

THESIS

DESIGN OF A COMPTON SCATTER BASED RADIATION TRACKING SYSTEM

Submitted by

Heather Healy

Department of Environmental and Radiological Health Sciences

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Spring 2015

Master’s Committee:

 Advisor: Alexander Brandl

 Co-Advisor :Thomas Johnson

James Lindsay

Copyright by Heather Healy 2015

All Rights Reserved

ii

ABSTRACT

DESIGN OF A COMPTON SCATTER BASED RADIATION TRACKING SYSTEM

Gamma spectroscopy is one of the most common techniques used for the detection of

radiologic materials. This technology is deployed in a variety of scenarios such as emergency

response, monitoring, and the recovery of lost, stolen, or otherwise unaccounted radiologic

material. In most practical scenarios, it is useful to know the location of a source in relation to a

detector, in addition to the classic output from gamma spectrometers such as decay rate and

energy peak information. In collaboration with the Remote Sensing Laboratory (RSL) at

Andrew’s Air Force Base, a novel detector design by RSL, which utilizes a 360
o
 detectable range

in order to increase the probability of remote detection, was investigated for the possibility to

recreate source location information from Compton scattering events within the detector. A

recreation of this novel detector is simulated using Geant4 to determine the optimal dimensions

of sodium iodide detectors that produce the most single Compton scattering events in order to

facilitate source location through the back-projection of Compton scattering angles. The optimal

detector dimensions are determined by maximizing the number of single Compton scatter events

and minimizing the percentage of Compton events that undergo multiple successive scatters in

detectors of varying thicknesses and lengths. The optimal detector thickness was chosen to be

1.88 in, and the optimal detector length was chosen to be 4 to 4.5 in. In future projects, these

optimized detectors can be used to apply suggested back-projection algorithms in order to

determine the feasibility and functionality of this detector design for the purpose of radiologic

source location.

iii

TABLE OF CONTENTS

ABSTRACT .. ii

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

INTRODUCTION ...1

 Motivation ..1

 Ionizing Particles ...1

 Inorganic Scintillators ..3

 Localization through Compton Scattering ...5

 Coincidence Intervals...6

 Photon Interaction with Matter ..7

 Poisson Distribution ...8

 Hypothesis..9

MATERIALS AND METHODS ...11

RESULTS ..15

 Linear Attenuation Coefficient ..15

 Detector Thickness...15

 Detector Length ...18

DISCUSSION ..21

 Linear Attenuation Coefficient ..21

 Optimization Criteria and Minimizing Uncertainty ...21

 Thickness Optimization ...24

iv

 Length Optimization ..24

 Application of the Compton Scatter Angle Calculation ..25

CONCLUSION ..30

REFERENCES ..31

APPENDIX A ..33

Geant4 Files ...33

v

LIST OF TABLES

TABLE 1 Model Thicknesses of Sodium Iodide Detectors ..12

TABLE 2 The Number of Single and Multiple Compton Scattering Events at Different Detector

Thicknesses Scaled to 5000 Photons ...15

TABLE 3 The Number of Single and Multiple Compton Scattering Events at Different Detector

Lengths Scaled to 7000 Photons ..18

vi

LIST OF FIGURES

FIGURE 1 NaI Detectors with Isotropic Hemisphere Source Emitting 662 keV Photons in

Geant4 ..12

FIGURE 2 Example of Two Compton Scattering Events (Circled in Orange)13

FIGURE 3 Example of a Multiple Compton Scattering Event (Circled in Red)14

FIGURE 4 The Number of Single and Multiple Compton Scattering Events per Detector

Thickness Scaled to 5000 Photons ...17

FIGURE 5 The Percentage of Multiple Compton Scattering Events per Detector Thickness

Scaled to 5000 Photons ..17

FIGURE 6 The Number of Single and Multiple Compton Scattering Events per Detector Length

Scaled to 7000 Photons ..19

FIGURE 7 The Percentage of Multiple Compton Scattering Events per Detector Length Scaled

to 7000 Photons..19

FIGURE 8 The Energy Resolution at 662 keV of Various Inorganic Scintillators as a Function of

Luminosity (Recreated from Knoll, 2010)...23

FIGURE 9 Illustration of the Compton Scattering Angle Associated with a Cone of Angular

Uncertainty ...26

FIGURE 10 Compton Cone that Encompasses All Possible Directions of the Incident Photon ..27

FIGURE 11 Multiple Detector Unit Compton Cones Narrowing Down Source Location through

Overlapping Regions ...28

1

INTRODUCTION

Motivation

Current radiologic detection methods rely heavily on the detection of gamma photons to

identify and analyze radiological sources that are lost, stolen, or otherwise unaccounted for by

the owner. The Remote Sensing Laboratory (RSL) at Andrews Air Force Base is one facility that

specializes in the detection of radiologic material and continuously contributes to the evolution

of radiation detection techniques. In a recent project, a novel detector unit was designed for 360
o

remote gamma spectroscopy and detection (Kiser, 2010). A follow up investigation of the

detector unit’s ability to locate radiologic sources, in addition to its primary functions, was

requested.

Ionizing Particles

Gamma photons are one of the easiest types of radiation to detect from a distance. Alpha

particles (commonly emitted from heavy nuclei) deposit their energy within very short distances

from where they are emitted (on the order of mm). A piece of paper is enough to shield alpha

particles. Beta particles (electrons or positrons) travel slightly farther than alpha particles (on the

order of cm), and are emitted from a wide variety of radionuclides, but they can be shielded with

a stack of paper making both alpha and beta particles difficult to detect from a distance. High

energy gamma and X-ray photons are capable of traveling longer distances than alpha and beta

particles (on the order of m). High energy photons require more robust shielding materials such

as lead to reduce the transmission of these particles, making the detection of gamma and X-ray

photons more likely at distances even if they are shielded.

2

It is a common misconception that X-ray and gamma photons are different types of

radiation with different energy levels. X-rays and gammas are both photons and can both be

produced along the same spectrum of energies. The difference between the two designations for

these photons comes from how they are produced. Gamma photons are emitted from the nucleus

of an atom during radioactive decay or after nuclear excitation events. Gamma photon energies

are discrete and specific to the radionuclide from which they are emitted (Cember & Johnson,

2009). Conversely, there are two processes that produce X-rays. The first is when an electron

transitions from one energy state to a lower energy state within an atom’s electron cloud. These

are characteristic X-rays because the amount of energy released by the transitioning of the

electron is characteristic to the difference in energy between the two energy states of the atom

and by that characteristic to the element associated with that atom (Cember & Johnson, 2009).

The second type of X-ray is the bremsstrahlung X-ray, which is German for breaking radiation

(Cember & Johnson, 2009). Bremsstrahlung X-rays are produced when charged particles

traveling at high velocities suddenly experience a change in velocity, such as by changing

direction. This can occur if an electron is traveling at a high velocity near an atom. The electron

is drawn toward the atoms’ nucleus because of their electrostatic attraction due to the difference

in charge (nuclei are positive and electrons are negative). This attraction causes the electron to

very suddenly change its trajectory and continue traveling past the nucleus along a new trajectory

(like a comet and the sun). The sudden change in velocity of the electron from the direction

change results in the emission of energy in the form of a bremsstrahlung X-ray (Cember &

Johnson, 2009). Characteristic and bremsstrahlung X-rays are emitted from outside the nucleus

in the electron cloud, not from the nucleus like gamma photons. Both X-ray and gamma photons

can be used in the detection of radiological sources.

3

Inorganic Scintillators

The novel detector designed by the RSL is a sodium iodide detector, which is a type of

inorganic scintillator. Inorganic scintillators are composed of two major components: a

scintillator, which is a crystalline structure (such as NaI), and a photomultiplier tube (PM tube).

Photons enter the detector and excite electrons within the crystalline lattice of the scintillator. An

excitation event occurs when a particle imparts energy onto an electron that is less than the total

binding energy, so the electron remains within the crystal lattice. The crystalline lattice has

different energy states to which electrons within the lattice can be excited (Knoll, 2010).

Typically, these energy states are referred to as the excited states (higher energy) and the ground

state. The ground state is the lowest possible energy state (Cember & Johnson, 2009). Electrons

within the crystalline lattice will always transition to the lowest possible energy state because at

that state the force acting on the electron is zero making this the most stable state.

Different atoms and molecular structures can have a variety of different energy states.

The difference in the energy states determines what process an atom can undergo to dissipate the

excess energy and return to the ground state where the electronic configuration is most stable.

Pure sodium iodide crystals have very wide energy gaps (the difference between energy states)

meaning that the electrons must dissipate a large quantum of energy in order to transition back to

the ground state. In a sodium iodide crystal this occurs by the emission of an X-ray photon (high

energy) (Knoll, 2010). Scintillator detectors rely on the production of visible light to propagate

the occurrence of an ionization event within the detector. Therefore, the production of X-rays

(not visible) by the excited scintillator is not efficient for further propagation of the signal. To

combat this issue, impurities are introduced into the crystalline structure. Thallium is commonly

used in sodium iodide detectors. Thallium contains different energy states than sodium iodide, so

4

the addition of Thallium adds more possible excitation states to the compound to which electrons

can transition within the crystalline lattice. The excitation states of Thallium are lower than those

of sodium iodide meaning that less energy needs to be dissipated to return to the ground state.

When an electron is excited to one of the thallium excitation states, a visible light photon (lower

energy than X-ray) is emitted upon transitioning back to the ground state allowing the

propagation of a signal within the detector (Knoll, 2010).

Once light is produced in the scintillator, it is converted to an electronic signal in the PM

tube. The PM tube has two main components: a photocathode and an electron multiplier

structure. The photocathode converts the visible light photon into low-energy electrons, which

are emitted from the photocathode surface. The electrons then drift toward the electron

multiplication region, which contains a series of dynodes. When the low-energy electrons strike

a dynode, additional electrons are released toward the next dynode. After the electrons have

cascaded down the entire series of dynodes, there are approximately 10
7
 to 10

10
 electrons. These

electrons are funneled to an anode at the end of the PM tube creating a sharp voltage drop. This

voltage drop is easily recognized by detector readout equipment (Knoll, 2010).

The benefits of sodium iodide detectors are that they are portable (easy to use in the

field), they are relatively low maintenance, they have a high light output and quick response

time, and a wide variety of crystal sizes is available (ability to create different size detectors)

(Knoll, 2010). Although sodium iodide detectors have worse resolution than other gamma

spectrometers, their portability and high light output make them ideal for mobile operations such

as those conducted by the Remote Sensing Laboratory.

5

Location through Compton Scattering

The researchers at RSL intend to not only be able to detect radiologic materials using this

detector unit, but also precisely locate the source of radioactivity. Currently, the best method to

determine the relative location of a radiologic source with respect to a sodium iodide detector is

to define the direction of the strongest signals as the location of the source. Typically, this type

of determination will result in an 180
o
 window of possible source direction. Since information

regarding distance to the source is generally unknown in detection scenarios, this technique does

little to precisely and accurately identify a source location.

A proposed method to precisely identify the location of a radiologic source is through the

analysis of Compton scattering within a detector unit (Kiser, 2010). Compton scattering was

discovered by Arthur Compton in 1918, while he was a professor at Washington University

studying the scattering of X-rays. He observed that X-rays that were scattered after interaction

with electrons in a carbon target had longer wavelengths (different energies) than those incident

on the target. Further exploration led to the effect being named after him in 1922 (“Arthur”,

2015).

Compton scattering is the elastic collision between a photon and a free electron (or an

electron with a very low binding) at rest, which results in the photon and the electron scattering

in different directions at new energies. Kinetic energy and momentum are conserved in elastic

collisions. Therefore, the initial kinetic energy of the photon and the final kinetic energy of the

photon after the collision are related as a function of the angle through which the photon was

scattered (Cember & Johnson, 2009).

The relationship between the energies of incident and final photon can be described using

Equation 1

6

 E'=
E

1+(
E

m0c2)(1- cos θ)
 , (1)

where E’ is the energy of the photon after collision, E is the energy of the incident photon, and

m0c
2
 is the rest mass of the electron, 511 keV (Cember & Johnson, 2009).

This methodology could be used to determine the location of a radiologic source if the

energies of an incident and the scattered photon are known. It is possible to obtain this

information from a multi-detector system. A multi-detector system is a detector unit composed of

any number of individual sodium iodide detectors, each with their own photomultiplier tube.

Ideally, a detector unit covers a 360
o
 range for the greatest detection efficiency as modeled by

the RSL detector unit design (Kiser, 2010).

With this system in place, an incoming photon could collide with an electron in the

crystalline structure in one detector and undergo a Compton scatter into a second detector within

the unit. The energy of the scattered photon would be equal to the amount of energy deposited in

the second detector, while the incident photon energy would be equal to the sum of the energies

deposited in the first and second detectors due to the conservation of kinetic energy in elastic

collisions (Cember & Johnson, 2009). This information could be used to calculate the scattering

angle of the incident photon.

Coincidence Intervals

In order to determine which excitation events are related via Compton scattering within

the detector unit, coincidence intervals can be used (Kiser, 2010). A coincidence interval is a

time window set on detectors to identify ionization events that occur within a very short amount

of time of each other, typically on the order of microseconds or nanoseconds. If two events occur

within the coincidence interval they are said to be related by an interaction (in this case Compton

scattering) and not due to the chance that two individual photons interacted at or near the same

7

time. The time window used for coincidence intervals is determined based on the detector set up

and equipment. Most manufactures offer guidance on the appropriate coincidence interval time

window depending on the detector and system in use (“Timing and Coincidence”, n.d.).

Photon Interaction with Matter

Photons interact differently depending on their energy and what type of material they

pass through. In air (assuming sea level and 15
o
C), a 100 keV photon travels an average of 53 m

before an interaction with the air takes place, while a 1 MeV photon will travel an average of 130

m (Johnson, 2012). The average distance a photon travels in a material before an interaction

takes place is called the mean free path. The mean free path is important because it quantifies a

particles probability to transmit through materials without experiences a scattering event. The

mean free path is obtained from the linear attenuation coefficient, which is defined as the

“probability per unit path length that an ionizing particle interacts” (Knoll, 2010). The mean free

path is equal to the inverse of the linear attenuation coefficient. The linear attenuation coefficient

for a material is determined by observing how many photons enter a material of a certain

thickness and how many of those photons pass through the material without interaction as shown

in Equation 2.

𝑁

𝑁0
= 𝑒−𝜇𝑥 , (2)

where N is the number of un-scattered photons exiting an absorber material of thickness x, N0 is

the number of photons incident on the absorber, and µ is the linear attenuation coefficient

(Cember & Johnson, 2009). The quantity 𝑒−𝜇𝑥 quantifies the fraction of photons that should be

expected to transmit through the absorber without interaction (Cember & Johnson, 2009). If µx =

1 then the expected percentage of un-scattered photons traveling through the absorber material is

37%. At µx = 2 the percentage of un-scattered photons is 14%.

8

Poisson Distribution

The Poisson distribution was originally developed as an approximation of the binomial

distribution to describe larger sample sets of random processes (Turner & Downing, 2012).

Today, the Poisson distribution is used to describe “all random processes that occur with a

probability that is both small and constant” (Turner & Downing, 2012). This applies to processes

that meet the following criteria (1) events are independent of one another, (2) the outcomes are

whole numbers (success or no success), (3) the frequency of a success is very small in relation to

the total sample size, (4) and the probability of two successes within a short time interval is

negligible (Turner & Downing, 2012).

Radioactive decay is one of the random processes best described by the Poisson

distribution (Turner & Downing, 2012). Radioactive decay is a completely random process. The

decay of one atom has no effect on the decay of any other atom. The outcome of the radioactive

decay process is either a decay or no decay in a given time interval. The frequency of radioactive

decay is very small relative to the number of atoms that could decay, and the probability of two

atoms decaying simultaneously is extremely small.

Similarly, photons that undergo Compton scattering are also well described within the

confines of the Poisson distribution. Photons can either Compton scatter or not Compton scatter

in material. If one photon undergoes a Compton scatter, it has no impact on the probability that

any other photon will Compton scatter. The expected number of Compton scattering events is

very small in relation to the total number of photons that interact with matter, and the probability

of two Compton scattering events occurring at the same time is extremely small (Nelson &

Reilly, n.d.). For these reasons, the Poisson distribution can be used to analyze Compton

scattering events in sodium iodide detectors.

9

When analyzing data containing a small number of successes, it is important to quantify

the uncertainty associated with the analysis results. This uncertainty often is expressed in terms

of the standard deviation. The standard deviation is an estimator for the true sample variance.

The standard deviation, σ, using Poisson statistics is

 𝜎𝐴 = √𝐴, (3)

where, A is the number of successes (Turner & Downing, 2012). When multiple independent

measurements are taken, each measurement has its own standard deviation. In some scenarios, it

is necessary to combine several independent quantities or variables to obtain a dependent

variable. In this case, the standard deviations from all the multiple measurements are propagated

through the use of Equation 4 to estimate the associated uncertainty of the dependent variable.

 𝜎𝑇
2 = ∑ (

𝜕𝑇

𝜕𝑥𝑖
)

2

𝜎𝑖
2𝑁

𝑖=1 (4)

where, N is the number of independent variables, T is the quantity of interest, xi is the i
th

independent variable (measurement) in T, and σi is the associated uncertainty for each xi value

(Turner & Downing, 2012). The proper calculation of the uncertainty related to the

measurements of Compton scattering events within the detectors allows for the determination of

the precision of the results.

Hypothesis

It is expected that sodium iodide detectors will have an optimal thickness and length for

maximizing the occurrence of Compton scattering events that can be used to calculate the

location of a radiological source because of the probability of photon interactions in different

volumes of sodium iodide absorber material.

This study was designed to determine the optimal thickness and width dimensions for

single Compton scattering events in six identical sodium iodide detectors arranged in a

10

hexagonal detection unit. Once the optimization of the thickness and length are determined for

the detectors, this system could be used to apply tracking and location algorithms in order to

locate radiologic sources through the Compton scattering angles associated with events within

the detector unit.

11

MATERIALS AND METHODS

The Remote Sensing Laboratory provided computer files containing the originally

designed hexagonal sodium iodide detector unit and operational environment to be run on

Geant4, an open source simulation software (Kiser, 2010). As the provided files were not

compatible with the Geant4 system available for this study, a basic model of six sodium iodide

detectors arranged in a hexagon was developed to represent a basic model of the original detector

design. The Geant4 files for this recreation can be found in Appendix A. A particle gun is

modeled in the software to emit 662 keV gammas in order to simulate the presence of a
137

Cs

source. It is important that only one energy photon be used in this preliminary study to eliminate

the presence of multiple, possibly competing variables.
137

Cs is ideal for this model because it

emits single-energy photons when it undergoes radioactive decay and because it is commonly

used in industry. Some examples of
137

Cs sources used in industry are moisture-density gauges

(construction), leveling gauges to detect liquid flow in pipes and tanks, thickness gauges for

materials, well-logging devices in the drilling industry, and medical therapy sources. It is not

uncommon for high activity
137

Cs sources to become misplaced on construction or drilling sites

because of the small size of the source. When this happens, detectors are used to locate the

missing source.

The particle gun in the model is placed 40 cm from the detector unit. The particle gun is

centered along the vertical axis of the detector unit, and the height of the detectors is kept

constant throughout the entire experiment at 16 in, which is based on the original RSL detector

design (Kiser, 2010).

12

Figure 1 NaI Detectors with Isotropic Hemisphere Source Emitting 662 keV Photons in Geant4

During the first investigation, the length of each detector is held constant at 3 in, which is

a common size for sodium iodide crystals. The thickness is set to 1 in in order to determine the

linear attenuation coefficient of the modeled sodium iodide crystals.

After the linear attenuation coefficient is determined for the detector simulations and

compared to known values for simulation validation, the optimal thickness of the detectors is

determined. The thicknesses in Table 1 are tested with relation to the exponent µx from Equation

2.

Table 1 Model Thicknesses of Sodium Iodide Detectors

µx 0.5 0.75 1 1.25 1.5 1.75 2

Thickness
(in) 0.75 1.13 1.5 1.88 2.25 2.63 3

Percentage
of photons
scattered

in material

39 53 63 71 78 83 86

At each thickness, 5000 photons are tracked from the particle gun to the detector in order

to achieve an uncertainty of 2-3% for the percentage of multiple Compton scatter events as

13

shown in Table 2. As a photon passes through the detector unit, one of three outcomes is

recorded: no Compton scatter, single Compton scatter, or multiple Compton scatter. No

Compton scatter is defined as a photon that either passes through the detector without

interaction, is attenuated completely within one detector, or scatters outside the detector after the

first interaction. A single Compton scatter is defined as any photon that has a single hit in one

detector resulting in the Compton scatter of the photon into a second detector where the

remainder of the photon’s energy is deposited. A multiple Compton scatter is defined as a photon

that either undergoes more than one Compton scattering event resulting in hits in three or more

detectors, the photon scatters outside the detector after deposition of some energy in the second

detector following a Compton scattering event, or the photon undergoes two Compton scattering

events in the first detector before depositing the rest of its energy in a second detector. Examples

of single and multiple Compton scattering events are shown in Figures 2 and 3 respectively.

Figure 2 Example of Two Single Compton Scattering Events (Circled in Orange)

14

Figure 3 Example of a Multiple Compton Scattering Event (Circled in Red)

Once the optimal thickness is identified based on the highest frequency of single

Compton scattering events and the lowest percentage of Compton events that are multiple

scatters, the second parameter to be determined is the optimal length of the detectors. The

detector height is maintained at 16 in, and the previously determined optimal thickness is

maintained constant for all length trials. The modeled detector lengths are 3.0 in, 3.5 in, 4.0 in,

4.5 in, 5.0 in, 7 in, and 10 in. These are commonly manufactured crystal lengths. Seven thousand

photons are tracked from the particle gun to the detector for each length in order to achieve an

uncertainty of 2-3% for the percentage of multiple Compton scatter events as shown in Table 3.

The optimal length is determined using the same criteria as the thickness optimization.

15

RESULTS

Linear Attenuation Coefficient

The linear attenuation coefficient is measured by tracking 2002 photons from the particle

gun to the detector. One thousand and twenty-nine of those particles pass through the detector

unit un-scattered. Using Equation 2, the linear attenuation coefficient is 0.6656 in
-1

. Therefore, in

one inch of sodium iodide crystal 51% of the photons that enter the material should pass through

without interaction (49% should interact).

Detector Thickness

For each of the thickness trials, approximately 5000 photons are tracked from the particle

gun to the detector (some thicknesses had slightly more than 5000 photons tracked to the

detector). Sample sizes for each of the thicknesses are normalized by scaling, the number of

single and multiple Compton scatter events to 5000 total photons. The results from the thickness

trials can be found in Table 2 and Figures 4 and 5. The intervals surrounding the data points in

Figures 4 and 5 display the uncertainty associated with the each measurement. These are

calculated using Equations 4 and 5.

Table 2 The Number of Single and Multiple Compton Scattering Events at Different Detector Thicknesses

Scaled to 5000 Photons

Detector Thickness

(µx)

Single

Compton

Scattering

Multiple

Compton

Scattering

Percentage of Single

Compton Scattering

Events Out of 5000

Total Runs

Percentage of Multiple

Compton Scattering

Events Out of 5000

Total Runs

Percentage of

Multiple Compton

Scatterings Out of all

Compton

Relative Uncertainity

of Percentage (%)

0.5 367 268 7.3 5.36 42.2 2.0

0.75 350 223 7 4.5 38.9 2.0

1 280 159 5.6 3.2 36.2 2.3

1.25 249 120 5 2.4 32.5 2.4

1.5 219 105 4.4 2.1 32.4 2.6

1.75 175 91 3.5 1.8 34.2 2.9

2 156 76 3.1 1.5 32.8 3.1

16

The percentage of Compton events that are multiple scatters, f, is calculated using

Equation 5 where M is the number of multiple Compton scattering events and S is the number of

single Compton scattering events.

f =
𝑀

𝑆+𝑀
 (5)

S and M are independent of each other and have independent standard deviations. Error

propagation is used to assess the relative uncertainty of the quantity calculated in Equation 5.

The standard deviation of a single independent variable for a quantity described by Poisson

statistics is shown in Equation 3. This can be applied by using the error propagation in Equation

4 where

𝛿𝑓

𝑑𝑀
=

𝑆

(𝑆 + 𝑀)2
 𝑎𝑛𝑑

𝛿𝑓

𝑑𝑆
= −

𝑀

(𝑆 + 𝑀)2
 ,

𝜎𝑓
2 = (

𝑆

(𝑆 + 𝑀)2
)

2

√𝑀
2

+ (−
𝑀

(𝑆 + 𝑀)2
)

2

√𝑆
2

 ,

𝜎𝑓
2 =

𝑆2𝑀

(𝑆 + 𝑀)4
+

𝑀2𝑆

(𝑆 + 𝑀)4
 ,

𝜎𝑓
2 =

𝑀𝑆

(𝑆 + 𝑀)3
 .

This method is used to calculate the uncertainty for the percentage of Compton events that are

multiple scatters in the detectors during the thickness and length trials.

17

Figure 4 The Number of Single and Multiple Compton Scattering Events per Detector Thickness Scaled to

5000 Photons

Figure 5 The Percentage of Multiple Compton Scattering Events per Detector Thickness Scaled to 5000

Photons

18

The 1.25 µx (1.88 in) thickness has the highest number of single Compton scatter events

that corresponds with the lowest percentage of multiple Compton events and has the narrowest

relative uncertainty.

Detector Length

The optimization for the detector length is conducted with the 1.25 µx (1.88 in) thickness.

For each of the length trials, 7000 photons are tracked from the particle gun to the detector. The

results of the detector length trials are shown in Table 3 and Figures 6 and 7. The intervals

surrounding the data points in Figures 6 and 7 display the uncertainty associated with the each

measurement. These are calculated using Equations 3 and 4.

Table 3 The Number of Single and Multiple Compton Scattering Events at Different Detector Lengths Scaled

to 7000 Photons

Detector Length

(in)

Single Compton

Scattering

Multiple

Compton

Scattering

Percentage of Single

Compton Scattering

Events Out of 7000

Total Runs

Percentage of

Multiple Compton

Scattering Events

Out of 5000 Total

Runs

Percentage of

Multiple Compton

Scatterings Out of

all Compton

Relative Uncertainity

of Percentage (%)

3 350 162 5.0 2.3 31.6 2.1

3.5 354 164 5.1 2.3 31.7 2.0

4 315 116 4.5 1.7 26.9 2.1

4.5 301 128 4.3 1.8 29.8 2.2

5 271 104 3.9 1.5 27.7 2.3

7 231 88 3.3 1.3 27.6 2.5

10 174 55 2.5 0.08 24.0 2.8

19

Figure 6 The Number of Single and Multiple Compton Scattering Events per Detector Length Scaled to 7000

Photons

Figure 7 The Percentage of Multiple Compton Scattering Events per Detector Length Scaled to 7000 Photons

20

Looking at Figure 7, all of the confidence intervals for lengths greater than four inches

overlap, indicating that there is no real difference in the percentage of multiple Compton events

between these lengths. Based on that information, the optimal detector length is chosen to be 4 in

for this study because the 4 in detector has the highest number of single Compton scattering

events for detector lengths of 4 in and greater.

21

DISCUSSION

Linear Attenuation Coefficient

The linear attenuation coefficient is calculated to validate the properties of the sodium

iodide absorber material in the simulation against known experimental values. The calculated

linear attenuation coefficient of 0.67 in
-1

 (0.26 cm
-1

) is compared to the experimental value found

in Nelson and Reilly (n.d.), which is approximately 0.30 cm
-1

. This demonstrates that the

simulated sodium iodide detectors behave similarly to live experimental results; therefore, the

model used in this study appears to be appropriate.

Optimization Criteria and Minimizing Uncertainty

In this experiment, the optimized thickness and length of the detector are defined as the

value that has the highest frequency of single Compton scatter events and the lowest percentage

of multiple Compton events. These criteria are based on the assumption that single Compton

scattering events will produce a more precise angular calculation than the multiple Compton

scattering events. As previously stated, a multiple Compton scattering event is defined as either

(1) a photon that undergoes more than one Compton scattering event resulting in hits in three or

more detectors, (2) a photon scatters outside the detector after deposition of some energy in the

second detector following a Compton scattering event, or (3) a photon undergoes two Compton

scattering events in the first detector before depositing the rest of its energy in a second detector.

In the first of the multiple Compton scattering scenarios, it is assumed that the

coincidence interval is narrow enough only to record the scattering of a photon between two

detectors. Under this assumption, if not all of the final photon energy is deposited in the second

detector, it is not possible to calculate the scatter angle if the original photon energy is unknown

22

because not all of the photon energy is deposited in the first two detectors. Furthermore, even if

the coincidence interval is long enough to associate the scattering of a photon between three or

more detectors, the associated uncertainty with the calculation of the scatter angle would be

significantly larger for two or more angles than just one because the uncertainties compound.

One of the sources of uncertainty in the scattering angle calculations comes from the

calibration and resolution of the detector (Parra, 2002). The resolution of a detector is a measure

of how precisely the detector system reports the actual deposition of energy in the output. Since

the Compton scattering equation is dependent on the energies of the incident and final photon,

any inaccuracy in the energy measurements will result in an angle calculation with higher

uncertainty. Scintillators have poor resolution compared to other types of detectors, and sodium

iodide detectors have a higher resolution percentage (lower resolution) than other types of

inorganic scintillators, as shown in Figure 8 where the best possible resolution is displayed by

the theoretical limit (Knoll, 2010).

23

Figure 8 The Energy Resolution at 662 keV of Various Inorganic Scintillators as a Function of Luminosity

(Recreated from an Knoll, 2010)

For this reason, only the single Compton scattering events are desirable for the

calculation of the scattering angle because the calculation of one angle will decrease the

uncertainty of a directional back-projection of the angle from the detector to the possible source

location. To minimize the effects of poor resolution of a sodium iodide detector, users should

ensure that the detectors are calibrated carefully.

A second source of uncertainty associated with the Compton scattering angular

calculation comes from the uncertainty associated with where the photon actually deposits

energy within the detector (Parra, 2002). This information is essential for the precise application

of the calculated scattering angle. Since current detectors provide poor event location

information, it is necessary to minimize the other uncertainties associated with resolution and

calibration.

24

Thickness Optimization

Figure 4 establishes that the number of single and multiple Compton scattering events

decreases as the thickness of the detector increases. Also, as the detector thickness increases, it is

observed that the number of photons that are completely attenuated or undergo multiple

interactions in the first detector increases. In the thinner detectors, it is observed that the

majority of the multiple Compton scattering events occur because the photons scatter into three

or more detectors. A likely explanation as to why more photons are attenuated or undergo

multiple interactions in the thicker detectors, and why photons are more likely to scatter between

several of the thinner detectors is because the farther a photon travels in the absorber material,

the more probable it is that the photon will interact in the material more than once.

Through examination of Figure 5, it is apparent that the uncertainty intervals associated

with the detector thicknesses of 1.25 µx and greater overlap significantly and as a group have a

smaller average percentage of multiple Compton events than the detector thicknesses less than

1.25 µx. This indicates that there is not enough evidence to suggest that there is a true difference

in the percentage of multiple Compton events for detector thicknesses larger than and equal to

1.25 µx, but the detector thicknesses greater than and equal to 1.25 µx have a lower percentage

of multiple Compton scattering events than the detector thicknesses of 0.5-1 µx. The 1.25 µx

detector is chosen as the optimal thickness because it has the highest number of single Compton

scattering events when compared to the detector thicknesses larger than 1.25 µx.

Length Optimization

As seen in the thickness trials, the total number of single and multiple Compton

scattering events decreases as the length of the detectors increases. This is likely because as the

length of the detectors increases, the diameter of the detector unit becomes larger, which

25

increases the probability that a photon will interact in the air before interacting with a second or

multiple detector in the unit. This is likely the cause for the decrease in the percentage of

multiple Compton scattering events as the length of the detector increases. It also appears that as

the detector lengths increase, most photons are completely attenuated by a single detector

because of the increased volume of the detector. In the shorter length detectors, photons that

scatter along the length of the detector are more likely to leave the detector because there is less

absorber material between the scattering point and the edge of the detector. In the longer detector

lengths, there is more absorber material between the scattering point and the edge of the detector.

The concept is similar to increasing the thickness of the detector. Larger volumes of absorber

material increase the attenuation of photons because larger volumes increase the probability of

photon interaction.

The uncertainty intervals in Figure 7 for detector lengths 4 in and longer all overlap. This

indicates that there is no difference in the true percentage of multiple Compton events for

detectors 4 in in length and longer. Since the percentage of multiple Compton events in detectors

greater than and equal to 4 in is the same, the determination for the optimal detector length is

based on which detector greater than or equal to 4 in has the most single Compton scattering

events. As seen in Table 3, the detector lengths of 4 and 4.5 in have the greatest number of single

Compton scattering events. Figure 6 shows that the uncertainty intervals associated with the 4

and 4.5 in detector lengths overlap significantly demonstrating that there is no significant

difference in these values and both are optimal detector lengths.

Application of the Compton Scatter Angle Calculation

The optimization criteria are selected in order to minimize the uncertainty associated with

calculating the Compton scattering angle as discussed above. The Compton scattering angle

26

calculated using Equation 1 is a two dimensional angle associated with the incident and scattered

photon in a single plane spanned by the incident and scattered photon trajectory vectors. In order

to locate a radiologic source using the Compton scattering method, the calculated scattering

angle must be applied to a three dimensional system to be used in real detection scenarios. In a

three dimensional system, the Compton scattering angle translates into a cone that extends from

the first detector of interaction toward the source at the calculated scattering angle. The half

angle, ϴ, of the cone is defined by the uncertainty associated with the scatter angle calculation as

seen in Figure 9. The true scattering angle of the photon is contained within the cone.

Figure 9 Illustration of the Compton Scattering Angle Associated with a Cone of Angular Uncertainty

The composition of the Compton scattering angle cone does not take into account the

incoming direction of the incident photon. For example, if a photon scatters at an angle of 45
o
,

the incident photon could have originated from above, below, to either side of the detector, or

anywhere in between before scattering at the calculated angle. The summation of all possible

incident photon directions creates a larger cone composed of an infinite number of the same

ϴ

27

calculated Compton scattering angle with associated uncertainty that rotates around a 360
o
 axis

as shown in Figure 10. This is sometimes referred to as the “Compton cone” (Suzuki et al.,

2013).

Figure 10 Compton Cone that Encompasses All Possible Directions of the Incident Photon

The thickness of the hollow Compton cone (orange cones in Figure 10) represents all

possible source locations associated with the original Compton scattering angle. The use of one

Compton scattering angle is not sufficient to produce a precise or accurate estimate of a source

location. To increase the precision of the source location determination, more than one single

Compton scattering event is required. Multiple events will create multiple Compton cones in the

three dimensional model, which will overlap narrowing down the possible locations of the source

as seen in Figure 11 where the dark purple rectangles represent the areas where all three

Compton cones overlap. The best results are achieved through the use of multiple detector units

to increase the variety of Compton cone positions relative to the source.

28

Figure 11 Multiple Detector Unit Compton Cones Narrowing Down Source Location through Overlapping

Regions

 The use of multiple detector units is the most efficient way to quickly triangulate the

location of a source through the back projection of the scattering angle. Explanations of the

mathematical calculations of simple, filtered, and iterative back-projection algorithms through

the transformation of Compton cones into a series of spherical harmonics in a two plane array of

lanthanum (III) bromide detectors are examined in Feng, (2009) for high resolution Compton

cameras. A similar method of reconstructing cone-beam images using back-projection in

spherical coordinates is found in Parra, (2002). A second method for the analysis of Compton

scattering data between multiple detectors is through list-mode maximum likelihood estimation,

which attempts to reconstruct the source distribution with the highest likelihood of having

produced the observed data as described in Lehner et al., (2004) and Wilderman et al., (1999).

29

The third method for back-projection of multiple passive detection systems is through location

from range differences and an extension of the Taylor Series expansion as found in Friedlander,

(1987). The use of an optimized detector unit as defined in this section would allow for the most

precise and accurate application of the mentioned back projection and location algorithms to

identify the location of a radiologic source relative to multiple detector units.

30

CONCLUSIONS

The optimal dimensions of the sodium iodide detectors were determined by comparing

the total number of single Compton scattering events and the percentage of multiple Compton

events. There was no significant difference in the percentage of multiple Compton events for

detectors of thicknesses 1.25 µx (1.88 in) and greater. Conversely, as the detector thickness

increased, the number of single Compton scatter events that occurred in the detector unit

decreased. It was determined that the optimized detector thickness for this experiment was 1.25

µx.

Using the detector thickness of 1.25 µx, the optimal detector length was determined using

the same criteria as the thickness optimization. For the detector lengths of 4 in and greater, there

was no significant difference in the percentage of multiple Compton events. Furthermore, as the

length of the detector increased, the number of single Compton scatter events decreased. The

number of single Compton scatter events for detector lengths of 4 and 4.5 in were not

significantly different from one another, but both were found to produce a higher number of

single Compton scatter events than the detectors of 5 in in length and greater. Based on these

criteria, it was determine that the optimal detector length for this experiment was 4 to 4.5 inches.

Future work should examine the efficiency of the application of different back-projection

methods in the optimized detector unit. Once an optimized method is determined, the minimum

required number of detector units needed to produce a reasonable estimate of the source location

should be identified. These additional works would determine the feasibility of using this

detector unit for source tracking purposes.

31

REFERENCES

(2015). “Arthur Compton”. American Physical Society. Retrieved from

http://www.aps.org/programs/outreach/history/historicsites/compton.cfm

Cember, H., & Johnson, T. (2009). Introduction to health physics (4th ed.). New York: McGraw-

Hill Medical.

Feng, Y. (2009). Design and evaluation of gamma imaging systems of Compton and hybrid

cameras (Doctoral dissertation). University of Florida, Gainesville, Florida.

Friedlander, (1987). “A passive localization algorithm and its accuracy analysis”. IEEE Journal

of Oceanic Engineering, 12(1), 234-245.

Lehner, C., Zhong, H., & Feng, Z. (2004). “4π Compton Imaging Using a 3-D Position-Sensitive

CdZnTe Detector via Weighted List-Mode Maximum Likelihood”. IEEE Transactions on

Nuclear Science, 51(4), 1618-1624

Johnson, T., & Birky, B. (2012). Health physics and radiological health (4th ed.). Philadelphia:

Wolters Kluwer Health/Lippincott Williams & Wilkins.

Kiser, M. (2010). “OSCAR Modeling, Simulation, and Algorithm Development”. Remote

Sensing Laboratory. Andrew’s Air Force Base. Washington, D.C.

Knoll, G. (2010). Radiation detection and measurement (4th ed.). Hoboken, N.J.: John Wiley.

Nelson, G., & Reilly, D. (n.d.). “Gamma-Ray Interactions with Matter”. Retrieved from

http://www.lanl.gov/orgs/n/n1/panda/00326397.pdf

Parra, L. (2002). “Reconstruction of cone-beam projections from Compton scattered data”. IEEE

Transactions on Nuclear Science, 47(4), 1543-1550

32

Suzuki, Y., Yamaguchi, M., Odaka, H., Shimada, H., Yoshida, Y., Torikai, K., ... Nakano, T.

(2013). “Three-dimensional and Multienergy Gamma-ray Simultaneous Imaging by Using a

Si/CdTe Compton Camera”. Radiology, 267(3), 941-947

 “Timing and Coincidence Counting Systems”. (n.d.). Retrieved from

http://www.canberra.com/literature/fundamental-principles/pdf/Timing-Coin-Counting.pdf

Turner, J., & Downing, D. (2012). Statistical methods in radiation physics. Weinheim: Wiley-

VCH.

Wilderman, S., Clinthorne, N., & Rogers, W. (1998). “List-mode maximum likelihood

reconstruction of Compton scatter camera images in nuclear medicine”. Nuclear Science

Symposium, 1998. Conference Record., 3, 1716-1720

33

APPENDIX A

Geant4 Files

34

Include Folder

PhysListEmStandard.hh

#ifndef PhysListEmStandard_h
#define PhysListEmStandard_h 1

#include "G4VPhysicsConstructor.hh"
#include "globals.hh"

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

class PhysListEmStandard : public G4VPhysicsConstructor
{
 public:
 PhysListEmStandard(const G4String& name = "standard");
 ~PhysListEmStandard();

 public:
 // This method is dummy for physics
 virtual void ConstructParticle() {};

 // This method will be invoked in the Construct() method.
 // each physics process will be instantiated and
 // registered to the process manager of each particle type
 virtual void ConstructProcess();
};

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

#endif

ActionInitialization.hh

#ifndef THActionInitialization_h
#define THActionInitialization_h 1

#include "G4VUserActionInitialization.hh"

/// Action initialization class.
///

class THActionInitialization : public G4VUserActionInitialization
{
 public:
 THActionInitialization();
 virtual ~THActionInitialization();

 virtual void BuildForMaster() const;
 virtual void Build() const;
};

#endif

Analysis.hh

35

#ifndef THAnalysis_h
#define THAnalysis_h 1

#include "g4root.hh"
//#include "g4xml.hh"

#endif

Hit.hh

#ifndef THHit_h
#define THHit_h 1

#include "G4VHit.hh"
#include "G4THitsCollection.hh"
#include "G4Allocator.hh"
#include "G4ThreeVector.hh"
#include "tls.hh"

/// Calorimeter hit class
///
/// It defines data members to store the the energy deposit and track lengths
/// of charged particles in a selected volume:
/// - fEdep, fTrackLength

class THHit : public G4VHit
{
 public:
 THHit();
 THHit(const THHit&);
 virtual ~THHit();

 // operators
 const THHit& operator=(const THHit&);
 G4int operator==(const THHit&) const;

 inline void* operator new(size_t);
 inline void operator delete(void*);

 // methods from base class
 virtual void Draw() {}
 virtual void Print();

 // methods to handle data
 void Add(G4double de, G4double dl);

 // get methods
 G4double GetEdep() const;
 G4double GetTrackLength() const;

 private:
 G4double fEdep; ///< Energy deposit in the sensitive volume
 G4double fTrackLength; ///< Track length in the sensitive volume
};

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

36

typedef G4THitsCollection<THHit> THHitsCollection;

extern G4ThreadLocal G4Allocator<THHit>* THHitAllocator;

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

inline void* THHit::operator new(size_t)
{
 if(!THHitAllocator)
 THHitAllocator = new G4Allocator<THHit>;
 void *hit;
 hit = (void *) THHitAllocator->MallocSingle();
 return hit;
}

inline void THHit::operator delete(void *hit)
{
 if(!THHitAllocator)
 THHitAllocator = new G4Allocator<THHit>;
 THHitAllocator->FreeSingle((THHit*) hit);
}

inline void THHit::Add(G4double de, G4double dl) {
 fEdep += de;
 fTrackLength += dl;
}

inline G4double THHit::GetEdep() const {
 return fEdep;
}

inline G4double THHit::GetTrackLength() const {
 return fTrackLength;
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

#endif

PrimaryGeneratorAction.hh

#ifndef THPrimaryGeneratorAction_h
#define THPrimaryGeneratorAction_h 1

#include "G4VUserPrimaryGeneratorAction.hh"
#include "globals.hh"

class G4ParticleGun;
class G4Event;

/// The primary generator action class with particle gum.
///
/// It defines a single particle which hits the calorimeter
/// perpendicular to the input face. The type of the particle
/// can be changed via the G4 build-in commands of G4ParticleGun class
/// (see the macros provided with this example).

37

class THPrimaryGeneratorAction : public G4VUserPrimaryGeneratorAction
{
public:
 THPrimaryGeneratorAction();
 virtual ~THPrimaryGeneratorAction();

 virtual void GeneratePrimaries(G4Event* event);

 const G4ParticleGun* GetParticleGun() const { return fParticleGun; }

private:
 G4ParticleGun* fParticleGun; // G4 particle gun
};

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

#endif

RunAction.hh

#ifndef THRunAction_h
#define THRunAction_h 1

#include "G4UserRunAction.hh"
#include "globals.hh"
#include <map>

class THDetectorConstruction;
class THPrimaryGeneratorAction;
class G4Run;

/// Run action class
///
/// It accumulates statistic and computes dispersion of the energy deposit
/// and track lengths of charged particles with use of analysis tools:
/// H1D histograms are created in BeginOfRunAction() for the following
/// physics quantities:
/// - Edep in absorber
/// - Edep in gap
/// - Track length in absorber
/// - Track length in gap
/// The same values are also saved in the ntuple.
/// The histograms and ntuple are saved in the output file in a format
/// accoring to a selected technology in B4Analysis.hh.
///
/// In EndOfRunAction(), the accumulated statistic and computed
/// dispersion is printed.
///

class THRunAction : public G4UserRunAction
{
public:
 THRunAction(THDetectorConstruction*, THPrimaryGeneratorAction*);

 public:
 THRunAction();

38

 virtual ~THRunAction();

public:
 virtual void BeginOfRunAction(const G4Run*);
 virtual void EndOfRunAction(const G4Run*);

 void CountProcesses(G4String procName) { fProcCounter[procName]++; };

private:
 THDetectorConstruction* fDetector;
 THPrimaryGeneratorAction* fPrimary;
 std::map<G4String, G4int> fProcCounter;
};

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

#endif

SD.hh

#ifndef THSD_h
#define THSD_h 1

#include "G4VSensitiveDetector.hh"

#include "THHit.hh"

#include <vector>

class G4Step;
class G4HCofThisEvent;

/// Calorimeter sensitive detector class
///
/// In Initialize(), it creates one hit for each calorimeter layer and one more
/// hit for accounting the total quantities in all layers.
///
/// The values are accounted in hits in ProcessHits() function which is called
/// by Geant4 kernel at each step.

class THSD : public G4VSensitiveDetector
{
 public:
 THSD(const G4String& name,
 const G4String& hitsCollectionName,
 G4int nofCells);
 virtual ~THSD();

 // methods from base class
 virtual void Initialize(G4HCofThisEvent* hitCollection);
 virtual G4bool ProcessHits(G4Step* step, G4TouchableHistory* history);
 virtual void EndOfEvent(G4HCofThisEvent* hitCollection);

 private:
 THHitsCollection* fHitsCollection;
 G4int fNofCells;
};

39

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

#endif

EventAction.hh

#ifndef THEventAction_h
#define THEventAction_h 1

#include "G4UserEventAction.hh"

#include "THHit.hh"

#include "globals.hh"

/// Event action class
///
/// In EndOfEventAction(), it prints the accumulated quantities of the energy
/// deposit and track lengths of charged particles in Absober and Gap layers
/// stored in the hits collections.

class THEventAction : public G4UserEventAction
{
public:
 THEventAction();
 virtual ~THEventAction();

 virtual void BeginOfEventAction(const G4Event* event);
 virtual void EndOfEventAction(const G4Event* event);

private:
 // methods
 THHitsCollection* GetHitsCollection(G4int hcID,
 const G4Event* event) const;
 void PrintEventStatistics(G4double Shape1Edep, G4double Shape1TrackLength,
 G4double Shape2Edep, G4double Shape2TrackLength,
 G4double Shape3Edep, G4double Shape3TrackLength,
 G4double Shape4Edep, G4double Shape4TrackLength,
 G4double Shape5Edep, G4double Shape5TrackLength,
 G4double Shape6Edep, G4double Shape6TrackLength) const;

 // data members
 G4int fShape1HCID;
 G4int fShape2HCID;
 G4int fShape3HCID;
 G4int fShape4HCID;
 G4int fShape5HCID;
 G4int fShape6HCID;
};

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

#endif

DetectorConstruction.hh

40

#ifndef THDetectorConstruction_h
#define THDetectorConstruction_h 1

#include "G4VUserDetectorConstruction.hh"
#include "globals.hh"

class G4VPhysicalVolume;
class G4GlobalMagFieldMessenger;

/// Detector construction class to define materials and geometry.
/// The calorimeter is a box made of a given number of layers. A layer consists
/// of an absorber plate and of a detection gap. The layer is replicated.
///
/// Four parameters define the geometry of the calorimeter :
///
/// - the thickness of an absorber plate,
/// - the thickness of a gap,
/// - the number of layers,
/// - the transverse size of the calorimeter (the input face is a square).
///
/// In ConstructSDandField() sensitive detectors of B4cCalorimeterSD type
/// are created and associated with the Absorber and Gap volumes.
/// In addition a transverse uniform magnetic field is defined
/// via G4GlobalMagFieldMessenger class.

class THDetectorConstruction : public G4VUserDetectorConstruction
{
 public:
 THDetectorConstruction();
 virtual ~THDetectorConstruction();

 public:
 virtual G4VPhysicalVolume* Construct();
 virtual void ConstructSDandField();

 private:
 // methods
 //
 void DefineMaterials();
 G4VPhysicalVolume* DefineVolumes();

 // data members
 //
 static G4ThreadLocal G4GlobalMagFieldMessenger* fMagFieldMessenger;
 // magnetic field messenger

 G4bool fCheckOverlaps; // option to activate checking of volumes overlaps

};

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

#endif

Src Folder

SteppingAction.cc

41

#include "THSteppingAction.hh"
#include "THRunAction.hh"

#include "G4RunManager.hh"

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

THSteppingAction::THSteppingAction(THRunAction* RuAct)
:G4UserSteppingAction(),fRunAction(RuAct)
{ }

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

THSteppingAction::~THSteppingAction()
{ }

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

void THSteppingAction::UserTHSteppingAction(const G4Step* aStep)
{
 G4StepPoint* endPoint = aStep->GetPostStepPoint();
 G4String procName = endPoint->GetProcessDefinedStep()->GetProcessName();

 fTHRunAction->CountProcesses(procName);

 // kill event after first interaction
 //
 G4RunManager::GetRunManager()->AbortEvent();
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

SD.cc

#include "THSD.hh"
#include "G4HCofThisEvent.hh"
#include "G4Step.hh"
#include "G4ThreeVector.hh"
#include "G4SDManager.hh"
#include "G4ios.hh"

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

THSD::THSD(
 const G4String& name,
 const G4String& hitsCollectionName,
 G4int nofCells)
 : G4VSensitiveDetector(name),
 fHitsCollection(0),
 fNofCells(nofCells)
{
 collectionName.insert(hitsCollectionName);
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

THSD::~THSD()

42

{
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

void THSD::Initialize(G4HCofThisEvent* hce)
{
 // Create hits collection
 fHitsCollection
 = new THHitsCollection(SensitiveDetectorName, collectionName[0]);

 // Add this collection in hce
 G4int hcID
 = G4SDManager::GetSDMpointer()->GetCollectionID(collectionName[0]);
 hce->AddHitsCollection(hcID, fHitsCollection);

 // Create hits
 // fNofCells for cells + one more for total sums
 for (G4int i=0; i<fNofCells+1; i++) {
 fHitsCollection->insert(new THHit());
 }
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

G4bool THSD::ProcessHits(G4Step* step,
 G4TouchableHistory*)
{
 // energy deposit
 G4double edep = step->GetTotalEnergyDeposit();

 // step length
 G4double stepLength = 0.;
 if (step->GetTrack()->GetDefinition()->GetPDGCharge() != 0.) {
 stepLength = step->GetStepLength();
 }

 if (edep==0. && stepLength == 0.) return false;

 G4TouchableHistory* touchable
 = (G4TouchableHistory*)(step->GetPreStepPoint()->GetTouchable());

 // Get calorimeter cell id
 G4int layerNumber = touchable->GetReplicaNumber(1);

 // Get hit accounting data for this cell
 THHit* hit = (*fHitsCollection)[layerNumber];
 if (! hit) {
 G4ExceptionDescription msg;
 msg << "Cannot access hit " << layerNumber;
 G4Exception("B4cCalorimeterSD::ProcessHits()",
 "MyCode0004", FatalException, msg);
 }

 // Get hit for total accounting
 THHit* hitTotal
 = (*fHitsCollection)[fHitsCollection->entries()-1];

43

 // Add values
 hit->Add(edep, stepLength);
 hitTotal->Add(edep, stepLength);

 return true;
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

void THSD::EndOfEvent(G4HCofThisEvent*)
{
 if (verboseLevel>1) {
 G4int nofHits = fHitsCollection->entries();
 G4cout << "\n-------->Hits Collection: in this event they are " << nofHits
 << " hits in the tracker chambers: " << G4endl;
 for (G4int i=0; i<nofHits; i++) (*fHitsCollection)[i]->Print();
 }
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

RunAction.cc

#include "THRunAction.hh"
#include "THAnalysis.hh"

#include "G4Run.hh"
#include "G4RunManager.hh"
#include "G4UnitsTable.hh"
#include "G4SystemOfUnits.hh"

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

THRunAction::THRunAction()
 : G4UserRunAction()
{
 // set printing event number per each event
 G4RunManager::GetRunManager()->SetPrintProgress(1);

 // Create analysis manager
 // The choice of analysis technology is done via selectin of a namespace
 // in THAnalysis.hh
 G4AnalysisManager* analysisManager = G4AnalysisManager::Instance();
 G4cout << "Using " << analysisManager->GetType() << G4endl;

 // Create directories
 //analysisManager->SetHistoDirectoryName("histograms");
 //analysisManager->SetNtupleDirectoryName("ntuple");
 analysisManager->SetVerboseLevel(1);
 analysisManager->SetFirstHistoId(1);

 // Book histograms, ntuple
 //

 // Creating histograms
 analysisManager->CreateH1("1","Edep in Shape1", 100, 0., 800*MeV);
 analysisManager->CreateH1("2", "Edep in Shape2", 100, 0., 800 * MeV);

44

 analysisManager->CreateH1("3", "Edep in Shape3", 100, 0., 800 * MeV);
 analysisManager->CreateH1("4", "Edep in Shape4", 100, 0., 800 * MeV);
 analysisManager->CreateH1("5", "Edep in Shape5", 100, 0., 800 * MeV);
 analysisManager->CreateH1("6", "Edep in Shape6", 100, 0., 800 * MeV);
 analysisManager->CreateH1("7","trackL in Shape1", 100, 0., 1*m);
 analysisManager->CreateH1("8", "trackL in Shape2", 100, 0., 1 * m);
 analysisManager->CreateH1("9", "trackL in Shape3", 100, 0., 1 * m);
 analysisManager->CreateH1("10", "trackL in Shape4", 100, 0., 1 * m);
 analysisManager->CreateH1("11", "trackL in Shape5", 100, 0., 1 * m);
 analysisManager->CreateH1("12", "trackL in Shape6", 100, 0., 1 * m);

 // Creating ntuple
 //
 analysisManager->CreateNtuple("B1", "Edep and TrackL");
 analysisManager->CreateNtupleDColumn("EShape1");
 analysisManager->CreateNtupleDColumn("EShape2");
 analysisManager->CreateNtupleDColumn("EShape3");
 analysisManager->CreateNtupleDColumn("EShape4");
 analysisManager->CreateNtupleDColumn("EShape5");
 analysisManager->CreateNtupleDColumn("EShape6");
 analysisManager->CreateNtupleDColumn("LShape1");
 analysisManager->CreateNtupleDColumn("LShape2");
 analysisManager->CreateNtupleDColumn("LShape3");
 analysisManager->CreateNtupleDColumn("LShape4");
 analysisManager->CreateNtupleDColumn("LShape5");
 analysisManager->CreateNtupleDColumn("LShape6");
 analysisManager->FinishNtuple();
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

THRunAction::~THRunAction()
{
 delete G4AnalysisManager::Instance();
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

void THRunAction::BeginOfRunAction(const G4Run* /*run*/)
{
 //inform the runManager to save random number seed
 //G4RunManager::GetRunManager()->SetRandomNumberStore(true);

 // Get analysis manager
 G4AnalysisManager* analysisManager = G4AnalysisManager::Instance();

 // Open an output file
 //
 G4String fileName = "TH";
 analysisManager->OpenFile(fileName);
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

void THRunAction::EndOfRunAction(const G4Run* /*run*/)
{
 // print histogram statistics

45

 //
 G4AnalysisManager* analysisManager = G4AnalysisManager::Instance();
 if (analysisManager->GetH1(1)) {
 G4cout << "\n ----> print histograms statistic ";
 if (isMaster) {
 G4cout << "for the entire run \n" << G4endl;
 }
 else {
 G4cout << "for the local thread \n" << G4endl;
 }

 G4cout << " EShape1 : mean = "
 << G4BestUnit(analysisManager->GetH1(1)->mean(), "Energy")
 << " rms = "
 << G4BestUnit(analysisManager->GetH1(1)->rms(), "Energy") << G4endl;

 G4cout << " EShape2 : mean = "
 << G4BestUnit(analysisManager->GetH1(2)->mean(), "Energy")
 << " rms = "
 << G4BestUnit(analysisManager->GetH1(2)->rms(), "Energy") << G4endl;

 G4cout << " EShape3 : mean = "
 << G4BestUnit(analysisManager->GetH1(3)->mean(), "Energy")
 << " rms = "
 << G4BestUnit(analysisManager->GetH1(3)->rms(), "Energy") << G4endl;

 G4cout << " EShape4 : mean = "
 << G4BestUnit(analysisManager->GetH1(4)->mean(), "Energy")
 << " rms = "
 << G4BestUnit(analysisManager->GetH1(4)->rms(), "Energy") << G4endl;

 G4cout << " EShape5 : mean = "
 << G4BestUnit(analysisManager->GetH1(5)->mean(), "Energy")
 << " rms = "
 << G4BestUnit(analysisManager->GetH1(5)->rms(), "Energy") << G4endl;

 G4cout << " EShape6 : mean = "
 << G4BestUnit(analysisManager->GetH1(6)->mean(), "Energy")
 << " rms = "
 << G4BestUnit(analysisManager->GetH1(6)->rms(), "Energy") << G4endl;

 G4cout << " LShape1 : mean = "
 << G4BestUnit(analysisManager->GetH1(7)->mean(), "Length")
 << " rms = "
 << G4BestUnit(analysisManager->GetH1(7)->rms(), "Length") << G4endl;

 G4cout << " LShape2 : mean = "
 << G4BestUnit(analysisManager->GetH1(8)->mean(), "Length")
 << " rms = "
 << G4BestUnit(analysisManager->GetH1(8)->rms(), "Length") << G4endl;

 G4cout << " LShape3 : mean = "
 << G4BestUnit(analysisManager->GetH1(9)->mean(), "Length")
 << " rms = "
 << G4BestUnit(analysisManager->GetH1(9)->rms(), "Length") << G4endl;

 G4cout << " LShape4 : mean = "
 << G4BestUnit(analysisManager->GetH1(10)->mean(), "Length")

46

 << " rms = "
 << G4BestUnit(analysisManager->GetH1(10)->rms(), "Length") << G4endl;

 G4cout << " LShape5 : mean = "
 << G4BestUnit(analysisManager->GetH1(11)->mean(), "Length")
 << " rms = "
 << G4BestUnit(analysisManager->GetH1(11)->rms(), "Length") << G4endl;

 G4cout << " LShape6 : mean = "
 << G4BestUnit(analysisManager->GetH1(11)->mean(), "Length")
 << " rms = "
 << G4BestUnit(analysisManager->GetH1(11)->rms(), "Length") << G4endl;
 }

 // save histograms & ntuple
 //
 analysisManager->Write();
 analysisManager->CloseFile();

}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

PrimaryGeneratorAction.cc

#include "THPrimaryGeneratorAction.hh"
#include "G4RunManager.hh"
#include "G4Event.hh"
#include "G4ParticleGun.hh"
#include "G4ParticleTable.hh"
#include "G4IonTable.hh"
#include "G4ParticleDefinition.hh"
#include "G4ChargedGeantino.hh"
#include "G4SystemOfUnits.hh"
#include "Randomize.hh"
#include "G4Gamma.hh"

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

THPrimaryGeneratorAction::THPrimaryGeneratorAction()
 : G4VUserPrimaryGeneratorAction(),
 fParticleGun(0)
{
 G4int n_particle = 1;
 fParticleGun = new G4ParticleGun(n_particle);

 // default particle kinematic

 G4ParticleTable* particleTable = G4ParticleTable::GetParticleTable();
 G4ParticleDefinition* particle
 = particleTable->FindParticle("gamma");
 fParticleGun->SetParticleDefinition(particle);

 //
 // fixed position
 //
 G4double x0 = 0 * cm, y0 = 0 * cm;

47

 G4double z0 = -85* cm;
 fParticleGun->SetParticlePosition(G4ThreeVector(x0, y0, z0));
 fParticleGun->SetParticleEnergy(662. * keV);
 //The default direction is the z-axis (i.e. towards the detector).
 //However, if the primary particle is an unstable nucleus, Geant4
 //will take care of the production of the final decay state, and the
 //products will be emitted isotropically.
 fParticleGun->SetParticleMomentumDirection(G4ThreeVector(-1., 0., 1.));
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

THPrimaryGeneratorAction::~THPrimaryGeneratorAction()
{
 delete fParticleGun;
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

void THPrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent)
{
 G4ParticleDefinition* particle = fParticleGun->GetParticleDefinition();

 //If the primary particle is defined to be a charged geantino (default),
 //a Cs-137 nucleus is generated instead. The primary particle can be
 //overridden at run time by the command /gun/particle
 //
 if (particle == G4Gamma::Gamma()) {
 //Cs-137
 G4int Z = 55, A = 137;
 G4double ionCharge = 0.*eplus;
 G4double excitEnergy = 0.*keV;

 G4ParticleDefinition* ion
 = G4IonTable::GetIonTable()->GetIon(Z, A, excitEnergy);

 fParticleGun->SetParticleDefinition(G4Gamma::Definition());
 fParticleGun->SetParticleEnergy(662.0*keV); //at rest

 //isotropic: flat in cosTheta and phi
 //Randomize it
 G4double cosTheta = G4UniformRand(); //cosTheta in [0,1] --> theta in
[0,pi/2]
 G4double phi = G4UniformRand() * 360 * deg; //flat in [0,2pi]
 G4double sinTheta = std::sqrt(1. - cosTheta*cosTheta);

 G4ThreeVector dir(sinTheta*std::cos(phi), sinTheta*std::sin(phi),
cosTheta);
 fParticleGun->SetParticleMomentumDirection(dir);

 }
 //create vertex
 //
 fParticleGun->GeneratePrimaryVertex(anEvent);
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

48

Hit.cc

#include "THHit.hh"
#include "G4UnitsTable.hh"
#include "G4VVisManager.hh"
#include "G4Circle.hh"
#include "G4Colour.hh"
#include "G4VisAttributes.hh"

#include <iomanip>

G4ThreadLocal G4Allocator<THHit>* THHitAllocator = 0;

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

THHit::THHit()
 : G4VHit(),
 fEdep(0.),
 fTrackLength(0.)
{}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

THHit::~THHit() {}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

THHit::THHit(const THHit& right)
 : G4VHit()
{
 fEdep = right.fEdep;
 fTrackLength = right.fTrackLength;
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

const THHit& THHit::operator=(const THHit& right)
{
 fEdep = right.fEdep;
 fTrackLength = right.fTrackLength;

 return *this;
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

G4int THHit::operator==(const THHit& right) const
{
 return (this == &right) ? 1 : 0;
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

void THHit::Print()
{
 G4cout
 << "Edep: "

49

 << std::setw(7) << G4BestUnit(fEdep,"Energy")
 << " track length: "
 << std::setw(7) << G4BestUnit(fTrackLength,"Length")
 << G4endl;
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

EventAction.cc

#include "THEventAction.hh"
#include "THSD.hh"
#include "THHit.hh"
#include "THAnalysis.hh"

#include "G4RunManager.hh"
#include "G4Event.hh"
#include "G4SDManager.hh"
#include "G4HCofThisEvent.hh"
#include "G4UnitsTable.hh"

#include "Randomize.hh"
#include <iomanip>

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

THEventAction::THEventAction()
 : G4UserEventAction(),
 fShape1HCID(-1),
 fShape2HCID(-1),
 fShape3HCID(-1),
 fShape4HCID(-1),
 fShape5HCID(-1),
 fShape6HCID(-1)
{}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

THEventAction::~THEventAction()
{}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

THHitsCollection*
THEventAction::GetHitsCollection(G4int hcID,
 const G4Event* event) const
{
 THHitsCollection* hitsCollection
 = static_cast<THHitsCollection*>(
 event->GetHCofThisEvent()->GetHC(hcID));

 if (! hitsCollection) {
 G4ExceptionDescription msg;
 msg << "Cannot access hitsCollection ID " << hcID;
 G4Exception("B4cEventAction::GetHitsCollection()",
 "MyCode0003", FatalException, msg);
 }

50

 return hitsCollection;
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

void THEventAction::PrintEventStatistics(
 G4double Shape1Edep, G4double Shape1TrackLength,
 G4double Shape2Edep, G4double Shape2TrackLength,
 G4double Shape3Edep, G4double Shape3TrackLength,
 G4double Shape4Edep, G4double Shape4TrackLength,
 G4double Shape5Edep, G4double Shape5TrackLength,
 G4double Shape6Edep, G4double Shape6TrackLength) const
{
 // print event statistics
 G4cout
 << " Shape1: total energy: "
 << std::setw(7) << G4BestUnit(Shape1Edep, "Energy")
 << " total track length: "
 << std::setw(7) << G4BestUnit(Shape1TrackLength, "Length")
 << G4endl
 << " Shape2: total energy: "
 << std::setw(7) << G4BestUnit(Shape2Edep, "Energy")
 << " total track length: "
 << std::setw(7) << G4BestUnit(Shape1TrackLength, "Length")
 << G4endl
 << " Shape3: total energy: "
 << std::setw(7) << G4BestUnit(Shape3Edep, "Energy")
 << " total track length: "
 << std::setw(7) << G4BestUnit(Shape3TrackLength, "Length")
 << G4endl
 << " Shape4: total energy: "
 << std::setw(7) << G4BestUnit(Shape4Edep, "Energy")
 << " total track length: "
 << std::setw(7) << G4BestUnit(Shape4TrackLength, "Length")
 << G4endl
 << " Shape5: total energy: "
 << std::setw(7) << G4BestUnit(Shape5Edep, "Energy")
 << " total track length: "
 << std::setw(7) << G4BestUnit(Shape5TrackLength, "Length")
 << G4endl
 << " Shape6: total energy: "
 << std::setw(7) << G4BestUnit(Shape6Edep, "Energy")
 << " total track length: "
 << std::setw(7) << G4BestUnit(Shape6TrackLength, "Length")
 << G4endl;
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

void THEventAction::BeginOfEventAction(const G4Event* /*event*/)
{}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

void THEventAction::EndOfEventAction(const G4Event* event)
{
 // Get hits collections IDs (only once)

51

 if (fShape1HCID == -1) {
 fShape1HCID
 = G4SDManager::GetSDMpointer()-
>GetCollectionID("Shape1HitsCollection");
 fShape2HCID
 = G4SDManager::GetSDMpointer()-
>GetCollectionID("Shape2HitsCollection");
 fShape3HCID
 = G4SDManager::GetSDMpointer()-
>GetCollectionID("Shape3HitsCollection");
 fShape4HCID
 = G4SDManager::GetSDMpointer()-
>GetCollectionID("Shape4HitsCollection");
 fShape5HCID
 = G4SDManager::GetSDMpointer()-
>GetCollectionID("Shape5HitsCollection");
 fShape6HCID
 = G4SDManager::GetSDMpointer()-
>GetCollectionID("Shape6HitsCollection");
 }

 // Get hits collections
 THHitsCollection* Shape1HC = GetHitsCollection(fShape1HCID, event);
 THHitsCollection* Shape2HC = GetHitsCollection(fShape2HCID, event);
 THHitsCollection* Shape3HC = GetHitsCollection(fShape3HCID, event);
 THHitsCollection* Shape4HC = GetHitsCollection(fShape4HCID, event);
 THHitsCollection* Shape5HC = GetHitsCollection(fShape5HCID, event);
 THHitsCollection* Shape6HC = GetHitsCollection(fShape6HCID, event);

 // Get hit with total values
 THHit* Shape1Hit = (*Shape1HC)[Shape1HC->entries() - 1];
 THHit* Shape2Hit = (*Shape2HC)[Shape1HC->entries() - 1];
 THHit* Shape3Hit = (*Shape3HC)[Shape1HC->entries() - 1];
 THHit* Shape4Hit = (*Shape4HC)[Shape1HC->entries() - 1];
 THHit* Shape5Hit = (*Shape5HC)[Shape1HC->entries() - 1];
 THHit* Shape6Hit = (*Shape6HC)[Shape1HC->entries() - 1];

 // Print per event (modulo n)
 //
 G4int eventID = event->GetEventID();
 G4int printModulo = G4RunManager::GetRunManager()->GetPrintProgress();
 if ((printModulo > 0) && (eventID % printModulo == 0)) {
 G4cout << "---> End of event: " << eventID << G4endl;

 PrintEventStatistics(
 Shape1Hit->GetEdep(), Shape1Hit->GetTrackLength(),
 Shape2Hit->GetEdep(), Shape2Hit->GetTrackLength(),
 Shape3Hit->GetEdep(), Shape3Hit->GetTrackLength(),
 Shape4Hit->GetEdep(), Shape4Hit->GetTrackLength(),
 Shape5Hit->GetEdep(), Shape5Hit->GetTrackLength(),
 Shape6Hit->GetEdep(), Shape6Hit->GetTrackLength());
 }

 // Fill histograms, ntuple
 //

 // get analysis manager
 G4AnalysisManager* analysisManager = G4AnalysisManager::Instance();

52

 // fill histograms
 analysisManager->FillH1(1, Shape1Hit->GetEdep());
 analysisManager->FillH1(2, Shape2Hit->GetEdep());
 analysisManager->FillH1(3, Shape3Hit->GetEdep());
 analysisManager->FillH1(4, Shape4Hit->GetEdep());
 analysisManager->FillH1(5, Shape5Hit->GetEdep());
 analysisManager->FillH1(6, Shape6Hit->GetEdep());
 analysisManager->FillH1(7, Shape1Hit->GetTrackLength());
 analysisManager->FillH1(8, Shape2Hit->GetTrackLength());
 analysisManager->FillH1(9, Shape3Hit->GetTrackLength());
 analysisManager->FillH1(10, Shape4Hit->GetTrackLength());
 analysisManager->FillH1(11, Shape5Hit->GetTrackLength());
 analysisManager->FillH1(12, Shape6Hit->GetTrackLength());

 // fill ntuple
 analysisManager->FillNtupleDColumn(0, Shape1Hit->GetEdep());
 analysisManager->FillNtupleDColumn(1, Shape2Hit->GetEdep());
 analysisManager->FillNtupleDColumn(2, Shape3Hit->GetEdep());
 analysisManager->FillNtupleDColumn(3, Shape4Hit->GetEdep());
 analysisManager->FillNtupleDColumn(4, Shape5Hit->GetEdep());
 analysisManager->FillNtupleDColumn(5, Shape6Hit->GetEdep());
 analysisManager->FillNtupleDColumn(6, Shape1Hit->GetTrackLength());
 analysisManager->FillNtupleDColumn(7, Shape2Hit->GetTrackLength());
 analysisManager->FillNtupleDColumn(8, Shape3Hit->GetTrackLength());
 analysisManager->FillNtupleDColumn(9, Shape4Hit->GetTrackLength());
 analysisManager->FillNtupleDColumn(10, Shape5Hit->GetTrackLength());
 analysisManager->FillNtupleDColumn(11, Shape6Hit->GetTrackLength());
 analysisManager->AddNtupleRow();
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

DetectorConstruction.cc

#include "THDetectorConstruction.hh"
#include "THSD.hh"
#include "G4Material.hh"
#include "G4NistManager.hh"

#include "G4Box.hh"
#include "G4LogicalVolume.hh"
#include "G4PVPlacement.hh"
#include "G4PVReplica.hh"
#include "G4GlobalMagFieldMessenger.hh"
#include "G4AutoDelete.hh"

#include "G4SDManager.hh"

#include "G4VisAttributes.hh"
#include "G4Colour.hh"

#include "G4PhysicalConstants.hh"
#include "G4SystemOfUnits.hh"

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

53

G4ThreadLocal
G4GlobalMagFieldMessenger* THDetectorConstruction::fMagFieldMessenger = 0;

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

THDetectorConstruction::THDetectorConstruction()
 : G4VUserDetectorConstruction(),
 fCheckOverlaps(true)

{
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

THDetectorConstruction::~THDetectorConstruction()
{
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

G4VPhysicalVolume* THDetectorConstruction::Construct()
{
 // Define materials
 DefineMaterials();

 // Define volumes
 return DefineVolumes();
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

void THDetectorConstruction::DefineMaterials()
{
 // Get nist material manager
 G4NistManager* nist = G4NistManager::Instance();

 G4Material* world_mat = nist->FindOrBuildMaterial("G4_AIR");

 G4Material* NaI = nist->FindOrBuildMaterial("G4_SODIUM_IODIDE");

 // Print materials
 G4cout << *(G4Material::GetMaterialTable()) << G4endl;
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

G4VPhysicalVolume* THDetectorConstruction::DefineVolumes()
{
 G4bool checkOverlaps = true;
 //
 // World
 //
 G4NistManager* nist = G4NistManager::Instance();
 G4Material* world_mat = nist->FindOrBuildMaterial("G4_AIR");
 G4VSolid* solidWorld =
 new G4Box("World", // its name
 10.0*m, 10.0*m, 10.0*m);

54

 G4LogicalVolume* logicWorld =
 new G4LogicalVolume(solidWorld, //its solid
 world_mat, // its material
 "World"); // its name

 G4VPhysicalVolume* physWorld =
 new G4PVPlacement(0, //no rotation
 G4ThreeVector(), // at (0,0,0)
 logicWorld, //its logical
 "World", //its name
 0, //its mother
 false, //no boolean operation
 0, //copy number
 checkOverlaps); //overlaps checking

 //Shape 1
 //

 G4Material* NaI = nist->FindOrBuildMaterial("G4_SODIUM_IODIDE");
 G4ThreeVector pos1 = G4ThreeVector(-7.25*2.54*cm, 0, -4.25 * 2.54*cm);

 G4RotationMatrix*yRot = new G4RotationMatrix; //its rotation
 yRot->rotateY(30.*deg);

 G4VSolid* pBoxSolid = new G4Box("Shape 1", 1.5*2.54*cm, 16.0*2.54*cm, 4*2.54*cm);
//Box shape

 G4LogicalVolume* pBoxLog =
 new G4LogicalVolume(pBoxSolid, //its solid
 NaI, //its material
 "Shape1"); //its name

 new G4PVPlacement(yRot, //its rotation
 pos1, //at position
 pBoxLog, //its logical volume
 "Shape1", //its name
 logicWorld, //its mother volume
 false, //no boolean operation
 0, //copy number
 checkOverlaps); //overlaps checking

 //
 //Shape 2
 //
 G4ThreeVector pos2 = G4ThreeVector(-7.25 * 2.54*cm, 0, 4.5* 2.54*cm);

 G4VSolid* pBoxSolid2 = new G4Box("Shape 2", 1.5*2.54*cm, 16.0*2.54*cm,4*2.54*cm);

 G4RotationMatrix*yRot2 = new G4RotationMatrix; //its rotation
 yRot2->rotateY(330.*deg);

 G4LogicalVolume* pBoxLog2 =
 new G4LogicalVolume(pBoxSolid2, //its solid

55

 NaI, //its material
 "Shape2"); //its name

 new G4PVPlacement(yRot2, //its rotation
 pos2, //at position
 pBoxLog2, //its logical volume
 "Shape2", //its name
 logicWorld, //its mother volume
 false, //no boolean operation
 0, //copy number
 checkOverlaps); //overlaps checking

 //
 //Shape 3
 //
 G4ThreeVector pos3 = G4ThreeVector(0, 0, 8.75 * 2.54*cm);

 G4VSolid* pBoxSolid3 = new G4Box("Shape 3", 4*2.54*cm, 16.0*2.54*cm, 1.5*2.54*cm);

 G4LogicalVolume* pBoxLog3 =
 new G4LogicalVolume(pBoxSolid3, //its solid
 NaI, //its material
 "Shape3"); //its name

 new G4PVPlacement(0, //no rotation
 pos3, //its position
 pBoxLog3, //its logical volume
 "Shape3", //its name
 logicWorld, //its mother volume
 false, //no boolean operation
 0, //its copy number
 checkOverlaps); //overlaps chekcing

 //
 //Shape 4
 //
 G4ThreeVector pos4 = G4ThreeVector(7.25 * 2.54*cm, 0, 4.5* 2.54*cm);

 G4VSolid* pBoxSolid4 = new G4Box("Shape 4", 1.5*2.54*cm, 16.0*2.54*cm, 4*2.54*cm);

 G4LogicalVolume* pBoxLog4 =
 new G4LogicalVolume(pBoxSolid4, //its solid
 NaI, //its material
 "Shape4"); //its name

 new G4PVPlacement(yRot, //its rotation
 pos4, //its position
 pBoxLog4, //its logical volume
 "Shape4", //its name
 logicWorld, //its mother volume
 false, //no boolean operation
 0, //copy number
 checkOverlaps); //overlaps checking

56

 //
 //Shape 5
 //
 G4ThreeVector pos5 = G4ThreeVector(7.25 * 2.54*cm, 0, -4.25 * 2.54*cm);

 G4VSolid* pBoxSolid5 = new G4Box("Shape 5", 1.5*2.54*cm, 16.0*2.54*cm, 4*2.54*cm);

 G4LogicalVolume* pBoxLog5 =
 new G4LogicalVolume(pBoxSolid5, //its solid
 NaI, //its material
 "Shape5"); //its name

 new G4PVPlacement(yRot2, //its rotation
 pos5, //its position
 pBoxLog5, //its logical volume
 "Shape5", //its name
 logicWorld, //its mother volume
 false, //no boolean operation
 0, //copy number
 checkOverlaps); //overlaps checking

 //
 //Shape 6
 //
 G4ThreeVector pos6 = G4ThreeVector(0, 0, -8.5 * 2.54*cm);

 G4VSolid* pBoxSolid6 = new G4Box("Shape 6", 4*2.54*cm, 16.0*2.54*cm, 1.5*2.54*cm);

 G4LogicalVolume* pBoxLog6 =
 new G4LogicalVolume(pBoxSolid6, //its solid
 NaI, //its material
 "Shape6"); //its name

 new G4PVPlacement(0, //no rotation
 pos6, //its position
 pBoxLog6, //its logical volume
 "Shape6", //its name
 logicWorld, //its mother volume
 false, //no boolean operation
 0, //copy number
 checkOverlaps); //overlaps checking

 //
 // Visualization attributes
 //
 G4VisAttributes* visAttributes = new G4VisAttributes(G4Colour(1.0, 1.0, 1.0));
 visAttributes->SetVisibility(false);
 logicWorld->SetVisAttributes(visAttributes);

 visAttributes = new G4VisAttributes(G4Colour(1.0, 0.0, 0.0)); //red
 pBoxLog->SetVisAttributes(visAttributes);

 visAttributes = new G4VisAttributes(G4Colour(0.0, 1.0, 0.0)); //green
 pBoxLog2->SetVisAttributes(visAttributes);

57

 visAttributes = new G4VisAttributes(G4Colour(0.0, 0.0, 1.0)); //ble
 pBoxLog3->SetVisAttributes(visAttributes);

 visAttributes = new G4VisAttributes(G4Colour(0.0, 1.0, 1.0)); //cyan
 pBoxLog4->SetVisAttributes(visAttributes);

 visAttributes = new G4VisAttributes(G4Colour(1.0, 0.0, 1.0)); //magenta
 pBoxLog5->SetVisAttributes(visAttributes);

 visAttributes = new G4VisAttributes(G4Colour(1.0, 1.0, 0.0)); //yellow
 pBoxLog6->SetVisAttributes(visAttributes);

 //
 // Always return the physical World
 //
 return physWorld;
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

void THDetectorConstruction::ConstructSDandField()
{
 // G4SDManager::GetSDMpointer()->SetVerboseLevel(1);

 //
 // Sensitive detectors
 //

 THSD* Shape1SD
 = new THSD("Shape1SD", "Shape1HitsCollection", 0);
 SetSensitiveDetector("Shape1", Shape1SD);

 THSD* Shape2SD
 = new THSD("Shape2SD", "Shape2HitsCollection", 0);
 SetSensitiveDetector("Shape2", Shape2SD);

 THSD* Shape3SD
 = new THSD("Shape3SD", "Shape3HitsCollection", 0);
 SetSensitiveDetector("Shape3", Shape3SD);

 THSD* Shape4SD
 = new THSD("Shape4SD", "Shape4HitsCollection", 0);
 SetSensitiveDetector("Shape4", Shape4SD);

 THSD* Shape5SD
 = new THSD("Shape5SD", "Shape5HitsCollection", 0);
 SetSensitiveDetector("Shape5", Shape5SD);

 THSD* Shape6SD
 = new THSD("Shape6SD", "Shape6HitsCollection", 0);
 SetSensitiveDetector("Shape6", Shape6SD);
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

58

ActionInitialization.cc

#include "THActionInitialization.hh"
#include "THPrimaryGeneratorAction.hh"
#include "THRunAction.hh"
#include "THEventAction.hh"

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

THActionInitialization::THActionInitialization()
 : G4VUserActionInitialization()
{}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

THActionInitialization::~THActionInitialization()
{}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

void THActionInitialization::BuildForMaster() const
{
 SetUserAction(new THRunAction);
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

void THActionInitialization::Build() const
{
 SetUserAction(new THPrimaryGeneratorAction);
 SetUserAction(new THRunAction);
 SetUserAction(new THEventAction);
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

PhysListEmStandard.cc

#include "PhysListEmStandard.hh"
#include "G4ParticleDefinition.hh"
#include "G4ProcessManager.hh"
#include "G4PhysicsListHelper.hh"

#include "G4ComptonScattering.hh"
#include "G4GammaConversion.hh"
#include "G4PhotoElectricEffect.hh"

#include "G4SystemOfUnits.hh"

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

PhysListEmStandard::PhysListEmStandard(const G4String& name)
 : G4VPhysicsConstructor(name)
{}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

59

PhysListEmStandard::~PhysListEmStandard()
{}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

void PhysListEmStandard::ConstructProcess()
{
 G4PhysicsListHelper* ph = G4PhysicsListHelper::GetPhysicsListHelper();

 // Add standard EM Processes
 //
 aParticleIterator->reset();
 while ((*aParticleIterator)()){
 G4ParticleDefinition* particle = aParticleIterator->value();
 G4String particleName = particle->GetParticleName();

 if (particleName == "gamma") {

 ////ph->RegisterProcess(new G4RayleighScattering, particle);
 ph->RegisterProcess(new G4PhotoElectricEffect, particle);
 ph->RegisterProcess(new G4ComptonScattering, particle);
 ph->RegisterProcess(new G4GammaConversion, particle);
 }
 }

 }
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

