppler velocity are computed for all
resolution volumes. Moment parameters are computed for all gates/resolution volume for all
realizations. However, moment value of a particular gate may vary from realization to realization.
Standard deviation in the moment parameter is computed to estimate variation in the moment
parameters. Moment parameter for a particular resolution volume over all realizations of DRS
block is likely to have minimum standard deviation when all samples of a resolution volume are
used for the computation. However due to network dynamics all the samples may not be
delivered to the end users for a particular resolution volume. As the number of samples decreases
for a particular resolution volume, it leads to an increase in the standard deviation in the moment
parameters while considering all the realizations. Standard deviation in mofnent parameters also
depends on the factors like, whether single samples, pairs of adjacent samples, or triplets of

adjacent samples are used for the computation. E.g., reflectivity computation can be performed

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

End User

Switch Algorithm

NISTNET Network
Emulator

Cross Traffic

TCP Cross Traffic Receiver (CTR)

Generator (CTG)

Figurer 4.4 Emulation Network to compare performance of application-aware
TRABOL, TCP and UDP

on-the-fly using one sample at a time within a resolution volume. Alternatively, for Doppler
velocity computations it is desired to use pairs of adjacent samples within a resolution volume for
accurate estimation of Doppler velocity. Other factor that may impact variation in moment
parameters values is how do samples losses are distributed for a given resolution volume, i.c.,
missing samples are at regular interval or in bursts for a given resolution volume. If the desired
samples are not received by the end user for a particular algorithm then that may lead to wide
variation in moment parameter values for a given resolution volume for different realization.
Therefore, standard deviation in moment parameters can be used as an application-specific metric
to evaluate the quality of the time-series radar data received by the end users.

Under ideal conditions, when there is no congestion on the network, then end user receives all
samples of all the resolution volumes with high probability in a wired network environment. In
reality packet loss is a common phenomenon on the Internet; under network congestion time-
series radar data can suffer variable losses. Thus it is imperative to understand the impact of
dynamics of the network on the quality of data in terms of standard deviation in the moment data.
Transport protocols may have distinct behaviors under similar network conditions, thus it is

possible to receive different samples using different protocols for the same resolution volume that

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can lead to different standard deviation in the moment parameters. Therefore standard deviation
in the moment parameters can be used to compare performance of transport protocols.
Experiments are conducted using a radar network emulation test-bed. There are five
components of this test bed as shown in Fig. 4.4: (i) Radar emulator, (i) Network emulator, (iit)
End User Algorithm, (iv) Cross traffic generator (CTG), and (v) Cross traffic receiver (CTR).
Radar emulator, network emulator, and client machine are the Dual Xeon processor 3.06GHz
server machines with 2GB RAM. Radar emulation is done using archived time-series data. The
time-series data consists of multiple realizations of DRS block of data that consists of 300 gates
and 64 samples per gate. On the end user node, all meteorological algorithms are executed and
performance analysis is done. Network emulator NISTNet is used to emulate different network
bandwidth and loss scenarios. Since radar emulation is a disk intensive operation, RAID 0
functionality is used to enhance the read and write performance of the disks in server machine.
Radar emulator generates data at 90 Mbps, with 300 gates per ray and each gate has 64
samples. Different network dynamics like bottleneck bandwidth, packet losses etc. are emulated
using cross traffic generator (CTG) and cross traffic receiver (CTR). Under different network
conditions like variable packet losses, impact of different transport protocols and different sample
selection schemes is studied on the end algorithms. Performance comparison of impact of UDP,

TCP and TRABOL on TCP cross traffic is done.

4.5 Performance Results

Experiments are performed to investigate the effect of different sample selection schemes with
UDP and TRABOL on the moment parameter computations.
Radar data 1s transmitted using different sample selection schemes as explained in Section 4.3.

Radar data quality is determined by estimating standard deviation in the moment parameters,

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1
+= Input
=0~ TRABOL(Tr:Mr 80:50 Mbps) Group loss
@ TRABOL(Tr:Mr 90:50 Mbps) Uniform loss
-©~ UDP(Tx-rate 90 Mbps) i

-
&)

| PRT: 333ps Phd
Freq: 10 GHz .7
o, :3m/s .7

-
o

=y
w

-
o

-
o

Standard Deviation of Reflectivity in dBz

09 10 20 30 40 50
% Packet Loss
(a)
1.6 T T T T T
+=+ |nput

=0~ TRABOL(Tr:Mr 90:50 Mbps) Group loss
@ TRABOL(Tr:Mr 90:50 Mbps) Uniform loss
1.5H.-©~ UDP(Tx-rate 90 Mbps)

| PRT:333us e

Freg: 10 GHz -

6 :3m/s -
v

13+

1.2

Standard Deviation of Reflectivity in dBz

0.9 (! 1 1 1

% Packet Loss
(b)
Figure 4.5 Impact of sample selection schemes using UDP and TRABOL on the radar
data quality (a) SD in reflectivity with Type 1 sample dependency under uniform and
contiguous drops (b) SD in reflectivity with Type 2 dependency under uniform and
contiguous drops. (Group loss in figure correspond to contiguous drop)

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I
= Input
=0~ TRABOL(Tr:Mr 90:50 Mbps) Group loss
@ TRABOL(Tr:Mr 90:50 Mbps) Uniform loss
1 =©= UDP(Tx-rate 90 Mbps) N

-
[+

-
2

" PRT: 333us
Freq: 10 GHz
Lo, ! 3m/s

12 i

Standard Deviation of Velocity in m/s

0.4 1 1 1 1 1
10 20 30 40 50
% Packet Loss
(a)
2 T T T T T
+= |nput

=0~ TRABOL(Tr:Mr 90:50 Mbps) Group loss
@ TRABOL(Tr:Mr 90:50 Mbps) Uniform loss
1.8 -~ UDP{Tx-rate 90 Mbps) 7

165 PRT: 333 s

Freq: 10 GHz
14r o, :3mis

1.2 b

Standard Deviation of Velocity in m/s

o
1)

0.4 1 1 L 1)
10 20 30 40 50

% Packet Loss

(b)
Figure 4.6 Impact of sample selection schemes using UDP and TRABOL on the radar
data quality (a) SD in velocity with Type 1 dependency type under uniform and
contiguous drops (b) SD in velocity with Type 2 dependency type under uniform and
contiguous drops. (Group loss in figure correspond to contiguous drop)

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

computed using the received samples for a particular resolution volume. In case of TCP, since all
the samples are received, the standard deviation in the moment data is minimal. For a fair
comparison of TRABOL and UDP, it is desired that radar data quality is compared under same
network loss conditions. Same sample dependency types are used by both protocols, i.c., either
Type 1 or Type 2 samples are sent using UDP and TRABOL. For the experimental results,
available bottleneck bandwidth is set to 45, 60, 70 and 80Mbps; that correspond to 50%, 35%,
25% and 10% packet loss respectively. When UDP is used for radar data streaming, there is no
mechanism for rate control, thus data is always transmitted at the rate at which data is generated
by the radar emulator, i.c., 90Mbps. Since available bandwidth is less than the 90Mbps, the
packets losses introduced are random in nature for the radar data. Experiments are performed for
a case when end application has target rate requirement of 90Mbps and minimum rate
requirement of 50Mbps. TRABOL adapts transmission rate dynamically between maximum rate
90Mbps and minimum rate S0Mbps as per the available bandwidth. In case of TRABOL overall
same amount of information is lost as in the case of UDP but TRABOL drops most of the
samples at the sender end deterministically as per the end applications sample group and sample
pattern requirements. When bottleneck bandwidth link is 45Mbps, TRABOL end user receives
data below its minimum rate requirement.

Fig. 4.5 and Fig. 4.6 compare the impact of different data selection schemes on the radar data
quality for reflectivity computation and Doppler velocity computation respectively under
different network congestion/packet loss conditions. Experimental results in Fig. 4.5 and Fig. 4.6
show that sample selection scheme when integrated with TRABOL congestion control protocol,
significantly enhances the accuracy of the moment parameters during network congestion and
high packet loss conditions. UDP packet losses are random in nature due to network dynamics,
thus standard deviation is high in most cases when compared under same receiver throughput
conditions for both UDP and TRABOL. In Fig. 4.5(a), samples are selected based on Type 1

sample dependency requirement of end users for both UDP and TRABOL. It can be seen that

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TRABOL with deterministic uniform spaced drops within DRS block has minimum standard
deviation in reflectivity when compared to UDP with random losses and TRABOL with
contiguous losses. Fig. 4.5(b) shows a case when samples are selected based on Type 2 sample
dependency requirement of a end user for both UDP and TRABOL. Same behavior is observed in
Fig. 4.5(a), i.e., TRABOL with uniform loss with Type 2 dependency has minimum standard
deviation for retlectivity compared to UDP with random loss and TRABOL with contiguous loss.

In Fig. 4.6(a), samples are selected using Type | dependency requirement of the end use for
both UDP and TRABOL. TRABOL with contiguous drops and UDP with random loss
performances are quite similar. TRABOL with uniform drops with Type 1 data dependency
requirement shows worst performance because uniformly distributed drops within DRS block
with Type 1 sample dependency leads to minimum number of sample pair delivery, increasing
standard deviation in end parameters. Fig. 4.6(b) shows a case when Type 2 data dependency is
used; in this case once again TRABOL with uniform drop of sample pairs performs better than
the rest. It is thus evident that, TRABOL along with deterministic sample selection scheme can
out perform UDP in terms of better quality moment data under similar network conditions. Note
that in case of TCP, all samples for a given gate are received therefore quality of the data is
superior to either UDP or TRABOL under lossy network conditions. In Fig. 4.5 and Fig. 4.6,
dotted line corresponding to input can be taken as a measure of standard deviation in moment
parameters due to TCP protocol.

These results have demonstrated that integration of application-aware data selection
scheme and congestion control algorithm helps in delivering better quality data to the end
users under dynamic network conditions. The other part of the study that investigates the

TCP friendliness of Application-aware TRABOL, UDP, and TCP is performed in

[Ma05].

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6 Remarks

This chapter proposed the integration of application-aware data selection scheme with the
TRABOL congestion control protocol for sending digitized radar data. We also compared the
performance of TCP, UDP and TRABOL for sending digitized radar data. Radar data quality
results show that for same sample selection scheme and under similar available bandwidth,
quality of the data received using TRABOL is better than the UDP case. After evaluating
performance results, we can conclude that TRABOL, along with the different sample selection
schemes, is able to meet the radar quality requirement without overly degrading the performance
of other applications on the network. Chapter 5 extend this work to propose an overlay network
based application-aware multicast protocol to deliver high bandwidth time-series radar data to

multiple heterogeneous end users while considering their distinct QoS requirements.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

DOOM PROTOCOL FOR APPLICATION-AWARE
ONE-TO-MANY DATA DISSEMINATION USING
OVERLAY NETWORKS

In distributed collaborative adaptive systems (DCAS) such as CASA, multiple end users at distant
geographical locations may need real-time access to the weather radar data. Each of the end users
may have distinct QoS requirements in terms of data quality and bandwidth requirement. For e.g.,
each end user may specify its critical minimum rate requirements below which data is not useful.
Depending on the available computation and network resources, end user also specifies the target
rate above which data cannot be received by the user. Similarly each end user may specify their
acceptable data quality requirement. As mentioned in chapter 4, when data suffers random losses
in the network due to network congestion, then quality of data delivered to the end users may
degrade. It is shown that when congestion control protocol is integrated with the data selection
scheme at the source node then it is more effective in delivering higher quality data under
dynamic network congestion conditions. The key reason for this gain in performance during
network congestion is that the subset of information to be transmitted is determined by knowing
the characteristics of the sensor data and tolerance of end users to the missing information.

In this chapter we propose a DOOM (Deterministic Overlay One-to-Many) protocol for

distributing high-bandwidth sensor data to multiple end users concurrently while considering

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

their bandwidth and data quality QoS requirements. We consider CASA application to
demonstrate the suitability of the DOOM protocol for application-aware radar data dissemination
in DCAS systems. This protocol uses knowledge about end users sensitivity to subset of the data
as explained in Chapter 4 while determining the most relevant information that should be
transmitted at lower rates during network congestion for each end user independently. Section 5.1
describes the DOOM protocol architecture. Performance evaluation results using planetlab and
emulation test bed are presented in Section 5.2. Section 5.3 provides the concluding remarks on

this chapter.

51 DOOM: Deterministic Overlay One-to-Many Protocol

This section explains the sender-driven, time multiplexed, Deterministic Overlay One-to-Many
(DOOM) protocol for high bandwidth data dissemination to multiple end users. While we
develop the concept of DOOM based on radar applications, the protocol is general purpose for
use in a broader class of high-bandwidth sensor actuator networks where data has spatiotemporal
dependencies [Ba05Sb, Ba05d, BrO1].

DOOM initiates with the knowledge of maximum transmission rate it should support for any
particular end user. This is a fair assumption, because in a sensing system similar to CASA,
maximum data generation rate of a sensing node is known. At the time of data request, end user
informs DOOM overlay server about its data quality and critical minimum rate and target rate
requirements. This information is stored in the user-list as shown in Fig. 5.1. Current
implementation of DOOM supports finite number of ditferent data quality requirements, Type 1
and Type 2 data dependency with uniform drops, with a focus on radar data end applications as
shown in Fig. 5.2.

A static rate-table of supported transmission rates is defined starting with lowest rate to the

maximum possible transmission rate as shown in Fig. 5.1. Maximum possible transmission rate

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DOOM Rate Control for Multiple End Users using
TRABOL Congestion Control Protocol

Datan <‘_':__— Raten | g
S Rate n-1
T
! | User List
I (o] Raten2 [T
| ™ User 1 (MR, TR,DQ)
8 i | [[Userz MRTRDO)
=1 |
K — | User 3 (MR, TR, DQ
q, .
3 SR L User 4 (MR, TR,DQ
3 Data n/2 <: Rate n/2 ()
5 Sl User 5 (MR, TR,DQ)
»
© , | User 6 (MR, TR DQ)
© ! | ’_—
al ! i User 7 (MR, TR,DQ)
]
i Rate 3 - MR - Minimum rate
: TR - Target rate
! Rate 2 - DQ - Data quality type
Data1 - K L,___—: Rate 1
] Current rate of i"" end user can

vary between MINIMUM_RATE[i]
and TARGET_RATE[i]

Rate Table
Rate decreases from top to
bottom rows in rate table

Figure 5.1 DOOM Rate Control for multiple end users using TRABOL congestion control
protocol

(Rate nin Fig. 5.1) can be determined by the data generation rate of a single sensor node. In case
of CASA, each radar sensor generate data at 100Mbps. Minimum rate can be determined by the
lowest rate overlay server want to support for any end users (Rate 1 in Fig. 5.1). Current
implementation considers minimum supported rate as 1 Mbps and maximum rate 100Mbps.
Number of rates supported in rate table is determined by the granularity requirement of the end
user applications. In the current implementation, 1Mbps granularity is supported, i.e., two
adjacent rates in rate table differ by 1Mbps.

In many sensor based applications, sensor data have a fixed format and data generation rate.
Thus it may be possible to determine subset of the total data that can be transmitted at

transmission rates lower than the generation rate of the sensing node. Data quality needs

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DOOM Protocol: Data Quality Support

Data Quality Requirement Data Quality Requirement
Type 1 and Uniform Drops Type 2 and Uniform Drops
10| 20{30}40{50]60[70 10]20]30]40]50}60[70
9 [-19]29]39l49 |59| 69 9 {19[2939]49]59|69
8 |18]28}38|48[58]68 8 | 18]28|38]48|58 68
7|1727}37}47]57]67 7| 1727}37]47|57l67
| 6 |16)26|36/46|56/66] 6 1626/36146|56(66
5 |15 25135]45(55| 8 5 | 1525|3514555|6
4|14] 24{34|4454|64 ot 4 114]24{34[44]54]64
3]13[23]33]43)53l63 aten 3|13]23]33]43]53[63
2[12[22]3242|52}s2 Rate n-1 2 112]22]32{42]52]g2
1111]21]31]41}51]61 - - - 1111|2131} 41[51}61
¢ - --| Raten-2 e — —
3 I 10[20{30]40]50]60[70
S [9]19[2930[40]50}69 ! 9 |19[29]39]49]59[69)
= i
[i
S |[7l17]27|3747]57]67
3 - Rate n/2 »| 6116/62136]46]56]66
5 [5]1525]35]45[5]65 5 [15}25{35(45[55]65
» |
[0
8 [3|13]23]33la3ls3ls3 !
S S ! 2112]22[32]42]52]62)
1{11]21]31]41|51]61
1 [11[21[31]41[51]61 <-4 Rates F-->
%+ —-—-- Rate2 =
Rate 1
6| 16]26|36|46[56] 66 _
-« Rate Table -
Rate decreases from top to
bottom rows in rate table
2]1912232]4252[62
1 [11121]31[41]51]61 1 [11}21]31}41]51l61
1 2345 67 1 23465 6 7
e ye— ——
Time Slot (TS) Time Slot (TS)

Eg.1TS=10ms

Figure 5.2 DOOM support for multiple data quality requirements

determine how to select subset of data from the total data generated by a sensing node in fixed
interval of time, known as heart-beat of a sensor, for a given transmission rate. This information
is included in the rate-table corresponding to each supported rate, shown by data schedule tables
in Fig. 5.1 and Fig. 5.2. For supporting multiple data quality requirements, more than one data
selection schemes is required, resulting in multiple entries corresponding to each supported rate in
the rate-table. Fig. 5.2 shows a case when DOOM protocol supports two different data quality
requirements Type 1 and Type 2 sample dependency with uniform drops as explained in Chapter

4. For radar data applications, data schedule tables in Fig. 5.2 consists of samples that are selected

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for transmission out of DRS block of data generated by radar sensor (similar to DRS block shown
in Chapter 4) within heart-beat interval. DOOM performs deterministic data selection by run-
time lookup in the static data schedule table for each scheduled end user based on the end user
data quality requirement and its current transmission rate. Note that with this approach it is
possible for two end users to get different data even at the same transmission rate because of their
different data quality needs. Spatial and Temporal dependency of data also influence how
transmitted information is encoded for a particular end user. For example, depending on the
observed event by a sensor there may be dependency between the two adjacent samples of the
generated data. In certain cases, one sample may not be useful without the other for the end
applications. Thus it may be required to guarantee delivery of both adjacent samples, which can
be achieved by sending both samples in the same packet. As shown in Fig. 5.2, data schedule
tables corresponding to data quality requirement Type 2 and uniform drops is the case where
adjacent samples in column have temporal dependency (indicated by same background color for
adjacent samples in a column). In case client needs Type 2 with uniform drops, adjacent samples
are selected for transmission in the same packet. As shown in Fig. 5.3, TRABOL congestion
control protocol determines the next transmission rate for each end user independently based on
the packet loss count feedback received from the end user. A particular transmission rate is
achieved by transmitting the data given in corresponding data schedule table in a heart-beat
interval. Note that in case of DOOM protocol, TRABOL always determines next transmission
rate which is supported by the rate table in Fig. 5.1. In order to avoid sending all the data to a
particular user in single burst and to support multiple data quality requirements, heart-beat
mnterval is divided into muitiple scheduling time slots of 10ms. Fig. 5.2 shows a case for 70ms
heart-beat that result in 7 time slots of 10ms each. For time multiplexing, a periodic 10ms timer
is used, and when this timer times out a table lookup is performed in the corresponding data

schedule table for a

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DOOM Server
heart-beat: Time for one block data generation
time_slor: Time window for scheduling (10ms)
data . Data scheduled for transmission
user : End user scheduled to get data
user-list: List of all users getting data
USER_COUNT: Number of user requests
ACK : Acknowledgments received from a
user (received packet count)
WHILE (1)
{
// Repeat following every heart-beat
// interval
IF (USER_COUNT >0)
{
// Determine new transmission rate
/I of each client every heart-beat interval
FOR (EACH USER IN client-list)
{
// Use TRABOL congestion control to
/] determine next transmission rate
IF (ACK RECEIVED)
{
determine_ TRABOL_rate(user, ACK)
}
else
{
determine_ TRABOL_rate(user,
NO_ACK)
}
// User next rate information is updated
update_rate_table(user)
1
/1 Use Time multiplexing to transmit data
FOR (EACH TIME SLOT)
{
FOR (EACH USER)
{
/! Get data schedule table for the client
data_schedule_table =
get_reference(user)
// Determine data to transmit for a given
/I client in the current time slot
data = lookup(time_slot,
data_schedule_table)
send_data(data, user)
}
I
)

}

Figure 5.3 DOOM algorithm for one-to-many data dissemination

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

particular end user to select the data for transmission. Data corresponding to current fime-slot is
then encoded and transmitted as per end user requirements. Note that in any one 10ms time-slot
multiple end users can be scheduled to get data at different transmission rates. Cumulative
transmission rate tor all scheduled end users within fime-slot interval should be less than the
output link bandwidth. This time multiplexed data scheduling scheme enables concurrent
transmission of different subset of data from the same DRS block to different end users in order
to satisfy their unique rate and data quality requirements. Moreover excessive bursty-ness of data
is avoided by scheduling the data for transmission uniformly over the hearr-bear interval, i.e.,

over multiple time-slots.

Each end user transmits received packet count for data transmitted in the heart-beat interval.
This helps in avoiding flood of ACK traffic from multiple end users to the DOOM server. At the
start of periodic heart-beat interval, new transmission rates are computed for each end user using
TRABOL based on the last feedback from an individual user. After new transmission rates are
determined for all the requesting end users, data can be transmitted using new data transmission

schedules for that particular rate.

5.2 Performance Evaluation

Planet-Lab [Pla, Pe02} and the emulation test-bed shown in Fig. 5.4 are used for the performance
analysis of DOOM protocol. Latter is based on NISTNET [Ca03]} network emulator which
emulates different network dynamics such as bandwidth and delay variations. We consider the
case when a radar node generates data at a constant rate of 100Mbps. Experiments are performed
to evaluate performance of DOOM overlay server in meeting different rate and data framing

requirements of multiple end users simultaneously. Friendliness of DOOM streams to each other

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as well as TCP cross-traffic, sharing the bottleneck link is evaluated.

Fig. 5.5 shows emulation based results for evaluating DOOM effectiveness in meeting
heterogeneous rate requirements of the multiple end users under varying bottleneck bandwidth
conditions. In Fig. 5.5, different end users are identified on the x-axis by C1-C6. Each of the end
user has different ACK delay and different target rate and minimum rate requirements. Bottleneck
bandwidth varies between 105Mbps and 215Mbps because a cumulative minimum rate
requirement of all users is 100Mbps and cumulative target rate is 210Mbps. Two cases of sensors
are considered when radar sensor heart-beat (periodic interval between data generation) is 170ms
and 20ms, in both cases radar sensor generate data at 100Mbps. Table 5.1 and Table 5.2 shows
the data corresponding to Fig. 5.5 (a) and Fig. 5.5(b) respectively.

As seen in Fig. 5.5(a) and Fig. 5.5(b), when bottleneck bandwidth exceeds the cumulative
minimum requirements of all end users, then each user is able to meet its minimum rate

requirement. As bottleneck bandwidth increase, all users get fairly equal share of the extra

TCP Cross Traffic TCP Cross Traffic
Generator Receiver

Overlay DOOM NISTNet Network %L

Radar Node Server Emulator

End Users with diverse
requirements

Figure 5.4 Network emulation test bed

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.1 DOOM performance in meeting bandwidth requirements of multiple
heterogeneous end users under variable bottleneck BW when heart-beat interval is
170ms

RTT MR TR BWi BW?2 BW3 BWw4 BWs

(ms) (Mbps) (Mbps) (Mbps) (Mbps) (Mbps) (Mbps) (Mbps)
150 25 60 2636 2952 3255 4343 6042

5 10 20 10.18 14.14 16.04 19.19 20.55

250 20 40 2195 2464 2765 36.06 41.11

250 15 30 16.05 19.67 2278 2821 3195

50 20 35 2083 246 27.69 3293 3588

600 10 20 10.44 1418 16.13 19.26 20.53

Table 5.2 DOOM performance in meeting bandwidth requirements of multiple
heterogeneous end users under variable bottleneck BW when heart-beat interval is

20ms

RTT MR TR BWI BW2 BW3 BW4 BWS

(ms) (Mbps) (Mbps) (Mbps) (Mbps) (Mbps) (Mbps) (Mbps)
20 25 60 28.61 31.6 37.42 51.96 62.51
20 10 20 10.05 14.15 15.75 19.06 21.18
150 20 40 2244 2432 29.11 37.1 41.83
5 15 30 15.52 2027 2265 28.09 31.49
150 20 35 21.94 24.1 26.98 33.02 36.41
50 10 20 10.06 13.93 15.61 18.98 21.18

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70
60
50
40
30

|

10

Meeting Diverse Rate Requirement of End Users
(Variable ACK delay per user, Heart Beat = 170ms)

B
{t,
s -
3 -
¥ v
1 — =
il _ \
= "
B 5 B 8
% » s "
o)
)] » \& - 2
3 y ; 2 : S
4 N Il N
Cc1 c2 c3 cAa CcS5 Cc6
150ms Sms 250ms | 250ms 50ms 600ms

End Users and their ACK delay

O BW 105Mbps
1 BW 125Mbps
m BW 145Mbps
0O BW 185Mbps
Bl BW 215Mbps

TR
MR

(a)

Meeting Diverse Rate Requirement of End Users (Variable ACK

Delay per user: Heart Beat = 20ms)

Receiver Throughput{Mbps)

001 BW 105Mbps

[BW 125Mbps

]

3 ‘\ g
3 2
C1 C2 C3 C4 C5 Cc6
20ms 20ms 150ms 5ms 150ms 50ms

End Users and their ACK delay

B BW 145Mbps
0O BW 185Mbps
BW 215Mbps

(b)

Figure 5.5 DOOM performance in meeting heterogeneous rate requirements of multiple
end users simultaneously with different ACK delays (a) Sensor heart-beat is 170ms, and
(b) Sensor heart-beat is 20ms

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

available bandwidth. When bottleneck bandwidth exceeds cumulative target rate requirements of
all end users, then all end users are able to receive data at their target rate requirements.

Fig. 5.6 shows DOOM’s effectiveness in meeting similar and different rate requirements of
multiple end users based in different countries over Planetlab test-bed, served by DOOM overlay
node in Colorado (USA). Table 5.3 shows data corresponding to results shown in Fig. 5.6. 16 end
users at different geographical locations throughout the world requests radar data with their
bandwidth and data quality requirements. Two cases are considered (i) when all end users have
same bandwidth requirement TR=3Mbps and MR=1Mbps, (ii) when different end users have
different bandwidth requirement as indicated by solid red and blue lines in Fig. 5.6. Most end
users, receiver throughput lies between their target and minimum rate for both cases. As shown in
Fig. 5.6, the end user in Oregon (USA) receives data below its minimum rate because of either
bandwidth or end node limitations. Fig. 5.7 shows results for quality of the received data over the
Planetlab by multiple users with similar and different rate requirements. Table 5.4 shows data
corresponding to results shown in Fig. 5.7. In case of CASA radar data streaming, quality of
received data is measured by computing standard deviation in the reflectivity algorithm end
results for each user as explained in Chapter 4. Lower standard deviation is a measure of better
quality data. In Fig. 5.7, most end users in different countries of the world receive similar quality
of the data using DOOM protocol at different receiver throughputs. Two end users, Oregon and
Canada-1 show comparatively high standard deviation due to lower receiver throughput in case of
Canada-1 node and due to random losses in the network for Oregon node because of bandwidth
or end node limitations.

DOOM streams may share the network with already existing TCP traffic. Because of the
high bandwidth requirements of different end users, TCP friendliness operation of the DOOM
protocol is important. Fig. 5.8(a) shows the impact of multiple DOOM streams on the TCP cross
traffic in the bottleneck bandwidth link. Table 5.5 shows data corresponding to results shown in

Fig. 5.8(a). In this case, three end users with similar target rate requirement of 100Mbps,

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.3 Planetlab based result of DOOM performance in meeting bandwidth
requirements of multiple end users

End User Case: Similar Case: Different TR and MR
Rate Requirements (Mbps)
Requirements (Mbps)

IR =3Mbps,
MR=1Mbps

(Mbps)

Denver 3.05 2.05 TR=2, MR=1
Finland 3.05 2.05 TR=2, MR=1
Korea 3.04 8.08 TR=8, MR=5
Cornell 3.05 2.05 TR=2, MR~1
China 3 2.89 TR=3MR=1
Berkeley 292 5.79 TR=8 MR=5
Massachusetts 3.05 2.05 TR=2, MR=1
Cambridge 3.04 2.03 TR=2, MR=1
Canada 1 1.34 1.01 TR=3, MR=1
Canada 2 3.05 3.05 TR=5, MR=3
Oregon 1.76 222 TR=2, MR=1
Duke 3.05 2.05 TR=2, MR=1
Japan 3.05 2.05 TR=2, MR=1
Houston 1 3.05 2.05 TR=2, MR=1
Houston 2 3.05 2.05 TR=2, MR=1
Purdue 3.05 2.05 TR=2, MR=1

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.4 Planetlab based result of DOOM performance in meeting data quality
requirements of multiple end users

End User Case: Standard — Case: Different TR and MR
deviation Requirements (Mbps)
Similar Rate (dBz)
Requirements
(dBz)
Denver 1.30 1.35 TR=2, MR=1
Finland 1.297 1.36 TR=2, MR=1
Korea 1.302 1.24 TR=8, MR=5
Cornell 1.306 1.35 TR=2, MR=1
China 1.313 1.34 TR=3MR=1
Berkeley 1.371 1.25 TR=8 MR=5
Massachusetts 1.297 1.35 TR=2, MR=1
Cambridge 1.302 1.35 TR=2, MR=1
Canada 1 2.129 2.36 TR=3, MR=1
Canada 2 1.297 1.29 TR=5, MR=3
Oregon 1.876 1.72 TR=2, MR=1
Duke 1.306 1.72 TR=2, MR=1
Japan 1.305 1.35 TR=2, MR=1
Houston 1 1.297 1.35 TR=2, MR=1
Houston 2 1.297 1.35 TR=2, MR=1
Purdue 1.302 1.35 TR=2, MR=1
67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Performance of DOOM in meeting Rate Requirements using
Planetlab TestBed

Receiver Throughput (Mbps)

End Users
= Target Rate === Minimum Rate

I @ Different Rate Requirements j

Figure 5.6 DOOM performance in meeting rate requirements of different end users with
similar and different rate requirements (data generation rate = 10Mbps, heart-beat =
220ms). For similar rate requirement, TR = 3Mbps, MR=1Mbps

Effect of DOOM protocol on Data Quality

25 —&— Similar Rate
Lo Requirements
- - -@- - - Different Rate
2 S Requirements
Z
52
g
=
z
(=
=
.5
g
8
7
1 { 1 ? — 1 i 1 1 } 1 J i 1 F
et el 8 =] < > B o] — ol a O — ~ O
P EEE =38 EE st EEos
REXSC 2 ERE 552 335 &

Figure 5.7 Effect of DOOM protocol on data quality for different end users with
similar and different rate requirements

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.5 TCP Friendliness of DOOM protocol when bottleneck bandwidth is 250Mbps

Num TCP ce Stream 1 Stream 2 Stream 3
Streams — Throughput TR=100, MR=70 TR=100, MR=50 TR=100. MR=30)
(Mbps) (Mbps) (Mbps) (Mbps)

18 89 69 48

8 34 87 65 45

16 55 83 62 41
32 74 77 54 34
40 81 75 53 34
48 81 75 52 31
56 87 74 49 29
64 85 74 51 30

72 87 74 48 29
80 87 74 48 29

(referred as TR100) and different minimum rate requirement of 30Mbps, 50Mbps and 90Mbps
(referred as MR30, MR50, and MR90) are considered. Bottleneck bandwidth is 250Mbps, which
lies between sum of target rate requirements and sum of minimum rate requirements of all end
users. As seen in Fig. 5.8(a), when there is no TCP cross traffic, all end users share the bottleneck
bandwidth while satisfying their target rate and minimum rate requirements. As the number of
TCP streams increases, receive throughput of all DOOM stream’s sharing the link decrease and
cumulative receive throughputs of TCP streams increases. Note that for each DOOM stream,
throughput does not fall below the minimum rate requirements of individual end users.

It is possible that different DOOM streams may share the same bottleneck link. Fig. 5.8(b)
shows the emulation test-bed results for the DOOM streams friendliness to each other under

varying bottleneck bandwidth conditions. Table 5.6 shows data corresponding to results shown in

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Friendliness of DOOM to TCP
Cross-traffic Streams

100

R
=)
4
|
\
’
i
L 4
|
.
|
é

Y

Receiver Throughput (Vbps)
s 2
1
\\‘\".
v
»
b
B
[4
:

0 4 8 16 32 40 48 56 64 72 80
Number of TCP Streams

—-¢-—TCP —a&—— TR100 MR70
---4&--- TR100 MRS0 ——e—— TR100 MR30

(@
Friendliness of Mutiple DOOM Streams

Receiver Throughput(Mbps)

20 o
0 : [‘
260Mbps 320Mbps 370Mbps 420Mbps
Bottleneck Bandwidth
wmmdp— TR 100 MRO0 = -f1- - TR100 MR70
—pp— TR100 MR50 - -@=- - TR100 MR30
(b)

Figure 5.8 Friendliness of DOOM protocol (a) to TCP cross traffic streams (Bottleneck
bandwidth = 250Mbps and RTT = 50ms) (b) to DOOM traffic streams sharing the same
bottleneck link (RTT=10ms)

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fig. 5.8(b). Four end users with similar target rate and different minimum rate requirements are
considered. Bottleneck bandwidth varies between 260Mbps and 420Mbps. When bottleneck
bandwidth is 260Mbps, three users receive data at or above their minimum rate except the user
with target rate of 100Mbps and minimum rate of 90Mbps, which is always receiving data at its
target rate. As the bottleneck bandwidth increase, receive rate for the end users starts increasing.
Note that throughput of all end users equally share any extra available bandwidth till the target
rates of end users are achieved.

Fig. 5.9 and Fig. 5.10 illustrate DOOM protocol performance in concurrently meeting radar
application specific data quality requirements of multiple end users. Fig. 5.9 shows the
performance result when all end users have similar data quality requirement. Alternatively, Fig.
5.10 shows performance result when end users have different data quality requirement. Fig. 5.9(a)
shows standard deviation in the end results when data from radar sensor is used tfor reflectivity
computation by end users. Fig. 5.9(b) shows the standard deviation in end results when data is
used for Doppler velocity computation. Table 5.7 shows data corresponding to results shown in
Fig. 5.9(b). As mentioned before, in Fig. 5.9(a) and 5.9(b), all end users have similar data quality
request, referred as Type 2 with uniform drop scheme. In Fig.5.10, multiple end users request for
different quality of data for reflectivity computation. Table 5.8 shows data corresponding to
results shown in Fig. 5.10. As seen in the figure, two end users request Type 1 with uniform drop
scheme and two other user request Type 2 data with uniform drop scheme. Fig. 5.9(a) shows that
as the bottleneck bandwidth increases, standard deviation in reflectivity for all users decreases,
improving the quality of the end results. Though for some users change is so small to be
noticeable. Similar conclusions can be made from the Fig. 5.9(b) for the Doppler velocity
algorithm and here variation is more prominent for most users compared to Fig. 5.9(b). In Fig.
5.10 quality of receive data increases with increase in bottleneck bandwidth and also change is

more prominent in this case for Type 1 data with uniform drop scheme.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.6 Fairness of DOOM streams to each other

Bottleneck Stream 1 Stream 2 Stream 3
BW TR=101, TR=100, TR=1010),
(Mbps) MR=90 MR=70) MR=50
(Mbps) (Mbps) (Mbps)
260 103 73 58
320 102 89 76
370 102 95 85
420 103 103 103

Stream 4
TR=100,
MR=30)

(Mbps)
28
56
66

103

Table 5.7 Effect of bottleneck bandwidth on quality of time-series data delivered to end
user for Doppler velocity computation (All end users have Type 2 with uniform drop data
requirement). Standard deviation in the moment parameters is used to measure the

Stream 4
TR=100,

MR=30
(dBz)

quality of the data.

Bottleneck BW Stream] Stream 2 Stream 3
TR=100), TR=100, TR=100,
MR=90 MR=70 MR=50
(dBz) (dBz) (dBz)

260 0.44 0.46 0.46

370 0.44 0.45 0.52

420 0.44 0.44 0.44

0.55

0.48

0.44

Table 5.8 Effect of bottleneck bandwidth on quality of time-series data delivered to end
user for Reflectivity Computation (Stream 1 and Stream 2 have Type 2 with uniform drop
data requirement, Stream 3 and Stream 4 have Type 1 with uniform drop requirement).
Standard deviation in the moment parameters is used to measure the quality of the data.

Stream 2 Stream 3

Bottleneck BW Stream 1

Stream 4

TR=101), TR=100, TR=100, TR=100,
MR=90 MR=70 MR=50) MR=30
(dBz) (dBz) (dBz) (dBz)
260 1.24 1.26 1.38 1.46
370 1.24 1.24 1.25 1.26
420 1.24 1.24 124 1.24
72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Effect of Bottleneck Bandwidth on Data Quality of End User Algorithm
(Reflectivity Computation with Data Quality Request: Type 2)
1.6
15 b
E \
=
- 14
2
k] 1.3 \
> 1.
[
o ‘ %—.
k]
s 1.2
-
<
8
»n 1.1
1 T
260Mbs 370Mbsp 420Mbps
Bottleneck Bandwidth
|:0—TR100 MR90 —&—TR100 MR70 ~g—TR100 MR50 —e—TR100 MR30
(@)
Effect of Bottieneck Bandwidth on Data Quality of End User Algorithm
{Doppler Velocity Computation with Data Quality Request: Type 2)
0.6
0.55
=
£ o5
<
2
S 045 m
3 * * —n
k=]
s 04
©
c
8
P .35
0.3 T T
260Mbs 370Mbps 420Mbps
Bottleneck Bandwidth
| —e—TR100 MR90 —@—TR100 MR70 —4—TR100 MR50 —8—TR100 MR30 ‘

(b)
Figure 5.9 DOOM performance in meeting similar data quality requirements of multiple
end users under varying bettleneck bandwidth conditions (a) When four end users have
similar Type 2 and uniform drop data quality requirement for reflectivity computation
algorithm, (b) When four end users have similar Type 2 and uniform drop data quality
request for Doppler velocity computation

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fig. 5.5, Fig. 5.6, and Fig. 5.8 shows that DOOM is able to meet the heterogeneous rate
requirements of the multiple users over the long duration. In order to see instantaneous behavior
of the protocol, receive rate of blocks of data generated by sensor every heart-beat interval are
monitored. Table 5.9 shows instantaneous throughput performance results of the DOOM protocol
using emulation testbed. Two end users with similar target rate, 80Mbps each, and minimum rate
requirement, 20Mbps each are considered. When bottleneck bandwidth is close to sum of the
minimum rate requirements of both end users, i.e., 55Mbps, then receive rate per data block (e.g.
DRS block for radar sensor) of sensor is concentrated near the minimum rate for both the users
with low standard deviation. As the bandwidth starts increasing, i.e., 105, 155, 205Mbps then
both users have same average throughput with similar standard deviation. These results are able
to show that when multiple end users have similar QoS requirements and share common
bottleneck link, then both have similar instantaneous real-time performance when served

concurrently by the DOOM server.

Effect of Bottleneck Bandwidth on Data Quality of End User Algorithm
(Reflectivity Computation with Data Quality Request:
Type 1 and Type 2 simultaneously)

-
N
w

\

//

Standard Deviation (dB)
N
o w

-
~

N
N

N
-
[33

N
-

260Mbps 370Mbps 420Mbps

Bottineck Bandwidth
—e—-TR100 MRO0 Type 2 —&—TR 100 MR70 Type 2
~a— TR100 MR50 Type 1 —e— TR100 MR30 Type 1

Figure 5.10 Performance of DOOM in meeting different data quality requirements when
four users have different Type 1 and Type 2 with uniform drop data quality requirements
for reflectivity computation

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.9 Instantaneous throughput performance (TR = 80Mbps and MR = 20Mbps)

Bottleneck RTT Receiver Standard
Bandwidth (ms) Throughput Deviation
(Mbps) (Mbps) (Mbps)
55 25 26.7 5.8

150 28.5 5.9
105 25 37.5 12.1
150 39.3 14.4
155 25 71.1 20.4
150 61.4 22.8
205 25 83.1 0.1
150 83.1 0.1

In DCAS systems some end users may have very high bandwidth requirements; therefore it
is important to study the performance of DOOM overlay node server under varying load
conditions. Experiments are performed in an emulation test bed to evaluate DOOM server load
handling performance for variable number of end user requests. Performance results are shown in
Fig. 5.11. In this case number of end users varies from 2 to 12 with similar target rate and
minimum rate requirements. In Fig. 5.11, cumulative target rate requests for all users vary from
120Mbps to 720Mbps. In this case bottleneck bandwidth is a Gigabit link. As seen in the figure,
average throughput of all users for different number of user requests remains close to their target
rate requirement of 60Mbps. Thus this experiment is able to demonstrate that DOOM overlay
node does not become a bottleneck and is able to handle cumulative high bandwidth load while

satisfying application specific data quality needs.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DOOM Server Performance under Varying Number of
End Users (TR=60Mbps, MR=40Mbps, BW=1Gbps)
10
£
S 50
e
F 340
3y
2
§ < 30
x 20
&
§ 10
< 9 : : :
2 4 6 8 10 12
Number of End Users
J

Figure 5.11 Performance of DOOM server under variable number of users

5.3 Remarks

An overlay DOOM protocol for One-to-Many data dissemination of high-bandwidth radar data is
presented. DOOM protocol concurrently meets heterogeneous real-time and data quality
requirements of multiple end users under diverse network congestion condition. A time
multiplexed data scheduling scheme is proposed and is integrated with TRABOL based
congestion control protocol for meeting heterogeneous end user requirements. Performance
results using planetlab test bed and emulation test bed show effectiveness of DOOM in meeting
diverse requirements of multiple end users under dynamic network and load conditions. DOOM
protocol is shown to be TCP friendly as long as requirements of all end users are satisfied.
Experiments results show that DOOM protocol is able to handle high bandwidth requirements of

multiple end users without becoming a bottleneck.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

CONTENT-AWARE PACKET MARKING FOR
APPLICATION-AWARE PROCESSING IN OVERLAY
NETWORKS

Most of the prior work on application-aware data selection mechanisms relied on end-host
applications to adapt to network conditions [An00, Zh99]. However, network conditions are
dynamic and end-hosts cannot predict a change in the available bandwidth at intermediate nodes
during the transmission leading to random losses of the subset of data selected by end-hosts. Thus
we cannot assure that most important subset of the data will be delivered to the end-users by
using the end-host application-aware data selection scheme alone. Intermediate nodes can
perform congestion control within the network by performing selective drop/forwarding that may
enhances the probability of delivering application-specific critical packets to end users during
network congestion. Overlay networks enable deployment of such application-aware data
dissemination services over the Internet [Su04]. Fig. 6.1 shows an overlay network for
application-aware data dissemination to multiple end users. An overlay network consists of
different nodes, such as forwarding nodes, multicast nodes, and fusion nodes, each configured to
perform application-specific tasks to best meet QoS requirements of different end users. For
example, a source node may perform packet marking based on the properties of the data for a
particular application.

In Fig. 6.1, the multicast node is responsible for accepting connection requests from multiple

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

End Users

Application-Aware Processing
Modules

Source Node 1

Source Node 2

Source Node 3

End Users

Multicast Node
) H i +
' Multicast Node . Fusion Node Forwarding Node Forwarding Node

Figure 6.1 Overlay network for application-aware data dissemination

end users with different data quality and bandwidth requirements. Multicast node then forwards
the aggregated request to the source node. Source node sends data to the multicast node as per
the requested bandwidth and data quality requirements. It is important to note that in DCAS
applications, a multicast node may simuitaneously send different subset of the data to each end
user as per their bandwidth and data quality requirements. The multicast nodes may perform
functions such as independent flow and congestion control for each end user in an application-
aware manner considering their distinct bandwidth requirements and fusion of data from different
sources prior to multicast. Existing multicast solutions such as RLM [Mc96], are required to scale
to millions of end users, which is significantly higher than the scalability requirements of the
DCAS applications. Moreover, unlike RLM, each of the end user in DCAS may have distinct
bandwidth and data quality requirements that need to be satisfied by a single multicast server. A
token-bucket based rate control may be implemented at the multicast node to achieve the desired
rate for a particular end user under existing network conditions. Alternatively, forwarding nodes

can use packet marking to select packets for forwarding or drop while considering available

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

output link bandwidth. A forwarding node can be considered as a special case of multicast node
where only one end user is requesting data at a rate equal to the available output link bandwidth.

In this chapter we propose an application-aware content based packet marking and a token-
bucket based rate control algorithm to meet content quality and bandwidth requirements of the
DCAS applications using overlay networks. The proposed algorithm enables transfer of most
suitable subset of the data at the intermediate overlay nodes to the end user while providing soft
bandwidth guarantees within bounds under available network infrastructure and dynamic
network congestion conditions. We also demonstrate the effectiveness of the proposed scheme in
overlay multicast where multiple end users receive weather radar data with different QoS
requirements.

Section 6.1 describes the proposed application aware packet-marking scheme. Section 6.2
shows packet marking for weather radar data. Section 0.3 describes the application of packet-
marking in token-bucket based application-aware rate control algorithm. Section 6.4 discusses

experimental results. Concluding remarks about this chapter are presented in Section 6.5.

6.1 Application-Aware Packet-Marking

A packet marking scheme presented in {Le06] may be used at the intermediate overlay nodes to
select packets for forwarding such that subset of the data delivered to the end users meets their
data quality requirements. It is considered that the source node is aware of the properties of the
data generated by sensors such as cameras and weather radars. The source node marks packets at
transmission time according to the end users data quality requirements and different rates at
which data may be delivered to the end users.

Consider an example as shown in Fig. 6.2(a), where a sensor node generates 8 application

data units (ADU) within the bounded time at rate R1. The ADU is defined as a fundamental

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ADU Number For

Maximum Transmission .
Transmission Ratg Packet Markmg
- 1 2 3 4 5 6 7 8
N 5|8|7)|¢8 Marking Flags
1] 2 4158 718
1 3|4 6|7
Rate RS | 1 3 5 7
1 4 7
1 5
4 Application Data Unit
(ADU)
lPacketization
Rate based

Packet marking

i1 L

ADU1 ADU 2 ADU 3

ADU 8

(@)

ADU Number For

Transmission .

Maximum
Transmission Rati
— 112 415 708
2 4 | 5 7
RateR5 | 1 4 7|8
1 4 7
1 5
4

l Packetization
Rate based

packet marking

(b)
Figure 6.2 Rate based packet marking. Each non-white color represent rate for which
packet is marked ,i.e., rate R1-R8 (a) Marking of packets when maximum transmission
rate is R1, (b) Marking of packets when maximum transmission rate is R3

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

application data entity that can be used by an end user algorithm for processing. Each row in Fig.
6.2(a) and Fig. 6.2 (b) shows the subset of ADUs that are selected for transmission at a lower
transmission rate when a higher rate cannot be supported because of bandwidth constraints. The
subset of data selected at lower rate depends on the end user data quality requirements. For
example, certain end users need uniformly spaced ADUs when only a subset of the data can be
selected for transmission. Alternatively, other end users prefer a contiguous group of ADUs
when bandwidth is constrained. Fig. 6.2 (a) considers the case when the source node transmits
data at rate R1, and as seen in the figure the data transmitted at lower rates is a subset of the data
transmitted at rate R1 and ADUs are selected that are spaced uniformly within a block of data at
lower rates. Each packet consist of multiple of flag bits shown in Fig. 6.2 (a) corresponding to
bandwidth at which the data included in the packet is most appropriate for transmission for a
given application. The packet containing ADU 1 is marked with different color flag bits
corresponding to different rates, i.e., rates R1-R7. Similarly packet containing ADU 3 is marked
with different color flag bits, i.e., flag bits corresponding to different rates, i.e., R1, R2, R4, and
R5 flag bits are set as indicated by different colors. As shown in the Fig. 6.2, every packet
contains a flag for each rate for which it is transmitted indicated by different colors. Note that
multiple flags can be set to indicate suitability of the packet for multiple transmission rates. It is
important to note that packets are encoded at the time of transmission such that there is no
dependency between different packets in the stream; end users can decode the packets on-the-fly
without waiting for later packets to arrive. Following are the two key advantages of the packet
marking when used at intermediate nodes:

(i) On-the-fly selection of packets to one or more end users for forwarding at different rates:
Consider the case when marked packets are received at the multicast node from the source node.
In this case multicast node may select data on-the-fly for forwarding using packet marking to
multiple end users at their respective transmission rates which are determined based on the

network congestion for each end user. Note that in DCAS applications, multicast node may send

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

different subset of the received data to each end user concurrently while considering their
individual bandwidth requirements. Packets with marking corresponding to end user’s
transmission rate are selected for forwarding for a particular end user. Fig. 6.3(a) shows a case
when multicast node receives all packets transmitted at rate R1 from the source node. First four
packets are shown in the figure. Two end users, i.e., end user 1, and end user 2 are considered
that need data at different rates, i.e., rate RS and rate R1 respectively. As seen in Fig. 6.3(a), in
packets corresponding to rate R1 packets, flag bit is set corresponding to rate Rl is set as
indicated by the green color and in packets corresponding to rate RS, flag bit corresponding to
RS is set as mdicated by yellow color. In this case, packets corresponding to rate RS are a subset
of the packets transmitted at rate R1. Multicast node selects packets on-the-tly for forwarding to
end users 1 and 2 based on the marking flag corresponding to rate R1 and R5 in the packet. Note
that multicast node creates a copy of the packet to be forwarded and replaces destination address
to the address of an end user for which it is selected for transmission. As seen in Fig. 6.3(a), out
of first 4 packets received at multicast node, packets with ADU | and 3 are forwarded to end
user 1 and packets with ADUs 1-4 are forwarded to end user 2.

(it) On-the-fly compensation for missing marked packets to maintain receiver data quality: Tt
is possible that some of the packets with desired marking are dropped or suffers significant delay
in the network when data is sent from a source node to the multicast node for further distribution.
If the multicast node further distributes the partial data then this has the potential to degrade the
performance of the end user application. Therefore it is desirable to compensate for the missing
packets by selecting packets with the markings corresponding to higher rates than the current
transmission rate for a particular end user. When the number of missing packets exceeds some
application-specific threshold then multicast node initiate compensation process by selecting
packets with marking corresponding to higher transmission rates for forwarding for a particular
end user. For example, in Fig. 6.3(b), a packet with ADU 3 is lost. In this case multicast node

may not meet the rate R1 and rate RS requirements for two end users as both rates

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

On-the-fly Data Selection based on Packet Marking

Radar Node

End User 2

@

Compensation for Lost Marked Packets
End User 1

Radar Node

End User 2
(b)
Figure 6.3 Applications of packet marking. (a) On-the-fly data selection based on packet

marking (b) On-the-fly compensation for missing marked packets to meet bandwidth and
data quality requirements [Le06]

&3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

need packet with ADU 3. Alternatively, to meet rate RS, multicast node can select packets for
forwarding with marking corresponding to rate higher than rate RS, i.e., packets with marking
corresponding to any rate between rate R1 and rate R4 may be selected for forwarding to
compensate for the missing sample. In Fig. 6.3(b), the multicast node decides to compensate for
the missing packet with ADU 3 by selecting a packet with ADU 4 who’s marking corresponds to
rate R1, rate R3, and rate R4 as indicated by three set flag bits. Note that compensation for the
missing packets with the desired marking is performed only for packets with rates lower than the
rate at which data is transmitted by the source node. By performing compensation within the
network at intermediate nodes, retransmission of the data may be avoided and thus associated
delay is reduced. Note that it is assumed that all nodes that perform marking based packet
selection are aware of rate to marking mapping. Each node maintains a static table of tlags and
the corresponding rate each tlag represents in the packet. Subsequent performance results show
that little computation penalty paid for performing application-aware processing at each node
helps in significantly enhancing the quality of the content delivered to the end users during
network congestion. Next section explains the application of this packet marking strategy for

streaming weather radar data in CASA environment.

6.2. Packet-Marking for Radar Data — An Example

Fig. 6.4 shows the packet marking of the DRS block of data generated by a radar node. In this
example it is assumed that radar data is generated at 10Mbps and current source transmission rate
is 8Mbps. A subset of samples is selected at rate 8Mbps for transmission. It is assumed that end
users can tolerate uniform loss of samples. Therefore, as seen in Fig. 6.4, sample drops are
uniformly distributed among 64 samples generated by radar for different transmission rates. In

Fig. 6.4, data may be transmitted at ten different rates between 1Mbps and 10Mbps

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Current Source

S Sample Selected for Transmission
Transmission

Rate 2(3|4|516 |7 64
23 |4 6|7
. 2|34 6|7 64
o 2|34 7 64
& 2|3 7 | eeremeseneneens 64
c -
.2 2 7 | ceemcceconenaan..
73 [
a
€ 4 7 | ceeaveveccceccans 64
2 6
|‘_£ S
64
4 64
Packet Markings for Rate o
between 8Mbps and 2Mbps Packetization

8Mbps

Samples Selected for
TransmissioKlt Rate

Sample 2 Sample 3

I

Sample 6 Sample 7

Sample 4

-

Figure 6.4 Packet marking for radar data when current transmission rate is 8Mbps.
Sample is application data unit (ADU) for the radar data [Le06]

indicated by ten marking flags in each packet. Note that flag is marked when packet is

suitable for the current transmission rate.

6.3 Applications of Packet-Marking

In Fig. 6.1, different overlay nodes use packet marking to perform application-aware processing
within the network to meet the QoS requirements of the DCAS application. Following section

describes the application of packet marking in multicast node and the forwarding node.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3.1. Token-bucket based rate control

At intermediate nodes such as multicast nodes, packets are selected for transmission based on the
current transmission rate and the corresponding packing marking. A token bucket based rate
control algorithm is used to achieve the desired transmission rate at these intermediate nodes.
6.3.1.1. Multicast Node: Fig. 6.5 shows architecture of the multicast node. In a CASA
application, each end user may specify its rate requirement and content-quality requirement in
terms of tolerance towards bursty losses or uniform losses within the DRS block at the time of
request for the data. The rate at which the data is transmitted to the end users can vary from user
to user based on the available bandwidth. A congestion control protocol determines the
transmission rate for each end user independently. We consider TRABOL (TCP Friendly Rate
Adaptation Based on Losses) congestion control protocol to determine transmission rate of each
end user. During network congestion, TRABOL performs rate adaptation while considering end
user specific minimum rate (MR) and target rate (TR) requirements [Ba05b]. When a packet with
application-specific markings arrives at the multicast node, multicast node determines the users to
which this packet must be transmitted. Decision to transmit a packet to a particular end user
depends on the packet markings and the rate requirements of the end users. The multicast node
maintains separate output queues for sending data to each end user. Fig. 6.5 shows a case for on-
the-fly selection of the data for transfer to multiple end users when radar data shown in Fig. 6.4 is
received at the multicast node. In Fig. 0.5, three end users, i.e., end user 1-3 are considered with
current transmission rate of 8Mbps, 7Mbps, and 3Mbps respectively. Multicast node maintains
the mapping between marking flag and the corresponding transmission rate. Note that in Fig. 6.5
the packet with sample 1 is forwarded to all three end users because packet is marked for
transmission rate 8Mbps, 7Mbps, and 3Mbps, i.e., the current transmission rates of the end user 1,
end user 2, and end user 3 respectively. Alternatively, the packet with sample 2 is not forwarded
to end user 3 because the packet is not marked for transmission rate 3Mbps.

A token-bucket based scheme is used to maintain the required average transmission rate for

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

each end user. A token bucket size for each end user is determined periodically every ‘heart-beat’
interval based on its transmission rate. As explained in Chapter 4, heart beat interval is the
periodic interval after which radar node generates DRS block of data at a constant rate. We
consider a case where 1 packet is removed from the end user output queue for transmission for
every 1 token present in the bucket. Therefore, the token bucket size gives the upper bound on the
number of packets that the multicast node can transmit during a heart_beat interval to a particular
end user. Fig. 6.6 shows the token-bucket scheme and the packet compensation process to meet
the current transmission rate and data quality requirement of the end users. Consider an example
in Fig. 6.6 where 20 tokens present in the bucket for a given transmission rate within a heart beat
interval of 200ms are evenly distributed among 10 time slots of 20ms each. A counter is
maintained to track if number of received packets with desired marking is equal to the expected
number of packets within each time svlot. If the number of packets received with the desired

marking is less than the number of expected packets then it indicates that some of the desired

Architecture of a Multicast Node

8 Mbps
Congestion
Control >
End User 1
! Token Bucket
Soloct for 8 Mbps
~ Queue/
Create N
- == Duplicate >
Incoming Packet End User 2
gz’::; when Token Bucket
‘r Y for 7Mbps
Initiate Packet E:nd User3
Compensation P
- Token Bucket
f @e | for3Mbps

Figure 6.5 Architecture of a multicast node. Three end user’s current transmission rates
are 8Mbps, 7Mbps, and 3Mbps and arrival rate of the data at multicast node is $Mbps.
Initial number of tokens in the bucket depends on the end user current transmission
rate. [Le06]

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Expected Total Packets — Missed Packet

Receiv;d Packets Compensrtion Initiated
0 +1| [+ -1 -3 4 -3 -2 -1 0
L L @ « L D L4 <« L 4 L 4
| ® @ ¢ @ @ @ ® & @ o o @ o 9 e
I]

o
|
(7]

EE

Desired Rate= 6Mbps Total Tokens = 20
Heart-beat = 200ms Tokens per time slot =2

Figure 6.6 Token bucket based packet compensation to meet bandwidth and data
quality requirement {Le06]

marked packets are lost or significantly delayed in the network. When this difference exceeds
some threshold then it indicates the start of a compensation process. For example, in Fig. 6.6,
compensation for missing packets start when the difference between arriving and expected
packets falls below threshold (=-3). As seen in the figure, after compensation is initiated, packets
with marking corresponding to a rate higher than the current transmission rate are used to meet
the transmission rate requirements. At the end of ‘heat-beat’ interval, if the difference between
total arriving packets and total expected packets becomes 0 then it indicate that compensation
process succeeded in meeting the transmission rate requirements. More implementation details
are presented in [Li06].

6.3.1.2. Forwarding Node: Fig. 6.1 shows forwarding nodes in the overlay path. Main task of the
forwarding node is to select the appropriately marked packets for forwarding according to the
available output link bandwidth. Consider a case, where a high-bandwidth upstream flow relays

packets through a forwarding node to a low-bandwidth output link. In: this case forwarding node

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2Mbps/1Mbps,

RTT = 20ms
3Mbps/1Mbps,
RTT=15ms
4Mbps2Mbps,
RTT=200ms

SMbps/2Mbps,
RTT=150ms

.) 6Mbps/3Mbps,
RTT=100ms

SMbps/3Mbps
RTT=5ms

8Mbps/4Mbps,
RTT=10ms

6Mbps/4Mbps,
RTT=5ms

Multicast
Node

Cross Traffic
Generator

Figure 6.7 Emulation network for application-aware multicasting of weather radar data
[Le06]

may either buffer or selectively discard packets received from the upstream node. The
implementation of a forwarding node is similar to the implementation of a multicast node as
explained in Fig. 6.5-6.6. However, forwarding node may determine output link bandwidth using

bandwidth measuring tools instead of congestion control algorithm used by the multicast node.

6.4 Performance Evaluation

Performance of the packet-marking scheme and token-bucket based rate control algorithm is
evaluated in a network emulation environment as shown in Fig. 6.7. The NISTNET [Ca03] based
network emulator along with TCP cross-traffic is used to control the bandwidth between source
node and the multicast node, and to control bandwidth between multicast node and end users. In
all experiments, we consider the case where source node generates data at a constant rate of
10Mbps with different bandwidth requirements for different end users. The multicast node

receives a single copy of the packet from the source node and is transmitted to multiple end users

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with ditferent round trip delays, and with different bandwidth and data quality requirements.
Experiments were conducted to investigate: (1) Performance in meeting bandwidth requirements
of end users, (ii) Impact of packet-marking scheme on data quality, and (iii) Impact of packet
compensation algorithm on data quality.

The first set of experiments evaluates the effectiveness of the proposed packet-marking
scheme along with token-bucket rate control scheme in meeting bandwidth requirements of the
end users. As seen in Fig. 6.8, when bottleneck is 30Mbps, which lies between sum of target rate
requirements and sum of minimum rate requirements of all the end users, then all end users
shares the bandwidth while meeting their bandwidth constraints. Table 6.1 shows data
corresponding to results shown in Fig. 6.8. Next experiment results investigate the effect of
application-aware selective drop and packet-marking on data quality of the end users. Eight
different end users with different RTT requests multicast node for the data with their data quality
and bandwidth requirements. In this experiment, the multicast node combines the bandwidth
requests of all end user and makes an aggregate request to the source node with target rate (TR) =
8Mbps, minimum rate (MR) = 4Mbps requirement. Source node initially selects subset of the
data for transmission at 8Mbps from the DRS block. We consider random sample drop and
selective sample drop as the sample selection scheme at the source node for determining subset of
data for transmission at rates lower than the data generation rates [Ba05b,Ba06]. In the selective
drop, the source node considers end user’s sensitivity to different components of the DRS block
while selecting a subset of samples according to the current transmission rate for a multicast node
as explained in Chapter 4. Alternatively, in the random drop case; the source node randomly
selects subset of the samples from the DRS block for a given transmission rate.

Experiments were conducted to compare quality of the data delivered to the end users when
packet-marking is used, i.e., packet-marking based forwarding to the case when no packet
marking is used, i.e., random forwarding. In the packet-marking based forwarding, the source

node mark packets as explained in Section 6.3 and the packet marking enables the overlay

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.1 Impact of different degree of application-aware processing on the
throughput of multiple end users with different bandwidth requirement (RD: Random
Drop, RF: Random Forwarding, SD: Selective Drop, SF: Selective Forwarding [Le06]

End User TR MR RD, RF SD, RF SD.SF
Id (Mbps) (Mbps) Receiver Receiver Receiver
Throughput — Throughput — Throughput

(Mbps) (Mbps) (Mbps)
D1 2 1 1.61 1.61 1.61
D2 3 2 2.64 2.66 2.63
D3 4 2 2.93 29 293
D4 5 3 4.01 4.02 4,01
D5 6 3 4.78 4.76 478
D6 5 2 3.26 3.26 3.25
D7 8 4 6.16 6.15 6.19
D8 6 3 4.14 4.16 4.16

== Target Rate
m——— Minimum Rate

o N

[$)]

Receiver Throughput
(Mbps)
w A~

O -~ N

D1 D2 D3 D4 D5 D6 D7 D8
End Users

@ Random Drop, Random Forwarding
m Selective Drop, Random Forwarding
Selective Drop, Forwarding with Packet-Marking

Figure 6.8 Receiver throughputs of the end users with different rate requirements [Le06]

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

multicast node to determine packets to be forwarded to the each end user independently based on
the available bandwidth for each end user. In the random forwarding case packets are not marked;
packets that arrive at the multicast node are transmitted to an end user in FIFO basis as long as
there are tokens present in the bucket within ‘heart-beat’ interval. We compare the performance
tor three cases based on how data is dropped at the source node and whether packet-marking is
supported or not: (1) Random drop, Random forwarding, (2) Selective drop, Random
torwarding, and (3) Selective drop, Packet-marking based forwarding.

In case of weather radar data, quality of the received raw data is measured by computing
standard deviation in the reflectivity parameter |BaO5b] for each end user. Lower standard
deviation is a measure of better quality data [Ba05b, Ba06]. Fig. 6.9 shows the standard deviation
of reflectivity parameter of 10 gates (141 ~ 150) of one end user with TR=4Mbps, MR=2Mbps.
Table 6.2 shows data corresponding to results shown in Fig. 6.9. We compare the results with the
baseline case in which all samples generated by a radar node is delivered to the end user
application. As seen in Fig. 6.9, standard deviation is minimum for the baseline case and is
highest for a case when data is randomly dropped at source node and no packet-marking is
supported. Alternatively, quality of the data improves, i.e., lower standard deviation, with
selective drop and packet-marking support. Improvement in data quality at end user is due to end
user receiving the required subset of the data at any given transmission rate.

Experiments are conducted to study the effect of the packet compensation scheme on the
receiver throughput and data quality of the end users. Bandwidth between source node and
multicast node is configured as 10Mbps using NIST Net. TCP cross-traffic is used to introduce
random losses in the network between source node and the multicast node. Initially source node
transmits marked packets with radar data to the multicast node at 8Mbps but due to competing
TCP cross-traffic, random radar data packet may get lost between source node and the multicast
node. Alternatively, bandwidth between multicast node and end users is sufficient to support the

target rate all end users thus no losses are encountered in network between multicast node and the

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.2 Impact of different degree of application-aware processing on the quality of the
time-series data. Standard deviation in moment parameters is used for data quality estimation
[Le06]

Gates RD, RF SD, RF A\YAERYR No Loss
Standard Standard Standard Standard

Deviation (dBz) Deviation (dBz) Deviation (dBz) Deviation (dBz)

141 2.35 2.14 1.75 1.52
142 2.60 2.35 1.89 1.70
143 3.30 2.92 2.46 2.20
144 2.74 2.48 2.00 1.78
145 2.81 2.48 2.03 1.79
146 2.66 246 1.93 1.68
147 2.80 2.56 2.09 1.92
148 244 2.20 1.93 1.72
149 1.93 1.71 1.41 1.18
150 1.60 1.49 1.20 0.97

w
n

N
»

-
(3]

N 8
\ \ \
N N N
N N N
N N N
N N 3
N N N
\ \ \
\ \ \
N N N

o
o

141 142 143 144 145 146 147 148 149 150
Gate No.

2 Random Drop, Random Forw arding

B Selective Drop, Random Forw arding

Selective Drop, Forw arding w ith Packet Marking
3 No loss

Standard Deviation of Reflectivity
(dBz)

Figure 6.9 Effect of the application-aware selective drop and packet-marking on data
quality for the end user with TR=4Mpbs, MR=2Mbps [Le06]

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.3 Impact of packet marking based compensation scheme on the receiver
throughput for multiple end users. (TR, MR, and Receiver throughput in Mbps)
[Le06]

Number of

TCP Streams
TR=3, MR=2 3.13 298 2.82 2.69 2.2 1.96 1.54

With No
Compensati

TR=5,MR=3 521 497 46 445 373 337 267
With No
Compensation

TR=6, MR=3 623 594 548 53 453 412 328
With No
Compensat

TR=8, MR=4 821 745 635 611 514 464 3.65
With No
Compensation

end user. Performance is compared when marked data is transmitted using packet compensation
and without any compensation. In Fig. 6.10, dotted lines show receiver throughput of the end
users without any packet compensation. In Fig. 6.10, solid lines show end users receiver
throughput using packet compensation scheme. Table 6.3 shows the data corresponding to results
shown in Fig. 6.10. As seen in the figure, when network losses increase due to increase in TCP
cross-traffic, the throughput of end users decreases. However, when the packet compensation is
used end user receives higher throughput compared to no compensation case. Since TR=8 Mbps,
MR=4 Mbps end user receives data at the highest rate, the multicast node cannot find any higher

stream to compensate for the missing packets, so no compensation is performed for that particular

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end user. Fig. 6.11 shows the impact of the packet compensation scheme on the quality of the
data received by the end users for different gates. Fig. 6.11 shows standard deviations of the
reflectivity parameter for two end users with bandwidth requirements TR=6 Mbps, MR=3 Mbps,
and TR=3 Mbps, MR=2 Mbps. Table 6.4 shows data corresponding to results shown in Fig. 6.11.
As seen in the figure data quality improves when packet compensation is used at the multicasting

node indicated by decrease in standard deviation in presence of packet compensation.

6.5 Remarks

This chapter presented content-based packet marking and a token-bucket rate control scheme to
support application-aware transport requirements using overlay networks. Although simpler
schemes can be used to meet the bandwidth requirement, the results show that application aware
schemes at intermediate nodes can result in better quality of the end result. Effectiveness of the

proposed approach is demonstrated by evaluating its performance in a network emulation

Table 6.4 Impact of packet marking based compensation scheme on the quality of the
time-series data for multiple end users. Standard deviation in moment parameters is
used for data quality estimation [Le06]

Gate Number 141 142 143 14 15 % 147 148 149 150

TR=3,MR=2 121 127 123 128 125 128 121 123 129 1.53
With No
Compensation

(dBz)

TR=6,MR=3 100 103 099 095 101 101 1.00 1.00 1.18 1.38
With No
Compensation

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Receiver Throughput (Mbps)
[4,]

= T

-, ‘
1 : : : : ; :

0 4 32 64 84 96 128

No. TCP Cross-Traffic

= =¢= =TR=3, MR=2 w/o Compensation = == = TR=5, MR=3 w /0 Compensation
- =A= =TR=6, MR=3 w/o Compensation = -@= =TR=8, MR=4 w/o Compensation
e TR=3, MR=2 w ith Compensation «w—#=— TR=5, MR=3 w ith Compensation
gy TR=6, MR=3 w ith Compensation ——#—= TR=8, MR=4 w ith Compensation

Figure 6.10 Effect of packet compensation on the receiver throughput at the end users
[Le06]

B TR=6,MR=3 with Compensation
m TR=6,MR=3 without Compensation
@ TR=3,MR=2 with Compensation
1.5 H TR=3,MR=2 without Compensation

Standard Deviation of
Reflectivity (dBz)

123 124 125 126 127 128 129 130 131 132
Gate No.

Figure 6.11 Effect of packet compensation on the data quality at the end users [Le06]

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

environment. During network congestion, packet marking is very effective in delivering high
quality data to the end user. Moreover, when packet compensation technique is used it further

improves the received bandwidth and data quality of the end users.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

AWON ARCHITECTURE FOR DEPLOYMENT OF
APPLICATION-AWARE SERVICES USING OVERLAY
NETWORKS

Overlay networks have been proposed to provide a range of useful services for enhancing QoS
for Internet applications including bandwidth guarantees [Am06, AnOl1, Ko03, Su03, Zh0O4a}.
With overlay networking, application-aware processing can be implemented at intermediate
nodes, thus significantly enhancing the ability of the application to adapt to network conditions
and improve the QoS provided to the end users. Examples of these functionalities include
application-aware data forwarding and data drops, as well as application-aware rate control
during network congestion at intermediate nodes [Ba06, Ba07a). It is often desirable to use the
same overlay infrastructure for multiple simultaneous applications such as weather radar data
streaming, and video streaming to multiple end users. A general-purpose overlay architecture that
supports deployment of application-aware services on the overlay nodes in the network, and a
programming interface required for such services that can leverage such an overlay network
infrastructure to support application-specific QoS requirements will significantly enhance the
overlay-based application deployment. This chapter proposes the AWON (Application aWare
Overlay Networks) architecture for application-aware overlay networking, and presents a

motivation for a general purpose programming interface. The AWON architecture is presented in

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this chapter that enables of development of application-aware services using overlay networks. It
allows the applications to regulate the flow of data through overlay nodes in an application-aware
manner, selecting data to be forwarded, and extracting/repackaging data, taking application-
specific constraints into account.

A significant amount of research has been done on the design and development of overlay
routing protocols to improve an underlay network’s resilience and performance [AnOl, 1.i04,
Sa99}. Our work complements and takes advantage of such ongoing research effort of performing
QoS-aware routing in overlay networks such as RON [An01]. OverQoS [Su04], an overlay-based
architecture can provide a variety of QoS-enhancing in-network services in the intermediate
nodes of overlay networks, such as eliminating the loss bursts, prioritizing packets within a flow,
and statistical bandwidth and loss guarantees. OQur work is motivated by the same vision of
enhancing QoS support within the network without the support from IP routers. An important
difference between the AWON and the OverQoS architectures is that in the AWON-based
approach, quality of service provided to an application is enhanced by performing application-
aware processing within the network. Moreover, the AWON architecture is highly flexible and
can accommodate QoS requirements of large class of applications. OCALA [Jo06] and Oasis
[Ma06] enable the users of legacy applications to leverage overlay functionality without any
modifications to their applications and operating systems. Opus [Br02b}, which is motivated by
active networking, provides a large-scale common overlay platform and the necessary
abstractions to service multiple distributed applications. In contrast to our work, Opus focuses on
the wide-area issues associated with simultaneously deploying and allocating resources for
competing applications in a large-scale overlay networks. XPORT [Pa06] is a tree-based overlay
networks, which can create dissemination trees based on diverse performance requirements of the
applications.

Section 7.1 provides motivation for AWON and the programming interface for overlay

networks. Section 7.2 explains the AWON architecture for deploying application-aware services

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EndUsers 5 pplication-Aware Processing
Modules

Packet
Marking

Source Node 1

Source Node 2:’

End Users L _| L _I

Source Node 3

End Users
Multicast Node
+

Forwarding Node

' Multicast Node ’ Fusion Node

Forwarding Node

Figure 7.1 Overlay network for application-aware data dissemination

in overlay networks. Section 7.3 briefly describes the API. An example implementation is
illustrated in Section 7.4. Section 7.5 shows Planetlab-based experimental results that
demonstrate the effectiveness of the AWON and the corresponding API for weather radar data

streaming. Concluding remarks are presented in Section 7.6.

71 Motivation

Applications relying on overlay-based implementations to achieve performance, reliability and
other application specific requirements must be able to configure overlay nodes to perform in-
network application-aware processing. A flexible, efficient approach for the deployment of QoS-
sensitive applications using overlay networks should facilitate the monitoring of the QoS received
by an application in the overlay network, and allow casy deployment of application-aware

processing at intermediate overlay nodes. A framework is thus required for realizing such

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

application-aware overlay networks. A programming interface is needed to facilitate development
and deployment of applications within this application-aware framework.

The API provides a layer of abstraction between an application and the underlying dynamics
of the network infrastructure. It is desirable for the API to support application-aware adaptation in
the overlay network, with each participating node possibly performing different application-
aware operations to meet the overall goals of the application(s). The API must support node
configuration in an application-aware manner, with each node being configurable to support
multiple applications concurrently. There is also a need for communication between the
application and the underlying overlay layers for supporting application-specific QoS
requirements [AnO1, Ba03, Su04, ZhO4a]. For this to be realized, the API must allow an
application to specify its QoS requirements to the system. When the underlying system is able to

accept the application with its QoS requirements, the API should be able to communicate this

AWON Architecture of an Overlay Node

g
]
A - A % ? A 8
B :
2 @ & £
2]
=I g) o)
> G ¢ &
o »n 0 >
o o 9 3
- o D <
yE E c
]
R
3
- = s
T = < 2 Y
o 77 3 o <
(7]] Q (7]
I C i~ I
5 z T 5
)]
—_—— _|v ______ _— = T pp—— { '_ f— <. ‘g. —_—
Select QoS Select g '™
Next g > Manager -+ P Next 14 e
Hop 9 Hop >>‘ %
‘Transmit Packet Transmit Packet ‘ L: -l
[
>
o]

/
Figure 7.2 AWON architecture of an overlay node for application-aware data
dissemination using overlay networks — An example node with multiple plug-ins [Ba07b]

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

acceptance to the application. CASA application is considered to illustrate the need for an

application-aware architecture and a programming interface for such overlay networks.

7.2 Application aWare Overlay Network (AWON) Architecture

Fig. 7.1 shows an application-aware overlay network for distributing data to multiple sink odes
with different end user requirements such as data quality and bandwidth requirements. Let us now
illustrate the myriad roles overlay nodes may play in meeting application requirements.

In Fig. 7.1 source nodes 1-3 may perform application-level packet-marking to indicate the
usefulness of the data to a particular application; nodes colored blue (nodes 1-5) may perform
packet forwarding/drop based on the marking done by the source node; nodes colored green
(multicast nodes 4, 7, and 8) may distribute data to multiple end users and perform independent
congestion control for each end user in an application-aware manner. The multicast nodes
combine the requests from the end users and send an aggregate upstream request to the specific
source node.

If the network experiences congestion, congestion-based packet (information) discard can be
performed at the source or at intermediate nodes, according to the available bandwidth. A source
node can thus mark packets based on the relative importance of the information sent to the
multicast nodes 4, 7, and 8. This facilitates application-aware selective drops (rather than random
drops) within the network. Intermediate forwarding nodes 1-5 may use this marking information
at the time of forwarding during network congestion. Similarly node 6, a fusion node, may
combine data from multiple sources to reduce the downstream data bandwidth requirements.

In addition to the packet handling functions discussed above, there are two other classes of

functions a node may implement. First, there is a need to support multiple applications

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

simultaneously on the same overlay network. Also, it may be necessary for an application to track
performance of the underlying networking infrastructure in meeting the application requirements.
Fig. 7.2 shows the AWON architecture of an overlay node to support application-aware data-
dissemination services. There are two key components of the AWON: (i) Application Manager,
(ii) Application Plug-ins. Each of these components focuses on two different areas of functions
with a common goal of providing best effort QoS services to the applications and providing a
layer of abstraction to the application developers. Application developers are not required to be
aware of other applications deployed on the same node.
Moreover, they need not be aware of the implementation of the underlying overlay routing
infrastructure.
(i) Application Manager: The key responsibilities of the application manager are:

1. De-multiplexing packets received for different applications at the same node

2. Logging QoS status information for each application and informing (when appropriate) the
underlying overlay routing layer about the QoS status/requirements of the applications

3. Authorization of a new user/application in the system based on a local policy

(it) Application Plug-ins: In the application-aware paradigm, each application is required to
configure its functionality in the participating overlay nodes. The AWON architecture supports
application-specific plug-ins that implement the functions performed by the participating overlay
nodes in the data dissemination. For a particular application, multiple nodes can play different
roles, motivating the need to deploy relevant plug-ins on those nodes that implement particular
functions. For an example, with a collaborative radar application [Mc05], the source node in
Fig. 7.1 has application plug-in 1 shown in Fig. 7.2 for supporting data selection and marking.
Similarly nodes 1-5 in Fig. 7.1 may have application plug-in 2 to support application-aware
forwarding based on the source’s marking. Nodes 4, 7, and 8 may have application plug-in 3 to
support application-aware multicasting and congestion control. Note that the same node may have

multiple plug-ins to support multiple functions performed by a node for a given application or

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

different applications. For an example, in Fig. 7.1, node 4 acts as a forwarding node and a
multicasting node for the same application.

As seen in Fig. 7.2, the AWON architecture requires communication between application-
manager and plug-ins, application manager and routing layer, and between plug-ins and routing
layer. Next section briefly describes the programming interface to support deployment of

application-aware services using AWON.

7.3 Application Programming Interface

Following are the key goals of the application programming interface:

(i) Enable deployment of application-aware services on the overlay network infrastructure.

(1) Provide real-time monitoring of the QoS status of the application.

(iii) Facilitate communication between application-manager and plug-ins, application manager
and routing layer, and between plug-ins and routing layer.

There are three broad categories of the API calls to deploy applications within the AWON

framework:

(1) API calls for node configuration

(i1) AP1 calls for communication between application plug-ins and application manager

(1it) API calls for communication with overlay routing layer

More details on the API and its implementation can be found in {Ba07b, Lee].

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SOURCE NODE MULTICAST NODE

Selection and

Token Bucket Rate [

User
Authorization

{isdr QoS Request
Qos- Reguest Authorization
Authorization
eriod|c 003 Status Report Perfod(c QoS Status Report
. = o x
{E § ¥ |3 &
- g o c &
] < c - @ <
= x o % (2 2
® 2 w ® 2 i
o g g Py 3 %
————t — e 1R - e e = e - T
g‘; <
S Y v Feedback 1 v
S aos Manager QoS Manager
0
g & & -
o Select Next Hop Select Next Hop
14

Figure 7.3 Implementation example based on AWON architecture [Ba07b, Lee]

7.4 AWON Implementation Example for the CASA Application

To demonstrate AWON capabilities, let us consider a CASA application as shown in Fig. 7.1,
where data from a radar source node is distributed to multiple end users with distinct bandwidth
and data quality requirements. In this application, an application-aware multicast node receives
data from the source node for further distribution to multiple end users. AWON architecture is
used to enable application-aware processing at source node and multicast node to best meet the
QoS requirements of multiple end users.

Fig. 7.3 shows the implementation details of a source node and a multicast node based on the

AWON architecture. Both nodes use application-specific plug-ins to implement application-

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

specific functionalities. The application manager implementation is same for all nodes in the
overlay network. As shown in Fig. 7.3, the source node plug-in implements application-level
packet marking and a rate-based congestion control algorithm. Packet marking determines the
subset of the information that should be transmitted at a lower transmission rate for acceptable
data quality at the receiver end. Fig. 7.4 explains the marking scheme used in the current
implementation [Le06].

Consider an example as shown in Fig. 7.4, where a sensor node generates 8 application data
units (ADU) within the bounded time at rate R1. The ADU is defined as a fundamental
application data entity that can be used by an end user algorithm for processing. Each row in

Fig. 7.4 shows the subset of ADUs that are selected for transmission at a lower transmission rate

ADU Number For
Transmission »
1213113 lsl 7T Packet Marking
11213 5678 .
12 < s - Marking Flags
;. 1 3|4 6|7
'Rate R5. 1 3 5 7
1 4 7
1 5
4
Application Data Unit
lPacketization PP (ADU)
Rate based '
Packt marking I%III
ADU 1 ADU 2 ADU 3

L1 [H]

ADU 5 ADU 6 ADU 8

Figure 7.4 Application-aware framing and packet marking where each non-white color
represent rate for which packet is marked, i.e., rate R1-R8 [Le06]

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

when a higher rate cannot be supported because of bandwidth constraints. The subset of data
selected at lower rate depends on the end user data quality requirements. For example, certain
end users need uniformly spaced ADUs when only a subset of the data can be selected for
transmission. Alternatively, other end users prefer a contiguous group of ADUs when bandwidth
is constrained. Consider the case when the source node transmits data at rate R1, and as seen in
the figure the data transmitted at lower rates is a subset of the data transmitted at rate R1 and
ADUs are selected uniformly at lower rates. The packet containing ADU 1 is marked with
different color flags corresponding to different rates, t.e., rates R1-R7. Similarly packet
containing ADU 3 is marked with different colors corresponding to different rates, i.e., R1, R2,
R4, and RS. As shown mn the Fig. 7.4, every packet contains a flag for each rate for which it is
transmitted indicated by different colors. Note that multiple flags can be set to indicate suitability
of the packet for multiple transmission rates. In the current implementation we consider a case
when all end users have similar data quality requirement and can tolerate uniform drop of ADUs
under bandwidth constrained conditions.

The QoS monitoring component of the plug-in monitors the quality of the service received by
the application users at a source node. Currently, the component monitors whether end users’
bandwidth requirements are met. The multicast application plug-in supports application-aware
rate control using a token-bucket scheme and on-the-fly forwarding of data based on the packet
marking. More information on the packet-marking and token bucket scheme used for the
implementation can be found in Chapter 6 and [Le06]. This application-specific plug-in selects
data for forwarding based on the available network bandwidth and the packet marking for
multiple end users. Note that the packet marking performed at the sender node determines the
priority of the packet to be forwarded at the multicast node. In such systems, each end user may
need a different subset of the data from the radar source based on the intended use of the data

{Ba05b, Ba06]. During network congestion, overlay nodes can perform a better job by selectively

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dropping [An00, Ba06, Gu05, Zh99] packets (information) instead of dropping randomly within

the network, taking into account end-user requirements for different subsets of the data.

7.5 Performance Evaluation

In this section, we demonstrate the effectiveness of the real-time application-aware processing,
which is implemented using AWON architecture and the API over overlay networks such as
planetlab [Pe02, Pla].

Application: We consider a mission-critical CASA [Mc05] application for the performance
evaluation. One of the requirements of CASA application is to distribute high bandwidth real-
time weather radar data to multiple end users {Ba06] with distinct critical bandwidth and data
quality needs. For such applications, it is not only important to meet the bandwidth and latency
requirement, but also to meet the minimum content-quality requirement for the proper operation
of the system. For example, each CASA end user may specify its critical minimum rate (MR)
requirement that should be met. for the proper operation of the system. Moreover, each end user
may also dictate a target rate (TR), i.e., the maximum rate at which data can be received by the
end user. A source node periodically generates a block of digitized radar data, referred to as a
DRS block [Bg03b, Ba05b]. Each end user specifies its content-quality requirement in terms of
tolerance towards bursty losses or uniform losses within the DRS block. In the current
implementation, we consider a case in which all end users prefer uniform drops of information
instead of bursty drops within a DRS block. In case of our CASA application, during network
congestion, the desired rates are between MR and TR and the desired packets are those that
contain subset of the DRS block of data with uniform drops. All these selected packets are
marked for rate between MR and TR at the source node. We implement this application using the

AWON architecture, as it enables application-aware processing within overlay nodes to enhance

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Overlay Source Node/ Muticast Server
(MIT Node)

Data Generation Rate =
10Mbps

Overlay Muticast Server

(Ohic Node) Forwarding Node

(Houston Node)

Forwarding Node
(Denver Node)

EndUser1 EndUser2 EndUser3 TR=9, MR=5 Overlay Muticast
(British (Colorado State (UMASS I Server
Columbia) Node) Node) Purdue Node)

TR: Target Rate in Mbps
MR: Minimum Rate in Mbps

End User 4 EndUser 5 End ser 6
(Duke Node) (Korea Node)(Colorado State
Node)

Figure 7.5 Planetlab test-bed for application-aware multicasting [Ba07b]

the QoS under dynamic resource-constrained conditions.

Overlay Network Topology: Fig. 7.5> shows the Planctlab- based overlay network topology used
for application-aware data distribution and performance evaluation. It consists of 11 overlay
nodes, each configured to perform application-specific tasks to meet the overall QoS
requirements of the application. In Fig. 7.5, there are four different types of nodes that are present
in the overlay network - a source node, a multicast node, a forwarding node, and an end user
node. The source node performs selective data drop during network congestion as well as
application-aware packet marking based on the end user’s data quality requirement as explained
in Chapter 4. The goal of the marking scheme is to deliver the most appropriate subset of data for

the end user under congested network conditions. The forwarding node may decide to forward a

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

packet based on a packet’s marking and the available downstream link bandwidth. The multicast
node performs on-the-fly seclection of the data for forwarding based on packet marking to the
respective end users at the current transmission rate. The mulricast node uses TRABOL (TCP-
Friendly Rate Adaptation Based On Losses), a UDP-based rate-based congestion control
algorithm [Bg03b, Ba05b], to independently determine the transmission rate for each end user.
The end-user node performs content quality evaluation using application-specific performance
metrics and provides periodic feedback to the multicast node about its current receive rate. In
Fig. 7.5, six different end-user nodes 1-6 at geographically different locations receive weather
radar data streams from the source node at MIT, Cambridge at their required TR and MR over the
planetlab. The source node generates data at a constant rate of 10Mbps. End user nodes 1-3 make
their data request with the desired TR and MR requirement to the multicast node at Ohio.
Similarly end-user nodes 4-6 make data requests with their desired TR and MR to the multicast
node at Purdue. After requests are received from the end users, both multicast nodes
independently send aggregate bandwidth requests to the source node at MIT. A single stream of
radar data is delivered from MIT to the Ohio node for turther distribution to end user nodes 1-3.
Similarly, a single stream from the MIT source node is delivered to the multicast node at Purdue
for further distribution to end user nodes 4-6.

Performance Metrics: The effectiveness of the application-aware processing using AWON
architecture and the programming interface can be evaluated by measuring the quality of the
content delivered to the end users under different network congestion conditions. For most real-
time applications, application-specific metrics are used to measure quality of the content; for
muitimedia applications, these metrics include PESQ [Am06, Su04] for voice quality and PSNR
[Su04] for video streaming. For the CASA application we use the standard deviation of the
estimated sensed values (specifically, reflectivity and wind velocity) to evaluate quality of the
radar data [BaO5b, Ba06]. A lower standard deviation indicates better radar data quality. A

minimum standard deviation, i.e., the highest content quality, is achieved when all the data from

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the source node is delivered to the end users. Alternatively, we also evaluate the content quality
by measuring the frequency of the desired packets at the receiver node based on their markings.
For better quality of the data, it is necessary to receive more packets with the desired markings.
For an application with TR and MR bandwidth requirements, the “most appropriate” packets are
marked to result in data rates between MR and TR.

Methodology: We perform three sets of experiments to demonstrate the effectiveness of the
application-aware processing within overlay networks implemented using AWON architecture
and the API. In the first set of experiments, 1.e., experiment 1, no application-aware processing is
performed in the network, i.e., the source node randomly selects data from a DRS block of radar
data for transmission, without considering end-user loss tolerance requirements. Packet marking
is performed but packet marks are not used at the forwarding nodes or at the multicast nodes for
on-the-fly selection of packets for transmission. In experiment 2, the source node performs
application-aware selective drop during network congestion and marks packets at the time of
transmission. However, packet marking is not used at forwarding nodes and multicast nodes for
on-the-fly selection of data for transmission to the end users. Experiment 2 is equivalent to a
network that supports limited application-aware processing at end hosts without the support of
AWON architecture. Experiment 3 is an example of the AWON-based implementation that
enables in-network processing by performing different application-specific tasks within the
network. In Experiment 3, the source node at MIT performs application-aware selective drops and
packet marking. The multicast nodes at Ohio and Purdue use token-bucket based rate control
scheme along with packet marking to select appropriate packets on-the-fly for transmission to
individual end users at their respective transmission rate. At present, in experiment 3, nodes at
Houston and Denver act as simple forwarding nodes and do not make use of packet marking
when forwarding packets. Fig. 7.6 and Fig. 7.7 show the result of experiments 1-3. Table 7.1 and

Table 7.2 shows data corresponding to results shown in Fig. 7.6. Table 7.3 and Table 7.4 show

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 7.1 Impact of AWON based implementation on the data quality of time-series data
for End User 1 under varying degree of application-aware processing

RD, RF SD, RF SD, SF No Loss

Standlard Standard Standard Stundard

Gate Number Deviation Deviation (dBz) Deviation (dBz) Deviation
(dBz) (dBz)
141 2.01 1.79 1.73 1.70
142 2.59 231 2.23 2.20
143 2.17 1.92 1.8 1.78
144 2.17 1.92 1.81 1.79
145 2.15 1.82 1.72 1.68
146 2.23 2.02 1.92 1.92
147 2.02 1.84 1.76 1.72
148 1.42 1.29 1.24 1.18
149 1.21 1.09 1.0 0.97
150 1.52 1.34 1.30 1.23

Table 7.2 Impact of AWON based implementation on the data quality of time-series data
for End User 5 under varying degree of application-aware processing

RD, RF SD, RIY SD, SF No Loss

Standard Standard Standard Standard

Gate Number Deviation Deviation (dBz) Deviation (dBz) Deviation
(dBz) (dBz)
141 2.63 2.53 1.84 1.70
142 3.21 3.06 2.32 2.20
143 2.72 2.61 1.93 1.78
144 2.84 2.72 1.92 1.79
145 2.80 2.66 1.85 1.68
146 2.89 2.76 2.02 1.92
147 2.55 241 1.86 1.72
148 1.93 1.85 1.33 1.18
149 1.67 1.60 1.12 0.97
150 1.94 1.87 1.41 1.23

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Impact of Application-awareness on Content Quality - End User 1
TR=7 Mbps, MR=4 Mbps
Experiment 1 - 6.78 Mbps, Experiment 2 - 6.70 Mbps,
Experiment 3 - 6.72Mbps

N
W

Standard Deviation
o

o
(9]
{
EITELT TSI LT LETS

—_
—+
IS LTS IS ILILLS

()

141 142 143 144 145 146
Gates

No Application- Awareness - Experiment 1

B Application Aware Source Node - Experiment 2

B Application Aware Source Node and Multicast Node - Experiment 3
(1 Base Case

(@)

Impact of Application-awareness on the Content Quality -End User §
TR=4Mbps and MR=2Mbps
(Experiment 1 - 3.88 Mbps, Experiment 2 - 3.85 Mbps,
Experiment 3 - 3.87 Mbps)

Standard Deviation

T E T T IFITFFTIISY
TP TIFS

141 142 143 144 145 146 147 148 149 150
Gates
&3 No Application- Awareness - Experiment 1
® Applcation Aware Source - Experiment 2

8 ApplicationAware Source node and Multicast Node - Experiment 3
2 Base Case

(b)
Figure 7.6 Impact of application-aware architecture on the content quality delivered to the
end users (a) Standard deviation of data for end user 5 with low bandwidth requirement
TR=4, MR=2, (b) Standard deviation of data for end user 1 with high bandwidth
requirement TR=7, MR=4 [Ba07b]

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

data for results shown in Fig. 7.7. Performance is compared by measuring the quality of the
content delivered to the end users for different experiment scenarios under different network
congestion conditions. Two metrics are used to evaluate the content quality delivered to the end
users. In Fig. 7.6 application-specific metric standard deviation is used to measure the quality of
the content. In Fig. 7.7 frequency of the packets is used to determine the impact of application-
ware processing on the delivery of application-relevant packets to the end users under network
congestion condition. Results are shown for End user 1 and End user 5 in Fig. 7.6 and Fig. 7.7 but
similar trends are observed for all other users. As mentioned earlier, data is generated at 10Mbps
at the source node but end user 1 requests for TR=7Mbps and MR=4Mbps. End user 5 has
relatively lower bandwidth requirement with TR=4Mbps and MR=2Mbps. Both end users can

tolerate uniform drop of data within the DRS block. Both end users compute reflectivity [Ba05b]

Table 7.3 Impact of AWON based implementation on frequency of packet with desired
marking for end user 1

Transmission Rate RD, RIF SD. RE SD, SF
Marked Packets Marked Packers Marked Packets
Irequency Frequency Frequency
4 Mbps 25851 32138 31503
5 Mbps 31725 39995 42256
6 Mbps 38100 48160 49572
7 Mbps 44824 55447 61728

Table 7.4 Impact of AWON based implementation on frequency of packet with desired
marking for end user 5

Transmission Rate RD, RF SD. RF SD., SF
Marked Packets Marked Packets Marked Packets
Frequency Frequency Frequency
2Mbps 7493 9048 16531
3 Mbps 11965 12126 17354
4 Mbps 14965 16644 32711

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Frequency of Marked Packet - End User 1
TR=7 Mbps, MR=4 Mbps
Experiment 1 - 6.78 Mbps, Experiment 2 - 6.70 Mbps,
Experiment 3 - 6.72Mbps

Packets

Frequency of Marked

5 6
Rates (Mbps)

No Application-awareness - Experiment 1
B Application Aware Source Node - Experiment 2
B Application-aware Source and Multicast Node - Experiment 3

(@

Impact of Application-awareness on the Content Quality -End User 5
TR=4 Mbps and MR=2 Mbps
(Experiment 1 - 3.88 Mbps, Experiment 2 - 3.85 Mbps,
Experiment 3 - 3.87 Mbps)

35000
30000 -
25000
20000 _—
15000
10000 ‘Q§t::- <
5000 1 NNN\Er ‘\\\- :
o L NN\ N

2 3
Rate (Mbps)
& No Application-awareness - Experiment 1
& Application-aware Source Node - Experiment 2
8 Application-aware Source and Multicast Node - Experiment 3

(b)
Figure 7.7 Impact of application-aware processing on the delivery of application-specific
relevant packets (a) Marked packet frequency for end user 5, (b) Marked packet
frequency for end user 1

Frequency of Marked
Packets

77/

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

using raw data received from the radar source node. Fig. 7.6(a) and 7.6(b) show the standard
deviation of reflectivity for all three experiments. In CASA application each end user computes
reflectivity for multiple gates {Ba05b] as explained in Chapter 4. (In radar terminology, a gate
refers to a volume in the atmosphere at a particular distance from the radar source node for which
data is collected by a radar.) Fig. 7.6 thus shows content quality, i.e., standard deviation for subset
of gates. As seen in Fig. 7.6(a) and 7.6(b), experiment 1, with no application-aware processing
support within the network, has highest standard deviation and hence has the worst data quality
among three cases. In experiment 2, when limited application-aware drops are performed at the
source node, the quality of the data improves in comparison to experiment 1, as indicated by
decrease in standard deviation. Experiment 3, which has support for application-aware drop at the
source node and marking-based selective drop at the multicast nodes, delivers data with the
highest quality, i.e., with the smallest standard deviation. As shown in Fig, 7.6(b) under high loss
conditions, the AWON based implementation of application-aware one-to-many protocol is very
effective in improving the quality of the data delivered to end users. Indeed, the standard
deviation of the AWON based implementation approaches that of the base case standard
deviation, which corresponds to a scenario when all data from the source node generated at
10Mbps is delivered to the end users. Note that in experiments 1-3, end users receive data at
approximately the same rate, but the content quality is different. For an example, in Fig. 7.6(b),
end user 1 receives data at 3.88Mbps, 3.85Mbps, and 3.87Mbps for experiment 1, 2 and 3
respectively. However, the application-level quality of data delivered to the end users is
significantly different for all gates. The gain in performance in terms of content quality is
achieved because AWON modules deliver the most appropriate application-specific content to
the end user within the available bandwidth resources. This is made possible by performing
application-aware processing of the data as it traverses the network.

Fig. 7.7(a) and 7.7(b) show the impact of the three experiment scenarios on the delivery of

most appropriate information to the end user at a given rate. Packets are marked for different rates

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for which it is most suitable for transmission as explained in Chapter 6. When an end user
recelves more packets with markings corresponding to the desired rate, this is an indication of a
higher quality of received data. As mentioned before, for CASA end users, the desired rates are
between MR and TR and the desired packets are those that are marked for rates between TR and
MR. In Fig. 7.7(a) and 7.7(b), we show the number of packets delivered with the marking
corresponding to rates between TR and MR requirements of the end users. Fig. 7.6(a) and 7.7(a)
both measure content quality using different metrics and correspond to the same end user 1. Fig.
7.6(b) and 7.7(b) illustrate the content quality for end user 3. As seen in the Fig. 7.7(a), and
7.7(b), experiment | with no application-awareness, delivers fewer packets with the desired
marking. Alternatively, the frequency of the packets with desired marking increases with
experiment 2 resulting in a higher content quality. In the case of experiment 3, the frequency of
desired marked packets is the maximum over all three cases. As seen in Fig. 7.7(b), during high
network congestion, AWON based architecture is able to deliver 50% more desired packets than
the case when no application-aware processing is done in the network. These results corroborate
the results shown for data quality in Fig. 7.6, which uses standard deviation quality metric for end
user 1 and end user 5 respectively.

The above experiments demonstrate that the AWON architecture enables the deployment of
application-aware services in the overlay networks and that such overlay services can be very

effective in improving the performance of an application in resource-constrained conditions.

7.6 Remarks

This chapter presented the AWON architecture for the application-aware data dissemination
using overlay networks. Planetlab experiments demonstrate the suitability of the AWON for the

deployment of application-aware services in overlay networks. Experiment results show that

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

during network congestion, an AWON-based application-aware transport services delivers better
quality data to the end users than a non-application-aware implementation while using a similar
amount of bandwidth. The AWON architecture and programming interfaces are generic and are
not limited to a particular application and can thus be used to deploy applications that need

application-specific processing within the network to meet its QoS requirements.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

TARDINESS MEASURE FOR CHARACTERIZATION OF
SENSOR NETWORK PERFORMANCE

As mentioned in Chapter 1-3, there is a need to evaluate QoS delivered to the end users in terms
of freshness of the data in order to provide effective application-aware transport services in
mission-critical sensor networks. In mission-critical sensor network applications, the sensor
network collects information about a physical phenomenon, processes the data and then takes
appropriate actions based on the processed data [AkO2, Ak04, Es99]. In such applications, action
should be taken in bounded time for the proper operation of the system. Input data may be useless
for such applications if it arrives and is processed after a critical deadline. Therefore, it is
important to be aware of the age of the data that is used for processing and computing results.
Data freshness has been studied in the context of information system such as data integration
system (DIS), and Data Warehouse [Bo04]. In that context, data freshness is considered as a
critical component that determines the success of many information systems. A significant
amount of research has been done for studying efficient refresh policies for web crawlers to keep
the local copies of the remote source data fresh [Cho03]. The key factor that impact the age of the
data in such traditional information systems is the rate of change of data at the remote source
node. However, in sensor networks besides the rate of change of data some of the other factors

that may impact the age of the data are the high network delays, random loss of packets, and

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

packet re-ordering. It is significantly more challenging to quantify and understand the impact of
cach of these parameters on the age of the data in sensor networks. Our focus on understanding
impact of network dynamics on the age of the data makes it different from the existing work that
is focused on investigating freshness of data in the context of information systems.

Sensor networks are typically resource constrained in terms of computation capability and
available energy. Moreover, most sensor networks use error prone wireless links for
communication. Different energy conserving transport, routing, and MAC protocols are used for
transferring data from source nodes to the sink nodes [He03, Hu04, In00, Li99, Wa02, Wa03,
Ye04]. Alternatively, there is an emerging class of real-time sensor networks that uses Internet to
distribute sensor data to different computing nodes and end users. Depending on the applications,
sensor nodes may be configured to monitor the environment for rare and ephemeral events
[Du05]. Whenever such events occur, they are detected by one or more sensing nodes, and the
event information is transmitted to a data fusion node or a remote sink node for further
processing. Alternatively, in many sensor networks, sensor nodes continually sample
environmental processes such as temperature or vibrations as shown in Fig. 8.1. Sink nodes such

as fusion nodes may access receive buffer for the data after receiving an interrupt due to arrival of

3 Sampling event at sensor node
Sensor 1 g
]
ime (1) =

-g Sensor 2 .
(U]
g - wireless :: S ﬁ ‘
et network
Time (t) Sink Node Tardiness Computation
Sensor 3
text
Input buffer read
X:x/+ilki%iT schedule at sink node
Time (9
Figure 8.1 Process Monitoring Sensor Network
120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a new packet. Alternatively, sink nodes may poll their receive buffers recurrently for the arrival
of the data. In both scenarios, data available in the buffer at the time of ‘read’ is used for the
computation. However, it is possible that data read from the input buffer at the sink node may be
different from what is available at a particular instant of time at the sensor node. This scenario is
possible because either the data gets late within the sensor network due to network delays [Chi04,
7h04b] or gets dropped because of reasons such as network congestion or wireless link errors in
the sensor network [Hu04, Wa03]. When data is dropped in the network, the prior sample of data
available is used until new data arrives. In many closed-loop applications, old copy of the data
that does not reflect the current state of the environment may be used to generate actuating signal
to control the remote environment. This has the potential to compromise the integrity of such
systems. It is therefore desired to get a quantitative estimate of age of the data used in the
computation at every ‘read’ event at the sink node.

This chapter proposes a framework to capture network introduced tardiness of data used for
end computations in sensor networks. A tardiness measure is defined to capture the age of the
data used for computation under different network conditions. An analytical model is proposed
that relates network delays, wireless loss rate, degree of packet re- ordering, and sampling rate
with the observed tardiness of the data. Moreover, we study the tradeoffs between energy
consumption and tardiness of the data delivered to the end user. Such an analysis will abstract the
impact of the sensor network characteristics, such as losses and delay due to routing scheme
employed, in terms of statistics of tardiness. The statistical characteristics of tardiness may then
be used to evaluate the accuracy and reliability of the application, without delving into detailed
network characteristics such as the routing protocol. We envision wider applications of the
tardiness measure. Tardiness may be used to evaluate and compare the performance of routing
protocols in terms of age of the data delivered to the sink node, adaptive sampling techniques
[Ja04, Ma03], and cffect of network topologies in meeting real-time requirements of the

applications. This work may also help in configuration of sampling rates, transmission energy,

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sleep/active schedules at MAC layer, and input buffer read frequency at sink nodes for
minimizing the error in the end results due to tardiness of the data. Section 8.1 describes the
tardiness measure and analytical model is derived in Section 8.2. Section 8.3 presents results for
the model verification. Section 8.4 discusses tradeoffs between tardiness and energy consumption

in sensor networks. Concluding remarks are presented in Section 8.5.

8.1 Tardiness Measure

The difference between an ideal monitoring system, in which the processing/decision node has
instantaneous access to the values/events/parameters being monitored, and a distributed sensor
network lies in the age or tardiness of data available at the processing node. With latter, the
available data from different sensor nodes have different ages, which depend on network
characteristics and protocols.

For example, consider the scenario where the processing/decision nodes receives data from
multiple sensors. Let at time t, X,(t), ...Xn(t) be the data values available at the sink node from N
different source nodes about the phenomena under observation as. Let F(t) be the
processing/decision function that combines the most recent data from N source nodes at time t as

shown in Eq. 8.1. For an ideal monitoring system, as described above,

F(t) = h(X(t), Xx(t) ... Xn(1)) (8.1)

i.e., instantaneous data from all sensors is available at the processing node. However, in

distributed sensor network based system,

F(t) = h(X,(t-A), Xao(t-Ao).... Xn(tAY) (82)

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tardiness of Data in Process Monitoring Sensor Networks
(Case: Random Network Delay)

/ Periodic sampling at sensor node
‘ //,
SENDER
S

- - —————— -

ith @i+)" (i+2)" (i+3)" (i+4)"
sample sample sample ample

P sample TR, ECEIVER

D Di - -—

— f «—— »
: Bt

|
Input buffer read schedule
at receiver node

Tardiness of data

RECEIVER

e S T . e L S

D;: i sample network delay
TD(i,K): Tardiness of i, sample at ky,
read attempt of the buffer

Periodic access schedule for
receive buffer

Figure 8.2 Tardiness measure due to random network delay in process
monitoring sensor networks

Where A, corresponds to the tardiness of data from source i to the processing/decision sink node.
The A; in Eq. 8.2 values form a random process that is affected by the network protocols, losses,
sampling frequency, sleep schedule, etc. Characterizing this tardiness process allows the impact
of network characteristics to be summarized in a way that its influence on different applications

(based on different decision functions) can be evaluated more conveniently.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tardiness measure captures the age of the data used for computation at the receiver node.
Age of the data is defined as the time lag from the time data is generated at the sensor node to the

time data is used at the sink node by the application.

Tardiness Measure in Process Monitoring Sensor Networks
{Case: Random Data Loss)

Periodic sampling at sensor node
SENDER
ith (i+1)th (i+2)m (i+3)th (i+4 th
le le sample mple
samp samp p fﬁ. ’p sample RECEIVER
K *- A ®
)] ¢ D > e
Di | Time Disa
Input buffer réad schedule at
receiver node
4 Tardiness Process at Receiver
T
(1]
©
k-]
2
2
2
©
'_
{ RECEIVER
3
Lath
Di: I sample network delay P:%Te access schedule for

TD(i,K): Tardiness of iy, sample at ki

read attempt of the buffer receive buffer

Figure 8.3 Tardiness measure under random data loss in process monitoring
sensor networks

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.1.1 Tardiness under Dynamic Network Conditions

A process monitoring sensor network shown in Fig. 8.1 is considered. In this scenario, sensor
node periodically samples the physical environment for the data every ‘S’ time units as shown by
the vertical dotted lines in Fig. 8.2 and Fig. 8.3. At every sampling instant, generated sample is
packetized, and is immediately transmitted over single or multi-hop wireless network towards the
sink node. In this example, the sink node periodically accesses the input butfer for the received
data every ‘R’ interval as shown by red color dots. For the purpose of tardiness evaluation it is
assumed that each transmitted sample is time-stamped at the sender node, and all nodes in the
sensor network are time synchronized [Si04b]. In Fig. 8.2 and Fig. 8.3, D; is the network delay
suffered by the sample 7, and TD[i,k] is the tardiness of the data read at k™ successive read
attempt when sample 7 is present in the buffer. Dotted vertical lines with arrows shows the age of
the data read from the buffer at a particular input buffer read attempt. We now illustrate how
random delay and random losses impact the age of the data at the sink node. Two cases are
considered; in the first case packets only suffer random delay and no packet losses. In the second

case, packet suffers both random delay and random packet losses.

8.1.1.1. Tardiness Measure under Random Delay and No Network Packet Loss

Fig. 8.2 shows the case when samples suffer random delay in the network and does not suffer any
network packet loss. Network delay depends on factors such as active/sleep schedule in MAC
layer, paths selected by the routing protocol, and node distribution in the sensor network. Under
these conditions samples arrive at the sink node after suffering random delays. Depending on the
arrival time and the periodic read interval time ‘R’, same sample can be read muitiple times by
the end application. As shown in the Fig. 8.2, the age of the data increases linearly with time until

the next sample arrives.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 8.1 Parameters for tardiness analytical model

Purameter Description

D; Network delay of sample i
A Arrival time of sample i at sink
node
B, Time spent by a given sample in the
receive buffer until m™ read attempt
Bi max Maximum time sample i spends in
the receive buffer
P, Total packet loss perceived by the
application at a sink node
Py Network packet loss probability
L Random variable that models loss
characteristics of the network
D Random variable that model
network delays
S Sampling Interval used at the
source node to periodically sample
environment
Pya Total probability that packet is in-

order on condition that it arrives at
the sink node

p]j/SA Probability that packet is in-order
on the condition that it arrives at the
sink node and it suffers network
delay between (j-1)S and jS

M(t) Total packet arrivals in interval [0,t]
at a sink node
Wy Weight of the data generated by
sensor k in the network
fa(©) Delay distribution of the sensor
network
Fp(c) CDF of delay in sensor network
Pyrld] Packet reception rate at distance d
from the source node
7(d) SNR at distance d from the source
node
f Frame Length
l Preamble Length
T Absolute time at which input buffer
is read and tardiness is computed at
sink node
126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Note that age of the data 1s computed every time the input buffer is read at the receiver
node. In Fig. 8.2, sample i+ Isuffers higher delay than sample i+2 sample. In this case sample i is
read multiplve times at the scheduled read times until the sample i+] arrives at the sink.
Alternatively, sample i+/ is read only once as the sample i+2 arrives immediately after the first
read of the sample i+7. Thus in this case tardiness of data read from the buffer is more when
sample 7 is present in the buffer compared to when sample i+/ is present in the buffer. Since
sampling times at the sensor and read from butfer occur independently, the area under the curve

divided by the time interval gives the average tardiness of data from the source.

8.1.1.2. Tardiness Measure under Random Delay and Network Packet Loss

Fig. 8.3 illustrates the tardiness process when packets suffer from both random delays and
network packet losses. In wireless sensor networks packet losses depend on the network
congestion, collisions, and wireless link errors. When a data sample is lost then the prior sample
of data is used until the new data arrives at the receiver node. This is not different from the way
tardiness is computed in lossless but random delay case in Section 8.1.1. In Fig. 8.3, sample i+1
and sample i+3 are randomly dropped in the network. It results in increase in tardiness at
successive read as sample ¢ is read multiple time until sample i+2 arrives. In Fig. 8.3, relative
larger area of trapezoid indicates greater tardiness compared to Fig. 8.2.

From Fig. 8.2 and Fig. 8.3 it can be inferred that tardiness measure will be impacted by the
random delays and the random losses suffered by the data in the sensor network. Intuitively, it is
a function of network delay and packet loss probability, read buffer frequency, and sampling
frequency. In Section 8.2 we derive an analytical model for the tardiness of the data in process

monitoring sensor networks that relates different network parameters to the age of the data.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.2 Analytical Model for Tardiness of Data in Process Monitoring Sensor Network

Analytical Model for Tardiness

A
s E
k: A
i I
5 !
2] : E'
N |
o
=

i
-E 4 A, /
k: o] i
A i : A
a} SRR A
| ~ -—
% ® @ -J' v‘: D= @ D 4 A4 L]
B c
Time -
D; : ith sample network delay Random input buffer access at
Bi_max : Maximum time spent by sink node

sample i in the receiver buffer

Figure 8.4 Analytical Model for Tardiness Measure

This section derives an analytical model for the tardiness of data from a single source node to a
single sink node and then extends it for a multi-source to single sink node scenario. Analytical
model for tardiness is a function that relates random network delay, random packet loss
probability, and sampling interval to the mean age of the data at the sink node. Table 8.1 shows
list of different parameters used for the analytical model. Following assumptions are considered

for deriving the tardiness analytical model:

(i) Sensor node samples the environment periodically every
‘S’ interval and transmit data to a single sink node.

(i1) Sink node may randomly access the input buffer for data.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(1i1) We consider a case where source node transmits one sample per packet, so sample and
packets are used interchangeably in this chapter.

(iv) All nodes in the sensor network are assumed to be time synchronized for measurement
purposes. This does not mean that all the nodes carry out sampling at the same instant.

(v) It is assumed that packets arrives in-order at a sink node.

(vi) Data may get dropped in the network because of wireless link errors, collisions, or network

congestion.

8.2.1. Tardiness of Data from a Single Source

Fig. 8.4 illustrates a tardiness computation at the sink node. It considers a scenario when sink
node receives samples i, j, k, and [from a single source node without re-ordering after suffering
random delays and random network packet losses. Red solid dots are the random time at which
input buffer is accessed for the data at the sink node. Sample i which arrives at sink node at time
indicated by ‘B’ is randomly read from the input bufter until sample j arrives at time ‘C’ at a sink
node. It is assumed that most recently received sample remains in the input receive buffer until
next in-order sample arrives at the sink node. At every read schedule, tardiness of the data read
from the buffer is evaluated. Average height of a trapezoid in Fig. 8.4 indicates the average
tardiness during each consecutive read attempt until next in-order packet arrives.

In Fig. 8.4, let D; be the random delay suffered by the sample 7 in the network. Let B,, be the
total time spent by the latest sample in the input receive buffer at sink node at the time of m™”
periodic read. Consider a case when the latest sample read is i. Let TD(i,m) be the instantaneous
tardiness of data read during m™ read attempt when sample 7is present in the input receive buffer.
Let T be the absolute time at which m™ read of input buffer is performed. Then the tardiness of

data during read operation performed at time 7 is T(z), i.e.,

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T(r)=TD (i,m)=D,+ B (8.3)

For each arriving sample i at the sink node 0<B_<B where B; .« 1s the maximum time

spent by sample 7 in the buffer until a sample j>i arrives. Thus the tardiness experienced at the
sink changes with time as shown in Fig. 8.4.

By the application of the law of large numbers, we can assume that long-term time averages
can be replaced by the ensemble averages [Bert]. We can compute mean tardiness using graphical

argument. Using Fig. 8.4, time average of the tardiness 7(7) in the interval [0,t]

T_mx
0} N

' B D+
1 M =0 M i
- JT(f)dr:(—;@j _— 2 (8.4)

M)

where M(t) is the total sample arrivals in the interval within [0,t] for which tardiness is computed.
Maximum time B; ., that sample i stays in the buffer is determined by the difference in the

arrival time of the sample 7 and sample j where j>i.
Biimax :(SIMS,)*'(D/MD,) (85)

Where S;and S; are the sampling time at the source node and D; and D, are the network delays of
sample i and sample j respectively. Under certain conditions such as no network packet losses

and when delays are within certain bounds, j=i+1, i.e., adjacent samples are received at the sink

node without re-ordering or loss. Replacing B ..« in Eq. 8.2 with Eq. 8.3 and taking lim , we get

t—yoo

EL]] (8.6)

1133% T(r)dr = E[T] = y(——z— +E[L1E[D)
0

where L = (j-i)-S, such that § is the periodic sampling interval and i and j are the adjacent samples

received at the sink node where j>i. L is a r.v. that models loss characteristics of the network. D

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is a r.v. that models random delays of different samples that arrive at sink node and u is the
arrival rate of the samples at sink node. Let P, be the packet loss probability as perceived by the
sink node. Then we can determine expectation of mean time interval between two losses and its
second moment at the sink node as follows:

EIL]= 3" i(PH(U-P)S

S 8.7
1-P,

E[*]=) " i*P'(1-P,)S’

* and 8.8
:(1+PL)(ISJ " o

L

Reciprocal of EfL] given by Eq. 8.7 is the mean arrival rate p, i.e.,

(8.9)
Combining Eq. (8.6)—(8.9), we can determine expectation of the tardiness T, i.e., mean tardiness
of the data is:

LY 1+ P
E[T]= — | —= :
[7] E[D]+(2)£1_PL jS (8.10)

and second moment of tardiness is given by

E[T*]= E[DZ]+(1+PL)(1 SP J +2(1_SP JE[D] (8.11)

From Eq. 8.10, we conclude that tardiness of the data at each read attempt depends on the
sampling rate, network delay characteristics and network packet loss probability. Increase in

network delay, network packet losses and sample time period results in an increase in the

tardiness of the data in sensor networks.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.2.2 Aggregate Tardiness of Data from Multiple Sources to a Single Sink

The model for tardiness given by Eq. 8.10 is valid for tardiness for the source-sink pair. In sensor
networks, many-to-one data transfer is the common data flow scenario. We consider a case when
sink node such as fusion node in the network receives data from multiple sources. As tardiness
assoclated with different sources may not be similar, it is necessary to evaluate the aggregate
tardiness of the result computed using inputs from multiple sources. Let there be N sensors from
where data is aggregated at the sink node. Let W, be the weight of the data from the sensor k. The
weight can be assigned to each sensor according to the criticality of the data generated by each
sensor node. When the data gathered from different sensors are equally important, equal weights

may be used. Then aggregate weighted tardiness is defined as:

AI
> E[T W,
1= ki (8.12)

N
2 W
k=1

EIT

aggregate

8.2.3 Consideration for Re-ordered Packets at a Sink Node

In a sensor network packets may arrive out-of-order because of random delays suffered by them
in the network. Depending on the routing algorithm, different packets may follow different paths
thus may suffer variable delays. For certain real-time applications, out-of-order packet arrival
may not be acceptable and are treated as lost packets. For example, in real-time target tracking
applications, it is important to have most recent estimate of the position of the target for real-time
tracking and prediction. Therefore, all late arrivals of packets with old information may not be of

any use to the application and can be treated as lost. In this section, we consider impact of re-

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ordered packets on the tardiness of data and adapt the tardiness model given by Eq. 8.10 to
provide accurate estimate of tardiness in presence of packet reordering.

There are two steps involved in developing model that consider re-ordering of packets (i)
Estimation of packet loss probability, i.e., P, perceived by the application at the sink node, and
(i1} Estimation of mean delay of the packets that arrive in-order at a sink node, i.e., £/ D|I] which
is conditional expectation of the delay given that packet arrives in-order.

) Estimation of P.: When packet-reordering is not considered then P, is equal to the
network packet loss probability Py. However, when packets are treated as lost because of out-of-

order arrival then packet loss probability is:

=1- 1-p ,
P, P, 0=p) (8.13)

where Py, is the probability that packet is in-order given that it has arrived at the sink node. Py is
the probability that packets are lost in the network because of wireless link errors. It is assumed
that network is not congested and there are no collisions. We estimate conditional probability of
in-order arrival, 1.e., Py, as follows:
Consider packet i, i+7, and i+2 in the order of generation at a source node. Let S, S,,;, and
S;+2 be their generation time such that
Siv1 =8 =842 =814 =S (8.14)
Let D, be the random network delay suffered by the i" packet then its arrival time A, is:
A=S5+D (8.15)
By definition, packet i arrives in order if A;<A;,; where [<<N where N is the total number of
arrivals after packet i. A delay distribution of a network provides an estimate of delay suffered by
different packets transmitted from the sensor node. Given the delay suffered by a packet
generated by the sensor, then that packet arrive in-order if all future packets delays are such that

they arrive after the current packet. Note that we consider a scenario when a sensor node

periodically generates a packet every S time interval.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Let f{c) be the delay distribution of a sensor networks and let Py be the network packet loss
probability because of wireless link errors. Consider different possible ranges of delay of size S
that a given packet i may suffer in the network, and for each possible delay range, probability of

the packet i arriving in-order is computed as follows:

Case 0< D;<S: In this case packet i is not re-ordered, because packet i arrives at the sink node
before packet i+1 and subsequent packets are generated at the source node. Then probability of

in-order arrival of packet i, when packet delay is between 0 and S is:

N
pf W [0 (8.16)
0

Case S< D;i<2S: In this case, packet i suffers delay between S and 2S. In this case packet i arrives
in-order if either packet i+/ is lost in the network or when packet i+1 arrives at sink node such
that arrival time A;<A;,; Note that all other future packets other than i+1 will always arrive after
packet i as they are generated after the worst case arrival time of packet i, i.e., when delay
suffered by packet i approaches 25. Therefore, probability of packet i arriving in-order when its

delay is between S and 2 is:

28 28
25 , _) _
P =pn J fa(e)de+ (1= py) Sjp(DHpc $)fu(c)de .17
25 28
=py [fa(@de+U=py) [U=Fplc=$)f,(c)de
M S

where F (a) is the CDF of the r.v. D that models delay in the network.

Case 28< D;<3S: Similarly i" sample arrives in-order when both i+] and i+2 samples are
dropped in the network or if they arrive then their arrival time is greater than A;. Therefore
probability of in-order arrival after considering all possible combinations of arrival and loss of

i+1, i+2 samples is given by:

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38 38

p3SA =py [fa(©de+ py-py) [U=Fplc=S)f,(e)de+
1 5 A
EN
pr=py) [A=Fplc=29)f, ()de+ (8.18)
28
kN
(=py) J.(l_FD(C_S))U—FD(C—QS))fd(c)(lc
28

Case k<D;<(k+1)S: For a general case, packet i arrives in order if for all possible combinations of
arrival and loss of future k packets, the arrival time A;<A,,; where 1<j<k. For lost packets, arrival
time is treated as infinite. Therefore

ks (ks

(
Pﬁ)s =py J. of Qe+ py' N (1=py) .[Al-Fple=SNf o+
£ ky

ks

(k+H)s
. 8.19
o py) | dl-Fe-29)f 0+ (8.19)

ks
(ks

(-py) | U-Fle-S)-Fie-29). (A—Ffe4SH Sk
ks

We can thus conclude that conditional probability that packet is in-order given that it has arrived
is given by summation of all terms given by Eq. 8§.16-8.19:
Piia=2.Pl (8.20)
j=t

Next step is to estimate network packet loss probability Py using realistic wireless link loss
model. We use the model presented in [Zu04], which provides packet reception rate as a function
of distance from the transmitter when Manchester encoding and NCFSK modulation schemes are
used, i.e.,

yd) 1

prr{dl=(-Zexp 0.64 16781 8.21)

where y(d)is the SNR at a distance d between source node and the sink node, fis the frame

size, and [is the preamble length. SNR at a distance d is a function of transmission power.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

d)gp = F gp —PL(d) gg =, 4p (8.22)

where F jpis the transmission power, PL{d),pis the log-normal shadowing path loss radio

propagation model [Rapp] and P, 4p is the noise floor.

Using Eq. 8.21, network packet loss probability between source node and sink node separated by

distance d is determined as:
py =1-prrld] (8.23)

Substituting P, and Py from Eq. 8.20, and Eq. 8.23 in Eq. 8.13 we get total packet loss

probability P, due to packet reordering and network losses, i.e.,

PL :1—[Zp]fAj(prr[cZ]) (8.24)
=

(ii) Estimation of mean delay of packets given that they arrive in-order E[D|I]: In tardiness
mode] given by Eq. 8.10, EfD] is the expectation of the delay of all the packets that arrive at the
sink node irrespective of their order of arrival. However, for applications that cannot tolerate
reordered packets, the delay of reordered packets should not be included in the estimation of the
expected delay at the sink node. However when we estimate expected delay based on the delay
distribution of a network, it also includes delay for packets that arrive out-of-order at the sink
node. Therefore, given the delay distribution f,(c) of the network, it is necessary to include
correction to estimate expected delay for all packets that arrive in-order. We can estimate the

conditional expected delay E[D|I] given that packet arrives in-order with the similar approach

used for computing P;, 4 given by Eq. 8.20. We get

©
Zpéu
ED|]=X1 (8.25)
Prra
where

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

' R , i
pl’j/] =on [et py P py) [c0-re-S)fder
Gbs (s

w2 [d-Bfe-2S)f 0k .. (8.26)

(-Ds

B
H=p)™! | d=Ffe=9)1-Ffe=29).. (1~ Fp(c~(-DS)f 0
(j-Ds

Eqg. 8.24 and Eq. 8.25 gives the new estimates of packet loss probability and the conditional
expectation of delay respectively that considers impact of packet reordering. Now mean tardiness
as given by Eq. 8.10 can be written as follows that is valid for estimating mean tardiness for
applications that does not tolerate reordered packets. Therefore, new estimate of mean tardiness

1S:

2—[ip/§Aj<pz~l~[dl>

Jj=1

[ipmj(mm)

Jj=1

(8.27)

E[T']:E[D|I]+% S

8.3 Verification of Analytical model for Tardiness

Analytical model for estimation of mean tardiness given by Eq. 8.27 for the tardiness measure is
validated using simulation results. The model considers impact of random network packet losses,
network delay, packet reordering, and periodic sampling interval on the tardiness of the data
between a source-sink pair. Source node is configured to generate samples periodically after S
interval. We consider uniform network packet loss probability Py and exponential distribution for
the packet delays with mean delay D. Fig. 8.5 compares the simulation and tardiness model
results for single source case under different network packet loss and delay conditions. Table 8.2

shows data corresponding to results shown in Fig. 8.5. For these experiments we consider an

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

application that does not tolerate packet re-ordering, i.e., one that uses most recent measurement
available in the input receive buffer, and all late out-of-order packets are treated as lost. In Fig.
8.5, model is verified for three cases 1-3 in order of increase in packet re-ordering. Intuitively,
degree of re-ordering depends on the standard deviation of the delays suffered by packets
between source-sink pair. Case 1 is an example of no packet re-ordering where sampling interval
§ = 5.0 seconds and standard deviation and mean delay is 0.1 seconds. However for Case 2,
packet reordering increases where sampling interval § = 5.0 seconds and mean delay and
standard deviation of exponential delay distribution is 20.0 seconds. We consider high network
delays based on the observation that in sensor networks age of the data can be in tens of seconds
[Exp]. For Case 3, $=5.0 seconds, and mean delay and standard deviation of delay is 50.0
seconds. Case 3 corresponds to highest degree of packet re-ordering and Case 1 corresponds to no
packet reordering. As seen in Fig. 8.5, simulation results and model results for tardiness are in

close agreement with each other for all three cases of varied degree of reordering. For case 1 of

Table 8.2 Tardiness Model Verification under different network loss and delay
conditions, Case 1 Mean exponential delay=0.1 second, Case 2 Mean exponential delay=
20.0 seconds, and Case 3 mean exponential delay = 50.seconds when sampling interval
S=5.0 seconds

Simulation P=0.0 P=0.1 P=(). P=0.5 P=0.7 P=0.9
& Tardiness Tardiness Tardiness Tardiness Tardiness — Tardiness

Model (Seconds) (Seconds) (Seconds) (Seconds) (Seconds) (Seconds)

Meodel 2.57 3.14 4.76 7.62 14.26 47.6

e R
Model 14.45 15.55 18.45 23.14 32.71 71.2

199 21.17 2459 3005 4105 83.84

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tardiness Model Verification under different Network Loss and Network Delay
S=5.0 sec. and Exponential Delay Distribution
Case 1: Mean Delay D=0.1 sec., Case 2: Mean Delay=20.0 sec.,
Case 3: Mean Delay=50.0 sec.

120

100 - P
2 7/

- r
'tgs 80
§ 60 - —e&—— Simulation Case 1
ol ~-0--- Model Case 1
S 404 ——-v-—— Simulation Case 2
'5 ——A—-- Model Case 2
5 20 —-#— Simulation Case 3
B ——o—— Model Case 3
0 .

0.0 0.2 0.4 0.6 0.8 1.0
Network Loss Probability Py

Figure 8.5 Verification of Tardiness model under for different Network Loss Rates and
Network Delays, Case 1 corresponds to random losses and no packet reordering, Case 2
and Case 3 corresponds to random network losses and high to very high degree of
reordering

Table 8.3 Impact of packet delay, and loss probability on the packet reordering when
sampling interval S=5.0 seconds

Mean Exponential p=0.0 p=0.4 p=0.7
Delav (seconds) (Fraction of out-of- (Fraction of out-of~ (Fraction of out-of-

order packets) order packets) order packets)

0.1 0 0 0
5 0.192 0.133 0.075
10 0.344 0.26 0.166
20 0.49 0.404 0.286
50 0.65 0.577 0.461
80 0.71 0.651 0.547
100 0.744 0.68 0.584
150 0.788 0.735 0.648
139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Impact of Mean Network Delay and Standard Deviation on Packet re-ordering

= 10
2
T
=
= 0.8
s e o
S O
[=] . O _—_____'
w06 o T
< g —e— PN=00
g /)r’ O PN=0-4
S 0.4 7 “o //
© S ——v-~ PN=0.7
S ;
£ o
2 024¢
< 54
= !
s
m 0.0 T T T T T T T
0 20 40 60 80 100 120 140 160

Mean Delay/Standard Deviation of
Expon. Delay Distribution

Figure 8.6 Impact of mean delay and standard deviation on the packet re-ordering under
different network packet loss conditions

Table 8.4 Tardiness model verification under varying sampling interval S

Sampling Interval

(seconds)

10

20

40

60

80

Tardiness
Simulation {seconds)

hasec

5.61

12.66

18.09

26.15

38.63

49.47

59.81

140

/

on

(seconds)

Tardiness based on Model

6.79

14.47

19.89

27.53

39

49.74

59.99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tardiness Model Verification under Varying Sampling Interval S
PN =0, Mean Delay=20.0 sec

70

60 -

50 A

40 A . .
—e— Simulation

..... o Model

30 +

20 A

Tardiness (seconds)

10 A

O T T T L — T

0 20 40 60 80 100

Sampling Interval (S seconds)
Figure 8.7 Verification of tardiness model with varying sampling interval

no packet reordering, simulation and model results overlap each other. As seen in the figure, for a
given network packet loss probability Py packet reordering may lead to significant increase in the
tardiness of the data. Fig. 8.6 corroborates the impact of standard deviation of the network delay
on the fraction of the packets that arrives out-of-order. Table 8.3 shows data corresponding to
results shown in Fig. 8.6. For a given network packet loss probability, fraction of packets that
arrive out-of-order, increases with increase in standard deviation. Note that exponential delay
distribution is considered in Fig. 8.6. In the second set of experiment for model verification,
sampling interval S is varied for a given network packet loss probability and mean delay, and its
impact on the tardiness is studied for a source-sink pair. Fig. 8.7 shows the simulation and model
results of tardiness under varying sampling interval S. Table 8.4 shows data corresponding to
results shown in Fig. 8.7. In this experiment Py =0.0, and mean exponential delay D=20.0
seconds. As seen in the figure, tardiness increases with the increase in sampling interval and

mode] results are in close agreement with the simulation results.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.4 Tradeoffs between Energy Consumption and Tardiness of Data

Most of the sensor networks are energy constrained. In this section, we investigate the
tradeoffs between energy consumption and the tardiness of the data. As seen in Section 8.2 packet
loss probability, network delays, and sampling interval are the key factors that impact the
tardiness of the data. Application can achieve desired tardiness bound between source and a sink
node by configuring sampling interval, by controlling network packet losses (by adjusting
transmit power for example), or network delays (via routing algorithms, adjusting sleep schedule
etc.). Configuring each of these parameters to achieve desired tardiness may impact the total
energy consumption in the sensor network. Fig. 8.8 shows the simulation network used for
performance analysis. It consists of 221 nodes in a grid of 15m x 15m sensing field. All data to
the sink node at the center of the grid, indicated by red dot at X=7, Y=7. In this section, we
consider single hop transmission. We consider a scenario when sink node periodically reads input

buffer for the most recent available data with read interval ‘R’. Each packet transmitted by a

Table 8.5 Parameters to determine packet reception rate for MICA2 platform [Zu04, Chp]

Parameter Name Parameter Value

Preamble 18 bytes

Frame Length 36 bytes

Encoding Manchester (2:1)

Modulation NCFSK

Packet Time 23.3ms

Noise Floor -105.0dBm

Output Power -20dBm to 10dBm (Chipcon
CCI1000 radio 433/315
MHz)

Path Loss Exponent 4.7 (outdoor)

Shadowing Standard 3.2

Deviation

Close in reference 1m

distance

Close in reference power 55dBm
142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 8.6 CC1000 radio current consumption at different transmission power [Chp]

Tx Power Current Tx Power Current
(dBm) Consumption (dBm) Consumption

{mA) (mA)

-19 6.9 -4 9.4
-18 7.1 -3 9.6
-17 7.1 -2 9.7
-16 7.1 -1 10.2
-15 7.4 0 10.4
-14 7.4 1 11.8
-13 7.4 2 12.8
-12 7.6 3 12.8
-11 7.6 4 13.8
-10 7.9 5 14.8
-9 7.9 6 15.8
-8 8.2 7 16.8
-7 8.4 8 20
-6 8.7 9 22.1
10 26.7

source node to the sink node may suffer random losses in the network. In this chapter we consider
network traffic such that it does not lead to packet losses because of network congestion. All
packet losses in the network are considered to be due to wireless link errors. We use a wireless
link loss model given by Eq. 8.21 and Eq. 8.23 for simulating wireless link losses in the
simulator. Table 8.5 shows different operating parameters used for determining packet loss rate as
a function of distance between source and a sink node for a MICA2 hardware platform. As seen
the table, we consider outdoor wireless environment and packet length is 54 bytes. In Fig. 8.8,

maximum distance between any source-sink pair is less than 10m and all nodes can communicate

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with the sink node in a single hop. Therefore, for this case we ignore delay suffered by packets
between source and sink node. Moreover, all packets arrive in-order in a single hop
communication. Three sets of experiments are performed for understanding tradeoffs between
energy consumption and tardiness.

In the first experiment, all source nodes in Fig. 8.8 sample their environment periodically
with sampling interval S=5.0 seconds. Moreover, transmission power of each source node is kept
constant, i.e., T,=7dBm. Average loss rate is computed between all source-sink pairs for a
network topology shown in Fig. 8.8 using Eq. 8.21, and Eq. 8.23 over 500 iterations. Fig. 8.9(a)
and Fig. 8.9(b) shows results for the experiment 1.

Fig. 8.9(a) shows tardiness of the data from each source to the sink node at X=7, and Y=7 in
Fig. 8.8. In this case average tardiness for all source-sink pairs is 2.81 seconds with standard
deviation of 1.39 seconds. In Fig. 8.9(a), results show that tardiness of different source-sink pairs
varies widely between 2.0 and 10.17 seconds in a grid. Fig. 8.9(b) shows the corresponding

energy consumption at each node in the network after 500 seconds of simulation time. Total

X
0,0 o
o oo oio/0o0o 00000000
Yoo
o/oj0o/oj0oojo|/oje|0j0o|ee e
o/ 00000000 000 0o
oonoRxooxxxx
o|/0o0o/0o0o00 00 0000 0o
ooocoomw&gcoooo
v/ eo|leo|/eo|ojeo eTo o0 0o/eo|/eo/eo/ee
o(oj0o/o/o0j0o/ 00|00 /0oe 00
o oo ojo 0oj0o|/00 0000 00
o 0o/0o 00|00/ 00 00 0o oo
v oo/o/0o0o/0o0o 000l 00 ee
o 0o0o0o0o/oo/0oeo0o00oe 0o
o 00 oo 0oj0o/0oo/ojoo0 00
o/0oj0o|jo/0oco/0o 00 0jeee oo

-
R
=
£

Figure 8.8 Network with 225 nodes in a 15m x 15m grid, sink at X=7, Y=7

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

energy consumption is computed using Table 8.6 that gives current consumption for a given
output transmission power for the CCL0O00 radio, which is used by the MICA2 hardware
platform. For energy consumption computation it is considered that operating voltage of MICA2
based platform is 3V. As seen in Fig. 8.9(b), when sampling rate and transmission power of all
nodes is same, then each node consumes constant amount of energy, i.e., 117.432mJ in 500
seconds.

Consider a data fusion application where it is necessary to have data with similar tardiness at
the sink node. Using Eq. 8.27, desired tardiness can be achieved by adapting network delay, total
packet losses or sampling interval. In the second experiment, sampling interval § of each source
node is adapted to achieve the constant mean tardiness of 2.81 seconds between all source-sink
pairs. In this case transmission power of each node is kept constant, i.e., T,=7dBm. Fig. 8.10(a)
shows the sampling interval of all source nodes in a grid to achieve the desired tardiness. As seen
in the Fig. 8.10(a), sensor nodes that are closer to the sink may sample environment at a slower
rate. However, as the distance between source node and sink node increases, sampling interval
decreases, resulting in higher sampling frequency. The intuition behind increasing the sampling
frequency with distance is that when there is high network packet loss probability then sending
larger number of packets has the potential to deliver more information to the sink node hence
results in decreasing tardiness. It is important to note that this study does not consider occurrence
of hot-spots, i.e., network congestion in the network due to increase in sampling rate at certain
regions of the network. In all experiments, link bandwidth is not exceeded and there are no packet
collisions. All losses are due to wireless link errors. Fig. 8.10(b) shows the energy consumption at
all nodes in a grid when sampling intervals are configured to achieve the desired tardiness. As
seen in the figure, energy consumption shows significant amount of variation depending on
sampling frequency of the node. Nodes that are closer to the sink node consume significantly less

amount of energy compared to nodes at corner of the network grid. Average energy consumption

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tardiness Profile
Base Case
$=5.0, Tx=7dB, 221 nodes:in a. 15x15m grid
Average Tardiness=2.81sec, STD=1.39 sec

Tardiness {seconds}

@

Energy Consumption - Base Case
Simulation Time = 500 seconds
Tx Power = 7dB, 221 Nodes in 15m x 15m grid,
Sink at X=7, Y=7

@
3]

=

E

s - 1170
g . 1175
£ 1180
S B 1105
f =

[»]

o

e

2

[+

L=

wh

Figure 8.9 Tardiness and energy consumption profile of a sensor network field

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is 271 mJ with high standard deviation of 131.27 mJ in 500 seconds of simulation time.

In the third experiment, transmisston power of each source node is varied while keeping
sampling interval S constant, i.e., S=5.0 seconds to achieve the constant tardiness of 2.81 seconds
for each source-sink pair. By changing the transmission power of the source node, packet loss
rate between source-sink pair can be adjusted to achieve the desired tardiness. Aforementioned,
packet delivery rate depends on different environment factors such as distance between source
and sink node, path loss exponent, and the transmission power. As a first step, for each source
node, acceptable network packet loss probability Py is estimated using tardiness Eq. 8.27 to
achieve the destred tardiness of 2.81 seconds. In the next step transmission power is estimated to
achieve the acceptable Py (calculated in the first step) using wireless loss model proposed in
[Zn04] given by Eq. 8.21 and Eq. 8.23. Fig. 8.12(a) shows the transmission power of each source
node such that mean tardiness between source-sink pair is 2.81 seconds. MICA2 Chipcon
CC1000 radio can transmit at power between -20dBm and 10dBm at 433/315 MHz [Chp]. In
Fig. 8.11(a), all nodes that require transmission power below -20dBm are configured to operate at
-20dBm. In this experiment none of the source node needs transmission power greater than 8.75
dBm. For energy consumption computations, we have used the power consumption at each node
which is not the same as the transmitted power. The relationship between actual power required
and transmitted power for MICA2 specified in [Chp] was used assuming that MICA2 mote
operates at 3V. Note that nodes that are closer to the sink node require low transmission power
compared to nodes at farther distance from the sink node in order to maintain same tardiness
between source-sink pair. Note that we have assumed that increase in transmission power does
not lead to interference with the neighboring node. This is possible when a TDM based MAC
protocol is used for packet transmission. Fig. 8.11(b) shows the energy consumed by the different
nodes in the grid during 500 seconds of simulation time. Note that average transmission energy is
77.42 mJ with standard deviation 26.55 mlJ. This is significantly better than the case when

sampling interval was adjusted to meet the desired tardiness. Fig. 8.12 shows the total energy

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Adaptive Sampling
Tardiness = 2,81seconds
221 Nodes in a 15m x 15m Grid with Sink at
X=7,Y=7

pes

- 3
- 4
a5
w 0 B
2 =7
g -3
@ _-—
= i
8 ki
£
g
g
=3
-
w
¥ 0
(@)
Energy Consumption Profile - Adaptive Sampling
Average Energy=271mJ, $TD=131.27,
Tardiness = 2.81sec, Tx=7dB
100014
J 1000
EE 1200

o
o
f=1

Energy Consumplion (o}
.
3

(b)

Figure 8.10 Application of tardiness measure in adapting sampling rate of source nodes to
achieve the desired Tardiness 2.81 seconds with standard deviation =0

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LR Y

Adaptive Transmission Power
221 Nodes in 15m x 15m Grid and Sinka
at X=7,Y=7, Tardiness = 2.81seconds,S=5 seconds

Tx Powet (Bm)

(a)

ENERGY PROFILE: ADAPTIVE TRANSMISSION
5=5.0, Tardiness=2.81 sec, Simulation time=500 sec
221:nodes in 15m x-15m-grid
Average = 7742 mJ, STD=26.55

R n

£

S

£ i R0)
;3 140
g TR 150
2

S

e

&

]

=

1T

(b)

Figure 8.11 Application of tardiness measure in adapting transmission power of source
nodes to achieve the desired tardiness 2.81 seconds with standard deviation =0

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Total Energy Consumption
Simulation Time=500 seconds, Average Tardiness is 2.81
seconds, 221 Nodes in 15m x 15m grid, Sink at X=7, Y=7

70000
60000
50000
40000

:
30000 Lﬂ
20000 -

- .:
0 [

Base Adaptive S Adaptive Tx

Energy Consumption (mJ)

Figure 8.12 Comparison of total energy consumption in a 500 second interval for three
different sensor network configurations with similar average tardiness characteristics
consumed in 500 seconds of simulation time for all three experiments when similar average
tardiness was achieved. As seen in the figure, adaptive transmission power performs best in terms
of energy efficiency while maintaining same tardiness for all source link pairs. Adaptive sampling
does not help in conserving energy but in this case all source sink pairs have the same tardiness of
2.81 seconds. This study illustrates one of the applications of the tardiness model to optimize

network configuration parameters to achieve tardiness goals of an application.

8.5 Remarks

In sensor networks, network dynamics, networking protocols have significant impact on the
tardiness of the data delivered to the processing nodes. The application requirements and the
characteristics of the process being monitored will impose a limit on the tardiness that can be
tolerated. This chapter presented an analytical model for the tardiness that relates age of the data
used for computation with network characteristics such as the network delays and loss rates, and

transmission power, as well as the sampling frequency. Analytical model was validated using

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

simulation results. Tardiness model is then used to generate tardiness profile of a sensor network.
The use of model to evaluate alternate strategies to achieve tardiness targets required by an
application was also illustrated. Simulation results for the parameters considered show that
adaptive transmission power scheme is more energy efficient compared to adaptive sampling for
meeting the desired tardiness requirements of the end users. Application of tardiness measure is
demonstrated in evaluating the performance of three different routing protocols, i.e., random
routing, rumor routing and zonal rumor routing (ZRR). There are many potential applications of
the tardiness measure such as configuring sleep/active schedules of the MAC layer, sampling rate
and transmission energy to meet real-time requirements. The tardiness process characteristics
effectively capture the impact of network characteristics on the data used at sink nodes for
decision making. Application-specific tardiness bound requirements can be used to tune the

network parameters to achieve sensor network application’s real-time requirements.

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9

IMPACT OF MULTI-HOP COMMUNICATION ON
TARDINESS OF DATA IN WIRELSSS SENSOR
NETWORKS

Multi-hop communication is required in a sensor network to route data from the source node to
the sink node using multiple relay nodes. Due to limited transmission power of the node
transmitter and need for long range transmission, multi-hop communication becomes
unavoidable. Introduction of multiple relay nodes in the path from source to the sink node
introduce added delay; alternatively there may be decrease in total energy consumption for
communication between source and sink nodes. The focus of this chapter is on investigating the
impact of multi-hop communication on tardiness of data between source and sink nodes. This
chapter addresses tollowing questions:
Given the transmission power of the sensor nodes
1. What’s the impact of multiple relay nodes on the tardiness between source and sink
nodes?
2. What are the tradeoffs between energy consumption and tardiness of data in multi-hop
sensor networks?
Section 9.1 derives the tardiness model for the multi-hop path between source and the sink node.

Section 9.2 illustrates the impact of multi-hop communication on tardiness based on the analytical

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

model. Section 9.3 demonstrates the application of tardiness measure to compare routing
protocols based on the characteristics of the path selected by different routing protocol between

source and the sink nodes. Concluding remarks are presented in Section 9.4,

9.1 Multi-Hop Communication Analysis

Fig. 9.1(a) shows a direct communication scenario between source node A and a sink node C
separated by distance d. Alternatively, Fig. 9.1(b) shows multi-hop communication scenario
between source node A and a sink node C through a relay node B at the center. For direct
communication case as shown in Fig. 9.1(a) the tardiness of data between source and sink node
separated by distance d is given by Eq. 8.10 in Chapter 8 when no packet reordering is present in
a direct communication. Alternatively, when multiple intermediate relay nodes are used for the
communication then the effective loss rate between source and sink decreases due to decrease in

the distance between two adjacent nodes in the path while keeping other factors such as Tx

d
: ©

Source (a) Sink

d/2 d/2
SRRSO
_/

Source Relay Node Sink
(b)

Figure 9.1 Single-hop and multi-hop communication (a) Single-hop communication, (ii)
Multi-hop communication

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

power and channel characteristics same. Using packet reception rate model given by Eq. 8.21 in
Chapter 8, packet loss during network errors between Node A and Node B and between Node B

and Node C is given by:
= poc =1 Far(95)
Pap = PpC RR 2 9.1)

where Frr (%) is determined using Eq. 8.21. Then end-to-end packet loss rate between node A

and C in Fig. 9.1(b) due to network errors is given by

Pac :1*(PRR<%))2 9.2)

When there are total n nodes in the path between source and sink nodes (inclusive of source and
sink nodes), separated by equal distance then the end-to-end loss rate due to network error is

given by

n—1
Psource-sink = 1- (PRR (% _ 1)) (9.3)

Intermediate relay nodes have the potential to introduce random delay because of
processing/communication overheads at relay nodes. Let each node in the path from source to
sink introduces uniform random delay between MIN and MAX. When propagation delay is
ignored then mean delay between source and sink nodes in a multi-hop network is the sum of

delay overhead due to relay nodes.

M.
EID) = (=DM 0

In Eq. 9.4, it is assumed that source node and all intermediate relay nodes introduce random
delay. When source samples with sampling interval S, where source and sink nodes are separated
by distance d, and no packet-reordering is considered then using Eq. 8.10 in Chapter 8, Eg. 9. 3

and Eq. 9.4, the tardiness between a source and sink node is given by

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EIT Jyuiri-nop = (n=1X

n—1
My +max . (1Y 2=(pr@_))
—)+| = S
where n>2 (9.5)

2 (e)

when average delay suffered by packets at intermediate relay node including source node is

Dm,g then expectation of tardiness is given by

n—1
1| 2~ (prr(d n— 1))
ElT) yinrr-nop = (0 =D(D,,) + 5 . | where n>2 (9.0)
(0
(p rr(n —1>>
9.2 Impact of Multi-Hop Communication on Tardiness

In this section we use the model given in Eq. 9.5 to understand the impact of multi-hop
communication on that tardiness and the total energy consumption in the sensor network.

For a given node transmission power and distance d between source and sink node, as the
number of nodes increases in a path between source and sink nodes the tardiness of data may
show monotonic decrease and increase within certain range of number of hops as shown in Fig.
9.2(a). It is assumed that at each intermediate node There is a critical inflection point in terms of
number of nodes in the path up to which tardiness decreases monotonically for a given
transmission power and distance between source and sink nodes and after that it monotonically
increases. Fig. 9.2(b) shows the inflection point for tardiness in terms of number of hops for a
scenario when distance between source and sink node is 100m and transmission power is varied
between 0dBm and 30dBm. As seen in Fig. 9.2(b) as the transmission power increases inflection
point decreases. Inflection point indicates the optimal number of intermediate nodes that are
necessary such that tardiness is minimum between source and a sink node. When number of total
nodes is below inflection point then that result in increase in end-to-end network error loss

probability between source and sink node with a tendency to increase the tardiness. Moreover,

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Impact of Tx. Power on Tardiness in a Mult-Hop Network

30

25 |
|
o) |
T 20
g LY
3 | ——& —— Tx=0dBm
$! { O Tx=5dBM
> 151 \ ! ———y-—= Tx=10dBm
2 \ —o=fB—- Tx=15dBm
= | = ° — @ — Tx=20dBm
o1 b
fa Vo
l% | B
5] “ ! H
0 T L T S——
0 10 20 30 40 50
Nurnber of Relay Nodes
Number of Hops at Transition Point for Tardiness
22
20 -
18 -
[%]
5
o 16 1
b4
>
& 14
[u]
o
o 124
g
£ 10 A
=)
b4
8 -
6 -
4 T T L T T T T

0 5 10 15 20 25 30 35
Tx Power {(dBm)
(b)

Figure 9.2 (a) Impact of multi-hop communication on tardiness under varying
node transmission power when distance between source and sink node =
100m, S=5.0 seconds, (b) Optimal number of relay nodes to achieve minimum
tardiness for varying transmission power of a node.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Source _ . ———~ - LTI T ~===~_ Sink

PR \‘\ /// \\\/// \\V// N
é 00 0O \6 000000 O0OO0OO0OO0OO0OO0oOO0 }
1 2 3 5§ 6 7 8 9 10 11 12 13 14 15 16 17 18
[0,2] [0,40]

Figure 9.3 Multi-hop linear network topology (distance in meters)

less number of intermediate nodes means that less amount of time is wasted in the network due to
processing/communication delay within intermediate nodes thus resulting in decrease in
tardiness. When number of intermediate nodes is greater than inflection point then time wasted at
intermediate nodes due to processing/communication overheads is the dominating factor. Thus
there exist an optimal number of nodes such that competing factors end-to-end network loss
probability and time wasted in the intermediate nodes results in minimum tardiness.

In the second set of experiments we are interested in understanding the tradeoffs between
tardiness and energy consumption under varying transmission power. Fig. 9.3 shows the linear
multi-hop network topology used for communication between a source and sink node. In Fig. 9.3
source and sink nodes are separated by a distance of 38m. All white colored nodes acts as relay
nodes between source and sink node. A subset of the relay nodes may be used for forwarding data
for a given transmission power. A relay node is selected such that it is the farthest node from the
source and the loss rate between source and relay node remains 0. For example, for a certain
transmission power relay nodes 5, 10, and 15 are selected for forwarding data between source and
sink node. In this case these particular nodes are selected because they form the minimum set of
nodes in the path that are necessary to maintain 100% reliable delivery between source and sink
nodes without any retransmissions in the network.

Fig. 9.4(a) shows impact of transmission energy on the tardiness of data between source and
sink node shown in Fig. 9.3. As the transmission power increase tardiness decrease monotonically
when optimal number of intermediate relay nodes are selected for forwarding in the path between

source and a sink node. When transmission power increases then optimal number of intermediate

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nodes required for reliable forwarding of data decreases monotonically; It results in decrease in
total processing and communication overheads at relay nodes hence the decrease in tardiness of
data between source and a sink node. Fig. 9.4(b) shows the amount of energy consumed during
reliable delivery of data from source to a sink node using multi-hop network under different
Table 9.1 Impact of Tx. Power on Tardiness and Energy consumption in a multi-

hop network, for 100 packets generated with packet time 23.3ms, operating
voltage =3V for CC1000 radio (extrapolated Tx power)

Transmission Tardiness Lnergy
Power (seconds) Consumption

(dBm) (mJ)

-9 8.2 8.2
-6 8.2 8.2
3 5.5 5.5
0 5.5 5.5
3 5.5 5.5
6 4.6 4.6
9 4.6 4.6
12 4 4

15 3.7 3.7
18 3.7 3.7
21 3.7 3.7
24 3.4 3.4
27 3.4 3.4
30 3.1 3.1

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Impact of TX Power on Tardiness in a Multi-Hop Networks

Tardiness (Seconds)

Tx Power (dBm)

(a)

Impact of Tx Power on Energy Consumption in a Mult-hop Network

12000

10000 ~

8000 A

6000 -+

Energy(mJ)

4000 +

2000 4

20 -10 0 10 20 30 40
Tx Power (dBm)

(b)
Figure 9.4 Impact of Transmission power in multi-hop network (a) Impact of varying
transmission power on tardiness on a multi-hop path between source and sink node. (b)

Impact of transmission power on energy consumption. Source and Sink nodes are separated
by 38 m

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transmission power conditions. In Fig. 9.4(b) it is observed that there exists an optimal
transmission power range at which energy consumption is minimum for reliable delivery of data
between source and sink node using multi-hop network. This observation was also previously
made in [Ba02a, Ba02b]. Table 9.1 shows data corresponding to results shown in Fig. 9.4. In
this chapter a case is considered when source node generates 100 packets of 54 Bytes in 500
seconds of simulation time with sampling interval S=5.0 seconds with packet transmission time
of 0.0233 seconds[Chp]. In Fig. 9.4(b) when Tx power is - 3dBm, total minimum energy
679.42mJ is consumed by all the relay nodes including source node in the network for reliable
transmission of data from source node to the sink node without any retransmissions. In Fig. 9.4(a)
tardiness corresponding to Tx power -3dBm is 5.5 seconds and minimum tardiness of 3.1
seconds is at higher transmission power 30dBm. At current transmission power, minimum
tardiness may be achieved by increasing the sampling rate, i.e., by decreasing sampling interval S
as shown by tardiness model in Eq. 8.27. Using Eq. 8.27 it is determined that with $S=0.2 seconds
while keeping all other factors same, tardiness of 3.1 seconds can be achieved for Tx power -
3dBm. However, it is determined that total amount of energy that is required to achieve the
desired tardiness at lower transmission power -3dBm is significantly greater than what is required
when transmission power is 30dBm. It is determined that for -3dBm case total energy consumed

is 16985 mJ compared to 10302 mJ for 30dBm case during 500 seconds of simulation time.

9.3 Comparison of Routing Protocol Performance Using Tardiness Measure

This section compares the performance of three routing protocols (i) random routing, (ii) rumor
routing, and zonal rumor routing [Ba05c, Br02a] using tardiness measure.

A network grid of 215x215 is considered in which 10, 000 sensor nodes are randomly
distributed in the grid. All nodes that are within its 5m radial distance of a particular node are

considered as its neighbors. Each sensor node has a 5m sensing range, i.e., all nodes present

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

within 5m radial distance from the sink location are able to detect that event. 100 events are
randomly generated in the grid and multiple sensor nodes can detect the same event Moreover,
each node can also detect multiple events. 25 agents are randomly generated in the network that

propagates the information about the events in the network until their TTL expires. 1500 random

Comparison of Routing Algorithms based on Tardiness
Random Routing, Rumor Routing, Zonal Rumor Routing (ZRR)
0.8
0.7 1
i s
5 08
2
a a 0.5 1
S E 04 —
o 3
g9 031
3
e 0.2
@
a 0.1
0 . . - . .
0 100 200 300 400 500 600
Tardiness (seconds)
l—o— Random Routing —«— ZRR —— Rumor Routing |

Figure 9.5 Comparison of routing protocols performance for real-time sensing
applications using tardiness measure

Impact of Number of Hops on Tardiness of Data
Tx Power=-4dBm

200
° []
[J
[]
[]
150 - oo *°
®

100 A

Tardiness (Seconds)

o
o
I

0 20 40 60 80 100 120 140

ber of H
Figure 9.6 Impact of Path Leng{\ﬁJ ‘on the Tardiness of the Data (maximum distance

between two adjacent nodes is 5m)

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

queries are generated in the network for the random events. All three routing protocols mentioned
above are used to spread the event as well as queries in the networks. Three routing protocols
differ in their approach for selecting the next hop for agent and query forwarding. A query is said
to be delivered to the event when query finds a node that has the information about the requested
event. At this time event information can be routed from the source of the event to the sink node
where query was generated. It is assumed that queries and agents are reliably delivered to their
next hop. However, once the path is determined between event source and query source, data is
transmitted unreliably over lossy wireless link whose loss characteristics are determined using
Eq. 8.21 given in Chapter 8. Depending on the routing protocols, different numbers of queries
may be delivered to the desired event source and moreover characteristics of the path between
event source and query source may vary in terms of number of relay nodes and the loss
characteristics resulting in different tardiness for the delivered queries. At cach intermediate relay
node packet suffers random delay between 100ms and 500ms. Therefore, we use tardiness of the
delivered queries to compare performance of the routing protocols. Fig. 9.5 shows the
performance of difterent routing algorithms in terms of tardiness of the data from event source to
the query source. As seen in the figure, in case of random routing, 53 % of the total queries are
delivered with average tardiness of 7.8 seconds. Moreover, 90% of the delivered queries have
tardiness less than 18 seconds. Alternatively, in case of traditional rumor routing, 60% of the total
queries were delivered and their average tardiness is 61 seconds. In this case 90% of the delivered
queries have tardiness below 181 second. Comparing random routing and rumor routing we can
say that rumor routing delivers higher percentage of queries. However, the extra queries that are
delivered leads to significantly higher tardiness of the data in rumor routing algorithm. In case of
zonal rumor routing algorithm 70% of queries are delivered with average tardiness of 26.32
seconds. Zonal rumor routing algorithm delivers larger number of queries to the event source

compare to traditional rumor routing algorithm and at the same time paths lengths between query

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

source and the event source are significantly smaller in case of ZRR compared to traditional
rumor routing leading to significantly lower tardiness.

The key reason for lower tardiness in case of ZRR is the selection of shorter paths compared
to the traditional rumor routing algorithm. Fig. 9.6 shows the impact of number of hops in a path
on the tardiness measure. As seen in the Fig. 9.6, tardiness increases with the increase in path
length. However, tardiness does not increase linearly with the increase in number of hops. Note
that results shown in Fig. 9.6 are different from the results shown in Fig. 9.2(a) that also
investigates the impact of number of hops on tardiness. The difference between two experiment

results is that in Fig. 9.2(a) distance between source and sink is considered constant and number

f(t)

f(t1)

Figure 9.7 Effect of tardiness on end applications

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fbound and fﬂbound are known
10

(1)

]

Time

Figure 9.8 Physical process under observation

of hops is changed between source and sink node. Alternatively, in Fig. 9.6 distance between
source and sink is not considered constant. As seen in Fig. 9.6, tardiness may vary for two paths
with similar number of hops because of ditference in the loss characteristics of the paths resulting

in different tardiness.

94 Impact of Tardiness on the Accuracy of the Results

After the tardiness is computed for the data, its impact on the accuracy of the end results can be
evaluated. The impact depends on the nature of processing, and varies from application to
application. One of the factors that determine the utility of the tardiness measure is the rate of
change of information at the sensor node. If the process under observation is a rapidly changing
process then tardiness beyond a certain threshold will render received data useless or error prone
[Ma03]. In this case, it is desirable to sample it at a faster rate. Alternatively, when the
phenomenon under observation is changing slowly; the application is likely to able to tolerate a

higher tardiness in the received data. Fig. 9.7 cousiders a temperature monitoring and control

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

application. It consists of sensor nodes that periodically samples environment for any temperature
variation and transmit the sampled data to the remote sink nodes. Based on the available
temperature information, sink node can generate an actuating signal for controlling the
temperature of the remote environment. For such closed-loop applications it is necessary that the
actuating signal is generated based on the current state of the remote environment Due to network
dynamics such as network delays and losses, the data available at the sink nodes may not
represent the current state of the environment. As seen in Fig. 9.7, data generated at time t,, i.e.,
f(t;) at sensor node is read from the receiver buffer at time r; and r,. When f(t;) data is read from
the buffer at time r, it provides false indication that temperature has not changed at the remote
location. However, as seen in the figure actual data available at the remote location is f(t;) which
is still in transit. Similarly, sink node reads f(t;) at time rs, 15, and ry. However, sink node is
unaware of change of temperature from f(t;) to f(t,) during interval r,-rs. This has the potential to
introduce an error by generating an actuating signal to control the temperature based on the old
information.

Now we demonstrate the use of tardiness measure to provide error bounds in the end
computation. By using such a bound, tardiness model can be used to limit the error in the end
results by adapting the sampling rate at the sensor node or by using alternative routing protocol
that selects low delay paths. Consider a process that represents environment, for which first and
second derivatives of the signal being monitored are bounded, i.e., we know the limits on the first
and second derivative of a process. This is a valid assumption for many processes because
depending on the physical nature of the process there are always natural bounds because of

fundamental principles of physics or environment that keeps the process transitions rate within

bound. With that assumption lets assume we know ‘f bound | , Elnd)fbound bounds for a process
under observation, i.e.,
fbound s.t. f (t) < lJ[bound L€ [0’00) and (96)

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fb';nmd s.I. f" (t) < lf[):mn(l le [0700) (97)

Using principles of Taylor series we know that

FOS)+ =1)] Fon +R s

where

lfb"(mnd 2
R < o1 (r—1,) 9.9)

f{1) 1s the current state of the environment at time t and f{7,) is the most recent data available at the

sink node.

Then the error bound on the data read from the buffer at time t; is given by E,

' fi;um 7
E, = fO-f)S@-1)|f_] +l—l’5,—’<r —1,)’ 9.10)

t - 1o is the tardiness of the sample f{1y) used at time ¢ at the sink node.

If application knows the acceptable error threshold then using Eq. 9.10, acceptable tardiness
bound for 7 - 7, can be evaluated. Once bound on the tardiness is known then that may be used to
adjust sampling rate ‘S’ in mean tardiness Eq. 9.5 or use alternate routing protocols to decrease

mean delay to meet the acceptable mean tardiness.

Consider a process shown in Fig. 9.8 for which we know f and f[;ound during the life of

boind

the process. Using Eq. 8.10, Eq. 8.11 in Chapter 8 and Eq. 9.10, maximum mean error Emax is

given by

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E[T1| fya

By = EIT1|fypa] + :

(9.11)

Alternatively, when maximum acceptable error is known then bound on the acceptable

mean tardiness E[T]is given by

EIT] < o 9.12)
[ool

9.5 Remarks

This chapter investigated the impact of multi-hop communication on the tardiness. An analytical
model for tardiness presented in Chapter 8 is adapted to consider multi-hop communication. It is
shown that for a given distance between source and a sink node and given transmission power,
there exist an optimal number of relay nodes at which tardiness is minimum. It is also shown that
for a given distance between source and sink node there exist an optimal transmission power at
which total energy consumption at all nodes in the path from source to the sink node is minimum.
Application of tardiness measure in comparing the performance of three different routing
protocols, i.e., random routing, rumor routing and zonal rumor routing (ZRR) is demonstrated
using simulation. Simulation results shows that ZRR has higher delivery rate than the traditional
rumor routing algorithm and at the same time tardiness of the events is significantly lower in case
of ZRR when compared rumor routing algorithm. This chapter also demonstrates the impact of
tardiness on the accuracy of the end results and derives an error estimation model that provides
the upper bound on the maximum error that can be introduced in the end results due to tardiness

of the data.

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 10

CONCLUSIONS

This dissertation proposed and demonstrated the effectiveness of the application-aware transport
services in meeting heterogeneous QoS requirements of the end users for mission-critical sensor
network applications. This research was focused on two key areas for providing application-
aware transport services, i.e., (i) Design and development of application-aware transport
protocols for broadband sensor networks, and (ii) Development of a model for evaluating
freshness of data in sensor networks. CASA was used as an example application for
demonstrating the suitability of application-aware services for such systems.

Under application-aware transport protocols for broadband sensor networks this dissertation
proposed an overlay network based application-aware congestion control protocol. The key goal
of an application-aware congestion control protocol is to consistently meet data quality and
bandwidth QoS requirements for the data from the radar node to the end users under dynamic
network conditions on a best-effort network such as Internet. Application-aware congestion
control achieves this goal by performing rate adaptation while considering both bandwidth and
data quality requirements of an individual end user. In this approach source node selects and
schedules most suitable subset of the weather radar data for transmission within bounded time for

a particular end user under varying available bandwidth conditions. The framework for

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

application-aware congestion control is extended to support multiple heterogeneous end users in
CASA network.

An Overlay network based DOOM (Deterministic Overlay One-to-Many) application-aware
multicast protocol was proposed that performs application-aware congestion control for multiple
heterogeneous end users. The current implementation of DOOM protocol supports CASA
application and is used for distributing high-bandwidth radar data to multiple heterogeneous end
users such as emergency managers and researchers. Effectiveness of the DOOM protocol in
meeting QoS requirements of heterogeneous end users of CASA is demonstrated using a
Planetlab based testbed and an emulation testbed. Performance results shows that time
muitiplexed scheduling scheme along with on-the-fly data selection scheme at source node
delivers significantly better quality data to end users when compared non-application-aware
congestion control scheme. It 1s also shown that DOOM streams are friendly to each other as well
as TCP cross-traffic streams until the minimum bandwidth requirements of all end users are met.
This dissertation then farther explores the suitability of performing application-aware processing
at intermediate nodes in the overlay network between source and destination. An application-
aware packet-marking scheme was proposed to enable in-network processing using overlay
networks to help enhance the QoS received by the end users on a best-effort network.

The proposed packet marking scheme marks the packets based on the available bandwidth
and the suitability of the data present in the packet for an available bandwidth. A variant of
DOOM protocol was implemented that performs application-aware congestion control at
intermediate overlay nodes. During network congestion DOOM protocol performs application-
aware drops and forwarding based on the marking of the packets and the available bandwidth at
intermediate overlay nodes. It uses token-bucket based scheme to achieve the desired
transmission rate which is determined using TRABOL congestion control protocol in the current
implementation. Performance of the degree of application-aware processing in the overlay

networks is analyzed. Planetlab based results show that application-aware congestion control

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

using packet-marking scheme was most effective in meeting QoS requirements of end users. This
dissertation then proposed an AWON (Application-aWare Overlay Networks) architecture
framework for the deployment of different types of application-aware services on overlay
networks. The suitability of the AWON architecture is demonstrated for the deployment of
application-aware transport protocol services for CASA application.

Another contribution of the dissertation is development of a model for evaluating freshness of
the data in sensor networks. Freshness of data acts as a key QoS parameter for evaluating quality
of the data used for computations and decision making in many mission-critical sensor network
applications. Tardiness model was derived that relates the freshness of the data to the mean
network delay, network losses perceived by the end users, and the sampling rate at the sensor
nodes. This model is validated using simulation results. The model can be used to determine how
the application-specific tardiness can be achieved by adjusting transmission power or sampling
rate at the sensor nodes. However, it.is more energy efficient if desired tardiness is achieved by
increasing transmission power compared to increase in sampling rate. The tardiness model was
adapted to also consider late arrival packets as lost for certain real-time sensor network
applications. Impact of the multi-hop communication on tardiness is analyzed. It is shown that for
a given distance between source and a sink node and given transmission power, there exist an
optimal number of relay nodes at which minimum tardiness of data can be achieved. It is also
shown that for a given distance between source and sink node there exist an optimal transmission
power at which total energy consumption at all nodes in the path from source to the sink node is
minimum. This dissertation then demonstrated application of the tardiness measure in comparing
real-time performance of different routing protocols for sensor networks based on the tardiness of
the data delivered to the sink nodes. It is also shown that tardiness measure can be an effective in
estimating maximum bound on errors in the end results.

Future goal is to demonstrate the suitability of tardiness measure in estimating error in end

computations when data from multiple weather radars is combined in CASA. Tardiness measure

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can be used to compare performance of different transport and MAC protocols. Alternatively,
AWON architecture framework can be used to develop application-aware many-to-one protocol
for gathering data from multiple weather radars at a processing node in CASA. Moreover, it is
desired to demonstrate the effectiveness of the AWON architecture for streaming voice and video

data using overlay networks.

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[AKO2} LF. Akyildiz, Su Weilian, Y. Sankarasubramaniam, and E. Cayirci, “A Survey
on Sensor Networks,” in IEEE Comm. Magazine, Vol 40, Issue 8, Aug. 2002

{AkO4} LF. Akyildiz, and 1. Kasimoglu, ~"Wireless Sensor and Actor Networks: Research
Challenges," Ad Hoc Networks Jour. (Elsevier), Vol. 2, No. 4, pp. 351-367, Oct. 2004

[AmO06]Amir, Y, Danilov, C., Goose, S., Hedqvist, D., Terzis, A., “An Overlay Architecture for
High Quality VOIP Streams,” in IEEE Trans. On Multimedia, Vol. 8, Issue 6, pp. 1250-
1262, Dec. 2006

[An00] D. Andersen, D. Bansal, D. Curtis, S. Seshan, and H. Balakrishnan, “System Support for
Bandwidth Management and Content Adaptation in Internet Applications,” 4th USENIX
OSDI Conf., San Diego, California, Oct. 2000

[An01] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris, Resilient Overlay
Networks,” Proc. of 18th ACM SOSP, 2001

[Ba02a}S. Banerjee, and A. Misra, “Minimum Energy Paths for Reliable Communication in

Multi-Hop Wireless Networks,” Proc. of ACM MobiHoc, June 2002
[Ba02b]S. Banerjee, and A. Misra, “Adapting Transmission Power for Optimal Energy Reliable
Multi-Hop Wireless Communication,” Technical report, UMIACSTR- 2002-103 and CS-

TR 4424, Department of Computer Science, University of Maryland, College Park, MD
20742, USA, Nov. 2002

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Ba03]S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and S. Khuller, “Construction of an
Efficient Overlay Multicast Infrastructure for Realtime Applications,” in Proc. IEEE
INFOCOM, June 2003

[Bg02]S. Bangolae, A.P. Jayasumana, V. Chandrasekar, “TCP-friendly Congestion Control
Mechanism for a UDP-based High-Speed Radar Application and Characterization of its
Fairness,” Proc. 8th IEEE Int. Conf. on Communication Systems (ICCS), Singapore,
pp-164-168, Nov. 2002

[Bg03alS. Bangolae, A P. Jayasumana, V. Chandrasekar, “Performance of Memory-based TCP-
friendly Rate Adaptation Based On Loss Algorithm for a Real-time Radar Application,”
Proc. IEEE Local Computer Network Conf. (LCN), pp. 319-322, 2003

[Bg03b]S. Bangolae, A. P. Jayasumana and V. Chandrasekar, “Gigabit Networking: Digitized
Radar Data Transfer and Beyond,” Proc. [EEE International Conf. on Communications

(ICC'03), Vol. 1, pp. 684-688, Anchorage, 2003

[Bg03c]S. Bangolae, “A TCP-friendly Congestion Control Mechanism for High Bandwidth
Radar Application,” MS Thesis, Colorado State University, Fall 2003

[Ba05a]T. Banka, B. Donavan, V. Chandrasekar, A. P. Jayasumana, J. F. Kurose, “Data
Transport Challenges in Emerging High-Bandwidth Real-Time Collaborative Adaptive
Sensing Systems,"” Poster/Demo ~ Session, [IEEE ~ INFOCOM 2005, Miami,
FL, March 2005

[BaO5b]T. Banka, A. Maroo, A.P. Jayasumana, V. Chandrasekar, N. Bharadawaj, S.K.
Chittababu, “Radar Networking: Considerations for Data transfer Protocols and Network
Characteristics,” Proc. 21st Int. Conf. on Interactive Information Processing Systems

(IIPS) for Meteorology, Oceanography, and Hydrology, American Meteorological
Society (AMS), 19.11. Jan. 2005

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Ba05c]T. Banka, G. Tandon, and A. P. Jayasumana, “Zonal Rumor Routing for Wireless Sensor
Sensor Networks,” in Proc. of IEEE Intl. Conf. on Information Tech.: Coding and

Computing, ITCC 2005, Las Vegas, NV April 2005

[BaO5d]T. Banka, P. Lee, A. P. Jayasumana and V. Chandrasekar, "Performance Evaluation of
Application-Aware Transport Servi>ces for High-Bandwidth Sensor-Actuator
Networks," Proc. 7th International Information Technology Conference (IITC 2005),
Colombo, Sri Lanka, Nov. 2005, pp. 93-101

[Ba06]T. Banka, P. Lee, A. P. Jayasumana, and V. Chandrasekar, “Application Aware Overlay
One-to-Many Data Dissemination Protocol for High-Bandwidth Sensor Actuator

Network,” in Proc. of IEEE COMSW ARE 2006, New Delhi, India, Jan. 2006

[BaO7a] T. Banka and A.P. Jayasumana, "Impact of Network Dynamics on Tardiness of Data in
Sensor Networks," Proc. Second IEEE/Create-Net/ICST International Conference on
Communication System Software and Middleware (COMSWARE 2007), Bangalore,
India, Jan. 2007

[Ba07b} T. Banka, P. Lee, A.P. Jayasumana and J.F. Kurose, "An Architecture and a Programming
Interface for Application-Aware Data Dissemination Using Overlay Networks," Proc.
Second IEEE/Create-Net/ICST International Conference on Communication System

Software and Middleware (COMSWARE 2007), Bangalore, India, Jan. 2007

[Bert] D. Bertsekas, and R. Gallanger, “Data Networks,”, 2" Edition, Prentice Hall

[Bo04] M. Bouzeghoub, and V. Peralta, “A Framework for Analysis of Data Freshness,” in Proc.
of Intl. Workshop on Information Quality in Information Systems, IQIS 2004, pp 59-67,

Paris, France, 2004

[BhO1] S. Bhatnagar, B. Deb, and B. Nath, "Service Differentiation in Sensor Networks," in
Proc. of 4" Int. Symp. on Wireless Personal Multimedia Comm., Sept. 2001

[BI98] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An Architecture for
Differentiated Services,” RFC 2475, IETF, Dec. 1998

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Br94] R. Braden, D. Clark, and S. Shenker, “Integrated Services in the Internet Architecture: An
Overview,” RFC 1633, IETF, June 1994

[Br97] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource ReSerVation
Protocol,” RFC 2205, IETF, Sept. 1997

{Br99] H. M. Briceno, S. Gortler, L. Mcmillan, “NAIVE - Network Aware Internet Video
Encoding,” 7th ACM Int. Multimedia Conft., pp. 251-260, Oct. 1999

[BrO1] V. N. Bringi, V. Chandrasekar, “Polarimetric Doppler Weather Radar: Principles and
Operations,” Cambridge University Press, Aug. 2001

[Br02a]D. Braginsky, and D. Estrin, “Rumor Routing Algorithm for Sensor Networks,” In Proc.
1" ACM Workshop on Sensor Networks and Applications, pp. 22-31, Atlanta, GA, Oct.
2002

[BrO2b]R. Braynard, D. Kosti’c, A. Rodriguez, J. Chase, and A. Vahdat, “Opus: An Overlay Peer
Utility Service,” Proc. of the 5th Intl. Conf. on Open Architectures and Network

Programming (OPENARCH), June 2002.

[Ca03] M. Carson, D. Santay, “NIST Net:. A Linux-based Network Emulation Tool,” ACM
SIGCOMM Computer Communications Review, 33(3): pp. 111-126, 2003

[Ch86] V. Chandrasekar, V. N. Bringi, and P. J. Brockwell, “Statistical properties of Dual-
polarized Radar Signals,” in Proc. Of 23rd Conf. on Radar Meteorology, Amer. Meteor.

Soc., Snow-mass, CO, 193-196, 1986

{Ch01] V. Chandrasekar and A.P. Jayasumana, “Radar Design and Management in a Networked
Environment,” in Proc. of SPIE, vol. 4527, pp. 142-147, 2001

[Ch05] V. Chandrasekar, Y. G. Cho, D. A. Brunkow, and A.P. Jayasumana, “Principles of Radar
Operation over the Internet: The VCHILL,” Proc. 2lst Int. Conf. on Interactive

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Information Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology,
American Meteorological Society (AMS), 19.14., Jan. 2005

[Chi05]S. Chien, B. Cichy, A. Davies, D. Tran, G. Rabideau, R. Castano, R. Sherwood, D.
Mandl, S. Frye, S. Shulman, J. Jones, S. Grosvenor, “An Autonomous Earth-Observing
Sensorweb,” in Proc. of IEEE Intelligent Systems, Vol. 20, Issue 3, pp. 16-24, May-June
2005

[Ch89] D. Chiu and R. Jain, "Analysis of the Increase and Decrease Algorithms tor Congestion

Avoidance in Computer Networks," Jour. of Computer Networks, pp.1-14, June 1989

[ChOO0]} Y. Chu, S. Rao, H. Zhang, "A Case For End System Multicast,” in Proc. of ACM
Sigmetrics, Santa Clara, CA, June 2000

[Ch04] Y.G. Cho, “A High Bandwidth Radar Operation over the Internet: Signal Analysis,
Network Protocols and Experimental Validation,” PhD Thesis, Colorado State

University, Spring 2004

[Chi04] C.F. Chiasserini, and M. Garetto, “Modeling the Performance of Wireless Sensor
Networks,” Proc. of IEEE Infocom 2004, Vol. 1, March 2004

[Cha02]V. Chandramohan, K. Christensen, “A First Look at Wired Sensor Networks for Video
Surveillance Systems,” in Proc. of the 27th Annual IEEE Conference on Local Computer

Networks, pp.728-729, Nov. 2002

[Che04] D. Chen, and P. K. Varshney, "QoS Support in Wireless Sensor Networks: A Survey,”
Proc. of the 2004 Intl Conf. on Wireless Networks (ICWN 2004), Las Vegas, NV, June
21-24, 2004

[Cho03]J. Cho, and H. Garcia-Molina, “Effective Page Refresh Policies for Web Crawlers,”
ACM Trans. On Database Systems, Vol. 28, Issue 4, pp. 390-426, December 2003

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[CI90] D. D. Clark, and D.L. Tennenhouse, “Architectural Considerations for a New Generation
of Protocols,” Proc. ACM SIGCOMM 1990, Computer Comm. Review, 20(4):200-208,
Sept. 1990

[De03a]B. Deb, S. Bhatnagar, and B. Nath, “ReInForM: Reliable Information Forwarding using
Multiple Paths in Sensor Networks,” in 28" IEEE Conf. on Local Computer Networks
(LCN 2003), Bonn, Germany, Oct. 2003

(De03b]B.Deb, S. Bhatnagar, and B. Nath, “Information Assurance in Sensor Networks,” in 2"
Intl. Workshop on Wireless Sensor Networks (WSNA), San Diego, Sept. 2003

[Do05]B. Donovan, D. J. McLaughlin, J. Kurose, and V. Chandrasekar, 2005: "Principles and
Design Considerations for Short-Range Energy Balanced Radar Networks," Proceedings
of IGARSSO05, Seoul, July, 2005

[Du05]P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler, “Design of a Wireless Sensor
Network Platform tor Detecting Rare, Random, and Ephemereal Events,” Special Track
on Platform Tools and Design Methods for Network Embedded Sensors (SPOTS), Los
Angeles, April 2005

[Es99] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next Century Challenges: Scalable
Coordination in Sensor Networks,” in Proceedings of the 5™ Tnt. Conf. on Mobile

Computing and Network (MobiCOM ’99),Seattle, Washington, Aug. 1999

[Es02] D. Estrin, D. Culler, K. Pister, and G. Sukhatme, “Connecting the Physical World with
Pervasive Networks,” IEEE Pervasive Computing, Vol. 1, No. 1, pp. 539--69, 2002

[Fa03] S. Fahmy, M. Kwon, “Characterizing Overlay Multicast Networks,” in IEEE Intl. Conf.
on Network Protocols, pp. 61-70, Nov. 2003

[F104] S.Floyd, “HighSpeed TCP for Large Congestion Windows,” RFC 3649, Dec. 2004

[F199] S. Floyd, and K. Fall, "Promoting the use of End-to-End Congestion Control in the
Internet,” IEEE/ACM Trans. on Networking, pp. 458-472, August 1999

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Ga05] A. Ganjam, H. Zhang, “Internet Multicast Video Delivery,” in Proc. of the IEEE, Vol.
93, Issue I, pp. 159-170, Jan. 2005

[Ga03]D. Ganesan, S. Ratnasamy, H. Wang, and D. Estrin, “Coping with Irregular Spatio-
temporal Sampling in Sensor Networks,” 2nd Workshop on Hot Topics in Networks

(HotNets-11) 2003, Cambridge (MA) USA, Nov. 2003

[GhO2} S. Ghiasi, A. Srivastava, Z. Yang, and M. Sarrafzadeh, “Optimal Energy Aware
Clustering in Sensor Networks,” Special Issue: Special Section on sensor network

technology and sensor data management, Vol. 2, Issue 7, pp. 258-269, July 2002

[Gi03] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan, “IrisNet: An Architecture for a
Worldwide Sensor Web,” in Trans. of Pervasive Computing, Vol 2, Issue 4, pp. 22-33,
Oc-Dec 2003

[GuOS]E. Gurses, G. B. Akar, N. Akar, “A simple and Effective Mechanism for Stored Video
Streaming with TCP Transport and Server-side Adaptive Frame Discard,” in Computer
Networks Elsevier, Vol. 48, Issue 4, pp. 489-501, Jan. 2005

[HaO3]M. Handley, S. Floyd, J. Padhye, and J. Widmer, “TCP Friendly Rate Control (TFRC):
Protocol Specification,” IETF RFC 3448, Jan. 2003

[HeO03] T. He, J. A. Stankovic, C. Lu, and T. Abdelzaher, “Speed: A stateless Protocol for Real-
time Communication in Sensor Networks,” in Proc. of Intl. Conf. on Distributed

Computing Systems (ICDCS 2003), Providence, R, May 2003

(HuO04] B. Hull, K. Jamieson, and H, Balakrishnan, "Mitigating Congestion in Wireless Sensor
Networks ," ACM SenSys 2004, Baltimore, MD, Nov., 2004

(He99] W. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive Protocols for Information
Dissemination in Wireless Sensor Networks,” in Proc. Fifth ACM/IEEE Int. Conf. on
Mobile Computing and Networking, pp. 174-185, 1999

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[HeO0] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient
communication protocol for wireless microsensor networks,” In Proc. of 33rd Annual

Hawaii Intl. Conf. on System Sciences, 2000

[In00] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed Diffusion: A Scalable and
Robust Communication Paradigm for Sensor Networks,” In Proc. 6th Int. Conf. on

Mobile Computing and Networks (MobiCOM 2000), Boston, MA, August 2000,

[Ja04] A. Jain, and E.Y. Chang, “Adaptive Sampling for Sensor Networks,” Proc. of the 1st Intl.

workshop on Data management for sensor networks, Aug. 2004

[Ji00] W. Jiang, and H. Schulzrinne, “Modeling of Packet Loss and Delay and their Effect on
Real-time Multimedia Service Quality,” in Proc. [0th Intl. Workshop Network and
Operations System Support for Digital Audio and Video, June 2000

[Ji04] C. Jin, D. X. Wei, and S. H. Low, “FAST TCP: Motivation, Architecture, Algorithms,
Performance,” Proc. of IEEE INFOCOM, March 2004

[Jo06] D. Joseph, J. Kannan, A. Kubota, K. Lakshminarayanan, 1. Stoica, and K. Wehrle,
"OCALA: An Architecture for Supporting Legacy Applications over Overlays,” in Proc.
of 3rd USENIX/ACM NSDI '06, May 2006

{Ka04] J. Kang, Y. Zhang, B. Nath, “Adaptive Resource Control Scheme to Alleviate Congestion
in Sensor Networks,” 1" Workshop on Broadband Advanced Sensor Networks, San-Jose,

Oct. 2004

[Ka0l} A. Kassler, A. Neubeck, and P. Schulthess, “Classification and Fvaluation of Filters for
Wavelet Coded Videostreams,” Signal Processing: Image Communication, 16(8):795-
807, Elsevier May, 2001

[Ke02} Urvoy-Keller, and G., Biersack, E.-W. “A Congestion Control Model for Multicast

Overlay Networks and its Performance,” in Fourth Intl. Workshop on Networked Group

Communication, NGC 2002, Oct. 2002.

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Ke00] R. Keller, S. Choi, M. Dasen, D. Decasper, G. Fankhauser, and B. Plattner, “An Active
Router Architecture for Multicast Video Distribution,” Proc. IEEE INFOCOM, Mar.
2000

[Ke03] T. Kelly, “Scalable TCP: Improving Performance in High-speed Wide Area Networks,”
in Proc. of ACM SIGCOMM, Volume 33, Issue 2, pg. 83-91, April 2003

[KoO3]D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High Bandwidth Data
Dissemination Using an Overlay Mesh,” Proc. of SOSP’03, Bolton Landing, New York,
Oct., 2003

[Ku06] J. Kurose, E. Lyons, D. McLaughlin, D. Pepyne, B. Philips, D. Westbrook, and M. Zink,
2006: "An End User Responsive Sensor Network Architecture for Hazardous Weather
Detection, Prediction, and Response”, Asian Internet Conference (AINTEC) 20006,
Pathumthani, Thailand, Nov. 20006

[Le06] P. Lee, T. Banka, A. P. Jayasumana, and V. Chandrasekar, “Content based Packet
Marking for Application Aware Processing in Overlay Networks,” Proc. of IEEE Conf.
on Local Computer Networks, (LCN 2006), Tampa FL, Nov. 2006

[Li02] D. Li, K. Wong, Y.H. Hu, and A. Sayeed, "Detection, Classification and Tracking of
Targets in Distributed Sensor Networks," IEEE Signal Processing Magazine, Volume: 19
Issue: 2, Mar 2002

[Li04] Y. Liu, Y. Gu, H. Zhang, W. Gong, D. Towsley, “Application Level Relay for High-
Bandwidth Data Transport,” Proc of 1¥ Workshop on Networks for Grid Applications
(GridNets) , Oct. 2004

[Li99] M. Lin, K. Marzullo, and S. Masini, “Gossip versus Deterministic Flooding: Low Message

Overhead and High Reliability for Broadcasting on Small Networks,” UCSD Technical
Report TR CS99-0637, 1999

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Ma99] 1. Mahadevan, and K. M. Sivalingam, “Quality of Service architectures for wireless
networks: IntServ and DiffServ models,” in Proc. of 4™ Intl. Symp. on Parallel

Architectures, Algorithms, and Networks, pp. 420-425, June 1999

[Ma02] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, “Wireless Sensor
Networks for Habitat Monitoring,” in Proc. ACM Int. Workshop on Wireless Sensor
Networks and Applications, Sept. 2002

[Ma03]A. D. Marbini, and L. E. Sacks, “Adaptive Sampling Mechanisms in Sensor Networks,”

London Communications Symposium, London, UK, 2003

[Ma05] A. Maroo, “Data Quality Control, Modeling and Performance Analysis of TRABOL: A
Streaming Protocol for High-bandwidth Radar Data,” M.S Thesis, Colorado State
University, Spring 2005

[MaOG]H. Madhyastha, A. Venkataramani, A. Krishnamurthy, and T. Anderson, “Oasis: An
Overlay-Aware Network Stack.,” Proc. of ACM SIGOPS Operating Systems Review
Vol. 40, Issue 1, pp41-48, Jan. 2006

[Mc96] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven Layered Multicast,” in Proc.

on Applications, technologies, architectures, and protocols for computer communications,

pp-117-130, August 28-30, 1996

[Mc05] D.J. McLaughlin, V. Chandrasekar, K. Droegemeier, S. Frasier, I. Kurose, F. Junyent, B.
Philips, S. Cruz-Pol, and J. Colom, “Distributed Collaborative Adaptive Sensing (DCAS)
for Improved Detection, Understanding, and Prediction of Atmospheric Hazards,” Proc.
21st Int. Conf. on Interactive Information Processing Systems (IIPS) for Meteorology,
Oceanography, and Hydrology, American Meteorological Society (AMS), 11.3, Jan.
2005

[N198] K. Nicolas, S. F. Blake, and D. Black, “Definition of the Differentiated Service Field (DS
Field) in the IPv4 and IPv6 Headers”, RFC2474, Dec. 1998

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Ni02] N. Nikaein, and C. Bonnet, “A Glance at Quality of Services in Mobile Ad-Hoc
Networks,” in Proc. of DNAC 2002: 16™ Conf. of New Architectures for

Communications, Paris 2002

[Or98] K. Orr, “Data Quality and Systems Theory,” in Proc. of ACM Communication,
Vol.48, Issue 10, pp. 75-81, 1998

[Pa98] J. Padhye, J. Kurose, D. Towsley, and R. Koodli, "A Model Based TCP-Friendly Rate
Control Protocol,” UMass-CMPSCI Technical Report TR 98-04, Oct. 1998

{Pa06] O. Papaemmanouil, O., Y. Ahmad, U. Cetintemel, and J. Jannotti, “Application-aware
Overlay Networks for Data Dissemination,” in Proc. of the Intl. Workshop on Semantics

enabled Networks and Services (ICDE SeNS 2000), Atlanta, April 20006

{Pe02] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A Blueprint for Introducing
Disruptive Technology into the Internet,” lst ACM Workshop on Hot Topics in
Networks, HotNets-I, Oct. 2002

[Rapp] T. S. Rappaport, “Wireless Communications Principles & Practice,” Prentice Hall

[Re99] R. Rejaie, M. Handley, and D. Estrin, “RAP: An End-to-end Rate based Congestion
Control Mechanism for Real-time Streams in Interpet,” Proc. of IEEE INFOCOM, pp.
1337-1345, 1999

[Sa99] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell, A. Collins, E. Hoffman,
J. Snell, G. Voelker, and J. Zahorjan, “Detour: A Case for Informed Internet Routing and
Transport,” IEEE I\/Iich Vol. 19, Issuel, pp. 50-59, Jan. 1999

[Sa03] Y. Sankarasubramaniam, O. B. Akan, I. F. Akyildiz, "ESRT: Event-to-Sink Reliable

Transport in Wireless Sensor Networks,"” in Proc. ACM MOBIHOC 2003, pp. 177-188,
Annapolis, Maryland, June, 2003

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Sc99] B. Schwartz, A. Jackson, T. Strayer, W. Zhou, R. Rockwell, and C. Partridge, “Smart
packets for active networks,” in Proc. of the IEEE 2nd Conference on Open

Architectures and Network Programming (OPENARCH’99), March 1999

[ShO5] S. Shionda, and K. Mase, “Performance comparison between IntServ-based and DiffServ-
based networks,” in Proc. of IEEE Global Telecomm. Conf., Globecom 2005, Vol 1, Nov
2005

[Sh04] R. N. Shorten, D.J.Leith, “H-TCP, TCP for high-speed and long-distance networks,” in
Proc. PFLDnet, Argonne, 1L, Feb. 2004

[Si04a}G. Simon, M. Maroti, A. Ledeczi, G. Balogh, B. Kusy, A. Nadas, G. Pap, J. Sallai, and K.

Frampton, “Sensor Network based Counter Sniper System,” Proc. of 2" ACM Conf. on

Embedded Networked Sensor Systems (SenSys 2004), Baltimore, MD, Nov. 2004

[Si04b]E. Sivrikaya, and B. Yener, “Time Synchronization in Sensor Networks: A Survey,” Proc.
of IEEE Networks, Vol. 18, Issue 4, pp. 45-50, July-Aug. 2004

[So00] K. Sohrabi, J. Gao, V. Ailawadhi, and G. Pottie, “Protocols for Self-Organization of a
Wireless Sensor Networks,” IEEE Personal Communications, Vol. 7, 16-27, Oct. 2000

[Su04] L. Subramanian, I. Stoica, H. Balakrishnan, and R. Katz, “OverQoS: An Overlay Based
Architecture for Enhancing Internet QoS,” Proc. 1* Symposium on Networked Systems
Design and Implementation (NSDI), San Francisco, CA, Mar. 2004

[Ta04] D. Talbot, “Seamless Surveillance,” in Technology Review, Feb. 2004

[Te96] D. L. Tennenhouse, and D. Wetherall, “Towards An Active Network Architecture,”

Computer Communication Review Vol. 26, Issue 2, 1996

[Te97] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J. Minden, “A
Survey of Active Network Research,” IEEE Communications Magazine, Vol. 35, Issue

1, pp. :80-86, Jan. 1997

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Ti02] S. Tilak, N. B Abu-Ghazaleh, and W. Heinzelman, * Infrastructure Tradeoffs for Sensor
Networks," In Proc. WSNA 2002, Atlanta, GA, Sept. 2002

[To02] J. Touch, Y. Wang, L. Eggert, "Virtual Internets,” ISI Technical Report ISI-TR-2002-
558, July, 2002

[Tr06] A. Trimmer, T. Banka, P. Lee, A.P. Jayasumana and V. Chandrasckar, "Performance of
High-Bandwidth TRABOL Protocol for Radar Data Streaming,” Proc. 2006 IEEE

Region 5 Technical, Professional and Student (TPS) Conference, San Antonio TX, April
2006

[Wa02] C.Y. Wan, A. T. Campbell, and L. Krishnamurthy, “PSFQ: A Reliable Transport
Protocol for Wireless Sensor Networks,” in Proc. ACM Int. Workshop on Sensor

Networks and Architectures, Atlanta, Sept. 2002

[Wa03] C. Y. Wan, S. B. Eisenman, and A. T. Campbell, “CODA: Congestion detection and
avoidance in sensor networks,” in Proc. ACM SenSys 2003, pages 266-279, Los
Angeles, Nov. 5-7 2003

[Wa05] C. Wang, K. Sohraby, and B. Li, “SenTCP: A hop-by-hop congestion control protocol for
wireless sensor networks,” in Proc. of IEEE INFOCOM 2005 (Poster Paper), Miami,

FL., Mar. 2005

[We98] D. Wetherall, U. Legedza, and J. Guttag, “Introducing New Internet Services: Why and
How,” in IEEE Network Magazine July/August 1998

[XuO4al]l.. Xu, K. Harfoush, and I. Rhee, "Binary Increase Congestion Control for Fast Long-
Distance Networks," in Proc. of IEEE INFOCOM 2004, Mar. 2004

[XuO4b]N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, and D.
Estrin, “A wireless sensor network for structural monitoring,” in Proc. of the 2nd Intl.

Conf. on Embedded Networked Sensor systems (SenSys), 2004

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[YeO4] W. Ye, J. Heidemann, and D. Estrin, "Medium Access Control with Co-ordinated
Adaptive Sleeping for Wireless Sensor Networks," IEEE/ACM Trans. on Networking,
Vol. 12, pp. 493-506, June 2004

[YuO4]L. Yuan, C. Gui, C. Chuah, and P. Mohapatra, “Applications and Design of
Heterogeneous and/or Broadband Sensor Networks,” in Intl. Conf. on Broadband

Networks, BROADNETS, Oct. 2004

[Zh99] Z.-L. Zhang, S. Nelakuditi, R. Aggarwal, and R. Tsang, “Efficient Selective Frame
Discard Algorithms for Stored Video Delivery across Resource Constrained Networks,”

in Proc. of IEEE INFOCOM, Mar. 1999

[Zh04da]Li. Zhi, P. Mohapatra, “QRON: QoS-aware routing in overlay networks,” IEEE Jour. on

Selected Areas in Communication, Vol. 22, Issue 1, Jan. 2004

[Zh04b]J. Zhao, and R. Govindan, "Understanding Packet Delivery Performance in Dense
Wireless Sensor Networks,” Proc. of 1™ Intl. Conf. on Embedded Networked Sensor

Systems (SenSys 2003), Los Angeles, Nov. 2003
[Zu04] M. Zuniga, and B. Krishnamachari, "Analyzing the Transitional Region in Low Power
Wireless Links," 1* IEEE International Conf. on Sensor and Ad hoc Comm. and

Networks (SECON), Santa Clara, CA, Oct. 2004

[Aka] Akamai Content Distribution Services www.akamai.com

[Cas] “CASA: Collaborative Adaptive Sensing of Atmosphere,” Website:

http://www.casa.umass.edu

[Chp] Chipcon CC1000 Data Sheet, http://www.chipcon.com

[Chi] “Virtual CSU-CHILL National Radar Facility,” Website: http://chill.colostate.edu/

{Exp] Exploratory Project: Heterogeneous Sensor Networks, Intel,

http://www.intel.com/research/exploratory/heterogeneous.htm

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.akamai.com
http://www.casa.umass.edu
http://www.chipcon.com
http://chill.colostate.edu/
http://www.intel.com/research/exploratorv/heterogeneous.htm

[Gen] Global Environment for Network Innovation (GENI) http://www.geni.net/

[Lee} Application-Aware Overlay Networking for Distributed Adaptive Sensing Systems (PhD

thesis- tentative)

[Pla] Planetlab: www.planet-lab.org

[Pow] Powercast: Wireless Power Platform http://www.powercastco.com/

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.geni.net/
http://www.planet-lab.org
http://www.powercastco.com/

APPENDIX A

Computing Tardiness of Data in Sensor Networks

L Simulation Program for Generating Tardiness Profile

/* Simulation Program for generating Tardiness Profile in a Grid Network

Tardiness Profile of network grid where sink is at the center of the grid and all
other nodes transmit data to the sink node in single hop Losses are considered because
of wireless losses, Network is assumed to be without collision and network congestion
realistic wireless loss model is used between source and sink node is considered
based on Prof., Krishnamachari @ USC work for MICA2 platform

Program allows user to specify network topology, sampling rate, read rate

*/

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "tardiness.h"
#include <sys/time.h>

#define MAX SAMPLES 400000 // Maximum Samples generatated by a Node
#define MAX ACCESS_ATTEMPTS MAX_ SAMPLES*6 // Number of time buffer is read

#define MAX_X 5000 // Number of data points at sensor node
#define MAX TIME 10000 // MAX_X corresponds to MAX_TIME duration at

// sensor node
// 20*MAX_SAMPLES 20.0 is the max sample time considered
//in experiments, but this is used only while collecting data
#define SLOPE 10.0 // Data Slope at Sensor node
#define INFINITE 999999999.0 // To indicate arrival time of lost or reordered packet

int CONSTANT=5;

struct timeval tp;

int drop_count=0; // Track number of samples dropped

int reorder_count=0; // Track number of samples reordered

double max_generate_time=0.0; // Time for which we have data values, used for error in
// data value due to tardiness

double periodic_increment =0.001;

struct data_info_type data_samples_list [MAX SAMPLES],

error_computation_list [MAX SAMPLES]; // Error in the end results

struct tardiness_type *tardiness_info;

double sample period; // Determine sample generation rate

double read_period; // Periodic Read frequency for input buffer

double delay_ lambda; // Mean Delay

double delay_sum = 0.0; // Track sum of delay suffered by delivered samples

float loss_probability;

int geedl, seed2,seed’, seedsd;
FILE *fp, *in_fp;

double constant_delay;

double mean_delay;

float *tardiness_list;

float tardiness_val=0.0;

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

double periodic{(double periodic_incr);
double poisson(double lambda) ;

double exponential();

double uniform();

vold data_generate_events();

void network_ delay_events();

void buffer_ access_events() ;

void new_tardiness_computation();
void initialize();

struct node
{
float x;
float y;
float *prr;

}i

// Used by sorting algorithm
int 1lo2hi(const veoid #*vp0, const void *vpl)

int wval;

const struct data_info type *ip0 = (const struct data_info_type *)vp0;
const struct data_info_type *ipl = (const struct data_info_ type *)vpl;
if (ip0->arrival_time < ipl-»arrival_time) val = -1;

else if (ip0O->arrival_time==ipl-sarrival_time) val = 0;

else if (ipO-»arrival_ time >ipl->arrival_time) val = 1;

return (val) ;

}

// Main Function for Tardiness Profile Simulation
int main(int argc, char *argv(l)
{

char filename[100];

struct node *network_grid;

int i,j, total_nodes=0;

int sink_node;

if (argc!=7)

printf("<tardiness <sample_period> <read_period> <Mean-Delay>
<loss_probability> <input_ file> <output_filename>\n");

exit (1);
}
sample_period = atof largviil);
read_period = atof (argv[2]);
mean_delay = atof (argv([3]);
)

loss_probability = atof(argv[4]);
strepy (filename, argv([6]);
strcat (filename,"_s_");
strcat (filename,argv[1]);
strcat (filename,"_r ");
strcat (filename, argvi[2]) ;
strcat (filename, "_delay_ ");
strcat (filename, argv([3]1);
strcat (filename,"_p_");
strcat (filename, argvi4]);
fp = fopen(filename, "w");
if (ifp)

exit (1) ;
in fp = fopen(argv[5],"r");

if (lin_fp)
printf ("Error opening input file\n");

exit (1) ;

// Number of nodes present in the topology

fscanf (in_fp, "$d\n", &total_nodes) ;

network_grid = (struct node *)malloc({sizeof (struct node) *total_nodes) ;
if (Inetwork_grid)

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{

printf ("error allocation network grid\n");
exit (1) ;

for (i=0;i<total_nodes;i++)

network _gridl[i].prr = (float *)malloc(sizeof (float) *total nodes);
if (Inetwork_gridl[i] .prr)

{

printf ("Error allocating PRR\n") ;

exit (1) ;

!
}

tardiness_info = (struct tardiness_type *)malloc(gsizeof (struct
tardiness_type) *MAX ACCESS ATTEMPTS) ;
if (tardiness_info==NULL)
{
printf ("Error in Allocation\n");
exit (1) ;
}
tardiness_list = (float *)malloc(sizeof (float)*total nodes);
if (ltardiness_list)

printf ("Error allocating tardiness list\n"};
exit (1) ;

//Read input file for the coordinates
for (i=0;i<total_nodes;i++)
{
int temp;
fscanf (in_fp,"%d %f %f\n",&temp, &network_grid[il.x, &network grid[il.y);

// Read Packet Reception Probability
for (i=0;i<total_nodes;i++)

for (j=0;j<total_nodes;j++)
{
fscanf (in_fp, "$f ", &network gridl[i].prr(jl);
}

fscanf (in_fp, "\n");

}

// Let Sink node is the total_nodes/2 then compute
// tardiness of data from each node to the sink node
// This will help us get the Tardines profile

sink node = total_nodes/2;

for (j=0;j<total nodes;j++)

float distance;

// Determine the Network loss Probability as 1- Packet Reception Rate

loss_probability = 1.0 - network_grid[j] .prrlsink nodel;

distance = sqgrt((network_grid[jl.x-
network grid[sink_node] .x)* (network_grid[j] .x-
network grid([sink node] .x)+(network_grid[j].y-
network_grid[sink node] .y) * (network_grid[j] .y-
network_gridl[sink nodel.y));

memset (tardiness_info, 0,sizeof (struct

tardiness_type) *MAX ACCESS_ATTEMPTS) ;
memset (data_samples list, 0, sizeof (struct data_info type) *MAX SAMPLES) ;

initialize();

gettimeofday (&tp, NULL) ;

seedl = tp.tv_usec; // For generating delay

for (i=0;1<50;i++); // Just spend some time in the loop for the

// new seed
gettimeofday (&tp,NULL) ;

seed2 = tp.tv_usec; // For making loss decisions
for (i=0;i<100;i++); // Just spend some time...
gettimeofday (&tp, NULL) ;
seed3 = tp.tv_usec; // For start sampling time
for (i=0;1<75;i++); // spend some time....

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gettimeofday (&tp, NULL) ;
seedd = tp.tv_usec; // For start buffer access

data_generate events() ;

network delay_events() ;

buffer access_events();

new_tardiness_computation();

tardiness_list [j]=tardiness_val; // Tardiness from jth node the sink node

}

// Used for Exponential Delay Distribution
double uni{int *seed)

int a,b;

a= (int) (*seed/16384);

b= (int) (*seed %16384);

*gseed = (((13205%a + 74505*b) % 16384)*16384+13205%b) % 268435456;
return { (double) (*seed)/268435456);

}

double poisson(double lambda)

{

double deltat, 1n;

1n = log{l-uni(&seedl));
deltat = (-1n)/lambda;
return (deltat) ;

}

double periodic(double periodic_incr)

{
}

// Initialization Routine
void initialize()

return (periodic_incr);

drop_count = 0.0;
reorder_count = 0.0;
delay_ sum = 0.0;

max_generate_time 0.0;
void data_generate_events()

double start_time= 0.0;

int 1i;

int data_seed = 136776;
int flag = 0;
float value = 0.0;

float data_value[MAX X];
int data_index,resolution;
int k;
data_samples_list[0] .generate_time = uni(&seed3);
// Generate Data Value and then sample it
for (i=0;i<250;i++)
{
data_value[i]=SLOPE* (float)i+ CONSTANT;
for (1=250;1i<500;i++)

data_valuel[i]=data_value[500-1i-1];

)
k=0;
for (i=500;1<750;i4+)

k++;
data_value[i] = data_value[500-k];

for (i=750;1<1000;i++)

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

data_value([il= data_value[1000-i-1];

resolution = MAX TIME/MAX X; // One entry of X corresponds to 'resolution' units
// of time
for (i=1;i<MAX_SAMPLES;i++)
{
data_samples_list[i] .generate time = data_samples_list[i-1].generate_time
+ sample_period;
data_index = data_samples_list[i].generate_time/resolution;
if (data_index<1000)

data_samples_list[i].data_val = data_value[data_index];
max_generate_time = data_samples_list[i] .generate_time;
}
error_computation list[i].generate_time =
data_samples_list[i] .generate_time;
error_computation_list[i}.data_val = data_samples_list[i].data_val;
error_computation_list[i].sample number = i;
}
}

// Use Exponential Distribution for the packet delay
void network_delay_events ()
{
int i,current_largest;
float rand_value;
float sum_ipg=0.0;
float delay _sum=0.0;
int drop_count;
int reorder_count;
for (i=0;i<MAX_SAMPLES;i++)
{
/*
Here code to insert loss would be implemented
Given is loss probability p
*
/
rand_value = poisson(l.0/mean_delay) ;
data_samples_list[i).arrival time =
data_samples_list[i] .generate_time+rand_value;
rand_value = uni (&seed2) ; // random variable for loss For loss
delay sum += data samples_list[i].arrival_time-
data_samples_list[i].generate_time;
if (rand_value<=loss_probability)

{

/* Mark the packet as lost, this can be done by setting the arrival
time of the packet after the arrival to large value which is
not feasible e.g. max access_time, Hopefully following
statement would make is useless.

*/

delay_sum -= data_samples_list[i] .arrival_time-
data_samples_list[i] .generate_time;

data_samples_list[i].arrival_time = INFINITE;

drop_count++;

}

data_samples_list[i].sample number = i;
gsort (data_samples_list, MAX SAMPLES, sizeof (data_samples_list[0]), lo2hi);
reorder_count=0;
current_largest=data samples_list[0] .sample_number;
for (i=0;1i<MAX SAMPLES;i++)
if (data_samples_list[i] .arrival_ time==INFINITE)

break; // All lost samples are treated to arrive after long
// time..don't consider them for measuring reordering.
}

if (data_samples_list[i] .sample number<current_largest)
reorder_count++;
/* The sample that is treated as reordered should not be included

in the tardiness computation, it is treated as lost
so mark its arrival time as the lost packet so that it is not

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

used for computation, and also adjust the total delay sum.
*/
delay_ sum-=data_samples_list[i].arrival time-
data_samples_list[i] .generate_time;
data_samples_list[i].arrival_time = INFINITE;

else

{

current_largest = data_samples_list[i].sample_number;

}

if (i!=0) // i indicates total samples that have arrived, then compute the
// probability of reordering based on that.
{

printf ("Reorder percentage %$f\n", (float)reorder_count/(float)i);

printf ("Packet that arrive without reordering/network loss = %f\n", 1.0-
(float) (reorder_count+drop_count)/(float)MAX_ SAMPLES) ;

}

// Sort Data again that such that all packets that are marked lost or reordered
// are at the end.

gsort (data_samples_list, MAX SAMPLES, sizeof (data_samples_ list([0]), lo2hi);
// Test Code to see the delay of packets that arrive without any reordering and
// loss

for (i=0;i<MAX SAMPLES-drop_count-reorder count;i++)

static float temp_delay sum=0;
temp_delay sum+=data_samples_list[i] .arrival_time-
data_samples_list[i] .generate_time;
if (i==MAX_SAMPLES-drop_count-reorder_ count-1)
printf ("Average Delay of Arrived packet is %f\n",
temp_delay_ sum/(MAX SAMPLES-reorder_count-drop_count)) ;
if (i>0)
{
sum_ipg+=data_samples_list[i] .arrival_time-data_samples_list[i-
1] .arrival_time;
}

}

// Randomly access receiver buffer
void buffer access_events()
{
int i;
tardiness_info[0] .access_time=data_samples_list [0] .arrival_time+uni (&seed4); //
Start randomly after 1st sample arrives in the
for (i=1;i<MAX_ACCESS_ATTEMPTS;i++)

tardiness_infol[il .access_time =tardiness info[i-1].access_time +

}

read_period;

}

// EBvery time buffer is accessed, tardiness of the data is computed.
void new_tardiness_computation()

/*

Determine first two arrival times

Determine first access time
*/
double current_arrival_time data_samples_list[0] .arrival_time;
double current_generate_time data samples_list[0] .generate time;
int current_sample = data_samples_list [0] .sample_number;
double current_data val data_samples_list[0].data val;
double next_arrival_time data_samples_list[1].arrival_time;

double next_generate_time = data_samples_list[1] .generate_time;

int next_sample = data_samples_list [1] .sample_number;

double next_data_val = data_samples_list[1] .data_val;

int sample_count=0; // Number of distinct in-order samples arrives at the

// destination
// For error computation

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int source_index_offset = 0;

double source_data_val = 0.0,sum_error_square=0.0;
double access_time = tardiness_info[0] .access time;
int data_index, access_index;

/*

Determine all the arrivals in the given access time slot,

then determine the most recently generated arrival, compute tardiness for that if
there are no arrivals in the given access slot then use the same data used in the
previous slot.

>/

access_index =0 ; //
data_index =1 ; // while(access_time<=data_samples_list [MAX SAMPLES-
// 1] .arrival_time)

while (data_samples_list [data_index] .arrival_time!=INFINITE)

// Keep checking buffer until the last arrival of the packet

if (data_index>=MAX_SAMPLES || access_index>=MAX_ACCESS_ATTEMPTS) break;
access_time = tardiness_infolaccess_index] .access_time;

if (access_time<next_arrival_time)

/* At this time we are in a position to compute tardiness of the
data current_sample is the data that should be used for the
computation as it is most recently generated data and thus
tardiness is computed for that

*

/

tardiness_infolaccess_index] .tardiness = access_time -

current_generate time; // Store age of the data

tardiness_infolaccess_index] .sample number = current_sample;

// Note down the sample used for the computation

tardiness_infolaccess_index] .generate_time = current generate time;

tardiness_infolaccess_index] .arrival_time = current_arrival_ time;
tardiness_infolaccess_index] .data_val current_data_val;

if (access_time<max generate_time)

/*
Computer Error in the data read at the access time
1. Determine value of data at source node at access_time?
2. Determine data read from buffer and compute difference
*
/
source_index_offset = (access_time-
current_generate_time)/sample_period;
if (data_index+source_index offset<MAX_SAMPLES)

source_data_val =
error_computation_list[data_index+
source_index_offset] .data val;
sum_error_square += (source_data val-
current_data_val) * (source_data_val-
current_data_val};

}

access_index++; // Consider next access time

}

else

// Check if the next is the most recently generated data then make
// it current
if (current_sample<next_sample)

current_arrival time = next_arrival_time;

current_generate_time = next generate_ time;

current_sample = next_sample;

current_data_val = next_data_val;

sample_count++;

}
next_arrival_time = data_samples_list[data_index+1] .arrival_ time;
next_generate_time =
data_samples_list[data_index+1] .generate_time;
next_sample =

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

data_samples_list[data_index+1] .sample_number;
next_data_val = data_samples_list[data_index+1] .data_val;
data_index++;

1
// Computer tardiness in terms of buffer access count K at each read buffer

int max_access = access_index-1;

int i;
double tardiness_sum, tardiness_square_sum;
current_sample = tardiness_info[0] .sample_number;

tardiness_infol[0] .k = 1;
for (i=1;i<max_access;i++)

if (tardiness_info[i] .sample_number==current_sample)

{
tardiness_infol[i] .k = tardiness_infol[i-1] .k+1;

}
{

current_sample = tardiness_infoli].sample_number;
tardiness_infol[i] .k =1;

else

}

tardiness_sum=0.0;
tardiness_square_sum=0.0;
for (i=0;i<max_access;i++)

fprintf (fp,"%d %f %f %f %f£ %d %E

$f\n", tardiness_infol[i] .sample_number,

tardiness_info[i] .generate_time,
tardiness_infoli].arrival_time, tardiness_info[i] .access_time,
tardiness_infol[i] .tardiness,
tardiness_info[i] .k, tardiness_info[i] .arrival_ time-
tardiness_info[i] .generate time,
tardiness_infol[i].tardiness*tardinegs_info[i] .tardiness

)i

if (tardiness_info[i) .sample_number<MAX SAMPLES-10)

/* Many times last few samples are not received that leads
to significant increase in tardiness thus does not
include tardiness of those samples

tardiness_sum+=tardiness_info[i] .tardiness;

tardiness_square_sum+=

(tardiness_info[i].tardiness*tardiness infoli].tardiness);

printf ("Total Samples arriving in order: %d\n", MAX_SAMPLES-drop_count-
reoxrder_count) ;
printf ("Average Delay: %f\n", delay sum/(double) (MAX SAMPLES-drop_count-
reorder_count)) ;
printf ("First Moment: Mean Tardiness: %f\n",
tardiness_sum/ (double) (max_access)) ;

printf ("Second Moment: Tardiness:

$f\n",tardiness_square_sum/ (double)max_access) ;
printf ("Inoxder no loss Sample count is $d\n",sample_count);
tardiness_val = tardiness_sum/ (double)max_access;

}

// Compute Tardiness
void tardiness_computation ()
{
int index,i=0;
double access_time;

double current_arrival_time = data_samples_list[0].arrival time;

double current_generate_time = data_samples_list[0] .generate_time;

int current_sample = data_samples_list [0].sample_number;

double next_arrival_time = data_samples_list[1] .arrival_time;

double next_generate_time = data_samples_list [1] .generate_time;

int next_sample = data_samples_list [1] .sample_number;
194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

index=1;

access_time =tardiness_info[i] .access_time;

tardiness_infol[i] .k = 1;

while (access_time<=data_samples_list [MAX SAMPLES-1].arrival_time)

if (index>=MAX SAMPLES || i>=MAX ACCESS_ATTEMPTS) break;
access_time = tardiness_info[i].access_time;
if (access_time<next_arrival_time)

{

tardiness_info[i] .tardiness = access_time-current_generate_time;
tardiness_info[il .sample_number = current sample;
if (i>=1 && tardiness_info[i-1].sample_number==current_sample)

tardiness_infol[il .k = tardiness_infol[i-1].k+1;

}

else
while (access_time>next_ arrival_time)
/*
In this we assume that of all the data that arrives in the
last read window slot data which is generated most recently
is used, so tardiness is computed only for that one sample.
*/
if (next_sample>current_sample)
current_arrival time = next_arrival time;
current_generate time = next_generate_time;
current_sample = next_sample;
next_arrival_ time =
data_samples_list[index+1l].arrival_time;
next_generate_time =
data_samples_list [index+1] .generate time;
next_sample =
data_samples_list[index+1].sample number;
index++;
if (index>=MAX_SAMPLES)break;
if (next_sample>current_sample)
tardiness_info[i] .k=1;
tardiness_infoli] .sample_number = next_sample;
else if (i>=1 && tardiness_info[i-1].sample number==current_ sample)
tardiness_info[i] .k = tardiness info[i-1].k+1;
tardiness_info[i] .sample_number = current_sample;
}
tardiness_info[il.tardiness = access_time-current_generate_time;
printf ("%d %f %f %f
%d\n", current_sample,access_time, current_generate time,
tardiness_infolil .tardiness, tardiness_infol[il .k);
1++;

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1L Computation of probability of in-order arrival at sink node

/* Program to compute probability of in-order arrival of samples given exponential
delay distribution

This program estimate Probability of in-order arrival. This is necessary for
estimating tardiness of data for applications that cannot tolerate out-of-order packets
Exponential Delay Distribution is considered for the data between source and a sink node
This information is used by the tardiness model to predict tardiness while considering
losses due to out-of-order arrival.

*f

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

struct list_node

short int len;
short int sum;

}i
double get_combination_sum(int, int, double, double);

int main{int argc, char *argvl[])

{

double s = 0; // Sampling Time
double lambda = 0.0; // For sample delay
double p = 0.0;

double product= 0.0;

double sum = 0.0;

double integral=0.0;

double in_order_prob=0.0;

int i,3,k,1; // For delay index
int i_max;

int *input_list;

if (arge!=5)

printf ("Enter: tardiness <i> <s> <lambda> <p>\n");

exit (1) ;

}
i_max = atoi(argvI[l]l);
8 = atof (argvi2]);
lambda = atof (argvi31);
p = (double)atof (argvl(4]);
product = 0.0;
in_order_prob = 0.0;
/*
For Generating all Combinations of posgsible packet arrivals
*/

input_list= (int *)malloc(sizeof (int)*i max);
for (i=0;i<i_max;i++)

input_list[il=1i+1;

// Consider first intergral in the range 0-S

k=0;

i=1;

in_order_prob = (exp(-(k+l)*(i-1)*lambda*s)-exp (- (k+1)*i*lambda*s))/(k+1);
//Consider Remaining Integral S$-28, 28-38,

for (i=2;i<=i_max;i++)

combination_count=0;
3=0;
for (k=0;k<i;k++)
integral = (exp(-(k+1)*(i-1)*lambda*s)-exp (-

(k+1) *i*lambda*s)) / (k+1) ;
product = pow(p,i-1-k)*pow(l-p, k);

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sum=0.0;
/* It is assumed that combination list stores combinations in
increasing order of number of terms, e.g., {1}, {2}, {3}, {1,2},

{1,3}, {2.3}
Get Sum of elements in all combinations of size K
*/

sum= get_combination_sum(i-1,k,lambda,s); // This call adds sum of
//all possible combinations of size K after multiplied with
//lambda*s and return it.

if (k==0)
{

sum=1.0;

product *={(sum*integral) ;
in_order_prob +=product;

}

printf ("After i_maxt %d prob of IN ORDER arrival is %f\n", i_max, in_order prob);
printf ("P(IN_ORDER/ARRIVE) * (1-P) = %f\n", in_order_prob¥*(1-p));

}

// From KNUTH book
// Generate all possible permutations of the arrival and loss of samples
double get_combination_sum (int n, int k, double lambda, double s)

int i, j=1, *c, x;
double temp sum=0.0;
double total_ sum=0.0;
double count=0;
¢ = malloc((k+3) * sizeof (int));
if (Ic)
{

printf ("Memory Allocation Failure\n");

exit (1) ;
if (k==0)

return 0.0;
if (n==k)

{

temp_sum= n* (n+l)/2;

total_sum = exp(temp_sum*lambda*s) ;
count ++;

free(c);

return total_sum;

for (i=1; i <= k; i++)

cli] = i;
clk+1] = n+l;
clk+2] = 0;

J = k;

visit:
temp sum=0.0;
for (i=k; i »>= 1; i--)

temp_sum+=c[i];

}
count++;
total_sum +=exp(temp_sum*lambda*s) ;
if (3 > 0)

= j+1; goto incr;

—

if (cl1] + 1 < c2])

c[1] += 1;
goto visit;
}

=2

do_more:

cli-11 = j-1;

x = clj] + 1;

if (x == c[j+1])

197

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{

j++; goto do_more;

if (3 > k)
{
free(c);
return total_sum;

incr:
cljl = x;

3--i
goto visit;

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I Computation of mean delay of packets/samples that arrives in-order

/* Program to estimate mean delay of the packets/samples that arrive in-order at the sink
node. This program is based on the computation performed for computing in-order
probability.

This program computes the average delay of all the samples that arrive in-order. This
estimate is used to estimate tardiness of data for applications that cannot tolerate out-
of-order late packets for computation. Exponential Delay Distribution is considered for
the samples transmitted from the source node

*/

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
struct list_node

{

short int len;
short int sum;

}i
double get_combination_sum{int, int, double, double);

int main(int arge, char *argv([])

double s = 0; // Sampling Time
double lambda = 0.0; // For sample delay
double p = 0.0; // Loss probability
double product = 0.0;

double sum = 0.0;

double integral = 0.0;

double expected delay = 0.0;

int 1i,9,k,1; // For delay index
int i_max;

int *input_ list;
if (argc!=5)

{

printf ("Enter: tardiness <i> <s> <lambda> <p>\n");

exit (1) ;
i_max = atoi(argv[1l);
s = atof (argv[2]);
lambda = atof (argv([3]);
ol = (double)atof (argv([4]);

product= 0.0;

//For Generating all Combinations of possible packet arrivals
input_list= (int *)malloc(sizeof (int)*i max);
for (i=0;i<i_max;i++)

input_list([i]=1i+1;

// Consider first intergral in the range 0-S

k=0;

i=1;

expected_delay= ((exp(-(k+1)*lambda*(i-1)*g)* ((i-1)*s+{1/((k+1)*lambda))))- (exp(-
(k+1) *lambda*i*sg)* (i*s+ (1/ ({k+1) *lambda)))))/ (k+1);

//Consider Remaining Integral $-28, 28-38,

for (i=2;i<=1i_max;i++)

{
3=0;
k=1i-1;
{
integral = ((exp(- (k+1)*lambda*(i-1)*s)*((i-
1) *s+ (1/((k+1) *lambda)))) - (exp{-
(k+1)*lambda*i*sg) * (i*g+ (1/((k+1) *lambda)))))/
(double) (k+1) ;
product = pow({p,i-1-k)*pow(l-p, k);
sum=0.0;

/* It is assumed that combination list stores combinations in
increasing order of number of terms, e.g., {1}, {2}, {3}, {1.2},

199

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{1.3}, {2.3}

Get Sum of elements in all combinations of size K
*
/
sum= get_combination_sum(i-1,k,lambda,s);
// This call adds sum of all possible combinations of size K after
// multiplied with lambda*s and return it.
if (k==0)

{

sum=1.0;

product *=(sum*integral);

expected_delay +=product;

printf ("Expected Delay is %f\n", expected delay);
1
1

printf ("After i_maxt %d Expected Delay Is %f\n", i_max, expected_delay) ;
printf ("Expected Delay* (1-P) = %f\n", expected_delay*(l-p));

/*

This algorithm is based on the Art of programming by Knuth
It is modified slightly for this program.

*/

double get_combination_sum (int n, int k, double lambda, double s)

int i, j=1, *c, x;

double temp_sum=0.0;

double total_sum=0.0;

double count=0;

c = malloc((k+3) * sizeof (int));

if (lc)
printf {"Memory Allocation Failure\n");
exit (1) ;
}
if (k==0)
return 0.0;
if (n==k)

{

temp_sum= n* (n+l)/2;

total_sum = exp(temp_sum*lambda*s) ;
count ++;

free(c);

return total_sum;

for (i=1; i <= k; i++)
c[i] = 1i;

c[k+1] = n+1;

cl[k+2] = 0;

o=k

visit:

temp_sum=0.0;

for (i=k; i »= 1; i--)

temp_sum+=c[i];

}
count++;
total_sum +=exp(temp_sum*lambda*s) ;
if (3 > 0)

= j+1; goto incr;

—— R~

if (cl1] + 1 < c[2])

cfl1]l += 1;
goto visit;

jo=2;
do_more:

200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clj-1]1 = j-1;
x = c[3] + 1;
if (x == c[Jj+1])
j++; goto do_more;

if (3 > k)

free (c);
return total_sum;

incr:
cljl = x;

J--i
goto visit;

201

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B

Estimating Probability of In-order Arrival

L. Probability of in-order arrival computation when delay distribution is
exponential with mean A, S is sampling interval at sensor node, and p is the
network loss probability. D;,; is the delay suffered by sample i+1.

y 28 28
Pin-order = .’- Ae”*dc+ p .[Ae*de+(1-p) _[P(D,-ﬂ >c—S)le M dc+
0 S g
38 38
P jﬂe"“dc +p(l-p) jP(Di+1 >c-S)Ae dc+
25 28
38

p(d-p) .[p(DiJrl >c—28)Ae dc+

28

38
(1-p) [P 2c=S)p(D,., 2c=28)Ae " dc+
28

S 28)5
pin—order = J.ﬂ'e_/lcdc'i'p J‘//i,e_ﬂch'i-(l—p) J-e—ﬂ(c—S)le—lcdc_'_
0 S 3
3 35
pz J‘ﬂe_ﬂch'i‘p(l—p) Je_ﬂ(c_s)/’le—ﬂcdc_’_
28 25
38
p(l-p) [0 e de+
28

38
(1- p)2 J‘ M) g=Ae28) g =Ae g 4

202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IL. Expected delay of packet arriving in-order at sink node, given that delay
distribution is exponential with mean A, S is sampling interval at sensor node,
and p is the network loss probability. D;; is the delay suffered by sample i+1.

N 28 28
E[D], oier =(J. cAe ™ dc+ p J‘cﬂe"l"dc +(1-p) J'cp(Dl.+1 >c—S)Ae *dc+
0 S N
3s 38
p’ Jcﬂe"lcdc +p(1-p) J‘cp(DM >c—8)le ™ dc+
28 28

38
p(-p) j‘cp(Di+1 >c—28)Ae M dc+
25

38

(1-p)* ICP(Di+1 >c-S)p(D,, 2 c—28)le de+

28

P jcﬂe‘lcdc+ Y Piy order

OR
N 28 28
E[D],, e =(J‘cle_’l"dc +p jcﬂe’ﬂc de+(1-p) I ce M9 Je o de +
0 N N
38 3S
p’ J. cle ™ de + p(1-p) J- ce M Jede +
28 28
38
p(-p) jce‘ﬂ(c_zs e ™ de +
28

38

(1 __p)2 J‘ce—l(c—S)e—ﬂ(c—ZS)ie~lcdc +
28

203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

! (edAg97ezep qur ‘®3ea uTW

auT ‘93ei 3867e3 qur ‘arod JuLTTS 1 9TIUIN‘AT QULTID 3 Z€auTn)3senbel $3USTIS PpPe pPToA
f()e1qea 1T 19s proa

! () 2 odAy zeddew sTdwes ¢ o3I PTOA

()1 odky aaddew oTdwes z s3eX PTOA

¢()s91d®3” 3TUT PIOA

suoTIRIR[OSY UOTIOUNG //

sTnpayss aernotaxed Surisanbez SIULTTD

sdey //

¢ [MOGNIM NI ILNZITO Xwu} [SEIVY X WaN]27qey dew JuUST10 03 91npayos juy
{[SEIVY XYW WON] 3Unod qusTid Jut

* sopou

QUITTO JO ASTIVUTT SYI UT SIUSTID SATIDY JO Jequny // {3unos”eTgeY ISTT IUSTID JUT
SOpou JO ISTTNUTT ©3 x3d pesy //!13d pesy oTqed 3STT JUSTIOs o1qed ISTT JUSTID 30nIas

! [SEIVE XYW WAN] puosss eorgel Id odAy orqel Li
3078 SwWr3 9Yyl 03 si93sx Aijus jJo
379 yoeg ‘peixoddns so3ey 3ISSUBTH IULISIITA $91038// ! [SHIVY X¥W WAN]2T9e3 I3 °dA3 o1qed I

fuoT3tuLep avwiy {
fanoswuty oodsIsWTIT 10NIIS
!das jusasbrs Jonilg

f9dAa jut

}

TuotT3TuUTFep ASWII JoTMIIS

Jeopedia

f0= pe33TWSURIY BIBP TEI03 JUT
2T HOOTD
T Y3 UT JUSTTD SYI O3 JUSE UOTIBWIOIUI ©Ie SYl 3O 8zT§ // {usT e3ep 35eT’'US| elep urew 3ut

M JO SWIS] UT 3OS SWTI YIED JO UOTINTOSIIA // ‘uoriniosax jut
_ _ _ {qE130340S FLVE NIK 3ut

{SITY YDIW+QEINOIANS HIVE XYA = SLIE NI QEI¥0ddNS ALV XYR 3B0T3

dozp wriozTun pue xted Aarrenb ejeq // z ¢ ddAL ¥I¥d SuljopH
doxp wioyTun pue syburs A3rrendb wieg // T 1 HdAL VIVA SUTISp#
[4 dNOY¥D”SSOT_¥INQ SutIeps

T WHOJING S50T ¥I¥Q sutIsps

€ LE3TGTAL_ALITYOD VIVA SUTIop#

z YIVd ALITVA0 YIVQ SUT3ops

T HIHNIS ALITYND VIVA SuTiop#

T T T T T LT LT TR T PP P PP PP

NOILINISHG JEIVIEY ALITVNO ¥I¥d

LR il T S LI T T TV

POIITWSURID
8q 03 e3ep YoIym I03 sdosms Jo asquny // 114 ATAMS XYW SUTIODH
o3eb xed serdues // %9 SETANYS WAN SUTIop#

25¢ SHIVO WON SuTIsps

93eb e 3o srdwes yoex ur se3Ag Jo ISqUNN // ST F2IS FTIWVS SuTIeph
Agq poaastusuexy sAey jo zequny // 005 SAVY WON SUT3Iap#

¥0¢

(UT IppeYoOos 3oNI3S)IOIZTS

- N

NIT SSEAAAY SuTIop#

YIVQ sUTIspH
GNE SUTISP#
JMOVEQIRL auTIsp#
LsENDAY SUTISPH

quetTd &q Juss s3axded o seddy //

Se13 1tea //
Sa[OAD IDADTL APOTD //

Buteq S3USTTS JO I2qUNU SUTWASISH O3 MOH //
s3tqebe uT Axjue Mg LI ISSUBTH // 00T

|UC UT JUSTID O3 poilafwsuer’ s23iq Teael //
oseyd PSESIDUI I0I JuULWIDUI //

3 poljroddns £33y XN JuLISIFIA 2UIILA //

1~ TIVA Sur3isp#
0T STTOAD XYW Sutzop#
i pasxas

00T SINHITO XYW SUTIop#

pucoss zad
ME XYW SUTISPH

301§ Bwil

00ST FZIS LENOVA SuTIop#
0'T INIWIYONI HLVH SuTIspH
TSOTqEL NI IUSISIITP JO ISQqUON PUB IIAIIF SUI
00T SEIVY XVW WAN Suijysp#

|Tnpayos
suc paubtsse aq ued 3eY3 SIUVT{O Auew mOH // 0T MOGNIM NI LNEITO XVH SuTyop#
SWQT ST UOTINTOSSY ¥OTL YOOTD // 0°0T NOILNTOSEY MOIL MDOTD SUTFap#
SZTS
Aey sy3 s1 satqelen 7 // 8+SEIAE NI HZIS AV SIT€_NI_HZIS Avd aurgep#
59348 UT 927§ Aey // SEIYD WANEZIS HTIWYS«SETINVS WAN SHIXE NI HZIS Avd SUTIsp#
esn Butuweiborg // 9LS8P0T SELAE YOEW SUTIopH
ma // 000000T SLIE YDHW SUTIep#
so34g eban z // z 531A9 ¥DEW NI_HZIS AVE SUTFop#
@oanos aepex xad sdaqw ur // 00T QILIO4ENS EIVE XVH SUTISPH
<Y‘yiew> opnioutH
<Y OTP3IS> opnIouTH
<Y UT/9UTIBU> SpnLUTH
<y-oin/sdAs> epnyout#
<y~ 3eyoos/shs> spniout#
<y-sodiiy/sAs> spniout#
<y-TeubIs> sSpniout#
<['3WI3> SPNTOUTH
<y-pesayad> spuisut#
<Y DOTTeW> SpnIdUTH
<Y qIIpas> opniout#
WU TISeDTITTM, SpnIoutH
/¥

Aytootea ae1ddog pue A3TATIOSTIST

Y3oq s9nduod JUSTID ejep
Iepel POIRINWIS SY3 JO SUOTITZTTEsT »TdI3[NW SUTEIUOD 3BY3 9113 SATysi® 9yl st andur

9 a8adeyn ut peureldxe Buryiew 39oed Buisn s2pou ARTISA0 SICIPAWISIUT
3e sordues/e3jep 309138 ©3 pesn st yseoxdde poseq WAL YITA WY3ITIoBTE STU3 JO JUETIRA Y

‘saosn pus o1drilnw XOJ UOTSSTWSUEI] XOF
e3EP SINPIYDS OF PISN ST SWLYLS WAL PUR UCTIDO[IS BIPp 10J PIUTRIUTRW 2Iv SIT|el OT131e3s

sdoxg WMOAINN YATM Jusweatnbel z eodAl 1o T =dig 01 BUTpIonse BIEp JOOTSE SI8Sn
PUD STIOFUSHOISIBY 103 TOIIUCD UOTISeBUOD posed Togwvdl SWIOIISd I18AZ8s ISEAITITAW WOOQ

sissn pus stdrifmm Jo sjuswsItnbsa gof Burissw 10y §
zeadey) UT poute(dxs se wYiTIOBTR BUTINPSuos 1sestifnn KOO U3 siudwsidwl 3NPOW STUL

[030)01d JNOOJ Jo uonejudwajdury

J XIANAddV

»/

ission.

ited without permi

ion proh

f the copyright owner. Further reproduct

ISsion O

Reproduced with perm

iwiad yum paonpolday

ISS

Inoyum panqiyosd uononpoidal Jayung “Joumo 1ybukdoo sy} jo uo

‘uolssiwliad

void simulate_time_ticker();

struct _client_list_ *remove_client_node(struct _client_list_ *temp_ptr, struct
_client_list_ *prev_temp_ptr, int data_type);

void add client nede (int current_rate_index,struct _client_list_ *client_ptr, int
data_type) ;

void change client_schedule{int current_rate idx, int target_rate_idx, int client_ip, int
client_port, short int packet_count, short int ray num,int flag,int data_type_requirment) ;
void time_ticker();

void send_data_type 1(int server_send sock, int tick, int rate index,int
data_type_requirement) ;

void send data_type 2 (int server_send _sock, int tick, int rate_index, int
data_type_requirement) ;

void print_data{int);

void release_memory();

inline void create_send packet();

sig_handler();

struct sigaction sig_act;

sigset_t mask;

int size_of_schedule;

int total_active_clients; a_fp);
data_packet_type send data_packet;

int actuwal _raw_data_per_packet,ray_data_offset; // Used for Packetization

short int current_ray num;

int sweep_count=0; // Count to keep track of number of sweeps of data already sent

int tick_count; // Keep track of current tick

pthread_t *thread ptr;

timer_definition timers = {0, {0,SIGUSR1}, {0,9500000,1,0}};
// For 10ms timer on Itanium Processor with Enterprise Linux
volatile int usrl;

int server_send sock;

timer_t timer_id;

FILE *data_fp;

char *file buffer,*file buffer ptr,*release_file buffer;

int packet_send count =0;
int packet_data=0;
struct sockaddr_in my_client_addr;

workload_table_type window_load[sizeof (int)*8);

struct _client_list_ *last_client_ptr;

int client_schedule_index,next_seq number;

request_node_type *request_node_list_head ptr=NULL;

// To maintain a list of all those client who's request arrives in the current window
feedback_node_type *feedback_node list_head_ptr=NULL;

// To maintain list of all clients who's feedback has arrived

int primary_table = 1;

int main{int argc, char *argv{}])
{
int i,rate;
int length,server sock;
int return_num;
uint32_t client_ip_ address;
uintlé_t client port;
int port ;
char temp_data pkt_ptr[20];
struct sockaddr_in serv_addr,client_ addr;
packet_format input_packet, temp_input packet;

if {arge<3)

printf ("Enter <server> <port> <packet size>\n");
exit(1);

port = atoi{argvill);
packet_data = atoi{argv(2]);
init_tables{);

set_rt_table() ;
rate_2_sample_mapper_type_2{);

205

rate_2_ sample mapper type 1();

// Open Simulated Radar Data File

data_fp =
fopen ("/space/radar_data/X Band_data_256gates_64samp_500rays_06_11_2005.bytes"
,"rb");

if (data_fp==NULL)

printf ("Error Opening File\n");
exit (1};

file buffer = (char *)calloc((RAY_SIZE_IN BYTES+sizeof
(file_ray_ header_type))*NUM_RAYS,1};

release file buffer = file_buffer;

if (file_buffer==NULL)

printf ("CALLOC FAILED\n");
exit {1);

fread(file_buffer, (RAY_SIZE_IN BYTES+sizeof (file_ray_header_type)) *NUM RAYS,1,dat
for (i=0;i<(RAY_SIZE IN BYTES+sizeof (file_ray_header_type)/sizeof (float)) ;i++)

char temp buffer(4};

unsigned long temp_long;

temp_long = ntohl (* (unsigned int *) {file buffer+4*i));
memepy (temp_buffer, &temp_long,4) ;

)

sigemptyset (&mask) ;

sig_act.sa handler = (void *)sig_handler;

sig_act.sa_flags = 0;

sigemptyset (&sig_act.sa_mask) ;

usrl= 0;

if ((server_sock = socket (AF_INET,SOCK DGRAM,0)) < 0)
{

printf ("RADAR server: receive request socket error \n");
exit (0);

if ((server_send_sock = socket (AF_INET, SOCK_DGRAM,0)) < 0)

printf ("RADAR server: send socket error \n");
exit(0);

if ({thread_ptr=(pthread t *)malloc(sizeof (pthread_t}))==0}

perror ("Exror in Thread Allocation™};
exit (1) ;

// Start Timer Thread
if (pthread_create(thread_ptr,NULL, (void *)time_ticker, NULL) !=0)

perror ("Exror Starting a Thread");
exit (1);

bzero((char *) &serv_addr, sizeof (sexv_addr));

serv_addr.sin_ family = AF_INET;

sexrv_addx.sin_port = htons (port) ;

serv_addr.sin addr.s_addr = htonl (INADDR_ANY) ;

if (bind(server_sock, {struct sockaddr *)&serv_addr, sizeof (serv_addr)) < 0)

printf ("Multicast server: Bind error \n");
exit (0);

length = sizeof (struct sockaddr_in);
while (1)

if ({(return_num=recvirom(server_sock, &temp_input_ packet,
sizeof (input_packet),0, {struct sockaddr *)samy_ client_addr, &length)) <0}
{

iwad yum paonpoldeay

ISS

noyum paugiyold uononpoudal Jayung “laumo ybuAdoo sy Jo uo

‘uolissiwJiad

perroxr ("FTP server: Couldn't Read Datagram");
exit (1) ;

client_ip_address = ntohl(my_client_addr.sin_addr.s_addr);
client_port = ntohs(my_client_addr.sin_port);
input_packet.current_rate =

(int)ntohl (temp_input_packet .current_rate) ;

input_packet.pkt_type = {int)ntohl (temp_input_packet.pkt_type) ;
input_packet.target_rate = {int}ntohl{temp_input_packet.target_rate};
input_packet.min_rate = {int)ntohl (temp_input_packet.min rate);

input_packet .ray_num
input_packet .packet_count =
(int)ntohs (temp_input packet.packet_count);
input_packet.data type_requirement =
{int)ntohl (temp_input_packet.data_type_requirement);

{int)ntohs (temp_input_packet.ray_num) ;

switch (input_packet.pkt_type)
case REQUEST:
if (request_node_list_head ptr==NULL)
§/ First reguest from
client during the

current window.
request_node_list_head ptr

= (struct
_request_node_list_ *)malloc (sizeof {struct
_reguest_node_list_});
request_node list_head ptr->client_ip_address
= client_ip_address;
request_node list_head ptr-
>client_port

= client_port;
request_node_list_head_ptr-
>target_rate
= input_packet.target_rate;
request_node_list_head_ptr-
>min_rate
= input_packet.min rate;
request_node_list head ptr-
>data_type_ requirement=
input_packet.data_type_requirement;
request _node_list_head ptr-

}

snext = NULL;

else

// Reguest is not from the
first client in
// this CYCLE
request_node_type *
temp_ptr;
temp_ptr = (struct

_request_node list__

*)malloc(sizeof (struct
_request_node_list_));
temp_ptr->c¢lient_ip address

client_ip address;
temp_ptr->client_port
= client_port;
temp_ptr->target_rate

input_packet.target_rate;
temp_ptr->min_rate

206

input_packet.min_rate;
temp_ptr-
>data_type_requirement =
input_packet.data_type_requirement;
temp_ptr->next

request_node_list_head ptr;
request_node_list_head_ptx
= temp_ptr; //Latest
request is made head in this list
// though it came last.

break;
case FEEDBACK:

int target_idx, current_idx;
// Client Index points to the location
of c¢lient
entry in the client table.
target_idx=
(int) ({(double) (MAX_RATE_SUPPORTED ~
input_packet.target_rate)/(double)RATE_INCREMENT) ;
current_idx =
(int) ((double) (MAX_RATE_SUPPORTED -
input_packet.current_rate) /(double)RATE_INCREMENT) ;

if (feedback_node_list_head_ptr==NULL}

// This is the first
feedback received
during the CYCLE

feedback_node_list_head_ptx=
(feedback_node_type
*) {(malloc (sizeof (feedback_node_type)));

feedback_node_list_head ptr->current_index =
current _idx;

feedback_node_list_head_ptr->target_index =
target_idx;

feedback_node_list_head ptr-
>client_ip_address = client_ip_address;

feedback_node_list_head_ptr->client_port
= client_port;

feedback_node list_head_ptr->packet_ count
= input_packet.packet_count;

feedback_node_list_head_ptr->ray_num
= input_packet.ray num;

feedback_node list_head ptr->flag

= 0;
feedback_node_list_head ptr-

>data_type_reguirement =

input_packet.data_type_requirement;

feedback_node_list_head _ptr->next
= NULL;

else

poddoxp a1e sejeb TTe 3o atdwes // f3twsueay o3 ssydwes [elol
-SETANYS WON{3uT) = doap o3 serdwes Tejol
{
! (quswexnbai dnoib sidwesgitwsuesry o3 sotdues Te3o3)
~jusweatnbei1 dnoab srdwes (3ur) =+ J1Twsuery o3 serdwes Teio]
}

(auewaxTnbsx dnoib srdwesgiTwsuexy ol sordues Te3os) It
Juawsainbax dnoxb sydwes Jo ordrirmm 3twsuesy o3 sejdwes [e3073 Sxew //
fquswsatnbex dnoxb aduwes=+3Twsuery o3 sopdwes Tejol

osTe
N 4 _ - N
¢ (qusweatnbar dnoxfb sTdwesgiTwsueil o3 sstdues [e303) - juswarinbexr dnozb eTdwes
=+ 3Twsuery o3 seordues Te3ol
}
(ausweatnbos dnoxb sidwesyiTwsuery o3 sordwes Teizol) 3T
(o<s@jeB wnu) JT

I (JUSWIIT
nbex” dnoxf eydwes (o TqnoP) /SEIVDO WON (8TANOP) » (FUswex tnbex dnoxb erdues,seTdues dnoxb eiep unu
(atgnop) _ _ _ _
- (QEI¥Oddns” BIVE X¥W(oTqnop) /e3ex eseq [T]oTqed Id (8Tqnop)
«STTANYS WAN (STAnop)))) (3UT) = se3el wnu
‘o3ex usatb v 103 dnoib asel syl
Z03 ATuo ST 31 230u ‘#oTeq peindwod ST pIijTwsSueI] oG uUed sordwes //
s33eb Auew Moy 103 08 ‘pajaltwsuril
aq Jou Aew sejeb 112 ‘olnpeydss o7dwes syiz ur dnoib Ise] SY3 104 //
fquswextnbax dnoxb opdwes/3Twsueiy o3 ssidues (2303
= saTdwes dnoxS eiep wnu
{AIDNTS ALITYAD VIVA {(3uT) = Juswaatnbax dnoxb stdwes
{qAINOAANS” HIVA XWH (2TqNOP) /938X oseq” [T] 9TUEI_Ld (STANOP) »SETANYS WAN (STANOp) (IUT)
= aTwsueiy o3 sordues Telol
poyatwsueil st ordues setnorized YoTUA IOT
soqeb Jo Zsqunu Byl 50103 eyl 18T e ST preti Iad erged sidues //
!SEIYD WAN=3unos e31eb ferized gser
!doap o3 soTdwes Te3o3’iTwsuexl o3 sordwes [e303 3u
!goTdues dnoib ejep wnu’ssieb wnu ‘IjTusuery o3 serdues sjsrdwos wnu’juswsarnbes dnoxf ordwes
‘xopur ordwes ‘T 3y’ jut

}
(++7 {SHIVE XWW WON>T f0=T1) z03%
{
! (1018 oury zod serduwes wnux (adA3 aTnpeyss oydwes) JoszTs) oOTTRW (»
8dAy enpsyss srdwes) = [T]eTqe’ oInpsyss ordwes
}

(++T/2TNPaYDS 3O 9zTS>T/0=T} 10}
! (oTupsyns” 30 BZ TS (9dA2 oTnpsyos oTdwes) Joaz1s) o0 [eWl(xx
adA3 aTnpoyos” odues) = a7qe] oInpayds ordues
! (2TnpaYss” 30~ 22 18 (STYNOP) /STTIWYS WAN (STANOP)) FTTS2 (3UT)
= 3018 sury aod sordues wnu
‘91qey ornpsyos eTdwesyy 2dA3 ornpsyos erdwes
! [SETAWNYS WON] 3517 oTdwes sdAy sTnpoyss ordues
3ets //
swT3 aser ur dnoab ardues 3seT 03 pejlTwsuerl s3eb Jo Tequnu Y ¥oeI OL //
{SALYD WAN = Joqunu o3ef Teraded 3sel’SHIVO WAN = 3Unod 93eb retixed 3sel jur
f3unos” dnoab’ Junos” doxp ‘doxp xod dnoib‘dnoab isd doxp jur
fowry Aex 3eoTy
3018 suty asd setdwes wnu /LT Jut
}

{) T 2d&3 zeddew os1dwes ¢ o7ed pTOA
4080 WHOAINN aNY FTIWYS FTONIS //
/x

"pa33TWsSuURI3
axe sejeb ma3 asat3 30 ordwes ATuo uwayz A(sistdwoo paijtusuell aq jouued sr1dwes dnoib uaym

L0T

(swT3 ® a® 9u0) sjuswsatnbex ated pue s1BuTs yaoq Burtdzsrties diay
PTROA eyl esnedeq seTdwes JO ASCUNU USAS ITWSURI] O3 PIPTOSP ST 1T ‘MOPUTA SwTl yses ul
*s3ex rernotazed e 103 jues aq o3 sordwes o 9rqel oI1els e sredsid

pejusweTdwt
oq ued SS0T 4NON¥S ydseoadde FeTTWIS UO POSEQ ‘WIOJINA : ST INEWIEINOEY SSOT
JWTl ' je SYIVd XO FTONIS * ST LNIWENINDEY dNO¥D ITAWYS

esed 9y3 103 §T uorjejuswordur swil STYI IV 2381 USAThH
e x03 orqrssod 2xe jeyl seief TTe Io03 seoidues 9I9TAWOD JFO ISQUOU WNUITXEW JTWSURIY O] ST [e0D
‘asaxes jsestiTnu ut xoddns A3TTENY eled sy juswaTdur ©3 peITNbBr ST STYL

9Tqe3 oT3els STYl Jo dnyooy ST SWTY UOTINNIXS
8Y3 3@ SUOP Y PINOUS IBY] sBUTyl ATuo pue ATTRoTIR3S Suop 5q ued suorjejndwod essyz TV
“pe13TWSURLY 3G O pesu eyl seTdwes oyl sae Jeym ATTEOTILIS SUTWISISP ‘STYRl 9IBI ® USATH

x/

{

}

{
iyeaxq

¢ (quoweatnbai sdA3 elep- 1eyoed andut’y ‘wnu Aex-iaxoed indut ‘junon 3oyoed-asyped udut
‘3xod JuUaTIP ‘sgaappe dT JUSTIS ‘XpT 326123 XPT QURLAND) SINPaYIs JUSTId sbueys

Ixyeaxq

13taegep

f (INBWIYONI HIVY (21quop} / (93ed” qusxana - 3axoed andut - qF1¥0ddns arvd XxvW) (2Tanop)) (3ut)
= XpT JULIIND
¢ (INTWEIONT HIvd (2Tqnop) / (93ex 396xey joyoed andut - 4¥1¥04d40S IV XWW) (STAnop)) (3uT)
= XpT 19b1e]
S
TIUBTTS STYY 03
eaep ayz Butpuss dols PINOUS IDAISBS
uoIsstusuedl JO Pug Ioy umwﬂ—mvmm &\
!XpT” AuexaIND ‘XpT gebie) jut

{ONF esed

Iyeexq

{

xa3d peay 3STI 9poU yoeqpssj

1139 duey =

‘qusweatnbex odA3 ejep-asyoed andur = jJuswsiinbsa odAi ejep<
-13d duagy
ta3d pesy 3STT 9POU YPegpPasy =
axsu<-a3d dwal
‘0 =
serz<-aad dwey

]

funmu Aex-3axoed ndut
wny Aex<-13d dwey

{qunoo 3exoed- 19yped andur
qunos” jexed<-a3d dusy

f3z0d 3ustTo =

qaod jusiTo<-13d dwusi
!sseappe dT JULL(O =

ggsIppe dT Juello<~aad dusig
IxpT 30b1e3

= xsputr 3abrel<-13d dwsn
{XPT JUBIIND

= xaput qusiino<-13d dusy
! ((adA3 epoy oRYPISI) JOSZTS) DoTTRW (» 2dA3 OpPoU MorApPES])

= z3d dwsy
t1ad dwegy

2dAy epou speqpesy

ited without permission.

ion proh

f the copyright owner. Further reproduct

ISsion O

Reproduced with perm

‘uoissiwgad 1noypum pauqiyosd uononpolidas Jayung “Jaumo 1ybuAdoo ayy Jo uoissiwiad yum pasonpoldey

num_data_group_samples =
total samples to_ transmit/sample_group_requirement;

memset (sample _list, 0, sizeof(sample schedule_type) *NUM_SAMPLES) ;

group_per_drop = num_data_group_samples; // Number of groups to
transmit, one of the last group may be partial

drop_per_group = total_samples_to_drop; // Number of samples that
need to be dropped

sample_index=0;

if (num_data_group_samples>=total_samples_to_drop}

for (j=0;j<total_samples to_drop-1;j++)// Distribute loss

{

for
(k=0;k<num_data group samples/total_samples_to_drop;k++) //After number of groups 1 loss is
introduced

samples uniformly

{
for
(1=0;l<sample_group_requirement;l++)
{
sample_list [sample_index].sample number = sample_index+1;
sample_list{sample_index].total_gates = NUM_GATES;
sample_list[sample_ index].first_gate =1;
sample_list [sample_index].last_gate = NUM_GATES;
sample index++;
}

// At this time schedule one lost sample
sample_list [sample_index] .sample number =
sample_index+1;

sample_list [sample_index].total_gates = 0;
sample_list [sample_index].first_gate = 0;
sample list [sample_index] .last_gate = 0;

sample_index++;

// Note that at this time total_samples_to_drop -1 samples
have been scheduled for drop.

// Schedule the last part of the sample_list

for (k=0;k<{{num_data_group_samples/total_samples_to_drop)
+ (num_data_group_samples$total samples_to_drop)-1) ;k++)

for {(1=0;l<sample group_requirement;l++)

sample_list [sample_index] .sample_number = sample_index+1;
sample_list {sample_index] .total_gates

= NUM_GATES;

sample_list (sample_index] .first_gate
= 1;

sample_list (sample_index] .last_gate
= NUM_GATES;

sample_index++;

}

// Last group gates has not been set yet, as it might be
required to send only partial number of gates for that so do it here

if (num_gates>0)

for (1=0;l<sample group requirement;l++}

208

sample_list [sample_index]}.sample_number = sample index+1;
sample_list[sample_index].total gates
= num_gates;
sample list[sample_index].first_gate
= 1;
sample_list[sample_index].last_gate
= num_gates;
sample_index++;

else
// When num_gates is 0 then it indicates that for

last group all gates were sent
for (1=0;l<sample_group requirement;l++)

sample_list [sample_index].sample _number = sample_ index+l;
sample_list [sample_index].total_gates

= NUM_GATES;

sample_list [sample_index].first_gate
= 1;

sample_list[sample_index].last_gate
= NUM_GATES;

sample_index++;

}
// 8chedule last packet for the drop
sample_list [sample_index] .sample_number = sample_index+1;
sample list[sample_index].total_gates = 0;
sample_list[sample_index] .first_gate = 0;
sample list[sample_index].last_gate =0;

sample_index++;

)

else

for (j=0:;j<num_data_group_samples-1;j++) // Schedule
num_Data_group_Samples - 1 groups

// schedule following sample for transmission

for (k=0;k<sample group_requirement;k++)

sample_list [sample_index].sample number = sample_index+1;
sample_list[sample_index].total_gates

= NUM_GATES;

sample_list[sample_index] .first_gate
=1;

sample_list[sample_index].last_gate
= NUM_GATES;

sample _index++;

// Drop following samples
for
(1=0;1<total_samples_to_drop/num _data_group_samples;l++)

sample_list [sample_index}.sample_number = sample index+1;
sample_list [sample_index].total_gates

= 0;

sample_list{sample_index] .first_gate
= 0;

sample_list {sample_index].last_gate
= 0;

sample_index++;

fjusweatnbsa” dnoib orduessEZIS dTdWVSxE93e5 1e303” (1] [[11T odAy aad etqes ordues [1]sTqed I
=+ [£]T od43 ezTs ®aEp 0TS owr3- [T]oiqel I

{SHIND WON = eaeb qset [T] [[1T sdA3 zad orqey srdwes: [T]aTqe) Iy

!T+Ioqunu ejeb Tetjaed 3ser
= 2386 38213 (1] ([T 2dA x3d e1qeq” oTdwes [1)etqey id

!qunos” o3eb (eriaed 3ser
-SHIVO WON = s93eb peqox- [1] [[]1 odAa xad orqey aydmes: [T]o1qed Id

{zoqunu aTdwes” {}] 3sTT o1dwes
= xoqunu eTdwes [T] [[1T odA3 x3d orqe3 orduwes- [T]oTqey 1d

}
*R0TS BWT1 MBU Syl UT seoleb BuruTewsx 8Yj} puss O ‘33EINAI O3
posu ST axayL // (0==T)} It °sT°
{
{
frel
!1=suop 0TS awT3
} - _ - -
(3078 swTy z8d serdues unu=<xaput eTdwes 3rels
%) 3T
‘quswsITnbsx dnoxb erdwess=+
y
Laa

te3eb 3ser’ [1] [[1T =2dA3” zad o1qes ordwes” [T]a1qed 1d =
Zequnu e3eb Teriaed gset
fso3e6 Te3073" [1] [[)1T edAa " x3d o1gey erdwes [T]o1qea” J¥=3unoo ojef rerized 3ser

fquewertnbel dnoib o1dwesxEZIS HTAWYSxs97e6 Teaon: [1] [(]11 odAy xad eqei srdwes: [t]sT1qed Id
=+ [£1T odA3 o278 B3RP 30T SWTI" [T]STdqed 1A

fsa3eb Te303° [}] 3STT oTdues
= #7eB 3ser- [T] [[11T odAx xad orqeq srdwes- [t]sTqel 1d

1= 2386 3sx13° (1] [T 2dA3 23d a1qea odues " [T]e{qed 1y

fsajeb Te103- [¥] asT o1dues
= s93eb re3oa” [1] [[]11 odA3 x3d o1qed ordwes’ [TloTqed Id

fzaqunu aTdwes - [¥] AsTT eidues
= zoqunu eydwes" [T] [[]T odAa x3d oTqey s{dwes’ [T]eTqed Id

}

om3 usemisy FoTdues JO UOTILOUNII OU SeMm Sayl //
3% 0==T) 3T

}

9 SATANYS WON>Y) IT

}

(auop 0TS SWII|) oTTUM

csmoputa Juadelpe
(STIVD WAN==3uno eaeb Teraxed 3ser

(0<s97e6 Te303° [¥] 35TT ordues

307§ SWIL SYl UTUITA
atdwes jo xspul //

0= T 3utr
201§ swil usalb 2yl ur
srdweg 3813 JO XIPUL // !y = xopur oTdwmes 11e1s 3uUT
{p=2uop JOTS SWII 3UT
}
S30TE SWI3 IUBISIITP Buowe 2[npsyps I (9AoL
SUI OPTATQ ‘S30TS 2WIL // (STTAWYS WAN>Y 3% S[npayos 3o ozTs>[) afrtum
1817 oTdwes uten sy3 ur ordwes eyl 207 XpPur // 0=y
301S Wil eys o3 xmmaH // to=f
£ (1018 swty zod soydwes wnuy (2dA1 snpayos eTdwes) joezTs)ooTTEW (% 2dA3 oTnpeuss ardwes
=[£]1 ®dA3 x3d o1qey ordues- []219eY Iy

}

60¢

(++[foTnpayos 3o ozTs>({0=[) zo3
f{{UT) JOSZTSxITNPSYDS JO 2278’0’ T odiy ezt1s eiep 0TS oWIl' [T]eTgey LY)Josusw

‘mopuimM usAIb sy UT PI3IITWSURI]
3Q ©3 e3EP FO JUBUST 9I07s 07 Arowsw 93RIOTTY // ! ((IUT} JODZTS:STUPSYDS JO 9ZTS)DOTTEW (¢
aut) = T 8dA3 9z1s e3ep 0TS SWil" [T]o14ey Iy

! (9TOPSYDS JO SZTSx (STNPAYDS JO OZTSH) JOSZTS)DOTTRW (xx

8dAy enpayns aTdwes) = T odA3 x3d o1qe3 ardwes ' [T] 919e3d Ld

/x
830Ts aury o3 sardwes ubrsse 03 ST
}sel Ixsu aou ‘Apesa sT sorduwes JO UCTINGTIISTP SWTI STYI I¥ 'sjuswaxtnbsx dnoib Butdrstaes
STTYM PIIITWSURI o ueo sordwes Yotys 103 seleb Jo xoquuu 23ndwos pINOYs oM SHYL
‘JuswerTnbax dnoxb sya Burissu oTTUm ITYTSsod ST XSA23eyM PUIS PTNOUS 9M USY3 pejiTusuers
e ouued seleb [re jJo ordwes st jJeyly ‘3397 ST oTdwes Tersxed JIr

*/
{

f(se3eb Te303" [1]asT] oidwes’xoqunu oTdwes- [[] 38T oTdwes ‘s3ex oseq’ [T}oTqe3 Id
LU\ Pg $93eb pey py ordwes py s3BA J0d,) Jjurad

)
(++T!SHTIINYS WAN>T?0=T} 103
{
_ {
f3++xopur sTdues
‘o = 23eb sl [x9pur oTdues]3sTT ordues
‘o = o3eb 1sx13’ [xeputl o1dwes]ast] sidues
0 = so3ef Te303- [¥spul oidwes]isTT ordues
{1+xoput ordwes
= xoqunu ofdwes- [xopul ordwes]3stT oTdwes
}
(++7isoTd
wes” dnozf ejep umusdoIp 03 setdues Tejon+satdues dnoxb ejep unu/dorp” 07 seTdwes Te303>T!0=T)
203
sunyo 3sei doxa //
{
- {
!++xopur ordwes
_ _ {SEIYD WON =
91eb aseT [xopuT ordwes]3sTT ordwes
1=
93eb 38aT3 [¥opur ordwes]3sTy ofdwes
{5EIVD WON =

s93ef Te307)” [xepur srdwes]3sTT otdues
!T+xspur ordwes = rsqunu oydwes- [xspur oTdues]istT oidues
_ _)
{++T7/3uswexinbaa dnoab srdwes>T!¢=T) i10%

}
{

osT2

u++xovaﬂIanEmM
fgojeb wnu =

93eb 3ser” [xopuT ordwes]isTtT erdwes
=

@3eb asaty- (xeput ordwes]3stT erdwes
fgojel wnu =

so3eb Te307 " [xoput otdwes]gsty ordues

{r+xoput o1dwes = xoqunu oTdwes - [Xepul oldues)3siT ordues

}
(++1?quswartnbax dnoxb sTdwes>T!0=1) 103
}
(o<s93eb umu) I1
59726 Jo asqunu TeT3IRd ATUC
peou yBTw 3T 9SNeosq peInpayss ussq jou sey dnoab 3seq //

(

ission.

ted without permi

ion proh

f the copyright owner. Further reproduct

ISsion O

Reproduced with perm

{ (9Tnpayos” 3o oz sy (9dA3 oInpayss” oTdwes) J0S2ZTS) DOTTEW {xx

2dA3 eTnpayss oldwes) = oTqel SINpayss ordues

{(STnpaYds 3o 9Z 1S (STANOP) /STTINVS WAON (STQRop)) JTTSD (3UT)
= jo1s awiy Iad serdwes wnu

fe1qey onpaycs oTduesys 9dA7 snpsycs ordues

¢ [SETANYS WAN]3STT =Tdwes 2dA3 oTnpayos ordues
3J01s sury asel ur dnosb sydwes 3se] J0F Pol3TWsSURII $93eH JO ISQWAU BYJ YOBIZ O
// !SELYD WAN = Joqunu 23ef Terized 3§e(’SILYD WON = junoo o3eb Teraaed jser aut
{3umoo” dnoab ' qunon” doap ‘doap aed dnoib’dnoab zsd doap 3ut
fswry Aex jeotry
f301s owry zod serdwes unu ‘y‘[‘T jur

}

() ¢ 2dA3” zeddew sTdwes z ©1BI PIOA
dOda WIOAIND UNV ¥IWd 4no¥s //

f{y=9uop 3018 Bwijl
(SETANYS HAN=<Y) 3IT

{
{
fetl
!1=sUop 101§ SUL3
}
(3018 oury asd soTdwes wnu=<xapul ordwes jae3s
- 3T
o1dwes 3xou oousd
os 'psTnpsycs jou sem ordueg // L4y
}

(SETANVS WAN>X) IT SST®

{
o<t // {

L4+

JOTS IXBU 03 SACW // ‘T
= ouop jols SwI3
{opdues 1od sejef = zequnu ojeb Teriaed aser

fo1dwes zad sejeB = qunos ojeb Teriaed aser

‘MOPUTM JOTS SWT3 IXSU UT Juss orxe seqeb Bururewsd os s3etdwoout st olduwes 3 ‘Y
ebueys joucd //
Jquewsitnbea” dnoxb sTdwesSs¥ZIS ATINYSsSo3eb [e303° [T] [{] T odA1 a3d eiqe3 aTdues: [T]e1ge3 Ld
=+ [[)T odA3 oz1s eaep 30TS owr3’ [1]o1qR3 Id

!o7dues” xed ss3eb = 93eb asel- {1) [[]T odA3 x3d o1qe3 oTdwes" [T]o1qe3 1d
o= @3e5 35273 [T} [[]1 1T odAa"aad o1qes erdwes" (1] oTqed 1y
ra1dues xod sojeb = seqeb Te3zoq- [T]1 [[] T odAy xad orqed ofdwes- [T] 21qel I

‘ zequny eTdues - [M}3sTT stdwes
= xecqunu stdwes" [T] [[]T odA3 x3d o1qey oTdues [1]eTqel L

fquemaxnbai dnoib sTdwes/SELYD WAN:dwsy =

ordwes” asd sa3eb
pollTWSUEZY g ued Jeyl serdwes 3o zsqunN // ‘dwsl - Juswsarnbex dnoab erdwues

= dway
pelaTWSURIY B¢ jouued
Jeyl sordwes 3o xdqunu // {(T+[)x307s swry zad sordwes wnu - (Jusweatnbex dnoiab etdwes+y)

= dwa3jy
foTdwes” zod sayeb’dus)y

Jut
A317enb esep usATE B 207 PITLTWSURII 8 JOULNED

sardwes 11v //

01¢C

asT®
{
{
f4+L
!1=9uop 10TS SWT3
! - - _ - -
(30Ts oty xad sotdwes wnu=<xsput s1dwes 1ae3s
-%) 3t
fquswozInbaa dnoab sTdues=+
'Y
{
f3e9xq
doot
3S0WISINO BYI NeSAq O3 SHTANYS WAN SU3 ULyl SI0W 3T 38§ // fquswezTnbax dnoxb sTdues+y
=3
{[=9UOp JOTS SUTI
} - .
(STTIANVYS WNN=<3usweitnbex dnoxb sidwes+sf)
IT
f++T
!seqeb Te303° [} ISTT otdues = Joqunu o3eb Terized iser
{s33eb 1e303° (1] [[11 °dA3 13d o{qey oidwes” [T}o1qe3 4y = 3Junod a3eb Teraaed aser

{jusweatnbea dnoib eldwes,HZIS ATdWYSsS93e6 Teiod’ (1] [[]1T odAa zad orqea ordwes- [1]o79e3 Id
=+ [(]1T 94Xy sz1s eyep 30Ts ewry‘ [T]o7qed Id

_ fg99e6 Tel03 [3]3sTT srdues
= e3eBaser” (T] [[1T =dAy 13d o1qel otdwes- [T]efqes Id

o= @386 38x73 " [1] [F1T 24437 23d o1qey s1dues” [f]sTqes” Id

‘seaeb Te303- [3]1ST[ordwes
= so3eb Te3ed’ (1] [[11 2dA3” z3d =Tqed srdues’ [T}sTqed I¥

fxequnu” ordwes - [Y]35TT or1dues
= zoqunu otdwes: [T} [[1T odA3 x3d oTqes erdwes- [T]eTqed I¥

41 SPUIOUT USY] IOTS SWII oY IUT juss s8¢ ued sordues
@3o1dwoo usyM //
1
({T+[) ¥30T8 aw1y a1ed seTdwes wnu=>juswexinbax dnoib srdwes+y)
FT
/x
spunog
WEYITA ST ¥} IT YPIUD //
=/
}
{0<T) 37 9sT>

{
f++L
!1=suop 3oTs SWT3
{2075 swry” zad sordwes wnu=<xopul oTdwes jie3s
tquaswertnbex dnoxb sidues
fe3eb aser [T1 [f11 °dAy 23d orqea erdwes ' [T]=Tqey 14
= zoqunu” sjeb Terixed 3ser

{s93e6 Te303 (1] [[]1T °dA3 x3d o1qea oTdwes’ [I}oTqed Ly
= 3unos e3eb terized aser

ission.

ht owner. Further reproduction prohibited without permi

(Y

f the copyri

ISsion O

Reproduced with perm

iwad yum paonpolday

ISS

oyum pauqiyold uononpoudal Jayung “soumo 1ybukdos ayp jo uo

‘uolissiwJiad

for (i=0;i<size of_schedule;i++)

sample_schedule _table{i] = (sample_schedule_type
*)malloc (sizeof (sample_schedule_type)*num_samples_per_time_slot);

for (i=0; 1<NUM MAX RATES; i++)

int j,k,1,sample_index,
sample_group requirement,num complete_samples_to_transmit, num_gates,num data_group_samples;
int total samples_to_transmit,total_samples_to_drop;
last_partial_gate count=NUM_GATES:
// sample_table ptr field is a list that stores the number of gates
for which particular sample is transmitted
total_samples_to_ transmit =
(int) (double) NUM_SAMPLES*(double)RT_table{i] .base_rate/ (double)MAX RATE_SUPPORTED;
sample_group_requirement = (int) DATA QUALITY_PAIR;:
num data_group_samples =
total samples_to_transmit/sample_group_requirement;

// Por the last group in the sample schedule, all gates may not be
transmitted, so for how many gates

// samples can be transmitted is computed below, note it is only for
the last group for a given rate.

num gates = (int) ((((double)NUM_SAMPLES*
(double)RT_table[i] .base_rate/ (double)MAX RATE SUPPORTED) -

(double)
num_data_group_samples*sample_group_requirement) * (double)NUM_GATES/ (double)sample_group_requ
irement) ;

if (num_gates>0)
if (total samples to_transmit¥sample_group_requirement)

total_samples_to transmit +=
sample _group_requirement - (total_samples_to_transmit%sample group_requirement};

else
total_samples_to_transmit+=sample group_requirement;

// Make total samples to transmit multiple of sample group reguirement
if (total_samples_to_transmit%sample_group_requirement)

total_samples_to_transmit += (int)sample_group_requirement-
(total samples_to_transmit¥sample_group_requirement);

total_samples_to_drop = {int)NUM_SAMPLES-
total _samples_to_transmit; // Sample of all gates are dropped
num_data_group_samples =
total samples_to_transmit/sample_group requirement;
memset (sample _list, 0, sizeof (sample_schedule_type) *NUM_SAMPLES) ;
group_per_drop = num_data_group_samples; // Number of groups to
transmit, one of the last group may be partial
drop_per_group = total_samples_to_drop; // Number of samples that
need to be dropped
sample_index=0;
if (num data_group samples>=total samples_to_drop)
for (j=0;j<total samples_to_drop-1;j++) // Distribute
{
for
(k=0;k<num_data_group_samples/total_samples_to_drop;k++) //After number of groups 1 loss is
introduced
{

for

loss samples uniformly

(1=0;l<sample_group_requirement;l++)

{

sample_list[sample_index].sample_number = sample_index+1;

211

sample_list[sample_index].total_gates = NUM_GATES;
sample list{sample_index].first_gate =1;
sample list [sample_index].last_gate = NUM_GATES;
sample_index++;
}

// At this time schedule one lost sample
sample_list [sample_index] .sample_ number =
sample_index+1;

sample_list [sample_index] .total_gates = 0;
sample list [sample_index].first_gate = 0;
sample_list [sample_index].last_gate = 0;

sample_ index++;

// Note that at this time total_samples_to drop -1 samples
have been scheduled for drop.

// Schedule the last part of the sample_list
for (k=0;k<{(num data_group_samples/total_samples_to_drop)
+ {num_data group_ samples¥total samples_to_drop) -1} ;k++)

for (1=0;l<sample_group requirement;l++)

sample_list [sample_index].sample number = sample_index+1;
sample_list [sample_index] .total_gates

= NUM_GATES;

sample_list [sample_index] .first_gate
=1;

sample_list {sample_index].last_gate
= NUM_GATES;

sample_index++;

}

// Last group gates has not been set yet, as it might be
required to send only partial number of gates for that so

// de it here

if {(num_gates>0)

for (1=0;l<sample_group requirement;l++)

sample_list [sample_index].sample number = sample index+1;

sample list [sample_index] .tctal_gates
= num_gates;

sample_list [sample_index] .first_gate
= 1;

sample_list [sample_index].last_gate
= num_gates;

sample_index++;

else

// When num_gates is 0 then it indicates that for
last group all gates were sent
for (1=0;l<sample_group requirement;l++)

sample listlsample_index].sample number = sample_index+1;
sample_list [sample_index].total_gates
= NUM_GATES;
sample_list[sample_index] .first_gate
= 1;

‘uoissiwiad noyum pangiyosd uononpoidas Jeyung “Jsumo JybuAdoo ayy Jo uoissiwiad yum paonpolday

sample_list [sample_index].last_gate
= NUM_GATES;
sample_index++;

}
// Schedule last packet for the drop
sample_list [sample_index] .sample number = sample_index+1;
sample_list[sample_index].total_gates = 0;
sample_list [sample_index].first_gate = 0;
sample list[sample_index].last_gate = 0;
sample_index++;
}
else
{

for (j=0;j<num_data_group_samples-1;j++) // Schedule
num_Data_group_Samples - 1 groups

// schedule following sample for transmission

for (k=0;k<sample_group requirement;k++)

sample_list [sample_index] .sample_number = sample_index+1l;
sample_list [sample_index].total gates

= NUM_GATES;

sample_list[sample index] .first_gate
= 1;

sample_list[sample_ index].last_gate
= NUM_GATES;

sample_index++;

// Drop following samples
for
{1=0;1l<total_samples_to_drop/num _data group_samples;l++)

sample list [sample_index] .sample number = sample index+1;
sample_list [sample_index] .total gates

= 0;

sample_list [sample_index].first_gate
= 0;

sample_list{sample index].last_gate
= 0;

sample_index++;

// Last group has not been scheduled because it migh need
only partial number of gates
if (num_gates>0)

for (1=0;l<sample group requirement;l++)

sample_list [sample_index].sample_number = sample_index+l;
sample list[sample_index] .tctal gates
= num gates;
sample list[sample index] .first_gate

1;

sample_list[sample_ index].last_gate
= num_gates;
sample_index++;

else

for (1=0;l<sample group requirement;l++)

212

sample_list [sample_index].sample_number = sample index+l;
sample_list[sample_index] .total_gates

= NUM_GATES;

sample_list[sample_index] .first_gate
= 1;

sample_list[sample_index] .last_gate
= NUM_GATES;

sample_index++;

}

// Drop last chunk

for
{1=0;1l<total_samples_to_drop/num data group_samples+total samples_to_drop%num data_group_sam
ples;l++)

sample_list[sample_index] .sample number =
sample_index+1;

sample list [sample_index] .total_gates = 0;
sample_list [sample_index] .first_gate = 0;
sample_list [sample_index] .last_gate = 0;
sample_index++;

}

J*

If partial sample is left, that is sample of all gates cannot be
transmitted then we should send whatever is possible while

meeting the group requirement. Thus we should compute number of gates
for which samples can be transmitted while

satisfying group requirements.

At thig time distribution of samples is ready, now next task is to
assign samples to time slots

*

/

RT_table[i] .sample_ table_ptr type 2 = (sample_schedule type
**)malloc(sizeof (&size_of_schedule)*size_of_schedule) ;

RT_tableli] .time_slot_data_size_type 2 = (int
*)malloc (size_of _schedule*sizeof (int)); // Allocate memory to store lenght of data to be

transmitted in the given window.

memset (RT_table[i] .time_slot_data_size type_2,0,size_of_schedule*sizeof {int));
for (j=0;j<size_of_schedule;j++)

RT_table[i] .sample_table_ptr_type 2([jl=
(sample schedule_type *)malloc(sizeof (sample_schedule type)*num samples_per_time slot);

// Index for the Time $lot
=0; // Index for the Sample in the Main Sample List
while (j<size_of_schedule && k<NUM_SAMPLES) // Time 8lots, Divide the
level 1 schedule among different time slots
{
int time_slot_done=0;
int start_sample_index = k;

// Index of First Sample
in the given time slot

int 1 =0; /4
Index of sample within the Time Slot

while (ltime slot_done)

if (k<NUM_SAMPLES &&
sample_list [k].total_gates>0)

if (1=-0 &&
last_partial_gate_count==NUM_GATES}
adjacent windows.

{

RT table{i] .sample_table ptr_type_2[j] [1].sample number =
sample_list [k] .sample_number;

// There was no truncation of samples between two

{quewsitnbea dnoib oTduwes,dZIS HTIdWYSsseIeb Teioa- [1] [(1z7edAy x3d etqes ordwes [T]STqed Li
=+ [{]779dA3 5215 ®iep 01S ewr3- [T]oTqey LY

‘a7dwes 1od sejeh = sneb aser” (1] [[1Z7 »dAy x3d o1qey srdwes- [T] oT1qey Id
T o= 23eb 3saty® (1] [[]z 2dAa xad orqes” ordwes * [T] o7qey I¥
fo1dwes zad sogeh = sa3eb 1e303° (1] [[1z7=2dA1 13d 21qe3 aTdwes [T] oTqes L¥

{zoqunu” ordwes []3sTT oTdwes
= zsqunu sTdwes’ [1] [[]g 9dA3 xad o1qes erdwes- [1]o1qey 1¥

/quswaatnbsx dnozb sTdwes/SHIVO WINsdwal =

ordwes” xod so3eb
peajTusueIl oq uwd eyl sstdues jo gequny // ‘dwel - juswearnbsix dnoib srdues

= dwal
poliTusuRIl 3q jouued
jeys sordwes jo xzsqunu // ! (T+[)«30Ts owr3y zod serydwes unu - (quswextnbex dnoab ardwes+y)

= dwsy
fa1dwes” aad seieb ‘dwal

Jut
AjtTenb ejep ueatb ¥ JI0J peliTwsuexl ag jouued

satdwes TIv //

)

osT®
{
{
L4l
!1=suop 30718 swWil
} S _ - -
(1018 swry xed sordwes unu=<xspul orduwes” jIels
=¥) 3T
‘quswextnbex dnoif sidwess=+
o
{
!yesaqg
doot
IBOWISINO BYI HBIG ©3 SHTIWYS WOAN SUI URYd sx0w 3T 398 // !qusuwsatnbax dnoib oTdwes+y
=3
1 T=3ucp 3018 SWT3I
} - - _
(SETANYS WAN=<3jusweirnbsi dnoab srdwes+y)
3t
T
isoqeb 1e101’ [4]3STT ordwes = roqunu o3ef Tetazed 3sey
fs33e6 1e303° (7] [(}g odA3 1ad s1qea”oTdues - [T] 97903 Ly = Junos o3eb Teriaed aser

fquowszInbsi dnoxf oTdwes,uzIS FTANVS¥S93e6 Te303" [1] [[1z 9dA3 xad a1qe3 ardwes [T]o1qea 1d
=+ [[]Z @43 ozTs ejep j01s swi3l- [T)91qed I¥
- Isejeb Telo3 [¥]3ISTT ordwes

= @3eb 3seT’ [T] ({12 odA3 aad 1qel o1dwes - [1]o1qe] I¥
i = @aeb 3s1T3" [1] [[]1Z2 2dA3 xad o1qe3 otdwes [T]o1qed Id

!sa3eb 1e103° {Y]I8TT ordues
= soqeb Te3on’ [1] [[1z odia aad o1qes erdwes [T]91qey Iy

_ ‘zaquau aTdwes: [¥}3sTT epdues
= zequnu erdwes- [{] [[]g odA1” xad o1qeq sydwes {TIoTqey LY

3T SPOTOUT USUI 30TS SWIY SY JUT Juss o ued seidues
s3a7dwos usyM //

}

¢Ic

({1+{) x3078 3wT1” 20d sorduwes unu=>juswsitnbai dnoxb s1dwes+y)
3T
IT® I® Ssuas sayew OTBOT HUTMOTTOIF SYl IT MOUY 13 ,UCP
T ‘yosud AjTues SxeW //

/*
SpuUnoq UTYITH
ST X 3T ¥o9ud
«/
}
(0<1) 37 °8T®
{
{
fal
{{=oucp J0TS BPWT3
} R - - -
(107s oury xsd serdwes wnu=<xopuT oTdues 3ie3s
-A) 3T
tquausanbai” dnoxb ordues
=+ Y
e

toneB aser” [1] [[1¢ 9447 23d o1qed ordwes [T]s1qey I3

= zsqunu ejeb Ter3zed 3sel
_ {s97eb Te303" (1] [[1279dAa™ 23d o1qe3 stdwes [T]aTqesd 1d

= gjunoo ejes Terixed aser

{jusweatnbei dnoib oTdwesxHZIS ATdWYSxS23eb Teaea” (1] [{}z odAa x3d o1qe3 erdues [T]eiqed Id
=+ [[]1z 2dA37=z1s eaep 3018 Swia’ [T]eTqes Id

1SAIYD WAN = @3e6 3ser [1] [[]¢ odAa xad o1qea ordues: [T]a[qes Iy

fT+xoqunu o3eh Terizxed jser
= o3eB 38aT3 " [T} [[1¢ 2dAa x3d o1qey otdwes ' [T]9T19ed Iy

_ fqunoo” o3eb Terixed 3ser
-SELVS WON = s93e6 Tejo3” [T] [[]g odA3 23d orqe3l erdwes- [T]9Tded Ly

fzequnu oTdwes- [3]3STT oTdues
= Focqunu eTdwes’ [{] [{]z odAy x3d erqea erdues- [T])oTged Ld

}

'30TS SWTI MSU BY3I Ul s93eb BururEwea U3 PUSS OS ‘B3EONIY O3

pesu sT vasyy // (0==T} 3T 8T
{
{
faaf
{1=9uocp 0TS SWTl
} R - - -
(3078 suty aod sorTdwes wnu=<xopuT o7dues jre3s
- It
fquswaaTnbor” dnox5 oTdues=+
3
44T

‘enel aser’ [T] [[]¢ odAa a3d srqed erdwes - [T]o1qel 1d =
zoqunu e3eb Terixed aser
fs53eB 12303 (1] [[12 °dA3713d s1qen srdwes” [1]9Tqes gd=3unod 53eb Terazed 3sel

fjuswaxtnbax” dnoib oTdwes«HZIS HTIWESxs23e6 Te303* [T] [[]7 odA3 a3d siqe3y erdumes- {I}oTqea Ly
=+ [[]1Zz odA3 oz1s elep j018 our3’ [T]210R1 I¥

_ fs93eB Te303° [y]3sTY orduwes
= a3eb aser (1] [[]¢ edha" xad o1qes edues: [T]oTqes 1y

= oxel a8x13 [T] [[1¢ 2dAa” 13d etqea ordues- [TloTqes 1y

‘seqeb Te303" [Y]3STT ofdwes
= sejeS Teaed” [T] [[17 8dA3 a3d oTqey otdwes" [T]oTqes Iy

ission.

ted without permi

ion proh

f the copyright owner. Further reproduct

ISsion O

Reproduced with perm

iwiad ypm paonpouday

ISS

noyum paugiyosd uononpolidal saypng “Jaumo wbuAdoo auy jo uo

‘uoissiwJiad

// Donot change
k, k sample is incomplete so remaining gates are sent in next time slot window.

last_partial_gate count = gates_per_ sample;

last_partial_gate_number = gates_per_sample;
time_slot_done =

1; // Move to next slot
Je+i
Y4/ 10
else if (k<NUM_SAMPLES)
k++; // Sample was not scheduled, so

check next sample
if (k-
start_sample_index>=num_samples per_time_slot)

time_slot_done=1;
J++;

}

}
if (k»>=NUM_SAMPLES)
time_slot_done=1;
}

/*

This function creates RT and LRT Tables
*/
void init_tables()

// Variable Declaration Section

int i,j,temp_main_data_len; // For loop index variable

// Set RT & LRT table enteries to 0, Before setting the schedule

// Bach Bit in each location specify the schedule for given time slot

// MSB is the 1lst Time slot of the schedule and LSB is the last Time slot of the
schedule

int total_packets_recuired = 0; // Number of packets required to send all the RAY
information
float time_for_one_ray;

actual_raw_data_per_packet = packet_data - sizeof(file ray header_type)-
sizeof (local_header_type); // Actual raw data in packet
actual_raw_data per_packet -= actual_raw_data per_packet % SAMPLE SIZE; //

Should Store all bytes of last sample in the packet, cannot split

// one sample among different packets.

total packets_required = RAY SIZE_IN BYTES/actual_raw_data_per_packet;

if (RAY_SIZE_IN BYTES % actual_raw_data_per_ packet)
total_packets_required++;

// Total time required to send the all the data of the ray with local and file
ray header is computed.
// File ray header is included in the every packet at present.

time_for_one_ray = (RAY_SIZE_IN_BITS)*1000.0/MAX_RATE_SUPPORTED_IN BITS;
total_active_clients = ©;
size_of_schedule = {int}ceilf (time_for_one_ray/CLOCK TICK_RESOLUTION} ;

e R Y4

size_of_schedule = 2; // Temporary solution, remove it after
J L Ty

temp_main_data_len = (RAY_SIZE IN BYTES)/(size of_schedule); //Number of
Bytes sent in Each Tick, Only consider raw data only

214

main_data_len = temp_main_data_ len - temp_main data_len % 4;
// Word Boundry
last_data_len = (size_of_schedule)* (temp_main_data_len%4) +

main_data_len+ (RAY_SIZE_IN BYTES)% {size_of_schedule);
if (size_of schedules>sizeof (int)*8)

printf ("This MAX RATE cannot be supported , select higher value\n");
exit(1};
for {1=0;1<NUM_MAX RATES;i++)

client count [i]=0;
for (j=0;j<MAX_CLIENT IN_WINDOW;3j++)

schedule_to_client map_table[i] [j] = MAX CLIENTS; //
Initialize all the schedule rows of the LRT table.

RT_table[i] .base_schedule_ticks = 0;
RT_table[i] .base_rate = 0;
RT_table(il.client_list_type 1 = NULL;
RT_tableli] .client_list type_2 = NULL;
RT_table second[il] .base_schedule_ticks = 0;
RT_table_second[i] .base_rate = 0;
RT_table_second(i] .client_list type 1 = NULL;
RT_table_second[i] .client_list_type_2 = NULL;
}

primary_table = 1;

// Initialize the Send Data Packet used for packet transmission.

memset {&send data_packet,0,sizeof (send_data_packet));

memset (window_load, 0, sizeof(window_load));

current_ray_num 0; //Set no of rays to zero

client_list_table head_ptr NULL; // Set client list table head ptr to NULL asg
there are no ptrs.

client_list_table count = 0;
in client link list to zero

last_client_ptr = NULL;

client_schedule index = 0;

// Set number of active client nodes

)

// Make RT Table Entries, it should be the rates supported.
wold get _rt tablef()

{
int i,decrease_value=0;
unsigned int schedule = 0xFFFFFFFF;
if (MAX_RATFE_SUPPORTED%size_of_schedules»size of_schedule/2)
resolution =
ceilf ((float)MAX RATE SUPPORTED/ {float)size of_schedule);
else
resolution =

floorf ((float)MAX RATE_SUPPORTED/ (float)size_of_schedule) ;

schedule = schedule<< 8*sizeof (schedule) - size_of_schedule;
for (i=0;i<NUM_MAX RATES;i++)

// Note that number of bits set to 1 in schedule approximate desired
bage rate

RT_table[i] .base_rate = MAX_RATE_SUPPORTED- i;
if {1>0 && i%resclution==0)

decrease_value++;
RT_table[i] .base_schedule_ticks = size of_schedule - decrease_value;
// Store number of Windows in which data should be sent.
MIN_RATE_SUPPORTED = RT_tableli] .base_rate;

)

int next_free_client_index = 0;

iwiad ypm paonpouday

ISS

noyum paugiyosd uononpolidal saypng “Jaumo wbuAdoo auy jo uo

‘uoissiwJiad

/ﬁ

First time client make a REQUEST for data to the server, entry is made in client table and
schedules are assigned.

This function to add new client request is always added in TICK 0.
*/

void add_clients_request {uint32_t client_ip,uintl6_t client_port, int target_rate, int
min_rate, int data_type_requirement)
{ 3 N

int i;

struct _client list_ *temp_ptr;

if (target_rate>MAX RATE SUPPORTED)

printf ("Target Rate is more than the Max Rate supported..do set target
to upper bound only ");
target_rate = MAX RATE_SUPPORTED;

if (min_rate < MIN_RATE_SUPPORTED)

printf ("Requested Min Rate is below MIN SUPPORTED\n") ;
min_rate = MIN_RATE_SUPPORTED;

if (total active clients < MAX_CLIENTS)

int target idx,ticks_remaining,num_active_slots;

target_idx = {int) ((double) (MAX_RATE_SUPPORTED -
target_rate) / (double) RATE_INCREMENT) ;

num active slots = RT_table{target_idx] .base schedule_ticks; //
Number of Slots in which data is transmitted while maintaining target rate

//Add node for the client in the link list

temp_ptr = (struct _client_list_ *)malloc(sizeof (struct
_client_list_)):

temp_ptr->target_rate_idx = target_idx;

temp_ptr->min_rate idx = (int) ((dQouble) (MAX RATE_SUPPORTED -
min_rate)/{double) RATE_INCREMENT) ;

temp_ptr->curr_rate_idx = target_idx;

temp_ptr->client_ip = client_ip;

temp_ptr->client_port = client_port;

memset (temp_ptr->packet_sent_count, 0,sizeof (temp ptr-
// Nothing has been sent to new client, so set it to 0
temp_ptr->ticks_remaining = RT_table[target idx].base_schedule ticks;

/*
Since request can come any time in any tick, so first time send data
in windows from the current+l to the last one only.
This approach will make sure that at the end of 1 cycle of ticks all
the c¢lients remaining ticks will be 0 at the end.
we don't want to carry any remainder ticks from the previous cycle to
the current cycle, that would break the initializtion
of ticks logic otherwise.
*/

>packet_sent_count)};;

// New client node has been allocated, now find the locaticn where it
should be inserted, At present it is always the first element in the list.
switch (data_type_requirement)
case DATA_TYPE_1:

if {primary_table

if (
RT table[target_idx].client_list_type_1==NULL)

temp_ptr-snext
= NULL;

RT_table[target_idx] .client_list_type_ 1 = temp_ptr;

215

// First client

}

entry for the requested rate
elge
{
// Already
clients are present in the list, make this new client the first element of the list
temp_ptr->next =
RT_table[target_idx] .client_list_type_1;

RT_tableitarget_ idx] .client_list_type_1= tewp_ptr;
else

(RT_table_second[target_idx].client_list_type 1==NULL)

temp_ptr->next
= NULL;

RT_table_second[target_idx].client_list_type 1 = temp_ptr;
// First client

)

entry for the requested rate
else
{
// Already
clients are present in the list, make this new client the first element of the list
temp_ptr->next =
RT_table_second[target_idx] .client list_type_1;
RT_table_second[target_idx].client list_type_l= temp_ptr;
}
break;
case DATA TYPE_2:
if (primary_table==1)
{

if
RT_table [target_idx] .client_list type 2==NULL)
{
//printf (*Client
list is NMULL ENTRY made for target idx %d in FIRST TABLE\n",target_idx);

temp ptr-snext
= NULL;

RT table[target_idx] .client_list_type_2 = temp ptr;
// First client

}

entry for the reguested rate
else
(
// Already
clients are present in the list, make this new client the first element of the list
temp ptr->next =
RT_table[target_idx].client list type 2;

RT_tableltarget_idx] .client_list_type_2= temp ptr;
else

{RT_table_second[target_idx].client list_type_ 2==NULL}

91¢

3 (T==sTqea Azewtad) 3T
(TTI0N=i T3d ueT o dwes) a1Tys)
173d quetTs dwei=i3d queTTo dwea asxd 1 EAAL WI¥A @sed
{ {
177 8dA3TASTT AUSTTR " [XPT 93BT JULIIND]pUeDdS o1qey I fspesaq
= a3d justTo dues {
ssT9. _ _ _ _ B f{T*,U\P$ XSPUT X0y ANODES HTAYL L¥ ut Axaus
£272dAyTasTT USTTR [XPT 038 JuSIIND] 91qRY 1d ' punod,) zautad
= 13d3us IO mEmw (TION=iT odA3 38T 3UST[2" [T} puocsss orqes L)
(T==o1qe3” Azewrad) 3T IT
} }
(T @dALl ¥IVQ==3uswaiTtnbex odi3 elep) JT osta (++T!SHIVY XYW WON>T!0=T) 0¥
{ °8Te
IT72dA S TT QUSTIO T [XPT e3el JUsIimnd]puosss erqe) Id {
= a3d juetTo dwsy (T’ yU\Pg=1 XspUT I0F oTqe’ Id ur Axjug
ssT® ® punoi,)yiurad
{1 ®dA373aSTT JUSTTD" [XPT S30I JUSIIND] STq®y L1y (TION=1T odA3 aSTT ueTTo" [T]1aTqes 1y)
= a3d quatTo dwsl 7T
(1==s19qe3 Azewtad) 3T }
_ _ _b (++1¢581v4 XYW WAN>T!0=T) xOF
(1 HaAL viva==iuswoxinbex odA3 ejep) 3t (1==a7qe3 Axewrad) 3T

£17 odAY ISTT JUSTIL [XPT 9384 JUSIAND)puosss o1qey 1d

{SHIVE XYW WONZ (T+XPT 938X JUSIIND) =XpY o3el Jualins 23d jquaTIo dwsiy

} o878
(++T !SIV XWW WON>T!0=T) 03 £1 edA3 3STT JUSTTD [XPT 93X jusiino]erqed i
T auin = 13d quaTTd duwel
} (T==oTqe3 Axewtxd) 3t
(TINN==x3d 3ueTTo dwsi) 3T }
: { 1T EAAL ¥IVQ 28D
_ _ }
tqxouc-13d AUSTTO Guwaly=x3d jusTio dwal (auewsxtnbax odi1” eiep) yojims
fx3d quatTo dwsn = x3d quaTTo dwal asxd
} f23d JUSTTD dwel Asady’13d QUSTTO QWo3y ISTT JUSTIS 3ONI3S
EERC IXpT eTNPSYDS MaU Ut
{ T ‘®7ex quexIns ‘SSOT QUSTTD JUT
esaq }
} _ (3uswartnbax adi3 eiep
_ _ _ _ (370d quaTTo==310d 3USTIP< Jur’Bery LaoweI Ul ‘unu Aex 3JUT 3I0YS’Iunod adai joyoed jut 3xoys ‘3aod JUSTIO
~23d JUeTTO dwel 3% dr ausTTo==dr JusTio<-a3d JUSTTO dwsl) IT Jur ‘dr JUSTIO Juf ‘XPT 9lex 306xe3 Jur ‘Xpl 9led JUSIAND JUT) STNPIYSS JUSTTS oHUBYUD PTOA
} SInpsyss IusTld =bueyy //

{TI0N= 234 3UaT10” duwsq) efTym
fa3d queTTo” dwei=x13d juetTo dwal aexd

SN ST W14 INSITY dW3L.) Faurxd {
(TIaN==23d qus T dusy) It {(SIUSTTR 2ATIOE [RIOY ‘,LU\ Py PSUSEST ITWIT IUSITD UNWIXRW ,)Furad
{ EES)
f3emaq 3Tnegsp {
{ ‘pAcwSl ST JUST[D SOUO PolUsWRIN®P 4 PTNOUS 3T ‘S3USTID
Iyes1q |AT3IOR TElO0L 92Ul jusweIduy // {+4+S3US T SATIDE TE302
(
{(T’au\P% XSPUT I0J ANODHES HIg¥I I¥ Ut Az3us fyeaxq “uazmMmM
® punod.) Futad {
{(T10N=i ¢ 9dA37asTT qusT o [T] puenas o1qe3” Ly) fyesxq
33 {
o (
(++T!SEIVE XYW MAN>T!0=T) I03 trad dwsn =z odA3T3sTT JUSTIO" [XpT 39bae3]pucoss s1qed Iy
98T
{ 1z72dA3TasTT ueT Y’ [xPT 3ebxe3]puosss’ s1qed Iy
{ (T U\Pg=T Xepur oI sIqe3d I¥ ur Axjug = axeu<-x3d dws3
e ﬂﬂﬂﬂh:kurﬁ..ﬂﬁ& 28T Iyl JO JULWDES JSATI Y] JUSTID M3IU STIYJ D3ew ~Umﬂ.h Y ut Jusssad sae S3USTIO
(T10N=712" 2dA 3811 JusTT2 " [T) 21923 L¥) Apeexty //
3T }
} EERE
(++T!SEIVE XWW WAN>T!0=T) I03 {
(T==3Tqe] »Hmémnmv Ex _ _ _ _ s3ea poisvabed 9yl 4oy Azjus
{27 8dA3 3STT JUSTIO’ [XPT 938X JUSIIND]PUODSS oTqed 1d UeTTR I8ITd //
= a3d queITa dwel ta3d dwey = z odA3 3STT JUSTIO - [xpT d0bie])puooss o1qel id
asTe
‘g od&17asTT 3USTTR " [XPT 93X auslano] 91qed’ Ly {TION =
= x3d usTTo dwel Jxou<-13d dual

ISsion.

ited without permi

ion proh

f the copyright owner. Further reproduct

ISsion O

Reproduced with perm

iwad yum paonpolday

ISS

noyum pauqiyold uononpoidal Jayung “soumo 1ybukdos ayp jo uo

‘uolissiwJiad

if (temp_client_ptr->client_ip==client_ip &&

{

break;

}

temp_client_ptr->client_port==client_port)

else
prev_temp_client_ptr =
temp_client_ptr;
temp_client_ptr=temp_ client_ptr->next;

if (temp_client ptr!=NULL)
break;
if (temp_client_ ptr==NULL)
{

printf ("ERROR- Should not see this message, Client is not
present in the schedule list\n");

return;
current_rate = RT_table[current_rate_idx] .base_rate;
client_loss = temp_client_ptr-

>packet_sent_count [ray_num%MAX_COU‘NTﬁHESTORY] -packet_recv_count;
if (client_loss < 0}

printf ("ERROR: This message should not been seen under normal
operation, otherwise try increasing the size of the HISTORY list of rays\n");
// simply remove the client under such conditions
remove_client_node (temp_client ptr,
prev_temp_client ptr,data_type requirement);
free(temp_client_ptr);
return;

if (client_loss==0)

if
(RT_table [current_rate_idx] .base_rate<RT_table[target_rate_idx] .base_rate)

// Increment the rate
// Point to schedule of next higher rate. Top Entry in RT
table is highest rate

new_schedule_idx = current_rate_idx - 1;

else

new_schedule_idx = current_rate_idx;
//else don't change the rate yet as protocol is already

)

else if (client_loss»0)

operating at target rate.

//Reduce the rate to minimum required rate when loss is suffered
new_gchedule_idx = temp client_ptr->min_rate_idx;

if (remove_flag)

// This flag is to inform this method to remove the client entry.

remove_client_node (temp_client_ptr, prev_tewp_client_ptr,
data_type requirement);

free{temp_client_ptr);

return ;

}

if (new_schedule_idx!=current_rate_idx)

217

// Change only if Rate is changed,
// Always remove node from PRIMARY table

remove_client node (temp_client ptr,prev_temp_client_ptr,data_type_requirement) ;
temp_client_ptr->curr_xate idx = new_schedule idx;
// hlways add entry to the SECONDARY table

add_client_node (new_schedule_idx, temp_client_ptr,data_type_requirement) ;

else

{

// In case there is no change in schedule due to this feedback

// 8till it is desired to change the table from current primary to
current secondary table

remove_client_node (temp_client_ptr,prev_temp_client_ptr,data_type requirement) ;
// Remove from PRIMARY

add_client_node (new_schedule_idx, temp_client_ptr,data_type_requirement) ;

// ADD to secondary

}
}

//Remove client node from the scheduling table when END reguest arrives
struct _client list_ *remove_client_node{struct _client_list_ *temp_ptr, struct
_client_list_ *prev_temwp_ptr, int data_type requirement)

if (temp_ptr!=prev_temp_ptr)

prev_temp ptr->next = temp_ptr->next; // Remove the temp ptr, let
prev node point to next node.

else

// Both are equal when the f£irst node 1s to be removed
if (data_type_requirement==DATA TYPE_1)

if (primary_table==1)

RT_table[temp ptr-
>curr_rate idx] .client_list_type_1 = temwp ptr->next;

else

RT_table_ second[temp_ptr-
>curr_rate_idx] .client_list_type 1 = temp_ptr->next;

else if (data_type_requirement==DATA_TYPE_ 2)
{
if (primary_table==1)

RT_table[temp_ptr-
>curr_rate_idx] .client_list_type_2 = temp_ptr->next;

else

RT_table_second [temp_ptr-
>curr_rate_idx] .client_list_type_2 = temp_ptr->next;

}

total_active clients --;

// Add New Client when request is accepted
void add client_node(int current_rate_idx, struct _client_list_ *client_ptr, int
data_type_ reguirement)

POATD2I Sem MORJPIDI OU 2SNV ST 1T Aur JT ‘STqed IS¥Id 2y IuT ussaxd
2 PINOYS 9pou OU Os g ST S[ger Axewlid //
fyoeqpss] ou x1d JUSTIOsx 1STT QUSTTO 1onNIIS
}
(T==2Tqey Arewtxd) It
Ixoputr dwey ut
}

(++ T SEIVY XYW WON>T!0=T) %03

AN = a3d peey ASTT opou yoeqpes’
o {
1 (23d pesy asTY 9pou yorqpesj) 9913
Iaxeuc-23d dwey = 13d dwel
t33d dwen = x3d pesy ASTT epou yoeqpssl
¢ (quswaxatnbax sdA3 ejep<-13d dwej ‘Beyz<-x3d dwej ‘wnu Aex<-x3d dwel’juncd jexoed<
-zad dwsa 'a10d justio<-131d dweq‘sseappe dT qustlo<-zad dusy ‘xspur 38bieic
-a3d dusj ‘Xspul qusiino<-13d duwsi) sInpeyss JusITo ebueys
}
{(TI0N=i 2130 dua3l) STTuMm
f13d peay 1STT opoU yorqpsay = x3d duwey
1238 duwelx odX3 opou oeqpesy
1
(T10N=723d pesy 1sTT epou yoedpsel ¥F 0==32T3) 3T
YDTI<<HPTY OSBY = HOTJF JULIAIND
!{da Teasuty j0nI3s
D1 qut
£3(51373USIIND JuUT paubTsun
fo=ques eIeP T '}’ JuUT
(327173 JuT) INYOTY SWTY S3BTNWIS ﬁﬁow
fg=unu_ Aex IS JUI
/*
rAtTecTpoTrad 3oT3 AX9AS JOI POITED ST UOTIOUNI STYL
®
/

200000008X0=32>T3 @seq juT paubTsun
{
}

() Azowsu o5ESTDX PIOA
swrl 3TX? Je Alowew psI1esOTTe ArTestweulp [Ie 9914 //

{(as3gng STTF osessd)eaxy

{
{
yesaq
:31negzep
(1) ITXS
*LNIDIS ®sed
iyesaq
44qUNOD YT
! (3UNOD” {PT) IO T SWTY ojeTnuTS
ﬂ
11 = jes
£ (TIAN‘d7 axe3ss) Aepgoswtlleb = o1
}
(T==S3usT0 SATIOP 83031 3% 395i) IT
fo1npaYDs” JO 9ZTS4UNOD HOTJ= JUNOD FOT3
FTESNOIS osed
}
{oubt1s) yoztms
{dy Teaswrl joniis
{px qut
}

(ouBTs 7ut)aaTpuey Brs
!d3 3IB3S TEASWT3 3IONIIS
f0= 3@s 3ut

{0 = 3UNoO INOSWTI 3UT

81¢

{
£ {)ssned
(#!) zo03
{TIAN) SWTY = w3l
{
T{T)3TXD
! (au\IBWTL Burizens A0Ixg,)FuTad
}
_ (TIvd==snjeas) 3It
¢ (TION AnoswT) sx9w TR (9dAY $ISWTI PT I9WTA) SWTIIDS ISWTY = sSNIRIS
_ I (TN’ a0e BTEy INTDIS) UCTIoeBTs
!{0'20e BTs3‘ouBTS AsBTs das’ sIswTl)uoIloebTs
{
H :”Vu._.uunﬂ
(WU\XISWIL ®3e21D 03 aTqeuqn,)iutad
}
_ {II¥d==sn3e3s) 3T
f(PT 1ourin ‘dAs SISWIFS ‘AWILTVEY MO0ID)S1edI0 I9WT3 = snjeas
fwy 3TowTa
tx3dy W3 JonIIS
fsnjeqas Jurt
}

() 39217 BUTY proa
zewTy Butrnpsyos A0I pesayl //

!YDTY STnpoyDs Bseq” [¥PT 938 JusaIno]a[del 1Y = S¥O0T3 oTnpayoss
14+857USTIO ©ATIDE TE307

{
{

1x3d quUSTTo = g edAl 3STT QUSTI~" [XPT 93eI Juaiino] oTded Id
‘g edA3 3T QUSTD" [XPT ®3ed 3USIIno}eige Id
= axsu<-a3d JusITO

}
{

= gz odA3 3sT{ IUST[O [XPT 93BT JUSIIND]puonss oIqel 1¥
1z7edAqT3STT JURTTO" [XPT e3BI JULIIND]puonas eTqel Id
= 3xou<-13d JUeTT2
}
(T==0Tqe3 Axewtad) 3T
. }
(2 84X1 viva==juswaxyrnbax odA1 e3ep) 3T °sis

- {

123d 3us o = T odA3 3aSTT IULTIL- [XPT 30X Juaians]olqed I¥
{178dAqTasTT USTTR" [XPT 93eT JuSZINd] oTqey L

= axsu<~11d qULTLR

}
{

= 77od&3 3STT 3USTIO" [XPT 838 JUSIINO]puonss oiqel Ii
177edAa T asTT quUST e [XPT 938X JUSIAND] pUODSS Bfqel Ld
= Jxou<-a3d JuUaTTd
)
(1==s7qe3 Azewrad) 31
(T =dAL ¥Iva==quswaitnbsi odA3 ejep) It

3815

fa3d queTDd

3s1®

ta13d quettro

oTqel Arepuodas U3 ¢ Axjus ppy //

(xpT e7er JUBXIND Y, U\P3 XPT 93IBI JUSIAND YITM OpOU BUtpDRY,) I3utad //
ISTT SY1 UT Spou ISITI SYI ST 3T &yl //

180T 8INPSYNS ‘T IJUT

ission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without perm

iwad yum paonpolday

ISS

noyum paugiyosd uononpolidal sayung “Jaumo wbuAdoo auy jo uo

‘uolissiwJiad

// for that ncde, so pretend that NO loss was
suffered by that client, so remove that node from first and transfer it
// to SECOND table

// Check Client in list 1 for no feeback

client_ptr no feedback =
RT_tablefi].client_list_type_1;

while {client_ptr_no_feedback!=NULL)

change_client_schedule (client_ptr_nc_feedback-
>curr_rate_idx,client ptr no_feedback-»target_rate_ idx, client_ptr no feedback-sclient_ip,
client_ptr no_feedback->client_port, client_ptr_no_feedback-
>packet_sent_count [current_ray_ num$MAX_COUNT_HISTORY],current_ray_num, 0,DATA_TYPE 1);
client_ptr_no_feedback =
client_ptr_no_feedback->next;

// Check clients in list 2 for no feedback

client _ptr_no_feedback =
RT_tablef{i].client_list_type 2;

while (client_ptr_no_feedback!=NULL)

change_client_schedule (client_ptr_no_feedback-
scurr_rate_idx,client ptr no_feedback->target_rate idx, client_ptr no_ feedback-»client ip,
client_ptr_no_feedback-»client_port, client_ptr no_feedback-
>packet_sent_count [current_ray num3MAX_COUNT HISTORY],current_ray num, 0,DATA TYPE_2);
client_ptr _no_feedback =

}

client_ptr_no_feedback->next;

}

{ // Move from SECOND table to FIRST table as

else

primary is FIRST now
struct _client_list_ *client_ptr no_feedback;
client_ptr no_feedback =
RT_table_second[i] .client_list_type_1;
while {client_ptr no_feedback!=NULL)
{

change client_schedule(client ptr no_feedback-
>curr_rate_jdx,client_ptr_no_feedback->target_rate_idx, client_ptr no_feedback->client_ip,
client ptr no_feedback->client_port, client ptr_no_feedback-
>packet_sent_count [current_ray_num$MAX COUNT HISTORY] ,current_ray num, 0,DATA TYPE 1);
client_ptr_no_feedback =
client_ptr no_feedback->next;

client ptr no_feedback =
RT_table_second[i].client_list_type 2;
while (client_ptr_no_feedback!=NULL}
{

change_client_schedule (client_ptr no_feedback-
>curr_rate idx,client_ptr_no_feedback->target_rate idx, client_ptr no_feedback->client_ip,
client ptr_no_feedback->client_port, client_ptr_no_feedback-
>packet_sent_count [current_ray num$MAX_COUNT HISTORY},current_ray num, 0,DATA TYPE 2);
client_ptr_no_feedback =

}

client_ptr_ no_feedback->next;

if (primary_table==1)
primary_table = 2;
else
primary_table = 1;

if (tick==0 && request node_list_head ptr!=NULL)
{

request_node_type *temp_ptr;

219

temp_ptr = request_node_list_head ptr;
while (temp ptr!=NULL)

add_clients_request (temp_ptr->client_ip_address, temp_ptr-
>client_port,temp ptr->target_rate,temp ptr->min rate,temp_ptr->data_type_requirement);

request node_list_head ptr=temp_ptr;

temp_ptr = temp_ptr->next;

free (request_node_list_head ptr);

» // Release the
memory allocated for the client node ae its request has been added

request_node_list_head ptr=NULL; // By this time all client request are

added thus head ptr is NULL

/%
PRIMARY table has node of all the active clients corresponding to different
rate requirements of the
c¢lients. Now next step should be to create a scheduling table for this list,
*/

if (total active_clients>0)

// Atleast One Client is Active
struct _client_list_ *temp_ptr;
int current_tick_load;

if (tick==0)

// Read ray header from a file
send_data_packet.local_header.type =htons (DATA); // Set
Type that packet is carrying data.
current_ray_nums++;
next_seq_number=1;
the sequence number of 1st packet to 1
if (current_ray num>1)
file buffer +=RAY_SIZE_IN BYTES;
send_data_packet.local_header.ray_num =
htons (current ray num); // Increment Ray No at every 0 tick, ray transmission
starts at Oth tick only
// Set it to 0, as first packet of ray is yet to be sent
// 8ince File buffer is in BIG ENDIEN, therfore no need to
apply HTONL at present.
memcpy (&send_data_packet.file_header,
file buffer,sizeof (file_ray header_type)}; // Read Header from the file and use it for
// A1l subsequent packets of the ray
file buffer += sizeof(file_ray_header_type);
ray_data_offset = 0;

I
Traverser RT_table or RT_table_second and see which rate has client
scheduled
Then depending on the tick, follow the sample schedule, packetize and
send data

*/
if (primary_table==1}
{

int num_samples_per time slot =
(int)ceilf ((double) NUM_SAMPLES/ (double) size_of_schedule) ;

struct _client_list_ *temp_client_ptr;

// Traverse RT_table

for (i=0;i<NUM_MAX_RATES;i++)

temp_client_ptr = RT tablefil.client_list_type_1;
if (temp_client_ptr!=NULL)

// Client is present for that
particular rate

// Send data as per the scheduled for
the tick at that particular rate

// For every new ray, set

iwsad ypm paonpolday

ISS

noyum paqiyold uononpoidal Jayung “saumo 1ybukdos ay) Jo uo

‘uolssiwiad

int k=0;

/*

Sample number is the first sample of
the group, so using sample group requirement, we know what adjacent samples should be sent.
At this time give control to the sending routine, that should do the packetization depending
on the number of samples to be transmitted within the time slot, so send reference to rate
index and tick and client address and it should finish the task of sending and return the
control back here. send data sends data to all the clients that are scheduled to get data at
the given rate

*/
send_data_type 1(server_send sock, tick,i,DATA TYPE 1);

temp_client_ptx = RT_table[i].client_list_type_2;
if (temp client_ptr!=NULL)

// There are clients present for the
second data type request, so send data to them

send_data_type 2 {server_send_sock,tick,i,DATA_TYPE 2);

}

else

// Traverse RT_table_second
int num_samples per time_slot =
(int) ceilf { (double) NUM_SAMPLES/ (double)size_of_ schedule) ;
struct _client_list_ *temp_client_ptr;
// Traverse RT table
for (i=0;1<NUM_MAX RATES;i++)
temp_client_ptr =
RT_table_secondfi] .client list_type 1;
if ({temp_client ptr!=NULL}

// Client is present for that
particular rate

// Send data as per the scheduled for
the tick at that particular rate

int k=0;

/%

Sample number is the first sample of
the group, so using sample group requirement, we know what adjacent samples should be sent.
At this time give control to the sending routine, that should do the packetization depending
on the number of gamples to be transmitted within the time slot, so send reference to rate
index and tick and client address and it should finish the task of sending and return the
control back here,

*/
send_data_type_l (server_send_sock, tick, i, DATA_TYPE 1);
temp_client_ptr =
RT_table_second[i] .client_list_type 2;
if (temp_client_ptr!=NULL)
(

send_data_type_ 2 (server_send sock,tick,i,DATA_TYPE 2);

}

} // if total active clients >0

if (current_ray num>0 &&
current ray_numiNUM_RAYS==0&&last_ray num!=current_ray num &&tick:

ize_of schedule-1}

last_ray_num=current_ray_num;

sweep_count ++; //Increment the sweep count

220

file_buffer= release_file buffer;// Retransmit the same buffer again
and again

total data_transmitted = 0; // Before the start of any sweep set
this byte count to 0

re = gettimeofday (&tp, NULL) ;

if (sweep_count==MAX SWEEP)

// Release file buffer once all the data for all the sweeps
is transmitted.

release_memory () ;

exit (1);

current_tick = base_ticks»tick;

}

/%
This function gets called for each client
*/
void send_data_type_1{int server_send_sock, int tick, int rate index, int
sample_group_requirement)

struct in_addr *inptr;

struct _client_list *client_ptr;

struct sockaddr_in client_addr;

char data ptrf500];

int num_of_complete packet, last_packet_size, i;

int re;

struct timeval tp;

int sample_group_first_sample, num_gates_to_transmit,
packet_buffer offset,payload_size,total_data_to_send in tick,data_transmitted,
num _max_gates, sample_index, last_sample pending gates,packet_sent;

int first_gate, last_gate, first_sample_in packet;

uintlé_t base_pattern;

inptr = (struct in_addr *) malloc{sizeof (struct in addr));

*

Divide Data to be transmitted among different packets.

Set the current rate in the send packet, this information is included in the
packet every time feedback about loss is sent by client it can happen that all packets
containing the new current rate gets lost, in that case client won't be aware of current
rate thus they will have stale value of current rate, server should be able to handle that
case.

*/

send_data_packet.local_header.current_rate =
htonl{RT_table[rate_index] .base_rate) ;

J*
Next step is to copy the sample data from the input buffer to the packet payload
Data should be copied considering sample group requirement
Sample schedule is already there, associated with each rate.
*/
total_data_to_send in_tick =
RT_table [rate_index] .time_slot_data_size type_1[tick];
data_transmitted =0;

//Number of gates that can be transmitted while satisfying data group requirement
in the same packet.
nuwm_Mmax_gates =
actual_raw_data_per_packet/ ((int)SAMPLE_SIZE~ (int)sample_group_requirement) ;
//Iterate following loop till all the data for a given tick is transmitted to a
particular client
last_sample_pending_gates=0;
base_pattern = 0x8000;
in the sample pattern in each packet
sample_index = 0;

// 16 bit mask, used to set the appropriate bit

while (data_transmitted<total_ data_to_send in_tick)

I++xoput oTdwes

(0==se3ef butpued o1dwes 3sel) 31
!s9qeb butpusd sTdwes 3ser

= JTwsuery o3 sejeb umu
‘sajeb xew wnu -

ITwsueIl 01 sojeh wnu = £93e6 burpued oTdwes 3sel
aovoed 3yl PUSS usyl

pue 219y I9pESY SY3 JO SPISTF Butuyewsx [1td //
"soqeb Butpuad 3rusueay

35at3y ‘dnozb sydues 3x9u o3 dunl jou op ©Os //
‘3oyoed axeu ouy ur sydwes sTUY IOF

pollTUSURIY B¢ 07 s$93eh oxow Aurw soy Iaquewsy //

{
!9qeb 3seT oTdwes jtejs Ispesy TeooT’ 193oed eiep pues
= 373eb j3sel e1dues pus-aspesy Teool 393oed eiep puss

! (f-sejeb xew wnu+(s3eb 3sI13 oldwes 1Iels aepesy [eool’1e3oed eaep pues)syoIU)SUOIY
= 93ebh jser ordwes 3xe3s aspeay 1esol 1sxoed ejep pues

fe3eb 38113 o1dwes jie3s‘zopesy Teool 3sxoed ejep puss
= 93eb 1saty o1dwes pus- zeopwey Tenol 19yoed ejep puss

8z1s Aei 03 pexedwco TTews sIe sazTs jexoed usuym usddey TTIM STY] ' Swes aIe
oTdwes jsey pue srtdwes 315173 yaod //

}
EEIC
_ _ _ - -

! (s93eh xeuw umu)suely = 23eb jsel sydwes pus- xepesy teool’ 3syded ejep puss
ex9y Jues sfemTe st 23eb 3sT

17 f{T)suoly = s3eb asaty orduwes pus‘aspesy (esol Josoed ejep puss
Zex zsd sejeb Jo asqunu Te103 Se swes sT @3eb 3sel

17 ! (SALYH WAN) SueIYy = ®3eb gser ordwes jxeis Ispesy leool 1exped eiep pues

aspesy syl
Jo spiet3 Buturewsx ay3 T1F3 uaul //
)
Zepio 93AQ MIiom3isu ut Apesite //
(oTdwes pus - aspesy [rool Ioyded eiep puss
=jardwes qxens xopesy [enoT joxoed ejep puss) 3t
! (e1dues 3sa1y dnoxb srdwes)suoljy
= o1dwes pus-aspedy [ecol javwoed ejep puss
“ITo# se sejeb oSk pue pejjTwsuexd dnoab 3seT Jo sTdwes Is5ITI oYl 21038 ©S ‘3ayved
®Y3 UT pIPNIOUT u2eq sey sejeb ordwes seT //

{
2718 peoTded

¢ (aeyoed ut stdues 1sx13 - p+otduesTisary dnoxb sidues) c<uzeized sseqs=|
uzsized o1dwes aspeat] Tesol 39%oed eiep puss

!so3eb Xew UNU,FZIS FTIKYS=+

{BZ1S ATANYS+STLVD WAN
+ 13d xezgng o11F = a3d xeIIng oT1F
_ N /89786 Xew WnU,FZIS FTANYS=+
195330 x933ng 9xoed
!s93e6 Xew WnUyggIs FTINYS=+
PoIITUSURIY ©IRp
! (s93eh” xew wnu
*EZIS FTANYS ‘xad a@gIng OTTJ‘3953F0 Iozzng adsoed+peorded- joyoed ejep puss)Adowswm

A++ﬂ“u:mEm»ﬂ:wmnlmsoumlmHmEmMVﬂ“on«v x031
ADQUBUD T
‘3scoed 9¥eu Sy3 uT BUTUTEwSI Puss Usyl pue 38¥oed swes eyl UT IUSS g Ued ILAd3eUM SPNTOUT
snyul ‘epnTour ues jeoxoed suwes ueyy sejedb saow //
Joyoed swes syl ur pPIpNISUT wvn ueo 3®YI Ueyy SIOW ST JTWSURIY 03 Sejeb jo
ASCUNU uBYM // (S23eb XKew umu =< 3Twsuezl 03 so3eb wnu) JT

pe1lTwsuURal 9q 03 23eb 3IsaT3y Bya o3 sautod sTyL // {87I1S ETdNYSe (T
-o9e6 38373) + x3d xeyIng o117 = 13d x23Ing o112

_ _ _ {8215 ETaWVS»SEIVD WONx (T
-a1dwes 3sx7y dnoxb stdwes) + zerng o1TI = I1ad xe3Ing oTTI
I937JNQ UTeW 9YI UT IDUSIASISIT 309 //

{
{
wnu bas - aspesy 1eco 193oed ejep puss
I {97eb asa13) suoqy = 93eb 3saty ordwes qxeas-ispesy (eSOl J9yoed ejep puss

! {++zoqunu_bos” 3Xsu) [uoly =

£ {3eyped ut ordwes 3sITI)suoly
= srdwes 3ae3s - aspesy T[ePOT 19yoed ejep puss

‘a1dwes 35173 dnozb erdues
= jexoed utr oTdues 3sITZ
)
(0==33%330 133Inq 38yoed) z1
PIoT IOpedY 9yl UT uoTjewrojut s3eb 3saty pue Iequnu a1dwes
38113 8x03s ‘juss Bureq sT sidwes 3sATI usym //

feqeb qset - mev:ﬂlwﬁﬁmﬁ_mm_ [0T73]1T odAa z3d oTqel o1dwes- [xspuy 23ei]aIqed Ii
= @3eh 3sel

!s93eb butpusd otduwes 3seT-sejeb Tel07° [xopur oldwes] [(X0T3] T 8di3 x3d erqes srdues’ [xop

utr e3ei]a1qed Ly+s3eb 1sIT3- [xeput erdwes] [¥oTa]T odi3 x3d oTqel otduwes" [xepur o3iei]OTqe3 Id
= s3eb 3saig

!sajeb burpusd ordues 3ser
= atwsuexy o3 seaeb wnu

)
{

fa3eb jeel - [xepuy otdwes] [%07111T odA3 x3d o1qe3 erdwes- [xepur 93vi]oTqel 1A
= eo3eb j3sey

f2386 381717 [¥eputr s1dwes] {01311 odA3 13d o1qe3 s1dues’ [xepur ®3ex]eTqes Iy
= 83eb 35173

2519

_ _ Juss 5q 03
so3eb TIY // !so3eb 12303 [Xeputr ardwes] (30131117 adAa xad eiqes ordwes: [xspur eiei}atgey iy
= aTwsuel;y oy gsieb wnu

}

e3eT3TUI // (0==s93eb Butpusd eordwes 3sel) 3IT

jeoed mou s1Y3 woxy ivjsuery sidmes

gsyoed snotasad ul pejljTWsSURI]
useq ApEeaTe sAPY eIeD s93eb BWOS JT SUTWISISA //

}
{

fyearq
f{uu\31X® pTnoys dooy STTUM uUsyl pel3zTwsuealy sie so3kq yo asqunu xodoxd
IT 9sSnESaq ‘9ASY BWOD JOU PINOYS T[OIJUOD,) FIUTId
AOHHMHmEmmIUmuﬂulmsoumwlwﬂmsmﬂ 3T
{zoqumu oTdwes - {xeput oTdwes] [0 T3] T 9dAa a3d oTqel ordwes’ [xepur @3ex]eqel Id
= oydwes 38Ty dnoib sTdwes
}
{3uss jaxoedi) S1Tym
! {3uswexnboX dnoib oTdwesxFZIS TIANYS) /39xoed 1ed e3ep mex Tenioe
= go3eb xew wnu
10 = ureyred srdwes-Iopesy TesoT- assoed eiep puss
‘0 = ez1s protied-aspesy 1eooi-jeyoed eaep puss

EE]

fo=188330 a93Inq qoyoed

g = 9218 peorled

fp = Juss jeywoed
“I93I0Q

sy1 ut dnoab »y3 Jo sTdwes 3sITF Byl 023 dousIsFex syl 196 oSTY //
3I9Y 2IVD USHRI ST 31T

eyl 2Ins Sxew ’‘pajiTwsuea’ aq o) a1dwes vyl 103 ss53eb Auew moy 38H //

ission.

ht owner. Further reproduction prohibited without permi

19

f the copyri

ISsion O

Reproduced with perm

! (uza33ed s1dwes aspesy Tesol 3oxoed BiRp puss)suoly
= uzejjed o1dwes 1apeay T[eooY 3oyoed eilep pues

fo3eb aset erdwes 3xels-aspesy Teool 1eyoed ejep pues
= 23eb ase[sTdues pua-aspesy Tecol-3axoed elep puss

! (T-3Twsueal o3 so3eh wnu+ (93ef 3saty oTdwes 3xeas aspesy [edoT393ded e3lvp PUSS)SYOIU)SUOIY
= a3eb 3ser ordwes 3xe3s-aopeey Tedoi-jexoed elep pues

fo3eh 3s17J oTdwes 3xe3s-zepesy reool j19%oed elep puss
= a3eb 3811y ordues pus xepeay Tepo’3eyoed ejep puss

ozTs Aer o3 peaedwop TTews oxe s9zTs 19yoed usym usddey TITA STY3 ‘swes sxe ordues aser
pue sTdwes 351ty yjog //

}
EERE]
{
309II02 ST FTYI YUTYL
I //¢(se3eb xew wnu)suoly = s3eb 3sel orduwes pus aopesy Twool 3oyoed ejep puos
218y juss sdemle ST 91¥b 3sT
17 f(1)suoay = s3eb 38117 oT1dues pue Ispesy TenoT 3eyoed ejep puss

Aez zad ss3eb Jo ssqunu Te30] Se BWes ST a3eb
gsel // ! (SEIYS WIN)Suoly = o3eb ase(ordwes 3xe3s-Iepesy [esol 19xoed ejep puss

Ispesy Y3 JO SPTITH
Butuvewsx sy3 1113 udyL //

)
(s7dwes pua - aspeay Tesco(jesped elep puss=jordues 3xels-zopesy [eoo] jexoed ejep pues)
3T
! (e7dwes 3sx17 dnoaf erdwes)suoly = o7dwes pus aspedt TES0T 1exord eiep pues

aeoed $TUI Puss pue tepesy
°u3 jo spreTy Buturewsx syl TITF o8 //
Y213 3usaand Y3z ut 3eyoed syl
UT @PNIOUT O elep SIOW Ou BT SAdYL //
Euﬂulinvc%loulﬁmulﬁmuouH@mﬁﬁsmswﬁlﬂmE It
THOTS
2yl ut dnozb ordwes 3xou o3 of os ‘jues Arejetduos s1 dnoab ordwes //
t++xoput oTdwes
srdwes 3seT eya IoF 3Iexoed swes eyl UT PIPNIOUT sejeb
poxtnbax 11V // ‘p=s93eb Hurpusd sTdwes 3seT
Juessad
dnox6 axsu yooyS 08 ‘TINF 30U ST Asyoed soutrs //
fqTusuexy 03 so3eh wnu=- se3eb xew wnu
o7dwes 3xsu 10F
PP33TUSURI] g ued eyl 393e6 syl 94e BSYL //
{

fa7wsuRIY 03 §93e6 UNUXAZIS ATIWYS=+5z1s protled

¢ (aeoed ut eTdues 15Ty - T+ordwes 3sITI dnoxb erdues)<<uxsijed sseqs|
uzelied sydwes xspesy Tesol’ j9yoed eiep puss

{5215 IIdNYS »SELYD WON
+ 13d ae3gng 911y = a3d x833ng Br1F

f3TwsURIl 03 $93eh WNULHZIS WIAWYS=+3198330 xagIng aosded

f3Twsuezy 031 §0386 WNUEZIS TIAWYS
=+ po33jTWwsueil ejep
f (3weuwexy o3 sejef wnu
*EZIS @IdWYs‘2ad xezIng o113 ‘38s3ygo zoIIng 3esped+protied- jeyped erep puss)Adowsw

saexoed 21BUTs ojut ©b ues UM URY] S5BT SaE
peajtwsueay 2q o3 s93eb Jo asquny //

}

(444

(++1¢/quasweatnbax” dnoxb srdures>1{0=1) 103

{

PaT1Ts °¢ PINous praty Bututewsy//

S3uss pue pPeIITI ST 39%ord usyM

*S8l3eH JO IPqunu Tel0l Se swes sT a7dwes 3seq //
! (STIVD WON) suoly = 93e6 3sel ordwes 3ieis-ispesy Teool- 3syoed eiep puss

soxow 103 3397 oseds 11738 T 215y3 pue 3xoed oyj ur
popn{out 8q ued dnoab stdwes 3sitg //
J

{o7dwes 35113 dnoxb a1dues==(sfdues” 3xe3s-a9pesy [esoT 19%oed ejep puos)syoju)

7T
/+ PRTTTI o Aew aTdwes 38173 JO UOTIEBWIOJUT 21eb jsel ATqrssod
Atue swty sTUa 4 O ‘394 TTnI Jou ef 39xoed ‘peTiTl Bulsg s3Tduvs S3e{PLWISIUT SWOS
“yeoed
puss puw SpieT3 Iepesy SuTuTRWSI TTe TTIJ 258D JeY3 Ul os ‘asped syl UT SPNIOUT ©3 33T
UOT3RMIOIUT SIOW OU ST SISYI ATPUCOPS 10 UOTIBWAOIUT SY3 [[e 2PNIDUT 03 ybnous HIq ST 5zTs
Ioyoed 19y3Te ‘e9T13TTIgISSOd om] aIe SAVYL x/

}
as1®
_ {
T = juas 3adoed
{
Iaxeuc-1ad quetio = I3d quatio
{
1(0)31%3
{ {u¥l¥q Butpuss ut
I0AXF ABAIIS UYQYH) T0X124
)
{0 > {((UT JPPEDOS 35N118) JOSZIS ‘IPPE JUSTTRR (5 IPPEADOS 30TIAIS

‘0 ! (sdA3"aepesy Aex of
T3) Foozts+ (9dA3 xopeay Teoo0T) JoezTs+oZTs peolded’yssped eiep PuSsy D0S pUss 19AIDS) 0JPUSS))

3T
7=+ [AYOLSTH INNOD XYW3 (Wnu Aex’zspeay [eooT jesoed eiep puss)syoiu] 3unoy juss jeord<
-x3d qusTIo
{
{0=[XIOLSTIH INNOD XYWSWRU Ael JUa1ino] Junos jies 3eyoeds
~z3d juet e
/*

©0 03 398 8q uUEd 38T ATOISTY SUI UT Jues joyded Kex Jo Junoo TETITUT BWTJ STY3 38 OF ‘3JUSS
Butsq Aey Jo 3eyded ISaT4
*/
;o
(T==Tsqunu bas Jxsu) JT
7 (3xod jusTTo<-x3d RUBTIS)SUOIY
= azod uis-appe QUSITD
! ((Ippe UT 30nI3S) JOSZIS ‘APPE UTS'APPE USTION {x
aeyd) ‘x3dut («» 2EY0)) Adodq
(a1 quet e<-23d JuURTTA) TUOIY
= zppe s<-z3dut
{IANT Y = ArTwez uts Ippe IUSTD
{{(appe IUSTIP) JO9ZTE ' IppR AUSTIOR (»
xeUS)) 0xIZY
}
(TTON=ix3d JUSTTP) oTTUM
1T 2dA7 ASTT JURTID [Xepuf ejel]puocoss oTqey 1i
= a3d juetTo
osT®
{1T7edA3 T3S TT IUWSTTA" [X8pUT @3er] oTqey 1
= x3d 3usTio
(1==21qe3 Kaewtad) 3T
"S3ex STIYI I07 PITNPIYDS
saustIo tT® ©3 ioed wyy pues ‘soeld sTYl 3¥ //

{ {9218 peoTded) Tuoyy

= o218 peoTied-aopesy Teool’ joxoed ejep puss
! (uzs3zed s1dues- Iepesy [e201 1ooed elep pues)suojy

= uzsaled sydwes-aspesy TeooT’3axoed ejep puss

ission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without perm

ad ypm paonpoiday

ISS

noyum paugiyosd uononpoidal Jeyung “Jaumo JyBuAdos sy jo uo

‘uolssiwiad

send_data_packet.local header.payload_size = htonl{payload_size);
if (primary_table==1)
client ptr =
RT_table[rate_index].client_list_type_1;
else
client_ptr =
RT_table second[rate_index].client_list_type 1;
while (client_ptr!=NULL}

bzero({char
*) &client_addr,sizeof (client_addr));

client_addr.sin_family
= BF_INET;

inptr-»s_addr
= htonl(client_ptr->client_ip);

beopy { (char *)inptr, (char
*)&client_addr.sin_addr, sizeof (struct in_addr));

client_addr.sin_port
= htons{client_ ptr-»client_port);

if (next_seq number==1)

J*

First Packet of
Ray being sent, so at this time initial count of ray packet sent in the history list can be
set to 0.

*/
client_ptr-
>packet_sent_count [current_ray_num$MAX_COUNT_HISTORY]=0;
}
client_ptr-
>packet_sent_count [ntohs {send_data_packet .local_header.ray_num) $MAX_COUNT_HISTORY] +=1;
if

((sendto (servex_send_sock,&send_data_packet,payload_size+sizeof (local_header_type) +sizeof (fi
le_ray_header_type), 0, (struct sockaddr *)&client_ addr,sizeof (struct sockaddr_ in))) < 0)

perror {"RADAR
Server: Error in gending DATA");

exit(0});

client_ptr = client_ptr-
>next;

packet_sent=1;

} // when data transmitted == total
data to send

/{ else
} // while packet not sent
/* It is possible that all the gates of a packet were not included in
the same packet thus it needs to be taken care in next packet.*/
// While all data for a tick is not sent

}

// Send GROUP PAIR Data
void send data_type_2(int server_send_sock, int tick, int rate_ index, int
sample_group_requirement)

struct in_addr *inptr;

struct _client_list_ *client_ptr;

struct sockaddr_in client addr;

char data_ptr[500];

int num of complete_packet, last_packet_size,i;

int re;

struct timeval tp;

int sample_group_first_sample, num gates_to_transmit,
packet_buffer offset,payload _size,total data_to_send in tick,data_transmitted,
num max_gates, sample_index, last_sample pending gates,packet_sent;

int first_gate, last_gate, first_sample_in_packet;

223

uintlé_t base_pattern;
printf("ray num %d tick in send data type 2 is $d\n",current_ray_num, tick);
inptr = (struct in addr *} malloc(sizeof(struct in addr)):;

/*

Divide Data to be transmitted among different packets., Set the current rate in
the send packet, this information is included in the packet everytime feedback about loss is
sent by client it can happen that all packets containing the new current rate gets lost, in
that case client won't be aware of current rate thus they will have stale value of current
rate, server should be able to handle that case.

*/
send_data_packet.local_header.current_rate =
htonl (RT_table[rate_index] .base_rate);

/*
Next step is to copy the sample data from the input buffer to the packet payload
Data should be copied considering sample group requirement
Sample schedule is already there, associated with each rate.
*/
total_data_to_send_in_tick =
RT_table[rate_index] .time_slot_data_size_type_2[tickl;
data_transmitted =0;

//Number of gates that can be transmitted while satisfying data group requirement
in the same packet.
num_max_gates =
actual_raw_data_per_packet/ ((int)SAMPLE_SIZE* (int)sample_group_requirement) ;
//Iterate following loop till all the data for a given tick is transmitted to a
particular client
last_sample_pending_gates=0;
base_pattern = 0x8000;
in the sample pattern in each packet
sample_index=0;
while (data_transmitted<total data_to_send in_tick)

// 16 bit mask, used to set the appropriate bit

// Get how many gates for the sample to be transmitted, make sure that
it is taken care here
// Also get the reference to the first sample of the group in the
buffer.
packet_sent=0;
payload _size =0;
packet_buffer_offset=0;
send_data_packet.local_header.payload_size =
send_data_packet.local_header.sample_pattern =
num max _gates =
actual_raw_data_per_packet/ (SAMPLE_SIZE*sample_group_requirement) ;
while (ipacket_sent)

sample_group_first_sample =
RT_tablelrate_index] .sample_table ptr_type 2[tick] [sample_ index].sample_number;
if (sample_group_first_sample==0}

printf ("Contrel should not come here, because if
proper number of bytes are transmitted then while loop should exit\n");
break;

else

// Determine if some gates data have already been
transmitted in previous packet

if (last_sample_pending gates==0) // Initiate

(

num_gates_to_transmit =
RT_table[rate_index] .sample_table_ptr_type 2{tick] [sample_index].total gates; // All gates
to be sent

sample transfer from this new packet

first_gate =
RT_table[rate_index] .sample_ table ptr_type_2[tick] [sample_index].first_gate;

1=+ [AMOLSTH INNOD XYW$ (wnu Aex-1spesy 1e00T 19yoed ejep puss)syoiu] junod jues 3ayoed<
-23d JUSTTD

(

-73d qus TR
I

"0 ©3 398 8q ued 3sTT AIOASTY SYI UT 3uas 3eoed Kex Jo JuNOs TRTIATUT SWIZ STY Je OF ‘3uss
Butreq Aey zo jayseq 3I8ATA
x/
}

(T==xaqunu bss 3xau) 3IT

10= [RYOLSTH INNOD XVHSWNU ABI JUeXinp]junon juss goxioed<

f (3x0d quatTo<~-33d JUITID)suO3Y
= qx0d ULS " appe JUSTTD
1 ((IPPE UT 10NAJE) JOPZTS IPPE UTS IDPE JUSTTON (»
aeyo) ‘x3dut {» Jeyp)) Adooq
! (dr quatTo<-13d JUsTIR) TUOIY
= Zppe s<-a3dut
(LENI dY = ATTwez uTs IpPE JUeTTo
{{(IPPE JUSTTD) JO9ZTS 'IPPE JUSTIOR («
Ieys))oa9zq
fa3d dusax xeyo
IxpT dwsy 3uy
}
(TION=133d JUsTT2) aTTym
1z 9dA7 98TT JUSTIS " [XOPUT @3kI] pUodas sTqed 1d
= x3d juatTo
s8T®
1z 2dA37 38T USTTIO " {XSputr siei]oTqes Iy
= x3d jusTio
(T==9Tqe1 Axewtad) 3T
‘IRl BTY3 IO POINpeYns
SIUBTTO [T 03 19xoed syl puss ‘soeld sTtyl v //

! (9218 prolAed) Tuoly
= 22Ts protded- 1apesy Tesol 3oxoed ejep puss
! (uzeired srduwes-zepeey Teool 193oed eIERp puUss)suoly
= uzejyed srdwes-aspesy TesOT - 393oed ejep puss
{4+xXoput ordwes
(o==se3eb Surpusd oTdwes 3sel) It
!so1eb burpusd ordwes 3seT

[

JTwsuell o3 g93el wnu
!seqeb xew wnu -

JTwsuex) 03 s97e6 wnu = sojel Burtpuad ordues 3sel
/+ 39Mord syl puss udy3l pue oISy xepesy 9Y3 Jo sprety Buturewea 1114 sejeb Burpusd
Jtuswer) 3sary ‘dnoxb stdwes axou o3 dunf joucp os ‘jexoed gxsu oyl ur erduwes sTy3 I0J

P3ITWSURIY 99 03 883ebh Sx0w AuRW MOY IDQUOWSN«/

{
‘oqeb 3sel ordwes jxe3s’Iepesy Te001’3d3oed eaep puss
= @o3eb 3sel ordwes pus Ispesy TeooT 3axoed elep puss

! (1-s93e6 xew wnu+ (9326 35113 ordwes jaels-Ispesy TeooT-joyced ©lTP pPusE)SYOIU) FuUOIY
= o3eb aser oldues 3xels aopesy [e0ol jexyoed ejep puss

foqeb asaTy eordwes qIels-xopesy [EOOT' 3syoed wiep puss
= s3eb 3s8x17 ordwes pus‘Ispesy Teoot’ieoxoed ejep puss

szts Aex o3 peaxedwoo [Tews 8i1e S92Ts 38yoed uaym usddey T1Im STUI ‘ sles sie
srdues 1s5el pue widwes ISITI yaog //

}
{

! (so3eb xew wnu)suody = o3eb 3sel o1dwes pus xopesy Teso- 3syoed ejep puss

2819

sasy 3uss sdemie st 936 3sy //
f{r)suoly = syeb 3siTy efdwes pus-aspesy Tesof jexoed ejep puss

_ Aex zed S93e6 JOo IPqUNU Tejoy 5B swes ST 93ed 3Iser //
¢ (SHIVS WON)suoly = s3eb 3ser oTdwes 1Iels aspeay [esof yoyoed eiep pues

(44

Ispesy syl
3o spTel] Bututwsa sy3 [T13 UsYUL //

}
_ Ispao 934 yIOMIASU Ut Apesiate
// (o1dwes pus-ispesy Teool- 1eyoed eiep puos=joTdues 31els Ispesy [eoof 3sxoed ejep puss)
IT
! (o1dwes 3811y dnexb ordwes)suoly
= oTdwes pua-xspesy Tecor-19yoed eijep puss
“{1em se sojeb osie pue pealtwsueily dnoab 3sey Jo ojdwes ISATI BY3 S1038 08 *3oyoed
2Y3l UT pPopnIoutl udsq sey soleb srdues aseq //
{
2zTs proTAed

¢ (3oyped ut oTdwes 3saty - T+sTdues 38ATI dnoib srdures) <<ursijed eseq=|
ursijed sydues ispesy [enof 39yord eiep pues

{89786 Xew UNULFZIS ETdHVS=+

_ ‘3715 ITANYS*xSTLYD WAN
+ aad ae3Ing o113 = 13d xazyng ST1TJF

{92386 XeW WNULEZIS ATdNYS=+
198330 x93 Inq eoed

f5e7e0 Xew wNUXEZIS EIAHYS=+
pe3aTusueil elep

{(s9reb xew wnu

*HAZIS ETAWYS ‘7ad xe3Ing STTI 195330 a93Ing 3eyoed+peoried qexoed eiep puss)Adomew

A++ﬁmucwEwkﬁsvmnluzoumlmHQEmWvaNcuﬂw z03
/% IoqUBWRI
‘a9xoed 3X®Ou 2Yj U BUTUTRWeX PUSS USYI pur 39ydoed swes SYI UT JUSS 2 UBD ITARIEUYM SPNTOUT
syl ‘spalour ueo j9xoed swes ueyl sazeb saow //
3oxoed swes Y3 UT PSPRTIUT Mn ues ¥yl Ueyl sIom ST JTWSURII ©F s83eb jJo
Tagqunu uAym // ($97e6 xew wunu =< jTusuexy o3 sojel wnu) 3T

_ pel3Twsueay sq o] 93eb 18113 eyl o3 sjutod sTuL // 18715 ATANYS* (T
-93eb 318113} + I3d a833ng =113 = 13d x83Ing °IT3F

_ N _ ‘8715 STANYSxSEIED WON+ (T
~-atdwes” 35173 dnoib orduwes) + x033ng s[Ty = 13d 293Ing oTTZ

aezing urew 9yl UT 90USASISI 38D //

{
{
unu bes " 1spesy TeooT 3exoed eaep puss
f(g1eb 387TI)sUeY = 93e6 3sATF sidwes 3xels-Iopesy 1esoi’ 1eioed ejep puss

! (++IBqUNU bes IxXaUu) TUOAY =

! (yoyped ur srdwes 38aT3F)suoly
= oTdwes 3aeis aapesy TesoT’ 1syoed ejep puss

‘stdues” 3sa1F dnoxb ordues
= 3930ed ur eotdwes 3SITI
)
(0==3es330 223Inq 3930ed) 3T
PleTI I9pesy 9yl Ul uoTIvWICIUT @3eb 3saTI pue Zoqunu ardwes
5373 °1035 ‘Iuss Hureq ST STAWRS ISATI ULyM //
{
fa3e6 et [xeput oidwes] [¥o13}z edAa x3d oigey oidwes” [XSpul e3eA)STQRI Id
= 9326 3ser
!saqeb butpusd s1dwes 3ser-so3eb [e3107° [xopul oTdwes) [¥oT3]z odA3 xad eiqel ordues- [xop
ut e3ei] STqeI L¥+93E6 3saty- [xepul ordwes) [3o11]z 2dAa”23d s1qe3 oTduwes- [xspul o3eiloTqel Iy
= 23eb 3sIT}
!seyeb burpusd stdwes 3ser
= atwsueai oy ssief wnu

)
(

foqeb asel - [xeput eidwes] [¥013)z odA3 a13d erqes otdmes- [xepur @3ei] oTqed Id
= 93ef asel

o518

ission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without perm

70=[A¥OLSTH INOOD XYW$UNU KBl Judxins}aunod juss jexoed<
-z3d juaTIo
/%

‘9 03 188
oq ued ISIT AX0ISTY Y3 uf 3uss 3@doed Aex JO JUNOS TEBTITUT SWII STYI 3@ oS ‘Juss Bursq Aey
30 39yowd 1Isxtg

*/
}
(T==aoqunu bas 3xau) 3t
¢ (azod 3uaTIo<-a3d USTID) SUCIY =
2x0d uts-zppe 3USTTD
£ ((IpPE UT 3onIIE) JOSZTS'IPPE UTS' IPPe JUSTTOR (x
Teyo) ‘23duT (» xeyo))Adooq
(41 qusT P<-a13d JUSTTP) TUOIY =
appe” s<-13dut
_ _ f1ANT ¥ =
ATTWeI UTS Ippe JUaTIo
{((appe JUSTIO) JORZIS 'IPPE JUITTON (x
AeUd) joxszq
fa3d dweas zEUD
xpT duel 3ut
}

(TTAN=i 73d quUaTId) eTTUM

1z79dA97ASTT JUeTTR " [XSpUT s3ex]pucoss sTqed Id
= 23d JUSTTO
BST®
‘g 9dA3 35T AUSTTR" [xpUT o3ex]sTqed Iy
= 13d juatip
(T==01qe3 Azewrad) 3T

! (9218 peorded) Tuoly = 2215 peotied- zopesy Tes0l 39xoed eiep puss
f (uzered s1dwes - zepesy TeooT’ 39¥oed eaep puss)suoly

= urs1led srdues - 1spesy TesoT 193oed ejep puss
!z3eb 3sey s{dwes 1i1e3s Ispesy (eool-31sxoed ejep puss

= o23eb 3se(e{dues pus-iopesy 1es0T’3exoed eiep puss

£ {T-3TUsURIY 0F go3eh wnu+(eqeb 1sxTT oldwes qae3s-aspeey Teool 1ayoed ejep puss) syolu) sUOIY
= o3eb asel ordwes 3xels-aspeey TecoTl’ 39yoed eiep puss

fenef 18Ty odwes qxe3s aspeay TeosoT jeyoed ejep pues
= s3eB asaTy oTduwes pus-xspesy TesoT I8yved ejep puss

azTe Aex 03 psaedwod [fews aiae s92Ts jayxoed usym ueddey [{IM STY3 ' swes sie oydues 3sel
pue >rdues 3saty ysodg //

}
o8
_ { - - _ _
¢ (sa3eB xew wnu)suoly = saef asel srdwes” pus’ispesy Tedol ae¥oed ejep puss
_ _ 2xoy Juss shkempe st
a3eb 38T // f(T)suoly = s3eb 1SITI sTdwes pue-ispesy TesoT 3ooed eiep puss

Aex xad seqeb jo IquAu [EIO] 5¥ Swes ST S3eb
aser // ¢ (SHIVD WAN)suoly = @3eb 3se ordwes 3xeis-iepesy [eso’ 393oed ejep pues

aspesy oyl 3o SPIITF
Bututwex sy3 TIT3 usyL //
)
(ot1dwes pus‘aopesy Tedol 3eyoed ejep pusssiatdwes jxeis’aspesy TrooT-3oyoed eilep puss)
Eas
¢ (o7dwes 18273 dnoxb sydwes)suoljy = sTdwes pus-zepesy ool 193erd BiEp DUSS

/% 39%oed
STYD} PUSS pu® Ispesy SY3I Jo SpreT3 BUTUTERWSX SY3I TITZ OS ¥OT3 JUsIInd ayj ur jaxoed sty3
Ul epnIoul O3 BIRP BAOW OU ST didYL //

44

)

(o137 uT puds ©3 e3ep [e31031==pa33TUSUELII ejep) IT
“q2T3 9Y3 ut dnozb aydues 1xsu 01 0B os ‘jues

Ar3e1dwes T dnoxb stdues // Ir4xspur a1dues
oTdwes 3ser a2yl zoy aoyoed swes SY3 Ul pepnIoul s93eh
pextnbax TI¢ // rg=se3eb butpusd oTdwes 3ser

auessad
dnozB 3xsu ®days os ‘TN 3ou st 3oyoed soutlg //
f3Twsuery” 03 ssojeb wnu=- sojeb xew wnu

ordwes Jxou 1037
polaTWSURIY 29 ued eyl saieb sy3 exe IsIYL //

{

{3TWSURIY 03 s93eb WNUAAZIS FIdWVS=+9zTs proiied

£ (3eyoed ur ordues 35ATJ - t+oTdwes 3sivy dnoxb orduwes) <<uzsized eseqs |
uzrsyzed stdwes-aspesy Tesol exoed eijep pues

_ _ {AZIS FIIWYS +SELYD WAN
+ x3d xe3Iyng o113 = and zo3Ing 1T
!qTusuray 03 So3eh WAUXHZIS FIdWYS=+3195II0 as33ng josoed

£3TWSURIY 03 $2386 WNULTZIS HTIdWYS
=+ ps3jTusuexy BIEp
! (3TwsUex) 03 Se3eb WNUxHZIS AIdWYS’I3d a83Ing oTTI
‘398130 I93ING 39¥zed+prorAed- 1eyped ejep puss)Adowsu

‘asxoed 27bUTS 03UT OF uUED JeyM ueBYl SS9 SiI
Pa33TWSURA] 9 ©3 §93¥6 3O IscumN //

)

(++T{3quswaarnbex” dnoxb o1dwes>T!Q=T) 103

{

usys PITLTI 99 PINOUS preT3 Butewsy//

‘jues pue paTITI ST joxoed

_ _ *se3eb jo squuou Te103 se swes s1 sTdues jseq //
{ (SHIVD WAN)Suo3y = 23eb asel oldues jie)s- ispesy TeooT 193oed ejep puss

"eaom 103 3397 soeds [TTIS ST I8yl pue joyoed 8yz ul
popnTout °q ued dnoib sydwes 3sats //
)
(o1dwes 3sx73 dnoab ordwes==(oTdwes 3aeqs- Iepesy TeOOT 39sded elEp puss)syolu)
It

/% POTITI ®q Aew ardwes 3saATI JO uoTIWIOIUT 93eb 3ser Arqissod

Afuo swTy STU3 e os ‘3@k TInJ 3ou sT exoed ‘pe(riz Bureq serdues 9jeTpsuWILIUT SWOS

*gesoed

puss pue sp[eTJ Ispesy Buturewsa [Te LT3 ©ses jeys ur os ’‘3ayved SY3j Ul sSpulouUT 03 32l

UOTILWIOIUT DIOW OU ST 3I9U3 ATPUODIE 10 UOTIBUIOIUT 2Y3 TTR 2PRIOUT 03 ybnoue Biqg ST °z1S
3ayoed 19Y3Td ’SBT3TTIqIssod omy o1¥ SI9Yl »/

}
EERE)
- A
T = juas jooed
{
faxeu<-13d queT(o = 13d JUSTID
{
£{0)atxe
! {,¥I¥a Butpuss utl
I0XIF :AIATIBE UYAWHE.) Ioaxad
1
{0 > (((UT IppexPOs 3ONIIS) JOSZ IS ‘IPPE JUSTTOR (x IDPLHOOS I0NI3S)

' ' (9dA3 aepesy Kex of
T3) 300215+ (8dAy xopesy [eo0T) Josz1s+921s proTAed’1oyoed wiep pussy’iyo0s Puss I2AI9S)0IpPuUsS))
It

{peoTied- goxped ejep puss = 13d dwel

ission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without perm

iwiad yum paonpolday

ISS

oyum pauqiyold uononpoidal seyung “soumo 1ybukdos ayp jo uo

‘uolssiwJiad

temp_ptr=
send_data_packet.payload;

client_ptr-
>packet_sent count [ntohs (send_data_packet.local_header.ray_num) $MAX_ COUNT_HISTORY]+=1;

if

({sendto (server_send_sock, &send data_packet,payload size+sizeof (local_header_type)+sizeof (fi

le_ray header_type), O, (struct sockaddr *)sclient_addr,sizeof (struct sockaddr_in))) < 0)

perror ("RADAR
Server: Error in sending DATA"};

exit (0);

client ptr = client_ptr-
>next;

packet_sent=1;
} // when data transmitted == total
data to send
} // else
} // while packet not sent
/* It is possible that all the gates of a packet were not included in
the same packet thus it needs to be taken care in next packet. */
} // While all data for a tick is not sent
)

void print_data(int size)

int i;
for {i=0;i<size;i+=4)

printf("Data word i %x \n",*(int %) (&send data_packet+i}};

/*
This function should ereate packets for the data to be transmitted within the given time
window

*/

inline void create_send_packet (int payload_size)

int start_sample, end sample, start sample first_gate;
int remainder,data_already sent_of_sample;

/*

Compute How much data need to be transmitted within the given window.
*

data_already_sent_of_sample= ray_data_offset% (SAMPLE_SIZE*NUM_GATES) ;

// remainder is 0, if sample of all gates are sent otherwise non zero
start_sample = ray_data_offset/(SAMPLE_SIZE*NUM_GATES)+1;
start_sample_first_gate = (data_already_ sent_of_sample/SAMPLE_SIZE)} +1;
end_sample = (ray_data_offset+payload size)/(SAMPLE_SIZE*NUM_GATES)+1;
send data_packet.local_headex.seg num = htonl (next_seq_number++) ;
send_data_packet.local_header.starxt_sample = htons(start_sample) ;
send_data_packet.local header.start sample_first_gate =

htons (start_sample first_gate) ; // Gate after the earlier packets sent
send_data_packet.local_header.end sample = htons (end_sample) ;
if ({remainder={ray_data_offset+payload_size)% (SAMPLE_SIZE*NUM GATES)))
{

if (start_sample!=end sample}

send_data_packet.local header.start_sample_last_gate =
htons (NUM_GATES) ;

send_data_packet.local_header.end_sample_first_gate =
htons (1) ;

send_data_packet.local_header.end sample_last_gate =
htons (remainder/SAMPLE_SIZE) ;

226

else

// Both Start and End Samples are same, so determine the
last gate

scnd_data_packet.local header.start_sample_last_gale =
htons {remainder/SAMPLE_SIZE) ;

// Set End Sample Gates same as Start Sample Gates,Client
may not use it but still set it.

send_data_packet.local_header.end_sample first_gate =
send_data_packet.local header.start_sample_first_gate;

send_data_packet.local_header.end sample_last_gate =
send_data_packet.local header.start_sample_last_gate;

)
else // After Adding Raw Data, all samples of packets are included.

// After Adding RAW data, all samples of all gates are included in the
packet .

if (start_sample!=end_sample)

// Both Samples are different, so set the Gate Bounds.
send_data_packet.local_header.start_sample_last_gate =
htons (NUM_GATES) ;

send_data_packet.local_header.end_sample first gate =
htons (1) ;
send_data_packet.local_header.end_sample_last_gate =

}

htons (NUM_GATES) ;
else

// Both Start and End Samples are same, so determine the
last gate

send_data_packet.local header.start_sample_last_gate =
htons (NUM_GATES) ;

// Set End Sample Gates same as Start Sample Gates,Client
may not use it but still met it

send_data_packet.local_header.end sample_first_gate =
send_data_packet.local header.start_sample first_gate;

send_data_packet.local_header.end sample_last_gate =
send_data packet.local_header.start_sample_last_gate;

send_data_packet.local_header.payload size = htonl (payload size);
ray_data_offset +=payload size;
packet_send_count++;

