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ABSTRACT 

 

IMPROVED DETECTION OF RADIOACTIVE MATERIAL USING A SERIES OF 

MEASUREMENTS 

 
The goal of this project is to develop improved algorithms for detection of radioactive 

sources that have low signal compared to background. The detection of low signal sources is of 

interest in national security applications where the source may have weak ionizing radiation 

emissions, is heavily shielded, or the counting time is short (such as portal monitoring). 

Traditionally to distinguish signal from background the decision threshold (y*) is calculated by 

taking a long background count and limiting the false negative error (α error) to 5%. Some 

problems with this method include: background is constantly changing due to natural 

environmental fluctuations and large amounts of data are being taken as the detector 

continuously scans that are not utilized.  

Rather than looking at a single measurement, this work investigates looking at a series of � 

measurements and develops an appropriate decision threshold for exceeding the decision 

threshold � times in a series of �. This methodology is investigated for a rectangular, triangular, 

sinusoidal, Poisson, and Gaussian distribution.  
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INTRODUCTION 

 
 

Radioactive material contains atoms whose nuclei are unstable and undergo radioactive 

decay. During radioactive decay, a particle and/or electromagnetic radiation is emitted from the 

unstable nucleus; in many instances, multiple decays will occur until the resulting nucleus is a 

more stable nucleus. Types of radioactive descay include the emission of a beta particle (neutron 

rich nucleus), alpha particle (heavy nucleus), positron particle (proton rich nucleus), electron 

capture (proton rich nucleus), and gamma emission (isomeric transition) [1] [2]. Other more 

exotic types of radioactive decay include neutron emission, proton emission, spontaneous fission 

(heavy nucleus), and cluster decay.  

Radioactive decay is an inherently random process and the exact time of decay for an 

atom cannot be predicted. Instead, the behavior of a population of radioactive atoms is described 

through the half-life and mean life. The half-life and mean life are properties of the atom and are 

independent of the chemical and physical state of the atom [1]. The half-life for a particular 

radionuclide is the time period needed for the population to reduce to half of the original value. 

The decrease in population, �, over time is described through Equation 1, where �0 is the 

original population and � is the transformation constant or the fractional population decrease per 

unit time (Equation 2).  � = �0�−�� 1 
 � =

ln(2)�12  2 

 
The mean life (�) is the average of the lifetimes of all the individual atoms and is 

described through Equation 3. 



2 
 

� =
1� =

�12
ln(2)

 3 

 
For radioactive decay, in addition to the change in population, the activity (�) or number 

of disintegrations per unit time is an important parameter. The activity is simply the population 

multiplied by the transformation constant. � = �� 4 
 

Equation 1 can be rewritten in terms of the activity by multiplying both sides of the 

equation by the decay constant, where �0 is the original activity: � = �0�−�� 5 
 

Radioactive material is naturally present in the environment. Sources of natural 

background radiation include radionuclides from the creation of the universe (primordial) and 

those created from cosmic ray interactions (cosmogenic) [2]. Radioactive material has also been 

created by man and contributes to background radiation. One of the goals of health physics is to 

accurately quantify radiation levels for applications such as regulatory compliance and risk 

assessments. Techniques for measurement of radioactive material depend on the energy and type 

of emitted particles, as well as desired measurement quantity. The measurement quantity of 

interest for this work is raw counts in a detection system. 

Counting statistics are used to describe measurements of radioactive decay; because 

radioactive decay is a random process, there will be a degree of uncertainty in all measurements. 

Statistics can be used to check the performance of a detector by comparing detector fluctuations 

with those predicted from statistical models (Poisson); or to estimate the uncertainty on a single 

measurement [3]. 
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Sources of background, detection of radiation, statistics basics, statistical analysis for 

radiation measurement, and the statistical analysis of background are discussed in more depth in 

the following sections. 

Sources of Background 

Sources of background for the measurement of radioactive material include background 

radiation and background from the detector, such as electronic noise. Radiation sources can be 

divided into natural background sources and man-made radiation sources. Sources of public 

exposure to ionizing radiation were investigated by the National Council on Radiation Protection 

(NCRP) in Report 160 in 2009. The findings of the report were that half of public exposures are 

due to manmade sources and the remaining exposure comes from natural background sources. 

The relative contribution of each source is shown in Figure 1, where natural sources are shown in 

blue and man-made sources are shown in purple [4]. 

 
Figure 1 Sources of Radiation Exposure (U.S.) [4] 
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Sources of background radiation of interest for this study include radon and thorium, 

cosmic radiation, consumer products (such as building materials), and isotopes from industrial 

and occupational uses. 

Detection of Radiation 

The detection of radiation is accomplished by converting the radiation of interest into a 

signal that can be processed and analyzed by a detection system. The response of the detector 

needs to be proportional to the radiation effect or property being measured. The detector is one 

component of a system whose desired output is an electrical pulse that can be analyzed. The 

result is a chain of components, also known as a signal processing chain. A typical signal 

processing chain for radiation detection is displayed in Figure 2. 

 
Figure 2 Typical Signal Processing Chain for Radiation Detector 

 
The radiation interacts in the material of the detector; the desired response is proportional 

to the measured radiation property, such as energy deposited or raw counts. In many cases, the 

detector response signal is small compared to noise and does not have a desired shape. The 

signal from the detector is passed through a preamplifier which powers the detector and extracts 

the detector signal while maximizing the signal to noise ratio. The preamplifier also shapes the 

signal to make it optimal for processing by the amplifier, which further shapes and amplifies the 
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signal. The signal is passed through a discriminator, which uses lower and upper bounds to 

eliminate any information that is not signal (such as noise). The discriminator outputs a logic 

pulse, which is counted by the counter/timer. 

Some newer detection systems incorporate detector bias, amplifier, discriminator, and 

counter time into one component, a digital signal processor; such that the digital signal processor 

provides power to the preamplifier and shapes the preamplifier signal into a useable form that is 

used internally to obtain counting data. The signal processing chain for a detection system that 

uses a digital signal processor is shown in Figure 3. 

   
Figure 3 Signal Processor Chain for a Radiation Detector using a Digital Signal Processor 

 
Three main types of detectors are used for radiation detection: gas-filled detectors, 

scintillation detectors, and semiconductor detectors. The three detector types mostly differ in the 

material used to convert the radiation into a signal. The methodology for this project can be 

incorporated into any detection system, but the main detector that will be used is a scintillation 

detector, specifically a Sodium Iodide detector. 

In a scintillation detector, the radiation interacts in the scintillation medium to produce 

scintillation light. The scintillation in a Sodium Iodide detector occurs within a sodium iodide 

crystal due to the crystalline structure. The scintillation light is converted into an electrical signal 

using a photomultiplier tube (photocathode) and to amplify the signal (dynodes). The resulting 

electrical signal is proportional to the energy deposited within the scintillation crystal by the 

interacting radiation, such that energy discrimination can be accomplished. Sodium Iodide 

detectors are designed to detect photons (gammas and x-rays). Sodium iodide crystals readily 
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absorb water and must be housed in an airtight container. The use of the airtight container also 

prevents the penetration of the crystal by betas and alphas. 

Statistics Basics 

Random variables are used to describe processes that are random. Each value for the 

random variable corresponds to an outcome of an experiment or random event. Although the 

individual outcomes of the event or experiment cannot be accurately predicted, the frequency of 

each outcome over a long series is stable.  The frequency of each outcome is otherwise known as 

the probability of an event occurring. The random variable takes on a set of the possible 

outcomes of the experiment or random event, each with an associated probability of occurrence. 

For example, in the case of radioactive decay, the random event would be whether or not the 

atom decays within the next time period, �. The random variable would consist of two 

possibilities: decay occurred or decay did not occur; the probability associated with the random 

event, radioactive decay, occurring is related to the half-life and the decay constant.  

Two types of random variables can be distinguished: discrete and continuous. For each 

type of variable there exist several probability distributions that describe the occurrence of the 

random variable. Terminology is presented in Table 1, for reference. 

Table 1 Terminology for Probability Distributions 

Variable Discrete Continuous � Discrete Random Variable � Continuous Random Variable � � Outcomes of X � Outcomes of X � �(� = �) Probability Mass Function �(�) Probability Density Function �(�) �(� ≤ �) 
Cumulative Distribution 

Function �(�) 
Cumulative Distribution 

Function �(�) 

 
Discrete random variables contain a finite or countable number of distinct outcomes. For 

a discrete random variable �, the random variable can be described through a set of n possible 

values or outcomes (Equation 6). 
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� = �1, �2, … , �� 6 
 

For each value �, an associated probability of occurrence can be identified: �(� = �), 

otherwise known as the probability mass function �(�). The total probability for all occurrences 

of x is 100%, or 1, giving rise to the following properties of the probability mass function: 

• �(�) must be between 0 and 1 for all � 

• ∑ �(�)� = 1 for � values of �(�) 

7 

8 

 
The cumulative distribution function describes the probability of a random selection of the 

random variable � that yields a value less equal than �, or �(�) = �(� ≤ �). The cumulative 

distribution function can be related to the probability mass function by the following equation 

�(�) = �(� ≤ �) = ��(��)�
�=1  9 

 
Since, the probability mass function �(�) = �(� = �) must be greater than or equal to 0, the 

cumulative distribution function has the following characteristics: 

• �(�) is a non‐decreasing function of � 

• �(−∞) ≡ ����→−∞ �(�) = 0 

• �(∞) ≡ ����→∞ �(�) = 1 

10 

11 

12 

The expectation value, �(�), for a random variable is the stochastic mean value and is 

the first moment for � [5] [6]. For a discrete random variable, the expectation value is calculated 

by summing the product of each individual value x by the probability of occurrence for all �: 

�(�) = ���(�)� = � 13 

 
Similarly, the expectation for a function of �, �(�), is calculated using Equation 14. 
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�(�(�)) = ��(�)�(�)�  14 

 
The variance, �(�), for a distribution is a measure of the dispersion of the random 

variable � and is the second central moment of � and is calculated through Equation 15. The 

square root of the variance is known as the standard deviation [5]. 

�(�) = ��� − �(�)�2 = �(�2)− �(�)2 15 
 

Discrete distributions such as the binomial distribution, geometric distribution, negative 

binomial distribution, hypergeometric distribution, and Poisson distribution are derived using 

discrete random variables. Binomial and Poisson distributions are used frequently for radiation 

detection and will be discussed more in depth. 

Continuous random variables are random variables that are defined for any value in an 

interval. For continuous random variables, a probability density function, �(�), is defined, 

similar to the probability mass function for discrete random variables. However, unlike for 

discrete random variables, the probability density distribution is defined for any value in an 

interval. The probability density distribution has the following characteristics: 

• �(�) must be between 0 and 1 for all �, −∞ < � < ∞ 

• ∫ �(�)��∞−∞ = 1 for all values of �(�) 

16 

17 

The cumulative distribution function of �, �(�), is the probability that a random 

selection of � yields a value less than or equal to �, or �(� ≤ �). The cumulative distribution 

function is related to the probability density distribution by Equations 18 and 19. 

�(�) = �(� ≤ �) = � �(�)���
−∞  18 
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�(�) =
��(�)�� = �′(�) 19 

 
The cumulative distribution function has the following properties: 

• �(�) is a non-decreasing function of � 

• �(−∞) ≡ lim�→−∞ �(�) = 0 

• �(∞) ≡ lim�→∞ �(�) = 1 

20 

21 

22 

The probability that � falls within a certain interval between � = � and � = � is 

calculated by integrating the probability density distribution from � to �, as described in 

Equation 23. 

�(� ≤ � ≤ �) = � �(�)���
�  23 

 
The expectation value, or stochastic mean, for a continuous random variable � is 

calculated by integrating the probability density multiplied by � for all � (Equation 24). 

�(�) = � ��(�)��∞
−∞  24 

 
Similarly, the expectation value for a function of � is calculated using Equation 25. 

�(�(�)) = � �(�)�(�)��∞
−∞  25 

 
Continuous distributions such as the uniform distribution, gamma distribution, beta 

distribution, and Gaussian distribution are derived using continuous random variables. The 

uniform distribution and Gaussian distribution have important uses in counting statistics and will 

be discussed more in depth. A triangular and sinusoidal distribution will also be discussed. 
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The probability mass function for the binomial and Poisson distributions, and the 

probability density function for the Gaussian distribution will be discussed in the following 

sections; while the parameters for the uniform, triangular, and sinusoidal distributions will be 

discussed here, the methodology for deriving the probability distributions will be discussed in 

Materials and Methods, and the derivation of equations used will be derived in Preliminary 

Results. 

Binomial Distribution 

The binomial distribution is used to describe a sequence of Bernoulli trials, in which each 

trial is independent and has one of two outcomes: success or failure. The probability of success, �, and the probability of failure, �, sum to unity, such that: 

� = 1 − � 26 
 

For n trials, the probability of � successes (probability distribution) is calculated through 

Equation 27 for � ∈ (0,�) and � ∈ (0,1).  

�(�) = ���� ����−� = ���� ��(1− �)�−� 27 

 

The parameter ���� is the binomial coefficient and takes into account the number of 

outcomes (�) in an unordered set of � objects. The binomial coefficient also acts as a 

normalization coefficient to ensure that characteristics in Equations 7 and 8 for the probability 

mass function are satisfied. The binomial coefficient is calculated through Equation 28. 

���� =
�!�! (� − �)!

 28 

 
 The expectation value, or mean, of the binomial distribution is calculated using Equation 

13: 
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�(�) = � = �� 29 
 

Similarly, the variance of the distribution is calculated using Equation 15: 

�(�) = ��� = ��(1− �) 30 
 

The binomial distribution describes radioactive decay well. In radioactive decay, there 

are two outcomes: a decay occurs or a decay does not occur. If the number of successes (decays) 

is small compared to the population (total number of radioactive particles) the population will be 

approximately constant and the trials can be considered independent.  

The probability of success and the probability of failure can be calculated by looking at 

Equation 1. This equation describes the number of radioactive atoms remaining after a time, �. 
The probability of an atom surviving, or not decaying, can be calculated through Equation 31.  

� = �−�� 31 
 

Using the relationship between the probability of success and failure, as described in 

Equation 26, the probability of success is calculated as follows: 

� = 1− � = 1 − �−�� 32 
  

The probability of � decays for a population n equal to � over a time period � therefore 

is calculated through the following equation. 

�(�) = ���� �1− �−����(�−��)�−� 33 

 
The mean number of decays is calculated using Equations 29 and 32. 

�(�) = �(1− �−��) 34 
 

If instead, the parameter of interest is the total number of atoms that have not decayed 

(the remaining population of radioactive atoms), the expected value is given by Equation 35. If 
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the variables are reassigned such that � = �0 and � − � = �, Equation 35 reduces to Equation 

1, as expected. 

�(� − �) = �� = ��−�� 35 
 

While the binomial distribution is useful and accurate for describing radioactive decay, 

the presence of factorials in the binomial coefficient (Equation 28) renders it computationally 

extensive; instead, approximations of the binomial distribution, such as the Poisson distribution 

and Gaussian distribution are often used. 

Poisson Distribution 

The Poisson distribution is an approximation of the binomial distribution where the 

probability of success, �, is small (less than ~0.05) and the population, �, is large (greater than 

~20). Additionally, the distribution is described in terms of the mean of the distribution, �, which 

is the same as the binomial mean defined in Equation 34. When these approximations are applied 

to Equation 27, the probability mass function for the Poisson distribution is described through 

Equation 36 for � greater than zero. 

�(�) =
���!
�−� 36 

 
The expected value for the Poisson distribution is the mean, �. The variance of the 

Poisson distribution can be calculated and is equal to the mean. 

�(�) = � 37 
 

The Poisson distribution works well for situations where the probability of success is 

small, the population is large, and the mean value is already known.  
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For radioactive decay, the likelihood of radioactive decay in a very small period of time 

can be described such that the probability of success, �, is small. 

Gaussian Distribution 

The Gaussian distribution, or normal distribution, is an approximation to the binomial 

distribution for a large number of trials (�� or �(1− �) is greater than 10). It is also assumed 

that the probability density function is narrow around the mean, such that |� − �| ≪ � [2]. The 

resulting Gaussian distribution is continuous and symmetric across the mean. It is defined in 

terms of the mean, �, and the standard deviation, �. The equation for the Gaussian probability 

density function is displayed in Equation 38 for � > 0 and � and � ∈ (−∞,∞). 

�(�) =
1�√2� �−(�−�)22�2  38 

 
A closed form of the integral of the Gaussian probability density function does not exist. 

The evaluation of this integral is accomplished through numerical integration. However, tables 

exist for quantile information for the standard normal distribution. The standard normal 

distribution has a mean of zero, and standard deviation of one, such that the standard normal 

probability density function for a random variable � is: 

�(�) =
1√2� �−�22  39 

 
The cumulative distribution function for the standard normal distribution is shown in 

Equation 40. Although the integral cannot be evaluated in closed form, it can be analyzed 

through numerical integration, which is presented in normal tables for the standard normal 

distribution. 
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�(�) = � 1√2� �−�22 ���
−∞  40 

 
Using normal tables important information can be calculated for the standard normal 

distribution, which can be related back to the Gaussian density by relating the random variables � and � using Equation 41. 

� =
� − ��  41 

 

Uniform Distribution 

The uniform distribution is defined at a constant value, �, between � = � and � = �. A 

plot of the probability density function for the uniform distribution is shown in Figure 4. 

 
Figure 4 Probability Density Function for the Uniform Distribution 

Triangular Distribution 

 The triangular distribution extends from � = � to � = �, with the peak of the triangle at �. The peak height is �(�) equal to �. For each leg of the triangle, the slopes �1 between � = � 

and � = � and �2 between � = � and � = � describe the functional dependence of the 

probability density function. An example plot of the probability density function for a triangular 

distribution is shown in Figure 5. 
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a b x 
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Figure 5 Probability Density Function for the Triangular Distribution 

Sinusoidal Distribution 

The sinusoidal distribution extends between � = � and � = �, where � ≤ �2 + �. An 

example plot of the probability density function for a sinusoidal distribution is displayed in 

Figure 6. 

 
Figure 6 Probability Density Function for the Sinusoidal Distribution 

 

Statistical Analysis for Radiation Measurement 

Since there is background radiation present at any given time and for any given 

measurement, it is necessary to separate signal from background or noise. A level or limit 

therefore needs to be chosen, such that if a sample contains a higher count rate or activity than 
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that limit it is considered radioactive, while if the sample has a lower count rate or activity than 

that limit it is considered background. 

Two possible errors are associated with assigning a limit to separating signal from 

background: the �, false positive error and the �, false negative error. The � error, or error of the 

first kind, occurs when background radiation is falsely categorized as radioactivity. The � error, 

or error of the second kind, occurs when a signal is falsely categorized as background. The false 

positive and negative errors are shown in Figure 7 for a background and signal distribution with 

an arbitrarily chosen limit. 

 
Figure 7 False Positive and False Negative Errors for a Background and Signal Distribution 

 
The three characteristic limits for radiation detection are defined by ISO 11929: decision 

threshold, detection limit, and limits of the confidence interval. The decision threshold, 

previously also called the critical level, is the level below which a measurement result is 

considered background and above which that measurement result is considered radioactive. This 

limit is considered an investigatory level, but does not give any information about detection 

capabilities. The limit is derived by limiting the false positive error on the background count rate 

spectrum. The detection limit is used to specify detection capabilities of a detector. It is derived 

by limiting the false positive error for background and the false negative error for signal. The 

x (Count Rate) 

f(x) 

limit  

background 

signal 

α error β error 
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limits of the confidence interval specifies an interval in which the true value exists with a certain 

confidence. 

For this work, the characteristic limit of concern is the decision threshold. Since the 

decision threshold is based on the background distribution only the probability function for 

background needs to be known. 

Statistical Analysis of Background 

Five distributions will be investigated: Poisson distribution, Gaussian distribution, 

uniform distribution, triangular distribution, and sinusoidal distribution. These distributions 

correspond to commonly seen distributions in three domains: count space, energy space, and 

time space.  

Statistical fluctuations within count space could be due to the natural decay process or 

variations in detector response. Radioactive decay is best modeled by the Binomial, Poisson, and 

Gaussian distributions, depending on the population of radioactive atoms and the decay rate.  

Statistical fluctuations in energy space include fluctuations from Compton background 

and variations in the total energy deposited by radiation. Compton background would be most 

accurately described by a uniform distribution, while variations in total energy deposited would 

be best modeled by a Binomial, Poisson, or Gaussian distribution. 

Fluctuations in time space could take any of the five distributions discussed, depending 

on the nature of the time fluctuations. For instance, radon undergoes cyclical patterns, depending 

on the time of day, and would be accurately modeled by the sinusoidal distribution. The 

withdrawal or removal of a source could be modeled by a triangular distribution that 

approximates a line. 
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PURPOSE AND HYPOTHESIS 

 

The goals of this project are to improve the detection and identification capabilities of 

currently deployed and future instruments to detect radioactive material. Improvements would 

include reliable detection at lower signal levels than previous (higher positive identification rate), 

quicker detection than conventional techniques (lower time at first detection), and reduction of 

nuisance alarms (lower false positive rate). 

Conventionally, determination if activity is present is accomplished by looking at 

whether a single measurement exceeds a decision threshold. This thesis assesses the 

effectiveness of looking at a series of measurements, rather than looking at an individual 

measurement to define a suitable decision threshold.  
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LITERATURE REVIEW 

 

The development of an updating decision threshold has been explored for Bayesian and 

classical statistics for a Gaussian distribution of counts. Bayesian and classical statistics differ in 

their treatment of unknown parameters that represent population characteristics. In classical 

statistics, parameters are treated as fixed quantities, while in Bayesian statistics parameters are 

thought of as random variables with a probability distribution (prior distribution). Sampled data 

(likelihood function) is used with the prior distribution to develop a posterior distribution. By 

informing the posterior distribution with the likelihood function, the resulting distribution will 

then more accurately represent the population. In contrast, classical statistics relies on very large 

number sampling that converges to the true value. 

Due to the variable nature of Bayesian statistics, it is useful for the analysis of 

background radiation. Bayesian statistics was used by Klumpp et al to characterize background 

during a counting measurement when the instantaneous background count rate was not fixed [7]. 

A moving target method was developed, which allowed for the background count rate to vary 

with time. A benefit of this method is variations in radiation background can be taken into 

account, such as time, location, and detector statistics. The mean was modeled as a Poisson 

mean, while the variation and the uncertainty on the average count rate were modeled by a 

gamma distribution. By using a moving target method, the mean was calculated to be 50% 

higher than with a fixed target method [7]. 

In addition, Klumpp and Brandl used a Bayesian approach that took into account energy 

information by dividing the energy range of the detector into different energy bins [8]. A two 

energy bin detector, eleven energy bin detector, and gross count rate detector were investigated. 
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The authors found that the average run lengths for the two energy and eleven energy detectors 

were less than for the gross count rate detector for all modeled count rates. Additionally, the 

detection probability for the two energy and eleven energy detectors was much higher; the result 

was a lower level of detection that was approximately half of the gross count rate detector [8]. 

An analysis of background radiation using classical statistics for a moving system was 

performed by Brandl and Jimenez [9]. Improvements in the decision threshold were about 11%. 

A more rigorous analysis was developed by Brandl for a Gaussian distribution of counts [10]. 

The decision threshold was updated by keeping the probability of exceeding the decision 

threshold constant, such that the cumulative probability for the next measurement exceeding the 

decision threshold was �. An equation for an updating false positive error, ����, was developed 

as follows: 

(����)�+1(1− ����)�−� = 0.05
(� + 1)! (� − �)!

(� + 1)!
 

 
42 

The decision threshold was updated using the equation for ����. Depending on the 

number of successes and total number of trials, the decision threshold was lowered to as much as 

20%-50% of its original value [10]. 
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MATERIALS AND METHODS 

 
 

The three main components to this project include the mathematical derivation of 

equations used, simulation of data, and implementation into a detection system. 

Mathematical Derivation 

Five different probability distributions were used for this work: the Poisson distribution, 

Gaussian distribution, uniform distribution, triangular distribution, and sinusoidal distribution. 

Of these five, the Poisson distribution is the only discrete distribution. To calculate the decision 

threshold for a series of measurements, a new false positive error needs to be calculated for each 

scenario, �. The new false positive error is used to keep the false positive rate for background 

measurements constant.  

To test whether or not the decision threshold for a series of measurements improves 

detection of radiation, equations for the classical decision threshold and for a series of 

measurements have been developed. The following steps are performed for the mathematical 

derivation: 

1. Development of the probability density distributions 

2. Creating an equation for � 

3. Deriving �∗ 
The development of the probability density function is accomplished by creating 

equations for different regions of the probability density function and ensuring that conditions in 

Equations 16 and 17 are met. This is accomplished by solving for a constant such that the 

integral of the probability density function is 1. 
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1 = � �(�)��∞
−∞  43 

The decision threshold for a time series is accomplished by creating a new false positive 

error, �, that keeps the false positive rate for background measurements constant. The probability 

of exceeding the decision threshold can be calculated by setting the random variable � in 

Equation 27 to be the probability that the decision threshold is exceeded. A success would be 

when the decision threshold is exceeded. The probability of exceeding the decision threshold 

would be �, the false positive error; while the probability of failure is 1 − �. A series of � 

measurements is investigated, and compared to the decision threshold for a single measurement. 

Two situations are assessed: when exactly � successes are desired (decision threshold is 

exceeded � out of � times) and when at least � successes are desired in a series of � 

measurements. 

The classical decision threshold is developed by setting the integration from -∞ to the 

decision threshold, �∗, equal to 1 − �. The equation is then solved for �∗. 
1− � = � �(�)���∗

−∞  44 

 
Similarly, for the time series measurements, the decision threshold is calculated through 

the following equation:  

1− � = � �(�)���∗
−∞  45 

 
An illustration of the calculation of the decision threshold is provided in Figure 8. 
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Figure 8 Decision Threshold for a Probability Density Function, f(x) 

 
The probability density function was sampled using Monte Carlo sampling with the 

inversion technique. For the functions analyzed, the probability distribution or cumulative 

probability function were derived using Equation 9 and Equation 18, respectively. Inversion 

sampling transforms a uniform distribution using the probability distribution or cumulative 

distribution function, such that a non-uniform probability density function can be sampled. 

A random number, �, is generated from a standard uniform distribution between 0 and 1. 

A value for � is computed such that: 

�(�) = � 46 
 

The value � is then the number drawn to describe �. The continuous uniform random 

variable � is related to the random variable � by the inversion:  

� = �−1(�) 47 

Simulation of Data 

Theoretical values were calculated using deterministic and stochastic techniques. 

Calculations were performed with Excel, and random numbers were generated using R, a data 

analysis software. For both techniques, the source probability density function was created two 

different ways: as the sum of a probability density function for the source and a probability 

density function for background; and as a probability density function of the sum of source and 

x 

f(x) y*  

α  1-α 



24 
 

background. For both deterministic and stochastic techniques, the predicted positive 

identification rate was calculated. Additionally, using stochastic techniques the time at first 

detection was calculated. Data were simulated for all five discussed distributions. 

Using deterministic techniques, the predicted positive rate was calculated by determining 

the number of positives using the following equation, and dividing the result by the total number 

of trials. 

��������� = � �(�)���∗
−∞  48 

 

Implementation into a Detection System 

A Model 802-2x2 Scintillation detector by Canberra Industries Inc. (Meridan, CT) was 

used. The scintillation detector assembly includes a scintillation crystal, photomultiplier tube, 

and light shield, contained in aluminum housing. The scintillation crystal is a 2” by 2” sodium 

iodide (NaI) crystal. The detector has a resolution of 8.5% for the 662 keV peak of 137Cs. The 

detector is attached at the base to a Model 2007P tube base and preamplifier. The signal from the 

preamplifier is further processed using a digital signal processor; for this application, a Lynx 

Digital Signal Processor by Canberra Industries Inc. (Meridan, CT) was used.  

The Lynx Digital Signal Processor provides high voltage to the detector, as well as 

amplification and processing of the signal. The detector operates in several analysis modes; for 

this study, the multispectral scaling (MSS) mode is used. The MSS mode allows for continuous 

pulse height analysis (PHA) spectral acquisition; time between acquisitions is limited. The 

following figure, Figure 9, presents the signal processing chain for the detector. 
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Figure 9 Signal Processing Chain for a NaI(Tl) Detector 

 

Criteria Evaluated 

The two main criteria evaluated were the positive identification rate and the time at first 

detection. These two criteria were used to compare different situations including: 

• Exact and at least conditions 

• Series length 

• Number of successes in a series 

• Different background strengths 

• Different source strengths 
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RESULTS AND DISCUSSION 

 
 
 The results are reported in the same order as the distributions are presented in Materials 

and Methods – mathematical derivation, simulation of data, and implementation into a detection 

system. Additionally, a comparison between the simulation data and the implementation into a 

detection system is presented. 

Mathematical Derivation 

Each distribution is discussed individually and includes the derivation of the probability 

density function, classical decision threshold, time series decision threshold, and cumulative 

distribution function. After the discussion of each distribution, the development of the false 

positive error for a time series is described. 

Uniform 

 The uniform distribution is uniform when � ∈ (�, �). A depiction of the probability 

density function for the uniform distribution is provided in Figure 4 and Figure 10. The 

probability density function for the uniform distribution is calculated by recognizing that when � ∈ (�, �) the function is equal to a constant value, � (Equation 49).  

�(�) = �� ≤ � ≤ � ������ℎ���  0 
� 49 

 
Using the characteristics of the probability density function outlined in Equations 16 and 

17, the constant � is determined by setting the integral of the probability density function to 1, 

such that the probability density function is described by Equation 50. 
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�(�) = �� ≤ � ≤ � 1� − ������ℎ���  0 

� 50 

 
In the case where � = 0, Equation 50 reduces to: 

�(�) = �0 ≤ � ≤ � 1������ℎ���  0 

� 51 

 
Once the probability density function is known, the decision threshold, �∗, is determined 

using Equation 44. A symbolic depiction of the calculation of �∗ is provided in Figure 10, and 

the equation for �∗ is provided in Equation 52. 

  
Figure 10 Calculation of y* for the Uniform Distribution 

 �∗ = (1− �)(� − �) + � 52 
 

If � = 0, the equation for the decision threshold simplifies to: �∗ = �(1− �) 53 
 

To sample from the distribution, the cumulative distribution function needs to be 

calculated. The cumulative distribution function for a value x represents the likelihood that � < � and is calculated using Equation 18. A schematic depiction of the calculation of the 

cumulative distribution function is provided in Figure 11, and the equation for the cumulative 

distribution function is provided in Equation 54. 
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Figure 11 Calculation of the Cumulative Distribution Function for the Uniform Distribution 

 

�(�) = ⎩⎪⎨
⎪⎧−∞ < � < �  0 � ≤ � < � � − �� − �� ≤ � < ∞  1 ⎭⎪⎬

⎪⎫
 54 

 
If a=0, the cumulative distribution function reduces to Equation 55. 

�(�) = ⎩⎪⎨
⎪⎧−∞ < � < 0  0 

0 ≤ � < � ��� ≤ � < ∞  1 ⎭⎪⎬
⎪⎫

 55 

 
To perform an inversion, the continuous uniform value � of the standard uniform random 

variable � is related to the cumulative distribution function as shown in Equation 46. When � is 

sampled, it can be related to the random variable � through Equation 47, such that 

�(�) = �0 ≤ � ≤ 1 �(� − �) + ������ℎ���  0 
� 56 

 
For � = 0, Equation 56 reduces to Equation 57. 

�(�) = �0 ≤ � ≤ 1 �������ℎ���  0 
� 57 
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Triangular 

The triangular distribution consists of two components: a line with a positive slope (m1) 

when � ∈ (�, �); and a line with a negative slope (�2) when � ∈ (�, �). The resulting probability 

density function is a piecewise function with a maximum probability of � when � = �. The 

probability density function is depicted in Figure 4 and Figure 12. To create the probability 

density function, the two line equations necessary. The slopes can be calculated in terms of the 

maximum probability, �: 

� = � �1 =
�� − ��2 = − �� − �� 58 

 
The equations for the lines are then determined; they assume the following functional 

forms: 

�(�) =

⎩⎪⎨
⎪⎧� ≤ � < � �(� − �)� − �� ≤ � < � �(� − �)� − ������ℎ���  0 ⎭⎪⎬

⎪⎫
 59 

 
The constant � is determined by setting the integral of the probability density function 

equal to 1 (Equation 17). The resulting probability density function is provided in Equation 60. 

�(�) =

⎩⎪⎨
⎪⎧� ≤ � < � 2(� − �)

(� − �)(� − �)� ≤ � < � 2(� − �)

(� − �)(� − �)
������ℎ���  0 ⎭⎪⎬
⎪⎫

 60 

 
In the case where � = 0, Equation 60 reduces to: 
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�(�) =

⎩⎪⎨
⎪⎧0 ≤ � < � 2(� − �)��� ≤ � ≤ � 2(� − �)�(� − �)

������ℎ���  0 ⎭⎪⎬
⎪⎫

 61 

 

The decision threshold is calculated by integrating the probability density function 

between -∞ and �∗, setting the integral to 1-α, and solving for �∗; as described in Figure 12. Due 

to the piecewise nature of the triangular distribution, two distinct cases need to be considered: 

when �∗ ∈ (�, �) or when �∗ ∈ (�, �). The equation for the decision threshold is provided in 

Equation 62. To calculate the decision threshold, an initial check needs to determine whether �∗ 
is greater than or less than b. 

  
Figure 12 Calculation of y* for the Triangular Distribution 

 �∗ = �� ≤ �∗ < � � + �(1− �)(� − �)(� − �)� ≤ �∗ ≤ � � − ��(� − �)(� − �)
� 62 

 
For the case where � = 0, the equation for the decision threshold reduces to Equation 63.  

�∗ = �0 ≤ �∗ < � ���(1− �)� ≤ �∗ ≤ � � − ���(� − �)
� 63 

 
For the inversion for Monte Carlo sampling, the cumulative density function needs to be 

calculated. A depiction of the cumulative density function for the triangular distribution is shown 

in Figure 13, and the cumulative density function is provided in Equation 64. 
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Figure 13 Calculation of the Cumulative Density Function for the Triangular Distribution 
 

�(�) =

⎩⎪⎨
⎪⎧ −∞ < � < � 0� ≤ � < � (� − �)2

(� − �)(� − �)� ≤ � < � 1− (� − �)2
(� − �)(� − �)� ≤ � < ∞ 1 ⎭⎪⎬

⎪⎫
 64 

 
For � = 0, Equation 64 reduces to Equation 65. 

�(�) =

⎩⎪⎨
⎪⎧−∞ < � < 0 0

0 ≤ � < �                   
�2��                 � ≤ � < � 1− (� − �)2�(� − �)� ≤ � < ∞ 1 ⎭⎪⎬

⎪⎫
 65 

 
Using the inversion technique in Equations 46 and 47, the random variable � can be 

related to the standard normal random variable � through Equation 66. 

�(�) = ⎩⎪⎨
⎪⎧0 ≤ � ≤ � − �� − � � + �(� − �)(� − �)�� − �� − � ≤ � ≤ 1 � − �(1− �)(� − �)(� − �)�����ℎ���  0 ⎭⎪⎬

⎪⎫
 66 

 
If � = 0, Equation 66 reduces to Equation 67. 
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�(�) = ⎩⎪⎨
⎪⎧ 0 ≤ � ≤ �� √������ ≤ � ≤ 1 � − ��(1− �)(� − �)�����ℎ���  0 ⎭⎪⎬

⎪⎫
 67 

 

Sinusoidal 

The sinusoidal distribution is zero at � = � and exists between � = � and � = �, where � ≤ �2 + �. The peak value of the probability density function at � = � +
�4 is equal to a value, �. 

A plot of the probability density function for the sinusoidal distribution is shown in Figure 6 and 

Figure 14. The probability density function for the sinusoidal distribution is a sine wave with an 

amplitude �, an angular frequency of � =
2�� , and a phase of � = �; as described by Equation 

68. 

�(�) = ⎩⎨
⎧� ≤ � ≤ � � sin�2�� (� − �)������ℎ���  0 ⎭⎬

⎫
 68 

 
Utilizing the characteristics of the probability density function in Equations 16 and 17, the 

constant � can be determined by setting the integral of the probability density function equal to 

1. The probability density function can thus be described by Equation 69. 

�(�) =

⎩⎪⎪⎨
⎪⎪⎧� ≤ � ≤ � 2� sin�2�� (� − �)�

� �1 − cos�2�� (� − �)�������ℎ���  0 ⎭⎪⎪⎬
⎪⎪⎫

 69 

 

In the case where � =
�2 + �, Equation 69 becomes: 
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�(�) = ⎩⎪⎨
⎪⎧� ≤ � ≤ � � sin ��(� − �)� − � �

2(� − �)�����ℎ���  0 ⎭⎪⎬
⎪⎫

 70 

 
If the phase � = 0, Equation 69 reduces to: 

�(�) = ⎩⎪⎨
⎪⎧0 ≤ � ≤ � 2� sin �2�� ��� �1− cos �2�� ��������ℎ���  0 ⎭⎪⎬

⎪⎫
 71 

 
In the case where the phase � = 0 and � = �/2: 

 

�(�) = ⎩⎪⎨
⎪⎧0 ≤ � ≤ � � sin �2�� ��

2������ℎ���  0 ⎭⎪⎬
⎪⎫

 72 

 
After the probability density function is known, an equation for the decision threshold (�∗) 

can be derived by integrating the probability density function from -∞ to �∗ and setting the 

integral to 1-α, as described by Equation 44. Figure 14 displays a depiction of the calculation of �∗ and the equation for �∗ is provided in Equation 73. 

  
Figure 14 Calculation of y* for the Sinusoidal Distribution 
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�∗ =
�

2� cos−1 �1− (1− �)(1− cos �2�(� − �)� �� + � 73 

 

When � =
�2 + �, Equation 73 can be rewritten as: 

 �∗ =
� − �� cos−1[2� − 1] + � 74 

 
If the phase � = 0, Equation 73 can be rewritten as Equation 75. 

 �∗ =
�

2� cos−1 �1− (1− �)(1− cos �2��� �� 75 

 

In the case where � =
�2 + � and the phase � = 0, the equation reduces to the following: 

�∗ =
�� cos−1[2� − 1] 76 

 
To sample from the sinusoidal distribution, an equation for the cumulative distribution 

function needs to be calculated. The cumulative distribution function can be calculated by using 

Equation 18. A descriptive image for the calculation of the cumulative distribution function for 

the sinusoidal function is shown in Figure 15, and the equation for the cumulative distribution 

function is provided in Equation 77. 

  
Figure 15 Calculation of the Cumulative Density Function for the Sinusoidal Distribution 
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�(�) =

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧−∞ < � < �  0 

� ≤ � < � 1 − cos�2�� (� − �)�
1 − cos�2�� (� − �)�� ≤ � < ∞  1 ⎭⎪⎪⎪

⎬⎪
⎪⎪⎫

 77 

 
Simplifications for the cumulative density function can be found in Equations 78, 79, and 

80; for the cases where � > 0 and � =
�2 + �, � = 0 and � ≤ �2 + �, and � = 0 and � =

�2 + �, 

respectively. 

�(�) =

⎩⎪⎪⎨
⎪⎪⎧−∞ < � < �  0 

� ≤ � < � 1 − cos ��(� − �)� − � �
2� ≤ � < ∞  1 ⎭⎪⎪⎬

⎪⎪⎫
 78 

 

�(�) =

⎩⎪⎪
⎨⎪
⎪⎧−∞ < � < 0  0 

0 ≤ � < � 1 − cos �2�� ��
1 − cos �2��� �� ≤ � < ∞  1 ⎭⎪⎪

⎬⎪
⎪⎫

 79 

 

�(�) =

⎩⎪⎪⎨
⎪⎪⎧−∞ < � < 0  0 

0 ≤ � < � 1 − cos ��� ��
2� ≤ � < ∞  1 ⎭⎪⎪⎬

⎪⎪⎫
 80 

 
To perform an inversion, the sinusoidal random variable � needs to be related to a 

standard uniform random variable �. This can be accomplished using Equation 47, such that for 

a given value of �, � can be calculated using Equation 81. 
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�(�) = �0 ≤ � < 1
�

2� cos−1 �1 − � �1 − cos �2π(� − �)� ��� + ������ℎ���  0 

� 81 

 

The calculation of � from � can be simplified for the case where � > 0 and � =
�2 + �, 

� = 0 and � ≤ �2 + �, and � = 0 and � =
�2 + �. The equations corresponding to the listed 

simplifications are provided in Equations 82, 83, and 84, respectively. 

�(�) = �0 ≤ � < 1
� − �� cos−1(1− 2�) + ������ℎ���  0 

� 82 

 

�(�) = �0 ≤ � < 1
�

2� cos−1 �1 − � �1 − cos �2π�� ��������ℎ���  0 

� 83 

�(�) = �0 ≤ � < 1
�� cos−1[1 − 2�]�����ℎ���  0 

� 84 

 

Poisson 

The probability mass function for the Poisson distribution is given by Equation 36. The 

Poisson distribution is unique to the other distribution functions discussed, because it is a 

discrete function. Rather than using an integral to find a point where the cumulative density 

function is equal to 1-α, a summation will be performed between 0 and �∗ (Equation 9). The 

summation is given as  

1 − � = ����! �−��∗
�=0  85 
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When simplified, Equation 85 can be rewritten as Equation 86. It should be noted that the 

decision threshold cannot be solved for explicitly and finding �∗ is an iterative process. 

(1− �)�� = 1 + � +
�2
2!

+
�3
3!

+ ⋯+
��∗

(�∗)!
 86 

 
The cumulative distribution function for the Poisson distribution can be calculated using 

Equation 9. Due to the discrete nature of the Poisson distribution, the cumulative distribution 

function is a stepwise function that increases at each � value with the �(�). 

�(�) = ����! �−��
�=0  87 

 
To relate a discrete random variable � and the standard uniform distribution �, the 

sample space is divided into � segments with the length of each segment corresponding to the 

probability of the outcome occurring. When the uniform distribution is sampled, a logical 

statement can then be used to determine which segment the value � falls in. The segment can 

then be related to the value of �.  

Gaussian 

The probability density function for the Gaussian distribution is given by Equation 38. 

The decision threshold can be calculated by adding the number of standard deviations away (the 

quantile or ��) the false positive error (�) is to the mean, �, as shown in Equation 88.  

�∗ = � + ��� 88 
 

The cumulative distribution function for the Gaussian distribution cannot be expressed 

analytically. To complete the inversion technique, numerical techniques must be used. A built-in 

function within R uses a numerical technique to sample off the Gaussian distribution: rnorm. 
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Numbers can be sampled using the function rnorm by supplying the value of the mean and the 

standard deviation. The built in function, rnorm, is used for sampling. 

False Positive Error for a Series of Measurements 

The probability that the decision threshold is exceeded � times in a series of � 

measurements can be described by a binomial process (Equation 27), where the probability of 

exceeding the decision threshold is � and the probability of not exceeding the decision threshold 

is 1-�. When looking at a series of measurements, it is desired to keep the same false positive 

error � as for a single measurement.  

If  it is desired that exactly � measurements exceed the threshold in a series, the decision 

threshold for the series can be calculated by setting �(�) equal to �, as follows:  

�(�) = � = ���� ��(1− �)�−� 89 

 
However, if it is desired that at least � measurements exceed the decision threshold, the 

individual probabilities need to be summed between � and �, and set to � (Equation 90). 

�(� +) = � = �������(1 − �)�−��
�  90 

 
 Equations 89 and 90 cannot be directly solved for �. Thus it is only possible to solve for � under select conditions of �, �, and �. In the following section, � will be calculated for select 

conditions. 

Simulation of Data 

Data is simulated for five different series lengths between 1 and 5 measurements. The 

number of measurements exceeding the decision threshold (successes), �, in the measurement 
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length, �, was allowed to vary between 1 and �. The value for �(�) was calculated for each 

scenario using a fixed false positive error, � of 0.05. Data is simulated deterministically by using 

the probability mass function and predicting the positive rate, and stochastically by randomly 

generating off of the probability mass function. 

The measurement data was simulated in two ways. First, the measurement data was 

simulated by generating off of a source distribution and background distribution and adding the 

values. The second method involved generating off of a distribution characterized by the sum of 

the source and background mean. Both methods are investigated. Two different analyses of the 

data were performed: when exactly � measurements are above the decision threshold and when 

there are at least � measurements above the decision threshold.  

First the calculation of � for different series lengths will be outlined. Following is the 

data calculated using the deterministic method for the five spectra discussed previously using 

several background levels, source strengths, and series lengths. Afterwards, similar scenarios are 

evaluated using a stochastic method. Finally, the results from the deterministic and stochastic 

method are compared. 

Calculation of � for Different Series Length 

Values of � were calculated for five different lengths of series: 1, 2, 3, 4, and 5 

measurements. The false positive error (�) was fixed at 0.05, such that 5% of the measurements 

at background will be positive identifications. When exactly � successes in a series of � 

measurements are desired, values as displayed in Table 2 are obtained. When at least � successes 

in a series of � measurements are desired, values as displayed in Table 3 are obtained. 

Interestingly, once the series length increases to 5 and the number of successes is 5, the � values 

increases to greater than 0.5, indicating that the corresponding threshold will be less than the 
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mean. The � values when � equals � are the same for exact and at least. Otherwise, the � values 

for the exact condition are smaller than the ones for the at least condition; this will yield higher 

decision threshold values for the exact condition. 

Table 2 Calculated Values of p for Combinations of n and N between 1 and 5 (Exact) 

N 
n 

1 2 3 4 5 
1 0.95     
2 0.0253206 0.223607    
3 0.0169524 0.13535 0.368403   
4 0.0127415 0.0976115 0.248605 0.472871  
5 0.014282 0.0764404 0.189255 0.342592 0.5492803 

 
Table 3 Calculated Values of p for Combinations of n and N between 1 and 5 (At Least) 

N 
n 

1 2 3 4 5 
1 0.95     
2 0.0256584 0.223607    
3 0.0172571 0.139142 0.368403   
4 0.013005 0.101612 0.256137 0.472871  
5 0.0102062 0.0801513 0.198114 0.352529 0.5492803 

 

Deterministic 

The deterministic method looked at the five distributions discussed previously: uniform, 

triangular, sinusoidal, Poisson, and Gaussian. Only the positive rate was looked at for the 

deterministic method. The following scenarios were looked at scenarios: 

Table 4 Scenarios Looked at for the Deterministic Method 

Criteria Values 
Background Levels 50, 100, 250, 500, 750, 1000, 2500, 5000, 7500, 10000 
Source Strength 0, 1, 3, 5, 8, 10, 15, 30, 50 (for �(�) and �(�)) 

0, 1, 3, 5, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, 125, 
150, 175, 200, 225, 250, 275, 300, 325, 350 (positive rate) 

Series Length 1, 2, 3, 4, 5 
 

The at least and exact conditions were compared using a Gaussian distribution. For each 

background condition the decision threshold was calculated. At a background level of 50, 500, 
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and 5000, the source level was calculated for 50% and 100% positive rate. Representative plots 

for each of the five distributions were displayed for series of three measurements and include 

plots of the probability density function and cumulative distribution function, positive rate as a 

function of source strength for background equal to 500 (� = 500), positive rates for source 

equal to 10 (� = 10) and � = 500 for different combinations of �, and positive rate as a function 

of source strength/background for � = 2 for different backgrounds.  

At Least vs. Exact 

The two conditions of exactly � successes in a series of � measurements and at least � 

successes in a series of � measurements were compared for the Gaussian distribution at � =

500. Figure 16 contains a comparison of the positive rate with source strength for the exact and 

at least conditions using a series of two measurements. Figures for other values of � for the 

exact and at least conditions are in Appendix A in Figure 110 (Gaussian, � = 500, � = 2, � = 3) and Figure 111 (Gaussian, � = 500, � = 4, � = 5). 

 
Figure 16 Positive Rate Comparison with Source Strength for the At Least and Exact Conditions (Gaussian, N=2, 

Deterministic) 
 

As seen in Figure 16, there is no difference between techniques where the desired number 

of successes is equal to the number of measurements. When � is equal to �, Equations 89 and 90 
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converge resulting in the same values. For exact conditions when n does not equal �, the 

positive rate initially increases until reaching a maximum around 50% and then decreases. As 

source strength increases the likelihood of exceeding the decision threshold will increase, 

making the condition less likely. Due to this future discussed analysis will use the at least 

condition. 

Rectangular 

 The width of the rectangular distribution was chosen such that the variance was equal to 

the variance for the Poisson distribution (�). The probability density functions for each 

background level is in Figure 17. As the background level increases, the probability density 

function becomes wider and the probability of occurrence decreases. 

 
Figure 17 Probability Density Function for Different Background Levels (Rectangular, Deterministic) 

 
Three background distributions will be discussed in depth: at 50, 500, and 5000. The 

generated source and background distribution for the rectangular distribution at � = 50, � =

500, and � = 5000 is in Figure 18. The plotted distributions are for source strengths between 0 

and 50. As seen by Figure 18, the source and background distribution for the rectangular 

distribution changes the most significantly for lower background levels. As the source strength 

increases, the distribution widens. 
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50 500 5,000 

   
Figure 18 Probability Density Function at Different Source Strengths (Rectangular, b=50, 500, and 5000, Deterministic) 

 
The calculated values for the decision threshold (�∗) for the rectangular distribution at a 

background of 50, 500, and 5000 are located in Table 5. Calculated decision thresholds for the 

rectangular distribution at all background strengths are contained in Table 12.  

Table 5 Calculated Values of y* and Source Strength at 50% and 100% Detection (Rectangular, Deterministic)  

  �∗ 50% Detection 100% Detection 
  Background Strength Background Strength Background Strength 

N n 50 500 5000 50 500 5000 50 500 5000 
1 1 61 535 5110 12 35 111 25 75 234 

2 
2 57 521 5068 13 39 120 20 61 191 
1 62 537 5116 7 21 66 25 77 240 

3 
3 53 510 5032 12 34 105 20 50 156 
2 59 528 5089 9 29 90 23 71 213 
1 62 537 5118 5 15 47 26 78 240 

4 

4 51 502 5007 10 30 91 14 42 130 
3 56 519 5062 10 29 90 20 59 185 
2 60 531 5099 7 23 71 24 71 222 
1 62 538 5119 4 12 36 26 76 233 

5 

5 49 496 4988 9 26 80 12 36 111 
4 54 512 5039 9 27 85 17 52 162 
3 58 524 5076 8 25 77 21 64 200 
2 60 533 5104 6 19 58 24 72 221 
1 62 538 5120 3 9 29 25 73 224 

 
As the series length increases, the calculated �∗ for the rectangular distribution increases 

for the same condition (larger �, but constant �). Additionally as the number of successes (times 
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exceeding the decision threshold) approaches the series length, the calculated �∗ decreases for 

the rectangular distribution. Also listed in Table 5 is the source strength at which 50% and 100% 

detection is achieved. The ratio of the source strength to background strength for the rectangular 

distribution at the same conditions and level of detection decreases as background strength 

increases. 

Trends in the positive rate for the rectangular distribution are illustrated through several 

representative figures for a series length of three. Additional figures are located in Appendix A 

and will be noted when available. Figure 19 contains a visual representative of the thresholds for 

a series of three measurements at � = 500. The probability density function and cumulative 

distribution for the rectangular distribution are displayed for a variety of source strengths. 

Additional graphs of the probability density function for different � is available in Figure 117 

(� = 2), Figure 118 (� = 3), Figure 119 (� = 4), and Figure 120 (� = 5). 

  
Figure 19 Probability Density Function and Cumulative Distribution for Different Source Strengths with Decision 

Thresholds for Different n Values (Rectangular, b=500, N=3, Deterministic) 
 

 Figure 20 contains a graph of the positive rate for the rectangular distribution with 

source strength for a series of three measurements. Additional graphs of the positive rate with 
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source strength for different � is available in Figure 117 (� = 2), Figure 118 (� = 3), Figure 

119 (� = 4), and Figure 120 (� = 5). 

 
Figure 20 Positive Rate with Source Strength for Different n Values (Rectangular, b=500, N=3, Deterministic) 

 
For the rectangular distribution, the positive rate using the traditional method (� =

1, � = 1) increases approximately linearly with source strength. When � = 1, the positive rate 

for the rectangular distribution increases rapidly at low source strength and then approaches 

100% more slowly with increased source strength. At the other extreme, when � = �, the 

rectangular distribution positive rate increases slowly at low source strength and then more 

rapidly at higher source strengths, reaching 100% positives more quickly. For conditions 

between the two extremes, the relationship between positives and source strength is closer to a 

straight line.  

The differences between the positive rate for the rectangular distribution for different 

conditions is highlighted in a bar graph in Figure 21 for a background of 500 and source strength 

of 10. For the rectangular distribution the positive rate is largest for the lower number of 

successes required (� = 1). The traditional method outperforms the conditions � = 2 and � = 3 

for � = 3. 
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Figure 21 Positive Rate for Different n Values (Rectangular, b=500, s=10, N=3, Deterministic) 

 
Figure 22 contains a graph for N=3, n=2 for different source to background strength 

ratios for the rectangular distribution. For larger backgrounds, 100% positive rate is achieved at 

lower source strength to background ratios (as seen in Table 5). Additional figures for the 

rectangular distribution for other series lengths are in Figure 112 (Traditional), Figure 113 

(� = 2), Figure 114 (� = 3), Figure 115 (� = 4), and Figure 116 (� = 5). 

 
Figure 22 Positive Rate with Source/Background Strength at Different Background (Rectangular, N=3, Deterministic) 

 
 
Triangular 

 The triangular distribution modeled is a symmetric triangle where � = � − 3√� and � = � + 3√� to approximate the width of the Gaussian distribution. A graph of the probability 
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function for each background level is located in Figure 23. Similar to the rectangular distribution, 

as the mean background increases, the probability density function widens and the probability of 

the peak occurrence lessens. 

 
Figure 23 Probability Density Function for Different Background Levels (Triangular, Deterministic) 

 
The background distributions at 50, 500, and 5000 will be discussed in depth. The 

generated source and background probability density function for the triangular distribution at � = 50, � = 500, and � = 5000 is in Figure 24. The plotted distributions are for source 

strengths between 0 and 50. As seen by Figure 24, the probability density function for the 

triangular distribution changes the most significantly for lower background levels. As the source 

strength increases, the distribution widens. 

50 500 5,000 

   
Figure 24 Probabity Density Function at Different Source Strengths (Triangular, b=50, 500, and 5000, Deterministic) 
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The calculated values for the decision threshold (�∗) for the triangular distribution at a 

background of 50, 500, and 5000 are located in Table 6. Calculated decision thresholds for all 

background strengths are contained in Table 13 within Appendix A.  

Table 6 Calculated Values of y* and Source Strength at 50% and 100% Detection (Triangular, Deterministic) 

  �∗ 50% Detection 100% Detection 
  Background Strength Background Strength Background Strength 

N n 50 500 5000 50 500 5000 50 500 5000 
1 1 64 586 5145 15 46 145 44 120 363 

2 
2 57 522 5070 13 39 121 35 95 287 
1 66 552 5164 11 36 114 42 118 358 

3 
3 53 509 5030 12 35 107 30 82 247 
2 60 532 5102 11 33 102 36 99 301 
1 67 555 5173 9 30 97 38 109 333 

4 

4 51 502 5006 11 33 100 27 74 222 
3 56 520 5063 9 29 89 32 87 264 
2 62 537 5118 9 29 93 34 95 290 
1 68 556 5178 8 27 85 34 100 308 

5 

5 49 497 4989 11 31 95 25 68 205 
4 54 512 5037 9 26 81 29 79 240 
3 58 526 5082 9 26 82 30 85 259 
2 63 541 5129 9 27 85 31 90 274 
1 68 557 5182 7 24 77 31 93 286 

 
As with the rectangular distribution as the series length (�) increases, the calculated �∗ 

increases for the same condition (constant �). As the number of times exceeding the decision 

threshold (number of successes) approaches the series length the calculated value of �∗ 
decreases. Table 6 also contains information on the source strength required to achieve 50% and 

100% detection. The ratio of the source strength to background strength for the same conditions 

and level of detection decreases as background strength increases. 

Trends in the positive rate for the triangular distribution are illustrated through several 

representative figures for a series length of three (additional figures are located in Appendix A 

and are noted when applicable). Figure 25 contains a visual representative of the thresholds for 

the triangular distribution for a series of three measurements at � = 500. The probability density 
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function and cumulative distribution for the triangular distribution are displayed for a variety of 

source strengths. Additional graphs of the probability density function for different � are 

available in Figure 126 (� = 2), Figure 127 (� = 3), Figure 128 (� = 4), and Figure 129 

(� = 5). 

  
Figure 25 Probability Density Function and Cumulative Distribution for Different Source Strengths with Decision 

Thresholds for Different n Values (Triangular, b=500, N=3, Deterministic) 
 

Figure 20 contains a graph of the positive rate for the triangular distribution with source 

strength for a series of three measurements. 

 
Figure 26 Positive Rate with Source Strength for Different n Values (Triangular, b=500, N=3, Deterministic) 
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For the triangular distribution, the positive rate for all conditions has a similar shape to 

the cumulative distribution function, increasing slowly at first, increasing more rapidly, and then 

more slowly. The values for all conditions of the measurement series are approximately the same 

for the triangular distribution as seen also in Table 6. All three conditions outperform the 

traditional method in terms of positive rate. Additional figures for other series lengths are in 

Figure 126 (� = 2), Figure 127 (� = 3), Figure 128 (� = 4), and Figure 129 (� = 5). 

The differences between the positive rate for the triangular distribution using different 

conditions is highlighted in a bar graph in Figure 27 for � = 500 and � = 10. For the triangular 

distribution the positive rate is largest for the lower number of successes required (� = 1). 

Unlike the rectangular distribution, all conditions for the triangular distribution at � = 3 

outperform the traditional method. 

 
Figure 27 Positive Rate for Different n Values (Triangular, b=500, s=10, N=3, Deterministic) 

 
Figure 28 contains a graph of the positive rate for the triangular distribution with source 

to background strength ratio for the condition � = 3,� = 2. Each background yields a similar 

shaped graph. For larger backgrounds, 100% positive rate is achieved at lower source strength to 

background ratios (as seen in Table 6). Additional figures of other series lengths for the 
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triangular distribution are located in Figure 121 (Traditional), Figure 122 (� = 2), Figure 123 

(� = 3), Figure 124 (� = 4), Figure 125 (� = 5). 

 
Figure 28 Positive Rate with Source/Background Strength at Different Background (Triangular, N=3, n=2, Deterministic) 
 
Sinusoidal 

The sinusoidal distribution was modeled as half of a sine wave, where � = 2(� − �), � = � − 3√�, and � = � + 3√� to approximate the width of the Gaussian distribution. A graph 

of the probability density function for the sinusoidal distribution at each background level for the 

sinusoidal distribution is located in Figure 29. Similar to the distributions previously discussed, 

as the mean background increases, the probability density function widens and the probability of 

the peak occurrence lessens. 

 
Figure 29 Probability Density Function for Different Background Levels (Sinusoidal, Deterministic) 
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Trends in positive rate for the sinusoidal distribution are discussed for � = 50, � = 500, 

and � = 5000. Figure 30 contains the generated source and background probability density 

function for the sinusoidal distribution for source strengths between 0 and 50.  

50 500 5,000 

   
Figure 30 Probability Density Function at Different Source Strengths (Sinusoidal, b=50, b=500, b=500, Deterministic) 

 
As seen in Figure 30, the source and background distribution for the sinusoidal 

distribution changes the most significantly for lower background levels. As the source strength 

increases, the distribution widens. 

The decision threshold (�∗) is calculated at a background of 50, 500, and 5000 for the 

sinusoidal distribution; calculated values are located in Table 7. Calculated decision thresholds 

for all background strengths are contained in Table 14 within Appendix A. As seen by the 

previous distributions discussed, as the series length increases �∗ decreases for the same 

conditions and as the number of successes (times exceeding the decision threshold) approaches 

the series length �∗ decreases. Table 7 also contains the source strength at which 50% and 100% 

detection is achieved for the sinusoidal distribution. The ratio of the source strength to 

background strength for the same conditions and level of detection decreases as background 

strength increases. 
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Table 7 Calculated Values of y* and Source Strength at 50% and 100% Detection (Sinusoidal, Deterministic) 

  �∗ 50% Detection 100% Detection 
  Background Strength Background Strength Background Strength 
N n 50 500 5000 50 500 5000 50 500 5000 
1 1 64 546 5145 15 46 145 44 121 363 

2 
2 57 522 5070 13 39 121 35 96 387 
1 66 552 5164 11 36 114 44 122 358 

3 
3 53 509 5030 12 35 107 30 82 247 
2 60 532 5102 11 33 102 37 103 301 
1 67 555 5173 9 30 97 41 116 333 

4 

4 51 502 5006 11 33 100 27 74 222 
3 56 520 5063 9 29 89 33 90 264 
2 62 537 5118 9 30 93 36 101 290 
1 68 556 5178 8 27 85 38 108 308 

5 

5 49 497 4989 11 31 95 25 69 205 
4 54 512 5037 9 26 81 30 82 240 
3 58 526 5082 9 26 82 32 90 259 
2 63 541 5129 9 27 85 34 96 274 
1 68 557 5182 7 24 77 35 101 286 

 
Trends in the positive rate for the sinusoidal distribution are illustrated using a series of 

three measurements. Additional figures for other series lengths are located in Appendix A and 

will be noted when available. A visual representative of the thresholds for a series of three 

measurements at a background of 500 for the sinusoidal distribution is in Figure 31.  

  
Figure 31 Probability Density Function and Cumulative Distribution for Different Source Strengths with Decision 

Threshold for Different n Values (Sinusoidal, b=500, N=3, Deterministic) 
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Figure 31 contains the probability density function and cumulative distribution for the 

sinusoidal distribution, which are displayed for a variety of source strengths. Additional graphs 

of the sinusoidal probability density function for different � is available in Figure 135 (� = 2), 

Figure 136 (� = 3), Figure 137 (� = 4), and Figure 138 (� = 5). 

A graph of the positive rate for the sinusoidal distribution with source strength for a 

series of three measurements is in Figure 32. The positive rate for the sinusoidal distribution for 

all conditions has a similar shape to the positive rate for the triangular distribution as well as the 

cumulative distribution function: increasing slowly, more rapidly until it passes through an 

inflection, and then more slowly. The values for the decision threshold for all conditions of the 

measurement series are approximately the same, as seen also in Table 7. As seen in Figure 32, all 

three conditions outperform the traditional method in terms of positive rate. Additional figures 

for other series lengths are in Figure 135 (� = 2), Figure 136 (� = 3), Figure 137 (� = 4), and 

Figure 138 (� = 5). 

 
Figure 32 Positive Rate with Source Strength for Different n Values (Sinusoidal, b=500, N=3, Deterministic) 

 

The differences between the positive rate at various � values for the sinusoidal 

distribution is highlighted in a bar graph in Figure 33 using different conditions for a background 
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of 500 and source strength of 10. Similar to previous discussed distributions, the positive rate for 

the sinusoidal distribution is largest for the lower number of successes required (� = 1). 

However, unlike the rectangular distribution, all conditions for � = 3 outperform the traditional 

method. 

 
Figure 33 Positive Rate for Different n Values (Sinusoidal, b=500, s=10, N=3, Deterministic) 

 
A graph of the sinusoidal positive rate with the source to background strength ratio is in 

Figure 34 for the condition � = 3,� = 2. The shape of the graph is similar for all backgrounds 

for the sinusoidal distribution. For larger backgrounds, 100% positive rate is achieved at lower 

source strength to background ratios (as seen in Table 7).  

 
Figure 34 Positive Rate with Source/Background Strength at Different Background (Sinusoidal, N=3, n=2, Deterministic) 
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Additional figures of other series lengths for the sinusoidal distribution are located in 

Figure 130 (Traditional), Figure 131 (� = 2), Figure 132 (� = 3), Figure 133 (� = 4), and 

Figure 134 (� = 5). 

Poisson 

The modeled Poisson distribution is characterized by a mean value. Figure 35 contains 

the probability density functions for the Poisson distribution at each background level.  

 
Figure 35 Probability Density Function for Different Background Levels (Poisson, Deterministic) 

 
Data for three background strengths (50, 500, and 5000) are discussed here. The Poisson 

probability density function for the three background distributions with different source strengths 

between 0 and 50 is in Figure 36.  

50 500 5,000 

   
Figure 36 Probability Density Function at Different Source Strengths (Poisson, b=50, b=500, b=5000, Deterministic) 
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The source and background changes the most with an added source for lower background 

levels. As the source strength increases, the distribution widens. 

The calculated values for the decision threshold (�∗) for the Poisson distribution at a 

background of 50, 500, and 5000 are located in Table 8. Calculated decision thresholds for other 

background strengths for the Poisson distribution are contained in Table 15 within Appendix A. 

As the series length increases, the calculated �∗ for the Poisson distribution increases for the 

same condition (larger �, but constant �). Additionally as � approaches �, the calculated �∗ 
decreases. Table 8 also lists the source strength at which 50% and 100% detection is achieved. 

The ratio of the source strength to background strength for the same conditions and level of 

detection decreases as background strength increases. 

Table 8 Calculated Values of y* and Source Strength at 50% and 100% Detection (Poisson, Deterministic) 

  �∗ 50% Detection 100% Detection 
  Background Strength Background Strength Background Strength 
N n 50 500 5000 50 500 5000 50 500 5000 
1 1 62 537 5117 13 38 118 49 133 402 

2 
2 55 517 5054 10 31 94 42 116 349 
1 64 544 5139 11 33 101 37 104 318 

3 
3 52 507 5024 9 27 83 39 107 325 
2 58 525 5078 9 26 79 32 89 270 
1 66 548 5151 11 30 94 33 92 282 

4 

4 50 501 5005 9 25 77 37 103 310 
3 55 515 5048 8 23 70 29 81 248 
2 59 529 5092 8 24 72 27 77 236 
1 66 551 5159 9 29 89 29 85 260 

5 

5 49 497 4991 9 24 72 37 99 300 
4 53 509 5029 8 21 65 28 77 234 
3 56 520 5062 7 21 63 25 71 215 
2 60 532 5101 7 22 68 24 71 216 
1 67 553 5165 9 28 85 28 80 245 

 
Trends in the positive rate for the Poisson distribution are displayed for a series of three 

measurements (additional figures noted when available). The probability density function and 
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cumulative distribution are displayed for a variety of source strengths for the Poisson distribution 

in Figure 37 at a background of 500. 

  
Figure 37 Probability Density Function and Cumulative Distribution for Different Source Strengths with Decision 

Threshold for Different n Values (Poisson, b=500, N=3, Deterministic) 
 

Additional graphs of the probability density function and cumulative distribution for the 

Poisson distribution for different � are available in Figure 144 (� = 2), Figure 145 (� = 3), 

Figure 146 (� = 4), and Figure 147 (� = 5). 

A graph of the positive rate for the Poisson distribution with source strength for a series 

of three measurements is in Figure 38. The positive rate for the Poisson distribution for all 

conditions has a similar shape to the positive rate for the triangular distribution and sinusoidal 

distribution, as well as the Poisson cumulative distribution function. The positive rate increases 

slowly at first, then more rapidly until it passes through an inflection, and finally slowly again. 

As seen in Figure 32, all three conditions for the Poisson distribution outperform the traditional 

method in terms of positive rate. Positive rates tend to be greatest for non-extreme conditions 

(for example � = 3,� = 2). Additional figures for other series lengths are in Figure 144 (� =

2), Figure 145 (� = 3), Figure 146 (� = 4), and Figure 147 (� = 5). 
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Figure 38 Positive Rate with Source Strength for Different n Values (Poisson, b=500, N=3, Deterministic) 

 
The differences for the Poisson distribution positive rate for different conditions is shown 

in a bar graph in Figure 34 for � = 500 and � = 10. Unlike previously discussed distributions, 

the positive rate for the Poisson distribution is greatest for larger values of �. For the Poisson 

distribution, all conditions for a series of three measurements outperform the traditional method 

for positive rate. 

 
Figure 39 Positive Rate for Different n Values (Poisson, b=500, s=10, N=3, Deterministic) 

 
A graph of the Poisson distribution positive rate with the source to background strength 

ratio is in Figure 40 for � = 3,� = 2. The shape of the graph is similar for all backgrounds. For 

larger backgrounds, 100% positive rate is achieved at lower source strength to background ratios 
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(as seen in Table 8). Additional figures for other � are located in Figure 139 (Traditional), 

Figure 140 (� = 2), Figure 141 (� = 3), Figure 142 (� = 4), and Figure 143 (� = 5). 

 
Figure 40 Positive Rate with Source/Background Strength at Different Background (Poisson, N=3, n=2, Deterministic) 

 
Gaussian 

The modeled Gaussian distribution is characterized by a mean value and a variance equal 

to the mean. The Gaussian probability density function for each background level is in Figure 41 

for each background level.  

 
Figure 41 Probability Density Function for Different Background Levels (Gaussian, Deterministic) 

 
The generated probability density function for the Gaussian source and background 

distribution for � = 50, � = 500, and � = 5000 is in Figure 42. The plotted distributions are for 

source strengths between 0 and 50.  
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50 500 5,000 

Figure 42 Probability Density Function at Different Source Strengths (Gaussian, b=50, 500, 5000, Deterministic) 
 

As seen by Figure 42, the source and background distribution changed the most 

significantly for lower background levels. As the source strength increases, the distribution 

widens. The calculated values for the decision threshold (�∗) for the Gaussian distribution at a 

background of 50, 500, and 5000 are located in Table 9. Calculated Gaussian decision thresholds 

for all background strengths are contained in Table 16 within Appendix A.  

Table 9 Calculated Values of y* and Source Strength at 50% and 100% Detection (Gaussian, Deterministic) 

  Background Strength Background Strength Background Strength 
N n 50 500 5000 50 500 5000 50 500 5000 
1 1 62 537 5116 12 37 117 58 135 403 

2 
2 55 517 5054 10 30 93 52 118 351 
1 64 544 5138 10 32 100 41 105 318 

3 
3 52 508 5024 9 27 83 49 110 327 
2 58 525 5078 8 25 78 36 89 270 
1 65 547 5150 9 29 92 35 91 280 

4 

4 50 502 5005 9 25 76 47 106 313 
3 55 515 5048 7 22 69 34 82 248 
2 59 529 5092 7 23 71 30 77 236 
1 66 550 5158 9 28 87 31 84 258 

5 

5 49 497 4991 8 24 72 46 102 302 
4 53 509 5029 7 21 64 32 78 235 
3 56 520 5062 7 20 63 28 71 215 
2 60 532 5101 7 21 67 27 70 216 
1 66 552 5164 8 26 84 29 79 243 
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As the series length increases, the calculated �∗ for the Gaussian distribution increases 

for the same condition (larger �, but constant �). Additionally as the number of successes (times 

exceeding the decision threshold) approaches the series length, the calculated �∗ decreases. Also 

listed in Table 9 is the source strength at which 50% and 100% detection is achieved for the 

Gaussian distribution. The ratio of the source strength to background strength for the same 

conditions and level of detection decreases as background strength increases. 

Trends in the positive rate for the Gaussian distribution are illustrated through several 

representative figures for a series length of three (additional figures available in Appendix A and 

will be noted when available). Figure 43 contains a visual representative of the thresholds for the 

Gaussian distribution using a series of three measurements for � = 500, using the graphs of 

probability density function and cumulative distribution for a variety of source strengths with the 

threshold overlaid. Additional graphs of the Gaussian probability density function and 

cumulative distribution for different N are available in Figure 153 (� = 2), Figure 154 (� = 3), 

Figure 155 (� = 4), and Figure 156 (� = 5). 

Figure 43 Probability Density Function and Cumulative Distribution for Different Source Strengths with Decision 
Thresholds for Different n Values (Gaussian, b=500, N=3, Deterministic) 
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Figure 44 contains a graph of the positive rate for the Gaussian distribution with source 

strength for a series of three measurements. The positive rate for the Gaussian distribution for all 

conditions has a similar shape to the positive rate for all distributions discussed (with the 

exception of the rectangular distribution) as well as the cumulative distribution function. The 

Gaussian positive rate increases slowly initially, more rapidly until it passes through an 

inflection, and then more slowly. As seen in Figure 44, all three conditions outperform the 

traditional method in terms of positive rate for the Gaussian distribution. Additional figures for 

different � are in Figure 153 (� = 2), Figure 154 (� = 3), Figure 155 (� = 4), and Figure 156 

(� = 5).  

 
Figure 44 Positive Rate with Source Strength for Different n Values (Gaussian, b=500, N=3, Deterministic) 

 
A graph of the positive rate with the source to background strength ratio for the Gaussian 

distribution is in Figure 45 for � = 3,� = 2. The shape of the graph is similar for all 

backgrounds. For the Gaussian distribution at larger backgrounds, 100% positive rate is achieved 

at lower source strength to background ratios (as seen in Table 9). Additional figures of other 

series lengths for the Gaussian distribution are located in Figure 148 (Traditional), Figure 149 

(� = 2), Figure 150 (� = 3), Figure 151 (� = 4), and Figure 152 (� = 5). 
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Figure 45 Positive Rate with Source/Background Strength at Different Background (Gaussian, N=3, n=2, Deterministic) 

Stochastic 

The stochastic method looked at five distributions: uniform, triangular, sinusoidal, 

Poisson, and Gaussian. The positive rate and time at first detection are looked at for the 

stochastic model. The stochastic method looked at the following scenarios: 

Table 10 Scenarios Looked at for the Stochastic Method 

Criteria Values 
Background Levels 500 

50, 500, 5000 (Gaussian Distribution) 
Source Strength 0, 1, 3, 5, 8, 10, 15, 30, 50 

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 
50 (Gaussian Distribution) 

Series Length 1, 2, 3, 4, 5 
 

The at least and exact conditions were compared for the Gaussian distribution. The 

probability density function for positives and time to first detection were also looked at for the 

Gaussian distribution. 

At Least v. Exact 

Using the Gaussian distribution at a background of 500, the two conditions of exactly � 

successes in a series of � measurements was compared to at least � successes in a series of � 

measurements. A comparison of the positive rate with source strength for the exact and at least 
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conditions using a series of two measurements is in Figure 46. There is no difference between 

techniques when � = � as seen in Figure 46, as expected because when � is equal to �, 

Equations 89 and 90 converge resulting in the same values. For exact conditions when � does not 

equal �, the positive rate initially increases until reaching a maximum around 50% and then 

decreases. As source strength increases the likelihood of exceeding the decision threshold will 

increase, making the condition less likely. The difference in the at least and exact conditions for � = 2,� = 1 is most pronounced at higher source strengths. Additional information in Figure 

157. 

 
Figure 46 Positive Rate with Source Strength Comparison for At Least and Exact Conditions (Gaussian, N=2, Stochastic)  
 

For the stochastic method, the time at first detection was also compared for when there 

are exactly � successes in a series of � measurements and when there are least � successes in a 

series of � measurements using a Gaussian distribution. Figure 47 contains a comparison of the 

time at first detection for the exact and at least conditions. There is very little difference between 

the two conditions for the time at first detection for the Gaussian distribution. Additional time at 

first detection information is in Appendix B in Figure 158. Future analysis will use the at least 

condition. 
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Figure 47 Time at First Detection with Source Strength Comparison for At Least and Exact Conditions (Gaussian, N=2, 

Stochastic)  
 
Distribution of Positives and Time at First Detection 

The probability density function for the number of positives and the time to first detection 

were investigated for the Gaussian distribution. The number of positives in 200 measurements 

was looked at for � = 500, � = 10, and � = 3. It was expected that the number of positives 

would approximate a Gaussian distribution. The measurement data was compared to the 

expected distribution for each value of � and is in Figure 48. The measurement data compares.  

 
Figure 48 Probability Density Function for Positive Rate for Different n Values (Gaussian, N=3, b=500, s=10, Stochastic) 
  
 The probability density function for the time to first detection was also investigated. It 

was expected that the time to first detection would follow a geometric distribution. The 
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geometric distribution is a discrete probability distribution that represents the number of trials 

needed to get one success. The geometric distribution is characterized by a probability of success �. The probability of success on the kth trial can be described through the following equation, 

where k=1, 2, …, n. 

�(� = �) = (1 − �)�−1� 91 
 

The probability density function was compared to a geometric distribution for a Gaussian 

distribution. The p value for the geometric distribution was to be the positive rate. Figure 49 

contains a comparison between the geometric distribution and measurement values for the 

traditional method and for � = 3,� = 2 for the Gaussian distribution.  

Traditional N=3, n=2 

 
Figure 49 Time at First Detection Probability Density Function for Traditional Method and N=3, n=2, (Gaussian, b=500, 

s=10, Stochastic) 
 

The measurement values compare well to the geometric distribution for the traditional 

method; however for � = 3,� = 2 the graph is a lot flatter than expected by the geometric 

distribution. Additional graphs for the time at first detection probability density function using 

the Gaussian distribution for different values of � is available in Appendix B in Figure 161. The 

probability density function for the time to first detection was compared for different 

measurement conditions using a Gaussian distribution for � = 3 for two different source values 
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in Figure 50 for � = 500. The density function peaks at a time equal to �. Additional probability 

density functions for different source strengths are available in Appendix B in Figure 159. 

5 50 

  
Figure 50 Time at First Detection Probability Density Function for Different n Values (Gaussian, b=500, Gaussian, 

Stochastic) 
 

 The probability density function for time at first detection was also looked at for 

different source strengths using a Gaussian distribution. Figure 51 contains a graph of the 

probability density function for � = 3,� = 2 for different source strengths. Additional graphs 

for the Gaussian distribution using different values of � and � is available in Figure 160. 

 
Figure 51 Probability Density Function for Time at First Detection for Different Source Strength (Gaussian, b=500 N=3, 

n=2, Stochastic) 
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Rectangular 

Two different background and source spectra simulation techniques were used for the 

stochastic methodology. One methodology assumes that the source is known and adds the source 

to background using two random numbers. The second methodology involves sampling off of a 

source and background distribution (one distribution).  

When using one distribution, the mean value for the rectangular distribution was at the 

sum of the background and source and the width of the distribution was chosen such that the 

variance for the rectangular distribution was equal to mean. For example for a background of 500 

and a source value of 50, the mean of the single distribution would be at 550; and the variance 

would be chosen at 550.  

When the data was generated by summing a source and a background distribution, one 

value was sampled off of a rectangular background distribution with a mean equal to the mean 

background and a second value was sampled off of a rectangular source distribution with a mean 

equal to the mean of the sample; the variance of each distribution was equal to the respective 

mean. For the previous example, one number would be generated off of a rectangular 

background distribution with a mean and variance of 500, a second number would be generated 

off of a rectangular source distribution with a mean value and variance of 50, and the two 

numbers would be summed to create the source and background distribution. 

The differences in using one distribution and the sum of two distributions are illustrated 

for the rectangular distribution through the probability density function for a background of 500 

at different source strengths in Figure 52. The probability density function for the rectangular 

distribution using each technique is the same for a source strength of zero and resembles a 
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rectangle. However as the source strength increases the probability density function for the 

rectangular distribution using the two distribution method begins to take a trapezoidal shape. 

One Distribution Sum of Two Distributions 

Figure 52 Probability Density Function for Different Source Strengths Comparison for Two Measurement Simulation 
Techniques (Rectangular, b=500, Stochastic) 

 
The differences in the two measurement simulation techniques are illustrated on the same 

plot for the rectangular distribution at source strengths of 0, 5, and 50 in Figure 53 for � = 500. 

The differences in probability density functions are most prominent for higher source strength.  

0 5 50 

   
Figure 53 Probability Density Function Comparison for Two Measurement Simulation Techniques for Several Source 

Strengths (Rectangular, s=0, 5, 50, b=500, Stochastic) 
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Additional plots for other source strengths for the rectangular distribution are available in 

Appendix B in Figure 162 (� = 1, 3, 5, 8) and Figure 163 (� = 10, 15, 30, 50). In addition to the 

comparison of the probability density function, the positive rate and time at first detection for the 

rectangular distribution are compared in Figure 54 for � = 2,� = 2.  

  
Figure 54 Positive Rate and Time at First Detection with Source Strength Comparison for Two Measurement Simulation 

Techniques (Rectangular, N=2, n=2, b=500, Stochastic) 
 

For certain source strengths, the values for generating off of one distribution are greater 

than for two distributions. Values for the positive rate are within 5% and values for detection 

time are within 10%. Additional graphs for different values of n for the rectangular distribution 

are available in Appendix B for positive rate (Figure 164) and time at first detection (Figure 

165). All future data discussed for the rectangular distribution is generating by using two random 

numbers.  

A comparison of the positive rate and time to first detection for different combinations of � (� = 3) for the rectangular distribution is in Figure 55 for � = 500. The error bars displayed 

are for one standard deviation; due to the inherent properties of the time to first detection 

(geometric distribution), the standard deviation is large compared to the mean. As the source 

strength increases the positive rate increases for the rectangular distribution, while the time at 
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first detection decreases. The positive rate increases most rapidly for � = 1, while it increases 

slowest for a three second long measurement. The smallest time at first detection occurs for the 

rectangular using the traditional method (� = 1,� = 1) and the three second long measurement 

(3 s). Additional graphs for different series lengths for the rectangular distribution are in Figure 

166 (Positive Rate) and Figure 167 (Time at First Detection). 

Figure 55 Positive Rate and Time at First Detection with Source Strength for Different n Values (Rectangular, N=3, 
b=500, Stochastic) 

 
For � = 500 and � = 10, the trends for positive rate and time at first detection are shown 

for the rectangular distribution in Figure 56 using � = 3. The error bars displayed are for one 

standard deviation.  

  
Figure 56 Positive Rate and Time at First Detection for Different n Values (Rectangular, b=500, N=3, s=10, Stochastic) 
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The positive rate for the rectangular distribution is greatest for the traditional method and 

when � = 1. As � increases, the positive rate decreases for the rectangular distribution. Similarly 

the traditional method and � = 1 has the shortest time to first detection (for the rectangular 

distribution), while the larger � results in a longer time at first detection. 

Trends in the data (positive rate and time at first detection) for different series lengths for 

the rectangular distribution were looked at for three conditions: all successes (� = �), at least 

one success in a series (� = 1), and for different measurement lengths. Figure 57 contains a 

graph of the positive rate with source strength and time at first detection with source strength, 

when � = � for different series lengths for the rectangular distribution.   

  
Figure 57 Positive Rate and Time at First Detection with Source Strength Comparison for Different N Values 

(Rectangular, b=500, n=N, Stochastic) 
 

As seen in Figure 57, the positive rate for all five measurement lengths begins at 5%, as 

expected for the rectangular distribution. The shape of the curve for positive rate with source 

strength for the rectangular distribution is characterized by slow increase of positive rate at first 

with source strength and then more rapid increase as the source strength becomes larger. Initially 

the positive rate increases most rapidly with source strength for shorter series lengths (example � = 1,� = 1), but after a source strength of 15, the positive rate for longer series increases more 
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rapidly with the condition � = 5,� = 5 reaching 100% positive rate by a source strength of 50. 

For the rectangular distribution the time at first detection, the drop in time at first detection with 

increased source strength is largest for small source strengths and then become less significant 

for higher source strengths. The time at first detection for the rectangular distribution is largest 

for larger series lengths for all source strengths; however, the difference in time at first detection 

becomes less as source strength increases. 

Figure 58 contains a graph of the positive rate with source strength and time at first 

detection with source strength, when � = 1 for different series lengths for the rectangular 

distribution. The shape of the positive rate graph for the rectangular distribution with increased 

source strength for � = 1 has a different shape than for � = �. Rather than increasing slowly at 

low source strength then rapidly at high source strength, the positive rate for the rectangular 

distribution at � = 1 increases rapidly at lower source strengths and slower at high source 

strengths. The plot of the time at first detection with source strength is similar for � = � and � = 1 for the rectangular distribution; however, the differences between the five measurements 

length is less significant, especially after a source strength of around 5.  

  
Figure 58 Positive Rate and Time at First Detection with Source Strength Comparison for Different N Values 

(Rectangular, n=1, b=500, Stochastic) 
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A comparison of positive rate and time at first detection for different measurement 

lengths for the rectangular distribution is in Figure 59.  The positive rate with source strength is 

greatest for a measurement length of 5 s, the least for a measurement length of 3 s, with a 

measurement length of 1 s falling in between. The shape of the positive rate with source strength 

for the rectangular distribution is similar to � = 1, but closer to a straight line. The time at first 

detection has a similar shape to the other conditions described. The time at detection for the 

rectangular distribution is largest for 5 s and smallest for 1 s. 

Figure 59 Positive Rate and Time at First Detection with Source Strength Comparison for Different N Values 
(Rectangular, b=500, Stochastic) 

 
Triangular 

As with the rectangular distribution, two different source and background spectra 

simulation techniques were used for the triangular distribution. One methodology uses one 

distribution to generate the source and background distribution, and the second method uses two 

distributions – a source distribution and a background distribution – and sums them to generate 

the source and background distribution. As with the deterministic method, the triangular 

distribution created is symmetric.  

When using one distribution, the mean value (� = �) was chosen to be the sum of the 

background and source distribution, while the width of the triangle was chosen to keep a similar 
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width to the Gaussian distribution. The limits of the triangle were chosen to be � = � − 3√� and � = � + 3√�. For example for a background of 500 and a source value of 50, the mean � would 

equal 550, while � = 550 − 3√550 = 480 and � = 550 + 3√550 = 620. 

When the data was generated by summing a source distribution and a background 

distribution, one value was sampled off of a triangular background distribution with a mean � 
equal to the mean background and a second value was sampled off of a triangular source 

distribution with a mean � equal to the mean of the sample; the limits of each triangular 

distribution were chosen to be � = � − 3√� and � = � + 3√�. For the previous example, one 

number would be generated off of a triangular background distribution with a mean of 500 and 

limits at � = 500 − 3√500 = 433 and � = 500 + 3√500 = 567, a second number would be 

generated off of a triangular source distribution with a mean of 50 and limits at � = 50 −
3√50 = 43 and � = 50 + 3√50 = 57. The differences in the two source and background 

simulation techniques for the triangular distribution by comparing the probability density 

function at � = 500 and several source strengths in Figure 60.  

One Distribution Sum of Two Distributions 

Figure 60 Probability Density for Different Source Strengths Comparison for Two Measurement Simulation Techniques 
(Triangular, b=500, Stochastic) 
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The distribution for each technique is the same for source strength of zero, but changes 

significantly at higher source strengths. As seen in Figure 60, the resulting shape from generating 

off of two distributions for the triangular distribution at higher source strengths has a more 

rounded shape, wider shape, and significantly reduced peak probability. These differences in the 

measurement simulation techniques for the triangular distribution are also illustrated by plotting 

probability density functions for each measurement technique on the same plot for source 

strengths of 0, 5, and 50 in Figure 61 for a background of 500.  

0 5 50 

   
Figure 61 Probability Density Function Comparison for Two Measurement Simulation Techniques for Several Source 

Strengths (Triangular, b=500, Stochastic) 
 

The differences in probability density functions for the triangular distribution are most 

prominent for higher source strength, as also seen for the rectangular distribution. Additional 

comparison for the triangular distribution at different source strengths is available in Figure 168 

(� = 1, 3, 5, 8) and Figure 169 (� = 10, 15, 30, 50). In addition to the comparison of the 

probability density function for the triangular distribution, the positive rate and time at first 

detection are compared in Figure 62 for � = 2,� = 2.  
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Figure 62 Positive Rate and Time at First Detection with Source Strength Comparison for Two Measurement Simuation 

Techniques (Triangular, N=2, n=2, b=500, Stochastic) 
 

For the triangular distribution, generating values off of two distributions consistently 

produces consistently larger positive values. However for the time at first detection, for certain 

source strengths, the values for generating off of one distribution are greater than for two 

distributions. Values for the positive rate for the triangular distribution vary significantly for the 

two source simulation techniques are within 50% for the traditional method, while they are 

within 70% for � = 1 and � = 2. The difference in time to first detection values is much less – 

within 10% for the traditional method and � = 1, and 15% for � = 2. Additional comparison 

graphs using the two measurement simulation techniques for the triangular distribution are 

available in Appendix B in Figure 170 (positive rate) and Figure 171 (time at first detection). All 

future data discussed for the triangular distribution is generated using two random numbers.  

A comparison of the positive rate and time to first detection for the triangular distribution 

for � = 3 and � = 500 is in Figure 63. The error bars are for one standard deviation. As seen 

with the rectangular distribution, as the source strength increases, the positive rate increases and 

the time at first detection decreases for the triangular distribution. The positive rate is the greatest 

for a measurement length of 3 s with � = 1 yielding the second highest positive rate. The 

smallest time at first detection is for the traditional method (� = 1,� = 1). Additional graphs for 
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different � values of the triangular distribution are available in Figure 172 (positive rate) and 

Figure 173 (time at first detection). 

  
Figure 63 Positive Rate and Time at First Detection with Source Stnregth for Different n Values (Triangular, N=3, b=500, 

Stochastic) 
 

The trends for the positive rate and time at first detection between different conditions for 

the triangular distribution are illustrated in Figure 64 for � = 3, � = 500, and � = 10. The error 

bars displayed are for one standard deviation.  

  
Figure 64 Positive Rate and Time to First Detection for Different n Values (Triangular, b=500, N=3, s=10, Stochastic) 

 
The positive rate is smallest for non-extreme conditions (for example here, � = 2) for the 

triangular distribution. While the time at first detection for the triangular distribution is the 

lowest for the traditional method and when � = 1 and the largest is for when � = �.  Similar to 
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the rectangular distribution, trends in the data for different series lengths for the triangular 

distribution were looked at for three conditions: all successes (� = �), at least one success 

(� = 1), and for different measurement lengths. 

Figure 65 contains a graph of the positive rate and time at first detection with source 

strength, when � = � for different series lengths. The positive rate for all five measurement 

lengths begins at 5%, and increases approximately linearly with source strength for the triangular 

distribution. The greatest positive rate is seen for longer measurement series. The longest time at 

first detection for the triangular distribution was seen for the longer measurement series, with � = 5 being consistently largest and � = 1 being consistently the smallest. As source strength 

increases the difference in detection time for the different series becomes less pronounced. 

Figure 65 Positive Rate and Time at First Detection with Source Strength Comparison for Different N Values 
(Triangular, n=N, b=500, Stochastic) 

 
Figure 66 contains a graph of the positive rate with source strength and time at first 

detection with source strength, when � = 1 for the triangular distribution at different series 

lengths. The shape of the positive rate graph with increased source strength for � = 1 has a 

different shape than for � = �, as also seen for the rectangular distribution. For � = 1, the 

triangular distribution positive rate increases rapidly at lower source strengths and slower at high 
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source strengths. The plot of the time at first detection for the triangular distribution with source 

strength is similar for � = � and � = 1; however, the differences between the five 

measurements length is less significant with the exception of � = 2. 

Figure 66 Positive Rate and Time at First Detection with Source Strength Comparison for Different N Values 
(Triangular, n=1, b=500, Stochastic) 

 
A comparison of positive rate and time at first detection for different measurement 

lengths for the triangular distribution is in Figure 67.  

Figure 67 Positive Rate and Time at First Detection with Source Strength Comparison for Different N Values 
(Triangular, b=500, Stochastic)  

 
The positive rate with source strength is greatest for a measurement length of 5 s, the 

least for a measurement length of 1 s. The shape of the triangular distribution positive rate with 
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source strength is close to a straight line, similar to � = 1. The time at first detection has a 

similar shape to the other conditions described. However, the differences between the initial time 

at first detection at � = 0 is a lot more significant. The largest time at first detection for the 

triangular distribution is for 5 s and the smallest is for 1 s. 

Sinusoidal 

Two different source and background spectra simuation techniques were used for the 

sinusoidal distribution and compared. One methodology generated measurement values off of a 

single source and background distribution, while the second method generates a value off of a 

source distribution and a value off of background distribution, summing them. As with the 

deterministic method, the sinusoidal distribution is equal to one half of the sine wave. 

When using one distribution, the mean value of the sinusoidal distribution was chosen to 

be the sum of the background and source mean, while the width of sinusoidal distribution was 

chosen to keep a similar width to the Gaussian distribution. The characteristic values of the 

sinusoidal are � = � − 3√� and � = � + 3√�, with a period of � = 12√�. For example for a 

background of 500 and a source value of 50, the mean � would equal 550, while � = 480, � = 620, and � = 12√550 = 280. 

When the data was generated by summing a source distribution and a background 

distribution, one value was sampled off of a sinusoidal background distribution with a mean μ 

equal to the mean background and a second value was sampled off of a sinusoidal source 

distribution with a mean μ equal to the mean of the sample with the same characteristic � and � 

values as previous. For the previous example, one number would be generated off of a sinusoidal 

background distribution with a mean of 500 characterized by � = 433, � = 567, and � =
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12√500 = 268; a second number would be generated off of a sinusoidal source distribution 

with a mean of 50, � = 43, � = 57, and � = 12√50 = 28. 

The differences in the two measurement simulation techniques for the sinusoidal 

distribution are highlighted by comparing the probability density function in Figure 68 for � = 500 and a few source strengths. The distribution for each technique is the same for source 

strength of zero. The differences in the two techniques for the sinusoidal distribution are less 

significant than those for the rectangular and triangular distributions. 

One Distribution Sum of Two Distributions 

Figure 68 Probability Density Function for Different Source Strengths Comparison for Two Measurement Simulation 
Techniques (Sinusoidal, b=500, Stochastic) 

 
The differences in the two measurement simulation techniques are illustrated on the same 

plot for several source strengths in Figure 69 for � = 500. There are little visual differences for 

the two measurement simulation techniques for the sinusoidal distribution. Graphs for additional 

source strengths are in Appendix B in Figure 174 (� = 1, 3, 5, 8) and Figure 175 (� =

10, 15, 30, 50). 
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0 5 50 

Figure 69 Probability Density Function Comparison for Measurement Simulation Techniques for Several Source 
Strengths (Sinusoidal, b=500, Stochastic) 

 
The positive rate and time at first detection are compared in addition to the probability 

density function; a comparison of the positive rate and time at first detection for the sinusoidal 

distribution is in Figure 70 for � = 2,� = 2. For the sinusoidal distribution the main differences 

are in the positive rate for � = 2.  

  
Figure 70 Positive Rate and Time at First Detection with Source Strength Comparison for Two Measurement Simulation 

Techniques (Sinusoidal, N=2, n=2, b=500, Stochastic) 
 

Generating measurement values off of two distributions consistently yields a higher 

positive rate for the sinusoidal distribution. For the traditional method positive rate values are 
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within 5%, however for � = 1 and � = 2, positive rates vary by as much as 80% for the two 

measurement simulation techniques. The calculated time to first detection for the two 

measurement techniques are similar for all conditions (within 10%). Additional graphs with 

other values of � are available for the sinusoidal distribution in Figure 176 (positive rate) and 

Figure 177 (time to first detection). All future data discussed for the sinusoidal distribution is 

generating by using two random numbers. 

A comparison of the positive rate and time to first detection for different combinations of � for the sinusoidal distribution for � = 3 and � = 500 is in Figure 71. Error bars displayed are 

for one standard deviation. Additional graphs for different series lengths for the sinusoidal 

distribution are in Figure 177 (positive rate) and Figure 178 (time at first detection). 

  
Figure 71 Positive Rate and Time at First Detection with Source Strength for Different n Values (Sinusoidal, N=3, b=500, 

Stochastic) 
 

As seen in Figure 71 and for the other distributions discussed, as the source strength 

increases the positive rate increases and the time at first detection decreases. The positive rate for 

the sinusoidal distribution increases most rapidly for � = 1. The smallest time at first detection 

for the sinusoidal distribution occurs for the traditional method (� = 1,� = 1) and the three 

second long measurement. 
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For � = 500 and � = 10, the trends for positive rate and time at first detection are 

illustrated for the sinusoidal distribution in Figure 72 using � = 3. Error bars displayed are for 

one standard deviation. The positive rate for the sinusoidal distribution tends to be greatest when � = 1. As the number of successes required increases, the positive rate decreases for the 

sinusoidal distribution. The traditional method yields a higher positive rate than when � = �, as 

also seen with the rectangular distribution. For the sinusoidal time to first detection, traditional 

method and 1+ measurements exceeding the decision threshold in a series has the shortest time 

to first detection, while the larger number of required measurements exceeding the decision 

threshold results in a longer time at first detection.  

  
Figure 72 Positive Rate and Time to First Detection for Different n Values (Sinusoidal, b=500, N=3, s=10, Stochastic) 

 
Trends in the data (positive rate and time at first detection) for different series lengths for 

the sinusoidal distribution were looked at for three conditions: all successes (� = �), at least one 

success in a series (� = 1), and for different measurement lengths. Figure 73 contains a graph of 

the positive rate with source strength and time at first detection with source strength for the 

sinusoidal distribution, when � = � for different series lengths.  
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Figure 73 Positive Rate and Time at First Detection with Source Strength Comparison for Different N Values (Sinusoidal, 

n=N, b=500, Stochastic) 
 

The positive rate for all five measurement lengths begins at 5% and increases 

approximately linearly with source strength. The positive for larger measurement lengths for the 

sinusoidal distribution is larger than for shorter series lengths. For the sinusoidal time at first 

detection, the larger measurement lengths have larger time at first detection, while shorter 

measurement lengths have shorter times at first detection; this remains constant for all source 

strengths. 

Figure 74 has a graph of the positive rate with source strength and time at first detection 

with source strength, when � = 1 for different series lengths for the sinusoidal distribution.  

  
Figure 74 Positive Rate and Time at First Detection with Source Strength Comparison for Different N Values (Sinusoidal, 

n=1, b=500 Stochastic) 
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The shape of the positive rate graph with increased source strength for � = 1 has a 

different shape than for � = � (as seen for other distributions discussed); the positive rate for � = 1 increases rapidly at lower source strengths and slower at high source strengths. The plot of 

the time at first detection with source strength for the sinusoidal distribution is similar for � = � 

and � = 1; however, the differences between the five measurements length is less significant, 

especially after a source strength of around 5. 

Figure 75 contains a comparison of positive rate and time at first detection for different 

measurement lengths for the sinusoidal distribution. The positive rate with source strength is 

greatest for a measurement length of 5 s, and smallest for a measurement length of 1 s. The shape 

of the positive rate with source strength for the sinusoidal distribution is approximately a straight 

line, similar to � = 1. The time at first detection has a similar shape to other conditions and 

distributions discussed. The time at detection is largest for 5 s and smallest for 1 s for the 

sinusoidal distribution. 

  
Figure 75 Positive Rate and Time at First Detection with Source Strength Comparison for Different N Values (Sinusoidal, 

b=500, Stochastic)  
 
Poisson 

Measurements for the Poisson distribution were generated using two different source and 

background spectra simulation techniques and compared. The first method generates 
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measurement values off of a single source and background distribution, while the second method 

generates a value off of a source distribution and a value off of background distribution, 

summing them. The Poisson distribution is characterized by only a mean value. When using one 

distribution, the mean value was chosen to be the sum of the background and source mean. When 

the data was generated by summing two distributions, one value was sampled off of a Poisson 

background distribution with a mean equal to the mean background and a second value was 

sampled off of a Poisson source distribution with a mean equal to the mean of the source. The 

generated probability density functions are compared for the Poisson distribution in Figure 76 for 

a background of 500 and a few source strengths. For the Poisson distribution, there is very little 

difference between techniques, as also seen for the sinusoidal distribution. 

One Distribution Sum of Two Distributions 

Figure 76 Probability Density Function for Different Source Strengths Comparison for Two Measurement Simulation 
Techniques (Poisson, b=500, Stochastic) 

 
The differences in the two measurement simulation techniques are illustrated on the same 

plot in Figure 77 for � = 500 for the Poisson distribution. There are little differences between 

the measurement simulation techniques for the Poisson distribution. Additional comparisons for 

other source strengths are in Figure 180 (� = 1, 3, 5, 8) and Figure 181 (� = 10, 15, 30, 50). 
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0 5 50 

   
Figure 77 Probability Density Function Comparison for Two Measurement Simulation Techniques For Several Source 

Strengths (Poisson, b=500, Stochastic) 
 

In addition to the comparison of the probability density function, the positive rate and 

time at first detection are compared for the Poisson distribution in Figure 78 for � = 2,� = 2.  

  
Figure 78 Positive Rate and Time at First Detection with Source Strength Comparison for Measurement Simulation 

Techniques (Poisson, N=2, n=2, b=500, Stochastic) 
 

Values for the positive rate are within 10% and values for detection time are within 15%. 

Comparisons for additional � values are in Figure 182 (positive rate) and Figure 183 (time at 

first detection). All future Poisson data discussed is generating using two random numbers. 
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A comparison of the Poisson positive rate and time to first detection for different 

combinations of n (� = 3) is in Figure 79 for a background of 500. Error bars displayed are for 

one standard deviation. As the source strength increases the positive rate increases and the time 

at first detection decreases. The positive rate for larger values of � and for a 3 s measurement 

time increase the most rapidly; however positive rate for all conditions increase at a similar rate 

with source strength. The time at first detection is longest for the 3 s measurement and decreases 

as � and � decrease. Additional graphs for different series lengths are in Figure 184 (positive 

rates) and Figure 185 (time at first detection).  

  
Figure 79 Positive Rate and Time at First Detection with Source Strength for Different n Values (Poisson, N=3, b=500, 

Stochastic) 
 

For � = 500 and � = 10, the trends for positive rate and time at first detection between 

different conditions for the Poisson distribution are illustrated in Figure 80 for � = 3. Displayed 

error bars are for one standard deviation. The positive rate for the Poisson distribution tends to 

increase as � increases. The time at first detection also tends to decrease as � increases for the 

Poisson distribution. Trends in the data (positive rate and time at first detection) for different 

series lengths for the Poisson distribution were looked at for three conditions: � = �, � = 1, and 

for different measurement lengths.  
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Figure 80 Positive Rate and Time at First Detection for Different n Values (Poisson, b=500, N=3, s=10, Stochastic) 

 
Figure 81 contains a graph of the Poisson positive rate with source strength and time at 

first detection with source strength, when � = � for different series lengths.  

  
Figure 81 Positive Rate and Time at First Detection with Source Strength Comparison for Different N Values (Poisson, 

n=N, b=500, Stochastic) 
 

The positive rate for all five measurement lengths begins at 5% and increases 

approximately linearly with source strength. The largest positive rate is for a series of 5 

measurements and smallest for the traditional method for the Poisson distribution. For the time at 

first detection, the drop in time at first detection with increased source strength is largest for 

small source strengths and then become less significant for higher source strengths. The time at 
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first detection is largest for the Poisson distribution for � = 4 and � = 5, and smallest for � = 2 and � = 1. 

Figure 82 contains a graph for the Poisson distribution of the positive rate with source 

strength and time at first detection with source strength, when � = 1 for different series lengths. 

The shape of the positive rate with source strength is different for � = 4 for the Poisson 

distribution. The positive rate for � = 4,� = 1 initially increases rapidly and slows with 

additional source strength; the other measurement lengths exhibit an initial slow growth in 

positive rate with source strength until larger source strengths.  

Based on other distributions for the � = 1 condition, the shape of � = 4 is more 

expected. This should be investigated further for the Poisson distribution. The plot of the time at 

first detection for the Poisson distribution with source strength is similar for � = � and � = 1; 

however, � = 3 exhibits the largest time at first detection, while � = 4, 5, 1 exhibit the lowest. 

  
Figure 82 Positive Rate and Time at First Detection with Source Strength Comparison for Different N Values (Poisson, 

n=1, b=500, Stochastic) 
 

Figure 83 contains a comparison of positive rate and time at first detection for different 

measurement lengths for the Poisson distribution. The positive rate with source strength is 

greatest for 5 s and least for 1 s. The positive rate with source strength is close to a straight line. 
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The time at first detection has a similar shape to the other conditions described. The time at 

detection is largest for 5 s and smallest for 1 s. 

  
Figure 83 Positive Rate and Time at First Detection with Source Strength Comparison for Different N Values (Poisson, 

b=500, Stochastic) 
 
Gaussian 

Measurements for the Gaussian distribution were generated using two different source 

and background spectra simulation techniques and compared. The first method generates data off 

of a single source and background distribution, while the second method sums a value generated 

off of a source distribution and a value generated off of background distribution. The Gaussian 

distribution is characterized by a mean value and a variance. The variance was chosen to be the 

mean, as with the Poisson distribution. 

When using one distribution, the mean value of the Gaussian distribution was the sum of 

the background and source mean with an equivalent variance. When data was generated of two 

distributions, one distribution had a mean and variance equivalent to the background mean, while 

the second distribution had a mean and variance equivalent to the source mean. The two source 

and background simulation techniques are compared through the probability density function in 
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Figure 84 for � = 500. As with the Poisson distribution, there is little difference between the 

measurement simulation techniques for the Gaussian distribution. 

One Distribution Sum of Two Distributions 

Figure 84 Probability Density Function for Different Source Strengths Comparison for Two Measurement Simulation 
Techniques (Gaussian, b=500, Stochastic) 

 
The two measurement simulation techniques are also compared for the Gaussian 

distribution on the same plot for source strengths of 0, 5, and 50 for a background of 500 in 

Figure 85.  

0 5 50 

   
Figure 85 Probability Density Function Comparison for Two Measurement Simulation Techniques For Several Source 

Strengths (Gaussian, b=500, Stochastic) 
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There are little differences in the distributions for the Gaussian distribution. Additional 

comparisons of the probability density function for the two measurement techniques for the 

Gaussian distribution using other source strengths are in Appendix B in Figure 186 (� =

1, 3, 5, 8) and Figure 187 (� = 10, 15, 30, 50). 

The Gaussian positive rate between the two measurement simulation techniques are 

compared for � = 2,� = 2 in Figure 86. Values for the positive rate are within 10%. Additional 

comparisons for the Gaussian distribution are available for other values of � in Appendix B in 

Figure 188. All future data discussed for the Gaussian distribution is generating by using two 

random numbers. 

 
Figure 86 Positive Rate with Soruce Strength for Two Measurement Simulation Techniques (Gaussian, N=2, n=2, b=500, 

Stochastic) 
 

A comparison of the positive rate and time to first detection for the Gaussian distribution 

for different � (� = 3) is in Figure 87 for � = 500.  The error bars are one standard deviation. 

As seen by Figure 87, the Gaussian positive rate increases as the source strength increases, while 

the time at first detection decreases. The positive rate tends to be the largest for non-extreme 

values of n (example � = 3,� = 2) for the Gaussian distribution. The time at first detection is 

the largest for a three second long measurement and � = 1 and smallest for the traditional 
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method. Additional graphs for the Gaussian different series lengths and background levels are 

available for the positive rate: Figure 189 (� = 2), Figure 190 (� = 3), Figure 191 (� = 4), 

Figure 192 (� = 5), and time at first detection: Figure 193 (� = 2), Figure 194 (� = 3), Figure 

195 (� = 4), Figure 196 (� = 5). 

  
Figure 87 Positive Rate and Time at First Detection for Different n Values (Gaussian, N=3, b=500, Stochastic) 

 
Figure 88 contains a bar graph for the positive rate and time to first detection for different 

number of successes for � = 3 for the Gaussian distribution (� = 500 and � = 10). The error 

bars displayed are for one standard deviation.  

  
Figure 88 Positive Rate and Time to First Detection for Different n Values (Gaussian, b=500, N=3, s=10, Stochastic) 
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The positive rate for the Gaussian distribution tends to be greatest for non-extreme values 

of n, as seen in Figure 87, and smallest for � = 1. The smallest time to first detection correlates 

to the largest values of the positive rate, being the largest for � = 1. Trends in the data (positive 

rate and time at first detection) for different series lengths for the Gaussian distribution were 

looked at for three conditions: all successes (� = �), at least one success in a series (� = 1), and 

for different measurement lengths.  

Figure 89 contains a graph for the Gaussian distribution of the positive rate with source 

strength and time at first detection with source strength, when � = � for different series lengths.  

The positive rate for all conditions begins at 5% and increases approximately linearly with 

source strength. The largest positive rate for the Gaussian distribution is for � = 5 and the 

smallest is for � = 1. The time at first detection initially decreases rapidly with added source 

strength and then slows at higher source strengths. The time at first detection for the Gaussian 

distribution is largest for larger series lengths; however, the difference in time at first detection 

becomes less as source strength increases. 

  
Figure 89 Positive Rate and Time at First Detection with Source Strength Comparison for Different N Values (Gaussian, 

n=N, b=500, Stochastic) 
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Figure 90 contains a graph for the Gaussian distribution of the positive rate with source 

strength and time at first detection with source strength, when � = 1. The positive rate for � = 1 

increases rapidly at lower source strengths and slower at high source strengths. The plot of the 

Gaussian time at first detection with source strength is similar for � = � and � = 1; however, 

the differences between the five measurements length is less significant.  

  
Figure 90 Positive Rate and Time at First Detection with Source Strength Comparison for Different N Values (Gaussian, 

n=1, b=500, Stochastic) 
 

Figure 91 contains a comparison of the positive rate and time at first detection for the 

Gaussian distribution for different measurement lengths.  

  
Figure 91 Positive Rate and Time at First Detection with Source Strength Comparison for Different N Values (Gaussian, 

b=500, Stochastic) 
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The positive rate with source strength has a similar shape to the cumulative distribution 

function for the Gaussian distribution. The positive rate is the greatest for 5 s, the least for 1 s. 

The time at first detection for the Gaussian distribution has a similar shape to the other 

conditions and distributions described. The time at detection is largest for 5 s and smallest for 1 

s. 

 
Comparison of Deterministic and Stochastic Methods and Discussion 

Two methodologies for analyzing the series of measurements were investigated: looking 

at exactly � values exceeding the decision threshold in � measurements, and looking at least � 

values exceeding the decision threshold in � measurements. The two methodologies were looked 

at for both the deterministic and stochastic methods and showed similar trends. The comparison 

was investigated for the Gaussian distribution, but observations should hold for other 

distributions as well.  

A value of � = 2 was investigated for the stochastic method, while � = 3, 4, 5 were also 

investigated for the deterministic method. All � values showed similar trends. There are no 

differences when � = �, because Equation 89 and 90 converge for � = �. For other values of � 

for the exact condition as the source strength increases, eventually the positive rate increases to a 

maximum at around 50% and decreases. This is likely because as the source strength increases, 

the probability density function is shifted to the right beyond the threshold. It becomes more 

likely that greater than � successes will occur and eventually only � successes is possible. The at 

least methodology takes this into account and as the source strength increases the positive rate 

increases to eventually 100%. 

For the stochastic method, two different measurement generating techniques were 

investigated. One technique generated off of one distribution using one random number where 
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the mean of that distribution was equal to the sum of the source and the background. The second 

method generated off of a source and a background distribution using two random numbers and 

summed the values. The probability density functions were compared visually and the positive 

rate and time to first detection were compared. There were significant visual differences for the 

rectangular and triangular distributions, but weren’t for the sinusoidal, Poisson, and Gaussian 

distributions. For the positive rate, there was less than 5% variation for the rectangular 

distribution, less than 10% variation for the Poisson and Gaussian, and up to 80% error for the 

sinusoidal and triangular distributions. For the time at first detection, there was less than 10% 

variation for the rectangular distribution and sinusoidal distribution, and less than 15% variation 

for the Poisson and triangular distribution. Overall, the time at first detection showed less 

variation between the two techniques than the positive rate. There was significant difference in 

the positive rate data for the triangular and sinusoidal distributions. 

The probability density function for the positive rates and the time to first detection were 

also looked at for the stochastic method. The distribution of positive rates followed closely to a 

normal distribution, while the time to first detection followed closely to a geometric distribution. 

Both of these agreed better when � = �. For values of � less than �, the probability density 

function for the measurement data is larger at higher times at first detection than expected for the 

geometric distribution with � equal to the positive rate. The positive rate may not be the best 

predictor for the time at first detection for conditions where � is not equal to �. 

For the deterministic distribution, the probability density function was looked at for 

different background levels. For each distribution as the mean background increased the 

distribution widened and the peak probability decreased. Additionally, as source strength 
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increased the distribution widened; the widening of the distribution is most significant when the 

source strength is large compared to the mean background. 

Values for the decision threshold were calculated for � = 1, 2, 3, 4, 5 and for 

corresponding � values between 1 and �. For larger � values with constant �, the decision 

threshold increased. Additionally as � approaches �, the decision threshold decreases. If � and � become large enough, the decision threshold can decrease lower than the mean of the 

distribution. For the deterministic method, the source strength for 50% and 100% detection was 

calculated for each condition. As the background strength increases, the positive rate is larger for 

the same source to background ratio. This is because although the background probability 

density function widens as the background increases it does not scale 1:1. For example, the 

probability density function for a mean of 50 will not be twice as wide as for a mean of 100.  

Behavior of the positive rates and time at first detection with � was investigated by 

looking at a couple circumstances: � = �, � = 1, and the measurement length. In general, the 

behavior for the positive rate with source strength agreed well for all distributions. For the all 

conditions the positive rate tended to be largest for � = 5 and lowest for � = 1. The same 

applied for the time at first detection. This indicates that a higher positive rate does not always 

coincide with a lower time at first detection, as would be expected with the geometric 

distribution. 

The positive rates are compared for each distribution for the deterministic and stochastic 

methodologies. Additionally, positive rates (for stochastic and deterministic) and time at first 

detection (for stochastic) are compared between distributions. The distributions will be discussed 

in the same order that they appeared in the text. The positive rate for the rectangular distribution 

is compared for the stochastic and deterministic methods in two ways in Figure 92 for � = 500 
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and � = 3. The left side of Figure 92 contains a plot of the positive rate with source strength for 

each condition of � for � = 3. The deterministic method is displayed using a solid line with 

individual stochastic data points over laid. For the rectangular distribution, the calculated 

positive rate for stochastic and deterministic methods agrees well with source strength. The right 

side of Figure 92 contains a bar graph for the different conditions of � at a source strength of 10. 

The deterministic and stochastic methods agree well with each other for � = 3. 

 
 

Figure 92 Deterministic and Stochastic Positive Rate with Source Strength Comparison for Different n Values 
(Rectangular, b=500, N=3) 

 
Figure 93 contains two comparisons of the positive rate for the triangular distribution 

using the stochastic and deterministic methods for a background of 500 and � = 3. On the left 

side of Figure 93 is a plot of the positive rate with source strength for each condition of � for � = 3, while the right side has a bar graph for the different conditions of � at a source strength 

of 10. The deterministic and stochastic methods do not agree with each other as well as for the 

rectangular distribution. Either the deterministic method overestimates the positive rate by about 

two times or the stochastic method underestimates the positive rate by a factor of two at � = 3. 
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Figure 93 Deterministic and Stochastic Positive Rate with Source Strength Comparison for Different n Values 

(Triangular, b=500, N=3) 
 

The positive rate for the sinusoidal distribution is compared for the stochastic and 

deterministic methods in two ways in Figure 94 for a background of 500 and � = 3.  

  
Figure 94 Deterministic and Stochastic Positive Rate with Source Strength Comparison for Different n Values 

(Sinusoidal, b=500, N=3) 
 

The left side of Figure 94 contains a plot of the positive rate with source strength for each 

condition of � for � = 3. For the sinusoidal distribution, the calculated positive rate for 

stochastic method tends to agree with the deterministic method for smaller source strengths, but 

begins to become larger than the deterministic method of larger source strengths. The right side 
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of Figure 94 contains a bar graph for the different conditions of � at a source strength of 10. The 

stochastic method predicts a higher positive rate than the deterministic method. The most 

significant difference in positive rate for the two methods is for � = 3,� = 1. 

The positive rate for the stochastic and deterministic methods is also compared in two 

ways for the Poisson distribution in Figure 95 for a background of 500 and � = 3. The left side 

of Figure 95 contains a plot of the positive rate with source strength for each condition of � for � = 3, while the right side of Figure 95 contains a bar graph for the different conditions of n at a 

source strength of 10. For the Poisson distribution, the calculated positive rate for stochastic and 

deterministic methods agree well with source strength, as well as for different � for � = 3. 

 
Figure 95 Deterministic and Stochastic Positive Rate with Source Strength Comparison for Different n Values (Poisson, 

b=500, N=3) 
 

The positive rate for the stochastic and deterministic methods is also compared for the 

Gaussian distribution in two ways in Figure 96 for a background of 500 and � = 3. The left side 

of Figure 96 contains a plot of the positive rate with source strength for each condition of � for � = 3. For the Gaussian distribution, the calculated positive rate for stochastic and deterministic 

methods agree well with source strength. The right side of Figure 96 contains a bar graph for the 
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different conditions of � at a source strength of 10. The deterministic method tends to over-

predict the stochastic methods at a source strength of 10 by a couple of percent. 

 
Figure 96 Deterministic and Stochastic Positive Rate with Source Strength Comparison for Different n Values (Gaussian, 

b=500, N=3) 
 

The trends in positive rate for the deterministic and stochastic methods are also compared 

between distributions in Figure 97 for a series of three measurements at a background of 500 and 

source strength of 10.  

Deterministic Stochastic 

  
Figure 97 Stochastic and Deterministic Positive Rate Comparison for Different Distributions with Different n Values 

(N=3, b=500) 
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For the deterministic method the positive rates are comparable for all conditions except 

for the rectangular distribution. For the stochastic method there is more variability. The positive 

rates for the triangular distribution tend to be a lot lower than for other distributions. For both the 

stochastic and deterministic methods, the Poisson distribution and Gaussian distribution estimate 

similar positive rates for all conditions. 

The trends in time at first detection between distributions for the stochastic methods are 

compared in Figure 98 for a series of three measurements at a background of 500 and source 

strength of 10. The time at first detection of all distributions is comparable except for � = 1. For � = 1, the Gaussian and Poisson distributions exhibit much higher times at first detection. 

 
Figure 98 Stochastic Time at First Detection Comparison for Different Distributions with Different n Values (b=500, 

s=10, Stochastic) 
 

The probability density function for the time at first detection was also compared for the 

different distributions used. The probability density functions for the traditional method and � = 3,� = 2 are displayed in Figure 99 for � = 500 and � = 10. Additional graphs for different 

values of � are in Appendix B in Figure 197. For the traditional method, the probability at a time 

of 1 is greater for the rectangular, triangular and sinusoidal distribution than for the Poisson and 

Gaussian distributions. This could explain why the calculated mean time at first detection for � = 10 is larger for the Poisson and Gaussian distribution. The probabilities for the traditional 
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distribution with time at first detection compare well otherwise. For � = 3,� = 2, the 

probability peaks around 2, corresponding to the � value. The peak probability is greatest for the 

sinusoidal and triangular distributions. 

Traditional N=3, n=2 

  
Figure 99 Probability Density Function for Time at First Detection for Different Distribution for Traditional and N=3, 

n=2 (b=500, s=10,Stochastic) 
 

Implementation into a Detection System 

In addition to simulation data, data and analysis was also performed for data taken in the 

Room 119 of the MRB at Colorado State University (Fort Collins, CO). The background in the 

room was assessed by taking a background measurement to assess the average count rate and 

energy spectrum, several repeated 15 minute background measurements to assess time behavior, 

and a short background measurement prior to the measurement with source data.  
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The background measurement was performed for 300 s. The energy spectrum for the 

background radiation is in 

 

Figure 100. The average count rate was determined to be 669.27 C/s for the full energy 

window. The energy spectrum is characterized by a low energy Compton background. As seen in 

 

Figure 100, there is a peak around channel 1450 corresponding to the 1.46 MeV gamma 

from Potassium-40. 
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Figure 100 Energy Spectrum for Background 

 
The time behavior for the background in Room 119 was determined by taking repeated 

10 minute samples over 24 hours. Due to the large amounts of natural terrestrial background in 

Colorado it was anticipated that there might variation in dose rate due to variation in radon 

concentrations. Figure 101 contains a graph of the count rate with the time the measurement was 

taken. Fluctuations in the count rate are similar to what would be expected due to changes in 

radon from night to day. 

 
Figure 101 Time Behavior for Background in Room 119 

The source used was a Cesium-137 button source. The location of the source was 

determined by looking at the count rate above background at several source distances. It was 

desired that the count rate would be large enough to see differences in different analysis 

techniques, but small enough to not cause 100% positives. The count rate above background was 
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determined for the full energy window. A graph of the count rate above background with source 

distance is in Figure 102.  

 
Figure 102 Count Rate vs. Distance for a Cesium-137 Source 

 
The counts above background drop off rapidly with distance, as expected from the 

inverse-square law. The source distance was chosen at 40 cm, which yields a count rate of 13.84 

C/s. The energy spectrum for the source was also taken and is displayed in Figure 104. The full 

energy deposition peak is observed around channel 650 in the energy spectrum. The counts in 

smaller channels are due to the Compton spectrum, and counts in channels after the peak are due 

to background. 

 
Figure 103 Energy Spectrum at 5 cm for Source and Background 

 
Repeated measurements were performed for 1 s, 2 s, 3 s, 4 s, and 5 s. For each 

measurement length 10 repeated measurements were taken of 120, for 1200 total measurements. 
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The positive rate and time at first detection is calculated for � values between 1 and 5. The 

measurement data is compared to simulation data for a Gaussian distribution. For � = 3, the 

positive rate and time at first detection are compared for measurement and simulation data in 

Figure 104. Additional graphs for other values of � is available in Appendix C in Figure 198 

(� = 2), Figure 199 (� = 3), Figure 200 (� = 4), and Figure 201 (� = 5). 

  
Figure 104 Positive Rate and Time at First Detection Comparison for Simulation and Measuement Using Different n 

Values (N=3, b=669.27, s=13.84) 
 
 The probability density function was also looked at for the positive rate and the time at 

first detection for measurement and simulation (Gaussian) data. The probability density function 

for the positive rate for measurement and simulation data is in Figure 105 for � = 3. The data is 

compared to a Gaussian distribution. The average positive rate for � = 669.27 and s=13.84 is 

fairly small and as a result a large portion of the predicted distribution is the left of 0%. For this 

case, the predicted distribution does not match the measurement values well. Additional figures 

for the probability density function are in Appendix C in Figure 202 (� = 2), Figure 203 (� =

2), Figure 204 (� = 3), Figure 205 (� = 3), Figure 206 (� = 4), Figure 207 (� = 4), Figure 

208 (� = 5), and Figure 209 (� = 5). 
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Simulation Measurement 

Figure 105 Positive Rate Probability Density Function Comparison for Measurement and Simulation for Different n 
Values (Gaussian, N=3, b=669.27, s=13.84) 

 
 The probability density function for the time at first detection for measurement and 

simulation data is in Figure 106 for � = 3. The data is compared to a geometric distribution.  

Simulation Measurement 

  
Figure 106 Time at First Detection Probability Density Function Comparison for Measurement and Simulation for 

Different n Values (Gaussian, N=3, b=669.27, s=13.84) 
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The predicted geometric distributions for all the conditions are similar to each other. The 

simulation data fits better to the predicted data, since more simulation data could be created. 

Additional figures for the probability density function are in Appendix C in Figure 215 (� = 2), 

Figure 216 (� = 3), Figure 217 (� = 3), Figure 218 (� = 4), Figure 219 (� = 4), Figure 220 

(� = 5), and Figure 221 (� = 5). 

Trends in the data (positive rate and time at first detection) for different series lengths for 

the measurement and simulation (Gaussian) data were looked at for three conditions: all 

successes (� = �), at least one success in a series (� = 1), and for different measurement 

lengths. The positive rate and time at first detection for � = � for measurement and simulation 

data is in Figure 107. Error bars displayed are for one standard deviation.  

  
Figure 107 Positive Rate and Time at First Detection for Simulation and Measuement (n=N, b=669.27, s=13.84) 

 
Large values of n tend to correlate with higher positive rates and time at first detection 

while small values of n tend to correlate to lower positive rates and time at first detection. The 

positive rate and time at first detection for � = 1 for measurement and simulation data is in 

Figure 108. Error bars are for one standard deviation. Larger � tend to correlate to higher 

positive rates and detection time while smaller � correlate to lower positive rates and detection 

time. The value for � = 5 appears to be small compared to other values. 
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Figure 108 Positive Rate and Time at First Detection for Simulation and Measuement (n=1, b=669.27, s=13.84) 
 

The positive rate and time at first detection for different measurement lengths for 

measurement and simulation data is in Figure 109. Error bars are for one standard deviation.  

  
Figure 109 Positive Rate and Time at First Detection for Simulation and Measuement for Measurement Length 

(b=669.27, s=13.84) 
 

Large measurement lengths tend to correlate with higher positive rates and time at first 

detection while small values of � tend to correlate to lower positive rates and time at first 

detection. 

Table 11 contains a comparison for the positive rate and time at first detection using 

several techniques. The positive rate is calculated using the deterministic and stochastic methods 

and is compared to measurement data. The time at first detection is calculated using the 
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stochastic method and compared to measurement data. The measurement data positive rate and 

time at first detection tend to be smaller than predicted for the deterministic and stochastic 

methods. The measurement data overall compare well to deterministic and stochastic methods. 

Table 11 Positive Rate and Time at First Detection Comparison for Different Calculation Techniques 

 Positive Rate Time at First Detection 
 Deterministic Stochastic Measurement Stochastic Measurement 
Traditional 13.60% 13.57% 12.43% 7.41 3.73 
N=2, n=2 16.96% 17.60% 16.72% 7.68 8 
N=2, n=1 15.36% 15.33% 16.80% 12.64 8.64 
N=3, n=3 19.31% 19.78% 15.84% 8.12 6.9 
N=3, n=2 20.04% 20.57% 17.40% 10.38 10.36 
N=3, n=1 16.46% 15.72% 16.76% 17 16.09 
N=4, n=4 21.13% 20.57% 17.47% 9.91 8.55 
N=4, n=3 23.26% 24.20% 21.16% 9.69 8.55 
N=4, n=2 22.17% 22.59% 18.54% 12.34 10.82 
N=4, n=1 17.27% 16.57% 18.04% 21.68 25.82 
N=5, n=5 22.61% 22.14% 18.61% 11.51 12.18 
N=5, n=4 25.77% 26.24% 21.24% 10.71 6.27 
N=5, n=3 26.07% 25.17% 20.81% 12.12 12.18 
N=5, n=2 23.83% 22.79% 20.10% 13.52 10.45 
N=5, n=1 17.92% 23.22% 24.79% 18.06 16.45 

 
The methodology described in this thesis to examine a series of measurements rather than 

just one measurement (as is done traditionally) can be easily implemented into a detection 

system. The measurement series length, number of successes required and false positive rate 

(number of positives due to background) can be optimized for the detection system. For example, 

consider the scenario where a portal monitor is used in exiting the secured area of the power 

plant. The system uses a 5 second long counting interval to determine if contamination is 

present. The background count rate on average is 500 counts per second. Currently the system 

operates by developing a decision threshold based on a 5 s long count, the average background 

count rate, and assuming a Gaussian distribution of counts. 

If a 5 s count is taken, 2500 counts will be recorded on average with a standard deviation 

of 50 (assuming Poisson counting statistics). The decision threshold for � = 0.05 can be 
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calculated at 2598 counts in 5 s or 519.6 counts per second. If a 1 s measurement in considered, 

500 counts will be recorded on average with a standard deviation of 22.4 (assuming Poisson 

counting statistics); the resulting decision threshold is at 543.9 counts per second. However, if a 

series of five measurements is looked at and it is desired that all five measurements exceed the 

decision threshold (� = �), the decision threshold for a series of measurements can be calculated 

for a p value of 0.549280 as 497. The algorithm can be implemented into the portal monitor by 

counting the amount of times in the last five measurements that the decision threshold for a 

series of measurements was exceeded. In this case if the decision threshold for a series of 

measurements is exceeded five times in the last five measurements, the portal monitor would 

alarm.  
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CONCLUSIONS 
 
 
 

The decision threshold for a series of measurements can be easily implemented into a 

detection system. First an appropriate decision threshold for the series of measurements needs to 

be calculated given the values of �, �, and �. Secondly, the amount of times the decision 

threshold for a series of measurements is exceeded in the last � measurements needs to be 

calculated and compared to �. If the number of measurements exceeding the decision threshold 

for a series of measurements is greater than n, an alarm would occur. 

Several trends and criteria were investigated for the analysis of a series of � 

measurements. The goal of this project was to assess the effectiveness of using data from a series 

of measurements, rather than one individual measurement to define a suitable decision threshold. 

A series of � measurements varying between 1 and 5 was studied, with � of those measurements 

exceeding a threshold designed to exhibit no more than 5% false positives when no source is 

present. 

It was determined that due to the shift in the probability density function when a source is 

added, it is more effective to utilize considerations of at least � of � measurements exceeding a 

threshold rather than exactly � measurements. If the exact condition is used, 100% detection can 

never be achieved because due to the shift in the probability density function it is impossible for 

only � measurements to exceed the decision threshold in a series of � unless � = �. 

Also investigated was the simulation of measurement data. Two methodologies were 

used: sampling off of one combined source and background distribution and sampling off of two 

separate source and background distributions and summing the values. It was found that 

sampling off of two distribution of one shape does not always yield a distribution in the same 
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shape. Differences in the shapes of the two distributions were especially pronounced for high 

source strength data. The rectangular and triangular distributions showed significant differences 

in the probability density functions between the two simulation techniques. However, visual 

inspection of the similarities between the distributions does not always correlate with degree of 

differences in detection probability and time at first detection. For instance, the rectangular 

distribution which had significant visual differences in the probability density functions between 

the two methods had the least variation between the two methodologies for the positive rate and 

time at first detection data. The technique used to simulate the measurement data should be 

chosen so that it matches the actual source and background data observed. 

The probability density functions for the positive rate and time at first detection were 

investigated for the Gaussian distribution. The probability distribution for positive rate follows 

well to a Gaussian distribution, except at small values for the source, because the distribution 

becomes negative. Additional studies into a distribution that exhibit negative values are 

necessary. The probability distribution for time at first detection closely follows a geometric 

distribution when � = �, but does not follow as closely for other values of �. One problem is 

that for a series of measurements, at least � measurements need to be performed before an alarm 

can occur. If an alarm occurs at less than � measurements, one of the positives was due to a false 

positive signal from the background. So although exceeding the decision threshold at a time less 

than �, it is less likely than would be predicted by the geometric distribution. Another 

complication is that although longer time series tend to yield higher positive rates for equivalent 

conditions, they also yield longer times to first detection. If a geometric distribution was used, 

the time at first detection would be predicted as lower due to the higher positive rate. 
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Several distributions were investigated for this project. For a given source strength and 

background strength, the same trends between conditions are not apparent for all distributions. In 

the case of � = 3,� = 2, this value of � outperformed other � values for the Gaussian 

distribution, but did the poorest for the rectangular and sinusoidal distributions, and was 

somewhere in the middle for the other distributions. Each distribution appears to be unique and it 

is difficult to state general trends between conditions. However, for all conditions and 

distributions as source strength increased the positive rate increased and the time at first 

detection decreased, approaching �. More investigation is necessary into the root causes for the 

differences in the distributions. 

Finally, measurement data were taken for one background and source level. Overall, the 

measurement data agreed well with values calculated using the deterministic and stochastic 

techniques. As seen for simulated data, a high positive rate does not always indicate a small time 

at first detection. More data should be taken to assess trends for the probability density function 

for the time at first detection and positive rate.   
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Exact v. At Least 

N=2, Exact N=2, At Least 

N=3, Exact N=3, At Least 

 
Figure 110 Positive Rate with Source Strength Comparison for Exact and At Least Conditions with Different n Values 

(Gaussian, b=500, N=2, N=3)  
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N=4, Exact N=4, At Least 

 
N=5, Exact N=5, At Least 

Figure 111 Positive Rate with Source Strength Comparison for Exact and At Least Conditions with Different n Values 
(Gaussian, b=500, N=4, N=5)  
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Rectangular 
Table 12 Calculated Values of y* at Different Background Strengths (Rectangular, Deterministic) 

  Background Strength 
N n 50 100 250 500 750 1000 2500 5000 7500 10000 
1 1 61 116 275 535 793 1049 2578 5110 7642 10156 

2 
2 57 110 265 521 776 1030 2548 5068 7583 10096 
1 62 116 276 537 795 1052 2582 5116 7642 10164 

3 
3 53 105 257 510 762 1014 2523 5032 7539 10046 
2 59 113 270 528 785 1040 2563 5089 7609 10126 
1 62 117 276 537 796 1053 2584 5118 7645 10167 

4 

4 51 101 251 502 753 1003 2505 5007 7508 10009 
3 56 109 264 519 774 1028 2544 5062 7575 10087 
2 60 114 272 531 788 1044 2570 5099 7621 10139 
1 62 117 277 538 796 1053 2584 5119 7646 10169 

5 

5 49 98 247 496 745 995 2491 4988 7485 9983 
4 54 105 259 512 765 1017 2527 5039 7547 10055 
3 58 111 267 524 779 1034 2554 5076 7593 10108 
2 60 115 273 533 790 1046 2573 5104 7627 10147 
1 62 117 277 538 796 1054 2585 5120 7647 10170 

 

Positive Rate 

 
Figure 112 Positive Rate with Source Strength/Background for Different Values of b (Rectangular, Traditional, 

Deterministic) 
 

N=2, n=2 N=2, n=1 

  
Figure 113 Positive Rate with Source Strength/Background for Different Values of n and b (Rectangular, N=2, 

Deterministic) 
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N=3, n=3 N=3, n=2 

  
N=3, n=1  

 

 

  

Figure 114 Positive Rate with Source Strength/Background for N=3 for Different Values of b (Rectangular, N=3, 
Deterministic) 

 
N=4, n=4 N=4, n=3 

  
N=4, n=2 N=4, n=1 

  
Figure 115 Positive Rate with Source Strength/Background for Different Values of n and b (Rectangular, N=4, 

Deterministic) 
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N=5, n=5 N=5, n=4 

  
N=5, n=3 N=5, n=2 

  
N=5, n=1  

 

 

Figure 116 Positive Rate with Source Strength/Background for Different Values of n and b (Rectangular, N=5, 
Deterministic) 
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N=2 
b=50 

  
b=500 

 
b=5000 

  
Figure 117 Positive Rate for Source Strength for Different Values of n and Constant b (Rectangular, N=2, Deterministic) 
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N=3 
b=50 

 
b=500 

b=5000 

Figure 118 Positive Rate with Source Strength for Different Values of n and Constant b (Rectangular, N=3, Deterministic) 
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N=4 
b=50 

  
b=500 

  
b=5000 

  
Figure 119 Positive Rate with Source Strength for Different Values of n and Constant b (Rectangular, N=2, Deterministic) 
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N=5 
b=50 

  
b=500 

  
b=5000 

  
Figure 120 Positive Rate with Source Strength for Different Values of n and Constant b (Rectangular, N=5, Deterministic) 
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Triangular 

Table 13 Calculated Values of y* at Different Backgrounds Strengths (Triangular, Deterministic) 

  Background Strength 
N n 50 100 250 500 750 1000 2500 5000 7500 10000 
1 1 64 121 282 586 806 1065 2603 5145 7678 10205 

2 
2 57 110 266 522 777 1031 2550 5070 7586 10099 
1 66 123 286 552 814 1074 2616 5164 7701 10232 

3 
3 53 104 257 509 762 1013 2521 5030 7537 10042 
2 60 114 273 532 789 1046 2572 5102 7625 10144 
1 67 124 288 555 817 1078 2622 5173 7712 10245 

4 

4 51 101 251 502 752 1003 2504 5006 7507 10008 
3 56 109 264 520 774 1028 2544 5063 7577 10088 
2 62 117 276 537 796 1053 2584 5118 7645 10167 
1 68 125 289 556 819 1080 2626 5178 7718 10252 

5 

5 49 98 248 497 746 995 2492 4989 7487 9985 
4 54 105 258 512 764 1016 2526 5037 7545 10052 
3 58 112 268 526 782 1037 2558 5082 7600 10115 
2 63 118 279 541 800 1058 2591 5129 7658 10183 
1 68 126 290 557 820 1081 2629 5182 7723 10257 

Positive Rate 

 

 
Figure 121 Positive Rate with Source Strength/Background with Different Values of b (Triangular, Traditional, 

Deterministic) 
 

N=2, n=2 N=2, n=1 

  
Figure 122 Positive Rate with Source Strength/Background with Different Values of n and b (Triangular, N=2, 

Deterministic) 
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N=3, n=3 N=3, n=2 

  
N=3, n=1  

 

 

Figure 123 Positive Rate with Source Strength/Background with Different Values of n and b (Triangular, N=3, 
Deterministic) 

 
 

N=4, n=4 N=4, n=3 

  
N=4, n=2 N=4, n=1 

  
Figure 124 Positive Rate with Source Strength/Background with Different Values of n and b (Triangular, N=4, 

Deterministic) 
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N=5, n=5 N=5, n=4 

  
N=5, n=3 N=5, n=2 

  
N=5, n=1  

 

 

Figure 125 Positive Rate with Source Strength/Background with Different Values of n and b (Triangular, N=5, 
Deterministic) 
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N=2 
b=50 

  
b=500 

  
b=5000 

  
Figure 126 Positive Rate with Source Strength for Different Values of n and Constant b (Triangular, N=2, Deterministic) 
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N=3 
b=50 

  
b=500 

  
b=5000 

  
Figure 127 Positive Rate with Source Strength for Different Values of n and Constant b (Triangular, N=3, Deterministic) 
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N=4 
b=50 

 
b=500 

 
b=5000 

Figure 128 Positive Rate with Source Strength for Different Values of n and Constant b (Triangular, N=4, Deterministic) 
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N=5 
b=50 

  
b=500 

 
b=5000 

 
Figure 129 Positive Rate with Source Strength for Different Values of n and Constant b (Triangular, N=5, Deterministic) 
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Sinusoidal 

Table 14 Calculated Values of y* at Backgrounds Strengths (Sinusoidal, Deterministic) 

  Background Strength 
N n 50 100 250 500 750 1000 2500 5000 7500 10000 
1 1 64 121 282 546 806 1065 2603 5145 7678 10205 

2 
2 57 110 266 522 777 1031 2550 5070 7586 10099 
1 66 123 286 552 814 1074 2616 5164 7701 10232 

3 
3 53 104 257 509 762 1013 2521 5030 7537 10042 
2 60 114 273 532 789 1046 2572 5102 7625 10144 
1 67 124 288 555 817 1078 2622 5173 7712 10245 

4 

4 51 101 251 502 752 1003 2504 5006 7507 10008 
3 56 109 264 520 774 1028 2544 5063 7577 10088 
2 62 117 276 537 796 1053 2584 5118 7645 10167 
1 68 125 289 556 819 1080 2626 5178 7718 10252 

5 

5 49 98 248 497 746 995 2492 4989 7487 9985 
4 54 105 258 512 764 1016 2526 5037 7545 10052 
3 58 112 268 526 782 1037 2558 5082 7600 10115 
2 63 118 279 541 800 1058 2591 5129 7658 10183 
1 68 126 290 557 820 1081 2629 5182 7723 10257 

Positive Rate 

 
Figure 130 Positive Rate with Source Strength/Background with Different Values of b (Sinusoidal, Traditional, 

Deterministic) 
 

N=2, n=2 N=2, n=1 

  
Figure 131 Positive Rate with Source Strength/Background with Different Values of n and b (Sinusoidal, N=2, 

Deterministic) 
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N=3, n=3 N=3, n=2 

  
N=3, n=1  

 

 

Figure 132 Positive Rate with Source Strength/Background with Different Values of n and b (Sinusoidal, N=3, 
Deterministic) 

 
N=4, n=4 N=4, n=3 

  
N=4, n=2 N=4, n=1 

  
Figure 133 Positive Rate with Source Strength/Background with Different Values of n and b (Sinusoidal, N=4, 

Deterministic) 
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N=5, n=5 N=5, n=4 

  
N=5, n=3 N=5, n=2 

  
N=5, n=1  

 

 

Figure 134 Positive Rate with Source Strength/Background with Different Values of n and b (Sinusoidal, N=5, 
Deterministic) 

 
  



143 
 

N=2 
b=50 

  
b=500 

  
b=5000 

  
Figure 135 Positive Rate with Source Strength for Different Values of n and Constant b (Sinusoidal, N=2, Deterministic)  
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b=5000 

  
Figure 136 Positive Rate with Source Strength for Different Values of n and Constant b (Sinusoidal, N=3, Deterministic) 
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b=50 

  
b=500 

  
b=5000 

  
Figure 137 Positive Rate with Source Strength for Different Values of n and Constant b (Sinusoidal, N=4, Deterministic) 
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N=5 
b=50 

  
b=500 

  
b=5000 

  
Figure 138 Positive Rate with Source Strength for Different Values of n and Constant b (Sinusoidal, N=5, Deterministic) 
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Poisson 

Table 15 Calculated Values of y* at Backgrounds Strength (Poisson, Deterministic) 

  Background Strength 
N n 50 100 250 500 750 1000 2500 5000 7500 10000 
1 1 62 117 276 537 795 1052 2583 5117 7643 10165 

2 
2 55 108 262 517 771 1024 2538 5054 7566 10076 
1 64 120 281 544 804 1062 2598 5139 7670 10196 

3 
3 52 103 255 507 759 1010 2517 5024 7529 10033 
2 58 111 267 525 780 1035 2555 5078 7595 10110 
1 66 122 284 548 809 1068 2607 5151 7684 10213 

4 

4 50 101 251 501 752 1002 2503 5005 7506 10007 
3 55 107 261 515 769 1021 2534 5048 7559 10068 
2 59 113 271 529 786 1041 2565 5092 7612 10130 
1 66 123 286 551 812 1071 2612 5159 7694 10224 

5 

5 49 99 248 497 746 996 2494 4991 7489 9987 
4 53 104 256 509 761 1013 2520 5029 7535 10040 
3 56 109 264 520 774 1028 2544 5062 7576 10088 
2 60 114 273 532 789 1045 2572 5101 7624 10143 
1 67 124 287 553 814 1074 2617 5165 7702 10233 

Positive Rate 

 
Figure 139 Positive Rate with Source Strength/Background with Different Values of b (Poisson, Traditional, 

Deterministic) 
 

N=2, n=2 N=2, n=1 

  
Figure 140 Positive Rate with Source Strength/Background with Different Values of n and b (Poisson, N=2, Deterministic) 
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N=3, n=3 N=3, n=2 

  
N=3, n=1  

 

 

Figure 141 Positive Rate with Source Strength/Background with Different Values of n and b (Poisson, N=3, Deterministic) 
 

N=4, n=4 N=4, n=3 

  
N=4, n=2 N=4, n=1 

  
Figure 142 Positive Rate with Source Strength/Background with Different Values of n and b (Poisson, N=4, Deterministic) 
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N=5, n=5 N=5, n=4 

 
N=5, n=3 N=5, n=2 

 
N=5, n=1  

 

Figure 143 Positive Rate with Source Strength/Background with Different Values of n and b (Poisson, N=5, Deterministic) 
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Figure 144 Positive Rate with Source Strength for Different Values of n and Constant b (Poisson, N=2, Deterministic) 

 



151 
 

N=3 
b=50 

  
b=500 

  
b=5000 

  
Figure 145 Positive Rate with Source Strength for Different Values of n and Constant b (Poisson, N=3, Deterministic) 
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Figure 146 Positive Rate with Source Strength for Different Values of n and Constant b (Poisson, N=4, Deterministic) 
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Figure 147 Positive Rate with Source Strength for Different Values of n and Constant b (Poisson, N=5, Deterministic) 
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Gaussian 

Table 16 Calculated Values of y* at Backgrounds Strengths (Gaussian, Deterministic) 

  Background Strength 
N n 50 100 250 500 750 1000 2500 5000 7500 10000 
1 1 62 116 277 537 795 1052 2582 5116 7642 10164 

2 
2 55 108 262 517 771 1024 2538 5054 7566 10076 
1 64 120 281 544 804 1062 2598 5138 7669 10195 

3 
3 52 103 255 508 759 1011 2517 5024 7529 10034 
2 58 111 267 525 780 1035 2555 5078 7595 10110 
1 65 121 284 547 808 1067 2606 5150 7684 10212 

4 

4 50 101 251 502 752 1002 2503 5005 7506 10007 
3 55 107 261 515 769 1021 2534 5048 7559 10068 
2 59 113 270 529 785 1041 2565 5092 7612 10130 
1 66 122 285 550 811 1071 2612 5158 7693 10223 

5 

5 49 99 248 497 747 996 2494 4991 7489 9988 
4 53 104 256 509 761 1013 2520 5029 7535 10041 
3 56 109 264 520 774 1028 2544 5062 7576 10088 
2 60 114 273 532 789 1045 2571 5101 7624 10143 
1 66 123 287 552 813 1073 2616 5164 7701 10232 

Positive Rate 

 
Figure 148 Positive Rate with Source Strength/Background with Different Values of b (Gaussian, Traditional, 

Deterministic) 
 

N=2, n=2 N=2, n=1 

  
Figure 149 Positive Rate with Source Strength/Background with Different Values of n and b (Gaussian, N=2, 

Deterministic) 
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N=3, n=3 N=3, n=2 

  
N=3, n=1  

 

 

Figure 150 Positive Rate with Source Strength/Background with Different Values of n and b (Gaussian, N=3, 
Deterministic) 

 
N=4, n=4 N=4, n=3 

  
N=4, n=2 N=4, n=1 

  
Figure 151 Positive Rate with Source Strength/Background with Different Values of n and b (Gaussian, N=4, 

Deterministic) 
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N=5, n=5 N=5, n=4 

  
N=5, n=3 N=5, n=2 

 
N=5, n=1  

 

Figure 152 Positive Rate with Source Strength/Background with Different Values of n and b (Gaussian, N=5, 
Deterministic) 
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Figure 153 Positive Rate with Source Strength for Different Values of n and Constant b (Gaussian, N=2, Deterministic) 
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Figure 154 Positive Rate with Source Strength for Different Values of n and Constant b (Gaussian, N=3, Deterministic) 
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Figure 155 Positive Rate with Source Strength for Different Values of n and Constant b (Gaussian, N=4, Deterministic) 



160 
 

N=5 
b=50 

  
b=500 

  
b=5000 

  
Figure 156 Positive Rate with Source Strength for Different Values of n and Constant b (Gaussian, N=5, Deterministic) 
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At Least v. Exact 

Traditional  

 

 

N=2, n=2 N=2, n=1 

 
% Difference, N=2, n=1  

 

Figure 157 Positive Rate with Source Strength Comparison of Exact and At Least Conditions for Different n Values 
(Gaussian, N=2, b=500, Stochastic) 
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Traditional  

 

N=2, n=2 N=2, n=1 

 
% Difference, N=2, n=1  

 

 

Figure 158 Time at First Detection with Source Strength Comparison of Exact and At Least Conditions for Different n 
Values (Gaussian, N=2, b=500, Stochastic) 
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Distribution of Positive and Time at First Detection 

1 5 

  
10 15 

  
35 50 

  
Figure 159 Probability Density Function for Time at First Detection for Different Source Strengths (Gaussian, N=3, 

b=500, Stochastic) 
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Traditional 3 s 

  
N=3, n=3 N=3, n=2 

  
N=3, n=1  

 

 

Figure 160 Probaility Density Function for Time at First Detection for Different n Values (Gaussian, N=3, b=500, 
Stochastic) 
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Traditional N=3, n=3 

  
N=3, n=2 N=3, n=1 

  
Figure 161 Probability Density Function Comparison for Time at First Detection between Measurement and Geometric 

Distribution (Gaussian, N=3, b=500, Stochastic) 
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Uniform 

Comparison of Measurement Simulation Techniques 

1 3 

  
5 8 

  
Figure 162 Probability Density Function Comparison for Two Measurement Simulation Techniques for Different Source 

Strengths (Rectangular, b=500, s=1, 3, 5, 8, Stochastic)  
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30 50 

  
Figure 163 Probability Density Function Comparison for Two Measurement Simulation Techniques for Different Source 

Strengths (Rectangular, b=500, s=10, 15, 30, 50, Stochastic) 
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Traditional  

 

 

N=2, n=2 N=2, n=1 

  
Figure 164 Positive Rate with Source Strength Comparison for Two Measurement Simulation Techniques (Rectangular, 

b=500, Stochastic) 
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Traditional  

 

 

N=2, n=2 N=2, n=1 

  
Figure 165 Time at First Detection with Source Strength Comparison for Two Measurement Simulation Techniques 

(Rectangular, b=500, Stochastic) 
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Figure 166 Positive Rate with Source Strength for Different n and N Values (Rectangular, b=500, Stochastic) 
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Figure 167 Time at First Detection with Source Strength for Different n and N Values (Rectangular, b=500, Stochastic) 
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Figure 168 Probability Density Function Comparison for Two Measurement Simulation Techniques for Different Source 

Strengths (Triangular, b=500, s=1, 3, 5, 8, Stochastic)  
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Figure 169 Probability Density Function Comparison for Two Measurement Simulation Techniques for Different Source 
Strengths (Triangular, b=500, s=10, 15, 30, 50, Stochastic) 
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Figure 170 Positive Rate with Source Strength Comparison for Two Measurement Simulation Techniques (Triangular, 

b=500, Stochastic) 
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Figure 171 Time at First Detection with Source Strength Comparison for Two Measurement Simulation Techniques 

(Triangular, b=500, Stochastic) 
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Figure 172 Positive Rate for Different n and N Values (Triangular, b=500) 
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Figure 173 Time at First Detection for Different n and N Values (Triangular, b=500)  
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Figure 174 Probability Density Function for Two Measurement Simulation Techniques for Different Source Strengths 

(Sinusoidal, b=500, s=1, 3, 5, 8, Stochastic)  
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Figure 175 Probability Density Function for Two Measurement Simulation Techniques for Different Source Strengths 
(Sinusoidal, b=500, s=10, 15, 30, 50, Stochastic) 

 
 

 
  



181 
 

Traditional  

 

 

N=2, n=2 N=2, n=1 

  
Figure 176 Positive Rate with Source Strength for Different n and N Values Comparison for Two Measurement 

Simulation Techniques (Sinusoidal, b=500, Stochastic) 
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Figure 177 Positive Rate with Source Strength for Different n and N Values Comparison for Two Measurement 

Simulation Techniques (Sinusoidal, b=500, Stochastic) 
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Figure 178 Positive Rate with Source Strength for Different n and N Values (Sinusoidal, b=500, Stochastic) 
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Figure 179 Time at First Detection with Source Strength for Different n and N Values (Sinusoidal, b=500, Stochastic) 
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Figure 180 Probability Density Function Comparison for Two Measurement Simulation Techniques for Different Source 

Strengths (Poisson, b=500, s=1, 3, 5, 8, Stochastic) 
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Figure 181 Probability Density Function Comparison for Two Measurement Simulation Techniques for Different Source 

Strengths (Poisson, b=500, s=10, 15, 30, 50, Stochastic) 
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Figure 182 Positive Rate with Source Strength Comparison for Two Measurement Simulation Techniques (Poisson, 
b=500, Stochastic) 
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Figure 183 Time at First Detection with Source Strength Comparison for Two Measurement Simulation Techniques 
(Poisson, b=500, Stochastic) 
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Figure 184 Positive Rate with Source Strength for Different n and N Values (Poisson, b=500, Stochastic) 
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Figure 185 Time at First Detection with Source Strength for Different n and N Values (Poisson, b=500, Stochastic) 
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Figure 186 Probability Density Function Comparison for Two Measurement Simulation Techniques for Different Source 

Strengths (Gaussian, b=500, s=1, 3, 5, 8, Stochastic) 
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Figure 187 Probability Density Function Comparison for Two Measurement Simulation Techniques for Different Source 
Strengths (Gaussian, b=500, s=10, 15, 30, 50, Stochastic) 
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Figure 188 Positive Rate with Source Strength Comparison for Two Measurement Simulation Techniques (Gaussian, 

b=500, Stochastic) 
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Figure 189 Positive Rate with Source Strength Comparison for Two Measurement Simulation Techniques for Different 

Background (Gaussian, N=2, b=50, b=500, b=5000, Stochastic) 
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Figure 190 Positive Rate with Source Strength Comparison for Two Measurement Simulation Techniques for Different 
Background (Gaussian, N=3, b=50, b=500, b=5000, Stochastic) 
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Figure 191 Positive Rate with Source Strength Comparison for Two Measurement Simulation Techniques for Different 

Background (Gaussian, N=4, b=50, b=500, b=5000, Stochastic) 
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Figure 192 Positive Rate with Source Strength Comparison for Two Measurement Simulation Techniques for Different 

Background (Gaussian, N=5, b=50, b=500, b=5000, Stochastic) 
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Figure 193 Time at First Detection with Source Strength Comparison for Two Measurement Simulation Techniques for 

Different Background (Gaussian, N=2, b=50, b=500, b=5000, Stochastic) 
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Figure 194 Time at First Detection with Source Strength Comparison for Two Measurement Simulation Techniques for 

Different Background (Gaussian, N=3, b=50, b=500, b=5000, Stochastic) 
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Figure 195 Time at First Detection with Source Strength Comparison for Two Measurement Simulation Techniques for 

Different Background (Gaussian, N=4, b=50, b=500, b=5000, Stochastic) 
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Figure 196 Time at First Detection with Source Strength Comparison for Two Measurement Simulation Techniques for 
Different Background (Gaussian, N=5, b=50, b=500, b=5000, Stochastic) 
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Figure 197  Time at First Detection Probability Density Function with Source Strength for Different Distributions (N=3, 

b=500, Stochastic) 
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Positive Rate 

 
Figure 198 Positive Rate for Different n Values Comparison for Simulation and Measurement (Gaussian, b=669.24 C/s, 

N=2, Stochastic) 
 

 
Figure 199 Positive Rate for Different n Values Comparison for Simulation and Measurement (Gaussian, b=669.24 C/s, 

N=3, Stochastic) 
 

 
Figure 200 Positive Rate for Different n Values Comparison for Simulation and Measurement (Gaussian, b=669.24 C/s, 

N=4, Stochastic) 
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Figure 201 Positive Rate for Different n Values Comparison for Simulation and Measurement (Gaussian, b=669.24 C/s, 

N=5, Stochastic) 
 

Simulation Measurement 

  
Figure 202 Positive Rate Probability Density Function Comparison for Simulation and Measurement for Different n 

Values (Gaussian, N=2, Stochastic) 
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Figure 203 Positive Rate Probability Density Function Comparison for Simulation and Measurement for Different n 
Values (Gaussian, N=2, Stochastic) 
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Figure 204 Positive Rate Probability Density Function Comparison for Simulation and Measurement for Different n 

Values (Gaussian, N=3, Stochastic) 
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Figure 205 Positive Rate Probability Density Function Comparison for Simulation and Measurement for Different n 

Values (Gaussian, N=3, Stochastic) 
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Figure 206 Positive Rate Probability Density Function Comparison for Simulation and Measurement for Different n 

Values (Gaussian, N=4, Stochastic)  
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Figure 207 Positive Rate Probability Density Function Comparison for Simulation and Measurement for Different n 
Values (Gaussian, N=4, Stochastic) 
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Figure 208 Positive Rate Probability Density Function Comparison for Simulation and Measurement for Different n 

Values (Gaussian, N=5, Stochastic) 
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Figure 209 Positive Rate Probability Density Function Comparison for Simulation and Measurement for Different n 

Values (Gaussian, N=5, Stochastic) 
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Time at First Detection 

 
Figure 210 Time at First Detection for Different n Values Comparison for Simulation and Measurement (Gaussian, 

b=669.24 C/s, N=2, Stochastic) 
 

 
Figure 211 Time at First Detection for Different n Values Comparison for Simulation and Measurement (Gaussian, 

b=669.24 C/s, N=3, Stochastic) 
 

 
Figure 212 Time at First Detection for Different n Values Comparison for Simulation and Measurement (Gaussian, 

b=669.24 C/s, N=4, Stochastic) 
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Figure 213 Time at First Detection for Different n Values Comparison for Simulation and Measurement (Gaussian, 

b=669.24 C/s, N=5, Stochastic) 
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Figure 214 Time at First Detection Probability Density Function Comparison for Simulation and Measurement for 

Different n Values (Gaussian, N=2, Stochastic)  
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Figure 215 Time at First Detection Probability Density Function Comparison for Simulation and Measurement for 
Different n Values (Gaussian, N=2, Stochastic) 
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Traditional N=3, n=3 

Figure 216 Time at First Detection Probability Density Function Comparison for Simulation and Measurement for 
Different n Values (Gaussian, N=3, Stochastic) 
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Figure 217 Time at First Detection Probability Density Function Comparison for Simulation and Measurement for 
Different n Values (Gaussian, N=3, Stochastic) 
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Figure 218 Time at First Detection Probability Density Function Comparison for Simulation and Measurement for 

Different n Values (Gaussian, N=4, Stochastic) 
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Figure 219 Time at First Detection Probability Density Function Comparison for Simulation and Measurement for 
Different n Values (Gaussian, N=4, Stochastic) 
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Figure 220 Time at First Detection Probability Density Function Comparison for Simulation and Measurement for 

Different n Values (Gaussian, N=5, Stochastic)  
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Figure 221 Time at First Detection Probability Density Function Comparison for Simulation and Measurement for 

Different n Values (Gaussian, N=5, Stochastic) 
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