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ABSTRACT

MIXING AND TRANSPORT OF PASSIVE SCALARS

AROUND OBSTACLES IN ENVIRONMENTAL FLOWS

Turbulent mixing and transport in environmental flows such as rivers, lakes, estu-

aries, oceans and the atmosphere has been the subject of numerous studies for many

decades. The characteristic chaotic and enhanced mixing properties of turbulence in

conjunction with other environmental conditions such as the presence of solid and/or

porous obstacles and density stratification raise a number of interesting scientific but

yet practical problems pertaining to both flow dynamics and mixing of passive scalars

(such as pollutants and nutrients). Understanding these processes is of fundamental

importance in applications such as prediction of nutrient and contaminant transport

in water bodies (e.g. rivers, estuaries and the ocean), air quality modeling and in

many sustainable environmental (e.g. river restoration) and renewable energy related

applications (e.g. wind energy technology).

The main aim/objective of this dissertation is to use high-resolution two-dimensional

numerical simulations to study the mixing and transport of passive scalars in envi-

ronmental flows in the presence of varying flow conditions and different arrangement

of porous obstacle(s) in the flow domain. The objectives are multi-fold:

• To obtain an understanding of the dynamics of environmental flows around a

porous obstacle (idealized as a cylinder in this dissertation) for three different

flow scenarios consisting of uni-directional, oscillatory, and a combination of

uni-directional and oscillatory velocity fields. In particular, the mixing and
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transport of passive scalars in the turbulent flow regime are investigated. It

results in quantitative parameterization for the turbulent scalar diffusivity as

a function of key non-dimensional parameters, namely: drag coefficient CD, a

ratio of tidal to mean flow (shape parameter) η, and a ratio of tidal excursion

length to the obstacle diameter (tidal excursion parameter) K.

• To gain insights of the flow dynamics under multiple flow reversals, for instance

purely tidally-driven flow and strong tide with mean current. The effect of the

presence of cylindrical obstacle in the flow domain may enhance the horizontal

mixing of the passive scalars.

• To investigate the influence of the drag exerted by multiple cylindrical obstacles

on the flow and scalar field. In flow field past multiple obstacles, wakes and

vortices may interact depending on the distance between the obstacles.

• To highlight the importance of correct description of hydrodynamic conditions

(e.g. strength of tides, wind stress and freshwater inflow) and location of ob-

stacles/point sources in engineering application. A series of field-scale, numer-

ical simulations were performed to show the importance using high-resolution,

depth-averaged simulations of open netpen aquaculture farms in an idealized

coastal embayment.

As a first step toward addressing these objectives and questions, high-resolution

two-dimensional numerical simulations have been performed. A simulation of classical

dispersion in a uni-directional steady flow field is used as a base case to provide ba-

sic understanding of turbulent mixing and for validation. This is followed by slightly

more complicated simulations involving obstacles (which are represented by cylinders)

placed in the flow domain. The lateral mixing of passive scalars in uni-directional,

oscillatory, and a combination of uni-directional and oscillatory flow conditions in-

teracting with single as well as multiple obstacles are presented to highlight issues
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related to flow separation at the rear of the obstacles and the associated vortex-wake

structures.

An obstacle blocks the flow (partially or fully depending on the porosity) caus-

ing deceleration of the flow, shedding of vortices and the formation of a downstream

wake. For the first part of this dissertation, an in-depth investigation was carried out

to study the effects of the drag exerted by a single obstacle under different flow con-

ditions. In particular, the lateral dispersion coefficient was quantified as a function of

the drag coefficient CD, at two other given parameters. The simulation results show

that the lateral mixing (spread) is substantially enhanced due to the drag exerted

by the obstacle compared to the classical dispersion in a uni-directional flow without

drag. This effect is even further amplified under oscillatory flow conditions (i.e. the

lateral mixing is considerably larger and found to be about 40 times the typical classi-

cal dispersion coefficient in some cases). The effect of flow reversals on scalar mixing

around obstacle has also been examined for pure oscillatory flows. Strong departure

from the Gaussian distribution is evident. The results also highlight the complex

dispersion patterns around submerged obstacles in oscillatory flow conditions.

The second part of this dissertation focuses on mixing around multiple obstacles

using both a single column of three cylinders and a staggered array consisting of

eight cylinders, to investigate the lateral mixing of passive scalars. Vortex patterns

and sizes depend on the clustering (spacing) of the cylinders. These vortices range

from cylinder-scale vortices to mid-scale vortices to array-scale vortices. Finally, to

put the current work in the context of a field-scale application, a numerical study

on the transport of aquaculture dissolved waste in a coastal embayment is presented

to provide an understanding of the impact of aquaculture fish-pens on coastal water

quality.

Overall, this dissertation aims to contribute to better fundamental understanding

of turbulent mixing around obstacles in environmental flows. The results from this

iv



study have lead to some quantitative and intuitive tips regarding lateral mixing that

will translate into simple effective parameterizations of such processes for application

in large-scale numerical simulation models for environmental flows.
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Chapter 1

Introduction

1.1 Motivation and background

Turbulence is ubiquitous in environmental flows such as in rivers, lakes, estuaries,

oceans and the atmosphere, and it is characterized by chaotic and (supposedly) ran-

dom motions, with the basic notion that it enhances mixing and transport of both

momentum and mass (Tennekes and Lumley 1972). Turbulence is also a common phe-

nomenon in many practical engineering problems such as wall-bounded shear flows

and multiphase flows (Balachandar and Eaton 2010). Turbulence is triggered through

instabilities in the flow field related to the interaction between the nonlinear inertia

term and the viscous term in the governing equations of fluid motion. Naturally, tur-

bulence plays a critical role in the mixing and transport of scalars in environmental

flows. In this context a scalar can be regarded as ‘passive’ such as a contaminant

plume that is advected and diffused by the flow field without any dynamic interac-

tions with the flow (i.e. it only depends on the fluid motion (Warhaft, 2000), or

‘active’ where buoyancy effects will influence the flow dynamics in a coupled manner

(e.g. in stably stratified flows)). A great deal of effort has gone into investigating

turbulent mixing and transport processes in environmental flows with a broad and
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Figure 1.1: Some examples of natural and man-made obstacles encountered in estu-
arine, oceanic and atmospheric flows.

vast amount of publications. Some well known concepts about turbulent mixing and

transport phenomenon in the water environment are nicely summarized in the classic

text by Fischer et al. (1979).

While, a large body of work exists on understanding turbulent mixing and trans-

port processes in natural flows dating back to the classical dispersion studies by G.

I Taylor (see Taylor (1922) and Taylor (1953) for a summary) and Richardson and

Stommel (1948), there remains much to be understood in terms of turbulent mixing

around obstacles (such as submerged oceanic vegetation or man-made obstacles) as

shown in Figure 1.1 in complex flows (e.g. tidally-driven flows superimposed on mean

currents). For instance, we do not yet have a clear understanding on how the lat-

eral (turbulent) mixing coefficient should be quantified for flow past a single obstacle

due to the added complexity of the drag effect induced by the obstacle(s) and the

oscillations in the flow field. Even in the case of steady flows in a neutrally stratified

water column, the factors controlling lateral mixing are poorly understood with wide

variations in observed values for the lateral mixing coefficient (Fischer et al. 1979).

Furthermore, evidence from previous field and laboratory studies (Stacey et al. 2000;

Crimaldi et al. 2002; Kay 1997) suggests that contaminants may be transported in

plumes that retain their coherence and hence can maintain high concentrations over

large distances from the source.
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Therefore, much remains to be understood especially in regard to turbulent mixing

and transport processes in complex environmental flows (e.g. oscillatory flows such

as tidally-driven flows) encountering obstacles (be it porous or solid, streamlined or

bluff) such as natural vegetation in water bodies, aquaculture pens, bridge piers,

wind turbines and buildings. Full or partial blockage of the flow is induced by such

obstacles resulting in a reduction of the velocity of the approaching flow and the

formation of wakes behind the body. The drag force exerted by an obstacle depends

on the shape and size of the obstacle as well as on the intensity and nature of the flow.

For flow passing an obstacle with a no-slip boundary condition, wakes are observed

behind the obstacle. The vorticity field behind the obstacle, the so called von Karman

vortex street, appears with well-defined frequency, which can be measured by the

Strouhal number. Figure 1.2 shows structures of a von Karman vortex at various

Reynolds numbers. The two rows of opposite-signed vortices which are unstable are

considered an inherent phenomenon (Williamson 1996). At sufficiently high Reynolds

numbers, the flow is turbulent, and it includes vortex structure that does not behave

like equilibrium turbulence (Zhang and Perot 2000). This wake generation also links

with energy transfer from mean kinetic energy into turbulent kinetic energy which

affects the drag force on the body and the turbulent intensity (Nepf 1999).

The dynamics of the vortex-wake interactions in itself is a subject of ongoing

research. The transport of pollutants under such conditions is even more critical

given that many relevant problems related to water and air quality issues occur in

these types of flow and environmental conditions. Also, nutrient fluxes in water bodies

are directly influenced by the flow dynamics. Changes in magnitude and direction

of the velocity field as well as the location of obstacles result in a complex scalar

distribution. The need for improved understanding is essential for the development

of accurate and reliable models to both reliably predict and mitigate the impacts

of pollution in the environment. In the modeling context, the mixing of the scalar
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Figure 1.2: Visualization of laminar and turbulent vortex streets over a wide range of
Reynolds number, Re. Streamwise vorticity, in the braid between Karman vortices,
is indicated by the white regions and is visible for Re = 300 up to the highest
Re = 270, 000 (Williamson 1996).

field is parameterized through a turbulent scalar diffusivity (analogous to molecular

diffusivity) (Fischer et al. 1979; Rummel et al. 2005; Rossi and Iaccarino 2008). Many

parameterizations exist for the scalar diffusivity under different flow conditions but

most do not account for the presence of obstacles as well as varying flow conditions

such as a combination of unidirectional and oscillatory flows. It is therefore the

subject of this dissertation to investigate fundamental aspects of turbulent mixing

and transport processes in environmental flows and develop parameterizations for

scalar diffusivities for flow around obstacles under different flow conditions.
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The main research tool used in this study is computational fluid dynamics (CFD).

CFD is a useful research tool to understand and explicate the physics of fluid flow

and it is now widely regarded as one of three key dimensions in fluid dynamics,

the other two dimensions are experiments and theory, respectively (Anderson 1995).

CFD is essentially the numerical solutions of the Navier-Stokes (momentum) and

scalar transport equations. It provides more detailed information on a flow field than

is typically afforded by laboratory and field-scale experiments. Furthermore, CFD

may be used to generate results to facilitate and compare with experimental results.

1.2 Objectives

In this research, high-resolution two-dimensional numerical simulations will be used

to study fundamental aspects of turbulent mixing and transport of passive scalars

around submerged porous obstacle(s) in environmental flows. The main objectives of

this research are as follows:

1. To understand the dynamics of environmental flows, with particular emphasis

on the mixing and transport of passive scalar in the turbulent flow regime, and

to parameterize the scalar diffusivity for different flow scenarios consisting of

uni-directional flow and a combination of uni-directional and oscillatory flows.

We introduce three key non-dimensional parameters, namely: drag coefficient

(a surrogate of porosity), a ratio of tidal to mean flow (shape parameter), and

a ratio of tidal excursion length to the obstacle diameter. Detailed parametric

studies will be performed to investigate the dependence of the scalar diffusivity

on the above parameters for a single cylindrical obstacle.
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2. To gain insights of flow dynamics under flow reversals (e.g. purely tidally-

driven flow and strong oscillatory flow superimposed on the mean current). In

particular, scalars transport processes will be investigated with and without

drag exerted by a single cylinder.

3. To investigate the influence of the drag exerted by multiple obstacles (an ideal-

ized cylinder mostly for the purposes of this investigation) on scalar fields. In

flow fields past multiple obstacles, wakes and vortices may interact depending

on the distance between the obstacles.

4. To highlight impacts of different hydrodynamic conditions and locations of ob-

stacles in engineering application. The depth-averaged simulations of open net-

pen aquaculture farms in an idealized coastal embayment will be performed to

show the importance of correct description of such conditions at any given study

site.

1.3 Dissertation layout

The remainder of this dissertation is composed of six further chapters: Chapters 3, 4,

5, and 6 have been written in a format suitable for journal manuscripts, hence they

are relatively self-contained and as such some redundancy will exist, particularly with

regard to governing equations and numerical methodology.

Chapter 2 consists of a literature review on the flow physics and scalar transport.

It expands on some of the issues mentioned in Section 1.1. Numerical methodol-

ogy is also presented with equations that govern flow dynamics and scalar transport.

Chapter 3 focuses on the lateral mixing of passive scalars around a single obstacle

in steady uni-directional flows as well as a combination of uni-directional and oscil-

latory flows. The main highlight of this chapter is the quantification of the lateral

mixing coefficient as a function of the three key non-dimensional parameters discussed
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in Section 1.2. Flow reversals under pure oscillatory flow conditions and associated

mixing are presented in Chapter 4. In Chapter 5, the concentration fields of a passive

scalar dispersed by the flow encountering a group of cylindrical obstacles are pre-

sented. Complex vortex patterns occur around the cylinders which are arranged in

either a single column or a staggered array. The effect of spacing between adjacent

cylinders on lateral mixing is investigated. To put the current work in the context of

a field-scale application, a numerical study on the transport of aquaculture dissolved

waste in a coastal embayment is presented in Chapter 6. The importance of accurate

description of hydrodynamic conditions as well as the location of obstacles for pre-

dicting concentration distribution is highlighted. Finally, Chapter 7 concludes with

a summary of what has been done with some suggestions for the further work.

1.4 Summary

This dissertation presents a study on the fundamental aspects of mixing and transport

of passive scalars in turbulent environmental flows. High-resolution, two-dimensional

simulations are used to study scalar transport around porous obstacles in steady,

oscillatory flows and combined flows. The research is carried out primarily by means

of high-resolution two-dimensional simulations. Overall, this dissertation aims to

contribute to better fundamental understanding of turbulent mixing around obstacles

in environmental flows.
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Chapter 2

Literature review

Turbulent flow arises from the instability of the flow layers at high Reynolds numbers.

The nonlinear nature of turbulence has made it too difficult (but interesting) to fully

comprehend it and hence turbulence has and is being continuously investigated by

scientists and engineers through field- and laboratory-scale experiments as well as

numerical simulations. Under an unsteady flow field caused by the presence of an

obstacle, the concept of turbulent vortex shedding is apparent by drag, and this

governs the further dynamics of the flow. Most environmental flows fall in the regime

of turbulent flows, and are perturbed by obstacles existing in the flow domain such

as buildings, bridges, aquaculture pens, trees and vegetation canopies. Passive scalar

transport past idealized obstacles such as a cylinder, has been widely used to examine

mixing and transport processes in many flow fields (Yasuda 2004; Warhaft 2000). In

the case of a disturbance induced by an obstacle, the scalar transport depends on

the density and configuration of the obstacles, and the longitudinal dispersion is

influenced by different mechanisms, near and far, from the bodies (White and Nepf

2003; Tanino and Nepf 2008).

Changes in flow direction (e.g. in oscillatory flows) will affect the mixing and

transport of a scalar. Such flow conditions in the presence of obstacles are even more
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complicated and its effects are reflected in the magnitudes of the fluid-induced forces,

the fundamental frequency of the lift force, and the reduced momentum and scalar

diffusivities compared to uni-directional flows (Smith 1982; Williamson 1985).

This chapter provides an overview of the significant properties of the turbulence

and reviews relevant literature corresponding to the objectives of this research. In

particular, work by Fischer et al. (1979), White and Nepf (2003), Smith (1982),

Williamson (1985, 1996), Rummel et al. (2005) and Crimaldi and Koseff (2006) are

probably the most relevant.

2.1 Basics of flow and scalar transport

The Navier-Stokes equations with Boussinesq approximation for unsteady, three-

dimensional incompressible fluid flow with constant kinematic viscosity are given

by:

∂ui

∂t
+

∂

∂xj

(uiuj) = − 1

ρ0

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

− (ρ − ρ0) gδi3, (2.1)

with the continuity equation

∂ui

∂xi

= 0, (2.2)

and the density transport equation

∂ρ

∂t
+

∂

∂xj

(ρuj) = Γ
∂2ρ

∂xj∂xj

, (2.3)

where the Einstein notation is assumed with i, j = 1, 2, 3 and x3 is the vertical

coordinate. ρ0 is the reference density of the fluid, and ρ is the fluid density. Note

that the Navier-Stokes equation given in Equation (2.1) includes the effects of the

buoyancy resulting from density difference in the vertical such as in stably stratified

flows (e.g. in estuaries, oceans and the nocturnal atmospheric boundary layer). The

density transport equation given by Equation (2.3) is fully coupled with the Navier-
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Stokes equations through the buoyancy term. Here, Γ is eddy diffusivity, which is

equivalent to the scalar diffusivity for the scalar transport equation. A separate

transport that is similar in form to the density transport equation can be used to

solve for the transport of a passive scalar.

In general, the concentration of matter is stretched out by a molecular diffusion

process. Fickian law represents the scalar diffusion restated from Fourier’s law for heat

transfer. Fick’s law states that the flux of solute mass is proportional to the gradient

of solute concentration in a given direction (Fischer et al. 1979). This results in the

diffusion equation (using the conservation law of the mass):

∂φ

∂t
= D

∂2φ

∂xj∂xj

, (2.4)

where φ is arbitrary scalar, and D is the molecular diffusion coefficient with dimen-

sions of L2T−1. Considering the two-dimensional transport process of a scalar φ in

x − y plane, under the assumption that it is well-mixed in vertical direction, the

analytical solution for concentration from an initial slug of mass M released at time

zero at the x origin is given by:

φ (x, t) =

(

M√
4πDt

)

exp

(

− x2

4Dt

)

. (2.5)

The factors of 4π and 4Dt are added arbitrarily for mathematical convenience. Here,

Equation (2.5), which follows Gaussian distribution, represents the longitudinal plume

structure. Lateral concentration distribution can be derived by using y component

instead of x component.

However, Equation (2.5) only provides the pure diffusive solution (e.g. dye poured

in a cup of water and allowed to mix through molecular diffusion without any external

stirring). In most environmental flows, the scalar is transported by the mean motion

of flow, i.e. the flow is not stationary. The equation, including the advection term by
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flow mean motion, is called advection-diffusion equation:

∂φ

∂t
+

∂

∂xj

(φuj) = D
∂2φ

∂xj∂xj

, (2.6)

where the second term in the left-hand side is the advection term describing the

transport of φ by a velocity field uj and the right-hand side is the diffusion term.

While Equations (2.4) and (2.5) emphasize the molecular process, Equation (2.6)

accounts for fluid motion and hence the appropriate transport equation that captures

the longitudinal structure of the scalar plume that results from the combination of

advection and diffusion effects. For example, a solution describing the plume structure

in a fluid moving with a constant velocity u in the longitudinal direction (x) with

negligible gradients (well mixed) in the lateral (y) direction is as follows Fischer et al.

(1979):

φ (x, t) =
φ0

2

[

1 − erf

(

x − ut√
4Dt

)]

, (2.7)

where φ0 is the initial concentration. The error function describing the plume struc-

ture is formed by integral of the Gaussian distribution and it always converges.

However, the diffusion coefficient in the above equations is based on molecular

diffusion applicable to laminar flows. In turbulent flows (common in the environment),

mixing is greatly enhanced mainly due the shear. The accepted norm is to define

an analogous turbulent mixing coefficient (commonly known as a turbulent scalar

diffusivity) in order to solve for the average concentration.

2.2 Analytical work

Laminar, transition, and turbulence represent the characteristics of the flow. These

are classified by the Reynolds number which is the ratio of inertial forces to viscous

forces. Osborne Reynolds showed how the flow physically transitions using his now
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famous dye injection pipe flow experiments (Munson et al. 2009). In a laminar flow,

the dye streak remains along a well-defined line, while the streakline in a turbulent

flow is immediately blurred and spreads across the cross-section. The dye streak

fluctuates in time and space at transition. This transition stage may be considered as

a universal phenomenon that leads to an enhanced turbulent flow state (Dimotakis

2000). As mentioned, the dye streak moves with the flow, the turbulent motion

enables heat and other scalar quantities to diffuse in a fluid by molecular agitation,

thereby greatly enhancing molecular diffusion (Taylor 1922). Taylor (1953) derived

an analytical solution for the soluble matter through a tube. The scalar disperses by

the combined action of molecular diffusion and velocity shear over the cross-section.

Taylor’s analysis provides a methodology for the estimation of the diffusion coefficient.

In a similar manner, the dispersion in turbulent flow was studied by Taylor (1954).

Aris (1956) compared diffusion occurring in circular and elliptical cross-sections to

obtain Taylor’s results. He fixed his attention on the movement of the mean of

the concentration distribution and the growth of its higher moment. Fischer (1978)

applied a one-dimensional dispersion equation and extended it to a shear flow at

horizontally homogeneous depth. The magnitude of a coefficient describing the effect

of the shear flow was derived.

When fluid flows around an obstacle (a bluff body in this context), the flow creates

alternating low-pressure vortices at the point of boundary layer separation (Mun-

son et al. 2009). The location of the separation point and configuration of wakes

depend on drag forces induced by the shear stress at the boundary layer of the cylin-

der. Gerrard (1978) investigated the wakes of bluff bodies by using dye washed from

the rear of the cylinders at low Reynolds number. He derived relationship between

the Reynolds number and the Stokes number, which is equal to the Reynolds number

multiplied by Strouhal number, to highlight the physical significance of the oscilla-

tions. It turns out that relationship depends more on the range of Reynolds number
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than on the cylinder configuration. Vortex shedding is a typical characteristic of fluid

flowing around obstacles. From laminar through turbulent flow, various regimes are

classified as having different types of wakes, and they are divided based on Reynolds

number and pressure coefficient (Williamson 1996). White and Nepf (2003) classified

the wake behind an obstacle into two zones: vortex-trapping zone and secondary-

wake dispersion zone. They described the dispersion of a scalar from a random array

of circular cylinders and went on to suggest two mechanisms for each zone leading

the longitudinal dispersion of a passive scalar due to the solid fraction and distance

between cylinders.

The wakes occur at the rear of obstacles. When the flow switches direction, for

example a shift in wind direction or a tidal current, the flow movements will affect all

the properties associated with the mixing and transport of the scalar. Holley et al.

(1970) investigated the longitudinal dispersion to predict the magnitude of dispersion

coefficients in tidal waterways. In their study of the effect of oscillatory flow on disper-

sion, they found that either transverse or vertical variations of velocity will be more

important in the dispersion process. Chatwin (1975) studied passive contaminant dis-

persion in a flow varying harmonically in time from an imposed longitudinal pressure

gradient. They concluded that the effective longitudinal diffusion coefficient depends

on both frequency and the Schmidt number of the scalar contaminant. Analytically,

the negative diffusivities, which arise due to flow reversals, imply the spontaneous

development of infinite concentrations. This means that a diffusion equation can not

be used to obtain analytic solutions (Smith 1981, 1982). Smith proposed the delay-

diffusion equation where the dispersion term is replaced by an advected memory term

for steady flow. The negative diffusivity involved in an advected memory term is ver-

ified using 2-dimensional contaminant equation (Liu and Tsai 1993). The centroid

and variances are exactly derived as functions across the flow, and the concentration

is enhanced where the shear is large (Smith 1983, 1985). For the first few tidal cycles,
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the rates of dilution of tracers rapidly increased (Smith and Scott 1997). The plume

concentration distribution also deviates from the Gaussian profile in the flow direction

since peaks in concentration occur due to flow deceleration (Kay 1990, 1997).

2.3 Laboratory-scale work

In efforts to investigate the plume structure in environmental flows, numerous exper-

imental studies have been performed. Emphasis has been on quantifying the turbu-

lent diffusion coefficient from plume experiments in order to obtain insights as well

as parameterizations that may be widely applicable for dispersion modeling. The

analytical solutions presented in Section 2.1 have often been used to compare and

validate experimental results. Rummel et al. (2005), and Crimaldi and Koseff (2006)

used a model having a smooth boundary. The flow was shallow which implies that

the horizontal scales (length and width) are very large compared to the depth. The

smooth bottom boundary permits for the development of the classical turbulent ve-

locity profile from the bottom to the free surface with velocity profile given by the well

known logarithmic law. These flows are prone to instabilities induced by large-scale,

two-dimensional coherent structures which lead to enhanced eddy diffusivities. Both

of these studies show that the plume structure transported by the mean flow follow

the analytical solution. Crimaldi et al. (2002) and Crimaldi and Koseff (2006) show

that lateral structures behave in a self-similar form while the longitudinal structures

do not take on self-similar form at different heights. The diffusion coefficient obtained

from using statistical analysis of plume width show reasonable agreement with typical

values estimated by Fischer et al. (1979).

Rummel et al. (2005) and Chen and Jirka (1995) studied contaminant distribu-

tion past solid obstacles. While Rummel et al. (2005) focused on estimating scalar

diffusion coefficient as a function of turbulence intensity, Chen and Jirka (1995) were
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more concerned with dynamics of the turbulent wake downstream of the obstacles

especially since different behaviors have been observed between the near- and far-

wakes fields. Rummel et al. (2005) found that the scalar diffusivities are larger for a

plume discharged in a flow field that encounters a row of cylinders than the diffusivity

obtained for a plume dispersing in uniform mean flow. Figure 2.1 shows the time-

averaged scalar concentration from their experimental study. Chen and Jirka (1995)

verified that vortex streets formed at high Reynolds numbers, as well as von Karman

vortices formed at even smaller Reynolds number, are a result of the small-scale tur-

bulent mixing induced by the shear at the bottom. It appears that the vortex street

in essence increases the effective mixing thus making the plume width to grow (i.e.

disperse wider).

The flow disturbance also depends on the density and configuration of obstacles

(White and Nepf 2003). The longitudinal dispersion of a passive scalar in a random

array of circular cylinders is depicted by two mechanisms: vortex-trapping dispersion

close to each cylinder and secondary-wake dispersion. In the vortex-trapping field,

the dispersion depends on the density (used in this context to reflect how closely the

cylinders are packed together) since this is one of main parameters that determines

the turbulent intensity, and is expected to be the dominant parameter for the total

dispersion (White and Nepf 2003; Tanino and Nepf 2008). Zhang and Zhou (2001)

studied the turbulent near-wake of three side-by-side cylinders with different spacing.

When the ratio of lateral spacing between two cylinders to the cylinder diameter is

in the range 1.2−5, two distinct wakes were observed with strong interaction.

It is apparent that the turbulent field past obstacles will be dominated by the

density and configuration of the obstacles. However, characteristics of the flow are

described by boundary conditions such as properties of the fluid, shape/roughness

of obstacle, the magnitude and direction of the velocity field. For the case of an

oscillatory flow with periodic back-and-forth oscillations, the reversed flow causes the
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Figure 2.1: Time-averaged concentration distributions from laboratory experiments
(Rummel et al. 2005).

vortex wake of one half cycle to sweep past the cylinder during the next half cycle

(Williamson 1985). Williamson studied the vortex motion using a single cylinder with

various Keulegan-Carpenter numbers, which is a ratio of the magnitude of oscillatory

velocity to the frequency of the velocity and cylinder diameter, K = 2Uosc/ωD. He

also investigated a pair of cylinders in line. The change in direction of flow affects

the fluid-induced lift and in-line forces. In the case of a pair of cylinders, both vortex

shedding and induced forces are simultaneously in-phase or anti-phase between the

obstacles.
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Despite the numerous studies on scalar mixing and dispersion, there has been a

dearth of studies as far as scalar dispersion around obstacles especially under oscil-

latory flow conditions as well as combined oscillatory and uni-directional flow con-

ditions, even at the laboratory scale. Mixing and transport of passive scalars under

such conditions are expected to be very different from the classical uni-directional flow

case where a Gaussian plume spread occurs. Some fundamental research questions

that need to be addressed and that have shaped the theme of this dissertation are:

• How is the distribution of the scalar field altered in the presence of obstacles

(be it single or multiple)? How different are the distributions compared to the

classical uniform flow field?

• How do the most relevant non-dimensional parameters affect passive scalar mix-

ing for flow around obstacles in both uni-directional and oscillatory flow con-

ditions? (i.e. How does the lateral mixing coefficient (i.e. turbulent scalar

diffusivity) depend (or vary) as function of the most relevant non-dimensional

parameters?)

• How do the multiple flow reversals govern the plume concentration of passive

scalars in the absence and the presence of the obstacle?

• How does the spacing between neighboring obstacles influence both the flow

and scalar fields?

2.4 Numerical work

Numerical simulations are increasingly being used to study turbulent flows. They are

used to obtain better understanding of the flow physics since they not only provide

more detailed information than laboratory- and field-scaled experiments, but also

results to compare with experimental results (Venayagamoorthy 2006). They are also
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cost effective and provide considerable time savings. Recently, Stevens et al. (2008),

Delaux et al. (2010), and Venayagamoorthy et al. (2011 - part of this dissertation

study) identify the environmental impacts of aquaculture pens through field and

numerical studies. As mentioned in Section 2.3, fluid-structure induced disturbance

is complex and depends on the configurations of obstacles. Bosch and Rodi (1998)

studied the flow dynamics past a square cylinder, and Fernando et al. (2010) simulated

flow around buildings using rectangular boxes to understand the fluid dynamics of

urban boundary layers. Zhang and Perot (2000) used a triangular cylinder, and

Catalano et al. (2003) obtained numerical results using a circular obstacle.

The numerical solution of the Navier-Stokes equations for turbulent flow is ex-

tremely difficult, and due to the significantly different mixing-length scales that are

involved in turbulent flow, the stable solution of this set of equations requires a very

fine mesh resolution resulting in computational times that are prohibitively expen-

sive. There are three main numerical modeling approaches for simulating turbulent

flows namely: direct numerical simulation (DNS), large eddy simulation (LES), and

Reynolds averaged Navier-Stokes simulation (RANS). DNS can capture all the scales

of turbulent motion, however, it requires a lot of computing effort and is not feasible

for most practical flow problems of interest where the Reynolds numbers are high.

LES is a fairly recent approach that bridge the extremes between DNS and RANS

(Ting and Prakash 2005; Pope 2000). LES is increasingly becoming popular with

the rapid development of high performance computing hardware and software. As a

result, a number of numerical methods using LES have been developed with simula-

tion results showing better predictions of turbulent motions than RANS simulations.

RANS equations classify the motion into mean and fluctuation components using

the what is called the Reynolds decomposition. All turbulence scales are modeled

in RANS because of the averaging process, which effectively removes all turbulent

fluctuations. Figure 2.2 shows turbulent motions captured by these three different
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Figure 2.2: Spanwise vorticity for flow over a back-ward facing step from; (a) Direct
Numerical Simulation (DNS), (b) Large Eddy Simulation (LES), and (c) Reynolds
Averaged Navier-Stokes Simulation (RANS) (Wu et al. (Center for Turbulent Re-
search)).

simulations. Catalano et al. (2003) concluded that the results from the LES simu-

lation are considerably more accurate than RANS. Nevertheless, RANS simulations

are widely used mainly due to their feasibility for practical engineering problems.

Rossi and Iaccarino (2008) compared mean scalar concentration fields using var-

ious models to describe turbulence in the RANS approach. The turbulence models

depend on a number of extra equations employed such as two-equation models (e.g. κ-

ǫ and κ-ω), and Reynolds Stress Transport (RST) models which make use of six extra
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Figure 2.3: Mean scalar concentration downstream of the obstacle, (left column)
water setup, (right column) air setup; (a,b) κ − ǫ, (c,d) κ − ω, (e,f) RST (Rossi and
Iaccarino 2008).

equations. Figure 2.3 shows the mean scalar concentration downstream of a rectan-

gular obstacle. The κ-ǫ and RST models suggest a stronger diffusive flux across the

wake boundary. Rossi et al. (2009) adopted the algebraic flux models for turbulent

heat and mass transport for evaluating the scalar flux for complex flows in an attempt

to predict the scalar dispersion over a wavy wall.

RANS models are found to be deficient in flows with a wide range of scales en-

countering obstacles. DNS is mainly restricted to low Reynolds numbers and very

simple geometries due to computational constraints required to fully resolve the whole

spectrum of spatial and temporal scales. LES is now widely considered in the research

community as the acceptable approach and as the compromise between the DNS and

RANS approaches. LES can be expected to be more accurate and reliable than RANS

for flows in demanding complex geometries which involves unsteady separation and

vortex sheddings (Reynolds 1990; Pope 2004).
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The theory behind LES is that the large scales of a flow which are explicitly

resolved contain the bulk of the energy and the characteristics of the turbulent struc-

tures of the flow. A key assumption used in LES is that of universal (isotropic)

behavior of turbulence at sub-grid scales which are essentially captured by sub-grid

scale (SGS) models. In this manner, LES is able to resolve a wider range of energetic

scales compared to DNS thus allowing for the modeling of higher Reynolds number

flows at comparable computational costs. The spatial filtering operation results in

sub-grid scale stresses/fluxes that must be modeled to achieve closure of the filtered

system of equations. Discussions on intricacies pertaining to filtering approaches (im-

plicit versus explicit) can be found in Carati et al. (2001) and Gullbrand and Chow

(2003). The key to success of LES largely depends on how accurately the SGS motions

(or more precisely stresses/fluxes) are modeled based on the resolved-scale quantities

such as the velocity gradients and scalar gradients. Several SGS closure models have

been proposed, of which the most widely used is the traditional Smagorinsky eddy

viscosity model (Smagorinsky 1963), which is based on a gradient-diffusion hypothe-

sis. Germano et al. (1991) developed the dynamic Smagorinsky model (DSM) which

calculates the eddy viscosity dynamically in time and space. Similar SGS models are

also required to quantify scalar fluxes for turbulent flows. An excellent discussion on

existing turbulence models and their relative merits is given by Meneveau and Katz

(2000).

2.5 Research code

In this research, an LES research code named SUNTANS (Stanford Unstructured

Nonhydrostatic Terrain-following Adaptive Navier-Stokes Simulator) is used to per-

form highly resolved numerical simulations to investigate passive scalar mixing around

obstacles. This research code is briefly reviewed next.
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2.5.1 Research code description

SUNTANS is a research code developed at Stanford University by Professor Fringer

(Fringer et al. 2006) with the goal of simulating nonlinear, nonhydrostatic coastal

processes. It is finite-volume code based on the nonhydrostatic formulation of Casulli

(1999) where the pressure term is split into hydrostatic and non-hydrostatic com-

ponents. SUNTANS solves the non-hydrostatic Navier-Stokes equations with the

Boussinesq approximation on unstructured, staggered, z-level grid. It solves the fil-

tered equations of motions (as described in LES). This numerical model also solves

the scalar transport equation with a formulation that ensures both local and global

conservation. To increase the computational efficiency, parallel implementation using

MPI is adopted. The grid partitioning is done in the horizontal to ensure that water

columns remain continuous on each processor due to the use of unstructured grids in

plan form and a staggered z-grid in vertical. Time stepping in SUNTANS is limited

by accuracy considerations to capture short timescale processes associated with short

lengthscales resolved on high-resolution unstructured grids (see Fringer et al. 2006 for

details).

SUNTANS has proved to be a highly suitable research code for studying multiscale

coastal processes. Jachec et al. (2006) employed SUNTANS to simulate internal

tides in Monterey Bay. Wang et al. (2008) applied SUNTANS in the macrotidal

Snohomish River estuary to study the interaction of tides with complex bathymetry

and associated hydrodynamics.

2.5.2 Numerical limitations

In the SUNTANS, a number of numerical methods are applied to each term in the

governing equations. For example, the theta-method is used for the time discretiza-

tion of the vertical diffusion term and the fast free-surface gravity wave term. Scalar

transport equations can be discretized from simple first-order schemes to more accu-
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rate higher-order schemes known as total variation diminishing (TVD) schemes.

Convergence of numerical results is limited by time step size. The stability require-

ment is however not limited by the vertical diffusion term and the fast free-surface

gravity waves term, since these are discretized using the semi-implicit theta method.

The stability is limited by the terms discretized explicitly using explicit schemes such

as the Adams-Bashforth method. The time step is also determined by the accuracy

required in the simulations. For coastal applications, the internal wave gravity is

the most limiting for stability, while the most limiting is the vertical advection of

momentum for the estuarine applications (Fringer et al. 2006).

2.6 Summary

This chapter has introduced some of the fundamental aspects and complexities of

mixing in environmental flows. A brief review of analytical and laboratory scale work,

and numerical simulations focusing on passive scalar field in different flow fields with

and without obstacles was provided. The numerical research code named SUNTANS

employed in this dissertation has been also described. The next chapter discusses

mixing and transport of a passive scalar around a single obstacle.
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Chapter 3

Lateral mixing of passive scalars

around a porous obstacle1

3.1 Introduction

There has been numerous studies over the last few decades focusing on understanding

the vortex-wake dynamics around obstacles under different flow conditions (e.g. tides

and currents) driven by both a need to gain fundamental insight on the dynamics and

the relevance of this problem in engineering, atmospheric science and oceanography.

Some examples include mixing and transport through vegetation (White and Nepf

2003; Tanino and Nepf 2008) and flow over and around topographic features. Despite

the large body of existing work on this subject, there remains much to be understood

in terms of turbulent mixing around obstacles (be it submerged oceanic vegetation,

underwater topographic features such as seamounts, ridges, islands or manmade ob-

stacles such as marine aquaculture pens, offshore wind turbines) in complex flows

(e.g. tidally-driven oscillatory flows superimposed on unidirectional currents). For

1This chapter will be submitted in substantial part as a manuscript entitled “Lateral mixing
of passive scalars around porous obstacles in uniform and oscillatory flows”, by H. Ku and S. K.
Venayagamoorthy, to Physics of Fluids Journal.
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instance, we do not yet have a clear understanding on how the lateral (turbulent)

mixing coefficient should be quantified for flow past a single obstacle due to the

added complexity of the drag effect induced by the obstacle(s) and the oscillations

in the flow field. Full or partial blockage of the flow induced by obstacles result in a

reduction of the velocity of the approaching flow, flow separation and the formation

of eddies and wakes behind the obstacles. It is therefore critical to understand and

describe the turbulence resulting from such complex interactions in order to make

practical progress towards obtaining quantitative estimates of mixing and transport

under such conditions.

In what follows in this chapter, we use highly-resolved two-dimensional, depth-

averaged numerical simulations to study passive scalar transport around obstacles in

an idealized open channel domain. Specifically, we seek to parameterize the horizon-

tal dispersion of the scalar plume using a lateral mixing coefficient which is a function

of three dimensionless parameters namely; the non-dimensional drag coefficient CD,

the ratio of mean to tidal amplitudes of the velocity components η, and the tidal

excursion length scale K. In Section 3.2, we provide a brief description of the numer-

ical methodology employed for this study and the statistical measures that will be

used to quantify scalar concentrations. The key non-dimensional parameters and the

simulations cases are presented in Section 3.3. Results and discussion are presented

in Section 3.4 and we conclude with a brief summary in Section 3.5.

3.2 Numerical methodology

A research code named SUNTANS (Stanford Unstructured Nonhydrostatic Terrain-

following Adaptive Navier-Stokes Simulator), developed at Stanford University by

Fringer et al. (2006), is employed to perform highly resolved numerical simulations

in an idealized rectangular open channel domain. SUNTANS was developed for the
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purpose of simulating multi-scale physics in environmental flows. It is an unstructured

(in the horizontal) finite-volume code that solves three-dimensional nonhydrostatic

Navier-Stokes equations with the Boussinesq approximation on z-level grids in the

vertical. It also solves for the free surface as well as the transport of salinity and

temperature. Parallel implementation using the message processing interface (MPI)

is used in SUNTANS making it a highly scalable and computationally efficient code.

3.2.1 Governing equations

In this research, the depth-averaged formulation of SUNTANS using a single vertical

layer is employed for all simulations. These equations together with depth-averaged

continuity equations are given by

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g

∂h

∂x
+ νH

(

∂2u
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+

∂2u

∂y2

)
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√
u2 + v2

H
u + FD,x, (3.1)
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∂2v
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∂h

∂t
+

∂

∂x
(Hu) +

∂

∂y
(Hv) = 0, (3.3)

where u and v are the horizontal cartesian components of the depth-averaged velocity

vector in m s−1; t is time in s; g is the constant of gravitational acceleration in m s−2;

H = h + d is the total water depth in m; h is the free-surface height relative to some

vertical datum in m; d is the depth of the bottom relative to some vertical datum in

m; νH is the horizontal diffusivity of momentum in m2s−1; CDB is a non-dimensional

bottom drag coefficient; FD,x and FD,y are the drag forces exerted by obstacles in x

and y directions respectively. They are given by a quadratic drag law formulation as
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shown in Equation (3.12). Note, we have neglected the rotation of the earth in all

the simulations discussed in this chapter.

3.2.2 Transport equation and statistical parameters

A separate transport equation that is similar in form to the density transport equa-

tion (see Equation (2.3)) is used to solve for the transport of an arbitrary passive

scalar C in this study. In this section, an analytical solution for the passive scalar

concentration and some basic statistical measures that will be used to provide quan-

titative description of scalar concentrations are briefly reviewed. This study focuses

on the passive scalar transport in a depth-averaged flow domain, i.e. x-y plane, under

the assumption that the scalar is well mixed in the vertical direction. In general, this

assumption is valid when the transverse mixing time-scale is much larger than the

vertical mixing time-scale by at least an order of magnitude (Fischer et al. 1979). In

this case, the steady state turbulent mean scalar transport equation in a flow field

with mean velocity ū is given by

ū
∂C̄

∂x
=

∂

∂y

(

εy
∂C̄

∂y

)

, (3.4)

where εy is the turbulent (lateral) scalar diffusivity. In Equation (3.4), the molecular

diffusion in flow direction is neglected relative to the advective scalar flux. The

analytical solution for a Gaussian distribution with a source of mass of constant

strength Ṁ is given as

C̄ (x, y) =
Ṁ

√

4πεyx/ū
exp

(

− y2

2σ2
y

)

, (3.5)

where the standard deviation σy is given by

σy =

√

2εy

ū
x. (3.6)
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It can be seen from Equation (3.6) that the plume grows with x1/2 with its magnitude

decaying like x−1/2 in the flow direction. The standard deviation σy therefore provides

a measure of the plume width at any given cross-section. It can be calculated from

the second moment of the concentration distribution. In general, the n-th moment

of a distribution is (Fischer et al. 1979; Papoulis and Pillai 2002):

mn = E {xn} =

∫

∞

−∞

xnf (x) dx. (3.7)

The mean, µ, and the standard deviation, σ, of a random distribution are given by

µ =
m1

m0

, (3.8)

σ =

√

(

m2

m0

)

− µ2. (3.9)

The standard deviation can be expected to increase downstream of the source due

to lateral mixing. For a Gaussian distribution, the plume width at any given cross-

section is approximately equal to four times the standard deviation at that particular

cross-section. This analytical solution in conjunction with empirical relationships for

the lateral mixing coefficient will be used to validate the numerical simulation results

for classical dispersion in Section 3.4.1.

3.3 Problem configurations

Here, a description of the open channel flow domain that is used for all the numerical

simulations in this chapter is presented first. We then discuss the key non-dimensional

parameters that are relevant to the problem at hand. These parameters will be used

to quantify the lateral mixing coefficient. We will then present an outline of all the

simulations cases that were performed for this parametric study.
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3.3.1 Problem setup

An idealized rectangular open channel domain of 3 km long and 1 km wide (as shown

in Figure 3.1) is used for all simulations. The flow depth d=50 m is represented

by a single vertical layer in SUNTANS. A passive scalar is released from within the

perimeter of a porous circular cylinder. We parameterize the porosity of the cylinder

through a non-dimensional drag coefficient (see Section 3.3.2).

Figure 3.1: Schematic showing the open channel domain and setup used in the nu-
merical simulations for this study. A velocity field described by Equation (3.10) with
different forcing periods is imposed at the left-boundary of the domain. The center
of the cylindrical porous obstacle is located at x = 300 m and y = 500 m.

For all simulations, we impose a velocity field at the left-boundary of the open

channel domain given by

u = Um + UT sin(ωt), (3.10)

where Um and UT are amplitudes of mean and tidal velocity components in m s−1,

respectively; and ω is the forcing frequency. Boundary conditions for the horizontal

velocity u are free-slip at the lateral walls. The horizontal component in the y-

direction of the velocity field v has no-flux boundary conditions on the lateral walls,

and the scalar field has gradient-free boundary condition on all walls. The unstruc-
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tured mesh has a total of approximately 193000 cells, with grid refinement of up to

1 m near the cylindrical obstacle depicted in Figure 3.1. The grid is horizontally

stretched to about 10 m at the right-end boundary. The minimum voronoi distance

obtained from the two-dimensional Delaunay triangulation is approximately 0.08 m.

For stability, the minimum voronoi distance and the magnitude of maximum velocity

are used to restrict the time step size which is given by

△t ≤ Cm
Dj,min

|u|max

, (3.11)

where Cm is the maximum Courant number, Dj,min is the minimum voronoi distance,

and |u|max is maximum amplitude of velocity field (Fringer 2007). We find that a

maximum Courant number of 0.5 is required to ensure stability.

3.3.2 Three key non-dimensional parameters

For the flow conditions prescribed by Equation (3.10) in the presence of a porous

obstacle, there are three key non-dimensional parameters that can be used to provide

a general way to describe both the flow conditions as well as the porosity of the

obstacles. These parameters are: the drag coefficient CD, the ratio of mean to tidal

amplitudes of the flow η, and the ratio of the tidal excursion lengthscale to the obstacle

length scale K. We quantify the lateral mixing coefficient as a function of these three

parameters. We discuss these parameters in slightly more detail next.

The drag coefficient CD is used in this study as a surrogate for the porosity of

the obstacle. The drag force exerted by the cylinder is represented on the right-hand

side of the Navier-Stokes equations (as shown in Equation (3.1) and Equation (3.2))

using a quadratic drag law formulation as follows
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FD,x = −αCD(u2 + v2)1/2

D
u,

FD,y = −αCD(u2 + v2)1/2

D
v, (3.12)

where CD is the non-dimensional drag coefficient, and α = 1 inside the cylinder,

while α = 0 outside the cylinder. These drag laws describe the flow reduction inside

the obstacle and resulting decrease in momentum downstream of the cylinder. The

continuous passive scalar point source is placed inside the perimeter of the cylinder.

The second important non-dimensional parameter for our simple model flow prob-

lem is the ratio of the tidal to mean amplitudes of the velocity field given by

η =
UT

Um

. (3.13)

This parameter compares the amplitudes of the tidal flow UT to the mean current

Um. It is an important factor that determines the shape of scalar plume (Purnama

and Kay 1999). The third important non-dimensional parameter is the ratio of the

tidal excursion lengthscale to the obstacle length scale given by

K =
2UT

ωD
, (3.14)

where D is the cylinder diameter. This accounts for the ratio of the tidal excur-

sion to the cylinder diameter which is analogous to the Keulegan-Carpenter number

encountered in wave-structure interaction studies (Keulegan and Carpenter 1958).

3.3.3 Simulation cases

A total of 49 simulations were performed as part of this parametric study to quantify

the lateral mixing of passive scalars around a porous obstacle. These simulations
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Table 3.1: Summary of simulations presented in this chapter. Note the actual drag
coefficients values in the range (0 - 2) are: 0, 0.25, 0.5, 0.75, 1.0, 1.5 and 2.0, respec-
tively.

Case # Case Name CD η K Remarks

1-7 Mean flow 0 - 2.0 0 0 C1 - classical dispersion

8-14 Oscillatory flow 0 - 2.0 1 23 T=4 h

15-21 Oscillatory flow 0 - 2.0 1 46 T=8 h

22-28 Oscillatory flow 0 - 2.0 1 71 M2 tide

29-35 Oscillatory flow 0 - 2.0 0.5 23 T=4 h

36-42 Oscillatory flow 0 - 2.0 0.5 46 T=8 h

43-49 Oscillatory flow 0 - 2.0 0.5 71 M2 tide

span different flow conditions and porosities of obstacles ranging from uni-directional

mean flow in the absence of an obstacle to combined uni-directional and oscillatory

flows with high drag in the open channel flow domain shown in Figure 3.1. Table 3.1

provides more details on all simulation cases for this study.

Case 1 is referred to as a classical dispersion case and is used to highlight the clas-

sical Gaussian behavior of the plume in a uni-directional mean flow in the absence of

obstacle-induced drag (CD=0). In this case, the concentration should decrease mono-

tonically from the source in both lateral and longitudinal directions (Stacey et al.

2000). This classical dispersion case is also used to validate the numerical model

results with analytical and empirical results of plume dynamics and for relative com-

parison to other cases with varying flow fields encountering obstacles. Cases 2-7 are

also uni-directional mean flows but account for drag forces exerted by porous ob-

stacles. These cases will be used to demonstrate the drag effect of porous obstacles

on the lateral mixing of the scalar plume as well as provide a measure of the model

sensitivity on CD.

The remaining cases (cases 8-49) do have an oscillatory flow component in ad-

dition to the uni-directional mean flow. These simulations are performed to both

qualitatively and quantitatively investigate the effect of all the three non-dimensional
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parameters (i.e. η, K and CD) on the lateral mixing of the plume. For cases 8-

28, we explore three different forcing periods (with K values of 23, 46 and 71) and

η=1 (i.e. Um=UT =0.1 m s−1). For cases 29-49, η=0.5 (i.e. Um = 0.1 m s−1 and

UT = 0.05 m s−1). Note we have restricted η to be no more than 1 intentionally in

order to prevent forced flow reversals. We will differ the discussion for cases when

η > 1 (i.e. with flow reversals) to Chapter 4. The drag coefficient CD is varied from

0 to 2 to simulate different porosities of the obstacle.

For all the simulations, we use vertical and horizontal momentum diffusivities of

ν = 10−5 m2s−1 and νH = 10−3 m2s−1, respectively to ensure numerical stability.

Based on the cylinder diameter of D=20 m, ν and Um, the Reynolds number ReD =

2.0 × 105, which can be considered to be turbulent.

3.4 Concentration distribution

In this section, the results from all the simulations cases are presented. We first

present results of all the steady channel flow cases (cases 1 through 7) to show the

lateral mixing of a plume under these conditions. The goal is to highlight the classical

behavior of the plume and the enhanced mixing that occurs due to vortices and wakes

introduced by flow separation around the obstacle. The results of the combined flow

cases (cases 8-49) are then presented and discussed. Parameterizations for the lateral

mixing based on all the simulations are also presented in parallel.

The lateral mixing can be characterized by an eddy mixing coefficient usually

called the transverse eddy diffusivity (Kay 1990 and Elder 1959). This mixing coeffi-

cient can be calculated using the rate of change of the plume width variance σ2

y given

by

ε∗t =
1

2

∂σ2

y

∂t
=

1

2

∆σ2

y

∆x
ū, (3.15)

where the time dependence can be recast in terms of the mean velocity ū and the
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distance from the source to a given location ∆x. The standard deviation σy at any

given cross-section can be computed from the time-averaged concentration fields for

each of the cases listed in Table 3.1.

3.4.1 Uni-directional mean flow cases

The results from the uni-directional mean flow cases involving only the mean current

velocity component with and without drag force are presented in this section. Time-

averaged, non-dimensional passive scalar field without cylinder-induced drag force in

a uni-directional flow (case 1) is shown in Figure 3.2. The spanwise concentration

distributions at sections (a-a), (b-b) and (c-c) are shown in Figure 3.3, respectively.

The dashed red line in Figure 3.2 shows the classical spread of the plume width using

an empirical lateral mixing coefficient for a uni-directional turbulent flow given by

εt/du∗ ∼= 0.15, (3.16)

where d is the channel depth and u∗ is the shear velocity (Fischer et al. 1979; Bowden

1967; Lau and Krishnappan 1977). It should be noted that the non-dimensional

lateral mixing coefficient was in the range of 0.1-0.2 in the experiments and hence

0.15 is considered as an average value. Lateral mixing coefficients obtained from

recent laboratory scale experiments on lateral plume mixing by Rummel et al. (2005)

and Crimaldi and Koseff (2006) are between 0.11 through 0.17, falling within the

error bound specified above.

It is well known from experiments (Lau and Krishnappan 1977; Fischer et al. 1979;

Bowden 1967) and direct numerical simulations of channel flows (see for example

Hoyas and Jimenez 2006) that the mean velocity U is approximately 25u∗. Using this

relationship, gives a value for ǫt = 0.03 m2s−1. This is in good agreement with the

lateral diffusivity of 0.026 m2s−1 computed from the variances of the concentration
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distributions shown in Figure 3.3.

It can be seen from Figure 3.2 that the plume linearly grows with x1/2 in the

flow direction as described in Equation (3.6) for a Gaussian plume. Also, all the

concentration profiles at the cross sections shown in Figure 3.3 show close agreement

with the Gaussian plume (see also Equation (3.5)). However, there is some divergence

from the purely Gaussian case. This is probably a consequence of the averaging from

the numerical simulations. It takes a lot of ensembles to get pure Gaussian plots in

experiments and numerical simulations. Regardless, these results serve to validate

the numerical model and hence provide us with the confidence to use the SUNTANS

model for further numerical studies on mixing and transport of passive scalars under

different flow conditions.

Figure 3.2: Time-averaged normalized concentration field (shown in color) for a steady
uni-directional test flow case (case 1 in Table 3.1). The dashed red line shows the
classical spread of a Gaussian plume using a lateral diffusivity of 0.03 m2s−1.

Figure 3.4 shows the time-averaged non-dimensional concentration fields for cases

2-7. The fields show a view closer to the cylinder (200 ≤ x ≤ 1300 m and 200 ≤

y ≤ 800 m) in order to highlight the plume characteristics in the vicinity of the

porous obstacle. It can be clearly seen that the presence of the porous obstacles has

enhanced the lateral spread of the plume. An example snapshot of the instantaneous

concentration fields at t = 10 hours is shown in Figure 3.5. The enhanced mixing
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Figure 3.3: Time-averaged concentration distributions for case 1 in Table 3.1 at (a)
x = 500 m, (b) x = 1000 m, and (c) x = 2000 m. The dashed red lines shows
are the Gaussian profiles calculated using the empirical transverse mixing coefficient
εt = 0.15du∗.

evident here has also been observed in laboratory experiments on dye dispersion by

Rummel et al. (2005). Nepf (1999) obtained high turbulent diffusivities for flow

through emergent vegetation and attributes this to the blocking effect caused by the

stems.

Essentially, the presence of the obstacle blocks the flow thereby causing a de-

celeration of the approaching flow and the formation of downstream vortices and

wakes. These downstream vortices and wakes lead to the complex patterns of the

contaminant distribution as shown in Figures 3.4 and 3.5, respectively. More porous

obstacles (i.e. with CD < 1) exhibit lesser blocking effect since substantial amount

of flow can pass through the obstacle. This clearly delays flow separation and the

vortex shedding as can be seen in Figure 3.5(a)-(c). On the other hand, when the

porosity is reduced (i.e. for higher CD), the blocking effect is now stronger which

promotes flow separation and development of the vortex-wake field much quicker and

closer to the cylinder (see Figure 3.5(d)-(f)). Hence, different vortex patterns emerge

in the vicinity of the obstacles depending on porosity of the obstacles, an observation

that was also made in a recent numerical study of flow through a circular array of

cylinders (Nicolle and Eames 2011). Lateral mixing is clearly enhanced as the drag
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Figure 3.4: Time-averaged non-dimensional concentration field for the mean flow cases
(cases 2-7) with non-dimensional drag coefficients of (a) CD = 0.25, (b) CD = 0.5, (c)
CD = 0.75, (d) CD = 1.0, (e) CD = 1.5 and (f) CD = 2.0.

from the obstacle increases as seen in both the time-averaged and instantaneous fields

in Figures 3.4 and 3.5, respectively.

Figure 3.5 also shows how the wake field gradually begins to transition from a

rather disordered (unstable) state of a staggered row of vortices to more stable in-

phase vortex state that eventually merge further downstream due to far-field turbulent

mixing. Based on these observations and the ideas presented in Williamson (1985),

it is plausible to classify the characteristic of the vortex-wake field into three distinct

regions, namely: a separation region of length ls; an in-phase vortex region of length

lt; and a binary vortex street region. Figure 3.6 shows a schematic sketch of these

three regions. Note the separation region is identified by a length ls which is the

distance from the obstacle to flow separation, the in-phase vortex region is defined
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Figure 3.5: Instantaneous non-dimensional concentration field for the mean flow cases
(cases 2-7) at time t = 10 h with non-dimensional drag coefficients of (a) CD = 0.25,
(b) CD = 0.5, (c) CD = 0.75, (d) CD = 1.0, (e) CD = 1.5 and (f) CD = 2.0.

by a length lt which is the distance covered by the non-staggered row of vortices, and

finally the binary vortex region is region where a consistent staggered row of vortices

are observed, respectively.

As discussed above, more porous obstacle cases (CD < 1) permit greater through

flow and hence delay the onset of separation and recirculation due to the inertia

of the flow field. Eventually, the flow separation occurs and a recirculation region

appears as shown in Figure 3.5(a)-(c). Note how the length of the separation region

(ls) decreases as CD increases and asymptotes to a constant value of the order of

the obstacle diameter. The flow separation triggers the shedding of alternating (i.e.

non-staggered) vortices which are found to be quite unstable. Again, the length of
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this in-phase vortex region lt is found to decrease dramatically as CD increases and

approaching an asymptotic value of about lt ≃ 5D for CD > 1, where D is the

diameter of the obstacle. The in-phase vortex region transitions into a binary vortex

region that comprises of a staggered row of vortices. It has been found from earlier

work by Von Karman that these vortices are stable only when the ratio of the lateral

to longitudinal scales of the vortices are greater than 0.28 (Kundu and Cohen 2008).

We use these characteristic vortex patterns to quantitatively define the lengths of the

first two regions shown in the schematic in Figure 3.6.

Figure 3.7 shows the non-dimensional lengths ls/D and lt/D for the separation

region and the in-phase vortex regions, respectively, as a function of the drag coef-

ficient CD. Note the lengths of these regions are infinite for the classical dispersion

case (CD = 0). The lengths quickly decrease and converge to ls/D = 1 and lt/D=5

for CD > 1. These results are in agreement with the longitudinal dispersion in a

random array of cylinders where the recirculation region was found to be of the order

of diameter of the solid cylinder (White and Nepf 2003). Clearly, the development

of these regions are a strong function of CD and are found to decrease exponentially

Figure 3.6: Schematic sketch of vortex patterns around a cylindrical obstacle de-
picting the separation region, the in-phase vortex region, and binary-vortex region,
respectively.

39



0.5 1 1.5 2
0

2

4

6

8

10

Non−dimensional drag coefficient, C
D

l s/D
  o

r 
 l t/D

 

 
non−dimensional separation region, l

s
/D

non−dimensional in−phase vortex region, l
t
/D

Figure 3.7: Lengths of separation and in-phase vortex regions. Blue asterisks and red
crosses show the normalized separation region length ls/D and in-phase vortex region
lt/D for the uni-directional mean flow cases (η = 0, cases 1 through 7 in Table 3.1).

with CD as follows

l/D ∼= γ exp (βCD) , (3.17)

where γ is a scale factor and β is an exponential constant. For ease of interpretation,

we will use γs, βs to denote the values for the separation region and γt, βt for the

in-phase vortex region. βs = −3.1 and βt = −1.1 with γs = 21 and γt = 15. The

separation region decays 3 times faster than the in-phase vortex region.

The spanwise concentration distribution at x = 500, 700, 1000, and 1250 m for

cases 2-7 are shown in Figure 3.8. The concentrations are normalized by the maximum

value of concentration among all of the cases 1-7, in order to show the effect of the

obstacles on pollutant dispersion. These profiles highlight how the plumes for all the

cases (under the influence of obstacle-induced drag) begin to depart quite early (at

x=500 m) from the classical Gaussian plume (case 1,dotted-dashed red in Figure 3.8).
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cases (η = 0, cases 2 - 7 in Table 3.1) at (a) x = 500 m, (b) x = 750 m, (c) x = 1000 m,
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For the more porous obstacles with CD < 1, the separation region is extended

over at least a diameter length of the obstacle and hence the plume exhibits a similar

behavior to the classical dispersion case. The averaged lateral diffusivities computed

using concentration variances in the separation region are approximately 0.034 −

0.036 m2s−1, which are in good agreement with the empirical diffusivity for classical

dispersion. For the purposes of quantifying an overall lateral mixing coefficient, the

separation region is ignored. The lateral mixing coefficients are therefore obtained

using the time-averaged spanwise concentration profiles between the in-phase and the

binary vortex regions. The coefficients computed from the numerical simulations are

shown in Table 3.2. The last column shows the normalized values using the empirical

value of εt/du∗ ∼= 0.15 (Equation (3.16)) for the classical dispersion case. These

values are about 3 to 5 times larger than the lateral mixing coefficient computed for

the classical dispersion.

Figure 3.9 depicts these results graphically as a function of CD and shows the

enhanced effect of the drag forces imparted by the porous obstacles on the scalar

plume dynamics. A least squares regression fit to the data provides a relationship of

the form

ε∗t /εt = λ exp

(

− 1

5CD

)

+ 1, (3.18)

where λ is a constant scaling factor. For ease of presentation as far tying these results

to the oscillatory flow cases (cases 8-49), we shall denote the scaling factor for the

mean flow cases as λ0 since η = 0. The best fit value was found to be λ0 = 5. Equation

(3.18) captures the pattern of the lateral mixing coefficients which for all intents and

purposes asymptote a constant when CD ≥ 1. However, the coefficients grow in an

exponential manner for 0 < CD ≤ 0.25. Overall, the results for these mean flow cases

highlight how the lateral mixing is enhanced in the presence of obstacles and show

the importance for studying the influence of obstacles on the plume dispersion.
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Figure 3.9: Time-averaged non-dimensional lateral mixing coefficients for mean flow
cases (η = 0, cases 1 through 7 in Table 3.1). They are normalized by the empirical
transverse mixing εt

∼= 0.15du∗. Blue squares are computed from the simulation and
blue line shows the exponential relation given by Equation (3.18) for λ0 = 5 (as listed
in Table 3.5).

Table 3.2: Time-averaged lateral mixing coefficients for the mean flow cases shown in
Table 3.1, η = 0.

Case No. CD ε∗t (m2s−1) ε∗t /εt

1 0 0.03 1.00
2 0.25 0.10 3.33
3 0.5 0.11 3.67
4 0.75 0.12 4.00
5 1.0 0.15 5.00
6 1.5 0.16 5.33
7 2.0 0.16 5.33
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3.4.2 Combined mean and oscillatory flow cases

Results of simulation cases 8-49 are presented here. The ratio of the tidal to mean

velocity amplitudes are η = 1 for cases 8-28 and η = 0.5 for cases 29-49. As pointed

out earlier, the value of the shape parameter has been chosen such that no forced

flow reversals occur in these simulations, thus allowing for a direct comparison with

the mean flow cases presented in Section 3.4.1. Three different values of the tidal

excursion parameter K: 23, 46 and 71, are used and correspond to forcing periods

of 4 hours, 8 hours and 12.42 hours (M2 tide), respectively. Cases 8-28 (η = 1) are

discussed first to show the influence of a stronger tidal signal, followed by a some-

what similar discussion of cases 29-49, which corresponds to a weaker tidal forcing

amplitude (η = 0.5).

Cases 8-28: η = 1

Figures 3.10 and 3.11 show the time sequence using the non-dimensional concentration

fields of the passive scalars for case 12 and case 19, respectively. In both figures,

the mixing and transport of a continuous scalar point source collocated within the

obstacle (with CD = 1) are shown using a time sequence of the concentration field

over a duration of nearly two tidal periods. The tidal excursion parameters are

K = 23 (T = 4 hours) for case 12 and K = 46 (T = 8 hours) for case 19. When

the tidal component is in phase with the mean current, the flow evolves in a similar

manner to the uni-directional mean flow cases (e.g. case 5) with the usual formation

of an unstable downstream wake resulting in vortex shedding (Figures 3.10(a),(b)

and 3.11(a),(b)). Soon after the initial vortex shedding begins, the flow starts to

retard as the tidal velocity reverses direction and increases in amplitude. This causes

the plume to contract in the longitudinal direction with a simultaneous dispersion in

the lateral direction as shown in Figures 3.10(c),(d) and 3.11(c),(d), and during the

subsequent tidal cycle as shown in Figures 3.10(g),(h) and 3.11(g),(h), respectively.
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Note how the vortex shedding is also attenuated during this period. This behavior

was first described by Chatwin (1975), where he points out that the contaminant

cloud appears to be periodically expanding and contracting. The plume is stretched

during the period of high flow during the first half of the tidal cycle and contracts

during the second half-cycle. The longer tidal period (case 19 with K=46) results in

a slightly more dispersed plume compared to the case with the shorter tidal period

(case 12).

Figure 3.10: Instantaneous scalar concentration field (shown in color) for a porous
obstacle with a drag coefficient of CD = 1.0 under the combined action of the mean
and tidal velocity components for two tidal periods (η = 1, K = 23 case 12 in Table
3.1). The continuous point source is located within the perimeter of the cylindrical
obstacle. Time is normalized by the tidal period T = 4 h.
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Figure 3.11: Instantaneous scalar concentration field (shown in color) for a porous
obstacle with a drag coefficient of CD = 1.0 under the combined action of the mean
and tidal velocity components for two tidal periods (η = 1, K = 46 case 19 in Table
3.1). The continuous point source is located within the perimeter of the cylindrical
obstacle. Time is normalized by the tidal period T = 8 h.
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The time-averaged concentration fields for cases 8, 15, and 22 (with CD = 0) are

shown in Figure 3.12 (a)-(c). Since there is no flow reversal for η = 1, the passive

scalar fields are very similar to the classical dispersion plume (case 1) except for

noticeable contractions during the second half cycle of tides. It can be easily seen

that distances between the contractions depend on the different tidal frequencies while

the overall transport patterns are independent of the forcing period (i.e. the lateral

mixing coefficients are more or less the same for cases 1, 8, 15, and 22 (see Tables 3.2

and 3.3 for details).

As expected, the concentration fields quickly become very different once the porous

obstacle is introduced into the flow field. The lateral mixing is substantially enhanced

as shown in Figures 3.13 and 3.14. The slight asymmetry in the time-averaged con-

centration fields in these figures is due to the finite number of tidal cycles over which

the averaging is performed. This results in a distribution that is skewed in the direc-

tion of a set of counter-rotating vortices that emerge in the positive y-direction upon

the first tidal reversal, as depicted in Figures 3.10(c),(d) and 3.11(c),(d). As shown in

Figures 3.10(e),(f) and 3.11(e),(f), these counter-rotating vortices move in the positive

y-direction, thereby causing a skew in the averaged concentration field. Subsequent

ejections of counter-rotating vortices are not as strong and therefore, opposite-signed

vortices do not counteract the effect of the first pair unless many more tidal cycles are

computed. We should also note that the asymmetry is accentuated by the logarith-

mic concentration contours. Regardless, these results indicate that the mixing and

dispersion of the passive field under oscillatory flow conditions with obstacle-induced

drag is very different (and enhanced) from a classical uni-directional flow case as well

oscillatory flow cases without obstacle-induced drag (cases 1, 8, 15 and 22). It is also

worth noting that the plume growth for these cases is further enhanced compared to

the uni-directional mean flow cases (cases 2-7), indicating that the combined action

of obstacle-induced drag and oscillations in the flow field is very effective in mixing
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the plume laterally. This observation can easily be verified by comparing the lateral

mixing coefficients for the oscillatory flow cases with those for cases 2-7.

Furthermore, the time-averaged scalar fields show the effect of the different tidal

excursion length scales on plume dispersion. The tidal forcing period affects both the

magnitude and extent of a plume from a point source. The scalar field is concentrated

in near-field and close to the center line for the cases with shorter tidal excursion scales

in conjunction with a lower drag coefficient.

Figure 3.12: Time-averaged non-dimensional concentration fields without drag for (a)
case 8, (b) case 15, (c) case 22, (d) case 29, (e) case 36 and (f) case 43, respectively.

The lateral scalar diffusivities obtained from the simulations results using Equa-

tion (3.15) are listed in Table 3.3 and shown plotted versus the drag coefficient in

Figure 3.15. Note separate fitted curves are used for each K value. The mixing co-

efficient increases dramatically with increasing CD until about CD = 1. Beyond this,
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Figure 3.13: Time-averaged non-dimensional concentration field under the combined
action of mean and oscillatory velocity components for a forcing period of T = 4 h
(K = 23) with drag coefficients of (a) CD = 0.25, (b) CD = 0.5, (c) CD = 0.75, (d)
CD = 1.0, (e) CD = 1.5 and (f) CD = 2.0.

the mixing coefficients begin to level out asymptotically and approach a constant λ

(see Table 3.5 for relevant values). These curves are also given by Equation (3.18) but

with different λ values from the mean flow cases. These results clearly show how the

lateral mixing is greatly enhanced in the presence of the obstacles under the combined

effect of the mean and the oscillatory flows. They also show the effect of the different

forcing periods on the mixing.

Cases 29-49: η = 0.5

The results for simulation cases (29-49) with η = 0.5 are presented here to show the

effect of a smaller shape factor on the plume dynamics. The mean amplitude Um of
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Figure 3.14: Time-averaged non-dimensional concentration field under the combined
action of mean and oscillatory velocity components for a forcing period of T = 8 h
(K = 46) with drag coefficients of (a) CD = 0.25, (b) CD = 0.5, (c) CD = 0.75, (d)
CD = 1.0, (e) CD = 1.5 and (f) CD = 2.0.

the flow is twice as fast as the tidal amplitude UT and hence, the effect of the tidal

component in our model problem as prescribed by Equation (3.10) should be less

stronger than for the η = 1 cases discussed in the previous section.

In Figure 3.12(d)-(f), the time-averaged scalar fields are shown for the cases with-

out obstacle-induced drag (cases 29, 36 and 43). The distributions are again very

similar to the classical dispersion plume (case 1) as well to those for cases 8, 15 and

22, respectively. However, the contractions during the second half cycle of tides are

less noticeable as can be seen by comparing Figure 3.12(d)-(f) with Figure 3.12(a)-

(c)). However, there is no noticeable difference in the overall time-averaged lateral

mixing coefficients (see Table 3.4 for details).
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Table 3.3: Time-averaged lateral mixing coefficients for oscillatory flow cases 8-28
with η = 1 shown in Table 3.1.

Case No. K CD ε∗t (m2s−1) ε∗t /εt

8 23 0 0.03 1.00
9 23 0.25 0.59 19.67
10 23 0.5 0.69 23.00
11 23 0.75 0.76 25.33
12 23 1.0 0.79 26.33
13 23 1.5 0.82 27.33
14 23 2.0 0.84 28.00

15 46 0 0.03 1.00
16 46 0.25 0.64 21.30
17 46 0.5 0.72 24.00
18 46 0.75 0.87 29.00
19 46 1.0 0.97 32.3
20 46 1.5 1.11 37.00
21 46 2.0 1.15 38.30

22 71 0 0.03 1.00
23 71 0.25 0.65 21.67
24 71 0.5 0.99 33.00
25 71 0.75 1.10 36.67
26 71 1.0 1.12 37.33
27 71 1.5 1.22 40.67
28 71 2.0 1.31 43.67

A time sequence of the instantaneous scalar field for case 40 is shown in Figure

3.16 over two tidal periods. All simulation parameters are identical to the sequence

shown in Figure 3.11 except for the shape factor. The effect of the stronger tidal

forcing in Figure 3.11 is no longer evident at different times in the flow. Quantitative

evidence of the effect of the shape factor comes from the lateral mixing coefficients

that were computed from the time-averaged scalar fields in an analogous manner to

the previous cases.

The time-averaged fields for η = 0.5 and K = 46 (T = 8h) for different CD

values are shown in Figure 3.17 to highlight the effect of the porosity of an obstacle

on plume dispersion. Figure 3.18 shows the time-averaged fields for three different

forcing periods. Both of these figures confirm the earlier findings that the mixing and
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Figure 3.15: Time-averaged lateral mixing coefficients for the combined flow cases
(η = 1, cases 8 through 28 in Table 3.1). They are normalized by the empirical
transverse mixing εt

∼= 0.15du∗. The red squares, blue diamonds, and black stars are
computed from the numerical simulations and the associated colored lines show the
exponential relation given by Equation (3.18) for the relevant values of λ listed in
Table 3.5.

dispersion of a passive field under oscillatory flow conditions with obstacle-induced

drag is greatly enhanced from the classical uni-directional flow case as well oscillatory

flow cases without obstacle-induced drag (see Figure 3.12).

The lateral scalar diffusivities obtained from the simulations results using Equa-

tion (3.15) are listed in Table 3.4 and shown plotted versus the drag coefficient in

Figure 3.19. Note separate fitted curves are used for each K value. The mixing

coefficient increases dramatically (but not as fast as for the cases shown in Figure

3.15 with increasing CD until about CD = 1). As observed previously, the mixing

coefficient begins to level out asymptotically and approach a constant λ (see Table
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3.5 for relevant values). Again, these curves are also given by Equation (3.18) but

with different λ values from the mean flow cases. There is at least a 25% reduction

in the largest λ values for the η = 0.5 cases compared to η = 1 cases (as shown in

Table 3.5). Furthermore, the decrease in the shape factor has also clearly reduced

the effect of the different tidal forcing frequencies as can be seen by comparing Figure

3.19 with Figure 3.15.

Figure 3.16: Non-dimensional concentration field with the drag on the non-
dimensional drag coefficient of CD = 1.0 under the combination of the steady and
the oscillatory flows (η = 0.5, K = 46, case 40 in Table 6.1). The continuous point
source is located within the perimeter of the cylindrical obstacle. Time is normalized
by the tidal period T = 8 h.
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Figure 3.17: Time-averaged non-dimensional concentration field under the combined
action of the steady and oscillatory flows (η = 1, K = 46, case 37-43 in Table 6.1)
with the drag due to the non-dimensional drag coefficients of (a) CD = 0.25, (b)
CD = 0.5, (c) CD = 0.75, (d) CD = 1.0, (e) CD = 1.5 and (f) CD = 2.0.
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Figure 3.18: Time-averaged non-dimensional concentration field under the combined
action of the steady and oscillatory flows with the drag due to the non-dimensional
drag coefficients of CD = 1.0 at (a) case 33 (η = 0.5, K = 23), (b) case 40 (η = 0.5,
K = 46), and (c) case 47 (η = 0.5, K = 71).
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Table 3.4: Time-averaged lateral mixing coefficients for oscillatory flow cases 8-28
with η = 1 shown in Table 3.1.

Case No. K CD ε∗t (m2s−1) ε∗t /εt

29 23 0 0.03 1.00
30 23 0.25 0.40 13.33
31 23 0.5 0.52 17.33
32 23 0.75 0.65 21.67
33 23 1.0 0.68 22.67
34 23 1.5 0.68 22.67
35 23 2.0 0.70 23.33
36 46 0 0.03 1.00

37 46 0.25 0.49 16.33
38 46 0.5 0.57 19.00
39 46 0.75 0.66 22.00
40 46 1.0 0.75 25.00
41 46 1.5 0.74 24.67
42 46 2.0 0.82 27.33
43 71 0 0.03 1.00

44 71 0.25 0.36 12.00
45 71 0.5 0.57 19.00
46 71 0.75 0.74 24.67
47 71 1.0 0.76 25.33
48 71 1.5 0.76 25.33
49 71 2.0 0.80 26.67

Table 3.5: Relevant λ values in Equation (3.18) for the lateral mixing coefficients.
Case Name η K λ remarks
mean flow 0 0 5 λ0, mean flow

mean + Oscillating 1 23 31 λη=1,k=23 for T = 4 h
Unidirectional + Oscillating 1 46 40 λη=1,k=46 for T = 8 h
Unidirectional + Oscillating 1 71 46 λη=1,k=71 for M2 tide
Unidirectional + Oscillating 0.5 23 26 λη=1/2,k=23 for T = 4 h
Unidirectional + Oscillating 0.5 46 28 λη=1/2,k=23 for T = 8 h
Unidirectional + Oscillating 0.5 71 29 λη=1/2,k=23 for M2 tide
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Figure 3.19: Time-averaged lateral mixing coefficients for the combined flow cases
(η = 0.5, cases 29 through 49 in Table 3.1). They are normalized by the empirical
transverse mixing εt

∼= 0.15du∗. The red squares, blue diamonds, and black stars are
computed from the numerical simulations and the associated colored lines show the
exponential relation given by Equation (3.18) for the relevant values of λ listed in
Table 3.5.
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3.5 Summary

In this study, we have performed a series of high-resolution, two-dimensional, depth-

averaged numerical simulations in an open channel domain to understand the funda-

mental aspects of mixing and transport of a passive scalar around a porous obstacle.

For this in-depth parametric study, three key non-dimensional parameters were intro-

duced, namely: the non-dimensional drag coefficient CD (a surrogate for the porosity

of the obstacle), the shape parameter η, and the tidal excursion length scale to the

cylinder diameter K. The broad parametric study has clearly shown how these three

non-dimensional parameters affect the dispersion of a passive scalar plume.

For uni-directional flow condition (i.e. η = 0), the result of the classical disper-

sion case (case 1 in Table 3.1) from the numerical simulation were a good agreement

with the empirical relation (Equation (3.16)) for the lateral mixing. The drag in-

duced by a porous obstacle results in a complex vortex-wake field behind the ob-

stacle. Specially, based on our results, we were able to classify the characteristic

of the vortex-wake field into three distinct regions, namely: a separation region,

an in-phase vortex region, and a binary vortex street region. Overall, quantitative

results for the lateral mixing coefficient as a function of the drag coefficient for dif-

ferent values of K and η were presented. An equation that describes well the lat-

eral mixing across these broad ranges of conditions was found to be of the form

ε∗t /εt = λ exp
(

− 1

5CD

)

+ 1,

as shown in Equation (3.18). The constant λ varies by close to an order of magnitude

depending on the flow conditions (e.g. tidal forcing period and shape factor) as well

as the porosity of the obstacle.

The take home message from this study is the finding that mixing and transport

of a passive scalar is greatly enhanced in the presence of an obstacle, especially under

strong oscillatory forcing conditions. Flow reversals and passive scalar mixing in a

pure oscillatory flow are investigated in the next chapter.
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Chapter 4

Mixing under flow reversals1

4.1 Introduction

Flow reversal is a visible phenomenon in tidally-forced water bodies such as in estu-

aries and the coastal ocean. Effluent discharged in these tidally forced systems can

therefore undergo multiple reversals with older effluent washing over newer effluent

at or close to the discharge site. This can quickly lead to high concentration levels

and undesirable environmental conditions (Kay 1990). There are a number of studies

that have focused on providing a variety of strategies such as the use of holding tanks

and timing of contaminant release in such systems in order to alleviate undesirable

environmental problems (Purnama and Kay 1999; Smith 1985).

In this context, the most relevant parameter is the ratio of the tidal flow to mean

freshwater flow η = UT /Um that was denoted as the shape parameter in Chapter 3.

This shape parameter η can vary by orders of magnitudes for different estuaries with

values ranging from much less than 1 in highly stratified (salt-wedge like) estuaries

such as the Mouth of the Mississippi River and the Hudson River Estuary, to as high

1This chapter is submitted in substantial part as a manuscript entitled “Scalar dispersion around
a cylindrical obstacle in oscillatory flows”, by H. Ku and S. K. Venayagamoorthy, to International

Symposium on Shallow flows Conference on June 4-6, 2012.
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as 100 in vertically homogeneous (e.g. the Delaware Bay) or partially mixed estuaries

(e.g. the San Francisco Bay and Puget Sound Estuary). The mixing and transport of

a passive scalar in tidally-dominated systems (η ≫ 1) is much more complex than in

systems that restrict flow reversals (η < 1). The flow reversals as already mentioned

make this problem physically interesting with the build-up of high concentrations.

The flow reversals also make this problem both mathematically interesting and chal-

lenging (Kay 1990). When advection is small (or zero), the longitudinal diffusion can

not be ignored as is commonly assumed for advection-diffusion problems in water bod-

ies. The inclusion of longitudinal diffusion makes it very difficult to obtain tractable

analytical solutions to the time-dependent advection-diffusion equation (Kay 1990,

Smith 1982). There have been some previous work based on time-varying advection

model that includes the effects of tidal oscillation (Harleman et al. 1968; Bella and

Dobbins 1968).

Smith (1982) showed that the use of the classical advection-diffusion model re-

sults in a negative diffusivity. This implies the spontaneous development of infi-

nite concentration in reversing flow for the case when the lateral mixing timescale is

larger than the forcing period. Based on such analytical studies, a number of studies

have focused on minimization and optimization strategies for concentration of efflu-

ents discharged into oscillating flow systems (Webb and Tomlinson 1992; Giles 1995;

Smith and Purnama 1999; Smith 2000). This problem quickly becomes analytically

intractable once an obstacle is introduced into the flow field. This is where computa-

tional fluid dynamics has become increasingly handy in providing numerical solutions.

In this study, our objective is to gain insight into the effect of an obstacle in a pure

oscillating flow field (η = ∞) on passive scalar mixing via highly resolved numerical

simulations using the SUNTANS research code (which has been extensively discussed

in Chapters 2 and 3).
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In what follows in this chapter, we first present the model set-up and some statis-

tical parameters that will be used to quantitatively describe the scalar field in Section

4.3. The results of passive scalar mixing obtained from numerical simulations are then

discussed in Section 4.3. A short summary is provided in Section 4.4.

4.2 Problem set-up

We use an open channel domain that is 3 km long and 1.5 km wide for the computa-

tional simulations. A 20 m cylindrical porous obstacle is located at the middle of the

domain at x=1.5 km and y=0.5 km as shown in Figure 4.1. The drag formulation

discussed in Section 3.3.2 in Chapter 3 is used to account for the drag exerted by the

obstacle. Two simulation are performed, one without an obstacle and one with an

obstacle with a drag coefficient CD=1.

The unstructured computational mesh consists of approximately 351000 cells with

grid refinement near the cylindrical obstacle. The minimum voronoi distance of about

0.04 m is used to satisfy the stability criterion with a maximum Courant number of

Cr = 0.5. A pure tidal flow is enforced at the left-end boundary of the domain as

follows

u = UT sin (ωt) , (4.1)

where UT is the amplitude of the oscillating velocity; and ω is the tidal frequency.

Boundary conditions for the horizontal velocity u are free-slip at the lateral walls.

The horizontal component in the y-direction of the velocity field v has no-flux bound-

ary conditions on the lateral walls, and the scalar field has gradient-free boundary

condition on all walls. The tidal period is T = 8 hours with a corresponding forcing

frequency ω = 2.18 × 10−2 rad s−1.
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Figure 4.1: Computational domain for all simulations. It is 3000 m long and 1000 m
in wide. A porous cylindrical obstacle is located at x = 1500 m and y = 500 m and
it is 20 m of the diameter. The tidally driven velocity field is imposed at the left-end
boundary of the domain.

4.2.1 Statistical parameters

Statistical parameters such as moments of concentration distributions can provide

useful quantitative information on plume characteristics. In Section 4.3, we use the

mean, standard deviation, skewness, and kurtosis to analyze both the instantaneous

and time-averaged passive scalar fields.

Considering the values of the plume concentration as a random variable set X =

{C̄1, C̄2 · · · , C̄N} with probability p1, p2, · · · , pn, the kth central moments are

defined as

mk = E
{

(X − E[X])k
}

, (4.2)

where the expectation operator E is the weighted average of all possible values given
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by

E[X] =

N
∑

i=1

C̄ipi

N
∑

i=1

pi

. (4.3)

The second moment is known as the variance. The standard deviation given by the

square-root of the variance provides a measure of the spread of the concentration

plume. It is given by

σ =
√

m2 =
√

E
{

(X − E[X])2
}

. (4.4)

The skewness and the kurtosis are given by the third and fourth moments

γ =
m3
√

m3

2

=
m3

σ3
=

E
{

(X − E[X])3
}

(

E
{

(X − E[X])2
})3/2

, (4.5)

β =
m4

m2

2

=
m4

σ4
=

E
{

(X − E[X])4
}

(

E
{

(X − E[X])2
})2

. (4.6)

The skewness is a measure of the asymmetry of the plume distribution while the

kurtosis provides a measure of the peakedness (measure of intermittency) of the con-

centration distribution (noting that the kurtosis of the Gaussian distribution is equal

to 3).

4.3 Results

The passive scalar field from the simulation without drag is presented first to show the

effect of flow reversal on the mixing. This is followed by results from the simulation

with an obstacle to show the combined effect of flow reversals and drag.
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4.3.1 Effect of the flow reversal

Figure 4.2 shows the passive scalar field as a time sequence over a duration of three

tidal periods (with T = 8 h).The scalar is advected to the right during the forward

phase of the tide (see Figure 4.2(a)) and as the tide reverses, the scalar is advected

back in the opposite direction (see Figure 4.2(b)). This pattern repeats itself in

subsequent tidal periods as shown in Figure 4.2(c)-(f).

A time sequence of the longitudinal concentration profile along the centerline

(y=500 m) is shown in Figure 4.3 for three tidal cycles. The profiles are normalized

by the maximum concentration value at t = 3 T. As shown in Figures 4.2 and 4.3,

the plume is concentrated downstream of the point source during the first half cycle

while it is upstream during the second half cycle. The time sequence of the longi-

tudinal profiles shows bi-peaks: one at the point source and the other at either the

downstream or upstream ends. These results are consistent with the study of Kay

(1997) where he showed that the time-varying flow field causes the formation of a

peak at each end of the flow reversal. The slightly higher peak at the location of the

point source (x=1.5 km) results from the continuous discharge of the scalar at this

location.

The time-averaged scalar field and corresponding longitudinal profile along the

centerline are shown in Figures 4.4 and 4.5, respectively. The time-averaged longitu-

dinal concentration profile is normalized by the maximum concentration. Figure 4.4

shows a number of distinct locations with significantly higher concentrations. This is

much more evident in the longitudinal profile (Figure 4.5) where multiple peaks that

are symmetric about the source location (x=1500 m) are seen. This is consistent with

the notion that spontaneous spikes of infinite concentrations can develop when flow

reversals occur, which implies that negative diffusivities are required to predict such

peaks in the conventional advection-diffusion equation (Smith 1981, 1982). Notice

also how the plume width in Figure 4.4 gets narrower upstream and downstream of
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Figure 4.2: Instantaneous scalar concentration fields in the absence of an obstacle in
a pure oscillatory flow (i.e. u = UT sin (ωt) and CD = 0) at (a) t = 0.5 T, (b) t = 1.0
T, (c) t = 1.5 T, (d) t = 2.0 T, (e) t = 2.5 T, and (f) t = 3.0 T. The passive scalar
point source is located at the center of the domain with a radius of 10 m.

the multi-peaks at x= 550, 1050, 1500, 1950 and 2450 m, respectively.

Figure 4.6 shows the time-averaged lateral concentration distributions at x=1050,

1500, and 1950 m (i.e. the location of multi-peaks) with the classical Gaussian dis-

tribution profile superimposed. The statistical values obtained from cross-sectional

profiles at time t = 1.75 T is listed in Table 4.1 while the time-averaged statistics are

given in Table 4.2. The kurtosis values shown in Table 4.1 are all very close to 3, indi-

cating that the passive scalar follows a Gaussian distribution in the lateral direction

at any given cross section. However, the time-averaged statistics do show significant

departure from the Gaussian profile indicating that the longitudinal dispersion is not

Gaussian. This is clearly expected due to the multiple peaks that occur as a conse-

quence of flow reversals. These results confirm what is already well established in the
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Figure 4.3: Time sequence of instantaneous longitudinal concentration profiles in the
absence of the obstacle in a pure oscillatory flow (i.e. u = UT sin (ωt) and CD = 0)
at (a) t = 0.5 T, (b) t = 1.0 T, (c) t = 1.5 T, (d) t = 2.0 T, (e) t = 2.5 T,
and (f) t = 3.0 T. These longitudinal profiles are measured along the centerline
(y = 500 m) and relatively normalized by the maxi-maximum concentration (i.e.
obtained at t = 3.0 T).

sense that the pattern of the dispersal under such pure tidal forcing conditions will

cause higher concentration to occur at considerable distances from the source.

Table 4.1: Statistics of the scalar field at time t = 1.75 T at three different cross
sections: x = 1050, 1500, and 1950 m (i.e. at the multi-peaks).

Location Standard Skewness Kurtosis Mean Peak
of deviation γ β C value

Cross-section (m) σ (× 10−5) (× 10−5) (× 10−5)

at 1050 17.3 -0.93 2.64 1.58 60.99
time 1500 3.26 -1.08 2.85 0.28 11.74

t = 1.75 T 1950 9.12 -1.17 3.32 1.41 35.38
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Figure 4.4: Time-averaged scalar concentration field without an obstacle in a pure
oscillatory flow the flow (u = UT sin (ωt) and CD = 0). The field is averaged over a
duration of three tidal periods.

0 500 1000 1500 2000 2500 3000
0.995

0.9975

1

Longitudinal distance (m)

C
/C

ce
nt

er
lin

e,
m

ax

Figure 4.5: Time-averaged longitudinal profiles without an obstacle under the flow
reversal (u = UT sin (ωt) and CD = 0). Multi-peaks occur symmetrically.
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Figure 4.6: Time-averaged lateral concentration profiles at (a) x = 1050 m, (b)
x = 1500 m, and (c) x = 1950 m. The Gaussian distribution is also shown by the
red-dashed line.

Table 4.2: Time-averaged statistics of the scalar field depicted in Figure 4.6. The
location of the cross-sections are at the multi-peaks, x = 1050, 1500, and 1950 m,
and the centerline is at y = 500 m.

Location Standard Skewness Kurtosis Mean Peak
of deviation γ β C value

Cross-section (m) σ (× 10−5) (× 10−5) (× 10−5)

1050 5.91 -0.88 2.54 0.59 20.82
time

1500 9.99 -0.84 2.06 0.82 31.01
- 1950 7.28 -0.81 2.36 0.77 25.16

Centerline (m)
averaged

y = 500 m 6.57 1.38 4.64 4.42 31.10
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4.3.2 Scalar mixing under flow reversals with flow blockage

Here, we present results of passive scalar mixing in the presence of an obstacle in a

pure oscillatory flow. All other flow conditions are identical to the case without an

obstacle that was discussed in the previous section.

Figure 4.7 shows a time sequence of the instantaneous scalar field in the pres-

ence of an obstacle with CD=1, over two tidal periods. The presence of the almost

impervious obstacle causes significant flow blockage that causes the formation of a

downstream wake. Soon after the initial vortex shedding begins, the flow starts to

retard as the tidal velocity reverses direction and increases in amplitude. This causes

the plume to contract in the longitudinal direction with a simultaneous dispersion in

the lateral direction. As the flow reverses, the vortex formation is also halted due

to the flow momentarily attaining a stationary state (see Figure 4.7(b), (d), (f), and

(h)). Notice also that for this special case with η = ∞, the vortex wake created

during each half cycle will sweep past the obstacle during each subsequent half cy-

cle. It is clearly evident that the combined action of the flow reversals (oscillations)

and obstacle-induced drag results in significantly enhanced dispersion in the lateral

direction compared to the flow reversal case without the obstacle (Section 4.3.1) as

well as the cases discussed in Chapter 3 where flow reversals were not considered.

We note that as the extent of the plume reaches the lateral boundaries, the no-flux

boundary condition used at these boundaries results in the non-physical longitudinal

spreading that is observed as shown in Figure 4.8(g) and (h). In order to see a longer

time sequence, a wider computational is required.

The time-averaged scalar concentration field is shown in Figure 4.8. Time-averaged

lateral (cross-sectional) concentration profiles at x=1000, 1300, 1700, and 2000 m and

spanwise concentration profiles at y=250, 500, and 750 m, are shown in Figures 4.9

and 4.10, respectively. The time-averaged field shows clearly the enhanced mixing

due the combined effect of flow reversals and obstacle-induced drag. Comparing this
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Figure 4.7: The instantaneous scalar concentration fields in the presence of the ob-
stacle in a pure oscillatory flow field (i.e. η = ∞ and CD = 1.0) are shown at (a)
t = 0.25 T, (b) t = 0.5 T, (c) t = 0.75 T, (d) t = 1.0 T, (e) t = 1.25 T, (f) t = 1.5 T,
(g) t = 1.75 T, and (h) t = 2.0 T. The passive scalar point source is located within
the perimeter of the obstacle.

with Figure 4.4, shows how the drag exerted by the obstacle completely changes the

plume behavior. The slight asymmetry is caused by the short number of tidal cycles

used for averaging. This asymmetry is also evident in the longitudinal profiles shown

in Figure 4.10(a) and (c).
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Figure 4.8: Time-averaged scalar field in the presence of an obstacle under the flow
reversal (η = ∞ and CD = 1.0).
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Figure 4.9: Time-averaged lateral concentration profiles at (a) x = 1000 m, (b)
x = 1300 m, (c) x = 1700 m, and (d) x = 2000 m. The Gaussian distribution is also
shown by the red-dashed line.
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Figure 4.10: Time-averaged longitudinal concentration profiles at (a) y = 250 m, (b)
y = 500 m, and (c) y = 750 m. These profiles are normalized by the maximum
concentration value at the given location.
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The statistics of the distributions shown in Figures 4.7 (g) (at t = 1.75 T), 4.9

and 4.10 are given Tables 4.3, 4.4 and 4.5, respectively. The mean and peak values

of the concentration are also listed in these tables. On the whole, the statistics show

how the entire plume field deviates from the Gaussian distribution as well as the

significant enhancement in the mixing compared to the simulation without the drag.

Table 4.3: Statistics of the concentrations for the flow field at time t = 1.75 T.

Location Standard Skewness Kurtosis Mean Peak
of deviation γ β C value

Cross-section (m) σ (× 10−5) (× 10−5) (× 10−5)

at 1000 0.04 4.02 -28.2 4.3×10−3 0.25
time 1300 2.19 1.30 3.29 0.63 7.34

t = 1.75 T 1700 3.18 0.29 1.37 0.67 8.74
2000 8.8×10−5 -0.83 2.20 7.6×10−6 3.5×10−4

Table 4.4: Statistics of the concentrations profiles depicted in Figure 4.9.

Location Standard Skewness Kurtosis Mean Peak
of deviation γ β C value

Cross-section (m) σ(× 10−5) (× 10−5) (× 10−5)

time 1000 0.13 0.39 2.15 0.10 0.49
- 1300 0.35 1.19 3.24 0.14 1.24

averaged 1700 0.33 1.04 2.99 0.13 1.21
2000 0.24 0.09 1.65 0.12 0.86

Table 4.5: Statistics of the concentrations profiles depicted in Figure 4.10.

Location Standard Skewness Kurtosis Mean Peak
of deviation γ β C value

Cross-section (m) σ(× 10−5) (× 10−5) (× 10−5)

time 250 0.10 0.14 2.10 0.05 0.37
- 500 18.4 0.64 1.57 0.70 46.12

averaged 750 0.10 0.25 1.99 0.03 0.37
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4.4 Concluding remarks

This chapter presents results from high resolution, two-dimensional, depth-averaged

numerical simulations of the mixing and transport of passive scalars in purely tidally-

driven flow. We have performed two simulations with and without a cylindrical

obstacle.

The main conclusion of this study is the finding that flow reversals can result in

multiple peaks in concentration at different locations in the flow domain. Further-

more, the presence of the obstacle leads to a highly complex dispersion pattern with

significantly enhanced lateral mixing. The implications are that focusing on a single

location (i.e. at the outfall) for regulatory purposes might not be sufficient since the

scalar concentration peaks can occur far downstream (or upstream) of the source to

affect sensitive locations remote from the source location. The next chapter focuses

on understanding the vortex-wake interaction resulting from flow through multiple

obstacles.
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Chapter 5

Mixing around multiple obstacles

5.1 Introduction

There are many environmental flow problems where the flow encounters a group

of obstacles such as natural vegetation in water bodies, aquaculture pens, bridge

piers, wind turbines and buildings. The flow field becomes very complex due to

vortex-wake interactions that can occur in such settings (see e.g. the complex wake

fields generated in an offshore wind farm as shown in Figure 1.1(c)). An overarching

question concerning flow around multiple obstacles is how the vorticity field (and

related vortical flow signature) is modified both in the vicinity of and far downstream

of these obstacles due to individual vortex-wake interactions.

Recent studies have focused on understanding the different vortex patterns around

multiple obstacles. Zhang and Zhou (2001) showed that the flow patterns around

three side-by-side cylinders is greatly influenced by both the lateral and longitudinal

spacing between the cylinders. They found that a normalized (based on the cylinder

diameter) lateral spacing of 5 is at least required to keep the wake regions indepen-

dent, while two independent wakes are observed at a normalized spacing of 4 in the

longitudinal direction. Other studies have used both staggered and unstaggered array
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of cylinders to study flow around multiple obstacles (Moulinec et al. 2004; Nicolle and

Eames 2011).

While the previous two chapters (Chapters 3 and 4) focused on understanding

the flow around a single obstacle, our focus here is on flow around multiple obstacles.

We use the SUNTANS research code (discussed earlier) to perform a series of highly-

resolved two-dimensional, depth-averaged numerical simulations. In what follows,

we present the problem configurations and simulation cases in slightly more detail

in Section 5.2. This is followed by results and discussion in Section 5.3 and a brief

summary in Section 5.4.

5.2 Problem configuration and diagnostics

In this study, we consider two different configurations: first a single column of three

cylinders is used to study the effect of longitudinal spacing (LG) between the cylinders

on the both the flow and scalar fields; second, we use a staggered array of cylinders

consisting of a total of eight cylinders to study the clustering effect in terms of both

lateral and longitudinal spacing and associated passive scalar mixing. Two important

length parameters are introduced to describe the configurations: (1) the ratio of the

longitudinal center-to-center spacing between adjacent obstacle to the cylinder diam-

eter, LG/D, and (2) the ratio of the lateral center-to-center spacing to the cylinder

diameter LT /D.

5.2.1 Array of cylinders

For all simulations, we use an open channel flow computational domain as shown in

Figure 5.1. Some studies have shown that significant side wall interactions interfere

with the vortex shedding patterns for channel widths shorter than 15D (Jackson 1987;

Ding and Kawahara 1999; Kumar and Mittal 2006). Hence, we use a computational

76



Figure 5.1: Schematic of computational domain.

domain that 20D (400 m) wide for the single column cases to minimize the interference

from the side walls. The width is given by W = T + 20 × D (i.e from 400 m to 800

m) for the staggered array cases depending on the lateral spacing LT (see Figure 5.2

for details).

For all simulations, a mean velocity field is forced at the left-boundary of the open

channel domain given by

u = Um, (5.1)

where Um= 0.1 m s−1 is the amplitude of the mean uni-directional current. Boundary

conditions for the horizontal velocity u are free-slip at the lateral walls. The horizontal

component in the y-direction of the velocity field v has no-flux boundary conditions

on the lateral walls, and the scalar field has gradient-free boundary condition on all

walls. Grid refinement is used in the vicinity of the obstacles. Each cylinder for both

configurations has a continuous scalar point source within its perimeter.
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5.2.2 Simulation cases

A total of 8 simulations as listed in Table 5.1 were conducted to study the different

vortex patterns around the obstacles in both configurations shown in Figure 5.2 in

a uni-directional steady flow field. The first two cases (cases 1-2) are for the single

column configuration with two different longitudinal spacing of LG/D=2 and 10. The

remaining six cases (cases 3-8) have eight cylinders configured in a staggered array

and are used to show the combined effect of different lateral and longitudinal spacing

(LG/D=2 and 4 with LT /D=2, 4 and 10).

Figure 5.2: Layout of cylinders for (a) a single column configuration and (b) a stag-
gered array. The single column has three cylinders while the staggered array consists
of the eight cylinders.

5.3 Results and discussion

In this section, simulation results of the scalar fields are presented.
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Table 5.1: Summary of simulations presented in this chapter.

Case # Array of cylinders LG/D LT /D G [m] T [m] W [m]

1 column 2 20 400
2 column 10 200 400
3 staggered array 2 2 80 80 480
4 staggered array 2 4 80 160 560
5 staggered array 2 10 80 400 800
6 staggered array 10 2 400 80 480
7 staggered array 10 4 400 160 560
8 staggered array 10 10 400 40 800

5.3.1 Single column cases

Figures 5.3 and 5.5 show time sequences of the passive scalar fields for a duration of

10800 seconds for cases 1 and 2 with center-to-center longitudinal spacing of 40 m

and 200 m, respectively. The corresponding time-averaged distributions are shown

in Figures 5.4 and 5.6. The discussion below refers to all of these figures, with a

particular emphasis on the interaction of vortex shedding in near-field (i.e. close to

the cylinders).

For case 1 with LG/D = 2, the cylinders are closely clustered together. The

vortices are shed from both sides of the top and bottom of the last cylinder while the

close proximity of adjacent cylinders behind the first and second cylinders suppresses

the shedding and formation distinct downstream wakes. However, flow separation

at the first two cylinders results a slightly enhanced lateral dispersion close to these

cylinders. Essentially, the three cylindrical obstacles collocated close together in a

column have the same effect of a single elliptical obstacle with a major axis length

of 5D and a minor axis length of D, respectively. The turbulent vortices arising

from these obstacles roll up into a non-staggered row merging further downstream as

shown in Figure 5.3 (e) and (f). Notice also how the binary vortex region consisting

of a staggered rows of vortices does not form in contrast to the single obstacle cases

discussed in Chapter 3. The time-averaged scalar field shows the combined effect of

79



Figure 5.3: Time sequence using the plume concentration of passive scalar around
the cylinders collocated in a single column array with LG/D = 2 (case 1 in Table 5.1)
at time (a) t = 1800 sec, (b) t = 3600 sec, (c) t = 5400 sec, (d) t = 7200 sec, (e)
t = 9000 sec, and (f) t = 10800 sec, respectively.

Figure 5.4: Time-averaged passive scalar field for case 1.
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Figure 5.5: Time sequence using the plume concentration of passive scalar around
the cylinders collocated in a single column array with LG/D = 10 (case 2 in Table
5.1) at time (a) t = 1800 sec, (b) t = 3600 sec, (c) t = 5400 sec, (d) t = 7200 sec, (e)
t = 9000 sec, and (f) t = 10800 sec, respectively.

Figure 5.6: Time-averaged passive scalar field for case 2.
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the vortex shedding from the closely spaced obstacles on the overall lateral mixing

which is significantly enhanced.

On the other hand, for case 2 with LG/D = 10, the vortex shedding and the

formation of the downstream wakes occur behind each of the cylinders. However,

notice how the wake-vortex field behind the first cylinder influences the flow behind

the second cylinder resulting in the shedding of amplified vortices behind the second

and subsequently third cylinders as shown in Figure 5.5 (b), (c) and (d). Clearly,

the increased spacing between the obstacles results in a much more dramatic mixing

pattern compared to the closely spaced pattern for case 1. Beyond the third cylinder,

the vortex scale transitions from characteristic cylinder-size scale to large scale vortex

that we denote as a mid-size vortex. A schematic depiction of the different vortex

scales are shown in Figure 5.11. The time-averaged scalar field shown in Figure

5.5 indicates much stronger lateral spread of the scalar plume than that for case 1.

Clearly, this means there must be an optimum longitudinal spacing LG,opt/D where

lateral mixing is maximized. Beyond this optimum spacing, it can be expected that

the interaction between individual vortex-wake regions becomes weaker resulting in a

decrease in lateral mixing that may very well approach the limit of a single obstacle

at some reasonable spacing. Evidence from previous studies suggests that this limit is

of the order LG/D = 15 (Zhang and Zhou 2001). This remains to be verified through

further simulations.

Cross-sectional profiles of the downstream wakes are shown in Figure 5.7 using the

time-averaged fields. These profiles are taken at x = 120, 160, and 200 m for case 1

(shown in the left panel) and x = 200, 400, and 600 m for case 2 (right panel). Please

note that each time-averaged concentration profile is normalized by the maximum

value at the given cross section. Table 5.2 shows the statistics for the cross sections

shown in Figure 5.7. In this figure, the blue straight line and the red dotted-dash

line denote the concentration distribution in the wake between the adjacent cylinders
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while the black dashed line shows concentration profile in the wake beyond the third

cylinder. The two sets of profiles clearly indicate the effect of the longitudinal spacing.

Figure 5.7(a) shows how the close spacing prevents any noticeable lateral spread of the

scalar (at x=120 m and 160 m) while the occurrence of the cylinder-size vortices far

field promotes enhanced lateral mixing (at x=700 m). On the other hand, for case

2, with significant larger spacing, the lateral plume spread is substantial between

adjacent cylinders. This is reflected in the mean and peak values as shown in Table

5.2. Notice how the distributions are peaked (high kurtosis values especially for case

1) in the near field and approach a Gaussian distribution far field (with kurtosis close

to 3).
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Figure 5.7: Time-averaged scalar profiles at (a) x = 120, 160, and 200 m for case 1,
and (b) x = 200, 400, and 600 m for case 2. Blue straight line, red dotted-dash line,
and black dash line denote the profiles at the three given cross sections, respectively.
The values of the time-averaged concentration are normalized by the maximum values
at the given cross section.
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Table 5.2: Time-averaged statistics of the profiles depicted in Figure 5.7.

Case Location Standard Skewness Kurtosis Mean Peak
No. of deviation γ β C value

Cross-section (m) σ (× 10−5) (× 10−5) (× 10−5)

Case 120 3.61 -2.00 7.63 4.01 25.52
1 160 4.77 -1.19 3.51 4.91 24.27

700 0.33 -0.53 2.61 0.95 1.85

Case 200 0.59 -1.62 4.58 0.26 2.83
2 400 0.76 -1.38 3.70 0.42 3.44

1000 0.29 -1.11 2.82 0.35 1.24

5.3.2 Staggered array cases

The interaction of vortices and downstream wakes around a staggered array consisting

of the eight cylinders in a model open channel domain is shown as a time sequence of

the passive scalar field in Figures 5.8 and 5.9 with lateral and longitudinal spacings of

LG/D = 2 and LT /D = 2 (case 3 in Table 5.1), and LG/D = 10 and LT /D = 2 (case

6), respectively. Figure 5.10 shows the concentration field of all the staggered array

cases (cases 3-8) at t=16200 seconds. We focus our discussion on vortex shedding,

different vortex scales and associated formation of the downstream wakes.

For the staggered array of the obstacles with LG/D = 2 and LT /D = 2 (case 3 in

Table 5.1), the cylinders are too close in the lateral and longitudinal directions. The

array-size scale vortex are alternatively shed from the upper and lower sides of the

array with the cylinder-size scale vortex shedding occurring in the background. At

the first row of cylinders, the flow is deflected towards the upper and lower (or rather

the outer) cylinders, respectively. This is in agreement with the previous studies

by Guillaume and LaRue (1999), Sumner et al. (1999), and Zhang and Zhou (2001)

where it was found that a lateral spacing of LT /D = 1.338 − 1.730 is required for

quasi-stable modes to develop for three side-by-side cylinders placed normal to the

flow. The larger longitudinal spacing between the subsequent rows of cylinders for

case 6 permits the cylinder-size scale vortices to develop (see Figure 5.9) compared
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to case 3 where they are attenuated (see Figure 5.8). For case 6, the cylinder-sized

vortices further promote a well mixed array-size scale vortex to form.

Figure 5.10 shows the different complex vortex patterns that emerge for all the 6

different cases (cases 3-8). For case 3, the closed spaced array of cylinders serve to act

as one big obstacle of the order of the array size, and exhibit plume spread similar to

what would be expected from a single obstacle of a similar size. Perhaps cases 5 and

8 serve as suitable examples that demonstrate the full range of vortex scales that are

depicted in the schematic in Figure 5.11. Clearly, both the lateral and longitudinal

spacing greatly influence the vortex and wake dynamics in such clustered systems.

We note that as the extent of the plume reaches the lateral boundaries, the no-flux

boundary condition used at these boundaries results in the non-physical longitudinal

spreading that is observed as shown in Figure 5.10. A wider computational domain

(which was not explored due to computational and time constraints) is required to

further explore the intricate dynamics of in these complex flows.

The statistics of the time-averaged fields are shown in Table 5.3. The statistical

values are obtained based on the concentration profiles shown in Figures 5.12 and

5.13 for cases 3-5 and cases 6-8, respectively. In Figure 5.12, each panel shows the

lateral concentration distribution at x = 120, 160, and 700 m. The blue straight

line and the red dotted-dashed line show the distributions in the wakes between the

cylinders. The concentration distribution at the far-field, x = 700 m, is shown in the

black dashed line. For the cases 6-8, the lateral distributions are also presented at

x = 200, 400, and 700 m using similar line specifications used for cases 3-5. Overall,

smaller longitudinal spacing (cases 3-5) results in highly peaked distribution with

large kurtosis excess compared to the larger spaced cases (cases 6-8) that are fairly

well mixed.
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Figure 5.8: Time sequence of passive scalar field around cylinders collocated in a
staggered array with LG/D = 2 and LT /D = 2 (case 3 in Table 5.1) at time (a)
t = 1800 sec, (b) t = 3600 sec, (c) t = 5400 sec, (d) t = 7200 sec, (e) t = 9000 sec,
(f) t = 10800 sec, (g) t = 12600 sec, (h) t = 14400 sec, (i) t = 16200 sec, and (j)
t = 18000 sec.
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Figure 5.9: Time sequence of passive scalar field around cylinders collocated in a
staggered array with LG/D = 10 and LT /D = 2 (case 6 in Table 5.1) at time (a)
t = 1800 sec, (b) t = 3600 sec, (c) t = 5400 sec, (d) t = 7200 sec, (e) t = 9000 sec,
(f) t = 10800 sec, (g) t = 12600 sec, (h) t = 14400 sec, (i) t = 16200 sec, and (j)
t = 18000 sec.
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Figure 5.10: Passive scalar fields around a staggered array of cylinders at time t =
16200 sec for (a) Case 3 (LG/D = 2 and LT /D = 2), (b) Case 4 (LG/D = 2 and
LT /D = 4), (c) Case 5 (LG/D = 2 and LT /D = 10), (d) Case 6 (LG/D = 10 and
LT /D = 2), (e) Case 7 (LG/D = 4 and LT /D = 10), (f) Case 8 (LG/D = 10 and
LT /D = 10).
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Figure 5.11: A schematic of cylinder-size, mid-size, and array-size scale vortex pat-
terns that form for uni-directional flows around a single column of cylinders and a
staggered array of cylinders.

89



Table 5.3: Statistics of the time-averaged concentrations of the passive scalar around
the columns of the cylinders depicted in Figure 5.12 and 5.13.

Case Location Standard Skewness Kurtosis Mean Peak
No. of deviation γ β C value

Cross-section (m) σ (× 10−5) (× 10−5) (× 10−5)

Case 120 3.61 -2.03 7.63 25.52 4.01
3 160 4.77 -1.19 3.51 24.27 4.91

700 0.33 -0.53 2.61 1.85 0.95

Case 120 3.73 -2.18 7.87 2.74 24.91
4 160 3.13 0.35 2.15 1.63 15.71

700 0.42 -0.35 2.67 0.93 02.3

Case 120 3.09 -0.38 1.65 0.69 12.67
5 160 6.15 -1.28 3.01 1.38 22.36

700 0.20 -0.37 2.77 0.62 1.23

Case 200 0.41 -0.79 3.85 0.78 2.89
6 400 0.97 -0.55 1.94 1.29 4.37

700 0.80 -0.41 2.46 1.47 4.10

Case 200 0.55 -1.13 3.40 0.48 2.91
7 400 0.52 -0.26 2.74 0.84 3.17

700 0.49 -1.18 4.80 1.21 3.23

Case 200 0.63 -0.75 2.84 0.35 3.31
8 400 0.67 0.19 2.12 0.49 3.40

700 0.54 -0.07 2.13 0.77 2.64
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Figure 5.12: Time-averaged non-dimensional concentration at cross sections of (a)
x = 120 m, (b) x = 160 m, and (c) x = 700 m for Cases 3-5. Blue straight line, red
dotted-dash line, and black dash line describes the lateral time-averaged normalized
concentration profile at the first, second, and third give cross section, respectively.
The values of the time-averaged concentration are normalized by the maximum values
at the given cross section.
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Figure 5.13: Time-averaged non-dimensional concentration at cross sections of (a)
x = 200 m, (b) x = 400 m, and (c) x = 700 m for Cases 6-8. Blue straight line, red
dotted-dash line, and black dash line describes the lateral time-averaged normalized
concentration profile at the first, second, and third give cross section, respectively.
The values of the time-averaged concentration are normalized by the maximum values
at the given cross section.
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5.4 Summary

In this study, we have performed a series of highly-resolved depth-averaged numerical

simulations to understand the lateral mixing of passive scalars through and around

multiple cylindrical obstacles. The simulation results of flow around multiple ob-

stacles highlight the complex vortex and downstream wake patterns arising from two

different array configurations, namely: (i) three cylinders located in a column to study

the effect of longitudinal spacing, (ii) a staggered array consisting of eight cylinders to

study the vortex patterns that emerge due to both lateral and longitudinal spacing.

Various scale vortices are formed depending on both lateral and longitudinal spac-

ing between the obstacles. This study confirms that the importance of the obstacle

locations in promoting vortex interactions and lateral mixing. Hence, the spacing of

obstacles is one of the most important parameters (others being flow and environ-

mental conditions) for predicting environmental impacts of pollutants. Furthermore,

this study can be easily extended to study dynamic loading and power generation

problems in wind engineering.

Extensions of this study focusing on the effect of different hydrodynamic condi-

tions such as time-varying flow and the earths rotation are discussed by means of an

application study in Chapter 6.
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Chapter 6

Application: Modeling of

aquaculture dissolved waste

transport in a coastal embayment 1

6.1 Introduction

The subject of this chapter is on modeling the mixing and transport of dissolved waste

(considered as a passive scalar in this study) such as nitrogen and phosphorus from

aquaculture pens using high-resolution, two-dimensional, depth-averaged numerical

simulations under different time-varying flow conditions in an idealized coastal em-

bayment. The rapid expansion of marine aquaculture is a potential solution to the

problem of overfishing and fisheries depletion worldwide, but also a major threat to

ocean ecosystem. One of the most widely cited but poorly quantified impacts of open

netpen aquaculture is its release of nutrients and other wastes to the surrounding

environment (Naylor and Burke 2005). There is very little work in the refereed lit-

1This chapter has been published in substantial part as “Numerical modeling of aquaculture
dissolved waste transport in a coastal embayment”, by S. K. Venayagamoorthy, H. Ku, O. B. Fringer,
A. Chiu, R. L. Naylor and J. R. Koseff in Environmental Fluid Mechanics,11, pp 329-352, (2011).
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erature describing the dispersal of aquaculture wastes under varying hydrodynamic

conditions at the field scale. Previous numerical studies have focused mostly on

the near-field mixing under steady uni-directional flow conditions (Helsley and Kim

2005). Some recent field measurements on mussel and shellfish aquaculture identify

the environmental impacts of large farms which include wave attenuation and flow

suppression due to interaction with stratification (Delaux et al. 2010; Plew et al. 2006;

Stevens et al. 2008). The complex nature of the flow around fish pens is caused by

flow separation due to partial blockage of the flow by the pens and the combined ef-

fects of tides and winds. At larger scales, the influence of the earth’s rotation becomes

important and can alter the evolution of the waste plume considerably.

The goal of this chapter is to highlight the different dispersal patterns that may

occur under various forcing scenarios (flows, tides, earth’s rotation, and local sources)

in an idealized coastal embayment. The layout of this chapter is as follows: In Section

6.2, we briefly describe the computational approach we employ for this study. Section

6.3 provides an overview of the problem set-up and a summary of all the simulation

cases that will be discussed in Section 6.4. We then present and discuss results

of the lateral mixing of a continuous pollutant source emanating from an array of

aquaculture pens in a idealized coastal embayment under different flow conditions in

Section 6.4. Finally we draw some conclusions and provide some directions for future

work in Section 6.5.

6.2 Numerical methodology

The SUNTANS research code is employed to perform highly resolved simulations

of flow through and around aquaculture open netpens in the idealized coastal em-

bayment shown in Figure 6.1. SUNTANS is an unstructured, finite-volume, paral-

lel coastal-ocean simulator, that solves the three-dimensional nonhydrostatic Navier-
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Stokes equations with the Boussinesq approximation in a rotating frame. It also solves

for the free surface, and the transport of salinity and temperature (see Fringer et al.

2006 and Wang et al. 2008 for details). However, in this study, we employ the depth-

averaged formulation of SUNTANS using a single vertical layer for all simulations.

The governing equations revert to the two-dimensional shallow water equations (also

known as the Saint-Venant equations), together with the depth-averaged continuity

equations given by

∂u

∂t
+u

∂u

∂x
+v

∂u

∂y
−fv = −g

∂h

∂x
+νH

(

∂2u

∂x2
+

∂2u

∂y2

)

+
τ s
x

H
−CDB

√
u2 + v2

H
u+FD,x, (6.1)
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∂2v
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H
v+FD,y, (6.2)

∂h

∂t
+

∂

∂x
(Hu) +

∂

∂y
(Hv) = 0, (6.3)

where H = h + d is the total water depth in m, h is the free-surface height relative

to some vertical datum in m, d is the depth of the bottom relative to some vertical

datum in m, u, v are the horizontal cartesian components of the depth-averaged

velocity vector in m s−1, t is time in s, g is the constant of gravitational acceleration

in m s−1, f = 2Ωearthsinφlat is the Coriolis parameter with Ωearth the angular velocity

of the earth’s rotation in s−1 and φlat the latitude, νh is the horizontal eddy viscosity

in m2s−1, τ s
x and τ s

y are the free-surface stresses at z = h, CDB is a non-dimensional

bottom drag coefficient and FD,x and FD,y are the pen induced drag forces in the x

and y directions respectively, and are given by a quadratic drag law formulation as

shown in Equation (6.5).

We opted to use the two-dimensional depth-averaged formulation since this study

is a first step in addressing far-field influence of the near-field dynamics, with a partic-

ular emphasis on the near-field vortex street which is predominantly two-dimensional.

Furthermore, the two-dimensional highly resolved simulations on their own are com-
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putationally intensive and therefore three-dimensional simulations and associated pa-

rameter studies were not feasible due to computational and time constraints for the

scope of work performed using the two-dimensional simulations.

6.3 Problem configuration and simulation cases

6.3.1 Problem configuration

The domain we use in this study is a model coastal embayment that is 10 km in

length and 5 km wide as shown in Figure 6.1. The bathymetry of the domain consists

of a shallow embayment incised by a deep channel as shown in Figure 6.2. Two sets

of six 20 m diameter fish pens, as shown in Figure 6.1, are all located close to the

western edge of the embayment. The effect of varying the location of the pens on the

dispersal of the waste plume is presented in Section 6.4.

At the alongshore boundaries of the domain shown in Figure 6.1, we impose a

velocity field of the form

v = Um + UT sin(ωt), (6.4)

where Um ≤ 0 is the amplitude of the mean current (where flow is in the north-

south direction); UT is the amplitude of the sinusoidal component of the flow field

with forcing frequency ω; and v is the alongshore component of the velocity field.

Boundary conditions for the horizontal velocity v are free-slip along the coastline and

offshore boundary. The horizontal component in the x-direction of the velocity field u

has no-flux boundary conditions along the coastline and the offshore boundary. The

scalar field has no-flux boundary conditions on all boundaries.

An unstructured mesh is generated for this study with a total of approximately

162,500 cells, with grid refinement in the vicinity of the fish pens as shown in Figure

6.1. The resolution near the pens is roughly 5 m, while that in the far-field is stretched
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Figure 6.1: Unstructured computational mesh of the model coastal embayment used
in the simulations for this study. A velocity field described by Equation (6.4) is
imposed at the northern boundary of the domain with a M2 tidal frequency of ω =
1.4 × 10−4 rad s−1. The image on the right shows a zoomed view highlighting the
grid refinement around an array of six 20 m diameter pens.

to 50 m. Each individual fish pen is cylindrical in shape with a diameter of D = 20 m.

A drag law formulation is used to account for the flow reduction inside the pens and

the resulting decrease in momentum downstream of the pens. This quadratic drag

law formulation is represented on the right-hand side of the x- and y-momentum

equations shown in Equations (6.1) and (6.2) given by

FD,x = −αCD(u2 + v2)1/2

D
u,

FD,y = −αCD(u2 + v2)1/2

D
v, (6.5)

where CD is the non-dimensional drag coefficient exerted by the fish pens; u and v are

the Cartesian components of the velocity vector; and α = 1 inside of the pens while

α = 0 outside of the fish pens. We use a horizontal eddy-viscosity of νh=10−3 m2 s−1,

97



Figure 6.2: Idealized depth contours of the model embayment depicting a shallow
shelf incised by a deep channel. Locations of model fish pens are depicted by the
white boxes (for the offshore cases listed in Table 6.1). The depth is indicated by the
color bar in meters.

and a quadratic bottom drag law formulation (as represented on the right-hand side

in Equations (6.1) and (6.2) with a bottom drag coefficient of CDB = 0.0025. An

estimate of the Reynolds number based on the pen diameter of D=20 m with a

characteristic velocity scale of 0.1 m s−1 and νh =10−3 m2 s−1 is Re = 2000. A

continuous pollutant (scalar) point source is placed inside the perimeter of each pen

as an approximation of the effluent waste discharged from the pens. No horizontal

diffusivity is applied for all simulations since it is assumed that transport dominates
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the dispersion. Transport is computed using a highly resolved total variation dimin-

ishing (TVD) scheme which is explicit and hence conditionally stable but guarantees

monotonicity (Zhang et al. 2011). Time step is restricted using a maximum Courant

number of roughly 0.5 based on the smallest grid spacing and maximum currents.

This limitation provides sufficient temporal resolution while satisfying stability.

For the simple model flow problem, there are two important non-dimensional

parameters. The first parameter, defined by Equation (6.4), is the ratio of the tidal

to mean flow given by

η =
UT

Um

, (6.6)

which compares the amplitude of the oscillatory flow to the amplitude of the mean

current and determines the shape of the contaminant plume (Purnama and Kay 1999).

The other parameter is the non-dimensional tidal excursion length scale given by

K =
2UT

ωD
, (6.7)

where UT is the amplitude of the tidal current; ω is the forcing frequency; and D is

the fish pen diameter. This parameter describes the ratio of the tidal excursion to the

pen diameter, which is known as Keulegan-Carpenter number in wave-structure inter-

action studies (Keulegan and Carpenter 1958). For all of the simulations performed

in this study, we have used an alongshore velocity magnitude of Um = 0.1 m s−1,

which is representative of mean currents in coastal regions such as the St. Lawrence

Island in the Bering Sea. The tidal velocity magnitude is varied to yield different

(field-scale) values of η and K. In Section 6.4, we discuss the influence of these and

other parameters on the dispersion of a contaminant plume in the idealized coastal

embayment shown in Figure 6.1.
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A dimensionless number that is used to quantify the significance of rotational

(Coriolis) effects is the Rossby number and is given by

Ro =
Um

fL
, (6.8)

where f is Coriolis parameter (depends on the latitude); and L is a characteristic

length scale (which is taken as the embayment width of 5 km) The Rossby number

is a ratio of inertial forces to Coriolis forces which result from the Earth’s rotation.

6.3.2 Simulation cases

A total of 7 simulations of the coastal embayment were performed for a number of

different flow conditions and pen locations as shown in Table 6.1. Offshore cases

(cases 1-4) and nearshore cases (cases 5-7) are used to investigate the effect of pen

location on plume dispersion. Case 1, which we refer to as ‘offshore bases case’, takes

into account the drag exerted by each of 12 pens with CD = 1. The earth’s rotation

is included with Coriolis coefficient of f = 8.7 × 10−5 rad s−1. The flow field is driven

by a tidal flow from north to south combined with a northerly flowing mean current

as described by Equation (6.4). The relevant oscillating flow parameters are η = 1

and K = 71, based on a tidal velocity amplitude of UT = 0.1 m s−1 and M2 tidal

period of 12.42 hours.

Case 2 shows a similar simulation to case 5 except that here, the Coriolis terms in

the momentum equations ((6.1) and (6.2)) were switched off by simply setting f=0

(i.e. Ro = ∞). Case 3 presents a simulation where we have added a river inflow to

case 1, with all other parameters kept identical to case 1. A small river inflow river

discharge with a velocity of UR=0.05 m s−1 was placed symmetrically at the channel

incision at the central embayment coast (i.e. at a alongshore distance of 0 m). The

width of the river inflow is 400 m and the discharge is approximately 1500 m3s−1. This
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Table 6.1: Summary of the seven cases simulated in this study. The last column pro-
vides some remarks where the Rossby number and other variables and/or comments
are shown.

Case # Case Name Domain CD η K Remarks

1 Offshore base case Embayment 1.0 1 71 Ro=0.26
2 Offshore with no rotation Embayment 1.0 1 71 Ro = ∞
3 Offshore with river inflow Embayment 1.0 1 71 UR/Um = 0.5
4 Offshore with no pen drag Embayment 0 1 71 Ro=0.26
5 Nearshore base case Embayment 1.0 1 71 Ro=0.26
6 Nearshore with strong tides Embayment 1.0 2 71 Ro=0.26
7 Nearshore with wind Embayment 1.0 ∞ 71 u10 = 10 m/s

is about 10 percent of the volume flow rate entering the embayment from the northern

alongshore boundary from the mean and tidally-induced flow. Case 4 is a simulation

where the pen-induced drag is switched off (CD=0) with all other parameter kept

identical to the ‘offshore base case’ (case 1).

For nearshore cases (case 5-7), the southern facing farm in Figure 6.1 was moved

into the bay and closer to the channel incision (see Figure 6.7). Case 5 is what we

refer to as ‘nearshore base case’. Here, except for the southern farm location, all

other conditions are identical to the ‘offshore base case’ (case 1). In case 6, we take

into account a stronger tidal with η = 2. When η > 1, flow reversals will occur

and dramatic changes on the plume structure can be expected. Case 7 presents a

nearshore simulation where surface wind stress acts over the entire embayment in a

northward direction (i.e. opposite to the mean current flow). We have also removed

the mean current for this case in order to explore the effect of the wind-induced

circulation on the plume distribution.
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6.3.3 Statistical parameters

We assess the plume distribution using statistical indicators such as moments of

non-dimensional concentration field in order to obtain quantitative information on

the plume characteristics. Here, we use the mean standard deviation, skewness, and

kurtosis of the alongshore concentration distribution. A description of these moments

are provided here.

The standard deviation provides a measure of the spread of the concentration

plume and is defined as the root-mean-square of the concentration value from the

mean given by

σ =
√

m2 =

√

√

√

√

√

N
∑

j=1

(

Cj − C
)2

N
, (6.9)

where C is the mean of the concentration distribution; N is the sample size; and m2

is the variance or the second moment about the mean. The skewness is defined as

the third moment about the mean normalized by the cube of the standard deviation

in a form of

γ =
m3
√

m3

2

=

1
N

N
∑

j=1

(

Cj − C
)3

(

1
N

N
∑

j=1

(

Cj − C
)2

)3/2
. (6.10)

This shows the degree of asymmetry of a distribution compared with the Gaussian

distribution that is in perfectly symmetrical. The fourth moment about the mean

normalized by the variance (known as the kurtosis) provides a measure of peakedness

of a distribution usually taken relative to a Gaussian distribution and is given by
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β =
m4

m2

2

=

1
N

N
∑

j=1

(

Cj − C
)4

(

1
N

N
∑

j=1

(

Cj − C
)2

)2
. (6.11)

A concentration distribution with large kurtosis indicates strong intermittency while

a distribution with large skewness indicates a highly asymmetrical distribution.

6.4 Results

Here, we present simulation results of the coastal embayment under different flow

conditions and fish pen locations.

6.4.1 Offshore cases

Offshore base case (Case 1)

The passive scalar concentration field from a simulation run with two sets of fish

farm pens located along the edge of the embayment is shown in Figure 6.3 as a time

sequence over a duration of six tidal periods. For this ‘offshore base case’, we have

included the drag induced by each of the pens on the flow field and have also taken into

account the earth’s rotation. Using a Coriolis parameter of f = 8.7 × 10−5 rad s−1,

and the embayment width as the length scale, the Rossby number for this case is

R = Um/fL = 0.26, which indicates that the Coriolis force will likely influence the

flow dynamics. The flow field is driven by a tidal flow from north to south combined

with a southerly flowing mean current. The relevant oscillating flow parameters as

shown in Table 6.1 are η = 1 and K = 71, based on a tidal velocity amplitude of

UT = 0.1 m s−1 and M2 tidal period of 12.42 hours. The formation of the downstream

vortex shedding is evident early on as shown in Figure 6.3 (a). As the flow reverses,
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Figure 6.3: “Birds-eye-view” of the normalized concentration in the vicinity if two
sets of six 20 m diameter pens (depicted as white boxes) releasing a passive scalar at
the edge of the coastal embayment for the ‘offshore base case’ (case 1).

the plume contracts in a similar manner to that observed for the channel flow case

(as discussed in Chapters 3 and 4 respectively). The plume, while predominantly

transported downstream (southwards) due to the rather strong mean current, also

tends to spread eastward into the bay (see Figure 6.3(c) - (f)).

The concentration distribution for all the offshore cases (case 1-4 in Table 6.1)

at time t = 4 T is shown in Figure 6.4 to highlight the difference in the plume

behavior under different flow conditions. To assess the dispersion characteristics

of the concentration plumes, we analyzed longitudinal profiles of the concentration
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Figure 6.4: “Birds-eye-view” of the normalized concentration in the vicinity if two
sets of six 20 m diameter pens (depicted as white boxes) releasing a passive scalar at
the edge of the coastal embayment at time t = 4 T for (a) offshore base case (case 1),
(b) offshore with no rotation case (case 2), (c) offshore with river inflow case (case
3), and (d) offshore with no pen drag case (case 4), respectively.

along the coastline as shown in Figure 6.5 at times t = 3 T and 6 T, respectively.

The alongshore concentration profiles for cases 6, 7 and 8 are also shown in Figure

6.5 for comparison. These profiles for the ‘offshore base cases’ clearly show that the

waste plume disperses toward the embayment coast albeit at very low concentration

levels.

We computed the moments of the alongshore concentration distribution (as dis-

cussed in Section 6.3.3) for all the simulations and the statistics are shown in Tables

6.2 and 6.3. Also shown in Tables 6.2 and 6.3 are the peak values of the concentration

for all the cases outlined in Table 6.1 at t = 3 T and 6 T respectively. Time series of

the concentration profiles at three locations along the embayment coastline highlight

the temporal intermittency in the concentrations along the embayment coast (see

Figure 6.6). Details of the results of these simulations are discussed in what follows.
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Figure 6.5: Concentration profiles of the passive scalar along the embayment coast
line at (a) t = 3 T and (b) t = 6 T, for the offshore base case (solid line, case
1), offshore with no rotation case (dash line, case 2), offshore with river inflow case
(dash-dotted line, case 3) and offshore with no pen drag case (dotted line, case 4),
respectively.

Table 6.2: Statistics of the alongshore concentrations depicted in Figure 6.5(a) and
6.9(a) at time t = 3 T.

Case # Case Name Mean Standard Skewness Kurtosis Peak
C deviation γ β value

(× 10−3) σ (× 10−3) (× 10−3)

1 Offshore base case 0.61 1.92 3.06 10.58 7.73
2 Offshore with no rotation 0.18 0.78 5.66 36.41 5.69
3 Offshore with river inflow 0.04 0.17 7.18 63.86 1.83
4 Offshore with no pen drag 0.20 0.71 4.69 27.00 4.94
5 Nearshore base case 0.05 0.15 3.64 15.96 0.89
6 Nearshore with strong tides 0.00 0.00 10.24 111.52 0.00
7 Nearshore with wind 0.87 3.00 5.43 34.96 21.26
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Figure 6.6: Time series of concentration profiles of passive scalar at three different
locations along the embayment coast for offshore cases 1, 2, 3 and 4, respectively.

Table 6.3: Statistics of the alongshore concentrations depicted in Figure 6.5(b) and
6.9(b) at time t = 6 T.

Case # Case Name Mean Standard Skewness Kurtosis Peak
C deviation γ β value

(× 10−3) σ (× 10−3) (× 10−3)

1 Offshore base case 0.62 0.77 1.11 3.69 3.74
2 Offshore with no rotation 1.09 4.36 6.25 48.66 39.92
3 Offshore with river inflow 0.00 0.00 13.71 195.37 0.41
4 Offshore with no pen drag 1.81 3.10 2.11 6.29 12.07
5 Nearshore base case 2.78 4.52 1.76 5.20 21.80
6 Nearshore with strong tides 0.34 1.21 4.85 28.36 8.92
7 Nearshore with wind 2.36 4.38 2.32 8.13 21.43
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Offshore without rotation (Case 2)

The effect of the earths rotation on the dispersion of the plume was investigated by

simply switching off the Coriolis term in Equations (6.1) and (6.2) in our numerical

code. Figure 6.4(b) shows the concentration field at time t = 4 T together with the

concentration field for ‘offshore base case’ for the same time (Figure 6.4(a)). For

this scenario, it is seen that the plume does not spread deep into the embayment.

The kurtosis of the alongshore concentration distribution for this case (case 2) are

considerably higher than the ‘offshore base case’ as shown in Tables 6.2 and 6.3. The

absence of the Coriolis force implies that the flow field is not deflected into the embay-

ment especially during slack tides when the effects of rotation are expected to be very

strong. Hence, when the tide turns, the plume is flushed downstream (southwards)

with much higher concentrations as indicated by the high peak in Figure 6.5(b) at

t = 6 T, resulting in a highly peaked distribution. Furthermore, the asymmetry in

the concentration distribution is also enhanced by the absence of the Coriolis forc-

ing as indicated by skewness statistics in Tables 6.2 and 6.3. These results clearly

demonstrate that the large scale effect of the earth’s rotation does indeed influence

the dispersion of such plumes and should not be disregarded in numerical modeling.

Offshore with river inflow (Case 3)

Enclosed coastal embayments may often have rivers discharging into them. A small

inflow river discharge with a velocity of UR=0.05 m s−1 was placed at the head of the

channel incision as discussed in Section (6.3.2). The resulting plume concentration

at t = 4 T is shown in Figure 6.4(c). With all other parameters being equal with the

‘offshore base case’, it is evident (as would be expected) that the plume spread into

the embayment is impeded by the river inflow. Both the skewness and kurtosis of the

concentration distributions alongshore are considerably higher than the ‘offshore base

case’. However, in contrast to the previous case (no rotation case), the time sequence
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of the plume distributions (not shown here) clearly indicate that the plume does not

hug the embayment coast except further downstream resulting in a highly skewed

distribution. This is clearly a desirable situation for fishfarm operations since the

waste plume is very unlikely to reach the coastline due to the flushing action of the

freshwater inflow. For a buoyant river plume, further research using three-dimensional

simulations are required to capture the vertical mixing of the river plume with the

denser coastal water.

Offshore with no pen drag (Case 4)

The effect of the drag induced by the fish pens causes flow separation and vortex shed-

ding thus enhancing the local mixing as was clearly demonstrated from the results of

the open channel cases (Chapters 3, 4 and 5). In an effort to understand the influence

of blockage introduced by the pens, we ran an offshore case without accounting for

the drag from the pens. For this case, it is clear from the concentration distribution

shown in Figure 6.4(d) that the absence of drag results in less mixing compared to

the ‘offshore base case’ shown in Figure 6.4(a), even though the overall plume dis-

tribution looks very similar. The peak concentration is at least three times higher

than the peak value for the ‘offshore base case’ as shown in Tables 6.3 at t = 6 T.

This results in conjunction with the results of the channel flow cases (from earlier

chapters) highlights the need to correctly account for the drag induced by the pens

in predictive numerical models for water quality applications. An over prediction of

the drag (i.e. a higher drag coefficient) will result in a well mixed plume and on the

other hand, under prediction (i.e. a lower drag coefficient) of the drag will imply poor

mixing conditions.
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6.4.2 Nearshore cases

For the nearshore cases (case 5-7), we have moved the southern facing farm into

the bay and closer to the channel incision (see Figure 6.7) in order to explore the

variability in the plume dispersion as a function of the location of the pens.

Nearshore base case (Case 5)

The concentration distribution for the ‘nearshore base case’ is shown in Figure 6.7

as a time sequence over six tidal periods. The distributions indicate much higher

concentrations closer to the coast compared to the‘offshore base case’ (case 1, Figure

6.3). The concentration distributions of the plume for case 5 as seen in Figure 6.7

indicate much higher concentrations closer to the coast compared to the ‘offshore base

case’ (case 1). Figure 6.8 shows the concentration distribution at time t = 4 T for all

the nearshore cases (cases 5, 6 and 7 respectively). As expected, the concentration

profiles along the coast as shown in Figure 6.9 are at least an order of magnitude

higher than those for the offshore base case’ (Figure 6.5) especially at t = 6 T. Time

series of the concentrations at the three same locations shown for all offshore cases

in Figure 6.6 are repeated here for all the nearshore cases (see Figure 6.10). The

relocation of the southern farm close to the coast has reduced the concentration at

the southern offshore boundary (Figure 6.8(a)) while the concentration at the head

of the channel incision has dramatically increased by up to two orders of magnitude

(Figure 6.8(b)).

Nearshore with strong tides (Case 6)

The parameter η determines the shape of the plume. In other words, it quantifies the

effect of the tidal action to that of the mean current. A higher value of η signifies

a stronger tidal signal and allows for a stronger plume reversal. A simulation for

the ‘nearshore case’ was performed with η = 2 with the results of the concentration
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distribution shown in Figure 6.8(b). We see dramatic changes in the plume structure

for this case compared to the distribution for the ‘nearshore base case’ shown in Figure

6.8(a). The plume undergoes a much stronger reversal as the tide changes direction.

It is clear from this figure (and other time sequence plots not shown here) that the

plume reaches some parts of the northern coast. The strong sloshing motion of the

tidal flow in the alongshore direction results in highly peaked and skewed distributions

compared to the ‘nearshore base case’ as shown by the high values of the kurtosis and

skewness in Tables 6.2 and 6.3. This result indicates the importance of identifying

the correct (and dominant) hydrodynamic conditions at a particular fish farm site

because these conditions will dramatically influence how far a waste plume from a

fish farm site would spread.

Nearshore with wind (Case 7)

Finally, we present a ‘nearshore case’ with a surface wind stress acting over the entire

embayment in the southerly direction (i.e. opposite to the tidal flow). We have also

removed the mean current for this case in order to explore the effect of the wind-

induced circulation on the plume distribution. Figure 6.8(c) shows the concentration

distribution at t = 4 T. The pattern for this case is completely different to those

shown earlier. Here, the wind stress used was estimated to yield a mean velocity of

0.1 m s−1 based on a mean wind speed U10 = 10 m s−1 at a height of 10 m in the

atmospheric boundary layer. Clearly, it is seen that the wind effect is dominant and

tends to drive the distribution in a northward direction. This is accentuated even

more when the tide reverses and the plume is dispersed more toward the northern

end of the bay.
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Figure 6.7: “Birds-eye-view” of the normalized concentration in the vicinity if two
sets of six 20 m diameter pens (depicted as white boxes) releasing a passive scalar at
the edge of the coastal embayment for the ‘nearshore base case’ (case 5).
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Figure 6.8: “Birds-eye-view” of the normalized concentration in the vicinity if two
sets of six 20 m diameter pens (depicted as white boxes) releasing a passive scalar at
the edge of the coastal embayment at time t = 4 T for (a) nearshore base chase (case
5), (b) nearshore with strong tides case (case 6), (c) nearshore with wind case (case
7), respectively.

113



−5000 −4000 −3000 −2000 −1000 0 1000 2000 3000 4000

10
−3

10
−2

10
−1

longshore distance (m)

N
or

m
al

iz
ed

 c
on

ce
nt

ra
tio

n 
(C

/C
0)

 

 

(a)Case 5
Case 6
Case 7

−5000 −4000 −3000 −2000 −1000 0 1000 2000 3000 4000

10
−3

10
−2

10
−1

longshore distance (m)

N
or

m
al

iz
ed

 c
on

ce
nt

ra
tio

n 
(C

/C
0)

 

 

(b)Case 5
Case 6
Case 7

Figure 6.9: Concentration profiles of the passive scalar along the embayment coast
line at (a) t = 3 T and (b) t = 6 T, for the nearshore case (solid line, case 5), nearshore
case with strong tides (dash line, case 6), and nearshore case with wind (dash-dotted
line, case 7), respectively.
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Figure 6.10: Time series of concentration profiles of passive scalar at three different
locations along the embayment coast for nearshore cases 9, 10, and 11, respectively.
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6.5 Summary

This study presents results from highly-resolved two-dimensional, depth-averaged nu-

merical simulations of the mixing and transport of continuous point sources of waste

from an array of aquaculture pens modeled as porous cylinders. The results highlight

the complex and different dispersion patterns that occur under such flow conditions.

In particular, the results from this study demonstrate the following key points:

• The mixing and dispersion of the pollutant field under oscillatory flow condi-

tions with added drag from the fish pens is very different from the classical

uni-directional flow case where a Gaussian plume spread occurs. Under oscil-

latory flow conditions, our results show plumes of waste with relatively high

concentration occurring at considerable distances from the source.

• The large scale effect of the Earth’s rotation does indeed influence the dispersion

of contaminant plumes and should be accounted for in numerical models.

• The local runoff from rivers and other tributaries should be taken into account

in modeling the plume dispersion in near-coastal environments.

• Accounting for the drag induced by the pens is important to accurately predict

the level of mixing in numerical models for water quality applications.

• It is necessary to identify the correct (and dominant) hydrodynamic conditions

at a particular fish farm site because these conditions will dramatically influence

how far a waste plume from a fish farm site would spread.

In addition, our work shows strong “non-Gaussian” behavior in that the spatial decay

is not necessarily exponential. This is highlighted by the statistics of the plume

concentrations, which indicate highly peaked and skewed distributions and show that

high concentrations of the scalar field can be found at significant distances from

116



the source. The results also indicate pronounced spatio-temporal variability in the

concentration fields and this spatio-temporal variability is a strong function of the

particular forcing parameters involved. Based on our results, “dilution as a solution to

pollution” should not be prescribed for marine aquaculture, particularly in near-shore

systems.

This study is a first step towards understanding the complex plume dispersion

dynamics in the vicinity of aquaculture farms in nearshore coastal waters. Further

work using three-dimensional simulations, is required to gain key insights into the

three-dimensional flow structure that would occur in the close proximity of aqua-

culture pens. Furthermore, the flow model needs to be coupled with a biological

model that will allow for the prediction of other water quality parameters, such as

dissolved oxygen and plankton concentrations. The use of such models in the design

of water quality regulations and the monitoring of wastes will be key to ensuring an

environmentally sound aquaculture industry.

117



Chapter 7

Conclusion

7.1 Summary of investigation

There have been numerous studies over the last few decades on flow around obstacles

and passive scalar mixing with an emphasis on understanding the turbulent vortex-

wake dynamics under different flow conditions. Changes in hydrodynamic conditions

and locations of obstacles can result in very complex scalar distributions. Improved

understanding of the mixing under such conditions is required for developing better

prediction and decision strategies in many environmental engineering problems related

to water and air quality issues. The research discussed in this dissertation has been

motivated by the need for improved understanding of scalar mixing and transport

in widely varying environmental flow conditions such as in rivers, estuaries, oceans

and the atmospheric boundary layer. As such, the main focus of this research is on

fundamental aspects of passive scalar mixing around obstacles in environmental flows.

In this dissertation, an in-depth investigation of turbulent mixing of passive scalars

under various flow conditions in the presence of the obstacles has been carried out

using high-resolution, two-dimensional numerical simulations of the incompressible

Navier-Stokes equations. The main results of the research are presented in Chapters
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3, 4, 5, and 6, respectively.

In Chapter 3, the effects of the presence of a single porous cylinder under uni-

directional mean flow condition and combined conditions of oscillatory and mean

flows were presented using a total of 49 simulations. Fundamental aspects of the

vortex-wake dynamics were discussed to highlight their effect on mixing by means

of turbulent scalar diffusivity. This lateral scalar diffusivity was parameterized as a

function of three key non-dimensional parameters.

In Chapter 4, scalar mixing and transport in flow reversal conditions were investi-

gated. Two simulations in purely oscillatory flow conditions (i.e. no mean flow) with

and without drag were performed to show the drag effect under such conditions, using

a tidal forcing period of 8 hours. The simulation results reveal harmonic contractions

and expansions of the scalar field resulting in much more convoluted flow patterns in

the presence of an obstacle compared to the cases without flow reversals discussed in

Chapter 3.

The work done in Chapter 5 primarily focused on understanding the vortex-wake

interaction resulting from flow through multiple obstacles. Both a single column

consisting of 3 cylinders and a staggered array consisting of 8 obstacles were used for

this investigation. A total of eight simulations were performed as a part of this study.

The results presented three different vortex scales depending on both the lateral and

longitudinal spacing between the obstacles.

The impact of open netpet aquaculture farms located in an idealized coastal em-

bayment was presented in Chapter 6. A total of seven depth-averaged simulations

were performed that encompass a range of hydrodynamic and environmental condi-

tions such as the rotation of the Earth, river inflow, strong tides, and the wind stress

at the free surface as well as the location of pens. This engineering application high-

lights the importance of correct descriptions of hydrodynamic conditions, geometry,

and location of obstacles at any given site in order to accurately predict the impact
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of pollutants on the ecosystem and water quality.

7.2 Main conclusions

The following is a brief outline of the important results obtained from this study:

• From an in-depth parametric study, it was clearly shown in Figure 3.9, 3.15,

and 3.19 how the three non-dimensional parameters CD, η, and K affect the

dispersion of a passive scalar plume. The lateral mixing coefficients were pa-

rameterized as a function of the non-dimensional drag coefficient CD at two

other given parameters (as shown in Equation (3.18) and Table 3.2, 3.3, and

3.4). Mixing was found to be greatly enhanced under the combined action of

obstacle-induced drag and oscillatory flow superimposed into mean current with

η ≤ 1. The lateral mixing coefficient was considerably larger (about 40 times in

some cases) than the typical classical dispersion coefficient of 0.15, depending

on the amplitude and frequency of the oscillatory forcing as well as the porosity

of the obstacle. As shown in Table 3.5, for oscillatory flows conditions with

η = 1, the scaling factor λ ≈ 31 − 46 in Equation (3.18) is about 6-9 times

larger than that for uni-directional flow (λ ≈ 5) in the presence of an obstacle.

• Under pure oscillatory flow conditions or even combined flows with η > 1, mul-

tiple flow reversals will cause older effluent discharge to return to the discharge

site (as shown in time sequence of the passive scalar field of Figure 4.2 and 4.7),

resulting in high concentration levels. In the absence of obstacles, a symmetric

concentration distribution results in the lateral. However, the reversals cause

the longitudinal profile to depart from the Gaussian distribution commonly ob-

served for contaminant plumes in uni-directional flows. The effect of porosity of

the obstacle for the pure oscillatory forcing field is significantly higher than for
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the cases discussed in Chapter 3 (for η < 1) mainly due the stronger contraction

and expansion of the plume during different phased of the tidal cycle.

• The interaction of the vortex-wake regions generated by multiple obstacles re-

sult in different large scale vortex-wake patterns. For steady uni-directional

flow conditions, the results highlight the effect of the location of the obstacles,

specifically the lateral and longitudinal spacing between adjacent obstacles. Dif-

ferent cylinder-, mid-, and array-size scale vortices can occur depending on the

spacing between the obstacles. This study shows that locations of obstacles is

a fundamental parameter that controls the intensity of the vortex interactions

in a flow domain containing an array of obstacles.

• The field-scale study on the mixing of dissolved waste from aquaculture pens

provided an understanding of the complex plume dispersion dynamics that can

occur in the vicinity of fish farms in nearshore coastal waters. The complex con-

centration patterns depending on hydrodynamic conditions at a specific study

site is highlighted by the statistics of the plume concentrations of the passive

scalars, which indicate highly peaked and skewed distributions and show that

the high scalar concentrations can be found at significant distances from the

point source. The results also indicate pronounced spatio-temporal variability

in the concentration field and this spatio-temporal variability is a strong func-

tion of the particular forcing parameters involved. Our results mainly show

that “ dilution as a solution to pollution ” should not be prescribed for marine

aquaculture, particularly in nearshore environments.
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7.3 Suggestions for further research

This research is a first step towards gaining fundamental insights into the flow dynam-

ics encountering the porous obstacles under the different flow conditions and can lead

to better parameterizations of such processes for practical applications in engineering

and oceanography. Further work using three-dimensional simulations is required to

gain key insights into the three-dimensional flow structure that would occur in the

close proximity of obstacles especially under stably stratified conditions. Ultimately,

the hydrodynamics should be linked with the biology and as such, further extensions

of this work should couple the flow model with a biological model that will for example

allow for the prediction of other water quality parameters, such as dissolved oxygen

and plankton concentrations. Such models are increasingly required for formulating

appropriate water quality regulations and for monitoring purposes for a sustainable

environment.
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