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ABSTRACT

The National Weather Service has been installing Automated Surface Qbserving
Systems (ASOS) at all first-order weather stations since 1991 as a part of their
modernization program. The introduction of this new, automated method of observing
the atmosphere has brought with it inherent differences in measuring surface
meteorological conditions. One such affected variable is surface air temperature. When
ASOS temperature readings at various weather stations were compared to simultaneous
temperature readings reported by the Model HO83 instrument, which is used in
conventional, man-made observations at those stations, discrepancies were often noted.
These discrepancies lead to inevitable inhomogeneity in the temperature time series at
stations where ASOS is installed. This investigation examines the sources contributing to
these temperature differences for each of the 76 stations in this study.

Examination of temperature differences between conventional observations (using
the Model HO83 and designated as CONV for this study) and pre-commissioned ASOS
observations have shown conventional observations are warmer (for a large majority of
stations) than the corresponding ASOS temperature measurements. Comparing all
synoptic hours for all seasons, the average ASOS — CONV temperature differences ranged

from -2.56°F (ATL) to +0.61°F (ORH), with a mean value of -0.79°F. Of the 76 stations
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in this study, only 5 displayed an overall positive difference indicating ASOS was warmer
than CONV. Major sources for the temperature differences between the two instruments
were attributed to instrument bias, local effects, and solar effects.

Instrument biases, which resulted from the introduction of the ASOS temperature
insttumenf, were calculated using nighttime observations when overcast skies were
reported. Seasonal instrument biases were calculated for all of the 76 stations for every
available season. Of the four seasons, summer had the fewest number of nighttime,
overcast-sky observations for most stations. Despite this fact, all but five stations did have
at least 30 sampled temperature comparisons from which to calculate the summer
instrument bias. The seasonal instrument biases were predominantly negative indicating
ASOS was cooler than CONV by an average of 0.53°F, and ranged from -2.17°F (ATL in
the fall) to +1.17°F (ORH in the spring). Annual instrument biases were calculated using
the seasonal values, and again these numbers were largely negative with a range of -1.96°F
(ATL) to +1.16°F (ORH). Of'the 76 stations, only 9 had positive annual instrument
biases. Seasonal instrument biases did fluctuate slightly with the changing seasons, most
likely due to electronic instabilities in the CONV instrument. For more than 67 percent of
the stations, these fluctuations were < 0.5°F, With at least 20 percent of the stations in
each season having instrument biases in excess of -1.0°F.

Nighttime local effects were introduced as a contributing factor in the overall
temperature differences since ASOS was most often installed at an entirely new location,
rather than immediately next to the CONV instrument. Seasonal nighttime local effects,

calculated by removing the seasonal instrument biases from the seasonal nighttime
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temperature differences, were fairly variable throughout the year with changes in both
magnitude and sign convention quite common. These seasonal values were predominantly
negative with a range of -1.29°F (SAV in the spring) to +0.91°F (TLH in the summer).
Annual contributions by these nocturnal effects were negative for 47 of the 76 stations,
indicating that ASOS were most often placed in locations which were cooler at night than
the CONV sites. Annual values ranged from -1.11°F (INW) to +0.70°F (TLH) with an
average value of -0.16°F. As mentioned above, the seasonal nighttime local effects did
fluctuate over the course of the year. Of the 31 four-season stations, 5 displayed evidence
of an annual cycle in these nocturnal contributions with summer having the largest
negative value and winter the least. In addition, 12 out of the 66 stations with at least
three seasons of data displayed trends in temperature differences over the course of the
year. Instead of displaying the sinusoidal fluctuations in local effects like many stations,
these differences constantly became more negative, and in a few cases more positive, over
time. The large remainder of stations showed considerably more moderate fluctuations
over the four seasons, or had only one season which behaved quite differently than the
other three.

The final contributions to the temperature differences between ASOS and CONV
were the daytime local and solar effects. Seasonal values, calculated by removing the
seasonal instrument biases from the seasonal daytime temperature differences, were largely
negative and ranged from -2.26°F (JKL in the summer) to +0.91°F (DSM in the fall).
Annually averaged contributions by daytime local and solar effects were overwhelmingly

negative as 67 of the 76 stations had negative values ranging from -1.54°F (JKL) to



+0.61°F (VIN), with a mean of -0.37°F. These findings support evidence that the HO83
hygrothermometer is subject to a solar heating problem not experienced by the ASOS
instruments, which is apparent in the daytime observations. Fluctuations in the seasonal
daytime effects were also observed, with 33 percent of the four-season stations providing
an indication of annual cycles in the daytime effects, with summer having the largest
negative value.

Also noted in this investigation was a time dependence on temperature differences
between ASOS and CONV readings. Seasonal diurnal cycles for 60 percent of the
stations showed the largest, negative difference during the daylight hours, with a
noticeable decrease in temperature difference at night, evidence again of the warm bias
due to solar heating in the CONV instrument. At 21 percent of the stations, however, this
diurnal cycle pattern was reversed due to strong, nocturnal, local influences. This
particular nighttime phenomena is the direct result of ASOS quite often being installed at a
new location which is cooler at night than the location of the CONV instrument.

Finally, regional similarities were noted during analysis of local and solar effects
and temperature time series. Stations in high-sunshine climatic zones, such as TUS, LAS,
and ABQ had the largest negative daytime local and solar eﬁ'ects; once more evidence in
favor of an existing warm bias in the HO83 hygrothermometer. In addition, coastal sites
displayed particularly stable temperature time series plots in contrast to inland, continental

sites which showed considerably more variability over the course of this investigation.
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1.0 INTRODUCTION

A comparison of temperature measurements reported by conventional (CONV)
observations at manned National Weather Service stations using the Model HO83
temperature instrument and pre-commissioned ASOS observations at those same stations
has been conducted. The predominantly negative differences (ASOS — CONYV) in ambient
air temperature between the two instruments are indicative of the warm bias in the CONV
measurements as compared to ASOS measurements. Sources contributing to these
temperature differences have been categorized as being due to instrument bias, local
effects, and solar effects, and were analyzed on both seasonal and annual scales. At the
time of this writing, there has not been a great deal published on temperature comparisons
between conventional and ASOS observations outside of the quarterly and annual
progress reports for the Climate Data Continuity with ASOS project conducted by the
Colorado Climate Center since 1991. Similar to those reports, this study investigates the
sources of the temperature differences between ASOS and CONV measurements and
illustrates how current weather, specifically winds and cloud cover, affect temperature

differences between the two instruments.

1.1 Modernization

In keeping with an agreement reached in the late 1980s between the National

Weather Service, Federal Aviation Administration, and the Department of the Navy, the



National Weather Service has been installing ASOS throughout the United States since
1991 (Nadolski, 1995). The installation of these automated systems is part of the National
Weather Service’s Modemization Program. According to the March 1996 National
Weather Service Modernization Update, as of March 7, 1996 there were 699 ASOS
installed throughout the United States, and of these 673 had been accepted and 245 of
those were commissioned. Approximately 800 systems will be commissioned when the
National Weather Service modernization effort is complete.

ASOS was designed to automate the weather observing process and allow weather
station personnel more time to accomplish other tasks such as forecasting. In addition,
automating the surface observing process is intended to reduce costs, expand areal
coverage, provide data 24 hours each day and get rid of the subjectivity inherent in manual
observations such as visibility and estimates of winds. A general introduction to ASOS is
included in the ASOS User’s Guide (National Weather Service, 1992). ASOS is a
microprocessor-based system which uses an array of sensors with advanced algorithms to
process not only synoptic weather data, but to disseminate a Surface Aviation Observation

(SAO) for the station (Nadolski, 1995).

1.2 The Data Set

The data used for this investigation was obtained from the National Climate Data
Center (NCDC) in Asheville, North Carolina. The data was transmitted electronically to
the Colorado Climate Center (CCC) at Colorado State University for use in the Climate

Data Continuity with ASOS project. The data set consists of hourly SAOs for both



conventional observations and pre-commissioned ASOS observations, when available, for
76 sites across the continental United States for the period of September 1, 1994 through
August 31, 1995. Due to installation and commissioning dates, not all stations have
complete ASOS data for the whole year of study. Temperature data are reported in whole
degrees Fahrenheit.

This investigation took advantage of a brief National Weather Service moratorium
on ASOS commissionings during the winter of 1994-1995. During this period no ASOS
systems were commissioned as the official observing and reporting method for any
stations, but they had been accepted and were transmitting observed weather data. This
moratorium allows a unique comparison between pre-commissioned ASOS temperature
observations and conventional hourly SAOs.

Overall, a total of 1,017,646 temperature observations were used during this study.
Never before has there been such an extensive comparison between ASOS and
conventional methods of temperature measurement. The hourly data allowed exploration
of diurnal cycles in ASOS - CONV temperature differences, as well as enhancing daytime
and nighttime effects.

One item to note is that there are no daily maximum and minimum temperature
comparisons in this investigation since CONV observations were no longer required to
report maximum and minimum temperatures as of January 1, 1995. Instead, this study
compared the highest (AThighest hourty) and lowest (ATiowesthourly) hourly temperature values
reported by both ASOS and CONV during each 24-hour period (midnight to midnight
local standard time). Itis also important to add that the hours of highest and lowest

temperature for ASOS and CONYV did not often coincide, such that the ASOS highest



hourly temperature for a certain day did not necessarily occur at the same hour as did the
CONYV highest hourly temperature, and the same was true for the lowest hourly

temperatures.

1.3 The Purpose

At present, the National Weather Service is still a few years away from completing
the installation of all ASOS systems in the United States. The moratorium on ASOS
commissionings allowed a unique opportunity to compare temperature measurements
made by conventional methods (HO83) and pre-commissioned ASOS systems at quite a
number of stations, most of which were not previously considered for any comparisons.

The main goal of this investigation was to determine specific causes for relative
temperature differences between ASOS and CONV temperature measurements. Factors
affecting temperature differences were attributed to either instrument biases inherent in the
manufacture of the instruments, local effects due to instrument separation, and solar
heating effects due to exposure to the sun. Mean values for each of these factors at each
station were determined both seasonally and annually in an attempt to provide a fairly
accurate measure of the temperature differences throughout the year.

Other goals were to determine temporal variabilities in temperature differences
between ASOS and CONYV readings. Seasonal diurnal cycles were plotted for each
station to see how temperature differences varied over the course of an average day within
that season. Also, seasonal accumulated temperature differences were examined for

changes in the temperature relationship between ASOS and CONV instruments. Time



series analysis of daily highest hourly and lowest hourly temperature differences plotted
for the entire period record shifts between instruments and indicate annual cycles at a few
sites. Of particular interest in isolating instrument biases were wind and sky cover
conditions, since these meteorological variables have the most profound impact on

temperature differences.



2.0 THE DATA

2.1 The Instruments

Physically the two instruments compared in this study are very similar in
appearance and design. The main visual difference is the air deflection skirt located at the
bottom of the aspirator cylinder on the ASOS instrument. Figure 2.1 shows a typical
schematic representation of the Model HO83 and the ASOS hygrothermometers. Both
instruments measure ambient air temperature using a platinum Resistive Temperature
Device (RTD) enclosed in an aspirated, shielded cylinder. An important fact to note here
is since the HO83 is an older instrument it is perhaps not quite as electronically stable as
the newer ASOS hygrothermometer. Plus, the CONV instrument has been in the field for
a number of years now, and in many cases the sensor housing has weathered, no longer

retaining its original bright white and highly reflective surface.

2.1.1 HO83 Hygrothermometer

The Model HO83 Hygrothermometer System was manufactured by Technical
Services Laboratory to be a climatic thermometer and dew/frost point indicator for the
National Weather Service (Instruction Manual Hygrothermometer HO83, 1984). The
system consists of three separate components: aspirator, transmitter, and a display unit as

shown in Figure 2.2. Ideally the aspirator was placed outdoors in a location where it
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Fig. 2.1 Typical schematic of Model HO83 Hygrothermometer. The ASOS
Hygrothermometer is very similar in appearance with the addition of the air deflection
skirt pictured above. (Instruction Manual Hygrothermometer HO83, Vol 1, 1984.)
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could sample the surface atmosphere without contamination due to ground water,
vegetation, and other distractive influences. Airflow is drawn into the top of the aspirator
dome and directed downward through the cylinder casing where it is sampled by the
ambient air temperature sensor before being expelled from the bottom of the cylinder
housiﬂg. The transmitter is positioned close by the aspirator, usually within five feet, and
is designed to be weatherproof. The final component, the remote display unit, is
connected via telephone line to the transmitter and is located some distance away from the
other two components in an indoor environment.

The HO83 as originally designed features a range of -76°F to +140°F with a
resolution of 0.18°F and an accuracy of +0.9°F (Instruction Manual Hygrothermometer
HOB83, 1984). The platinum-wire RTD is encased in a ceramic cylinder about 1/8 inches
in diameter and 3/4 inches in length. At a temperature of +32°F (0°C), the RTD has an
electrical resistance of exactly 100 ohms. The resistance varies linearly with temperature
at a rate of 0.392 percent per degree Celsius. Both a maximum and minimum temperature
display are available, but values for each are simply the highest and lowest temperature
readings since the last system “reset,” which is accomplished by manually depressing both
the Max/Min Reset Switch and the Fahrenheit Display Switch located on the display panel
at the same time. Data for this investigation from the Model HO83 instruments used the

5-minute average temperature output.

2.1.2 ASOS Hygrothermometer

The ASOS hygrothermometer has a design that is similar to the Model HO83

hygrothermometer, and operates in much the same way using a platinum RTD. The



current ASOS instrument, fielded in late 1993 and early 1994, incorporates several
modifications to the original ASOS hygrothermometer. The aspiration rate was increased
to allow more air flow past the sensor, and the aspirator fan was moved from the botiom
to the top of the aspirator changing the direction of air flow to upward instead of
downward through the instrument casing. Also, an air deflection skirt was placed around
the lower portion of the aspirator body to prevent recirculating expunged air from the top
of the shield. Next, the RTD element was changed from a 0.1% to a 0.03% basic
accuracy. And finally, the electrical circuitry was improved with low temperature
coefficient resistors (Crosby and Nadolski, 1993). Figure 2.3 shows a typical ASOS
sensor array with the temperature/dewpoint sensor positioned second from the left end.

System specifications for the ASOS temperature sensor report range limits of
-80°F to +130°F, with 0.1°F resolution. Accuracy for this sensor is £0.9°F for readings
between -58°F and 122°F, and +1.8°F for readings between -80°F and -58°F and between
122°F and 130°F (ASOS User’s Guide, 1992).

According to the ambient temperature algorithm, the sensor samples the
atmosphere six times each minute to obtain a one-minute average ambient temperature
value. If any consecutive one-minute readings differ by more than 6°F, then the current
reading is marked as missing. Next, a S-minute average temperature value is calculated
using the last five one-minute readings. If four or more temperature values are valid in the
last five minutes, ASOS performs a linear average to obtain the new 5-minute temperature
reading. However, if less than four temperature readings are available for the previous
five minutes, ASOS does not calculate a new 5-minute reading but uses the most current

reading for the last 15 minutes. If there are no new temperature readings computed in the
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Fig. 2.3 Typical ASOS sensor array. (ASOS Level II System Manager Training Course
Student Guide, 1992.)
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last 15 minutes, then the output is marked as missing “-99” (Chu, 1994). The one-minute
data can be stored for 12 hours before being written over by new data. And all the daily
and monthly averages are calculated at midnight local standard time each night and on the
first day of each month for the previous month, respectively. Data for this investigation
used the ASOS 5-minute average temperature measurements.

As to the reliability and availability of the ASOS temperature sensor, the Third
ASOS Aviation Demonstration Industry Briefing (National Weather Service, 1995)
reported that the sensor was available on an average of 99.65% of the time with mean
outages of 2.4 hours usually caused by sensor hardware, power failure, or on-site
maintenance. Among all of the meteorological sensors in the ASOS array, the
temperature sensor had the second highest number of outage times with an average of 639
hours between missing sensor events. Also, comparisons have been made to determine
the performance characteristics of ASOS with respect to “true” ambient air temperature
(McKee, et al., 1996). Direct comparisons between three modified ASOS
hygrothermometers and a calibrated, National Weather Service secondary field standard
(R. M. Young) in 1994 “found no systematic bias [of the ASOS instruments] relative to
the National Weather Service secondary standard.” The tests indicated that ASOS has a
range between instruments of approximately $0.3°F, with more of the instruments being
cooler as opposed to warmer. Since there is no calibration against a field standard before
each ASOS is commissioned, this range is presumably accurate for the current ASOS

temperature instruments.
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2.2 Site Locations and Classifications

The 76 stations chosen for this investigation were widely scattered across the
continental United States (CONUS). Table 2.1 gives a complete listing of all the stations
investigated in this study including station identifier (SID), station name, station location,
and commissioning date when applicable.

Much of the data analysis involved stratifying the data into daytime and nighttime
hours. In order to use the same set of hours for daytime and nighttime analysis, the
stations were divided into groups based on their respective Local Standard Time Zone.
Daytime was defined as the seven-hour period inclusive of 9:00am to 3:00pm LST, and
night as the seven-hour period inclusive of 10:00pm to 4:00am LST. Table 2.1 also
shows which time zone each of the stations is in, as well as the number of seasons each
station had available for a complete analysis.

Each of the stations is classified based on the amount of data available for
comparison at that station. The amount of data available is largely a function of
installation dates, commissioning dates, and system outages. Since the ASOS systems
used during the period of comparison with CONV temperature observations were not
commissioned, it is likely that the pre-commissioned ASOS maintenance standards were
different from those required for commissioned ASOS instruments. There are three
categories of stations for analysis: four-season stations, three-season stations, and two-
season stations. ACY is in the 4-season group, but was analyzed separately for the
additional summer season because the ASOS instrument was relocated during this study.

Each season consists of three consecutive months based on the following divisions:
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Table 2.1 Stations used in Temperature Comparison Study

SID_|Station Name and Location "LST Zone | _# of ssasone Dste Commissioned
|_ABE JAllentown, PA Eastern 3
ABQ _|Abuguergus, NM Mountain 3
ACY*® |Atlantic City, NJ Eastern 4
3 Commissioned Aug-95
Commissioned Aug-95
Commissioned Jul-95
Commissioned Jun-85
4
2 Commissioned May-85__|
BIS 4
CAE 4
CAK 2
CLE 4
|_COU_|Columbia, MO Central 4
CYS |Cheyenne, WY Mountain 4
| _DAB_|Daytona Beach, FL Eastern Commissioned Jun-85
[ DAY |Dayton, OH Eastern
| _DRA _|Mercury, NV Pacific
DSM__|Des Moines, IA Central 4
DTW | Detrot, M| Eastern 3 Commissioned Jul-95
ERI__|Erie, PA Eastern 4
EUG |Eugene, OR acific 3
FAR _|Fargo, ND Central 4
Flint, MI Eastern 2 Commissioned Jun-95
Fsp* Isioux Falls, SD Central 4
FWA |Fort Wayne, IN __Eastern E
GEG_|Spokane, WA Pacific F
GJT _|Grand Junction, CO Mountain
GRB_|Green Bay, Wi Central 4
HON |Huron, SD Central
INL__lIntemational Fall, MN Central
INW__ |Winslow, AZ Mountain Commissioned Jul-95
ISN__|Williston, ND Central 2
JAX |Jacksonville, FL Eastern 4
JKL |Jackson, KY Eastern 4
LAN ILansing, M| Eastern 3
LAS |[Las Vegas. NV Pacific 4
LBB |Lubbodk, TX Central 3
LBF®_|North Platte, NE Central 2
LCH |Lake Charles, LA Central 3
LEX®_|Lexington, KY Eastern 4
MC| |Kansas cgy, MO Central 3 Commissioned Jul-85
MCO _|Oriando, FL Eastern 4
MGM |Montgomery, AL Central 3 Commssioned Jul-95
MHS |Mount Shasta, CA Pacific 4
MKE _|Milwaukee, WI Central Commissioned Jul-85
MKG |Muskegon, M| Eastern
ML! _[Moline, IL Central k Commissioned Jul-95
MOB |Mobile, AL Central 4
MSN IM adison, WI Central F
MSO M la, MT Mountain
OFK _|Norfolk, NE Central S
ORH Wi ter, MA East Z Commissioned Jul-95
PAH* |Paducah, KY Central 2 Commissioned Aug-95
on, OR Pacific Commissioned Jun-95
Pacific 3
Central &
, SD Mountain 4
A Pacific 4
RFD _JRockford, IL Central 3 Commissioned Jul-95
RSL__|Russell, KS Central 4
RST _|Rochester, MN Central 3
SAV_ |Savannah, GA Eastern 4
SBN _|South Bend, IN Eastern 4
SGF"_|Springfield, MO Central 4
SJT__San Angelo, TX Central 2
SLN |Salina, KS Central 4
SPI ingfield, IL Central 4
SUX_|Siowx City, IA Central K Commissioned Jun-95
TLH |Tallahassee, FL Eastern 4
TRI_|Bristol, TN Eastorn 2
TUS |Tucson, AZ Mountain 4
VTN _|Valentine, NE . Central 4
YNGE_|Youngstown. OH _Eastern 4

< Coll d Station

¥ |station moved
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Table 2.2 Seasonal Divisions

[_Season ~ From To

Fall September 1, 1994 November 30, 1994
Winter December 1, 1994 February 28, 1995
Spring March 1, 1995 May 31, 1995
Summer June 1, 1995 _August 31, 1995

A station is considered to have enough data for a full season’s analysis if there are enough
observations from both CONV and ASOS present to yield 2/3 of the possible number of
temperature comparisons for that season (basically two out of three months worth of data
must be present). Of the 76 stations, 31 comprise the four-season list, 35 are on the three-
season list, and 10 qualified for the two-season list. Figures 2.4, 2.5, and 2.6 are
geographical representations of the locations of the four-season, three-season, and two-
season stations, respectively.

A few sites, APN, LEX, and YNG, were found to be collocated sites meaning the
two temperature instruments were within several yards of each other. However at other
sites, it was discovered that the two instruments were often positioned much farther from

each other, in some cases distances greater than one mile were reported, which leads to

our next discussion.

2.3 Location Effects

One of the most complicating factors in maintaining integrity in the temperature
time series at any station is changing the location of the temperature measuring device.
With the installation of ASOS came the decision to place the ASOS sensor array out in the

airfield close to the touchdown zone of a primary runway. This new location was, in many
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cases, quite different from where the CONV instrument was taking ambient air
temperature measurements.

Site requirements for the HO83 aspirator called for mounting the unit
approximately five feet above the ground in any location that could provide unobstructed
air flow through the sensor assembly (Instruction Manual Hygrothermometer HO83,
1984). Consequently, these instruments were placed at various distances away from the
weather station building, and preferably in locations as far away from standing water and
dense vegetation as possible to minimize their effects, especially on the dew point.

Location changes of only a few hundred yards put ASOS further away from
buildings and interference from other anthropogenic structures. Occasionally there were
times when the ASOS location coincided with the HO83 installation site and the two
instruments essentially wound up being collocated. The placement of ASOS in a new
location could cause the instrument to be affected by a variety of local effects, which are
much different from a site near a building, especially if ASOS is installed near the end of a
runway as intended.

Obviously, altering exposure elements between the two sensors is going to cause
differences in measured ambient air temperature. In the most extreme cases, when ASOS
is installed up to miles away, these differences can be quite distinct. This investigation
examines the effects on temperature difference between ASOS and CONV measurements

due to these instrument relocations.
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2.4 Observations

The data examined in this study consists of over 1,500,000 hourly SAOs from 76
weather stations across the continental United States for a one-year period. Each station
had two data streams for comparison. One was the conventional data which included all
official observations transmitted during the year of study, including hourly observations,
special observations, and record special observations along with any corrections (CORs)
to those observations; and the second was the unofficial, pre-commissioned ASOS
observations for the same time period, when available, for the same stations. First, the
CONYV and ASOS hourly SAOs were separated from the rest of the observations. Next,
ambient surface air temperature data, reported in whole degrees Fahrenheit, was extracted
for each hour from each of the data streams for comparison. Needless to say, when one or
both of the data streams were missing for any of the hours, no comparisons were made for
those times.

An important note on observation timing should be included here. ASOS is a fully
automated observing system and the temperature value which is sent as the current
ambient value is the latest 5S-minute average at 56 minutes past the hour. On the other
hand, CONV SAOs are recorded for transmission sometime between 50 and 59 minutes
after the hour. Since the temperature value must be physically read by the observer and
entered into the computer for transmission, there is no guarantee that the ASOS and the
CONYV 5-minute average temperature values will even be for the same five minutes since

the observer can read the HO83 Display Unit at any time within roughly a 15 minute
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window. These timing differences may lead to even greater temperature differences
between reported ASOS and CONYV values, especially during periods when the
temperature is changing rapidly. These effects cannot be isolated since it is not possible to
know exactly when an observer recorded the HO83 ambient temperature, which could be

several minutes prior to transmission time.
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3.0 TEMPERATURE COMPARISONS

3.1 Concepts

The installation of ASOS marks a transition from CONV observations to
automated observations with three important factors: a change of instruments, a change in
location of instruments, and an expectation that solar heating effects will be larger for the
conventional HO83 instrument (McKee, et al., 1996). Any contribution to temperature
differences between ASOS and CONYV will be due to a combination of these components.

For each station the hourly SAO temperature values, which are transmitted in
whole dégrccs Fahrenheit, were compared using the difference technique where

AT = Tasos — Tconv 3.1)
with the symbols being the ASOS temperature (Tasos), the CONV temperature (Tconv),
and the difference between them (AT). The resulting AT was expressed as a linear
combination of its three contributions: instrument bias (inherent in the manufacture of the
temperature sensor), local effects (due to instrument separation and determined by local
climatic anomalies), and solar effects (due to exposure to solar radiation, a daytime
phenomena only), such that

AT = AT; + AT, + AT, 3.2)
where the subscripts i = instrument bias, 1 = local effects, and s = solar effects (McKee, et

al., 1996).
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Ideally, the three components are separate and distinct contributions. However in
reality, it is not possible to completely separate the components, especially the daytime
local effects and solar effects. In addition, the temperature differences often fluctuate over

time due to various causes discussed in the next section.

3.2 Data Problems

In addition to the data gaps caused by installation dates, commissioning dates, and
systems outages previously mentioned, several other data problems affected this
investigation. As a rule, temperature differences between ASOS and CONV
measurements were ignored if the difference was greater than +9°F or less than -9°F.
Differences beyond this range were considered to be outliers caused by some sort of
instrument malfunction or data processing problem and were excluded from this analysis.
Indeed in many instances, these outliers occurred just before an ASOS system outage.

Compounding the location effects caused by installing ASOS at some distance
away from the HO83 was the decision by the National Weather Service to relocate an
ASOS instrument sometime during the course of this investigation and after the initial
installation. Included as an example, the ASOS at ACY was installed and transmitting
weather observations at the beginning of this study. Then in late spring, the ASOS was
moved to a site which clearly changed the observed temperature. Other stations like PAH
underwent relocation which made continual analysis at those stations for the complete
year impossible since CONV data was no longer available for the original site.

Close examination of the temperature differences between ASOS and CONV

instruments at each station also revealed several unexplained irregularities in the data. For
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example, why did AT suddenly change sign convention from negative to positive (ACY),
now known to be the result of an instrument move, or positive to negative (VIN)? And
why does AT have short excursions that don’t seem to match long-term, temperature-
difference patterns at certain stations (ERI, SGF)? In order to answer these and other
questions, it was decided to examine the temperature differences between the two
instruments at each station looking at the complete year’s worth of data in a single
snapshot. The resulting analysis was very helpful in discovering when the two stations
exhibited a change in the normal temperature-difference pattern. First, seasonal
accumulated temperature difference plots were generated for each station using all hours.
These graphs were helpful in depicting significant fluctuations in temperature differences
at each site. Any fluctuations indicate that something happened to one or both of the
instruments at that site. Since there are two instruments at each location for comparison it
is impossible to know which instrument changed without a third, control instrument.
What is for certain is that something changed the temperature relationship between the
two instruments. These changes could be the result of an instrument being moved,
maintenance, replacement of a sensor, or electrical problems. To further investigate the
shifts in temperature differences between the two instruments, AT highest hourty and AT iowest
nourty time series plots were generated for each station for the whole year. These plots
were very helpful in determining exactly when a shift occurred, how long it lasted, and

whether it affected both the highest and lowest hourly temperatures values equally.



3.2.1 Accumulated AT Plots

If two sensors behave the same way all of the time, then a reasonable assumption
would be that any temperature difference distinguished between the two should remain
fairly constant with time. Graphically, there would be a linear relationship between the
accumulated AT and time, with the slope of this line being proportional to the overall bias
(McKeg, et al., 1996). However, any changes in the slope of this line indicate that
something changed the temperature relationship between the two instruments.

Figures 3.1(A) - (G) depict seasonal accumulated temperature difference plots for
seven stations. Fall and winter comprise the first row while spring and summer are on the
second row. Accumulated AT are the y-axis values, with days per season along the x-axis.
For each season, all of the hourly temperature differences are plotted as a running total
over time. Due to the large numbers of hourly observations, the beginning of each new
season starts over with accumulated AT = 0.

Beginning with a fairly well-behaved station in Figure 3.1(A), CYS exhibits a
reasonably constant, linear relationship between accumulated AT and time. The slope of
the line is such that -2000°F would be accumulated in 100 days in the fall. A total of 100
days with 24 observations per day with a -1°F difference each hour would lead to a total
accumulated AT of -2400°F . Thus the hourly temperature difference for CYS in the fall
is roughly -0.83°F each hour. All four seasons are quite smooth and have similar slopes,
except for a slight shift during the summer season. The next Figure 3.1(B) strongly
supports evidence of an ASOS instrument move at ACY sometimc in late spring. Until

that point, the overall pattern of the slope at ACY is negative; but after the instrument
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move, the relationship between the two instruments is dramatically different with an
emerging positive slope toward the end of the summer season. Figure 3.1(C) is a nice
example of a station which exhibits a trend over time. In other words, with each passing
season, the accumulated AT between the two sensors at CLE is becoming larger resulting
ina mbrc negative slope over time. ERI in Figure 3.1(D) shows a quite dramatic, but only
temporary, anomaly during late fall and early winter. The slope of the line changes
considerably both in sign and value. The overall slope of the anomaly itself is positive
over the course of its duration. Afterwards, ERI seems to return to its previous
relationship between the two sensors. In Figure- 3.1(E) TUS is moderately well-behaved
in the first three seasons. The slope does change slightly quite often, and there is a brief
period of missing data in the winter; but the overall behavior is fairly consistent. Then
something happened in the summer! All of a sudden there is no longer a constant
accumulation in the temperature difference between the two instruments. Upon
examination of the raw data, it was discovered that the two instruments reported the exact
same temperature value for most hours during the months of July and August. This likely
means that one of the observations was edited. There is still a very slight, negatively
sloped accumulation of temperature differences after June, but the relationship is
significantly different. Next, one of the few stations with a positive bias, seen in Figure
3.1(F), VTN suffers a significant change in its slope sometime in the spring. The change is
dramatic enough to completely alter the sign of the slope to a negative value by the
summer season. In the last plot, Figure 3.1(G), SGF is plagued by problems. The

accumulated AT plot meanders constantly with time. Despite an overall trend toward a
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negatively sloped relationship, there are several periods of varying duration that display an
obviously positive slope.

There could be many reasons for these changes in accumulated temperature
differences over time. They include instrument moves, maintenance, sensor changes,
electrical problems, weather events, and seasonal effects. Any of these could affect either

the ASOS or CONYV instrument.

3.2.2 Time Series Analysis

To further investigate shifts in temperature differences over the period of study,
time series plots of temperature differences between the daily ASOS and CONV highest
hourly and lowest hourly values were generated for each of the stations for the whole year
(see Appendix A). Figures 3.2(A) - (C) are examples of these temperature time series
analysis for AThighest nourty A1d ATiowest bourty. Again, shifts in the now non-accumulated AT
patterns indicate changes between the two instruments. Differences between the highest
hourly values are plotted in the top graph, and differences between the lowest hourly
values are on the bottom. Both graphs run sequentially from fall through summer, with
daily legend values given in the upper right-hand corner of each plot.

In Figure 3.2(A), the instrument move in late spring is again quite noticeable for
ACY, especially for ATiowestnourty although not so obvious for AThighest bowsty. The annual
trend at CLE is notable in both temperature difference patterns in Figure 3.2 (B) as the
mean of each plot becomes more negative with time. In Figure 3.2(C), the summer shift at

TUS is significant in AThighest hourty, and quite perceptible in the ATiowesthouwrly. These plots
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confirm that ASOS is cooler than CONV measurements as evidenced by the negative
averages of the time series plots. Most of these figures, the rest of which are located in
Appendix A, do not present strong evidence supporting the existence of annual cycles in
the temperature difference patterns, but more is discussed on this topic in section 3.7.
After examining the irregularities in temperature difference patterns, the next focus was to
isolate, as much as possible, the three contributions to the differences in temperature

values between ASOS and CONV measurements.

3.3 The Instrument Bias, AT;

Determining the temperature difference caused solely by the instrument bias
required finding meteorological conditions which would reduce the other two effects.
Eliminating the solar effect was quite easy by requiring nighttime analysis of the data. In
order to eliminate local effects between the two instruments, conditions were selected
which would minimize these local effects by homogenizing the surface boundary layer.
The optimum conditions selected for this criteria were nighttime, high-wind analysis and
nighttime, overcast-sky analysis such that AT = AT;, since AT; ~ 0 and AT, = 0.

Nighttime was defined as the seven-hour period inclusive of 10:00pm to 4:00am LST.

3.3.1 Nighttime, High-wind Analysis

Once the solar effect was eliminated, attention was turned to finding a relationship
between AT and wind speed. With sufficient wind speeds at the surface, the boundary

layer should be adequately mixed to eliminate local effects between the two instruments.
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Homogenizing the boundary layer diminishes local temperature differences due to drainage
currents, cold pools, radiational effects, and effects due to placement close to water. A
consistent surface layer should be sampled by both instruments and reported as the same
temperature unless there are differences in the two instruments inherent in their
manufacture.

It was proposed that as wind speeds near the surface increased, the distribution of
temperature differences between the two instruments would narrow to a range of only a
few values which would include the instrument bias. In order to examine the population
distribution of temperature differences within the range of -9°F < AT < +9°F, tabular
results for AT versus increasing wind speed were computed for each station for each
season, both for all synoptic hours and all wind speeds (top table), and for nighttime hours
with wind speeds = 10 knots (bottom table) as seen in Tables 3.1(A) - (E). In each of the
columns is recorded the number of comparisons having a temperature difference equal to
AT along the first row with the corresponding wind speed category in the far left-hand
column. All of the graphs display similar characteristics of having a broad temperature
difference population distribution at lower wind speeds, and a narrowing of the
distribution as wind speed increases. This narrowing of the AT distribution at higher wind
speed is also evident in the nighttime, high-wind tables as well, though not quite as
dramatic. Tables 3.1(A) & (B) are examples of stations with fairly even distributions at
low wind speeds which taper to a range of only two to three values for AT at higher wind
speeds. The other three tables depict the same overall pattern; but 3.1(C) & (D) have
distributions which are skewed toward the negative AT values at low wind speeds, and

3.1(E) is skewed toward the more positive AT values at low wind speeds.
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Table 3.1 (A) Tabulated temperature differences versus wind speeds for Cleveland, OH.

CLE fall, all hours, all wind speeds ASOS - Conv
Wind Spd -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 4 5 6 7 8 9 Sum Mean & top 3
2

80, -0.47

N w

(] 4 16 26 16 10 4
1 0, 0.00
2 0, 0.00
3 1 6 9 16 20 24 12 8 4 100, -0.68
4 4 8 11 35 43 41 15 14 3 174, -0.84
5 4 23 57 58 38 14 1¢ 3 ¢ 1 216, -0.86
6 2 6 4 24 S5 71 42 12 16 6 4 1 243, -0.94
7 1 1 2 1 13 53 53 28 23 12 10 & 1 202, -0.63
8 2 2 14 69 97 47 9 10 1 2 253, -1.01
9 2 10 45 61 31 4 4 2 1 160, -1.04
10 1 12 51 79 36 8 3 1 191, -1.07
11 1 7 26 S0 28 4 2 118, -1.01
12 10 37 44 32 2 2 127, -1.12
13 5 27 34 10 2 78, -1.29
14 7 16 18 14 1 56, -1.25
15 7 22 19 & 52, -1.62
16 4 14 19 & 41, -1.44
17 2 4 10 16, -1.50
18 2 16 6 24, -1.83
19 101 1 4 7, -1.86
20 3 7 3 13, -2.00
21 3 1 4, -1.75
22 4 3 7, -1.57
23 i 2 3, -1.33
24 2 1 3, -1.67
25 b 1, -1.00
26 1 i, -1.00
27 i 1 2, -1.50
28 0, 0.00
29 0, 0.00
30 0, 0.00
31 0, 0.00
32 0, 0.00
Total 0 0 1 3 15 30 168 578 725 395116 89 32 17 3 0 O 0 0 2172, -0.98 78.2%
~rT  fall , night, high winds ASOS - Conv
Wwind spd -9 -8 -7 =6 =5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 Sum Mean &% top 3
10 i 5 9 14 6 3 1 39, -1.18
11 4 12 9 1 1 27, -0.63
12 112 9 9 1 1 33, -1.00
13 1 7 7 2 1 18, -1.28
14 2 2 5 & 13, -1.15
15 4 4 8, -1.50
16 4 5 1 10, -1.30
17 1 2 3, -1.67
18 1 2 1 4, -2.00
19 1 1, -4.00
20 2 1 1 4, -2.25
21 i 1, -1.00
22 0, 0.00
23 2 2, -1.00
24 101 2, -1.50
25 i 1, -1.00
26 0, 0.00
27 i i, -1.00
28 0, 0.00
29 : 0, 0.00
30 0, 0.00
31 0, 0.00
32 0, 0.00
Total 0 0 0 0 0 2 13 46 66 31 6 3 0 O O O O O O 167, -1.16 85.6%
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Table 3.1 (B) Tabulated temperature differences versus wind speeds for Tucson, AZ.

TUS winter, all hours, all wind speeds ASOS - Conv

Wind Spd -9 -8 -7 -6 =5 -4 -3 -2 -1 0 1 2 3 4 S 6 7 8 9 sSum Mean &% top 3
0 1 3 18 31 56 86 36 20 2 253, -0.43
1 0, 0.00
2 0, 0.00
3 3 12 24 70 47 29 4 2 191, -0.64
4 3 1 16 34 98 65 22 8 3 250, -0.74
H 1 4 19 50 74 69 21 2 1 1 242, -0.89
6 2 16 39 60 49 21 5 1 1 194, -0.79
7 1 2 9 40 60 38 16 3 169, -0.95
8 1 2 16 23 45 28 11 7 1 134, -0.93
9 1 3 4 19 22 19 5 .4 1 78, -0.94
10 1 4 15 17 12 7 3 1 1 61, -0.67
11 2 7 9 12 4 1 35, -0.66
12 2 3 7 8 6 5 1 32, -1.00
13 10 9 2 21, -0.38
14 i 1 5 8 2 17, -0.47
15 i 3 7 6 2 19, -0.74
16 4« 9 3 1 17, -0.94
17 2 71 9 18, -0.61
18 2 2 6 10, -0.60
19 4 3 2 9, -1.22
20 1 1, -1.00
21 2 2, -1.00
22 1 1, -1.00
23 1 1 2, -0.50
24 1 2 1 4, -1.00
25 i 1 2, -1.00
26 1 1, -1.00
27 0, 0.00
28 0, 0.00
29 0, 0.00
30 0, 0.00
31 0, 0.00
32 0, 0.00

Total 0 1 0 1 8 21121307570477184 58 12 0 O 1 1 1 0 1763, -0.75 76.8%

TUS winter , night, high winds ASOS - Conv

Wind Spd -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 & 5 6 7 8 9 Sum Mean % top 3
10 2 2 2 5 5° 1 17, -0.29
11 1 3 1 5, 0.00
12 2 2 1 1 6, 0.17
13 1 1 1 3, 0.00
14 1 1 2 4, 0.25
15 1 2 3, 0.33
16 2 1 3, -0.33
17 1 3 4, -0.25
18 1 1 2, -0.50
19 1 1, 0.00
20 0, 0.00
21 o, 0.00
22 b 1, -1.00
23 0, 0.00
24 0, 0.00
25 0, 0.00
26 0, 0.00
27 0, 0.00
28 0, 0.00
29 0, 0.00
30 0, 0.00
31 0, 0.00
32 0, 0.00

Total 6 0 o 0 0 ©0 2 2 13 17 13 2 ©0 0 0 O O 0 © 49, -0.12 87.8%
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Table 3.1 (C) Tabulated temperature differences versus wind speeds for Atlantic City, NJ.

ACY fall, all hours, all wind speeds ASOS - Conv

Windspd -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 Sum Mean & top 3
0 3 2 4 9 13 28 38 33 42 26 13 1 1 1 214, -2.34
1 0, 0.00
2 0, 0.00
3 1 2 3 4 6 10 23 25 49 47 5 8 i 184, -1.53
4 1 3 1 7 20 41 87 89 133 5 1 1 289, -0.82
S 1 2 4 4 14 31 104 113 44 15 2 1 1 2 338, -0.48
6 1 2 10 17 78 114 37 15 5 1 1 281, -0.23
7 3 15 S5 92 3§ 3 1 1 206, -0.22
8 1 3 57 56 31 2 1 2 153, -0.13
9 1 2 4 37 62 1is8. 2 126, -0.26
10 3 26 56 12 3 100, -0.14
i1 1 2 20 36 6 1 66, -0.29
i2 1 16 17 8 1 43, -0.19
13 1 15 22 7 45, -0.22
14 8 20 5 2 35, 0.03
15 7 15 3 25, -0.16
16 1 1 12 3 1 8, 0.06
17 5 9 2 16, -0.19
18 3 6 9, -0.33
19 1 1 1 3, -0.33
20 1 3 4, -0.25
21 2 2, 0.00
22 1 i, 0.00
23 3 3, 1.00
24 1 i, 0.00
25 0, 0.00
26 0, 0.00
27 0, 0.00
28 0, 0.00
29 0, 0.00
30 0, 0.00
31 0, 0.00
32 0, 0.00

Total 4 S 8 19 24 52 113 177 611 800 267 59 11 5 5 0 2 0 0 2162, -0.65 77.6%

ACY fall , night, high winds ASOS - Conv

Wind Spd -9 -8 =<7 <=6 =5 <-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 Sum Mean & top 3
10 6 13 19, -0.32
11 3 7 10, -0.30
12 5 1 2 8, -0.38
13 i 1 2 4, ~0.75
14 1 2 3, -0.33
15 & i 2, -0.50
16 3 3, 0.00
b ] 1 1, -1.00
18 p & 1, 0.00
19 0, 0.00
20 1 1, -1.00
21 1 i, 0.00
22 0, 0.00
23 6, 0.00
24 0, 0.00
25 0, 0.00
26 = 0, 0.00
27 0, 0.00
28 0, 0.00
29 0, 0.00
30 0, 0.00
31 0, 0.00
32 0, 0.00

Total o o o0 0o o0 O O 1 19 31 2 0 0 0 O O O ©O0 O 53, -0.36 98.1%
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Table 3.1 (D) Tabulated temperature differences versus wind speeds for Sioux Falls, SD.

FSD spring, all hours, all wind speeds ASOS - Comv

Wind Spd -9 -8 -7 =6 =5 =4 -3 -2 -1 0 i 2 3 4 L 6 7 8 9 Sum Mean &% top 3
0 4 3 7 9 13 19 10 11 10 1 87, -3.21
1 1 1, -4.00
2 3 5 4 6 5 1 24, -2.67
3 1 1 i 6 6 5 8 14 9 8 2 61, -2.77
4 1 4 2 8 17 22 42 19 2 1 118, -1.74
S 2 4 9 16 24 55 21 5 1 137, -1.55
6 1 2 4 23 27 713 M 9 1 174, -1.26
7 - 1 1 1 1 2 16 17 65 35 6 145, -1.21
8 4 3. 4 15 26 92 45 9 4 202, -1.12
9 1 6 19 65 42 3 136, -0.91
10 1 1 6 36 89 55 4 1 193, -0.94
11 1 1 8 19 72 35 10 146, -0.91
12 2 8 9 89 48 LS 1 162, -0.81
13 1 2 5 52 43 5 1 109, -0.60
14 1 3 4 8 S0 29 8 103, -0.84
15 2 4 12 54 2 5 3 111, -0.78
16 3 6 19 26 1 55, -0.71
17 1 12 29 18 3 63, -0.84
18 3 10 31 20 2 1 67, -0.84
19 b 3 1 7 2 24, -0.75
20 1 9 4 : ! 15, -0.73
21 3 4 1 8, -0.25
22 i 6 1 1 9, -0.78
23 3 5 2 10, -1.10
24 1 - 6, -1.17
25 5 p | 6, -0.83
26 7§ 3, -0.67
27 d 2, -1.00
28 1 1, 0.00
29 0, 0.00
30 1 1, -1.00
31 1 1, -1.00
32 0, 0.00

Total 2 6 6 25 33 61 165 291 950 542 85 13 1 0 0 1] 0 0 0 2180, -1.18 81.8%

FSD spring , night, high winds ASOS - Conv

Wind spd -9 -8 -7 -6 -5 -4 -3 -2 -1 o 1 2 3 4 5 6 7 8 9 Sum Mean & top 3
10 9 24 15 1 1 50, -0.78
11 1 S 19 5 4 34, -0.82
12 1 23 12 2 38, -0.61
13 12 10 22, -0.55
14 i 10 9 20, -0.60
15 1 18 8 1 28, -0.64
16 2 4 3 9, -0.89
17 8 4 12, -0.67
18 S 3 : 8, -0.62
19 2 3 5, -0.40
20 2 2, -1.00
21 1 5 1, 0.00
22 3 1 - 4, -0.50
23 2. 2, -1.00
24 0, 0.00
25 1 1 2, -0.50
26 . 0, 0.00
27 0, 0.00
28 0, 0.00
29 0, 0.00
30 0, 0.00
31 0, 0.00
32 0, 0.00

Total 0 0 0 0 0 0 1 19 133 724 8 2 0 0 0 0 0 0 0 237, -0.68 95.4%
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Table 3.1 (E) Tabulated temperature differences versus wind speeds for Tallahassee, FL.

TLH summer, all hours, all wind speeds ASOS - Conv

WindSpd -9 -8 -7 -6 -5 -4 =3 -2 -1 0 1 2 3 4 5 6 7 8 9 Sum Mean &% top3
0 2 14 32 73 151 136 60 15 3 1 487, 0.27
1 0, 0.00
2 0, 0.00
3 7 32 71 70 48 21 9 3 3 264, -0.05
4 2 12 47112 54 16 6 & 4 1 258, -0.73
5 2 11 56112 29 9 11 1 1 232, -0.98
6 9 64115 48 9 1 1 1 228, -0.93
7 2 2 23109 24 1 161, -1.04
8 1 5 29 89 28 2 2 156, -1.03
9 8 15 58 19 1 101, -1.10
i0 24 45 14 2 85, -1.07
11 1 1011 42 13 2 1 71, -0.96
12 1 11 28 11 1 48, -1.00
13 1 1 1 18 6 1 28, -0.93
14 1 3 8 2 1 15, -1.00
15 2 2 1 10, -1.00
16 1 2 1 4, -2.00
17 7 01 8, -0.88
18 i1 & 5 11, -1.82
19 1 5 6, -1.17
20 1 s 1 7, -1.14
21 1 2 3, -1.00
22 1 1 2, -5.00
23 1 1, -1.00
24 0, 0.00
25 1 1, -1.00
26 0, 0.00
27 o, 0.00
28 0, 0.00
29 0, 0.00
30 o, 0.00
31 0, 0.00
32 0, 0.00

Total i 0 0 0 2 11 75337908 474229103 30 11 S5 ©0 1 O 0 2187, -0.58 78.6%

TLH summer , night, high winds ASOS - Conv

wind Spé¢ -3 -8 -7 -6 -5 -4 -3 =2 -1 0 1 2 3 4 5 6 7 8 9 Sum Mean & top3
10 1 3 4, -1.25
11 5 5, -1.00
12 2 1 3, -0.67
13 3 3, -1.00
14 1 1, -1.00
15 1 1, -1.00
16 0, 0.00
17 0, 0.00
18 1 1, -2.00
19 1 2, -1.50
20 2 2, -1.00
21 0, 0.00
22 0, 0.00
23 1 1, -1.00
24 0, 0.00
25 0. 0.00
26 0, 0.00
27 0, 0.00
28 0, 0.00
29 0, 0.00
30 0, 0.00
31 0, 0.00
32 0, 0.00

Total ¢ o 0 0 0 O0 ©0 3 1 1 0 O O O O O0 0 0 O 23, -1.09 100.0%



Initially, wind speeds of 15 knots and greater were used in attempting to isolate the
instrument bias. Observations were chosen for analysis when the ASOS winds were
reported to be in excess of 14 knots, unless the ASOS winds were missing, in which case
the CONV winds had to be in excess of 14 knots. However, compared to the total
numbers of temperature comparisons available for each station, there were just too few
nighttime observations with wind speeds greater than 14 knots to conclude that the
instrument bias had been determined with any certainty. Lowering the wind speed
requirement to 10 knots and greater did allow for more temperature comparisons, but the
resulting biases were plagued by a few erratic numbers in the highest wind speed
categories.

Graphical examples of these findings can be seen in Figures 3.3(A) - (D) which
depict average temperature difference as a function of wind speed using every observation
available during the course of the year. Nighttime observations are shown with a dotted
line, daytime with a dashed line, and the average over all observations with a solid line.
One item to note about these plots is the omission of reported wind speeds at 1 and 2
knots. Since wind speeds are reported as either calm (< 3 knots) or as 3 knots and above,
the lowest wind speed categories (0 knots, 1 knot, and 2 knots) were all assigned the
value computed for calm winds. It was initially suggested that AT would asymptotically
approach some fixed value very near the instrument bias as wind speeds increased. And
indeed the overall trend toward a fixed value in these plots reflects that potential.
However, as seen in each of the figures, the temperature difference did not smoothly
approach a fixed value for the instrument bias. At the highest wind speeds, all of the lines

become more erratic and unstable as the numbers of observations decrease considerably.
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Fig. 3.3 (A) Wind speed versus temperature difference for Sioux Falls, SD.
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Fig. 3.3 (B) Wind speed versus temperature difference for Savannah, GA.
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Fig. 3.3 (D) Wind speed versus temperature difference for Springfield, MO.
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As a result of the low numbers problem associated with the nighttime, high-wind analysis,
it was decided to use nighttime observations with overcast skies to determine instrument

biases for each location.

3.3.2 Nighttime, Overcast-sky Analysis

The theory behind using overcast skies at night was to have enough cloud cover
over an area to provide a downward infrared radiation source at the cloud base which
would reduce horizontal temperature differences at the surface (McKee, et al., 1996). If
the cloud cover is thick enough and covers an area somewhat larger than the distance
between the ASOS and CONV instruments, and assuming that the cloud is radiating at a
uniform temperature, then it would not take long for the downward infrared flux from the
cloud to decrease temperature inhomogeneities in the surface layer below the clouds. This
is accomplished through the net infrared radiation at the surface as the downward flux acts
to diminish the magnitude of cold pools and warm spots at the surface.

Observations were selected for comparison when the highest sky cover category
reported by ASOS was overcast, unless the ASOS sky cover field was missing, in which
case, the temperature comparison was not done. The 12,000 feet limit of the ASOS
ceilometer ensures low clouds were detected. There were many more nighttime
observations reported with overcast skies than nighttime observations reported with high
winds for an overwhelming number of stations. Population distributions of temperature
differences versus cloud cover amount were calculated in Tables 3.2(A) - (C). For each

station, the top table represents all observations from a particular season, while the bottom
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table is only the nighttime hours for that same season. Each table shows a broad
distribution of AT values for clear skies. But as the cloud cover amount increases to
scattered, then to broken, and then to overcast, there is a significant narrowing of the
distribution to a range of only a few values. In fact for all of the stations, as cloud cover
increased to overcast, the distribution of the temperature differences narrowed such that
over 90% of all the measured ATs were always within the top three numbers. Graphically,
plots of AT versus cloud cover smoothly approach a fixed value for the instrument bias as
seen in Figures 3.4(A) - (D). Although both nighttime, high-wind and overcast-sky
analyses showed that ASOS was cooler than CONV at most stations, the nighttime,
overcast-sky analysis was selected as the method for isolating the instrument biases.
Seasonal instrument biases were calculated for each station using the following

technique:

((AT,,)(Number of Observations with AT,, ))

el

ATi =

— . (3.3)
z (Total Number of Observations)

with m defined as the range of possible temperature difference values between -9°F and
+9°F. Annual values were calculated by adding up the seasonal instrument biases
multiplied by the number of observations used to determine each seasonal bias, then
dividing by the total number of nighttime overcast observations for the whole year. The
resulting seasonal and annual instrument bias values, which are given in Tables 3.3(A) -
(O, are predominantly negative. Seasonal contributions range from -2.17°F (ATL in the

fall) to +1.17°F (ORH in the spring). Annual instrument biases ranged from -1.96°F
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Table 3.2 (A) Tabulated temperature differences versus cloud cover for Savannah, GA.

SAV winter, all hours, all wind speeds
Sky Cover -9 -8 -7 -6 -5 -4 -3 =2

CLR 2 6 8 12 31 66 108 160
SCT 9 16
BKN 4 17
ove 4 53
Total 2 6 8 12 31 70 121 246

SAV winter, night only
Sky Cover -9 -8 -7 -6 -5 -4 -3 -2

CLR - 1 4 18 49 52 49
scT . 2 3
BKN 7
ovc 17
Total 1 0 0 4 18 49 5¢ 76

414
52
68

450

984
=1
104

17
147

274

0
219
24
29
211

483

ASOS - Conv
1 2 3 4 5 [
32 7 1
2
3
4

41 7 1 0 0 0

ASOS - Conv

e

2 3 4 S 6

0

Sum
1066,
103,
121,
722,

2012,

Sum
341,
12,
, 28,
212,

593,

Mean

-1.52
-1.06
-0.95
-0.78

-1.20

Mean
-1.93
-1.50
-1.11
-0.85

-1.50

% top 3

74.4%
89.3%
94.2%
98.9%

% top 3
61.0%
91.7%

100.0%

100.0%

Table 3.2 (B) Tabulated temperature differences versus cloud cover for Las Vegas, NV.

LAS spring, all hours, all wind speeds
Sky Cover -9 -8 -7 -6 -5 -4 -3 -2

CLR 2 16 93 298
SCT 1 5 24
BKN 3 7
ovc 2
Total 4] 0 o0 0 2 17 101 331
LAS spring, night only
Sky Cover -9 -8 -7 -6 -5 -4 -3 -2
CLR 1 4 17 65
ar 1
BKN
ove
Total 0 0 0 0 1 4 17 66

ASOS - Conv
-1 0 1 2 3 4 5
475 326 68 28 9
39 42 12 1 1
47 44 8 1
39 63 S
600 475 93 30 10 0 0
ASOS - Conv
-1 0 1 2 3 4 S
148 117 32 14 5
5 Q 3
8 14 1 1
17 22 2
178 162 38 15 5 0 0

Sum Mean % top 3
1315, -0.97 83.6%
125, -0.71 84.0%
110, -0.55 90.0%
109, -0.35 98.2%
1659, -0.88
Sum Mean % top 3
403, -0.68 81.9%
15, L.20 a5 At
24, -0.21 95.8%
41 -0.37 100.0%
486, -0.62

Table 3.2(C) Tabulated temperature differences versus cloud cover for Mount Shasta, CA

MHS summer, all hours, all wind speeds

SKky Cover -9 -8 -7 -6 -5 -4 -3 -2 -1
CLR 6 23 62 164 320 406
SCT 1 6 12 32 51
BKN 3 11 21 48
ove 1 1 4 15 74

Total 0 0 1 6 24 72 191 388 579

MHS summer, night only

Sky Cover -9 -8 -7 -6 -5 -4 -3 -2 -1
CLR 1 10 23 68 138 147
SCT 2 4 14 23
BKN 2 11 16
ove 4 30

Total 0 0 0 1 10 25 74 167 216

0
270
36
36
76

418

0
63
8
11
26

108

ASOS - Conv
1 2 3 4 5 6
138 93 48 8 2
15 3 1
10 5 b
8 3 1 1
171 104 50 9 2 1
ASOS - Conv
1 2 3 4 5 6
10
1

11 o o o0 0 O

50

Sum
1540,
157,
135,
184,

2016,

Sum

460,
51,
40,
61,

612,

Mean

-0.93
-0.99
-0.83
-0.57

-0.89

Mean
-1.66
-1.39
-1.10
-0.61

-1.50

% top 3

64.7%
75.8%
77.8%
89.7%

% top 3
76.7%
88.2%
95.0%
98.4%
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Fig. 3.4 (B) Cloud cover versus temperature difference for Savannah, GA.
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Fig. 3.4 (C) Cloud cover versus temperature difference for Des Moines, IA.
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Fig. 3.4 (D) Cloud cover versus temperature difference for Springfield, MO.
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Table 3.3 (A) Seasonal and Annual Instrument Biases for Four-season Stations and Average Temperature Difference over all Observations

Fall Instrument Bias Winter Instrument Bias | Spring Instrument Bias | Summer Instrument Bias | Annual Instrument Blas | All Possible Observations
number of number of number of number of Tot number
night ovc night ovc night ovc night ovc of night ove

Station ATy obs AT; obs ATy obs ATy obs ATy obs AT Number
ACY -0.41 112 -0.58 230 -0.46 224 -0.16 103 -0.499 566 -0.649 6508
BGM -0.49 247 -0.55 349 -0.82 227 -0.57 303 -0.597 1128 -0.680 7670
BIS -0.43 207 -0.15 303 -0.32 279 0.09 107 -0.239 896 -0.387 8667
CAE -0.51 162 -0.13 235 0.12 91 -0.07 94 -0.187 582 -0.218 8705
CLE -1.31 167 -1.87 361 -1.71 242 -1.73 i -1.572 841 -1.583 8716
cou 0.07 188 -0.08 267 -0.43 242 0.79 70 -0.219 765 -0.408 8580
CcYS -0.72 125 -0.48 148 0.7 278 -0.64 -0.645 632 -0.820 8674
DSM -1.24 187 -1.13 272 -1.24 284 -1.46 87 -1.227 830" -1.470 8603
ERI 0.02 203 -0.32 409 -0.45 258 -0.47 91 -0.207 959 -0.651 8320
FAR -0.62 147 1.12 280 -1.01 276 -0.97 92 -1.000 785 -1.232 8027
FSD -0.79 162 -0.47 275 -0.78 319 -1.09 86 -0.701 842 -1.350 8287
GRB -1.68 206 -1.37 313 1.4 181 -1.5 130 -1.474 830 -1.959 8132
JAX -0.33 151 -0.43 185 -0.26 61 0.08 7 -0.296 484 -0.441 7877
JKL 0.39 141 0.31 328 -0.06 208 0.16 50 0.210 725 -0.274 8680
LAS 0.23 28 -0.4 115 -0.37 41 -0.76 12 -0.393 194 -0.969 7958
LEX -0.26 151 -0.12 314 -0.34 184 0.2 54 -0.214 703 -0.354 8710
MCO 0.48 85 0.32 105 0.62 28 0.31 20 0.409 248 0.174 7025
MHS -0.09 147 -0.09 322 -0.16 181 -0.61 61 0.152 711 -0.420 7288
MOB -0.35 184 -0.24 222 -0.32 187 -0.26 21 -0.206 600 -0.408 8709
RAP 0.72 109 -0.45 165 0.4 280 -0.86 102 -0.537 656 -0.875 7995
RADD -0.42 113 -0.47 354 -0.48 197 -0.75 4 -0.460 668 -0.579 7837
RSL -0.03 116 -0.39 163 -0.38 218 -0.38 60 0.310 555 -0.559 8017
SAV -1.03 202 -0.85 212 -1.1 7 -1.12 43 -0.976 534 -1.568 7617
SBN -0.6 75 -0.28 406 -0.48 288 0.01 69 -0.353 838 -0.616 8548
SGF -0.73 202 -0.52 263 -0.08 194 -0.02 48 -0.426 705 -0.833 8238
SLN -0.29 127 -0.09 202 0.1 223 0.1 59 0.117 811 -0.438 7949
SPI -1 201 -0.76 300 -0.88 310 -0.57 47 -0.849 858 -1.104 8398
TLH -0.73 180 -0.84 '208 -0.68 131 -0.78 54 -0.759 573 -0.545 8678
TUS -0.81 37 -0.32 82 -0.92 25 -0.25 12 -0.527 156 -0.989 8209
VTN 0.24 124 0.52 183 0.15 287 -0.31 71 0.219 665 0.139 7570
YNG -0.49 165 -1.25 361 -1.51 181 -1.38 72_ -1.161 779 -1.257 7660

SUMS 4627 7940 6197 2163 20927 251942

MEANS -0.494 -0.461 -0.545 -0.559 -0.505 -0.752_




Table 3.3 (B) Seasonal and Annual Instrument Biases for Three-season Stations and Average Temperature Difference over all Observations

Fall Instrument Bias Winter Instrument Bias | Spring Instrument Bias | Summer Instrument Bias | Annual Instrument Bias | All Possible Observations
number of number of number of number of Tot number
night ove night ovc night ove night ove of night ove
Station AT, obs AT, obs AT, obs AT, obs ATy obs AT Number
ABE -1.18 233 -0.97 217 -0.67 130 -0.975 580 -1.418 5832
ABQ -0.94 112 -1.02 ) -0.48 56 -0.873 267 -1.410 6380
ALB -0.41 205 -0.88 337 -0.65 267 -0.685 809 -0.783 6419
ALO -0.65 156 -0.58 288 0.72 265 -0.640 709 -0.689 5497
APN -0.3 233 -0.4 401 -0.31 267 -0.347 801 -0.506 6084
ATL 217 185 -1.78 264 -2.04 113 -1.961 562 -2.557 6449
AUS -0.46 195 0.4 254 -0.25 302 -0.355 751 -0.419 8491
BFF -0.54 134 -0.24 157 -0.37 283 -0.374 574 -0.606 6455
DAB 0.01 140 0.1 172 -0.06 82 0.035 394 -0.165 8317
DAY -0.29 287 0.3 193 -0.13 81 -0.276 541 -0.455 5912
DTW 0.7 174 -0.89 3861 -0.68 239 -0.782 774 -0.946 8512
EUG -1.08 313 -0.9 252 -0.53 161 -0.896 728 -1.148 5761
FWA -1.03 159 -0.64 349 -0.6 215 -0.714 723 -1.053 6081
GJT -0.68 119 -0.56 218 -0.51 164 0.572 501 -0.888 7979
HON -0.18 1682 -0.24 279 0.12 72 -0.161 513 -0.223 6568
INL -0.61 182 -0.53 322 -0.77 208 -0.620 690 -0.887 5233
INW 0.4 40 0.73 117 0.5 74 0.599 231 0.026 5565
LAN 0.3 152 0.18 201 0.75 109 0.354 462 0.160 5624
LBB -0.61 140 -0.64 130 -0.67 43 -0.631 313 -0.920 8195
LCH -1.24 178 -1.37 208 -1.4 212 -1.342 596 -1.367 5797
MCI -0.22 174 -0.56 268 0.7 249 -0.525 691 -0.449 6359
MGM -1.3 173 -1.59 211 -1.72 102 -1.514 486 -1.644 5345
MKE -1.66 166 -1.37 275 -1.62 264 -1.532 705 -2.035 8413
MKG -0.23 202 0.2 397 -0.20 259 -0.234 858 -0.287 6069
MLI -0.44 198 -0.53 311 -0.43 218 -0.476 727 -0.353 6282
MSO -0.36 139 -1.19 181 -0.53 104 -0.756 424 -1.143 5229
OFK -0.58 256 -0.61 284 -0.76 68 -0.614 608 -1.061 6500
ORH 1.16 172 1.15 202 117 227 1.160 601 0.606 5668
PAH -0.59 169 -0.54 239 -0.62 169 -0.578 577 -0.605 6063
PDT 0.5 179 -0.25 342 -0.42 205 -0.360 728 -0.616 6320
PDX 0.16 331 0.16 255 0.12 209 0.149 795 -0.056 6371
PIA -0.21 194 -0.33 288 -0.26 205 -0.275 687 -0.529 6115
RFD 0.09 202 0.01 312 -0.27 260 -0.063 774 -0.191 6365
RST -0.02 241 0.2 247 -0.13 229 -0.117 717 -0.075 5973
SUX -0.28 180 -0.59 250 -0.41 290 -0.440 720 -0.820 6502
SUMS 4781 8462 7457 1013 21713 216805
| MEANS -0.457 -0.528 -0.545 -0.278 -0.497 -0.729
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Table 3.3 (C) Seasonal and Annual Instrument Biases for Two-season Stations and Average Temperature Difference over all Observations

Fall Instrument Bias

Winter Instrument Bias

Spring Instrument Bias

Summer Instrument Bias

Annual Instrument blas

All Possible Observations

number of number of number of number of Tot number
night ovc night ovc night ovc night ovc of night ove
Station AT, obs AT, obs AT, obs AT; obs AT, obs AT Number
BIL -1.29 147 -1.06 192 -1.160 339 -1.216 4288
CAK -0.92 213 -0.39 116 -0.733 329 -0.785 4144
DRA -1.33 43 -1.27 135 -1.284 178 -1.455 4300
FNT 0.22 353 0.3 248 0.253 599 -0.026 4314
GEG -0.39 104 -0.34 81 -0.372 165 -0.548 3579
ISN 0.2 225 -0.39 233 -0.207 458 -0.642 3763
LBF -0.04 158 -0.62 58 -0.192 214 -1.100 30925
MSN -0.97 223 -1.02 310 -0.999 533 -1.311 4192
SJT -0.6 223 -0.58 125 -0.593 348 -0.799 3757
TRI -0.53 183 -0.47 110 -0.507 203 -0.887 3818
SUMS 596 1596 921 343 3456 40076
MEANS -1.030 -0.567 -0.396 -0.455 -0.588 -0.877

1



(ATL) to +1.16°F (ORH), with only 9 stations having a positive instrument bias. This
data clearly shows that the CONV instrument is warmer on average than the ASOS
instrument by 0.53°F. There were fluctuations in the seasonal instrument biases at each
site, which were probably due to maintenance, changing of a sensor, or electrical problems
in the .sensor. For 2/3 of the stations, these fluctuations were < 0.5°F.

To establish the expected range in the instrument bias at each site, 95% confidence
intervals were computed for the seasonal biases which were then plotted in order from
most positive to most negative as seen in Figures 3.5(A) - (D). A majority of the
confidence intervals (55%) were smaller in range than 0.16°F. Two observations are very
apparent on each of these plots. First, most stations have negative instrument biases
which translate to a warm biases in the CONV instrument as compared to ASOS. Second,
there are a number of stations with instrument biases in excess of -1.0°F. In calculating
the 95% confidence intervals, it was assumed that the data had normal population
distributions of temperature differences with sample sizes well in excess of 30, and the

Central Limit Theorem was applied in calculating the confidence intervals such that:

(f-(l.96) 3; <p <X +(196) 3;) (.4)

where X is the sample mean, n is the sample size, G ; is the standard deviation of the

sample, and [ is the population mean. For stations with seasonal sample sizes n < 30, a
t-distribution with n-1 degrees of freedom was used to calculate the 95% confidence

interval by:

(f —(t0.0?S,n—l)% <Hp <X +(t0.05,u—1)%) (3.5)
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Fig. 3.5 Seasonal Instrument Biases for four-season stations plotted in order from most

positive to most negative for the (A) fall, (B) winter, (C) spring, and (D) summer seasons.



where ¢, is the ¢ value with 2.5% of the distribution above and below it (Devore, 1995).

Figure 3.5(D), which shows the instrument biases for the summer season, has a few
stations with very large error bars due to the low number of nighttime overcast
observations during that particular season. Redding, CA for example had sufficient
numbérs of nighttime, overcast skies for three months, but due to its climatic region, it
reported only 4 observations with the required nocturnal cloud cover for the whole
summer season.

To check the stability of the annual instrument bias, seasonal plots were overlaid
on each other to see if they were relatively close to one another at each station. Figure 3.6
shows the mean bias for each season and the confidence interval for summer. The summer
season was chosen because it had the widest range of confidence intervals for most
stations. For 14 of the 31 four-season stations, all of the seasonal biases were within (or
very close to) the 95% confidence interval from the summer season, so calculations of
annual instrument biases for these stations are useful. There were still a number of
stations, however, whose seasonal values did not always fall within the summer season’s
confidence intervals for the instrument bias. This is probably due to fluctuations in the AT

field discussed previously and indicates that unexplained variations are present in the data.

3.4 Nighttime Local Effects, AT,

Once seasonal instrument biases were determined for each station, attention was

turned to isolating the nocturnal local effects at each site. The temperature-difference
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equation at night now becomes AT = AT; + AT,, with AT; no longer unknown. To
determine the seasonal, nocturnal local effect, the seasonal instrument bias was removed
from the seasonal temperature difference for all nighttime observations, which included all
wind speeds and all sky conditions. Once the instrument bias was removed, the remaining
temperature difference was due to nighttime, local temperature inhomogeneities between
the two sensors. Tables 3.4(A) - (C) give the seasonal and annual contributions to the
temperature differences due to nocturnal local effects at all stations.

Seasonal nighttime local effects were quite variable over the course of the year at
most stations, with changes in both magnitude and sign very common. Seasonal and
annual nighttime local effects were calculated in an analogous manner to how seasonal and
annual instrument biases were calculated. Some sites show large annual contributions by
nighttime local effects. Remember at some locations the two instruments are quite a
distance from each other. Seasonal values ranged from -1.29°F (SAV in the spring) to
+0.91°F (TLH in the summer). Annual nocturnal local effects ranged from -1.11°F (INW)

to +0.70°F (TLH), and showed that ASOS was cooler at night than CONV

measurements on average by 0.16°F. The predominance of negative, annually averaged
contributions by nocturnal local effects indicate ASOS systems were installed at locations
which are predominantly cooler at night than the CONYV site. On the other hand,
collocated stations like APN, LEX, and YNG had negligible local effects since, by
definition, collocated instruments are not far enough apart to be influenced by temperature
inhomogeneities in the surface boundary layer. Indeed, all of these stations showed a
marked decrease in contributions by nocturnal local effects with annual averages smaller

than or close to 0.15°F.
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Table 3.4 (A) Seasonal and Annual Nighttime Local Effects for Four-season Stations

Fall FALL (night only) Winter WINTER (night only) Spring SPRING (night only) Summer | SUMMER (night only) JANNUAL LOCAL
Station AT, AT AT # of _obs AT, AT AT, # of obs AT, AT AT, # of obs AT, AT AT, # of obs EFFECTS
ACY 0.41 0.92 20.510 633 0.58 0.9 20.330 530 0.46 0.74 0.260 643 0.16 1.15 1.310 40 0.373
BGM 0.49 20.30 0.100 630 0.55 0. 0.040 540 082 0.76 0.060 483 057 20.61 20.040 78 .041
BIS 0.4 20.38 0.050 535 2. 0.7 0.020 10 0.32 0.34 20.020 640 0.09 0.33 0.240 542 .064
CAE 0.5 0.06 570 536 ) 0.27 .400 530 0.12 0.48 .360 543 0.07 0.4 0.470 636 450
CLE 1.3 0.76 .550 537 A5 1.29 260 626 1.7 157 140 544 .73 1.82 20.000 44 .219
cou 0.07 0.21 140 622 0.08 0.02 100 626 0.43 0.25 180 15 0.79 0.73 0.060 544 119
CYS 0.72 0.57 150 532 0.48 0.47 010 626 0.7 0.59 110 541 0.64 0.7 20.060 342 052
DSM 1.24 1.9 0.660 537 .13 138 20.250 7 1.24 1.76 20.520 540 1.46 245 20.990 34 ~0.607
ERI 0.02 20.49 0.510 518 0.32 0.31 0.010 610 0.45 0.79 20.340 540 0.47 0.8 20330 76 0.203
FAR 0.82 0.04 2120 447 .12 -1.28 20.160 7 1.01 .01 20.100 641 .67 1.42 20.450 544 0.216
FSD 0.79 -1.48 20.600 551 0.47 0.78 20.310 595 0.75 1.33 20.580 636 1.08 .92 0.830 536 20.604
GRB 1.68 254 20.060 634 .37 1.83 20.460 595 14 2.06 0.660 503 45 27 -1.200 541 0.809
JAX 0.33 0.57 2240 608 0.43 0.19 0.240 596 2.26 .62 0.880 471 0.08 0.33 0.250 538 0.247
JKL 0.39 0.69 0.300 537 0.31 0.44 0.1%0 526 .08 14 0.200 634 0.16 0.24 0.000 642 0177
LAS 023 0.83 -0.600 17 04 0.79 0.300 628 0.37 20.61 20.240 486 0.75 0.78 0.030 503 0323 |
| LEX 0.26 017 0.090 635 0.2 20.03 0.000 627 0.34 0.26 0.000 641 0.2 0.1 0.000 636 0.087
MCO 0.48 0.38 2.100 502 0.32 0.02 20.300 456 0.62 0.02 0.600 470 0.3 0.1 0.440 635 0.362
MHS 0.09 0.34 2.250 §57 20.09 0.1 20.020 578 0.16 0.3 2.140 460 0.61 15 2.800 12 0.344
MOB 0.35 0.18 0.170 634 0.24 0.14 0.100 622 0.32 0.2 0.100 644 0.26 0.35 20.000 343 0.069
RAP 0.72 1.02 -0.300 434 0.45 0.96 20510 825 0.4 20.63 20.230 642 0.86 1.39 20.5%0 544 0.400
RDD 0.42 0.46 20.040 16 0.47 0.48 0.010 627 0.46 0.44 0.020 557 0.75 0.6 0.150 50 0.030
RSL 20.03 0.63 20.600 556 0.39 0.67 20.200 545 20.38 0.73 0.350 504 0.38 0.67 0.4%0 61 0.431
SAV 1.03 1.02 20.600 635 0.85 15 2.650 593 EK] 2.30 -1.200 475 112 1.86 2.840 53 0.899
SBN 0.6 0.54 0.060 592 0.28 0.34 2.060 626 048 0.7 0.220 642 0.01 0.22 0.2 632 20.11€
SGF 0.73 .13 0.400 599 0.52 0.93 0.410 819 0.08 0.45 20.370 569 0.02 0.48 20.460 591 0.4
[ SIN 0.29 0.99 20.700 558 20.09 0.82 2.70 566 0.1 0.84 20.740 595 1 20.96 -1.060 605 0.8
SPI B 13 0.300 536 0.76 0.82 0.060 622 0.88 1.03 2.150 542 057 1.49 2.920 45 20.338
T 0.73 0.13 0.600 535 0.84 0.2 0.640 625 20.66 3 0.650 544 20.78 0.13 0.910 343 0.701
TUS 2.8 028 0.530 634 0.32 0.46 0.140 51§ 0.62 0. 0.410 542 0.25 0.33 20.000 837 0.196
VIN 0.24 0.04 20.200 480 0.52 0.35 2.170 59 0.15 0.04 20.100 Ik 0.31 0.78 20.470 620 0.263
YNNG 0.49 027 220 636 1.25 111 0.140 624 1.5 1.34 0.170 499 1.38 .31 0.070 533 0.152
SUMS 18513 18647 18287 18425
MEANS 0.4%4 0.637 0.143 -0.461 0.560 £.000 0.545 0.663 20118 0.546 0.769 0.222 0.161




Table 3.4 (B) Seasonal and Annual Nighttime Local Effects for Three-season Stations

9

FALL (night only) Winter WINTER (night only) Spring SPRING (night only) Summer SUMMER (night only)  {ANNUAL LOCAL
AT AT, # of obs AT, AT AT, # of obs ATy AT AL # of obs AT, AT_ ATy # of obs EFFECTS
.15 16 ~0.450 514 0.97 .75 0.760 597 0.67 1,60 -1.020 640 0.771
0.94 1.19 0.250 619 .02 .27 20.250 620 0.48 0.85 20.370 520 0.290
054 20.130 636 20.88 0.84 .040 627 | 065 0.64 0.010 615 0.027
20.62 0.030 47 20.56 051 .050 613 0.72 0.64 0.080 550 0.055
0.16 0.140 637 04 0.35 050 62 20.31 0.35 20.040 538 0.055
3.0 0.660 626 1.78 1.95 0.170 817 2.04 268 0.640 644 20.558
20.06 0.400 432 04 20.01 0.300 625 0.25 20.06 0.100 629 0.318
0.66 20.120 628 0.24 0.33 20.000 619 0.37 0.28 0.090 639 20.039
0.19 20.200 634 X 0.06 20.040 626 20.06 20.62 20.560 585 20.260
20.28 0.24 .050 572 03 20.06 0.240 7 013 0.06 0.190 640 0.158
083 2.130 636 0.89 20.89 .000 523 20.68 0.73 2.050 537 -0.060
1.08 1.07 .010 443 0.9 .97 20.470 6 053 133 20.600 8% 0.468
.57 20.540 624 0.64 0.51 130 502 0.6 0.69 20.090 548 20.174
0.98 20.300 434 0.56 0.79 0.2 576 0.51 0.87 20.460 530 0.329
011 0.040 635 0.24 0.5 0.000 542 0.12 011 0,010 639 0.040
0.86 20.250 a7 053 074 2210 597 0.77 EK] 20.3% 468 0.250
20.78 £1.180 512 0.73 0.37 -1.100 608 .5 0.55 -1.050 582 1,107
| ] 20.300 582 0.18 0.05 20.1%0 431 0.75 052 2.230 839 0.220
0.61 124 20.630 581 0.64 0.64 20.200 620 0.67 0.46 0.210 620 20.188
3. 2.070 586 .37 1.4 20.030 520 4 .52 20.120 570 2.075
.04 0.180 626 0.56 0.25 0.310 620 0.7 0.43 0.270 625 0.253
1. 20.010 626 1.50 1.41 0.100 490 .72 1.54 0.100 450 0.104
1.88 20.220 636 1,37 1.45 .00 584 .62 .78 2.160 644 0.155
0.8 0.050 627 02 0.15 0.050 509 0.20 0.27 .020 558 0.041
[ 1] 0.16 0.600 635 053 0.4 0.130 818 0.4 0.08 510 581 0.413
— MSO 0.37 20.010 a7 X 1.19 ,000 440 053 0.74 0.210 543 .08
OFK 0.58 067 0.000 617 06 0.74 2.130 641 0.76 K] 0.280 633 0.154
ORH 1.13 20.030 621 1.15 1.14 20.010 1 (KL 12 20.050 547 .00
PAH 0.05 0.540 634 054 0.2 0.340 8 0.62 20.63 2.010 629 0.288
POT .05 20.550 633 0.25 0.5 0.250 595 0.42 0.67 20.250 526 0.352
PDX 0.16 0.32 160 817 0.16 0.51 .350 622 0.12 0.33 0.210 539 240
“PA 0.5 2.040 636 0.33 03 030 620 0.26 0.22 .040 520 008
RFD 0.21 0.120 601 0.01 ; 000 621 0.27 013 140 38 7
RST - 0.11 0.130 533 02 0.12 0.060 573 0.13 0.25 360 541 181
SUX .16 ) 636 20.50 .14 0.550 622 0.41 -0.89 20.460 540 0.637
SUMS 16477 18810 20200 5358
| MEANS 20,585 0.128 20.528 0.504 -0.065 20.545 0.650 20.108 20.278 20,505 0.227 0114
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Table 3.4 (C) Seasonal and Annual Nighttime Local Effects for Two-season Stations

J
J

Fall FALL (night only) Winter WINTER (night only) Spring SPRING (night only) Summer SUMMER (night only) JANNUAL LOCAL|

Station AT, AT ATy # of obs AT, AT ATy # of obs AT, AT AT, # of obs AT, AT ATy # of obs EFFECTS
BIL -1.29 1.31 0.020 634 -1.06 -1.08 -0.020 622 ~0.020
CAK 0.62 0.83 0.010 589 0.39 053 0.140 629 0.077
DRA -1.33 1.3 0.000 629 127 1.39 0.120 628 20.060
[ FNT 0.22 0.16 0.060 616 0.3 0.08 0.220 643 0.142
GEG 0.39 0.77 0.380 434 0.34 0.61 0270 554 0.321
ISN 02 053 0.330 61 0.39 0.44 0.050 490 0.205
LBF 0.04 -1.31 -1.270 61 062 1,54 20.920 537 -1.106
MSN 0.97 0.49 0.480 629 1.02 0.86 0.160 594 0.325
ST 0.6 0.56 0.040 601 058 0.73 0.150 500 20.046
TRl 053 .18 0.650_ 632 047 0.83 0.360 487 0524

SUMS 2524 4283 2706 2207

MEANS | -1.030 -1.078 0.048 -0.567 0.796 0.220 -0.396 0.558 -0.162 0.455 -0.878 0.423 0218

—3



3.5 Daytime Local and Solar Heating Effects, AT,

The final contribution to the temperature differences observed between the ASOS
and CONYV observations was that of the daytime local plus solar effects. It is impossible
to separate these two influences from each other, so the temperature difference equation
becomes AT = AT; + AT, + AT, with AT; no longer unknown. Isolating the combined
effect of these two contributions was accomplished by removing the seasonal instrument
bias from the seasonal temperature difference for all daytime observations. Tables 3.5
(A) - (C) show both seasonal and annual contributions to the temperature differences at
each site due to daytime local and solar influences. Seasonal ranges for these daytime
effects were from -2.26°F (JKL in the summer) to +0.91°F ( DSM in the fall). The range
of annual contributions from the daytime effects was from -1.54°F (JKL) to +0.61°F
(VTN), with an overwhelming number on the negative side. The annually averaged
contributions show that CONV instruments are warmer by 0.37°F during the daytime
hours than ASOS instruments. Note that for about half of the stations the summer local
and solar effects are more negative than these effects in the winter time. Indeed, the
average over all stations in the four-season group of the seasonal biases is more negative
in the summer (-0.50°F) than in the winter (-0.21°F ). This supports evidence that the
older HO83 hygrothermometer is subject to solar heating problems not experienced by the
ASOS instrument. Indeed, it was proposed (Jones and Young, 1994) that the original
version of the HO83 exhibits this warm bias due to “heating of the instrument housing by
internal heat sources coupled with inadequate ventilation.” Further evidence that the

HOB83 suffers more from solar heating effects is found in examining the daytime effects at
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Table 3.5 (A) Seasonal and Annual Daytime Local and Solar Effects for Four-season Stations

Fall FALL (dey only) Winter WINTER (day oni Spring SPRING (day only) Summer SUMMER (dey only)  JANNUAL LOCAL &
Station AT; Al AT, Q_AT. # o_(_ obs AT_i A'I_'_ AT+ AT. # of obs AT; AT AT +AT, |#olobs AT, AT AT, + AT, # of obs | SOLAR EFFECTS
ACY 041 0.01 0.420 627 058 049 0.000 627 0.46 2021 0250 634 0.67 0.76 2.000 341 0.253
BGM 040 061 20.120 632 0.55 0.82 2270 542 082 08 020 490 057 20.04 0370 70 20.100
8IS 2043 0.63 0200 635 0.15 0.78 0.630 617 032 20.78 0.460 637 0.00 042 2.510 41 0440
CAE 051 147 2960 637 0.13 . 0.400 624 0.12 20.85 0970 630 0.07 EKI 1.040 338 20.865
CLE 131 128 0,030 620 157 ot 20240 618 KR -1.86 2.150 543 EN:] 283 2.900 343 0202
cou 0.07 0.28 2.350 626 0.08 2. 2.070 62 043 0.61 2.180 611 20.79 18 2.810 635 20.356
CYs 0.2 .47 2.450 621 0.48 132 2.840 610 0.7 124 2540 627 064 .07 0.4%0 642 0563
DSM .24 0.33 0910 635 113 20.77 0.360 617 1.24 0.78 0.480 641 148 152 2.060 627 0.420
ERI 0.02 061 0530 605 032 051 0.190 3 2045 0.7 0250 638 047 1.8 2.710 570 0414
FAR 0.82 0.01 2.000 453 .42 154 0420 606 1.0 128 2370 635 2067 1.2 225 342 0260
FSD 20.70 -1.03 0280 547 0.4 -1.08 2810 611 0.75 1.04 2200 640 1.00 1.93 20.340 541 0,503
GRB 1.68 1.32 0.360 634 137 1.37 0.000 501 14 -1.08 0.320 501 15 1.78 2200 540 0.088
JAX 2333 20.86 0.530 616 2043 20.70 0.360 583 20.26 122 2960 473 0.08 115 1230 620 20.767
JKL 0.30 13 1,690 630 0.31 057 2.800 625 .06 1.39 1330 541 0.16 2.1 2.260 834 1542
LAS 0.3 146 1230 617 04 134 2540 810 0.37 140 1120 a7e 0.75 147 2.720 801 0.007
—_LEX 2.26 08 0.380 634 0.12 032 9.200 828 034 20.78 20480 | 6% 02 08 2.600 642 -0.396
MCO 0.48 0.24 220 502 0.32 041 .000 461 0.62 062 2.100 461 0.31 0.32 .010 628 20.058
MHS 0.00 0.2 2130 §52 0.00 20.00 .000 580 20.16 0.37 2210 49 061 0.13 490 614 0.053
MOB 0.35 0.62 0270 636 0.24 20.66 0.420 827 0.32 0.57 20250 634 026 088 2.600 840 -0.385
RAP .72 0.70 2.070 433 0.45 057 0120 620 04 420 2,090 63 0.8 20.68 0.100 640 0237
ROD 042 0.79 2370 600 047 0.61 2180 620 046 0.77 2310 544 0.76 0.96 2210 507 20.257
RSL 0.03 0.00 120 562 0.39 0.27 120 567 0.38 0.35 0.030 81 038 0.0 0.330 603 151
SAV -1.03 -1.00 0.080 621 0.85 050 260 570 EK] BKL 2010 46 .12 151 2.390 536 0.046
SBN 206 0.08 0.360 508 028 045 2170 627 048 ) 20520 630 0.01 0.75__ 2.780 637 0455
T SGF 0.3 112 2.390 812 052 20.61 2.000 621 0.08 03 0320 582 0.02 137 1.350 31 0515
SIN 2.2 0.48 770 563 2.00 .25 0.380 550 0.1 0.45 0.550 802 X] 0.70 0.600 507 0.500
SPI ] 20.82 180 636 20.76 0.87 2.110 620 20.88 5] 2.120 643 057 KK 2170 542 0.183
TLH 2. 1.0 2.360 627 0.84 K] 2260 628 0.68 .10 2.5%0 634 2.78 131 2.5% 634 0421
[ TUs 08 -1.68 0.850 633 032 A7 29.050 513 062 268 1.740 626 025 1.00 .00 [ 6% 1,079
VIN 0.24 1.03 0.790 478 0.52 1.05 0.5%0 580 0.15 0.42 0270 608 031 0.58 990 627 0.613
VNG 2040 | 088 2.300 €21 | 125 1.38 2.130 810 151 K} 448 5K 261 A2% | 84 528
SUMS 17826 17638 17554 18390
MEANS 0404 0.708 2214 0.461 0,675 2218 0545 0880 2338 0563 1,050 2.500 2310




Table 3.5 (B) Seasonal and Annual Daytime Local and Solar Effects for Three-season Stations

Fall FALL (day only) Winter WINTER (day only) Spring SPRING (day on Summer SUMMER (day on! ANNUAL LOCAL &

Station AT, AT AT+ AT, |#o0fobs A'li AT AT+ AT, |#0iobs ATy Al AT, oAT. # of obs ATy A'L AT+ AT, |#ofobs] SOLAR EFFECTS

" ABE .15 151 2360 513 2007 .32 235 74 0.67 20.76 20.000 10 0257 |
ABQ 2.4 .77 2.830 813 .02 1.70 2.770 10 048 207 1.500 820 -1.068
ALB 041 0.7 23290 831 0.88 192 0280 628 20.65 0.04 2290 10 — 20273
ALO 0.65 20.73 2.000 444 056 1.05 0.490 808 2072 0.77 0.050 40 20.226
APN 03 0.76 9450 833 04 0.78 293800 625 031 0.63 0520 148 0.460
ATL 247 26 2430 623 1.78 197 2.190 620 2.04 272 0.0 638 043
AUS 046 ~1.01 2550 42 204 20.88 2.480 623 025 0.76 2510 830 20.502
BFF 0.54 1.02 2400 813 0.24 0.8 9.820 621 0.7 043 20.060 628 20.385
DAB .01 0.27 2200 636 .1 0.0 2.160 627 20.08 031 0250 581 0.230
DAY 0.20 0.88 20.500 580 0.3 0.88 2580 504 013 12 B [<3 20.764
DTW 2.7 12 2520 2 20.80 1.07 0100 827 0.68 112 2440 642 20.381
EUQ 1.08 1.7 2200 433 00 137 2470 500 053 051 0020 625 0.238
FWA -1.03 1.0 2.030 624 0.64 117 2.630 507 26 2 2820 544 X — 20.381
QT 0,63 084 2160 420 0.56 1.04 2400 580 | 051 082 2310 520 0.332
HON 2.6 ¥ 2.150 835 — 024 053 2280 643 0.12 031 D430 642 0.201
INL 0.61 0.8 2.180 454 053 082 2.300 601 077 0.00 9320 478 0.278
INW 4 0.00 500 31 0.73 0.97 0280 505 5 2 700 577 0.504
AN 3 0.13 0430 545 0.18 20.16 2380 437 0.75 0.40 2360 841 0.3
LBB _ 261 25 110 576 0.64 .07 3% 807 0.67 -1.18 2480 812 0243
LCH .24 125 2010 588 137 1.13 260 554 14 1.36 040 77 0.067
MCI 022 0.43 2210 624 0.56 0.64 2.000 825 0.7 0.71 2010 613 2.101
[ MGM 13 1.82 20520 30 150 1.60 2.300 485 .72 2.10 2470 442 0.437
MKE 1.66 -2.38 2.720 634 1.97 28 14% 801 1.62 24 2.790 643 0.068
[ WKG 023 0.32 2.000 82 02 0.20 2.000 578 0.20 05 2210 561 2.128
[TY] 044 2.8 2.360 837 053 1.05 20520 23 043 -1 0570 583 0481
MSO 0.38 A 2990 440 1.0 1.9 29000 444 053 183 1000 640 0.036
K 0.58 .27 2.600 820 061 1.10 250 82 | o7 -1.63 2.778 638 20.680
| ORH 1.16 0.34 ) [1E) K3 0.27 0.8%0 $50 A7 0.28 2890 501 0.862
PAH 0.50 1,01 0420 637 20.64 0.87 2330 504 0.62 135 3.720 818 20503
PD 05 241 0.000 832 026 056 20300 582 _ 042 0.37 0050 617 0.047
PDX 0.16 0.42 2.500 €03 0.18 0.68 2880 €23 012 _ 5] 4320 837 0.852
PIA 021 1 2.790 627 0.33 0.0 2.680 824 2. 0.4 2500 $30 — 2.712
RFD 0.00 041 2500 505 0.01 05 2510 817 027 0.87 2,900 630 0638
AST 0.02 022 2200 27 02 2013 0.070 857 013 043 29.300 546 20.146
926 2.1 3| 8% 050 125 6650 2 | 0 237 ) 837 2113

SUMS 16370 18812 20122 8331

MEANS | 0457 20.768 2311 0528 0.921 2303 0546 20.640 2368 0278 0.958 2958 0400
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Table 3.5 (C) Seasonal and Annual Daytime Local and Solar Effects for Two-season Stations

Fall FALL (day only) Winter WINTER (day only) Spring SPRING (day only) Summer SUMMER (day only) ANNUAL LOCAL &

Station ATy AT ATy +AT, [#0f obs AT_._ AT AT, + AT, |#0fobs AT} AT AT+ AT, |#ofobs ATy AT AT, + AT, |#of obs] SOLAR EFFECTS
BIL 120 132 0030 626 -1.08 SKI] 0.050 618 0,040
CAK 002 004 0020 581 030 07 0310 810 2.170
DRA 133 54 2310 630 27 178 0400 817 0.349
[ FNT 022 0.19 2410 621 03 028 050 2K 0406
GEG 230 055 2360 407 3 038 902 545 0.087
1SN_ 02 0.80 0690 13 X 0.67 0450 482 0508
LBF 0.04 08 5560 613 062 030 023 530 0.104
MSN 007 ] 478 630 .02 218 1140 502 1440
SIT 08 004 0340 500 058 006 9390 [ 20358
Al 053 007 4% | 6% 047 2. 2.000 an 289

sUMS 2616 4264 2607 2173

MEANS | -1.00 1,635 2805 0567 1,003 0528 0,306 0720 2324 0458 0503 206 0403




stations located in high-sunshine climatic regions. Sites like LAS, TUS, and ABQ which
are located in the southwestern United States have large annual contributions to
temperature differences due to daytime effects of -1.0°F or more. Examination of the
collocated sites, APN, LEX, and YNG, reveal daytime contributions to the temperature

differences on average around -0.5°F.

3.6 Diurnal Cycles (AT versus Time of Day)

Having thoroughly examined the sources contributing to the temperature
differences between ASOS and CONV measurements, seasonal diurnal cycles were
generated to show how temperature differences varied with time of day. Figures 3.7 (A) -
(F) show the average, hourly temperature differences versus time of day using all available
observations for each station during each season. It is obvious that over 60% of the
stations (see Appendix B) exhibit noticeable fluctuations to varying amounts over the
course of an average 24-hour period. Figures 3.7 (A) - (D) provide evidence of the
daytime warm bias of the HO83. During the daytime hours, AT is more negative because
the CONYV instrument is warmer than ASOS. At night these differences diminish; and in
the case of JKL, it appears that ASOS is located in a spot which is warmer at night than
that of the CONYV site. Figures 3.7(E) - (F) are examples of pronounced but reversed
diurnal cycles. For both GRB and SAV the daytime AT is still negative, but the nighttime
local effects are quite significant being in excess of -0.8°F. These nocturnal influences are

strong enough to reverse the diurnal-cycle patterns at these stations.
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Fig. 3.7 (A) - (D) Seasonal diurnal temperature difference cycles showing daily pattern
for majority of stations (daytime exhibits largest negative temperature differences.)
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Fig. 3.7 (E) - (F) Seasonal diurnal temperature difference cycles showing reversed daily
pattern depicted in 21 percent of stations (daytime still exhibits negative temperature




3.7 Annual Cycles and Trends

In addition to daily temperature difference patterns, the nocturnal local effects and
daytime local plus solar effects were examined for evidence of annual cycles and trends in
the data. To help visually detect evidence of such patterns in the local and solar effects,
bar graphs were generated for each station in the four-season and three-season lists using
all available seasonal data shown in Figures 3.8(A) - (B). A seasonal cycle is identified by
equitable values for the spring and fall seasons with winter and summer having opposite,
more extreme values (DSM). In these cycles, it is the summer season which exhibits the
largest negative value, while winter is the least negative. Of the 31 four-season stations, 5
exhibit evidence of an annual cycle in the nocturnal local effects. In addition, 12 out of 66
stations showed trends in their nocturnal seasonal effects. In other words, as time went by
the contributions to seasonal temperature differences due to the nocturnal local effects
became either more positive (ACY and SUX), or in most cases more negative (CLE,
SBN, ABE, and EUG). These trends could be the result of seasonal weather phenomena,
changing anthropogenic sources near the instruments, or simply changes in the instruments
themselves.

Annual cycles and trends were also noted in similar bar graph plots of the seasonal
daytime local and solar effects shown in Figures 3.9(A) - (B). Of the 31 four-season sites,
10 exhibit evidence of an annual cycle, with YNG, JKL, and SAV being the strongest
examples. Of the 66 stations plotted, 26 had the most negative daytime bias during the
summer season. Only 7 out of the 66 four-season and three-season stations exhibited

trends in seasonal daytime local and solar effects.
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Fig. 3.8 (A) Seasonal distribution of nighttime local effects for four-season stations.
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Fig. 3.8 (B) Seasonal distribution of nighttime local effects for three-season stations.
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Fig. 3.9 (A) Seasonal distribution cf daytime local and solar effects for four-season stations.
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Fig. 3.9 (B) Seasonal distribution cf daytime local and solar effects for three-season stations.



Returning to the temperature time series analyses, only a couple of stations
exhibited signs of annual cycles in the temperature differences between AThigpest hourty and
AT'owest hourtye JKL and CAE, shown in Figures 3.10 (A) - (B), were the best examples of
well-behaved sites with fairly convincing evidence for the presence of an annual cycle in
Angh;‘ nowly. 1he mean temperature difference for these plots seems to fluctuate
sinusoidally with the changing seasons. This could be due to an annual cycle in the
temperature differences, or merely instabilities in the instruments. Again, it should be
noted that most stations did not exhibit any evidence of having annual cycles in the time

series data.

3.8 Regional Effects

Lastly, the data was examined to see if stations in like climatic zones exhibited
similar temperature difference patterns. As mentioned earlier, several stations located in
the sunny southwest such as LAS, TUS, and ABQ, had significant annual contributions
due to daytime local and solar effects in excess of -1.0°F, supporting evidence of a warm
bias in the HO83.

An interesting discovery in the temperature time series analysis showed that
coastal sites had very stable and moderate temperature difference plots over the course of
the year as seen in Figures 3.11(A) - (B) for DAB and LCH. The stability of these plots is
most likely attributable to the moderating effects of coastal sea breezes and land breezes
prevalent at these sites. In striking contrast to the coastal stations, inland-continental

stations like FSD and SLN exhibit more erratic, fluctuating temperature difference time
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Fig. 3.10 (A) Temperature time series analysis for Jackson, KY.
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Fig. 3.10 (B) Temperature time series analysis for Columbia, SC.
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Fig. 3.11 (B) Temperature time series analysis for the coastal site of Lake Charles, LA.
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series plots, as seen in Figures 3.11(C) - (D), probably in response to passing weather

systems and large differentials in daytime heating and nighttime cooling patterns.
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Fig. 3.11 (C) Temperature time series analysis for the continental site of Sioux Falls, SD.




£8

10

Degrees F
/]

-10 -5

10

Degrees F
0

-6

-10

Dally AT gnen hourty) (ASOS — CONV) for SLN

Fall = 1481
Winter = 82-181
Spring = 182-273
Summer] - 274-38

UAV“W Mw

ikl

A

"

A TS

Mwwwlwﬂv Aok b e MAVLAVWWI 1y VW\h o
T T
| i

;\ TR mn AL \ A A

40

100

120

140 160

180
Day

200

240 280 280

320 340

Fig. 3.11 (D) Temperature time series analysis for the continental site of Salina, KS.

aeo



4.0 CONCLUSIONS

The results of temperature comparisons between ASOS and CONV measurements
examined in this investigation show that the CONV instrument, the Model HO83
hygrothermometer, is predominantly warmer compared to its ASOS replacement. The
average temperature difference (ASOS - CONYV) for all observations for all 76 sites is
-0.79°F, with a considerable range of -2.56°F to +0.61°F, resulting in a fair amount of
variability among the CONV instruments.

ASOS has no systematic bias in measuring “true” ambient air temperature,
although the ASOS hygrothermometers do vary by +0.3°F in comparison to a calibrated
field standard. Instrument biases, determined using nighttime overcast observations,
between the ASOS and CONV hygrothermometers show that the ASOS instrument is
most often cooler than the CONV instrument. On the average, the CONV instruments
were 0.53°F warmer than the ASOS instruments with seasonal ranges of up to 2.17°F
warmer and 1.17°F cooler than ASOS, with only 9 stations having a positive, annually-
averaged instrument bias. It is both the variability and the prevailing warm bias among the
HO83 hygrothermometers which indicate that ASOS is an improvement over CONV
temperature measurements.

Installation of ASOS instruments at locations which were largely cooler at night
than the CONYV site resulted in negative, annually-averaged, nocturnal local effects at 47

of the 76 sites. These location effects do fluctuate considerably with the seasons both in
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magnitude and sign convention with an annually averaged range of -1.11°F to +0.70°F,
and a mean of -0.16°F. In addition, the combined influences of the daytime local and solar
effects are overwhelmingly negative adding to evidence of a solar heating problem in the
CONYV instrument. Seasonal ranges in the daytime effects showed CONV measurements
were Wmner than ASOS by as much as 2.26°F and could be cooler by as much as 0.91°F.
Overall, 67 of the 76 stations had negative, annually-averaged contributions due to
daytime local and solar effects, with a mean value of -0.37°F. Direct comparisons of the
daytime bias at collocated sites showed typical solar heating effects of -0.5°F. Diurnal
cycle plots also added considerable evidence of a warm bias in the CONV
hygrothermometer with a majority of stations having the largest negative temperature
differences during the daylight hours.

While there is some evidence of annual cycles and trends in the nocturnal local
effects as well as the daytime local and solar effects at some stations, there is not enough
evidence to support seasonal correction factors for manipulating all data reported by
CONY and ASOS instruments. For the stations with probable annual cycles, the summer
season most often has the largest negative values with winter usually having the least
negative value of the four seasons. Again, these facts point to a solar heating problem

experienced by the conventional HO83 hygrothermometer.
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APPENDIX A: Temperature Time Series Plots

The following graphs depict the time series analysis of the temperature differences
between ASOS and CONV SAOs with the highest hourly temperature and lowest hourly
temperature for each 24-hour day (midnight to midnight LST). Beginning with September
1, 1994 as day 1, days run sequentially through the fall, winter, spring, and summer
according to the legend in the upper right-hand corner of each graph. Temperature

differences are plotted in whole degrees Fahrenheit with range of -10°FSAT<+10°F along

the y-axis.
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APPENDIX B: Seasonal Diurnal AT Cycles

The following graphs depict the seasonal diurnal cycles of temperature difference
as a function of the hour of day at each station. The hour of day is plotted in Zulu time at
the bottom of each graph with a LST reference plotted above the “0” temperature
difference line. Temperature difference is averaged over all hourly values during each

season and plotted with a range of -4°FSAT<+4°F along the y-axis.
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