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ABSTRACT  
 
 
 

ENANTIOSELECTIVE β-FUNCTIONALIZATION OF ENALS VIA N-HETEROCYCLIC 

CARBENE CATALYSIS  

A series of δ-nitroesters were synthesized through the N-heterocyclic carbene catalyzed 

coupling of enals and nitroalkenes. The asymmetric coupling of these substrates via the 

homoenolate pathway afford δ-nitroesters in good yield, diastereoselectivity, and 

enantioselectivity. This methodology allows for the rapid synthesis of δ-lactams. Using this 

approach, we synthesized the pharmaceutically relevant piperidines paroxetine and femoxetine. 

A novel single-electron oxidation pathway for the N-heterocyclic carbene generated 

Breslow intermediate has been developed. Nitroarenes have been shown to transfer an oxygen 

from the nitro group to the β-position of an enal in an asymmetric fashion to generate β-hydroxy 

esters. This reaction affords desired β-hydroxy ester products in good yield and enantioselectivity 

and tolerates a wide range of enal substrates.  

A dimerization of aromatic enals to form 3,4-disubstituted cyclopentanones has been 

investigated. Using a single-electron oxidant, aromatic enals couple to form cyclopenanone 

products in good yield, good enantioselectivity, and excellent diastereoselectivity. A cross 

coupling has also been developed to afford non-symmetrical cyclopentanone products.  
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Chapter 1 

Background on N-Heterocyclic Carbene Catalyzed Reactions 

 

1.1 Introduction  

N-heterocyclic carbene (NHC) catalysis represents an important aspect of modern organic 

chemistry.1 NHC catalysis is an intriguing field of study as it allows for polarity inversion in 

aldehydes, rendering the typically electrophilic acyl carbon nucleophilic. In nature, this type of 

reactivity is operative in transketolase enzymes in the presence of coenzyme thiamine 1 (vitamin 

B1).
2 In 1951, Mizuhara et al. discovered that the catalytically active species of the coenzyme 

thiamine is a nucleophilic carbene.3 The biochemistry of thiamine-dependent enzymes has been 

studied in extensive detail which has resulted in the development of a broad range of synthetic 

tools.4  

 

Figure 1.1.1 

In the realm of organic chemistry NHC reactivity is embodied by acyl anion reactivity, 

exemplified by the benzoin condensation and Stetter reaction. The NHC-catalyzed benzoin 

condensation has been the focus of intense investigation. The cyanide catalyzed coupling of 

benzaldehyde to form benzoin was discovered in 1832 by Wöhler and Liebig.5 In 1903 Lapworth 
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postulated a mechanism for this reaction wherein an intermediate carbanion 2 is formed by cyanide 

anion addition to benzaldehyde followed by deprotonation (Scheme 1.1.1).6 This carbanion 2 

exemplifies the “umolung” concept of polarity inversion.  

Scheme 1.1.1 

 

Ukai discovered in 1943 that thiazolium salts are also capable of catalyzing the benzoin 

condensation.7 Building upon this work, in 1958 Breslow first hypothesized that the key 

intermediate in carbene catalyzed reactions is eneaminol 3 which has since been dubbed the 

Breslow intermediate.8 Breslow hypothesized that base deprotonates thiazolium 4 to generate a 

free carbene 5. This carbene then adds 1,2 to an aldehyde to produce tetrahedral intermediate 6. 

This tetrahedral intermediate undergoes a proton transfer to generate eneaminol 3 or the Breslow 

intermediate. The Breslow intermediate then attacks a second equivalent of aldehyde to form 

species 7, which then undergoes a proton transfer and collapses to form benzoin 8 and liberate 

cabene catalyst 5 (Scheme 1.1.2).   
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Scheme 1.1.2 

 

1.2 Development of the Asymmetric Benzoin Reaction  

After Ukai discovered thiazolium salts are capable of catalyzing the benzoin reaction, a 

number of groups became interested in developing an asymmetric variant. The first such example 

was reported by Sheehan and Hunneman in 1966.9 By empoloying chiral thiazolium salt 9, they 

observed product in a meager but encouraging 22% ee. In the following 30 years, a number of 

groups attempted to improve the selectivity of the reaction but with only limited success.10 The 

first major advancement came in 1996 when Enders and Teles showed triazolydine catalyst 14 is 

capable of delivering product in 75% ee and 66% yield.11 By synthesizing and evaluating a variety 

of bicyclic triazolium salt pre-catalysts, Leeper was able to increase the enantioselectivity further, 

while maintaining reasonable reactivity.12 Finally, in 2002 Enders reported chiral triazolium salt 

22, which is capable of producing benzoin product in 83 % yield and an impressive 90% ee 

(Scheme 1.2.1).13 
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Scheme 1.2.1 

 

1.3 Development of the Asymmetric Stetter Reaction  

In 1973 Stetter reported cyanide or thiazolidine carbenes are capable of coupling aldehydes 

and Michael acceptors to form 1,4-dicarbonyl compounds, expanding the scope of umpolung 

reactivity (Scheme 1.3.1).14 Stetter demonstrated a variety of Michael acceptors are competent 
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coupling partners in this reaction including: α,β-unsaturated esters, α,β-unsaturated ketones, and 

α,β- unsaturated nitriles.15 

Scheme 1.3.1 

 

Mechanistically, this transformation is very similar to that of the benzoin condensation. 

First, the carbene adds 1,2 to the aldehyde to form tetrahedral intermediate 23. This tetrahedral 

intermediate undergoes a proton transfer to from Breslow intermediate 24. The Breslow 

intermediate then attacks the Michael acceptor in a 1,4-fashion to produce 25, which undergoes a 

proton transfer allowing the carbonyl to collapse, delivering product 26 and liberating catalyst 

(Scheme 1.3.2).  

Scheme 1.3.2 
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Since the initial reports from Stetter, a number of asymmetric variants of this reaction have 

been developed. The first asymmetric example was disclosed by Enders in 1996 using chiral 

triazolium precatalyst 24.16 This report showed product forming in high yields, but modest 

enantioselectivity. Miller and co-workers also reported an asymmetric intramolecular Stetter 

reaction and were able to achieve 67% yield and 73% ee using NHC 27 (Scheme 1.3.3).17 

Scheme 1.3.3 

 

However, our group was the first to report a highly efficient asymmetric intramolecular 

Stetter reaction. Our first report was disclosed in 2002 where it was shown chiral NHC 28 provides 

product in high yields and excellent enantioselectivity.18 We have since disclosed a number of 

efficient catalysts for a variety of intramolecular Stetter reactions (Scheme 1.3.4).19 
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Scheme 1.3.4 

 

The Rovis group has also developed a number of efficient intermolecular Stetter reactions. 

The coupling of glyoxamindes and alkylidinemalonates was reported in 2008 and represents the 

first example of a highly enantioselective intermolecular Stetter reaction (Scheme 1.3.5).20 
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Scheme 1.3.5 

 

Nitroalkenes have also been shown by us to be productive coupling partners for the 

intermolecular Stetter reaction. Aryl aldehydes, enals, and aliphatic aldehydes have all been shown 

to participate in the intermolecular Stetter reaction with nitroalkenes in high yields and excellent 

enantioselectivity. Key to the success of these reaction methodologies was the identification of 

catalysts 33 and 34, which proved essential to achieve high enantioselectivities (Scheme 1.3.6)21  
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Scheme 1.3.6  

 

1.4 Umplong Reactivity of Enals   

Enals represent an interesting class of substrates for NHC catalysis. Typically, enals are 

electrophillic at the acyl and β-carbons. However, when reacted with cyanide or a NHC catalyst, 

enals undergo an a1 to d1 and an a3 to d3 umpolong rendering both the acyl and β-carbon 

nucleophilic (Figure 1.4.1). 
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Figure 1.4.1 

1.5 Cyanide Catalyzed Enal Umplong Reactions 

The umpolong reactivity of enals via cyanide catalysis was first reported in 1964 by Walia 

et al.22 These researchers showed that α,β-unsaturated aldimines are converted to the 

corresponding saturated amide in the presence of a catalytic amount of cyanide in water. 

Subsequently, enals were shown to afford the corresponding saturated methyl ester when reacted 

with a catalytic amount of cyanide in methanol (Scheme 1.5.1).23  

Scheme 1.5.1 
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acyl carbon from cyanide to generate tetrahedral intermediate 35. This tetrahedral intermediate 

undergoes a proton transfer to form carbanion 36a, which is in resonance with 36b. Intermediate 

36b may be protonated by solvent to produce enol 37 which tautomerizes to acyl cyanide 38. The 

acyl cyanide is then attacked by methanol to form product 38 and liberate cyanide, closing the 

catalytic cycle (Scheme 1.5.2).  
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Scheme 1.5.2 

 

1.6 Oxygen Heterocycle Synthesis via the NHC-Homoenolate Pathway 

This type of reactivity lay dormant for nearly 30 years until 2004 when Glorius and Bode 

independently and concurrently reported the NHC-catalyzed coupling of enals and aldehydes via 

the homoenolate to synthesize γ-lactones.24 These reports represent the first example of a NHC-

catalyzed reaction which proceeds through the homoenolate pathway. A variety of aryl enals were 

shown to couple with aryl aldehydes to form syn γ-lactones in good yield and moderate 

diastereoselectivity (Scheme 1.6.1).  
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Scheme 1.6.1 

 

This reaction is understood to proceed via formation of Breslow intermediate 41, which 

attacks an aldehyde via the β-carbon to produce 42. Intermediate 42 undergoes tautomerization to 

acyl azolium 43, which is in turn attacked in an intramolecular fashion by the tethered alkoxide to 

liberate catalyst and form product 44 (Scheme 1.6.2).  

Scheme 1.6.2 
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This coupling of enals and aldehydes to synthesize γ-lactones has been rendered 

asymmetric via the implementation of achiral NHC catalyst 45, and the cooperative use of achiral 

NHC 40 in the presence of chiral Lewis acid additive 46.24a,25 Although these examples provide 

enriched product, a general NHC-catalyzed method to synthesize highly enantiomerically enriched 

γ-lactones from enals and aldehydes is yet to be realized (Scheme 1.6.3).  

Scheme. 1.6.3 

 

A similar reaction was reported by Scheidt an co-workers in 2014 wherein ynals were 
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coupling of the homoenolate with an aldehyde to generate γ-lactones (Scheme 1.6.4). 

Scheme 1.6.4 
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This approach has also been utilized to synthesize spirocyclic lactones by coupling enals 

with cyclohexane-1,2-dione 48 and isatin derivatives 49.
27

 The synthesis of spirocyclic γ-lactones 

via NHC-catalysis has seen a considerable amount of attention and this class of reaction has been 

expanded accordingly (Scheme 1.6.5).28  

Scheme 1.6.5 

 

Larger oxygen heterocycles have also been synthesized via the NHC-generated 

homoenolate equivalent. In 2013, Ye and co-workers demonstrated the coupling of enals with 

dioxolane-fused o-quinone methides 50 bearing aryl substituents off the exo-olefin to generate 

seven-membered lactones.29 Nair et al. also discovered an NHC-catalyzed annulation of enals and 

tropone 52 to generate fused six-membered lactones (Scheme 1.6.6).30  

Scheme 1.6.6 
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1.7 Nitrogen Heterocycle Synthesis via the NHC-Homoenolate Pathway 

In addition to the efforts put towards oxygen heterocycle synthesis, a number of useful 

NHC-catalyzed methodologies for the synthesis of nitrogen heterocycles have also been 

developed. The first example was reported in 2005 from He and Bode.31 They demonstrated the 

coupling of enals and N-sulfonylimines 53 to generate syn 4,5-disubstituted γ-lactams 54 in good 

yield and moderate diastereoselectivity. This reaction is understood to proceed via the same 

mechanism as the addition of enals to aldehydes to form γ-lactones, the only difference being that 

the nitrogen of the imine attacks the acyl azolium to liberate catalyst and form the heterocycle. 

This initial report was limited to imines bearing 4-methoxyphenylsulfonamide as the N-

substituent. Later work by Bode overcame some of the limitations of this initial report by using 

cyclic sulfonylketamines 55 to synthesize fused γ-lactams 57 (Scheme 1.7.1).32 
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Scheme 1.7.1  

 

Subsequently, the groups of Scheidt and Rovis both reported asymmetric variants of this 

transformation. Schiedt and Chan reported N-acyl hydrazones are competent coupling partners of 
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transformation.33 In this reaction it is proposed that Mg(Ot-Bu)2 coordinates to the acyl oxygen 
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The authors demonstrated that both aliphatic and aryl enals participate in the reaction, providing 

product in good yields, diastereoselectivity, and enantioselectivity. Rovis and co-workers 
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Breslow intermediate. The conjugate acid of 60 then protonates the azadiene, making it more 

electrophilic. Evidence for this mode of activation was provided when an achiral NHC was used 
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observed by Bode and Scheidt in their syntheses of γ-lactams (Scheme 1.7.2).  

Scheme 1.7.2 

 

In addition to γ-lactams, a number of other nitrogen containing heterocycles have also been 

synthesized via the homoenolate pathway. Bode reported a synthesis of fused β-lactams 62 by 

coupling enals with α,β-unsaturated N-sulfonyl ketimines.35 This is a notable transformation as it 

favors β-lactam formation despite competing enal dimerization and hetero-Diels-Alder pathways 

(Scheme 1.7.3).36  
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Scheme 1.7.3 

 

Bode proposed that this reaction proceeds via a cross aza-benzoin reaction followed by an 

oxy-Cope rearrangement cascade. It is postulated that the Breslow intermediate 63 first adds to the 

ketamine via the acyl anion pathway to produce 64 followed by an oxy-Cope rearrangement to 

furnish enolate 65. This enolate then adds to the imine via a Mannich reaction and the nitrogen 

anion cyclizes on the acyl azolium liberating catalyst and producing the β-lactam product. 

However, it is possible that the homoenolate adds 1,4 to the ketamine, directly furnishing 65 under 

a more traditional homoenolate-type reaction mechanism (Scheme 1.7.4).  
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Scheme 1.7.4 

 

Diazenes have also been shown to be competent coupling partners in NHC-catalyzed 

homoenolate annulations. Chan and Scheidt showed that electron-rich aryl diazenes may react with 

electron-deficient and electron-rich aryl enals in the presence of a NHC catalyst to furnish 

pyrazolidinone products in good yield.37 In this report, there is one example shown with a chiral 

NHC catalyst and the desired product is formed in 61% yield and 90% ee (Scheme 1.7.5). 
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Scheme 1.7.5 

 

In a related transformation, Scheidt and Chan showed that azomethine ylides 68 may react 

with the NHC-generated homoenolate in a formal [3+3] to furnish pyridazinones.38 Electron-rich, 

aliphatic, and dienyl enals participate in the reaction. Both electron-rich and electron-poor 

susbstituents are tolerated on the imine moiety; however, enolizable and 2-substituted aryl imines 

do not participate. The reaction proceeds with high yields and excellent diastereoselectivity. The 

high diastereoselectivity is attributed to a hydrogen bond between the Breslow intermediate 71 and 

azomethine ylide 70, preoganizing the transition state for a syn-addition (Scheme 1.7.6).  
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Scheme 1.7.6 

 

Nitrones have also been reacted under the homoenolate manifold. Scheidt demonstrated 

that aryl nitrones may couple with aryl and aliphatic aldehydes via a formal [3+3] annulation to 

generate heterocyclic lactones.39 The NHC-generated homoenolate attacks the nitrone and then 

tautomerizaes to the acyl azolium. Intramolecular interception of the acyl azolium liberates 

carbene and generates heterocyclic lactone 72. This lactone is then opened in a second step to 

produce the linear ester product 73 (Scheme 1.7.7).  
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Scheme 1.7.7 

 

 Finally, the nitroso group has been utilized as a coupling handle for the synthesis of 

nitrogen containing heterocycles via NHC catalysis. In 2008 this type of reactivity was first 

demonstrated when enals were coupled with nitrosobenzene 74 to furnish isoxazolidinone products 

76.40 The reaction is understood to proceed via attack on the nitrogen of the nitroso from the 

homoenolate position, followed by cyclization of the pendant alkoxide onto the acyl azolium. 

These isoxazolidinone products 76 were further elaborated to the β-amino ester 77 upon treatment 

with acid and methanol (Scheme 1.7.8).  
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Scheme 1.7.8 

 

In an interesting extension of this chemistry, nitroso compounds were demonstrated to 

couple with the homoenolate equivalent via a formal [4+3] annulation.41 Mechanisticaly, this is 

thought to first proceed via the [3+2] isoxazolidinone formation above, but then undergoes a 1,2-

Bamberger-type rearrangement to furnish the seven membered lactone 79. Electron-rich and 

electron-poor aromatic and heteroaromatic enals are tolerated in the reaction; however, the nitroso 

component is limited to 1-methyl-4-nitrosobenzene 78 Scheme 1.7.9).  
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Scheme 1.7.9 

 

1.8 Carbocycle Synthesis via the NHC-Homoenolate Pathway 

Carbocyclic compounds have also been synthesized via a variety of NHC-catalyzed 

methodologies. The first example was reported by Nair and co-workers in 2006. It was found that 

enals couple with chalcones to furnish 1,3,4-trisubstituted cyclopentenes.42 The accepted 

mechanism for this transformation begins with formation of the extended Breslow intermediate 

followed by a 1,4 addition of the homoenolate to the chalcone furnishing intermediate 80. 

Tautomerization of 80 leads to ketone 81, which then undergoes an aldol reaction with the enol-

azolium to provide alkoxide 82. Cyclization of the alkoxide onto the acylazolium liberates the 

active catalyst and furnishes β-lactone 83, which decarboxylates to provide the observed 

cylopentene product 84 (Scheme 1.8.1). 
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Scheme 1.8.1 

 

A variety of both chalcones and enals participate in this reaction and yields are generally 

good. Diastereoselectivity is excellent, with the trans substituted product being formed in >20:1 

dr in all cases. Aliphatic substation is tolerated on both the chalcone and the enal coupling partners 

(Scheme 1.8.2).  
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In an extension of this work Nair et al. also showed that the acylazolium may be intercepted 

by an exogenous alcohol to generate either cyclic ester 85 or straight chain ester 86. 43 The yields 

of this reaction range from 57 to 69%, with products forming as a single diastereomer, and in a 

product ratio of 2:1. In this case, the scope of the transformation is limited to aryl enals and bis-

aryl enones (Scheme 1.8.3).  

Scheme 1.8.3 
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cyclopentanone 87 and cyclopentene products 88.44 The origin of product selectivity is believed 

to arise from C-acylation of the acylazolium leading to the cyclopentanone product (Scheme 

1.8.4), while the cyclopentene product results from an intramolecular aldol / decarboxylation 

pathway (vide supra). The product selectivity appears to be substrate controlled, but generally 

gives a distribution of up to 2:1, favoring the cyclopentene product (Scheme 1.8.4). This reaction 

represents a rare example of carbon attacking the acyl azolium.  
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Scheme 1.8.4 

 

Shortly after Nair’s group reported the first NHC-catalyzed cyclopentene forming reaction, 

Bode and co-workers reported an enantioselective variant of the reaction, coupling enals to 4-

oxoenoates.45 This report from Bode is notable as it provides the cis-cyclopentene product, in 

contrast to Nair’s report which exclusively generates the trans-diastereomer. Bode and co-workers 

propose that their cyclopentene forming reaction proceeds via a cross-benzoin reaction between 

the enal and 4-oxoenoate followed by an NHC-promoted oxy-Cope rearrangement to funish 89 

(Scheme 1.8.5). However, it is also possible that the reaction proceeds via the homoenolate, as 

proposed by Nair.  
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Scheme 1.8.5 

 

Scheidt and co-workers also reported an asymmetric variant of this reaction wherein the 

addition of a Lewis acid co-catalyst allows for the coupling of the same enals and chalcones that 

Nair achieved in his earlier report.46 Interestingly, this methodology also produces the cis-

diastereomer that was observed by Bode et al. However, the opposite enantiomer of product is 

observed even though Scheidt employed the opposite antipode of carbene catalyst. The authors 

argue that the Lewis acid coordinate to the extended Breslow intermediate and the chalcone to pre-

organize the s-cis transition state 90 (Scheme 1.8.6). 
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Scheme 1.8.6 

 

Finally, Glorius and co-workers demonstrated an asymmetric coupling of enals and 

aurenones via a [3+2] annulation.47 This reaction is believed to proceed via 1,4 addition of the 

NHC-generated homoenolate equivalent to the Michael acceptor. The resultant enol azolium 

tautomerizes to the acyl azolium which is in turn attacked via the pendant enolate. This protocol 

tolerates aryl and aliphatic enals as well as aurones bearing a variety of substitution. This reaction 

represents a rare example of carbon turnover of the acyl azolium (Scheme 1.8.7).  
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Scheme 1.8.7 

 

1.9 β-Functionalization of Enals to Generate Acyclic Esters  
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nitronate 92 is protonated and the enol azolium tautomerizes to form acylazolium 93. The 

acylazolium is then intercepted by methanol to furnish product 94 and liberate catalyst (Scheme 

1.9.1). 

Scheme 1.9.1 
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Scheme 1.9.2 

 

1.10 Alternate Access to the Homoenolate Pathway  

In 2009, Bode reported that α-hydroxy enones are efficient bench-stable surrogates of enals 

for NHC-catalyzed homoenolate additions to various electrophiles.53 A limitation is that the 

increased steric demand of these substrates inhibits their use with bulky chiral catalysts. In 2013, 

Chi and co-workers demonstrated that saturated esters are potential homoenolate precursors.54 This 

reactivity is notable because it functionalizes a traditionally non-reactive β-carbon of a saturated 

ester. The reaction is proposed to proceed by initial addition of the carbene to the electron deficient 

aryl ester generating acylazolium 96, which then tautomerizes to enolate azolium 97. This 

intermediate can then undergo a proton transfer from the β-carbon to the enolate oxygen furnishing 

extended Breslow intermediate 98 (Scheme 1.10.1). Using this methodology, cyclopentene 

products form in 8-76% yield, 5:1 to 17:1 dr, and 82-96% ee. Aliphatic and aryl esters are tolerated 
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may be synthesized using this methodology by coupling CF3/aryl ketones with hydrocinnamates 

to furnish products in 29-80% yield, 68-92% ee, and 1.3:1 to 4.5:1 dr. This method was also used 

to synthesize nitrogen heterocycles. γ-Lactams are formed in 55-76% yield, 90-96% ee, and 4:1 to 

7:1 dr (Scheme 1.10.1). 
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Scheme 1.10.1 

 

1.11 Single-Electron Pathways in NHC-Catalysis 

Studer reported the first example of the Breslow intermediate undergoing a single-electron 

oxidation in 2008 within the context of the TEMPO oxidation of aldehydes to esters.55 In this 

reaction, the Breslow intermediate undergoes two single-electron oxidations for a net two-electron 

oxidation of the Breslow intermediate to the acyl azolium (Scheme 1.11.1).  
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The first example of a NHC-catalyzed pathway involving a radical bond forming reaction 

was reported by us in 2014.56 For a detailed account of this reaction see Chapter 3. In 2015 Chi 

and co-workers reported a NHC-catalyzed β-hydroxylation of enals that is understood to proceed 

via a radical mechanism. 57 It is postulated that an electron-deficient nitroarene abstracts a single-

electron from the Breslow intermediate and then recombines through an oxygen centered radical 

of the nitroarene 100 at the β-position of the radical cation derived from the Breslow intermediate 

101 (Scheme 1.11.2). 

Scheme 1.11.2 
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second single electron from neutral Breslow radical and accepts two protons to furnish product 

107 and to generate acylazolium 108. The acyl azolium is then intercepted by methanol to 

regenerate catalyst and liberate ester product (Scheme 1.11.3). This mechanistic proposal is 

supported by EPR analysis of the nitroalkene centered radical anion. Electron-rich and electron-

poor aryl and aliphatic nitroalkenes undergo the dimerization with yields ranging from 33-92% 

and dr ranging from 2:1 to 9:1. β,β-disubstituted nitroalkenes also participate in this reaction. Aryl 

aldehydes are required as the electron donor in this reaction (Scheme 1.11.3). 

Scheme 1.11.3 
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catalysis. This history sets the stage for further exploration of the NHC-generated homoenolate 

equivalent for the β-functionalization of enals.  
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Chapter 2 

Asymmetric Addition of Enals to Nitroalkenes to Generate δ-Nitroesters via 

the N-Heterocyclic Carbene Generated Homoenolate Equivalent  

 

2.1 Introduction  

During my former colleague Dan DiRocco’s investigation into the NHC-catalyzed Stetter 

reaction between enals and nitroalkenes an unknown side product was observed when 

cinnamaldehyde 1 was reacted with (E)-1-nitrobut-1-ene 2.1 The expected Stetter product 4 was 

formed in 66% yield and 52% ee with the remainder of the mass balance being the unknown ester 

product (Scheme 2.1.1).  

Scheme 2.1.1  
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homoenolate addition to the nitroalkene or a NHC-generated enolate addition to the nitroalkene 
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an enolate derived product would form via the extended Breslow intermediate 7 being protonated 

at the β-position to form enol azolium 8, which then attacks the nitroalkene to form acyl azolium 

9. Acyl azolium 9 then undergoes attack by methanol to from product 10 (Scheme 2.1.2).  

Scheme 2.1.2 
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syn nitroester product 7 (Scheme 2.1.3).  

Scheme 2.1.3 
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Scheme 2.1.4 

 

2.2 Development of the Racemic Reaction  

Once we had unequivocally determined the structure of the product formed in the reaction, 
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Scheme 2.2.1 

 

At this point we turned our attention to the effect of the base on the reaction. To probe this 

variable, we utilized high-throughput experimentation (HTE) to rapidly screen a multitude of bases 
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Figure 2.2.1 

Next, we chose to explore variations of the NHC catalyst used in the reaction. A strong 

correlation between diastereoselectivity of the product and the electronics of the N-aryl substituent 

on the NHC catalyst was observed. As the electronics of the N-aryl substituent change from 

strongly electron withdrawing to less electron withdrawing, the diastereoselectivity goes from 

almost exclusively syn to a mixture of syn/anti. In fact, using the highly electron donating 4-

methoxy phenyl 23 as the N-aryl substituent actually inverts the diastereoselectivity to slightly 

favor the anti diastereomer (the major diastereomer in the reports from Nair and Liu).  In these 

reactions, the majority of the mass balance was the Stetter product (Table 2.2.1). To shut down the 

Stetter pathway we hypothesized that a catalyst bearing an N-aryl group with bulky substituents in 
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the ortho,ortho’ positions would prevent the acyl carbon of the extended Breslow intermediate 

from attacking the nitroalkene (Figure 2.2.2). To probe this hypothesis, the tribromodifluoro aryl 

catalyst 20 and the trichlorodifluoro catalyst 21 were synthesized and subjected to the reaction. By 

employing these catalysts, the Stetter pathway was suppressed considerably and the nitroester 

product was formed in good yields (82% yield, 4:1 dr with catalyst 20, 76% yield, 2:1 dr with 

catalyst 21). However, diastereoselectivity did suffer as a result of the aryl group being less 

electron deficient (Table 2.2.1). With these conditions in hand we felt that we had developed a 

good understanding of the racemic variant of the reaction and turned our efforts towards 

developing an asymmetric methodology.   

Table 2.2.1 
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Figure 2.2.2 

2.3 Development of the Asymmetric Reaction  

We began our investigation of the asymmetric coupling of enals and nitroalkenes to form 

nitroesters by screening a variety of chiral N-pentafluorophenyl catalysts in ethanol with NaOAc 

as the base. In our initial screen we found that backbone-fluorinated NHC 35 provides product in 

the highest enantioselectivities, although it is unselective for the formation of the Stetter product 

4 and the desired nitroester 18 (Table 2.3.1).  
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Table 2.3.1 

 

We then chose to attempt to optimize the reaction with catalyst 3 using HTE. A variety of 

bases and base equivalents were explored. Unfortunately, we were unable to optimize past our 

previous high-water mark of 42% yield and 83% ee (Figure 2.3.1).  
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Figure 2.3.1 

Unable to optimize the asymmetric reaction with catalyst 3 beyond 42% yield, we turned 

our attention to catalyst development. We initially postulated that bulking up the ortho,ortho’ 

positions of the N-aryl, similar to our solution for the racemic reaction, may provide higher yields 

for the desired product. To test our hypothesis, we synthesized catalysts 27 and 28 and subjected 

them to the reaction conditions. These catalysts provided good selectivity for the nitroester over 

the Stetter pathway, however, the enantioselectivity suffered considerably (Table 2.3.2).  
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Table 2.3.2 

 

After finding that increasing the steric bulk of the N-aryl substituent provides good product 

selectivity but erodes the enantioselectivity, we turned our attention towards changing the chiral 

substituent on the aliphatic backbone of the NHC catalyst. We imagined that a sufficiently bulky 

chiral group may provide a similar effect of the bulky N-aryl to favor the homoenolate over the 

acyl anion pathway. We were pleased to find that NHC catalyst 29
6 bearing a bis-phenyl TMS-

protected tertiary alcohol as the source of chiral information provided the desired product in 

excellent enantioselectivity, diastereoselectivity, and product selectivity with the Stetter product 

being formed in only trace amounts.7 However, the product was formed in a meager 16% yield 

with the remainder of the mass balance being unreacted enal starting material. We then synthesized 

and evaluated catalyst 30 bearing a TBS protecting group in place of the TMS group. Once again, 

the product was formed in excellent selectivities, and encouragingly the Stetter product was 
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observed in only trace amounts. However, the desired product was formed in low yield, 8% (Table 

2.3.3). 

Table 2.3.3 

 

We believe that the cause of low conversion in these reactions is due to decomposition of 

the NHC catalyst. We subjected chromanone substrate 31 to the reaction mixture after 12 hours 

and observed no formation of product 32. If NHC 29 were still active, chromanone product 32 

should have formed. In a control experiment wherein catalyst 29 was reacted with chromanone 

substrate 31 in the presence of NaOAc and ethanol, the desired chromanone product 32 was formed 

in 73% yield (Scheme 2.3.1).  
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Scheme 2.3.1 

 

With this in mind, we began to explore different variations of catalyst 29 in an attempt to 

find a more stable catalyst platform. We found that catalyst 33, bearing an unprotected hydroxyl 

group, provided only trace amounts of product. Replacing the hydroxyl group with a fluorine atom 

yielded similar results. We found catalysts 35 and 36 featuring protected primary hydroxyl groups 

restored reactivity, however, enantioselectivity was only 60% and 70% ee respectively. In an effort 

to improve enantioselectivity while maintaining high conversion we synthesized o-silyl 

tertiaryalcohol NHC catalyts 37, 38, and 39. We were delighted to find that the bis-butyl 

trimethylsilyl protected catalyst 38 provided desired product in 70% yield, 17:1 dr, and 93% ee. 

With this catalyst, the Stetter product 4 is observed in only trace amounts and the remainder of the 

mass balance is hydrocinnamaldehyde, the product of β-protonation of the homoenolate position 

(Table 2.3.4). 
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Table 2.3.4 
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2.4 Reaction Scope 

Upon identifying catalyst 38 we began to explore the substrate scope of the reaction. An 

assortment of aryl and aliphatic nitroalkenes were reacted with cinnamaldehyde and we were 

pleased to find that yields, diastereoselectivities, and enantioselectivities were generally good. We 

found that nitrostyrene derivatives (entries 11-15 table 2.4.1) provide product in higher yields than 

their aliphatic counterparts, however diastereoselectivity and enantioselectivity are slightly lower.  
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Table 2.4.1  

 

Of note are entries 7 and 8 (table 2.4.1) which contain potential handles for further manipulation 

in the form of an acetal and terminal alkene respectively. NBoc protected nitrogen is tolerated in 

the reaction (entry 10 Table 2.4.1). Heteroaromatic nitroalkenes (entries 13 and 14 Table 2.4.1) 

participate in the reaction as well.  
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It is postulated that aliphatic nitroalkenes suffer lower yields in this transformation due to 

a 1,4-addition of the solvent. In our studies, we isolated a small amount of side product 54a from 

the reaction mixture in all cases where an aliphatic nitroalkene was used. We did not observe any 

of this side product when nitrostyrene derivatives were used. Nitrostyrene derivatives are able to 

undergo the reverse reaction to regenerate the reactive nitrostyrene, whereas aliphatic nitroalkenes 

are less likely to undergo this reverse reaction.  

Scheme 2.4.1 

 

We then explored the reaction scope with respect to the enal coupling partner. Electron-

rich and electron-deficient aryl enals participate in the reaction to generate product in moderate to 

good yields and with good selectivities (Table 2.4.2).  
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Table 2.4.2 

 

Unfortunately, subjecting E-2-pentenal 61 (entry 6 table 2.4.2) to the reaction conditions 

afforded product in only trace amounts with the Stetter product being the major product. We found 

that by using catalyst 3 in place of catalyst 38, E-2-pental participates in the reaction to afford 

desired product in 25% yield (19:1 dr, 91% ee).  

Scheme 2.4.2  
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of zinc dust and acetic acid to the crude reaction mixture after 12 hours, followed by heating for 

an additional 4 hours, provides an operationally simple protocol for the one-pot synthesis of δ-

lactams.9 In this reaction sequence the lactam product is formed in yields corresponding to those 

in the synthesis of the nitroester and the enantioselectivity and diastereoselectivity do not suffer 

(Table 2.4.3). 
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Table 2.4.3 

 

The δ-lactam product may be further converted to the piperidine via a LiAlH4 reduction in 

excellent yield (Scheme 2.4.3).10 
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Scheme 2.4.3 

 

2.5 Stereochemical Model  

We believe that the trend associated with diastereoselectivity of the nitroester product and 

the electronics of the N-aryl moiety of the NHC catalyst are due to a change in the Breslow 

intermediate geometry. In our studies we focused on utilizing the electron-deficient 

pentafluorophenyl aryl group on our catalyst to provide high diastereoselectivity for the syn 

nitroester. In both Nair and Liu’s work, electron-rich NHC catalysts are utilized and high 

selectivity for the anti diastereomer are observed. Furthermore, in Liu’s asymmetric variant of the 

reaction, pseudo-enantiomeric catalyst provide product which correlates to the nitroalkene 

approaching the enal from the same enantiotopic face (Scheme 2.5.1).  
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The inversion of diastereoselectivity between our reaction and that observed in Liu’s 

reaction is intriguing. Complicating matters is that the same stereochemistry is observed at the β-

position in the product in spite of the fact that the pseudo-enantiomeric catalysts are used. This 

suggests that the electrophile approaches from the opposite prochiral face of the enal, most likely 

because of an inversion of Breslow intermediate geometry. The reasons for this are not clear at 

this time, but may have much to do with the nature of the N-aryl substituent. We present an analysis 

of the diastereomeric transition state structures that may be involved in settling these issues of 

selectivity (Figure 2.5.1). We believe that the electron-deficient nature of the pentafluoro phenyl 

aryl group leads to the oxygen of the Breslow intermediate being cis to the aryl ring. In the case 

of more electron-rich aryl groups, the Breslow intermediate forms the isomer where the oxygen is 

trans to the aryl ring. Furthermore, we believe that the use of electron-deficient aryl rings on the 

catalyst promotes a closed transition state. In the case of electron-rich aromatic ring on the catalyst, 

the reaction proceeds through a more traditional open transition state.   

 

Figure 2.5.1 
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2.6 Synthesis of Paroxetine and Femoxetine  

After we completed the development of the nitroester and lactam methodologies we turned 

our attention towards the synthesis of the biologically relevant piperidines paroxetine (Paxil) 68 

and femoxetine 69 (Figure 2.6.1). Paroxetine is a selective serotonin reuptake inhibitor (SSRI) 

developed in the 1970’s and introduced to market in 1992 as a treatment for anxiety, depression, 

and panic disorder.11 A related SSRI femoxetine, was discovered concurrently with paroxetine but 

was not pursued. We thought that our protocol for the rapid synthesis of δ-lactams would allow 

for concise syntheses of these two molecules.  

 

Figure 2.6.1 

Since initially being reported, many different syntheses of paroxetine have been published 

relying upon the establishment of a single enantiomer of N-protected trans-4-(4-fluorophenyl)-3-

piperidinemethanol 72, followed by alkylation with sesemol and deprotection (Figure 2.6.2). 

Approaches to set the stereochemistry often depend the chiral pool,12 resolutions,13 chiral 

auxiliaries,14 chiral bases,15 and asymmetric catalysis.16 These methods have been clearly proven 

effective and are represented in the literature accordingly. However, a highly convergent synthesis 

in which all the carbons of paroxetine are introduced in a single stereocontrolled step is previously 

unreported. 
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Figure 2.6.2 

We envisioned that paroxetine could be synthesized by coupling 4-fluorocinnamaldehyde 

73 with nitroalkene 74 to generate lactam 75 which would then be reduced to furnish the final 

piperidine product 68 (Figure 2.6.3).  

 

Figure 2.6.3 
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paroxetine in 88% yield. This synthesis is four steps from commercially available starting 

materials and provides the product in an overall yield of 35% (Scheme 2.6.1). Compared to the 

previously reported syntheses of this molecule, our approach represents the most concise synthesis 

to date.   

Scheme 2.6.1 
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nitrogen with sodium hydride and methyl iodide in 55% yield and then reduced with LiAlH4 in 

87% yield to furnish femoxetine 69 in five total steps and an overall yield of 5% (Scheme 2.6.2). 

The synthesis of paroxetine and femoxetine was carried out with the assistance of Kerem Ozboya 

and Darrin Flanigan  

Scheme 2.6.2 
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sequence was also developed for the rapid synthesis of stereodefined 3,4 substituted trans δ-

lactams. We then used this methodology to execute the synthesis of the pharmaceutically relevant 

molecules (-) paroxetine and (-) femoxetine.  

  



 66 

2.8 References

1 DiRocco, D. A.; Rovis. T. J. Am. Chem. Soc. 2011, 133, 10402. 
2 Nair, V.; Sinu, C. R. Babu, B. P.; Varghese, V.; Jose, A.; Suresh, E. Org. Lett. 2009, 11, 5570. 
3 Maji, B.; Ji, L.; Wang, S.; Vedachalam, S.; Rakesh, G.; Liu, X.-W. Angew. Chem., Int. Ed. 
2012, 51, 8276.  
4 (a) Chan, A.; Scheidt, K. A. Org. Lett. 2005, 7, 905. (b) Sohn, S. S.; Bode, J. W. Org. Lett. 
2005, 7, 3873.  
5 DiRocco, D. A.; Oberg, K. M.; Dalton, D. M.; Rovis, T. J. Am. Chem. Soc. 2009, 131, 10872. 
6 (a) Sun, F.-G.; Sun, L.-H.; Ye, S. Adv. Synth. Catal. 2011, 353, 3134. (b) Enders, D.; Han, J. 
Tetrahedron Asymmetry 2008, 19, 1367. (c) He, L.; Lv, H.; Zhang, Y.-R.; Ye, S. J. Org. Chem. 
2008, 73, 8101.  
7 (a) Sun, F.-G.; Sun, L.-H.; Ye, S. Adv. Synth. Catal. 2011, 353, 3134. (b) Enders, D.; Han, J. 
Tetrahedron Asymmetry 2008, 19, 1367. (c) He, L.; Lv, H.; Zhang, Y.-R.; Ye, S. J. Org. Chem. 
2008, 73, 8101.  
8 Bode has reported two complementary approaches for the direct asymmetric synthesis of -
lactams (dihydropyridinones, specifically) via NHC catalysis; from enals and unsaturated imines: 
(a) He, M.; Struble, J. R.; Bode, J. W. J. Am. Chem. Soc. 2006, 128, 8418. (b) from enals and 
stable enamines: Wanner, B.; Mahatthananchai, J.; Bode, J. W. Org. Lett. 2011, 13, 5378.  
9 Senkus, M. Ind. Eng. Chem. 1948, 13, 5378. 
10 (a) Regan, B. M.; Hayes, F. N. F. J. Am. Chem. Soc. 1956, 78, 639. (b) Hacksell, U.; 
Arvidsson, L. E.; Svensson, U.; Nilsson, J. L. G.; Sanchez, D.; Wikstroem, H.; Lindberg, P.; 
Hjorth, S.; Carlsson, A. J. Med. Chem. 1981, 24, 1475.  
11 (a) Barnes, R. D.; Wood-Kaczmar, M. W.; Curzons, A. D.; Lynch, I. R.; Richardson, J. E.; 
Burton, P. C. U. S. Patent 24721723, 1986. (b) Gunasekara, N. S.; Noble, S.; Benfield, P. Drugs 
1988, 55, 85. (c) Bourin, M.; Chue, P.; Guillon, Y. CNS Drug Reviews 2001, 7, 25-47. (d) 
Katzman, M. A.; Tricco, A. C.; McIntosh, D.; Filteau, M. J.; Bleau, P.; Chokha, P. R.; 
Kjernisted, K. D.; Mok, H.; Pham. B. J. Clin. Psychiatry 2007, 68, 1845-1859. 
12(a) Cossy, J.; Mirguet, O.; Gomez Pardo, D.; Desmurs, J.-R. Tetrahedron Lett. 2001, 42, 5705. 
(b) Cossy, J.; Mirguet, O.; Gomez Pardo, D.; Desmurs, J.-R. Eur. J. Org. Chem. 2002, 3543.  
13 (a) Czibula, L.; Nemes, A.; Sebök, F.; Szántay J[r., C; Ma ́k, M. Eur. J. Org. Chem. 2004, 
3336. (b) Sugi, K; Itaya, N.; Katsura, T.; Igi, M.; Yamazaki, S.; Ishibashi, T.; Yamaoka, T.; 
Kawada, Y.; Tagami, Y.; Otsuki, M.; Ohshima, T. Chem. Pharm. Bull. 2000, 48, 529. (c) de 
Gonzalo, D.; Brieva, R.; Sánchez, V. M.; Bayod, M.; Gotor, V. J. Org. Chem. 2001, 66, 8947.  
(d) Gotor, V. Org. Process Res. Dev. 2002, 6, 420. (e) de Gonzalo, G.; Brieva, R.; Sánchez, V. 
M.; Bayod, M.; Gotor, V. Tetrahedron: Asymmetry 2003, 14, 1725. (f) de Gonzalo, G.; Brieva, 
R.; Sánchez, V. M.; Bayod, M.; Gotor, V. J. Org. Chem. 2003, 68, 3333. (g) Palomo, J.M.; 
Fernández-Lorente, G.; Mateo, C.; Fernández- Lafuente, R.; Guisan, J. M. Tetrahedron: 

Asymmetry 2002, 13, 2375. (h) Palomo, J.M.; Fernández- Lorente, G.; Mateo, C.; Fuentes, M.; 
Guisan, J. M.; Ferna ́ndez-Lafuente, R. Tetrahedron: Asymmetry 2002, 13, 2653. 
14 (a) Amat, M.; Hidalgo, J.; Bosch, J. Tetrahedron: Asymmetry 1996, 7, 1591. (b) Amat, M.; 
Bosch, J.; Hidalgo, J.; Cantó, M.; Pérez, M.; Llor, N.; Molins, E.; Miravitlles, C.; Orozco, M.; 
Luque, J. J. Org. Chem. 2000, 65, 3074. (c) Escolano, C.; Amat, M.; Bosch, J.; Chem. Eur. J. 

2006, 12, 8198. (d) Liu, L. T.; Hong, P.-C.; Huang, H.-L.; Chen, S.-F.; Wang, C.-L.J.; Wen, Y.-
S. Tetrahedron: Asymmetry 2001, 12, 419. (e) Murthy, K. S. K.; Rey, A. W.; Tjepkema, M. 

                                                



 67 

                                                                                                                                                       
Tetrahedron Lett. 2003, 44, 5355. (f) Yamada, S.; Jahan, I. Tetrahedron Lett. 2005, 46, 8673. (g) 
Yamada, S.; Misono, T.; Tsuzuki, S. J. Am. Chem. Soc. 2004, 126, 9862. 
15
 (a) Johnson, T. A.; Curtis, M. D.; Beak, P. J. Am. Chem. Soc. 2001, 123, 1004. (b) Johnson, T. 

A.; Jang, D. O.; Slafer, B. W.; Curtis, M. D.; Beak, P. J. Am. Chem. Soc. 2002, 124, 11689. (c) 
Greenhalgh, D. A.; Simpkins, N. S. Synlett 2002, 2074. (d) Gill, C. D.; Greenhalgh, d. A.; 
Simpkins, N. S. Tetrahedron 2003, 59, 9213. 
16
 
16 (a) Senda, T.; Ogasawara, M.; Hayashi, T. J. Org. Chem. 2001, 66, 6852. (b) Taylor, M. S.; 

Jacobsen, E. N. J. Am. Chem. Soc. 2003, 125, 11204. (c) Hughes, G.; Kimura, M.; Buchwald, S. 
L. J. Am. Chem. Soc. 2003, 125, 11253. (d) Koech, P. K.; Krische, M. J. Tetrahedron 2006, 62, 
10594. (e) Paraskar, A. S.; Sudalai, A. Tetrahedron 2006, 62, 4907. (f) Ito, M.; Sakaguchi, A.; 
Kobayashi, C.; Ikariya, T. J. Am. Chem. Soc. 2007, 129, 290.  
(g) Nemoto, N.; Sakamoto, T.; Fukuyama, T.; Hamada, Y. Tetrahedron Lett. 2007, 48, 4977. (h) 
Bower, J. F.; Riis-Johannessen, T.; Szeto, P.; Whitehead, A. J.; Gallagher, T.Chem. Commun. 

2007, 728. (i) Brandau, S.; Landa, A.; Franze’n, J.; Marigo, M.; Jørgensen, K. A. Angew. Chem., 

Int. Ed. 2006, 45, 4305. (j) Hynes, P. S.; Stupple, P. A.; Dixon, D. J. Org. Lett. 2008, 10, 1389. 
(k) Valero, G.; Schimer, J.; Cisarova, I.; Vesely, J.; Moyano, A.; Rios, R. Tetrahedron Lett. 

2009, 50, 1943. (l) Kim, M.-H.; Park, Y.; Byeong-Seon, J.; Hyeung-guen, P.; Jew, S.-S. Org. 

Lett. 2010, 12, 2826. 



 68 

Chapter 3 

Asymmetric β-hydroxylation of Enals via Oxygen Transfer from Electron-

Deficient Nitro-Arenes 

 

3.1 Introduction  

N-Heterocyclic carbene (NHC) catalysis has been an area of intense research focus for the 

past two decades.1 The advent of NHC catalysis embodied acyl anion reactivity exemplified by 

the benzoin and Stetter reactions.2 The presence of a nearby leaving group or a reducible 

functionality opened the door for NHC-based redox catalysis.3 The use of enals in NHC catalysis 

is particularly illustrative (figure 3.1.1): they have been demonstrated to undergo the asymmetric 

Stetter reaction (figure 3.1.1 eq 1),4 β-protonation/esterification via the redox pathway (figure 3.1.1 

eq 2),5 or trapping with exogenous aldehyde,6 imine,7 or nitroalkene from the homoenolate position 

(figure 3.1.1 eq 3).8 Enals have also been demonstrated to undergo direct oxidation to form α,β-

unsaturated esters (figure 3.1.1 eq 4).9 All of these previously described NHC-catalyzed reaction 

presumably operate via a two-electron manifold.10 We hypothesized that it may possible to access 

a single-electron pathway through the judicious choice of a single-electron oxidant (figure 3.1.1 

eq 5) which would enable a new class of reactivity.  
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Figure 3.1.1 

A similar approach of single-electron oxidation has been applied to secondary amine 

catalysis and has proved to be a transformative tool to the field of organocatalysis. In 2007 

MacMillan and co-workers reported the ceric ammonium nitrate promoted single-electron 

oxidation of catalytically generated enamines to form radical cation 1. The initial report reported 

oxidation of the enamine followed by trapping of the resultant radical with allyl silanes to 

ultimately produce asymmetric α-functionalized aldehydes (Scheme 31.1).11 This type of 

reactivity has been dubbed singly occupied molecular ortibal catalysis (SOMO-catalysis). This 

approach has been utilized in a large variety of novel transformations.12 It has also been coupled 

with photo-redox catalysis to provide a dual catalytic manifold for the generation of radical species 

to be coupled with SOMO-philes.13 
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Scheme 3.1.1 

 

3.2 Reaction Discovery  

During the course of our investigation into NHC catalyzed β-functionalization of enals we 

noted that the triazolium salt pre-catalyst 3 is capable of undergoing attack from the β-position of 

enals to generate product 4 (Scheme 3.2.1). 

Scheme 3.2.1 
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NaOAc in methanol. We did not observe desired product 9, but instead isolated β-hydroxy ester 7 

in 45% yield. The remainder of the mass balance was isolated as methyl cinnamate 8, the product 

of a 2-electron oxidation of the Breslow intermediate (Scheme 3.2.2). Intrigued by this unexpected 

and unprecedented product we were motivated to explore this reaction further.  

Scheme 3.2.2  

 

Upon identifying the products formed in the reaction we became interested if the methyl 

cinnamate was being formed via an elimination of the β-hydroxyl group or if it was arising from 

a different mechanistic pathway. An experiment wherein β-hydroxy ester 7 was present from the 

beginning of the reaction of E-2-pentenal 10 with 4-nitropyridine N-oxide 5 in methanol with 

catalyst 6 and NaOAc was conducted to probe this hypothesis. From this reaction we did not isolate 

any detectable amounts of methylcinnamate 8, suggesting that the enoate product does not arise 

from a simple elimination of the alcohol (Scheme 3.2.3).  

 

 

 

H

O

N
O

O2N

N N

N

Cl
Cl

Cl

BF4

10 mol%
NaOAc 1.0 equiv.
MeOH, 23 °C

OMe

OOH

OMe

O

43% Remainder Mass Balance

OMe

O

N
OH

O2N

Expected Product:
Not Observed

1.0 equiv. 1.5 equiv.

2 5

6 7 8

9



 72 

 

Scheme 3.2.3 

 

In 2004 Bode and Chow demonstrated α-epoxy enals are converted to the corresponding 

β-hydroxy ester in the presence of a NHC catalyst and alcohol solvent.14 We wondered if the enal 

was undergoing an epoxidation from the N-oxide which then reacts via the same manifold as 

Bode’s reaction. A control experiment was conducted in the absence of the NHC catalyst and we 

found the enal did not undergo any reaction with 4-nitropyridine N-oxide 5 (Scheme 3.2.4). This 

also demonstrated both the need for the NHC catalyst in our reaction and that the reaction is 

proceeding via a different mechanism than that reported by Bode.  

Scheme 3.2.4 
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The first postulated mechanism involves formation of the Breslow intermediate 14 followed by 

attack of the N-oxide from the acyl anion to form intermediate 15. Intermediate 15 then transfers 

the oxygen to the β-position of the enal via a group transfer-type mechanism to generate β-alkoxy 

acyl azolium 17 and 4-nitropyridine 16. Acyl azolium 17 is turned over by methanol to furnish β-

hydroxy ester 7 (scheme 3.2.5).  

Scheme 3.2.5 
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transfer from Breslow intermediate 14 to 4-nitropyridine N-oxide 5 to generate the Breslow 
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then turned over by methanol to furnish β-hydroxy ester 7 and close the catalytic cycle (scheme 

3.2.6).  

Scheme 3.2.6 

 

With these preliminary mechanistic proposals in mind, we began to explore optimization 

of the reaction. First, a variety of pyridine N-oxides were investigated. We were discouraged to 

find that the majority of N-oxides that were subjected to the reaction gave no desired product. 

Upon closer inspection of the N-oxides that did deliver product, it was noted that only N-oxides 

bearing a nitro group are capable of converting the enal to the desired β-hydroxy ester product 7 

(Table 3.2.1).  
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Table 3.2.1 

 

Upon the realization that only nitro containing N-oxides provide desired product we 

evaluated a number of nitrobenzene derivatives as the oxidant in the reaction. This study showed 

that the N-oxide moiety is not necessary for the reaction and that it is the nitro group that is 

responsible for the observed reactivity. In our group’s previous study of the aza-Breslow 

intermediate, it was found that the aza-Breslow intermediate derived from cinnamaldehyde 2 

exhibited a reduction potential of -0.49 V vs SCE.15 We postulate that this is the reason that 

nitrobenzene 32, which has a reduction potential of -0.48 V is not a strong enough oxidant to effect 

the oxidation of the Breslow intermediate. Indeed, when we employ nitrobenzene 32 in the 

reaction, only hydrocinnamaldehyde, the product of β-protonation is observed (Table 3.2.2).  
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Table 3.2.2 

 

Once it was determined that the nitro moiety rather than the N-oxide was responsible for 

the oxygenation, we proposed the following mechanism. First, the carbene and the enal react to 

form Breslow intermediate 33. The Breslow intermediate then transfers a single electron to the 

electron deficient nitroarene to generate Breslow intermediate derived radical cation 34 and 

nitroarene derived radical anion 37. The radical anion 37a may then access a resonance structure 

wherein the radical resides on an oxygen of the nitro group. Radical cation 34 and radical anion 

37a combine to form a new C-O bond at the β-position of the enal to generate intermediate 38. 

Intermediate 38 then collapses to form nitrosoarene 37 and β-alkoxy acyl azolium. The acyl 

azolium then reacts with methanol to form β-hydroxy ester 40 and liberate catalyst to close the 

catalytic cycle. The enoate products that we observe as a side product in the reaction may form 

from radical Breslow intermediate 36 undergoing deprotonation followed by a second single 

electron abstraction to form α,β-unsaturated acyl azolium 41 which then reacts with methanol to 

produce enoate 42 (Scheme 3.2.7).  
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Scheme 3.2.7 

 

3.3 Mechanistic Studies 

In an effort to validate our proposed mechanism we attempted to isolate the nitroso product 
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(Scheme 3.3.1). The revalation that diazene N-oxide is the ultimate fate of the nitroarene reagent 

is intriguing as it shows that less than 1.0 equivalents of oxidant are required to effect full 

conversion of the enal to the β-hydroxy ester product.  

Scheme 3.3.1 
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conditions, no ring-opened products were observed and we isolated β-hydroxy ester 51 in 67% 

yield with the remainder of the mass balance being α,β-unsaturated ester 52. In an effort to enhance 

the stability of the ring opened radical, we synthesized bisphenyl cyclopropyl enal 53. Upon 

subjection of this enal to the reaction conditions, we once again observed no ring opened products 

and isolated β-hydroxy ester 55 in 56% yield (5:1 dr, major diastereomer not determined) with the 

remainder of the mass balance being α,β-unsaturated ester 56 (Scheme 3.3.2). 

Scheme 3.3.2 
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opening. However, there is an equilibrium between the open and closed form of the cyclopropane 

that allows for the cis to trans isomerization (Scheme 3.3.3).  

Scheme 3.3.3 
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two equivalents of TEMPO are required to effect the two-electron oxidation of the Breslow 

intermediate 69 to the α,β-unsatured acyl azolium 78/79 and therefore there are two discreet 

radical intermediates that have a chance to undergo cis to trans isomerization (Scheme 3.3.6). In 

the β-hydroxylation reaction that we discovered, there is only one radical intermediate that may 

undergo isomerization before being intercepted by the nitroarene centered radical. With this result 

in hand, we postulated that the absence of cyclopropane opening in our reaction is not necessarily 

proof of the absence of radical intermediates in our proposed mechanism.  

Scheme 3.3.5 
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Scheme 3.3.6 

 

We then investigated the stereochemical course of the reaction when using cis- and trans-
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Scheme 3.3.7 

 

We further found that a reaction conducted with stoichiometric catalyst results in similar 
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Scheme 3.3.8 

 

As a further probe of our proposed radical mechanism, we conducted the reaction in the 

presence of the known radical inhibitor, galvinoxyl radical 89.22 In this experiment, the desired β-

hydroxy ester product 7 was isolated in substantially reduced yield, 9%. The remainder of the mass 

balance in this experiment was methyl cinnamate 8. A control experiment revealed that galvinoxyl 

89 is not a competent oxidant in the absence of the 4-nitro-pyridine N-oxide 5 (Scheme 3.3.9).  
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As a final mechanistic probe we added TEMPO to our standard reaction conditions. In 

this experiment, only methyl cinnamate 8 was observed and no desired β-hydroxy ester 7 was 

isolated from the reaction mixture (Scheme 3.3.10).  

Scheme 3.3.10 
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 Scheme 3.3.11 

  

To probe this hypothesis we reacted 3-phenylpropiolaldehyde 92 (ynals are direct 

precursors for the α,β-unsatured acyl azolium)23
 with catalyst 6 and NaOH in methanol. We did 

not oberve any of the desired β-hydroxy ester product and isolated methyl cinnamate 8 in 65% 

yield. Furthermore, we do not think that this mechanism is operative in our studies because we 

never isolate any of the β-methoxy ester 93, the product of solvent addition to the α,β-unsaturated 

acyl azolium (Scheme 3.3.12). 
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Scheme 3.3.12 

 

Finally, we considered the possibility that the homoenolate effects a nucleophilic attack on 

the oxygen of the nitro group. The nitro group as an electrophilic source of oxygen is rare in the 
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3.4 Reaction Optimization  

We began our reaction optimization by screening a variety of chiral NHC catalysts in 

methanol with NaOAc as base. Initially, we were discouraged to see only moderate levels of 

Ph

H

O

92

10 mol % 
NaOH 1.0 equiv.
CCl4:MeOH (20:1) 
23 °C, 12 h

N N

N
Cl

Cl
Cl

BF4

OMe

O

7

Ph

OH

OMe

O

8

Ph

Not Observed 65%

R H

O

N
O

O2N

N N

N

Cl
Cl

Cl

BF4

10 mol%
NaOAc 1.0 equiv.
MeOH, 23 °C

R OMe

OOMe

Never Observed

5

6

93

6



 88 

enantioselectivity. We found that tertiary silyl protected alcohol containing catalysts 97 and 98 

provided the highest enantioselectivities. We chose to pursue catalyst 98 in our further 

optimizations as it gave higher yields than 97, even though it provided product in lower 

enantioselectivity (Table 3.4.1). We chose to do this as we had noticed reactivity issues with 

catalyst 97 in the coupling of enals and nitroalkenes that we had developed previously (see chapter 

2 section 2.3).  
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We then explored the effect of solvent on the asymmetric reaction and were pleased to find 

a strong correlation between the solvent polarity and the ee of the product. We found that simply 

moving from methanol to n-butanol the ee increased from 51 to 85% with a comcomitant 

improvement in yield. We then explored solvent mixtures with methanol. Again, we saw an 

increase in enantioselectivity as the overall solvent polarity decreased. Our optimal result came 

with a 20:1 mixture of carbon tetrachloride to methanol, providing product in 92% ee and 45% 

yield (entry 9 table 3.4.2).  

Table 3.4.2 
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in higher yield than NaOAc in CCl4:MeOH (20:1) (Figure 3.4.1). 

 

 

Figure 3.4.1  
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Table 3.4.3 

 

3.5 Substrate Scope of the Racemic Reaction 

Unable to optimize the product yield beyond 45% with cinnamaldehyde 2, we began to 

explore the substrate scope. First, we investigated the reaction with 10 mol% of achiral NHC 6 in 
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Table 3.5.1 
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We also explored β,β-disubsituted enals and were pleased to find they react in reasonable 

yields to furnish tertiary alcohols (Table 3.5.2).  

Table 3.5.2 
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Table 3.6.1 
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3.7 Conculsion 

In conclusion, we have developed the first example of a reaction wherein the Breslow 

intermediate is oxidized to a radical cation that then combines with another radical to generate a 

new bond. Key to the development of this reaction was the identification of electron deficient 

nitroarenes which are capable of both acting as oxidant for the Breslow intermediate and as the 

source of the radical coupling partner. An asymmetric variant has been developed using chiral 

NHC 98, which provides β-hydroxy ester products in good yields and enantioselectivities. 

Mechanistically, we have strong evidence that the source of the oxygen atom is the nitro group of 

the nitroarene. We have found stereochemical convergence between cis and trans enals to provide 

the same major enantiomer of product. This strongly implicates radical character of the Breslow 

intermediate to allow for such a bond rotation. This reaction discovery represents entry into a new 

class of NHC-catalyzed reactions which break the two-electron pathway paradigm which has 

previously dominated the field of NHC catalysis.  
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Chapter 4 

Asymmetric Cyclopentanone Synthesis from Enals via Single-Electron 

Oxidation of the Breslow Intermediate 

 

4.1 Introduction  

N-heterocyclic carbene (NHC) catalyzed annulation reactions have received a tremendous 

amount of attention since Glorius and Bode first reported the NHC generated homoenolate 

independently and concurrently in 2004. In these initial reports, it was disclosed that enals are 

capable of coupling with aldehydes to generate γ-lactones in good yields and good syn selectivities 

(figure 4.1 eq 1).1 In 2005, Bode extended this reactivity to include imines as the coupling partner 

to synthesize  γ-lactams (figure 4.1 eq 2).2 Nair extended the area of homoenolate annulation 

chemistry in 2006 by coupling enals and chalcones to furnish cyclopentenes (figure 4.1 eq 3).3 The 

majority of the reports in the homoenolate literature have focused on these types of annulations.4 
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During our investigation into the NHC-catalyzed single-electron oxidation of enals to 

generate β-hydroxy esters 4, we found that conducting the reaction in pure dichloromethane 

affords an unexpected cyclopentanone dimer product 5. Interestingly, in our optimization of the β-

hydroxylation of enals, we never observe cyclopentanone 5 in the reaction medium when a 

nucleophilic solvent or co-solvent is present (Scheme 4.1.1). For cyclopentanone 5 to form, the 

reaction must be conducted in the complete absence of alcohol nucleophiles.   

Scheme 4.1.1 
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intramolecular cyclization to liberate cyanide and form imine 12 closing the catalytic cycle. This 

imine is hydrolyzed to produce amide 13. Amide 13 then opens with acid and the imine is 

hydrolyzed to generate aldehyde 15. Aldehyde 15 tautomerizes to the enol which then cyclizes to 

form β-keto aldehyde 17. Acid then attacks β-keto aldehyde 17 to liberate formic acid via a retro 

Claisen reaction and generate cyclopentanone 7. Singh and Mandal isolated intermediate 12, which 

upon treatment with acid form cyclopentanone 7 in support of this proposed mechanism (Scheme 

4.1.3).  

Scheme 4.1.3 
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Furthermore, cyclopentanone 7 has previously been synthesized via electrochemical 

reduction of methyl cinnamate 18 to produce β-keto ester 19, which is then hydrolyzed and 

decarboxylated to form cyclopentanone 7.6 In this chemistry, the trans cyclopentanone product is 

the only isomer formed. A meso bis-ester 20 is formed as a side product in this reaction, 

presumably because the bulk of the phenyls in the 3- and 4-positions do not allow for cyclization 

to the β-keto ester (Scheme 4.1.4). 

Scheme 4.1.4 
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by water to form β-keto acid 25 which could undergo decaboxylation to furnish cyclopentaone 26 

(Scheme 4.2.1).  

Scheme 4.2.1 
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undergoes a two-electron oxidation followed by attack of a second, native Breslow intermediate 

(Scheme 4.2.2).  

Scheme 4.2.2 
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Scheme 4.2.3 

 

We hypothesize that the excised carbon in this transformation is lost as CO2 in a 
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Scheme 4.2.4  

 

We believe that our second proposed mechanism is operative in this reaction. The reaction 
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precursor 30 does not provide product, and an oxidant is necessary as the excised carbon is lost as 

CO2. 

In an attempt to implicate two equivalents of catalyst in the reaction mechanism we 

performed a non-linear effect experiment using chiral NHC 36 and ent-NHC 36.9 Unfortunately, 

we did not observe the expected non-linear effect (Figure 4.2.1). A possible explanation for this is 

that two stereocenters are set during the bond-forming event. Thus, when opposite antipodes of 

catalyst are involved in the bond-forming event, a different diastereomeric transition state may be 

encountered, potentially leading to enrichment of the meso adduct at the expense of ee increase or 

decrease. The meso intermediate may then lead to other products. In Kise's electrochemical 

reductive coupling of cinnamates, he observes that the meso adduct does not close to the 

cyclopentanone.6
 
In our investigation into non-linear effects, we always saw >20:1 dr of the trans 

product.  

 

H

O
(15 mol %) 
NaOAc 0.66 equiv.
CF3Ph, 23 °C, 12 h
Ar atmosphereMeO

O

MeO OMe

N

NO2

O
1 2

5

CO2

(120,000 ppm)

62%
>20:1 dr

N N

N Cl

Cl
Cl

BF4

3



 106 

  

 

Figure 4.2.13 
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Table 4.3.1 

 

We then evaluated the reaction with chiral NHC catalysts at 70 °C in toluene and found 

that reactivity was restored with chiral catalysts. Ultimately, we found catalyst 36 provides product 

in the highest enantioselectivity (84% ee, 51% yield) (Table 4.3.2).10  
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Table 4.3.2 

 

We turned our attention to high-throughput experimentation (HTE) in an effort to improve 

the yield of the reaction. We screened eight different solvents across twelve different bases and 

ultimately found NaOAc as base in trifluorotoluene proved optimal. Upon bench-top scale-up of 

this reaction, we isolated cyclopentanone 5 in 64% yield and 84% ee (Figure 4.3.1). 
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Figure 4.3.1 
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After conducting this solvent screen, we explored the effect of different nitroarene oxidants 

on the reaction. We found a variety of different nitroarenes provide product. 4-nitropyridine N-

oxide 2 provides product in the highest yield. Enantioselecivity is not dependent upon oxidant 

(Table 4.3.3).   

Table 4.3.3 

 

 

H

O

(15 mol%)

NaOAc 0.66 equiv.

CF3Ph, 70 °C

Oxidant

O

MeO

MeO OMe

N N

N F

F
F

F

F

BF4

F

Me

Me

1

36

5

Entry Oxidant YIeld (%) dr ee (%)

N
O

NO2

NO2

NC

NO2

O2N

NO2

NO2

N

NO2

NO2

NO2

O Cl

1 64 >20:1 84

15 >20:1 -

14 >20:1 -

44 >20:1 85

59 >20:1 85

13 >20:1 -

2

3

4

5

6

2

41

42

43

44

45



 111 

Upon identifying 4-nitropyridine N-oxide as the optimal oxidant, we were curious to 

explore the effect of Lewis acid additives on the reaction. We hypothesized that the addition of a 

Lewis acid may increase the enantioselectivity or the yield of the reaction via coordination to the 

oxygen of the enal. We screened five Lewis acids against four nitroarenes and were surprised to 

find that in all but one case (LiCl with 4-nitropyridine N-oxide) the Lewis acid additive actually 

inhibited the reaction. However, the combination of LiCl with 4-nitropyridine N-oxide provided 

an increase in the reaction efficiency from 64 to 79% yield with enantioselectivity remaining the 

same (84% ee) (Figure 4.3.2). 
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Figure 4.3.2 
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not fully understood, however, we postulate that it coordinates to the oxygen of the enal and either 

improves the rate of addition of the carbene, or it helps to activate the radical Breslow cation for 

attack from the native Breslow intermediate.11  

Table 4.3.4 
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are formed as a single diastereomer (Table 4.4.1). The remainder of the mass balance in these 

reactions is the α,β-unsaturated acid, the result of a two-electron oxidation of the Breslow 

intermediate to form the acyl azolium, followed by attack by adventitious water.  

Table 4.4.1 
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unsaturated acids, α,β-unstaruated imines, α,β-unsaturated nitriles, aliphatic enals, and 

nitroalkenes. All of these attempts at a cross-reaction were met with failure. The only way we were 

able to effect a cross-annulation was by employing two different enals in the reaction (table 4.5.1 

entry 7). In the reaction between two different enals, the desired cross product was formed in 25% 

yield with the remainder mass balance being the dimer formed from enal 1 and the dimer formed 

from enal 60.   

Table 4.5.1 

 

We were able to optimize the formation of cross-product 59 by varying the equivalency of 

the enal coupling partners. We found that using an excess of the more reactive (more electron-

rich) enal, that cross product 59 may be formed in good yield. We found the optimal reaction 

conditions are employing four equivalents of the electron-rich enal, four equivalents of oxidant, 

H

O
N N

N
BF4

10 mol %

NaOAc 1.0 equiv.
PhMe, 70 °C

Cl

Cl
Cl

O

RN

NO2

O
X

R

MeO

MeO

1

2

Entry Michael Acceptor Product Yield (%)

1 53 not observed
Ph OMe

O

2 54 not observed
Ph OH

O

3 55 not observed
Ph Ph

NPh

4 56 not observed
Ph

CN

5 57 not observed
Et

6 58 not observed
Ph

NO2

H

O

7 59 25
Ph H

O

1.5 equiv.

1.0 equiv.

1.0 equiv.

3
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four equivalents of LiCl, and four equivalents of NaOAc in CF3Ph at 70 °C (table 4.5.2, entry 4). 

When four equivalents of the excess enal are employed, only trace amounts of the cyclopentanone 

dimer of the limiting enal is observed in the reaction mixture (Table 4.5.2).  

Table 4.5.2 

 

After identifying these conditions, we explored the asymmetric cross-annulation reaction 

using chiral catalyst 36. Yields in this reaction were generally good, diastereoselectivity remained 

excellent, and enantioselectivity ranged from 75-86% ee. Electron-rich and electron-deficient aryl 

enals may be coupled via this methodology. In all examples, only trace amounts of the dimer 

arising from the limiting enal is observed (Table 4.5.3).  
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O

N N

N
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20 mol %

NaOAc 4.0 equiv.
LiCl 4.0 equiv. 
CF3Ph, 70 °C

Cl

Cl
Cl

O

Ph PhN

NO2

O60
2 7

4.0 equiv.1.0 equiv.

H

O

MeO
1

O

Ph

MeO

59

O

MeO

5

Entry Equiv. 1 Yield 59 (%) ratio 7:59:5

1 1.0 28 1:1:1.3

2 2.0 35 1:4.6:4.9

3 3.0 55 1:6.2:10.8

4 4.0 67 -:1:3.5

OMe

3
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Table 4.5.3 

 

In an attempt to further the scope of the reaction beyond the coupling of aryl enals, we 

subjected yne-enal 65 to the reaction conditions with achiral catalyst 3. Cross-product 66 was 

formed in 48% yield and as a single diastereomer (Scheme 4.5.1). Unfortunately, attempts to 

render this reaction asymmetric failed. However, this does represent a potentially interesting 

direction to pursue as it allows access to an aliphatic surrogate. Furthermore, the issues associated 

with chiral catalysts may potentially be overcome with further development of the reaction 

conditions.  
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Scheme 4.5.1 

 

4.6 Product Derivatization 

To demonstrate the synthetic utility of the cyclopentanone products, we derivatized 

cyclopentanone 5 to the corresponding lactone 67 and lactam 68. Lactone 67 was synthesized by 

subjection of cyclopentanone 5 to mCPBA (meta-chloroperoxybenzoic acid) and trifluoroacetic 

acid in dichloromethane. The corresponding lactone product 67 was formed in 89% yield with no 

loss of enantioselectivity. The lactam product was formed by first subjecting cyclopentanone 5 to 

hydroxymethylamine•HCl with NaOAc in methanol. The resultant oxime 69 was then treated with 

4-bromobenzenesulfonyl chloride, triethylamine, and a catalytic amount of DMAP (dimethyl 

amino pyridine) in dichloromethane. The solvent was removed in vacuo and acetic acid was added. 

The resultant lactone 68 was isolated in 75% over two-steps with complete stereofidelity (Scheme 

4.7.1).  

Scheme 4.7.1 
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4.8 Conclusion 

A novel asymmetric NHC-catalyzed annulation of enals to generate trans-3,4-disubstituted 

cyclopentanones has been developed. This methodology allows for the dimerization of enals to 

generate C-2 symmetric cyclopentanones. 4-nitropyridine N-oxide was found to be the optimal 

oxidant for this transformation, although a variety of nitroarenes have been shown to promote this 

transformation.  Key to this reaction development was the identification of LiCl as a Lewis acid 

additive to improve the efficiency of the transformation. A cross-annulation between two-different 

aryl enals has also been realized. The cross reaction relies on excess of one of the coupling partners 

to achieve high selectivity for the cross product. Mechanistically, we believe the product forms via 

the coupling of a native Breslow intermediate with a Breslow intermediate derived radical cation.  

  

MeO OMe84% ee

O

NH

MeO

OMe

HONH3Cl
NaOAc
MeOH, 23 °C

75% (two steps)
84% ee

BsCl, Et3N,DMAP 
CH2Cl2, 23 °C
AcOH, 23 °C

i)

ii)

O

MeO OMe
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HO
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Appendix 1. Chapter 2 Experimental 

Asymmetric Addition of Enals to Nitroalkenes to Generate δ-Nitroesters via 

the N-Heterocyclic Carbene Generated Homoenolate Equivalent  

 

Materials and Methods 

All reactions were carried out under an atmosphere of argon in flame-dried glassware with 

magnetic stirring. Dichloromethane was degassed with argon and passed through two col- umns 

of neutral alumina. Toluene was degassed with argon and passed through one column of neutral 

alumina and one column of Q5 reactant. Methanol was purchased from Fisher Scientific and dried 

with activated 3Å molecular sieves. N,N-Diisopropylethylamine was purchased from Aldrich and 

distilled from Calcium hydride prior to use. Column chromatography was performed on 

SiliCycle®SilicaFlash® P60, 40-63µm 60A. Thin layer chromatography was performed on 

SiliCycle® 250µm 60A plates. Visualization was accomplished with UV light or KMnO4 stain 

followed by heating. 

1H NMR spectra were recorded on Varian 300 or 400 MHz spectrometers at ambient temperature. 

Data is reported as follows: chemical shift in parts per million (δ, ppm) from CDCl3 (7.26 ppm) or 

acetone-D6 (2.03 ppm), multiplicity (s = singlet, bs = broad singlet, d = doublet, t = triplet, q = 

quartet, and m = multiplet), coupling constants (Hz). 13C NMR were recorded on Varian 300 or 

400 MHz spectrometers (at 75 or 100 MHz) at ambient temperature. Chemical shifts are reported 

in ppm from CDCl3 (77.36 ppm) or acetone-D6 (205.87, 30.6 ppm). 
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Aldehydes were either purchased from Aldrich or prepared via literature procedures. Ni- 

troalkenes were prepared according to the general procedure as described within.
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General Procedure for the Synthesis of Nitro-Esters 

To a screw cap vial charged with a stirbar was added triazolium salt 38 (15 mg, 0.025 mmol) and 

NaOAc (10 mg, .125 mmol). This vial was then fitted with a rubber septum and evacuated and 

refilled with argon three times. 0.75 ml EtOH was then added via syringe. To this solution was 

then added (E)-1-nitrobut-1-ene 2 (26 µL, 0.25 mmol, 1 equiv) followed by trans-cinnamaldehyde 

1 (49 µL, 0.375 mmol, 1.5 equiv). The septum was then quickly removed and replaced with a 

screw cap. This was then allowed to stir at ambient temperature for 12 hours. After 12 hours the 

reaction was concentrated via rotary evaporation and then purified by silica gel chromatography 

(8:2 hexanes:ether) to yield 49 mg (70 %) (3S,4R)-ethyl 4-(nitromethyl)-3-phenylhexanoatein 18 

as a colorless oil.  

 

General Procedure for One-Pot Synthesis of δ-Lactams 

To a screw cap vial charged with a stirbar was added triazolium salt 38 (15 mg, 0.025 mmol) and 

NaOAc (10 mg, .125 mmol). This vial was then fitted with a rubber septum and evacuated and 

refilled with argon three times. 0.75 mL EtOH was then added via syringe. To this solution was 

then added (E)-1-nitrobut-1-ene 2 (26 µL, 0.25 mmol, 1 equiv) followed by trans-cinnamaldehyde 

1 (49 µL, 0.375 mmol, 1.5 equiv). The septum was then quickly removed and replaced with a 

screw cap. This was then allowed to stir at ambient temperature for 12 hours. After 12 hours the 

screw cap was removed and Zinc dust (165 mg, 2.5 mmol) was added followed by 0.75 mL AcOH. 

The screw cap was replaced and the reaction was then heated to reflux in an oil bath. After four 

hours the vial was removed from the oil bath and allowed to cool. Upon cooling, the reaction was 

filtered through celite and rinsed with 10 ml EtOAc. The filtrate was then diluted with an additional 



 124  

10 ml EtOAc and quenched with 20 mL saturated NaHCO3. The organic layer was then separated, 

washed with brine (1 x 20mL), dried (Na2SO4), and concentrated in vacuo. The crude residue was 

then subjected to column chromatography (1:1 hexanes:EtOAc) to yield 32 mg (63 %) (4S,5R)-5-

ethyl-4-phenylpiperidin-2-one 63 as a white solid.  

Characterization Data: 

Triazolium (20): To a flame-dried flask with magnetic stir bar was added 

pyrrolidin-2-one (0.46 mL, 6.0 mmol, 1.0 equiv). The flask was then evacuated and back-filled 

with argon. Dichloromethane (30 mL) and trimethyloxonium tetrafluoroborate (883 mg, 6.0 mmol, 

1.0 equiv) were then added via powder funnel. The heterogeneous mixture was stirred at room 

temperature until the reaction was homogeneous (about 6 hours). (2,4,6-tribromo-3,5-

difluorophenyl)hydrazine (2.228 g, 6.0 mmol, 1.0 equiv) was added in one portion and the mixture 

was stirred for 18 hours at which point dichloromethane was removed in vacuo. Chlorobenzene 

(30.0 mL) and trimethylorthoformate (4 mL) was then added and the solution was heated in a 130 

°C oil bath for 12 h. After cooling to room temperature, the reaction was filtered and the resultant 

solid was washed with ether and dried under vacuum for 12 h to give triazolium salt 20 (1.8 g, 

55%) as an off-white solid. 1H-NMR (400 MHz; aceton-d6): δ 10.30 (s, 1H), m4.83 (t, J = 7.4 Hz, 

2H), 3.46 (t, J = 7.8 Hz, 2H), 3.02 (dt, J = 15.2, 7.6 Hz, 2H); 13
C NMR (101 MHz; acetone): δ 

164.9, 157.7 (m), 155.3 (m), 143.1, 106.8 (m), 48.8, 26.7, 21.7 IR (ATR, neat) 1420, 1054, 733 

cm-1; LRMS (ESI + APCI) m/z [M+H] calcd 455.8, found 455.8 

N N

N
Br

F

Br

F
Br

BF4
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 Triazolium Salt (27) To a flame-dried flask with magnetic stir bar 

was added (3R,5R)-3-fluoro-5-isopropylpyrrolidin-2-one1 (290.3 mg, 2.0 mmol, 1.0 equiv). The 

flask was then evacuated and back-filled with argon. Dichloromethane (15 mL) and 

trimethyloxonium tetrafluoroborate (296 mg, 2.0 mmol, 1.0 equiv) were then added via powder 

funnel. The heterogeneous mixture was stirred at room temperature until the reaction was 

homogeneous (about 6 hours). (2,4,6-trichlorophenyl)hydrazine (422.9 mg, 2.0 mmol, 1.0 equiv) 

was added in one portion and the mixture was stirred for 18 hours at which point dichloromethane 

was removed in vacuo. Trimethylorthoformate (20 mL) was then added and the solution was 

heated in a 110 °C oil bath for 1 h. After cooling to room temperature, the reaction concentrated 

in vacuo and 20 mL chlorobenzene was added and the solution was refluxed for 10 minutes. Upon 

cooling in an ice bath the product precipitated out and was filtered to yield triazolium salt (27) 

(366 mg, 42 %) as an off-white solid. [α]D
21  = 11.8 (c =  0.010 g/ml, acetone); 1

H-NMR (400 

MHz; aceton-d6): δ  10.60 (s, 1H), 7.97 (s, 2H), 6.55 (ddd, J = 54.7, 7.6, 2.1 Hz, 1H), 5.26-5.20 

(m, 1H), 3.72-3.57 (m, 1H), 3.00-2.88 (m, 1H), 2.58 (dq, J = 12.8, 6.5 Hz, 1H), 1.10 (dd, J = 30.7, 

6.8 Hz, 6H). 13
C-NMR (101 MHz; acetone): δ 160.3, 160.1, 143.9, 139.3, 134.1, 130.2, 129.5, 

84.4, 82.6, 66.6, 37.1, 36.8, 31.5, 17.3, 16.2 IR (ATR, neat) 2960, 1571, 1054, 1034, 825 cm-1; 

LRMS (ESI + APCI) m/z [M+H] calcd 348.0, found 348.0l 

 

N N

N
Cl

Cl
Cl

BF4

F

Me

Me
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 Triazolium Salt (28): To a flame-dried flask with magnetic stir bar was 

added (3R,5R)-3-fluoro-5-isopropylpyrrolidin-2-one1 (290.3 mg, 2.0 mmol, 1.0 equiv). The flask 

was then evacuated and back-filled with argon. Dichloromethane (15 mL) and trimethyloxonium 

tetrafluoroborate (296 mg, 2.0 mmol, 1.0 equiv) were then added via powder funnel. The 

heterogeneous mixture was stirred at room temperature until the reaction was homogeneous (about 

6 hours). (2,6-bis(trifluoromethyl)phenyl)hydrazine (488.3 mg, 2.0 mmol, 1.0 equiv) was added 

in one portion and the mixture was stirred for 18 hours at which point dichloromethane was 

removed in vacuo. Trimethylorthoformate (20 mL) was then added and the solution was heated in 

a 110 °C oil bath for 1 h. After cooling to room temperature, the reaction concentrated in vacuo 

and purified by column chromatography to yield triazolium salt (28) (234 mg, 25 %) as an off-

white solid Rf = 0.41 (19:1 CH2Cl2:MeOH) [α]D
21  = 20.6 (c =  0.010 g/ml, acetone); 1

H-NMR 

(400 MHz; aceton-d6): δ  10.73 (s, 1H), 8.48 (d, J = 8.0 Hz, 2H), 8.37-8.32 (m, 1H), 6.60 (ddd, J 

= 54.7, 7.7, 1.9 Hz, 1H), 5.34 (dq, J = 8.5, 4.2 Hz, 1H), 3.69 (dddd, J = 27.5, 16.0, 8.6, 7.5 Hz, 

1H), 2.96 (dddd, J = 28.3, 15.8, 3.3, 2.0 Hz, 1H), 2.65-2.57 (m, 1H), 1.07 (dd, J = 33.0, 6.9 Hz, 

6H). 13
C-NMR (101 MHz; acetone): δ 160.0, 159.7, 144.51, 144.49, 144.46, 134.95, 134.92, 

132.34, 132.30, 132.25, 132.21, 132.18, 132.13, 132.09, 132.04, 129.3, 129.06, 129.01, 128.7, 

126.0, 123.5, 123.2, 120.8, 120.5, 84.4, 82.6, 66.9, 36.8, 36.6, 31.5, 17.1, 15.6;  IR (ATR, neat) 

2972, 2925, 1513, 1295, 1140, 1052, 1035, 836, 676 cm-1; LRMS (ESI + APCI) m/z [M+H] calcd 

382.1, found 382.1 

N N

N
F3C

F3C

BF4

F

Me

Me
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Triazolium Salt (30):To a flame-dried flask with magnetic stir bar was 

added (S)-5-(((tert-butyldimethylsilyl)oxy)diphenylmethyl)pyrrolidin-2-one2 (2.28 mg, 6.0 mmol, 

1.0 equiv) S2. The flask was then evacuated and back-filled with argon. Dichloromethane (30 mL) 

and trimethyloxonium tetrafluoroborate (883 mg, 6.0 mmol, 1.0 equiv) were then added via 

powder funnel. The heterogeneous mixture was stirred at room temperature until the reaction was 

homogeneous (about 5 hours). Pentafluorophenyl hydrazine (1.18 g, 6.0 mmol, 1.0 equiv) was 

added in one portion and the mixture was stirred for 18 hours at which point dichloromethane was 

removed in vacuo. The resulting yellow oil was then dissolved in acetonitrile (30 mL) and 

trimethylorthoformate (4 mL). This solution was refluxed in an oil bath for 24 hours. After 24 

hours the solvent was removed in vacuo and the desired product was recrystallized in EtOAc to 

yield triazolium salt (30) (1.3 g, 33 %) as a white solid. [α]D
21  = -112.8 (c =  0.010 g/ml, acetone); 

1
H-NMR (400 MHz; aceton-d6): δ  9.98 (s, 1H), 7.62 (t, J = 3.4 Hz, 2H), 7.51-7.43 (m, 6H), 7.36 

(d, J = 6.7 Hz, 2H), 6.36 (dd, J = 9.2, 2.3 Hz, 1H), 3.43-3.32 (m, 1H), 3.12-3.03 (m, 2H), 1.99-

1.89 (m, 1H), 0.94 (s, 9H), -0.23 (s, 3H), -0.31 (s, 3H). 13
C-NMR (101 MHz; acetone): δ 165.0, 

143.7, 139.91, 139.86, 129.4, 129.06, 128.93, 128.56, 128.45, 82.5, 25.6, 20.6, 18.4, -4.0; IR 

(ATR, neat) 2955, 2931, 1529, 1070 cm-1; LRMS (ESI + APCI) m/z [M+H] calcd 572.2, found 

572.2 

 Triazolium Salt (37): (S)-5-(2-hydroxy-1,3-diphenylpropan-2-

yl)pyrrolidin-2-one (S1) (1.18 g, 4 mmol, 1 equiv) was dissolved in CH2Cl2 (50 mL) and cooled 
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to 0 °C in an ice bath. Trimethylsilyl trifluoromethanesulfonate (1.67 mL, 9.32 mmol, 2.33 equiv) 

and 2,6-lutidine (1.39 mL, 12 mmol, 3 equiv) were added dropwise to the cooled solution. The 

solution was allowed to stir at 0 °C for 1.5 hours and then allowed to warm to room temperature 

and stir for 12 hours. After 12 hours the reaction was cooled to 0 °C and quenched with 50 mL 

saturated ammonium chloride and extracted 3 x 50 mL EtOAc, dried over sodium sulfate, and 

concentrated in vacuo to quantitatively yield (S)-5-(1,3-diphenyl-2-((trimethylsilyl)oxy)propan-2-

yl)pyrrolidin-2-one as a colorless oil. To a flame-dried flask with magnetic stir bar was added 

crude (S)-5-(1,3-diphenyl-2-((trimethylsilyl)oxy)propan-2-yl)pyrrolidin-2-one (1.1 g, 3.0 mmol, 

1.0 equiv). The flask was then evacuated and back-filled with argon. Dichloromethane (15 mL) 

and trimethyloxonium tetrafluoroborate (443 mg, 3.0 mmol, 1.0 equiv) were then added via 

powder funnel. The heterogeneous mixture was stirred at room temperature until the reaction was 

homogeneous (about 6 hours). Pentafluorophenyl hydrazine (594 mg, 3.0 mmol, 1.0 equiv) was 

added in one portion and the mixture was stirred for 12 hours at which point dichloromethane was 

removed in vacuo. The resulting yellow oil was then dissolved in acetonitrile (15 mL) and 

trimethylorthoformate (2 mL). This solution was refluxed in an oil bath for 24 hours. After 24 

hours the solvent was removed in vacuo and the desired product purified by column 

chromatography to yield triazolium salt (6i) (1.3 g, 67 %) as an off-solid. Rf = 0.45 (19:1 CH-

2Cl2:MeOH) [α]D
21  = -29.7 (c =  0.010 g/ml, acetone); 1

H-NMR (400 MHz; CDCl3): δ  9.39 (s, 

1H), 7.40-7.24 (m, 8H), 7.15-7.10 (m, 2H), 5.26 (dd, J = 9.7, 5.5 Hz, 1H), 3.33-2.86 (m, 8H), 0.37 

(s, 9H). 13
C-NMR (101 MHz; CDCl3): δ 162.0, 143.4, 134.7, 134.4, 130.69, 130.64, 130.58, 130.3, 

130.1, 129.10, 128.94, 128.63, 128.44, 128.30, 127.9, 127.3, 80.2, 69.0, 48.5, 40.6, 28.8, 21.8, 

2.51, 2.42 IR (ATR, neat) 2955, 1685, 1600, 1526, 1066, 1002, 840, 702 cm-1; LRMS (ESI + 

APCI) m/z [M+H] calcd 558.2, found 558.2 
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 Triazolium Salt (38): (S)-5-(5-hydroxynonan-5-yl)pyrrolidin-2-one 

(S2) (1.136 g, 5 mmol, 1 equiv) was dissolved in CH2Cl2 (50 mL) and cooled to 0 °C in an ice 

bath. Trimethylsilyl trifluoromethanesulfonate (2.12 mL, 11.7 mmol, 2.33 equiv) and 2,6-lutidine 

(1.7 mL, 12 mmol, 3 equiv) were added dropwise to the cooled solution. The solution was allowed 

to stir at 0 °C for 1.5 hours and then allowed to warm to room temperature and stir for 12 hours. 

After 12 hours the reaction was cooled to 0 °C and quenched with 50 mL saturated ammonium 

chloride and extracted 3 x 50 mL EtOAc, dried over sodium sulfate, and concentrated in vacuo to 

quantitatively yield (S)-5-(5-((trimethylsilyl)oxy)nonan-5-yl)pyrrolidin-2-one as a colorless oil. 

To a flame-dried flask with magnetic stir bar was added crude (S)-5-(5-((trimethylsilyl)oxy)nonan-

5-yl)pyrrolidin-2-one (1.46 g, 4.87 mmol, 1.0 equiv). The flask was then evacuated and back-filled 

with argon. Dichloromethane (25 mL) and trimethyloxonium tetrafluoroborate (720 mg, 4.87 

mmol, 1.0 equiv) were then added via powder funnel. The heterogeneous mixture was stirred at 

room temperature until the reaction was homogeneous (about 6 hours). Pentafluorophenyl 

hydrazine (965 mg, 4.87 mmol, 1.0 equiv) was added in one portion and the mixture was stirred 

for 12 hours at which point dichloromethane was removed in vacuo. The resulting yellow oil was 

then dissolved in acetonitrile (25 mL) and trimethylorthoformate (6 mL). This solution was 

refluxed in an oil bath for 24 hours. After 24 hours the solvent was removed in vacuo and the 

desired product purified by column chromatography to yield triazolium salt (38) (1.1 g, 39 %) as 

a red amorphous solid. Rf = 0.43 (19:1 CH2Cl2:MeOH) [α]D
21  = 16.4 (c =  0.010 g/ml, acetone); 

1
H-NMR (400 MHz; CDCl3): δ  9.83 (s, 1H), 5.01 (dd, J = 8.6, 2.9 Hz, 1H), 3.30-3.00 (m, 3H), 

N N
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F
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F
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2.68 (d, J = 3.6 Hz, 1H), 1.63-1.04 (m, 12H), 0.90 (dt, J = 14.9, 7.3 Hz, 6H), 0.10--0.01 (m, 9H). 

13
C-NMR (101 MHz; CDCl3): δ 164.0, 143.4, 79.4, 68.9, 37.0, 36.4, 28.4, 25.7, 25.5, 23.2, 22.8, 

21.9, 13.81, 13.75 IR (ATR, neat) 2958, 2873, 1525, 1065, 1001, 841 cm-1; LRMS (ESI + APCI) 

m/z [M+H] calcd 490.2, found 490.2 

Trizolium Salt (39): (S)-5-(5-hydroxynonan-5-yl)pyrrolidin-2-one 

(S2) (1.5 g, 6.5 mmol, 1 equiv) was dissolved in CH2Cl2 (80 mL) and cooled to 0 °C in an ice bath. 

Trifluoromethanesulfonic acid tert-butyldimethylsilyl ester (3.4 mL, 15 mmol, 2.33 equiv) and 

2,6-lutidine (3.2 mL, 20 mmol, 3 equiv) were added dropwise to the cooled solution. The solution 

was allowed to stir at 0 °C for 1.5 hours and then allowed to warm to room temperature and stir 

for 12 hours. After 12 hours the reaction was cooled to 0 °C and quenched with 80 mL saturated 

ammonium chloride and extracted 3 x 80 mL EtOAc, dried over sodium sulfate, and concentrated 

in vacuo to quantitatively yield (S)-5-(5-((tert-butyldimethylsilyl)oxy)nonan-5-yl)pyrrolidin-2-

one as a colorless oil. To a flame-dried flask with magnetic stir bar was added crude (S)-5-(5(S)-

5-(5-((tert-butyldimethylsilyl)oxy)nonan-5-yl)pyrrolidin-2-one (2.23 g, 6.5 mmol, 1.0 equiv). The 

flask was then evacuated and back-filled with argon. Dichloromethane (25 mL) and 

trimethyloxonium tetrafluoroborate (961 mg, 6.5 mmol, 1.0 equiv) were then added via powder 

funnel. The heterogeneous mixture was stirred at room temperature until the reaction was 

homogeneous (about 6 hours). Pentafluorophenyl hydrazine (1.28 mg, 6.5 mmol, 1.0 equiv) was 

added in one portion and the mixture was stirred for 12 hours at which point dichloromethane was 

removed in vacuo. The resulting yellow oil was then dissolved in acetonitrile (25 mL) and 

trimethylorthoformate (8 mL). This solution was refluxed in an oil bath for 24 hours. After 24 
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hours the solvent was removed in vacuo and the desired product was recrystallized from EtOAc to 

yield triazolium (39) (675 mg, 16 %) as a white solid. [α]D
21  = -47.6 (c = 0.010 g/ml, acetone); 

1
H-NMR (400 MHz; aceton-d6): δ  10.46 (s, 1H), 5.26 (dd, J = 8.4, 5.8 Hz, 1H), 3.20-3.02 (m, 

2H), 2.80 (d, J = 13.5 Hz, 2H), 1.94-1.76 (m, 4H), 1.52-1.34 (m, 8H), 0.95-0.89 (m, 6H), 0.79 (s, 

9H), 0.22 (s, 3H), 0.09 (s, 3H). 13
C-NMR (101 MHz; acetone): δ 165.1, 143.8, 79.2, 69.8, 37.1, 

36.1, 25.93, 25.75, 25.3, 22.9, 22.6, 21.6, 18.1, 13.34, 13.22, -2.47, -2.60; IR (ATR, neat) 2957, 

2931, 2860, 1600, 1543, 1069, 1003, 836, 775 cm-1; LRMS (ESI + APCI) m/z [M+H] calcd 532.3, 

found 532.3 

 (S)-5-(2-hydroxy-1,3-diphenylpropan-2-yl)pyrrolidin-2-one (S1): To a flame dried 

dry 250 ml 3-neck round bottom flask containing a magnetic stirbar and fitted with a reflux 

condenser was added 1.9 g Magnesium turnings (80 mmols) followed by 15 mL dry THF. To this 

was added dropwise a solution of 9.5 mL benzyl bromide (80 mmols) in 55 mL dry THF with the 

use of an addition funnel at a rate sufficient to maintain reflux. After completion of the benzyl 

bromide addition the reaction was refluxed for 30 minutes. After 30 minutes the heat source was 

removed and the reaction was cooled to 0 °C in an ice bath. To this mixture was added a solution 

of 2.8 grams (20 mmols) (S)-methyl 5-oxopyrrolidine-2-carboxylate in 80 mL dry THF dropwise 

over 30 minutes. Upon completion of addition the reaction was allowed to warm to room 

temperature and stirred overnight. The reaction was cooled to 0 °C in an ice bath and quenched 

with 80 mL saturated NH4Cl. The organic layer was separated and the aqueous layer was extracted 

3 x 50 mL EtOAc. The organic layers were combined and washed 1 x 100 mL brine. The organic 

layer was dried over sodium sulfate and concentrated in vacuo. The resulting white solid was then 

NH

O

Bn
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triturated with hexanes to yield 2.5 grams (42 %) of the (S)-5-(2-hydroxy-1,3-diphenylpropan-2-

yl)pyrrolidin-2-one as a white solid. [α]D
21  = 52.4 (c =  0.010 g/ml, CH2Cl2); 

1
H-NMR (400 MHz; 

CDCl3): δ  7.34-7.21 (m, 8H), 7.15-7.12 (m, 2H), 6.26 (s, 1H), 3.62 (dd, J = 8.2, 6.1 Hz, 1H), 2.97 

(d, J = 13.6 Hz, 1H), 2.75 (d, J = 1.3 Hz, 2H), 2.67 (d, J = 13.6 Hz, 1H), 2.43-2.28 (m, 2H), 2.21-

2.12 (m, 1H), 2.11-2.01 (m, 1H); 13
C NMR (101 MHz; CDCl3): δ 178.2, 135.99, 135.80, 130.8, 

130.3, 128.53, 128.49, 126.91, 126.88, 75.4, 59.7, 42.3, 40.3, 30.2, 21.7. IR (ATR, neat) 3384, 

3298, 1686, 700 cm-1; LRMS (ESI + APCI) m/z [M+H] calcd 296.2, found 296.1 

 

(S)-5-(5-hydroxynonan-5-yl)pyrrolidin-2-one (S2): To a solution of (S)-methyl 5-

oxopyrrolidine-2-carboxylate (2.8g, 20 mmol)  in THF (60 ml) cooled to 0 °C was added 42.5 ml 

n-Butyl Lithium in hexanes (1.6 M, 68 mmol) dropwise. The solution was allowed to warm to 

room temperature slowly and stirred for 4 hours at room temp. After four hours the reaction was 

quenched with 60 ml saturated sodium bicarbonate. The THF was then removed via rotary 

evaporation and the solution was extracted 3x 50 ml EtOAc and dried over Na2SO4. The solvent 

was removed in vacuo to yield a white solid that was triturated with hexanes to yield the product 

as a white solid (1.15 g, 25 %). [α]D
21  = -13.3 (c = 0.010 g/ml, CH2Cl2); 

1
H-NMR (400 MHz; 

CDCl3): δ  6.68 (s, 1H), 3.67-3.64 (m, 1H), 2.38-2.22 (m, 2H), 2.05-1.98 (m, 2H), 1.47-1.41 (m, 

3H), 1.32-1.16 (m, 9H), 0.90-0.87 (m, 6H); 13
C NMR (101 MHz; CDCl3): δ 74.8, 60.7, 36.2, 33.5, 

25.6, 25.2, 23.32, 23.23, 21.2, 14.0. IR (ATR, neat) 3247, 2954, 2933, 2871, 1691, 1458, 1277 

cm-1; LRMS (ESI + APCI) m/z [M+H] calcd 228.2, found 228.2 
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(3S,4R)-ethyl 4-(nitromethyl)-3-phenylhexanoate (18): Colorless Oil. Rf= 

0.28 (8:2 Hexanes:Ether); 70 % yield, 17:1 d.r., 93 % ee;[α]D
21  = -4.9 (c =  0.010 g/ml, CH2Cl2); 

HPLC analysis – Chiralpak IC column, 97:3 hexanes/iso-propanol, 1.0 mL/min. Major: 21.1 min, 

minor: 22.6 min. 1
H-NMR (400 MHz; CDCl3): δ  7.32-7.28 (m, 2H), 7.24 (d, J = 6.4 Hz, 1H), 

7.17-7.15 (m, 2H), 4.31 (dd, J = 6.7, 2.1 Hz, 2H), 4.02-3.96 (m, 2H), 3.30 (q, J = 7.3 Hz, 1H), 

2.72-2.70 (m, 2H), 2.45 (ddd, J = 8.5, 6.5, 4.5 Hz, 1H), 1.55-1.48 (m, 1H), 1.30-1.034 (m, 1H), 

1.08 (t, J = 7.1 Hz, 3H), 0.91 (t, J = 7.4 Hz, 3H); 13
C NMR (101 MHz; CDCl3): δ 171.5, 139.8, 

128.5, 128.3, 127.2, 76.8, 60.6, 43.7, 42.4, 37.4, 21.2, 14.0, 11.0. IR (ATR, neat) 2966, 2929, 

2878, 1730, 1549, 1379, 1217, 702 cm-1; LRMS (ESI + APCI) m/z [M+H] calcd 280.2, found 

280.1 

 

 (3S,4R)-ethyl 4-methyl-5-nitro-3-phenylpentanoate (40): Rf = 0.21 (8:2 

Hexanes:Ether); [α]D
21  = -0.17 (c =  0.010 g/ml, CH2Cl2); HPLC analysis – Chiralpak IC column, 

97:3 hexanes/iso-propanol, 1.0 mL/min. Major: 31.6 min, minor: 28.5 min. 1H-NMR (400 MHz; 

CDCl3): δ  7.32-7.24 (m, 4H), 7.13 (d, J = 7.6 Hz, 3H), 4.36 (dd, J = 12.1, 6.1 Hz, 1H), 4.08-3.95 

(m, 3H), 3.23 (q, J = 6.7 Hz, 1H), 2.73 (d, J = 7.7 Hz, 2H), 2.80-2.57 (d, J = 7.7 Hz, 4H), 1.10 (t, 

J = 7.1 Hz, 3H), 0.89 (d, J = 6.9 Hz, 3H); 13
C NMR (101 MHz; CDCl3): δ 171.4, 139.1, 128.51, 
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128.41, 127.3, 79.9, 60.6, 43.8, 37.9, 36.7, 14.0, 13.8. IR (ATR, neat) 2979, 2924, 1731, 1550, 

1378, 1173, 1031, 702 cm-1; LRMS (ESI + APCI) m/z [M+H] calcd 266.1, found 266.1 

 

 

(3S,4R)-ethyl 5-methyl-4-(nitromethyl)-3-phenylhexanoate (41): Colorless 

Oil. Rf= 0.29 (8:2 Hexanes:Ether); 57 % yield, 20:1 d.r., 94 % ee; [α]D
21  = -29.5 (c =  0.010 g/ml, 

CH2Cl2); HPLC analysis – Chiralpak IC column, 97:3 hexanes/iso-propanol, 1.0 mL/min. Major: 

18.9 min, minor: 16.1 min. 1
H-NMR (400 MHz; CDCl3): δ  7.29 (t, J = 7.3 Hz, 2H), 7.23-7.18 

(m, 2H), 4.43-4.33 (m, 2H), 3.92 (q, J = 7.1 Hz, 2H), 3.25 (td, J = 9.7, 5.1 Hz, 1H), 2.69-2.58 (m, 

2H), 2.56-2.50 (m, 1H), 1.66 (dtd, J = 13.8, 6.9, 3.5 Hz, 1H), 1.02 (t, J = 7.1 Hz, 3H), 0.93 (d, J = 

6.9 Hz, 3H), 0.68 (d, J = 6.9 Hz, 3H); 13
C NMR (101 MHz; CDCl3): δ 171.7, 141.2, 128.6, 127.8, 

127.1, 75.1, 60.5, 47.5, 43.8, 38.4, 27.5, 21.4, 16.4, 13.9. IR (ATR, neat) 2959, 2926, 2856, 1732, 

1552, 1378, 1163, 1032 cm-1; LRMS (ESI + APCI) m/z [M+H] calcd 294.2, found 294.1 

 

(3S,4R)-ethyl 4-(nitromethyl)-3-phenyloctanoate (42): Colorless Oil. Rf= 

0.26 (8:2 Hexanes:Ether); 72 % yield, 20:1 d.r., 93 % ee; [α]D
21  = -2.3 (c =  0.010 g/ml, CH2Cl2); 

HPLC analysis – Chiralpak IC column, 97:3 hexanes/iso-propanol, 1.0 mL/min. Major: 15.1 min, 

minor: 16.2 min. 1H-NMR (400 MHz; CDCl3): δ  7.32-7.28 (m, 2H), 7.25-7.22 (m, 1H), 7.17-7.15 
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(m, 2H), 4.28 (d, J = 6.8 Hz, 2H), 3.99 (qd, J = 7.1, 0.8 Hz, 2H), 3.31 (td, J = 7.7, 5.8 Hz, 1H), 

2.71 (d, J = 7.8 Hz, 2H), 2.51 (dqd, J = 8.6, 6.3, 4.3 Hz, 1H), 1.48-1.41 (m, 1H), 1.30-1.23 (m, 

4H), 1.08 (t, J = 7.1 Hz, 3H), 1.03 (dt, J = 9.3, 4.7 Hz, 1H), 0.83 (t, J = 7.0 Hz, 3H); 13
C NMR 

(101 MHz; CDCl3): δ 171.5, 139.7, 128.50, 128.33, 127.2, 77.2, 60.6, 42.5, 42.0, 37.2, 28.7, 27.8, 

22.5, 13.97, 13.81. IR (ATR, neat) 2958, 2931, 2871, 1731, 1550, 1379, 1163, 1032, 702 cm-1; 

LRMS (ESI + APCI) m/z [M+H] calcd 308.2, found 308.1 

 

(3S,4R)-ethyl 6-methyl-4-(nitromethyl)-3-phenylheptanoate (43): Colorless 

Oil. Rf= 0.24 (8:2 Hexanes:Ether); 67 % yield, 20:1 d.r., 91 % ee; [α]D
21  = 0.71 (c =  0.010 g/ml, 

CH2Cl2); HPLC analysis – Chiralpak IC column, 97:3 hexanes/iso-propanol, 1.0 mL/min. Major: 

12.3 min, minor: 15.0 min. 1
H-NMR (400 MHz; CDCl3): δ  7.30 (tt, J = 7.3, 1.6 Hz, 2H), 7.25-

7.21 (m, 1H), 7.17-7.15 (m, 2H), 4.24-4.22 (dq, 2H), 4.03-3.98 (m, 2H), 3.34 (td, J = 7.8, 4.9 Hz, 

1H), 2.72-2.70 (m, 2H), 2.59 (dddd, J = 9.2, 6.8, 4.5, 2.1 Hz, 1H), 1.59-1.50 (m, 1H), 1.26 (ddd, J 

= 14.0, 9.3, 4.6 Hz, 1H), 1.10 (d, J = 14.3 Hz, 3H), 0.95 (ddd, J = 14.3, 9.4, 5.0 Hz, 1H), 0.88 (dd, 

J = 6.5, 2.2 Hz, 6H); 13
C NMR (101 MHz; CDCl3): δ 171.4, 139.4, 128.50, 128.45, 127.2, 77.3, 

60.6, 42.4, 39.8, 37.1, 36.7, 25.2, 23.2, 21.7, 14.0. IR (ATR, neat) 2958, 2930, 2871, 1732, 1551, 

1380, 1170, 738, 703 cm-1; LRMS (ESI + APCI) m/z [M+H] calcd 308.2, found 308.2 
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(3S,4R)-ethyl 4-cyclohexyl-5-nitro-3-phenylpentanoate (44): Colorless Oil. 

Rf = 0.27 (8:2 Hexanes:Ether); 59 % yield, 20:1 d.r. 96 % ee; [α]D
21  = -8.9 (c =  0.010 g/ml, 

CH2Cl2); HPLC analysis – Chiralpak IC column, 97:3 hexanes/iso-propanol, 1.0 mL/min. Major: 

16.6 min, minor: 14.1 min. 1
H-NMR (400 MHz; CDCl3): δ  7.29 (ddd, J = 8.0, 6.4, 1.3 Hz, 2H), 

7.24-7.17 (m, 3H), 4.38 (qd, J = 13.8, 5.7 Hz, 2H), 3.96-3.91 (m, 2H), 3.36-3.30 (m, 1H), 2.68-

2.57 (m, 2H), 2.51-2.45 (m, 1H), 1.69-0.86 (m, 11H), 1.08-0.99 (m, 3H); 13
C NMR (101 MHz; 

CDCl3): δ 171.7, 141.2, 128.6, 127.8, 127.1, 75.7, 60.5, 47.4, 42.7, 38.0, 37.8, 31.8, 27.7, 26.4, 

26.17, 26.16, 13.9. IR (ATR, neat) 2925, 2853, 1732, 1551, 1374, 1032 cm-1; LRMS (ESI + APCI) 

m/z [M+H] calcd 334.2, found 334.2 

 

(3S,4R)-ethyl 5,5-dimethoxy-4-(nitromethyl)-3-phenylpentanoate (45): 

Colorless Oil. Rf= 0.1 (8:2 Hexanes:Ether); 49 % yield, 8:1 d.r., 79 % ee; [α]D
21  = -22.1 (c =  0.010 

g/ml, CH2Cl2); HPLC analysis – Chiralpak IC column, 98:2 hexanes/iso-propanol, 1.0 mL/min. 

Major: 50.6 min, minor: 55.9 min. 1
H-NMR (400 MHz; CDCl3): δ  7.33-7.19 (m, 5H), 4.69 (dd, 

J = 14.1, 5.0 Hz, 1H), 4.31 (dd, J = 14.1, 6.3 Hz, 1H), 3.98-3.91 (m, 2H), 3.81 (d, J = 4.0 Hz, 1H), 

3.35-3.33 (m, 1H), 3.23 (d, J = 6.0 Hz, 6H), 2.96-2.91 (m, 1H), 2.71 (qd, J = 14.1, 7.8 Hz, 2H), 

1.04 (t, J = 7.1 Hz, 3H); 13
C NMR (101 MHz; CDCl3):  δ 171.4, 144.1, 128.7, 128.0, 127.3, 73.7, 

60.5, 55.7, 55.2, 45.0, 41.6, 38.1, 25.3, 13.9 IR (ATR, neat) 2923, 1733, 1557, 1065 cm-1; LRMS 

(ESI + APCI) m/z [M+H] calcd 362.2, found 362.2. 
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(3S,4R)-ethyl 4-(nitromethyl)-3-phenyloct-7-enoate (46): Colorless Oil. Rf 

= 0.24 (8:2 Hexanes:Ether) 72 % yield, 12:1 d.r., 89 % ee; [α]D
21  = -3.4 (c =  0.010 g/ml, CH2Cl2); 

HPLC analysis – Chiralpak IC column, 97:3 hexanes/iso-propanol, 1.0 mL/min. Major: 16.8 min, 

minor: 23.6 min. 1
H-NMR (400 MHz; CDCl3): δ  7.30 (td, J = 7.2, 1.4 Hz, 2H), 7.25-7.23 (m, 

1H), 7.17-7.15 (m, 2H), 5.67 (ddt, J = 17.0, 10.3, 6.7 Hz, 1H), 5.02-4.96 (m, 2H), 4.31-4.29 (m, 

2H), 4.00 (q, J = 7.1 Hz, 2H), 3.33 (td, J = 7.7, 5.8 Hz, 1H), 2.71 (d, J = 7.7 Hz, 2H), 2.57-2.52 

(m, 1H), 2.12-1.99 (m, 2H), 1.56 (dddd, J = 12.0, 8.4, 6.2, 3.8 Hz, 1H), 1.15 (dd, J = 14.2, 5.5 Hz, 

1H), 1.13-1.07 (m, 3H); 13
C NMR (101 MHz; CDCl3): δ 171.4, 139.6, 137.0, 128.6, 128.3, 127.3, 

115.9, 76.9, 60.6, 42.4, 41.3, 37.1, 30.7, 27.4, 14.0.IR (ATR, neat) 2978, 2927, 1732, 1551, 1379, 

1162, 916 cm-1; LRMS (ESI + APCI) m/z [M+H] calcd 306.2, found 306.1 

 

(3S,4R)-ethyl 4-cyclopropyl-5-nitro-3-phenylpentanoate (47): Colorless 

Oil. Rf= 0.23 (8:2 Hexanes:Ether); 68 % yield, 18:1 d.r., 88 % ee;[α]D
21  = -37.5 (c =  0.010 g/ml, 

CH2Cl2); HPLC analysis – Chiralpak IC column, 97:3 hexanes/iso-propanol, 1.0 mL/min. Major: 

16.4 min, minor: 19.2 min. 1H-NMR (400 MHz; CDCl3): δ  7.33-7.29 (m, 2H), 7.26-7.20 (m, 3H), 

4.31 (dd, J = 12.1, 7.9 Hz, 1H), 4.24 (dd, J = 12.0, 6.7 Hz, 1H), 4.06-3.98 (m, 2H), 3.39 (td, J = 

8.0, 3.8 Hz, 1H), 2.89 (d, J = 8.0 Hz, 2H), 1.85-1.78 (m, 1H), 1.11 (d, J = 14.3 Hz, 3H), 0.67 (tdd, 

J = 8.2, 5.7, 4.0 Hz, 1H), 0.52-0.35 (m, 3H), 0.13-0.08 (m, 1H); 13
C NMR (101 MHz; CDCl3): δ 
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171.6, 138.9, 128.7, 128.4, 127.3, 78.9, 60.5, 46.9, 43.6, 37.5, 14.0, 10.1, 5.3, 2.6.IR (ATR, neat) 

2960, 2925, 1731, 1552, 1378, 1175, 1028, 740 cm-1; LRMS (ESI + APCI) m/z [M+H] calcd 292.2, 

found 292.2 

 

tert-butyl 4-((2R,3S)-5-ethoxy-1-nitro-5-oxo-3-phenylpentan-2-

yl)piperidine-1-carboxylate (48): Colorless Oil. Rf= 0.26 (6:4 Hexanes:Ether); 65 % yield, 19:1 

d.r., 94 % ee;[α]D
21  = 9.11 (c =  0.010 g/ml, CH2Cl2); HPLC analysis – Chiralpak IC column, 

85:15 hexanes/iso-propanol, 1.0 mL/min. Major: 31.4 min, minor: 41.3 min. 1H-NMR (400 MHz; 

CDCl3): δ  7.32-7.29 (m, 2H), 7.22-7.22 (m, 1H), 7.20-7.17 (m, 2H), 4.37 (d, J = 5.7 Hz, 2H), 4.04 

(m, 2H), 3.95 (qd, J = 7.1, 0.9 Hz, 2H), 3.36-3.30 (m, 1H), 2.65-2.63 (m, 2H), 2.55-2.51 (m, 2H), 

2.39-2.31 (m, 1H), 1.56-1.31 (m, 5H), 1.39 (s, 9H), 1.04 (t, J = 7.1 Hz, 3H); 13
C NMR (101 MHz; 

CDCl3):  δ 171.5, 154.5, 140.7, 128.8, 127.7, 127.3, 79.5, 75.3, 60.6, 46.6, 36.6, 28.4, 13.9. IR 

(ATR, neat) 2976, 2927, 2854, 1732, 1688, 1553, 1425, 1366, 1169, 766 cm-1; LRMS (ESI + 

APCI) m/z [M+H] calcd 435.2, found 435.2 

(3S,4S)-ethyl 5-nitro-3,4-diphenylpentanoate (49): White Solid. Rf= 0.26 

(8:2 Hexanes:Ether); 95 % yield, 6:1 d.r., 87 % ee; [α]D
21  = -26.8 (c =  0.010 g/ml, CH2Cl2); 

HPLC analysis – Chiralcel OD-H column, 98:2 hexanes/iso-propanol, 1.0 mL/min. Major: 43.0 
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min, minor: 54.6 min. 1
H-NMR (400 MHz; CDCl3): δ  7.38-7.28 (m, 1H), 7.24-7.17 (m, 5H), 

6.84-6.79 (m, 4H), 4.65 (ddd, J = 56.8, 12.8, 7.8 Hz, 2H), 4.04 (qt, J = 7.1, 3.5 Hz, 2H), 3.88 (ddd, 

J = 8.6, 7.0, 5.7 Hz, 1H), 3.55 (td, J = 7.7, 5.6 Hz, 1H), 2.75-2.57 (m, 2H), 1.12 (t, J = 7.1 Hz, 3H); 

13
C NMR (101 MHz; CDCl3): δ 171.4, 138.4, 135.7, 128.90, 128.82, 128.22, 128.11, 127.8, 127.4, 

77.9, 60.7, 47.8, 44.0, 37.9, 14.0.IR (ATR, neat) 2958, 2924, 2854, 1728, 1551, 1377, 1156, 1029 

cm-1; LRMS (ESI + APCI) m/z [M+H] calcd 328.2, found 328.1 

 

 

 (3S,4R)-ethyl 4-(furan-2-yl)-5-nitro-3-phenylpentanoate (50): Colorless 

Oil. Rf= 0.31 (8:2 Hexanes:Ether); 90 % yield, 3:1 d.r., 81 % ee; [α]D
21  = -1.9 (c =  0.010 g/ml, 

CH2Cl2); HPLC analysis – Chiralpak IC column, 97:3 hexanes/iso-propanol, 1.0 mL/min. Major: 

23.3 min, minor: 31.6 min. 1
H-NMR, isolated as a 2:1mixture of diastereomers (400 MHz; 

CDCl3): δ  7.40-7.20 (m, 5H), 6.86 (dd, J = 6.7, 2.8 Hz, 1H), 6.31-6.24 (m, 1H), 5.97 (d, J = 3.3 

Hz, 1H), 4.57-4.47 (m, 2H), 4.18 (dd, J = 12.7, 4.2 Hz, 0.33H, minor diastereomer), 4.05 (qt, J = 

7.2, 3.6 Hz, 2.33H), 3.90-3.80 (m, 1H), 3.53 (td, J = 7.7, 4.8 Hz, 0.66H, major diastereomer), 3.46 

(td, J = 10.4, 5.0 Hz, 0.33H, minor diastereomer), 2.85-2.66 (m, 1.32H, major diastereomer), 2.50 

(qd, J = 17.1, 7.4 Hz, 0.66H, minor diastereomer), 1.13 (t, J = 7.1 Hz, 2H, major diastereomer), 

1.01 (t, J = 7.1 Hz, 1H, minor diastereomer); 13
C NMR (101 MHz; CDCl3):  δ 171.3, 171.1, 150.4, 

150.0, 142.8, 142.2, 139.9, 138.4, 129.1, 127.81, 127.72, 127.5, 110.38, 110.36, 109.5, 108.7, 77.1, 
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OPh
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75.8, 60.7, 60.4, 43.7, 43.37, 43.34, 41.6, 39.5, 37.8, 14.03, 13.91.IR (ATR, neat) 2981, 2923, 

1729, 1553, 1376, 1162, 702 cm-1;  LRMS (ESI + APCI) m/z [M+H] calcd 318.1, found 318.1 

 

tert-butyl 3-((2S,3S)-5-ethoxy-1-nitro-5-oxo-3-phenylpentan-2-yl)-1H-

indole-1-carboxylate (51): Colorless Oil. Rf = 0.61 (6:4 Hexanes:Ether) 86 % yield, 8:1 d.r., 87 % 

ee; [α]D
21  = 12.7 (c =  0.010 g/ml, CH2Cl2); HPLC analysis – Chiralpak IC column, 96:4 

hexanes/iso-propanol, 1.0 mL/min. Major: 30.73 min, minor: 31.44 min. 1
H-NMR (400 MHz; 

CDCl3): δ  8.09 (ddd, J = 8.4, 1.6, 0.6 Hz, 1H), 7.41-7.19 (m, 6H), 7.01 (dd, J = 6.5, 3.0 Hz, 2H), 

6.89-6.88 (m, 1H), 4.71 (dd, J = 12.9, 7.2 Hz, 1H), 4.52 (dd, J = 12.9, 8.4 Hz, 1H), 4.30-4.25 (m, 

1H), 4.07-3.97 (m, 2H), 3.72 (td, J = 7.7, 4.8 Hz, 1H), 2.77-2.59 (m, 2H), 1.61 (s, 9H), 1.10 (t, J 

= 7.1 Hz, 3H); 13
C NMR (101 MHz; CDCl3): δ 171.5, 138.7, 129.9, 128.7, 128.3, 127.6, 124.7, 

124.5, 122.7, 118.9, 115.28, 115.15, 84.0, 60.6, 43.1, 39.1, 37.2, 28.1, 14.0IR (ATR, neat) 2924, 

2853, 1731, 1553, 1452, 1153 cm-1; LRMS (ESI + APCI) m/z [M+H] calcd 466.5, found 466.4 

 

 (3S,4S)-ethyl 5-nitro-3-phenyl-4-(pyridin-3-yl)pentanoate (52): Colorless 

Oil. Rf = 0.12 (6:4 Hexanes:Ether) 73 % yield, 5:1 d.r., 86 % ee; [α]D
21  = -24.9 (c =  0.010 g/ml, 

CH2Cl2); HPLC analysis – Chiracel OD-H column, 80:20hexanes/iso-propanol, 1.0 mL/min. 
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Major: 27.5 min, minor: 20.7 min. 1
H-NMR (400 MHz; CDCl3): δ  8.47 (s, 1H), 8.17 (s, 1H), 

7.24-7.07 (m, 5H), 6.81 (td, J = 3.9, 1.6 Hz, 2H), 4.79 (dd, J = 13.0, 6.6 Hz, 1H), 4.59 (dd, J = 

13.0, 9.1 Hz, 1H), 4.11-4.03 (m, 2H), 3.95-3.89 (m, 1H), 3.59-3.53 (m, 1H), 2.67 (qd, J = 18.0, 

7.6 Hz, 2H), 1.14 (t, J = 7.1 Hz, 3H); 13
C NMR (101 MHz; CDCl3): δ 171.1, 149.9, 148.9, 137.8, 

136.4, 128.57, 128.50, 127.8, 123.1, 77.5, 60.9, 45.6, 43.9, 37.9, 14.0. IR (ATR, neat) 2980, 2924, 

1729, 1553, 1378, 1160, 1026 cm-1; LRMS (ESI + APCI) m/z [M+H] calcd 329.2, found 329.1 

 

(3S,4S)-ethyl 4-(4-chlorophenyl)-5-nitro-3-phenylpentanoate (53): White 

Solid. Rf = 0.62 (6:4 Hexanes:Ether) 75 % yield, 4:1 d.r., 86 % ee; [α]D
21  = -49.2 (c =  0.010 g/ml, 

CH2Cl2); HPLC analysis – Chiralpak IC column, 90:10 hexanes/iso-propanol, 1.0 mL/min. 

Major: 12.7 min, minor: 20.8 min. 1H-NMR (400 MHz; CDCl3): δ  7.24-7.16 (m, 4H), 6.84-6.81 

(m, 2H), 6.76-6.74 (m, 2H), 4.71 (dd, J = 12.9, 6.6 Hz, 1H), 4.53 (dd, J = 12.8, 9.1 Hz, 1H), 4.05 

(qd, J = 7.1, 2.1 Hz, 2H), 3.86 (dt, J = 9.0, 6.2 Hz, 1H), 3.54-3.49 (m, 1H), 2.72-2.57 (m, 2H), 1.13 

(t, J = 7.1 Hz, 3H); 13
C NMR (101 MHz; CDCl3): δ 171.3, 138.2, 134.2, 133.7, 130.2, 128.7, 

128.45, 128.28, 127.5, 77.8, 60.8, 47.3, 44.0, 37.9, 14.0.IR (ATR, neat) 2981, 2924, 1728, 1552, 

1493, 1377, 1014, 828 cm-1; LRMS (ESI + APCI) m/z [M+H] calcd 362.1, found 362.2 
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(3S,4R)-ethyl 3-(4-chlorophenyl)-4-(nitromethyl)hexanoate (55): Colorless 

Oil. Rf = 0.58 (6:4 Hexanes:Ether) 73 % yield, 20:1 d.r., 82 % ee; [α]D
21  = -2.3 (c =  0.010 

g/ml, CH2Cl2); Could not separate via HPLC, ee inferred from lactam 6e. 1
H-NMR (400 

MHz; CDCl3): δ  7.28 (d, J = 8.5 Hz, 2H), 7.11 (d, J = 8.4 Hz, 2H), 4.30 (qd, J = 14.1, 6.6 

Hz, 2H), 3.99 (qd, J = 7.1, 1.0 Hz, 2H), 3.27 (dt, J = 8.9, 6.4 Hz, 1H), 2.68 (dd, J = 7.7, 3.9 

Hz, 2H), 2.42 (tdd, J = 8.7, 4.4, 1.9 Hz, 1H), 1.49 (ddd, J = 14.3, 7.4, 4.3 Hz, 1H), 1.12-

1.00 (m, 1H), 1.10 (t, J = 7.1 Hz, 3H), 0.91 (t, J = 7.3 Hz, 3H); 13
C NMR (101 MHz; 

CDCl3): δ 171.2, 138.4, 133.0, 129.6, 128.7, 76.6, 60.7, 43.6, 42.0, 37.4, 21.2, 14.0, 11.0. 

IR (ATR, neat) 2966, 2925, 1731, 1549, 1162, 830 cm-1; LRMS (ESI + APCI) m/z [M+H] 

calcd 314.1, found 314.1 

 

(3S,4R)-ethyl 4-(nitromethyl)-3-(4-nitrophenyl)hexanoate (56): Yellow 

Solid. Rf = 0.48 (6:4 Hexanes:Ether) 48 % yield, 10:1 d.r., 90 % ee; [α]D
21  = -9.5 (c =  0.010 g/ml, 

CH2Cl2); HPLC analysis – Chiralpak IC column, 90:10 hexanes/iso-propanol, 1.0 mL/min. 

Major: 32.9 min, minor: 36.5 min. 1H-NMR (400 MHz; CDCl3): δ  8.18 (d, J = 8.8 Hz, 2H), 7.37 

(d, J = 8.7 Hz, 2H), 4.42-4.27 (m, 2H), 3.99 (qd, J = 7.1, 2.8 Hz, 2H), 3.41 (dt, J = 9.0, 6.5 Hz, 

1H), 2.75 (dd, J = 7.6, 3.7 Hz, 2H), 2.53-2.45 (m, 1H), 1.48 (ddd, J = 14.3, 7.4, 4.3 Hz, 1H), 1.10 
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(t, J = 7.1 Hz, 3H), 1.10-0.98 (m, 1H), 0.93 (t, J = 7.3 Hz, 3H); 13
C NMR (101 MHz; CDCl3):  δ 

170.7, 147.8, 129.2, 123.8, 98.7, 76.2, 60.9, 43.5, 42.5, 37.2, 21.5, 14.0, 10.9. IR (ATR, neat) 

2973, 2937, 1731, 1552, 1521, 1347 cm-1; LRMS (ESI + APCI) m/z [M+H] calcd 325.1, found 

325.1 

 

(3S,4R)-ethyl 3-(4-methoxyphenyl)-4-(nitromethyl)hexanoate (57) White 

Solid. Rf= 0.27 (7:3 Hexanes:Ether); 35 % yield, 5:1 d.r., 88 % ee; [α]D
21  = -3.9 (c =  0.010 g/ml, 

CH2Cl2); HPLC Analysis – Chiralpak IC column, 98:2 hexanes/iso-propanol, 1.0 mL/min. Major: 

43.6 min, minor: 48.8 min. 1H-NMR (400 MHz; CDCl3): δ  7.08 (d, J = 8.3 Hz, 2H), 6.83 (d, J = 

8.0 Hz, 2H), 4.30-4.28 (m, 2H), 4.00 (q, J = 7.1 Hz, 2H), 3.77 (d, J = 0.9 Hz, 3H), 3.28-3.22 (m, 

1H), 2.68-2.66 (m, 2H), 2.43-2.38 (m, 1H), 1.30-1.21 (m, 2H), 1.10 (td, J = 7.1, 1.0 Hz, 3H), 1.16-

1.02 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H); 13
C NMR (101 MHz; CDCl3): δ 171.5, 131.6, 129.3, 114.1, 

113.9, 76.9, 60.5, 55.2, 43.8, 41.7, 37.6, 21.0, 14.0, 11.1.IR (ATR, neat) 2959, 2924, 2854, 1732, 

1551, 1513, 1250, 1035 cm-1; LRMS (ESI + APCI) m/z [M+H] calcd 310.2, found 310.2 

 

(3S,4R)-ethyl 3-(furan-2-yl)-4-(nitromethyl)hexanoate (58): Colorless Oil. 

Rf= 0.22 (8:2 Hexanes:Ether); 83 % yield, 19:1 d.r., 91 % ee ;[α]D
21  = 11.3 (c =  0.010 g/ml, 
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CH2Cl2); Could not separate via HPLC, ee inferred from lactam 6c. 1H-NMR (400 MHz; CDCl3): 

δ  7.32 (ddd, J = 4.0, 2.0, 0.8 Hz, 1H), 6.27 (td, J = 3.7, 1.8 Hz, 1H), 6.11-6.09 (m, 1H), 4.34 (qd, 

J = 12.7, 6.9 Hz, 2H), 4.08 (q, J = 7.1 Hz, 2H), 3.47 (td, J = 6.0, 3.1 Hz, 1H), 2.74-2.58 (m, 2H), 

2.51-2.46 (m, 1H), 1.54 (ddd, J = 14.4, 7.5, 5.2 Hz, 1H), 1.18 (t, J = 7.1 Hz, 3H), 1.20-1.07 (m, 

1H), 0.93 (t, J = 7.4 Hz, 3H); 13
C NMR (101 MHz; CDCl3): δ 171.2, 153.5, 141.9, 110.1, 107.3, 

77.4, 60.8, 42.4, 36.2, 35.2, 21.2, 14.1, 11.6.IR (ATR, neat) 2966, 2928, 1731, 1550, 1374, 1162, 

1011, 808 cm-1; LRMS (ESI + APCI) m/z [M+H] calcd 270.1, found 270.1 

 

(3S,4R)-ethyl 3-(2-methoxyphenyl)-4-(nitromethyl) (59): White Solid. 

Rf=0.29 (8:2 Hexanes:Ether); % yield, 9:1 d.r., 82 % ee; [α]D
21  = -15.7 (c =  0.010 g/ml, CH2Cl2); 

HPLC analysis – Chiralpak IC column, 97:3 hexanes/iso-propanol, 1.0 mL/min. Major: 24.1 min, 

minor: 30.8 min. 1
H-NMR (400 MHz; CDCl3): δ  7.22-7.18 (m, 1H), 7.06 (dd, J = 7.6, 1.6 Hz, 

1H), 6.90-6.84 (m, 2H), 4.29 (qd, J = 13.8, 6.7 Hz, 2H), 3.99 (qd, J = 7.1, 2.6 Hz, 2H), 3.79 (s, 

3H), 3.81-3.76 (m, 1H), 2.76-2.65 (m, 2H), 2.63-2.55 (m, 1H), 1.53-1.41 (m, 1H), 1.16-1.04 (m, 

1H), 1.08 (t, J = 7.1 Hz, 3H), 0.91 (t, J = 7.4 Hz, 3H); 13
C NMR (101 MHz; CDCl3): δ 171.9, 

157.2, 128.53, 128.36, 128.1, 120.3, 110.7, 76.9, 60.4, 55.2, 41.9, 36.1, 35.9, 21.6, 14.0, 10.9.IR 

(ATR, neat) 2964, 2925, 1731, 1550, 1492, 1242, 1028, 756m cm-1; LRMS (ESI + APCI) m/z 

[M+H] calcd 310.2, found 310.2 
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(3R,4S)-ethyl 3-ethyl-4-(nitromethyl)hexanoate (60): Synthesized by a 

modified procedure: To a screw cap vial charged with a stirbar was added triazolium salt 6d (10.5 

mg, 0.025 mmol) and NaOAc (10 mg, .125 mmol). This vial was then fitted with a rubber septum 

and evacuated and refilled with argon three times. 0.75 ml EtOH was then added via syringe. To 

this solution was then added (E)-1-nitrobut-1-ene (26 µL, 0.25 mmol, 1 equiv) followed by trans-

2-pentenal (31.5 mg, 1.5 equiv). The septum was then quickly removed and replaced with a screw 

cap. This was then allowed to stir at 50 °C for 12 hours. After 12 hours the reaction was 

concentrated via rotary evaporation and then purified by silica gel chromatography (8:2 

hexanes:ether) to yield 15 mg (25 %) (3R,4S)-ethyl 3-ethyl-4-(nitromethyl)hexanoate as a 

colorless oil. Rf= 0.21 in (8:2 Hexanes:Ether); 25 % yield, 20:1 d.r., 91 % ee; [α]D
21  = -3.3 (c =  

0.010 g/ml, CH2Cl2); GC Analysis – Varian BDM column, 130 °C, 1mL/min. Major: 39.237 min, 

minor: 39.836 min. 1
H-NMR (400 MHz; CDCl3): δ  4.35 (dd, J = 12.0, 6.2 Hz, 1H), 4.24 (dd, J 

= 12.0, 7.7 Hz, 1H), 4.12 (q, J = 7.1 Hz, 2H), 2.30-2.26 (m, 1H), 2.28-2.14 (m, 2H), 2.03-1.97 (m, 

1H), 1.46-1.41 (m, 1H), 1.37-1.27 (m, 3H), 1.27-1.23 (m, 3H), 0.96-0.92 (m, 6H); 13
C NMR (101 

MHz; CDCl3): δ 172.7, 77.2, 60.6, 41.3, 37.3, 35.5, 23.8, 21.6, 14.1, 11.8, 11.6. IR (ATR, neat) 

2963, 2927, 2877, 1733, 1553, 1463, 1377, 1181, 1034 cm-1; LRMS (ESI + APCI) m/z [M+H] 

calcd 232.2, found 232.0 

 

(4S,5R)-5-ethyl-4-phenylpiperidin-2-one (62): White Solid. Rf = 0.18 (100 % 
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EtOAc)63 % yield, 17:1 d.r., 93 % ee; [α]D
21  = 30.0 (c =  0.010 g/ml, CH2Cl2); HPLC analysis – 

Chiralpak IC column, 80:20 hexanes/iso-propanol, 1.0 mL/min. Major: 37.9 min, minor: 40.3 min. 

1
H-NMR (400 MHz; CDCl3): δ  7.31 (qd, J = 5.6, 2.2 Hz, 2H), 7.25-7.20 (m, 1H), 7.15-7.12 (m, 

J = 8.1 Hz, 2H), 6.62 (s, 1H), 3.47 (ddd, J = 12.1, 5.0, 3.8 Hz, 1H), 3.04 (t, J = 11.1 Hz, 1H), 2.76 

(td, J = 10.8, 5.5 Hz, 1H), 2.62 (dd, J = 17.8, 5.5 Hz, 1H), 2.49 (dd, J = 17.8, 11.1 Hz, 1H), 1.96-

1.87 (m, 1H), 1.29 (dtd, J = 14.3, 7.3, 3.7 Hz, 1H), 1.02 (ddt, J = 14.2, 9.3, 7.2 Hz, 1H), 0.77 (t, J 

= 7.5 Hz, 3H); 13
C NMR (101 MHz; CDCl3): δ 172.2, 142.7, 128.8, 127.4, 126.8, 46.2, 44.5, 39.9, 

39.0, 24.0, 11.0. IR (ATR, neat) 2960, 2930, 1678, 1495, 701 cm-1; LRMS (ESI + APCI) m/z 

[M+H] calcd 232.2, found 232.1 

 

(4S,5R)-5-isobutyl-4-phenylpiperidin-2-one (63): White Solid. Rf = 0.34 (19:1 

EtOAc:MeOH) 65 % yield, 19:1 d.r., 93 % ee; [α]D
21  = 55.1 (c =  0.010 g/ml, CH2Cl2); HPLC 

analysis – Chiralpak IC column, 80:20 hexanes/iso-propanol, 1.0 mL/min. Major: 31.6 min, minor: 

33.8 min. 1
H-NMR (400 MHz; CDCl3): δ  7.34-7.30 (m, 2H), 7.26-7.22 (m, 1H), 7.14-7.12 (m, 

2H), 6.01 (s, 1H), 3.46 (ddd, J = 12.1, 4.8, 3.8 Hz, 1H), 3.03-2.97 (m, 1H), 2.74 (td, J = 10.5, 5.5 

Hz, 1H), 2.67-2.62 (m, 1H), 2.51 (dd, J = 17.8, 10.8 Hz, 1H), 2.10-2.01 (m, 1H), 1.50-1.40 (m, 

1H), 1.01-0.98 (m, 2H), 0.77 (dd, J = 6.5, 3.2 Hz, 6H); 13
C NMR (101 MHz; CDCl3): δ 172.1, 

142.8, 128.8, 127.3, 126.8, 46.7, 45.1, 40.6, 38.9, 36.1, 25.0, 23.7, 21.1 .IR (ATR, neat) 3210, 

2955, 2924, 1669, 1495, 1348, 758 cm-1; LRMS (ESI + APCI) m/z [M+H] calcd 310.2, found 

310.2 
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(4S,5R)-5-(furan-2-yl)-4-phenylpiperidin-2-one (64): White Solid. Rf = 0.42 (19:1 

EtOAc:MeOH) 82 % yield, 3:1 d.r., 82 % ee; [α]D
21  = 50.6 (c =  0.010 g/ml, CH2Cl2); HPLC 

analysis – Chiralpak IC column, 85:15 hexanes/iso-propanol, 1.0 mL/min. Major: 42.5 min, 

minor: 46.1 min. 1
H-NMR (400 MHz; CDCl3): δ  7.31-7.11 (m, 6H), 6.22 (s, 1H), 6.12 (s, 1H), 

5.87 (s, 1H), 3.60-3.51 (m, 2H), 3.45-3.32 (m, 2H), 2.82-2.60 (m, 2H); 13
C NMR (101 MHz; 

CDCl3):  δ 171.4, 153.1, 141.8, 141.4, 128.6, 127.01, 126.90, 110.0, 106.9, 45.2, 42.9, 39.6, 38.0IR 

(ATR, neat) 3206, 2923, 2854, 1669, 1495, 1011, 760 cm-1; LRMS (ESI + APCI) m/z [M+H] 

calcd 242.1, found 242.1 

 

(4S,5R)-5-ethyl-4-(furan-2-yl)piperidin-2-one (65): White Solid. Rf = 0.44 (19:1 

EtOAc:MeOH) 60 % yield, 19:1 d.r., 91 % ee [α]D
21  = 3.0 (c =  0.010 g/ml, CH2Cl2); GC Analysis 

– Varian BDM column, 170 °C, 1mL/min. Major: 16.453 min, minor: 16.594 min. 1H-NMR (400 

MHz; CDCl3): δ  7.33 (d, J = 1.6 Hz, 1H), 6.30 (dd, J = 3.1, 1.9 Hz, 1H), 6.06 (dd, J = 9.3, 5.8 Hz, 

1H), 3.41-3.37 (m, 1H), 3.06-2.93 (m, 2H), 2.63 (dt, J = 7.0, 3.6 Hz, 2H), 2.03-1.94 (m, 1H), 1.43-

1.34 (m, 1H), 1.28-1.18 (m, 1H), 0.84 (t, J = 7.5 Hz, 3H); 13
C NMR (101 MHz; CDCl3): δ 171.3, 
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155.5, 141.5, 110.1, 105.9, 45.5, 44.3, 38.7, 37.5, 24.0, 11.1 IR (ATR, neat) 3102, 2962, 2924, 

1667, 1495, 1014 cm-1; LRMS (ESI + APCI) m/z [M+H] calcd194.1, found 194.1 

 

(4S,5R)-4-(4-chlorophenyl)-5-ethylpiperidin-2-one (66): White Solid. Rf = 

0.31 (19:1 EtOAc:MeOH) 70 % yield, 20:1 d.r., 82 % ee; [α]D
21  = 28.3(c =  0.010 g/ml, CH2Cl2); 

HPLC analysis – Chiralpak IC column, 85:15 hexanes/iso-propanol, 1.0 mL/min. Major: 50.9 

min, minor: 54.3 min. 1H-NMR (400 MHz; CDCl3): δ  7.30-7.28 (m, 2H), 7.09-7.07 (m, 2H), 6.15 

(s, 1H), 3.50-3.44 (m, 1H), 3.05 (t, J = 11.1 Hz, 1H), 2.79-2.72 (m, 1H), 2.61 (dd, J = 17.8, 5.5 

Hz, 1H), 2.45 (dd, J = 17.8, 11.2 Hz, 1H), 1.93-1.84 (m, 1H), 1.35-1.24 (m, 1H), 1.09-1.00 (m, 

1H), 0.78 (t, J = 7.5 Hz, 3H); 13
C NMR (101 MHz; CDCl3): δ 171.8, 141.1, 132.6, 129.0, 128.7, 

46.1, 43.9, 39.8, 38.8, 23.9, 11.0. IR (ATR, neat) 3212, 2960, 2928, 2874, 1668, 1491, 1089, 837, 

818 cm-1; LRMS (ESI + APCI) m/z [M+H] calcd 238.1, found 238.1 

 

(3R,4S)-3-isobutyl-4-phenylpiperidine (67): To a flame dried10 ml round bottom 

containing a stir bar, 46 mg 6b (0.2 mmol, 1 equiv.) was dissolved in 6 ml dry THF and cooled to 

0 °C in an ice bath. Then 11.3 mg Lithium aluminum hydride (0.3 mmol, 1.5 equiv.) was added in 

two portions over 5 minutes. This was stoppered with septum and placed under argon and allowed 
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to stir for 1 hour. After 1 hour the ice bath was removed and the flask was fitted with a condenser 

and the reaction was refluxed for 4 hours. After 4 hours the heat source was removed and the flask 

was cooled to 0 °C in an ice bath and quenched with 2 ml 1 M HCl. This solution was then 

transferred to a separatory funnel and diluted with 15 ml brine and extracted 3x 15 ml DCM. The 

organic layer was dried over sodium sulfate and the solvent was removed via rotary evaporation 

to yield 38 mg (89 %)  (3R,4S)-3-isobutyl-4-phenylpiperidine as a colorless oil. Rf = 0.12 (19:1 

EtOAc:MeOH) 89 % yield, >20:1 d.r., 93 % ee; [α]D
21  = 35.5 (c =  0.010 g/ml, CH2Cl2); HPLC 

Analysis - Chiralpak IC column, 60:40 hexanes/iso-propanol, 1.0 mL/min. Major: 35.38 min, 

minor: 33.76 min.  1
H-NMR (400 MHz; CDCl3): δ  9.76-9.63 (m, 1H), 7.30 (t, J = 7.3 Hz, 2H), 

7.23-7.18 (m, 3H), 3.65-3.56 (m, 2H), 2.96-2.88 (m, 1H), 2.59-2.56 (m, 1H), 2.40-2.23 (m, 3H), 

1.95 (d, J = 14.2 Hz, 1H), 1.47-1.38 (m, 1H), 0.93 (ddd, J = 14.4, 9.9, 4.2 Hz, 2H), 0.72 (d, J = 

13.6 Hz, 6H); 13
C NMR (101 MHz; CDCl3): δ 142.4, 128.7, 127.6, 127.0, 48.7, 47.8, 44.4, 40.5, 

36.0, 31.0, 24.7, 23.7, 21.1 IR (ATR, neat) 3352, 2955, 2925, 2869, 2721, 2492, 1454, 1066, 758, 

702 cm-1; LRMS (ESI + APCI) m/z [M+H] calcd 218.2, found 218.2 

 

(4R,5S)-1-((4-bromophenyl)sulfonyl)-5-ethyl-4-phenylpiperidin-2-one 

(12): To a flame dried 25 mL round bottom flask containing a stirbar was added 107 mg (4S,5R)-

5-ethyl-4-phenylpiperidin-2-one (7a) (synthesized via catalyst 5b) (0.52 mmol, 1 equiv.) and 10 

mL THF and cooled to -78 °C. To this was then added dropwise 0.357 mL n-Butyl lithium (1.6 

M, hexanes) (0.572 mmol, 1.1 equiv). After stirring at -78 °C for 10 minutes a solution (146 mg 

N

O

Ph

Me
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4-bromobenzenesulfonyl chloride (0.572 mmol, 1.1 equiv.) in 5 mL THF) was added dropwise to 

the reaction. This was stirred at -78 °C for 1 hour and then allowed to warm to room temperature 

and stir overnight. After 12 hours the reaction was cooled to 0 °C and quenched with 8 mL 

saturated NH4Cl. The reaction was extracted 3 x 10 mL CH2Cl2, dried with anhydrous Na2SO4 and 

then concentrated in vacuo. The resulting crude oil was then purified by column chromatography 

to yield 180 mg (4R,5S)-1-((4-bromophenyl)sulfonyl)-5-ethyl-4-phenylpiperidin-2-one (82 %) as 

a crystalline white solid. Rf = 0.51 (1:1 hexanes:ether) [α]D
21  = -11.8 (c =  0.010 g/ml, CH2Cl2); 

1
H-NMR (400 MHz; CDCl3): δ  7.93-7.90 (m, 2H), 7.69-7.65 (m, 2H), 7.31-7.27 (m, 2H), 7.22 

(dt, J = 7.2, 1.9 Hz, 1H), 7.06-7.04 (m, 2H), 4.22 (dd, J = 12.5, 4.7 Hz, 1H), 3.48 (dd, J = 12.5, 9.4 

Hz, 1H), 2.75 (dt, J = 10.1, 5.0 Hz, 1H), 2.71-2.65 (m, 1H), 2.56 (dd, J = 17.4, 10.5 Hz, 1H), 2.05-

1.96 (m, 1H), 1.40 (dtd, J = 14.4, 7.3, 4.1 Hz, 1H), 1.21-1.14 (m, 1H), 0.88 (t, J = 7.5 Hz, 3H); 13
C 

NMR (101 MHz; CDCl3): δ 169.9, 141.7, 137.7, 132.0, 130.3, 129.12, 128.95, 127.21, 127.09, 

49.8, 44.0, 41.5, 41.1, 24.3, 11.1; IR (ATR, neat) 1960, 2923, 1692, 1170 cm-1; LRMS (ESI + 

APCI) m/z [M+H] calcd 422.0, found 422.1 

Synthesis of Aldehyde 74 

 

 

Aldehyde 74 is commercially available from Aurora Building Blocks. Catalogue number: 

A00.552.03. However, we chose to synthesize it via the above route. 
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82 %quantitative
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 3-(benzo[d][1,3]dioxol-5-yloxy)propane-1,2-diol (S3): Prepared 

according to a literature procedure.cxii A 100 mL round bottom flask was charged with sesamol 

(6.906 g, 50.0 mmol) and dissolved in 30 mL EtOH. To this solution was added a solution of 

NaOH (2.50 g, 62.5 mmol, 1.2 eq.) in 10 mL H2O and the mixture was heated to reflux for 10 min. 

After this time, a solution of 3-chloro-1,2-propane diol (5.0 mL, 6.6 g, 60.0 mmol, 1.25 eq.) in 5 

mL EtOH was added and the resulting mixture was allowed to reflux overnight (  ̴8 hr) until TLC 

indicated complete reaction. After this time, solution was allowed to cool to rt and volatiles were 

removed in vacuo. The resulting residue was diluted with EtOAc (50 mL) and H2O (50 mL), and 

the layers separated. The aqueous layer was extracted with EtOAc (6 x25 mL) and the combined 

organic extracts were dried with MgSO4, filtered, and concentrated in vacuo to give a pale orange 

off-white solid (10.9 g) which was used in the next step without further purification. Rf= 0.12 in 

(3:2 Hexanes:EtOAc); quant., 1H-NMR (400 MHz; (CD3)2CO): δ 6.71 (d, J = 8.4 Hz, 1H), 6.53 

(d, J = 2.8 Hz, 1H), 6.37 (dd, J = 8.4, 2.8 Hz, 1H), 5.91 (s, 2H), 4.11 – 3.87 (m, 4H), 3.72 – 3.59 

(m, 3H) 13C NMR (101 MHz; (CD3)2CO): δ 154.7, 148.3, 141.6, 107.7, 105.7, 101.1, 97.8, 70.5, 

70.4, 63.2; LRMS (ESI) m/z calcd 212.1, found 212.0; IR (neat) 3320, 2933, 2894, 1487, 1194, 

1038, 928 cm-1 

 

2-(benzo[d][1,3]dioxol-5-yloxy)acetaldehyde (76): Prepared according to a 

literature procedure.cxii To a vigorously stirred solution of silica gel (50 g) in 350 mL CH2Cl2 was 

added a solution of 6.952 g NaIO4 (32.5 mmol) in 50 mL H2O, followed by a solution of 5.305 g 



 152  

3-(benzo[d][1,3]dioxol-5-yloxy)propane-1,2-diol (25.0 mmol) in 50 mL CH2Cl2. The resulting 

mixture was allowed to stir at rt open to the air for 2 hr until TLC completed complete reaction. 

After this time, the reaction mixture was filtered over a bed of silica gel and the silica gel was 

rinsed with ~1 L of CH2Cl2. The Solvent was then removed in vacuo to give 3.63 g (20.5 mmol) 

2-(benzo[d][1,3]dioxol-5-yloxy)acetaldehyde as an analytically pure white solid. Rf= 0.42 in (3:2 

Hexanes:EtOAc); 82 % yield, 1H-NMR (400 MHz; (CD3)2CO): δ 9.75 (s, 1H), 6.73 (d, J = 8.8 

Hz, 1H), 6.57 (d, J = 2.4 Hz, 1H), 6.38 (dd, J = 8.4, 2.8 Hz, 1H), 5.94 (s, 2H), 4.67 (s, 2H) 13C 

NMR (101 MHz; (CD3)2CO): δ 198.4, 153.6, 148.5, 142.3, 107.8, 105.9, 101.3, 97.9, 73.5.; 

LRMS (ESI) m/z calcd 180.0, found 180.0; IR (neat) 2900, 2832, 1738, 1503, 1488, 1187, 1037 

cm-1 

 

 (E)-5-((3-nitroallyl)oxy)benzo[d][1,3]dioxole (74): To an oven-dried 

round bottom flask was added 3.42 g 2-(benzo[d][1,3]dioxol-5-yloxy)acetaldehyde (19.0 mmol), 

1.5 mL nitromethane (28.0 mmol), and 1:1 THF/t-BuOH (25 mL). This solution was then cooled 

to 0 °C and 426 mg potassium tert-butoxide (3.8 mmol) was added in one portion. The reaction 

was allowed to stir at 0 °C for 15 min then warmed to room temperature and stirred for another 2 

h until TLC indicated complete reaction. After completion, saturated aqueous NH4Cl solution (50 

mL) was added to quench the reaction and then the aqueous layer was extracted with CH2Cl2 (4 x 

50 mL). The combined organic extracts were then dried (Na2SO4) and concentrated in vacuo. After 

drying the crude residue under vacuum (4 mm) for 0.5 h, CH2Cl2 (50 mL) was added and the 

solution was cooled to 0 °C. Trifluoroacetic anhydride (3.0 mL, 10.9 mmol) was then added 

followed by the slow dropwise addition of 5.6 mL Et3N (40 mmol). After stirring for ~15 min at 0 
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°C the reaction was diluted with H2O (30 mL) and CH2Cl2 (50 mL) and the layers separated. The 

organic layer was then washed with sat. aq. NH4Cl (2 x 30 mL), dried (Na2SO4) and concentrated 

in vacuo to give brown-yellow solid, which was then purified by column chromatography (3:1 

hexanes:ethyl acetate) to give 2.893 g (13.0 mmol) of (E)-5-((3-

nitroallyl)oxy)benzo[d][1,3]dioxole as a bright yellow solid. Rf= 0.4 in (3:1 Hexanes:EtOAc); 68 

% yield, 1H-NMR (400 MHz; (CD3)2CO): δ 7.47 (dt, J = 13.6, 3.6 Hz, 1H), 7.39 (dt, J = 13.6, 2.0 

Hz, 1H), 6.76 (d, J = 8.4 Hz, 1H), 6.65 (d, J = 2.4 Hz, 1H), 6.47 (dd, J = 8.4, 2.4 Hz, 1H), 5.95 (s, 

2H), 4.11 (dd, J = 3.6, 2.0 Hz, 2H), 13C NMR (101 MHz; (CD3)2CO): δ 153.3, 148.5, 142.4, 

139.7, 137.9, 107.8, 106.0, 101.4, 101.4, 98.0, 64.6; LRMS (ESI) m/z calcd 223.1, found 223.0; 

IR (neat) 3439, 3124, 1635, 1435, 933, 733 cm-1 

 

 (E)-1-methoxy-4-((3-nitroallyl)oxy)benzene (80): In a dry round 

bottom flask, 1.69 g (10.17 mmol) of 2-(4-methoxyphenoxy)acetaldehyde (prepared according to 

reference 1) was dissolved in 40 mL of a 1:1 solution of THF/tBuOH.  0.82 ml (15.25 mmol, 1.5 

equiv.) of Nitromethane was added, and the reaction was cooled to 0 °C in an ice water bath.  

Potassium t-Butoxide (228 mg, 2.03 mmol, 0.2 equiv) was added and the reaction was stirred at 

room temperature overnight.  The reaction was quenched with a saturated NH4Cl solution and 

extracted with EtOAc (3 x 20 ml).  The organic layers were combined and washed with a brine 

solution.  The organic layer was then dried over MgSO4, filtered, and concentrated.  The crude oil 

was then dissolved in CH2Cl2 (30 ml) and cooled to 0 °C.  Trifluoroacetic anhydride (1.41ml, 

10.17 mmol, 1 equiv) was added to the reaction, followed by slow addition of Et3N (2.83 ml, 20.39 

mmol, 2 equiv).  The reaction was stirred at 0 °C for 2 hours, then quenched with water.  The 

O NO2

MeO
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organic layer was washed with saturated NH4Cl.  The organic extract was dried over MgSO4, 

filtered and concentrated.  The crude oil was purified by silica gel column chromatography, eluting 

with 0 to 20% EtOAc/Hexanes.  Isolated 424 mg (20% yield) of an orange solid. 1H-NMR (400 

MHz; CDCl3): δ 7.39-7.28 (m, 2H), 6.85 (s, 4H), 4.73 (dd, J = 3.3, 1.9 Hz, 2H), 3.77 (s, 3H). 13-

C NMR (101 MHz; CDCl3): δ 154.7, 151.5, 140.2, 136.9, 115.7, 114.8, 64.5, 55.7; LRMS: m/z 

[M-1] calcd 209.1, found 208.1; IR: 3123, 3052, 2907, 2836, 1788, 1659, 1526, 1505, 1440, 1359, 

1226, 1033, 936, 824, 732 cm-1 

(4R,5S)-5-((benzo[d][1,3]dioxol-5-yloxy)methyl)-4-(4-

fluorophenyl)piperidin-2-one (75): To a 100 mL flame dried round bottom flask containing a 

magnetic stirbar was added nitroalkene 74 (2.01 g, 9 mmol, 1.0 equiv), NHC 3 (377 mg, 0.9 mmol, 

10 mol%), sodium acetate (370 mg, 4.5 mmol, 0.5 equiv), 4-fluorocinnamaldehyde (2.03 g, 13.5 

mmol, 1.5 equiv), followed by 30 mL ethanol. The flask was then fitted with a rubber septum and 

stirred under an atmosphere of argon for 12 hours at 23 °C.  After 12 hours, the septum was 

removed and zinc dust (5.85 g, 90 mmol, 10 equiv) was added followed by 30 ml of acetic acid. 

The flask was then fitted with a reflux condenser and heating mantle. The reaction was then 

refluxed for four hours. After four hours, the heat source was removed and the reaction was 

allowed to cool. Upon cooling, the reaction was filtered through celite and rinsed with 30 mL 

EtOAc. The filtrate was then diluted with an additional 20 mL EtOAc and quenched with 60 mL 

saturated NaHCO3. The organic layer was then separated, washed with brine (1 x 60 mL), dried 
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(Na2SO4), and concentrated in vacuo. The crude residue was then purified by column 

chromatography (5 % MeOH in CH2Cl2) to yield 1.8 g (4R,5S)-5-((benzo[d][1,3]dioxol-5-

yloxy)methyl)-4-(4-fluorophenyl)piperidin-2-one, 58 %, 10:1 dr, and 82 % ee as an off-white 

solid. Rf: 0.51 (10:1:0.1 Dicholoromethane:Methanol:NH4OH); HPLC Analysis: Chiralpak IA 

column, 80:20 hexanes/iso-propanol, 1.0 mL/min. Major: 12.27 min, minor 16.74 min; 1H-NMR 

(400 MHz; CDCl3): δ 7.16 (dt, J = 6.8, 3.5 Hz, 2H), 7.01 (t, J = 8.6 Hz, 2H), 6.62 (d, J = 8.5 Hz, 

1H), 6.32 (d, J = 2.4 Hz, 1H), 6.11 (dd, J = 8.5, 2.5 Hz, 1H), 5.90 (bs, 1H), 5.88 (s, 2H), 3.69-3.59 

(m, 2H), 3.52 (dd, J = 9.3, 7.3 Hz, 1H), 3.46-3.40 (m, 1H), 3.08 (td, J = 11.2, 5.6 Hz, 1H), 2.71-

2.51 (m, 2H), 2.44-2.35 (m, 1H).; 13
C-NMR (101 MHz; CDCl3): δ 171.5, 161.8 (d, J=245.5 Hz, 

C), 153.8, 148.2, 141.9, 137.1 (d, J=3.2 Hz, C), 128.6 (d, J=7.9 Hz, CH), 115.9, 107.9 (d, J=21.3 

Hz, CH), 105.5, 101.2, 97.9, 68.3, 44.5, 40.2, 39.3, 38.7.; IR: (ATR neat) 3214, 2923, 1664, 1507, 

1485, 1362, 1226, 1184, 1135, 1101, 1034, 927, 842, 759 cm-1; LRMS: (ESI + APCI) m/z [M+H] 

calcd 344.1, found 344.1; Optical Rotation: [α]D
21 = - 72.2 

 

 

(-)-Paroxetine (68): To a flame dried 250 mL round bottom flask 

containing a stirbar was added 1.22 g lactam 75 (3.55 mmol, 1.0 equiv) and 120 mL dry THF. This 

flask was fitted with a rubber septum connected to an argon line and cooled to 0 °C in an ice bath. 

At 0 °C, 228 mg LiAlH4 (6 mmol, 1.5 equiv) was added portionwise over the course of five 
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minutes. The reaction was allowed to stir at 0 °C for 1 hour and then the ice bath was removed and 

the flask was fitted with a reflux condenser and the reaction was refluxed for four hours. After four 

hours the heat source was removed and the flask was cooled to 0 °C in an ice bath and carefully 

quenched with 100 mL saturated Rochelle’s salt and stirred until complete separation was 

observed, approximately 1 hour. The solution was then transferred to a separatory funnel and 

extracted 3 x 70 mL CH2Cl2. The organic layer was dried over Na2SO4 and the solvent was 

removed via rotary evaporation. The crude oil was purified by column chromatography (100 % 

EtOAc to 10:1:01 CH2Cl2:MeOH:NH4OH) to yield 1.0 g paroxetine as a colorless oil. Rf: 0.34 

(10:1:0.1 Dicholoromethane:Methanol:NH4OH); 1
H-NMR (400 MHz; CDCl3): δ 7.17 (dd, J = 

8.6, 5.3 Hz, 2H), 6.96 (t, J = 8.6 Hz, 2H), 6.60 (d, J = 8.5 Hz, 1H), 6.31 (d, J = 2.5 Hz, 1H), 6.10 

(dd, J = 8.5, 2.5 Hz, 1H), 5.86 (bs, 2H), 5.52 (s, 1H), 3.58-3.54 (m, 2H), 3.46-3.39 (m, 2H), 2.94-

2.84 (m, 2H), 2.73 (td, J = 11.8, 3.8 Hz, 1H), 2.35 (dddd, J = 13.8, 10.7, 6.6, 3.7 Hz, 1H), 2.05 

(qd, J = 13.0, 3.9 Hz, 1H), 1.90 (dd, J = 13.7, 3.0 Hz, 1H); 13
C-NMR (101 MHz; CDCl3): δ 161.8 

(J=245.9 Hz, C), 153.7, 148.2, 142.0, 137.1 (J=3.1 Hz, C), 128.9 (J=7.8 Hz, CH), 115.8 (J=21.3 

Hz, CH), 107.8, 105.5, 101.2, 97.9, 67.4, 46.7, 44.4, 41.6, 39.3, 29.9; IR: (ATR neat) 3394, 2925, 

1609, 1510, 1482, 1464, 1226, 1187, 1136, 1097, 1038, 930, 831 cm-1; LRMS: (ESI + APCI) m/z 

[M+H] calcd 330.2, found 330.2 (4S,5R)-5-((4-methoxyphenoxy)methyl)-4-

phenylpiperidin-2-one (81): To a screw cap vial containing a magnetic stirbar was added 42 mg 

nitroalkene 80 (0.2 mmol, 1.0 equiv), 40 mg cinnamaldehyde (0.3 mmol, 1.5 equiv), 8 mg NHC 3 

NH

O

O

OMe
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(0.02 mmol, 10 mol%), 8 mg NaOAc (0.1 mmol, 50 mol%), and 0.6 mL ethanol. The vial was 

flushed with argon and the screwcap replaced and stirred at 23 °C for 12 hours. After 12 hours, the 

screw cap was removed and 130 mg zinc dust (2.0 mmol, 10 equiv) was added, followed by 0.6 

mL AcOH. The screw cap was replaced and the reaction was refluxed for four hours. After four 

hours, the heat source was removed and the reaction was allowed to cool. Upon cooling, the 

reaction was filtered through celite and rinsed with 10 mL EtOAc. The filtrate was then diluted 

with an additional 5 mL EtOAc and quenched with 20 mL saturated NaHCO3. The organic layer 

was then separated, washed with brine (1 x 20 mL), dried (Na2SO4), and concentrated in vacuo. 

The crude residue was then purified by column chromatography (5 % MeOH in CH2Cl2) to yield 

33 mg (4S,5R)-5-((4-methoxyphenoxy)methyl)-4-phenylpiperidin-2-one 53 %, 7:1 dr, and 82 % 

ee as an off-white solid. Rf: 0.34 (95:5 Dicholromethane:Methanol); HPLC: Chiralpak IA column, 

85:15 hexanes/iso-propanol, 1.0 mL/min. Major: 21.84 min, minor: 23.68 min; 1
H-NMR (400 

MHz; CDCl3): δ 7.32 (t, J = 7.3 Hz, 2H), 7.25 (t, J = 3.6 Hz, 1H), 7.20-7.18 (m, 2H), 6.75 (d, J = 

9.2 Hz, 2H), 6.65 (d, J = 9.1 Hz, 2H), 6.56 (bs, 1H), 3.72 (s, 3H), 3.71-3.63 (m, 2H), 3.54 (dd, J = 

9.3, 7.7 Hz, 1H), 3.42 (dd, J = 21.5, 11.0 Hz, 1H), 3.06 (td, J = 11.0, 5.7 Hz, 1H), 2.63 (qd, J = 

19.4, 8.5 Hz, 2H), 2.48-2.39 (m, 1H); 13
C-NMR (101 MHz; CDCl3): δ 171.9, 154.0, 152.5, 141.5, 

129.0, 127.23, 127.17, 115.3, 114.6, 68.3, 55.7, 44.7, 41.0, 39.1, 38.6; IR: (ATR neat) 3250, 2931, 

1675, 1508, 1242, 1035, 832, 705 cm-1; MS: (ESI + APCI) m/z [M+H] calcd 312.2, found 312.1; 

Optical Rotation: [α]D
21 = - 26.4 
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(4R,5S)-5-((4-methoxyphenoxy)methyl)-1-methyl-4-phenylpiperidin-2-one 

(S4): (4R,5S)-5-((4-methoxyphenoxy)methyl)-4-phenylpiperidin-2-one (34 mg, 0.11mmol) was 

dissolved in dry THF (2 ml) in a round bottom flask and cooled to 0 °C.  NaH (6 mg, 0.16 mmol, 

1.5 equiv., 60% dispersion in mineral oil) was added to the reaction, followed by 10 µL of MeI 

(0.16 mmol, 1.5 equiv).  The reaction was stirred at room temperature overnight.  The reaction was 

quenched with saturated NH4Cl solution and extracted twice with CH2Cl2.  The organic fractions 

were collected, dried over MgSO4, filtered, and concentrated.  The crude oil was purified by 

column chromatography, eluting with 0 to 10%MeOH/DCM.  Isolated 20 mg of a pale orange oil 

(55% yield). 1H-NMR (400 MHz; CDCl3): δ 7.30 (d, J = 7.6 Hz, 3H), 7.25 (s, 2H), 7.19-7.17 (m, 

2H), 6.75 (d, J = 9.1 Hz, 3H), 6.68-6.65 (m, 2H), 3.72 (s, 3H), 3.72-3.67 (m, 4H), 3.60-3.52 (m, 

3H), 3.44 (dd, J = 12.3, 10.4 Hz, 1H), 3.05-3.03 (m, 1H), 3.02 (s, 3H), 2.66 (dd, J = 27.0, 8.6 Hz, 

2H). 13-C NMR (101 MHz; CDCl3): δ 169.2, 154.0, 152.5, 141.3, 128.9, 127.19, 127.13, 115.3, 

114.6, 55.7, 52.5, 41.4, 39.7, 39.4, 34.5;  MS: m/z=326.21 (M+); IR: 3060, 3028, 2923, 1643, 

1506, 1465, 1420, 1355, 1229, 1144, 1035, 825, 745, 702;  [a]D
23 =  -17° 
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Femoxetine (69): 16 mg (0.05 mmol) of (4R,5S)-5-((4-

methoxyphenoxy)methyl)-1-methyl-4-phenylpiperidin-2-one was dissolved in THF (2 ml) and 4 

mg of LiAlH4 (0.1 mmol, 2 equiv) was added carefully.  The reaction was stirred at room 

temperature overnight.  The reaction was cooled to 0 °C and Na2SO4x10H2O was added carefully 

(approx. 200 mg).  The slurry was stirred for 2 hours at room temperature.  The mixture was filtered 

through a plug of celite, washing with EtOAc.  The filtrate was concentrated and then purified by 

silica gel column chromatography, eluting with 0.5%NH4OH/10%MeOH/DCM.  Isolated 13mg 

as a pale yellow oil (87% yield).  1H NMR, 13C NMR and mass match previously reported 

synthesiscxiii. 
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General Procedure for the Synthesis of Nitroalkenes 

To a dry round bottom flask was added cyclopentane carboxaldehyde (1.02 g, 10.4 mmol), 

nitromethane (840 µL, 15.6 mmol), and 1:1 THF/t-BuOH (10 mL). This solution was cooled to 0 

°C and potassium tert-butoxide (0.233 g, 2.08 mmol) added in one portion. The reaction was then 

stirred at 0 °C for 1 h then warmed to room temperature and stirred for 12 h. After completion, 

saturated aqueous NH4Cl solution (20 mL) was added to quench the reaction and then extracted 

with CH2Cl2 (3 x 20 mL). The combined organic extracts were then dried over anhydrous Na2SO4 

and concentrated in vacuo. After drying the crude residue under vacuum (4 mm) for 1 h, CH2Cl2 

(20 mL) was added followed by cooling to 0 °C. Trifluoroacetic anhydride (1.52 mL, 10.9 mmol) 

was added followed by the slow dropwise addition of Et3N (3.04 mL, 21.8 mmol). After stirring 

for 1 h at 0 °C the reaction was allowed to warm to room temperature and stirred an additional 2 

h. The reaction was diluted with CH2Cl2 (20 mL) followed by the addition of water (20 mL). The 

organic layer was separated and washed with saturated aqueous NH4Cl solution (3 x 20 mL), dried 

(Na2SO4) and concentrated in vacuo to give a yellow oil that was purified by column 

chromatography (20:1 hexanes:ether) yielding 0.779 g (53%) of (E)-(2- nitrovinyl)cyclopentane 

as a pale yellow oil. 
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Table A.1.1  Crystal data and structure refinement for Rovis161. 12 

Identification code  rovis161 

Empirical formula  C19 H20 Br N O3 S 

Formula weight  422.33 

Temperature  120 K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P 21 

Unit cell dimensions a = 5.8036(5) Å α = 90°. 

 b = 21.9511(18) Å β = 95.263(5)°. 

 c = 14.3746(12) Å ɣ = 90°. 

Volume 1823.5(3) Å3 

Z 4 

Density (calculated) 1.538 Mg/m3 
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Absorption coefficient 2.387 mm-1 

F000 864 

Crystal size 0.37 x 0.11 x 0.10 mm3 

Theta range for data collection 1.70 to 26.39°. 

Index ranges -7≤h≤7, -27≤k≤27, -17≤l≤17 

Reflections collected 32881 

Independent reflections 7371 [Rint = 0.0412] 

Completeness to theta = 26.39° 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.8015 and 0.4721 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 7371 / 35 / 472 

Goodness-of-fit on F2 1.046 

Final R indices [I>2sigma(I)] R1 = 0.0453, wR2 = 0.0880 

R indices (all data) R1 = 0.0659, wR2 = 0.0964 

Absolute structure parameter 0.013(10) 

Largest diff. peak and hole 0.927 and -1.456 e.Å-3 

 

Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) 

for Rovis161.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

______________________________________________________________________________

__ 

 x y z U(eq) 
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______________________________________________________________________________

__ 

Br(1) 1838(1) 7724(1) 7695(1) 72(1) 

Br(2) 2151(1) 5738(1) 2630(1) 61(1) 

C(1) 5687(9) 6608(3) 3097(4) 32(1) 

C(2) 3664(10) 6352(2) 3371(4) 31(1) 

C(3) 2684(9) 6552(3) 4154(4) 32(1) 

C(4) 3729(8) 7022(2) 4682(4) 30(1) 

C(5) 5750(9) 7278(2) 4396(4) 26(1) 

C(6) 6737(9) 7081(2) 3612(4) 28(1) 

C(7) 1001(11)11231(3) 3885(4) 38(1) 

C(8) 2398(8) 10745(3) 4210(3) 33(1) 

C(9) 1637(9) 10157(2) 4109(3) 26(1) 

C(10) -544(9) 10054(3) 3687(4) 34(1) 

C(11) -1920(9) 10536(3) 3358(4) 40(2) 

C(12) -1153(11)11120(3) 3465(4) 41(2) 

C(13) 5245(9) 8686(3) 3886(4) 32(1) 

C(14) 3688(10) 9218(2) 3634(4) 34(1) 

C(15) 3238(8) 9639(2) 4433(3) 31(1) 

C(17) 4235(11) 8793(3) 5565(4) 43(2) 

C(20) 3572(9) 7136(2) 8433(4) 31(1) 

C(21) 5562(9) 6907(3) 8119(4) 30(1) 

C(22) 6695(9) 6437(2) 8623(4) 28(1) 
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C(23) 5795(9) 6226(2) 9425(3) 23(1) 

C(24) 3840(8) 6477(2) 9743(4) 28(1) 

C(25) 2700(9) 6943(3) 9240(4) 32(1) 

C(26) 5094(9) 4847(2) 8895(3) 30(1) 

C(27) 3370(10) 4348(3) 8663(4) 39(1) 

C(28) 2005(8) 4101(2) 9432(3) 35(1) 

C(30) 4225(9) 4763(2) 10582(3) 32(1) 

C(31) 1101(9) 3467(2) 9118(4) 32(1) 

C(32) 2362(9) 2932(3) 9256(4) 38(1) 

C(33) 1462(10) 2390(3) 8912(4) 40(1) 

C(34) -708(11) 2366(3) 8428(4) 44(2) 

C(35) -1948(10) 2902(3) 8298(4) 49(2) 

C(36) -1023(10) 3437(3) 8627(4) 43(1) 

C(16) 2435(10) 9260(2) 5213(4) 47(2) 

C(18) 1577(17) 9596(4) 6026(5) 85(3) 

C(19A) 1410(30) 9419(6) 6948(9) 63(5) 

C(19B) 2960(20) 9930(6) 6518(9) 65(3) 

C(29) 3412(9) 4113(2) 10364(3) 36(1) 

C(37) 2178(10) 3845(3) 11165(4) 43(1) 

C(38A) 3430(20) 3780(7) 12034(8) 73(4) 

C(38B) 29(17) 4166(4) 11370(8) 41(3) 

N(1) 5379(7) 8492(2) 4801(3) 29(1) 

N(2) 5506(7) 5021(2) 9829(3) 28(1) 
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O(1) 6672(6) 7760(2) 6045(2) 41(1) 

O(2) 9311(6) 7972(2) 4846(3) 47(1) 

O(3) 6287(7) 8431(2) 3302(3) 41(1) 

O(4) 6143(7) 5100(2) 8309(3) 36(1) 

O(5) 7009(6) 5750(2) 11052(2) 41(1) 

O(6) 9431(6) 5533(2) 9774(3) 42(1) 

S(1) 7023(2) 7873(1) 5087(1) 33(1) 

S(2) 7204(2) 5630(1) 10083(1) 31(1) 

______________________________________________________________________________

__ 

cxii N, Guimond.; M. J. MacDonald; V. Lemieux; A. M. Beauchemin. J. Am. Chem. Soc. 2012, 
134, 16571-16577. 
cxiii M. Amat, J. Bosch, J. Hidalgo, M. Cantó, M. Pérez, N. Llor, E. Molins, C. Miravitlles, M. 
Orozco, J. Luque J. Org. Chem. 2000, 65, 3074-3084. 

                                                

Table 3.   Bond lengths [Å] and angles [°] 

for Rovis161. 

_________________________________

______ 

Br(1)-C(20)  1.900(5) 

Br(2)-C(2)  1.886(6) 

C(1)-C(6)  1.384(8) 

C(1)-C(2)  1.391(7) 

C(2)-C(3)  1.378(7) 

C(3)-C(4)  1.388(8) 

C(4)-C(5)  1.396(7) 

C(5)-C(6)  1.379(7) 

C(5)-S(1)  1.762(6) 

C(7)-C(12)  1.360(9) 

C(7)-C(8)  1.394(8) 

C(8)-C(9)  1.367(8) 

C(9)-C(10)  1.372(8) 

C(9)-C(15)  1.515(6) 

C(10)-C(11)  1.383(8) 

C(11)-C(12)  1.362(9) 

C(13)-O(3)  1.215(6) 

C(13)-N(1)  1.377(7) 
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C(13)-C(14)  1.502(8) 

C(14)-C(15)  1.515(6) 

C(15)-C(16)  1.505(6) 

C(17)-N(1)  1.489(6) 

C(17)-C(16)  1.517(8) 

C(20)-C(21)  1.374(7) 

C(20)-C(25)  1.374(7) 

C(21)-C(22)  1.392(7) 

C(22)-C(23)  1.387(7) 

C(23)-C(24)  1.377(7) 

C(23)-S(2)  1.769(5) 

C(24)-C(25)  1.385(7) 

C(26)-O(4)  1.218(6) 

C(26)-N(2)  1.396(6) 

C(26)-C(27)  1.499(8) 

C(27)-C(28)  1.519(7) 

C(28)-C(29)  1.504(6) 

C(28)-C(31)  1.540(7) 

C(30)-N(2)  1.480(6) 

C(30)-C(29)  1.527(7) 

C(31)-C(36)  1.365(8) 

C(31)-C(32)  1.387(7) 

C(32)-C(33)  1.374(8) 

C(33)-C(34)  1.382(9) 

C(34)-C(35)  1.383(9) 

C(35)-C(36)  1.359(9) 

C(16)-C(18)  1.506(8) 

C(18)-C(19B)  1.257(14) 

C(18)-C(19A)  1.394(13) 

C(29)-C(37)  1.530(7) 

C(37)-C(38A)  1.394(12) 

C(37)-C(38B)  1.485(11) 

N(1)-S(1)  1.690(4) 

N(2)-S(2)  1.681(4) 

O(1)-S(1)  1.432(4) 

O(2)-S(1)  1.419(4) 

O(5)-S(2)  1.433(3) 

O(6)-S(2)  1.421(4) 

 

C(6)-C(1)-C(2) 119.6(5) 

C(3)-C(2)-C(1) 121.7(5) 

C(3)-C(2)-Br(2) 118.9(4) 

C(1)-C(2)-Br(2) 119.3(4) 

C(2)-C(3)-C(4) 119.4(5) 

C(3)-C(4)-C(5) 118.3(5) 

C(6)-C(5)-C(4) 122.6(5) 
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C(6)-C(5)-S(1) 120.6(4) 

C(4)-C(5)-S(1) 116.9(4) 

C(5)-C(6)-C(1) 118.4(5) 

C(12)-C(7)-C(8) 119.7(6) 

C(9)-C(8)-C(7) 120.9(5) 

C(8)-C(9)-C(10) 118.6(5) 

C(8)-C(9)-C(15) 119.6(5) 

C(10)-C(9)-C(15) 121.8(5) 

C(9)-C(10)-C(11) 120.4(5) 

C(12)-C(11)-C(10) 120.7(5) 

C(7)-C(12)-C(11) 119.7(6) 

O(3)-C(13)-N(1) 122.0(5) 

O(3)-C(13)-C(14) 121.2(5) 

N(1)-C(13)-C(14) 116.8(4) 

C(13)-C(14)-C(15) 115.6(4) 

C(16)-C(15)-C(14) 108.4(4) 

C(16)-C(15)-C(9) 114.9(4) 

C(14)-C(15)-C(9) 111.6(4) 

N(1)-C(17)-C(16) 113.2(4) 

C(21)-C(20)-C(25) 123.4(5) 

C(21)-C(20)-Br(1) 118.9(4) 

C(25)-C(20)-Br(1) 117.7(4) 

C(20)-C(21)-C(22) 118.1(5) 

C(23)-C(22)-C(21) 119.0(5) 

C(24)-C(23)-C(22) 121.8(5) 

C(24)-C(23)-S(2) 118.2(4) 

C(22)-C(23)-S(2) 120.0(4) 

C(23)-C(24)-C(25) 119.4(5) 

C(20)-C(25)-C(24) 118.2(5) 

O(4)-C(26)-N(2) 119.2(5) 

O(4)-C(26)-C(27) 123.0(5) 

N(2)-C(26)-C(27) 117.8(4) 

C(26)-C(27)-C(28) 118.7(4) 

C(29)-C(28)-C(27) 111.4(4) 

C(29)-C(28)-C(31) 114.8(4) 

C(27)-C(28)-C(31) 107.3(4) 

N(2)-C(30)-C(29) 112.0(4) 

C(36)-C(31)-C(32) 118.2(5) 

C(36)-C(31)-C(28) 117.5(5) 

C(32)-C(31)-C(28) 124.1(5) 

C(33)-C(32)-C(31) 120.2(5) 

C(32)-C(33)-C(34) 120.9(5) 

C(33)-C(34)-C(35) 118.3(5) 

C(36)-C(35)-C(34) 120.3(6) 

C(35)-C(36)-C(31) 122.1(6) 

C(15)-C(16)-C(18) 117.0(5) 
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C(15)-C(16)-C(17) 111.8(4) 

C(18)-C(16)-C(17) 109.9(5) 

C(19B)-C(18)-C(19A) 74.0(10) 

C(19B)-C(18)-C(16) 118.8(10) 

C(19A)-C(18)-C(16) 131.2(8) 

C(28)-C(29)-C(30) 109.4(4) 

C(28)-C(29)-C(37) 114.2(5) 

C(30)-C(29)-C(37) 111.2(4) 

C(38A)-C(37)-C(38B) 104.6(9) 

C(38A)-C(37)-C(29) 118.1(7) 

C(38B)-C(37)-C(29) 115.2(6) 

C(13)-N(1)-C(17) 125.3(4) 

C(13)-N(1)-S(1) 117.5(3) 

C(17)-N(1)-S(1) 117.2(3) 

C(26)-N(2)-C(30) 123.0(4) 

C(26)-N(2)-S(2) 118.2(3) 

C(30)-N(2)-S(2) 118.0(3) 

O(2)-S(1)-O(1) 118.7(2) 

O(2)-S(1)-N(1) 109.7(2) 

O(1)-S(1)-N(1) 104.2(2) 

O(2)-S(1)-C(5) 109.2(2) 

O(1)-S(1)-C(5) 108.9(3) 

N(1)-S(1)-C(5) 105.1(2) 

O(6)-S(2)-O(5) 119.1(2) 

O(6)-S(2)-N(2) 110.2(2) 

O(5)-S(2)-N(2) 105.1(2) 

O(6)-S(2)-C(23) 109.4(2) 

O(5)-S(2)-C(23) 108.1(2) 

N(2)-S(2)-C(23) 103.8(2) 

_________________________________

______ 

Symmetry transformations used to 

generate equivalent atoms:  
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Table 4.   Anisotropic displacement parameters (Å2x 103)for Rovis161.  The anisotropic 

displacement factor exponent takes the form: -2p2[ h2a*2U11 + ... + 2 h k a* b* U12 ] 

________________________________________________________________________

______ 

 U11 U22 U33 U23 U13 U12 

________________________________________________________________________

______ 

Br(1) 84(1)  65(1) 72(1)  37(1) 33(1)  50(1) 

Br(2) 75(1)  55(1) 54(1)  -19(1) 10(1)  -37(1) 

C(1) 33(3)  28(3) 35(3)  -3(2) 6(2)  1(2) 

C(2) 41(3)  23(3) 28(3)  0(2) -1(2)  1(2) 

C(3) 23(3)  29(3) 43(3)  10(2) 3(2)  0(2) 

C(4) 29(3)  31(3) 31(3)  5(2) 3(2)  5(2) 

C(5) 22(3)  25(3) 31(3)  1(2) -6(2)  8(2) 

C(6) 25(3)  27(3) 31(3)  2(2) 1(2)  4(2) 

C(7) 57(4)  23(3) 35(3)  -4(2) 11(3)  -8(2) 

C(8) 28(3)  38(3) 32(2)  -7(2) 2(2)  -2(2) 

C(9) 29(3)  26(3) 22(2)  -3(2) 3(2)  4(2) 

C(10) 40(3)  26(3) 34(3)  -2(2) 1(2)  -12(2) 

C(11) 25(3)  54(4) 40(3)  -7(3) -3(2)  -7(3) 

C(12) 55(4)  40(3) 28(3)  4(3) 3(3)  16(3) 
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C(13) 36(3)  23(3) 37(3)  -1(2) 12(2)  -1(2) 

C(14) 47(3)  25(3) 32(3)  0(2) 12(2)  3(2) 

C(15) 36(3)  23(2) 34(2)  -1(2) 4(2)  8(2) 

C(17) 59(4)  42(3) 28(3)  0(3) 14(3)  20(3) 

C(20) 35(3)  23(3) 36(3)  1(2) 3(2)  10(2) 

C(21) 39(3)  21(3) 31(3)  -1(2) 6(2)  -2(2) 

C(22) 27(3)  22(3) 34(3)  -3(2) 5(2)  1(2) 

C(23) 29(3)  13(2) 26(3)  1(2) -1(2)  0(2) 

C(24) 29(3)  24(3) 31(3)  2(2) 7(2)  -5(2) 

C(25) 34(3)  26(3) 37(3)  3(2) 9(2)  6(2) 

C(26) 47(3)  18(3) 26(3)  1(2) 8(2)  6(2) 

C(27) 58(4)  30(3) 29(3)  -5(2) 8(2)  -11(3) 

C(28) 43(3)  28(2) 35(2)  1(2) 5(2)  4(2) 

C(30) 41(3)  28(3) 27(3)  -2(2) 4(2)  -3(2) 

C(31) 42(3)  29(3) 26(2)  5(2) 4(2)  -2(2) 

C(32) 20(2)  56(4) 37(3)  8(2) -6(2)  -4(2) 

C(33) 51(4)  33(3) 37(3)  7(2) 2(3)  8(3) 

C(34) 69(4)  31(3) 31(3)  -2(3) 4(3)  -24(3) 

C(35) 35(3)  63(5) 48(4)  -4(3) -6(3)  -16(3) 

C(36) 36(3)  44(3) 47(3)  0(3) -3(3)  9(3) 

C(16) 63(4)  40(3) 42(3)  13(2) 22(3)  27(3) 

C(18) 129(7)  93(6) 35(4)  7(3) 17(4)  70(5) 

C(19A) 105(13)  46(8) 45(7)  30(6) 43(8)  48(8) 
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C(19B) 61(8)  68(8) 68(8)  15(6) 24(6)  24(5) 

C(29) 49(3)  30(3) 28(2)  1(2) 5(2)  -3(2) 

C(37) 62(4)  36(3) 34(3)  2(2) 12(3)  -14(3) 

C(38A) 89(10)  82(9) 43(6)  14(6) -13(6)  -44(8) 

C(38B) 41(6)  33(5) 49(6)  4(5) 12(5)  -6(4) 

N(1) 31(2)  25(2) 32(2)  1(2) 6(2)  8(2) 

N(2) 42(3)  17(2) 26(2)  3(2) 2(2)  -2(2) 

O(1) 55(2)  32(2) 32(2)  -5(2) -8(2)  14(2) 

O(2) 27(2)  36(2) 78(3)  -21(2) -1(2)  -4(2) 

O(3) 58(3)  21(2) 47(2)  -2(2) 24(2)  6(2) 

O(4) 49(2)  31(2) 30(2)  -3(2) 15(2)  -3(2) 

O(5) 59(2)  32(2) 29(2)  0(2) -13(2)  -12(2) 

O(6) 29(2)  34(2) 61(2)  11(2) -2(2)  2(2) 

S(1) 31(1)  25(1) 41(1)  -5(1) -4(1)  7(1) 

S(2) 34(1)  23(1) 35(1)  5(1) -5(1)  0(1) 

________________________________________________________________________

______ 

Table 5.   Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103) 

for Rovis161. 

________________________________________________________________________

________ 

 x  y  z  U(eq) 
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________________________________________________________________________

________ 

 

H(1) 6329 6462 2571 38 

H(3) 1335 6373 4327 38 

H(4) 3099 7164 5214 36 

H(6) 8078 7262 3435 33 

H(7) 1541 11629 3955 45 

H(8) 3868 10822 4501 40 

H(10) -1100 9657 3621 40 

H(11) -3383 10460 3061 48 

H(12) -2099 11442 3251 49 

H(14A) 2214 9064 3358 41 

H(14B) 4364 9456 3159 41 

H(15) 4726 9820 4663 37 

H(17A) 5405 8992 5985 51 

H(17B) 3500 8484 5919 51 

H(21) 6136 7062 7584 36 

H(22) 8035 6267 8426 33 

H(24) 3289 6335 10290 34 

H(25) 1380 7120 9443 38 

H(27A) 4189 4010 8411 47 

H(27B) 2268 4496 8165 47 
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H(28) 662 4366 9474 42 

H(30A) 2893 5018 10665 39 

H(30B) 5217 4765 11163 39 

H(32) 3822 2941 9583 46 

H(33) 2323 2035 9006 48 

H(34) -1317 1998 8196 52 

H(35) -3421 2896 7983 59 

H(36) -1864 3794 8515 51 

H(16) 1110 9025 4935 56 

H(18A) 2494 9966 6076 102 

H(18B) 23 9724 5803 102 

H(18C) 286 9849 5784 102 

H(18D) 970 9297 6435 102 

H(19A) 762 9747 7283 95 

H(19B) 2916 9321 7237 95 

H(19C) 421 9068 6959 95 

H(19D) 2183 10110 7010 97 

H(19E) 3531 10245 6136 97 

H(19F) 4239 9689 6784 97 

H(29) 4797 3865 10305 43 

H(37A) 846 4099 11249 52 

H(37B) 1594 3446 10971 52 

H(37C) 1796 3423 11019 52 



 220 

H(37D) 3244 3847 11726 52 

H(38A) 2455 3609 12470 109 

H(38B) 3983 4171 12253 109 

H(38C) 4727 3514 11976 109 

H(38D) -636 3965 11874 61 

H(38E) -1056 4162 10824 61 

H(38F) 390 4580 11543 61 
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Appendix 2. Chapter 3 Experimental 

Asymmetric β-hydroxylation of Enals via Oxygen Transfer from Electron-

Deficient Nitro-Arenes 

 

Materials and Methods 

All reactions were carried out under an atmosphere of argon in flame-dried glassware with 

magnetic stirring. Carbon tetracholoride was purchased from Aldrich and stored over 3Å 

molecular sieves. Dichloromethane was degassed with argon and passed through two col- umns of 

neutral alumina. Toluene was degassed with argon and passed through one column of neutral 

alumina and one column of Q5 reactant. Tetrahydrofuran was degassed with argon and passed 

through one column of neutral alumina. Methanol was purchased from Fisher Scientific and dried 

with activated 3Å molecular sieves. Sodium acetate was purchased from Aldrich. Column 

chromatography was performed on SiliCycle®SilicaFlash® P60, 40-63µm 60A. Thin layer 

chromatography was performed on SiliCycle® 250µm 60A plates. Visualization was 

accomplished with UV light or KMnO4 stain followed by heating. 

1H NMR spectra were recorded on Varian 400 MHz spectrometers at ambient temperature. Data 

is reported as follows: chemical shift in parts per million (δ, ppm) from CDCl3 (7.26 ppm) or 

acetone-D6 (2.03 ppm), multiplicity (s = singlet, bs = broad singlet, d = doublet, t = triplet, q = 

quartet, and m = multiplet), coupling constants (Hz). 13C NMR were recorded on Varian 400 MHz 

spectrometers (at 100 MHz) at ambient temperature. Chemical shifts are reported in ppm from 

CDCl3 (77.36 ppm) or acetone-D6 (205.87, 30.6 ppm). Mass spectra were recorded on an Agilent 
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6130 Quadrupole LC/MS. 

Aldehydes were either purchased from Aldrich or prepared via known literature procedures. 

Nitrobenzenes were purchased from Aldrich. 

 

General Procedure for the β-Hydroxylation of Enals 

To an oven dried screw cap vial charged with a magnetic stirbar was added triazolium salt 5f (25 

mg, 0.04 mmol), NaOAc (33 mg, 0.4 mmol), 4-nitropyridine N-oxide (84 mg, 0.6 mmol) and 2.0 

mL of a 20:1 Carbon tetrachloride:methanol mixture followed by trans-cinnamaldehyde (53 µL, 

0.4 mmol). The cap was then screwed on and the reaction was allowed to stir at room temperature 

for 12 hours. After 12 hours the reaction was concentrated via rotary evaporation and then purifired 

by silica gel chromatography (6:4 hexanes:ether) to yield 32 mg (45 %) (R)-methyl 3-hydroxy-3-

phenylpropanoate as a colorless oil. 

 

Compound Characterization 

 ethyl (E)-4-(2-(3-methoxy-3-oxo-1-(2-(perfluorophenyl)-2,5,6,7-

tetrahydro-3H-pyrrolo[2,1-c][1,2,4]triazol-3-yl)propyl)phenoxy)but-2-enoate (4): Colorless oil. 

15 %; Rf=0.23 (100% EtOAc); 1H-NMR (300 MHz; CDCl3): δ  7.14-7.04 (m, 2H), 6.77-6.66 (m, 

2H), 6.18 (dt, J = 15.8, 2.1 Hz, 1H), 5.51 (d, J = 3.2 Hz, 1H), 4.66 (dt, J = 4.1, 2.1 Hz, 2H), 4.27-
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N N

N
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F
F

F

F
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4.16 (m, 4H), 3.63 (s, 3H), 3.32-3.24 (m, 2H), 2.95-2.86 (m, 1H), 2.50-2.34 (m, 5H), 1.31 (t, J = 

7.1 Hz, 3H). LRMS (ESI + APCI) m/z [M+H] calcd 567.1, found 567.1 

 

(R)-methyl 3-hydroxy-3-phenylpropanoate (7): Colorless Oil. 45 % yield 92 

% ee; Rf=0.29 (1:1 hexanes:ether); HPLC analysis: Chiralpak IB column, 90:10 hexanes/iso-

propanol, 1.0 mL/min. Major: 6.5 min, minor: 7.3 min; 1H-NMR (400 MHz; CDCl3): δ 7.36-7.26 

(m, 5H), 5.11 (dd, J = 9.0, 3.9 Hz, 1H), 3.69 (s, 3H), 3.35 (bs, 1H), 2.73 (td, J = 14.3, 7.8 Hz, 2H); 

13
C-NMR (101 MHz; CDCl3): δ 172.7, 142.6, 128.5, 127.8, 125.6, 70.3, 51.9, 43.2. Spectra 

matched that of the previously reported compound.1 

(R)-methyl 3-(4-chlorophenyl)-3-hydroxypropanoate (99): Colorless Oil. 

57 % yield, 90 % ee. Rf=0.29 (1:1 hexanes:ether); HPLC analysis: Chiralcel OJ-H column, 99:1 

hexanes/iso-propanol, 1.0 mL/min. Major: 35.6 min, minor: 38.9. 1H-NMR (400 MHz; CDCl3): δ 

7.33-7.28 (m, 4H), 5.10 (ddd, J = 8.0, 4.6, 3.5 Hz, 1H), 3.71 (s, 3H), 3.27 (d, J = 3.5 Hz, 1H), 2.71-

2.69 (m, 2H); 13
C-NMR (101 MHz; CDCl3): δ 172.6, 140.9, 133.5, 128.7, 127.0, 69.6, 51.9, 42.9. 

Spectra matched that of the previously reported compound.2 

(R)-methyl 3-hydroxy-3-(2-methoxyphenyl)propanoate (100): Colorless Oil. 

44 % yield, 80 % ee. Rf=0.27 (1:1 Hexanes:Ether); HPLC analysis: Chiralpak IB column, 90:10 

OMe

OOH

OMe

OOH

Cl

OMe

OOHOMe
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hexanes/iso-propanol, 1.0 mL/min. Major: 9.3 min, minor: 10.3 min. 1
H-NMR (400 MHz; 

CDCl3): δ 7.41 (dd, J = 7.5, 1.6 Hz, 1H), 7.25 (td, J = 7.8, 1.9 Hz, 1H), 6.96 (td, J = 7.5, 0.9 Hz, 

1H), 6.86 (d, J = 8.2 Hz, 1H), 5.35 (dt, J = 9.0, 4.4 Hz, 1H), 3.84 (s, 3H), 3.71 (s, 3H), 3.38 (d, J 

= 5.3 Hz, 1H), 2.85-2.67 (m, 2H); 13
C-NMR (101 MHz; CDCl3): δ 173.0, 156.0, 130.4, 128.6, 

126.5, 120.8, 110.3, 66.6, 55.2, 51.7, 41.5. Spectra matched that of the previously reported 

compound.3 

 

(R)-methyl 3-hydroxy-3-(4-nitrophenyl)propanoate (101): Pale Yellow 

Solid. 20 % yield, 80 % ee. Rf=0.23 (1:1 hexanes:ether); HPLC analysis: Chiralcel OJ-H column, 

93:7 Hexanes:iso-propanol, 1.0mL/min. Major: 41.4 min, minor: 44.7.1H-NMR (400 MHz; 

CDCl3): δ 8.20 (d, J = 8.8 Hz, 2H), 7.55 (d, J = 8.8 Hz, 2H), 5.22 (dt, J = 8.2, 4.1 Hz, 1H), 3.73 

(s, 3H), 3.54 (d, J = 3.7 Hz, 1H), 2.77-2.67 (m, 2H); 13
C-NMR (101 MHz; CDCl3): δ 172.3, 149.5, 

126.4, 123.8, 69.3, 52.1, 42.7. Spectra matched that of the previously reported compound.4 

 

(R)-methyl 3-hydroxy-3-(4-methoxyphenyl)propanoate (102): 41 % 

yield, 92 % ee. Rf=0.25 (1:1 Hexanes:Ether); HPLC analysis: Chiralcel OB-H column, 80:20 

hexanes/iso-propanol, 1.0 mL/min. Major: 10.6 min, minor: 14.5 min.1H-NMR (400 MHz; 

CDCl3): δ 7.27 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 5.06 (dd, J = 9.2, 3.7 Hz, 1H), 3.78 

(s, 3H), 3.69 (s, 3H), 3.07 (bs, 1H), 2.78-2.63 (m, 2H);13
C-NMR (101 MHz; CDCl3): δ 172.7, 

OMe

OOH

O2N

OMe

OOH

MeO



 226 

159.2, 134.7, 126.9, 113.9, 69.9, 55.2, 51.8, 43.1. Spectra matched that of the previously reported 

compound.5 

 

(R)-methyl 3-(4-fluorophenyl)-3-hydroxypropanoate (103): Colorless Oil. 

46 % yield, 91 % ee. Rf=0.28 (1:1 Hexanes:Ether); HPLC analysis: Chiralpak IB column, 99:1 

hexanes/iso-propanol, 1.0mL/min. Major: 19.2 min, minor: 18.5. 1H-NMR (400 MHz; CDCl3): δ 

7.35-7.31 (m, 2H), 7.04-7.00 (m, 2H), 5.10 (dt, J = 8.3, 3.9 Hz, 1H), 3.71 (s, 3H), 3.27 (d, J = 3.9 

Hz, 1H), 2.76-2.64 (m, 2H); 13
C-NMR (101 MHz; CDCl3): δ 172.6, 162.3 (J=245.7 Hz, C), 138.2 

(J=3.0 Hz, C), 127.3 (J=8.2 Hz, CH), 115.4 (J=21.4 Hz, CH), 69.6, 51.9, 43.1. Spectra matched 

that of the previously reported compound.6 

(R)-methyl 3-(furan-2-yl)-3-hydroxypropanoate (104): Colorless Oil. 56 % 

yield, 84 % ee. Rf=0.27 (1:1 Hexanes:Ether); HPLC analysis: Chiralpak IB column, 90:10 

hexanes/iso-propanol, 1.0 mL/min. Major: 9.6 min, minor: 5.6 min. 1H-NMR (400 MHz; CDCl3): 

δ  7.37 (dd, J = 1.8, 0.8 Hz, 1H), 6.33 (dd, J = 3.3, 1.8 Hz, 1H), 6.28 (dt, J = 3.3, 0.8 Hz, 1H), 5.14 

(dd, J = 8.5, 4.1 Hz, 1H), 3.73 (s, 3H), 3.09 (s, 1H), 2.88 (qd, J = 15.9, 6.3 Hz, 2H); 13
C-NMR 

(101 MHz; CDCl3): δ 172.3, 154.6, 142.2, 110.2, 106.3, 64.2, 51.9, 39.6. Spectra matched that of 

the previously reported compound.5  
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(R,E)-methyl 3-hydroxyhex-4-enoate (105): Colorless Oil. 46 % yield, 85 

% ee. Rf=0.32 (1:1 hexanes:ether); GC analysis: Varian BDM column, 70 °C 3.0 mL/min. Major: 

35.6 min, minor: 39.7 min. 1H-NMR (400 MHz; CDCl3): δ 5.77-5.68 (m, 1H), 5.49 (ddq, J = 15.3, 

6.6, 1.6 Hz, 1H), 4.47 (q, J = 6.6 Hz, 1H), 3.69 (s, 3H), 2.53-2.51 (m, 2H), 1.68 (dt, J = 6.6, 0.8 

Hz, 3H); 13
C-NMR (101 MHz; CDCl3): δ 172.7, 131.7, 127.5, 68.9, 51.7, 41.3, 17.6. Spectra 

matched that of the previously reported compound.7 

 

(S)-methyl 3-hydroxy-5-phenylpentanoate (106): Colorless Oil. 58 % 

yield, 80 % ee (Note: reaction was ran in a 20:1 mixture of trifluorotoluene:methanol). Rf=0.23 

(1:1 Hexanes:Ether); HPLC analysis: Chiralpak IB column, 80:20 hexanes/iso-propanol, 1.0 

mL/min. Major: 7.1 min, minor: 7.9 min. 1H-NMR (400 MHz; CDCl3): δ 7.31-7.17 (m, 4H), 4.02 

(tt, J = 8.4, 4.1 Hz, 1H), 3.71 (s, 3H), 2.99 (s, 1H), 2.83 (ddd, J = 14.1, 9.3, 5.2 Hz, 1H), 2.70 (ddd, 

J = 13.8, 9.4, 7.0 Hz, 1H), 2.55-2.42 (m, 2H), 1.90-1.81 (m, 1H), 1.74 (dddd, J = 13.8, 9.6, 6.9, 

4.2 Hz, 1H); 13
C-NMR (101 MHz; CDCl3): δ 173.3, 141.7, 128.42, 128.40, 125.9, 67.2, 51.8, 41.1, 

38.1, 31.7. Spectra matched that of the previously reported compound.8 

 

(R)-methyl 4-(benzyloxy)-3-hydroxybutanoate (107): Colorless Oil. 71 % 

yield, 81 % ee. Rf=0.31 (1:1 hexanes:ether); HPLC analysis: Chiralpak IB column, 90:10 

hexanes:iso-propanol, 1.0 mL/min. Major: 9.4 min, minor: 8.5 min.;1
H-NMR (400 MHz; CDCl3): 
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δ  7.37-7.28 (m, 5H), 4.56 (s, 2H), 4.27-4.21 (m, 1H), 3.69 (s, 3H), 3.50 (qd, J = 9.8, 5.2 Hz, 2H), 

2.79 (bs, 1H), 2.56 (d, J = 6.3 Hz, 2H); 13
C-NMR (101 MHz; CDCl3): δ 172.5, 137.8, 128.4, 

127.78, 127.70, 73.4, 73.1, 67.2, 51.8, 38.0. Spectra matched that of the previously reported 

compound. Absolute configuration was compared to that of the known compound.9 All other 

absolute configurations were assigned via correlation. 

 

 

methyl 3-hydroxyheptanoate (108): Colorless Oil. Rf = 0.25 (1:1 hexanes:ether) 

1H-NMR (400 MHz; CDCl3): δ  4.03-3.97 (m, 1H), 3.71 (s, 2H), 2.52 (dd, J = 16.5, 3.1 Hz, 1H), 

2.65 (bs, 1H), 2.41 (dd, J = 16.4, 9.0 Hz, 1H), 1.54-1.19 (m, 7H), 0.90 (dd, J = 8.3, 5.5 Hz, 3H). 

13-C NMR (101 MHz; cdcl3): δ 173.5, 68.0, 51.7, 41.1, 36.2, 27.6, 22.6, 14.0 Spectra matched 

that of previously reported compound.10 

 

(S)-methyl 3-hydroxypentanoate (109): Colorless Oil. 65 % yield, 86 % ee; 

Rf=0.26 (1:1 hexanes:ether); GC analysis: Varian BDM column, 70 °C, 1.0 mL/min. Major: 28.6 

min, minor: 31.9 min; 1H-NMR (400 MHz; CDCl3): δ 3.91 (ddd, J = 12.6, 9.0, 3.4 Hz, 1H), 3.71 

(s, 3H), 3.10 (bs, 1H), 2.51-2.35 (m, 2H), 1.58-1.41 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H); 13
C-NMR 

(101 MHz; CDCl3): δ 173.4, 69.3, 51.7, 40.6, 29.4, 9.8. Spectra matched that of the previously 

reported compound.11 
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(R)-methyl 3-hydroxy-4-methylpentanoate (110): Colorless Oil. 73 % yield, 

88 % ee. Rf=0.28 (1:1 hexanes:ether); GC analysis: Varian BDM column, 80 °C, 1.5 mL/min. 

Major: 18.9 min, minor: 20.3 min; 1H-NMR (400 MHz; CDCl3): δ 3.78 (ddd, J = 9.3, 6.0, 3.1 Hz, 

1H), 3.72 (s, 3H), 2.80 (bs, 1H), 2.54-2.38 (m, 2H), 1.71 (dq, J = 13.1, 6.6 Hz, 1H), 0.94 (dd, J = 

11.3, 6.8 Hz, 6H); 13
C-NMR (101 MHz; CDCl3): δ 173.9, 72.7, 51.7, 38.2, 33.1, 18.3, 17.7. 

Spectra matched that of the previously reported compound.12 

 

(R)-methyl 3-cyclopropyl-3-hydroxypropanoate (111): Colorless Oil. 61 % 

yield, 80 % ee. Rf=0.23 (1:1 hexanes:ether) HPLC analysis: Chiralpak IB column, 99:1 

hexanes/iso-propanol, 1.0 mL/min. Major: 5.1 min, minor: 4.7 min (Note: ee was obtained using 

the benzyl ether of compound 3e); 1H-NMR (400 MHz; CDCl3): δ 3.71 (s, 3H), 3.32 (td, J = 8.4, 

3.9 Hz, 1H), 2.71 (bs, 1H), 2.68-2.56 (m, 2H), 0.99-0.90 (m, 1H), 0.59-0.47 (m, 2H), 0.39 (dq, J 

= 9.3, 4.6 Hz, 1H), 0.22 (dq, J = 9.2, 4.6 Hz, 1H); 13
C-NMR (101 MHz; CDCl3): δ 173.0, 72.7, 

51.7, 41.2, 16.8, 3.1, 2.2. Spectra matched that of the previously reported compound.13 

 

(R)-tert-butyl 4-(1-hydroxy-3-methoxy-3-oxopropyl)piperidine-1-

carboxylate (112): Colorless Oil. 74 % yield, 84 % ee. Rf=0.40 (100 % ether); HPLC analysis: 

Chiralcel OC column, 90:10 hexanes:iso-propanol, 1.0 mL/min. Major: 34.2 min, minor: 39.7 min. 
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1
H-NMR (400 MHz; CDCl3): δ  4.15-4.12 (m, 2H), 3.79 (ddd, J = 9.2, 6.4, 2.8 Hz, 1H), 3.71 (s, 

3H), 2.98 (bs, 1H), 2.65 (t, J = 12.9 Hz, 2H), 2.53 (dd, J = 16.4, 2.8 Hz, 1H), 2.42 (dd, J = 16.4, 

9.4 Hz, 1H), 1.83 (dt, J = 13.2, 2.5 Hz, 1H), 1.60-1.55 (m, 1H), 1.50 (m, J = 3.5 Hz, 1H), 1.44 (s, 

9H), 1.28-1.16 (m, 2H). 13
C-NMR (101 MHz; CDCl3): δ 173.6, 154.8, 79.4, 71.2, 41.4, 38.2, 28.4, 

27.9 IR (ATR neat): 3458, 2976, 1775, 1693, 1433, 1162; LRMS (ESI + APCI) m/z [M+H] calcd. 

288.1, found 288.1 [α]D
21  = -7.6 (c = 0.010 g/ml, MeOH) 

(R)-methyl 3-hydroxy-3-phenylbutanoate (113): Colorless Oil. 36 % yield, 28 

% ee. Rf=0.26 (7:3 Hexanes:Ether); HPLC analysis: Chiralcel OJ-H column, 90:1 hexanes/iso-

propanol, 1.0 mL/min. Major: 11.2 min. minor: 13.3 min. 1
H-NMR (400 MHz; CDCl3): δ  7.46-

7.24 (m, 5H), 4.31 (s, 1H), 3.61 (s, 3H), 2.90 (dd, J = 75.0, 16.0 Hz, 2H), 1.55 (s, 3H); 13
C-NMR 

(101 MHz; CDCl3): δ 173.1, 128.3, 125.3, 124.4, 72.7, 51.7, 46.2, 30.6. Spectra matched that of 

the previously reported compound.14 

 

(S)-methyl 3-hydroxy-3,7-dimethyloct-6-enoate (114): Colorless Oil. 

40 % yield, 63 % ee. Rf=0.41 (1:1 Hexanes:Ether); HPLC analysis: Chiralpak IB column, 99:1 

hexanes:iso-propanol, 1.0 mL/min. Major: 5.6 min, minor: 6.0 min. 1H-NMR (400 MHz; CDCl3): 

5.10-5.06 (m, 1H), 3.70 (s, 3H), 3.40 (bs, 1H), 2.48 (q, J = 15.9 Hz, 2H), 2.07-2.01 (m, 2H), 1.66 

(s, 3H), 1.59 (s, 3H), 1.52 (td, J = 8.4, 4.2 Hz, 2H), 1.23 (s, 3H); 13
C-NMR (101 MHz; CDCl3): δ 

173.4, 131.8, 124.0, 70.9, 51.6, 44.7, 41.8, 26.6, 25.6, 22.6, 17.6. Spectra matched that of the 

previously reported compound.14  
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(S)-methyl 3-hydroxy-3-methyl-5-phenylpentanoate (115): Colorless 

Oil. 32 % yield, 46 % ee. Rf=0.33 (7:3 hexanes:ether); HPLC analysis: Chiralpak IB column, 99:1 

hexanes/iso-propanol, 1.0 mL/min. Major: 11.8 min, minor: 12.6 min. 1
H-NMR (400 MHz; 

CDCl3): δ  7.30-7.16 (m, 5H), 3.72 (s, 3H), 3.54 (bs, 1H), 2.75-2.69 (m, 2H), 2.55 (q, J = 15.8 Hz, 

2H), 1.86-1.80 (m, 2H), 1.32 (s, 3H); 13
C-NMR (101 MHz; CDCl3): δ 173.4, 142.2, 128.40, 

128.31, 125.8, 70.8, 51.7, 44.8, 43.8, 30.3, 26.7. Spectra matched that of the previously reported 

compound.14 

methyl 3-(2,2-diphenylcyclopropyl)-3-hydroxypropanoate (55): Colorless 

Oil. Rf = 0.30 (1:1 hexanes:ether) 1H-NMR (400 MHz; CDCl3): δ  7.49 (d, J = 7.2 Hz, 2H), 7.32-

7.21 (m, 7H), 7.15-7.12 (m, 1H), 3.67 (s, 3H), 3.24 (ddd, J = 9.6, 7.7, 4.7 Hz, 1H), 2.79 (bs, 1H), 

2.68-2.59 (m, 2H), 1.83 (td, J = 9.2, 6.4 Hz, 1H), 1.26 (dt, J = 8.5, 4.1 Hz, 2H). 13
C-NMR (101 

MHz; CDCl3): δ 173.0, 146.1, 140.9, 130.3, 128.5, 128.25, 128.14, 126.8, 126.1, 69.2, 51.7, 40.9, 

36.6, 31.3, 16.9 IR (ATR neat) 3415, 3026, 3001, 2952, 1732, 1604, 1497, 1437, 698;  LRMS 

(ESI + APCI) m/z [M+H] calcd. .297.1, found 297.1 

(E)-3-(2,2-diphenylcyclopropyl)acrylaldehyde (56): White Amorphous 

Solid Rf = 0.25 (8:2 hexanes:ether) 1H-NMR (400 MHz; CDCl3): δ  9.26 (d, J = 7.9 Hz, 1H), 7.36-

7.18 (m, 10H), 6.30 (dd, J = 15.4, 7.9 Hz, 1H), 6.05 (dd, J = 15.4, 10.4 Hz, 1H), 2.54 (ddd, J = 
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10.3, 8.5, 5.5 Hz, 1H), 1.93 (dd, J = 8.5, 5.1 Hz, 1H), 1.83 (t, J = 5.3 Hz, 1H). 13
C-NMR (101 

MHz; CDCl3): δ 193.0, 159.8, 144.9, 140.2, 131.7, 130.4, 128.7, 128.5, 127.4 127.3, 126.6, 30.6, 

24.1 IR: 3056, 3025, 1681, 1629, 1494, 1446, 1177; LRMS (ESI + APCI) m/z [M+H] calcd. 249.1, 

found 249.1 

 

 (Z)-1,2-bis(4-cyanophenyl)diazene oxide (43): Off White 

Amorphous Solid. Rf = 0.34 (1:1 hexanes:ether); 1H-NMR (400 MHz; CDCl3): δ  8.46 (d, J = 8.7 

Hz, 1H), 8.23 (d, J = 8.6 Hz, 1H), 7.87 (d, J = 8.7 Hz, 1H), 7.79 (d, J = 8.6 Hz, 1H). 13
C-NMR 

(101 MHz; cdcl3): δ 133.1, 132.8, 126.0, 123.4; IR (ATR Neat): 3104, 2224, 1600, 1490, 1459, 

1344, 1311, 1291, 842. LRMS (ESI + APCI) m/z [M+H] calcd 249.1, found 249.1 Spectra 

matched that of the previously reported compound.15 
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Appendix 3. Chapter 4 Experimenal 

Asymmetric Cyclopentanone Synthesis from Enals via Single-Electron 

Oxidation of the Breslow Intermediate 

Materials and Methods  

All reactions were carried out under an atmosphere of argon in flame-dried glassware with 

magnetic stirring. Trifluorotoluene was purchased from Aldrich in a Sure-Seal container and stored 

in a glove box. Dichloromethane was degassed with argon and passed through two columns of 

neutral alumina. Toluene was degassed with argon and passed through one column of neutral 

alumina and one column of Q5 reactant. Tetrahydrofuran was degassed with argon and passed 

through one column of neutral alumina. Sodium acetate was purchased from Aldrich. Column 

chromatography was performed on SiliCycle®SilicaFlash® P60, 40-63μm 60A. Thin layer 

chromatography was performed on SiliCycle® 250μm 60A plates. Visualization was 

accomplished with UV light or KMnO4 stain followed by heating. 

1H NMR spectra were recorded on Varian 400 MHz spectrometers at ambient temperature. Data 

is reported as follows: chemical shift in parts per million (δ, ppm) from CDCl3 (7.26 ppm) or 

acetone-D6 (2.03 ppm), multiplicity (s = singlet, bs = broad singlet, d = doublet, t = triplet, q = 

quartet, and m = multiplet), coupling constants (Hz). 13C NMR were recorded on Varian 400 MHz 

spectrometers (at 100 MHz) at ambient temperature. Chemical shifts are reported in ppm from 

CDCl3 (77.36 ppm) or acetone-D6 (205.87, 30.6 ppm). The 13C NMR show an anomaly at 194.8 

ppm (in CDCl3) that is an artifact of the instrument.  Mass spectra were recorded on an Agilent 

6130 Quadrupole LC/MS. Aldehydes were either purchased from Aldrich or prepared via known 
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literature procedures. Nitroarenes were purchased from Aldrich.  

 

General Procedure for the Enal Dimerization to Form Cyclopentanones  

To a flame dried screw cap vial charged with a stirbar was added triazolium salt 36 (17 mg, 0.04 

mmol), 4-methoxycinnamaldehyde 60 (49 mg, 0.3 mmol), 4-nitropyridine N-oxide 2 (28 mg, 0.2 

mmol), NaOAc (16 mg, 0.2 mmol), and LiCl (8 mg, 0.2 mmol). This vial was then pumped into a 

glove box containing an argon atmosphere. 1.0 mL of dry trifluorotoluene (PhCF3) was then added 

and the cap tightly screwed on, removed from the glove box, and wrapped in parafilm tape. The 

reaction was then heated to 70 °C and stirred for 12 hours. After 12 hours the reaction was 

concentrated via rotary evaporation and then purified via silica gel chromatography (7:3 

hexanes:ether) to yield 35 mg (79 %) (3R,4R)-3,4-bis(4-methoxyphenyl)cyclopentanone 5 as an 

off-white solid in 84 % ee and as a single diastereomer.  

General Procedure for the Cross Annulation to Form Cyclopentanones 

To a flame dried screw cap vial charged with a stirbar was added triazolium salt 36 (17 mg, 0.04 

mmol), cinnamaldehyde 60 (26 mg, 0.2 mmol), 4-methoxycinnamaldehyde 1 (131 mg, 0.8 mmol), 

4-nitropyridine N-oxide 2 (112 mg, 0.8 mmol), NaOAc (66 mg, 0.8 mmol), and LiCl (34 mg, 0.8 

mmol). This vial was then pumped into a glove box containing an argon atmosphere. 3.0 mL of 

dry trifluorotoluene (PhCF3) was then added and the cap tightly screwed on, removed from the 

glove box, and wrapped in parafilm tape. The reaction was then heated to 70 °C and stirred for 12 

hours. After 12 hours the reaction was concentrated via rotary evaporation and then purified via 

silica gel chromatography (8:2 hexanes:ether) to yield 35 mg (65 %) (3R,4R)-3-(4-
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methoxyphenyl)-4-phenylcyclopentanone 59 as an off-white solid in 83 % ee and as a single 

diastereomer.  
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 (3R,4R)-3,4-bis(4-methoxyphenyl)cyclopentanone (5): Off-White 

Amorphous Solid. 79 % yield, 84 % ee, >20:1 dr., Rf: 0.25 (1:1 hexanes:ether); [α]D
21 = -67.4 (c 

= 0.010 g/ml, CH2Cl2); HPLC Analysis: Chiralpak IB column 80:20 hexanes/isopropanol, 1.0 

mL/min, Major: 10.6 min, minor: 10.2 min. 1H-NMR (400 MHz; CDCl3): δ  7.04-7.01 (m, 4H), 

6.80-6.76 (m, 4H), 3.76 (s, 6H), 3.42-3.33 (m, 2H), 2.85-2.79 (m, 2H), 2.56-2.49 (m, 2H). 13C-

NMR (101 MHz; CDCl3): δ 216.1, 158.3, 132.9, 128.1, 113.9, 55.2, 49.6, 47.3. Spectra matched 

that of the previously reported compound.129  

 (3R,4R)-3,4-bis(2-methoxyphenyl)cyclopentanone (46): Off-White 

Amorphous Solid. 71 % yield, 91 % ee, >20:1 dr., Rf: 0.31 (1:1 hexanes:ether); [α]D
21 = -60.3 (c 

= 0.010 g/ml, CH2Cl2); HPLC analysis: Chiralpak IB column 98:2 hexanes/isopropanol, 1.0 

mL/min, Major: 12.8 min, minor: 13.8 min. 1H-NMR (400 MHz; CDCl3): δ 7.16-7.12 (m, 4H), 

6.85-6.81 (m, 4H), 4.04-3.97 (m, 2H), 3.78 (s, 5H), 2.93-2.86 (m, 2H), 2.48-2.40 (m, 2H). 13C-

NMR (101 MHz; CDCl3): δ 218.0, 157.5, 130.2, 127.52, 127.46, 120.6, 110.5, 55.2, 46.1, 41.5. 

Spectra matched that of the previously reported compound.129  

O

MeO OMe

O

MeO OMe
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 (3R,4R)-3,4-diphenylcyclopentanone (47): Off-White Amorphous Solid. 74 % 

yield, 84 % ee, >20:1 dr., Rf: 0.42 (8:2 hexanes:ether); [α]D
21 = -64.1 (c = 0.010 g/ml, CH2Cl2); 

HPLC analysis: Reverse phase Chiralpak IB column 95:5 H2O/acetonitrile, 1.0 mL/min, Major: 

21.2 min, minor: 20.8 min. 1H-NMR (400 MHz; CDCl3): δ 7.34-7.01 (m, 10H), 3.54-3.45 (m, 

2H), 2.90-2.84 (m, 2H), 2.67-2.51 (m, 2H). 13C-NMR (101 MHz; CDCl3): δ 215.8, 140.8, 128.5, 

127.2, 126.8, 50.2, 47.2. Spectra matched that of the previously reported compound.129 

(3R,4R)-3,4-di(furan-2-yl)cyclopentanone (48): Pale Yellow Oil. 

66 % yield, 65 % ee, >20:1 dr., Rf: 0.53 (7:3 hexanes:ether); [α]D
21 = -24.3 (c = 0.010 g/ml, 

CH2Cl2); HPLC analysis: Chiralpak IB column 95:5 hexanes/isopropanol, 1.0 mL/min, Major: 

7.6 min, minor: 7.0 min. 1H-NMR (400 MHz; CDCl3): δ 7.34 (dd, J = 1.9, 0.8 Hz, 2H), 6.28 (dd, 

J = 3.2, 1.9 Hz, 2H), 6.05 (d, J = 3.2 Hz, 2H), 3.72-3.64 (m, 2H), 2.80-2.73 (m, 2H), 2.62-2.54 (m, 

2H). 13C-NMR (101 MHz; CDCl3): δ 215.0, 154.5, 141.7, 110.2, 105.9, 43.3, 40.8. Spectra 

matched that of the previously reported compound.129 

O

O

O O
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(3R,4R)-3,4-bis(4-chlorophenyl)cyclopentanone (49): Off-White 

Amorphous Solid. 63 % yield, 84 % ee, >20:1 dr., Rf: 0.13 (7:3 hexanes:ether); [α]D
21 = -77.2 (c 

= 0.010 g/ml, CH2Cl2); HPLC analysis: Chiralpak IB column 80:20 hexanes/isopropanol, 1.0 

mL/min, Major: 10.1 min, minor: 9.6 min. 1H-NMR (400 MHz; CDCl3): δ 7.22 (d, J = 8.2 Hz, 

4H), 7.02 (d, J = 8.3 Hz, 4H), 3.44-3.35 (m, 2H), 2.88-2.82 (m, 2H), 2.57-2.50 (m, 2H). 13C-NMR 

(101 MHz; CDCl3): δ 214.4, 138.8, 132.8, 128.8, 128.5, 49.8, 46.9. IR (ATR neat): 2910, 1745, 

1492, 1412, 1192, 1142, 1091, 1013, 826. LRMS (ESI + APCI) m/z [M+H] calcd. 305.0, found 

304.9 

(3R,4R)-3,4-bis(4-fluorophenyl)cyclopentanone (50): Pale Yellow Oil. 65 % 

yield, 85 % ee, >20:1 dr., Rf: 0.20 (7:3 hex:ether); [α]D
21 = -41.4 (c = 0.010 g/ml, CH2Cl2); HPLC 

analysis: Chiralcel OC column 97:3 30 hexanes/isopropanol, 1.0 mL/min, Major: 13.0 min, minor: 

11.7 min. 1H-NMR (400 MHz; CDCl3): δ 7.07-7.03 (m, 4H), 6.96-6.91 (m, 4H), 3.44-3.35 (m, 

2H), 2.88-2.82 (m, 2H), 2.59-2.50 (m, 2H). 13C-NMR (101 MHz; CDCl3): δ 214.9, 161.89 (d, JCF 

= 245.45 Hz), 136.11 (d, JCF =3.48 Hz), 128.57 (d, JCF = 7.74 Hz), 115.46 (d, JCF = 21.33 Hz), 49.9, 

47.1. Spectra matched that of the previously reported compound.129 

O

Cl Cl

O

F F
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(3R,4R)-3,4-bis(2-fluorophenyl)cyclopentanone (51): Pale Yellow Oil. 54 % 

yield, 62 % ee, >20:1 dr., Rf: 0.44 (1:1 hexanes:ether); [α]D
21 = -72.6 (c = 0.010 g/ml, CH2Cl2); 

HPLC analysis: Chiralpak IB column 97:3 hexanes/isopropanol, 1.0 mL/min, Major: 14.2 min, 

minor: 15.2 min. 1H-NMR (400 MHz; CDCl3): δ 7.24-7.14 (m, 4H), 7.04 (td, J = 7.5, 1.3 Hz, 2H), 

6.97 (ddd, J = 10.8, 8.2, 1.2 Hz, 2H), 3.98-3.89 (m, 2H), 2.93-2.86 (m, 2H), 2.60-2.52 (m, 2H). 

13C-NMR (101 MHz; CDCl3): δ 215.1, 161.1 (d, JCF = 245.51 Hz), 128.5 (d, JCF = 8.52 Hz), 128.2 

(d, JCF = 4.71 Hz), 127.5 (d, JCF = 13.58 Hz), 124.3 (d, JCF  = 3.71 Hz), 115.7 (d, JCF = 22.35 Hz), 

45.9, 41.6. IR (ATR neat): 3066, 2962, 1745, 1616, 1585, 1492, 1456, 1404, 1368, 1230, 1189, 

1143, 756. LRMS (ESI + APCI) m/z [M+Na] calcd. 295.1, found 295.1 

(3R,4R)-3,4-bis(4-bromophenyl)cyclopentanone (52): White Solid  

60 % yield, 84 % ee, >20:1 dr., Rf: 0.21 (7:3 hexanes:ether); [α]D
21 = -78.9 (c = 0.010 g/ml, 

CH2Cl2); HPLC analysis: Chiralpak IB column 90:10 hexanes/isopropanol, 1.0 mL/min, Major: 

22.1 min, minor: 20.4 min. l (400 MHz; CDCl3): δ 7.37 (d, J = 8.5 Hz, 4H), 6.97 (d, J = 8.5 Hz, 

4H), 3.42-3.34 (m, 2H), 2.88-2.81 (m, 2H), 2.58-2.47 (m, 2H). 13C-NMR (101 MHz; CDCl3): δ 

214.4, 139.3, 131.8, 128.9, 120.8, 49.8, 46.9. IR (ATR neat): 2917, 1743, 1489, 1402, 1188, 1139, 

1073, 1009, 822. LRMS (ESI + APCI) m/z [M+H] calcd. 395.0, found 394.9 

O

F F

O

Br Br
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(3R,4R)-3-(4-methoxyphenyl)-4-phenylcyclopentanone (59): Off-White 

Amorphous Solid. 65 % yield, 85 % ee, >20:1 dr., Rf: 0.53 (7:3 hexanes:ether): [α]D
21 = -62.3 (c 

= 0.010 g/ml, CH2Cl2); HPLC analysis: Reverse phase Chiralpak IB column 95:5 H-

2O:acetonitrile, 1.0 mL/min, Major: 21.1 min, minor: 20.7 min. 1H-NMR (400 MHz; CDCl3): δ 

7.26-7.16 (m, 3H), 7.13-7.11 (m, 2H), 7.03 (d, J = 8.6 Hz, 2H), 6.78 (d, J = 8.6 Hz, 2H), 3.75 (s, 

3H), 3.48-3.39 (m, 2H), 2.89-2.81 (m, 2H), 2.61-2.50 (m, 2H). 13C-NMR (101 MHz; CDCl3): δ 

215.9, 158.4, 140.9, 132.8, 128.5, 128.1, 127.2, 126.8, 113.9, 55.2, 50.4, 49.4, 47.31, 47.23. IR 

(ATR neat): 2959, 2936, 1742, 1603, 1513, 1249, 1178, 1129, 1034. LRMS (ESI + APCI) m/z 

[M+H] calcd.267.1, found 267.1 

(3R,4R)-3-(furan-2-yl)-4-(4-methoxyphenyl)cyclopentanone (61): 

Pale yellow oil. 59 % yield, 80 % ee, >20:1 dr., Rf: 0.15 (7:3 hexanes:ether); 

[α]D
21 = -76.4 (c = 0.010 g/ml, CH2Cl2); HPLC analysis: Chiralpak IB column 99:5 

hexanes/isopropanol, 1.0 mL/min, Major: 12.0 min, minor: 11.4 min. 1H-NMR (400 MHz; 

CDCl3): δ  7.31 (t, J = 0.9 Hz, 1H), 7.08 (d, J = 8.7 Hz, 2H), 6.83 (d, J = 8.7 Hz, 2H), 6.23 (dd, J 

= 3.1, 1.9 Hz, 1H), 5.92 (d, J = 3.2 Hz, 1H), 3.78 (s, 3H), 3.58-3.45 (m, 2H), 2.83-2.76 (m, 2H), 

2.66-2.59 (m, 1H), 2.53-2.46 (m, 1H). 13C-NMR (101 MHz; CDCl3): δ 215.5, 158.5, 154.4, 141.4, 

O

OMe

O

O
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133.0, 128.0, 114.0, 110.1, 106.0, 55.2, 46.8, 46.5, 44.4, 43.6. IR (ATR neat): 2931, 2837, 1744, 

1612, 1514, 1463, 1303, 1248, 1179, 1149, 1033, 830. LRMS (ESI + APCI) m/z [M+Na] calcd 

279.1, found 279.0 

 (3R,4R)-3-(4-chlorophenyl)-4-phenylcyclopentanone (62): 

Pale Yellow Oil. 61 % yield, 86 % ee, >20:1 dr.; Rf: 0.28 (7:3 hexanes:ether); [α]D
21 = -41.2 (c = 

0.010 g/ml, CH2Cl2); HPLC analysis: Chiralpak IA column 97:3 hexanes/isopropanol, 1.0 

mL/min, Major: 13.0 min, minor: 11.6 min. 1H-NMR (400 MHz; CDCl3): δ 7.25-7.15 (m, 7H), 

7.09-7.07 (m, 2H), 7.01 (d, J = 8.4 Hz, 2H), 3.48-3.36 (m, 2H), 2.88-2.80 (m, 2H), 2.60-2.47 (m, 

2H). 13C-NMR (101 MHz; CDCl3): δ 215.2, 140.4, 139.2, 132.6, 128.69, 128.64, 128.52, 127.16, 

127.05, 50.3, 49.7, 47.16, 47.01. IR (ATR neat): 3029, 2914, 1744, 1492, 1402, 1190, 1136, 1091, 

1013, 765, 699. LRMS (ESI + APCI) m/z [M+H] calcd. 271.1, found 271.1 

(3R,4R)-3-(4-bromophenyl)-4-(furan-2-yl)cyclopentanone (63): PalePink 

Amorpous Solid. 56 % yield, 75 % ee, >20:1 dr., Rf: 0.36 (1:1 hexanes:ether); [α]D
21 = -82.2 (c = 

0.010 g/ml, CH2Cl2); HPLC analysis: Chiralpak IB column 90:10 hexanes/isopropanol, 1.0 

mL/min, Major: 10.7 min, minor: 10.2 min. 1H-NMR (400 MHz; CDCl3): δ 7.42 (d, J = 8.5 Hz, 

2H), 7.31 (dd, J = 1.9, 0.8 Hz, 1H), 7.03 (d, J = 8.4 Hz, 2H), 6.23 (dd, J = 3.2, 1.9 Hz, 1H), 5.92 

O

Cl

O

O

Br
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(d, J = 3.2 Hz, 1H), 3.59-3.45 (m, 2H), 2.84-2.77 (m, 2H), 2.65 (ddd, J = 18.6, 10.8, 1.5 Hz, 1H), 

2.49 (ddd, J = 18.6, 11.3, 1.6 Hz, 1H). 13C-NMR (101 MHz; CDCl3): δ 214.6, 153.7, 141.7, 139.9, 

131.7, 128.8, 120.8, 110.2, 106.3, 47.2, 46.1, 44.3, 43.4. IR (ATR neat): 2920, 2745, 1489, 1402, 

1191, 1148, 1073, 1010, 823,737. LRMS (ESI + APCI) m/z [M+H] calcd. 305.0, found 305.0 

(3R,4R)-3-(2-fluorophenyl)-4-(4-methoxyphenyl)cyclopentanone (64): Off-

White Amorphous Solid. 60 % yield, 82 % ee, >20:1 dr., Rf: 0.41 (7:3 hexanes:ether): [α]D
21 = -

56.1 (c = 0.010 g/ml, CH2Cl2); HPLC analysis: Chiralcel OB-H column 90:10 

hexanes/isopropanol, 1.0 mL/min, Major: 32.5 min, minor: 46.7 min. 1H-NMR (400 MHz; 

CDCl3): δ 7.17 (tdd, J = 10.1, 5.3, 2.5 Hz, 2H), 7.10-6.94 (m, 4H), 6.78 (d, J = 8.7 Hz, 2H), 3.75 

(s, 3H), 3.71 (dt, J = 11.3, 5.6 Hz, 1H), 3.60 (ddd, J = 16.7, 11.1, 5.4 Hz, 1H), 2.84 (dt, J = 18.1, 

9.0 Hz, 2H), 2.60-2.48 (m, 2H). 13C-NMR (101 MHz; CDCl3): δ 215.7, 159.9, 158.4, 132.6, 130.3, 

128.45, 128.41, 128.35, 128.26, 127.97, 127.82, 124.28, 124.24, 115.8, 115.5, 114.5, 113.9, 55.2, 

47.37, 47.19, 45.90, 45.88, 43.7. IR (ATR neat): 2926, 1743, 1672, 1602, 1513, 1492, 1456, 1305, 

1248, 1228, 1179, 1136, 1033, 829, 758. LRMS (ESI + APCI) m/z [M+Na] calcd. 307.1, found 

307.1 

trans-3-(4-methoxyphenyl)-4-(phenylethynyl)cyclopentan-1-one (66) 

Prepared according to the standard procedure for the synthesis of unsymmetrical cyclopentanones 

O

OMe

F
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using catalyst 3. 48 % yield, >20:1 dr., Rf = 0.27 (6:4 hexanes:ether), 1H-NMR (400 MHz; CDCl3): 

δ  7.36-7.26 (m, 7H), 6.91 (d, J = 8.7 Hz, 2H), 3.81 (s, 3H), 3.50-3.42 (m, 1H), 3.19 (td, J = 10.5, 

7.6 Hz, 1H), 2.89-2.74 (m, 2H), 2.57-2.43 (m, 2H). 13C-NMR (101 MHz; CDCl3): δ 214.8, 158.8, 

132.4, 131.6, 128.20, 128.07, 128.01, 114.1, 89.6, 83.1, 55.3, 48.2, 45.6, 45.3, 36.5. IR (ATR 

neat): 2915, 1746, 1514, 1490, 1442, 1249, 1180, 1033, 757. LRMS (ESI + APCI) m/z [M+Na] 

calcd. 313.1, found 313.2 

 

(4R,5R)-4,5-bis(4-methoxyphenyl)tetrahydro-2H-pyran-2-one (67): 

To a flame dried vial charged with a magnetic stirbar was added  (3R,4R)-3,4-bis(4-

methoxyphenyl)cyclopentanone 5 (47 mg, 0.16 mmol) and 1.0 mL dichloromethane and cooled to 

0 °C in an ice water bath. Then mCPBA (102 mg, 0.416 mmol) and trifluoroacetic acid (12 μL, 

0.16 mmol) were added and the vial was sealed with a cap. The reaction was then allowed to warm 

to room temperature over the course of an hour and then stirred for an additional hour at room 

temperature. Upon completion, the reaction was diluted with an additional 3 mL of 

dichloromethane and quenched with 3 mL saturated sodium bicarbonate. The organic layer was 

then separated in a separatory funnel and the sodium bicarbonate was extracted with an additional 

3 mL dichloromethane. The organic layers were then combined and washed 2x with 6 mL brine, 

dried over sodium sulfate and concentrated via rotary evaporation. The crude residue was then 

purified via column chromatography (3:1 ether:hexanes) to yield 44 mg (89 %) (4R,5R)-4,5-bis(4-

O

O

OMe

MeO
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methoxyphenyl)tetrahydro-2H-pyran-2-one as a colorless oil in 84 % ee, and as a single 

diastereomer. Rf: 0.35 (3:1 ether:hexanes). [α]D
21 = -48.5 (c = 0.010 g/ml, CH2Cl2); HPLC 

analysis: Chiralpak IB column 70:30 hexanes/isopropanol, 1.0 mL/min, Major: 18.0 min, minor: 

16.9 min. 1H-NMR (400 MHz; CDCl3): δ 7.03-6.97 (m, 4H), 6.77-6.74 (m, 4H), 4.46 (dd, J = 

11.5, 5.0 Hz, 1H), 4.36 (dd, J = 11.5, 10.3 Hz, 1H), 3.74 (s, 3H), 3.73 (s, 3H), 3.35 (td, J = 10.2, 

6.4 Hz, 1H), 3.22 (td, J = 10.4, 5.0 Hz, 1H), 3.01 (dd, J = 17.7, 6.4 Hz, 1H), 2.74 (dd, J = 17.7, 9.8 

Hz, 1H). 13C-NMR (101 MHz; CDCl3): δ 170.9, 158.7, 158.4, 133.8, 130.0, 128.8, 128.1, 114.14, 

114.10, 73.2, 55.2, 46.1, 43.4, 37.9. IR (ATR neat): 2956, 2933, 2909, 2836, 1734, 1611, 1513, 

1464, 1248, 1179, 1032, 830. LRMS (ESI + APCI) m/z [M+H] calcd. 313.1, found 313.2 

(4R,5R)-4,5-bis(4-methoxyphenyl)piperidin-2-one (68): 

To a flame dried vial charged with a magnetic stir bar was added (3R,4R)-3,4-bis(4-

methoxyphenyl)cyclopentanone 5 (65 mg, 0.22 mmol), hydroxylamine hydrochloride (23 mg, 

0.33 mmol), NaOAc (36 mg, 0.44 mmol), and 5 mL MeOH. The cap was screwed on and the 

reaction was allowed to stir at room temperature for 6 hours at room temperature. After 6 hours, 

the mixture was concentrated via rotary evaporation and the crude residue was dissolved in 10 mL 

CHCl3. The resulting solution was washed with H2O and brine, dried over sodium sulfate and 

concentrated under reduced pressure. The resulting crude oxime was used in the next step without 

further purification. The crude oxime from the previous step was then dissolved in 10 mL 

dichloromethane and added p-bromobenzenesulfonyl chloride (84 mg, 0.33 mmol), Et3N (51 µL, 

O

OMe

MeO
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0.37 mmol), and a catalytic amound of DMAP. The reaction was stirred at room temperature for 

1 hour then concentrated via rotary evaporation. The residue was then dissolved in 5 mL AcOH 

and stirred at room temperature for 1 hour. After 1 hour, the reaction was quenched with saturated, 

aqueous NaHCO3. The mixture was extracted 2x with dichloromethane and the organic layers were 

combined and washed with brine. The solution was then dried with sodium sulfate and 

concentrated via rotary evaporation. The residue was purified via column chromatography (1:1 

hexanes:EtOAc to 100 EtOAc) to yield 51 mg (75 %, over two-steps) (4R,5R)-4,5-bis(4-

methoxyphenyl)piperidin-2-one as an off-white amorphous solid in 84 % ee and as a single 

diastereomer. Rf: 0.22 (100 % ethyl acetate); [α]D
21 = -92.8 (c = 0.010 g/ml, CH2Cl2); HPLC 

analysis: Chiralpak IB column 90:10 hexanes/isopropanol, 1.0 mL/min, Major: 56.4 min, minor: 

63.9 min. 1H-NMR (400 MHz; CDCl3): δ 7.01-6.95 (m, 4H), 6.70 (d, J = 8.0 Hz, 4H), 6.57 (bs, 

1H), 3.70 (s, 6H), 3.52-3.42 (m, 2H), 3.30-3.24 (m, 1H), 3.20-3.14 (m, 1H), 2.77-2.71 (m, 1H), 

2.63-2.55 (m, 1H). 13C-NMR (101 MHz; CDCl3): δ 158.2, 158.0, 134.2, 132.0, 128.8, 128.2, 

113.85, 113.82, 55.1, 48.8, 45.2, 43.8, 39.96, 39.94. IR (ATR neat): 3217, 2953, 2932, 2909, 2835, 

1663, 1611, 1512, 1246, 1178, 1033, 828. LRMS (ESI + APCI) m/z [M+H] calcd. 312.2, found 

312.2130 
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