
DISSERTATION

ESSENTIAL COMPETENCIES OF EXCEPTIONAL

PROFESSIONAL SOFTWARE ENGINEERS

Submitted by

Richard T. Turley

Department of Computer Science

In partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 1991



COLORADO STATE UNIVERSITY

October 21, 1991

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED

UNDER OUR SUPERVISION BY RICHARD T. TURLEY ENTITLED

"ESSENTIAL COMPETENCIES OF EXCEPTIONAL PROFESSIONAL

SOFTWARE ENGINEERS" BE ACCEPTED AS FULFILLING IN PART

REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY.

Committee on Graduate Work

CGf-Adyrsor

Department Head



ABSTRACT OF DISSERTATION

ESSENTIAL COMPETENCIES OF EXCEPTIONAL

PROFESSIONAL SOFTWARE ENGINEERS

This dissertation presents a differential study of exceptional and non-exceptional

professional software engineers in the work environment. The first phase of the study

reports an in-depth review of 20 engineers. The study reports biographical data,

Myers-Briggs Type Indicator test results, and Critical Incident Interview data for 10

exceptional and 10 non-exceptional subjects. Phase 1 concludes with a description of

38 essential competencies of software engineers. Phase 2 of this study surveys 129

engineers. Phase 2 reports biographical data for the sample and concludes that the

only simple demographic predictor of performance is years of experience in software.

This variable is able to correctly classify 63% of the cases studied. Phase 2 also has

the participants complete a Q-Sort of the 38 competencies identified in Phase 1. Nine

of these competencies are differentially related to engineer performance. A10 variable

Canonical Discriminant Function is derived which is capable of correctly classifying

81% of the cases studied. This function consists of three biographical variables and

seven competencies. The competencies related to Personal Attributes and

Interpersonal Skills are identified as the most significant factors contributing to

performance differences.

Richard T. Turley
Computer Science Department
Colorado State University
Fort Collins, CO 80523
Fall 1991

111



ACKNOWLEDGEMENTS

I would like to acknowledge the influence and support of many individuals

throughout the creation of this dissertation. Dr. James Turley provided me with early

inspiration and support encouraging me to undertake this adventure. He continued

to provide critical review and guidance at every step in the research and was particularly

helpful in the statistical analysis of my results. Dr. Lillian Eriksen was also a strong

supporter throughout the research and did a wonderful job of making statistical analysis

understandable to a computer scientist.

Professor Gerry Johnson proved to be the ideal advisor for this research. His

positive, can-do attitude kept me moving during the slow periods of the project. His

gentle guidance encouraged my learning but also ensured that help was always at hand.

Professor Charles Neidt was invaluable in his contributions to the research method

applied. He consistently went the extra mile to identify methods which would be most

effective in this project. He also provided much of the keen insight needed to interpret

the results.

Professor James Bieman, as co-advisor, kept the research and its goals on track.

He continued to ask the hard questions that made the result stronger. Professor Kurt

Olender also participated in the review of my work and I thank him for his input. The

final member of my committee is Dr. Jack Walicki. Jack has been a long-time friend

and is personally responsible for starting me on this long road a few years ago. I wish

to thank him for his encouragement and his support and for believing in the quest.

IV



Marilyn Pultz provided invaluable assistance in the application of the

Myers-Briggs Type Indicator to the research at hand. She also provided great insight

into the interpretation of its results. Marilyn took a keen interest in the research and

met with the Phase 1 participants to interpret the results of their individual

Myers-Briggs tests.

I would like to thank the Hewlett-Packard Company for setting a fine example

as an employer that supports continued education and for encouraging my research.

I would particularly like to thank Chuck House for granting initial approval for the

work and for taking a personal interest in it. I'd also like to thank Tom Christian for

the financial support and his patient understanding of my preoccupation.

I would like to thank the managers and engineers of the Company studied in this

research. Without their active participation and support this would never have been

possible.

I would like to acknowledge my parents, Virginia and Frank Turley, for instilling

in me a lifelong love of learning.

Finally, I would like to thank my family who survived extended periods with out

a husband or father while I pursued this research. I thank Joyce, Jeff, Kimberly, and

Nate for their understanding and encouragement.



DEDICATION

To Joyce, Jeff, Kimberly, and Nate

VI



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ........................................................................ 1

CHAPTER 2 REVIEW OF PRIOR RESEARCH .......................................... 6
2.1 Research Approaches ................................................................................. 6
2.2 Comparable Studies and Critique ............................................................. 10

2.2.1 MCC Study of Designers .................................................................... 10
2.2.2 Evans - Simkin Study of Student Proficiency .................................. 13
2.2.3 Kagan - Douthat Study of Learning FORTRAN ........................... 15
2.2.4 Love Study of Student Performance ................................................ 16
2.2.5 Issue of Cognitive Science ................................................................. 19
2.2.6 Conclusions .......................................................................................... 20

2.3 Research Methods ....................................................................................... 21
2.3.1 Who to study ........................................................................................ 21
2.3.2 What to study ....................................................................................... 22
2.3.3 How to study ........................................................................................ 23

2.3.3.1 Myers-Briggs Cognitive Style Type Indicator ........................ 24
2.3.3.2 Critical Incident Interviews....................................................... 26
2.3.3.3 Q Methodology ........................................................................... 28
2.3.3.4 Statistical Analysis ...................................................................... 29

2.4 Conclusions ................................................................................................... 31

CHAPTER 3 RESEARCH METHOD AND DESIGN ................................. 33
3.1 Phase 1 Qualitative Data Phase .............................................................. 35

3.1.1 Selection of Subjects ........................................................................... 36
3.1.2 Biographical Questionnaire ............................................................... 37
3.1.3 Critical Incident Interview ................................................................. 38
3.1.4 Phase 1 Method Summary ................................................................. 41

3.2 Phase 2 Quantitative Data Phase ............................................................ 42
3.2.1 Selection of Subjects ........................................................................... 43
3.2.2 Biographical Questionnaire ............................................................... 44
3.2.3 Q-Sort.................................................................................................... 46
3.2.4 Phase 2 Method Summary ................................................................. 47

CHAPTER 4 DATA PRESENTATION ........................................................... 48
4.1 Phase 1 Qualitative Data Collection ...................................................... 49

4.1.1 Biographical Questionnaire ............................................................... 50
4.1.2 Myers-Briggs Type Indicator ............................................................. 57
4.1.3 Critical Incident Interviews ............................................................... 61

4.1.3.1 Identified Competencies ........................................................... 62
4.1.3.1.1 Retained Identified Competencies ................................. 64
4.1.3.1.2 Rejected Identified Competencies .................................. 73
4.1.3.1.3 Summary of Identified Competencies ............................ 75

4.1.3.2 Self-Described Competencies .................................................. 78

vn



4.1.3.3 Manager Described Competencies ......................................... 85
4.1.3.4 Summary of Competencies ....................................................... 86

4.1.4 Summary of Phase 1 Data ............................................................... 90
4.2 Phase 2 Quantitative Data Collection .................................................... 91

4.2.1 Subject Selection ............................................................................ 91
4.2.2 Biographical Questionnaire ............................................................... 92

4.2.2.1 Differential View of Descriptive Statistics ............................. 98
4.2.3 Q-Sort Results ..................................................................................... 100
4.2.4 Discriminant Analysis ......................................................................... 104
4.2.5 Summary of Phase 2 Data .................................................................. 112

4.3 Summary of Data Presentation ........................................................... 112

CHAPTERS FINDINGS AND CONCLUSION ............................................. 114
5.1 Univariate Analysis ..................................................................................... 114
5.2 Multivariate Analysis .................................................................................. 121
5.3 Dynamic System Model of Performance ................................................. 126
5.4 Summary........................................................................................................ 130

CHAPTER 6 FUTURE DIRECTIONS FOR FURTHER STUDY ........... 132

REFERENCES......................................................................................................... 141

APPENDICES .......................................................................................................... 145
A Phase 1 Biographical Questionnaire ........................................................... 146
B Phase 1 Standard Ethics Protocol................................................................ 148
C Phase 1 Critical Incident Interview Outline .............................................. 149
D Derived Competencies from Transcript Analysis .................................... 152
E Self-Described Competencies ...................................................................... 180
F Survey Instructions for Participants ............................................................. 185
G Phase 2 Biographical Questionnaire .......................................................... 186
H Phase 2 Competency Statements ................................................................ 188

vm



FIGURE 2.1
FIGURE 3.1
FIGURE 3.2
FIGURE 3.3
FIGURE 4.1
FIGURE 4.2
FIGURE 5.1
FIGURE 5.2
FIGURE 6.1
FIGURE 6.2

LIST OF FIGURES

Research Area Funnel.................................................................... 32
Research Data Triangulation ........................................................ 34
Dissertation Research Method (Phase 1) ................................... 42
Dissertation Research Method (Phase 2) ................................... 47
MBTI Results (Phase 1) ................................................................. 58
Explained Variance of 10 Var Discriminant Func .................... Ill
Dynamic System Model of Performance ..................................... 127
Key Research Results ..................................................................... 131
Research Implications .................................................................... 134
Future Directions for Further Study ............................................ 137

IX



LIST OF TABLES

TABLE 2.1 Description of MBTTs 4 Preference Scales ................................... 25
TABLE 4.1 Population Summary (Phase 1) ....................................................... 50
TABLE 4.2 Subject Education (Phase 1) ............................................................ 51
TABLE 4.3 Highest Degree Held (Phase 1) ....................................................... 51
TABLE 4.4 Majors for Degrees Held (Phase 1) ................................................ 52
TABLE 4.5 Language/Method Usage (Phase 1) ............................................... 53
TABLE 4.6 Subjects Work Experience (Phase 1) .............................................. 54
TABLE 4.7 Tests for Difference (Phase 1) ......................................................... 56
TABLE 4.8 Years at Company in Software (Phase 1) ...................................... 57
TABLE 4.9 MBTI Differential Scores (Phase 1) ............................................... 60
TABLE 4.10 Comptencies from Transcript Analysis (Phase 1) ...................... 77
TABLE 4.11 Retained Self-Described Competencies (Phase 1)..................... 84
TABLE 4.12 Retained Competency Summary Table (Phase 1)...................... 87
TABLE 4.13 Rejected Competency Summary Table (Phase 1) ...................... 89
TABLE 4.14 Population Summary (Phase 2) ..................................................... 92
TABLE 4.15 Subject Gender (Phase 2) ............................................................... 93
TABLE 4.16 Subject Age (Phase 2) ..................................................................... 93
TABLE 4.17 Subject Education (Phase 2) .......................................................... 94
TABLE 4.18 Highest Degree Held (Phase 2).................................................... 95
TABLE 4.19 Majors for Degrees Held (Phase 2) .............................................. 95
TABLE 4.20 Language Usage (Phase 2) ............................................................. 97
TABLE 4.21 Work Experience (Phase 2) ........................................................... 98
TABLE 4.22 Total Years Worked (Phase 2) ...................................................... 98
TABLE 4.23 Tests for Difference (Phase 2) ....................................................... 99
TABLE 4.24 Q-Sort Competency Responses ..................................................... 101
TABLE 4.25 Differential Q-Sort Competency Responses, T-Test ................. 103
TABLE 4.26 Cross-Correlations of Predictor Variables ................................... 105
TABLE 4.27 Non-Normal Variables (Phase 2) .................................................. 107
TABLE 4.28 Retained Variables for Discriminant Analysis ............................ 108
TABLE 4.29 Full Discriminant Analysis - Summary Table .............................. 109
TABLE 4.30 Full Discriminant Analysis - Classification ................................. 109
TABLE 4.31 Limited Discriminant Analysis -10 Variables ............................ 110
TABLE 5.1 Competencies By Category............................................................... 116



TABLE OF CONTENTS

E Self-Described Competencies ...................................................................... 180
F Survey Instructions for Participants ............................................................. 185
G Phase 2 Biographical Questionnaire .......................................................... 186
H Phase 2 Competency Statements ................................................................ 188

vn



CHAPTER 1

INTRODUCTION

The wide range of intersubject variability has been treated
as a source of variance that must be compensated for in experiments

on other factors. At the same time, however, the source and properties
of this variance represent important research questions in their own right.1

Individual differences in performance between software developers2 have been

noticed and measured. Differences have been treated as a source of undesirable

variance and significant steps are taken to factor it out. This research is a study of this

variance in an effort to improve the productivity of all software developers.

This study is based on the premise that exceptional software engineers exhibit

different skills which they apply to the problems of software engineering. These unique

skills can be identified by careful differential study of experienced software engineers.

Further, once these skills are recognized, they can be transferred to the software

engineering population at large. Thus all software engineers can be taught valuable

improvement skills. These results provide a criterion for implementing improved

toolsets, and allow for the use of the appropriate engineers on each project.

The objective of this dissertation is to help unlock the potential of individual

software engineers. The study is based on the thesis that:

JR. E. Brooks, "Studying Programmer Behavior Experimentally: The Problem of Proper
Methodology," Communications of the ACM, Vol. 23, No. 4, pp. 207-213, April 1980.

^In this dissertation the terms software developer, software engineer, and programmer are used
interchangeably to refer generically to all participants in the various aspects of the software life-cycle:
designers, coders, testers, and maintainers.



Highly productive software developers exhibit dramatically different
skills, techniques, and attributes than others in the process of
programming. It is possible to study these developers and discover
their unique skills, techniques, and attributes in programming.

The research proposes to answer the question:

What are the skills, techniques, and attributes used by skilled
programmers that are not used by less skilled programmers?

As software costs and delivered lines of code increase, the need for more effective

software development becomes increasingly apparent [Boeh 88]. The complexity of

current designs are exceeding the capabilities of our top programmers. If the software

industry is to maintain its ability to deliver high quality software on reasonable

schedules, it will need to dramatically improve its ability to develop software.

Much effort has been placed in the development of engineering approaches to

software development such as software tools, coding practices, and test technology, but

the overwhelming determiner of software production productivity is still personnel and

team capability. Boehm [Boeh 81] found personnel and team capability to be twice as

important as the next most important productivity factor. By studying exceptional

programmers, the individual capabilities which most influence performance can be

identified [Curt 81]. This research has potential implications for the teaching of

programming, the evaluation of programmers, and the selection of programmers.

Most research into the development of software focuses on the individual only

to the extent that individuals are members of a larger development effort. Although

the team is a critical component in software development, most research misses a

fundamental opportunity to identify and exploit the proven ability of highly talented

individual contributors. Weinberg, in his text The Psychology of Computer Programming

[Wein 71], attacked this dilemma and observed that "Our profession suffers under an

enormous burden of myths and half-truths." The industry has a great lore about the



factors affecting software productivity, but few facts are known. Boehm cites a 25-to-l

ratio between the most productive and least productive software developers and a

10-to-l difference in their error rates [Boeh 88]. If the personal attributes of these

most productive individuals could be understood, a number of exciting opportunities

present themselves:

* Understanding the characteristics of the most successful software developers
could lead to the improvement of all software developers.

* Once the characteristics are understood, it may be possible to develop specific
toolsets and aids to further increase the productivity of these individuals.

* A valuable criterion of the selection of software developers may be discovered.

Brooks [Broo 87] suggests that the "conceptual essence" of software development

requires that new paradigms be invoked for significant increases in software

productivity. He identifies the "use of great designers" as one of five promising

approaches. Boehm [Boeh 83] defines seven basic principles of software engineering.

Principle 6 is to "use better and fewer people," recognizing that individual performance

variations can overshadow other characteristics affecting development productivity.

An additional benefit to using fewer people is the reduction of communications

overhead required for a project. This recognition of the value of the individual

motivates this research.

Traditional experimental approaches to meeting the above objective start with

an individual's experience and prejudices about software development [Broo 75]. A

technique for improvement is proposed, implemented, and tested [Shne 76, Curt 79].

The results of these experiments are then analyzed and often valuable results are

achieved.



This study breaks with tradition. The key is to start with individuals who are

acknowledged for their software ability. This study will focus exclusively on professional

software developers. The results will be more significant than studies of students since

they will be more generalizable into a work setting.

The focus on the top individual contributors breaks with the traditional emphasis

on the team. This study is not meant to diminish the value of the team but rather to

enhance it by ensuring that each individual is operating at peak productivity.

Chapter 2 of this dissertation will review the literature for results and methods

used in prior research on individual performance differences. Chapter 2 provides an

overview of the most important research approaches including tightly controlled,

well-defined experiments and less constrained, qualitative psychological techniques.

Chapter 2 provides in-depth analysis of several relevant similar studies and builds the

case for the techniques to be used in this dissertation. The chapter specifically addresses

Who to Study, Wfiat to Study, and How to Study. The chapter explores the research

tools required to collect data. It also discusses the statistical analysis techniques used

to analyze the data.

Chapter 3 presents the specific research method and design to be used in this

dissertation. It provides the specifics of how subjects are selected for study, how the

research instruments are administered and analyzed, and how the results are captured.

Chapter 3 indicates that the research is divided into two phases. Phase 1 corresponds

to the qualitative portion of the research in which the competencies associated with

the job of software engineering are first uncovered. Phase 2 corresponds to the

quantitative portion of the research in which the competencies discovered in Phase 1

are validated and considered on a differential basis between exceptional and

non-exceptional performers.



Chapter 4 presents the data collected in both Phase 1 and Phase 2. It presents

the biographical data for the entire sample in order to characterize the population

under study. It reviews the biographical information on a differential basis to determine

if any simple predictors of performance exist. Chapter 4 also presents the competency

information. The Phase 1 portion presents the competencies discovered and discusses

the process of creating a single list of competencies from multiple sources. The Phase 2

portion presents the results of a sorting exercise in which participants rank order the

Phase 1 competencies relative to the individual's actual behavior. Finally, the

competencies are considered on a differential basis between exceptional and

non-exceptional performers in order to determine which competencies are associated

with exceptional performance.

Chapter 5 discusses the data of Chapter 4 and presents the research results. These

results include individual biographical characteristics as well individual competencies

which are related to exception performance. Further, Chapter 5 develops a model

capable of predicting exceptional or non-exceptional performance based upon a set of

predictor variables.

Chapter 6 discusses the implications of this research and reinforces the work's

most important results. The chapter also discusses some areas of research for further

consideration.



CHAPTER 2

REVIEW OF PRIOR RESEARCH

The investigator who is well
versed in the literature now has a

set of expectations the data can defy.3

This chapter will review the prior research relevant to this dissertation. The

chapter opens with a review of basic research approaches and proposes a

behavior-oriented approach to studying the process of software engineering. The

chapter continues by critiquing significant research done in the area of software

psychology related to individual performance. The chapter continues to explore the

questions of What to Study, Who to Study, and How to Study. The chapter proposes

specific research tools and statistical analysis techniques as appropriate for this

dissertation.

2.1 Research Approaches

Numerous researchers have attempted to catalog the realm of possible research

approaches applicable to behavior-oriented software engineering [Shne 80, Mora 81,

Basi 86, Curt 80, Curt 87]. In general, the approaches lie along a continuum between

tightly controlled, well defined experiments which may have limited generalizability

and more broadly defined, less constrained studies which stress qualitative

psychological techniques. Researchers approach the problem from either a Computer

Science or a Psychology point of view. The Computer Science perspective stresses

3G. McCracken, The Long Interview, Sage University Paper Series on Qualitative Research Methods,
Vol. 13, Newbury Park, CA, p. 31,1988.



understanding the effect of formal education and problem structure on individual

performance. The focus is on individual skills and techniques. The Psychology

perspective focuses on individual personality and problem solving approach. These

psychology studies attempt to discern the individual's personality attributes and how

they relate to solving problems.

The merger of these two perspectives resulted in the new field of Software

Psychology. Software Psychology is first discussed in Weinberg's classic text The

Psychology of Computer Programming [Wein 71]. Weinberg proposes four fundamental

approaches to the study of programming: Introspection, Observation, Experimentation,

and Psychological Measurement. Introspection is a process in which a programmer

analyzes his own thoughts and skills in an attempt to use self-evaluation as a discovery

mechanism. Observation allows an impartial observer to see what a programmer is

doing but not why he is doing it.

Experimentation allows for measurement of the observed result but at the cost of

being too focused. At issue here is a tradeoff between the scope and the generalizability

of the research. A rigid experiment is generally of narrow scope and provides detailed

results within its domain. Such a narrow scope may not allow for sufficient

generalizability of the results. For example, a detailed study on the effect of indentation

on comprehension of FORTRAN programs by first year students does not generalize

to a conclusion for experienced professionals, or to other programming languages or

environments.

Psychological Measurement may provide the richest and most fertile ground for

research. This area probes the fundamental mental and psychological processes at

work in the developer's mind. Since this field is in its infancy, the clarity and precision

of the results are weaker.



Shneiderman [Shne 80] proposes a similar hierarchy of research methods. His

list includes: Introspection, Protocol Analysis, Case Studies/Field Studies, and Controlled

Experiments. Protocol Analysis is a structured form of Introspection merged with

Observation in which a written or recorded transcript is generated by an experimental

subject and analyzed by the researcher. Shneiderman points out that Case Studies/Field

Studies lack the experimental controls necessary to provide statistically significant

results. He favors Controlled Experiments which limit the independent variables,

control for bias, measure the dependent variables, and perform statistical analysis.

The bulk of the research conducted to date has favored the tightly controlled

experimental approach. A number of studies have attempted to correlate easily

measured a priori factors which could be a basis for predicting programming

performance. These studies have shown mixed results. Evans and Simkin [Evan 89]

studied students in an entry-level business computer class in an attempt to predict class

performance and test results. The Evans and Simkin study collected 34 easily measured

demographic, academic, experience, and behavioral variables. The researchers tried

to correlate these variables with performance. Evans and Simkin could not account

for more than 23% of the variation in performance based upon these 34 variables.

On the other hand, Chrysler [Chry 78] was able to explain over 85% of the variance

in performance based on only thirteen program variables and five programmer

variables. A major distinction between these two studies is that Evans studied novice

programmers in university classes while Chrysler studied experienced programmers in

industry. Given that Chrysler found that only thirteen of the program factors studied

proved significant while all five of the programmer factors were significant, it is clear

that in the study of experienced software engineers individual programmer differences

are significant, and programmer differences may be among the most significant factors.

8



As a further note on the Chrysler study, five factors were found to explain more

than 80% of the variance in performance. Four of these factors were attributes of the

program under development: number of input files, number of control breaks in logic,

number of input edits required, and number of input fields required. The most significant

programmer factor was programmer experience at this facility. The other programmer

variables were: number of months of programming experience, number of months of

programming experience using the COBOL language, number of months of experience

using the specific COBOL language compiler to be used for the subject program, and

number of months of experience in programming business applications. There was a high

degree of interdependence among all of the programmer variables.

In a similar study Moher and Schneider [Mohe 81] studied both students and

professionals searching for factors which could predict programming performance.

Moher and Schneider collected answers to 78 biographical questions with 53 of those

relating to specific programming experiences. The questions fell into the categories

of general demographic information, general educational background, computer

science education, general programming experience, and specific programming

experience. For students, nearly every biographical item proved to be correlated

significantly with the performance measures. The model generated was able to explain

45-55% of the performance variability across 3 programming tasks. By contrast, only

one of the background measures were useful for predicting performance for the

professionals. The only outstanding biographical predictor of performance was the

number of years of programming experience. The study found that differences in

performance of up to 3:1 could be explained well by differences in the number of years

programming experience.



The foregoing research suggests that simple predictors of performance (beyond

simple experience) do not exist. Searching for these predictors may be misplaced

effort. This dissertation includes such a search in order to verify that simple predictors

of performance do not exist. The dissertation emphasizes a behavior-oriented approach

to researching the actual process of software engineering. This behavior-oriented

approach provides greater understanding as to the "why" of exceptional performance.

2.2 Comparable Studies and Critique

Variance of programming performance attributable
to individual differences between the programmers almost
obscured the difference related to the programming mode^

Many papers discuss experiments in software engineering performance [Curt 79,

Shne 80, Para 90]. The four papers discussed in detail below illustrate the current state

of the art in research in software engineering performance.

2.2.1 MCC Study of Designers

Guindon et. al. [Guin 87a, Guin 87b] report a study in which three experienced

software developers were videotaped during the process of developing a design

solution. Each subject provided a solution to a distributed systems design problem:

Design an N-lift control system to be installed in a building with M floors. The researchers

observed that the development process was not linear. Rather, the designers operated

simultaneously at various levels of abstraction and detail. That is, subjects moved

frequently between the problem domain and the solution domain. In addition, subjects

4Chrysler describing the Sackman study:
E. Chrysler, "Some Basic Determinants of Computer Programming Productivity,"

Communications of the ACM, Vol. 21, No. 6, p. 473, June 1978.

10



exhibited a highly iterative, interleaved and loosely ordered process over the life-cycle

points of requirements, design, and code. Each designer exhibited a markedly different

approach to design.

* The first subject was a trained software engineer with a Masters of Science
degree in Software Engineering and five years of experience. He used a
meta-schema about design which allowed an exploration of the problem
environment before adopting an initial and final solution. That is, this designer
focused on the process of design rather than on the design itself.

* The second subject was a Ph.D. candidate in Computer Science with less than
three years of experience in logic programming. He did not consider
alternative solutions and utilized a generate-simulate-debug strategy. This
individual was too quick to focus on the initial solution without considering
alternatives. He also had difficulty integrating all of the constraints on the
solution.

* The third designer held a Ph.D. in Electrical Engineering and had more than
ten years of experience in communications systems and hardware architecture.
He was most familiar with the problem domain and used specialized design
schemas relevant to distributed systems. This designer decomposed the
problem into smaller subproblems and then addressed those with "standard"
solutions from his design repertoire.

Guindon [Guin 88] recognized that an intrinsic aspect of system design is that

requirements are incomplete and ambiguous. Hence a key part of design is clarification

and completion of the requirements. The observed design activities fell into three

categories:

1) Mental and external simulations of scenarios in the problem domain.
2) Understanding and formalization of the requirements. This included

abstraction of critical point and testing of the consistency of requirements
against their own knowledge.

3) Definition, representation, and mental or external simulations of the design
solution at various levels of abstraction.

A fundamental conclusion from this study was that designers complete their

designs by shifting between design activities and between different domains of

knowledge at different levels of abstraction. Strict top-down design approaches were

not exhibited. Guindon refers to this process as serendipitous or opportunistic design.

11



Guindon's study identifies the significant design process control strategies and

recognizes that any design can be a mixture of these:

* design method driven, when the design process is underlied by a design method
providing a plan for the design process,

* heuristic driven, when the design process is underlied by heuristic rules to
reduce complexity,

* goal driven, when the design process is underlied by a problem decomposition
plan in relevant specialized design schemas,

* position driven, as when the design process is underlied by a small set of a priori
issues and selected values on these issues,

* data driven, as when the design process is underlied by an exploration of the
problem environment and recognition of partial solutions at various levels of
detail,

* repair driven, as when the design process is underlied by the need to debug or
repair a faulty aspect of the solution, especially in a generate-simulate-debug
strategy.

The selected design strategy proved to be a function of the individual subject's

experience. This led to the conclusion that the cognition process for software

development is highly dependent upon the domain experience of the subject.

Of particular interest in this study was the use of an observational technique for

gathering information. The videotaping of the experiment allowed the researchers to

listen to the subjects speak as they described their design process in order to obtain

thinking aloud reports. Also, collecting the notes used in the designs allowed the

researchers to reconstruct the actual design sequence. The Guindon experiment

implies that it is realistic to obtain significant results through observation. This research

proposes the significance of understanding the cognitive process as an important step

in predicting performance.

The Guindon study used protocol analysis where the researchers listen to the

subjects description of their development process in order to uncover the cognitive

factors at work in design. Guindon clearly illustrates the value of studying individuals

12



in order to uncover the cognitive process. Since the study used .a limited sample size,

no general conclusions can be drawn. However, the design processes uncovered

warrant further investigation.

2.2.2 Evans - Simkin Study of Student Proficiency

The Evans-Simkin study represents the use of a structured, scientific, controlled

experiment approach to conducting research. The formalism applied in this study

shows how issues of a personal psychology can be adequately quantified and studied.

Evans and Simkin study multiple possible causal factors in the search for performance

indicators. Although the final dependent variables were clear performance metrics

(grades), the independent variables included easily collected biographic information,

measured problem solving skills, and psychological profiles.

Evans and Simkin [Evan 89] studied students in an entry-level business computer

class to determine:

1. What is the best way to measure a person's understanding of computer
concepts?

2. What factors best predict this understanding?
3. How can we measure cognitive processes that might also predict this

understanding?
4. If we can measure cognitive processes, which are the best predictors?

The study started with a 100-question survey administered at the beginning of

the semester. This survey collected demographic information, performed

psychological profiling, and evaluated general problem solving skills. The dependent

variables in the study were exam and homework grades.

Each dependent variable was tested to see if it could be predicted by the

independent variables. There was a different result for each dependent variable. For

example, four variables best accounted for the variability in homework scores: high

13



school math courses, typing skills, sensing, and age.. Sensing is one of the Myers-Briggs

Type Indicator scales and indicates that the person would rather work with known facts

than to look for new possibilities and relationships. However, the BASIC programming

score relied on computer access, mother's occupation, the ability to speak a second

language, the letter-set problem-solving variable5, and the degree of student

introversion to explain its variability.

In conclusion, the authors note that:

"No single set of variables - demographic, behavioral, cognitive, or
problem solving - dominated the others as a 'best' set of predictors
of student performance. Rather, the research results suggest that
several factors from all four areas may be useful in forecasting
computer aptitude."

The Evans-Simkin study illustrates the problems associated with the search for

predictive factors and the use of student subjects. It is essential to select the correct

metric of successful performance. In the case of programming, it is not clear that grades

constitute the best metric. The study does not address the issue of which individuals

produced the best code or who completed their development in the most efficient

manner.

Looking for predictive factors for performance is always dangerous without a

supporting theory for explanation. Many factors will correlate with performance (e.g.

mother's occupation) but may indeed have little to do with the cause of the performance.

The search for these causal factors must be based on theory.

5Results from a particular question used on a problem solving test. The question is:
Indicate the set of letters that is different:

BCDE FGHI JKLM PRST VWXY

14



The extension of results from the study of students to the realm of experienced

professionals is unclear at best. Since the correlation between grades and professional

success is not high [McCl 73], there is no reason to expect the predictive factors from

a study of students to generalize to the study of professionals.

2.2.3 Kagan - Douthat Study of Learning FORTRAN

The Kagan-Douthat study is an example of the use of extensive psychological

testing in order to predict performance. Through the use of controls and statistical

techniques, significant predictability based on solely psychological characteristics was

uncovered. The study points to the change in characteristics which become important

as experience increases. Since this study focussed on students learning to program, it

leaves open the issue of what happens as programmers become very experienced.

Kagan and Douthat [Kaga 85] posed the question, "Does a tendency towards

introversion give students an 'edge' in learning the science of'computer programming?"

They also sought to determine if such an "edge" is persistent in time.

Three hundred twenty six students enrolled in an introductory FORTRAN class

completed questionnaires to determine personality traits based on a number of

psychological measures. These psychology measures were Eysenck's Personality

Inventory, the Crowne-Marlowe Social Desirability Scale, Self-Monitoring of

Expressive Behavior, the Hostility Inventory, and a Type A Behavior measure. The

study found that "achievement in the latter half of the course was significantly associated

with a cluster of traits that fit the global definition of 'introversion'." They found that

temperament became more relevant to achievement as the course progressed. "In

sum, being relaxed, stable, and aware of one's self in a social context was conducive

to achievement early in the course, while the tendency to be withdrawn, hard-driving,

15



and ambitious appeared conducive to learning in the final portion of the course." There

was no statistically significant difference between majors and non-majors in either

temperament or achievement.

2.2.4 Love Study of Student Performance

The Love [Love 77] study illustrates the search for predictive factors in

programming performance. The search itself is fairly brute force in that a wide array

(24 factors) of data are collected for each run of a student assignment. Each factor is

considered in an analysis of variance calculation to determine the factors most likely

to be predictors of the observed performance variance. The study also attempts to

relate human information processing abilities to computer programming performance.

The information processing ability is measured prior to the class assignments and the

correlated with performance. Again, this is a study of student performance and leaves

open the issue of its relevance to professionals.

[Love 77] presents a study of computer science students. During the course of a

semester, each student submitted a cover sheet with each run of a class assignment.

The cover sheet asked the student to answer questions pertaining to that run of the

program. The questions covered a broad range of suspected performance factors

relating to the student's work style, environment, and state of mind.

The most significant variables affecting the success of a particular run of the

program proved to be:

1. How many previous attempts the student had made to run the program.
2. The student's reported ability to concentrate.
3. The time of the day.
4. The time the student had spent in the design of the program.
5. The student's preparation time.
6. The time required to locate the previous error.
7. The student's reported overall confidence in this run.

16



In addition, the study collected further dependent variables designed to assess

the basic skill level of each subject. The dependent human information processing

variables were:

1. Performance on a continuous paired-associates task. This task asks the
subject to "print out" from the programmer's memory the proper value for
one of 4 variables whose assignments have been projected briefly on a screen.
The assignments are made at a varying distance from the "print" request.

2. Digit-span. A variable length series of two digit numbers are presented at
the rate of one per second. The subject is then asked to recall the list in
order.

3. Perception speed. This is a speed and accuracy test for comparing strings of
digits in which the subject compares variable length pairs of strings to
determine if they are the same or different.

4. Subjective organization of words in a free-recall learning paradigm. The
subject is tested on the number of words correctly recalled and the degree
to which recalled words were clustered into semantic categories.

5. Classroom performance measured by grades.

Significant results include:

1. Students did a poor job of estimating the number of runs required to
completion.

2. The number of changes made in programs does not correlate linearly with
classroom performance. An "A" student is just as likely to require a few
changes or hundreds of changes to get their programs working.

3. Those students who performed well in the memory for programs experiment
as well as those who had higher scores on the digit span test took fewer runs
to complete their programming assignments.

4. There was an inverse relationship between performance on the free recall
learning task and the number of logical errors reported in the programs.

5. Students who did well in remembering programs took longer to locate errors
in programs.

6. The longer one spent designing a program, the more runs required to
complete the program. The more time coding and keypunching a program,
the fewer runs.

7. Students with high scores on the perceptual speed test tended to make more
changes.

8. Students who wrote larger programs tended to make more changes.
9. Only two measures were significantly related to score in the classroom: mean

time to locate an error in a program, and frequency of syntax errors. (Course
grade seems to measure test-taking ability more than it measures programming
performance as defined here.)

17



10. The above results suggest two possible types of "A" students:
1. Those who are able to develop a correct algorithm and implement

it without making any logical changes, and
2. Those who have both algorithm and implementation difficulties,

but persist until the problem is solved correctly.

One surprising result is #6, the lack of extra design time resulting in improved

productivity. It is likely that student assignments are not complex enough to benefit

from a formal design method. Instead, the time spent designing is wasted because the

problems are trivial enough to warrant jumping straight to coding. Perhaps, too, the

inexperience programmer is not as capable in translating a design into actual working

code.

This study begins to merge issues of cognition with other predictive factors. It

attempts to uncover those cognitive abilities which are most closely related to improved

performance. The study hypothesizes four programming related cognitive abilities and

attempts to correlate these with the performance metric of grades. None of these

hypotheses proved valid. This illustrates the danger of a shot in the dark approach to

uncovering the cognitive processes at work in programming. The proposed significant

cognitive abilities were correlated with other measures of performance (number of

runs to complete assignment, and number of logical errors.) This suggests that

measures of performance other than grades should be studied.

18



2.2.5 Issue of Cognitive Science

In nature hybrid species are usually sterile, but
in science the reverse is often true. Hybrid subjects

are often astonishingly fertile, whereas if a scientific
discipline remains too pure it usually wilts.6

Curtis [Curt 87] proposes five psychological paradigms most often used in

exploring programming problems:

1. Individual Differences.
2. Group Behavior.
3. Organizational Behavior.
4. Human Factors.
5. Cognitive Science.

In this paper Curtis proposes that the Cognitive Science approach to the problem

is likely to be the most rewarding. Curtis notes that while the individual differences

paradigm provides a method for predicting performance differences among

programmers, it fails to offer an explanation of why these differences occur or how to

reduce them other than through selection. The paradigm of cognitive science seeks

to understand how knowledge is acquired, represented in memory, and how it is used

in solving problems.

Cognition in programming is a very complex problem which will take

extraordinary effort to solve. Also, it is a problem based more squarely in Psychology

than in Computer Science. This dissertation proposes a pragmatic approach to the

development of a cognitive model. It proposes to study the behavior of exceptional

performers as it differs from that of non-exceptional performers. It is much easier to

collect data on what someone does than on why they do it. This study will build a model

of the behaviors associated with exceptional performance.

6Francis Crick, What Mad Pursuit -A Personal View of Scientific Discovery, Basic Books, Inc., New
York, NY, p. 150,1988.

19



2.2.6 Conclusions

These studies illustrate the current state of the art in research in the field of

Software Psychology. These studies show that formal methods are being used to collect

meaningful results in the area of predicting programming performance. They indicate

that this field is replete with unsolved problems but that these research techniques are

capable of providing significant results. The research focuses on biographical

information, skills, and individual attributes as possible predictors for performance.

These studies also show that open problems remain. Curtis [Curt 86a] cites a

major problem with the research completed thus far. The studies emphasize student

subjects. The study of students can lead to two significant errors. First, novice

performance is probably substantially different than experienced performance.

Second, student problems are generally narrow and well defined. Thus the

generalizabilty of results to practicing professionals is questionable. These large studies

have also focused on easily measured biographical data. The studies that have probed

an individual's approach or processes in depth have only been performed with a small

numbers of programmers.

In essence, these prior studies serve as the research prototype. The studies

discussed above have used many of the methods proposed and have studied the area

of interest in this dissertation. Since the results have been significant, the above studies

imply that this research will produce substantial results.

20



2.3 Research Methods

Several papers suggest powerful approaches to conducting research in the realm

of Software Psychology [Weis 74, Broo 80, Mohe 81, Shei 81, Mohe 82, Basi 86]. These

papers suggest appropriate answers to the questions of Who to study; What to study;

and How to study.

These research areas are clearly on the boundary between Computer Science and

Psychology. The field of Psychology provides the experimental methodology for formal

recording and analysis of field data. Much of this method springs from field studies

of other cultures. The statistical methods used are also critical to these studies. The

Psychology backdrop also provides the connection to Cognitive Science. In order to

adequately address the research results obtained by psychology methods, connections

must be made to other areas of human task performance.

On the other hand, a Psychology-on/y approach to the study of programmer

performance is unjust. The Computer Scientist must guarantee the relevance of the

study by critiquing the research materials to ensure that they represent real-world

software development. Also, it is the Computer Scientist who will be able to apply

these results to actual development situations. Thus, although this research is in a

boundary area, it is a bona-fide and valuable area of Computer Science research.

2.3.1 Who to study

The subjects must be representative of the study population at large in order to

be able to generalize the results. The size of the subject pool must be large enough to

be able to ascribe statistical significance to the result. The subject pool must be uniform

with respect to the factors not under study in order to not be left with significant

unexplained variance in the result.

21



Most of the large studies to date have used student subjects in order to keep costs

low. Thus, the programs studied were usually small and not very complex since they

were completed as part of a programming class. Results using student subjects are not

readily generalized to large, complex projects undertaken by experienced professional

software engineers. A better approach is to study experienced engineers on the tasks

in which they are currently engaged.

2.3.2 What to study

Historically, the state of the art in Computer Science has been motivated by rules

of thumb for best practices. Experienced professionals would identify tools and

techniques that seemed useful and promote these as best practices. The field of Software

Psychology tries to quantify these results to make more substantiated

recommendations. The range of these items was generally from the very specific to

the very general. On the specific end, notational differences in languages like

conditionals, control flow, and data types were studied to see their effect on

performance. More general along this continuum was the study of programming

practices like flowcharting, indenting, variable naming, and commenting. At the most

general end of the continuum was the study of tasks. Here the study of knowledge

representation and cognition are applied to the problems of learning, coding strategies,

and debugging. It is at this more general end of the What to study continuum that this

research will reside.

While studying these more general tasks, this dissertation will focus on the study

of programmer characteristics. These fall generally into two categories:

software-independent characteristics and software-dependent characteristics

[Mohe 82]. Software-independent characteristics include physical characteristics,

22



general intelligence, and formal education. Software-dependent characteristics

include programming aptitude, programmer skill, programming experience, and

formal programming education. This dissertation will primarily study

software-dependent characteristics.

This dissertation will study competencies. A competency is any personal

characteristic or attribute that contributes to effective performance [Char 82]. A job

competency is any attribute that contributes to doing a specific job well. These attributes

can be specialized knowledge, an ability, an interest, a trait, or a motivation. However,

they are not a job competency unless they contribute to doing the job well.

The case for studying competence rather thanintelligence was made by McClelland

[McCl 73] in relation to the lack of predictive validity in current intelligence tests.

McClelland argues that tests which sample job skills are the best predictor of

competence. In order to create the tests, the researcher must know which skills are

necessary to achieve competent performance in a particular job. The aim of this study

is to uncover these competencies.

2.3.3 How to study

Sheil [Shei 81] expresses the concern that the current state of research in this

field represents the pseudopsychology of programming and stresses the adoption of

formal research methods. In order to have an adequate study, the fundamentals of

behavioral research (psychometric theory, analysis of variance, and multivariate

techniques) must be employed. Studies range from the experimental applying a

rigorous, systematic method to a narrowly defined problem, to a discovery process

employing interviews and verbal protocols to obtain a wider, richer result in a broader

area.

23



The following sections will describe the research tools most appropriate for a

study of this sort. The Myers-Briggs Type Indicator is presented as tool for determining

psychological type. This tool will be used in this dissertation to determine if significant

type differences exist between exceptional and non-exceptional engineers. The Critical

Incident Interview coupled with Protocol Analysis is used to uncover the competencies

associated with the job of software engineering. Q-Methodology is used to rank order

the competencies uncovered and to determine if any of the competencies are associated

with exceptional performance. Finally, Discriminant Analysis will be discussed as a

statistical tool for developing a predictive model of exceptional performance.

2.3.3.1 Myers-Briggs Cognitive Style Type Indicator

Smith was a classic computer nerd - A Hobbitlike
little man, short on social graces and all but

innocent of personal hygiene, with the chopped-off
blond curls of a fourteenth- century monk.1

An abbreviated version of the Myers-Briggs Type Indicator (MBTI) was used by

Evans and Simkin [Evan 89] in their study of programmer productivity. This study

demonstrated correlation between the introversion, intuitive, and judging types and

performance on exams. A detailed description of the MBTI appears in [Shne 80]. The

166 question format computes a score for four contrasting personality pairs. Table 2.1

provides a general description of the quadrants used in the MBTI.

The Myers-Briggs Type Indicator's purpose is to identify, from self-report of easily

recognized reactions, the basic preferences of people in regard to perception and

judgement, so that the effects of each preference, singly and in combination, can be

established by research and put to practical use [Euro 89]. The four preferences are

7Frank Rose, West of Eden - The End of Innocence at Apple Computer, Penguin Books, New York,
NY, p. 51,1989.

24



TABLE 2.1 Description of MBTI's 4 Preference Scales8

EXTROVERT VS. INTROVERT
People who prefer extroversion tend to focus on the
outer world of people and the external
environment. When you are extraverting, you are
energized by what goes on in the outer world, and
this is where you tend to direct your own energy.
Extraverts usually prefer to communicate more by
talking than by writing. They need to experience
the world in order to understand it and thus tend
to like action.

People who prefer introversion focus more on then-
own inner world. When you are introverting, you
are energized by what goes on in your inner world,
and this is where you tend to direct your own
energy. Introverts tend to be more interested and
comfortable when their work requires a good deal
of their activity to take place quietly inside their
heads. They like to understand the world before
experiencing it, and so often think about what they
are doing before acting.

SENSING VS. INTUITION
One way to "find out" is to use your sensing function.
Your eyes, ears, and other senses tell you what is
actually there and actually happening, both inside
and outside of yourself. Sensing is especially useful
for appreciating the realities of a situation. Sensing
types tend to accept and work with what is "given"
in the here-and-now, and thus become realistic and
practical. They are good at remembering and
working with a great number of facts.

The other way to find out is through intuition,
which shows you the meanings, relationships, and
possibilities that go beyond the information from
your senses. Intuition looks at the big picture and
tries to grasp the essential patterns. If you like
intuition, you grow expert at seeing new
possibilities and new ways of doing things. Intuitive
types value imagination and inspirations.

THINKING VS. FEELING
One way to decide is through your thinking.
Thinking predicts the logical consequences of any
particular choice or action. When you use thinking
you decide objectively, on the basis of cause and
effect, and make decisions by analyzing the
evidence, even including the unpleasant facts.
People with a preference for thinking seek an
objective standard of truth. They are frequently
good at analyzing what is wrong with something.

The other way to decide is through your feeling.
Feeling considers what is important to you or to
other people (without requiring it to be logical),
and decides on the basis of person-centered values.
When making a decision for yourself, you ask how
much you care or how much personal investment
you have, for each of the alternatives. Those with
a preference for feeling like dealing with people
and tend to become sympathetic, appreciative, and
tactful. (It is important to understand that the word
"feeling," when used here, means making decisions
based on values; it does not refer to your feelings
or emotions.)

JUDGMENT VS. PERCEPTION
Those who take a judging attitude (either thinking
or feeling) tend to live in a planned, orderly way,
wanting to regulate life and control it. When you
use your judging function, you like to make
decisions, come to closure, and then carry on.
People with a preference for judging prefer to be
structured and organized and want things settled.
(It is important to understand that "judging" as
used here does not mean judgmental; any of the
types can be judgmental.)

Those who prefer a perceptive process when
dealing with the outer world (either sensing or
intuition) like to live in a flexible, spontaneous way.
When using your perception, you are gathering
information and keeping your options open.
People with a preference for perceiving seek to
understand life rather than control it. They prefer
to stay open to experience, enjoying and trusting
their ability to adapt to the moment.

8Isabel Briggs Myers, Introduction to Type, Consulting Psychologists Press, Inc., Palo Alto, CA, pp.
5-6,1990.

25



assumed to interact in complex nonlinear ways to produce one of 16 psychological

types. Each type is identified by a four letter set which relates to the dominant

preference on each of the four preference axes. Hence an ISTJ score relates to an

individual who scores as an Introvert, Sensing, Thinking, Judging personality type. Each

of the 16 possible types has significantly different attributes as described in [Isac 88].

Further, the MBTI can provide a continuous score [Myer 85] for each of the four

preference scales allowing for statistical analysis of significant differences.

2.3.3.2 Critical Incident Interviews

Flanagan [Flan 54] provides an overview of the Critical Incident Technique for

data collection. The technique was introduced during World War II in the Aviation

Psychology Program to study combat leadership and pilot disorientation. The

technique has since been refined and applied to measures of performance, measures

of proficiency, training, selection, job design, equipment design, and leadership.

The critical incident technique attempts to discover the critical job requirements

that have been demonstrated to have made a difference between success and failure

in carrying out an important part of the job assigned in a significant number of instances.

The technique is based on two fundamental principles:

1. Reporting of facts regarding behavior is preferable to the collection of
interpretations, ratings, and opinions based on general impression.

2. Reporting should be limited to those behaviors that according to competent
observers, make a significant contribution to the activity.

The method consists of five major steps:

1. Determination of the general aim of the activity. The aim should be clear so
that subjects can comment directly on relevant incidents.

2. Development of plans and specifications for collecting factual incidents
regarding the activity.

3. Collection of the data. This is generally provided via interview with the subject.
The technique requires only the simplest types of judgements from the
subject.

26



4. Analysis of the data. The classification of the critical incidents is an inductive
process based on the analysis of all respondents.

5. Interpretation and reporting of the statement of the requirements of the activity.

The technique of Protocol Analysis is described in [Webe 85, McCr 88]. The

technique translates the verbatim copy of an interview to a generalized set of

cross-transcript results. By using a formal process, there is a record of the analysis and

the relations identified can be tied to specific utterances in the original transcripts.

The process itself is a movement from the specific to the general. One must be careful

to ensure that generalizations are valid and that meaning isn't changed in the process

The process moves from transcripts to results in the following stages. Stage 1

converts an utterance to an observation by recognizing it as significant. Until a sentence

or phrase is identified as being relevant to the research, it has not entered into the

analysis. In this step the transcript is read carefully with the research question in mind

in order to identify those utterances that must be identified and collected for later

study. This happens individually for each transcript.

Stage 2 develops the logical relationships that occur in the transcript. These

relationships can be with the utterance itself, with the rest of the transcript, or with

previous literature. Stage 2 is the first step in generalization in that it begins to attach

meaning to the utterance and begins the process of classifying it.

Stage 3 refines the observation in relation to all of the other Stage 2 observations

in all of the available transcripts. This stage moves from the study of one transcript to

forming relationships across transcripts. The focus also moves away from the

transcripts per se, and onto the observations themselves.

In Stage 4 the researcher uses judgement to look for patterns of inter-theme

consistency and contradiction. Redundant themes are combined or eliminated.

27



Themes that do not appear useful for the research question are eliminated. All of the

themes must be simplified and clarified in order to best represent the data from which

they are derived.

Stage 5 creates the conclusions of the study by identifying and commenting on

the patterns across the themes derived from the entire interview process. This stage

results in the creation of the theses from the interview process.

2.3.3.3 Q Methodology

The Q Methodology encompasses the Q-Sorting Technique, which is designed

to provide practical means for subjects to sort and researchers to analyze large lists of

items [McKe 88]. The method stresses the reliance upon the individual's perception

of value in a set of statements as the actual data under study. The technique has a long

history being first promoted by William Stephenson in the mid 30's. His text on the

subject [Step 53] continues to be a significant source of information on the methodology

and the technique.

In Q-Sort a subject is asked to rank order a set of items against a specific condition

of instruction. The ordering is quasi-normal in that it asks subjects to place the item

in one of a limited number of bins or piles. The number of items is expected to far

exceed the number of piles. Each pile maintains a specific relationship to the other

piles. The number of items to be placed in each pile is meant to be proportional to a

roughly normal distribution of the items. For example, if there were 10 items to

distribute across five piles, the first pile would have one item, the second pile would

have two items, the third pile would have four items, the fourth pile would have two

items and the fifth pile would have one item. This approximates a normal distribution

with the center pile being the center of the distribution.

28



Critical to the sorting is the condition of instruction. A subject may provide a

radically different sorting based upon the instructions given. For example, in this study

if a subject were instructed to sort competencies based upon the order which most

related to being exceptional, there would be a different result than if the subject was

instructed to sort them relative to their own behavior on the job. The same Q-sample

stimuli can even be used with the same subjects under different conditions of instruction

to study different aspects of an area.

2.3.3.4 Statistical Analysis

The technique of Predictive Discriminant Analysis is used to predict membership

of experimental units into two or more criterion groups [Hube 89]. This technique

uses a set of predictor variables and one criterion variable. The criterion variable is

a grouping variable with two or more levels. That is, the analysis tries to place all of

the samples into two or more groups based upon the predictor variables. Predictive

discriminant analysis is a multivariate data-analysis method of the dependent type.

Hence it is related to other techniques like multiple correlation analysis, canonical

correlation analysis, and multivariate analysis of variance (MANOVA).

The Discriminant Analysis is based on the following assumptions [Klec 80].

1. There are two or more groups that are being distinguished.
2. There are at least two cases per group.
3. There can be any number of discriminating variables, provided that the

number of variables does not exceed the number of cases minus 2.
4. The discriminating variables must be measured at the interval level.
5. No discriminating variable may be a linear combination of other

discriminating variables.
6. The covariance matrices for each group must be approximately equal, unless

special formulas are used.
7. Each group must be drawn from a population with a multivariate normal

distribution on the discriminating variables.

29



Klecka comments on violating these assumptions. Discriminant analysis seems to be

robust enough to tolerate some deviation from the assumption of a multivariate normal

distribution on the discriminating variables and equal group covariance matrices. The

consequence of violating these assumptions is some reduction in efficiency and

accuracy. If the normality assumption is violated the procedure will be non-optimal

and result in a greater number of misclassifications.

Klecka notes that" With large samples, however, we can ignore the tests of significance

or interpret them 'conservatively'when our data violate the assumptions." This assumption

can be tested by observing the percentage of correct classifications of the cases under

study. If this number is high, the violations of assumptions is not considered harmful.

Other problems which can affect discriminant analysis include large amounts of

missing data, highly correlated variables, a variable with zero standard deviations within

one or more groups, grossly different group sizes, and outliers. Tests for these and

other conditions are supported by the SPSS/PC package used to generate the result

[Frud 87].

In particular, the variables used in discriminant analysis should be tested for

normality of distribution. This is accomplished in two major ways. First the skew of

the distribution is tested. Second the kurtosis of the distribution is tested. In both

cases, values of plus or minus 1.00 are considered acceptable for descriptive studies

such as this [Cohe 83].

30



2.4 Conclusions

Two broad experimental approaches can be applied to empirical research on

programming: tightly controlled experiments which are rigorous, systematic, and

narrow in scope, or less tightly controlled exploratory experiments which allow for

collection of a wider and richer range of data [Curt 86bj.

A number of critical issues arise in behavior-based studies of this type. First and

foremost, subject selection is critical. To study excellence in performance, one must

be sure that excellence is observed! Prior research faced this problem in the study of

creativity in a research setting [Neid 64]. To ensure that excellence is observed, one

can create a suitable measure of excellence, refine the subject pool to ensure that only

excellent performers are in the study group, and provide an appropriate control group

for defining average performance. Subject selection involves a series of filtering criteria

for further refining the group. The subject pool is further filtered by other objective

measures. Neidt, for example, considered performance ratings as well as the reference

to entries in a research progress log. Much of the literature has confined itself to the

use of student subjects due to their availability and economy. The industrial

investigations have generally studied only single individuals or very small groups.

Figure 2.1 summarizes the research area by modeling the refinement of choices

as a funnel. The field of study for this dissertation is between Computer Science and

Psychology. It uses psychology methods to study performance of software engineers.

The experimental design is broadly defined. That is, rather than creating a tightly

controlled experiment in order to validate a particular result, this dissertation will

perform a broad study attempting to determine which competencies are most like the

behaviors of exceptional software engineers. The experimental method is protocol

analysis of critical incident interview transcripts. The subjects are all experienced

31



software engineers rather than novices or students. Studies such as Moher and

Schneider [Mohe 81] demonstrate that there are significant differences in the attributes

of high performance students and professionals. This dissertation studies individuals.

Although much of the task of software engineering is a team effort, this dissertation

will study the role of the individual and individual behaviors. Finally, the dissertation

explores software dependent characteristics of the individual's performance.

RESEARCH AREA

COMPUTER SCIENCE-* ^PSYCHOLOGY FIELD OF STUDY

TIGHTLY CONTROLLED' -BROADLY DEFINED / EXPERIMENT STYLE

INTROSPECTION - PROTOCOL ANALYSIS
\FIELD STUDY - CONTROLLED EXPERIMENT

.NOVICE-

fNDIVIDUAL - TEAM - PROJECT^
COMPANY - BUSINESS

"EXPERIENCED/ SUBJECT SELECTION

STUDY SCOPE

, SWINDEP-**-SW DEP/ STUDY DOMAIN

RT:10.18.91\ FUNNEL

FIGURE 2.1 Research Area Funnel

32



CHAPTERS

RESEARCH METHOD AND DESIGN

The techniques of cognitive psychological
experimentation can help resolve specific issues in

programming and explore the broader issues of programmer behavior.9

The research for this dissertation is divided into two phases. Phase 1 uses a

qualitative technique. Phase 1 is intended to discover the competencies which may be

related to exceptional performance. Phase 2 uses a quantitative approach to validate

the results of Phase 1. Phase 2 provides the statistical basis for the preliminary

conclusions reached in the Phase 1 work. Overall, the study is descriptive in nature.

The dissertation's intent is to describe the difference in competencies exhibited by

Exceptional and Non-exceptional engineers. Further, the dissertation creates a model

capable of predicting exceptional ratings based upon discovered competencies. This

predictive model differs in two important ways from prior research attempts. First,

the predictive model will prove to be a complex rather than simple model of

performance. Simple predictors will not work well. Second, the model will be heavily

based on behaviors rather than on demographics.

The research method relies on a triangulation [Fiel 86] technique to provide

further validity of the results. This triangulation is illustrated in Figure 3.1. The basic

two phase structure of the study triangulates the data by two basic approaches:

qualitative and quantitative study. Further, the triangulation occurs in three major

9B. Shneiderman, "Exploratory Experiments in Programmer Behavior," International Journal of
Computer and Information Sciences, Vol. 5, No. 2,1976, p. 123.

33



forms: The study is triangulated by subject since Phase 1 surveys five R&D labs and

Phase 2 studies nine labs. In each phase, subjects are selected from three different

sites. The subjects in Phase 1 are working on three application types, while the subjects

in Phase 2 are working on five application types. This diversity of subjects allows for

confirmation of results by different subject types.

DATA TRIANGULATION

PERSPECTIVE
• Engineers

Managers

SUBJECT
• 5 / 9 R&D Labs
• 3 Sites
• 3 / 5 Application Types

METHOD
• Questionnaire
• MBTI
• Interview
• Q-Sort

RT:10.18.91\TRIANGL

FIGURE 3.1 Research Data Triangulation

The research is triangulated by method since multiple research methods are

working in concert to collect the data. The questionnaires provide one source of data

and the results from the questionnaire can be compared with the results from the other

instruments. The Q-Sort is a technique for ranking lists of behaviors and will be used

34



to provide another view of the competencies first discovered in the Critical Incident

Interview. The MBTI used in Phase 1 provides another view of the psychological type

of the individual in the study.

In Phase 1 each subject's behavior was studied to observe competencies. Each

subject was also asked to directly identify additional competencies that they exhibit or

see in others. Also, the manager of each lab was asked to identify the essential

competencies for exceptional performance. This use of engineers and managers to

identify competencies provides triangulation by perspective. Triangulation provides

further validity of the results by confirming the result from different viewpoints. The

following sections describe the use of this triangulation method in more detail.

3.1 Phase 1 Qualitative Data Phase

Behavioral psychology is the science
of pulling habits out ofrats.w

The research objectives for Phase 1 were to:

1. Determine differential competencies of exceptional versus non-exceptional
software engineers, and

2. Determine the MBTI type profile of exceptional and non-exceptional
software engineers.

This is the phase in which the research uncovers the set of competencies related

to exceptional performance in software engineering. Phase 1 studies demographic

information, psychological type, and actual job activity in order to uncover as much

information as possible.

10Dr. Douglas Busch, from Peter's Quotations - Ideas for our Time, by L. J. Peters, William Morrow
and Company, 1977:

35



3.1.1 Selection of Subjects

This study makes use of two matched subject pools in order to study the differences

between exceptional and non-exceptional skills in software engineering. The study

covers 10 subjects in each of the exceptional and non-exceptional pools. The subjects

are matched by time in current organization. Thus if an exceptional engineer with four

years in the current organization is identified, a second non-exceptional engineer with

approximately four years experience in the same organization is added to the study.

This approach controls for the effect of the organization on the individual's

performance. These differences could be clearer goals and objectives, better

management, or a particular product type. The study does not attempt to control any

other factors since all are possible contributors to the exceptional performance under

study.

All subjects are professional software development engineers from a major U. S.

corporation with a minimum of two years of experience in developing software. Each

subject has successfully completed a project released to the end user. From here on

the population will be referred to as coming from The Company.

Subjects are selected by a supervisor selection process in which managers identify

the top performers in their organization. In a letter to the manager, the researcher

asked managers to identify an exceptional and average performing pair of individuals.

The pair should each have been in the organization for approximately the same amount

of time. The manager was also directed, "In order to ensure exclusiveness, no more

than 5% of your lab should be considered as exceptional." The guideline ensured that

the subject sample is indeed exceptional. Note that this subject selection technique

introduces a series of biases on the part the manager doing the selection. Also, it

36



introduces the bias of the organization since ranking is an organizational process. This

dissertation will study the individuals defined as exceptional by their managers. Hence

this manager bias is an inherent part of the research design.

Once the subjects were nominated, each was contacted to determine if they were

interested in participating since the study was to be strictly voluntary. Each subject

received a letter that provided the assignment for each participant and asked each to

complete the Biographical Questionnaire and the Myers-Briggs Type Indicator Test

prior to the interview. The letter clearly indicated the voluntary nature of participating

in the research. Each subject was also provided with a "standard" ethics disclosure as

shown in Appendix B Phase 1 Standard Ethics Protocol which indicates the nature of

the research and what will be done with the results. The ethics disclosure defined the

subjects' rights and indicated their option to discontinue participation in the research

at any time. Finally, the note established the date, time, and place for the interview,

and indicated what the subject should expect.

3.1.2 Biographical Questionnaire

The study uses a questionnaire to gather descriptive information about the subject

pool. The data are used to

1. Allow this data to be used by other researchers by adequately describing the
subject pool to make comparisons possible.

2. Validate that
- Subjects represent experienced rather than naive programmers.
- Subject are a valid cross-section of developers covering different

language use, target applications, and development environments.

3. Confirm or refute the following hypotheses relating to demographic and
academic information.

1. Exceptional engineers will make broader use of various tools and
methods, especially acting as early adopters of new tools and techniques.

37



2. Demographic and academic factors will not emerge as predictors of
performance.

3. Age and experience will correlate with performance, but will emerge
as a threshold effect where it will not be significant beyond a certain
point.

The questionnaire is provided in Appendix A Phase 1 Biographical

Questionnaire and includes questions concerning education, on the job training,

experience, languages used, and methods employed. The questionnaire was pretested

many times in order to determine its appropriateness and ease of use. It was extensively

modified as a result of these pretests. This questionnaire was completed by subjects

prior to the opening of the Critical Incident Interview.

3.1.3 Critical Incident Interview

The Critical Incident Interview was conducted in a private room at the subject's

worksite. Each interview was tape-recorded, and the recordings were transcribed for

later use. The general outline of the interview is described in Appendix C Phase 1

Critical Incident Interview Outline. The interview was pretested to determine how

well it would flow. The interviews began with casual conversation to set the subject

at ease. The interviewer described the scope of the research and outlined the general

flow of the interview. Once the subject was comfortable with the process, the tape

recorder was started and the interview began. The interview followed the basic

structure and practices defined in [Hori 89].

A typical interview began with an introduction similar to the following one taken

from the transcript of the interview of subject #14.

Wliat I'd like you to do is start off by thinking about a time which
represents for you perhaps your personal best associated with
software engineering in whatever form, so be it software
development, software maintenance, testing, whatever it is, but a
time at which you feel you were at your personal best, and when
you've got one of those situations in mind, give me kind of a broad

38



overview, a fifty word summary overview which is, how did you get
involved in the situation, who were the other players, what was the
nature of the task, and then we'll come back and we'll walk through
it step by step in gory detail to find our exactly what you did in each
case of that task.

The subject would then describe a particular incident and the interviewer would

probe for clarification or increased depth of response. The interviewer used probes,

open-ended questions, questions of clarification, and reflective listening to keep the

participant on the subjects of interest. The only way that the interviewer tried to direct

the conversation was to provide additional clarification or to move on to other topics.

The subject generally described two to three significant incidents in the course

of one interview. When each incident was completed, the subject was asked to describe

the critical skills or competencies which were essential to the successful completion of

the task. At the end of the discussion of the subject's incidents, the subject was asked

to describe the list of essential competencies for an exceptional software engineer.

With reference to the data triangulation mentioned above, the incidents formed one

set of data regarding competencies, the self-description of skills formed a second set,

and the description of essential competencies for exceptional software engineers

formed a third. All three sets of data are used to create the list of competencies which

are subsequently validated in Phase 2.

Data analysis of the Critical Incident Interviews proceeded by the method of

Protocol Analysis [McCr 88]. Here each written transcript was reviewed and highlighted

to identify tasks, incidents, competencies, self-described skills, and identified competencies

for exceptional performance. Each transcript was reviewed individually to identify

consistent themes which could be generalized as competencies for that individual.

After each transcript was reviewed individually, the set of transcripts was examined to

identify competencies which appeared across multiple transcripts. These competencies

39



were generalized and reworded as required in order to emphasize the similarities.

However, great care was taken to not over-generalize or distort the original meanings.

A set of behaviors was identified based on all the transcripts and served as a detailed

explanation of the intent of the competency. At this point, original transcript text was

retained and attached to the competency as further definition. A final pass allowed

for the combination of related competencies into a single competency.

All of the analysis to this point was done blindly. That is, the transcripts were

tagged with an identification number and the researcher did not know the name of the

subject. Further the researcher did not know if the transcripts were from an exceptional

or non-exceptional subject since these results were left in a sealed envelope. At this

point the identification of the exceptional performers was made.

The next step of the process was to count the number of subjects exhibiting an

identified competency from each of the exceptional and non-exceptional groups. Those

competencies exhibited by few subjects were dropped from further consideration. In

general, at least three subjects had to identify a competency before it was retained.

However, if one exceptional and one non-exceptional subject identified a competency,

it was also retained.

The competencies identified from a subject's self-assessment of skills and from

the subject's opinion of which competencies are related to exceptional performance

were also identified and categorized. Those that appeared most often across transcripts

were retained and used in Phase 2 research.

Finally, each manager who had provided subjects for the Phase 1 research was

asked to identify the competencies used in selecting the exceptional subjects for study.

The manager was asked to list the skills, knowledge, or attributes that differentiated

40



exceptional performers from non-exceptional performers in the study. The

competencies identified most frequently across the five managers participating in the

study were also used in the Phase 2 study.

3.1.4 Phase 1 Method Summary

Figure 3.2 presents a summary of the Phase 1 research method. Phase 1 is

designed to identify the competencies of software engineers. Further, it will test the

biographical questionnaire. The Phase 1 subjects are drawn from five Company

divisions on three sites and are active in the creation of three types of software

applications. Phase 1 studies 10 exceptional and 10 non-exceptional engineers. Phase 1

uses a biographical questionnaire, the MBTI, and the critical incident interview as

research instruments. Although tests for difference are conducted in Phase 1, the true

value of Phase 1 lies in the identification of the competencies.

41



DISSERTATION RESEARCH METHOD
PHASE 1

Objectives: • Determine competencies of Software Engineers
• Test Biographical Questionnare

Population/Sample:
• 5 Company Divisions on 3 Sites
• Applications include: Test & Measurement, Embedded FW, CAD
• Selected 10-XP and 10-NXP from population of 150 SW Eng

Instruments Analysis
• Biographical Questionnaire 1. Test for Difference

• Myers-Briggs Type Indicator 1. Test for Difference
2. Graphical Display of Results

• Critical Incident Interview 1. Protocol Analysis
2. Test for Difference

RT:10.19.91\METHOD1

FIGURE 3.2 Dissertation Research Method (Phase 1)

3.2 Phase! Quantitative Data Phase

The research objectives for Phase 2 were to:

1. Validate the competencies identified in the Phase 1 research, and
2. Determine if a simple predictor of performance exists.

This phase consists of an attempt to validate that the competencies identified in

Phase 1 are indeed significant and actually relate to performance. In particular, the

validation determines whether competencies hypothesized to be differential after

42



Phase 1, are in fact differential. Further, the data collected in this phase are used to

build a predictive model that uses the identified competencies to predict whether a

particular engineer will be ranked as exceptional or non-exceptional.

3.2.1 Selection of Subjects

For Phase 2, the objective is to validate the results of Phase 1 against a broader

population. Thus the research pool was expanded both in quantity and diversity.

Matching for time in the organization was no longer required since the breadth of

participants was expected to make differences in experience in the organization no

longer relevant. In addition, the "exclusivity" of the exceptional label was relaxed to

allow for a more even mix of exceptional and non-exceptional engineers in the study.

This is a conservative approach in that allowing more subjects to be defined as

exceptional merely increases the risk that a competency will not be identified as

differential. However, the competencies that are shown to be differential are much

more likely to be so. The mix was also changed to allow for a sufficiently large number

of exceptional subjects to power the required statistics.

As in Phase 1, all subjects are Company software engineers. All engineers were

allowed to participate regardless of length of service. There was not the 2 year minimum

experience criterion as in Phase 1. Managers were invited to have their labs participate

in the study via letter. The letter asked the participating lab managers to distribute

surveys to their entire lab on a differential basis. Seventy percent of the surveys would

go to non-exceptional performers and 30% of the surveys would go to exceptional

performers. The determination of exceptional versus non-exceptional was again made

by the managers according to the criteria in a follow-on letter. The 30/70 split was to

be used as a guideline. However, the managers were to use judgement and were allowed

43



to distribute exceptional surveys to more than 30% of their lab. This met with the

spirit of surveying based on performance. The managers were instructed to keep the

differential nature of the survey confidential.

When a manager elected to allow their lab to participate in the study, he or she

received a set of survey packets to distribute to their engineers. Extra surveys of both

the exceptional and non-exceptional variety were distributed so that the manager could

slightly skew the population based on the performance of the individuals in their

organization. Each packet contained a letter of instruction that outlined the assignment

and clearly indicated the voluntary nature of the survey. Each packet included a

Biographical Questionnaire and a set of Q-Sort cards. The packet included a

pre-addressed return envelope for returning the completed survey. This method kept

the results blind in that the researcher never knew the names of study participants or

their corresponding rating.

3.2.2 Biographical Questionnaire

The Biographical Questionnaire used in Phase 2 is presented in Appendix G

Phase 2 Biographical Questionnaire. It is identical to the Phase 1 questionnaire with

the following exceptions.

1. The Interview Date and Subject ID Number were removed. In this phase of
the study, there were not multiple study products to relate as there were in
Phase 1 (MBTI, Questionnaire, and Interview Transcript) so these were no
longer necessary.

2. Company Division was added to allow for reporting of results by division in
order to track response rates. Also, some managers agreed to participate on
the condition that they were able to see composite results for their own labs
relative to the full population. These separate results will not be presented
in this dissertation.

3. The degree of Engineer was dropped as a degree choice. Few engineers hold
this degree as it is only offered by two universities in the United States. In
addition, it caused some confusion with a major in engineering.

44



4. The text was changed to show that the only number used for Training Hours
was the grand total. Some respondents had trouble classifying their training,
and the final number is all that is used in the study.

5. Further clarification is provided in the description for Years of Experience in
order to eliminate confusion.

6. The MED answer was removed from the Language question. In Phase 1,
many subjects exhibited a "central tendency" and answered MED for all
languages. This was dropped in an attempt to increase variance. Also, the
directions were improved to better clarify what languages qualified. In
particular, the use of languages was scoped to those used professionally.

7. The entire Method/Tool section was dropped. This question proved difficult
for subjects to answer as there was considerable confusion about what was a
method or tool. Also, the results from Phase 1 were not significant.

8. P± Results of Sorting Exercise section was added to capture the results of the
Q-Sort activity.

The data collected via the biographical questionnaire was analyzed for difference

using statistical tests. The tests used in this analysis come from the area of Analysis of

Variance. The t-test, Fisher's Exact Test, and Chi Square Test are used to determine if

the mean value of variables are significantly different. The Chi Square test is used for

distinguishing nominal values on a differential basis. For example, if we wished to

study the factor of Highest Degree Held for exceptional and non-exceptional engineers,

the Chi Square test is used since Highest Degree Held takes on multiple discrete values.

If the variable takes on only two values then Fisher's Exact Test is used. This occurs

for the study of the effect of Gender on exceptional performance. Finally, variables

which take on continuous values are studied using the t-test. For example, studying

the effect of Years of Experience would require the use of the t-test. In all cases, a

significance level of 0.05 will be used which indicates that there is only a one in twenty

possibility that the observed difference does not represent the actual population. These

tests of difference will be used to further validate the results of the discriminant analysis

and offer further insight into the data.

45



3.2.3 Q-Sort

The common denominator of success... lies
in the fact that he or she formed the habit of
doing things that failures do not like to do.1'-

The Q-Sort activity was to be completed as described in the letter in Appendix

F Survey Instructions for Participants. According to Q Methodology, a Q-Sort task is

normally completed by a subject with the help of the researcher. This simplified

approach allowed the subjects to complete the assignment on their own.

Each subject received a set of Competency Cards with one competency listed on

each of 38 3"x5" index cards as shown in Appendix H Phase 2 Competency Statements

. The direct manipulation attribute of the Q Methodology allows the subject to sort a

much longer list of items. A set of Pile Marker Cards is also included in order to prompt

the subject to create the correct number of piles and to include the correct number of

cards in each pile. Further, the Pile Marker Cards include prompts to remind the

subject of the definition of the continuum across which the competencies are sorted.

It is important to emphasize that the criterion for sorting the competency cards

is the subject's own behavior. There are a multitude of possible criteria for sorting

these competencies (most important, best for achieving a high rank, best for creating

defect-free code, ...) but to be compatible with Phase 1 results, only behavior-based

sorting makes sense. Recall that the original source of the competencies was the

transcripts describing the Phase 1 subject's behavior. Hence from a validation point

of view, actual behavior must be the criterion. Also, since the study is attempting to

predict an individual's classification (exceptional or non-exceptional,) behavior is the

only observable criterion upon which to base this judgement.

nAlbert E. N. Gray, "The Common Denominator of Success," Insurance Sales, April, 1989.

46



3.2.4 Phase 2 Method Summary

Figure 3.3 presents a summary of the Phase 2 research method. The objectives

of Phase 2 are to validate the competencies identified in Phase 1 and determine which

are differentially related to software engineer performance. Phase 2 also provides a

predictor of performance. The sample for Phase 2 is drawn from nine Company

divisions whose engineers participate in the development of five application types. The

total software engineering population in these nine divisions is 275 engineers. Phase 2

uses a biographical questionnaire to collect demographic information about the subject

pool. Phase 2 uses the Q-Sort as a means of rank ordering the identified competencies

based on the degree to which they match the subject's behavior.

DISSERTATION RESEARCH METHOD
(ConO

PHASE 2

Objectives: • Validate, Rank Order, and Identify Differential Phase 1 Competencies
• Determine Predictor of Performance

Population/Sample:
• 9 Company Divisions on 3 Sites
• Applications include: Test & Measurement, Embedded Firmware,

CAE/CAD/CASE Software, Graphics, O/S
• 275 Surveys Distributed, 129 Responses (46.9%)

Instruments Analysis
Biographical Questionnaire

Q-Sort

1. Test for Difference

2. Discriminant Analysis

RT:10.19.91\METHOD2

FIGURE 3.3 Dissertation Research Method (Phase 2)

47



CHAPTER 4

DATA PRESENTATION

What we are witnessing now is a return to the
descriptive statistics of the nineteenth century,

completing unfinished business left over from that
era.... In descriptive statistics, you see things,

but you cannot test them in a formal way. In mathematical
statistics, you may test for something preconceived, but you

may overlook something you hadn't built into the test.12

This chapter presents the data collected in both Phase 1 and Phase 2 of the study.

This report is divided into each of the two phases. In each phase, the study sample is

described. The data for each phase are reported first as they relate to the sample as

a whole. Finally, the data from each phase are reported on a differential basis to

determine if statistically significant differences exist between the responses from

exceptional and non-exceptional software engineers. All data reported in this

dissertation were analyzed using SPSS/PC [Frud 87].

The data presented in this chapter represent the triangulation discussed earlier.

The data are triangulated in time since the Phase 2 study was conducted approximately

nine months later than the Phase 1 study. The data support the notion that time did

not affect the results and the Phase 2 results are consistent with the Phase 1 results.

The data are also triangulated by study subject. In Phase 1 the interviewees give two

separate responses. They discuss their behavior, which forms one observation, and

they report the competencies they consider important, which forms a second

observation. The managers of the groups studied also report the competencies they

12Dr. Peter Huber quoted in: For All Practical Purposes: Introduction to Contemporary Mathematics,
W. H. Freeman and Company, New York, p. 169,1991.

48



consider important. This forms the third observation. Finally, the study is triangulated

by method. In Phase 1 an interview technique is employed. In Phase 2 a survey

technique is used. The power of these multiple triangulations is that the results are

shown to be consistent across time, responses, and methods.

4.1 Phase 1 Qualitative Data Collection

Phase 1 represented the qualitative portion of the research study in which the

research aimed to capture the relevant competencies of software engineers. The study

covered ten exceptional and ten non-exceptional engineers from five R&D labs across

three Company sites. These organizations produce applications software and

embedded microprocessor firmware. Table 4.1 summarizes the population from which

the study participants were drawn. The #Engineers represents the total of engineers

of all disciplines in the total population. The #SWEngineers indicates the number of

engineers that the managers describe as software engineers. The #Study Participants

indicates how many engineers from the total population participated in the Phase 1

study. The number is even since it represents the matched set of exceptional and

non-exceptional engineers paired for time in the organization. Finally, the % of

Exceptional SWEngineers is the ratio of ^Exceptional SWEngineers Studied to the #SW

Engineers in the population.

The total number of engineers in the participating divisions was 252. These

organizations were selected for study based upon their willingness to participate, and

convenient geographical proximity. The number of Software Engineers in these

divisions was 150, or 60%. If we assume that the Phase 1 research sampled the best

10 Software Engineers out of this population, we find that the subjects represented the

top 6.7% of the software engineers in these labs. This matches well with the assignment

49



TABLE 4.1 Population Summary (Phase 1)

(n=20)

POPULATION SUMMARY
#Engineers
#SW Engineers
#Study Participants
#Exceptional SW Engineers Studied

% of Exceptional SW Engineers

TOTAL
252

150

20
10

6.7%

for the lab managers to supply as exceptional the top 5% of their labs.

4.1.1 Biographical Questionnaire

The Biographical Questionnaire shown in Appendix 3.1.2 Biographical

Questionnaire was used to collect descriptive information for the population under

study. Tables 4.2 through 4.8 provide this information for the population at large.

Fifteen subjects representing 75% of the sample were male. Five subjects

representing 25% of the sample were female. The 3 to 1 ratio of males to females is

consistent with published reports [Pear 90] that women constitute only 30% of the

employed computer scientists.

The mean age of the subjects in the Phase 1 sample (n = 20) was 33.45 years. The

values ranged from 27 to 42 years. The Phase 1 subjects are generally older and there

is a broad range in their ages.

The subject pool is well educated as shown in Table 4.2. The mean number of

degrees held is 1.6. The number of degrees held ranges from one to three. Half of

50



the subjects (n = 10) had completed two degrees. Few subjects have partially completed

degrees as shown by the mean of only 0.15 partially completed degrees per subject.

Fully 85 % (n = 17) of the subjects are not currently part way through a degree program.

TABLE 4.2 Subject Education (Phase 1)

(n=20)

# DEGREES COMPLETED
1
2
3

# DEGREES PARTIALLY
COMPLETED

0
1

FREQUENCY % of TOTAL

9

10
1

17

3

45%
50%
5%

85%

15%

CUMM %

45%

95%
100%

85%

100%

Another way to look at education is by the Highest Degree Held shown in Table 4.3.

Sixty five percent of the subjects (n= 13) completed a Bachelors degree as the highest

degree. Thirty percent (n=6) have completed a Masters degree. Only one subject

held a Ph. D. All subjects held at least a Bachelors degree.

TABLE 4.3 Highest Degree Held (Phase 1)

(n=20)

HIGHEST DEGREE
HELD

Bachelors
Masters

PhD

FREQUENCY

13
6
1

%OF
TOTAL

65%

30%

5%

CUMM
%

65%

95%

100%

51



There is a preponderance of Electrical Engineering degrees held as shown in

Table 4.4. Fully half of the engineers (n= 10) in the Phase 1 study held such a degree.

This related to three factors about the subjects in this study.

TABLE 4.4 Majors for Degrees Held (Phase 1)

(n=20)

MAJORS FOR
DEGREES HELD
Electrical Engineering

Computer Science
Computer Engineering

Mechanical Engineering
Math

Physics
Chemistry

Molecular Biology

FREQUENCY

10
7
3
3
2
1

1
1

%of
SUBJECTS1

50%
35%

15%
15%

10%
5%

5%
5%

1. Total will exceed 100% since some subjects held multiple degrees.

1. The Company has historically been an Electrical Engineering company. An
employer will most often hire workers similar to those already on the job.

2. Most of the subjects for the Phase 1 study are older and more experienced.
AComputer Science degree is newer and tends to be held by younger workers.

3. Many of the divisions surveyed in Phase 1 are developing firmware or
electronic test software. These applications are much closer to the hardware
than higher level applications and often attract and require engineers who
can easily move between the electrical engineering and software disciplines.

For these reasons this skew toward Electrical engineering graduates is not a concern

in this study.

The mean number of training hours completed in the past two years by study

participants (n=20) is 117.70 hours. Completed training ranged from zero to 306

contact hours. This training included college classes, corporate classes, seminars,

self-study, and any other area considered significant to the subject. For formal classes

52



contact hours is the number of hours spent in the classroom. For self-study, contact

hours is the number of hours spent in self-training. The subjects reported a wide range

of training hours and the mean indicates that engineers spend a significant amount of

time each year in training. The 117 training contact hours over two years reported

corresponds to almost a week and a half of training per subject per year.

Table 4.5 illustrates the number of Languages and Methods applied with Low,

Medium, and High skill. Low skill was defined as "novice user, little experience."

Medium skill was defined as "comfortable, some experience, familiar." High skill was

defined as "expert, lots of experience, well versed." For languages, the ranges for each

category are comparable. There is some tendency to know more languages with

increasing skill level as shown by the mean value of languages known increasing from

1.1 at Low Skill to 2.45 at High Skill.

TABLE 4.5 Language/Method Usage (Phase 1)

(n = 20)

LANGUAGES
High Skill

Medium Skill
Low Skill

METHODS/TOOLS
High Skill

Medium Skill
Low Skill

MEAN
2.45
1.80

1.10

1.05
1.00
0.35

RANGE

0-6
0-5
0-4

0-4
0-5
0-2

The Methods/Tools questions showed mixed results. The skill definitions were

the same as for Languages. The prompt provided was "describe the software

engineering methods and tools that you use now or in the past in your job. For example,

53



SA/SD, Yourdon, Jackson, McCabe, Halstead,..., but be sure to include anything you

feel is relevant." In general, subjects were confused about exactly what was a tool or

method. Some subjects responded with very high level tools like structured design and

object-oriented design while others responded with very low level tools like make and

awk. Due to the vagueness of the question, the range of the results, and the similarity

of the responses at the Medium and High level, the results are inconclusive.

Table 4.6 defines the work experience of the Phase 1 subjects. The table is divided

into quadrants. The first quadrant reports the experience in years for subjects working

in Software Engineering at The Company. With a mean of 7 years, this constitutes the

greatest amount of experience for the subject pool. The range of 2 to 15 years

substantiates that no subject had less than 2 years of experience and shows that very

experienced engineers are also in the study. The other quadrants show various

combinations of Software Engineering versus Non-Software Engineering work at The

Company and other companies.

TABLE 4.6 Work Experience (Phase 1)

# YEARS
EXPERIENCE

Company
NOT Company

SOFTWARE
ENGINEERING

MEAN
7.03

0.68

RANGE

2-15
0-7

ni
20
4

NOT SOFTWARE
ENGINEERING

MEAN
1.75

0.65

RANGE

0-6.5
0-10

ni
8
3

1. Indicates the number of subjects with non-zero values. The mean and range still describe the full sample of n = 20.

The least experienced engineer studied had 5 years of experience spread across

all four quadrants of Table 4.6. The mean years of total experience across all four

54



quadrants of Table 4.6 is 10 years. The maximum total.years worked in the sample is

20 years. This again substantiates that the subject pool for the Phase 1 research is

indeed experienced.

All of the preceding data were analyzed for statistical significance when studied

on a differential basis. That is, all of the data were split between Exceptional and

Non-Exceptional subjects and compared. The Fisher's Exact Test is used to compare

nominal variables with only two values (e.g. gender.) The t-test is used to compare the

means of ordinal values (e.g. training hours.} All test were performed looking for a

significance of 0.05 or better. Since this was such a small sample, no significant

differences were expected. The results of these tests are summarized in Table 4.7.

Years at Company in Software are significantly related to Exceptional Performance

with the 2-tail t-test calculated value of -3.21 and a calculated probability of 0.007. The

significance of experience indicates that although the design of the study matched

engineers for length of service in their current organization, the research design did

not match them for total experience. Hence the study did not remove experience as

a determining factor for exceptional performance. The failure to remove experience

as a determining variable could be due to a number of factors. The subjects were to

be selected on a matched basis for time spent in the organization. This definition of

matched experience did not control for experience of each subject prior to joining the

organization. One subject could, for example, have worked many more years

developing software in another Company organization before joining the current one.

Further, one subject may have been in the organization for the same amount of time,

but spent much of that time in a role other than software engineering. At any rate,

years spent in Software Engineering at The Company emerges as a significant

differentiator in the Phase 1 study.

55



TABLE 4.7 Tests for Difference (Phase 1)

(n=20)

VARIABLE

GENDER
AGE
#Degrees Completed
#Degrees Partially Completed
Highest Degree Held
Training Hours
Languages - High Skill
Languages - Medium Skill
Languages - Low Skill
Languages - Total
Methods - High Skill
Methods - Medium Skill
Methods - Low Skill
Methods - Total
Years at Company in Software
Years at Company NOT in
Software
Years NOT at Company in
Software
Years NOT at Company NOT
in Software
Total Years Worked

TEST

Fisher's Exact
T

T
T

T

T
T
T
T
T

T

T
T

T
T
T

T

T

T

CALCULATED
TEST VALUE

-0.88

-1.55
0.60

-1.55

-0.40

-2.01
0.00

0.95
-0.55

-1.67

-0.73

0.33
-1.53

-3.21
0.54

1.46

.2.

-2.09

CALCULATED
SIGNIFICANCE

LEVEL1

(2 Tail)
1.000
0.388
0.139
0.556

0.139

0.691
0.059
1.000

0.355

0.586

0.112

0.476

0.749

0.143

0.007 **

0.598

0.176

-

0.056
1. Differences are considered statistically significant when the calculated significance is less than 0.05. These are marked with

2. Not calculated since one or more samples had no variance.

Table 4.8 presents the information about Years at Company in Software on a

differential basis. The mean time at the company for exceptional performers is

56



significantly higher at nine years than for non-exceptional performers at 5 years. The

range is much broader for exceptional engineers with the longest length of service twice

that for the longest length of service of a non-exceptional engineer.

TABLE 4.8 Years at Company in Software - Differential (Phase 1)

(n=20)

Years at Company
in Software

Exceptional
Non-Exceptional

MEAN

9.05
5.00

STD
DEV

3.59
1.75

RANGE

4-15
2-7.5

This section has described the demographic characteristics of the sample studied.

It indicated that the sample represented an experienced and well educated pool of

software engineers. With the exception of the experience variable, no demographic

data were significantly different between the exceptional and non-exceptional

sub-samples. The lack of other statistically significant differences indicates

experimental control of the other variables or speaks to the uniformity of the sample.

4.1.2 Myers-Briggs Type Indicator

All 20 Phase 1 subjects completed the Myers-Briggs Type Indicator test. The results

are summarized on a differential basis in Figure 4.1. The figure shows the distribution

of all the Phase 1 study participants according to one of 16 personality types. The

figure is organized in such a way that each cell is located next to cells which are different

in only one of the four MBTI characteristics. The rows and columns are labelled with

the attributes which are valid in that row or column.

57



Sensing Types
With TUaktai With Feeling

Intuitive Types
With Feel la f WltM TtiaJclag

ISTJ

ISTP

**®

ESTP

ESTJ

ISFJ

m
ISFP

ESFP

ESFJ

INFJ

m
INFP

*

EhFP

ENFJ

INTJ

***;:
INTP

m^
ENTP

©

ENTJ

*

Judging 
P

tn

s

i:1

o•<
A

w

•0
A

1 Non-Exceptional Subject
1 Exceptional Subject

Distribution of 20 Phase /
Subjects on MBTI

FIGURE 4.1 MBTI Results (Phase 1)

RT:3.16.9I\MBTI_2

Looking first at the overall distribution of subjects, we see that there is a

preponderance of the Introvert type amongst the entire subject pool. Eighteen out of

58



twenty exhibit this type. Prior studies of engineers also found a significant tendency

toward the Introvert types. Also, the Introvert tendency is consistent with the

Kagan-Douthat study of students learning FORTRAN [Kaga85] which found a

tendency toward introversion in higher performing programming students. Further,

there is a tendency toward the Thinking type with 17 out of 20 exhibiting it. Prior

studies also found the tendency toward Thinking types in engineers. The Thinking

tendency indicates that engineers rely on logic and analysis of cause and effect in their

decision making, rather than emphasizing the effect of decisions on people and their

feelings. In fact, computer specialists exhibit the thinking preference 67% of the time

in broader studies [Myer 85].

The most frequent classification for exceptional performers is the INTJ (Introvert,

Intuitive, Thinking, Judging) type. Amongst male college graduates, the INTJ type

occurs only 10% of the time [Myer 85]. Hence these exceptional engineers differ from

the population at large. The pattern displayed in Figure 4.1 is typical of R&D

organizations.

The differential continuous scores are captured in Table 4.9. Scores below 100

favor the first preference listed in the pair while scores above 100 favor the second

preference listed. Statistical analysis of these scores via the t-test revealed that there

were no significant differences between the scores. This indicates that personality type

is not a good predictor of performance. This could also be a result of the small sample

size. Since the MBTI test is time consuming to complete, and somewhat expensive to

distribute and score, and since the results from Phase 1 were inconclusive, the test is

not used in Phase 2.

59



TABLE 4.9 MBTI Differential Scores (Phase 1)

(n=20)

Extrovert - Introvert
Sensing - Intuitive
Thinking - Feeling
Judging - Perceiving

Exceptional

128.6
109.0
79.4
90.8

Non-
Exceptional

117.0
100.8
77.4

96.4

T-Test Calculated
Value

-1.45
-0.76
-0.20
0.43

T-Test
Significance

Level1
(2 Tail)
0.165
0.456
0.841
0.673

1. Differences are considered statistically significant when the calculated significance is less than 0.05.

60



4.1.3 Critical Incident Interviews
\

Even though I feel like I'm good at it, its always
been very mysterious to me, I mean, you start with this

gigantic mass of information, and you have to sift through
it fairly rapidly to take out the pieces that you need, and

even though I feel like I do it fairly well, I've never known
why, you know, is it brain chemistry, or is it something that

somewhere because of some fourth grade teacher I picked it up,
and it's always been just kind of this innate thing that I've felt

comfortable doing. And so I do think about this a good bit at times
and I really don't know whether it was because of genes that I got or

because of some chemical imbalance in my brain or because some teacher
had a real effect on me at some point that I don't even remember now.13

This section discusses the results gleaned from the analysis of 20 interview

transcripts. It describes the method employed and discusses the decisions made during

the identification and classification processes. This section describes competencies.

Competencies are the skills, techniques, and attributes of job performance. This section

describes the three different sources of competencies: subjects describing their own

behavior, subjects reporting the competencies they think are related to exceptional

performance, and managers describing the competencies of the subjects they selected

as exceptional. Finally, the section describes how these competencies from three

sources were merged into a single list of 38 competencies.

Critical Incident Interviews are structured interviews designed to probe a subject's

behaviors to isolate the skills essential to success on the job [Flan 54]. The procedure

for completing these interviews is quite formal, and requires certain key behaviors on

the part of the interviewer. The interviewer must not lead the interview in any particular

direction. Rather, the unfolding of the subject's story should itself guide the interview

13From the transcript of Subject #20.

61



process. As a subject describes a particular incident, the interviewer should only probe

for more detail or to clarify certain points. The actual direction of the interview and

the selection of which topics are important must be left to the subject.

The 20 Critical Incident Interviews yielded a massive amount of data. Each

interview lasted, on average, two hours. Hence the full set of data consists of 40 hours

of taped interviews. The transcription of these tapes produced almost 20,000 lines of

text with over 200,000 words just for the subject responses. These figures do not include

the interviewers prologue or any questions or probes.

4.1.3.1 Identified Competencies

This section describes the set of competencies identified through the analysis of

the transcripts while focusing on the behaviors subjects described. The essential process

is to extract important competencies by converting the subject's description of a

situation into an observation.

These competencies were derived from the analysis of the interview transcripts

via Protocol Analysis [McCr 88]. Each transcript was reviewed and each observation

was marked to identify incidents and competencies. An incident was a particular event

or project which the subject described in detail in response to the prompt: Describe a

time during your career as a Software Engineer which, for you, was a personal best.

Generally the interviews were able to cover two or three incidents in two hours.

Competencies are identified by marking the skills, knowledge, or personal

attributes the subject alluded to while describing their role in the incident. Each

observation of one of these skills, knowledge, or attributes is marked with its location

in the transcript. A key phrase, usually in the subject's own words, is used to record

62



the observation. Since the subject was only given general directions and not prompted

to focus on a particular area, the skills, knowledge, and attributes discussed were only

those the subject chose to express.

Each interview transcript was studied to identify all the possible competencies

exhibited by the subject. As these competency "fragments" were collected within a

transcript, they were organized by related topics. Whenever possible, multiple

observations were collapsed into a single competency with multiple examples. Care

was taken not to over-generalize a concept in order to collapse these sets of fragments.

Each transcript analysis resulted in a set of exhibited competencies for that individual.

When all 20 of the transcripts had been analyzed in this manner, the researcher

collected the identified competencies across the interviews and created a single list for

all 20 subjects. Common competencies identified across transcripts were combined

into a single competency statement. The observations from each transcript were

merged into a single list whenever competencies were coalesced. These observations

were still marked with their location in the source transcript. Each grouping of

competency fragments was given a name to help identify and summarize the

competency observed. The final result of this process was a list of 53 competencies

requiring 42 single spaced pages of description. When this single list was completed,

it was again analyzed in an attempt to further reduce the number of competencies by

identifying concepts which could be merged. This produced a final list of 38

competencies. This is coincidentally the number of competencies used later in the

Q-Sort process. However, this relationship is purely accidental.

The process of selecting which of these competencies to retain for further

consideration was both subjective and objective. It was subjective in the sense that the

competency must be clear and narrowly enough defined to express a specific knowledge,

63



skill, or attribute. The process was objective in that the competency had to be expressed

by at least one exceptional and one non-exceptional subject, or by three or more

different subjects before it would be included for further consideration. The next pages

describe the 38 identified competencies in more depth. The pages also describe the

process of refining this list to the final list of 27 competencies retained in this step.

The competencies are discussed from the most frequently exhibited to the least

frequently exhibited in the interview transcripts. The final 27 competencies are

described in more depth with key behaviors and illustrative examples in

Appendix [XREF].

4.1.3.1.1 Retained Identified Competencies

The competency Uses Decomposition Design Techniques was exhibited by 16

subjects. The major themes of this competency include top down, modular designs

with a prioritized set of alternatives. They emphasize decomposition and keeping

specifications in sync with implementations. These subjects see the value in design

itself. As one subject put it, "Just doing a good design to start with because [it makes]

the rest of it... a piece of cake." Interestingly, some subjects describe the lack of design

or formal method for design. Hence this competency will make an interesting scale

from those who value and do design to those who don't value and hence ignore this

step.

A collection of different competencies were merged to form the Team Oriented

competency. The competency of Interacts with Other Engineers forms the basis for the

Team Oriented competency. In general, the interaction with other engineers

demonstrated a preference for promoting the team results over individual results. The

subjects described interactions with other engineers that stressed cooperation,

64



peacemaking, and constant communication. The subjects described team dynamics

which lead to high synergy and significant team results. The category of Influencing

Others was also combined to form the Team Oriented competency. Subjects described

techniques they would use to convince another engineer of their point of view.

Generally they stressed the non-confrontive interaction style they used to achieve their

results. The Extensions of Another's Ideas and/or Efforts competency was also merged

in Team Oriented. This category described how subjects would leverage off another

person's ideas to create a synergistic, improved result. Finally, the Prefers to be Left

Alone category was also merged with Team Oriented. This area is really the antithesis

of Team Oriented and will be measured by a low value on Team Oriented. Constructed

as shown, the Team Oriented competency appeared in 14 of the interview transcripts.

The Use of Prototypes competency relates to how the subjects used prototypes in

design. In particular, many subjects were clear in their own minds that prototypes are

used primarily to assess critical performance metrics prior to actual implementation.

They attempt to not allow their prototypes to be converted directly into a final product.

The do, however, make good use of prototypes to make important design decisions.

One subject was so determined that his prototype not be turned into a product that "I

explicitly did it in LISP so that I could throw it away and start over." As another subject

notes, "I felt very strongly that what I had done was not meant to be evolved into the

real product. ... They took the prototype that I had worked on and just basically turned

it into the real thing, and that piece of code, that one segment is the biggest nightmare

of this whole project and one of the reasons that we kept having major schedule

problems on it." One other subject notes the value of the prototype by saying, "By

doing a little bit of prototyping, it really drove some decisions there." Fourteen subjects

alluded to the use of prototyping in their interviews.

65



Thirteen subjects Write/Automate Tests in Parallel with Coding. This competency

expressed two important attributes. First, subjects created test suites as the same time

they developed their code. This allowed them to complete the bulk of their testing

and verify their modules at the same time that they completed their implementation.

As one engineer puts it, "I'm one that will code a piece and then will probably take the

time to write some kind of shell around to test." The second attribute of these tests

was that they were automated to allow regression testing of the code as changes were

made. Another engineer says, "We already had set up about 500 automated tests in

our test suite, and we were adding to that as we went along, so as a new area would be

developed we'd try and write a new test for it so that it could be automated. Engineers

used these tests to ensure reliability at the module level as they developed their

products.

Many subjects described the level of Unique Knowledge they had coming into a

job and indicated that this knowledge was essential to their success. The examples

here tended to be along the lines of having recently taken a particular class that was

relevant to the subject or having pursued the knowledge as a personal area of interest.

In certain cases it related to the specific domain knowledge of the problem to be solved.

In other cases it related to the skills or tools knowledge required to get the job done.

Thirteen of the 20 subjects related information substantiating this as an important

competency. It was retained for further analysis without further combining with other

competencies.

Twelve subjects expressed a tendency to take Pride in Quality and Productivity.

The subjects felt that the very essence of good engineering was in the quality of the

resulting product and the personal productivity with which it was accomplished. In

this competency the pride is paramount. This is how these individuals want to be

66



measured. The quality and personal productivity is their personal badge of honor.

The subjects seem to link quality with productivity often, which is why they appear in

the same competency. One subject particularly enjoyed the challenge of writing code

to be delivered in Read Only Memory (ROM.) Since this make software very expensive

to change, the whole attitude about defects is different. The subject notes, "The mind

set that most people had was that you developed this code and then burn it in ROM

and you don't ever get to change it.... We would never have admitted to ourselves that

it was okay to have defects in the software."

Twelve subjects exhibited the competency of Obtains the Necessary Training. Here

subjects seek the required documentation for their current project, take classes helpful

in completing the assignment, keep current by reading trade or technical journals, and

improve skills and awareness by attending conferences. As one subject states, "I had

to gain more depth in the operating system structure, in constructs and facilities that

are available with Windows(R), Presentation Manager(R), Macintosh(R), and even a

little bit on the UNIX(R) machine with X(R) and MOTIF(R)." This competency is also

related to Direct Application of Classroom Training which is listed below under rejected

competencies.

Eleven subjects referred to the competency of Focus on User or Customer Needs.

These engineers were driven to produce products reflecting the true needs of the

customer or end user. The subjects described situations in which they used or

proactively collected customer data in order to define a product. The subjects valued

the customer and felt success only when the end user appreciated their products.

Eleven subjects described situations in which they Seek Help from Others. The

subjects describe situations in which they use others to significantly improve their own

work result. Subjects would use others to review their work and offer suggestions for

67



improvement. The subjects even viewed the inputs from others as a way to grow as an

individual. They would contact others to get ideas about how to approach a particular

problem. They would call others in a attempt to find the answer to a specific problem.

In the Proactive/Initiator/Driver competency, subjects demonstrated that they

influenced the course of a project by choosing to become more actively involved. They

would influence others in their decisions about design or organizational structure. They

would look for ways to surmount barriers and remove obstacles. One subject described

a situation in which she attempted to get project decisions made. "I would publish

memos, and I published a decision since the steering committee did come to a decision,

I published the decision, and everyone went, 'No, no, no, you can't publish a decision;

who are you to do this?" Eleven subjects exhibited the Proactive/Initiator/Driver

competency.

Many subjects exhibited ^Proactive Role with Management in an attempt to move

a project in the direction they favored. This proactivity took the form of lobbying a

manager for a specific point of view, creating demonstrations to give a clearer picture

of a desired direction, creating portions of a product on their own time, and raising

issues to management when they threatened to interfere with project progress. One

subject described a situation in which he and another engineer worked in their spare

time to create a product definition. "We created project schedule; We created resource

requirements; We created the overall product plan at a high level." Ten subjects

exhibited this competency somewhere in their interview so it was retained for further

consideration.

Many subject described situations in which they Leverage or Reuse Code. Subjects

looked for sources of code that they could use directly in a current design. As one

subject put it, "I'm up for stealing anything I can, so it's the throw out the 'not invented

68



here' attitude.... There are other places where I can make contributions rather than

rewriting someone else's stuff." Other subjects emphasized designing their own code

so it was readily reused. Ten subjects described incidents in which they exhibited the

Leverages or Reuses Code competency. Of course, some subjects took an alternate

point of view. One notes, "I really wanted to rewrite everything and of course my

manager wouldn't let me."

The Use of Structure Techniques competency describes a very pragmatic approach

to the use of formal methods. In general, these subjects emphasized the use of these

techniques as a communication aid during joint development or when a design needed

to be passed on to another individual. These subjects did not, as a group, see structured

techniques as a panacea for design, but as a useful tool in certain situations. This

competency was exhibited by nine subjects in the study.

Nine subjects described their Response to Schedule Pressure in the course of the

interviews. In general, the subjects described the aspects of the design that they felt

forced to sacrifice when a project fell behind schedule. When schedule pressure hit,

these subjects were forced to provide incomplete documentation, perform inadequate

inspection or testing, and failed to completely design the product. This is a negative

competency in that it describes a result not usually praised by management. However,

it realistically portrays the conflict the subjects faced.

In the Methodical Problem Solving Approach competency subjects describe

situations in which they used a careful method for solving problems. They would build

mental or physical system models to enhance their understanding of the problem. The

category of Deb ugging Approach was merged into this competency. Here subjects would

design well controlled experiments to efficiently locate the problem's cause. As one

subject described the process, "We drew several partial successes, each of which gave

69



The Sense of Vision competency was combined with the Goal Setting competency

to create the Driven by a Sense of Mission competency. The combined competency was

referred to by six subjects overall. Both of these categories expressed the sense that

the individual was clear on the goals they were trying to achieve and was driven to

achieve them. This competency expresses the concept of focus and shared direction

among team members. It also relates to the sense that they were working for a higher

purpose rather than just a job. This new competency is retained for further analysis.

In the Use of New Methods or Tools competency subjects described situations in

which they sought out the best approaches for completing their tasks. They recognized

value in new tools and methods and proactively searched for these. As one subject

notes, "I spent enough time looking into a new debugger which was a different one

than the standard MS-DOS(R) one, because it was much easier to look at structures

and things like that; It made it a lot more productive too." This competency was

described by five subjects.

Four subjects described the situations in which they Schedule and Estimate Well

on their projects. There seemed to be two forms of the situations described here. One

group showed a high degree of concern for schedules and took pride in being able to

estimate project schedule well. Subjects from this group report creating good schedules

and then meeting them. The other group in this area show low concern with scheduling

or describe having done a poor job of scheduling. As one subject put it, "I don't think

I'm that good at estimating. They just kind of take as long as they take, and then they're

done, that's kind of how I see it."

The competency of Uses Code Reading to Ensure Final Code Quality was exhibited

by four subjects. This category grew out of a more general Coding Style area. Upon

closer analysis of the observations in this category, it became apparent that the key

71



concept expressed here was the theme of code reading in the production of high quality

code. The subjects broke into two groups on this theme. One group viewed code

reading as a public team activity while another viewed it as a private individual activity.

The Lack of Ego competency describes the degree to which subjects are open to

the ideas of others and don't feel that they need to be the source of all good ideas.

Subjects describe conflict situations in which issues are discussed in a very heated

manner, but personal attacks are never made. This competency was exhibited by four

subjects.

The Strength of Convictions competency describes the subjects who express a

principle base in their actions. They describe a strong sense of personal involvement

in the job and describe the personal integrity of the individual. One subject described

a situation where he was asked to allow a prototype to be developed directly into a

product by another engineer. He described his continued objections to the notion,

resulting ultimately in his being labelled as uncooperative. However, he stuck to his

convictions. This competency was uncovered in three of the interview transcripts.

Three subjects exhibited the competency of Willingness to Confront Others. Here

subjects are reluctant to let a conflict simmer and will openly confront another person

in order to resolve it. The engineers would raise this issues with other engineers or

with managers.

Three subjects exhibited the Mixes Personal and Work Goals competency. Here

subjects found ways to align their project goals with their own personal development

goals. These subjects lobby with their managers to receive the work assignments which

match their own personal desires.

72



The Helps Others competency was expressed by two subjects during the interviews.

One subject described their role as a lab-wide consultant to help with scheduling issues

and people issues. Another subject described situations in which he helped others

accomplish their tasks, often without being asked. The Helps Others competency is a

natural analog to the Seeks Help from Others competency. It is curious that while 11

subjects described seeking help from others, only two described giving help to others.

This may be a natural outcome of the subjects deciding just what the important topics

are in the interview. They may not adequately value their help to others.

4.1.3.1.2 Rejected Identified Competencies

Some of the competencies were rejected from further consideration. These

competencies could be dropped if either they were ill-defined or if they were expressed

by too few of the participants. Since the subjects selected to topics to discuss in the

interviews, this does not mean that these competencies are not important. It could

also mean that they are important but assumed. Many of the competencies will

reappear when subjects define which competencies they think are important for

exceptional performance. The competencies removed from further analysis at this

stage are discussed below.

Motivations emerged as a catch-all category describing a broad range of responses.

The motivations category included responses from 12 subjects. The category generally

referred to the specific things that motivated and individual on the job. The category

contains references to those things the individual likes and does not like to do.

Particular examples of things subjects liked to do include building mental models,

enjoying the tasks of the job, working alone, and pushing hard. Things the subjects did

not like to do include playing on computers, documentation, and working alone. The

73



competency of Acceptance of Difficult Situations was merged with Motivations since it

described the personal response to frustration and hence related to the motivation of

the individual. Since the Motivations category was rather ill defined, and many of the

key points were included in other competencies, the motivation competency was

dropped from further consideration.

Direct Application of Classroom Training is highly related to the competency of

Obtains Necessary Training above. Since only three subjects expressed this somewhat

different competency, it was dropped as a separate item.

Flexibility related to subjects who were able to work competently in many different

areas on a project. It also relates to the willingness of the individual to take on these

multiple roles. This competency was dropped from further consideration since only

two subjects described these activities.

Two subjects exhibited a competency of Recognizes Need for Leadership. Here

the subjects express the need for leadership in their teams and frustration that no leader

emerged. The category recognizes the need for someone to ultimately settle disputes

among peers.

Two subjects describe their Use of Metrics in creating or analyzing designs. One

used performance metrics to asses the quality of a solutions. The other used design

metrics to measure progress in the design.

The competency of Enjoys Freedom of Action was exhibited by two subjects. It

relates to the degree to which the individual can be self-directed in completing

assignments. It is rejected from further consideration since it appears in only two

transcripts.

74



The competency of Celebrates Success was observed in only one subject, hence it

was not included in any further study. The subject described the celebration that he

and his team engaged in to recognize their results. He also described situations where

team members would take time to congratulate others on their individual successes.

One subject exhibited a trait of Pursuing Multiple Parallel Paths in accomplishing

his objectives. He described a trait of keeping multiple design paths active in parallel

with the expectation that most would fail to succeed, but overall much progress was

made. This competency was not pursued since only one subject described it.

One subject described the use of Automation for the creation of test suites useful

in the design of his product. The concept of building tests in parallel with code is

captured elsewhere, but the concept of automation is dropped from further

consideration.

One subject exhibited the competency of Wants to Try New Things. This was an

attitude that the more variety he experienced on the job, the more he enjoyed his work.

It is related to the very general category of Motivation above and is dropped from

further consideration.

4.1.3.1.3 Summary of Identified Competencies

The full analysis of the retained competencies identified from. Protocol Analysis

of the transcripts in included in Appendix [XREF]. Table 4.10 lists these retained

competencies in summary form. The competency names are suggestive, but the

appendix should be consulted for the full definition. The competencies were analyzed

on a differential basis using the Fisher's Exact Test. The score used for this test was

the number of subjects which described behavior exhibiting this competency. Only

one of the competencies exhibited significant differences based on application of

75



Fishers Exact Test with a 2-tail probability looking differentially at exceptional and

non-exceptional subjects. Use of Prototypes was significantly different with a 2-tail

computed significance level of 0.0108. This is especially noteworthy given that the

sample size is so low. None of the rest of the competencies exhibited significance at

the 0.05 level or better. This is not surprising given the small sample size of 20.

The identification of competencies of software engineers is an important result

in its own right, even if they are only threshold competencies. Threshold competencies

are those competencies which are important to the job and are exhibited equally by

exceptional and non-exceptional performers. These will lend significant insight into

the job of software engineering.

This section presented the set of competencies identified via protocol analysis of

20 Phase 1 Critical Incident Interviews. The section discussed the method used, defined

each competency discovered, rationalized the merging of related concepts, and

identified those competencies worthy of further analysis in Phase 2.

76



TABLE 4.10 Retained Competencies from Transcript Analysis (Phase 1)

COMPETENCY NAME

Uses Decomposition Design Techniques
Use of Prototypes
Team Oriented
Writes/ Automates Tests in Parallel with Coding
Possesses Unique Knowledge
Obtains the Necessary Training
Pride in Quality and Productivity
Seeks Help From Others
Proactive/I nitiative/Driver
Focus on User or Customer Needs
Leverages/Reuses Code
Proactive Role with Management
Uses Structured Techniques for Communication
Methodical Problem Solving
Responds to Schedule Pressure
Emphasizes Elegant and Simple Solutions
Driven by Desire to Contribute
Sense of Fun
Driven by a Sense of Mission
Use of New Methods or Tools
Schedules and Estimates Well
Uses Code Reading to Ensure Final Code Quality
Lack of Ego
Mixes Personal and Work Goals
Willingness to Confront Others
Strength of Conviction
Helps Others

# Exceptional
Subjects

7

10

9

9

7

6
6
4

6

6

5

5
6

6
4

5
5

5

4

4

4

3

3

0

1

2

2

#
Non-Exceptional

Subjects
9
4
5
4
6
6
6
7

5

5

5

5

3

3
5
3
3
2

2
1

0
1
1

3

2

1

0

77



4.1.3.2 Self-Described Competencies

This section reports the responses given when the subjects were asked to name

the skills, knowledge, or personal attributes most important in helping them achieve

their success in the incident described. The subjects were prompted for this response

by a very open-ended question. Hence the replies are presumed to be the competencies

considered most significant by the study participants.

Each subject enumerated those competencies which they felt most contributed

to their success. A summary list was created for each subject. All summary lists for

each of the 20 subjects were combined into a single list of competencies. Related

competencies were merged to form a single competency. The number of subjects, both

exceptional and non-exceptional, expressing the competency was noted. What follows

is a description of these self-described competencies. The descriptions are ordered by

the number of subjects mentioning the competency.

The competency of Perseverance was noted by thirteen subjects. It relates to the

extra work, discipline, stubbornness, compulsiveness, dedication, and willingness to

work hard on a task. One subject described his testing experience as, "Testing is tedious,

but if you're disciplined and have a procedure you get through it; It took 60 hours per

week."

Twelve subjects described Knowledge as essential to the completion of their

assignments. They describe particular skills, knowledge of the problem domain,

knowledge of the solution domain, and general familiarity with the type of work as

being significant in completing their tasks. One subject put it as, "I think I was the best

person suited for this mainly because I knew the most about the overall operation of

the program to begin with, the diagnostics program, as far as how it ran and all the

78



intricacies of it, because I had done the most work on it earlier." This competency is

highly related to the Possess Unique Knowledge competency uncovered in the protocol

analysis.

Teamwork was frequently mentioned as an important competency for success.

This area included recognizing and using the strengths of others, ability to work with

others, being sensitive to others, taking joint ownership, and paying attention to more

than the technical aspects of a project. One engineer summed up this way, "I think a

lot of times we overvalue the technical skills and undervalue the people skills for people

that are in technical positions." Twelve subjects identified this as a key competency.

This competency is related to the Team Oriented competency from protocol analysis.

Eleven subjects identified Skills/Techniques as a key competency. They cite

comfort with design techniques, debugging skills, technology choices, and technical

and software development background as keys to their success. One subject identified

his own unique skill this way, "There probably aren't that many people ... who can run

through assembly language these days and do it with any kind of panache." This

competency is related to the Use of Methods and Tools competency from protocol

analysis.

These subjects defined Thinking as the ability to think algorithmically and

structuredly. They saw value in being able to build models in their mind, ability to

structure problems, ability to think of alternative solutions, and being able to see basic

structure and basic theory. As one subject notes, "I'm a fairly good problem solver, I

think I can gather information and extract the part of the information that's relevant

to my problem and then apply it to a solution."

79



Eight subjects valued Communication as a key to success. They defined this as

making sure that they understand others, engaging in constant communication,

responding to new ideas, being open, and being sensitive to others in conversations.

One subject notes that, "Communication is paramount, technology has been less

important." This competency is related to the Uses Structured Techniques for

Communication from protocol analysis.

The competency of Learning was considered key by many subjects. This

competency is defined as being able to pick up new techniques quickly, a willingness

to learn and train yourself, and a focus on improving skills. One subject describes the

concept as, "It's so interdisciplinary - you've got to be willing to do anything and believe

you can do it with training as well as the people who are already doing it." Learning

was expressed as an important competency by seven subjects. This competency is

related to the Obtains Necessary Training competency from protocol analysis.

Five subjects related Desire to Do as an important competency. They defined it

as a bias for action, sense of urgency, being results oriented, and a willingness to try

things. One subject described the skill as the ability to, "Just jump right in and start

working - you develop the capability."

Five subject found that Challenge was essential to their performance. They cite

curiosity and enjoying working in new areas as important. This competency is related

to the Driven by a Desire to Contribute competency identified in protocol analysis.

Subjects describe the competency of Attention to Detail as the ability to deal with

complexity, and being detail oriented. One subject notes that, "[I'm] good at taking a

lot of detail from several different things and getting it into my mind all the same time

and kind of working on it and munching it around in my head." This competency was

identified by four subjects.

80



Four subjects identified Thoroughness as an important competency. They define

this as making sure all paths are covered, being methodical, being organized, and being

overcautious. One subject described his experience, "I just had a real fear of ever being

in that situation [lots of defects in code];... I just went slowly and overdid if anything."

Four subjects identified Innovation as key to their success. They defined this as

having creative ideas. One subject states, "I like to think of alternatives, being creative

and ... practical at the same time."

The Conviction competency was identified by four subjects as being important in

their own success. They defined conviction as belief in the project or product, doing

the right thing, and selling projects. This competency is related to the Strength of

Convictions competency identified in protocol analysis.

Four subjects indicated that Seeks Help is an important competency. They value

the encouragement provided by other people. They see it as important to know when

you don't have enough knowledge and go and get help. It is also important to allow

others to criticize one's work or to give new input. This competency is related to the

Seeks Help from Others competency identified in protocol analysis.

Three subjects identified Experience as an essential competency for success. They

defined this as prior experience with a similar project.

Three subjects identified Prototyping as important to their success. They defined

prototyping as an approach for demonstrating feasibility and as a start on implementing

the most feasible alternative. This competency is related to the Use of Prototypes

competency identified in protocol analysis.

81



The Desire to Improve Things competency was identified by three subjects as

important for their success. They defined this as not being satisfied with the status

quo, setting high personal expectations and goals, and giving yourself time for

improvement.

Two subjects identified Scheduling as in important competency. This was defined

as planning ahead, and schedule setting ability. Although this would normally have

been below the cut line, it was retained for consideration since it is related to the

Schedules and Estimates Well competency identified from protocol analysis.

Simplicity was identified by two subjects as essential to their success. They defined

this as an aversion to complexity, simplifying things as much as possible, and not letting

a problem get too complex. One subject found that, "A little bit of vision that we could

do things by rethinking things we could do things simpler and more elegantly." Although

this competency would normally have fallen below the cut line, it was retained for

consideration since it is related to the Emphasizes Elegant and Simple Solutions

competency identified from protocol analysis.

Two subjects identified Quality as an important competency. They defined this

as making sure the result is readable, a concern for reliability, and a commitment to

high quality. This competency is retained since it is related to the Pride in Quality and

Productivity competency identified in protocol analysis.

82



Additional competencies were identified that were not included in any further

analysis. These were generally those competencies that were mentioned very

infrequently by subjects. Those competencies excluded from further study are listed

below.

1. Attitude
2. Judgement
3. Mentoring
4. Reputation for Being Right
5. Knowing What's Going On
6. Inquisitiveness
7. Responsive to Customer Needs
8. Involvement
9. Willingness to Take Risks
10. Ability to Deal With Uncertainty
11. Consistency
12. Pride
13. Thorough Testing
14. Patience
15. Maintaining a "Big Picture" View
16. Clarity
17. Incremental Investigation
18. Flexibility
19. Lax Management
20. Break From Problem
21. Fear of Having Something Bad Happen
22. Ability to Create Win/Win Situation

Many of the competencies appear in other portions of the analysis and will be included

for that reason.

The full table of the competencies is included in Appendix E Self-Described

Competencies. Table 4.11 shows the retained self-described competencies in

abbreviated format. The # Exceptional Subjects column indicates the number of

exceptional subjects who expressed this competency. Likewise, the

83



# Non-Exceptional Subjects column does the same for the non-exceptional subjects.

All competencies were tested for significant difference on a differential basis for

exceptional and non-exceptional subjects using a 2-tailed Fisher Exact Test. None

were found to be statistically significant differences.

TABLE 4.11 Retained Self-Described Competencies (Phase 1)

COMPETENCY NAME

Perseverance
Knowledge
Teamwork
Skills / Techniques
Thinking
Communication
Learning
Desire to Do
Challenge
Attention to Detail
Thoroughness
Innovation
Conviction
Seeks Help
Experience
Prototyping
Desire to Improve Things
Schedules Well
Simplicity
Quality

# Exceptional
Subjects

6
6
6
6

5
4
4

2
1

2

2

2

2

0

1

2

3

2

0

2

#
Non-Exceptional

Subjects
7

6
6

5

4

4

3

3

4

2

2

2

2

4

2

1

0

0
2

0

This section has presented the competencies that engineers indicated were

important to their success on the job. One set of these competencies has been retained

84



for further analysis. As second set of competencies was mentioned too infrequently

to warrant further consideration. Note that many of the competencies cited by

engineers as being important to their own success, are in fact the same competencies

identified from the analysis of the transcripts.

4.1.3.3 Manager Described Competencies

This section presents the competencies that managers feel differentiate their

exceptional performers from their non-exceptional performers. This data further

contributes to the triangulation of the results by providing another source of data for

describing essential competencies.

85



The following list of competencies was created by asking the lab managers who

participated in Phase 1 of this study: What are the Knowledge, Skills, or Attributes that

differentiate your exceptional performers from your non-exceptional performers? They

are listed in order of frequency of mention. There were five labs involved in the Phase 1

study and hence five managers answered this question. The number in parenthesis

following the competency indicates the number of managers, out of five, who offered

this as a differential competency. There was no discussion with these managers to

provide further elaboration on these competencies.

1. Skilled in Architected Approach to Software Engineering (3)
2. Breadth of View and Influence (3)
3. Technical Expertise in Problem Solving and Implementation (3)
4. Breadth of Knowledge and Experience (3)
5. Leadership (2)
6. N People Skills and Teamwork (2)
7. Technical Judgement (2)
8. Positive Attitude / Can Do Approach / Self Starter (1)
9. Willingness to Understand Different Disciplines and Make Tradeoffs (1)
10. Religiously Following Best Design and Testing Approaches (1)
11. Consistent Performance (1)
12. Flexibility (1)
13. Expertise That is Sought (1)
14. Reliable (1)
15. Accurate Schedules (1)
16. Pleasant Surprises (1)

Many of these competencies are similar to the ones either identified in the analysis of

the transcripts or cited by engineers as those leading to exceptional performance.

4.1.3.4 Summary of Competencies

Table 4.12 summarizes the competencies identified from the multiple sources

listed above. The item number column indicates which competency card located in

Appendix H Phase 2 Competency Statements describes the competency in more depth.

86



TABLE 4.12 Retained Competency Summary Table (Phase 1)

(n=20)

Self-
LABEL COMPETENCY Derived Described Manager

Item #1
Item #2
Item #3
Item #4
Item #5
Item #6
Item #7
Item #8
Item #9

Item #10
Item #11
Item #10
Item #13
Item #14
Item #15
Item #16
Item #17
Item #18
Item #19
Item #20
Item #21
Item #22
Item #23
Item #24
Item #25
Item #26
Item #27
Item #28
Item #29
Item #30
Item #31
Item #32
Item #33
Item #34
Item #35
Item #36
Item #37
Item #38

Team Oriented
Seeks Help
Helps Others
Use of Prototypes
Writes/Automates Tests with Code
Knowledge
Obtains Necessary Training / Learning
Leverages/Reuses Code
Communication / Uses Structured Techniques for

Communication
Methodical Problem Solving
Use of New Methods or Tools
Schedules and Estimates Well
Uses Code Reading
Design Style
Focus on User or Customer Needs
Response to Schedule Pressure
Emphasizes Elegant and Simple Solutions
Pride in Quality and Productivity
Proactive/Initiator/Driver
Proactive Role with Management
Driven by Desire to Contribute
Sense of Fun
Sense of Mission
Lack of Ego
Strength of Convictions
Mixes Personal and Work Goals
Willingness to Confront Others
Thoroughness
Skills / Techniques
Thinking
Desire to Do / Bias for Action
Attention to Detail
Perseverance
Innovation
Experience
Desire to Improve Things
Quality
Maintaining a "big picture" view / Breadth of View

and Influence

14
11
2
14
13
13
12
10
8

9
5
4
4
16
11
9
8
12
11
10
8
7
6
4
3
3
3

12
4
1
3

12
7

8

2

1

2
1

5

4

4
11
9
5
4
13
4
3
3
2
1

2

1

1

1

3

87



The Derived category refers to those competencies extracted from the analysis

of the interview transcripts. They represent those areas which the subject chose to

discuss during their narration about their experiences. The number in this column

reflects the number of subjects which described behaviors related to this competency.

The Self-Described column refers to the competencies offered when subjects were

asked to describe the skills, knowledge, and attributes associated with their successful

performance on projects. The number in the column indicates the number of subjects

which expressed this competency as important to their success.

The Manager column relates to the competencies suggested when managers were

asked what are the skills, knowledge, or attributes which differentiate the exceptional

and the non-exceptional performers in their labs. The number in the column indicates

how many of the 5 managers participating in Phase 1 cited this competency as

important.

The competencies with the most occurrences from the most sources were given

preference for further study. The competencies derived from the protocol analysis

were considered to be more important than the competencies offered directly by the

engineers or the managers. This is because this study is based on the notion that

behaviors associated with high performance are the unit of study. Competencies which

are validated by multiple sources are considered to be more important than

competencies which come from only one source. Finally, some degree of judgement

was applied to pick the best and most complete set of competencies to study further.

An arbitrary limit of 38 final competencies was imposed in order to make subsequent

study practical.



Table 4.13 summarizes the competencies which have been rejected for further

study. In some cases this was due to overlap with competencies which were included

above. In most cases it was due to the fact that few people identified the competency,

or it was not validated by multiple sources.

TABLE 4.13 Rejected Competency Summary Table (Phase 1)

(n=20).

Self-
COMPETENCY Derived Described Manager

Flexibility 2
Judgement
Skilled in Architected Approach to Software Engineering
Technical Expertise in Problem Solving and Implementation
Leadership
Willingness to Understand Different Disciplines and Make

Tradeoffs
Religiously Following Best Design and Testing Approaches
Consistent Performance
Reliable
Pleasant Surprises
Testing 4
Direct Application of Classroom Training 3
Enjoys Freedom of Action 2
Celebrates Success 1
Pursues Multiple Parallel Paths 1
Recognizes Need for Leadership 2
Use of Metrics 2
Automation 1
Wants to Try New Things 1
Attitude
Reputation for Being Right
Knowing What's Going On
Inquisitiveness
Involvement
Willingness to Take Risks
Ability to Deal With Uncertainty
Consistency
Timing and Dumb Luck
Patience
Clarity
Incremental Investigation
Lax Management
Break from Problem
Fear
Win/Win

1
2

1

2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
2
3
3
2
1

1
1
1
1

89



This section has completed an analysis of three sources of competencies: protocol

analysis of interviewee transcripts; self-described competencies of interviewees; and

differential competencies proposed by managers. The section described these

competencies in depth, and indicated which competencies should be merged into a

single competency. All the competencies were identified and subjected to a weighting

scheme in order to determine which competencies should be retained for further

analysis. The final 38 competencies to be retained were summarized in a single table.

4.1.4 Summary of Phase 1 Data

This closes the presentation of data for Phase 1 of the research. This data has

described the population from which the sample of 20 Phase 1 subjects was drawn.

The data show that the biographical information collected does not relate to

exceptional performance with the exception of Years at Company in Software. This

variable will be examined closely in Phase 2. The Myers-Briggs Type Indicator test

did not reveal any statistically significant differences between exceptional and not

exceptional performers. It did reveal a preponderance of Intuitive and Thinking types

in the full study sample. The search for competencies revealed a rich set of

competencies which warrant further study. A set of 38 competencies has been selected

for further study in Phase 2.

90



4,2 Phase 2 Quantitative Data Collection

Phase 2 forms the validation portion of the research project. It attempts to

validate the results of Phase 1 and provide a predictive model of performance based

upon the competencies discovered in Phase 1. Phase 2 repeats the study of

demographic information from Phase 1 in order to again validate that no simple

predictors of performance exist. Phase 2 analyzes the competencies discovered in

Phase 1 to determine which are associated with exceptional performance. Finally,

Phase 2 collects the data required to see if a model, albeit complex, can be proposed

to explain the difference in performance between exceptional and non-exceptional

performers.

4.2.1 Subject Selection

This study surveyed Software Engineers in nine Company divisions. All were

located in the same geographical area. The divisions represent a broad range of

software development including languages and compilers, test and measurement

software, graphics system software, embedded firmware for hardware control, and

CAE/CAD/CASE applications software. Table 4.14 indicates the total response rates

to the survey from all of the sample population.

Of the responses provided in Phase 2, only four were unacceptable due to being

incomplete in some of the major independent variables. The remainder of this analysis

considers only valid surveys for each variable under study. Hence there will be some

variation in the reported number of samples n. The response rate of close to 50% is

a strong result and may well indicate the level of interest in this information at the

Company studied. The sample of 129 participants provides sufficient statistical power

to complete the study. The response rates for exceptional and non-exceptional

91



TABLE 4.14 Population Summary (Phase 2)

POPULATION SUMMARY

Surveys Distributed
Total Responses
Response Rate
# Exceptional Responses
# Non-Exceptional Responses
% Exceptional
% Non-Exceptional

TOTAL
275
129

46.9%

41

88

31.8%

68.2%

performers was close to identical. Thirty percent of the surveys were distributed to

exceptional performers and 70% of the surveys were distributed to non-exceptional

performers. The return rates of 31.8% exceptional surveys and 68.2% non-exceptional

surveys closely match this distribution ratio.

4.2.2 Biographical Questionnaire

This section discusses the descriptive statistics collected for the population at

large. The data are compared with the Phase 1 results to ensure that the samples are

similar. The data are also analyzed for normality so that subsequent statistical steps

will be valid. Distributions will be considered normal when both the skew and kurtosis

of the data are within the range of plus or minus 1.00. The Biographical Questionnaire

used to collect this information in presented in Appendix G Phase 2 Biographical

Questionnaire. Tables 4.15 through 4.23 present the data from Phase 2.

Table 4.15 presents the distribution of subjects by gender. The Phase 2 population

is very similar to the 75/25 split shown in Phase 1. This is taken as an indication of

the population at large for Software Engineers at The Company. The skew is out of

92



range on gender indicating that the population is not normally distributed. This is a

reflection of the population itself. This ratio of males to females is consistent with

published reports [Pear 90] that women constitute only 30% of the employed computer

scientists.

TABLE 4.15 Subject Gender (Phase 2)

(n=128)

GENDER
Female

Male

FREQUENCY
27

101

% of TOTAL
21.1%
78.9%

Skew = -1.385; Kurtosis = -0.84

Table 4.16 presents the age of Phase 1 participants. The mean age of 32.45 years

is comparable to Phase 1's mean of 33.45 years. The range is broader in Phase 2. Part

of that is due to not limiting the survey to engineers with two or more years of experience.

Also, a larger population is just more likely to have some older participants. The skew

and kurtosis show that the sample is normal with respect to age.

TABLE 4.16 Subject Age (Phase 2)

(n=121)

AGE MEAN

32.45

STD DEV

5.68
RANGE

22-49
Skew = 0.718; Kurtosis = 0.376

Table 4.17 presents the educational information for the Phase 2 subjects. Again

the subject pool is well educated with over 53% of the sample holding two or more

degrees. The Number of Degrees Completed are normally distributed as indicated by

93



a skew of 0.539 and kurtosis of 0.119. The Number of Degrees Partially Completed is

quite skewed toward the no degrees completed end with a skew of 1.698 and a kurtosis

of 1.724. This is because 103 of the 129 subjects had no partially completed degrees.

TABLE 4.17 Subject Education (Phase 2)

(n=129)

# DEGREES COMPLETED
None
One
Two

Three
Four

# DEGREES PARTIALLY
COMPLETED

0
1

2

FREQUENCY % of TOTAL CUMM %

2

58
56
12

1

103

25

1

1.6%

45.0%

43.4%

9.3%

0.8%

79.8%

19.4%

0.8%

1.6%

46.5%
89.9%
99.2%

100%

79.8%

99.2%

100%

As shown in Table 4.18,40% of the subjects hold a Master's degree as their highest

degree. This reflects a well educated subject pool and corresponds well with the Phase 1

finding.

Table 4.19 indicates the frequency with which subjects held certain popular

degrees. For each of the Computer Science, Engineering, and Mathematics degrees,

the table notes the frequency with which at least one degree is held with that major by

the subject pool. Over 74% of the subjects held at least one degree in Computer

Science. This is in contrast to a rate of only 35% in the Phase 1 subjects. This may be

94



TABLE 4.18 Highest Degree Held (Phase 2)

(n=125)

HIGHEST DEGREE
HELD

None
Bachelors

Masters
PhD

FREQUENCY

2
68
50
5

% OF
TOTAL

r~ 1.6%

54.4%

40.0%
4.0%

CUMM
%

1.6%
56.0%

96.0%
100%

Skew = 0.477; Kurtosis = -0.238

/
due to the fact that Phase 2 subjects come from a broader population and the additional

labs surveyed produce Operating Systems, Graphics Systems, and Application Software

products. These groups may be more likely to hire these graduates.

TABLE 4.19 Majors for Degrees Held (Phase 2)

(n=125)

DEGREE HELD

Computer Science2

Engineering3

Mathematics

FREQUENCY

94
49
26

% OF TOTAL
SUBJECTS
HOLDING
DEGREE1

75.2%

39.2%

20.8%
1. Degrees held will exceed the number of study participants since participants

hold multiple degrees.
2. Computer Engineering degrees are double counted in Computer Science and

Engineering.
3. Includes all disciplines of Engineering - Electrical, Computer, Mechanical,...

95



The number of subjects with Engineering degrees is still strong at 39%. Again,

this is in keeping with the culture of The Company. Finally, the next most frequently

cited degree was in Mathematics with over 20% of the population reporting at least

one degree in this field.

The mean number of hours of training in the past two years similar for the Phase 2

and Phase 1 subjects. Phase 2 subjects (n = 125) completed 102 hours of training on

average in the past two years, while Phase 1 subjects (n=20) completed 117 hours on

average. This training included college classes, corporate classes, seminars, self-study,

and any other area considered significant to the subject. It is normalized to contact

hours. For formal classes this would be the number of hours spent in the classroom.

For self-study, this is the number of hours spent in the form of study. The Phase 2

subjects reported a range of zero to 683 hours of training in the past two years. The

high end of this range is more than double in the Phase 2 pool over the Phase 1 pool.

The skew value in for training of 2.196 indicates that the distribution of training hours

is not normally distributed. Further, the kurtosis value of 5.490 indicates that the

distribution of training hours is peaked in certain areas. The distribution has a large

peak at zero hours with sixteen subjects reporting no hours of training in the past two

years. The distribution is also skewed. The median value is 50 hours indicating a very

small but long tail of the distribution into the higher values of training hours.

The Languages variable covered in Table 4.20 shows another non-normal

distribution. There is both high skew and kurtosis on this variable. The mean number

of languages known with high skill at 2.7 is comparable to the Phase 1 value of 2.5.

The low skill value of 1.7 is higher than the Phase 1 value of 1.1 but can be at least

partially explained by the removal of a medium skill category for the answer. The total

languages row shows a more normal variable that has no problem with its kurtosis and

96



is only slightly over the skew limit value. Since the languages total variable more closely

matches a normal distribution, this is the variable which will be retained for further

study.

TABLE 4.20 Language Usage (Phase 2)

(n=125)

LANGUAGES
High Skill
Low Skill
Total Languages

MEAN
2.696
1.720

4.416

RANGE

0-10
0-8

1-11

SKEWNESS
1.519
1.432
1.084

KURTOSIS
4.141

3.703
0.844

The variables presented in Table 4.21 indicate the years of experience subjects

have with the Company and outside of the Company. Further, the table indicates the

years of experience the subjects have in Software Engineering and outside of Software

Engineering. The mean number of years worked at The Company in software

engineering dropped from 7 years in Phase 1 to 6 years in Phase 2. This can be explained

by the fact that Phase 2 surveyed all software engineers in each lab and did not specify

a minimum experience criterion. This is demonstrated by the low end of the range for

this variable being 0.5 years. The number of years spent in software engineering at

the Company shows acceptable kurtosis and nearly acceptable skew. The rest of the

variables are not normally distributed. This is to be expected given the relatively small

number of subjects who have non-zero years of experience in these areas. A new

variable, Software Total, was calculated. This variable is more normal as shown by

skew and kurtosis. It is also the variable measured in previous studies which attempted

to predict performance [Chry 78]. This is the variable which will be retained for further

analysis.

97



TABLE 4.21 Work Experience (Phase 2)

(n=123)

YEARS
EXPERIENCE

Company
NOT Company
Software Total

SOFTWARE
ENGINEERING

MEAN
5.974

0.974

6.948

RANGE
0.5-19

0-10
0.67-20

SKEW
1.028

2.421
0.991

KURT
0.996

5.961
1.068

ni
123

37
123

NOT SOFTWARE
ENGINEERING

MEAN
1.191
0.374

RANGE

0-10.5
0-12

SKEW

2.345

5.663

KURT
4.729

37.470

ni

33
14

1. Indicates the number of subjects with non-zero values. The reported statistics still describe the full sample of n = 123.

The Total Years Worked variable in Table 4.22 shows acceptable skew but

unacceptable kurtosis indicating unusually high peaks in the distribution. The mean

value in Phase 2 is 1.5 years lower than in Phase 1. Again, this can be explained by the

fact that Phase 2 was open to all lab members regardless of the amount of experience.

TABLE 4.22 Total Years Worked (Phase 2)

(n=125)

TOTAL YEARS
WORKED

MEAN

8.565

STD DEV

5.036

RANGE

0.67-31

SKEW

1.000

KURTOSIS

2.142

4.2.2.1 Differential View of Descriptive Statistics

Table 4.23 presents the biographical questionnaire information on a differential

basis. The table lists each variable collected or generated. It indicates which test is

used to determine statistical significance. The Chi-Square test is used to test for

statistically significant differences between categorical variables such as gender. The

98



t-test is used to test for statistically significant differences between ordinal variables.

For each test, the n is included to indicate the number of samples used in the test. The

calculated test values and calculated significance levels are also provided. Significance

levels which fall within the 0.05 significance range are marked with '**'.

TABLE 4.23 Tests for Difference (Phase 2)

VARIABLE

GENDER
AGE

#Degrees Completed
#Degrees Partially
Completed
Highest Degree Held
CS Degree Held?
Engineering Degree Held?
Math Degree Held?
Training Hours
Languages - High Skill
Languages - Low Skill
Languages - Total
Years at Company in
Software
Years at Company NOT in
Software
Years NOT at Company in
Software
Years NOT at Company NOT
in Software
Total Years in Software
Total Years Worked

TEST

Chi-Square
T

T
T

T
Chi-Square
Chi-Square
Chi-Square

T
T

T
T

T

T

T

T

T
T

n

128
128
129
129

129
129

129

129
129

129

129

125

127

127

127

127

123

129

CALCULATED
TEST VALUE

0.28
-1.44

-0.07

-0.18

0.25
0.34

0.25
0.34

1.96

-0.75

0.07

-0.41

-5.13

-0.26

0.86

1.10

-3.75

-2.87

CALCULATED
SIGNIFICANCE

LEVEL1

(2 Tail)
0.594
0.153

0.946
0.854

0.801
0.560

0.618
0.560
0.052
0.456

0.945

0.684

0.000 **

0.799

0.393

0.272

0.000 **

0.005**
1. Differences are considered statistically significant when the calculated significance is less than 0.05. They are marked with

99



Table 4.23 indicates that three biographical variables are associated with

exceptional performance: Years at Company in Software, Total Years in Software, and

Total Years Worked.

4.2.3 Q-Sort Results

This section reports the results of the Q-Sort exercise portion of the Phase 2

survey. The section first reports the results from the full sample and indicates that the

results are normally distributed. Then the section reports the results of a differential

view of the data for exceptional and non-exceptional subjects. The section identifies

those competencies which are associated with this difference in performance.

Table 4.24 presents the results of the Q-Sort activity on the survey. Participants

sorted a set of 38 competencies into a quasi-normal distribution of seven piles. Each

pile was assigned an integer value from zero to six. Zero means Least Like My Behavior

while six means Most Like My Behavior. For each survey, the Q-Sort item was assigned

the integer value associated with the pile that the subject placed it into. Table 4.24

presents the mean value of this score for all subjects for each item. The table is sorted

by the mean Q-Score for the full sample of both exceptional and non-exceptional

engineers. The skew and kurtosis numbers indicate that all Q-Sort items are normally

distributed.

The competencies contained in Table 4.24 are sorted by the mean score of all

study participants. This sorting confirms that competencies are indeed exhibited more

or less frequently by the study participants. The mean values of competency scores

range from 4.168 to 2.024.

100



TABLE 4.24 Q-Sort Competency Responses
(Sorted by Mean Score of Full Sample)

(n=125)

LABEL

Item #37
Item #15
Item #30

Item #21
Item #2
Item #18
Item #17
Item #34
Item #22

Item #32
Item #8
Item #28
Item #24

ltem#1
Item #29
Item #10
Item #36
Item #5
Item #19

Item #35
Item #7
Item #38
Item #13

Item #11
Item #14
Item #31

Item #12
Item #3
Item #33
Item #25

Item #27
Item #23
Item #4
Item #26
Item #20

Item #6
Item #16

Item #9

COMPETENCY
Concern for Reliability and Quality
Focuses on User or Customer Needs
Strong Analytic Skills - Ability to Think and

Visualize
Driven by Desire to Contribute
Seeks Help From Others
Takes Pride in Quality and Productivity
Emphasizes Elegant and Simple Solutions
Innovative
Enjoys Challenge of Assignment

- Has Fun
Pays Close Attention to Detail
Leverages/Reuses Code
Perseverance
Stresses Solution over Source of Solution -

Lack of Ego
Team Oriented
Mastery of Skills and Techniques
Uses Methodical Problem Solving Approach
High Personal Expectations and Goals
Write/Automates Tests in Parallel with Code
Takes Initiative to Identify Ways of Completing

Important Tasks
Prior Experience
Obtains the Necessary Training
Maintains "Big Picture" View
Uses Code Reading to Ensure Final Code

Quality
Uses New Tools or Methods
Uses Decomposition Design Techniques
Driven by Bias for Action and Sense of

Urgency
Schedules and Estimates Well
Helps Others
Methodical, Organized, and Cautious
Exhibits and Articulates Strong Beliefs and

Convictions
Willingness to Confront Others
Driven by a Sense of Mission
Uses Prototyping to Assess Design
Mixes Personal and Work Goals
Proactively Attempts to Influence Project

Direction by Influencing Management
Possesses Unique Knowledge
Responds to Schedule Pressure by Sacrificing

Parts of Design Process
Uses Structured Techniques for

Communication

MEAN
4.168
3.912
3.880

3.864
3.672
3.632
3.584
3.432
3.400

3.352
3.312
3.304
3.256

3.176
3.136
3.128
3.112
3.080
2.984

2.960
2.896
2.896
2.832

2.816
2.744
2.616

2.608
2.608
2.560
2.544

2.520
2.504
2.488
2.440
2.320

2.168
2.072

2.024

STD
DEV

1.324
1.314
1.383

1.110
1.288
1.298
1.265
1.266
1.524

1.504
1.292
1.444
1.069

1.476
1.279
1.114
1.172
1.418
1.085

1.340
1.230
1.565
1.372

1.352
1.361
1.590

1.447
1.497
1.682
1.644

1.377
1.182
1.423
1.316
1.619

1.236
1.607

1.434

SKEW

-0.590
-0.507
0.051

-0.086
-0.032
-0.138
0.197
0.107
0.006

0.174
0.128
0.040
0.154

0.088
0.047
0.098
0.023
-0.023
0.109

0.115
-0.010
0.252
-0.205

0.242
-0.089
0.262

0.146
0.169
0.215
0.032

0.033
0.333
0.366
-0.062
0.428

0.039
0.260

0.291

KURT

0.351
0.266
-0.857

0.064
-0.222
0.426
0.085
-0.154
-0.381

-0.739
-0.132
-0.573
0.098

-0.450
0.106
-0.239
-0.112
-0.276
-0.271

-0.153
-0.472
-0.569
-0.443

0.293
-0.090
-0.457

-0.272
-0.560
-0.71 1
-0.856

-0.391
0.264
-0.130
-0.222
-0.405

-0.337
-0.901

-0.567

101



Table 4.25 lists the results of a t-test comparison of means for each of the Q-Sort

Competencies. The means are calculated separately for exceptional and

non-exceptional performance and tested for difference. The two means are considered

different when the calculated significance level is less than 0.05. These are denoted

by '**' in the table. The table is sorted by the mean scores of the exceptional responses.

The Delta column represents the number of places that a particular competency moves

in its rank order when sorted by exceptional means rather than sorted by the full sample

means.

Table 4.25 demonstrates that nine competencies show statistically significant

differences in the mean values reported by the exceptional and non-exceptional

engineers. Thus 24% of the 38 identified competencies are related to the difference

in performance of exceptional and non-exceptional engineers. The five competencies

which have a higher mean for exceptional performers are:

1. Helps Others.
2. Proactively attempts to Influence Project Direction by Influencing

Management.
3. Exhibits and Articulates Strong Beliefs and Convictions.
4. Mastery of Skills and Techniques.
5. Maintains "Big Picture" View.

The four competencies which have a higher mean for non-exceptional performers are:

1. Seeks Help from Others.
2. Responds to Schedule Pressure by Sacrificing Parts of Design Process.
3. Driven by Desire to Contribute.
4. Willingness to Confront Others.

This section presented the results of the Q-Sort exercise for sorting 38

competencies. The section presented the data for the full sample indicating that each

competency's statistics were normally distributed. The full sample report also indicated

102



TABLE 4.25 Differential Q-Sort Competency Responses - T-Test Results
(Sorted by Mean Score of Exceptional Responses)

DELTA

0
0
0

+2
+ 2
-2

+8
+ 20

-1
+ 12

-2
-7
0

+ 6
-5

+ 3

-3
-7
-2
-8

+ 9

+ 13

+ 4
-8

-7

+ 6
-3
-3
-3

-9
-8

-1
+3

0
-6
-5

+ 1

-1

LABEL
Item
Item
Item

Item
Item
Item
Item
Item
Item
Item
Item
Item
Item

Item
Item
Item

Item
Item
Item
Item
Item

Item

Item
Item

Item

Item
Item
Item
Item

Item
Item

Item
Item
Item
Item
Item
Item

Item

#37
#15
#30

#18
#17
#21
#29
#3
#34
#38
#22
#2
#24

#35
#32
#19

#1
#8
#36
#28
#25

#20

#12
#10

#5

#23
#11
#14
#31

#7
#13

#4
#6
#26
#33
#27
#9

#16

COMPETENCY
Concern for Reliability and Quality
Focuses on User or Customer Needs
Strong Analytic Skills - Ability to Think and
Visualize

Takes Pride in Quality and Productivity
Emphasizes Elegant and Simple Solutions
Driven by Desire to Contribute
Mastery of Skills and Techniques
Helps Others
Innovative
Maintains "Big Picture" View
Enjoys Challenge of Assignment - Has Fun
Seeks Help From Others
Stresses Solution over Source of Solution
- Lack of Ego

Prior Experience
Pays Close Attention to Detail
Takes Initiative to Identify Ways of

Completing Important Tasks
Team Oriented
Leverages/Reuses Code
High Personal Expectations and Goals
Perseverance
Exhibits and Articulates Strong Beliefs
and Convictions

Proactively Attempts to Influence
Project Direction by Influencing
Management

Schedules and Estimates Well
Uses Methodical Problem Solving
Approach

Write/ Automates Tests in Parallel with
Code

Driven by a Sense of Mission
Uses New Tools or Methods
Uses Decomposition Design Techniques
Driven by Bias for Action and Sense of
Urgency

Obtains the Necessary Training
Uses Code Reading to Ensure Final Code
Quality

Uses Prototyping to Assess Design
Possesses Unique Knowledge
Mixes Personal and Work Goals
Methodical, Organized, and Cautious
Willingness to Confront Others
Uses Structured Techniques for
Communication

Responds to Schedule Pressure by
Sacrificing Parts of Design Process

XP
MEAN
(n=40)

4.050
4.025
3.925

3.750
3.725
3.550
3.500
3.500
3.425
3.425
3.325
3.325
3.250

3.250
3.225
3.100

3.050
3.050
3.050
3.000
2.975

2.925

2.900
2.900

2.775

2.750
2.700
2.700
2.675

2.600
2.550

2.550
2.325
2.250
2.150
2.125
2.050

1.600

NXP
MEAN
(n = 85)

4.224
3.859
3.859

3.576
3.518
4.012
2.965
2.188
3.435
2.647
3.435
3.835
3.259

2.824
3.412
2.929

3.235
3.435
3.141
3.447
2.341

2.035

2.471
3.235

3.224

2.388
2.871
2.765
2.588

3.035
2.965

2.459
2.094
2.529
2.753
2.706
2.012

2.294

TEST
VALUE

0.68
-0.66
-0.25

-0.70
-0.85
2.20
-2.22
-4.99
0.04

-2.66
0.38
2.10
0.04

-1.67
0.65
-0.82

0.65
1.56
0.40
1.63

-2.04

-2.95

-1.56
1.58

1.66

-1.61
0.66
0.25
-0.28

1.86
1.59

-0.33
-0.97
1.11
1.89
2.23
-0.14

2.29

SIG
LEVEL1

(2 Tail)

0.497
0.512
0.804

0.488
0.395

0.029 **
0.028 **
0.000 **

0.966
0.009 **

0.707
0.038 **

0.966

0.097
0.519
0.414

0.515
0.120
0.687
0.107

0.044 **

0.004 **

0.122
0.117

0.099

0.111
0.513
0.805
0.777

0.065
0.115

0.740
0.332
0.270
0.061

0.027 **
0.890

0.024 **

Differences are considered statistically significant when the calculated significance is less than 0.05. These instances are
denoted by"".

103



that there is a reported difference between the competencies considered to be Most

Like My Behavior and the competencies considered to be Least Like My Behavior. This

was demonstrated by the broad range of mean values for the competencies.

This section also presented the results of the Q-Sort exercise on a differential

basis. T-test analysis of these results demonstrates that nine competencies are

associated with the differences between exceptional and non-exceptional performers.

4.2.4 Discriminant Analysis

This section reports the Discriminant Analysis results of the survey data. It begins

by analyzing the correlations of variables since highly correlated variables cannot be

used in the analysis. The section defines the variables to be used in the analysis and

provides a rationale for their selection. The section reports the results of the full

discriminant analysis and closes with the results of a practical analysis using fewer

variables.

Discriminant Analysis is a technique used to predict membership in a group based

on a set of predictor variables and one criterion variable [Hube 89]. The analysis

presumes that the predictor variables are normally distributed, not highly

cross-correlated, and that no predictor variable is a linear combination of other

predictor variables [Klec 80]. The next few paragraphs will discuss the predictor

variables with respect to these criteria.

All predictor variables, biographical data and competencies, were analyzed for

cross-correlation. Table 4.26 lists the correlation values for statistically significant

correlations at the 0.05 level which have a correlation coefficient greater than 0.6. A

correlation at the 0.6 level explains 36% of the variance in one variable through the

use of the other variable.

104



TABLE 4.26 Cross-Correlations of Predictor Variables1

(n=121)

AGE
YEARS IN
SOFTWARE AT
COMPANY

TOTAL YEARS
IN SOFTWARE
TOTAL YEARS
EXPERIENCE

MATH DEGREE?

AGE

1.000

YEARS IN
SOFTWARE

AT COMPANY

1.000

TOTAL YEARS
IN SOFTWARE

0.638
0.883

1.000

TOTAL YEARS
EXPERIENCE

0.766

0.735

0.791

1.000

MATH
DEGREE?

0.766

1.000

#LANGUAGES /
LOW SKILL

#LANGUAGES /
HIGH SKILL
#LANGUAGES
TOTAL

#LANGUAGES /
LOW SKILL

1.000

#LANGUAGES /
HIGH SKILL

1.000

#LANGUAGES
TOTAL
0.656

0.728

1.000

DEGREES
COMPLETED
HIGHEST
DEGREE HELD

DEGREES
COMPLETED

1.000

HIGHEST
DEGREE HELD

0.828

1.000

1. All correlations are significant at the 0.05 level or better.

Table 4.26 demonstrates a clustering of age and experience variables which are

highly intercorrelated. This is to be expected as those engineers who are older are

much more likely to have more experience. It is presumed that experience rather than

age is the important variable here. Since not all of these variables can be used in the

subsequent discriminant analysis, Total Years in Software is selected as the most

appropriate variable. It is consistent with the choice made in prior literature [Chry 78]

105



and is the most intuitively appealing. Hence Age, Years in Software at the Company,

and Total Years of Experience will not be used. The Math Degree? variable was only

correlated with age. Since age will not be used in the analysis, the math degree variable

can be used.

There is also a high correlation between the Number of Degrees Completed and

the Highest Degree Held. Again, this is natural as engineers who earn subsequent

degrees tend to receive higher degrees. The Highest Degree Held is selected as the

most natural choice between the two variables.

As one would expect, #Languages Total correlates both with #Languages /High

Skill and ^Languages / Low Skill. Hence this analysis will use the total languages

variable.

None of the 38 competency variables were correlated with each other or with the

biographical variables at a level of 0.60 or better. Hence all will be used in the

subsequent discriminant analysis.

Table 4.27 reports the variables from Phase 2 which violate the normality

criterion of plus or minus 1.00 levels of skeworkurtosis. The gender skew is a reflection

of the underlying population and hence will be included in further analysis. The number

of degrees partially completed is dropped due to its distribution and due to the fact

that it represents a response from only 26 of the sample of 129.

106



TABLE 4.27 Non-Normal Variables (Phase 2)

VARIABLE

Gender
# Degrees Partially Completed
Training Hours
# Languages - High Skill
# Languages - Low Skill
# Languages - Total
Years Software at Company
Years Not Software at Company
Years Software Not at Company
Years Not Software Not at Company
Years Total in Software
Years Total Experience

SKEW
-1.385
1.698

2.196
1.519
1.432

1.084

1.028

2.345
2.421

5.663

0.991

1.000

KURTOSIS
-0.840
1.724

5.490
4.141

3.703
0.844

0.996
4.729

5.961
37.470

r 1.068
2.142

n
128

261

125

125

125

125

123
332

372

142

123

125
1. Number of subjects with one or more partially completed degrees. Statistics are calculated on full sample

ofn = 129.
2. Number of subjects with non-zero number of years in this category. Statistics are calculated on the full sample

ofn = 123.

The training hours variable exhibits a strongly skewed distribution with its peak

at the low end of training hours and with a long tail in its distribution at the high end.

Training hours is an important variable to retain for further analysis. The fact that it

is not normally distributed will underpower its statistics in further analysis. Hence the

conservative approach is to include the variable since it will only enter the discriminant

function if it is a significant effect.

The total number of languages known variable had already replaced the low and

high skill versions of the variable due to high cross-correlations. Also, the total number

of languages known exhibits much better skew and kurtosis characteristics.

The set of experience variables listed exhibit non-normal characteristics. This is

especially true of the variables for which relatively few subjects reported non-zero

values. Since there is also a high intercorrelation among these variables, the Years

107



Total in Software variable is selected as the stand in for all other experience variables.

It has the best skew characteristic and corresponds most closely with the variables used

in the literature.

The variables remaining in the analysis at this point are listed in Table 4.28. The

variables listed in Table 4.28 were entered into a stepwise discriminant analysis using

Wilks' method. A total of 122 cases were used in the analysis. The results of the 24

step process are summarized in Table 4.29.

TABLE 4.28 Retained Variables for Discriminant Analysis

VARIABLE
Gender
Highest Degree Held
Computer Science Degree?
Engineering Degree?
Math Degree?
Training Hours
Total Years in Software
Total Number of Languages
Item #1 thru Item #38

Table 4.29 shows that 49% of the variance (1 minus Wilks' Lambda) can be

explained by the 20 variables remaining in the Canonical Discriminant Function

following the analysis. The more significant result is demonstrated in Table 4.30. Here

we see that the function composed of the 20 variables in Table 4.29 is able to correctly

classify over 86% of the cases collected in this study.

108



TABLE 4.29 Full Discriminant Analysis - Summary Table

(n=122)

Step
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Action
Entered Removed
ITEM#3
SW TOT
ITEM#31
LANG TOT
ITEM#27
1TEM#25
ITEM#28
ITEM#23
ITEM#16
MATH DEC
!TEM#4
ITEM#12
ITEM#38
ITEM#9
ITEH#1
ENG DEG
ITEM#18
TRAINING
ITEM#13
ITEM#15

ITEM#38
ITEM#4

ITEM#5
ITEM#10

Vars
In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
19
18
19
20

Wilks1

Lambda
.83854
.76331
.72147
.69362
.67090
.64644
.62845
.61493
.59993
.58924
.57852
.56804
.55790
.55016
.54255
.53526
.52980
.52393
.51692
.51101
.51579
.51986
.51465
.50901

Sig.
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

Label
Helps Others
Total Years Software Experience
Driven by Bias for Action / Urgency
Total Languages used Professionally
Willingness to Confront Others
Exhibits and Articulates Strong
Perseverance
Driven by a Sense of Mission
Responds to Schedule Pressure
Math Degree Held?
Uses Prototypes to Assess Design
Schedules and Estimates Well
Maintains "Big Picture" View
Uses Structured Techniques for Comm
Team Oriented
Engineering Degree Held?
Takes Pride in Quality and Productivity
Total Training Hours
Uses Code Reading to Ensure Final
Focuses on User or Customer Needs
Maintains "Big Picture" View
Uses Prototypes to Assess Design
Writes/Automates Tests in Parallel
Uses Methodical Problem Solving App

TABLE 4.30 Full Discriminant Analysis - Classification Results

Actual Group

Group 0
NON- EXCEPTIONAL
Group 1
EXCEPTIONAL
Percent of "grouped"

No. of
Cases

83

40

Predicted Group Membership
0 1

73
88.0%

7
17.5%

10
12.0%
33

82.5%
cases correctly classified: 86.18%

Classification Processing Summary
125 Cases were processed.
0 Cases were excluded for missing or out-of-range group codes.
2 Cases had at least one missing discriminating variable.

123 Cases were used for printed output.

As a practical refinement, the discriminant analysis was rerun over the same

variables but only allowing the first 10 variables of Table 4.29 to enter the Canonical

Discriminant Function. This was an attempt to create a more tractable predictor

109



function which could be more readily used in practice. The full discriminant analysis

presented in Table 4.29 was analyzed to recognize that after the first 13 variables

entered the discriminant function, the subsequent variables explained less than 1% of

the remaining variance. This was deemed as a practical cutoff for additional variables.

Further, the eleventh and thirteenth variables entered (Item#4 and Item#38) were

subsequently removed from the full analysis. This was taken as an indication that the

eleventh, twelfth, and thirteenth variables were not important to retain for further

analysis. Hence the analysis was stopped with only the first ten variables allowed to

enter the Canonical Discriminant Function. Table 4.31 provides the classification

results for the reduced case of 10 variables. The function of 10 variables is able to

correctly classify over 81% of the cases collected in this study. This means that,

practically speaking, this ten variable function is as valuable as the full twenty variable

function.

TABLE 4.31 Limited Discriminant Analysis -10 Variables

Classification Results
No. of Predicted Group Membership

Actual Group Cases 0 1

Group 0 83 68 15
NON-EXCEPTIONAL 81.9% 18.1%
Group 1 40 8 32
EXCEPTIONAL 20.0% 80.0%
Percent of "grouped" cases correctly classified: 81.30%
Classification Processing Summary

125 Cases were processed.
0 Cases were excluded for missing or out-of-range group codes.
2 Cases had at least one missing discriminating variable.

123 Cases were used for printed output.

110



Figure 4.2 shows the explained variance for the discriminant analysis using the

ten variables identified. The total variance explained by these variables is 41%. The

Helps Others competency explains 16% of the variance in the sample. The Total Years

Software Experience variable explains another 8% of the variance in the sample. The

Bias for Action competency explains 4% of the variance of the sample. All other

variables explain less than 3% of the variance of the sample.

EXPLAINED VARIANCE

HELPS 538 YEARS SW g^ ACTION ggg| TOTAL LANS £77] CONFRONTS

CONVICTION g3 PERSEVERAN' ggg MISSION TgQ SCHED PRES ggj MATH DEC

Explained Variance by Variable

0.5

O.4

0.3

0.2

0.1

o.o

Total Variance Explained
(From Canonical Discriminant Function) RT:10.18.91\VARIAN

FIGURE 4.2 Explained Variance of 10 Variable Discriminant Function

This section presented the results of the Discriminant Analysis of the study

variables. The section discussed the criteria for including variables in the analysis and

presented the rationale for limiting the variables considered. The section presented

the results of the full discriminant analysis resulting in a Canonical Discriminant

111



Function of 20 variables capable of correctly classifying over 86% of the cases used in

the study. Finally, the section presented a restricted Canonical Discriminant Function

with only ten variables capable of correctly classifying over 81% of the cases in the

study.

4.2.5 Summary of Phase 2 Data

The Phase 2 portion of this research has collected data from over 120 subjects

all of whom are experienced professional software engineers engaged in the creation

of software products. The biographical portion of this data describes a well educated

and experienced sample from the population at large. The only biographical data

demonstrating a statistically significant relationship to exceptional performance are

years of experience variables. These experience variables, along with age, show a high

degree of cross-correlation and are replaced with the single variable of years of software

engineering experience in further analysis.

The analysis of the competency scores from the Q-Sort exercise shows nine

competencies are statistically related to performance under univariate analysis. Five

of these competencies are more related to the behavior of exceptional performers

while four of the competencies are related to non-exceptional performers. When using

the multivariate technique of discriminant analysis, the research discovered that an

equation of twenty variables is able to correctly classify the exceptional and

non-exceptional cases under study 86% of the time. A simplified equation of only ten

variables provides correct classification 81% of the time.

4.3 Summary of Data Presentation

Chapter 4 presented the data collected from both Phase 1 and Phase 2 of this

research. The data are triangulated in time since Phase 1 occurred approximately nine

112



months before Phase 2. The data are triangulated by method. Phase 1 used a Critical

Incident Interview technique coupled with Protocol Analysis to collect and identify a

set of competencies related to exceptional performance of software engineers. Phase 2

verified these competencies using Q-Methodology to rank and weight the importance

of these competencies. Finally, the data are triangulated by source since both engineers

and managers were used in Phase 1 to identify competencies. These three triangulation

methods led to a strong validation of the identified competencies as being very

important to professional software engineers.

Both Phase 1 and Phase 2 also collected biographical information about the

sample population in an attempt to identify any simple predictors of performance. The

descriptive information about these samples was quite consistent across the two phases.

Each sample proved to be generally male, well educated, and well experienced. In

both phases, experience did emerge as a differential attribute associated with

exceptional performance. Thus, more experience seems to lead to higher performance.

This is certainly not a counterintuitive result.

When looking at all the factors associated with exceptional performance,

experience did not emerge as the predominant predictor. The discriminant analysis

of all predictor variables showed that although experience was a factor, there are many

other factors associated with high performance. It is the combination of the identified

competencies with experience which proved able to explain the most difference

between the exceptional and non-exceptional groups.

113



CHAPTER 5

FINDINGS AND CONCLUSION

So he spent most of his time submerged in chaos,
knowing that the longer he put offsetting into a

fixed organization the more difficult it would become.
But he felt sure that sooner or later some sort of format

would have to emerge and it would be a better one for his having waited.14

This chapter presents an analysis and interpretation of the data reported in

Chapter 4. This chapter draws conclusions from the analysis of the data and interprets

the results in light of the literature in this field. This chapter first discusses the univariate

statistical analysis and attempts to draw conclusions from the analysis of each of the

predictor variables in isolation. Then the chapter considers multivariate statistical

analysis and discusses the models proposed for predicting whether individuals are

exceptional or non-exceptional performers. The chapter closes with a proposed

dynamic system model of performance based on the competencies identified in this

research and on the level of an engineer's experience.

5.1 Univariate Analysis

Table 4.23 presented the results of a differential analysis of the biographical

questionnaire data. The table shows that three variables, Years at Company in Software,

Total Years in Software, and Total Years Worked, are all related to exceptional

performance with their calculated significance levels from a 2-tailed t-test each less

than 0.05. Table 4.26 indicates a high degree of intercorrelation among these same

variables. This indicates that there is basically one concept at work in the relationship

14Robert M. Pirsig, Lila:An Inquiry into Morals, Bantam Books, NY, 1991.

114



between these experience variables and performance. This result is consistent with

the result found by Chrysler [Chry 78] in his study of professional software developers.

Chrysler found that several experience variables and age were all highly correlated.

This dissertation concludes that experience is indeed a significant predictor of

performance. This is particularly true when the experience is in software engineering

and the experience is received at the company where a subject still works. It seems

that either companies reward the experience at their own company more, or the

experience at the company is more relevant to the tasks of that company. Hence this

experience is more valuable.

The experience variable by itself is not a satisfying predictor of performance.

Operating by itself it is only able to correctly classify 63% of the 123 cases from this

study. Although this is 13% more than the 50% correct classification provided by

chance, it is not too powerful a result. Although experience is important, it is not

enough. No other biographical variables are simply related to performance. These

other variables will become important again as multivariate statistics are considered.

The competencies are identified and reported in Table 4.24. The competencies

can be further organized into four categories, TaskAccomplishment, Personal Attributes,

Situational Skills, and Interpersonal Skills as shown in Table 5.1. The competencies in

each category of this table are listed in rank order based upon the mean competency

score for the entire sample.

The categories shown in Table 5.1 form natural clusters of related competencies.

Task Accomplishment competencies are those competencies most closely related to

the unique skills or capabilities required to complete the task at hand. Many of the

competencies are specific to the production of software, for example, Leverage/Reuses

Code, Mastery of Skills and Techniques, Uses New Tools or Methods, and Uses Code

115



TABLE 5.1 Competencies by Category

Task Accomplishment________________________T-Test1 Discrim2

Leverages/Reuses Code
Uses Methodical Problem Solving
Mastery of Skills and Techniques XP
Write/Automates Tests in Parallel with Code
Prior Experience
Obtains the Necessary Training
Uses Code Reading to Ensure Final Code Quality
Uses New Tools or Methods
Schedules and Estimates Well
Uses Prototypes to Assess Design
Possesses Unique Domain Knowledge
Uses Structured Techniques for Communication

Personal Attributes______________________________________
Driven by Desire to Contribute NXP
Pride in Quality and Productivity
Enjoys Challenge of Assignment - Sense of Fun
Stresses Solutions over Source of Solutions - Lack of Ego
Perseverance NXP
High Personal Expectations and Goals
Takes Initiative to Identify Ways of Completing Important Tasks
Maintains "Big Picture" View XP
Driven by a Bias for Action and a Sense of Urgency XP
Methodical, Organized, and Cautious
Driven by a Sense of Mission XP
Exhibits and Articulates Strong Beliefs and Convictions XP XP
Mixes Personal and Work Goals
Proactive Role with Management XP
Situational Skills_______________________________________
Concern for Reliability and Quality
Focuses on User or Customer Needs
Strong Analytic Skills - Ability to Think and Visualize
Emphasizes Elegant and Simple Solutions
Innovative
Pays Close Attention to Detail
Uses Decompositions Design Techniques
Responds to Schedule Pressure by Sacrificing Parts of the NXP NXP

Design Process

Interpersonal Skills______________________________________
Seeks Help From Others NXP
Team Oriented
Helps Others XP XP
Willingness to Confront Others_____________________NXP_____NXP
1. Entries indicate which competencies have statistically significant differences for exceptional and non-exceptional performers.

Those competencies related to exceptional performance are marked XP. Those competencies related to non-exceptional
performance are marked NXP.

2. Entries indicate which competencies entered the canonical discriminant function of ten variables. Those competencies related
to exceptional performance are marked XP. Those competencies related to non-exceptional performance are marked NXP.

116



Reading to Ensure Final Code Quality. Other competencies in this category relate to

, the knowledge required to accomplish the task. For example, Obtains the Necessary

Training and Possesses Unique Domain Knowledge refer to the unique knowledge

required for the particular task. Finally, the competency of Prior Experience relates to

the degree to which familiarity with the task itself is important. One subject describes

his view of the need for the ability to acquire new skills as, "It's so interdisciplinary,

you've got to be willing to do anything and believe you can do it with training as well

as the people who are already doing it."

Personal Attributes are those competencies which describe inherent traits of the

individual. These are generally presumed to be competencies which are independent

of the task itself. Many of these competencies relate to the personal motivation of the

individual. For example, Driven by a Desire to Contribute, Driven by a Bias for Action

and a Sense of Urgency, Driven by a Sense of Mission, and High Personal Expectations

and Goals all relate to internal motivations and drive of the individual. Other

competencies in this category refer to the generic behaviors of the individuals applied

in all circumstances. For example, Methodical, Organized, and Cautious, Takes Initiative

to Identify Ways of Completing Important Tasks, and Proactive Role with Management

all refer to the actions an approaches of an individual in completing a task. One

engineer described his struggle in learning which results were worth fighting for, "I

need to be less stubborn on the things that don't matter so that I can save my wind for

the ones that do matter."

Situational Skills are the competencies which relate to the process by which an

individual completes a task. These competencies will be stressed or de-emphasised

depending upon the nature of the current task. For example, Focuses on User or

Customer Needs, Emphasizes Elegant or Simple Solutions, and Uses Decomposition

111



Design Techniques all relate to the basic approach an engineer takes in solving a

particular problem. The competencies stress the how of solving a problem. As one

engineer explains the difference between technical knowledge and customer needs,

"The technical aspects are fairly clear for the kinds of products we do here at [the

Company]. ... They're mostly challenging with respect to the design and customer

usage."

Interpersonal Skills describe the competencies related to the interactions among

engineers. The competencies of Seeks Help from Other, Team Oriented, Helps Others,

and Willingness to Confront Other all describe the way engineers interact. One engineer

described an essential skill as, "The ability to work with different people from different

areas that have different concerns from mine and yet be able to work with them towards

a common end."

This collection of competencies is a significant contribution in its own right. All

competencies listed are important even if they prove to not be differential between

exceptional and non-exceptional performers. The list is important because it describes

all the competencies found in software engineers in this study. The list of competencies

provides a well rounded view of the extent of skills, knowledge, and attributes required

for a software engineer to be successful in their job.

Table 5.1 indicates which competencies are considered differential via the T-test.

Those competencies which are differential are highlighted in bold. The T-Test column

indicates whether the competency is associated with exceptional (XP) or

non-exceptional (NXP) performance. Five competencies are associated with

exceptional performance and four competencies are associated with non-exceptional

performance via the t-test.

118



The competencies associated with exceptional performance, Mastery of Skills and

Techniques, Maintains "Big Picture" View, Exhibits and Articulates Strong Beliefs and

Convictions, Proactive Role with Management, and Help Others generally cluster around

the theme of external focus. The exceptional engineer is differentiated by behaviors

associated with externalization. The behaviors are directed at people or objects outside

the individual. The exceptional engineer takes a broad view of situations and develops

strong convictions about how to proceed. The exceptional engineer drives toward this

vision by proactively working with management to set goals on directions for the team.

The exceptional engineer also helps other engineers in an attempt to ensure the full

success of the project. The one internal skill exhibited by exceptional engineers is

Mastery of Skills and Techniques. This is a more self-directed competency and reinforces

the fact that engineers need to be completely capable in their own discipline before

they achieve the exceptional status related to an external focus. One engineer in the

study states, "My perception of someone who is successful is not someone that knows

the most, it is someone who can use the knowledge they do have the best."

The non-exceptional engineer is associated with four competencies, Driven by a

Desire to Contribute, Responds to Schedule Pressure by Sacrificing Pans of the Design

Process, Seeks Help from Others, and Willingness to Confront Others. Here the unifying

theme is one of internal focus. These competencies all relate an individual acting largely

alone attempting to complete tasks. The interaction with others is either one of seeking

help or one of confrontation. These engineers find that they give in to the external

schedule pressure and sacrifice parts of the design process that they would rather not

sacrifice. The motivation of the non-exceptional engineer comes from a personal desire

to contribute. This contrasts with the exceptional engineer who takes the broader view

and works to influence project direction.

119



One way of viewing these characteristics is to place them in the context of

experienced versus inexperienced individuals. Many of the competencies related with

non-exceptional performance can be viewed as the behaviors of an inexperienced

engineers. When an engineer first begins a career, they will be unsure of their skills

and capabilities. As a result, they will concentrate heavily on their own performance

and exhibit an internal focus. As they mature in the job and become more confident

of their skills, they will begin to take a broader view and be more proactive in setting

project direction. This explains the fact that experience was shown to be differential

characteristic of exceptional performers.

The relationship between experience and the competencies exhibited by

exceptional performers does not explain all of the difference in the sample, however.

Many experienced software engineers never become exceptional. These experienced

engineers fail to exhibit the externally focussed competencies even after many years

of experience. It would seem that if there is a relationship between experience and

certain key competencies, that the mechanism by which experience reinforces or

transfers the key competencies doesn't work for all individuals. This raise the question

of how competencies are reinforced. Why do some software engineers use their

experience to develop the competencies associate with exception performance while

others do not? This question is beyond the scope of this dissertation, but indicates a

significant direction for future research.

This section has described the results of univariate analysis of biographical and

competency variables. Experience emerged as the single biographical variable

associated with exceptional performance. Nine competencies are differentially related

to performance. The full set of 38 competencies fall naturally into four categories:

Task Accomplishment, Personal Attributes, Situational Skills, and Interpersonal Skills.

120



The competencies related to exceptional performance are also related to experience.

The competencies related to non-exceptional performance are indicative of an

inexperienced individual. Thus the experience variable is itself related to the

competencies which differential exceptional from non-exceptional performance.

5.2 Multivariate Analysis

Table 4.29 presented the results of a stepwise discriminant analysis allowing all

retained variables to enter into a single Canonical Discriminant Function. As shown

in Table 4.30, this equation of 20 variables is able to correctly classify over 86% of the

123 cases used in the study. In an effort to make the results more tractable, the analysis

was rerun with the same variables but only allowing the first 10 variables to become

part of the Canonical Discriminant Function. This simplified equation of 10 variables

is still able to correctly classify 81% of the 123 cases studied as shown in Table 4.31.

The three biographical variables which entered the Canonical Discriminant

Function of 10 variables are Total Years of Software Experience, Total Languages Used

Professionally, and Math Degree Held?. The Total Years of Software Experience and

Math Degree Held? variables are of the same sign indicating that each is associated

with exceptional performance. The inclusion of the experience variable is consistent

with the univariate analysis above. It is also consistent with the literature [Chry 79]

and with intuition. The entry of the Math Degree Held? variable is somewhat surprising

and did not appear in any prior literature. Since Math Degree Held? did not emerge

as differential via the t-test, it may not be strongly correlated with exceptional

performance. Rather it may be one of many variables capable of explaining a significant

amount of variance at that particular point in the stepwise discriminant analysis. This

variable may be a stand-in for any variable related to education.

121



The Total Languages Used Professionally variable entered the Canonical

Discriminant Function with a different sign indicating that it is related more to

non-exceptional performance. This is inconsistent with prior studies which show a

correlation between the number of languages known and performance. In this

dissertation the subjects were asked to identify those languages they had actually used

professionally. Other studies asked which languages the subject was familiar with.

This dissertation result suggests that in-depth knowledge and use of fewer languages

is related to higher performance.

The seven competencies which entered the limited discriminant analysis function

of 10 variables are highlighted in bold in Table 5.1. The Discrim column indicates XP

or NXP to indicate if the competency is related to exceptional or non-exceptional

performance in the Canonical Discriminant Function. The competencies which

entered the Canonical Discriminant Function related to exceptional performance are

Driven by a Bias for Action and a Sense of Urgency, Driven by a Sense of Mission, Exhibits

and Articulates Strong Beliefs and Convictions, and Helps Others. The competencies

which entered the Canonical Discriminant Function related to non-exceptional

performance are Perseverance, Responds to Schedule Pressure by Sacrificing Parts of the

Design Process, and Willingness to Confront Others.

The results of this discriminant analysis could be used for software engineer

selection. The biographical variables of experience, languages used, and math degree

are easily obtained from the individual. Behavior based interviewing can be used to

extract a score on each of the seven competencies used in the analysis. The Canonical

Discriminant Function can then be used to predict the individual's performance.

122



Perhaps a better use of this result is to use it as a tool to improve performance

of existing software engineers. Once engineers know what differentiates performance

they can modify their behaviors in order to achieve better results. The assumption

here is that most of the identified competencies are exhibited by all engineers to some

degree. By emphasizing and reinforcing the competencies exhibited by the exceptional

performers, the performance of all software engineers can be improved.

Four of the competencies selected by discriminant analysis were also among the

nine competencies identified as differential via the t-test. This is one indication of the

consistency of the results. The cluster of competencies for exceptional and

non-exceptional performance by the discriminant analysis continue to reinforce the

internal/external focus of the competencies on a differential basis. The competencies

related to exceptional performance continue to relate to overall project or team results.

The competencies associated with non-exceptional performance still relate to the

individual and the individual's performance.

One further insight can be gleaned from Table 5.1. With two exceptions, all of

the competencies selected as differential by the t-test and the discriminant analysis fall

into the broad categories of Personal Attributes and Interpersonal Skills. This is a very

significant result. It indicates that the most important characteristics leading to

exceptional performance are not skills associated with the task. Rather, personal

characteristics and interpersonal interactions are the things that differentiate

performance. Thus skills unique to the person prove to be the most important. One

study participant notes, "I have not seen one project fail because the engineers lacked

technical knowledge." Another participant says, "I'm a lot more willing not to question

somebody's judgement or talent and just let them do it because I have to understand

that they're a talented person too, and they're going to do the right thing as opposed

123



to before, thinking my way." A further study participant notes, "It's interesting, you

could get into the attributes of the personal, because I think that is the major key,

actually,... that is basically one of the major keys as to whether something's going to

work, partly the interaction personalities, but partly the mindset, the attitude about

which we approach the project with." These quotes indicate the understanding on the

part of study participants of the importance of personal and interpersonal skills and

attributes.

The primacy of personal and interpersonal skills and attributes is further

reinforced by reviewing the competencies suggested by managers as representing their

exceptional performers. Here competencies like Breadth of View and Influence,

Leadership, People Skills and Teamwork, and Positive Attitude reinforce the notion that

the external focus of the engineer is critically important to achieve exceptional

performance. One manager described these critical attributes as, "Big picture seen,

overall architect, expertise that is sought, excellent technical judgement, self-starter,

reliable, accurate schedules, pleasant surprises." These are the sorts of characteristics

that managers use to rate an engineer's performance.

This discussion indicates that the important competencies for software engineers

may be largely task and situation independent. If this is true, the results contained

within this dissertation would be very generalizable. The results could apply to other

software engineers not part of this study. The results may apply to other engineering

or even non-engineering disciplines. Further study is required to determine if this is

indeed the case.

The multivariate analysis shows a relationship to the univariate analysis. The

experience factor continues to be as important in the multivariate analysis it is in the

univariate analysis. Two additional biographical competencies enter the 10 variable

124



Canonical Discriminant Function: Total Languages Used Professionally and Math

Degree Held?. Four of the seven competencies which enter the discriminant function

are also differential on a univariate analysis. The differential competencies from

univariate and multivariate analysis cluster in the Personal Attributes and Interpersonal

Skills categories indicating that performance is not differentially related to task or

situational skills.

The earlier discussion on the purpose of the biographical questionnaire posed

three hypotheses to be considered in this dissertation. The first hypothesis was that

exceptional engineers would make broader use of various tools or methods, especially

acting as early adopters of new tools and techniques. The data in this research failed

to support this hypothesis. The Phase 1 survey of tools and methods was inconclusive.

Further, although exceptional engineers did differentially exhibit the Mastery of Skills

and Techniques competency, they did not differentially exhibit the Uses New Tools or

Methods competency. This indicates that exceptional engineers are masterful with the

tools they do use, but they are not more likely to be early adopters of new tools.

The second hypothesis was that academic and demographic factors would not

emerge as predictors of performance. This proved to be true in this research. No

demographic factor other than experience was differentially related to performance.

The third hypothesis was that age and experience would correlate with performance,

but would emerge as a threshold effect where they would not be significant beyond a

certain point. This also proved true. The cluster of experience variables were

differentially related to exceptional performance. However, experience alone was not

125



an extremely good predictor of performance. Thus experience is iinpeBtiaaift tt»

exceptional performance, but although it is necessary for exceptional perfemmnnasitt

is not sufficient.

5.3 Dynamic System Model of Performance

Figure 5.1 presents a dynamic system model of performance15. The

based on the notion that competencies, experience, and performance are

by a set of cause and effect relationships. The model also accounts

inherent in the system and helps to explain the interrelationship of experience

competencies.

The left side of the model lists the competency categories associated wiAsoffwane;

engineers. The categories of Personal Attributes and Interpersonal Skills areMgitnlgJitedl

since they represent the differential competencies for software engineers. He csnUaar

of the model defines the broad category of experience. It is composed of the dfflfewaittall

experience variables of Years at Company in Software, Total Years in Software, ancElTefizI

Years Worked. The right side of the model defines the measured output to Ike: s^sterm.

It is the performance category assigned to the individual software engineer.

The system starts with a new software engineer at the beginning of tfee canean:.

This person has set of competencies defined by prior experience. Largely tMsa&tftss

training the person received in school. The competencies are directly related tetfe

behavior of the individual. It is these behaviors that begin the process d) gaimiig

experience.

15Model proposed by Professor Charles O. Neidt.

126



COMPETENCIES

r TASK ^
ACCOMPLISHMENT

ATTMIBUTE&

EXPERIENCE PERFORMANCE

SITUATIONAL
SKILLS

A

TOTAL
YEARS

Iff
SOFTWARE

TOTAL
YEARS

AT
COMPANY

EXPERIENCE

EXCEPTIONAL

NON-
EXCEPTIONAL

APPRAISAL

RT;10.18.91\ MODEL

FIGURE 5.1 Dynamic System Model of Performance

Experience corresponds to applying behaviors in order to achieve results. As an

engineer gains experience in the employer's company and in the field of software

engineering, they begin to achieve their results. The very process of gaining this

experience allows for many opportunities to improve upon behavior patterns in an

attempt to become more effective. This experience forms the first feedback loop. As

an engineer finds behaviors which help to achieve intermediate goals, these are

127



reinforced and developed. Behaviors which prove to be unsuccessful in achieving

intermediate results are modified until the correct results are achieved. Thus the actual

experience of attempting to complete tasks forms important, behavior modifying

feedback. The significance of this feedback was not lost on one engineer who described

his experience.

/ don't think that all Software engineers are equal, you know, some
have more experience, and you definitely have to weigh that. Some
people have more experience with tools, you have to weigh that.
Some people have more self confidence and can put across an aura
of knowing what they're talking about when they don't. And if you
do treat everyone equally, then you can fall into the trap of listening,
perhaps listening to the wrong person or discounting someone who
really has something reasonable to say.

The right side of the model shows the appraisal portion of the model. Here results

are evaluated relative to some measure, and the engineers performance is classified

as either exceptional or non-exceptional. This appraisal forms the second important

feedback loop. The feedback affects experience since the appraisal is used to select

future tasks for the engineer. Very poor performance might mean no more experience

at all! Very good performance generally results in even more challenging tasks. The

appraisal also provides feedback to the competencies. An engineer will modify their

own behaviors as a result of the appraisal feedback. This serves to enhance or

deemphasize certain competencies.

This model is valuable in that it allows for discussion of the process by which

exceptional performance is created. It also allows for discussion of why individuals

with similar years of experience continue to exhibit different levels of performance.

In some cases the very nature of the experience may be vastly different. Although two

engineers may have similar years in a similar job, the actual work assignment may have

been very different. Failure to achieve the expected results on an early assignment

128



may lead to future assignments which.fail to develop the required competencies for

exceptional performance. This is because management will not give the more

challenging assignments to those who have not achieved exceptional results in the past.

This severs the important feedback of experience to competencies. The value of a

positive experience is highlighted by one engineer in the study who described the

normal method of putting new, inexperienced engineers into mainstream project

assignments.

Some people might say that that's good, it's trial by fire, personally
I think that tends, if they do, you give them the opportunity to succeed
or fail If they do succeed, I mean you're going to have a tiger on
your hands, and that's great when that happens, but if they fail,
you're going to have somebody that's going to be demoralized and
not feelgood about themselves when the mistake might have been
more in just fitting the person with the job.

Engineers may also fail to develop their competencies if the appraisal feedback

loop is broken. This can occur either when management fails to provide adequate

performance appraisal or when the individual engineer fails to make proper use of the

appraisal data. In either case the engineer fails to develop and reinforce the

competencies required for exceptional performance.

The Dynamic System Model of Performance developed in this section provide

some additional insight into the relationship between experience factors and

competencies in achieving exceptional performance. The model illustrates two

important feedback loops. Experience is fed back to the competencies and should be

used to reinforce the essential competencies required for exceptional performance.

Performance appraisal is fed back in two ways. First, it modifies the individual's

assignments and hence alters the experience. Second, the appraisal feedback modifies

an individual's competencies and behaviors. Failure to achieve an exceptional level

of performance may be explained by failure in these feedback loops.

129



5.4 Summary

This chapter has described the results of this dissertation. Figure 5.2 presents a

summary of the results. The chapter discussed univariate and multivariate analysis of

the data. Experience emerged as the sole biographical variable related to exceptional

performance. There was no simple predictor of performance. Thirty eight

competencies of software engineers were identified. Nine of the competencies are

differential with five of them associated with exceptional performance and four of them

associated with non-exceptional performance. The competencies are placed into one

of four categories: Task Accomplishment, Personal Attributes, Situational Skills, and

Interpersonal Skills. The combination of univariate and multivariate analysis of the

competencies led to the insight that Personal Attributes and Interpersonal Skills are most

closely linked with performance differences. Skills associated with the task or situation

did not generally emerge as differential. A practical equation of ten variables was

shown to correctly classify 81% of the 123 cases in the study. Finally, a dynamic system

model of performance was proposed to explain the linkage between experience and

competencies.

130



KEY RESULTS

• 38 Competencies of Professional Software Engineers

Simple Predictors of Performance Don't Exist

9 Competencies are Differential

A (Complex) Predictive Model of Performance Exists

Proposed Dynamic System Model of Performance

RT:10.t9.91\KEY

FIGURE 5.2 Key Research Results

131



CHAPTERS

FUTURE DIRECTIONS FOR FURTHER STUDY

Get it right or let it alone.
The conclusion you jump to may be your own.16

This dissertation presents the results of an investigation of the competencies and

demographics which contribute to the performance of professional software engineers.

The research finds significant predictors of performance. The dissertation discussed

the role of experience in performance. The dissertation also presented the 38

competencies associated with software engineering. Further, the dissertation presents

the differential competencies associated with high performance. The research

identifies the importance of Personal Attributes and Interpersonal Skills to exceptional

software engineers. Finally, the dissertation presents a practical predictive model of

performance capable of correctly classifying over 81% of the 123 cases in this study.

All of these results are combined in the creation of the Dynamic System Model of

Performance. This final chapter will discuss some of the implications of this research

as well as its deficiencies. The chapter will suggest areas of further research.

Figure 6.1 presents a summary of the implications of this research. The

dissertation presents implications for further research, education, and practice. The

research reported provides a valuable set of 38 competencies which can form the basis

of further studies into performance differences for software engineers. These 38

competencies express a broad range of behaviors required of a software engineer.

16James Thurber, Further Fables for Our Time (New York, 1956)

132



Since the competencies covered behaviors well beyond simple task accomplishment,

it's clear that future research should be careful to consider these non-task skills in the

design of future studies. One interesting result from this dissertation is that skilled

subjects are able to complete complex research instruments without guidance. The

Q-Sort is generally conducted with the researcher acting as a facilitator. In the present

research, the Q-Sort was sent to the subjects and they completed, it on their own. Given

that only two out of 129 subjects incorrectly completed the Q-Sort, it seems that complex

tasks are feasible for research methods with highly skilled subjects. Further, the survey

response rate of 47% demonstrates a surprising willingness on the part of the subjects

to participate. This could be due to the level of interest that the subjects had in the

area and their interest in the survey task itself.

In the area of education, this dissertation research concludes that educators need

to stress the Interpersonal Skills and Personal Attributes as part of an engineer's

preparation. Generally, education focuses on the tasks associated with the discipline

under study. Although this task training is important, the differential skills are not

task oriented. The educational process should support the development of

interpersonal skills and personal attributes through the creation of learning situations

which stress these competencies. Team-oriented assignments may be useful for

developing these traits.

This dissertation research bears directly on the interviewing and hiring procedures

in industry. This research suggests that behavioral interviewing stressing the

differential traits identified may be the best way to locate exceptional employees. Note,

however, that interviewing based on the differential competencies may be

133



IMPLICATIONS

Research
»•• Valuable set of Competencies
>• Complex research methods viable with skilled subjects
*• Special attention required for non-task skills

Education
»• Need to stress Interpersonal Skills and Personal Attributes

over Task Accomplishment
»• CS Majors need skills well outside CS
>• Educational process should support these competencies

Practice
> Interviewing & hiring proceedures
> Employee development and appraisal
»• Creation of better products

RTM0.19.91MMPUCA

FIGURE 6.1 Research Implications

inappropriate for recruiting recent college graduates. Since the competencies were

identified by interviewing experienced engineers, they may be different than the

competencies of exceptional recent graduates.

The research results can also be used to improve the employee development and

appraisal processes. The Dynamic System Model of Performance suggests the

connection between appraisal and performance. One question raised in the discussion

of the Dynamic System Model of Performance is the degree to which the feedback

loops of Experience and Appraisal are active for non-exceptional engineers. Perhaps

the failure that occurs for non-exceptional engineers is a breakdown of either the

134



experience or the appraisal feedback loop. If an engineer is unable to learn from their

own experience and refine their own competencies based upon this experience, they

will fail to make the required improvements in their own competencies. Without the

refinement of these competencies, the engineer's behavior will not change. Without

the behavior changes there is no change in results and no change in appraised

performance.

The performance appraisal is the second feedback loop in the model. If this

feedback fails to modify the engineer's emphasis on competencies, again there will be

no behavior change. Failure in this feedback loop may be more significant since this

also affects the actual assignments an engineer will receive. Management typically will

only provide the most challenging assignments to the top performers. If an engineer

fails to receive these challenging assignments, the very nature of their experience

changes significantly. The engineer is not as challenged and the experience feedback

received is not as valuable.

This discussion suggests that the two feedback loops of the Dynamic System Model

of Performance are important paths for an engineer's development. Managers can

assist in the development of engineers in two important ways. Managers can provide

the challenging assignments which will give the engineer the opportunity to enhance

their competencies. Managers can also provide appraisal feedback which reinforces

the competencies shown to be associated with exceptional performance. If managers

stress the value of and encourage the development of Personal Attributes and

Interpersonal Skills the engineer will improve these competencies. By reinforcing the

competencies associated with exceptional performance, the manager will also

encourage the behaviors and results associated with exceptional performance.

135



Figure 6.2 summarizes the future directions for further research from this study.

To a certain extent the results described in this dissertation may be thought of as a

description of the Company and its culture as much as of the individual engineers. The

classification method for exceptional and non-exceptional engineers was management

selection. Although the selection system has an objective base, any performance

appraisal ultimately has a high subjective component. This subjective component is a

reflection of the individual doing the appraisal. It is also a reflection of the organization

in which the manager resides. In this light it is interesting to note the behaviors

associated with non-exceptional performance. In particular, the competencies of Seeks

Help from Others and Willingness to Confront Others could be a reflection of the

organization itself and its desire to suppress behaviors associated with these

competencies. The culture of the organization may not allow for confrontation and

may attempt to suppress it by associating it with low performance. Also, the culture

may set the expectation that only non-exceptional performers need help from others.

This concept of organizational impact on the observed competencies was not

researched since the study population was from a single organization. The impact of

the organization and its appraisal system on observed competencies deserves further

study.

Future research should consider exploring the key cultural differences in the

population. First, there are corporate cultures which encourage and discourage certain

behaviors. Some companies value consensus and team approaches to problem solving.

Other companies stress the value of individual efforts. Each culture studied could

result in somewhat different competencies identified. Second, there are geographic

differences even in the same company. Since each local region in the U.S. has certain

differences, these differences will be reflected in the workplace. Further, the

136



FUTURE DIRECTIONS
• Culture

*• Geographic
> Corporate
*• Ethnic

• Gender Differences

• Dynamic System Model Verification
> How pieces interact
<>• Measurement and feedback

• Appraisal/Ranking/Feedback Processes

• Competency Refinement
> Completeness/coverage
>• Statement
*• Content

• Differences Between Respondants and Non-Respondants

RT:10.19.91\FUTURE

FIGURE 6.2 Future Directions for Further Study

management of each geographic location may develop its own subculture resulting in

differences related to geography. Finally, there are vast differences due to ethnic

cultures. Certain ethnic groups exhibit markedly different traits from other groups.

For example, some groups may value conflict as a problem solving mechanism while

other ethnic groups may suppress all conflict in favor of harmony. This will clearly

result in different behaviors on the part of individuals.

137



The research performed in this dissertation considered gender only to the extent

that it might be a predictor of performance. The research could be extended to consider

differences in gender. One female study participant noted some of the potential gender

differences in interacting with other engineers.

/ have this idea that there's a gender-related trait.... In general, the
guys I work with are very focused on what they do, and if [my male
boss] or someone comes and wants to solve a problem, wants me
to help him solve a problem, he'll start asking me these specific
questions that will lead up to the answer to the problem, and it's a
very narrow corridor that he can think in, and a woman will tend to
say, "Well, this is my problem. What are the things you can offer?"
And it's a more broad type of way of looking at things.

Future research could address gender issues and attempt to determine if competencies

are gender related.

All the conclusions reached in this dissertation are based on the behaviors

reported by study participants. The original Critical Incident Interviews required

participants to describe what they did on their jobs. The Q-Sort exercise asked

participants to sort the competencies on a scale from Least Like My Behavior to Most

Like My Behavior. The presumption throughout has been that the subject actually did

report upon their behaviors. The danger of this form of research is that participants

might actually report competencies which they value rather than behaviors they actually

exhibit. If this were the case in this study the conclusions would be somewhat different.

If subjects reported behaviors they value rather than behaviors they exhibit, the link

between exhibited behaviors and performance appraisal would be weakened. This

research has relied on careful instruction in an attempt to ensure that subjects did

report on behaviors exhibited rather than valued.

138



The competencies identified in Phase 1 of this research may not be complete in

that they may not cover all the competencies exhibited by software engineers. In

particular, a significant list of competencies was dropped from further study after

Phase 1 since they had been mentioned by few Phase 1 participants. These and other

competencies may be required to complete the set of competencies for software

engineers. Also, the precise statement of competencies should be studied to ensure

that they express the underlying competency. All competencies in this study were

written in a attempt to make them equally positive. However, it seems clear that the

Responds to Schedule Pressure by Sacrificing Parts of the Design competency was "valued"

low due to its appearance at the bottom of the rank ordered list of competencies. All

competency statements should be refined to ensure that they correctly and neutrally

express the core idea. Finally, the content of each competency should be tested to

ensure that there is common agreement across study participants as to the meaning of

the competency. Each competency should have precisely the correct set of key

behaviors associated with it.

As in all studies that allow for the voluntary self-selection of subjects, there is the

concern that the subjects who chose to participate are different from those who did

not choose to participate in some meaningful way. A future study should consider this

issue and attempt to study both groups and look for differences.

This dissertation research suggests a set of replication studies to verify and expand

its results. In order to claim any form of generalizability, the study should be replicated

with software engineers from more than one company. There is a possibility that the

results of this research are closely correlated with the culture and environment of the

company studied. Thus replication at other companies, in other industries, with other

physical environments are appropriate. The issue of application type also enters into

139



this discussion. This dissertation covers software engineers developing system software,

application software, and embedded microprocessor software. In order to be

generalizable, the results must be shown to be independent of application type.

Preliminary study of the data from this research seems to indicate that these results

are independent of application type. However, the sample sizes for each of the three

application types was too small to draw any statistically based conclusions.

Another aspect of generalizability has to do with the phase of development in

which the engineer is engaged. Most of the participants in this study were involved in

the development of new software. Some were involved in the maintenance of existing

products currently on the market. Without studying a broader range of software

engineering activities, it will be impossible to tell if the results of this research will

apply to them as well.

This dissertation reports significant results in the identification of the

competencies of software engineers, in the predictive model for identification of

exceptional software engineers, and in the creation of a Dynamic System Model of

Performance. This chapter discussed extensions to this study that would provide

significant extensions to the result. This dissertation represents a significant personal

effort for an extended period of time. As one study participant noted about himself,

"it's been five years, no wonder I'm sick of it!" I look forward to seeing the results that

others are able to achieve building upon this research.

140



REFERENCES

[Basi 86] V. R. Basili, R. W. Selby, and D. H. Hutchens, "Experimentation in
Software Engineering," IEEE Transactions on Software Engineering, Vol.,
SE-12, No. 7, pp. 733-743, July, 1986.

[Boeh 81] B. W. Boehm, Software Engineering Economics, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1981.

[Boeh 83] B. W. Boehm, "Seven Basic Principles of Software Engineering," The
Journal of Systems and Software, Vol. 3, pp. 3-24, 1983.

[Boeh 88] Barry W. Boehm, "Understanding and Controlling Software Costs," IEEE
Transactions on Software Engineering, Vol. 14, No. 10, Oct. 1988.

[Brig 83] K. C. Briggs and I. B. Myers, Myers-Briggs Type Indicator, Consulting
Psychologists Press, Inc., Palo Alto, CA, Seventh Printing, Form G.

[Broo 75] F. P. Brooks, The Mythical Man-Month: Essays on Software Engineering,
Addison-Wesley Publishing Company, Reading, MA, 1975, Reprinted with
corrections, January 1982.

[Broo 80] R. E. Brooks, "Studying Programmer Behavior Experimentally: The
Problem of Proper Methodology," Communications of the ACM, Vol. 23,
No. 4, pp. 207-213, April 1980.

[Broo 87] F. P. Brooks, Jr., "No Silver Bullet - Essence and Accidents of Software
Engineering," Computer, Vol. 20, No. 4, pp. 10-19, April 1987.

[Euro 89] Euros Institute of Mental Measurements, The 10th Annual Mental
Measurements Yearbook, University of Nebraska, Lincoln, 1989.

[Char 82] Charles River Consulting, "Job Competence Assessment: Defining the
Attributes of the Top Performer," American Society for Training and
Development Research Series, Vol. 8, 1982.

[Chry78] E. Chrysler, "Some Basic Determinants of Computer Programming
Productivity," Communications of the ACM, Vol. 21, No. 6, pp. 472-483,
June 1978.

[Cohe 83] J. Cohen and P. Cohen, Applied Multiple Regression/Correlation Analysis
for the Behavioral Sciences, Lawrence Erlbaum Associates, Inc., Hillsdale,
NJ, 1983.

141



[Curt 79] B. Curtis, S. B. Sheppard, and P. Milliman, "Third Time Charm: Stronger
Prediction of Programmer Performance by Software Complexity Metrics,"
Proceedings of the 4th International Conference on Software Engineering,
pp. 356-360, 1979.

[Curt 80] B. Curtis, "Measurement and Experimentation in Software Engineering,"
Proceedings of the IEEE, Vol. 68, No. 9, Sept. 1980.

[Curt 81] B. Curtis, "Substantiating Programmer Variability," Proceedings of the
IEEE, Vol. 69, No. 7, p. 846, July 1981.

[Curt 86a] B. Curtis, "By the Way, Did Anyone Study Any Real Programmers?," in
E. Soloway, S. lyengar (Eds.), Empirical Studies of Programmers, Papers
Presented at the First Workshop on Empirical Studies of Programmers,
June 5-6, 1986, Washington DC, Albex, Norwood, NJ, p. 267,

[Curt 86b] B. Curtis, E. M. Soloway, R. E. Brooks, J. B. Black, K. Ehrlich, and H. R.
Ramsey, "Software Psychology: The Need for and Interdisciplinary
Program," Proceedings of the IEEE, Vol. 74, No. 8, August, 1986.

[Curt 87] B. Curtis, "Five Paradigms in the Psychology of Programming," MCC
Technical Report Number STP-132-87, April, 1987.

[Evan89] G. E. Evans and M. G. Simkin, "What Best Predicts Computer
Proficiency?," Communications of the ACM, Vol. 32, No. 11, pp. 1322-1327,
Nov. 1989.

[Fiel 86] N. G. Fielding and J. L. Fielding, Linking Data, Sage University Paper
Series on Qualitative Research Methods, Vol. 4, Beverly Hills, CA, 1986.

[Flan 54] J. Flanagan, "The CriticallnddentTechmque," Psychological Bulletin, Vol.
51, No. 4, pp. 327-358, July, 1954.

[Frud 87] N. Frude, A Guide to SPSS/PC+, Springer-Verlag New York Inc., New
York, NY, 1987.

[Guin87a] R. Guindon and B. Curtis, "Control of Cognitive Processes During
Software Design: What Tools Would Support Software Designers?,"MCC
Technical Report Number STP-296-87, Aug. 1987.

[Guin 87b] R. Guindon, B. Curtis, and H. Krasner, "A Model of Cognitive Processes
in Software Design: An Analysis of Breakdown in Early Design Activities
by Individuals," MCC Technical Report Number STP-283-87, Aug. 1987.

[Guin 88] R. Guindon, "A Framework for Building Software Development
Environments: System Design as Ill-Structured Problems and as an
Opportunistic Process," MCC Technical Report Number STP-298-88, Sept.
1988.

142



[Hori 89] Hewlett-Packard Company, Corporate Training and Development, The
Horizon Project, October, 1989.

[Hube 89] C. J. Huberty and R. M. Barton, "An Introduction to Discriminant
Analysis," Measurement and Evaluation in Counseling and Development,
Vol. 22, pp. 158-168, October, 1989.

[Isac 88] O. Isachsen and L. Berens, Working Together - A Personality-Centered
Approach to Management, Neworld Management Press, Coronado, CA,
1988.

[Kaga 85] D. M. Kagan and J. M. Douthat, "Personality and Learning FORTRAN,"
International Journal oj Man-Machine Studies, Vol. 22, pp. 395-402,1985.

[Klec 80] W. R. Klecka, Discriminant Analysis, Sage University Paper series on
Quantitative Applications in the Social Sciences, series number 07-019,
Beverly Hills and London: Sage Publications, 1980.

[Love 77] L. T. Love, Relating Individual Differences in Computer Programming
Performance to Human Information Processing Abilities, PhD Thesis,
University of Washington, 1977.

[McC173] D. C. McClelland, "Testing for Competence Rather Than for
'Intelligence'," American Psychologist, Vol. 28, No. 1, pp. 1-14, January,
1973.

[McCr 88] G. McCracken, The Long Interview, Sage University Paper Series on
Qualitative Research Methods, Vol. 13, Newbury Park, CA, 1988.

[McKe 88] B. McKeown and D. Thomas, QMethodology, Sage University Paper series
on Quantitative Analysis in the Social Sciences, series number 07-066,
Beverly Hills, 1988.

[Mohe 81] T. Mqher and G. M. Schneider, "Methods for Improving Controlled
Experimentation in Software Engineering," Proceedings of the Fifth
International Conference on Software Engineering, Washington, DC, 1981.

[Mohe 82] T. Moher and G, M. Schneider, "Methodology and Experimental
Research in Software Engineering," International Journal of Man-Machine
Studies, Vol. 16, No. 1, pp. 65-87, 1982.

[Mora 81] T. P. Moran, "An Applied Psychology of the User," Computing Surveys,
13:1, pp. 1-11, 1981.

[Myer 85] I. B. Myers and M. H. McCaulley. A Guide to the Development and Use
oftheMyers-Briggs Type Indicator^), Consulting Psychologists Press, Palo
Alto, CA, 1985.

143



[Neid 64] C. O. Neidt and R. W. Drebus, "Characteristics Associated with the
Creativity of Research Scientists in an Industrial Setting," Journal of
Industrial Psychology, Vol. 2, No. 4, Dec. 1964.

[Para 90] S. Parasuraman and M. Igbaria, "An examination of gender differences
in the determinants of computer anxiety and attitudes toward
microcomputers among managers," InternationalJoumal of Man-Machine
Studies, Vol 32., 1990, pp. 327-340.

[Pear 90] A. Pearl, M. Pollack, E. Riskin, B. Thomas, E. Wolf, and A. Wu, "Becoming
a Computer Scientist," Communications of the ACM, Vol. 33, No. 11, pp.
47-57, November, 1990.

[Shei 81] B. A. Sheil, "The Psychological Study of Programming," Computing
Surveys, Vol. 13, No. 1, Mar. 1981.

[Shne 76] B. Shneiderman, "Exploratory Experiments in Programmer Behavior,"
International Journal of Computer and Information Sciences, Vol. 5, No.
2,1976, pp. 123-143.

[Shne 80] B. Shneiderman, Software Psychology: Human Factors in Computer and
Information Systems, Winthrop Publishers, Inc, Cambridge, MA, 1980.

[Step 53] W. Stephenson, The Study of Behavior - Q- Technique and Its Methodology,
The University of Chicago Press, Chicago and London, 1953.

[Webe 85] R. P. Weber, Basic Content Analysis, Sage University Paper Series on
Quantitative Applications in the Social Sciences, Vol. 49, Sage
Publications, Newbury Park, CA, 1985.

[Wein 71] Gerald M. Weinberg, The Psychology of Computer Programming, Van
Nostrand Reinhold Company, New York, 1971.

[Weis 74] L. Weissman, "Psychological Complexity of Computer Programs: An
Experimental Methodology," A CM SIGPLAN Notices, Vol. 9. No. 3, pp.
25-36, June 1974.

144



APPENDICES



A Phase 1 Biographical Questionnaire

Interview Date
Subject ID Number
Sex
Age

M F

For each degree that you have completed or begun, please complete the following. Circle the appropriate
response or fill in the blank.

Degree
Major
Status
School

Degree
Major
Status
School

Degree
Major
Status
School

Degree
Major
Status
School

ASSOCIATE BS BA MS MA ENGINEER PhD

CS CE EE MATH PHYSICS
COMPLETED PARTIALLY-COMPLETED

ASSOCIATE BS BA MS MA ENGINEER PhD
CS CE EE MATH PHYSICS
COMPLETED PARTIALLY-COMPLETED

ASSOCIATE BS BA MS MA ENGINEER PhD
CS CE EE MATH PHYSICS
COMPLETED PARTIALLY-COMPLETED

ASSOCIATE BS BA MS MA ENGINEER PhD
CS CE EE MATH PHYSICS
COMPLETED PARTIALLY-COMPLETED

OTHER:

OTHER:

OTHER:
OTHER:

OTHER:
OTHER:

OTHER:
OTHER:

In the LAST 2 YEARS, how much training have you completed relevant to software engineering including
any formal study toward a degree? The unit of measure is 'contact hours.' That is, time spent in a
classroom for formal training, and time spent studying for self-study. Hence a semester long college class
might be expressed as 3 contact hours a week for 15 weeks for a total of 45 contact hours. Also include
corporate training classes, consultant seminars, and self-study.

# CONTACT

HOURS
TOTAL Training Contact Hours

COLLEGE CORPORATE SEMINARS SELF-STUDY
-

OTHER

(Continued on back...)

146



Complete the following table with the number of years of experience at the Company and elsewhere
indicating whether your work was Software Engineering or not. Include any full time employment once
beginning your professional career. Hence jobs between degrees count while summer jobs during college
don't. The total of all values in the table should sum to your total years of experience.

#YEARS
EXPERIENCE

COMPANY

NOT
COMPANY

SOFTWARE
ENGINEERING

NOT SOFTWARE
ENGINEERING

TOTAL Years Experience

For each programming language used, complete the following:

LANGUAGE SKILL LEVEL^

Use the following table to describe the software engineering methods and tools that you use now or in
the past in your job.

METHOD/TOOL^ SKILL LEVEL^

!7Self described skill level:
HIGH: expert, lots of experience, well versed
MED: comfortable, some experience, familiar
LOW: novice user, little experience

l^For example, SA/SD, Yourdon, Jackson, McCabe, Halstead,..., but be sure to include anything you feel is relevant.

147



B Phase 1 Standard Ethics Protocol

ETHICS PROTOCOL

(To be read by interviewer before the beginning of the interview. One copy of this form should be left with
the respondent, and one copy should be signed by the respondent and kept by the interviewer.^9

Hello, my name is Rick Turley. I am a researcher on a project entitled POSE: The Process of Software
Engineering.

This project is being conducted as a Ph.D. dissertation in the Department of Computer Science at Colorado
State University.

I am the principal investigator and may be contacted at (XXX)XXX-XXXX or XOXDCCCCOXCCCCCCCCCCC
should you have any questions.

Thank you for your willingness to participate in this research project. Your participation is very much
appreciated. Just before we start the interview, I would like to reassure you that as a participant in this
project you have several very definite rights.

* First, your participation in this interview is entirely voluntary.
* You are free to refuse to answer any question at any time.
* You are free to withdraw from the interview at any time.
* This interview will be kept strictly confidential and will be available only to members of the

research team.
* Excerpts of this interview may be made part of the final research report, but under no

circumstances will your name or identifying characteristics be included in this report
* As part of this study you will be taking the Myers-Briggs Type Indicator Test. You are free to

not answer any of the questions on this test and may decline to take the test at all.
I would be grateful if you would sign this form to show that I have read you its contents.

(signed)

(printed)

(dated)

I9adapted from: G. McCracken, The Long Interview, Sage University Paper Series on Qualitative
Research Methods, Vol. 13, Newbury Park, CA, p. 69,1988.

148



C Phase 1 Critical Incident Interview Outline

The structure and philosophy of the interview is drawn from [Hori 89]. The purpose of the Critical Behavior
Interview is to find out what people actually do in critical job situations. It is a systematic method for
gathering detailed information describing how a job is actually performed and what differentiates
exceptional performance from average performance. It identifies the knowledge, skills, abilities, and
motivation which contribute to outstanding performance. The technique assumes that past behavior
predicts future performance.
In general, the technique focuses on learning about the background, thoughts, feelings, behavior, dialogue,
and outcome of a significant example situation. The interview technique proposes key questions to ask:

1. Getting Background
"Take me back to the beginning of the situation. How did it start?"
"How did you first come to be involved in that situation?"

2. Getting Thoughts
"What were you thinking?"
"What was going through your mind a the tune?"

3. Getting Feelings
"What were you feeling when that happened to you?"
"What was your reaction?"

4. Getting Behavior
- "What did you do?"

"What was the next thing you did?"
5. Getting Dialogue

"What did you say to him/her/them?"
- "Can you tell me what the exact words were?"

6. Getting Outcomes
- "How did it all turn out?"
- "What was the final result?"

NOTES
* note team size of described project and program
* note application type
* note industry type
* note user type (end user, internal user, external user, system integrator,...)
* probe managing or mentoring activities of subject
* to what extent is domain knowledge a factor?

149



Introduction
(5 minutes)
Purpose: To brief the person about the areas to be covered in the interview and to establish a

comfortable atmosphere.
1. Establish a comfortable, relaxed tone. Set the stage with small talk.
2. Choose a comfortable seating arrangement.
3. Open the interview by explaining its purpose.

The history of software engineering is long and varied. Most of the research in this field has
focused on software tools and methods. Generally, the industry has looked for a 'silver bullet'
in the form of new technology. This has been true despite significant research indicating the
significance of the role of the individual in software development. Much of the research into
'software psychology' has emphasized the effect of different tools and techniques on the
productivity of individuals. In this research, there have been performance differences of up to
22:1 in completing the task under study. Most research has chosen to view this as 'sample
variance' and account for it statistically. I'm attempting to study these differences directly by
looking at the individuals doing the job of software engineering.

You have been selected by your management to participate in a study of software engineering
excellence. The purpose of this study is to identify the key skills, behaviors, and knowledge
required to be an exceptional software engineer. I will be using the data from this interview and
30-40 more like it to build a profile which will be later validated by surveying a larger population
of software engineers. This profile will be used to determine the attributes of exceptional software
engineers in order to influence training and development.

This is a 'research interview' so I need you to be as specific as possible and assume I know
nothing about your job. I also may need to interrupt or cut you off at times in order to get the
desired level of detail.

4. Briefly outline what ground will be covered in the interview.
This process will take approximately 2 hours and include a review of the preliminary survey of
your background which you have already completed. This will focus on your education and
experience in software engineering. This will be followed by an in-depth interview covering some
of your particular experiences in software. The interview will follow the critical incidence model
used in behavioral interviewing. You have already completed the Myers-Briggs Type Indicator
test designed to assess your personality profile.

5. Ask permission to record the interview on tape, and assure the person of the confidentiality of the
interview process. Complete the ethics protocol.

This research is completely voluntary on your part. You may choose to not answer any question
and you may terminate the process at any point. I would like to tape record the interview so
that it can be transcribed for later analysis. If at any time you feel uncomfortable with the taping,
just let me know and I will turn off the recorder. Excerpts of this interview may be part of the
final research report, but under no circumstances will your name or identifying characteristics
be included in this report. If you are comfortable with continuing at this point, would you please
sign the ETHICS PROTOCOL which explains these provisions. THANK YOU!

6. Do you have any questions before we begin?
*** TURN ON TAPE RECORDER ***

150



Background Information

(10-15 minutes)
Purpose: To get an overview of the person's recent job history and accomplishments.
Mechanism: Complete the Biographical Questionnaire.
Key Situations

(40-120 minutes)
Purpose: To find out exactly what the person did to achieve specific accomplishments and deal with

difficulties or frustrations.
Situation #l:High Point
1. Establish a transition from the background information to this next part of the interview.
2. Ask the person fo the first key situation; a high point.

"Tell me about a time in the last year or two that was a real high point for you, a time when
you were able to accomplish something you felt really good about, or a time when you felt
especially pleased with something you did. First, give me a brief overview of the situation so
I know what you're going to be telling me about, and then we'll go back for the details."

3. Let the person think about a situation and begin to tell you about it.
4. When the person has focused on a situation of the appropriate scope indicate that this is what you

are looking for and probe for details.
5. When the person has related all the details ask for another replay with emphasis on what the person

did, what they said, what they thought about it, and what the outcome was.
6. When sufficient detail is received, close the discussion on this topic.
Situation #2:High Point
Repeat as above to obtain a second situation description.
Situation #3:Low Point
Repeat as above to obtain a low point situation description.

In asking about low point situations, it is important not to ask simply for a situation where the person
felt frustrated because the person may recall a situation where something happened to him but in
which he had little if any direct involvement. Instead, you want a situation where the person felt
frustrated as a consequence of something he attempted or had an active role in trying to bring about.

Additional Situations
Repeat as above allowing the person to define the situation domain - the job area or experience topic that
he/she wants to talk about.
Final Situation
Repeat for a final high point situation to leave the interview on a positive note.
Closing

(10-20 minutes)
Purpose: To get examples of how the person demonstrated qualities that she considers to be strengths

and to allow time for her questions.
1. Allow the person to summarize his/her experience by reflecting on some of her strengths.
2. Ask the person to give a list of capabilities, characteristics, and areas of expertise for their job.
3. Ask the person about training or other development opportunities that the person believes were

especially beneficial to him during his career. .
4. Close the interview by thanking the subject for time spent and offering to answer any questions.

Note what phrases the subject considers to be the earmarks of an exceptional programmer.

151



D Derived Competencies from Transcript Analysis

TEAM ORIENTED

Exceptions
Non-Exceptional

Fisher's Exact
Test (Two Tail]

# Subjects # Incidents
9
5

0.1409

14

10

Definition: Values synergy of group efforts and invests the effort required to create group
solutions even at the expense of individual results.

Associated Behaviors:
* Balances the strengths and weaknesses of other team members.
* Recognizes synergy of group efforts and invests personal time and energy to leverage it.
* Promotes constant communication among team members using such techniques as

brainstorming sessions, travel, phone calls, e-mail, or just sitting close together.
* Shows concern for the feelings of others. Treats others with respect. Attempts to create

buy-in for decisions.
* Guides or influences others.
* Promotes the development of shared values on the team.
* Exhibits commitment to the whole project, not just the assigned part.

Illustrative Examples:

The knowledge needed to be there on both ends to pull it all together, but also the synergy, just
the two people working together and kicking ideas around and tryingthings, and when we finally
figured out the missing ingredient that made it all come together.... Fundamentally we needed
the knowledge of both of us to pull it off, although there was some synergy just from working
together.

It was important to have two of us in that we tended to pick up different things and bounce back
and forth the ideas.

We have really good team dynamics. We tend to have lots of interaction; we tend to, uh, to
share ideas very fluently, and we tend to think of ideas in the process of conversations with one
another.

We spent a lot of time trying to communicate, that was the key thing, I think.

We'd have a problem, we'd sit down and look through the code together or try to figure out
what's going on, do SA's, or SD's, you know, structured analysis on the board, white boards,
next to each other, and, uh, try to figure out what's the best way to work on something. We'd
try to partition the program so that, uh, we had a very defined interface between us.

My first goal was to establish myself, get their respect. ... The first thing was to encourage other
people and make sure that you mean no harm to them.

152



Trying to let everyone get their say in.... Build some kind of consensus.... Encourage people.
... Trying to get them to open up and say what they're thinking.... Letting people be the way they
want to be.

Some NOT Examples:

/ was doing it myself, which tends to make things go quicker when you work with someone....
I think one of the best things is that I get left alone a lot. ... I tend to hide. ... Everything I've
done was by myself, basically.

153



SEEKS HELP FROM OTHERS

Exceptiona
Non-Exceptional

Fisher's Exad
Test (Two Tail]

# Subjects # Incidents
4

7

0.3698

6
12

Definition: Proactively seeks the assistance of others in learning, researching, designing,
understanding, debugging, or checking results.

Associated Behaviors:
* Asks previous implementers to explain their designs.
* Asks other engineers to critique or evaluate a design.
* Surveys others to create a list of alternatives.
* Contacts others to help solve problems.

Illustrative Examples:
I had to go to other people for information on things that I didn't know.... There is an engineer
who worked on the original project porting it, that I was able to go ask questions of when I came
up with a list and couldn't figure it out instead of banging my head. I have a tendency to realty
try and figure it out myself for too long before I go and ask people for help. I waste time that
way.... I went and asked one of the designers of the input who did the original port... also the
other designer. ... I was calling people all over the place, in the Kernel lab, strings and notes.
And there is no clean way to do it, I determined. ... I ended up calling someone in the Kernel
lab who had some ideas and said here's a way to do it. ... I rely pretty heavily on some other
people in the lab who I would consider to be hackers to go in and play with this and find out
what all the problems are and come up with solutions.... I'm not afraid of trying to call anyone
in HP.... I tried to give it to people that I consider to be UNIX gurus to go and test out with it,
because I knew I didn't have the large knowledge base that some other people did.... I talked
with product marketing and product support to find out what would they, what would people
expect. And I also, I called people in X.... Talking with marketing and finding out what do you
think the customers are going to expect.

154



HELPS OTHERS

Exceptional
Non-Exceptional

Fisher's Exact
Test (Two Tail)

# Subjects # Incidents
2

0

0.4737

7

0

Definition: Spends a significant amount of time assisting others in the completion of their tasks
or influencing broad organizational direction.

Associated Behaviors:
* Acts as a lab-wide consultant for process or product issues.
* Reviews, directs, or influences the work of other engineers.
* Takes over tasks from other engineers in an effort to complete the project.
* Teaches engineering skills.

Illustrative Examples:
[I] tended to be likely to get done early and either pick up other portions of the code, go help
other people on the project, or occasionally get drawn into outside things such as management
consulting or other investigations. ...I still get asked to go out and go for a walk and let's talk
about something that's bothering me, and consulted in terms of code reviewing, sometimes
people will come over and say I wrote an algorithm that does this, and could you glance at it
and see if you find any bugs, so consulting in terms of both coding and people issues.

155



USE OF PROTOTYPES

Exceptional
Non-Exceptional

Fisher's Exact
Test (Two Tail]

# Subjects # Incidents
10
4

0.0108

10
4

Definition: Uses a prototyping method to assess key system parameters before designing the final
product. Avoids using prototype as final implementation.

Associated Behaviors:
* Uses prototypes as a mechanism for incremental development of a product.
* Attempts to not allow prototype to become the final product.
* Uses prototype to assess critical areas like performance and time estimates.
* Prototypes in parallel with the detailed design phase.

Illustrative Examples:
Subject created a prototype of a vertical slice partially implementing the key areas in order to
assess the likely system performance and estimate effort.

[The] strategy was to try and prove feasibility and investigate schedule by doing a portion of the
work as a prototype.

It was simply for performance measurements and to see what it would take to start and do some
of this from scratch.... I felt very strongly that what I had done was not meant to be evolved
into the real product.... they took the prototype that I had worked on and just basically turned
it into the real thing, and that piece of code, that one segment is the biggest nightmare of this
whole project and one of the reasons that we kept having major schedule problems on it.

The purpose of the prototype was to communicate it to management and to other people.

I explicitly did it in LISP so that I could throw it away and start over.

By doing a little bit of prototyping, it realty drove some decisions there.

I guess the idea was to prototype at least a few of them to get a little better perspective on
performance.

156



WRITES/AUTOMATES TESTS WITH CODE

Exceptional
Non-Exceptiona

Fisher's Exact
Test (Two Tail)

# Subjects # Incidents
9
4

0.0573

9
4

Definition: Applies incremental testing techniques during code development such that given module
achieves a high degree of reliability by the time it's completed.

Associated Behaviors:
* Creates tests in parallel with the creation of code.
* Automates tests so they can be run frequently throughput design.
* Tests frequently during development to ensure reliability at the module level.

Illustrative Examples:
I'm one that will code apiece and then will probably take the time to write some kind of shell
around to test.

The test phase on our project was actually, I think, overlapped immediately from the very [first]
algorithm I developed. So let's say my algorithm, let's say there's 30 modules in my algorithm,
I would have mechanisms for testing every piece in between there or try to. Uh, one of the things
we did, and these were gradually put in, but we collected over a thousand different pages, some
of them from customers and things like that, we put 'em all into optical media and then we
wrote automatic, uh, test scripts that would go and generate the intermediate data for each one
of those things if you wanted to, so I could go on a thousand different pages and look how well
this first algorithm worked, or at any place in the middle I could print out the results.

I tended to do a lot of testing during the implementation phase, rather than waiting for QA
phase.

We already had a set up about 500 automated tests in our test suite, and we were adding to that
as we went along, so as a new area would be developed we'd try and write a new test for it that
could be automated.

I'd try to test each object by itself as I implemented it.... I didn't keep any fancy test scaffolds
for each one individually. It's just that I'd try to run a few tests of the object by itself where it
was feasible to verify or to ease the integration process later on.

Most of the code that I write I usually develop a test run, a regression test for each module, so
I can actually do a module, run a little harness for it, and then do actual testing on it, and that
way I can see some result.

I think the thing that we did the best ...is we thoroughly tested our modules, our portion of the
code. ... We wrote shells that would just test our portions of the code and ran it, ran millions
of images through it by the time we were done, just repeating the same set over and over and
over and could work out defects.

151



/'// code it, and then compile it and try it, you know rather than taking a big project and coding
the whole thing and then see if it all works, and beginning to work like that, I take the chunks,
and each chunk as I build it, I try to wring it out at that time, so that as I add things to it, and
begin to put the big project together or program, whatever it is, I try to have each of the individual
pieces tested pretty well already when I put it together.

I wrote sets of tests that I would run every now and then on components whose values I knew,
... whenever I made major changes, or just every time I got real antsy about it, you know, every
so often I would go in and I would run this test set that covered a lot of different components.

158



KNOWLEDGE

Exceptional
Non-Exceptional

Fisher's Exact
Test (Two Tail;

# Subjects # Incidents
7

6

1.0000

7

6

Definition: At the time of assignment, possesses the unique skills or knowledge required to accomplish
the task at hand.

Associated Behaviors:
* Possesses the necessary domain knowledge and skills required for the job.
* Previous to assignment, and on own initiative, becomes an expert in a given area.

Illustrative Examples:
/ tended to understand the objectness of object-oriented design to a little more extent. ... I
understood the theory.

The success thing for me was having the right mixture of hardware and software experience so
I could really understand what this hardware was doing. ... I had had a lot of experience in
assembly before and knew a lot of tricks.

I mean you had to learn to understand ECGs. The medical content was much more challenging
and interesting than the computer science part of it.

I knew more about the host systems than they ever did, because of my background on other
stuff that I had done.

One of my former assignments was, I wrote the majority of that diagnostics program in the past,
the tests themselves.... I was very familiar with this program and how it ran.

159



OBTAINS THE NECESSARY TRAINING

Exceptional
Non-Exceptional

Fisher's Exact
Test (Two Tail)

# Subjects # Incidents
6
6

1.0000

7
8

Definition: Actively seeks the necessary training required to complete the assigned task.

Associated Behaviors:
* Seeks out documentation required to understand current assignment.
* Takes classes which will directly help in the completion of the current assignment.
* Keeps current by reading trade or technical journals.
* Improves skills and awareness by attending conferences.

Illustrative Examples:

I'm one that learns through that kind of actually textbook approach in some sense. So just I
read through a lot of the documentation.

Took an object-oriented programming class.
Hired a consultant to teach a course in structured analysis and design.
Brought in a testing consultant toward the end of the project.
Kept up with trade publications, took courses from universities.

I sat down and read the manuals for a week... and then looking over some old code.

I spent a few weeks just sort of going over manuals and going over documentation I was able
to get on previous generations of the compiler to see what some of the issues really were.

I did a lot of reading of all the documentation that had been generated to date during the original
investigation.

I've had to gain more depth in the operating system structure, in constructs and facilities that
are available of windows, presentation manager, Macintosh, and even a little bit on the UNIX
machine with X and Motif.

I'm a firm believer that if you have attitude you can force the skills because I certainly didn't
have the skills on Objective C and I picked it up pretty quick.

I gathered the IRS's and the schematics for the boards that were interesting, the ones I would
be calibrating and making measurements on. And I started getting familiar with the hardware.
I had a general idea of what they could do from the system ERS, and then I started looking at
the individual boards and the different groups of components, the different functional areas on
those boards, just to find out specifically what they could do.

160



LEVERAGES/REUSES CODE
# Subjects # Incidents

Except ionaiF
Non-Exceptional!

Fisher's ExactF
Test (Two Tail)||

5
5

1.0000

6
6

Definition: Proactively attempts to leverage other engineer's efforts by using their code or designs
and attempts to leverage own effort by making their code reusable.

Associated Behaviors:
* Looks for code or code fragments which can be reused.
* Designs and codes so that effort can be reused.

Illustrative Examples:
"No way are we going to start from scratch on this. Let's go with the, uh, let's look into this
MACAPP."

The other, I think, big boon of this project was it was true reuse, true reuse across platforms.

I'm up for stealing anything I can, so it's the throw out the 'not invented here' attitude.... There
are other places where I can make contributions rather than rewriting someone else's stuff.

I then went and looked and talked to a friend in California who was in technical support of the
1000 computers and just got from their goodies tape some utilities they had written to do — not
identical but similar sorts of things.

I'm a big fan on stealing things that are appropriate.

One of the biggest things that I did, and this was my own decision, was I said that I'm not going
to make a separate driver for the microchannel; I'm going to make a driver that works on both
the microchannel and the AT backplane, and it'll be self-configurable so that we can have the
same disks.

What I did was I found someone in the building was working on user interface, and I took his
user interface; it was just really easy to take the interface, the interface being a bunch of procedures
that would get certain things up on screen, and then I took the, someone else was working on
the scanner library, stuff that would make the scanner do different things, and I just basically
put them together.

We needed a way to tie in the standard in and standard out types to shell processes, basically
we just stole that out of one of the manuals.

161



USES STRUCTURED TECHNIQUES FOR
COMMUNICATION

Exceptional
Non-Exceptional

Fisher's Exact
Test (Two Tail]

# Subjects # Incidents
6
3

0.3698

7
3

Definition: Takes advantage of the tools and techniques of structured design in order to understand
and communicate designs, but does not follow the complete formalism of the approach.

Associated Behaviors:
* Uses structured techniques (such as Structured Analysis and Design, Hierarchy Charts,

...) as a means of joint development and communication.
* Uses structured techniques as a mechanism for passing off a design or part of a design

to another engineer for implementation.
* Views structured techniques as just another tool which can be applied to certain problems,

rather than as a panacea.

Illustrative Examples:
They call me the 'bubble lady.'

We started using these bubbles to just explain the different, the main, the two main screens that
would show up and then you could use the SA approach in that you can bubble down then,
you know, and expand it down, and we did some of that in aspect with the user interface and
the flow through it.

Structured design wasn't the panacea, the cure all things, partly due to inexperience, partly due
to lack of tools to help enforce some of the things that we wanted to do.... It got results quicker
and the results were what we wanted for the product.

Just doing that top context diagram to me is a real important thing, because then you can really
start talking about it and wrappingyour mind into it pretty good.... It was a good communication
tool.

We did do hierarchy charts and flow diagrams. We did not maintain them through the life of
the program; they were basically a jump start tool. We did review those with the rest of the team.

I took some of the loosest concepts of structured analysis and just drew diagrams on the white
board and asked them if they were right.... I felt like I could be confident that all the boundary
conditions were easily understandable and were confined and simplified.

I'm sure that I kind of remember going back and pulling out the diagrams we'd drawn, and that
provided our means of communication again forus to discuss and understand each other meant.

162



METHODICAL PROBLEM SOLVING

Exceptional
Non-Exceptional

Fisher's Exact
Test (Two Tail)

# Subjects # Incidents
6
3

0.3698

6
4

Definition: Uses methodical approach in understanding and solving problems.

Associated Behaviors:
* Builds mental or physical system models to enhance understanding and visualization.
* Designs well controlled experiments to efficiently resolve problems.
* Invests in the development of test tools to solve problems.

Illustrative Examples:
We drew several partial successes, each of which gave us enough confidence that we were on
the right track, but each of which introduced additional problems that needed to be solved.

I figured if I understood the system — the problem would be apparent.

It helped that we kind of worked from the ground up. We were not taking large things and trying
to break them apart; we were building them. ... So we'd build up the biggest things we could,
and then we'd look at special cases.

Some NOT Examples:
That was a lot of trial and error. I would come up with what I thought would work and then I
had a lot of write statements, you know, print statements in my code so that when I press a
character I would see what would come out on the other end and whether RMB was going to
get screwed up or not.

163



USE OF NEW METHODS OR TOOLS
# Subjects # Incidents

ExceptionalF
Non-ExceptionaiF

Fisher's Exacti|
Test (Two Tail)|

4
1

0.3034

4
1

Definition: Seeks to improve performance or results through the use of new tools or methods.

Associated Behaviors:
* Recognizes value in new tools or techniques.
* Proactively seeks out new tools or methods to solve problems.
* Uses work assignment as a way to learn new tools or methods.

Illustrative Examples:
I got to update it in terms of the kinds of implementation approaches, the technology that it was
built on, went to full object oriented implementation instead of the very ad hoc Pascal version
of it before.... I've been doing object oriented programming since before it was a popular thing.
I've probably been doing it for seven or eight years in various forms, and to me it clearly has so
many benefits and so many different ways, especially in terms of the things I did on this project.
Because you start out modeling the problem domain instead of taking the traditional structured
analysis design approach, and that has had tremendous benefits in terms of the maintainability
and modifiability of this compiler.

164



SCHEDULES AND ESTIMATES WELL

Exceptional
Non-Exceptiona

Fisher's Exact
Test (Two Tail;

# Subjects # Incidents
4

0
0.6285

4
0

Definition: Shows a strong concern for schedules and estimates schedules well.

Associated Behaviors:
* Maintains personal "rules of thumb" for schedule estimation.
* Refines schedule estimates based on measured progress.
* Meets schedules.
* Schedules via task breakdown and successive refinement.

Illustrative Examples:
We de-rated it by about 50% or something, to take into account learning code and some of the
other engineers that we knew we were going to get.... We were about 50% short.... We used the
information gained in actually doing some porting and turning on to estimate more closely what
we thought it would take, and we refined these estimates constantly as we went through the
project.'

The overall project had a schedule problem, personally I didn't. Each one of my milestones I
was meeting, I met my 50% schedules on all of the portions that I was working on and throughout
the project I wound up taking on more of other people's.... I know how to set schedules and I
know how to get my work done.... Experience, you know, I've been working here for 12 and a
half years and I used to mess up a lot, and now I'm getting to where I don't mess up.

165



USES CODE READING

Exceptional
Non-Exceptional

Fisher's Exact
Test (Two Tail]

# Subjects # Incidents
3
1

0.5820

3
1

Definition: Uses code reading and other group development techniques to ensure final code quality.

Associated Behaviors:
* Asks for others to code read their work.
* Participates in the code reading of other engineer's work.

Illustrative Examples:
/ ended up reading all of my code twice and I helped read two other people's code in non-author
code reading, and that was very beneficial.

When I finished that, I had what I thought was a reasonable amount of code, I went to this
other person that I work with, and I said, would you code read this, and rather than sitting down
in a formal code review, which would have been a waste of time for both of us, he just took it
home one night [and] read it.

166



DESIGN STYLE

Exceptional
Non-Exceptional

Fisher's Exact
Test (Two Tail)

# Subjects # Incidents
7

9

0.5820

9
10

Definition: Uses decomposition design techniques relying on visual representation of designs.
Creates structured designs, generally without using formal techniques.

Associated Behaviors:
* Keeps design specification in sync with the actual implementation.
* Enumerates and prioritizes (design alternatives, defects,...)
* Follows a top-down design method using decomposition to successively refine the design.
* Recognizes value of up-front design in leading to a successful implementation.
* Takes modular approach in order to reuse as much of the design as possible.
* Uses pictures to communicate and understand designs.

Illustrative Examples:
One of the few times I've seen a design kept up to spec with the actual implementation, and I
think we did a fairly good job of that.

We just took a real modular approach. Instead of designing a dual-channel algorithm one more
time, we're going to take two existing copies of the single-channel algorithm and feed their
information to a resolver, which will combine the information.

There was a long period of drawing up lists of a half dozen or so candidates for things that
would be profitable to go investigate and looking at risk benefit sorts of things on each of them
and choosing which one had the highest expectation of a payoff, and which one was worth going
and doing.

Just try to think of the smallest natural procedures and functions that makes sense. There's no
formal structured design or anything like that.... Particularly small ones where the programs...
usually I feel quite free to go ahead and use global variables ...as long as I document thoroughly.

We didn't spend lots and lots of hours doing structured design or structured analysis or DFDs
or anything like that. At the same time, those techniques were involved in, at least in my opinion,
in any intelligent assessment of software task.

I kind of had this idea of breaking the project up in chunks, thinking of the different things that
needed to be done, you know, breaking it off in tasks, and taking one task at a time. So I kind
of went to the heart of what would make it work or not, you know, getting the interrupts in
properly, counting them doing all the interrupt routines to make sure I didn't lose pulses, you
know, not get too many, and that kind of thing, so I started there. ... I really like to work on
small tasks, if you will, and iterate on it. I'll code it, and then compile it and try it, you know
rather than taking a big project and coding the whole thing and then see if it all works, and
beginning to work like that, I take the chunks, and each chunk as I build it, I try to wring it out
at that time, so that as I add things to it, and begin to put the big project together or program,
whatever it is, I try to have each of the individual pieces tested pretty well already when I put it
together.

167



/ think in pictures, so I typically, on any problem, I sit down and I start drawing.

I took each card, broke it down to its functionality, functional blocks, and then looked at each
of those and described then that basically would turn into an Auto Cal set, and then I would
describe what I envisioned doing for that functional block, and then I'd go talk to the hardware
guys about does this make sense, is this how you think it works.

168



FOCUS ON USER OR CUSTOMER NEEDS

Exceptional
Non-Exceptional

Fisher's Exact
Test (Two Tail]

# Subjects # Incidents
6
5

1.0000

6
6

Definition: Considers customer or user input and feedback to be an essential ingredient in the design
of products.

Associated Behaviors:
* Proactively attempts to obtain customer and user input and feedback for products.
* Measures project success in terms of customer satisfaction.

Illustrative Examples:
It was well received by the customers. Because that point of view carried up into doing a lot of
things that were very beneficial to people. There were some capabilities that it had in that system
that haven't been matched in our next two generations of systems that we've done. ... Taking
these fuzzy requirements that we were formulating and coming up with a solution for our
customers was a real fun part of that project, because there was no precedent.

As we went through the process of interviewing these people, I learned a lot about Macintosh
developers. I learned a lot about how they thought, what their issues were, how they got to where
they were, what the kind of things were that they valued, and how they went about creating
product.

And then when I got everything exactly right — just for the heck of it, I brought in a couple of
people and say, you know, in a user testing type of situation, uh, different types of people, I
brought in about three, I think, and say, "Here, do it." And I wanted to sit back and watch them
just breeze through it, and of course, they didn't; you know, they got caught in different places.

169



RESPONSE TO SCHEDULE PRESSURE

Exceptional
Non-Exceptional

Fisher's Exact
Test (Two Tail;

# Subjects # Incidents
4

5
1.0000

4

5

Definition: In response to schedule pressure, sacrifices important parts of the design process.

Associated Behaviors:
In response to schedule pressure:
* provides incomplete documentation.
* does not adequately inspect or test product.
* does not prototype or adequately design risky parts of product.
* hands off parts of design or test to others.

Illustrative Examples:
We were so pushed all the time that we never really had a lot of time to do some of the things
that we wanted to do like walkthroughs and things like that.

We had a schedule pressure and we never did, even thought the schedule kept slipping out, we
never did have a block of time in which I could go in and do it right.

In hindsight, the overall thing slipped out, and there was enough time to have done that part
right, and I wish I had pushed harder for it.

Subject's comments about continually being asked to pull up a schedule: No matter how
good your intentions are you can't resist the pressure to come up with the right answer to that.

We didn't have all the automated tests done that we had really committed to.

I think it's one of these things that we didn't spend the time up front, and that was because of
schedule or perceived pressure of schedule that we did not feel we had the time to prototype and
play with some of these things, and we thought well, we thought it would be rule-based, but we
had not clue, I had no clue, how complex the whole thing would turn out to be. And that's just
naive expectations, I guess.

Didn't have a lot of design documentation because I was under a real gun at the time.

170



EMPHASIZES ELEGANT AND SIMPLE
SOLUTIONS

Exceptional
Non-Exceptional

Fisher's Exact
Test (Two Tail)

# Subjects # Incidents
5
3

0.6499

5
3

Definition: Creates solutions which are elegant and simple and allow for easy extension to future
needs.

Associated Behaviors:
* Values simple solutions.
* Designs general solutions which will be easily extendible, even if it's not currently needed.
* Applies structure to ill defined problems and problem domains.

Illustrative Examples:
I guess that's why I thought it was kind of neat because the elegance in it is that it was so simple
to get it down on apiece of paper

I built the ASSEMBLER to have a concept of modules and exporting names and importing
names to try and do encapsulation of ideas, so I was trying to build kind of a structured
ASSEMBLER.

I couldn 't wait to get back to the hierarchy charts and clean them up. I just want everything to
be just nice and neat and real easy to understand and real easy to communicate and really fits
into the realities of the hardware also.

This allowed us to do more than what we needed to do. It was more flexible than what we really
needed, which I liked, because that means in the future, not knowing what's coming up next,
this is a lot more flexible, I'm not constrained, I'm not up against a hard limit already, I have
a lot more room, so there's a lot of flexibility in this of stuff we probably don't need to use, but
it fits all of our cases.

Ill



PRIDE IN QUALITY AND PRODUCTIVITY

Exceptional
Non-Exceptional

Fisher's Exact
Test (Two Tail]

# Subjects # incidents
6

6
1.0000

7

7

Definition: Takes pride in producing defect free products on schedule in minimum time.

Associated Behaviors:
* Takes pride in meeting or beating schedules.
* Takes pride in achieving low defect counts.
* Takes pride in achieving high productivity and accomplishing significant amounts of work
over short periods of time.

Illustrative Examples:
I felt pretty good because as a result of using that I was able to increase I think the quality of
my code a lot, I ended up with one fourth the bug rate of the next closest person, so I felt pretty
good about that.

That code has been very, very good. I don't think we found any defects in it, or maybe one. It's
probably, in terms of defects, the best code I've ever written.

Typically this compiler that I'm working on, it would have taken anywhere from three to five
people for two years to make. And I did the bulk of it in a year by myself.

The mind set that most people had was that you developed this code and then bum it in ROM
and you don't ever get to change it. Once it's in ROM, you don't get to go out and replace all
the ROMs in people's instruments, so it had to be right. The legacy of that was still carrying
over to us when we did this. We would never have admitted to ourselves that it was okay to
have defects in the software.

I think probably the thing that I look back on about that is there's been very few defects against
this part of the code. Not to brag or anything like that but...

[We] sold a boatload of them and just didn't have significant defect issues.

We beat it to death and we've gotten very few complaints from the field, very few problems have
come up, and so the now the product's been stable for a couple years.

172



PROACTIVE/INITIATOR/DRTVER

Exceptional
Non-Exceptional

Fisher's Exact
Test (Two Tail;

# Subjects # Incidents
6
5

1.0000

11

9

Definition: Takes the initiative to identify ways of completing important tasks. Influences others to
consider alternative approaches.

Associated Behaviors:
* Proactively completes projects or tasks that they consider important.
* Influences others in design, organizational structure, ...
* Identifies ways to surmount barriers and remove obstacles.

Illustrative Examples:
/ was not satisfied with it because I kept making these various proposals, not do it, go do a
driver, you know, both of those I thought would have been a better alternative than doing it
partially (?) and when it looked like I was going to lose that case, then I went off and did
something anyway to make it better, and that is that on my own, Ididn 't even talk to management
about this, I just went and extended it to support the MUX card.

I tend to be proactive in solving these, I would go over to someone's desk, or say let's go take a
walk, or sometimes I would go to management and say, let's go take a walk.

We were the two that had the most free time and so we would either individually or jointly go
in and pick bugs up out of there and track them down.

Subject describes a significant, successful project which was started by two engineers who had
a vision of what should be done and just did it - even when they should have been doing a
different job.

I would publish memos, and I published a decision since the steering committee did come to
a decision, I published the decision, and everyone went, "No, no, no, you can't publish a decision;
who are you to do this?"

Some of the equipment I couldn 't get. I went up to Fort Collins; I went up to their lab, and I
brought my tests and spent an evening up there and tried stuff.... I can go to Fort Collins, you
know, to test that.

I decided ...we better do this. ... I went back and said we don't have time in the schedule to do
it, but I'll just make time. I did it because I felt it was important.

173



PROACTIVE WITH MANAGEMENT

Exceptional
Non-Exceptional

Fisher's Exact
Test (Two Tail

# Subjects # Incidents
5

5
1.0000

9
7

Definition: Proactively attempts to influence project direction by influencing management.

Associated Behaviors:
* Discusses issues concerning other engineers with manager.
* Attempts to set project direction and make project decisions by influencing manager.
* Make specific resource or assignment recommendations to management.
* Promotes product ideas through demos or selling of ideas.

Illustrative Examples:
Eventually [my managers] came up with a project strategy that looked very similar to the one
that I had worked out with him prior to that, so I was really proud to be able to somehow, even
at the very lower level, prod people to come up with a product strategy, and I did that only
because I had to know how to specify my product, and I wasn't going to just do it the way
someone had attempted, had told me to.

The thing that was actually one of the neater parts of it is selling the ideas.... It did require doing
a data sheet, getting all the project manager in the section turned on about it so that when the
section manager kind of finds out about it, you know it sort of got the green light to go ahead.
... The power of the demo can never be underestimated.... We already had something running
once we got the section manager into it. Of course, they just start doing back flips when they
see that. So it's pretty important around here to have a demo of some sort to really get things
going.

174



DRIVEN BY DESIRE TO CONTRIBUTE

Exceptiona
Non-Exceptional

Fisher's Exac
Test (Two Tail;

# Subjects # Incidents
5
3

0.6499

6
3

Definition: Values the sense of accomplishment which comes from making a direct contribution.

Associated Behaviors:
* Seeks assignments where they can contribute.
* Feels rewarded by the chance to contribute.

Illustrative Examples:
I felt like I was really making a contribution. ... The part that was really satisfying about that
job is we could make impact on a large number of projects, and we could make impact on sort
of the culture of HP.

I just felt really good because I had a major part to play in that thing, both in the hardware and
software.

I was able to make a contribution in this area, at least by putting something in that was not even
in the original plan.

I was able to introduce significant new technologies in the lab, and I really feel good about the
results that we came out of it with.

I find it much more satisfying if I feel like I'm accomplishing something occasionally, you know,
rather than doing a lot of work that it doesn't seem like you're getting much done.

At the time it seemed like a contribution.

175



SENSE OF FUN

Exceptional
Non-Exceptional

Fisher's Exact
Test (Two Tail)

# Subjects # Incidents
5
2

0.3498

9

2

Definition: Enjoys the challenge of the assignment and the sense of accomplishment from completing
it. Just plain has fun at work.

Associated Behaviors:
* Looks forward to going to work.
* Derives a sense of accomplishment from work.
* Enjoys the challenge of a tough assignment.
* Driven by the reward of doing something new and different.

Illustrative Examples:
The fun was the challenge of testing something that nobody had any idea of how to test.... In
this case, nobody had ever done this before. Nobody knew how to do it.... It's fun to just trying
to think of ways to try to trick the software.

It was for me personally a tremendously fruitful kind of a project, and it was very, very cool to
do the first thing that the company had ever done on this specific platform.

It was a fun one, it's rare that you get to do something maybe in the course of a month like that
from start to finish and write some new code in and deal with the whole algorithm and go
through a complete, mini design cycle.

176



SENSE OF MISSION

Exceptional
Non-Exceptional

Fisher's Exact
Test (Two Tail)

# Subjects # Incidents
4

2

0.6285

4
2

Definition: Driven by a sense of mission and clearly articulated goals to achieve a specific result.

Associated Behaviors:
* Creates and articulates clear and specific goal statements.
* Drives project effort to achieve specific goals.

Illustrative Examples:
We were very focused on the problem we were trying to solve rather than the process of how we
were trying to solve it.... We knew that we had to develop that test system. We became, let's say
so focused on solving this problem — and the team was very small, so the communications and
things weren't a problem.... I think a lot of it is just that focus on the goal of what we were doing
rather than becoming enamored of the processes.... We had a vision in the sense that we believed
that this would turn into something big.

We really knew what we were doing,... we knew when we were going to be done, so that kept us
focused on what we had to do.

We weren't creating a single product, we created product strategy. We understood very clearly
at that point where we were going for at least five years. We understood what the generations
needed to be.

Ill



LACK OF EGO

Exceptional
Non-Exceptional

Fisher's Exact
Test (Two Tail)

# Subjects # Incidents
3
1

0.5820

4
1

Definition: Stresses the solution over the source of the solution. Doesn't care where a good idea
comes from and doesn't feel the need to promote their own ideas.

Associated Behaviors:
* Allows others to re-write an idea they've created.
* Allows use of a discovery process for others to come to see the value of their ideas.
* Discusses ideas, not positions.
* Focuses on the end result, regardless of who creates the solution.

Illustrative Examples:
So both being skeptical and very argumentative, we had some fairly heated discussions about
how we thought it ought to be, but it was very little ego involved in it. I mean it was trying to get
the algorithm right, and we really didn't care whose idea it was that worked, as long as we got
the right structure.

The ability to put aside your own ego and say, "You know, we are working for the same thing,
and you and I need each other; you need me as much as I need you and try and remember that,
and I'm not here to hurt you; I'm here to help you, and you're here to help me."

178



STRENGTH OF CONVICTIONS

Exceptional
Non-Exceptional

Fisher's Exac
Test (Two Tail

# Subjects # Incidents
2

1

1.0000

2
1

Definition: Exhibits and articulates strong beliefs and convictions. Acts in accordance with these
beliefs, even when it is counter to specific management direction.

Associated Behaviors:
* Argues forcefully for specific point of view.
* Risks performance ranking in an effort to secure the best solution.
* Acts in accordance with beliefs rather than solely based on assignment.

Illustrative Examples:
As a matter of principle, subject objected to handing off a prototype since it was not originally
intended to be product quality. At first I objected, and second I objected, and third I objected,
and finally fourth, I was being called uncooperative.

There was even consideration of dropping the functionality of that out, but I felt pretty strongly
about it, so that's why I actually, that's another reason why I ended up tackling it, because I
thought it was really important that we did that part of it.

179



E Self-Described Competencies

Competency

Perseverance

Knowledge

Definition

Extra work.
Keeping at a problem until it is
solved.
Stubbornness.
Keeps plugging away at stuff.
Discipline.
Thoroughness.
Compulsiveness.
Willingness to work hard.
Followthrough.
Dedication.
Perfectionism.
Keeping things moving.
Commitment.
Motivation / Self-Motivation.
Staying motivated in spite of
tedium.

Having a background in
software.
Ability to write code in a
particular language.
Knowledge and background for
particular job.
Technical expertise.

Examples

"I think it's more a matter of persistence
than any particular brilliance."
"I guess it required somebody who was
going to test thoroughly enough and be
disciplined enough to write code that was
high on reliability."
"I'm a perfectionist and I like to see
things done cleanly and correctly, none of
this spaghetti code or any of that stuff."
"I am very disciplined."
"I will keep up my hierarchy charts."
"Just some tenacity, just sticking with it
even though it was apparently not getting
anywhere, although realistically, in
retrospect, when you don't think you're
getting anywhere, you typically are
because you're at least narrowing down
possibilities, you're eliminating things,
even though you haven't found anything
yet, you're at least eliminating things and
getting the problem smaller."
"I just pursued it until it converged."
Driving to do tedious work quickly.
Finding the work challenging.
"Testing is tedious, but if you're
disciplined and have a procedure you get
through it. It took 60 hours per week."

Assembly language and speed-up
technique background.
Skills at programming the PC.
Knowing the existing compiler.
Knowing about object-oriented
approaches.
Knew about drivers.
A base knowledge of HP-UX and RMB.
Knowing X-Windows.
Having the knowledge of the different
relays.
Domain knowledge, the file system, etc.
A EE-like background knowing how bits
and bytes really work.
"I think I was the best person suited for
this mainly because I knew the most
about the overall operation of the
program to begin with, the diagnostics
program, as far as how it ran and all the
intricacies of it, because I had done most
of the work on it earlier. ... I didn't have
to learn something new to begin to know
what to do to implement it. ... I already
had the knowledge of how it worked, so
that was a real plus."
"My job was a job that a true software
person wouldn't have done, couldn't have
don, because it was so tied in with the
hardware."

#XP

6

6

#NXP

7

6

Fisher's
Exact Test
(Two Tail)

1.0000

1.0000

180



Teamwork

Skills /
Techniques

Working with someone else
that had different strengths and
being able to feed off each
other's.
Ability to work with people.
Relationship with other people.
Team worked well.
Ability to work with all of these
people, especially through all
the problems.
Ability to put aside your own
ego-Keeping people happy and
motivated in a really tense
situation.
Being sensitive to users and
service people.
Working with people - personal
interaction.
Joint ownership.
Being able to deal with
diversely motivated
organizations, real time.
Understanding of the global
issues of rolling a product and
how people and players fit
together.
Paying attention to more than
just the technical aspects of a
project.

Comfort with multiple
structured techniques.
Debugging.
Certain technology choices.
Technical and software
development background.

Recognizing that in some cases the
strengths of the other members of your
team are going to be stronger than your
own.
Recognizing that it's best to not try to get
your idea adopted for the sake of that it's
your idea.
Being the initiator to work together.
"I think a lot of times we overvalue
technical skills and undervalue the
people skills for people that are in
technical positions."
Being able to work well together with
other people.
Being able to work in a positive way with
people.
"I'm a lot more willing not to question
somebody's judgement or talent and just
let them do because I have to understand
that they're a talented person too, and
they're going to do the right things as
opposed to before thinking, my way."
"The ability to work with different people
from different areas that have different
concerns from mine and yet be able to
work with them towards a common end.
"I tend, to work best in groups with
discussion about things."

Ability to write quick utilities — Led to
quick tests.
Skill in using xdb.
The object-oriented approach helped
here - we could add people more easily."
Troubleshooting ability.
Comfortable with the tool environment.
"There probably aren't that many people
... who can run through assembly
language these days and do it with any
kind of panache."
Code reading - being able to read
another engineer's code and understand
it.
Reuse.

6

6

6

5

1.0000

1.0000

181



Thinking

Communication

Learning

Desire to do

Thinking algorithmically and
structuredly.
Being able to see the basic
theory and basic structure.
Ability to build models in your
mind.
Ability to structure problems.
Analytical skills.
Ability to go in and identify
what the problem is.
Ability to find solutions to
problems.
Ability to visualize what's going
on in the whole system.
Ability to understand the
design.
Ability to look at a problem
and produce a solution
matched to the problem.
Spends time thinking.
Being able to think on your
feet.
Thinking of alternative
solutions.
Skills in terms of breaking a
design into smaller chunks and
approaching it in a systematic
way.
Being able to follow structure
and protocol.

Making people understand that
I had heard them, and rather
than just letting them walk
away, we would talk through
some of the issues.
Constant communication with
other engineers.
Receptive.
Open-mindedness.
Responsive to new ideas.
Communication one-on-one
and within groups.
Interpersonal skills.
People skills.
Inter-organization
communication.
Being open.
Reasonable diplomacy or
sensitivity.

Being able to pick up new
techniques quickly.
Specific training.
Willingness to learn and train
yourself.
A belief that you can pick up
knowledge in any new area.
Focus on improving skills.

Bias for action.
Sense of urgency.
Desire to do the job.
Results oriented.
Drive.
Get going on something.
Try things.

"I think that structuring problems is
related to the building of models."
"I was able to understand the design, the
communications, the protocols, and the
data interchanges."
"I've been thinking about that at various,
different levels, you know, hacking on it
myself, looking at competitors' things,
other people in the company what they
have done, and things like that. So I felt
pretty well versed on the problem."
"I like to get the problem down to
something that I can get in my head and
munch it over in my head."
"I'm very good at really working through
it, the detail and boundary conditions
and what makes it work, what makes it
break, and that kind of thing."
"I'm a fairly good problem solver, I think
I can gather information and extract the
part of the information that's relevant to
my problem and then apply it to a
solution."
"To me, engineering is problem solving."
"Being able to pick up on the protocol or
standard and conform to that and getting
a quick understanding of it."

I would try to make them see some of the
points that maybe they hadn't thought
about. They were more comfortable with
the fact that I listened when a decision
came out and it didn't mesh with the
input they had given.
"Being able to sit down with the
marketing people and play marketing guy
for a while."
"Communication is paramount,
technology has been less important."

Advanced course in microprocessors.
"It's so interdisciplinary — you've got to
be willing to do anything and believe you
can do it with training as well as the
people who are already doing it."
Taking software classes - fitting classes
together.
"I can start from nothing and accumulate
the databases that I need and sift from
that the information that really pertains
to the problem, and then organize that
data in a way that then I can solve the
problem."

"If I hadn't pushed, I would not have
done this particular project that quick."
"I'm here because I want to be."
"I want to see results at the end of the
day."
"Just jump in and start working - you
develop the capability."

5

4

4

2

4

4

3

3

1.0000

1.0000

1.0000

0.5820

182



Attention to
Detail

Thoroughness

Innovation

Conviction

Experience

Prototyping

Seeks help

Desire to
improve things

Challenge

Scheduling

Simplicity

Ability to deal with complexity.
Detail oriented.
Writes everything down.

Making sure all paths are
covered.
Being methodical.
Being organized.
Being overcautious.

Creative ideas.

Belief in the project or product.
Doing the right thing.
Selling projects.

Prior experience with similar
project.

Approach of demonstrating
feasibility

Values encouragement by other
people.

Not being satisfied with the
status quo.
Setting high personal
expectations and goals.

Enjoying working in new areas.
Curiosity.

Planning ahead.
Schedule setting ability.

Simplifying things as much as
possible.
Not letting it get too complex.
Trying to make it simple.
Aversion to complexity.

"I can keep track of a lot of that kind of
stuff in my head, as far as mentally
integrating or synthesizing a system view,
say of the design, and eventually coming
out then with realizing that on paper."
"I also write in my lab notebook any little
thing that goes wrong or any little
anomaly or anything, I write that down in
such a way that I can go back. ... I'm very
conscious of 'where there's smoke,
there's fire.'"
Look at corner cases.
I'm "good at taking a lot of detail from
several different things and getting it into
my mind all the same time and kind of
working on it and munching it around in
my head."

"I just had a real fear of ever being in
that situation [lots of defects in code]. ...
I just went slowly and real carefully and
overdid if anything."

"I like to think of alternatives, being
creative and ... practical a the same time."

"We had to go out and sell this to other
divisions, we even had to convince one
division ... to drop a proprietary system
they were working on in favor of this."
"I have to stick to my convictions."
"The biggest thing there is being aware of
just what for your own given
organization, how does that work?"

Start to implement the most feasible
alternative.

"Coming up with questions that I
couldn't find the answers to and then
going and asking other people."
The ability to know when you don't have
enough knowledge and to go get help.
Allow people to criticize or give new
inputs.
"I just look at what other people have
done and ask them why."

Constantly looking for better tools,
better approaches, and better
technologies. Giving yourself time for
improvement.

"The customers would have more
functionality or better performance and
that it would be actually
challenging and interesting job."

"I was trying to purposely stay away from
very complicated solutions."
"A little bit of vision that we could do
things by rethinking things we could do
things simpler and more elegantly."

2

2

2

2

1

2

0

3

1

2

0

2

2

2

2

2

1

4

0

3

0

2

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

0.0867

0.2105

0.4737

0.4737

0.4737

183



Quality Making sure the result is
readable
Concern for reliability.
Commitment to high quality.

2 0 0.4737

184



F Survey Instructions for Participants

DIRECTIONS
1. Biographical Questionnaire

The objective of this questionnaire is to determine if any demographic, educational, or experience
variables best characterize the Company's Software Engineering population.
Please complete the questionnaire indicating the information requested. In all cases, make your
best attempt to answer the questions. If you get stuck on any questions, please get hi touch with
me. Save the RESULTS OF THE SORTING EXERCISE portion until you complete step 2.

2. Competency Sorting Exercise
The objective of this exercise is to determine which job competencies identified in the Phase 1 research
best characterize the Company's Software Engineering population. You will sort these competencies
based on how well they describe your behaviors on the job, especially when you're performing at your
best. Try to think of the best software experience you 've had and use that to guide selection of which
attributes best describe your behavior on the job.

Be sure that you have a clear desk or table to work on before you start. You will be placing 3
x 5 cards in one of 7 piles so you need space to spread these out. Find the supplied pile markers
in the envelope and lay these out on your table in order from number 6 on your leu to number
0 on your right. These pile markers are annotated to remind you that column 6 represents
those competencies that are most like your behavior and column 0 represents those
competencies that are least like your behavior.
Read through all 38 competency cards to become familiar with them.
Sort all of the cards into 3 piles of any number of cards. Place to the left the cards which include
the competencies which best describe your behavior In the process of software engineering.
Place to the right those cards which include competencies which least describe your behavior
in the process of software engineering. Place those cards with competencies about which you
are unsure in the middle pile.
During the sorting you will spread the items in piles under the pile markers, while maintaining
the general left-center-right relationships.
Select the 2 items which most strongly relate to your behavior on the job as a software engineer.
Think in particular about those tunes which have been a personal best for you. Place these two
cards under the column marker labelled 6. The order of these cards under the marker is not
important. All will receive the same score.
Now select the 2 items which least reflect your behavior on the job as a software engineer. Place
these under the column marker labelled 0.
Continue in this way, alternating between the left and right sides of the distribution, placing the
indicated number of cards below each column marker. Feel free to move any card at any time
should you change your mind about which competencies are most closely related to your actual
behavior. All that matters is that the right number of cards eventually are found beneath each
column marker. Trynotto take too long agonizing over the placement of any one card. Your
first impulse for placing the card is probably the best. If it helps, you can jot a short phrase that
captures the essence of the competency directly onto the card as a prompt to use in sorting.
Review your groupings to be sure that they accurately reflect your behavior while completing
your software engineering assignments. Move any cards you wish to better reflect which
competencies most apply to you doing your job. Now record the item identification numbers
found in the lower right hand corner of each card in the appropriate column on the back of the
BIOGRAPHICAL QUESTIONNAIRE.
If you have any questions, don't hesitate to give me a call at T-229-2340 to ask for help.

3. Mail the completed BIOGRAPHICAL QUESTIONNAIRE and all survey materials to me via
interoffice mail in the pre-addressed envelope provided.

THANK YOU FOR YOUR PARTICIPATION!

185



G Phase 2 Biographical Questionnaire

Sex
Age
HP Division

M F

For each degree that you have completed or begun, please complete the following. Circle the appropriate
response or fill hi the blank.

Degree
Major
Status
School

Degree
Major
Status
School

Degree
Major
Status
School

Degree
Major
Status
School

ASSOCIATE BS BA MS MA PhD
CS CE EE MATH PHYSICS
COMPLETED PARTIALLY-COMPLETED

ASSOCIATE BS BA MS MA PhD
CS CE EE MATH PHYSICS
COMPLETED PARTIALLY-COMPLETED

ASSOCIATE BS BA MS MA PhD
CS CE EE MATH PHYSICS
COMPLETED PARTIALLY-COMPLETED

ASSOCIATE BS BA MS MA PhD
CS CE EE MATH PHYSICS
COMPLETED PARTIALLY-COMPLETED

OTHER:
OTHER:

OTHER:
OTHER:

OTHER:
OTHER:

OTHER:
OTHER:

In the LAST 2 YEARS, how much training have you completed relevant to software engineering including
any formal study toward a degree? The unit of measure is 'contact hours.' That is, time spent in a
classroom for formal training, and time spent studying for self-study. Hence a semester long college class
might be expressed as 3 contact hours a week for 15 weeks for a total of 45 contact hours. Also include
corporate training classes, consultant seminars, and self-study. The table below is designed to jog your
memory about classes taken. The only number to be used hi the study is the TOTAL Training Contact
Hours below.

# CONTACT

HOURS
COLLEGE CORPORATE SEMINARS SELF-STUDY OTHER

TOTAL Training Contact Hours
(Continued on back...)

186



Complete the following table with the number of years of experience at the Company and elsewhere
indicating whether your work was Software Engineering or not. Include any full time employment once
beginning your professional career. Do not include part-time jobs while hi school, co-ops, SEED positions,
research assistantships, or teaching assistantships. Hence jobs between degrees count while summer jobs
during college don't. If you were managing an activity during this period^ also include this tune in the
appropriate cell. The total of all values in the table should sum to your total years of experience.

#YEARS
EXPERIENCE

COMPANY

NOT
COMPANY

SOFTWARE
ENGINEERING

NOT SOFTWARE
ENGINEERING

TOTAL Years Experience
For each programming language used professionally, complete the following: (Count language variants as
a single language. Forexample, CandC+ + are considered as one language. Also, various forms of Assembly
language are considered as one language.)

LANGUAGE SKILL LEVEL
HIGH LOW
HIGH LOW
HIGH LOW
HIGH LOW

HIGH LOW

HIGH LOW

HIGH LOW

HIGH LOW

Self-described skill level:
HIGH: expert, lots of experience, well versed,

used on many projects
LOW: novice user, little experience,

used on few projects

Please fill in the following table after completing the attached statement sorting exercise. Place the
appropriate item numbers hi each column of the table, hi the same category into which you sorted your
cards.

RESULTS OF
Most Like My Behavior

6 5 4
(2) (4) (7)

SORTING EXERCISE
Least Like My Behavior

3 2 1 0
(12) (7) (4) (2)

——

187



H Phase 2 Competency Statements



DEFINITION

I value the synergy of group efforts and invest the
effort required to create group solutions, even at
the expense of my individual results.
KEY BEHAVIORS
ol balance the strengths and weaknesses of other

team members.
ol promote constant communication among team

members using techniques such as brainstorming
sessions, travel, phone calls, e-mail, or just being
physically close to the rest of the team.

ol recognize synergy of group efforts and invest
personal time and energy to leverage it.

______________________ltem#1

DEFINITION

I proactively seek the assistance of others in
learning, researching, designing, understanding,
debugging, or checking results.
KEY BEHAVIORS
ol ask previous implementers to explain their
designs.

ol ask other engineers to critique or evaluate my
designs.

ol survey others to create lists of alternatives.
_______________________Item #2

DEFINITION

I spend a significant amount of tune assisting others
in the completion of their tasks or influencing broad
organizational direction.
KEY BEHAVIORS
«••>{ act as a lab-wide consultant for process or
product issues.

ol review, direct, or influence the work of other
engineers.

ol assist other engineers with their tasks in an effort
to complete the project.

ol teach engineering skills to other engineers.
Item #3

DEFINITION

I use a prototyping method to assess key system
parameters before designing the final product. I
avoid using my prototypes as final
implementations.
KEY BEHAVIORS
ol use prototypes as a mechanism for incremental

development of a product.
ol attempt to not allow my prototypes to become

the final product.
ol use prototypes to assess critical areas like
performance and tune estimates.

ol prototype in parallel with the detailed design
phase.

_______________________Item #4
DEFINITION

I apply incremental testing techniques during code
development such that a given module achieves a
high degree of reliability by the time it's completed.
KEY BEHAVIORS
ol create tests in parallel with the creation of code.
ol automate tests so they can be run frequently
throughout design.

ol test frequently during development to ensure
reliability at the module level.

_______________________Item #5
DEFINITION————-————-——————-

At the time of assignment, I possess the unique
skills or knowledge required to accomplish the task
at hand.
KEY BEHAVIORS
ol possess the necessary domain knowledge and
skills required for the job.

oPrior to an assignment, and on my own initiative,
I become an expert in a given area.

Item #6

189



DEFINITION

I actively seek the training needed to complete the
assigned task.
KEY BEHAVIORS
ol seek out documentation required to understand
my current assignment.

ol take classes which will directly help in the
completion of the current assignment.

ol keep current by reading trade or technical
journals.

ol improve my skills and awareness by attending
conferences.

_______________________Item #7
DEFINITION

I proactively attempt to leverage other engineers'
effort by using their code or designs. I attempt to
leverage my own effort by making my code
reusable.
KEY BEHAVIORS
ol look for code or code fragments which can be
reused.

ol design and code so that my effort can be reused.
_______________________Item #8
DEFINITION

I take advantage of the tools and techniques of
structured design in order to understand and
communicate designs, but do not necessarily follow
the complete formalism of the approach.
KEY BEHAVIORS
ol use structured techniques (such as Structured
Analysis and Design, Hierarchy Charts, ...) as a
means of joint development and communication.

ol use structured techniques as a mechanism for
passing off a design or part of a design to another
engineer for implementation.

ol view structured techniques as just another tool
which can be applied to certain problems, rather
than as a panacea.

Item #9

DEFINITION

I use a methodical approach in understanding and
solving problems.
KEY BEHAVIORS
ol build mental or physical system models to
enhance my understanding and visualization of
the problem.

ol design well controlled experiments to efficiently
resolve problems.

ol invest in the development of test tools to solve
problems.

_______________________Item #10
DEFINITION

I seek to improve performance or results through
the use of new tools or methods.
KEY BEHAVIORS
ol proactively seek out new tools or methods to
solve problems.

ol use my work assignment as a way to learn new
tools or methods.

ol recognize value in new tools or techniques.
_______________________Item #11
DEFINITION

I show a strong concern for schedules and I
estimate schedules well.
KEY BEHAVIORS
ol maintain personal "rules of thumb" for schedule
estimation.

ol refine schedule estimates based on my measured
progress.

ol schedule via task breakdown and successive
refinement.

ol meet schedules.
Item #12

190



DEFINITION

I use code reading and other group development
techniques to ensure final code quality.
KEY BEHAVIORS
ol participate in the code reading of other
engineers' work.

ol ask for others to code read my work.
ol participate in brainstorming and other group
development techniques.

_____________________Item #13
DEFINITION

I use decomposition design techniques relying on
visual representation of designs. I create structured
designs, generally without using formal techniques.
KEY BEHAVIORS
ol keep design specification in sync with the actual
implementation.

ol follow a top-down design method using
decomposition to successively refine the design.

ol take a modular approach in order to reuse as
much of the design as possible.

ol use pictures to communicate and understand
designs.

_______________________Item #14
DEFINITION

I consider customer or user input and feedback to
be an essential ingredient in the design of products.
KEY BEHAVIORS
ol proactively attempt to obtain customer and user
input and feedback for products.

ol measure project success in terms of customer
satisfaction.

Item #15

DEFINITION

In response to schedule pressure, I am forced to
sacrifice important parts of the design process.
KEY BEHAVIORS
o In response to schedule pressure I am forced to
provide incomplete documentation.

o When schedules slip, I do not have time to
adequately inspect or test the product.

o When pushed to pull up a schedule, I will not
prototype or adequately design risky parts of
product.

_____________________Item #16

DEFINITION

I create solutions which are elegant and simple and
allow for easy extension to future needs.
KEY BEHAVIORS
ol value simple solutions.
ol design general solutions which will be easily
extended, even if it's not currently needed.

ol apply structure to ill defined problems and
problem domains.

__________________Item #17
DEFINITION

I take pride in producing defect free products on
schedule in minimum time.
KEY BEHAVIORS
ol take pride hi meeting or beating schedules.
ol take pride hi achieving low defect counts.
ol take pride in achieving high productivity and

accomplishing significant amounts of work over
short periods of time.

Item #18

191



DEFINITION

I take the initiative to identify ways of completing
important tasks. I influence others to consider
alternative approaches.
KEY BEHAVIORS
ol proactively complete projects or tasks that I
consider important.

ol influence others hi design, organizational
structure,...

ol identify ways to surmount barriers and remove
obstacles.

______________________Item #19

DEFINITION

I proactively attempt to influence project direction
by influencing management.
KEY BEHAVIORS
ol discuss issues concerning other engineers with
my manager.

ol attempt to set project direction and make project
decisions by influencing my manager.

ol make specific resource or assignment
recommendations to management.

ol promote product ideas through demos or selling
of ideas to management.

._________________Item #20
DEFINITION

I value the sense of accomplishment which conies
from making a direct contribution.
KEY BEHAVIORS
ol seek assignments where I can contribute,
ol feel rewarded by the chance to contribute.
______________________Item #21
DEFINITION

I enjoy the challenge of the assignment and the
sense of accomplishment from completing it. I just
plain have fun at work.
KEY BEHAVIORS
ol look forward to going to work.
ol derive a sense of accomplishment from work.
ol enjoy the challenge of a tough assignment.
ol am driven by the reward of doing something new
and different.

Item #22

DEFINITION

I am driven by a sense of mission and clearly
articulated goals to achieve a specific result.
KEY BEHAVIORS
ol create and articulate clear and specific goal
statements.

ol drive the project to achieve specific goals.
_______________________Item #23
DEFINITION

I stress the solution over the source of the solution.
I don't care where a good idea comes from and
don't feel the need to promote my own ideas.
KEY BEHAVIORS
ol focus on the end result, regardless of who creates
the solution.

ol allow use of a discovery process for others to
come to see the value of my ideas.

ol discuss ideas, not positions.
ol allow others to re-write an idea I've created.
_______________________Item #24
DEFINITION

I exhibit and articulate strong beliefs and
convictions. I act in accordance with these beliefs,
even when it is counter to specific management
direction.
KEY BEHAVIORS
ol act in accordance with my beliefs rather than
solely based on my assignment.

ol risk my performance ranking in an effort to
secure the best solution.

ol argue forcefully for a specific point of view.
________• __________ Item #25
DEFINITION

I mix my personal and work goals by seeking or
tailoring assignments to my professional interests.
KEY BEHAVIORS
ol identify positions I would like to have and lobby
to receive them.

ol seek assignments which will further my
professional development.

ol identify technical areas which I'd like to develop
and find ways to apply them to the proj ect at hand.

Item #26

192



DEFINITION

I confront others when necessary to ensure a good
design or product solution.
KEY BEHAVIORS
oRather than letting a conflict simmer, I will openly

confront another person in an effort to resolve it.
ol will raise a tough issue of conflict with another
engineer to my manager in an effort to have it
resolved.

______________________Item #27
DEFINITION

I am thorough in my assignment and persevere until
it's completed.
KEY BEHAVIORS
ol drive hard to complete even the tedious parts of
my assignment.

ol like to see things done cleanly and correctly.
ol stick with assignments even when it's not clear
that they're going anywhere. At least I'm
eliminating things and making the problem
smaller.

______________________Item #28
DEFINITION

I have mastered the skills and techniques necessary
for good software design and implementation.
KEY BEHAVIORS
ol have a strong technical and software
development background.

ol am comfortable with multiple software design
and implementation techniques.

ol have very strong software development skills.
______________________Item #29
DEFINITION

I posses strong analytic skills that allow me to
visualize a complex problem and create alternative
solutions
KEY BEHAVIORS
ol am able to see basic theory and basic structure
in a problem.

ol am able to visualize what's going on inside a
complex system.

ol am able to break a large, complex problem into
smaller, more manageable chunks.

Item #30

DEFINITION

I am driven by a strong bias for action and sense
of urgency in completing my assignments.
KEY BEHAVIORS
oWhen faced with a tough problem, I don't hesitate
to get started. I develop the required capability
as I go.

ol am results oriented and want to make progress
on a regular basis.

ol push myself to achieve results quickly.
_____________________Item #31
DEFINITION

I am detail oriented and able to deal with very
complex problems.
KEY BEHAVIORS
ol'm good at taking details from a lot of different
sources and determining a good solution to a
problem.

ol keep track of lots of detail, either in my head or
on paper.

ol concern myself with "corner cases" and other
seemingly insignificant data, since this is often
where the breakthrough comes from.

____________________ Item #32
DEFINITION

I am very methodical, organized, and cautious in
my work.
KEY BEHAVIORS
ol make sure that all paths are covered in my design
and problem solving.

ol work slowly and carefully to avoid making
mistakes.

______________________te™ #33
DEFINITION

I am innovative in my solutions to problems.
KEY BEHAVIORS
ol like to create alternatives which are both creative
and practical.

ol have creative ideas and solutions to problems.
Item #34

193



DEFINITION

My prior experience with similar projects leads to
my high performance on current projects.
KEY BEHAVIORS
ol use the experience gained on one project to
improve my solutions on subsequent projects.

ol find that the skills I learn on one project are
directly applicable to my next project.

______________________Item #35
DEFINITION

I set high personal expectations and goals. I am
not satisfied with the status quo.
KEY BEHAVIORS
ol am constantly looking for better tools, better
technologies, or better problem solving
approaches.

ol give myself time to improve.
______________________Item #36
DEFINITION

I have a high concern for reliability and a strong
commitment to quality.
KEY BEHAVIORS
ol make sure that my products have few, if any,

defects.
ol work hard to be sure that my results are clear
and readable to others.

_______________________Item #37
DEFINITION

I maintain a broad "big picture" view of my projects
in an attempt to influence the project direction.
KEY BEHAVIORS
ol remain aware of what other engineers are doing
and suggest ways to better achieve project
objectives.

ol try to be sure that project goals make sense, and
work to change them if they don't.

ol try to fit my project into the broader scheme of
division programs.

Item #38

194




