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ABSTRACT

IMPROVED DETECTION OF RADIOACTIVE MATERIAL USING A SERIES OF

MEASUREMENTS

The goal of this project is to develop improved algorithms for detection of ragmact
sources thahave low signal compared to background. The detection of low signal sources is of
interest in national security applications where the source may have weakgdoradiation
emissions, is heavily shielded, or the counting time is short (such as portabrmgh
Traditionally to distinguish signal from background the decision threshojds(galculated by
taking a long background count and limiting the false negative error (a error) to 5%. Some
problems with this method include: background is constantly changing due to natural
environmental fluctuations and large amounts of data are being taken as the detector
continuously scans that are not utilized.

Rather than looking at a single measurement, this work investigates lookingrigsaofV
measurerants and develops an appropriate decision threshold for exceeding the decision
thresholdn times in a series df. This methodology is investigated for a rectangular, triangular,

sinusoidal, Poisson, and Gaussian distribution.
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INTRODUCTION

Radioactive material contains atoms whose nucleuastable and undergo radioactive
decay. During radioactive decay, a particle and/or electromagnetic radiagontted from the
unstable nucleusn many instances, multiple decays will occur utti¢ resuing nucleuss a
more stablenucleus Types ofradioactive dscay include the emission of a beta particle (neutron
rich nucleus), alpha particle (heavy nucleus), positron particle (proton rich Huaéacron
capture (proton rich nucleus), and gamma emission (isomeric trangitijof@]. Other more
exotic types of radioactive decay include neutron emission, proton emission, spostasson
(heavynucleus), and cluster decay.

Radioactive decay is an inherently random process andxiue time of decayfor an
atom cannot be predicted. Instead, the behavior of a population of radioactive aleswilzed
through the halfife and mean life. The halife and mean life are properties of the atom and are
independent of the chemical and plral state of the atorfi]. The halflife for a particular
radionuclide is the time period needed for the population to reduce to half of the origirgal val
The decrease in population, over timeis described through Equah 1, whereN, is the
original population and is the transformation constant or the fractional population decrease per

unit time (Equatior®).

N = Nye™* 1
In(2)
A= T 2

2

The mean life(r) is the average of the lifetimes of all the individual atoms &snd

described through Equation 3.



T1
1 5 3

~ 21 In(2)

For radioactive decay, in addition to the change in population, the a¢dyity numbe
of disintegrations per unit time is an important paramédtkee activity is simply the population
multiplied by the transformation constant

A=AN 4

Equation lcan be rewritten in terms of the activity by multiplying both sides of the

equation by the decay constawhereA, is the original activity
A=Aje 5

Radioactive material is naturally presemt the environment. Sources of natural
background radiation include radionuclides from the creation of the universe (pribhardia
those created from cosmic ray interactions (cosmogg2licRadioactive material has alsoebe
created by man and contributes to background radiation. One of the goals of heafth ighysi
accurately quantify radiation levels for applications such as regulatorylieaoog andrisk
assessments. Techniques for measurement of radioactive n@ddpeald on the energy and type
of emitted particles, as well as desired measurement quantity. The measuyeamdity of
interest for this work is raw counts in a detection system.

Counting statistics are used to describe measurements ofchde decaybecause
radioactive decais a random process, there will be a degree of uncertainty in all measurements.
Statistics can be used to check the performance of a detector by compaeatgrdikictuations
with those predicted from statistical modéPois®n); or to estimate the uncertainty on a single

measuremeris].



Sources of background, detection of radiation, statistics basics, sta@statgsis for
radiation measurement, and the statistical analysis of background@rssed in more depth in

the following sections.

Sour ces of Background

Sources of background for the measurement of radioactive material includecdoackg
radiation and background from the detector, such as electronic noise. Radiatios saarbe
divided into natural background sources and -made radiation sources. Sources of public
exposure to ionizing radiation were investigabgdhe National Council on Radiation Protection
(NCRP)in Report 160 in 2009. The findings of the report were that half of public exposures are
due to manmade sources and the remaining exposure comes from natural background sources.
The relative contribution of each source is showhRigurel, where natural sources are shown in

blue and man-made sources are shown in purple [4].
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Figure 1 Sour ces of Radiation Exposure (U.S.) [4]



Sources of backgroundadiation of interest for th study include radon and thorium
cosmic radiation, consumer products (such as building materials), and isotopesdustrial

and occupational uses.

Detection of Radiation

The detection of radiation is accomplished by cotivg the radiation of interest into a
signal that can be processed and analyzed dstectionsystem. The response of the detector
needs to be proportional to the radiation effect or property being measured. Ther detece
component of a system wheslesired output is an electrical pulse that can be analyzed. The
result is a chain of components, also known as a signal processing chain. A signeh

processing chain for radiation detection is displaydeignre?2.

Counter
[ Timer

Detector Preamplifier Amplifier Discriminator

Detector Bias

Figure 2 Typical Signal Processing Chain for Radiation Detector

The radiation interacts in the material of the detector; the desired resppnsgagional
to the measured radiation property, such as energy deposited or raw counts. Inseanthea
detector response signal is small compared to noise and doesveoa ltesired shape. The
signal from the detector is passed through a preamplifier which powers thedatetextracts
the detector signal while maximizing the signal to noise ratio. The preamplifteslzpes the

signal to make it optimal for procesgiby the amplifier, whiclurther shapes and amplifies the



signal. The signal is passed through a discriminator, which uses lower and upper bounds to
eliminate any information that is not signal (such as noise). The discriminatartatpogic
pulse, which is counted by the counter/timer.

Some newer detection systems incorporate detector bias, amplifier, discrimarato
counter time into one component, a digital signal processor; such that thesiygiéh processor
provides power to the preamplifiand shapes the preamplifier signal into a useable form that is
used internally to obtain counting data. The signal processing chain for a detestem #yat

uses a digital signal processor is showRigure3.

Digital Signal
Processor

Detector Preamplifier

Figure 3 Signal Processor Chain for a Radiation Detector using a Digital Signal Processor

Three main types of detectors are used for radiation detectioffillgdsdetectors,
scintillation detectors, ansemiconductodetectors. The three detector types mostly differ in the
material used to convert the radiation into a signal. The methodéoghis project can be
incorporated into any detection system, but the main detector that will bésusestintillation
detector, specifically a Sodium lodide detector.

In a scintillation detector, the radiation interacts in the scintillation mediupnoduce
scintillation light. The scintillation in a Sodium lodide detector occurs within ausoddide
crystal due to the crystalline structure. The scintillation light is convertegmedectrical signal
using a photomultiplier tubghotocathode) and to amplify the signal (dynodes). The resulting
electrical signal is proportional to the energy deposited within the scintillatiotalctys the
interacting radiation such that energy discrimination can be accomplisisedlium lodide

detectorsare designed to detephotons (gammas andrays). Sodium iodide crystals readily



absorb water and must be housed in an airtight container. The use of the airtight calgainer

preventghe penetration of the crystal by betas and alphas.

Satistics Basics

Random variables are used to describe processes that are random. Each value for the
random variable corresponds to an outcome of an experiment or random event. Although the
individual outcomes of the event or experiment cannot be accurately predictedgtrency of
each outcome over a long series is stable. The frequency of each outcome iseth@rwn as
the probability of an event occurring. The random variable takes on a set of the possible
outcomes of the experiment or random event, each with an associated probabdityroénce
For example, in the case of radioactive decay, the random event would be whether or not the
atom decays within the next time period, The random variable would consist of two
possibilities: decay occurred or decagt dot occur; the probability associated with the random
event, radioactive decay, occurring is related to the half-life and the dmtstpiat.

Two types of random variablesn be distinguished: discrete and continuous. For each
type of variable therexést several probability distributions that describe the occurrence of the

random variable. Terminology is presein Tablel, for reference.

Table 1 Terminology for Probability Distributions

Variable Discrete Continuous
X Discrete Random Variable X Continuous Random Variable X
X Outcomes of X X Outcomes of X X
P(X =x) Probability Mass Function p(x) Probability Density Function  f(x)
Cumulative Distribution Cumulative Distribution
P(X = x) Function F(x) Function F(x)

Discrete random variables contain a finite or countable number of distitetimesFor
a discrete random variab} the random variable can be descrilleugh a set of n possible

values or outcomes (Equatioh 6



X =Xq1,X9, 0, Xp, 6
For each valuer, an associated probability of occurrence can be identifi¢d:= x),
otherwise known as the probability mass funcgigm). The total probability for all occurrences

of x is 100%, or 1, giving rise to the following properties of the probability mass dancti

e p(x) must be between 0 and 1 for all 7

o Y.p(x)=1forn values ob(x) 8

The cumulative distribution functiodescribeghe probability of a random selection of the
random variableX that yields a value lessqualthanx, or F(x) = P(X < x). The cumulative

distribution function can be related to the probability mass function by the following@gua

FO) =P <) = ) p(x) 9
i=1

Since, the probability mass functipix) = P(X = x) must be greater than or equal to 0, the

cumulative distribution function Isahe following characteristics:

e F(x)isanon-decreasing function of x

10
o F(—)=lim,, F(y)=0 11
o F(o)=lim, o F(y)=1 12

The expectation valug;(X), for a random variable is the stochastic mean value and is
the first moment foX [5] [6]. For a discrete random variable, the expectation value is calculated
by summing the product of each individual value x by the probability of occurfenat x:

E(X) = pr(x) =u 13

X

Similarly, the expectation for a function ¥f g(X), is calculated using Equation 14.

7



E(g00) = ) g@p() 14

The varianceV (X), for a distribution is a measure of the dispersion of the random
variableX and is the second central momentXofindis calculated through Equatidtb. The

square root of the variance is known as the standard deviation [5].

V(X) = E(X — E(X)” = E(X?) — E(X)? 15

Discrete distributions such as the binomial distribution, geometric distributioativeeg
binomial distribution, hypergeometric distribution, and Poisson distribution are derived using
discrete random variables. Binomial and Poisson distributions are used frequendlgidtion
detection and will be discussed more in depth.

Continuous random variablese random variables that are defined for any value in an
interval. For continuous random variables, a probability density funcfign), is defined,
similar to theprobability mass function for discrete random variables. However, unlike for
discrete radom variables, the probability density distribution is defined for any value in an

interval. The probability density distribution has the following characteristics:

e f(x) must be between 0 and 1 forall-co < x < 16
o J” f(x)dx =1 forall values off (x) 17

The cumulatre distribution function ofX, F(x), is the probability that a random
selection ofX yields a value less than or equalxoor P(X < x). The cumulative distribution

function is related to the probability density distribution by Equations 18 and 19.

F(x)=PX<x)= fx f(t)dt 18



dF
flx) = —dch) = F'(x) 19

The cumulative distribution function has the following properties:

e F(x) is a non-decreasing function.of 20
e F(—o)=lim,,_F(x)=0 21
e F(0)=lim,,,F(x)=1 22

The probability thatX falls within a certain interval betweem =a and x =b is
calculated by integrating the probability density distribution framo b, as described in
Equation 23.

b
P(a<X<bh) =] f(x)dx 23

a

The expectation value, or stochastic mean, for a continuous random vafiable

calculated by integrating the probability density multipliedcdgr all x (Equation 23

E(X) = f S fO0dx 24

Similarly, the expectation value for a functionofs calculated using Equation 25.

E(g(X)) = f 900 f (W) dx 25

Continuous distributions such as the uniform distribution, gamma distribution, beta
distribution, and Gaussian distribution are derived using continuous random variables. The
uniform distribution and Gaussian distribution have important uses in counting statisticdland wi

be discussed more in depth. A triangular and sinusoidal distribution will also be discusse



The probability mass function for the binomial and Poisson distrikgjtiand the
probability density function for the Gaussian distribution will be discussed in thmving
sections; while the parameters for the uniform, triangular, and sinusoidabutisins will be
discussed here, the methodology for deriving the piibtyadistributions will be discussed in
Materials and Methods, and the derivatioihequations useavill be derived in Preliminary

Results.

Binomial Distribution

The binomial distribution is used to describe a sequence of Bernoulli trials, ih @dgt
trial is independent and has one of two outcomes: success or failure. The probabilityes$,succ

p, and the probability of failurey, sum to unity, such that:

q= 1-— D 26
For n trials, the probability of successes (probability distributiois)calculated through

Equation 27or x € (0,n) andp € (0,1).

n _ n _
pC) = () p*a" = () p* — )" 27
The paramete(;l) is the binomial coefficient and takes into accothd number of

outcomes X) in an unordered set of objects The binomial coefficient also acts as a
normalization coefficient to ensure that characteristics in Equati@msl 8 for the probability
mass function areatisfied. The binomial coefficient calculated through Equation 28.

n n!

(X) Cxl(x —n)! 28
The expectation value, or mean, of the binomial distribus@alculated using Equation

13:

10



EX)=u=mnp 29

Similarly, the variance of the distributiongalculated using Equation 15:

V(X) = npq =np(1—p) 30

The binomial distribution describes radioactive decay well. In radioadeeay, there

are two outcomes: a decay occurs or a decay does not occur. If the number sesuclEzays)
is small compared to the population (total number of radioactive particles) the popuwdtibe

approximately constant and the trials can be considered independent.

The probability of success and the probability of failure can be calculated bpdoatki
Equation 1 This equation describes the number of radioactive atoms remaining after, & time

The probability of an atom surviving, or not decaying, can be calculated through Equation 31.

g=e M 31
Using the relationship between the probability of success and failure, adeéesari

Equation 26, the probability of successalculated as follog:

p=1-g=1—-eH 32
The probability ofx decays for a population n equalNoover a time period therefore

is calculated through the following equation.

p(x) = (1;/) (1 _ e—lt)x(e—/’lt)N—x 33

The mean number of decagscalculated using Equations 29 and 32.

E(X)=N(1—-e™) 34
If instead, the parametef mterest is the total number of atoms that have not decayed

(the remaining population of radioactive atoms), the expected value is givequiation35. If

11



the variables are reassigned such that N, andN — X = N, Equation35 reduces to Equation

1, as expected.

E(N—X)=Nqg=Ne™™ 35
While the binomial distribution is useful and accurate for describing radioaixtivay,

the presence of factorials in the binomiakefficient (Equation 23 renders it computationally
extensive; instead, approximations of the binomial distribution, such as the Poidgbntdis

and Gaussian distribution are often used.

Poisson Distribution

The Poisson distribution is an approximation of the binordistribution where the
probability of successs, is small(less than ~0.05) and the populatian,s large(greater than
~20). Additionally, the distribution is described in terms of the mean of the distributiovhich
is the same as the binommkan defined in Equation 34. When these approximations are applied
to Equation27, the probability mass function for the Poisson distributsodescribed through

Equation 3d@or u greater than zero.

X

p(x) =%e‘“ 36

The expected value for the Poisson distribution is the mgaithe variance of the

Poisson distribution can be calculated and is equal to the mean.

V(X)=u 37
The Poisson distribution works well for situations where the probability of suczess i

small, the population is large, and the mean value is already known.

12



For radioactive decay, the likelihood of radioactive decay in a very small pdrtode

can be described such that the probability of sucpesssmall.

Gaussian Distribution

The Gaussian distribution, oommal distributon, is an approximation to thenbmial
distribution for a large number of tria{g@p or n(1 — p) is greater than 10)it is also assumed
that the probability density function is narrow around the mean, sucinthat| < u [2]. The
resulting Gaussian distribution is continuous and symmetric across the meadefined in
terms of the meary, and the standard deviatiom, The equation for the Gaussian probability
density function is displayed in Equationf88 ¢ > 0 andu andx € (—oo, ).

1 _-w?
ame 202 38

A closed form of the integral of the Gaussian probability density function does sbt exi

f&) =

The evaluation of this integral is accomplished through numerical integration. Howadles
exist for quantile information for the standard normal distribution. The standard normal
distribution has a mean of zero, and standard deviation of one, such that the standard normal

probability density function for a random varialdlés:

2

1z
f(z)=Ee 2 39

The cumulative distribution functiofor the standard normal distribution is shown in
Equation 40 Although the integracannot beevaluaed in closed form, it can be analyzed
through numerical iegraton, which is presented inommal tablesfor the standard normal

distribution

13



z 1 72
F(Z) = f Ee_sz 40

Using normal tables important information can be calculated for the standardl norma
distribution, which carbe related back to the Gaussian density by relating the random variables

Z andX using Equation 41.

41

Uniform Distribution

The uniform distribution is defined at a constant valliehetweenx = a andx = b. A

plot of the probability density function for the uniform distribution is showRigure4.

(%)

a b X

Figure 4 Probability Density Function for the Uniform Distribution

Trianqular Distribution

The triangular distribution extends fram= a to x = b, with the peak of the triangle at
c. The peak height is(b) equal tod. For each leg of the triangle, the slopesbetweenx = a
and x = ¢ and m, betweenx =c¢ and x = b describe the functional dependence of the
probability density function. An example plot of the probability density functioma faangular

distribution is shown ifrigure5b.

14
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Figure 5 Praobability Density Function for the Triangular Distribution

Sinusoidal Distribution

The sinusoidaldistribution extends between=a and x = b, whereb < §+ a. An

example plot of the probability density function farsinusoidal distribution is displayed in

Figure6.

(x)
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Figure 6 Praobability Density Function for the Sinusoidal Distribution

Satistical Analysisfor Radiation Measurement
Since there is background radiation present at any given time and for any given
measurement, it is necessary &parate signal from background or noise. A level or limit

therefore needs to be chosen, such that if a sample contains aduoigherate or activity than

15



thatlimit it is considered radioactive, while if the sample has a lae@ent rate or activity than
thatlimit it is considered background.

Two possibleerrors are associated with assigning lemit to separatingsignal from
background: the, false positive error and thg false negative error. Theerror, or error of the
first kind, occurs when background radiation is falsely categorized as radigadthe S error,
or error of the second kind, occurs when a signal is falsely categorized as backgrouatkelhe
positive and negative errors are showirigure7 for a background and signdistributionwith

an arbitrarily chosen limit.

signal

(x)

background

_— o error

limit x (Count Rate)

Figure 7 False Positive and False Negative Errorsfor a Background and Signal Distribution

The three characteristic limits for radiation detection are defined by 19291 dlecision
threshold, detection limit, and limits ahe confidence interval. The decision threshold,
previously also called the critical level, is the levieelow which a measurementesult is
considered background and above whitit measurement residtconsidered radioactive. This
limit is considered an investigatory level, but does not give any information abeaticket
capabilities. The limit is derived by limiting the false positive error on the bagkdroount rate
spectrum. The detection limit is used to specify detection capabilities ofdadeteis derived

by limiting the false positive error for background ahd false negativeerror for signal. The

16



limits of the confidence interval specifies an interval in which the true values exik a certain
confidence.

For this work, the characteristic limit of concern is the decision threshold. 8iace
decision threshold is based on the background distribution only the probability function for

background needs to be known.

Satistical Analysis of Background

Five distributions will beinvestigated Poisson distribution, Gaussian distribution,
uniform distribution, triangular distribution, and sinusoidal distribution. These ldiitins
correspond to commonly seen distributions in three dasnaount space, energy space, and
time space.

Statistical fluctuations within count space could be due to the natural decay process or
variations in detector response. Radioactive decay is best modeled by the BiRoms&dn, and
Gaussian distributions, depending on the population of radioactive atoms and the decay rate.

Statistical fluctuations in energy space include fluctuations from Comptdgroand
and variations in the total energy deposited by radiation. Compton background would be most
accuraely described by a uniform distribution, while variations in total energpsieed would
be best modeled by a Binomial, Poisson, or Gaussian distribution.

Fluctuations in time space could take any of the five distributions discussed, dgpendin
on the nature of the time fluctuations. For instance, radon undergoes cyclical pdépeamling
on the time of day, and would be accurately modeled by the sinusoidal distribution. The
withdrawal or removal of a source could be modeled by a triangular diginbthat

approximates a line.
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PURPOSEAND HYPOTHESIS

The goals of this project are to improve the detection and identification capalafities
currently deployed and future instruments to detect radioactive mater@aiovements would
include reliable detection at lower signal levels than previous (higher padeivificationrate),
quicker detection than conventional techniques (lower time at first detection), antdoreddic
nuisance alarms (lower false positive rate).

Conventionally, determination if activity is present is accomplished by looking a
whether a single measurement exceeds a decision threshold. This thesis asesses
effectiveness of looking at a series of measurements, rather than lookary iatlividual

measuremenb define a suitable decision threshold.
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LITERATURE REVIEW

The development of an updating decision threshold has been explored for Bayesian and
classical statistics for a Gaussian distribution of counts. Bayesian asdalsstatistics differ in
their treatment of unknown parameters that represent populationctenestecs. In classical
statistics parameters are treated as fixed quantities, while in Bayesian statasticsgpers are
thought of as random variables with a probability distribution (prior distribution). Sdrdpta
(likelihood function) is used with the prior distribution to develop a posterior distribuBn.
informing theposterior distributiorwith the likelihood function, the resulting distributiovill
then more accurately represent the population. In contrast, clasatcstlcst relies onery large
number sampling that converges to the true value.

Due to thevariable nature of Bayesian statistics, it is useful for the analysis of
background radiation. Bayesian statistics was used by Klumpp et al to chagaotakground
during a counting measurement when the instantaneous background count rate wad [7dt fixe
A moving target method was developed, which allowed for the background coutd vaitey
with time. A benefit of this method is variations in radiatibackground can be taken into
account, such as time, location, and detector statistics. The mean was modelBdissm
mean, while the variation and the uncefygion the average count rate wer®deledby a
gamma distribution. By using a moving tatgnethod, the mean was calculatedbe 50%
higher than with a fixed target methpd.

In addition, Klumpp and Brandl used a Bayesian approach that took into account energy
information by dividing the energy ran@é the detectointo different energy bing3]. A two

energy bin detector, eleven energy bin detector, and gross count rate de¢eetovestigated
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The authordound that the average run lengths for the two energy andrekavergy detectors
were less tharor the gross count rate detectfor all modeled count rates. Additionaliye
detection probability for the two energy and eleven energy detectors was rgheh e result
was a lower level of detection that was approximately half of the grossredentetectof8].

An analysis of background radiation using classical statistics for a movategnsywvas
performed by Brandl and Jimenfy. Improvements in the decision threshold were about 11%.
A more rigorous analysis wakevelogd by Brandl for a Gaussian distribution of coufritQ].

The decision thresholdvas updated by keeping the probability of exceeding the decision
threshold constant, such that the cumulative probability for the next measurecesdieg the
decision threshold was. An equation for an updating false positive ertgy,,,, was developed

as follows:

(n+ DN —n)!

(anew)n+1(1 - anew)N_n = 0.05 (N n 1)! 42

The decision threshold was updateding the equation fow,,,. Depending on the
number of successes and total number of trials, the decision threshold was limxasenuch as

20%-50% of its original value [10].
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MATERIALS AND METHODS

The three main components to this project include the mathematical derigdtion

eqguations used, simulation of data, and implementation into a detection system.

Mathematical Derivation

Five different probability distributions were used for this work: the Poissonbditbn,
Gaussian distribution, uniform distribution, triangular distribution, and sinusoidaibdisin.
Of these five, the Poissadtistributionis the only discrete distributio.o calculate the decision
threshold for a series of measuremeaisewfalse positive error needs to be calculated for each
scenarig p. The new false positive error is used to keep the false positive rate for background
measurementsonstant.

To testwhether or not the decision threshdtt a series of measurementaproves
detection of radiation, equatisrfor the classicaldecision thresholdand for a series of
measurementhave beerdeveloped. The following steps are performed for the mathematical

derivation:

1. Development of the probability density distributions
2. Creating an equation far

3. Derivingy*

The development of the probability density function is accomplished by creating
equations for different regions of the probability density function and ensuring thati@osd
Equations 16and 17 are met. This is accomplished by solving for a constant such that the

integral of the probability density function is 1.
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1= f p(x)dx 43
The decision threshold for a time series is accomplished byirgea new false positive

error,p, thatkeeps the false positive rate for background measurerm@mitant. The probability
of exceeding the decision threshold can be calculated by setting the randomevériabl
Equation 27to be the probability that the decision threshold is exceeded. A success would be
when the decision threshold is exceeded. The probability of exceeding the deuisgilt
would bea, the false positive error; while the probability of failurelis- a. A series ofN
measurements iavestigatedand compared to the decision thresHolda single measurement
Two situations areassessedwhen exactlyn successes are desired (decision threshold is
exceededn out of N times) and when at least successes are desired in a seriesVof
measurements.

The classicaldecision threshold isleveloped by setting the integration frem to the

decision threshold;*, equal tol — a. The equation is then solved fof.

1—a=]yf(x)dx 44

Similarly, for the time series measurements, the decision threshoddbulated through

the following equation:

o= [ o -

An illustration of thecalculation of the decision threshold is provide&igure8.
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Figure 8 Decision Threshold for a Probability Density Function, f(x)

The probability density functiomvas sampled using Monte Carlo regling with the
inversion technique. For the functions analyzed, the probability distribution or curaulati
probability functionwere derived using Equatio® and Eqation 18 respectively. Inversion
sampling transforms a uniform distribution using the probability distribution or @fivel
distribution function, such that a non-uniform probability density function can be sampled.

A random numbery, is generated from a standard uniform distribution between 0 and 1.

A value forx is computed such that:

F(x)=u 46
The valuex is then the number drawn to describeThe continuous uniform random

variableU is related to the random varialleby the inversion:

X =FY(U) 47
Smulation of Data
Theoretical values were calculated usidgterministic and stochastic techniques
Calculations were performed with Excel,darandom numbers were generateing R a data
analysis softwareFor both techniques, the source probability density functioncvesgedtwo
different ways: as the sum of a probability density function for the samdea probability

density function for background; and as a probability density function of the sum oé smd
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background. For both deterministic and stochastic techniques, the predicted positive
identification rate wascalculated. Additionally using stochastic techniques the time at first
detection was calculated. Data wesienulated for all five discussed distributions.

Using deterministic techniques, the predicted positive rate was calculatedebyiting
the number of positives using the following equation, and dividing the kesthie total number

of trials.
y*
Positives =f f(x)dx 48

Implementation into a Detection System

A Model 8022x2 Scintillation detector by Canberra Industries Inc. (Meridan), was
used The scintillation detector assembhcludesa scintillation crystal, photomultiplier tube,
and light shield, contained in aluminum housing. The scintillation cris@l2” by 2” sodium
iodide (Nal) crystal. The detector has a resolution of 8.5% for the 662 keV péHKsf The
detector is attached at the base to a Model 2007P tube base and preamplifier. Thr@sighal
preamplifier is further processed using a digital signal processor; foappigcation, a Lynx
Digital Signal Processor by Canberra Industries Inc. (Meridan, @%)used.

The Lynx Digital Signal Processor provides high voltage ® detector, as well as
amplification and processing of the signal. The detectoratg® in several analysis modés,
this study,the multispectral scaling (MSS) mode is used. The MSS mode allows for continuous
pulse height analysis (PHA) spectral acdios; time between acquisitions is limited. The

following figure, Figure 9presentshe signal processing chain for the detector.
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Figure 9 Signal Processing Chain for a Nal (TI) Detector

Criteria Evaluated
The two main criteria evaluated were the positidentification rate and the time at first

detection. These two criteria were used to compare different situationdiig!

e Exact ancht least conditions

e Series length

e Number of successes in a series
e Different background strengths

e Different source strengths
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RESULTSAND DISCUSSION

The results are reported in the same ordehaglistributions are presented in Materials
and Methods -mathematical derivation, simulation of data, and implementation into a detection
system. Additionally, a comparison between the simulation data and the impleomeimtiat a

detection systerns presented

Mathematical Derivation

Each distribution is discussed individually and includes the derivation of the probabili
density function,classical decision threshold, time series decision threshold, and cumulative
distribution function After the discussion of each distribution, the development offalse

positive erroffor a time seriess described.

Uniform

The uniform distribution is unifornwhen x € (a, b). A depiction of the probability
density function for the uniform distribution is provided kigure 4 and Figure 10. The
probability density function for the uniform distributiésmcalculated by recognizing thathen

x € (a, b) the function is equal to a constant valdi¢Equation 49,

a<x<b d
49

fl) = {elsewhere 0

Using the characteristics of tipeobability density function outlirtein Equationsl6 and
17, the constant is determinedby setting the integral of the probability density function to 1

such that the probability density function is described by Equation 50.
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1
as<x<bh
f@) = b-a 50
elsewhere 0

In the case where = 0, Equation 50educes to:

1
0<x<b —

f@) = b 51
elsewhere 0

Once the probability density function is known, the decision threshd]ds determined
using Equation 44A symbolicdepictionof the calculation of* is provided inFigure 10, and

the equation foy* is provided in Equation 52.

f(x) f(x) y*

a b X a b X

Figure 10 Calculation of y* for the Uniform Distribution
y=0-a)b-a)+a 52
If a = 0, the equation for the decision threshold simplifies to:
y*=b(1l—a) 53
To sample from the distribution, the cumulative distribution function needs to be
calculated. The cumulative distribution function for a value x represents thadikelthat
X < x andis calculated using Eaion 18 A schematiaepiction of the calculation of the
cumulative distribution function is provided kigure1l, and the equation for the cumulative

distribution function is provided in Equation 54.
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f(x) F(x

P(X<x)

X

a b X a b X

Figure 11 Calculation of the Cumulative Distribution Function for the Uniform Distribution

(~o<x<a 0 )
xX—a
b—a
kax<oo 1 )

F(x)=X a<x<b 54

If a=0, the cumulative distribution function reduces to Equation 55.

|

} 55

)

To perform an inversion, the continuous uniform valug the standard uniform random

{—00<x<0

F(x)=4 0<x<b

_ SR O

lex<oo

variableU is related to the cuatative distribution function as shown in Equatié® WhenU is

sampled, it can be related to the random vari&ltterough Equation 47, such that

0<u<1l ub—a)+a
() = {elsewhere 0 } 56
Fora = 0, Equation 56 reduces to Equation 57.
0<u<i ub
x(u) = elsewhere 0 o7
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Triangular

The triangular distribution consists of two components: a line with a positive slgpe (m
whenx € (a, b); and a line with a negative slopa{) whenx € (b, ¢). The resulting probability
density functionis a piecewise function with a maximum probability dfwhenx = b. The
probability density function is déged in Figure 4 andFigure 12. To create the probability
density functionthe two line equationsmecessaryThe slopes can be calculated in terms of the

maximum probabilityd:

The equations for the linemre thendetermined; they assume the following functional

forms:

d(x —
(a<x<p EZN

c—a

b—c
\elsewhere 0 J

The constantl is determined by setting the integral of the probability density function

equal to 1 (Equation 17). The resulting probability density function is provided in Equation 60.

( 2(x—a)
a<x<b b=adlc—a)
_ 2(b —x)
fX)={b<x<c a0 —o" 60
kelsewhere 0 )

In the case where = 0, Equation 60educes to:
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- cb
2(b —x)
X)=1c<x<bh —= 61
f(x) c<x< b(b—c)x
\elsewhere 0 J

The decision thresholds calculated by integrating the probability density function
between« andy*, setting the integral to-d, and solving for y*; as describeth Figure12. Due
to the piecewise nature of the triangular distribution, two distinct casestodee considered:
when y* € (a,c) or wheny™* € (c,b). The equation fothe decision threshold is provided in
Equation 62 To calculate the decision threshold, an initial check sieedetermine whether*

is greater than or less than b.

f(x) f(x) g

mz

"
2

I
[
[
[
! !
a ¢ b X a ¢c¢ b X

Figure 12 Calculation of y* for the Triangular Distribution

62

*_{aSy*<c a+\/(1—a)(b—a)(c—a)}
c<y*<b c—+ab—c)b—a)

For the case where = 0, the equation for the decision threshold reduces to Equation 63.

*_{OSy*<c Jeb(1 —a) }
c<y"<b b—.fab(b—c)

For the inversion for Monte Carlo sampling, the cumulative density function needs to be

63

calculated. A depictionf the cumulative density function for the triangular distribution is shown

in Figure13, and the cumulative density function is provided in Equation 64.
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f(x) X F(x

P(X<x)

mz
mp

a ¢ b X a c b X

Figure 13 Calculation of the Cumulative Density Function for the Triangular Distribution

( —o<x<a 0 )
<< (x —a)?
a<x<c
F(x) = ¢ Ch (i)fcb;f) 64
c<x<b 1_(b—a)(b—c)
\h < x < © 1 J

Fora = 0, Equation 64 reduces to Equation 65.

(—o < x <0 0 )
x2
0<x<c E
F(x)=< (x_b)z g 65
< b 1——-—F—
c=sx= b(b —c)
\ b<x<oo 1 J

Using the inversion technique in Equatiof® and 47 the random variabl& can be

related to the standard normal random variébtarough Equation 66.

(OSuSZ:Z a++(c—a)b—a)u \l
x(w) = %9131 b—JA-—wb-a)b -0 66
elsewhere 0

If a = 0, Equation 66 reduces to Equation 67.
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<uc< bcu \l

(
x(u) = {p-susl b—+/b(1—u)(b—c) 67
elsewhere 0

S O

@lm o

Sinusoidal

The sinusoidal distribution is zero at= a and exists between = a andx = b, where
b < §+ a. The peak value of the probability density functiow at a + 2 is equal to a valueq.

A plot of the probability density function for the sinusoidal distribution is shovigare6 and

Figure14. The probability density function for the sinusoidal distribution is a sine wéhean
amplitudec, an angular frequency o = 2?” and a phase @gp = a; as described by Equation

68.

(anSb dsin(z—ﬂ(x—a)y
o

flx) = 68

kelsewhere 0 )

Utilizing the characteristics of the probability density function in Equatiéhand 17the
constantd can be determined by setting the integral of the probability density furexjics to

1. The probability density function can thus be described by Equation 69.

( )
27 sin (2% (x — a))
a<x<b
fx) =4 TIl—cos(ZTn(b—a)ﬂ ( 69
\elsewhere 0 J

In the case wherk = g + a, Equation 6%ecomes:
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a<x<b b-a
flx) = - 2(b—a) 70
kelsewhere 0

If the phaser = 0, Equation69reduces to:

21 sin (ZTn x) 1

e

flx) = { T [1 — cos (zTﬂb)] ¥ 71
I I
kelsewhere 0 }
In the case where the phase- 0 andb = T /2:
T sin (Zb x)
<x< _ 7
fy={0=*=P 2b 72

kelsewhere 0 }

After the probability density function is known, an equation for the decisiorhtiice§ *)
can be derived by integrating the probability density function frento y* and setting the
integral to a, as described by Equatidd. Figure 14displays a depiction of the calculation of

y* and the equation for* is provided in Equation 73.

f(x) f(x) y*
CT CT
| D
| o
| b
| o
a b X a b X
\ ) \ J
Y |
T T
2 2

Figure 14 Calculation of y* for the Sinusoidal Distribution
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T 2n(b — a)
* -1 _ _ — - @z 73
y" =g—cos 1-(1—-a)(1—cos ( T )] +a

Whenb = g + a, Equation 73an be rewritten as:

a
y* = - cos 2a—1]+a 74

If the phasex = 0, Equation73 can be rewritten as Equati@b.

T 2rth
G -1 — — — — 75
y* =5-cos 1-1-a)(1 cos( T )]

In the case wherke = g + a and the phase = 0, the equation reduces to the following:

b
y* = ;cos‘l[Za —1] 76

To sample from the sinusoidal distribution, an equation for the cumulative distribution
function needs to be calculated. The cumulative distribution function can be calculatsiddpy
Equation 18 A descriptive image for the calculation of the cumulative distribution fomdor
the sinusoidal function is shown kgure 15, and the equation for the cumulative distribution

function is provided in Equation 77.

f(x) X F(x X

! !
T T
2 2

Figure 15 Calculation of the Cumulative Density Function for the Sinusoidal Distribution
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(—o<x<a 0 )
1—cos<2Tn(x—a)>
F(x)=4 a<x<b > > 77
T
1—cos<T(b—a)>
kax<oo 1 J

Simplifications for the cumulative density function can be found in Equafiéns9 and
80; for the cases where > 0 andb = §+ a,a=0 andb s§+ a, anda =0 andb = §+ a,

respectively.

(—00<x<a 0 )
_ n(x —a)
F=4 ___, 1 COS(—b—a )> 78
- 2
kax<oo 1 J
(—00<x<0 0 )
1—cos(2Tnx)
F(x)=4 0<x<b >7h > 79
1—COS(T)
kax<oo 1 J
(—0<x <0 0 )
T
F) =3 g<x<b 1—cos (x) | 80
- 2
\be<00 1 J

To perform an inversion, the sinusoidal random varidbleeeds to be related to a
standard uniform random variallle This can be accomplished using Equa#d@nsuch that for

a given value ofi, x can be calculated using Equati®h
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‘) = 0<u<l1 %cos‘1 [1 —u(l —cos(@))] +a

elsewhere 0

81

The calculation ofc from u can be simplified for the case where> 0 andb = §+ a,

a=0 andb < §+ a, anda=0 and b = §+ a. The equations corresponding to the listed

simplifications are provided in Equations 82, 83, angr&dpectively.

—a
0<u<l1 cos"}(1-2u) +a
x(uw) = T 82
elsewhere 0
T 2mh
0<u<1l —cos ! [1 —u(l — cos <—>)]
x(u) = 2m T 83
elsewhere 0
b
0<u<1l —cos I[1-2u]
x(u) = T 84

elsewhere 0

Poisson

The probability mass function for the Poisson distribution is givekdpyation 36 The
Poisson distribution is unigque to the other distribution functions discussed, because
discrete function. Rather than using an integral to find a point where the cumudlatisity

function is equal to -k, a summation will be performed between 0 aridEquation 9. The

summation igyiven as

1l—a= —e H 85
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When simplified, EquatioB5 can be rewritten as Equati86. It should be noted that the

decision threshold cannot be solved for explicitly and fingihgs an iterative process.

2 3 y*
u u u
(1—6!)6“—1+H+E+§+“'+(y*)! 86

The cumulative distribution function for the Poisson distribution can be calculated using
Equation 9 Due to the discrete nature of the Poisson distribution, the cumulative distribution

functionis a stepwise functiothat increases at eaghvalue with thep(x).

pe .
l

F(x) = Zl;—le_“ 87
i=0

To relate a discrete random variabfeand the standard uniform distributidh, the
sample spaces divided intox segments with the length of each segment corresponding to the
probability of the outcomepccurring. When the uniform distribution is sampled, a logical
statement can then be used to determine which segment theuviil® in. The segment can

then be related to the valuexaf

Gaussian
The probability density function for the Gaussian distribution is givekdpyation 38
The decision threshold cde calculated by adding the number of standard deviations (Hweay

guantile orz,) the false positive errok is to the meary, asshown in Equation 88.

Yy '=u+z40 88
The cumulative distribution function for the Gaussian distribution cannexfressed
analytically. To completéhe inversion technique, numerical techniques must be used. A built-in

function within R uses a numeal technique to sample dfie Gaussian distributionnorm.
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Numbers can be sampled using the function rnorm by supplying the value of the mean and th

standard deviation. THauilt in function rnorm,is used for sampling.

False Positive Errdior a Seies of Measurements

The probability that the decision threshold is exceedetimes in a series olV
measurements can be descrilbgda binomial processEQquation 27, where the probability of
exceeding the decision thresholghiand the probability of not exceeding the decision threshold
is I-p. When looking at a series of measuremeittss desired to keep the same false positive
errora as for a single measurement

If it is desired that exactly measurements exceed the threshold in a series, the decision

threshold for the series can be calculated by setiiny equal tox, as follows:

— — N n _ N—-n
pm) =a=()p"1-p) 89
However, if it is desired that at leastmeasurements exceed the decision threshold, the

individual probabilities need to be summed betweamdN, and set tax (Equation 9.

N
pnt) =a=> (Mpra-pv 90

Equations 89 and 96annot be directlgolved forp. Thus it is only possible to solve for
p under select conddns ofa, n, andN. In the following sectiony will be calculated for select

conditions.

Smulation of Data
Data is simulated fofive different series lengths between 1 and 5 measurenigmgs.

number of measurements exceeding the decision threshold (successesjje measurement
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length, N, was allowed to vary between 1 aNd The value forp(n) was calculated for each
scenario using a fixed false positive erwigf 0.05. Data isimulated deterministically by using
the probability mass function and predicting the positive rate, and stochpdtigaiandomly
generating off of the probability mass function.

The measurement data was simulated in two ways. Firstmdasurementiata was
simulated by generating off of a source distribution and background distribution and #wding
values. The second method involved generating offdi§tibution characterized by the sum of
the source and background mean. Both methods are investigated. Two different arfalyses
data were performed: when exactlyneasurements are above the decision threshold and when
there are at least measurements above the decision threshold.

First the calculation op for different series lengths will beutlined. Following isthe
data calculated using the determiiciasmethodfor the five spectra discussed previously using
several background levels, source strengths, and series lengthaafdesimilar scenarios are
evaluated using a stochastic meth&inally, the results from the deterministic and stochastic

method are compared.

Calculation ofp for Different Series Length

Values of p were calculated for five different lengths of series: 1, 2, 3, 4, and 5
measurements. The false positive eregrwWas fixed aD.05, such that 5% of the measurements
at background will be positive identificatian8/hen exactlyn successes in a series bf
measurementare desiredvaluesas displayed ifable2 are obtained. When at leassuccesses
in a series ofN measurementsre desiredyvaluesas displayed inTable 3 are obtaied.
Interestingly, once the series length increases to 5 and the number of surcBssee values

increases to greater than 0.5, indicating that the corresponding threshold wgk libde the
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mean. The values whem equalsN are the same for exact and at least. Otherwisey adues
for theexact condition are smaller than the ones for éhéeast condition; this will yield higher

decision threshold values for theact condition.

Table 2 Calculated Values of p for Combinations of nh and N between 1 and 5 (Exact)

n

N 1 2 3 4 5

1 0.95

2 |0.0253206 0.223607

3 10.0169524 0.13535 0.368403

4 10.0127415 0.0976115 0.248605 0.472871

5 | 0.014282 0.0764404 0.189255 0.342592 0.5492803

Table 3 Calculated Values of p for Combinations of n and N between 1 and 5 (At L east)

n

N 1 2 3 4 5

1 0.95

2 |0.0256584 0.223607

3 [0.0172571 0.139142 0.368403

4 | 0.013005 0.101612 0.256137 0.472871

5 |0.0102062 0.0801513 0.198114 0.352529 0.5492803

Deterministic
The deterministic method looked the five distributions discussed previously: uniform,
triangular, sinusoidal, Poisson, and Gaussfanly the positive rate was looked at for the

deterministic methodl'he following scenarios were lookedsaenarios:

Table 4 Scenarios Looked at for the Deter ministic M ethod
Criteria Values
Background Levels| 50, 100, 250, 500, 750, 1000, 2500, 5000, 7500, 10000
Source Strength 0,1, 3,5, 8, 10, 15, 30, %for f(x) andF (x))
0,1,3,5, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, 125,
150, 175, 200, 225, 250, 275, 300, 325, 350 (positive ra
Series Length 1,2,3,4,5

Theat least andexact conditions were compared usingsaussian distribution. For each

background condition the decision threshold was calculated. At a background level of 50, 500,
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and 5000, the source level was calculated for 50% and 100% positive rate. Represeatative pl
for each of the five distributions were displayed for series of three measuseand include
plots of the probability density function and cumulative distribution function, positiveasate
function of source strength fdrackgraind equal to 50@b = 500), positive rates fosource
equal to 1Qs = 10) andb = 500 for different combinations at, and positive rate as a function

of source strength/background for= 2 for different backgrounds.

At Least vs. Exact

The two conditions of exacthy successes in a seriesfmeasurements and at least
successes in a series fmeasurements were compared for the Gaussian distributibr-at
500. Figure 16 contains a comparison of the positive rate with source strength for the exact and
at least conditions using a series of two measuremEigsres for other values &V for the
exact and at least conditions areAppendix A in Figure 110 (Gaussianp = 500, N = 2,

N = 3) andFigurelll (Gaussiarh = 500, N = 4, N = 5).

100.00% w & £
80.00% 2
,ﬁy = Traditional, At Least
N=2, n=2, At Least
N=2, n=1, At Least
Traditional, Exact

O N=2,n=2,Exact
N=2, n=1, Exact

60.00%

40.00%

&y

Positive Rate

20.00%

0.00% “+ : : : : . : :
0 20 40 60 80 100 120 140

Source Strength

Figure 16 Positive Rate Comparison with Source Strength for the At Least and Exact Conditions (Gaussian, N=2,
Deter ministic)

As seen irFigurel16, there is no difference between techniques where the desired number
of successes is equal to the number of measurenvéhésin is equal tav, Equations89 and 90
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convergeresulting in the same valueBor exact conditions when does not equaN, the

positive rate initially mcreases until reaching a maximaround 50% and then decreases. As
source ®sength increases the likelihood of exceeding the decision threshold will sSe¢crea
making the condition less likelyDue to this future discussed analysis will use the at least

condition.

Rectangular

The width of therectanguladistribution was choserush that the variance was equal to
the variance for the Poisson distribution).( The probability density functions for each
background level is irFigure 17. As thebackground level increases, the probability density

function becomes wider and the probability of occurrence decreases.

0.05
50 100
0.04 § 250  e=———500
‘I ——750 1000
= 0.03 2500 5000
F 00 7500 10000
0.01 1“-1
0 - = T - T — T - T T
0 2000 4000 6000 8000 10000

Background Strength

Figure 17 Probability Density Function for Different Background L evels (Rectangular, Deter ministic)

Three background distributions will be discussed in depth: at 50, 500, and 5060
generated source and background distriloufar the rectangular distribution @&t= 50, b =
500, andb = 5000 is in Figure18. The plotted distributions are for source strengths between 0
and 50. As seen birigure 18, the source and background distributifam the rectangular
distributionchangeghe most significantly for lower background levels. As the source streng

increases, the distribution widens.
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Figure 18 Probability Density Function at Different Sour ce Strengths (Rectangular, b=50, 500, and 5000, Deter ministic)
The calculated values for the decision threshgld for therectanguladistribution ata
background o660, 500, and 500@relocated inTable5. Calculated decision thresholéty the

rectangular distribution atll badkground strengthare contained iffablel12.

Table5 Calculated Values of y* and Source Strength at 50% and 100% Detection (Rectangular, Deter ministic

A 50% Detection 100% Detection
Background Strength Background Strengtll Background Strength
N n 50 500 5000 | 50 500 5000| 50 500 5000
1 1 61 535 5110 | 12 35 111 25 75 234
5 2 57 521 5068 | 13 39 120 20 61 191
1 62 537 5116 7 21 66 25 77 240
3 53 510 5032 | 12 34 105 20 50 156
3 2 59 528 5089 9 29 90 23 71 213
1 62 537 5118 5 15 47 26 78 240
4 51 502 5007 | 10 30 91 14 42 130
4 3 56 519 5062 | 10 29 90 20 59 185
2 60 531 5099 7 23 71 24 71 222
1 62 538 5119 4 12 36 26 76 233
5 49 496 4988 9 26 80 12 36 111
4 54 512 5039 9 27 85 17 52 162
5 3 58 524 5076 8 25 77 21 64 200
2 60 533 5104 6 19 58 24 72 221
1 62 538 5120 3 9 29 25 73 224

As the series length increases, the calculateir the rectangular distributioncreases

for the same condition (largéf, but constant). Additionally as the number of successes (times
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exceeding the decision threshold) approaches the series length, the calgUldd¢edeasesor

the rectangular distribution. Also listedTiable5 is the source stngth at which 50% and 100%
detection is achieved. The ratio of the source strength to background stmerigehrectangular
distribution atthe same conditions and level of detection decreases as background strength
increases.

Trends in the positive rafor the rectanguladistributionare illustrated through several
representative figurefor a series length of threAdditional figures are located in Appendix A
and will be noted when availableigure19 contains a visual representative of the thresholds for
a series of three measurementshat 500. The probability density function and cumulative
distribution for the rectangular distributioare displayed for a variety of source strengths.
Additional graphs of the probability deity function for differentV is available inFigure 117

(N = 2), Figure118 (N = 3), Figurel119 (v = 4), andFigure120 (v = 5).

?//
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f(x)
F(x)
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traditional traditional

Figure 19 Probability Density Function and Cumulative Distribution for Different Source Strengthswith Decision
Thresholdsfor Different n Values (Rectangular, b=500, N=3, Deter ministic)

Figure 20 contains a graph of theogitive rate for the rectangular distribution with

source strength for a series of three measurem&dtitional graphs of the positive rate with
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source strength for differem is available inFigure117 (V = 2), Figure118 (V = 3), Figure

119 (V = 4), andFigure120 (v = 5).
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Figure 20 Positive Rate with Sour ce Strength for Different n Values (Rectangular, b=500, N=3, Deter ministic)
For the rectangulardistribution, the positiverate using the traditional method/ &
1,n = 1) increases approximately linearly with source gitenWhenn = 1, the positive rate
for the rectangular distributiomcreases rapidly at low source strength and then approaches
100% more slowly with increased source strength. At the other extrenam nmvds N, the
rectangular distributiorpositive rate increases slowly at low source strength and then more
rapidly at higher source strengths, reaching 100% positives more quickly. Foriarendit
between the twox@remes, the relationship between positives and source strergtses to a
straight line
The differences between the positive rate tfer rectangular distribution fatifferent
conditions is highlighted in a bar graphRigure21 for a background of 500 and source strength
of 10. For the rectangular distribution the positive rate is largest for the lowerber of
successes required & 1). The traditionaimethod outperforms the conditions= 2 andn = 3

for N = 3.
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Figure 21 Positive Rate for Different n Values (Rectangular, b=500, s=10, N=3, Deter ministic)

Figure 22 contains a graph for N=3, n=2 for different source to background strength
ratiosfor the rectangular distributiofror larger backgrounds, 100% positive rate is achieved at
lower source stragth to background ratios (as seenTiable 5). Additional figures for the
rectangular distribution for other series lengths ard-igure 112 (Tradtional), Figure 113

(N = 2), Figure114(N = 3), Figurell5 (V = 4), andFigurel16 (V = 5).
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Figure 22 Positive Rate with Sour ce/Background Strength at Different Background (Rectangular, N=3, Deter ministic)

Triangular
The triangular distribution modeled is a symmetric triangle wheteu — 3/u and

b = u + 3/ to approximate the width of the Gaussian distribution. A graph of the probability
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function for each background level is locatedrigure23. Similar to therectanguladistribution,
as the mean background increases, the probability density function widens and theigyrobabil

the peak occurrence lessens.
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Figure 23 Probability Density Function for Different Background Levels (Triangular, Deter ministic)

The background distributions at 50, 500, and 5000 will be discussed in depth. The
generated source and backgroynmdbability density function for the triangular distribution at
b =50, b =500, and b = 5000 is in Figure 24. The plotted distributions are for source
strengths between 0 and 50. As seenFigure 24, the probalility density function for the
triangular distributiorchanges the most significantly for lower background levels. As the source

strength increases, the distribution widens.
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Figure 24 Probabity Density Function at Different Source Strengths (Triangular, b=50, 500, and 5000, Deter ministic)
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The calculated values for the decision threshgld for the triangular distribution at a
background of 50, 500, and 5000 are locatedahle 6. Calculated decision thresholds for all

background strengths are containedable13 within AppendixA.

Table 6 Calculated Values of y* and Source Strength at 50% and 100% Detection (Triangular, Deter ministic)

y* 50% Detection 100% Detection
Background Strength Background Strengtl Background Strength
N n 50 500 5000 | 50 500 5000| 50 500 5000
1 1 64 586 5145| 15 46 145 44 120 363
5 2 57 522 5070 | 13 39 121 35 95 287
1 66 552 5164 | 11 36 114 | 42 118 358
3 53 509 5030 | 12 35 107 30 82 247
3 2 60 532 5102 | 11 33 102 36 99 301
1 67 555 5173 9 30 97 38 109 333
4 51 502 5006 | 11 33 100 27 74 222
4 3 56 520 5063 9 29 89 32 87 264
2 62 537 5118 9 29 93 34 95 290
1 68 556 5178 8 27 85 34 100 308
5 49 497 4989 | 11 31 95 25 68 205
4 54 512 5037 9 26 81 29 79 240
5 3 58 526 5082 9 26 82 30 85 259
2 63 541 5129 9 27 85 31 90 274
1 68 557 5182 7 24 77 31 93 286

As with the rectangular distribution &lse series lengtkW) increases, the calculatgd
increases for the same condition (constantAs the number of times exceeding the decision
threshold (number of successes) approaches the series length the calculagedf yal
decreases. Tabkalso containgnformation on the source strength required to achieve 50% and
100% detection. The ratio of the source strength to background strength for the same sondition
and level of detection decreases as background strength increases.

Trends in the positive rate for theangulardistribution are illustrated through several
representative figures for a series length of thedéi{jonal figures are located in Appendix A
andarenoted wherapplicable) Figure 25 contains a visual representative of the thresholds for

the triangular distribution foa series of three measuremeats = 500. The probability density
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function and cumulative distributidior the triangular distributiomre displayed for a variety of

source strengths. Additional graphs of the probability density function for efifféf are

available inFigure 126 (N = 2), Figure 127 (N = 3), Figure 128 (N = 4), and Figure 129

(N = 5).
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Figure 25 Probability Density Function and Cumulative Distribution for Different Source Strengthswith Decision
Thresholdsfor Different n Values (Triangular, b=500, N=3, Deter ministic)

Figure 20 contains a graph of the positivetegfor the triangular distribution with source

strength for a series of three measurements.

os i

\ 07 /A
£ e /A
: 0'5 / / = Traditional
:% 0:4 y/ &4 ——N=3, n=3
£ 03 ///;/ N=3, n=2

0.2 ——N=3, =1

0.1 -

0 T T T T T T
0 20 40 60 80 100 120

Source Strength

Figure 26 Positive Rate with Sour ce Strength for Different n Values (Triangular, b=500, N=3, Deter ministic)
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For the triangular distribidgn, the positive rate for all conditions has a similar shape to
the cumulative distribution function, increasing slowly at first, increasiogemapidly, and then
more slowly. The values for all conditis of the measurement ser@@sapproximatelythe same
for the triangular distributioras seen also ifable 6. All three conditionsoutperformthe
traditional method in terms of positive ratdditional figures for other series lengths are in
Figurel26 (N = 2), Figure127 (N = 3), Figurel28 (N = 4), and Figure 129N = 5).

The differences betweehe positive rate forthe triangular distribution usindifferent
conditions is highlighted in a bar graphRigure27 for b = 500 ands = 10. For thetriangular
distribution the positive rate is largest for the lower number of successesedeui= 1).
Unlike the rectangular distribution, all conditions ftite triangular distribution alV = 3
outperform the traditional method.
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Figure 27 Positive Rate for Different n Values (Triangular, b=500, s=10, N=3, Deter ministic)

Figure 28 contains a graph of the positive rébe the triangular distributiowith source
to background strength ratio for the conditin= 3,n = 2. Each background yields a similar
shaped graptor larger backgrounds, 100% positive rate is achieved at lower source stoength t

background ratios (as seen Trade 6). Additional figures of other series lengtlar the
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triangular distributionare located irFigure 121 (Traditional),Figure 122 (N = 2), Figure 123

(N = 3), Figurel24 (N = 4), Figurel25 (N = 5).
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Figure 28 Positive Rate with Sour ce/Background Strength at Different Background (Triangular, N=3, n=2, Deter ministic)
Sinusoidal

The sinusoidal distribution was modeled as half of a sine wave, Wherg(b — a),
a = u — 3+/u, andb = u + 3+/u to approximate the width of the Gaussian distribution. A graph
of the probability density function fahe sinusoidal distribution aach background level for the
sinusoidal distribution is located Figure29. Similar to the distributions previously discussed,
as the mean background increases, the probability density function widens and theigyrobabil

the peak occurrence lessens.
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Figure 29 Probability Density Function for Different Background L evels (Sinusoidal, Deter ministic)
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Trends in positive rate for the sinusoidal distributamadiscussed fob = 50, b = 500,
and b = 5000. Figure 30 contains the generated source and background probability density

functionfor the sinusoidal distributiofor source strengths between 0 and 50.
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Figure 30 Probability Density Function at Different Sour ce Strengths (Sinusoidal, b=50, b=500, b=500, Deter ministic)

As seen inFigure 30, the source and background distributifor the sinusoidal
distribution changes the most significantly for lower background levels. As the sduweogth
increases, the distribution widens.

The decision thresholdy{) is calculated at a background of 50, 500, and 5000 for the
sinusoidal distribution; calculated valuase located infable 7. Calculated decision thresholds
for all background strengths are containedTable 14 within Appendix A.As seen by the
previous distributions discussed, as the series length incrgdsdecreases for the same
conditions and as the number of successes (times exceeding the decision threstaadheppr
the series length* decreaseslable7 also catains the source strengthwhich 50% and 100%
detection is achievedor the sinusoidal distribution. The ratio of the source strength to
background strength for the same conditions and level of detection decrease&gasubd

strength increases.
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Table 7 Calculated Values of y* and Source Strength at 50% and 100% Detection (Sinusoidal, Deter ministic)

A 50% Detection 100% Detection
Background Strengtl Background Strengtl] Background Strength

N n 50 500 5000 |50 500 5000 | 50 500 5000
1 1 64 546 5145 | 15 46 145 | 44 121 363
5 2 57 522 5070 |13 39 121 |35 96 387
1 66 552 5164 |11 36 114 | 44 122 358
3 53 509 5030 |12 35 107 |30 82 247
3 2 60 532 5102 |11 33 102 | 37 103 301
1 67 555 5173 |9 30 97 41 116 333
4 51 502 5006 |11 33 100 |27 74 222
4 3 56 520 5063 |9 29 89 33 90 264
2 62 537 5118 |9 30 93 36 101 290
1 68 556 5178 |8 27 85 38 108 308
5 49 497 4989 |11 31 95 25 69 205
4 54 512 5037 |9 26 81 30 82 240
5 3 58 526 5082 |9 26 82 32 90 259
2 63 541 5129 |9 27 85 34 96 274
1 68 557 5182 |7 24 77 35 101 286

Trends in the positive rate for tisenusoidaldistribution are illustratedsing a series of
three measurementddditional figuresfor other series lengthare located in Appendix A and
will be noted when availabléA visual representative of the thresholds for a series of three

measurements at a background of 500 for the sinusoidal distrilmitroRigure31.
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Figure 31 Probability Density Function and Cumulative Distribution for Different Source Strengthswith Decision
Threshold for Different n Values (Sinusoidal, b=500, N=3, Deter ministic)
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Figure 31 contains the probability density function and cumulative distribuborthe
sinusoidal distributionwhich are displayed for a variety of source strengths. Additional graphs
of the sinusoidalprobability density function for differenY is available inFigure135 (V = 2),
Figurel36 (V = 3), Figure137 (N = 4), andFigure138 (N = 5).

A graph of the positive rate for thenusoidaldistribution with source strength far
series of three measurements iigure32. The positive rate for the sinusoidal distribution for
all conditions has a similar shape to the positive rate for the triangular distnilas well as the
cumulative distribution function: increasing slowly, more rapidly until it passesugh an
inflection, and then more slowly. The values for the decision threshold for all corsddf the
measurement series approximately the same, as seen also in Tabds seen irFigure32, all
three conditions outperform the traditional method in terms of positiee Aalditional figures
for other series lengths arefigure135 (V = 2), Figure136 (N = 3), Figure137 (N = 4), and

Figurel38 (v = 5).
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Figure 32 Positive Rate with Source Strength for Different n Values (Sinusoidal, b=500, N=3, Deter ministic)

The differences between the positive rate variousn values for the sinusoidal

distribution is highlighted in a bar graphkigure33 using different conditions for a background
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of 500 and source strength of 10. Similar to previous discuseiutions, the positive rate for
the sinusoidal distribution is largest for the lower number of successes required)(
However, unlike the rectangular distribution, all conditionsNor 3 outperform the traditional

method.
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Figure 33 Positive Rate for Different n Values (Sinusoidal, b=500, s=10, N=3, Deter ministic)
A graph of thesinusoidalpositive rate with the source to background strength ratio is in
Figure 34 for the conditionN = 3,n = 2. The shape of the graph is similar for all backgrounds
for the sinusoidal distributiorfFor larger backgrounds, 100% positive rate is achieved at lower

source strength to background ratios (as se&alihe7).
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Figure 34 Positive Rate with Source/Background Strength at Different Background (Sinusoidal, N=3, n=2, Deter ministic)
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Additional figures of other series lengthe the sinusoidal distributioare located in

Figure 130 (Traditional),Figure 131 (N = 2), Figure 132 (V = 3), Figure 133 (N = 4), and

Figurel34 (v = 5).

Poisson

The modeled Poisson distribution is characterized by a mean.\@lyee 35 contains

the probability density functions for the Poisson distribution at each background level.
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Figure 35 Probability Density Function for Different Background L evels (Poisson, Deter ministic)

Datafor three backgroundtrengths (50, 500, and 5000) are discussed her&?dikson

probability density functiomfior the three background distributions with different source strengths

between 0 and 50 is Figure36.
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The source and background changes the most with an added source for lower background
levels. As the source strength increases, the distribution widens.

The calculated values for the decision threshgiy for the Poissordistribution at a
background of 50, 500, and 5000 are locatefable8. Calculaed decision thresholds for other
background strengthsr the Poisson distributioare contained ifable 15 within Appendix A.

As the series length increases, the calculatedor the Poisson distributiomcreases for the
same condition (largeN, but constant). Additionally asn approachesv, the calculted y*
decreases. TabRalso liststhe source strength at which 50% and 100% detection is achieved.
The ratio of the source strength to background strength fosame conditions and level of

detection decreases as background strength increases.

Table 8 Calculated Values of y* and Source Strength at 50% and 100% Detection (Poisson, Deter ministic)

y* 50% Detection 100% Detection
Background Strengtll Background Strengtl] Background Strength

N n 50 500 5000 |50 500 5000 | 50 500 5000
1 1 62 537 5117 |13 38 118 |49 133 402
5 2 55 517 5054 |10 31 94 42 116 349
1 64 544 5139 |11 33 101 | 37 104 318
3 52 507 5024 |9 27 83 39 107 325
3 2 58 525 5078 |9 26 79 32 89 270
1 66 548 5151 |11 30 94 33 92 282
4 50 501 5005 |9 25 77 37 103 310
4 3 55 515 5048 |8 23 70 29 81 248
2 59 529 5092 |8 24 72 27 77 236
1 66 551 5159 |9 29 89 29 85 260
5 49 497 4991 | 9 24 72 37 99 300
4 53 509 5029 |8 21 65 28 77 234
5 3 56 520 5062 |7 21 63 25 71 215
2 60 532 5101 |7 22 68 24 71 216
1 67 553 5165 |9 28 85 28 80 245

Trends in the positive rate for tiRoissondistribution aredisplayed for a series of three

measurementgadditional figures noted wheavailablg. The probability density function and
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cumulative distribution are displayed for a variety of source strefgthise Poisson distribution

in Figure37 ata background of 500.

0.8
0.6
=
hrag
0.4
0.2
400 | 500 600 @ - "' ' ' ' :
400 450 500 550 600 650
Source + Background Strength Source:i Badkgrownd Sivensth
— . 8 — — ) — PR
——N=3,n=3 = N=3, n=2 N=3, n=1 —15 —30 : 50
Traditional = N=3, N=3 =—N=3, n=2 - N=3, n=1

Figure 37 Probability Density Function and Cumulative Distribution for Different Source Strengthswith Decision
Threshold for Different n Values (Poisson, b=500, N=3, Deter ministic)

Additional graphs of the probability density functiand cumulative distribution for the
Poisson distribution fodifferent N are available inFigure 144 (N = 2), Figure 145 (V = 3),
Figurel46 (N = 4), andFigure147 (N = 5).

A graph of the psitive rate for the Poissatistribution with source strength forsaries
of three measurements is gure 38. The positive rate for the Poisson distribution for all
conditions has a similar shape to the positive rate for the triangular distribution anoidahus
distribution, as well as the Poisson cumulative distribution function. The positevencatases
slowly at first, then more rapidly until it passes through an inflection, andyfiskalvly agan.
As seen irFigure 32, all three conditionsor the Poisson distributioautperform the traditional
method in terms of positive rate. Positive rates tend to eegtefor norextreme conditions
(for exampleN = 3,n = 2). Additional figures for other series lengths ard=igure 144 (N =

2), Figure145 (N = 3), Figurel46 (V = 4), andFigurel47 (N = 5).
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Figure 38 Positive Rate with Sour ce Strength for Different n Values (Poisson, b=500, N=3, Deter ministic)

The differences for thBoisson distribution positive rate for different conditions is shown
in a bar graph irfrigure 34 for b = 500 ands = 10. Unlike previously discussed distributions,
the positive rate for th@oisson distribution is greatest for larger values.ofor the Poisson
distribution, # conditions for a series of three measurements outperform the traditionaldmetho

for positive rate.
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Figure 39 Positive Rate for Different n Values (Poisson, b=500, s=10, N=3, Deter ministic)

A graph of thePoissordistribution positive rate with the source to background strength
ratio is inFigure40for N = 3,n = 2. The shape of the graph is similar for all backgrounds. For

larger backgrounds, 100% positive rate is achieved at lower source strengthgoiiagkatios
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(as seen inTable 8). Additional figuresfor other N are located inFigure 139 (Traditional),

Figurel40 (V = 2), Figure141 (N = 3), Figurel42 (N = 4), and Figure 143N = 5).
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Figure 40 Positive Rate with Sour ce/Background Strength at Different Background (Poisson, N=3, n=2, Deter ministic)

Gaussian
Themodeled Gaussiadhistribution is characterized by a mean vadne a variance equal
to the meanThe Gaussiarprobability density function for each background level iEigure41l

for each background level.
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Figure 41 Probability Density Function for Different Background L evels (Gaussian, Deter ministic)

The generategrobability density function for the Gaussian source and background
distribution forb = 50, b = 500, andb = 5000 is in Figure42. The plotted distributions are for

source strengths between 0 and 50.
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Figure 42 Probability Density Function at Different Sour ce Strengths (Gaussian, b=50, 500, 5000, Deter ministic)

As seen byFigure 42, the source and background distribution changed the most
significantly for lower background levels. As the source strength incretsedistribution
widens.The calculated values for the decision threshglg for the Gaussiardistribution at a
background of 50, 500, and 5000 are locateBaible9. Calculated Gaussiatecision thresholds

for all background strengths are containedaile 16 within Appendix A.

Table 9 Calculated Values of y* and Source Strength at 50% and 100% Detection (Gaussian, Deter ministic)

Background Strengtll Background Strengtl] Background Strength
N n 50 500 5000 |50 500 5000 | 50 500 5000
1 1 62 537 5116 | 12 37 117 |58 135 403
5 2 55 517 5054 |10 30 93 52 118 351
1 64 544 5138 | 10 32 100 |41 105 318
3 52 508 5024 |9 27 83 49 110 327
3 2 58 525 5078 |8 25 78 36 89 270
1 65 547 5150 |9 29 92 35 91 280
4 50 502 5005 |9 25 76 a7 106 313
4 3 55 515 5048 |7 22 69 34 82 248
2 59 529 5092 |7 23 71 30 77 236
1 66 550 5158 |9 28 87 31 84 258
5 49 497 4991 |8 24 72 46 102 302
4 53 509 5029 |7 21 64 32 78 235
5 3 56 520 5062 |7 20 63 28 71 215
2 60 532 5101 |7 21 67 27 70 216
1 66 552 5164 |8 26 84 29 79 243
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As the series length increases, the calculatetbr the Gaussian distributioincreases
for the same condition (largét, but constant). Additionally as the number of successes (times
exceeding the decision threshold) approaches the series length, the cajcutlgectases. Also
listed in Table 9 is the source strength at which 50% and 100% detection is acHmvéte
Gaussian distribution. The ratio of the source strength to background strength famibe s
conditions and level of detection decreases as background strength increases.

Trends inthe positive rate for th&aussiandistribution are illustrated through several
representative figurder a series length of threed@itional figuresavailablein Appendix A and
will be noted when availableFigure43 contains a visual representative of the thresholdghéor
Gaussian distribution using series of three msarementdor b = 500, using thegraphs of
probability density functiomnd cumulative distributiofor a variety of source strengttsth the
threshold overlaid. Additional graphs of th®aussianprobability density functionand
cumulative distributiorior different Nareavailable inFigure153 (N = 2), Figure 154 § = 3),

Figurel55 (V = 4), andFigurel1l56 (V = 5).
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Figure 43 Probability Density Function and Cumulative Distribution for Different Source Strengthswith Decision
Thresholdsfor Different n Values (Gaussian, b=500, N=3, Deter ministic)
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Figure44 contains a graph of thpositive rate ér the Gaussiardistribution with source
strength for a series of three measuremditts. sitive rate for the Gaussian distribution for all
conditions hasa similar shape to the positive rate for all distributions discussed (with the
exception of the rectangular distribution) as well as the cumulative distributiatidn. The
Gaussianpositive rate increases slowly initially, more rapidly until it passes through an
inflection, and then more slowly. As seen kigure 44, all three conditions outperform the
traditional method in terms of positive rdte the Gaussian distribution. Additional figures for
different N are inFigure153 (V = 2), Figure154 (N = 3), Figure155 (N = 4), andFigure 156

(N = 5).
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Figure 44 Positive Rate with Sour ce Strength for Different n Values (Gaussian, b=500, N=3, Deter ministic)

A graph of the positive rate with the source to background strengtHaatiee Gaussian
distribution is in Figure 45 for N =3,n = 2. The shape of the graph is similar for all
backgrounds. Fahe Gaussian distribution kErger backgrounds, 100% positive rate is achieved
at lower source strength to backgnduratios (as seen ihable 9). Additional figures of other
series length$or the Gaussian distributioare located inFigure 148 (Traditional),Figure 149

(N = 2), Figure150 (V = 3), Figurel51 (V = 4), andFigurel52 (N = 5).
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Stochastic
The stochastic method lookeat five distributions: uniform, triangular, sisoidal,
Poisson, and Gaussiamhe positive rate and time at first detection are looked at for the

stochastic model. The stochastic method looked at the following scenarios:

Table 10 Scenarios L ooked at for the Stochastic M ethod
Criteria Values

Background Levels | 500

50, 500, 500@Gaussian Distribution)
Source Strength 0,135,810, 15, 30, 50
0,1,23,4,5/6,7,8,9, 10, 15, 20, 25, 30, 35, 40, 45,
50 (Gaussian Distribution
Series Length 1,2,3,45

The at least and exact conditions were compared for the Gaussian distributidre
probability density function for positives and time to first detection vaése looked at for the

Gaussian distribution.

At Least v. Exact
Using the Gaussian distribution at a background of 500, the two conditions of exactly
successes in a series dfmeasuremestwas compared tat leastn successes in a series of

measurementsA comparison of the positive rate with source strength foethet andat least
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conditions using a series of two measurements iHgare46. There is no difference between
techniqgueswhenn = N as seen irFigure 46, as expected because whens equal toN,
Equations 89 and 90 converge resulting in the same valuesxdebronditions whem does not
equal N, the podive rate initially ncreases until reaching a maximwaround 50% and then
decreases. As source strength increases the likelihood of exceeding tien dboeshold will
increase, making the condition less likelfne difference in that least andexact conditions for
N = 2,n =1 is most pronounced at higher source strengths. Additiof@mationin Figure

157.
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Figure 46 Positive Rate with Source Strength Comparison for At Least and Exact Conditions (Gaussian, N=2, Stochastic)

For the stochastic method, the time at first detection was also compared forheteen t
are exactlyn successes in a seriesdfmeasurementand when thereraleastn successes in a
series ofN measurementssing a Gaussian distributioRigure47 contains a comparison of the
time at first detection for thexact andat least conditions. There is very little difference between
the two conditions for the time at first detection the Gaussian distributioAdditional time at
first detectioninformationis in Appendix B inFigure158. Futwe analysis will use that least

condition.
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Distribution of Positivesand Time at First Detection
The probability density function for the number of positives and the time to fiesttubet
were investigated for the Gaussian distribution. The number of positives in 200 meadsre
was looked afor b = 500, s = 10, andN = 3. It was expected that the number of positives
would approximate a Gaussian distribution. The measurement data was compared to the

expected distribution for each valueroénd is inFigure48. The measurement data compares.
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Figure 48 Probability Density Function for Positive Rate for Different n Values (Gaussian, N=3, b=500, s=10, Stochastic)

The probabilitydensity function for the time to first detection was also investigdted.

was expected that the time to first detection would follow a geometric distribufioe.
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geometric distribution is a discrete probability distribution that represkataumber otrials
needed to get one success. The geometric distribution is characterized bybdifyrobauccess
p. The probability of success on th® kial can be described through the following equation,

where k=1, 2, ..., n.

PX=k)=1-p)1p 91
The probability density function was compared to a geometric distribiaicn Gaussian
distribution The p value for the geometric distribution was to be the positive Fagere 49
contains acomparison between the geometric distribution and measurement values for the

traditional method and fa¥ = 3,n = 2 for the Gaussian distribution.
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Figure49 Timeat First Detection Probability Density Function for Traditional M ethod and N=3, n=2, (Gaussian, b=500,
s=10, Stochastic)

The measurement values compare well to the geometric distribution for the traditiona
method; however forN = 3,n = 2 the graph is a lot flatter than expected by the geometric
distribution. Additional graphs for the time at first detection probability derfishction using
the Gaussian distribution for different valuesnag available in AppendiB in Figurel61 The
probability density functionfor the time to first detectiorwas compared for different
measurement conditionsing a Gaussian distributidor N = 3 for two different source values
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in Figure50for b = 500. The density function peaks at a time equai.tddditional probability

density functions for different source strengths are available in AppendikiBure159.
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Figure 50 Time at First Detection Probability Density Function for Different n Values (Gaussian, b=500, Gaussian,
Stochastic)

The probability density functiofor time at first detectionvas also looked at for
different source strengthssing a Gaussian distributiofrigure 51 contains a graph of the
probability density function foN = 3,n = 2 for different source strengthédditional graphs

for the Gaussian distribution using different value®/ @ndn is available irFigure160.
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Figure 51 Probability Density Function for Time at First Detection for Different Source Strength (Gaussian, b=500 N=3,
n=2, Stochastic)
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Rectangular

Two different background and source spectra simulagohniques were used for the
stochastic methodology. One methodology assumes that the source is known and suldsehe
to background using two random numbers. The second methodology involves sampling off of a
source and background distribution (one distribution).

When using one distribution, the mean valoethe rectangular distributiowas at the
sum of the background and source and the width of the distribution was chosen such that the
variancefor the rectangular distributionas equal to mean. Fexample for a background of 500
and a source value of 50, the mean of the single distribution would be at 550; and theevaria
would be chosen at 550.

When the data was generated by summing a source and a background distribution, one
value was sampledff of a rectangulabackground distribution with a mean equal to the mean
background and a second value was sampled offeftangulasource distribution with a mean
equal to the mean of the sample; the variance of each distribution was equal &p#otive
mean. For the previous example, one number would be generated offrexftamgular
background distribution with a mean and variance of 500, a second number would be generated
off of a rectangularsource distribution with a mean value and variance of 50, and the two
numbers would be summed to create the source and background distribution.

The differences in using one distribution and the sum of two distributiondusteated
for the rectangular distribution through the probability derfsibetion for a background of 500
at different source strengths Figure 52. The probability density function for the rectangular

distribution using each technique is thensafor a source strength of zero and resembles a
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rectangle. However as the source strength increases the probability denstign for the

rectangular distribution using the two distribution method begins to take a trapehaide.
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Figure 52 Probability Density Function for Different Source Strengths Comparison for Two M easurement Simulation
Techniques (Rectangular, b=500, Stochastic)
The differences ithe two measurement simulatitechniques are illustrated on the same
plot for the rectangular distribution aburce strengths of 0, 5, and 50Figure53 for b = 500.

The differences in probability density functicex® most prominent for higher source strength.
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Figure 53 Probability Density Function Comparison for Two M easurement Simulation Techniquesfor Several Source
Strengths (Rectangular, s=0, 5, 50, b=500, Stochastic)
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Additional plots for other source strengths for the rectangular distributiovaitatde in
Appendix B inFigurel62 s = 1,3, 5,8) andFigure163 (s = 10, 15,30, 50). In addition to the
comparison of the probability density function, the positive ratetiamelat first detectioffior the

rectangular distributioare compared ifigure54for N = 2,n = 2.
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Figure 54 Positive Rate and Time at First Detection with Sour ce Strength Comparison for Two M easurement Simulation
Techniques (Rectangular, N=2, n=2, b=500, Stochastic)

For certain source strengths, the values for generating off of one distribigigneater
than for two distributions. Values for the positive rate are within 5% and valuetection
time are within 10%. Additional graphs for different values of n for the rectandigiabution
are available in Appendix B for positive rateéiqure 164) and time at first detectiorFigure
165). All future data discussed for the rectangular distribution is generatingibg two random
numbers.

A comparison of the positive rate and time to first detection for different cotidrinaf
n (N = 3) for the rectangular distributiois in Figure55 for b = 500. The error bars displayed
are for one standard deviation; due to the inherent properties of the time to firgtodete

(geometric distribution), the standard deviation is large compared to the mean. As tiee sour

strength increases the positive rate increases for the rectangulautiestribvhile the time at
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first detection decreases. The positive rate increases most rapidly=fdr, while it increases
slowest for a three secotmhg measurement. The smallest time at first detection occurs for the
rectangular using the traditional methdd € 1,n = 1) and the three second long measurement
(3 s) Additional graphs for different series lengths for the rectangulartdison are inFigure

166 (Positive Rate) anBligure167 (Time at First Detection).
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Figure 55 Positive Rate and Time at First Detection with Sour ce Strength for Different n Values (Rectangular, N=3,
b=500, Stochastic)

Forb = 500 ands = 10, the trends for positive rate and time at first detectiorsiaosvn
for the rectangular distribution iRigure 56 usingN = 3. The error bars displayed are for one

standard deviation.
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Figure 56 Positive Rate and Time at First Detection for Different n Values (Rectangular, b=500, N=3, s=10, Stochastic)
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The positive rate for the rectangular distribution is greatest for tti¢idreal method and
whenn = 1. Asn increases, the positive rate decreases for the rectangular distributidarlim
the traditional method and = 1 has the shortest time to first detection (for the rectangular
distribution), while the larget results in a longer time at first detection

Trends in the data (positive rate and time at first detection) for differees $emgths for
the rectangular distributioneve looked at for three conditions: all successgs=(n), at least
one success in a series € 1), and for different measurentelengths.Figure 57 contains a
graph of the positive rate with source strength and time at first detectiorsovirce strength,

whenn = N for different series lengthfer the rectangular distribution
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Figure 57 Positive Rate and Time at First Detection with Sour ce Strength Comparison for Different N Values
(Rectangular, b=500, n=N, Stochastic)

As seen irFigure57, the positive rate for all five measurement lengths begins at 5%, as
expected for the rectangular distribution. The shape of the curve $aivparate with source
strength for the rectangular distribution is characterized by slow imcoggsositive rate at first
with source strength and then more rapid increase as the source dbemrugties larger. Initially
the positive rate increases rmoapidly with source strength for shorter series lengths (example

N = 1,n = 1), but after a source strength of 15, the positive rate for longer series @xneaie
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rapidly with the conditionV = 5,n = 5 reaching 100% positive rate by a source streng&0of
For the rectangular distribution the time at first detection, the drop in time atefiesttion with
increased source strength is largest for small source strengths and thee lssosignificant
for higher source strengths. The time at first detadfor the rectangular distribution is largest
for larger series lengths for all source strengths; however, the diéene time at first detection
becomes less as source strength increases.

Figure 58 contains a graph of the positive rate with source strength and time at first
detection with source strength, whan= 1 for different series length$or the rectangular
distribution The shape of the positive rate drdpr the rectangular distributiowith increased
source strength fat = 1 has a different shape than for= N. Rather than increasing slowly at
low source strength then rapidly at high source strength, the positiveordtee rectangular
distribution at n = 1 increases rapidly at lower source strengths and slower at high source
strengths. The plot of the time at first detection with source strength is similar=fay and
n = 1 for the rectangular distributipmnowever, the differences between the fiveasurements

length is less significant, especially after a source strengtlooharb.
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Figure 58 Positive Rate and Time at First Detection with Sour ce Strength Comparison for Different N Values
(Rectangular, n=1, b=500, Stochastic)
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A comparison of positive rate and time at first detection for different measatem
lengthsfor the rectangular distributiois in Figure59. The positive rate with source strength is
greatest for a measurement length of 5 s, the least for a measurement leBgh with a
measurement length of 1 s falling in between. The sbifies positive rate with source strength
for the rectangular distribution is similar «o= 1, but closer to a straight line. The time at first
detection has a similar shape to the other conditions described. The time at detectien f

rectangular distbution is largest for 5 s and smallest for 1 s.
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Figure 59 Positive Rate and Time at First Detection with Sour ce Strength Comparison for Different N Values
(Rectangular, b=500, Stochastic)

Triangular

As with the rectanguladistribution, two different source and background spectra
simulation techniques were used for the triangular distribution. One methodology uses one
distribution to generate the source and background distribution, and the second methed uses t
distributiors — a source distribution and a background distributiand sums them to generate
the source and background distribution. As with the deterministic method, the triangular
distribution created is symmetric.

When using one distribution, the mean valae=(u) was chosen to be the sum of the

background and source distribution, while the width of the triangle was chosen to keglara si

75



width to the Gaussian distribution. The limits of the triangle were chosende=le— 3+/c and
b = c + 3+/c. For example for a background of 500 and a source value of 50, thecraeand
equal 550, whiler = 550 — 3v/550 = 480 andb = 550 + 3v/550 = 620.

When the data was generated by summing a source distribution and a background
distribution, one value was sampled offatriangularbackground distribution with a mean
equal to the mean background and a second value was sampled offiarigalar source
distribution with a mearc equal to the mean of the sample; the limits of each triangular
distribution were chosen to ke= c — 3v/c andb = c + 3+/c. For the previous example, one
number would be generated off ofreangularbackground distribution with a mean of 500 and
limits at a = 500 — 3v/500 = 433 and b = 500 + 3v/500 = 567, a second number would be
generated off of driangular source distribution with a mean of 50 and limitsaat 50 —
3v50 = 43 and b = 50 + 3v/50 = 57. The differences in the two source and background
simulation techniquesfor the triangular distributiorby comparing the probability density

functionatb = 500 and several source strengthg-igure60.
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Figure 60 Probability Density for Different Source Strengths Comparison for Two M easurement Simulation Techniques
(Triangular, b=500, Stochastic)
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The distribution for each technique is the same for source strength of zero, but changes
significantly at higher source strengths. As sedfignire60, the resulting shape from generating
off of two distributions for the triangular distribution at higher source strengthsahaore
rounded shape, wider shape, and significantly redpeadl probabilityThese differencein the
measurement simulatidechniques for the triangular distribution aleoillustrated by plotting
probability density functions for each measurement technique on the samf®rpkuurce

strengths of 0, 5, and 50 kigure61 for a background of 500.
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Figure 61 Probability Density Function Comparison for Two Measurement Simulation Techniquesfor Several Source
Strengths (Triangular, b=500, Stochastic)

The differences in probability density functiofts the triangular distributiomre most
prominent for higher source strength, as also seen for the rectangulidutiosir Additional
comparison for the triangular distation at different source strengths is availabl&igure 168
(s =1,3,5,8) and Figure 169 (s = 10,15,30,50). In addition to the comparison of the
probability density functiorfor the triangular distribution, the positive rate and time at first

detection are compared kigure62for N = 2,n = 2.
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Figure 62 Positive Rate and Time at First Detection with Sour ce Strength Comparison for Two M easurement Simuation
Techniques (Triangular, N=2, n=2, b=500, Stochastic)

For the triangular distribution, generating values off of two distributions centist
produces consistently larger positive values. However for the time tatiditesction, for certain
source strengs, the values for generating off of one distribution are greater than for two
distributions. Values for the positive rdte the triangular distributionary significanty for the
two source simulationechniques are within 50% for the traditional method, while they are
within 70% forn = 1 andn = 2. The difference in time to first detection values is muchess
within 10% for the traditional method amd= 1, and15% forn = 2. Additional comparison
graghs using the two measuremesimulation techniques for the triangular distribution are
available in Appendix B ifrigure170 (positive rate) anérigure171 (time at first detection)All
future data discussed for threangular distributions generatedising two random numbers.

A comparison of the positive rasmd time to firsdetection foithe triangular distribution
for N =3 andb = 500 is in Figure 63. The error bars are for one standard deviathsmseen
with the rectangular distributioras the source strength increases, the positive rate increases and
the time at first detection decreasesthe triangular distribution. The positive rate is the greatest
for a measurement length of 3 s with= 1 yielding the second highest positive rate. The

smallest time at first detection is for the traditional methbe=(1,n = 1). Additional graphs for
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different N values of the triangular distribution are availableFigure 172 (positive rate)and

Figurel73(time at first detection)
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Figure 63 Positive Rate and Time at First Detection with Sour ce Stnregth for Different n Values (Triangular, N=3, b=500,
Stochastic)

The trends for the positive rate and time at first detection between differenti aasidir
the triangular distribution anéustrated inFigure64 for N = 3, b = 500, ands = 10. The error

bars displayed are for one standard deviation.
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Figure 64 Positive Rate and Timeto First Detection for Different n Values (Triangular, b=500, N=3, s=10, Stochastic)
The positive rate is smallest for nertreme conditions (for example henes= 2) for the
triangular distribution. While the time at first detection for the triangular disioibus the

lowest for the traditional method and whenr= 1 and the largest is for when= N. Similar to
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the rectangular distribution, trends in the déda different series lengths for the triangular
distribution were looked at for three conditions: all succesNes 1), at least one success
(n = 1), and for different measurement lengths.

Figure 65 contains a graph of the positive rate and time at first detection with source
strength, whem = N for different series lengths'he positive rate for all five measurement
lengths begins &%, andncreass approximately linedy with source strengtfor the triangular
distribution. The greatest positive rate is seen for longer measuremest&ee longest time at
first detectionfor the triangular distributionvas seen for the longer measurement series, with
N =5 being consstently largest and/ = 1 being consistently the smallegts source strength

increases the difference detection timdor the different serebecomes less pronounced.
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Figure 65 Positive Rate and Time at First Detection with Sour ce Strength Comparison for Different N Values
(Triangular, n=N, b=500, Stochastic)

Figure 66 contains a graph ohé positive rate with source strength and time at first
detection with source strength, whan= 1 for the triangular distribution atlifferent series
lengths. The shape of the positive rate graph with increased source strengih=farhas a
different shap than forn = N, as also seen for the rectangular distribution. #er 1, the

triangular distributiorpositive rate increases rapidly at lower source strengths and sloweh at hig
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source strengths. The plot of the time at first detedboithe trianguladistributionwith source
strength is similar forn =N and n =1; however, the differences between the five

measurements length is less significant with the exceptidh-of2.
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Figure 66 Positive Rate and Time at First Detection with Sour ce Strength Comparison for Different N Values
(Triangular, n=1, b=500, Stochastic)

A comparison of positive rate and time at first detection for different measntem

lengthsfor the triangular distributiors in Figure67.
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Figure 67 Positive Rate and Time at First Detection with Sour ce Strength Comparison for Different N Values
(Triangular, b=500, Stochastic)

The positive rate with source strength is greatest for a measurement dérigt) the

least for a measurement length of 1 s. The shape of the triangular distriiegitve rate with
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source strend is close to a straight line, similar to= 1. The time at first detection has a
similar shape to the other conditions described. However, the differencesbéhsaitial time
at first detection at = 0 is a lot more significant. The largest time at first detecfamthe

triangular distributions for 5 s and the smallest is for 1 s.

Sinusoidal

Two different source and background spedirauationtechniques were used for the
sinusoidaldistributionand compared. One methodologgnerated measurenteralues off of a
single source and background distribution, while the second method generates aif\afiize
source distribution and a value off of background distribution, sumnhiegn As with the
deteministic method, the sinusoiddistributionis equal to one half of the sine wave.

When using one distribution, the mean vabiehe sinusoidal distributiowas chosen to
be the sum of the background and soumsan while the width of sinusoidal distributiomas
chosen to keep a similar width to the Gaussian distribufibe.characteristic values of the
sinusoidalarea = u — 3+/u andb = u + 3+/u, with aperiod of T = 12+/u. For example for a
background of 500 and a source value of 50, the mewwuld equal 550, whilex = 480,

b = 620, andT = 12v/550 = 280.

When the data was generated by summing a source distribution and a background
distribution, one value was sampled off ofiausoidalbackgound distribution with a mean
equal to the mean background and a second value was sampled offimfsaidal source
distribution with a meam equal to tle mean of the sample with the same charactetisticdb
values as previous. For the previous example, one number would be generatedoftisbidal

background distribution with a mean of 5@@aracterized by: = 433, b =567, andT =
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12+/500 = 268; a second number would be generated off sirmsoidalsource distribution
with a mean of 50 = 43, b = 57, andT = 12+/50 = 28.

The differences in the twaneasuremenssimulation techniquesfor the sinusoidal
distribution are higlighted by comparing the probability density function Figure 68 for
b =500 and a few source strengtfishe distribution for each technique is the same for source
strength of zeroThe differences in the two techniques for the sinusoidal distribution are less

significant than those for the rectangular and triangular distributions.
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Figure 68 Probability Density Function for Different Source Strengths Comparison for Two M easurement Simulation
Techniques (Sinusoidal, b=500, Stochastic)

The differences in the two measurem&nulationtechniques are illustrated on the same
plot for several source strengthsFigure69 for b = 500. There are littlevisual differencesfor
the two measurement simulation techniques for the sinusoidal distrib@tiaphs for additional
source strengths are iAppendix B in Figure 174 s =1,3,5,8) and Figure 175 (=

10,15, 30, 50).
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Figure 69 Probability Density Function Comparison for M easurement Simulation Techniques for Several Source
Strengths (Sinusoidal, b=500, Stochastic)

The positive rate and time at first detection are compared in additiir terobability
density function; a comparison of the positive rate and time at first aetdoti the sinusoidal
distribution isin Figure70for N = 2,n = 2. For the sinusoidal distribution the main differences

are in the positive rate fof = 2.
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Figure 70 Positive Rate and Time at First Detection with Sour ce Strength Comparison for Two M easurement Simulation
Techniques (Sinusoidal, N=2, n=2, b=500, Stochastic)

Generating measurement values off of two distributions consistently yietdghar

positive rate for the sinusoidal distribution. For the traditional method positive rate valees ar
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within 5%, however fom = 1 andn = 2, positive rates vary by as much as 80% for the two
measurementsimulation techniques. The calculated time to first detection floe two
measurement techniques are similar for all conditions (within 1@@ditional graphs with
other values oh are available for the sinusoidal distributionRigure 176 (positive rate) and
Figure 177 (time to first detection)All future data discussed for thenusoidaldistribution is
generating by using two random nunsoer

A comparison of the positive rate and time to first detection for different cotidriaaf
n for the sinusoidal distribution fa¥ = 3 andb = 500 is in Figure71. Error bars displayed are
for one standard deviatiordditional graphsfor different series lengthfor the sinusoidal

distributionare inFigurel77 (positive rate) andBigure178(time at first detection).
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Figure 71 Positive Rate and Time at First Detection with Source Strength for Different n Values (Sinusoidal, N=3, b=500,
Stochastic)

As seen inFigure 71 and for the other distributions discussed, the source strength
increaes the positive rate increases Hrltime at first detection decreases. The positivefoate
the sinusoidal distrilttion increases most rapidly far= 1. The smallest time at first detection
for the sinusoidal distribution occurs for the traditional meth®d=(1,n = 1) and the three

second long measurement.
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For b =500 and s = 10, the trends for positive rate and timef@ast detection are
illustrated for the sinusoidaldistribution inFigure 72 usingN = 3. Error bars displayed are for
one standard deviatiomhe positve rate for tle sinusoidadtlistribution tends to be greatest when
n = 1. As the number of successes required increases, the positive rate decreases for th
sinusoidal distributionThe traditional method yields a higher positive rate than whenv, as
also seen withthe rectangular distributiorFor thesinusoidaltime to first detectn, traditional
method and 1+ measurements exceeding the decision threshold in a series Inaidetbietisne
to first detectionwhile the larger number of required measurements exugdtie decision

threshold results in a longer time at first detection.
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Figure 72 Positive Rate and Timeto First Detection for Different n Values (Sinusoidal, b=500, N=3, s=10, Stochastic)

Trends in the data (positive ratedatime at first detection) for ferent series lengths for
the sinusoidal distribution were looked at for three conditions: all succééses), at least one
success in a series & 1), and for different measurement lengthiggure 73 contains a graph of
the positive rate with source strength and time at first detection with sourcgttsti@nthe

sinusoidal distribution, whem = N for different series lengths.
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Figure 73 Positive Rate and Time at First Detection with Sour ce Strength Comparison for Different N Values (Sinusoidal,
n=N, b=500, Stochastic)

The positive rate for all five measurement lengths begins at 5% and exreas
approximately linearly with source strength. The positive for larger uneaent length$or the
sinusoidal distributions larger than for shorter series lengths. Fordimeisoidaltime at first
detection, the larger measurement lengths have larger time at first detectiten skdrter
measurement lengths have shorter times at first detection; this remains carstdhsdurce
strengths.

Figure74 has a graph ahe positive rate with source strength and time at first detection

with source strength, when= 1 for different series lengthfer the sinusoidal distribution.
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Figure 74 Positive Rate and Time at First Detection with Sour ce Strength Comparison for Different N Values (Sinusoidal,
n=1, b=500 Stochastic)
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The shape of the positive rate graph with increased source strength=fdr has a
different shape than fat = N (as see for other distributions discussedhe positive rate for
n = 1 increases rapidly at lower source strengths and slower at high soangglstr The plot of
the time at first detection with source strenfgththe sinusoidal distributiors similar forn = N
andn = 1; however, the differences between the five measurements length is lefisasigni
especially after a source strength of around 5.

Figure 75 contains acomparison of positive rate and time at first detection for different
measurement lengtHer the sinusoidal distribution. The positive rate with source strength is
greatestdr a measurement length of 5 s, and smallest foeasurememength of 1 sTheshape
of the positive rate with source strengph the sinusoidal distributiois approximately a straight
line, similar ton = 1. The time at first detection has a similar shapetter conditionsand
distributions discussedlhe time at detection isrgest for 5 s and smallest for 1lf& the

sinusoidal distribution.
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Figure 75 Positive Rate and Time at First Detection with Sour ce Strength Comparison for Different N Values (Sinusoidal,
b=500, Stochastic)

Poisson
Measurements for the Poisson distribution were generated using two differeet @alrc

background spectra simulatiotechniques and compared. The first method generates
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measurement values off of a single souwned background distribution, while the second method
generates a value off of a source distribution and a value off of background ddstribut
summing themThe Poisson distribution is characterized by only a mean WAlben using one
distribution, the mean value was chosen to be the sum of the background and source mean. When
the data was generated by summiwg distributions one value was sampled off ofP@isson
background distribution with a mean equal to the mean background and a second value was
sampled off of &Poissonsource distributiorwith a mean equal to the mean of the soufte
generategbrobability density functiosrare comparefibr the Poisson distribution Figure76 for

a background of 508nd a few source strength=or the Poisson distribution, there is very little

difference between techniqyes also seen for the sinusoidal distribution.
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Figure 76 Probability Density Function for Different Source Strengths Comparison for Two M easurement Simulation
Techniques (Poisson, b=500, Stochastic)

The differences in the two measurem&intulationtechniquesre illustrated on the same
plot in Figure 77 for b = 500 for the Poisson distributiorThere are little differences between
the measuremesimulationtechniquedor the Poisson distributiodditional comparisons for

othersource strengths are kigure180 (s = 1, 3, 5, 8) andFigurel81 (s = 10,15, 30, 50).
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Figure 77 Probability Density Function Comparison for Two M easurement Simulation Techniques For Several Source
Strengths (Poisson, b=500, Stochastic)
In addition to the comparison of the probability density function, the positivearate

time at first detection are comparied the Poisson distribution irigure78for N = 2,n = 2.
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Figure 78 Positive Rate and Time at First Detection with Sour ce Strength Comparison for M easurement Simulation
Techniques (Poisson, N=2, n=2, b=500, Stochastic)

Values for the positive rate are within 10% and values for detection tinvetane 15%.
Comparisons for additional values are irFigure 182 (positive rate) andrigure 183 (time at

first detection). All futurd?oissordata discussed is genengtusing two random numbers.
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A comparison of thePoissonpositive rate and time to first detection for different
combinations of nN = 3) is in Figure79 for a backgound of 500Error bars displayed are for
one standard deviatioAs the source strength increases the positive rate increases and the time
at first detection decreases. The positive rate for larger valuesandl for a 3 s measurement
time increase theost rapidly; however positive rate for all conditions increase at a similar rate
with source strength. The time at first detection is longest for the 3 s measussi@lecreases
asn andN decreaseAdditional graphs for diffenat series lengths aie Figure 184 (positive

rates) andrigure185(time at first detection).
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Figure 79 Positive Rate and Time at First Detection with Sour ce Strength for Different n Values (Poisson, N=3, b=500,
Stochastic)

For b = 500 ands = 10, the trends for positive rate and time at first detedbetween
different conditions for the Poisson distributiare illustrated irfFigure80 for N = 3. Displayed
error bars are for one standard deviatibime positive rate for thBoisson distribution tends to
increase ag increases. The time at firdetection also tends to decreaserascreases for the
Poisson distributionTrends in thedata (positive rate and time at first detection) for different
series lengths for the Poisson distribution were looked at for three condieng, n = 1, and

for different measurement lengths.
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Figure 80 Positive Rate and Time at First Detection for Different n Values (Poisson, b=500, N=3, s=10, Stochastic)

Figure 81 contains a graph of tHeoissonpositive rate with source strength and time at

first detection with source strength, wher= N for different series lengths.
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Figure 81 Positive Rate and Time at First Detection with Sour ce Strength Comparison for Different N Values (Poisson,
n=N, b=500, Stochastic)

The positive rate for all five measurement lengths begins at 5% and exreas
approximately linearly with source strength. The largest positive rateris feeries of 5
measurements and smallest for the tradaionethodor the Poisson distributioriFor the time at
first detection, the drop in time at first detection with increased source strisnigifyest for

small source strengths and then become less significant for higher soungéhstréhe time at
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first detection is largesfor the Poisson distributiofor N =4 and N =5, and smallest for
N =2 andN = 1.

Figure 82 mntains a graplior the Poisson distributioof the positive rate with source
strength and time at first detection with source strength, whern for different series lengths.
The shape of the positive rate with source strength is differend fer4 for the Poisson
distribution. The positive rate foN = 4,n =1 initially increases rapidly and slows with
additional source strength; the other measurement lengths exhibit an initial sloth gn
positive rate with source strength until larger source strengths.

Based on other distributions for the= 1 condition, the shape oN =4 is more
expected. This should be investigated further for the Poisson distribUieplot of the time at
first detectionfor the Poisson distributiowith source strength is similar far= N andn = 1;

however,N = 3 exhibits the largest time at first detection, wiile= 4, 5, 1 exhibit the lowest.
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Figure 82 Positive Rate and Time at First Detection with Sour ce Strength Comparison for Different N Values (Poisson,
n=1, b=500, Stochastic)

Figure 83 contains acomparison opositive rate and time at first detection for different
measurement length®r the Poisson distributionThe positive rate with source strength is

greatest fob s and least for 1 s. The positive rate with source strength is close to a stnaight li
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The time at first detection has a similar shape to the other conditions describetdmeéhat

detection is largest for 5 s and smallest for 1 s.
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Figure 83 Positive Rate and Time at First Detection with Sour ce Strength Comparison for Different N Values (Poisson,
b=500, Stochastic)

Gaussian

Measurements for the Gaussian distribution were generated using two diffevece
and background spectsamulationtechniques and compared. The first method generates data off
of a single sorce and background distribution, while the second method sums a value generated
off of a source distribution and a value generated off of background distribution. The Gaussia
distribution is characterized by a mean value and a variance. The varianckeoses to be the
mean, as withhe Poisson distribution.

When using one distribution, the mean vatfiche Gaussian distributiomas the sum of
the background and source mewgith an equivalent variance. Whelata was generatexf two
distributions, one distribution had a mean and variance equivalent to the background mean, while
the second distribution had a mean and variance equivalent to the sourcd imeetavo source

and bakgroundsimulationtechniques areompared through therobability density function in
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Figure 84 for b = 500. As with the Poisson distributionthere is little difference between the

measuremergimulationtechniques for the Gaussian distribution.
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Figure 84 Probability Density Function for Different Source Strengths Comparison for Two M easurement Simulation
Techniques (Gaussian, b=500, Stochastic)

The two measuremergimulation techniques are also comparéor the Gaussian
distribution on the same plot for source strengths of 0, 5, and 50 for a background wof 500

Figure85.

0.02 0.02 0.02
0.015 0.015 0.015

0.01 [ 0.01 [ 0.01 [
0.005 I 0.005 0.005 / \

p(x)

hlﬁ__-
p(x)

400 500 600 400 500 600 450 550 650
Source + Background Source + Background Source + Background
e Oe Distribution e Oe Distribution e Oe Distribution
== Sum of Two Distributions == Sum of Two Distributions == Sum of Two Distributions

Figure 85 Probability Density Function Comparison for Two M easurement Simulation Techniques For Several Source
Strengths (Gaussian, b=500, Stochastic)
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There are little differences in the distributions for the Gausdistnibution. Additional
comparisons of the probability density function for the two measurement techrojuise
Gaussian distribution using other source strengths are in Appendix BBgume 186 ( =
1,3,5,8) andFigurel87 (s = 10,15, 30, 50).

The Gaussiarpositive ratebetween the two measuremesiimulation techniquesare
compared folN = 2,n = 2 in Figure86. Values for the positive rate are witHi6%. Additional
comparisons for the Gaussian distribution are available for other values1dippendix B in
Figure 188. All future data discussed for the Gaussian distribution is generating by wgng t
random numbers.
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Figure 86 Positive Rate with Soruce Strength for Two M easurement Simulation Techniques (Gaussian, N=2, n=2, h=500,
Stochastic)

A comparison of the positive rate and time to first detectiothi®iGaussian distribution
for differentn (N = 3) is in Figure 87for b = 500. The error bars are one standard deviation.
As seen byFigure87, the Gaussiapositive rate increases as the source strength increases, while
the time at first detection decreases. The positive rate tends to be the flargesirextreme
values of n (exaple N = 3,n = 2) for the Gaussian distributioffhe time at first detection is

the largest for a three second long measurementnaad and smallest for the traditional
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method.Additional graphs fothe Gaussianlifferent series lengthand background leleare
available for the positive rat&igure 189 (V = 2), Figure 190 (V = 3), Figure 191 (N = 4),
Figure192 (V = 5), and time at first detectioffigure193 (N = 2), Figure194 (N = 3), Figure

195 (V = 4), Figure196 (N = 5).
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Figure 87 Positive Rate and Time at First Detection for Different n Values (Gaussian, N=3, b=500, Stochastic)

Figure88 contains a bar graph for the positive rate and time to first detection for different
number of successes for = 3 for the Gaussian distributiofb = 500 ands = 10). The error

bars displayed are for one standard deviation.
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Figure 88 Positive Rate and Timeto First Detection for Different n Values (Gaussian, b=500, N=3, s=10, Stochastic)
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The positive rate for the Gaussian distribution tends to be greatest fextteme values
of n, as seen ifkrigure87, and smallest fon = 1. The smallest time to first detection correlates
to the largest values of the positive rate, being the largest#ol. Trends in the data (positive
rate and time at first detection) for different seliesgths for the Gaussiatistribution were
looked at for three conditions: all succesgés=(n), at least one success in a series=(1), and
for different measurement Igths.

Figure 89 contains a grapfor the Gaussian distributioof the positive rate with source
strength and time at first detection with source strength, whemV for different series lengths.
The positive rate for all conditions begins at 5% and increases approximatelyylingh
source strength. The largest positive riate the Gaussian distributiois for N =5 and the
smallest is forN = 1. The time at firstdetection initially decreases rapidly with added source
strength and then slows at higher source strengths. The time at first def@ctioe Gaussian
distributionis largest for larger series lengths; however, the difference in time tadldiection

becomes less as source strength increases.
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Figure 89 Positive Rate and Time at First Detection with Sour ce Strength Comparison for Different N Values (Gaussian,
n=N, b=500, Stochastic)
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Figure 90 contains a grapfor the Gaussian distributioof the positive rate with source
strength and time at first detection with source strength, wher. The positive rate fon = 1
increases rapidly at lower source strengths and slower at high sourcehstrdingt plot of the
Gaussiartime at first detectionvith source strength is similar far= N andn = 1; however,

the differences between the five measurements length is leggcaigf.
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Figure 90 Positive Rate and Time at First Detection with Sour ce Strength Comparison for Different N Values (Gaussian,
n=1, b=500, Stochastic)

Figure 91 contains a comparisoof the positive rate and time at first detection for the

Gaussian distribution for different measurement lengths.
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Figure 91 Positive Rate and Time at First Detection with Sour ce Strength Comparison for Different N Values (Gaussian,
b=500, Stochastic)
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The positive rate with source strength has a similar shape to the cumulativeittstrib
function for the Gaussian distribution. The positiaée is the greate$or 5 s, the least for 1 s.
The time at first detectiorior the Gaussian distributiohas a similar shape to the other
conditionsand distributionglescribed. The time at detection is largest for 5 s and smallest for 1

S.

Comparison of Deterministic and Stochastic M ethods and Discussion

Two methodologies for analyzing the series of measurements were intesktigaking
at exactlyn values exceeding the decision threshol&imeasurements, and looking at lemst
values exceedinthe decision threshold i measurements. The two methodologies were looked
at for both the deterministic and stochastic methods and showed similar trendemfdagison
was investigated for the Gaussian distribution, but observations should hold higr ot
distributions as well.

A value of N = 2 was investigated for the stochastic method, while 3, 4,5 were also
investigated for the deterministic method. All values showed similar trends. There are no
differences whem = N, because Equatid®® and90 converge fom = N. For other values of
for theexact condition as theaurce strength increases, eventually the positive rate increases to a
maximum at around 50% and decreases. This is likely because as the songtk siceeases,
the probability density function is shifted to the right beyond the threshold. It becoanes m
likely that greater than successes will occur and eventually oNlguccesses is possible. Tdie
least methodology takes this into account and as the source strength increases the nabsiti
increases to eventually 100%.

For the stochastic mettp two different measurement generating techniques were

investigated. One technique generated off of one distribution using one random number where
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the mean of that distribution was equal to the sum of the source and the background. The second
method generated off of a source and a background distribution using two random numbers and
summed the values. The probability density functions were compared visually and the posit
rate and time to first detection were compared. There were significant gifeatnces for the
rectangular and triangular distributions, but weren't for the sinusoidal,dAgiasad Gaussian
distributions. For the positive rate, there was less than 5% variation for thegrgatan
distribution, less than 10% variation for the Poisson and Gaussian, and up to 80% error for the
sinusoidal and triangular distributions. For the time at first detection, therdess than 10%
variation for the rectangular distribution and sinusoidal distribution, and less thawmatz#ton
for the Poisson and triangular glibution. Overall, the time at firstletection showed less
variation between the two techniques than the positive rate. There was amgrdiifference in
the positive rate data for the triangular and sinusoidal distributions.

The probaility density function for the positive rates and the time to first detection were
also looked at for the stochastic method. The distribution of positive rates folltogetydo a
normal distribution, while the time to first detection followed closelya geometric distribution.
Both of these agreed better when= N. For values of less thanV, the probability density
function for the measurement data is larger at higher times at first detéetioexpected for the
geometric distribution withp equal to the positive rate. The positive rate may not be the best
predictor for the time at first detection for conditions wheis not equal tav.

For the deterministic distribution, the probability density function was lookefrat
different backgrond levels. For each distribution as the mean background increased the

distribution widened and the peak probability decreased. Additionally, as sourogtlstre
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increased the distribution widened; the widening of the distribution is most sagtifvhen th
source strength is large compared to the mean background.

Values for the decision threshold were calculated Mk 1,2,3,4,5 and for
correspondingn values between 1 andl. For largerN values with constant, the decision
threshold increased. Additionally asapproache#, the decision threshold decreases: Hnd
N become large enough, the decision threshold can decrease lower than the mean of the
distribution. For the deterministic method, the source strength for 50% and 100%odetest
calculated for each condition. As the background strength increases, the pawstigdarger for
the same source to background ratio. This is because although the background probability
density function widens athe background increases it does not scale 1:1. For example, the
probability density function for a mean of 50 will not be twice as wide as for a mean of 100.

Behavior of the positive rates and time at first detection Witkvas investigated by
looking at a couple circumstances:= N, n = 1, and the measurement length. In general, the
behavior for the positive rate with source strength agreed well for alibdistns. For the all
conditions the positive rate tended to be largestMoet 5 and lowest forN = 1. The same
applied for the time at first detection. This indicates that a higher positive raendbalways
coincide with a lower time at first detection, as would be expected with the geometric
distribution.

The positive rates are compared forteddstribution for the deterministic and stochastic
methodologies. Additionally, positive rates (for stochastic and determjnastct time at first
detection (for stochastic) are compared between distributions. The distribuiiidns eiscussed
in the ame order that they appeared in the t&€ke positive rate for the rectangular distribution

is compared for the stochastic and deterministic methods in two wé&ygure92 for b = 500
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andN = 3. The left side ofigure 92contains a plot of the positive rate with source strength for
each condition oh for N = 3. The deterministi method is displayed using a solid line with
individual stochastic data points over laid. For the rectangular distribution, thelatadc
positive rate for stochastic and deterministic methods agrees well with soergglstiThe right
side ofFigure92 contains a bar graph for the different conditiong @t a source strength of 10.

The deterministic and stochastic methods agree well with each othé=&.
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Figure 92 Deter ministic and Stochastic Positive Rate with Sour ce Strength C(?r:lparison for Different n Values
(Rectangular, b=500, N=3)

Figure 93 containstwo comparisons of thpositive rate for thdriangular distribution
usingthe stochastic and deterministic methods for a background of 500 ang. On the left
side ofFigure93 is a plot of the positive rate with source strength for each conditionfof
N = 3, while the right side has a bar graph for the different conditiomsabfa source strength
of 10. The deterministic and stochastic methods do not agree with each otledr @&s for the

rectangular distribution. Either the deterministic method overestimates the poetiéivey about

two times or the stochastic method arestimates the positive rate by a factor of twl at 3.

103



0, 18.00% — e
100.00% p— /—/" 0 m Deterministic
90.00% 4 16.00% —
// M Stochastic
80.00% / 14.00% —
70.00% o 12.00%
‘E 60.00% // / E 10.00% -
: == Traditional, Deterministic @ —ooee
S 50.00% +——— e N=3, N=3, Deteministic 2 o
£ 40.00% A w N=3, N=2, Deterministic "é 8.00%
S e // ﬁ N=3, n=1, Deterministic & 6.00% -
30.00% L Traditional, Stochastic
o O N=3, n=3, Stochastic 4.00% -
20.00% - A N=3, n=2, Stochastic 2.00%
10.00% N=3, n=1, Stochastic L0
0, -
0.00% . . 0.00%
0 50 100 150 \oo'?’ & (\'f"' <&
X "))\ 0}\ ")J\
Source Strength &@& & & &

Figure 93 Deter ministic and Stochastic Positive Rate with Sour ce Strength Comparison for Different n Values
(Triangular, b=500, N=3)

The psitive rate for the sinusaadl distribution is compared for the stochastic and

deterministic methods in two wayshigure94 for a background of 500 and= 3.
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Figure 94 Deter ministic and Stochastic Positive Rate with Sour ce Strength Comparison for Different n Values
(Sinusoidal, b=500, N=3)

Source Strength

The left side ofigure94 containsa plot of the positive rate with source strength for each
condition of n for N = 3. For the sinusoidal distribution, the calculated positive rate for
stochastic method tends to agree with the deterministic method for smallex swargths, but

begins tobecome larger than the deterministic method of larger source strengthsghtrede
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of Figure94 contains a bar graph for the different conditiona @t a source strength of 10. The
stochastic method predicts a higher positive rate than the deterministic methodio$he
significant difference in positive rate for the two methods isVfer 3,n = 1.

The positive rate fothe stochastic and deterministitethodsis also compareth two
waysfor the Poisson distributiom Figure95 for a background of 500 and = 3. The left side
of Figure 95 contains a plot of the positive rate with source strength for each conditiofoof
N = 3, while the right side ofFigure95 contains a bar graph for the different conditions of n at a
source strength of 16or thePoissondistribution, the calculated positive rate for stochastic and

deterministic methods agree well with source strength, as well agfeoedin for N = 3.
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Figure 95 Deter ministic and Stochastic Positive Rate with Sour ce Strength Comparison for Different n Values (Poisson,

b=500, N=3)

The positive ratdor the stochastic and deterministic methaslso compared for the
Gaussian distributiom two ways inFigure96 for a background of 500 ard = 3. The left side
of Figure 96 contains a plot of the positive rate with source strength for each conditiofoof
N = 3. For the Gaussian distribution, the calculated positive rate for stochastictandidistic

methods agree well with source strength. The right sidiegofre 96 contains a bar graph for the
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different conditions om at a source strength of 10. The deterministic method tends te over

predict the stochastic methods at a source strength of 10 by a couple of percent.
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Figure 96 Deter ministic and Stochastic Positive Rate with Sour ce Strength Comparison for Different n Values (Gaussian,
b=500, N=3)

The trends in positive rate for the deterministic and stochastic methodsoaceralsared
between distributions iRigure97 for a series of three measurements at a background of 500 and

source strength of 10.
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Figure 97 Stochastic and Deter ministic Positive Rate Comparison for Different Distributions with Different n Values
(N=3, b=500)
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For the deterministic method the positive rates are comparable for all coneéitiosst
for the rectangular distribution. For the stochastic methecdetis more variability. The positive
rates for the triangular distribution tend to be a lot lower than for other diginbuEor both the
stochastic and deterministic methods, the Poisson distribution and Gaussibaotibn estimate
similar positive rates for all conditions.

The trends in time at first detection between distributions for the stochastic siateod
compared inFigure 98 for a series of three mgarements at a background 530 and source
strength of 10The time at first detection of all distributions is comparable except forl. For

n = 1, the Gaussian and Poisson distributions exhibit much higher times at firsiatetect

25 —
m Rectangular
| Triangular
20 + . .
Sinusoidal
M Poisson

M Gaussian

Time at First Detection

Traditional N=3, n=3 N=3, n=2 N=3, n=1
Figure 98 Stochastic Time at First Detection Comparison for Different Distributions with Different n Values (b=500,
s=10, Stochastic)

The probability density function for the time at first detection was also cothfar¢he
different distributions used. The probability density functions for the traditiore@hod and
N = 3,n = 2 are displayed ifrigure99for b = 500 ands = 10. Additional graphs for different
values ofn are in Appendix B ifFigure197. For the taditional method, the probability at a time
of 1 is greater for the rectangular, triangular and sinusoidal distribution than f@oigson and
Gaussian distributions. This could explain why the calculated mean time atetiestion for

s = 10 is largerfor the Poisson and Gaussian distribution. The probabilities for theidredi
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distribution with time at firstdetection compare well otherwise. FofF = 3,n =2, the
probability peaks around 2, corresponding torthalue. The peak probability is gresttdor the

sinusoidal and triangular distributions.
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Figure 99 Probability Density Function for Time at First Detection for Different Distribution for Traditional and N=3,
n=2 (b=500, s=10,Stochastic)

Implementation into a Detection System

In addition to simulation data, data and analysis was also performed for datantétken i
Room 119 of the MRB at Colorado State University (Fort Collins, CO). The background in the
room was assessed by taking a backgd measurement to assess the average courdngte
energy spectrum, severapeated 15 minuteackground measurements to assess time behavior,

and a short background measurement prior to the measurement with source data.
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The background measurementswaerformed for300 s. The energy spectrum for the

background radiation 5 in
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Figure 100 The average count rate was determined t6d%27C/s for the full energy

window. The energy spectrum is characterized by a low energy Compton backgreusekrAin
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Figure 10Q, there is a peak around channel 1450 corresponding to the 1.46 MeV gamma

from Potassium-40.
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Figure 100 Energy Spectrum for Background
The time behavior for the background in Room 119 was determined by taking repeated
10 minute samples over 24 hours. Due to the large amounts of natural terrestrial background i
Colorado it was anticipated that there mightiation in dos rate due to vation in radon
concentrationsFigure101contains a graph of the count rate with the time the measurement was
taken. Fluctuations in the count rate are similar bkatwvould be expected due ¢banges in

radon from night to day.
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Figure 101 Time Behavior for Background in Room 119
The source used was a CesiliBY button sourceThe location of the source was
determined by looking at the cdurate above background at several source distaiicess
desired that the count rate would be large enough to see differences inntifieetysis

techniques, but small enough to not cause 100% positives. The count rate above background was
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determinedor the full energy windowA graph of the count rate above background with source

distance is irFigure102
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Figure 102 Count Rate vs. Distance for a Cesium-137 Source
The counts above background drop off rapidly with distance, as expected from the
inversesquare law. The source distance was chosen at 40 cm, which yields a count 384 o
C/s.The energy spectrum for the source was also taken and is displayedi@104. The full
energy deposition peak is observed around channel 650 in the energy spectrum. The counts in
smaller channels are due to the Compton spectrum, and counts in channdig aitaktare due

to background.
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Figure 103 Energy Spectrum at 5 cm for Sour ce and Background

Repeated measurements were performedlfes, 2 s, 3 s, 4 s, and 5 s. For each

measurement length 10 repeated measurements were taken of 120, for 1200 totehmeatsur
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The positive rate and time at first detection is calculatedVfamalues between 1 and Bhe
measurement data is compatedsimulation data for a Gaussian distribution. Roe 3, the
positive rate and time at first detection are compared for measurentestnauiation data in
Figure 104. Additional graphs for other values bfis available inAppendix C inFigure 198

(N = 2), Figure199 (N = 3), Figure200 (N = 4), andFigure201 (N = 5).
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Figure 104 Positive Rate and Time at First Detection Comparison for Simulation and M easuement Using Different n
Values (N=3, b=669.27, s=13.84)

The probability density function was also looked at for the positive rate arionihet
first detection for measurement and simulation (Gaussian) data. The probabuiity denction
for the positive rate for measurement and simulation dataFgure105for N = 3. The data is
compared to a Gaussian distribution. The average positive rabe=f@69.27 and s=13.84 is
fairly small and as a resultlarge portion of the predicted distribution is the left of 0%. For this
case, the predicted distribution does not match the measurement values well. Addjtioas
for the probability density function are in Appendix CHigure202 (N = 2), Figure203 (N =
2), Figure204 (N = 3), Figure 205 (N = 3), Figure206 (N = 4), Figure207 (N = 4), Figure

208 (V = 5), andFigure209 (N = 5).
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Figure 105 Positive Rate Probability Density Function Comparison for M easurement and Simulation for Different n
Values (Gaussian, N=3, b=669.27, s=13.84)

The probability density function for the time at first detection for measurenmeht a

simulation data is ifrigure106for N = 3. The data is compared to a geometric distribution.
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Figure 106 Time at First Detection Probability Density Function Comparison for M easurement and Simulation for
Different n Values (Gaussian, N=3, b=669.27, s=13.84)
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The predicted geometric distributions for all the conditions are similarctoaher. The
simulation data fits better to the predicted data, since more simulation data couthiee.c
Additional figures for the probability density function are in Apgi@rC in Figure215 (V = 2),
Figure216 (V = 3), Figure217 (N = 3), Figure218 (N = 4), Figure219 (N = 4), Figure 220
(N =5), andFigure221 (N = 5).

Trends in the data (positive rate and time at first detection) for differees $emgths for
the measurement and simulatioi@Gaussiap data were looked at for three conditions: all
successesM = n), at least one success in a series=(1), and for different measurement
lengths.The positive rate and time at first detection o= N for measurement and simulation

data is inFigurel107. Error bars displayed are for one standard deviation.
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Figure 107 Positive Rate and Time at First Detection for Simulation and M easuement (n=N, b=669.27, s=13.84)
Largevalues of n tend to correlate witligher positive rates and time at first detection
while small values of n tend to correlate to lower positive rates and time at firdiaet€be
positive rate and time at first detection for= 1 for measurement and simulation data is in
Figure 108 Error bars are foone standard deviation. Largér tendto correlate to higher
positive rates andetection timewhile smaler N correlate to lower positive rates adetection

time. The value fotv = 5 appears to bemall compared to other values.
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Figure 108 Positive Rate and Time at First Detection for Simulation and M easuement (n=1, b=669.27, s=13.84)
The positive rate and time at first detection for different measurement lengths for

measurement and simulation data i§igure109. Error bars are for one standard deviation.
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Figure 109 Positive Rate and Time at First Detection for Simulation and M easuement for M easurement Length
(b=669.27, s=13.84)

Large measureant lengths tend to correlate witigher positive rates and time at first
detection while small values of tend to correlate to lower positive rates and time at first
detection.

Table 11 contains a comparison for the positive rate and time at first detection using
several techniques. The positive rate is calculated using the deterministio@rabst methods

and is compark to measurement data. The time at first detection is calculated using the
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stochastic method and compared to measurement data. The measurement dastagiessd
time at first detection tentb be smaller than predicted for the deterministic and ssticha

methods. The measurememtal overall compareell to deterministic and stochastic methods.

Table 11 Positive Rate and Time at First Detection Comparison for Different Calculation Techniques

Positive Rate Time at First Detection

Deterministic Stochastic Measuremen| Stochastic Measuremen
Traditional| 13.60% 13.57% 12.43% 7.41 3.73
N=2,n=2 | 16.96% 17.60% 16.72% 7.68 8
N=2,n=1 | 15.36% 15.33% 16.80% 12.64 8.64
N=3,n=3 | 19.31% 19.78%  15.84% 8.12 6.9
N=3, n=2 | 20.04% 20.57% 17.40% 10.38 10.36
N=3,n=1 | 16.46% 15.72%  16.76% 17 16.09
N=4,n=4 |21.13% 20.57% 17.47% 9.91 8.55
N=4, n=3 | 23.26% 24.20% 21.16% 9.69 8.55
N=4,n=2 |22.17% 22.59%  18.54% 12.34 10.82
N=4,n=1 |17.27% 16.57%  18.04% 21.68 25.82
N=5,n=5 | 22.61% 22.14% 18.61% 11.51 12.18
N=5,n=4 | 25.77% 26.24%  21.24% 10.71 6.27
N=5, n=3 | 26.07% 25.17%  20.81% 12.12 12.18
N=5, n=2 | 23.83% 22.79%  20.10% 13.52 10.45
N=5,n=1 |17.92% 23.22%  24.79% 18.06 16.45

The methodology described in this thesis to examserias of measurements rather than
just one measurement (as is done traditionally) can be easily implemented intectomnle
system. The measurement series length, number of successes required anusitalsergte
(number of positives due to backgroiedn be optimized for the detection system. For example,
consider the scenario where a portal monitor is used in exiting the secured Hregooiver
plant. The system uses a 5 second long counting interval to determine if contamisat
present. The background count rate on average is 500 counts per second. Currently the system
operates by developing a decision threshold based on a 5 s long count, the average background
count rate, and assuming a Gaussian distribution of counts.

If a 5 s count is taken, 2500 counts will be recorded on average with a standard deviation

of 50 (assuming Poisson counting statistics). The decision threshold #00.05 can be
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calculated at 2598 counts in 5 s or 519.6 counts per second. If a 1 s measurement in considered,
500 counts will be recorded on average with a standard deviation of 22.4 (assuming Poisson
counting statistics); the resulting decision threshold is at 543.9 counts per secaaseH if a

series of five measurements is looked at and it is desired tHateatheasurements exceed the
decision thresholdn(= N), the decision threshold for a series of measurements can be calculated
for a p value of 0.549280 as 497. The algorithm can be implemented into the portal monitor by
counting the amount of times in thast five measurements that the decision threshold for a
series of measurements was exceeded. In this case if the decision thresholdries afse
measurements is exceeded five times in the last five measurements, the portal wardo

alarm.
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CONCLUSIONS

The decision threshold for a series of measurements can be easily implemenged in
detection system. First an appropriate decision threshold for the serieasafremeents needs to
be calculated given the values Bf n, and a. Secondly,the amount of times the decision
threshold for a series of measurements is exceeded in thd lasasurements needs to be
calculated and compared #0 If the number of measurements exceeding the decision threshold
for a series of measurements is gee#ttan n, an alarm would occur.

Several trends and criteria were investigatédr the analsis of a series ofN
measurements. The goal of this project wasstesshe effectiveness ofising data frona series
of measurements, rather than onéividual measurement to define a suitable decision threshold.
A series ofN measurements varying between 1 and 5 was studidtn of those measurements
exceeding a thresholdesigned to exhibiho more than 5% false positives when no source is
present

It was determined that due to the shift in the probability density function when a source
added, it is more effective uttilize considerations ddt leastn of N measurements exceeding a
threshold rather than exactlymeasurements. If thexact condition is used, 100% detection can
never be achieved because due to the shift in the probability density functionpbssible for
only n measurements to exceed the decision threshold in a seNegndéssn = N.

Also investigated was thsimulation of measurement data. Two methodologies were
used:samplingoff of onecombinedsource and background distribution a@nplingoff of two
separate source and background distributions and summing the values. fiouwwdsthat

samplingoff of two distribution of one shape does not always yield a distribution in the same
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shape. Differences in the shapes of the two distributions were espeacmdtyupced for high
source strength data. The rectangular and triangular distributions showdidasig differences

in the probability density functions between the tsimulationtechniques. However,isual
inspection of the similarities between the distribng does not always correlate witbgree of
differences in detection probability and time at first dete. For instancethe rectanguar
distribution which had significantisual differences in the probability density functions between
the two methods had the least variation between the two methodologies for thes pasitiand
time at first detectiordata The technique used to simulatee measurement data should be
chosen so that it matches the actual source and background data observed.

The probability density functions for the positive rate and time at first ttmtewere
investigated for the Gaussian distribution. Tnebability distribution for positive rate follows
well to a Gaussian distribution, except at small values for the source, ddbauasstribution
becomes negativeAdditional studiesinto a distribution thatexhibit negativevalues are
necessary. Therpbability distribution for time at first detection closely followsgeometric
distribution whermm = N, but does not follow as closefgr other values ofi. One problem is
that for a series of measurements, at leaseasurementseed to be performdaeforean alarm
can occurlf an alarm occurs at less thmmeasurements, one of the positives was daefatse
positive signal from théackgroundSo although exceeding the decision threshold at a time less
than n, it is less ikely than would be predicted by the geometric distribution. Another
complication is that althouglomger time series tend to yield higher positive rates for equivalent
conditions,they also yieldonger times to first detectiorf a geometric distributio wasused

the time at first detection would be predicted as lower due to the higher pcatigive r

119



Several distributions were investigated for this projEot. a given source strength and
background strength, the same trends between conditierreot aparentor all distributionsin
the case ofN = 3,n = 2, this value of n outperformedother n values for the Gaussian
distribution, but did the poorest for the rectangular and sinusoidal distributions, and was
somewhere in the middle for the other distributions. Each distribution appears to be unique and it
is difficult to state general trends between conditions. However, for all mxliand
distributions as source strength increased the pesidte increased and the time at first
detection decreade approachingt. More investigation is necessary into the root causes for the
differences in the distributions.

Finally, measurement data weeken for one background and source level. Overall, the
measurement data agreed well with values calculatet ubie deterministic and stochastic
techniquesAs seen for simulated data, a high positive rate does not always indicate a small time
at first detection. More data should be taken to assess trends for the probabitityfdeogon

for the time at firstletection and positive rate.
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Rectangular
Table 12 Calculated Values of y* at Different Background Strengths (Rectangular, Deter ministic)

Background Strength
N n 50 100 250 500 750 1000 2500 5000 7500 10000
1 1 61 116 275 535 793 1049 2578 5110 7642 10156
5 2 57 110 265 521 776 1030 2548 5068 7583 10096
1 62 116 276 537 795 1052 2582 5116 7642 10164
3 53 105 257 510 762 1014 2523 5032 7539 10046
3 2 59 113 270 528 785 1040 2563 5089 7609 10126
1 62 117 276 537 796 1053 2584 5118 7645 10167
4 51 101 251 502 753 1003 2505 5007 7508 10009
4 3 56 109 264 519 774 1028 2544 5062 7575 10087
2 60 114 272 531 788 1044 2570 5099 7621 10139
1 62 117 277 538 796 1053 2584 5119 7646 10169
5 49 98 247 496 745 995 2491 4988 7485 9983
4 54 105 259 512 765 1017 2527 5039 7547 10055
5 3 58 111 267 524 779 1034 2554 5076 7593 10108
2 60 115 273 533 790 1046 2573 5104 7627 10147
1 62 117 277 538 796 1054 2585 5120 7647 10170
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Triangular

Table 13 Calculated Values of y* at Different Backgrounds Strengths (Triangular, Deter ministic)

Background 8ength
N n 50 100 250 500 750 1000 2500 5000 7500 10000
1 1 64 121 282 586 806 1065 2603 5145 7678 10205
5 2 57 110 266 522 777 1031 2550 5070 7586 10099
1 66 123 286 552 814 1074 2616 5164 7701 10232
3 53 104 257 509 762 1013 2521 5030 7537 10042
3 2 60 114 273 532 789 1046 2572 5102 7625 10144
1 67 124 288 555 817 1078 2622 5173 7712 10245
4 51 101 251 502 752 1003 2504 5006 7507 10008
4 3 56 109 264 520 774 1028 2544 5063 7577 10088
2 62 117 276 537 796 1053 2584 5118 7645 10167
1 68 125 289 556 819 1080 2626 5178 7718 10252
5 49 98 248 497 746 995 2492 4989 7487 9985
4 54 105 258 512 764 1016 2526 5037 7545 10052
5 3 58 112 268 526 782 1037 2558 5082 7600 10115
2 63 118 279 541 800 1058 2591 5129 7658 10183
1 68 126 290 557 820 1081 2629 5182 7723 10257
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Deter ministic)
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Deterministic)

135



b=50
1
—) 0.9 //—
1 12 0.8 ///
= £ ///
—s £ 06 ///
% /4 N
—_—15 a 05 /// Traditional
—30 o 04 N=2, n=2
s 50 '§ 03 / N=2, n=1
——N=2, n=2 © y/
——N=2, n=1 £02
== traditional 0.1 -
T 1 0 T T T T 1
150 200 0 10 20 30 40 50
Source + Background Strength Source Strength
b=500
0.02 1
— ] /
® 0.8
0.015 2 g - y/ 4
— @ .
—s 3 06 /;/
— — v
Z o0t 1‘5) S 05 // Traditional
204
=30 ] / = N=2, n=2
0.005 ——50 £o3
) I =2, N=2 @02 ===N=2, n=1
e N=2, n=1 o
e traditional 0.1 1
0 B T T I 0 T T 1
400 500 600 700 800 0 50 100 150
Source + Background Strength Source Strength
b=5000
0.006 1
0.9
0.005 _‘E 0.8
-
0.004 g 07
£ 0.6
— v
-.E 0.003 2 05 Traditional
204 —_—NeD e
0.002 £ s / N=2,n=2
S 02 ——N=2,n=1
0.001 £
0.1 rd
0 0 T T T T 1
4600 4800 5000 5200 5400 5600 0 100 200 300 400 500
Source + Background Strength Source Strength

Figure 126 Positive Rate with Sour ce Strength for Different Values of n and Constant b (Triangular, N=2, Deter ministic)

136



0.02

0.015

0.01

p(x)

0.005

0.006
0.005
0.004

% 0.003

o
0.002

0.001

s 5,0

= N=3, n=3
—— N=3, n=2
e N=3, n=1
= traditional

Predicted Positive Rate

150 200

Source + Background Strength

b=500

400

500

e 50
e N=3, n=3
e N=3, =2
N=3, n=1
= traditional
1 | |

600 700 800

Predicted Positive Rate

Source + Background Strength

b=5000

— ()
. 5 ()

—N=3, n=3
——N=3, n=2

Predicted Positive Rate

N=3, n=1
= traditional

4600 4800 5000 5200 5400 5600

Source + Background Strength

1

0.9 /

08 7

0 / /

06 // y

- // = Traditional
0.5 W/ ——N=3,n=3
0.4 /// e N=3, =2
0.3 N=3, n=1
0.2 -

0.1 -
0 T T T T 1
0 10 20 30 40 50
Source Strength
1 -
0.9 / e
08 ~
07 y/ V4
0.6 /
0.5 /
0.4 /

) / = Traditional
0.3 /4 ——N=3, n=3
0.2 =3, N=2
0.1 -

0 T T 1

0 50 100 150

Source Strength

Traditional -

N=3,n=3 _
w— =3, N=2
s =3, N=1

100 200 300 400 500
Source Strength

Figure 127 Positive Rate with Sour ce Strength for Different Values of n and Constant b (Triangular, N=3, Deter ministic)

137



0.02

0.006
0.005
0.004

% 0.003

o
0.002

0.001

Source + Background Strength

b=500

e 30
s 5,0
——N=4, n=4
———N=4, n=3
e N=4, n=2
e N=4, n=1
= traditional

500 600 700 800
Source + Background Strength

Predicted Positive Rate

Predicted Positive Rate

b=5000

e N=4, N=1
= traditional

4600 4800 5000 5200 5400 5600

Source + Background Strength

Predicted Positive Rate

0.9
0-8 ///
1/ /
oo 11/ i
g'i / / / e N=4, N=3
: N=4, n=2
0.3 Qﬂ/ e N=4, =1
0.2 -
0.1
0 T T T T 1
0 10 20 30 40 50
Source Strength
1
0.9
08 y/
07 V/ a4
06 /S
05 /4
04 I/ / =Traditional
: W/ e N=4, N=4
0.3 7/ e N=4, n=3
0.2 - 7/ N=4, n=2
0.1 - N=4, n=1
0 T T 1
0 50 100 150
Source Strength
1
0-9 /’ /
0.8 /
07 /4
06 /A
0.5 I;/ // Lrj;iitic_)zal
e N =4, =
g'g V/ e N=4, n=3
0'2 /4 / N=4, n=2
=T H e N=4, N=1
0.1 - / "
0 T T T T 1
0 100 200 300 400 500

Source Strength

Figure 128 Positive Rate with Sour ce Strength for Different Values of n and Constant b (Triangular, N=4, Deter ministic)

138



b=50

1
— 0.9 /

5 £ s v/
:?0 : 0.7 // / Traditional
—15 £ 06 v/ / —N=5,n=5
o ) - '/ / —N=5,n=4
— a 05 177 N=5, n=3
— =5, N=5 E 0.4 [ N=5, n=2
—N=5i n=4 S03 — // N=5, n=1
e N=5, n=3 202 /4
e N=5, N=2 & 51 | /

N=5, n=1 ; /
-I—traditional 0 - T T T T !

0 10 20 30 40 50
Source Strength

0 50 100 150 200
Source + Background Strength

b=500
— 1
e 3 .
—3 £ o /4
0.015 - 4 —10 g / -
—_—15 £ 0.6 Traditional
—30 8 05 /4 ———N=5, n=5
% o001 - —=50 2 04 / / ——N=5, n=4
= e N=5, =5 a Y 1/ N=5, n=3
———N=5, n=4 2 03 4 Nes 1
0.005 - | N=5, n=3 ¢ 02 L4/ '
: N=5, n=2 e “ | N=5, n=1
N=5, n=1 0.1
- traditional 0 - | | |
0 - o ' ' 0 50 100 150
400 500 600 700 800
Source Strength
Source + Background Strength
b=5000
— 1
0.006 T s 0.9 7 il
0.005 — 12 0.8 // //
. N —3 =
—10 g 07 ]/
0.004 - ——  e—15 E 06
—_ \ =30 5 0.5 / / Traditional -
X 0.003 - =50 < 04 ——N=5, n=5
= ———N=5, n=5 g a// = N=5, n=4
0.002 R ———N=5, n=4 2 03 y N-S n=3
: N=5, n=3 % v/ N
’ = 0.2 +— N=5, n=2
N=5, n=2 = /4 g
0.001 ] N:5, n=1 0.1 _—/ N:5Jr n=1 .
== traditional 0 T T T T 1
0

' ' 0 100 200 300 400 500
4600 5100 5600

Source + Background
Figure 129 Positive Rate with Sour ce Strength for Different Values of n and Constant b (Triangular, N=5, Deter ministic)

Source Strength

139



Snusoidal

Table 14 Calculated Values of y* at Backgrounds Strengths (Sinusoidal, Deter ministic)

Background Strength
N n 50 100 250 |500 750 1000 | 2500 5000 7500 | 10000
1 1 64 121 282 |546 806 1065|2603 5145 7678 | 10205
2 2 57 110 266 522 777 1031 | 2550 5070 7586 | 10099
1 66 123 286 552 814 1074 | 2616 5164 7701 | 10232
3 53 104 257 509 762 1013 | 2521 5030 7537 | 10042
3 2 60 114 273 532 789 1046 | 2572 5102 7625 | 10144
1 67 124 288 555 817 1078 | 2622 5173 7712 | 10245
4 51 101 251 502 752 1003 | 2504 5006 7507 | 10008
4 3 56 109 264 520 774 1028 | 2544 5063 7577 | 10088
2 62 117 276 537 796 1053 | 2584 5118 7645 | 10167
1 68 125 289 556 819 1080 | 2626 5178 7718 | 10252
5 49 98 248 497 746 995 | 2492 4989 7487 | 9985
4 54 105 258 512 764 1016 | 2526 5037 7545 | 10052
5 3 58 112 268 526 782 1037 | 2558 5082 7600 | 10115
2 63 118 279 541 800 1058 | 2591 5129 7658 | 10183
1 68 126 290 557 820 1081 | 2629 5182 7723 | 10257
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Figure 131 Positive Rate with Sour ce Strength/Background with Different Values of n and b (Sinusoidal, N=2,
Deter ministic)
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Figure 134 Positive Rate with Sour ce Strength/Background with Different Values of n and b (Sinusoidal, N=5,
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Figure 137 Positive Rate with Source Strength for Different Values of n and Constant b (Sinusoidal, N=4, Deter ministic)
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Poisson

Table 15 Calculated Values of y* at Backgrounds Strength (Poisson, Deter ministic)

Background Strength
N n 50 100 | 250 |500 |750 |1000 | 2500 | 5000 | 7500 | 10000
1 1 62 117 | 276 |537 |795 |1052|2583|5117 | 7643 | 10165
5 2 55 108 |262 |517 |771 |1024 | 2538|5054 | 7566 | 10076
1 64 120 | 281 |544 |804 |1062|2598|5139 | 7670 | 10196
3 52 103 | 255 |507 |759 |1010| 2517|5024 | 7529 | 10033
3 2 58 111 | 267 |525 |780 |1035| 2555|5078 |7595|10110
1 66 122 | 284 |548 |809 |1068 | 2607|5151 | 7684 | 10213
4 50 101 | 251 |501 |752 |1002 | 2503|5005 | 7506 | 10007
4 3 55 107 | 261 |515 |769 |1021|2534|5048 | 7559 | 10068
2 59 113 | 271 |529 |786 |1041| 2565|5092 | 7612 | 10130
1 66 123 | 286 |551 |812 |1071]|2612|5159 | 7694 | 10224
5 49 99 248 | 497 | 746 | 996 | 2494 | 4991 | 7489 | 9987
4 53 104 | 256 |509 |761 |1013| 2520|5029 | 7535 | 10040
5 3 56 109 |264 |520 |774 |1028| 2544|5062 | 7576 | 10088
2 60 114 273 532 789 1045 | 2572 | 5101 | 7624 | 10143
1 67 124 | 287 |553 |814 |1074 2617|5165 | 7702 | 10233
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Figure 139 Positive Rate with Sour ce Strength/Background with Different Values of b (Poisson, Traditional,
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Figure 143 Positive Rate with Sour ce Strength/Background with Different Values of n and b (Poisson, N=5, Deter ministic)
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Gaussian

Table 16 Calculated Values of y* at Backgrounds Strengths (Gaussian, Deter ministic)

Background Strength
N n 50 100 250 500 750 1000 | 2500 | 5000 | 7500 | 10000
1 1 62 116 277 537 795 1052 | 2582 | 5116 | 7642 | 10164
2 2 55 108 262 517 771 1024 | 2538 | 5054 | 7566 | 10076
1 64 120 281 544 804 1062 | 2598 | 5138 | 7669 | 10195
3 52 103 255 508 759 1011 | 2517 | 5024 | 7529 | 10034
3 2 58 111 267 525 780 1035 | 2555 | 5078 | 7595 | 10110
1 65 121 284 | 547 808 1067 | 2606 | 5150 | 7684 | 10212
4 50 101 251 502 752 1002 | 2503 | 5005 | 7506 | 10007
4 3 55 107 261 515 769 1021 | 2534 | 5048 | 7559 | 10068
2 59 113 270 529 785 1041 | 2565 | 5092 | 7612 | 10130
1 66 122 285 550 811 1071 | 2612 | 5158 | 7693 | 10223
5 49 99 248 | 497 747 996 | 2494 | 4991 | 7489 | 9988
4 53 104 256 509 761 1013 | 2520 | 5029 | 7535 | 10041
5 3 56 109 264 | 520 774 1028 | 2544 | 5062 | 7576 | 10088
2 60 114 273 532 789 1045 | 2571 | 5101 | 7624 | 10143
1 66 123 287 552 813 1073 | 2616 | 5164 | 7701 | 10232
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154

N=2, n=1
= p=10000  =———h=7500
/ = b=5000 e h=2500
e h=1000 e b=750
A— h=500 b=250
| b=100 b=50
0 02 04 06 08 1

Source Strength/Background



N=3, n=3 N=3, n=2

1 1
z / z /
g 0.6 s [7=1 0000 s [=7 500 g 06 = h=10000 === h=7500
£ 04 ——b=5000  ——b=2500 s 04 e b=5000 == b=2500
8 ——b=1000  =——b=750 2 —=———b=1000 == b=750
a 0.2 e h=500 e =250 a 0.2 e =500 e =250
0 : b=100I _.b:50 . 0 Ib=100 . —l|)=50 .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Source Strength/Background Source Strength/Background
N=3, n=1
1 /
o 08
=]
s
] 06 = h=10000 === h=7500
£ 04 ———b=5000  ==——b=2500
8 e [j=1000 e =750
e 0.2 = =500 s [y=2 50

b=100 e p=50

0 .
0 0.2 0.4 0.6 0.8 1

Source Strength/Background

Figure 150 Positive Rate with Sour ce Strength/Background with Different Values of n and b (Gaussian, N=3,
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Figure 164 Positive Rate with Sour ce Strength Comparison for Two M easurement Simulation Techniques (Rectangular,
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Figure 168 Praobability Density Function Comparison for Two M easurement Simulation Techniquesfor Different Source
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Figure 172 Positive Rate for Different n and N Values (Triangular, b=500)
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Figure 173 Time at First Detection for Different n and N Values (Triangular, b=500)
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Figure 176 Positive Rate with Source Strength for Different n and N Values Comparison for Two M easurement
Simulation Techniques (Sinusoidal, b=500, Stochastic)
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Figure 178 Positive Rate with Sour ce Strength for Different n and N Values (Sinusoidal, b=500, Stochastic)
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Figure 179 Time at First Detection with Source Strength for Different n and N Values (Sinusoidal, b=500, Stochastic)
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Figure 180 Probability Density Function Comparison for Two M easurement Simulation Techniquesfor Different Source
Strengths (Poisson, b=500, s=1, 3, 5, 8, Stochastic)
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Figure 182 Positive Rate with Sour ce Strength Comparison for Two M easurement Simulation Techniques (Poisson,
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Figure 184 Positive Rate with Source Strength for Different n and N Values (Poisson, b=500, Stochastic)
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Figure 186 Probability Density Function Comparison for Two M easurement Simulation Techniquesfor Different Source
Strengths (Gaussian, b=500, s=1, 3, 5, 8, Stochastic)
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Figure 189 Positive Rate with Sour ce Strength Comparison for Two M easurement Simulation Techniquesfor Different
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Figure 190 Positive Rate with Sour ce Strength Comparison for Two M easurement Simulation Techniquesfor Different
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Figure 191 Positive Rate with Sour ce Strength Comparison for Two M easurement Simulation Techniquesfor Different
Background (Gaussian, N=4, b=50, b=500, b=5000, Stochastic)
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Figure 192 Positive Rate with Source Strength Comparison for Two M easurement Simulation Techniquesfor Different
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Different Background (Gaussian, N=2, b=50, b=500, b=5000, Stochastic)
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Figure 194 Time at First Detection with Source Strength Comparison for Two M easurement Simulation Techniquesfor
Different Background (Gaussian, N=3, b=50, b=500, b=5000, Stochastic)
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Figure195 Time at First Detection with Sour ce Strength Comparison for Two M easurement Simulation Techniques for
Different Background (Gaussian, N=4, b=50, b=500, b=5000, Stochastic)
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Figure 196 Time at First Detection with Source Strength Comparison for Two M easurement Simulation Techniques for
Different Background (Gaussian, N=5, b=50, b=500, b=5000, Stochastic)
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