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ABSTRACT 

 

 

 

DESIGN OF A COMPTON SCATTER BASED RADIATION TRACKING SYSTEM 

 

 

 

Gamma spectroscopy is one of the most common techniques used for the detection of 

radiologic materials. This technology is deployed in a variety of scenarios such as emergency 

response, monitoring, and the recovery of lost, stolen, or otherwise unaccounted radiologic 

material. In most practical scenarios, it is useful to know the location of a source in relation to a 

detector, in addition to the classic output from gamma spectrometers such as decay rate and 

energy peak information. In collaboration with the Remote Sensing Laboratory (RSL) at 

Andrew’s Air Force Base, a novel detector design by RSL, which utilizes a 360
o
 detectable range 

in order to increase the probability of remote detection, was investigated for the possibility to 

recreate source location information from Compton scattering events within the detector.  A 

recreation of this novel detector is simulated using Geant4 to determine the optimal dimensions 

of sodium iodide detectors that produce the most single Compton scattering events in order to 

facilitate source location through the back-projection of Compton scattering angles. The optimal 

detector dimensions are determined by maximizing the number of single Compton scatter events 

and minimizing the percentage of Compton events that undergo multiple successive scatters in 

detectors of varying thicknesses and lengths. The optimal detector thickness was chosen to be 

1.88 in, and the optimal detector length was chosen to be 4 to 4.5 in. In future projects, these 

optimized detectors can be used to apply suggested back-projection algorithms in order to 

determine the feasibility and functionality of this detector design for the purpose of radiologic 

source location. 
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INTRODUCTION 

 

 

 

Motivation 

Current radiologic detection methods rely heavily on the detection of gamma photons to 

identify and analyze radiological sources that are lost, stolen, or otherwise unaccounted for by 

the owner. The Remote Sensing Laboratory (RSL) at Andrews Air Force Base is one facility that 

specializes in the detection of radiologic material and continuously contributes to the evolution 

of radiation detection techniques. In a recent project, a novel detector unit was designed for 360
o
 

remote gamma spectroscopy and detection (Kiser, 2010). A follow up investigation of the 

detector unit’s ability to locate radiologic sources, in addition to its primary functions, was 

requested.  

Ionizing Particles 

Gamma photons are one of the easiest types of radiation to detect from a distance. Alpha 

particles (commonly emitted from heavy nuclei) deposit their energy within very short distances 

from where they are emitted (on the order of mm). A piece of paper is enough to shield alpha 

particles. Beta particles (electrons or positrons) travel slightly farther than alpha particles (on the 

order of cm), and are emitted from a wide variety of radionuclides, but they can be shielded with 

a stack of paper making both alpha and beta particles difficult to detect from a distance. High 

energy gamma and X-ray photons are capable of traveling longer distances than alpha and beta 

particles (on the order of m). High energy photons require more robust shielding materials such 

as lead to reduce the transmission of these particles, making the detection of gamma and X-ray 

photons more likely at distances even if they are shielded. 
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It is a common misconception that X-ray and gamma photons are different types of 

radiation with different energy levels. X-rays and gammas are both photons and can both be 

produced along the same spectrum of energies. The difference between the two designations for 

these photons comes from how they are produced. Gamma photons are emitted from the nucleus 

of an atom during radioactive decay or after nuclear excitation events. Gamma photon energies 

are discrete and specific to the radionuclide from which they are emitted (Cember & Johnson, 

2009). Conversely, there are two processes that produce X-rays. The first is when an electron 

transitions from one energy state to a lower energy state within an atom’s electron cloud. These 

are characteristic X-rays because the amount of energy released by the transitioning of the 

electron is characteristic to the difference in energy between the two energy states of the atom 

and by that characteristic to the element associated with that atom (Cember & Johnson, 2009). 

The second type of X-ray is the bremsstrahlung X-ray, which is German for breaking radiation 

(Cember & Johnson, 2009). Bremsstrahlung X-rays are produced when charged particles 

traveling at high velocities suddenly experience a change in velocity, such as by changing 

direction. This can occur if an electron is traveling at a high velocity near an atom. The electron 

is drawn toward the atoms’ nucleus because of their electrostatic attraction due to the difference 

in charge (nuclei are positive and electrons are negative). This attraction causes the electron to 

very suddenly change its trajectory and continue traveling past the nucleus along a new trajectory 

(like a comet and the sun). The sudden change in velocity of the electron from the direction 

change results in the emission of energy in the form of a bremsstrahlung X-ray (Cember & 

Johnson, 2009). Characteristic and bremsstrahlung X-rays are emitted from outside the nucleus 

in the electron cloud, not from the nucleus like gamma photons. Both X-ray and gamma photons 

can be used in the detection of radiological sources.  
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Inorganic Scintillators 

The novel detector designed by the RSL is a sodium iodide detector, which is a type of 

inorganic scintillator. Inorganic scintillators are composed of two major components: a 

scintillator, which is a crystalline structure (such as NaI), and a photomultiplier tube (PM tube). 

Photons enter the detector and excite electrons within the crystalline lattice of the scintillator. An 

excitation event occurs when a particle imparts energy onto an electron that is less than the total 

binding energy, so the electron remains within the crystal lattice. The crystalline lattice has 

different energy states to which electrons within the lattice can be excited (Knoll, 2010). 

Typically, these energy states are referred to as the excited states (higher energy) and the ground 

state. The ground state is the lowest possible energy state (Cember & Johnson, 2009).  Electrons 

within the crystalline lattice will always transition to the lowest possible energy state because at 

that state the force acting on the electron is zero making this the most stable state. 

Different atoms and molecular structures can have a variety of different energy states. 

The difference in the energy states determines what process an atom can undergo to dissipate the 

excess energy and return to the ground state where the electronic configuration is most stable. 

Pure sodium iodide crystals have very wide energy gaps (the difference between energy states) 

meaning that the electrons must dissipate a large quantum of energy in order to transition back to 

the ground state. In a sodium iodide crystal this occurs by the emission of an X-ray photon (high 

energy) (Knoll, 2010). Scintillator detectors rely on the production of visible light to propagate 

the occurrence of an ionization event within the detector. Therefore, the production of X-rays 

(not visible) by the excited scintillator is not efficient for further propagation of the signal. To 

combat this issue, impurities are introduced into the crystalline structure. Thallium is commonly 

used in sodium iodide detectors. Thallium contains different energy states than sodium iodide, so 
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the addition of Thallium adds more possible excitation states to the compound to which electrons 

can transition within the crystalline lattice. The excitation states of Thallium are lower than those 

of sodium iodide meaning that less energy needs to be dissipated to return to the ground state. 

When an electron is excited to one of the thallium excitation states, a visible light photon (lower 

energy than X-ray) is emitted upon transitioning back to the ground state allowing the 

propagation of a signal within the detector (Knoll, 2010).  

Once light is produced in the scintillator, it is converted to an electronic signal in the PM 

tube. The PM tube has two main components: a photocathode and an electron multiplier 

structure. The photocathode converts the visible light photon into low-energy electrons, which 

are emitted from the photocathode surface. The electrons then drift toward the electron 

multiplication region, which contains a series of dynodes. When the low-energy electrons strike 

a dynode, additional electrons are released toward the next dynode. After the electrons have 

cascaded down the entire series of dynodes, there are approximately 10
7
 to 10

10
 electrons. These 

electrons are funneled to an anode at the end of the PM tube creating a sharp voltage drop. This 

voltage drop is easily recognized by detector readout equipment (Knoll, 2010). 

The benefits of sodium iodide detectors are that they are portable (easy to use in the 

field), they are relatively low maintenance, they have a high light output and quick response 

time, and a wide variety of crystal sizes is available (ability to create different size detectors) 

(Knoll, 2010). Although sodium iodide detectors have worse resolution than other gamma 

spectrometers, their portability and high light output make them ideal for mobile operations such 

as those conducted by the Remote Sensing Laboratory.  

 

 



5 

 

Location through Compton Scattering 

The researchers at RSL intend to not only be able to detect radiologic materials using this 

detector unit, but also precisely locate the source of radioactivity. Currently, the best method to 

determine the relative location of a radiologic source with respect to a sodium iodide detector is 

to define the direction of the strongest signals as the location of the source. Typically, this type 

of determination will result in an 180
o
 window of possible source direction. Since information 

regarding distance to the source is generally unknown in detection scenarios, this technique does 

little to precisely and accurately identify a source location.   

A proposed method to precisely identify the location of a radiologic source is through the 

analysis of Compton scattering within a detector unit (Kiser, 2010). Compton scattering was 

discovered by Arthur Compton in 1918, while he was a professor at Washington University 

studying the scattering of X-rays. He observed that X-rays that were scattered after interaction 

with electrons in a carbon target had longer wavelengths (different energies) than those incident 

on the target. Further exploration led to the effect being named after him in 1922 (“Arthur”, 

2015).  

Compton scattering is the elastic collision between a photon and a free electron (or an 

electron with a very low binding) at rest, which results in the photon and the electron scattering 

in different directions at new energies. Kinetic energy and momentum are conserved in elastic 

collisions. Therefore, the initial kinetic energy of the photon and the final kinetic energy of the 

photon after the collision are related as a function of the angle through which the photon was 

scattered (Cember & Johnson, 2009).  

The relationship between the energies of incident and final photon can be described using 

Equation 1 
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                                                       E'=
E

1+(
E

m0c2)(1- cos θ)
 ,                                                (1) 

where E’ is the energy of the photon after collision, E is the energy of the incident photon, and 

m0c
2
 is the rest mass of the electron, 511 keV (Cember & Johnson, 2009). 

This methodology could be used to determine the location of a radiologic source if the 

energies of an incident and the scattered photon are known. It is possible to obtain this 

information from a multi-detector system. A multi-detector system is a detector unit composed of 

any number of individual sodium iodide detectors, each with their own photomultiplier tube. 

Ideally, a detector unit covers a 360
o
 range for the greatest detection efficiency as modeled by 

the RSL detector unit design (Kiser, 2010).  

With this system in place, an incoming photon could collide with an electron in the 

crystalline structure in one detector and undergo a Compton scatter into a second detector within 

the unit. The energy of the scattered photon would be equal to the amount of energy deposited in 

the second detector, while the incident photon energy would be equal to the sum of the energies 

deposited in the first and second detectors due to the conservation of kinetic energy in elastic 

collisions (Cember & Johnson, 2009). This information could be used to calculate the scattering 

angle of the incident photon.  

Coincidence Intervals 

In order to determine which excitation events are related via Compton scattering within 

the detector unit, coincidence intervals can be used (Kiser, 2010). A coincidence interval is a 

time window set on detectors to identify ionization events that occur within a very short amount 

of time of each other, typically on the order of microseconds or nanoseconds. If two events occur 

within the coincidence interval they are said to be related by an interaction (in this case Compton 

scattering) and not due to the chance that two individual photons interacted at or near the same 
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time. The time window used for coincidence intervals is determined based on the detector set up 

and equipment. Most manufactures offer guidance on the appropriate coincidence interval time 

window depending on the detector and system in use (“Timing and Coincidence”, n.d.).  

Photon Interaction with Matter 

Photons interact differently depending on their energy and what type of material they 

pass through. In air (assuming sea level and 15
o
C), a 100 keV photon travels an average of 53 m 

before an interaction with the air takes place, while a 1 MeV photon will travel an average of 130 

m (Johnson, 2012). The average distance a photon travels in a material before an interaction 

takes place is called the mean free path. The mean free path is important because it quantifies a 

particles probability to transmit through materials without experiences a scattering event. The 

mean free path is obtained from the linear attenuation coefficient, which is defined as the 

“probability per unit path length that an ionizing particle interacts” (Knoll, 2010). The mean free 

path is equal to the inverse of the linear attenuation coefficient. The linear attenuation coefficient 

for a material is determined by observing how many photons enter a material of a certain 

thickness and how many of those photons pass through the material without interaction as shown 

in Equation 2. 

𝑁

𝑁0
= 𝑒−𝜇𝑥 , (2) 

where N is the number of un-scattered photons exiting an absorber material of thickness x, N0 is 

the number of photons incident on the absorber, and µ is the linear attenuation coefficient 

(Cember & Johnson, 2009). The quantity 𝑒−𝜇𝑥 quantifies the fraction of photons that should be 

expected to transmit through the absorber without interaction (Cember & Johnson, 2009). If µx = 

1 then the expected percentage of un-scattered photons traveling through the absorber material is 

37%. At µx = 2 the percentage of un-scattered photons is 14%.  
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Poisson Distribution 

The Poisson distribution was originally developed as an approximation of the binomial 

distribution to describe larger sample sets of random processes (Turner & Downing, 2012). 

Today, the Poisson distribution is used to describe “all random processes that occur with a 

probability that is both small and constant” (Turner & Downing, 2012). This applies to processes 

that meet the following criteria (1) events are independent of one another, (2) the outcomes are 

whole numbers (success or no success), (3) the frequency of a success is very small in relation to 

the total sample size, (4) and the probability of two successes within a short time interval is 

negligible (Turner & Downing, 2012). 

Radioactive decay is one of the random processes best described by the Poisson 

distribution (Turner & Downing, 2012). Radioactive decay is a completely random process. The 

decay of one atom has no effect on the decay of any other atom. The outcome of the radioactive 

decay process is either a decay or no decay in a given time interval. The frequency of radioactive 

decay is very small relative to the number of atoms that could decay, and the probability of two 

atoms decaying simultaneously is extremely small.  

Similarly, photons that undergo Compton scattering are also well described within the 

confines of the Poisson distribution. Photons can either Compton scatter or not Compton scatter 

in material. If one photon undergoes a Compton scatter, it has no impact on the probability that 

any other photon will Compton scatter. The expected number of Compton scattering events is 

very small in relation to the total number of photons that interact with matter, and the probability 

of two Compton scattering events occurring at the same time is extremely small (Nelson & 

Reilly, n.d.). For these reasons, the Poisson distribution can be used to analyze Compton 

scattering events in sodium iodide detectors. 
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When analyzing data containing a small number of successes, it is important to quantify 

the uncertainty associated with the analysis results. This uncertainty often is expressed in terms 

of the standard deviation. The standard deviation is an estimator for the true sample variance. 

The standard deviation, σ, using Poisson statistics is  

   𝜎𝐴 = √𝐴,                                                        (3) 

where, A is the number of successes (Turner & Downing, 2012). When multiple independent 

measurements are taken, each measurement has its own standard deviation. In some scenarios, it 

is necessary to combine several independent quantities or variables to obtain a dependent 

variable. In this case, the standard deviations from all the multiple measurements are propagated 

through the use of Equation 4 to estimate the associated uncertainty of the dependent variable.  

    𝜎𝑇
2 = ∑ (

𝜕𝑇

𝜕𝑥𝑖
)

2

𝜎𝑖
2𝑁

𝑖=1        (4) 

where, N is the number of independent variables, T is the quantity of interest, xi is the i
th

 

independent variable (measurement) in T, and σi is the associated uncertainty for each xi value 

(Turner & Downing, 2012). The proper calculation of the uncertainty related to the 

measurements of Compton scattering events within the detectors allows for the determination of 

the precision of the results.  

Hypothesis 

It is expected that sodium iodide detectors will have an optimal thickness and length for 

maximizing the occurrence of Compton scattering events that can be used to calculate the 

location of a radiological source because of the probability of photon interactions in different 

volumes of sodium iodide absorber material.  

This study was designed to determine the optimal thickness and width dimensions for 

single Compton scattering events in six identical sodium iodide detectors arranged in a 
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hexagonal detection unit. Once the optimization of the thickness and length are determined for 

the detectors, this system could be used to apply tracking and location algorithms in order to 

locate radiologic sources through the Compton scattering angles associated with events within 

the detector unit. 
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MATERIALS AND METHODS 

 

 

 

The Remote Sensing Laboratory provided computer files containing the originally 

designed hexagonal sodium iodide detector unit and operational environment to be run on 

Geant4, an open source simulation software (Kiser, 2010). As the provided files were not 

compatible with the Geant4 system available for this study, a basic model of six sodium iodide 

detectors arranged in a hexagon was developed to represent a basic model of the original detector 

design. The Geant4 files for this recreation can be found in Appendix A. A particle gun is 

modeled in the software to emit 662 keV gammas in order to simulate the presence of a 
137

Cs 

source. It is important that only one energy photon be used in this preliminary study to eliminate 

the presence of multiple, possibly competing variables. 
137

Cs is ideal for this model because it 

emits single-energy photons when it undergoes radioactive decay and because it is commonly 

used in industry. Some examples of 
137

Cs sources used in industry are moisture-density gauges 

(construction), leveling gauges to detect liquid flow in pipes and tanks, thickness gauges for 

materials, well-logging devices in the drilling industry, and medical therapy sources. It is not 

uncommon for high activity 
137

Cs sources to become misplaced on construction or drilling sites 

because of the small size of the source. When this happens, detectors are used to locate the 

missing source.  

The particle gun in the model is placed 40 cm from the detector unit. The particle gun is 

centered along the vertical axis of the detector unit, and the height of the detectors is kept 

constant throughout the entire experiment at 16 in, which is based on the original RSL detector 

design (Kiser, 2010).  
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Figure 1 NaI Detectors with Isotropic Hemisphere Source Emitting 662 keV Photons in Geant4 

During the first investigation, the length of each detector is held constant at 3 in, which is 

a common size for sodium iodide crystals. The thickness is set to 1 in in order to determine the 

linear attenuation coefficient of the modeled sodium iodide crystals.  

After the linear attenuation coefficient is determined for the detector simulations and 

compared to known values for simulation validation, the optimal thickness of the detectors is 

determined. The thicknesses in Table 1 are tested with relation to the exponent µx from Equation 

2.   

Table 1 Model Thicknesses of Sodium Iodide Detectors 

µx 0.5 0.75 1 1.25 1.5 1.75 2 

Thickness 
(in) 0.75 1.13 1.5 1.88 2.25 2.63 3 

Percentage 
of photons 
scattered 

in material 

39 53 63 71 78 83 86 

At each thickness, 5000 photons are tracked from the particle gun to the detector in order 

to achieve an uncertainty of 2-3% for the percentage of multiple Compton scatter events as 
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shown in Table 2. As a photon passes through the detector unit, one of three outcomes is 

recorded: no Compton scatter, single Compton scatter, or multiple Compton scatter. No 

Compton scatter is defined as a photon that either passes through the detector without 

interaction, is attenuated completely within one detector, or scatters outside the detector after the 

first interaction. A single Compton scatter is defined as any photon that has a single hit in one 

detector resulting in the Compton scatter of the photon into a second detector where the 

remainder of the photon’s energy is deposited. A multiple Compton scatter is defined as a photon 

that either undergoes more than one Compton scattering event resulting in hits in three or more 

detectors, the photon scatters outside the detector after deposition of some energy in the second 

detector following a Compton scattering event, or the photon undergoes two Compton scattering 

events in the first detector before depositing the rest of its energy in a second detector. Examples 

of single and multiple Compton scattering events are shown in Figures 2 and 3 respectively. 

 

Figure 2 Example of Two Single Compton Scattering Events (Circled in Orange) 
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Figure 3 Example of a Multiple Compton Scattering Event (Circled in Red) 

Once the optimal thickness is identified based on the highest frequency of single 

Compton scattering events and the lowest percentage of Compton events that are multiple 

scatters, the second parameter to be determined is the optimal length of the detectors. The 

detector height is maintained at 16 in, and the previously determined optimal thickness is 

maintained constant for all length trials. The modeled detector lengths are 3.0 in, 3.5 in, 4.0 in, 

4.5 in, 5.0 in, 7 in, and 10 in. These are commonly manufactured crystal lengths. Seven thousand 

photons are tracked from the particle gun to the detector for each length in order to achieve an 

uncertainty of 2-3% for the percentage of multiple Compton scatter events as shown in Table 3. 

The optimal length is determined using the same criteria as the thickness optimization. 

  



15 

 

RESULTS 

 

 

 

Linear Attenuation Coefficient  

The linear attenuation coefficient is measured by tracking 2002 photons from the particle 

gun to the detector. One thousand and twenty-nine of those particles pass through the detector 

unit un-scattered. Using Equation 2, the linear attenuation coefficient is 0.6656 in
-1

. Therefore, in 

one inch of sodium iodide crystal 51% of the photons that enter the material should pass through 

without interaction (49% should interact).   

Detector Thickness 

For each of the thickness trials, approximately 5000 photons are tracked from the particle 

gun to the detector (some thicknesses had slightly more than 5000 photons tracked to the 

detector). Sample sizes for each of the thicknesses are normalized by scaling, the number of 

single and multiple Compton scatter events to 5000 total photons. The results from the thickness 

trials can be found in Table 2 and Figures 4 and 5. The intervals surrounding the data points in 

Figures 4 and 5 display the uncertainty associated with the each measurement. These are 

calculated using Equations 4 and 5. 

Table 2 The Number of Single and Multiple Compton Scattering Events at Different Detector Thicknesses 

Scaled to 5000 Photons 

 

Detector Thickness 

(µx)

Single 

Compton 

Scattering

Multiple 

Compton 

Scattering

Percentage of Single 

Compton Scattering 

Events Out of 5000 

Total Runs

Percentage of Multiple 

Compton Scattering 

Events Out of 5000 

Total Runs

Percentage of 

Multiple Compton 

Scatterings Out of all 

Compton

Relative Uncertainity 

of Percentage (%)

0.5 367 268 7.3 5.36 42.2 2.0

0.75 350 223 7 4.5 38.9 2.0

1 280 159 5.6 3.2 36.2 2.3

1.25 249 120 5 2.4 32.5 2.4

1.5 219 105 4.4 2.1 32.4 2.6

1.75 175 91 3.5 1.8 34.2 2.9

2 156 76 3.1 1.5 32.8 3.1
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The percentage of Compton events that are multiple scatters, f, is calculated using 

Equation 5 where M is the number of multiple Compton scattering events and S is the number of 

single Compton scattering events. 

f =
𝑀

𝑆+𝑀
 (5) 

S and M are independent of each other and have independent standard deviations. Error 

propagation is used to assess the relative uncertainty of the quantity calculated in Equation 5. 

The standard deviation of a single independent variable for a quantity described by Poisson 

statistics is shown in Equation 3. This can be applied by using the error propagation in Equation 

4 where 

𝛿𝑓

𝑑𝑀
=

𝑆

(𝑆 + 𝑀)2
     𝑎𝑛𝑑     

𝛿𝑓

𝑑𝑆
= −

𝑀

(𝑆 + 𝑀)2
  , 

𝜎𝑓
2 = (

𝑆

(𝑆 + 𝑀)2
)

2

√𝑀
2

+ (−
𝑀

(𝑆 + 𝑀)2
)

2

√𝑆
2

 , 

𝜎𝑓
2 =

𝑆2𝑀

(𝑆 + 𝑀)4
+

𝑀2𝑆

(𝑆 + 𝑀)4
 , 

𝜎𝑓
2 =

𝑀𝑆

(𝑆 + 𝑀)3
 . 

This method is used to calculate the uncertainty for the percentage of Compton events that are 

multiple scatters in the detectors during the thickness and length trials.    
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Figure 4 The Number of Single and Multiple Compton Scattering Events per Detector Thickness Scaled to 

5000 Photons 

 

 

Figure 5 The Percentage of Multiple Compton Scattering Events per Detector Thickness Scaled to 5000 

Photons 
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The 1.25 µx (1.88 in) thickness has the highest number of single Compton scatter events 

that corresponds with the lowest percentage of multiple Compton events and has the narrowest 

relative uncertainty.  

Detector Length 

The optimization for the detector length is conducted with the 1.25 µx (1.88 in) thickness. 

For each of the length trials, 7000 photons are tracked from the particle gun to the detector. The 

results of the detector length trials are shown in Table 3 and Figures 6 and 7. The intervals 

surrounding the data points in Figures 6 and 7 display the uncertainty associated with the each 

measurement. These are calculated using Equations 3 and 4. 

Table 3 The Number of Single and Multiple Compton Scattering Events at Different Detector Lengths Scaled 

to 7000 Photons 

 

 

Detector Length 

(in)

Single Compton 

Scattering

Multiple 

Compton 

Scattering

Percentage of Single 

Compton Scattering 

Events Out of 7000 

Total Runs

Percentage of 

Multiple Compton 

Scattering Events 

Out of 5000 Total 

Runs

Percentage of 

Multiple Compton 

Scatterings Out of 

all Compton

Relative Uncertainity 

of Percentage (%)

3 350 162 5.0 2.3 31.6 2.1

3.5 354 164 5.1 2.3 31.7 2.0

4 315 116 4.5 1.7 26.9 2.1

4.5 301 128 4.3 1.8 29.8 2.2

5 271 104 3.9 1.5 27.7 2.3

7 231 88 3.3 1.3 27.6 2.5

10 174 55 2.5 0.08 24.0 2.8
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Figure 6 The Number of Single and Multiple Compton Scattering Events per Detector Length Scaled to 7000 

Photons 

 

Figure 7 The Percentage of Multiple Compton Scattering Events per Detector Length Scaled to 7000 Photons 
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Looking at Figure 7, all of the confidence intervals for lengths greater than four inches 

overlap, indicating that there is no real difference in the percentage of multiple Compton events 

between these lengths. Based on that information, the optimal detector length is chosen to be 4 in 

for this study because the 4 in detector has the highest number of single Compton scattering 

events for detector lengths of 4 in and greater. 
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DISCUSSION 

 

 

 

Linear Attenuation Coefficient 

The linear attenuation coefficient is calculated to validate the properties of the sodium 

iodide absorber material in the simulation against known experimental values. The calculated 

linear attenuation coefficient of 0.67 in
-1

 (0.26 cm
-1

) is compared to the experimental value found 

in Nelson and Reilly (n.d.), which is approximately 0.30 cm
-1

.  This demonstrates that the 

simulated sodium iodide detectors behave similarly to live experimental results; therefore, the 

model used in this study appears to be appropriate.  

Optimization Criteria and Minimizing Uncertainty 

In this experiment, the optimized thickness and length of the detector are defined as the 

value that has the highest frequency of single Compton scatter events and the lowest percentage 

of multiple Compton events. These criteria are based on the assumption that single Compton 

scattering events will produce a more precise angular calculation than the multiple Compton 

scattering events. As previously stated, a multiple Compton scattering event is defined as either 

(1) a photon that undergoes more than one Compton scattering event resulting in hits in three or 

more detectors, (2) a photon scatters outside the detector after deposition of some energy in the 

second detector following a Compton scattering event, or (3) a photon undergoes two Compton 

scattering events in the first detector before depositing the rest of its energy in a second detector. 

In the first of the multiple Compton scattering scenarios, it is assumed that the 

coincidence interval is narrow enough only to record the scattering of a photon between two 

detectors. Under this assumption, if not all of the final photon energy is deposited in the second 

detector, it is not possible to calculate the scatter angle if the original photon energy is unknown 
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because not all of the photon energy is deposited in the first two detectors. Furthermore, even if 

the coincidence interval is long enough to associate the scattering of a photon between three or 

more detectors, the associated uncertainty with the calculation of the scatter angle would be 

significantly larger for two or more angles than just one because the uncertainties compound.  

One of the sources of uncertainty in the scattering angle calculations comes from the 

calibration and resolution of the detector (Parra, 2002). The resolution of a detector is a measure 

of how precisely the detector system reports the actual deposition of energy in the output. Since 

the Compton scattering equation is dependent on the energies of the incident and final photon, 

any inaccuracy in the energy measurements will result in an angle calculation with higher 

uncertainty.  Scintillators have poor resolution compared to other types of detectors, and sodium 

iodide detectors have a higher resolution percentage (lower resolution) than other types of 

inorganic scintillators, as shown in Figure 8 where the best possible resolution is displayed by 

the theoretical limit (Knoll, 2010). 
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Figure 8 The Energy Resolution at 662 keV of Various Inorganic Scintillators as a Function of Luminosity 

(Recreated from an Knoll, 2010) 

For this reason, only the single Compton scattering events are desirable for the 

calculation of the scattering angle because the calculation of one angle will decrease the 

uncertainty of a directional back-projection of the angle from the detector to the possible source 

location. To minimize the effects of poor resolution of a sodium iodide detector, users should 

ensure that the detectors are calibrated carefully. 

A second source of uncertainty associated with the Compton scattering angular 

calculation comes from the uncertainty associated with where the photon actually deposits 

energy within the detector (Parra, 2002). This information is essential for the precise application 

of the calculated scattering angle. Since current detectors provide poor event location 

information, it is necessary to minimize the other uncertainties associated with resolution and 

calibration.    
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Thickness Optimization 

Figure 4 establishes that the number of single and multiple Compton scattering events 

decreases as the thickness of the detector increases. Also, as the detector thickness increases, it is 

observed that the number of photons that are completely attenuated or undergo multiple 

interactions in the first detector increases.  In the thinner detectors, it is observed that the 

majority of the multiple Compton scattering events occur because the photons scatter into three 

or more detectors. A likely explanation as to why more photons are attenuated or undergo 

multiple interactions in the thicker detectors, and why photons are more likely to scatter between 

several of the thinner detectors is because the farther a photon travels in the absorber material, 

the more probable it is that the photon will interact in the material more than once.  

Through examination of Figure 5, it is apparent that the uncertainty intervals associated 

with the detector thicknesses of 1.25 µx and greater overlap significantly and as a group have a 

smaller average percentage of multiple Compton events than the detector thicknesses less than 

1.25 µx. This indicates that there is not enough evidence to suggest that there is a true difference 

in the percentage of multiple Compton events for detector thicknesses larger than and equal to 

1.25 µx, but the detector thicknesses greater than and equal to 1.25 µx have a lower percentage 

of multiple Compton scattering events than the detector thicknesses of 0.5-1 µx. The 1.25 µx 

detector is chosen as the optimal thickness because it has the highest number of single Compton 

scattering events when compared to the detector thicknesses larger than 1.25 µx. 

Length Optimization 

As seen in the thickness trials, the total number of single and multiple Compton 

scattering events decreases as the length of the detectors increases. This is likely because as the 

length of the detectors increases, the diameter of the detector unit becomes larger, which 
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increases the probability that a photon will interact in the air before interacting with a second or 

multiple detector in the unit. This is likely the cause for the decrease in the percentage of 

multiple Compton scattering events as the length of the detector increases. It also appears that as 

the detector lengths increase, most photons are completely attenuated by a single detector 

because of the increased volume of the detector. In the shorter length detectors, photons that 

scatter along the length of the detector are more likely to leave the detector because there is less 

absorber material between the scattering point and the edge of the detector. In the longer detector 

lengths, there is more absorber material between the scattering point and the edge of the detector. 

The concept is similar to increasing the thickness of the detector. Larger volumes of absorber 

material increase the attenuation of photons because larger volumes increase the probability of 

photon interaction.    

The uncertainty intervals in Figure 7 for detector lengths 4 in and longer all overlap. This 

indicates that there is no difference in the true percentage of multiple Compton events for 

detectors 4 in in length and longer. Since the percentage of multiple Compton events in detectors 

greater than and equal to 4 in is the same, the determination for the optimal detector length is 

based on which detector greater than or equal to 4 in has the most single Compton scattering 

events. As seen in Table 3, the detector lengths of 4 and 4.5 in have the greatest number of single 

Compton scattering events. Figure 6 shows that the uncertainty intervals associated with the 4 

and 4.5 in detector lengths overlap significantly demonstrating that there is no significant 

difference in these values and both are optimal detector lengths.  

Application of the Compton Scatter Angle Calculation 

The optimization criteria are selected in order to minimize the uncertainty associated with 

calculating the Compton scattering angle as discussed above. The Compton scattering angle 
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calculated using Equation 1 is a two dimensional angle associated with the incident and scattered 

photon in a single plane spanned by the incident and scattered photon trajectory vectors. In order 

to locate a radiologic source using the Compton scattering method, the calculated scattering 

angle must be applied to a three dimensional system to be used in real detection scenarios. In a 

three dimensional system, the Compton scattering angle translates into a cone that extends from 

the first detector of interaction toward the source at the calculated scattering angle. The half 

angle, ϴ, of the cone is defined by the uncertainty associated with the scatter angle calculation as 

seen in Figure 9. The true scattering angle of the photon is contained within the cone. 

 

Figure 9 Illustration of the Compton Scattering Angle Associated with a Cone of Angular Uncertainty 

The composition of the Compton scattering angle cone does not take into account the 

incoming direction of the incident photon. For example, if a photon scatters at an angle of 45
o
, 

the incident photon could have originated from above, below, to either side of the detector, or 

anywhere in between before scattering at the calculated angle. The summation of all possible 

incident photon directions creates a larger cone composed of an infinite number of the same 

ϴ 
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calculated Compton scattering angle with associated uncertainty that rotates around a 360
o
 axis 

as shown in Figure 10. This is sometimes referred to as the “Compton cone” (Suzuki et al., 

2013). 

 

Figure 10 Compton Cone that Encompasses All Possible Directions of the Incident Photon 

The thickness of the hollow Compton cone (orange cones in Figure 10) represents all 

possible source locations associated with the original Compton scattering angle. The use of one 

Compton scattering angle is not sufficient to produce a precise or accurate estimate of a source 

location. To increase the precision of the source location determination, more than one single 

Compton scattering event is required. Multiple events will create multiple Compton cones in the 

three dimensional model, which will overlap narrowing down the possible locations of the source 

as seen in Figure 11 where the dark purple rectangles represent the areas where all three 

Compton cones overlap. The best results are achieved through the use of multiple detector units 

to increase the variety of Compton cone positions relative to the source. 
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Figure 11 Multiple Detector Unit Compton Cones Narrowing Down Source Location through Overlapping 

Regions 

 The use of multiple detector units is the most efficient way to quickly triangulate the 

location of a source through the back projection of the scattering angle. Explanations of the 

mathematical calculations of simple, filtered, and iterative back-projection algorithms through 

the transformation of Compton cones into a series of spherical harmonics in a two plane array of 

lanthanum (III) bromide detectors are examined in Feng, (2009) for high resolution Compton 

cameras. A similar method of reconstructing cone-beam images using back-projection in 

spherical coordinates is found in Parra, (2002). A second method for the analysis of Compton 

scattering data between multiple detectors is through list-mode maximum likelihood estimation, 

which attempts to reconstruct the source distribution with the highest likelihood of having 

produced the observed data as described in Lehner et al., (2004) and Wilderman et al., (1999). 
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The third method for back-projection of multiple passive detection systems is through location 

from range differences and an extension of the Taylor Series expansion as found in Friedlander, 

(1987). The use of an optimized detector unit as defined in this section would allow for the most 

precise and accurate application of the mentioned back projection and location algorithms to 

identify the location of a radiologic source relative to multiple detector units. 
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CONCLUSIONS 

 

 

 

The optimal dimensions of the sodium iodide detectors were determined by comparing 

the total number of single Compton scattering events and the percentage of multiple Compton 

events. There was no significant difference in the percentage of multiple Compton events for 

detectors of thicknesses 1.25 µx (1.88 in) and greater. Conversely, as the detector thickness 

increased, the number of single Compton scatter events that occurred in the detector unit 

decreased. It was determined that the optimized detector thickness for this experiment was 1.25 

µx. 

Using the detector thickness of 1.25 µx, the optimal detector length was determined using 

the same criteria as the thickness optimization. For the detector lengths of 4 in and greater, there 

was no significant difference in the percentage of multiple Compton events. Furthermore, as the 

length of the detector increased, the number of single Compton scatter events decreased. The 

number of single Compton scatter events for detector lengths of 4 and 4.5 in were not 

significantly different from one another, but both were found to produce a higher number of 

single Compton scatter events than the detectors of 5 in in length and greater. Based on these 

criteria, it was determine that the optimal detector length for this experiment was 4 to 4.5 inches.  

Future work should examine the efficiency of the application of different back-projection 

methods in the optimized detector unit. Once an optimized method is determined, the minimum 

required number of detector units needed to produce a reasonable estimate of the source location 

should be identified. These additional works would determine the feasibility of using this 

detector unit for source tracking purposes. 
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Include Folder 

PhysListEmStandard.hh 

#ifndef PhysListEmStandard_h 
#define PhysListEmStandard_h 1 
 
#include "G4VPhysicsConstructor.hh" 
#include "globals.hh" 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
class PhysListEmStandard : public G4VPhysicsConstructor 
{ 
  public:  
    PhysListEmStandard(const G4String& name = "standard"); 
   ~PhysListEmStandard(); 
 
  public:  
    // This method is dummy for physics 
    virtual void ConstructParticle() {}; 
  
    // This method will be invoked in the Construct() method. 
    // each physics process will be instantiated and 
    // registered to the process manager of each particle type  
    virtual void ConstructProcess(); 
}; 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
#endif 

ActionInitialization.hh 

#ifndef THActionInitialization_h 
#define THActionInitialization_h 1 
 
#include "G4VUserActionInitialization.hh" 
 
/// Action initialization class. 
/// 
 
class THActionInitialization : public G4VUserActionInitialization 
{ 
  public: 
    THActionInitialization(); 
    virtual ~THActionInitialization(); 
 
    virtual void BuildForMaster() const; 
    virtual void Build() const; 
}; 
 
#endif 

Analysis.hh 
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#ifndef THAnalysis_h 
#define THAnalysis_h 1 
 
#include "g4root.hh" 
//#include "g4xml.hh" 
 
#endif 

Hit.hh 

#ifndef THHit_h 
#define THHit_h 1 
 
#include "G4VHit.hh" 
#include "G4THitsCollection.hh" 
#include "G4Allocator.hh" 
#include "G4ThreeVector.hh" 
#include "tls.hh" 
 
/// Calorimeter hit class 
/// 
/// It defines data members to store the the energy deposit and track lengths 
/// of charged particles in a selected volume: 
/// - fEdep, fTrackLength 
 
class THHit : public G4VHit 
{ 
  public: 
    THHit(); 
    THHit(const THHit&); 
    virtual ~THHit(); 
 
    // operators 
    const THHit& operator=(const THHit&); 
    G4int operator==(const THHit&) const; 
 
    inline void* operator new(size_t); 
    inline void  operator delete(void*); 
 
    // methods from base class 
    virtual void Draw() {} 
    virtual void Print(); 
 
    // methods to handle data 
    void Add(G4double de, G4double dl); 
 
    // get methods 
    G4double GetEdep() const; 
    G4double GetTrackLength() const; 
       
  private: 
    G4double fEdep;        ///< Energy deposit in the sensitive volume 
    G4double fTrackLength; ///< Track length in the  sensitive volume 
}; 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
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typedef G4THitsCollection<THHit> THHitsCollection; 
 
extern G4ThreadLocal G4Allocator<THHit>* THHitAllocator; 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
inline void* THHit::operator new(size_t) 
{ 
  if(!THHitAllocator) 
    THHitAllocator = new G4Allocator<THHit>; 
  void *hit; 
  hit = (void *) THHitAllocator->MallocSingle(); 
  return hit; 
} 
 
inline void THHit::operator delete(void *hit) 
{ 
  if(!THHitAllocator) 
    THHitAllocator = new G4Allocator<THHit>; 
  THHitAllocator->FreeSingle((THHit*) hit); 
} 
 
inline void THHit::Add(G4double de, G4double dl) { 
  fEdep += de;  
  fTrackLength += dl; 
} 
 
inline G4double THHit::GetEdep() const {  
  return fEdep;  
} 
 
inline G4double THHit::GetTrackLength() const {  
  return fTrackLength;  
} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
#endif 

PrimaryGeneratorAction.hh 

#ifndef THPrimaryGeneratorAction_h 
#define THPrimaryGeneratorAction_h 1 
 
#include "G4VUserPrimaryGeneratorAction.hh" 
#include "globals.hh" 
 
class G4ParticleGun; 
class G4Event; 
 
/// The primary generator action class with particle gum. 
/// 
/// It defines a single particle which hits the calorimeter  
/// perpendicular to the input face. The type of the particle 
/// can be changed via the G4 build-in commands of G4ParticleGun class  
/// (see the macros provided with this example). 
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class THPrimaryGeneratorAction : public G4VUserPrimaryGeneratorAction 
{ 
public: 
  THPrimaryGeneratorAction();     
  virtual ~THPrimaryGeneratorAction(); 
 
  virtual void GeneratePrimaries(G4Event* event); 
   
  const G4ParticleGun* GetParticleGun() const { return fParticleGun; } 
 
private: 
  G4ParticleGun*  fParticleGun; // G4 particle gun 
}; 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
#endif 

RunAction.hh 

#ifndef THRunAction_h 
#define THRunAction_h 1 
 
#include "G4UserRunAction.hh" 
#include "globals.hh" 
#include <map> 
 
class THDetectorConstruction; 
class THPrimaryGeneratorAction; 
class G4Run; 
 
/// Run action class 
/// 
/// It accumulates statistic and computes dispersion of the energy deposit  
/// and track lengths of charged particles with use of analysis tools: 
/// H1D histograms are created in BeginOfRunAction() for the following  
/// physics quantities: 
/// - Edep in absorber 
/// - Edep in gap 
/// - Track length in absorber 
/// - Track length in gap 
/// The same values are also saved in the ntuple. 
/// The histograms and ntuple are saved in the output file in a format 
/// accoring to a selected technology in B4Analysis.hh. 
/// 
/// In EndOfRunAction(), the accumulated statistic and computed  
/// dispersion is printed. 
/// 
 
class THRunAction : public G4UserRunAction 
{ 
public: 
 THRunAction(THDetectorConstruction*, THPrimaryGeneratorAction*); 
 
 
  public: 
    THRunAction(); 
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    virtual ~THRunAction(); 
 
public: 
    virtual void BeginOfRunAction(const G4Run*); 
    virtual void   EndOfRunAction(const G4Run*); 
 
 void CountProcesses(G4String procName) { fProcCounter[procName]++; }; 
 
private: 
 THDetectorConstruction*      fDetector; 
 THPrimaryGeneratorAction*    fPrimary; 
 std::map<G4String, G4int>   fProcCounter; 
}; 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
#endif 

SD.hh 

#ifndef THSD_h 
#define THSD_h 1 
 
#include "G4VSensitiveDetector.hh" 
 
#include "THHit.hh" 
 
#include <vector> 
 
class G4Step; 
class G4HCofThisEvent; 
 
/// Calorimeter sensitive detector class 
/// 
/// In Initialize(), it creates one hit for each calorimeter layer and one more 
/// hit for accounting the total quantities in all layers. 
/// 
/// The values are accounted in hits in ProcessHits() function which is called 
/// by Geant4 kernel at each step. 
 
class THSD : public G4VSensitiveDetector 
{ 
  public: 
    THSD(const G4String& name,  
                     const G4String& hitsCollectionName,  
                     G4int nofCells); 
    virtual ~THSD(); 
   
    // methods from base class 
    virtual void   Initialize(G4HCofThisEvent* hitCollection); 
    virtual G4bool ProcessHits(G4Step* step, G4TouchableHistory* history); 
    virtual void   EndOfEvent(G4HCofThisEvent* hitCollection); 
 
  private: 
    THHitsCollection* fHitsCollection; 
    G4int     fNofCells; 
}; 
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//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
#endif 

EventAction.hh 

#ifndef THEventAction_h 
#define THEventAction_h 1 
 
#include "G4UserEventAction.hh" 
 
#include "THHit.hh" 
 
#include "globals.hh" 
 
/// Event action class 
/// 
/// In EndOfEventAction(), it prints the accumulated quantities of the energy  
/// deposit and track lengths of charged particles in Absober and Gap layers  
/// stored in the hits collections. 
 
class THEventAction : public G4UserEventAction 
{ 
public: 
  THEventAction(); 
  virtual ~THEventAction(); 
 
  virtual void  BeginOfEventAction(const G4Event* event); 
  virtual void    EndOfEventAction(const G4Event* event); 
     
private: 
  // methods 
  THHitsCollection* GetHitsCollection(G4int hcID, 
                                            const G4Event* event) const; 
  void PrintEventStatistics(G4double Shape1Edep, G4double Shape1TrackLength, 
   G4double Shape2Edep, G4double Shape2TrackLength, 
   G4double Shape3Edep, G4double Shape3TrackLength, 
   G4double Shape4Edep, G4double Shape4TrackLength, 
   G4double Shape5Edep, G4double Shape5TrackLength, 
   G4double Shape6Edep, G4double Shape6TrackLength) const; 
   
  // data members                    
  G4int fShape1HCID; 
  G4int fShape2HCID; 
  G4int fShape3HCID; 
  G4int fShape4HCID; 
  G4int fShape5HCID; 
  G4int fShape6HCID; 
}; 
                      
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
#endif 

DetectorConstruction.hh 
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#ifndef THDetectorConstruction_h 
#define THDetectorConstruction_h 1 
 
#include "G4VUserDetectorConstruction.hh" 
#include "globals.hh" 
 
class G4VPhysicalVolume; 
class G4GlobalMagFieldMessenger; 
 
/// Detector construction class to define materials and geometry. 
/// The calorimeter is a box made of a given number of layers. A layer consists 
/// of an absorber plate and of a detection gap. The layer is replicated. 
/// 
/// Four parameters define the geometry of the calorimeter : 
/// 
/// - the thickness of an absorber plate, 
/// - the thickness of a gap, 
/// - the number of layers, 
/// - the transverse size of the calorimeter (the input face is a square). 
/// 
/// In ConstructSDandField() sensitive detectors of B4cCalorimeterSD type 
/// are created and associated with the Absorber and Gap volumes. 
/// In addition a transverse uniform magnetic field is defined  
/// via G4GlobalMagFieldMessenger class. 
 
class THDetectorConstruction : public G4VUserDetectorConstruction 
{ 
  public: 
    THDetectorConstruction(); 
    virtual ~THDetectorConstruction(); 
 
  public: 
    virtual G4VPhysicalVolume* Construct(); 
    virtual void ConstructSDandField(); 
      
  private: 
    // methods 
    // 
    void DefineMaterials(); 
    G4VPhysicalVolume* DefineVolumes(); 
   
    // data members 
    // 
    static G4ThreadLocal G4GlobalMagFieldMessenger*  fMagFieldMessenger;  
                                      // magnetic field messenger 
 
    G4bool  fCheckOverlaps; // option to activate checking of volumes overlaps 
      
}; 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
#endif 

Src Folder 

SteppingAction.cc 
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#include "THSteppingAction.hh" 
#include "THRunAction.hh" 
 
#include "G4RunManager.hh" 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
THSteppingAction::THSteppingAction(THRunAction* RuAct) 
:G4UserSteppingAction(),fRunAction(RuAct) 
{ } 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
THSteppingAction::~THSteppingAction() 
{ } 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
void THSteppingAction::UserTHSteppingAction(const G4Step* aStep) 
{ 
  G4StepPoint* endPoint = aStep->GetPostStepPoint(); 
  G4String procName = endPoint->GetProcessDefinedStep()->GetProcessName(); 
 
  fTHRunAction->CountProcesses(procName);   
            
  // kill event after first interaction 
  // 
  G4RunManager::GetRunManager()->AbortEvent();   
} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 

SD.cc 

#include "THSD.hh" 
#include "G4HCofThisEvent.hh" 
#include "G4Step.hh" 
#include "G4ThreeVector.hh" 
#include "G4SDManager.hh" 
#include "G4ios.hh" 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
THSD::THSD( 
                            const G4String& name,  
                            const G4String& hitsCollectionName, 
                            G4int nofCells) 
 : G4VSensitiveDetector(name), 
   fHitsCollection(0), 
   fNofCells(nofCells) 
{ 
  collectionName.insert(hitsCollectionName); 
} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
THSD::~THSD()  
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{  
} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
void THSD::Initialize(G4HCofThisEvent* hce) 
{ 
  // Create hits collection 
  fHitsCollection  
    = new THHitsCollection(SensitiveDetectorName, collectionName[0]);  
 
  // Add this collection in hce 
  G4int hcID  
    = G4SDManager::GetSDMpointer()->GetCollectionID(collectionName[0]); 
  hce->AddHitsCollection( hcID, fHitsCollection );  
 
  // Create hits 
  // fNofCells for cells + one more for total sums  
  for (G4int i=0; i<fNofCells+1; i++ ) { 
    fHitsCollection->insert(new THHit()); 
  } 
} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
G4bool THSD::ProcessHits(G4Step* step,  
                                     G4TouchableHistory*) 
{   
  // energy deposit 
  G4double edep = step->GetTotalEnergyDeposit(); 
   
  // step length 
  G4double stepLength = 0.; 
  if ( step->GetTrack()->GetDefinition()->GetPDGCharge() != 0. ) { 
    stepLength = step->GetStepLength(); 
  } 
 
  if ( edep==0. && stepLength == 0. ) return false;       
 
  G4TouchableHistory* touchable 
    = (G4TouchableHistory*)(step->GetPreStepPoint()->GetTouchable()); 
     
  // Get calorimeter cell id  
  G4int layerNumber = touchable->GetReplicaNumber(1); 
   
  // Get hit accounting data for this cell 
  THHit* hit = (*fHitsCollection)[layerNumber]; 
  if ( ! hit ) { 
    G4ExceptionDescription msg; 
    msg << "Cannot access hit " << layerNumber;  
    G4Exception("B4cCalorimeterSD::ProcessHits()", 
      "MyCode0004", FatalException, msg); 
  }          
 
  // Get hit for total accounting 
  THHit* hitTotal  
    = (*fHitsCollection)[fHitsCollection->entries()-1]; 
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  // Add values 
  hit->Add(edep, stepLength); 
  hitTotal->Add(edep, stepLength);  
       
  return true; 
} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
void THSD::EndOfEvent(G4HCofThisEvent*) 
{ 
  if ( verboseLevel>1 ) {  
     G4int nofHits = fHitsCollection->entries(); 
     G4cout << "\n-------->Hits Collection: in this event they are " << nofHits  
            << " hits in the tracker chambers: " << G4endl; 
     for ( G4int i=0; i<nofHits; i++ ) (*fHitsCollection)[i]->Print(); 
  } 
} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 

RunAction.cc 

#include "THRunAction.hh" 
#include "THAnalysis.hh" 
 
#include "G4Run.hh" 
#include "G4RunManager.hh" 
#include "G4UnitsTable.hh" 
#include "G4SystemOfUnits.hh" 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
THRunAction::THRunAction() 
 : G4UserRunAction() 
{  
  // set printing event number per each event 
  G4RunManager::GetRunManager()->SetPrintProgress(1);      
 
  // Create analysis manager 
  // The choice of analysis technology is done via selectin of a namespace 
  // in THAnalysis.hh 
  G4AnalysisManager* analysisManager = G4AnalysisManager::Instance(); 
  G4cout << "Using " << analysisManager->GetType() << G4endl; 
 
  // Create directories  
  //analysisManager->SetHistoDirectoryName("histograms"); 
  //analysisManager->SetNtupleDirectoryName("ntuple"); 
  analysisManager->SetVerboseLevel(1); 
  analysisManager->SetFirstHistoId(1); 
 
  // Book histograms, ntuple 
  // 
   
  // Creating histograms 
  analysisManager->CreateH1("1","Edep in Shape1", 100, 0., 800*MeV); 
  analysisManager->CreateH1("2", "Edep in Shape2", 100, 0., 800 * MeV); 
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  analysisManager->CreateH1("3", "Edep in Shape3", 100, 0., 800 * MeV); 
  analysisManager->CreateH1("4", "Edep in Shape4", 100, 0., 800 * MeV); 
  analysisManager->CreateH1("5", "Edep in Shape5", 100, 0., 800 * MeV); 
  analysisManager->CreateH1("6", "Edep in Shape6", 100, 0., 800 * MeV); 
  analysisManager->CreateH1("7","trackL in Shape1", 100, 0., 1*m); 
  analysisManager->CreateH1("8", "trackL in Shape2", 100, 0., 1 * m); 
  analysisManager->CreateH1("9", "trackL in Shape3", 100, 0., 1 * m); 
  analysisManager->CreateH1("10", "trackL in Shape4", 100, 0., 1 * m); 
  analysisManager->CreateH1("11", "trackL in Shape5", 100, 0., 1 * m); 
  analysisManager->CreateH1("12", "trackL in Shape6", 100, 0., 1 * m); 
 
 
  // Creating ntuple 
  // 
  analysisManager->CreateNtuple("B1", "Edep and TrackL"); 
  analysisManager->CreateNtupleDColumn("EShape1"); 
  analysisManager->CreateNtupleDColumn("EShape2"); 
  analysisManager->CreateNtupleDColumn("EShape3"); 
  analysisManager->CreateNtupleDColumn("EShape4"); 
  analysisManager->CreateNtupleDColumn("EShape5"); 
  analysisManager->CreateNtupleDColumn("EShape6"); 
  analysisManager->CreateNtupleDColumn("LShape1"); 
  analysisManager->CreateNtupleDColumn("LShape2"); 
  analysisManager->CreateNtupleDColumn("LShape3"); 
  analysisManager->CreateNtupleDColumn("LShape4"); 
  analysisManager->CreateNtupleDColumn("LShape5"); 
  analysisManager->CreateNtupleDColumn("LShape6"); 
  analysisManager->FinishNtuple(); 
} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
THRunAction::~THRunAction() 
{ 
  delete G4AnalysisManager::Instance();   
} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
void THRunAction::BeginOfRunAction(const G4Run* /*run*/) 
{  
  //inform the runManager to save random number seed 
  //G4RunManager::GetRunManager()->SetRandomNumberStore(true); 
   
  // Get analysis manager 
  G4AnalysisManager* analysisManager = G4AnalysisManager::Instance(); 
 
  // Open an output file 
  // 
  G4String fileName = "TH"; 
  analysisManager->OpenFile(fileName); 
} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
void THRunAction::EndOfRunAction(const G4Run* /*run*/) 
{ 
  // print histogram statistics 
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  // 
  G4AnalysisManager* analysisManager = G4AnalysisManager::Instance(); 
  if (analysisManager->GetH1(1)) { 
   G4cout << "\n ----> print histograms statistic "; 
   if (isMaster) { 
    G4cout << "for the entire run \n" << G4endl; 
   } 
   else { 
    G4cout << "for the local thread \n" << G4endl; 
   } 
 
   G4cout << " EShape1 : mean = " 
    << G4BestUnit(analysisManager->GetH1(1)->mean(), "Energy") 
    << " rms = " 
    << G4BestUnit(analysisManager->GetH1(1)->rms(), "Energy") << G4endl; 
 
   G4cout << " EShape2 : mean = " 
    << G4BestUnit(analysisManager->GetH1(2)->mean(), "Energy") 
    << " rms = " 
    << G4BestUnit(analysisManager->GetH1(2)->rms(), "Energy") << G4endl; 
 
   G4cout << " EShape3 : mean = " 
    << G4BestUnit(analysisManager->GetH1(3)->mean(), "Energy") 
    << " rms = " 
    << G4BestUnit(analysisManager->GetH1(3)->rms(), "Energy") << G4endl; 
 
   G4cout << " EShape4 : mean = " 
    << G4BestUnit(analysisManager->GetH1(4)->mean(), "Energy") 
    << " rms = " 
    << G4BestUnit(analysisManager->GetH1(4)->rms(), "Energy") << G4endl; 
 
   G4cout << " EShape5 : mean = " 
    << G4BestUnit(analysisManager->GetH1(5)->mean(), "Energy") 
    << " rms = " 
    << G4BestUnit(analysisManager->GetH1(5)->rms(), "Energy") << G4endl; 
 
   G4cout << " EShape6 : mean = " 
    << G4BestUnit(analysisManager->GetH1(6)->mean(), "Energy") 
    << " rms = " 
    << G4BestUnit(analysisManager->GetH1(6)->rms(), "Energy") << G4endl; 
 
   G4cout << " LShape1 : mean = " 
    << G4BestUnit(analysisManager->GetH1(7)->mean(), "Length") 
    << " rms = " 
    << G4BestUnit(analysisManager->GetH1(7)->rms(), "Length") << G4endl; 
 
   G4cout << " LShape2 : mean = " 
    << G4BestUnit(analysisManager->GetH1(8)->mean(), "Length") 
    << " rms = " 
    << G4BestUnit(analysisManager->GetH1(8)->rms(), "Length") << G4endl; 
 
   G4cout << " LShape3 : mean = " 
    << G4BestUnit(analysisManager->GetH1(9)->mean(), "Length") 
    << " rms = " 
    << G4BestUnit(analysisManager->GetH1(9)->rms(), "Length") << G4endl; 
 
   G4cout << " LShape4 : mean = " 
    << G4BestUnit(analysisManager->GetH1(10)->mean(), "Length") 
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    << " rms = " 
    << G4BestUnit(analysisManager->GetH1(10)->rms(), "Length") << G4endl; 
 
   G4cout << " LShape5 : mean = " 
    << G4BestUnit(analysisManager->GetH1(11)->mean(), "Length") 
    << " rms = " 
    << G4BestUnit(analysisManager->GetH1(11)->rms(), "Length") << G4endl; 
 
   G4cout << " LShape6 : mean = " 
    << G4BestUnit(analysisManager->GetH1(11)->mean(), "Length") 
    << " rms = " 
    << G4BestUnit(analysisManager->GetH1(11)->rms(), "Length") << G4endl; 
  } 
 
  // save histograms & ntuple 
  // 
  analysisManager->Write(); 
  analysisManager->CloseFile(); 
 
} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 

PrimaryGeneratorAction.cc 

#include "THPrimaryGeneratorAction.hh" 
#include "G4RunManager.hh" 
#include "G4Event.hh" 
#include "G4ParticleGun.hh" 
#include "G4ParticleTable.hh" 
#include "G4IonTable.hh" 
#include "G4ParticleDefinition.hh" 
#include "G4ChargedGeantino.hh" 
#include "G4SystemOfUnits.hh" 
#include "Randomize.hh" 
#include "G4Gamma.hh" 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
THPrimaryGeneratorAction::THPrimaryGeneratorAction() 
 : G4VUserPrimaryGeneratorAction(), 
 fParticleGun(0) 
{ 
 G4int n_particle = 1; 
 fParticleGun = new G4ParticleGun(n_particle); 
 
 // default particle kinematic 
 
 G4ParticleTable* particleTable = G4ParticleTable::GetParticleTable(); 
 G4ParticleDefinition* particle 
  = particleTable->FindParticle("gamma"); 
 fParticleGun->SetParticleDefinition(particle); 
 
 // 
 // fixed position 
 // 
 G4double x0 = 0 * cm, y0 = 0 * cm; 



47 

 

 G4double z0 = -85* cm; 
 fParticleGun->SetParticlePosition(G4ThreeVector(x0, y0, z0)); 
 fParticleGun->SetParticleEnergy(662. * keV); 
 //The default direction is the z-axis (i.e. towards the detector).  
 //However, if the primary particle is an unstable nucleus, Geant4  
 //will take care of the production of the final decay state, and the  
 //products will be emitted isotropically. 
 fParticleGun->SetParticleMomentumDirection(G4ThreeVector(-1., 0., 1.)); 
} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
THPrimaryGeneratorAction::~THPrimaryGeneratorAction() 
{ 
 delete fParticleGun; 
} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
void THPrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent) 
{ 
 G4ParticleDefinition* particle = fParticleGun->GetParticleDefinition(); 
 
 //If the primary particle is defined to be a charged geantino (default),  
 //a Cs-137 nucleus is generated instead. The primary particle can be  
 //overridden at run time by the command /gun/particle 
 // 
 if (particle == G4Gamma::Gamma()) { 
  //Cs-137 
  G4int Z = 55, A = 137; 
  G4double ionCharge = 0.*eplus; 
  G4double excitEnergy = 0.*keV; 
 
  G4ParticleDefinition* ion 
   = G4IonTable::GetIonTable()->GetIon(Z, A, excitEnergy); 
 
  fParticleGun->SetParticleDefinition(G4Gamma::Definition()); 
  fParticleGun->SetParticleEnergy(662.0*keV); //at rest 
 
  //isotropic: flat in cosTheta and phi 
  //Randomize it 
  G4double cosTheta = G4UniformRand(); //cosTheta in [0,1] --> theta in 
[0,pi/2] 
  G4double phi = G4UniformRand() * 360 * deg; //flat in [0,2pi] 
  G4double sinTheta = std::sqrt(1. - cosTheta*cosTheta); 
 
  G4ThreeVector dir(sinTheta*std::cos(phi), sinTheta*std::sin(phi), 
cosTheta); 
  fParticleGun->SetParticleMomentumDirection(dir); 
 
 
 
 } 
 //create vertex 
 // 
 fParticleGun->GeneratePrimaryVertex(anEvent); 
} 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
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Hit.cc 

#include "THHit.hh" 
#include "G4UnitsTable.hh" 
#include "G4VVisManager.hh" 
#include "G4Circle.hh" 
#include "G4Colour.hh" 
#include "G4VisAttributes.hh" 
 
#include <iomanip> 
 
G4ThreadLocal G4Allocator<THHit>* THHitAllocator = 0; 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
THHit::THHit() 
 : G4VHit(), 
   fEdep(0.), 
   fTrackLength(0.) 
{} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
THHit::~THHit() {} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
THHit::THHit(const THHit& right) 
  : G4VHit() 
{ 
  fEdep        = right.fEdep; 
  fTrackLength = right.fTrackLength; 
} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
const THHit& THHit::operator=(const THHit& right) 
{ 
  fEdep        = right.fEdep; 
  fTrackLength = right.fTrackLength; 
 
  return *this; 
} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
G4int THHit::operator==(const THHit& right) const 
{ 
  return ( this == &right ) ? 1 : 0; 
} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
void THHit::Print() 
{ 
  G4cout 
     << "Edep: "  
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     << std::setw(7) << G4BestUnit(fEdep,"Energy") 
     << " track length: "  
     << std::setw(7) << G4BestUnit( fTrackLength,"Length") 
     << G4endl; 
} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 

EventAction.cc 

#include "THEventAction.hh" 
#include "THSD.hh" 
#include "THHit.hh" 
#include "THAnalysis.hh" 
 
#include "G4RunManager.hh" 
#include "G4Event.hh" 
#include "G4SDManager.hh" 
#include "G4HCofThisEvent.hh" 
#include "G4UnitsTable.hh" 
 
#include "Randomize.hh" 
#include <iomanip> 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
THEventAction::THEventAction() 
 : G4UserEventAction(), 
 fShape1HCID(-1), 
 fShape2HCID(-1), 
 fShape3HCID(-1), 
 fShape4HCID(-1), 
 fShape5HCID(-1), 
 fShape6HCID(-1) 
{} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
THEventAction::~THEventAction() 
{} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
THHitsCollection*  
THEventAction::GetHitsCollection(G4int hcID, 
                                  const G4Event* event) const 
{ 
  THHitsCollection* hitsCollection  
    = static_cast<THHitsCollection*>( 
        event->GetHCofThisEvent()->GetHC(hcID)); 
   
  if ( ! hitsCollection ) { 
    G4ExceptionDescription msg; 
    msg << "Cannot access hitsCollection ID " << hcID;  
    G4Exception("B4cEventAction::GetHitsCollection()", 
      "MyCode0003", FatalException, msg); 
  }          
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  return hitsCollection; 
}     
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
void THEventAction::PrintEventStatistics( 
 G4double Shape1Edep, G4double Shape1TrackLength, 
 G4double Shape2Edep, G4double Shape2TrackLength, 
 G4double Shape3Edep, G4double Shape3TrackLength, 
 G4double Shape4Edep, G4double Shape4TrackLength, 
 G4double Shape5Edep, G4double Shape5TrackLength, 
 G4double Shape6Edep, G4double Shape6TrackLength) const 
{ 
  // print event statistics 
 G4cout 
  << "   Shape1: total energy: " 
  << std::setw(7) << G4BestUnit(Shape1Edep, "Energy") 
  << "       total track length: " 
  << std::setw(7) << G4BestUnit(Shape1TrackLength, "Length") 
  << G4endl 
  << "        Shape2: total energy: " 
  << std::setw(7) << G4BestUnit(Shape2Edep, "Energy") 
  << "       total track length: " 
  << std::setw(7) << G4BestUnit(Shape1TrackLength, "Length") 
  << G4endl 
  << "        Shape3: total energy: " 
  << std::setw(7) << G4BestUnit(Shape3Edep, "Energy") 
  << "       total track length: " 
  << std::setw(7) << G4BestUnit(Shape3TrackLength, "Length") 
  << G4endl 
  << "        Shape4: total energy: " 
  << std::setw(7) << G4BestUnit(Shape4Edep, "Energy") 
  << "       total track length: " 
  << std::setw(7) << G4BestUnit(Shape4TrackLength, "Length") 
  << G4endl 
  << "        Shape5: total energy: " 
  << std::setw(7) << G4BestUnit(Shape5Edep, "Energy") 
  << "       total track length: " 
  << std::setw(7) << G4BestUnit(Shape5TrackLength, "Length") 
  << G4endl 
  << "        Shape6: total energy: " 
  << std::setw(7) << G4BestUnit(Shape6Edep, "Energy") 
  << "       total track length: " 
  << std::setw(7) << G4BestUnit(Shape6TrackLength, "Length") 
  << G4endl; 
} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
void THEventAction::BeginOfEventAction(const G4Event* /*event*/) 
{} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
void THEventAction::EndOfEventAction(const G4Event* event) 
{   
  // Get hits collections IDs (only once) 
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 if (fShape1HCID == -1) { 
  fShape1HCID 
   = G4SDManager::GetSDMpointer()-
>GetCollectionID("Shape1HitsCollection"); 
  fShape2HCID 
   = G4SDManager::GetSDMpointer()-
>GetCollectionID("Shape2HitsCollection"); 
  fShape3HCID 
   = G4SDManager::GetSDMpointer()-
>GetCollectionID("Shape3HitsCollection"); 
  fShape4HCID 
   = G4SDManager::GetSDMpointer()-
>GetCollectionID("Shape4HitsCollection"); 
  fShape5HCID 
   = G4SDManager::GetSDMpointer()-
>GetCollectionID("Shape5HitsCollection"); 
  fShape6HCID 
   = G4SDManager::GetSDMpointer()-
>GetCollectionID("Shape6HitsCollection"); 
  } 
 
  // Get hits collections 
 THHitsCollection* Shape1HC = GetHitsCollection(fShape1HCID, event); 
 THHitsCollection* Shape2HC = GetHitsCollection(fShape2HCID, event); 
 THHitsCollection* Shape3HC = GetHitsCollection(fShape3HCID, event); 
 THHitsCollection* Shape4HC = GetHitsCollection(fShape4HCID, event); 
 THHitsCollection* Shape5HC = GetHitsCollection(fShape5HCID, event); 
 THHitsCollection* Shape6HC = GetHitsCollection(fShape6HCID, event); 
 
  // Get hit with total values 
 THHit* Shape1Hit = (*Shape1HC)[Shape1HC->entries() - 1]; 
 THHit* Shape2Hit = (*Shape2HC)[Shape1HC->entries() - 1]; 
 THHit* Shape3Hit = (*Shape3HC)[Shape1HC->entries() - 1]; 
 THHit* Shape4Hit = (*Shape4HC)[Shape1HC->entries() - 1]; 
 THHit* Shape5Hit = (*Shape5HC)[Shape1HC->entries() - 1]; 
 THHit* Shape6Hit = (*Shape6HC)[Shape1HC->entries() - 1]; 
  
  // Print per event (modulo n) 
  // 
  G4int eventID = event->GetEventID(); 
  G4int printModulo = G4RunManager::GetRunManager()->GetPrintProgress(); 
  if ( ( printModulo > 0 ) && ( eventID % printModulo == 0 ) ) { 
    G4cout << "---> End of event: " << eventID << G4endl;      
 
    PrintEventStatistics( 
  Shape1Hit->GetEdep(), Shape1Hit->GetTrackLength(), 
  Shape2Hit->GetEdep(), Shape2Hit->GetTrackLength(), 
  Shape3Hit->GetEdep(), Shape3Hit->GetTrackLength(), 
  Shape4Hit->GetEdep(), Shape4Hit->GetTrackLength(), 
  Shape5Hit->GetEdep(), Shape5Hit->GetTrackLength(), 
  Shape6Hit->GetEdep(), Shape6Hit->GetTrackLength()); 
  }   
   
  // Fill histograms, ntuple 
  // 
 
  // get analysis manager 
  G4AnalysisManager* analysisManager = G4AnalysisManager::Instance(); 
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  // fill histograms 
  analysisManager->FillH1(1, Shape1Hit->GetEdep()); 
  analysisManager->FillH1(2, Shape2Hit->GetEdep()); 
  analysisManager->FillH1(3, Shape3Hit->GetEdep()); 
  analysisManager->FillH1(4, Shape4Hit->GetEdep()); 
  analysisManager->FillH1(5, Shape5Hit->GetEdep()); 
  analysisManager->FillH1(6, Shape6Hit->GetEdep()); 
  analysisManager->FillH1(7, Shape1Hit->GetTrackLength()); 
  analysisManager->FillH1(8, Shape2Hit->GetTrackLength()); 
  analysisManager->FillH1(9, Shape3Hit->GetTrackLength()); 
  analysisManager->FillH1(10, Shape4Hit->GetTrackLength()); 
  analysisManager->FillH1(11, Shape5Hit->GetTrackLength()); 
  analysisManager->FillH1(12, Shape6Hit->GetTrackLength()); 
   
  // fill ntuple 
  analysisManager->FillNtupleDColumn(0, Shape1Hit->GetEdep()); 
  analysisManager->FillNtupleDColumn(1, Shape2Hit->GetEdep()); 
  analysisManager->FillNtupleDColumn(2, Shape3Hit->GetEdep()); 
  analysisManager->FillNtupleDColumn(3, Shape4Hit->GetEdep()); 
  analysisManager->FillNtupleDColumn(4, Shape5Hit->GetEdep()); 
  analysisManager->FillNtupleDColumn(5, Shape6Hit->GetEdep()); 
  analysisManager->FillNtupleDColumn(6, Shape1Hit->GetTrackLength()); 
  analysisManager->FillNtupleDColumn(7, Shape2Hit->GetTrackLength()); 
  analysisManager->FillNtupleDColumn(8, Shape3Hit->GetTrackLength()); 
  analysisManager->FillNtupleDColumn(9, Shape4Hit->GetTrackLength()); 
  analysisManager->FillNtupleDColumn(10, Shape5Hit->GetTrackLength()); 
  analysisManager->FillNtupleDColumn(11, Shape6Hit->GetTrackLength()); 
  analysisManager->AddNtupleRow();   
}   
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 

DetectorConstruction.cc 

#include "THDetectorConstruction.hh" 
#include "THSD.hh" 
#include "G4Material.hh" 
#include "G4NistManager.hh" 
 
#include "G4Box.hh" 
#include "G4LogicalVolume.hh" 
#include "G4PVPlacement.hh" 
#include "G4PVReplica.hh" 
#include "G4GlobalMagFieldMessenger.hh" 
#include "G4AutoDelete.hh" 
 
#include "G4SDManager.hh" 
 
#include "G4VisAttributes.hh" 
#include "G4Colour.hh" 
 
#include "G4PhysicalConstants.hh" 
#include "G4SystemOfUnits.hh" 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
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G4ThreadLocal  
G4GlobalMagFieldMessenger* THDetectorConstruction::fMagFieldMessenger = 0;  
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
THDetectorConstruction::THDetectorConstruction() 
 : G4VUserDetectorConstruction(), 
   fCheckOverlaps(true) 
   
{ 
} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
THDetectorConstruction::~THDetectorConstruction() 
{  
}   
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
G4VPhysicalVolume* THDetectorConstruction::Construct() 
{ 
  // Define materials  
  DefineMaterials(); 
   
  // Define volumes 
  return DefineVolumes(); 
} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
void THDetectorConstruction::DefineMaterials() 
{  
 // Get nist material manager 
 G4NistManager* nist = G4NistManager::Instance(); 
   
 G4Material* world_mat = nist->FindOrBuildMaterial("G4_AIR"); 
 
 G4Material* NaI = nist->FindOrBuildMaterial("G4_SODIUM_IODIDE"); 
 
  // Print materials 
  G4cout << *(G4Material::GetMaterialTable()) << G4endl; 
} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
G4VPhysicalVolume* THDetectorConstruction::DefineVolumes() 
{ 
 G4bool checkOverlaps = true; 
  //      
  // World 
  // 
 G4NistManager* nist = G4NistManager::Instance(); 
 G4Material* world_mat = nist->FindOrBuildMaterial("G4_AIR"); 
 G4VSolid* solidWorld = 
  new G4Box("World",        // its name                
  10.0*m, 10.0*m, 10.0*m); 
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 G4LogicalVolume* logicWorld = 
  new G4LogicalVolume(solidWorld,     //its solid     
  world_mat,      // its material      
  "World");       // its name      
 
 G4VPhysicalVolume* physWorld = 
  new G4PVPlacement(0,                //no rotation      
  G4ThreeVector(),  // at (0,0,0)      
  logicWorld,       //its logical      
  "World",          //its name     
  0,                //its mother      
  false,            //no boolean operation     
  0,                //copy number      
  checkOverlaps);   //overlaps checking    
   
 //Shape 1 
 // 
  
 
 G4Material* NaI = nist->FindOrBuildMaterial("G4_SODIUM_IODIDE"); 
 G4ThreeVector pos1 = G4ThreeVector(-7.25*2.54*cm, 0, -4.25 * 2.54*cm); 
 
 G4RotationMatrix*yRot = new G4RotationMatrix;  //its rotation 
 yRot->rotateY(30.*deg); 
 
 G4VSolid* pBoxSolid = new G4Box("Shape 1", 1.5*2.54*cm, 16.0*2.54*cm, 4*2.54*cm); 
//Box shape 
 
 
 G4LogicalVolume* pBoxLog = 
  new G4LogicalVolume(pBoxSolid,        //its solid  
  NaI,              //its material 
  "Shape1");        //its name   
 
 new G4PVPlacement(yRot,                 //its rotation       
  pos1,                 //at position    
  pBoxLog,              //its logical volume 
  "Shape1",             //its name    
  logicWorld,           //its mother volume      
  false,                //no boolean operation    
  0,                    //copy number    
  checkOverlaps);       //overlaps checking    
 
 
 
 
 // 
 //Shape 2 
 // 
 G4ThreeVector pos2 = G4ThreeVector(-7.25 * 2.54*cm, 0, 4.5* 2.54*cm); 
 
 G4VSolid* pBoxSolid2 = new G4Box("Shape 2", 1.5*2.54*cm, 16.0*2.54*cm,4*2.54*cm); 
 
 G4RotationMatrix*yRot2 = new G4RotationMatrix;   //its rotation 
 yRot2->rotateY(330.*deg); 
 
 G4LogicalVolume* pBoxLog2 = 
  new G4LogicalVolume(pBoxSolid2,              //its solid 
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  NaI,                                         //its material 
  "Shape2");                                   //its name 
 
 new G4PVPlacement(yRot2,                       //its rotation 
  pos2,                                      //at position 
  pBoxLog2,                                  //its logical volume 
  "Shape2",                                  //its name  
  logicWorld,                               //its mother volume 
  false,                                     //no boolean operation 
  0,                                        //copy number 
  checkOverlaps);                           //overlaps checking 
 
 
 // 
 //Shape 3 
 // 
 G4ThreeVector pos3 = G4ThreeVector(0, 0, 8.75 * 2.54*cm); 
 
 G4VSolid* pBoxSolid3 = new G4Box("Shape 3", 4*2.54*cm, 16.0*2.54*cm, 1.5*2.54*cm); 
 
 G4LogicalVolume* pBoxLog3 = 
  new G4LogicalVolume(pBoxSolid3,         //its solid 
  NaI,                                    //its material  
  "Shape3");                              //its name 
 
 new G4PVPlacement(0,                   //no rotation     
  pos3,                              //its position 
  pBoxLog3,                          //its logical volume 
  "Shape3",                          //its name  
  logicWorld,                        //its mother volume 
  false,                             //no boolean operation  
  0,                                 //its copy number 
  checkOverlaps);                    //overlaps chekcing 
 
 
 // 
 //Shape 4 
 // 
 G4ThreeVector pos4 = G4ThreeVector(7.25 * 2.54*cm, 0, 4.5* 2.54*cm); 
 
 G4VSolid* pBoxSolid4 = new G4Box("Shape 4", 1.5*2.54*cm, 16.0*2.54*cm, 4*2.54*cm); 
 
 
 G4LogicalVolume* pBoxLog4 = 
  new G4LogicalVolume(pBoxSolid4,         //its solid 
  NaI,                                     //its material 
  "Shape4");                              //its name 
 
 new G4PVPlacement(yRot,                     //its rotation   
  pos4,                                   //its position 
  pBoxLog4,                               //its logical volume 
  "Shape4",                               //its name 
  logicWorld,                             //its mother volume 
  false,                                  //no boolean operation 
  0,                                      //copy number 
  checkOverlaps);                         //overlaps checking 
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 // 
 //Shape 5 
 // 
 G4ThreeVector pos5 = G4ThreeVector(7.25 * 2.54*cm, 0, -4.25 * 2.54*cm); 
 
 G4VSolid* pBoxSolid5 = new G4Box("Shape 5", 1.5*2.54*cm, 16.0*2.54*cm, 4*2.54*cm); 
 
 
 G4LogicalVolume* pBoxLog5 = 
  new G4LogicalVolume(pBoxSolid5,      //its solid    
  NaI,                                 //its material 
  "Shape5");                           //its name 
 
 new G4PVPlacement(yRot2,                 //its rotation       
  pos5,                                //its position 
  pBoxLog5,                            //its logical volume 
  "Shape5",                            //its name 
  logicWorld,                          //its mother volume 
  false,                                //no boolean operation 
  0,                                   //copy number 
  checkOverlaps);                       //overlaps checking 
 
 // 
 //Shape 6 
 // 
 G4ThreeVector pos6 = G4ThreeVector(0, 0, -8.5 * 2.54*cm); 
 
 G4VSolid* pBoxSolid6 = new G4Box("Shape 6", 4*2.54*cm, 16.0*2.54*cm, 1.5*2.54*cm); 
 
 
 G4LogicalVolume* pBoxLog6 = 
  new G4LogicalVolume(pBoxSolid6,      //its solid    
  NaI,                                 //its material 
  "Shape6");                           //its name 
 
 new G4PVPlacement(0,                     //no rotation 
  pos6,                                //its position 
  pBoxLog6,                            //its logical volume 
  "Shape6",                            //its name 
  logicWorld,                          //its mother volume 
  false,                               //no boolean operation 
  0,                                   //copy number 
  checkOverlaps);                      //overlaps checking 
  
 
   
  //                                         
  // Visualization attributes 
  // 
 G4VisAttributes* visAttributes = new G4VisAttributes(G4Colour(1.0, 1.0, 1.0)); 
 visAttributes->SetVisibility(false); 
 logicWorld->SetVisAttributes(visAttributes); 
  
  visAttributes = new G4VisAttributes(G4Colour(1.0, 0.0, 0.0));  //red 
  pBoxLog->SetVisAttributes(visAttributes); 
 
  visAttributes = new G4VisAttributes(G4Colour(0.0, 1.0, 0.0));  //green  
  pBoxLog2->SetVisAttributes(visAttributes); 
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  visAttributes = new G4VisAttributes(G4Colour(0.0, 0.0, 1.0));  //ble 
  pBoxLog3->SetVisAttributes(visAttributes); 
 
  visAttributes = new G4VisAttributes(G4Colour(0.0, 1.0, 1.0)); //cyan 
  pBoxLog4->SetVisAttributes(visAttributes); 
 
  visAttributes = new G4VisAttributes(G4Colour(1.0, 0.0, 1.0)); //magenta 
  pBoxLog5->SetVisAttributes(visAttributes); 
 
  visAttributes = new G4VisAttributes(G4Colour(1.0, 1.0, 0.0)); //yellow 
  pBoxLog6->SetVisAttributes(visAttributes); 
 
 
  // 
  // Always return the physical World 
  // 
  return physWorld; 
} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
void THDetectorConstruction::ConstructSDandField() 
{ 
  // G4SDManager::GetSDMpointer()->SetVerboseLevel(1); 
 
  //  
  // Sensitive detectors 
  // 
 
 THSD* Shape1SD 
  = new THSD("Shape1SD", "Shape1HitsCollection", 0); 
 SetSensitiveDetector("Shape1", Shape1SD); 
 
 THSD* Shape2SD 
  = new THSD("Shape2SD", "Shape2HitsCollection", 0); 
 SetSensitiveDetector("Shape2", Shape2SD); 
 
 THSD* Shape3SD 
  = new THSD("Shape3SD", "Shape3HitsCollection", 0); 
 SetSensitiveDetector("Shape3", Shape3SD); 
 
 THSD* Shape4SD 
  = new THSD("Shape4SD", "Shape4HitsCollection", 0); 
 SetSensitiveDetector("Shape4", Shape4SD); 
 
 THSD* Shape5SD 
  = new THSD("Shape5SD", "Shape5HitsCollection", 0); 
 SetSensitiveDetector("Shape5", Shape5SD); 
 
 THSD* Shape6SD 
  = new THSD("Shape6SD", "Shape6HitsCollection", 0); 
 SetSensitiveDetector("Shape6", Shape6SD); 
} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
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ActionInitialization.cc 

#include "THActionInitialization.hh" 
#include "THPrimaryGeneratorAction.hh" 
#include "THRunAction.hh" 
#include "THEventAction.hh" 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
THActionInitialization::THActionInitialization() 
 : G4VUserActionInitialization() 
{} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
THActionInitialization::~THActionInitialization() 
{} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
void THActionInitialization::BuildForMaster() const 
{ 
  SetUserAction(new THRunAction); 
} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
void THActionInitialization::Build() const 
{ 
  SetUserAction(new THPrimaryGeneratorAction); 
  SetUserAction(new THRunAction); 
  SetUserAction(new THEventAction); 
}   
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 

PhysListEmStandard.cc 

#include "PhysListEmStandard.hh" 
#include "G4ParticleDefinition.hh" 
#include "G4ProcessManager.hh" 
#include "G4PhysicsListHelper.hh" 
 
#include "G4ComptonScattering.hh" 
#include "G4GammaConversion.hh" 
#include "G4PhotoElectricEffect.hh" 
 
#include "G4SystemOfUnits.hh" 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
PhysListEmStandard::PhysListEmStandard(const G4String& name) 
   :  G4VPhysicsConstructor(name) 
{} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
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PhysListEmStandard::~PhysListEmStandard() 
{} 
 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 
void PhysListEmStandard::ConstructProcess() 
{ 
  G4PhysicsListHelper* ph = G4PhysicsListHelper::GetPhysicsListHelper(); 
   
  // Add standard EM Processes 
  // 
  aParticleIterator->reset(); 
  while ((*aParticleIterator)()){ 
   G4ParticleDefinition* particle = aParticleIterator->value(); 
   G4String particleName = particle->GetParticleName(); 
 
   if (particleName == "gamma") { 
 
    ////ph->RegisterProcess(new G4RayleighScattering, particle);       
    ph->RegisterProcess(new G4PhotoElectricEffect, particle); 
    ph->RegisterProcess(new G4ComptonScattering, particle); 
    ph->RegisterProcess(new G4GammaConversion, particle); 
   } 
   } 
  
 } 
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 

 


