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ABSTRACT

FORECASTING THE EFFECTS OF FERTILITY CONTROL ON OVERABUNDANT

UNGULATES

Overabundant populations of native vertebrates can cause environmental degradation

and loss of biological diversity. Culling or regulated harvest is often used to control over-

abundant species. These methods become infeasible in residential areas and national parks.

White-tailed deer populations on the eastern coast of the United States have grown ex-

ponentially during the urbanization of the 20th century causing severe environmental and

economic damage. Managers of National Parks in the Washington, D. C. area seek to reduce

densities of white-tailed deer from the current average (50 deer per km2). It has been shown

theoretically that fertility control is not an effective way to reduce an overabundant popu-

lations, but these conclusions have not be verified with empirical models. Here, we present

a Bayesian hierarchical model using 13 years of distance sampling data from 10 National

Parks in the National Capital Region Network to forecast the effects of fertility control on

overabundant ungulates. We estimated a survival probability for adult female deer that was

the same as what we found in previous literature (adult female = 0.74). However, our esti-

mation of adult male and juvenile probabilities were different than what has been found in

past studies (adult male = 0.39, juvenile = 0.67). This may be because of the high densities

of white-tailed deer in our study area. Our posterior predictive checks show that our model

does adequately represent the data (Pβ = 0.419). Our model experiments found that fertility

control is not capable of rapidly reducing deer abundance unless a high relative effort over

no action is feasible. However, it can be combined with culling to maintain a population

below carrying capacity with a high probability of success. This gives managers confronted

with problematic overabundance a framework for implementing management actions with a

realistic assessment of uncertainty.
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FORECASTING THE EFFECTS OF FERTILITY CONTROL ON OVERABUNDANT

UNGULATES

Introduction

Worldwide increases in urbanization have caused a global decline in biodiversity (Love-

joy 2006; Sala et al. 2000) as habitat for native species has been developed for human uses.

However, there are also many cases where the effects of urbanization have allowed generalist

species to proliferate. Invasion ecology has developed into a vital area of research (Simberloff

et al. 2013), but typically focuses on non-native species. Some populations of native verte-

brates resemble “invaders” when they become excessively abundant and cause environmental

harm (Garrott et al. 1993; Carey et al. 2012). These populations thrive in response to in-

creased foraging options and decreased predation pressure arising from extensive landscape

change and development (Côté et al. 2004).

Overabundant species are problematic when they threaten human life or livelihoods, de-

press densities of other species, or cause ecosystem dysfunction (Jewell et al. 1981; Van

Der Peet 2007). Wildlife managers often seek to mitigate these harmful effects by reduc-

ing the size of the problem population, traditionally by using regulated hunting or culling.

Although hunting can provide recreational and economic benefits, lethal methods can be un-

popular with the public or logistically infeasible because wildlife live in residential areas or

in areas that prohibit hunting, for example in national parks and other types of conservation

reserves (Wright 1993). Density dependence can make it difficult to control species by lethal

means because reproductive rates can increase dramatically as population numbers decline

(Knowlton 1972). Consequently, non-lethal methods, especially fertility control, have be-

come more attractive to wildlife managers as a way to control wildlife populations (Malcolm

et al. 2010; Kirkpatrick et al. 1997).

Analytical and simulation models cast doubt on the idea that fertility control can be

used to efficiently achieve reduction goals for overabundant species or maintain populations

within acceptable limits (Hobbs et al. 2000; Hone 1992; Barlow et al. 1997). However, these
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models have been entirely deterministic and have rarely been combined with data. The

ostensible certainty of the predictions of these models might create false confidence about

decisions on fertility control. Thus, a first step in evaluating the efficacy of fertility control is

to develop population models that are reliably assimilated with data to provide a statistically

coherent assessment of uncertainty (Ransom et al. 2014). These models can can provide an

honest assessment of the feasibility of management alternatives by forecasting the effects of

alternative actions on populations. Bayesian hierarchical models of population dynamics are

a particularly promising tool for evaluating management alternatives because they support

true forecasts – predictions accompanied by proper estimates of uncertainty.

White-tailed deer (Odocoileus virginianus) were once considered endangered and are now

recognized as overabundant (Diamond 1992; Garrott et al. 1993; Jewell et al. 1981; Martin

et al. 2013). In the late 19th century, there were fewer than 500,000 white-tailed deer in

the entire United States. The Lacey Act of 1900 regulated interstate trade and established

penalties for hunting endangered species. These regulations solved the issue of white tailed

deer under-abundance. Today, there are over 30 million white-tailed deer nationwide with

high concentrations on the east coast of the United States (McCabe and McCabe 1997).

Their feeding retards forest regeneration and harms biological diversity of vegetation by

causing local extinction of many palatable understory plants (Russell et al. 2001; Knight

et al. 2009). Overabundant deer threaten human safety by increasing traffic hazards and

by providing a reservoir for ticks that carry lyme disease (Lyme borreliosis). Furthermore,

human economies are harmed by damage to crops caused by deer (Côté et al. 2004).

Managers of National Parks in the eastern U.S. are especially concerned about the effects

of overabundant wildlife on biological diversity because these effects are inconsistent with

the mission of the parks, to preserve natural resources for the enjoyment, education and

inspiration of the people. Those concerns motivate an improved understanding of alternatives

for population control. Here, we describe a Bayesian hierarchical model to inform decisions

on managing overabundant white-tailed deer. The objective of our work was to forecast
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the effect alternative actions on white-tailed deer populations using a model that includes

uncertainty.

Materials and methods

Census and classification data

We analyzed observations of white-tailed deer population density, white-tailed deer group

composition, and white-tailed deer harvest from ten National Parks in the National Capi-

tol Region Network (NCRN) near Washington, D.C during 2001-2013. The NCRN parks

have collaborated using standardized distance sampling methods (Buckland et al. 1993) to

annually obtain density estimates of white-tailed deer populations in each park (Figure 1).

Figure 1: The study area included ten parks in the National Capital Region Network in the area
surrounding Washington D.C. Each park used standardized distance sampling methods which pro-
duced a time series from 2000 to 2011 of regional estimates of white-tailed deer abundance.

Distance sampling is a widely used approach for estimating the abundance of wildlife

populations (Buckland et al. 1993). A standard operating procedure for distance sampling

of deer was used for all ten parks in the NCRN (Bates 2006). Censuses were conducted

after leaf-fall and before hunting season for three consecutive nights in each park. Three

observers drove specified transect roads with a spotlight to locate groups of deer. After
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the deer were counted, the distance from observers was determined with a laser rangefinder

positioned perpendicular to the transect. Observers also classified each deer in every group

as buck, doe, fawn, or “unknown.” Program Distance (Thomas et al. 2010) was used to

convert these distance sampling counts to estimates of mean population densities with an

associated standard error for each park each year. We used data from 10 parks over 13 years

to support our analyses.

Analysis

We used a fully Bayesian, hierarchical model to obtain posterior distributions of parame-

ters, latent states, and derived quantities of interest. A model of ecological processes, models

linking the processes to data, and models for parameters Berliner (1996) provided a unified

framework for inference,

[θp,nt,nt−1|Yt] ∝ [nt|θp,nt−1]︸ ︷︷ ︸
process

2∏
l=1

[ylt|θdl,nt]l︸ ︷︷ ︸
data

[θp]︸︷︷︸
parameters

. (1)

The notation [a |b, c] reads the distribution of a conditional on b and c. The quantity θp is a

vector of parameters in the process model; θd,l is a vector of parameters in data model l; nt is

a vector representing the true, unobserved demographic and disease state of the population

at time t, and y(t) are vectors of observations of the true state at time t. There are two data

models (also called likelihoods), one each for census observations and classifications. In the

sections that follow, we describe these models.

Process model

We used a Lefkovitch matrix to predict the median number of individuals in three stages

at census juveniles of both sexes aged 0 to 6 months (n1), adult females, aged ≥ 1.5 years

and older (n2), and adult males aged ≥ 1.5 years and older (n3). Model census (Caswell
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2006) occurs six months after the birth pulse. The deterministic difference equations are.

n1it = s2fitn2it−1 (2)

n2it = s1mn1it−1 + s2n2it−1 (3)

n3it = s1(1−m)n1it−1 + s3n3it−1 (4)

Parameters are survival probabilities for juveniles (s1), females (s2), and males (s3), fe-

cundities fit for each park (i) and year (t), and sex ratio (m). These survival probability

parameters include harvest. Survival probabilities in equation 2 were not raised to the one

half power (Noon and Sauer 2001) because the preponderance of mortality occurs before

birth pulse due to the combined effects of winter severity and harvest. Fecundities implicitly

include survival of juveniles from the birth pulse to census. We accounted for effects of

population density on fecundity (McCullough 1979) using

fit = e
rf−

rf
Kf

(
∑3

j=1 njit−1/areai) (5)

where rf is the maximum number of fawns surviving to census produced per doe when

population size is zero and Kf is the density of of animals when fecundity equals zero.

The deterministic model is an abstraction of the underlying mechanisms that control

annual variation in deer abundance every year. We can recast the system of deterministic,

difference equations as

Ait =


0 s2e

rf−
rf
Kf

(
∑3

j=1 njit−1/areai)
0

s1m s2 0

s1(1−m) 0 s3


it

(6)

nit = Aitnit−1 (7)

We make the model stochastic to account for influences on the true state that are not
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represented in our process model:

log (nit) ∼ multivariate normal
(
log (Ait−1nit−1) , σ

2
pI
)

(8)

Where σ2 is the process variance parameter that represents all sources of variation in deer

abundance that are not included in our deterministic model. We assumed a single process

variance for all stages and park.

Parameter models

We assumed that parameters representing vital rates were the same across parks. Survival

probabilities for each stage sji ∼ beta(1, 1). We also assumed that juvenile deer survived to

the adult stage with a 1:1 sex ratio (m) with a variance of .02 such that by moment matching

m ∼ beta(312, 312)

We assumed this because there will be no preferential harvest during a juvenile’s first year.

We chose a variance of .02 because it is less than 5% of 0.5 and allowed a small amount of

variation.

We use an allometric equation for the scaling of birth rate of Artiodactyls (Western 1979)

to inform the prior distribution of rf (Eqn. 5),

rf ∼ normal
(
2 · 3.09W−0.33, 0.13042

)
We assumed a mean body mass (W ) of 65 kg for white tailed deer (McCullough 1979) and

calculated a residual standard error of 0.1304. We multiplied Western’s equation by 2 because

his model is offspring per individual in the population including males and females. To ensure

that our use of Western’s equation was reasonable, we used it in a simple, deterministic 2 x 2

matrix model with adult survival set at 0.90. We then compared the prediction of population

growth rate (λWestern) based on this matrix model with the prediction of λ obtained from
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the scaling relationship of Sinclair (2003) (λSinclair). There was close agreement between the

two predictions (λWestern = 3.09W−0.33, λSinclair = 1.375W−0.315).

Dynamic models require estimating initial conditions as parameters. The initial condi-

tions of the state vector ni1 were informed by both types of data using

γi1 ∼ Dirichlet
(
yαi1

+ 1
)

(9)

ni1 ∼ normal
(
ydi1 , σ̂

2
i1

)
(10)

N i1 = ni1 × γi1 × areai (11)

where yαi1
are the categorical data for each park at year 1, ydi1 are the density data for each

park at year 1 with associated standard error (σ̂i1) from Program Distance (Thomas et al.

2010), and Ni1 represents the initial conditions for each park at year 1.

Data models

The data are observations of sex and age structure (yαit
) as well as density data (ydit)

for each park (i) at each year (t). It is important to estimate group composition, so that we

can make correct inferences about the age and sex structure of the population. The vectors

yαit
give the number of animals classified as juvenile, adult female and adult male for park

i at time t, and Nit is the total number of animals categorized. Our data model for for the

classification observations was

yαit
∼ multinomial(Nit,πit)

where πit is a vector of proportions from the process model

πit =

[
n1it∑3
j=1 njit

,
n2it∑3
j=1 njit

,
n3it∑3
j=1 njit

]
. (12)

We estimated the population density for each park by dividing the estimate total deer
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abundance for each park by the parks area (Eqn. 13). Distance sampling methods allowed

managers to calculate animal density ydit and a standard error σ̂it for each park and year.

We used these data in the likelihood

ydit ∼ normal


3∑
j=1

njit

areai
, σ̂2

it

 (13)

where areai is the total area of park i. The standard error (σ̂it) was provide to us by

Program Distance (Thomas et al. 2010). We square the standard error provided to represent

the variance of the normal distribution. We show the full posterior and joint distributions

in the appendix.

Estimation

Marginal posterior distributions of states, parameters, and model predictions were cal-

culated using Markov chain Monte Carlo (MCMC) methods implemented in JAGS 3.3.0

(Plummer 2003, 2012) called from the R computing environment (R Core Team 2013) using

the rjags package (Plummer 2013). Initial values of chains were chosen to vary 20% in either

direction relative to the means of the prior distributions (Brooks and Gelman 1998). We

accumulated 10,000 samples from each chain and 2,000 iterations as burn-in. Convergence

was assured by inspection of trace plots and by the diagnostics of Brooks and Gelman 1998

and Heidelberger and Welch 1983.

Model Evaluation

We tested for lack of fit using posterior predictive checks. This approach compares

data simulated from the model to real data used to estimate the model parameters. If the

simulated data is not distributed like the real data, there may be structural deficiencies in

the process or the data models. We calculated a test statistic from the observed data (T obs)
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and from the simulated data sets (T rep),

T obs =
I∑
i=1

T∑
t=1

(ydit − µit)
2 T rep =

I∑
i=1

T∑
t=1

(
yrepdit
− µit

)2
where yrepd is drawn from the posterior predictive distribution and µit is the model prediction

of the median of the distribution of the density of white-tailed deer in each park, each year.

We then calculated a Bayesian P value, PB

PB = Pr
[
T rep(yrep, θ) ≥ T obs(y, θ) | y

]
A model shows lack of fit if PB is close to 0 or 1.

Model Experiments

We conducted model experiments with four treatments: culling, sterilization, one-year

duration contraceptives, and three year average duration contraceptives. We assumed that

20%, 40%, 60% or 90% of adult females were treated to allow comparison among treatments

type and treatment intensity. Fawns were not given contraceptive in the model experiments

because they are ineffective for fawns (McShea et al. 1997). We assumed that culling,

sterilization, or contraceptives were administered immediately after census. In the culling

experiment c represents the proportion of adult females that were culled. The projection

matrix for the culling experiment was


0 s2f(1− c) 0

s1m s2(1− c) 0

s1(1−m) 0 s3

 ·

n1

n2

n3


t

=


n1

n2

n3


t+1

(14)

We created an additional state including infertile females (n4) to represent treatment with

fertility control agents. The parameter c represents the proportion of fertile adult females

annually treated. The model for sterilization (permanent infertility) was
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0 s2f(1− c) 0 0

s1m s2(1− c) 0 0

s1(1−m) 0 s3 0

0 s2c 0 s2


·



n1

n2

n3

n4


t

=



n1

n2

n3

n4


t+1

(15)

Treatment with single year contraceptives was modeled using



0 s2f 0 0

s1m s2(1− c) 0 s2(1− c)

s1(1−m) 0 s3 0

0 s2c 0 s2c


·



n1

n2

n3

n4


t

=



n1

n2

n3

n4


t+1

(16)

The fecundity term for adult females (n3) was not influenced by this treatment because it

does not affect the viability of a current pregnancy.

For fertility control with longer efficacy than one year, we represented a hypothetical

contraceptive agent that on average renders animals infertile for three years. Let α be the

average duration of a fertility control agent. It follows that the probability that a treated

female becomes fertile during each year following treatment is ψ, where ψ = 1−e−α4t, α−1 =

3. Thus, the model for the three year treatment was



0 s2f 0 0

s1m s2(1− c) 0 s2(1− c)(1− ψ)

s1(1−m) 0 s3 0

0 s2c 0 s2c+ s2(1− c)ψ


·



n1

n2

n3

n4


t

=



n1

n2

n3

n4


t+1

(17)

Eigenanalysis

The equivariance property of MCMC means that quantities that are calculated from

random variables are random variables with their own posterior distributions. We sought

inference on the effects of treatment on the long-term population growth rate. The domi-
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nant eigenvalue describes the ergodic properties of population growth (Caswell 2006). We

calculated the posterior distributions of asymptotic growth rate (λ) by performing a clas-

sic eigenanalysis using the MCMC output– a single estimate of λ was calculated from the

projection matrix at each iteration in the chain. Because our model includes a non-linear

term for density dependence, we performed the eigenanalysis under the assumption of no

density dependence by setting Nit−1 = 0 in equation 5. This allows us to calculate the

upper bound of each management action’s effectiveness by using the estimated maximum

possible fecundity in the analysis. The population growth rate calculated this way is very

useful for comparison between model experiments because it will use the same scale to show

the effect of management on population growth. The eigenanalysis was implemented with

package popbio.R (Stubben and Milligan 2007) in the R computing environment (R Core

Team 2013).

Evaluating Management Action

We calculated posterior predictive process distributions for future states using

[nT+1|y1, ..., yT ] =

ˆ ˆ
...

ˆ [
nT+1|nT ,θm, σ2

p

]
[
n1...,nT ,nT+1,θ1, ...,θm, σ

2
p|y1, ..., yT

]
dθ1, ..., dθm, dσ

2
pdn1, ..., dnT+1

where nT+1 is the true state of the population in the future given the data (y1, ..., yT ). To

assess the effectiveness of different management actions (Hobbs 2014 in revision) and to

calculate the probability of reaching an objective, we obtain the posterior predictive process

distribution of the true state of the population at a point in the future and use Monte Carlo

integration to approximate the probability that the goal will be met given no action. (Figure

2 A). The posterior predictive process distribution of the true state of the population at the

same point in the future and the probability of achieving the same goal given a management

action (Figure 2 B).The ratio of the probability that an objective will be realized given

implementation of a management action over the probability that an objective will be realized
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given no action provides assessment of the net effect of the management action in the face

of uncertainty. (Figure 2 C). The net effect of management can be reported to a manager

in terms such as, “Taking this action is ten times more likely to achieve the goal relative to

not taking this action.”

A. Do nothing

P
ro

ba
bi

lit
y 

de
ns

ity
Objective

B. Implement management

P
ro

ba
bi

lit
y 

de
ns

ity

Objective

C. Net effect of management

State of population

P
ro

ba
bi

lit
y 

de
ns

ity

Objective

Figure 2: A. The posterior predictive process distribution of a forecasted density of a population.
The vertical line indicates a manager’s objective for the population. The area that is shaded gives
the probability that an objective will be met given no action. B. The Posterior distribution o
conditional on a management action, for example, culling or delivering contraceptives. The stippled
area under the curve is the probability that a manager will reach their objective given this action.
C. The net effect of management is the ratio of the stippled area to the shaded area.
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Results

Model checking and parameter estimation

We verified the MCMC algorithm by recovering parameters used to simulate data. The

verified MCMC algorithm converged after 20,000 iterations using real data. The upper

quantile of Gelman diagnostics (Gelman and Rubin 1992) was less than or equal to 1.01 for

all parameters. Posterior predictive checks showed no evidence of lack of fit (Figure 5).

Median survival probability for adult females was greater than adult males or juveniles

(Table 1, Figure 3). We estimated that 0.61 fawns surviving to census would be produced

per adult female at low population density. This is much lower than our prior with a mean

of 1.56 and a standard deviation of 0.1304. However, we did detect a density dependence

feedback (Figure 4).
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Figure 3: Posterior distributions for the vital rate parameters. One set of parameters was estimated
for all parks. The dotted line indicates the prior distribution given for each parameter.
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Table 1: Estimates of model parameters and 95% equal tailed Bayesian credible intervals (BCI).

Mean Median SD 2.5% BCI 97.5% BCI
Carrying capacity (Kf ) 22.12 22.12 3.06 16.11 28.17
Maximum fecundity (rf ) 0.61 0.61 0.11 0.39 0.84
Juvenile sex ratio (m) 0.51 0.51 0.02 0.47 0.55
Female survival (s2) 0.74 0.74 0.05 0.63 0.83
Male survival (s3) 0.67 0.67 0.10 0.47 0.87
Juvenile survival (s1) 0.37 0.37 0.11 0.17 0.61
Process variance (σ2) 0.56 0.56 0.03 0.51 0.63
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0
20
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Figure 4: The posterior distribution for the slope of the density dependent function. Since this does
not overlap 0, we can confirm that density dependence is present in this population.
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Figure 5: Test statistics for posterior predictive checks were calculated from observed data (T obs =∑I
i=1

∑T
t=1 (ydit − µit)

2) and from simulated data (T rep =
∑I

i=1

∑T
t=1

(
yrepdit
− µit

)2
) where yrepd is

a dataset drawn from the posterior predictive distribution at each iteration of the MCMC algorithm
and µit is the model prediction of the median of the distribution of the density of white-tailed deer
in each park, each year. The Bayesian P value is PB = Pr

[
T rep(yrep, θ) ≥ T obs(y, θ) | y

]
. This

image was thinned by 10 to enhance clarity of the plot.

Forecast without management action

We made regional forecasts for white-tailed deer density from 2014 to 2018 (Figure 6) as

well as forecasts for each park (See Appendix: Figure 11). Assuming no action to control

the population, the model predicted that white-tailed deer density is decreasing with a

population growth rate of 0.883 (95% equal tailed Bayesian credible interval, BCI = 0.8,

0.971) (Figure 7). However, the wide credible intervals on forecasts indicate substantial

uncertainty about the growth of the population in the future (Figure 6).
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Figure 6: Estimate of the true population density of white-tailed deer in the National Capital
region during 2001 to 2013 and forecasts of density from 2014 to 2018. The solid line represents
the median of the posterior distribution while the dotted lines show the 95% equal-tailed Bayesian
credible intervals. The vertical lines are the ± one standard deviation of the medians of the density
data.
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Figure 7: The population growth rate (λ) of the white-tailed deer in the National Capital Region
without any management action has a median of 0.883 (95% equal tailed Bayesian credible interval,
BCI = 0.8, 0.971). Although the median suggests that the population will decrease, the distribution
overlaps one indicating that the population may increase.

Results of model experiments

We report the effects of different fertility control regimes on population growth rate

and the probability of achieving a hypothetical management objective. We also show the

estimated number of adult female deer that would need to be treated over five years in the

region in order to achieve the reported effect on population growth rate which we will refer

to as “number treated” or “treatment numbers.”
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Growth Rate

All actions reduced the population growth rate compared no action (Table 2). Culling

adult females decreased the population growth rate more than the fertility control regimes.

Culling 90% of adult female deer ( ∼ 4500 over 5 years) reduced the population growth

rate (λ = 0.15, 2.5% BCI = 0.12, 97.5% = 0.19). Culling and sterilization had very similar

treatment numbers, but culling reduced the population growth rate more as the proportion of

adult females culled increased while sterilization of any proportion of adult females caused

a median population growth rate of 0.73. Because λ is the ergodic growth rate of the

population, all females will eventually become sterile no matter what proportion are sterilized

each year. Treating 40% ( ∼ 7600 adult female deer over 5 years) of the regional adult female

population with contraceptives that lasts an average of 3 years decreased the population

growth rate (λ = 0.83, 2.5% BCI = 0.75, 97.5% = 0.91). Contraceptives when 90% of the

adult female population were treated ( ∼ 16000 over 5 years) that last 3 years or 1 year

yielded almost the same growth rate as sterilization. This is because the population growth

rate will asymptotically approach sterilization as all the adult females become infertile. The

short duration contraceptives had the smallest effect of any treatment when 20% are treated

each year (λ = 0.86, 2.5% BCI = 0.78, 97.5% = 0.94).
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Table 2: Population growth rate for different fertility control regimes.

Treatment Percent Treated 2.5% BCI Median 97.5% BCI
No Action 0 0.82 0.90 0.99
Cull 20 0.66 0.73 0.81
Sterilize 0.67 0.75 0.84
1 Year 0.78 0.86 0.94
3 Year 0.75 0.83 0.91
Cull 40 0.52 0.58 0.64
Sterilize 0.63 0.73 0.84
1 Year 0.76 0.84 0.92
3 Year 0.72 0.80 0.88
Cull 60 0.37 0.42 0.47
Sterilize 0.64 0.74 0.84
1 Year 0.73 0.81 0.89
3 Year 0.69 0.77 0.86
Cull 90 0.12 0.15 0.19
Sterilize 0.63 0.74 0.84
1 Year 0.67 0.76 0.85
3 Year 0.64 0.74 0.84

Probability of achieving a management objective

We selected a hypothetical management objective based on advice from National Park

Service collaborators. We then computed the probability that the treatment would cause

the population to be below, within, or above the objective (Table 3). There was a 0.04

probability that the population would be within the objective in 5 years because the fore-

casted population decreased. The only management regimes that had a probability > .01 of

achieving the objective the first year was culling 60% or 90% of the adult female population

(Figure 8). However, continuing to cull at these levels each year had a high probability of

pushing the population below the lower bound of the objective (Table 3). Culling 40% of the

population for 5 years had a high probability of being within the objective (Probability in =

0.8) while culling only 20% for 5 years had a lower probability of being within the objective

(Probability in = 0.6). Culling reduced the population most quickly followed by sterilization.

Sterilization had the highest probability of meeting the management objectives when 60%
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of the adult females were treated for 5 years (Probability in = 0.8). The contraceptives had

the smallest probabilities of meeting the objective (Probability in ≤ 0.7 for all proportions).

However, treating 90% with 3 year contraceptives for five years was 20 times more likely to

achieve the objective than no action.
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Figure 8: Effects of fertility control treatments on white-tailed deer population densities forecasted
for 2014 and 2018 with plot rows corresponding to percent treated from top to bottom: 20%,
40%, 60%, and 90%. The black distribution represents the change in population with no action to
show that the population may decrease without any management action. The purple distribution
represents the population effect of contraceptives with one year effectiveness. The green distribution
represents the population effect of contraceptives with three year effectiveness. The blue distribution
represents sterilization. Sterilization reduced the population at a faster rate than contraceptives and
may be worth further investigation. Culling (the red distribution) had the most dramatic effect on
population density. The dotted vertical lines represent the bounds of the hypothetical management
objective.
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Table 3: We report the effects of four management actions (culling, sterilization, 1 year contracep-
tives, and 3 year contraceptives) at four different levels (20%, 40%, 60%, and 90% treated). For
each treatment, we calculated the probability that the population will be below the objective (P
<), within the objective (P in), and above the objective (P >). We also show the median number
of adult females that would need to be treated throughout all parks.

Treatment Percent Treated Year P < P in P > Number Treated

No Action 2014 0.00 0.00 1.00 0

2015 0.00 0.00 1.00 0

2016 0.00 0.00 1.00 0

2017 0.00 0.02 0.98 0

2018 0.00 0.04 0.96 0

3 Year 20 2014 0.00 0.00 1.00 827

2015 0.00 0.00 1.00 771

2016 0.00 0.00 1.00 780

2017 0.00 0.03 0.97 743

2018 0.00 0.07 0.93 705

40 2014 0.00 0.00 1.00 1652

2015 0.00 0.00 1.00 1551

2016 0.00 0.01 0.99 1574

2017 0.00 0.06 0.94 1462

2018 0.00 0.17 0.83 1363

60 2014 0.00 0.00 1.00 2481

2015 0.00 0.00 1.00 2333

2016 0.00 0.03 0.97 2361

2017 0.00 0.17 0.83 2127

2018 0.00 0.37 0.63 1927

90 2014 0.00 0.00 1.00 3722

2015 0.00 0.01 0.99 3447
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2016 0.00 0.14 0.86 3466

2017 0.00 0.50 0.50 2970

2018 0.00 0.73 0.26 2584

1 Year 20 2014 0.00 0.00 1.00 827

2015 0.00 0.00 1.00 772

2016 0.00 0.00 1.00 775

2017 0.00 0.02 0.98 734

2018 0.00 0.05 0.95 706

40 2014 0.00 0.00 1.00 1652

2015 0.00 0.00 1.00 1547

2016 0.00 0.01 0.99 1567

2017 0.00 0.03 0.97 1456

2018 0.00 0.07 0.93 1389

60 2014 0.00 0.00 1.00 2481

2015 0.00 0.00 1.00 2328

2016 0.00 0.01 0.99 2362

2017 0.00 0.07 0.93 2144

2018 0.00 0.16 0.84 1997

90 2014 0.00 0.00 1.00 3722

2015 0.00 0.01 0.99 3453

2016 0.00 0.10 0.90 3495

2017 0.00 0.40 0.60 3000

2018 0.00 0.61 0.39 2660

Sterilize 20 2014 0.00 0.00 1.00 827

2015 0.00 0.00 1.00 627

2016 0.00 0.02 0.98 518

2017 0.00 0.09 0.91 414
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2018 0.00 0.21 0.79 332

40 2014 0.00 0.00 1.00 1652

2015 0.00 0.01 0.99 980

2016 0.00 0.11 0.89 645

2017 0.00 0.36 0.64 410

2018 0.00 0.61 0.39 269

60 2014 0.00 0.00 1.00 2481

2015 0.00 0.06 0.94 1060

2016 0.00 0.36 0.64 504

2017 0.00 0.69 0.31 236

2018 0.04 0.81 0.15 115

90 2014 0.00 0.01 0.99 3722

2015 0.00 0.32 0.68 665

2016 0.00 0.68 0.32 112

2017 0.06 0.79 0.15 23

2018 0.22 0.71 0.08 11

Cull 20 2014 0.00 0.00 1.00 827

2015 0.00 0.02 0.98 626

2016 0.00 0.14 0.86 519

2017 0.00 0.36 0.64 420

2018 0.00 0.57 0.43 345

40 2014 0.00 0.01 0.99 1652

2015 0.00 0.32 0.68 982

2016 0.00 0.79 0.21 644

2017 0.02 0.93 0.05 424

2018 0.14 0.84 0.01 289

60 2014 0.00 0.16 0.84 2481
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2015 0.00 0.93 0.07 1060

2016 0.09 0.91 0.00 505

2017 0.57 0.43 0.00 252

2018 0.87 0.13 0.00 131

90 2014 0.00 0.98 0.02 3722

2015 0.55 0.45 0.00 664

2016 0.89 0.11 0.00 111

2017 0.95 0.05 0.00 27

2018 0.97 0.03 0.00 12

Culling to a desirable level followed by fertility control

Culling caused the highest reductions in the forecasted deer population, but culling more

than 40% each caused the population to decrease < 5 deer per km2. Some managers seek a

plan to reduce population by culling first then maintaining the population with an alternative

management plan. We present the results from culling 90% the first year then administering

20%, 40%, 60%, and 90% of alternative management strategies that include sterilization,

hypothetical 3 year contraceptives, and 1 year contraceptives (Figure 9 and Table 4). Con-

traceptives of 1 and 3 year efficacy had high probabilities of maintaining the population

within the management objective. Sterilization had a high probability of maintaining the

population the first few years but then had an increasing probability of decreasing the pop-

ulation below the management objective. Culling 90% the first year then implementing a

fertility control regime greatly reduced the number of adult female deer that needed to be

treated every year (Table 4).
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Figure 9: Effects of fertility control treatments on white-tailed deer population densities forecasted
for 2015 and 2018 after culling to a management objective in 2014 followed by fertility control
treatment. The rows corresponding to the percent of adult females treated from top to bottom: 20%,
40%, 60%, and 90%. The black dotted vertical line represents population density after culling in 2014
to give a baseline for population growth. The purple distribution represents the population effect
of contraceptives with one year effectiveness which has the potential to maintain the population.
The green distribution represents the population effect of contraceptives with three year effectiveness
which has a similar effect to the 1 year contraceptives. The blue distribution represents sterilization.
Sterilization reduced the population at a faster rate than contraceptives. The red distribution
represents culling. Continuing to cull after an initial cull of 90% of the population further decreases
the population beyond the management objective. The dotted vertical lines represent the bounds
of the hypothetical management objective.
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Table 4: We implemented four management actions (culling, sterilization, 1 year contraceptives,
and 3 year contraceptives) at four different levels (20%, 40%, 60%, and 90% treated) after culling
90% of the adult female population. For each treatment, we calculated the probability that the
population will be below the objective (P <), within the objective (P in), and above the objective
(P >). We also show the median number of adult females that would need to be treated throughout
all parks.

Treatment Percent Treated Year P < P in P > Number Treated

3 Year 20 2015 0.00 0.93 0.07 291

2016 0.01 0.95 0.04 272

2017 0.03 0.92 0.04 304

2018 0.07 0.88 0.04 298

40 2015 0.00 0.93 0.07 291

2016 0.01 0.96 0.03 272

2017 0.06 0.92 0.02 304

2018 0.13 0.85 0.02 298

60 2015 0.00 0.93 0.07 443

2016 0.03 0.96 0.02 413

2017 0.10 0.89 0.01 463

2018 0.25 0.74 0.01 437

90 2015 0.00 0.93 0.07 660

2016 0.07 0.92 0.01 609

2017 0.21 0.79 0.00 685

2018 0.52 0.48 0.00 599

1 Year 20 2015 0.00 0.93 0.07 148

2016 0.01 0.95 0.04 136

2017 0.03 0.92 0.05 152

2018 0.06 0.89 0.06 154

40 2015 0.00 0.93 0.07 291

2016 0.02 0.96 0.03 272
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2017 0.04 0.93 0.04 304

2018 0.09 0.88 0.03 299

60 2015 0.00 0.93 0.07 443

2016 0.03 0.96 0.02 414

2017 0.07 0.91 0.02 465

2018 0.16 0.83 0.01 437

90 2015 0.00 0.93 0.07 660

2016 0.07 0.93 0.01 610

2017 0.18 0.82 0.01 686

2018 0.46 0.54 0.00 603

Sterilize 20 2015 0.00 0.96 0.04 148

2016 0.02 0.96 0.02 111

2017 0.08 0.91 0.02 104

2018 0.17 0.81 0.01 90

40 2015 0.00 0.98 0.02 291

2016 0.07 0.93 0.01 171

2017 0.23 0.77 0.00 129

2018 0.46 0.54 0.00 90

60 2015 0.01 0.98 0.01 443

2016 0.16 0.83 0.00 185

2017 0.47 0.53 0.00 107

2018 0.72 0.28 0.00 55

90 2015 0.05 0.94 0.00 660

2016 0.39 0.61 0.00 111

2017 0.69 0.31 0.00 27

2018 0.83 0.16 0.00 12

Cull 20 2015 0.00 0.97 0.02 148
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2016 0.05 0.94 0.01 110

2017 0.17 0.82 0.01 104

2018 0.34 0.66 0.00 91

40 2015 0.02 0.98 0.01 291

2016 0.25 0.75 0.00 171

2017 0.60 0.40 0.00 129

2018 0.82 0.18 0.00 91

60 2015 0.09 0.91 0.00 443

2016 0.63 0.37 0.00 185

2017 0.88 0.12 0.00 106

2018 0.95 0.05 0.00 56

90 2015 0.55 0.45 0.00 660

2016 0.89 0.11 0.00 111

2017 0.95 0.05 0.00 27

2018 0.97 0.03 0.00 12

Discussion

Parameters in Context

We estimated vital rate parameters and forecasted deer abundance into the future giving

probabilistic inference to managers seeking to reduce populations of overabundant ungulates.

Our estimate of adult female survival (0.74, SD = 0.051) matches results we calculated from

published literature (0.74, SD = 0.14) (Brinkman et al. 2004; Campbell et al. 2005; DePerno

et al. 2000; Dusek et al. 1992; Fuller 1990; Grovenburg et al. 2011; Van Deelen et al. 1997;

Whitlaw et al. 1998). Our estimate for juvenile survival (0.37, SD = 0.11) was much lower

than the average from previous literature (0.67, SD = 0.20) (Brinkman et al. 2004; Burroughs

et al. 2006; Campbell et al. 2005; Fuller 1990; Van Deelen et al. 1997; Vreeland et al. 2004;
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Whitlaw et al. 1998; Wickham et al. 1993). This difference in survival could be due to the

higher than average deer densities found in our study area resulting in overgrazing leading to

poor body condition. In addition, the adult male survival probability estimated in our model

(0.67 SD = 0.1) is higher than the adult male survival probabilities found in the literature

(0.39, SD = 0.19) (Bowman et al. 2007; Campbell et al. 2005; Fuller 1990; Van Deelen et al.

1997). This could be due to lower harvest rates in the National Capital Region compared to

the study areas of previous research.

It is important to represent density dependence in this population model of white-tailed

deer because culling a population may elevate recruitment (Diamond 1992). We did detect

density dependence but our parameter estimates are much lower than expected. Our model

estimated the maximum birth rate of white-tailed deer to be rf =0.61 with an SD = 0.11.

The number of juvenile per adult female at low densities has typically been reported to be

near 0.98 (McCullough 1979) or 1.30 (Fuller 1990). Our estimate for carrying capacity was

also lower than the current regional median (Kf = 22, SD = 3.1). There are three reasons

why this may have happened. First, the birth rates reported by McCullough (1979) and

Fuller (1990) do not include neonatal survival. Second, our model estimated a lower than

expected maximum birth rate to account for low numbers of births observed in the data.

Finally, our model does not differentiate between female adults and yearlings, and yearlings

are known to produce fewer fawns (Vreeland et al. 2004).

Our model also does not have an explicit term for immigration/emigration because we

do not have data to support an estimate for that parameter. This information gap can be

justified because white-tailed deer exhibit high site fidelity, and it has also been shown that

reduction in deer density does not lead to increased immigration (Kilpatrick et al. 2001).

That may not be the case in our situation because of the small size of the parks in our study

area. The reduction of white-tailed deer in a small area may be trivial because they will

soon be replaced by surrounding deer. What we have presented here is the ideal situation

for use of fertility control. We assume that any immigration/emigration that may occur
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becomes part of the process variance of our model. Further improvement to the model

could be implemented by placing GPS or VHF tracking devices which would inform an

immigration/emigration parameter.

Assessing Relative Effort

Our model provides an estimate of population growth rate and probabilities that specific

management regimes will achieve and/or maintain a reduction in a white-tailed deer popu-

lation below carrying capacity. It has been shown, theoretically, that culling a population

to a certain level followed by introducing contraceptive methods may maintain a population

at a level below carrying capacity (Hobbs et al. 2000; Hone 1992; Barlow et al. 1997). Our

results suggest that all types of fertility control, including culling, will accelerate the decline

in the population. However, the number of individuals that need to be treated in order to

reach a stated objective (i.e., relative effort) differs greatly between contraceptives (1 or 3

year efficacy) and culling/sterilization.

The white-tailed deer population in the Washington, D.C. area will decrease with no

action ( λ = 0.883, BCI = 0.8, 0.971). This decline depends on harvest outside of the National

Parks. If harvest remains constant causing the survival probabilities to stay the same, the

population will decrease by 50% in 10 years. Therefore, encouraging harvest outside of the

parks may be a sufficient management strategy. When the projection matrix was subjected

to any fertility control regime, the population decrease accelerated. Contraceptives with an

average of three year effectiveness had a slightly larger effect on population growth rate than

contraceptives with an average of one year effectiveness, causing the population to decrease

by 50% in 6 years if survival probabilities remain constant. Using contraceptives alone has

a higher variance and a slower effectiveness than sterilization unless a large fraction of the

population can be treated with contraceptives (> 90%). Sterilization also decreased the

population growth rate (0.73). Culling had the most dramatic effect on population growth

rate causing the population to decrease by more than 50% in 1 year if 90% of the adult

female population were culled.
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Managers may seek to reduce a population more rapidly than the population is currently

decreasing with a low relative effort. It is possible to rapidly accelerate population reduction

of white-tailed deer with contraceptives, but only if 90% are treated for several sequential

years. The number of adult female deer that would need to be given contraceptives to

reduce the population quickly would exceed 16200 over 5 years throughout all parks. The

cost per doe for non-surgical fertility control is estimated to be $750. Implementing this

management regime would cost over $12,000,000 with a low probability of achieving the

objective (1 year contraceptives Probability in = 0.61, 3 year contraceptives Probability in

= 0.73). Sterilization has a high probability of success if between 60% (Probability in =

0.81) and 90% (Probability in = 0.71) of adult females are treated each year, but the costs

would be more than double contraceptives. Culling, on the other hand, has a low relative

effort. The cost per doe for culling is estimated to be $370. Only 3990 adult females (40%)

need to be culled over 5 years ($1,480,000) to have a probability of 0.84 of being within the

management objective. With our hypothetical management objective, it would be 91% more

efficient to cull 40% of females each year than it would be to administer 90% of females each

year with contraceptives. These results highlight that using contraceptives alone to control a

population is not a viable option for managers seeking to reduce the deer population rapidly

with low relative effort.

Each of the management strategies has its own set of undesirable effects. For instance,

culling alone can cause a population to fall below a desirable management objective and in

extreme cases cause the population to become extinct. Regulated harvests can be unpopular

with the public or logistically complicated due to proximity to urban areas. However, reduc-

ing the survival of a population decreases the relative effort of reducing the population by

contraceptives or sterilization. Using contraceptives after culling to a desired management

objective may be a very effective way to maintain a population below carrying capacity

because fewer animals need to be culled and fewer animals need to be treated with con-

traceptives (Table 4). If 90% adult females were culled the first year followed by 1 year
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contraceptives administered to 20% for 5 years, the probability that the population would

be within the management objective is 0.89. A hypothetical treatment plan may be as fol-

lows: 0.98 adult females would need to be culled the first year ($1,380,000) and 590 would

need to be administered contraceptives over the next four years ($590,000). This type of

management plan reduces the relative effort 88% compared to using only fertility control

and increases the probability that the population will remain below carrying capacity but

will not become endangered.

Conclusion

Management of overabundant ungulates has become a point of contention in several

ecosystems around the world because of the excessive amount of environmental and eco-

nomic damage (Pimentel et al. 2005; Garrott et al. 1993). Managers need an approach that

balances goals of conservation as well as wildlife wellbeing. In this study, we have described a

framework for forecasting the effects of different fertility control regimes and comparing pos-

sible management actions. The robustness of the dataset allowed for the use of statistically

rigorous methods for estimating white-tailed deer abundance.

We have provided evidence confirmed with 13 years of data that contraceptives alone

will reduce the population growth rate more than no action but will not reduce the popu-

lation rapidly unless > 90% can be treated. Sterilization has the potential to decrease the

population and maintain it below carrying capacity if 60% of adult females can be treated

each year. However, if the objective is to reduce the population rapidly, the relative effort of

implementing these fertility control regimes outweighs the probability that the management

objective will be achieved unless there is an initial cull. Culling to a predetermined level

followed by administering lower amounts of fertility control, rather then implementing a con-

traceptive program alone, would be an efficient way to achieve management objectives below

carrying capacity with low relative effort. We suggest that managers of overabundant ungu-

lates estimate vital rate parameters with associated uncertainty to assess which management

regime will balance relative effort with a population objective in their ecosystem.

33



REFERENCES

Barlow, N., J. Kean, and C. Briggs, 1997. Modelling the relative efficacy of culling and

sterilisation for controlling populations. Wildlife Research 24:129–141.

Bates, S., 2006. White-tailed deer density monitoring protocol version 1.1: distance and

pellet-group surveys. Technical report, National Park Service, National Capital Region

Network Inventory and Monitoring Program, Washington, D.C.

Berliner, L. M., 1996. Hierarchical bayesian time series models. In Maximum Entropy and

Bayesian Methods, pages 15–22. Springer.

Bowman, J., H. Jacobson, D. Coggin, J. Heffelfinger, and B. Leopold, 2007. Survival and

cause-specific mortality of adult male white-tailed deer managed under the quality deer

management paradigm 61:76–81.

Brinkman, T., J. Jenks, C. DePerno, B. Haroldson, and R. Osborn, 2004. Survival of

white-tailed deer in an intensively farmed region of Minnesota. Wildlife Society Bulletin

32:726–731.

Brooks, S. and A. Gelman, 1998. General methods for monitoring convergence of iterative

simulations. Journal of Computational and Graphical Statistics 7:434–455.

Buckland, S., D. Anderson, K. Burnham, J. Laake, et al., 1993. Distance sampling: estimat-

ing abundance of biological populations. Chapman & Hall.

Burroughs, J., H. Campa III, S. Winterstein, B. Rudolph, and W. Moritz, 2006. Cause-

specific mortality and survival of white-tailed deer fawns in southwestern lower Michigan.

Journal of Wildlife Management 70:743–751.

Campbell, T., B. Laseter, W. Ford, and K. Miller, 2005. Population characteristics of a

central appalachian white-tailed deer herd. Wildlife Society Bulletin 33:212–221.

34



Carey, M. P., B. L. Sanderson, K. A. Barnas, and J. D. Olden, 2012. Native invaders-

challenges for science, management, policy, and society. Frontiers in Ecology and the

Environment 10:373–381.

Caswell, H., 2006. Matrix population models. Wiley Online Library.

Côté, S., T. Rooney, J. Tremblay, C. Dussault, and D. Waller, 2004. Ecological impacts of

deer overabundance. Annual Review of Ecology, Evolution, and Systematics 35:113–147.

DePerno, C., J. Jenks, S. Griffin, and L. Rice, 2000. Female survival rates in a declining

white-tailed deer population. Wildlife Society Bulletin 28:1030–1037.

Diamond, J., 1992. Must we shoot deer to save nature. Natural History 8:2–8.

Dusek, G., A. Wood, and S. Stewart, 1992. Spatial and temporal patterns of mortality

among female white-tailed deer. The Journal of Wildlife Management 56:645–650.

Fuller, T., 1990. Dynamics of a declining white-tailed deer population in north-central

minnesota. Wildlife Monographs 110:1–37.

Garrott, R., P. White, and C. Vanderbilt White, 1993. Overabundance: an issue for conser-

vation biologists? Conservation Biology 7:946–949.

Gelman, A. and D. Rubin, 1992. Inference from iterative simulation using multiple sequences.

Statistical Science 7:457–472.

Grovenburg, T., C. Swanson, C. Jacques, C. Deperno, R. Klaver, and J. Jenks, 2011. Female

white-tailed deer survival across ecoregions in Minnesota and South Dakota. The American

Midland Naturalist 165:426–435.

Heidelberger, P. and P. Welch, 1983. Simulation run length control in the presence of an

initial transient. Operations Research 31:1109–1144.

35



Hobbs, N., D. Bowden, and D. Baker, 2000. Effects of fertility control on populations

of ungulates: general, stage-structured models. The Journal of Wildlife Management

64:473–491.

Hone, J., 1992. Rate of increase and fertility control. Journal of Applied Ecology 29:695–698.

Jewell, P., S. Holt, and D. Hart, 1981. Problems in management of locally abundant wild

mammals. Academic Press, Inc.

Kilpatrick, H. J., S. M. Spohr, and K. K. Lima, 2001. Effects of population reduction on

home ranges of female white-tailed deer at high densities. Canadian Journal of Zoology

79:949–954.

Kirkpatrick, J., J. Turner, I. Liu, R. FayrerHosken, and A. Rutberg, 1997. Case studies in

wildlife immunocontraception: Wild and feral equids and white-tailed deer. Reproduction,

Fertility, and Development 9:105–110.

Knight, T. M., H. Caswell, and S. Kalisz, 2009. Population growth rate of a common

understory herb decreases non-linearly across a gradient of deer herbivory. Forest Ecology

and Management 257:1095–1103.

Knowlton, F. F., 1972. Preliminary interpretations of coyote population mechanics with

some management implications. The Journal of Wildlife Management 36.

Lovejoy, T. E., 2006. Climate Change and Biodiversity. TERI Press.

Malcolm, K. D., T. R. Van Deelen, D. Drake, D. J. Kesler, and K. C. VerCauteren, 2010.

Contraceptive efficacy of a novel intrauterine device (iud) in white-tailed deer. Animal

Reproduction Science 117:261–265.

Martin, T. G., P. Arcese, P. M. Kuhnert, A. J. Gaston, and J.-L. Martin, 2013. Prior

information reduces uncertainty about the consequences of deer overabundance on forest

birds. Biological Conservation 165:10–17.

36



McCabe, T. R. and R. E. McCabe, 1997. Recounting whitetails past. In H. U. W.J. McShea

and J. Rappole, editors, The Science of Overabundance: Deer Ecology and Population

Management, pages 11–26. Smithsonian Press, Washington, D.C.

McCullough, D., 1979. The George Reserve deer herd: population ecology of a K-selected

species. University of Michigan Press Ann Arbor.

McShea, W. J., S. L. Monfort, S. Hakim, J. Kirkpatrick, I. Liu, J. W. Turner Jr, L. Chassy,

and L. Munson, 1997. The effect of immunocontraception on the behavior and reproduction

of white-tailed deer. The Journal of Wildlife Management 61:560–569.

Noon, B. R. and J. R. Sauer, 2001. Population models for passerine birds: structure, pa-

rameterization, and analysis. In Wildlife 2001: Populations, pages 441–464. Springer.

Pimentel, D., R. Zuniga, and D. Morrison, 2005. Update on the environmental and economic

costs associated with alien-invasive species in the United States. Ecological Economics

52:273–288.

Plummer, M., 2003. Jags: A program for analysis of bayesian graphical models using gibbs

sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Com-

puting (DSC 2003). March, pages 20–22, Technische Universitat, Wien, Vienna, Austria.

Plummer, M., 2012. JAGS Version 3.3.0 user manual.

Plummer, M., 2013. rjags: Bayesian graphical models using MCMC. R package version 3-10.

R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, Vienna, Austria.

Ransom, J. I., J. G. Powers, N. Thompson Hobbs, and D. L. Baker, 2014. Review: Ecolog-

ical feedbacks can reduce population-level efficacy of wildlife fertility control. Journal of

Applied Ecology 51:259–269.

37



Russell, F. L., D. B. Zippin, and N. L. Fowler, 2001. Effects of white-tailed deer (Odocoileus

virginianus) on plants, plant populations and communities: a review. The American

Midland Naturalist 146:1–26.

Sala, O. E., F. S. Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-

Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, et al., 2000. Global biodiversity

scenarios for the year 2100. Science 287:1770–1774.

Simberloff, D., J.-L. Martin, P. Genovesi, V. Maris, D. A. Wardle, J. Aronson, F. Courchamp,

B. Galil, E. García-Berthou, M. Pascal, et al., 2013. Impacts of biological invasions: what’s

what and the way forward. Trends in Ecology & Evolution 28:58–66.

Sinclair, A., 2003. Mammal population regulation, keystone processes and ecosystem dy-

namics. Philosophical Transactions of the Royal Society of London. Series B: Biological

Sciences 358:1729–1740.

Stubben, C. and B. Milligan, 2007. Estimating and analyzing demographic models using the

popbio package in r. Journal of Statistical Software 22:11–23.

Thomas, L., S. T. Buckland, E. A. Rexstad, J. L. Laake, S. Strindberg, S. L. Hedley, J. R.

Bishop, T. A. Marques, and K. P. Burnham, 2010. Distance software: design and analysis

of distance sampling surveys for estimating population size. Journal of Applied Ecology

47:5–14.

Van Deelen, T., H. Campa III, J. Haufler, and P. Thompson, 1997. Mortality patterns of

white-tailed deer in Michigan’s Upper Peninsula. The Journal of Wildlife Management

61:903–910.

Van Der Peet, S., 2007. Wildlife damage control. Austral Ecology 32:720–720.

Vreeland, J., D. Diefenbach, and B. Wallingford, 2004. Survival rates, mortality causes, and

habitats of Pennsylvania white-tailed deer fawns. Wildlife Society Bulletin 32:542–553.

38



Western, D., 1979. Size, life history and ecology in mammals. African Journal of Ecology

17:185–204.

Whitlaw, H., W. Ballard, D. Sabine, S. Young, R. Jenkins, and G. Forbes, 1998. Survival and

cause-specific mortality rates of adult white-tailed deer in New Brunswick. The Journal

of Wildlife Management 62:1335–1341.

Wickham, B., R. Lancia, and M. Conner, 1993. Survival rates and adult accompaniment of

white-tailed deer fawns on Remington Farms. In Proceedings of the Annual Conference of

the Southeastern Association of Fish and Wildlife Agencies, volume 47, pages 222–230.

Wright, R., 1993. Wildlife management in parks and suburbs: alternatives to sport hunting.

Renewable Resources Journal 11:18–23.

39



APPENDIX

0
50

15
0

25
0

ANTI

Year

D
ee

r 
D

en
si

ty
 (k

m
2 )

●
●

●
● ● ●

●

● ● ● ●
●

●

2002 2010 2018

0
50

15
0

25
0

CATO

Year

D
ee

r 
D

en
si

ty
 (k

m
2 )

●

●

●

●

●
●

●
●

●

● ●

●

●

2002 2010 2018

0
50

15
0

25
0

CHOH

Year

D
ee

r 
D

en
si

ty
 (k

m
2 )

●

●

● ●
●

●

●

●
●

●

●

●
●

2002 2010 2018

0
50

15
0

25
0

GWMP

Year

D
ee

r 
D

en
si

ty
 (k

m
2 )

●
●

●

●

●

●

●

●

●

●

●

●

●

2002 2010 2018

0
50

15
0

25
0

MANA

Year

D
ee

r 
D

en
si

ty
 (k

m
2 )

● ●
●

●

●

●

●

●

●
●

●

● ●

2002 2010 2018

0
50

15
0

25
0

MONO

Year

D
ee

r 
D

en
si

ty
 (k

m
2 )

●

●

●

●

●

●

● ●

● ●

●

●

●

2002 2010 2018

0
50

15
0

25
0

GREE

Year

D
ee

r 
D

en
si

ty
 (k

m
2 )

●

●

● ● ● ●

●

●
●

●

●

●

●

2002 2010 2018

0
50

15
0

25
0

PISC

Year

D
ee

r 
D

en
si

ty
 (k

m
2 )

●
●

●

●

●

●

●

●

●
● ●

●

●

2002 2010 2018

0
50

15
0

25
0

PRWI

Year

D
ee

r 
D

en
si

ty
 (k

m
2 )

● ●
●

● ● ●
●

● ●

●

●
●

●

2002 2010 2018

0
50

15
0

25
0

ROCR

Year

D
ee

r 
D

en
si

ty
 (k

m
2 )

● ●

●

●

● ●

●
● ●

●

● ● ●

2002 2010 2018

Figure 11: Forecast by park for the years 2001 to 2018. The solid line is the median of the estimate.
The dashed lines are the 95% Bayesian credible intervals (BCI) of the estimate. The dots with
vertical lines are the medians of the data with standard deviation error bars. The abbreviations
for each park are in the titles of each plot. ANTI: Antietam National Battlefield, CATO: Catoctin
Mountain Park, CHOH: Chesapeake and Ohio Canal NHP, GWMP: George Washington Memorial
Parkway, MANA: Manassas National Battlefield Park, MONO: Monocacy National Battlefield,
GREE: Greenbelt Park as part of the National Capital Parks East, PISC: Piscataway as part of the
National Capital Parks East, PRWI: Prince William Forest Park, ROCR: Rock Creek Park
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