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ABSTRACT 

 

DEVELOPMENT OF A POLARIMETRIC RADAR BASED HYDROMETEOR 

CLASSIFICATION ALGORITHM FOR WINTER PRECIPITATION 

 

The nation-wide WSR-88D radar network is currently being upgraded for dual-polarized 

technology. While many convective, warm-season fuzzy-logic hydrometeor classification 

algorithms based on this new suite of radar variables and temperature have been refined, less 

progress has been made thus far in developing hydrometeor classification algorithms for winter 

precipitation. Unlike previous studies, the focus of this work is to exploit the discriminatory 

power of polarimetric variables to distinguish the most common precipitation types found in 

winter storms without the use of temperature as an additional variable. For the first time, detailed 

electromagnetic scattering of plates, dendrites, dry aggregated snowflakes, rain, freezing rain, 

and sleet are conducted at X-, C-, and S-band wavelengths. These physics-based results are used 

to determine the characteristic radar variable ranges associated with each precipitation type. A 

variable weighting system was also implemented in the algorithm’s decision process to capitalize 

on the strengths of specific dual-polarimetric variables to discriminate between certain classes of 

hydrometeors, such as wet snow to indicate the melting layer. 

This algorithm was tested on observations during three different winter storms in 

Colorado and Oklahoma with the dual-wavelength X- and S-band CSU-CHILL, C-band OU-

PRIME, and X-band CASA IP1 polarimetric radars. The algorithm showed success at all three 

frequencies, but was slightly more reliable at X-band because of the algorithm’s strong 

dependence on KDP. While plates were rarely distinguished from dendrites, the latter were 
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satisfactorily differentiated from dry aggregated snowflakes and wet snow. Sleet and freezing 

rain could not be distinguished from rain or light rain based on polarimetric variables alone. 

However, high-resolution radar observations illustrated the refreezing process of raindrops into 

ice pellets, which has been documented before but not yet explained. Persistent, robust patterns 

of decreased !HV, enhanced ZDR, and an inflection point around enhanced ZH occurred over the 

exact depth of the surface cold layer indicated by atmospheric soundings during times when sleet 

was reported at the surface. It is hypothesized that this refreezing signature is produced by a 

modulation of the drop size distribution such that smaller drops preferentially freeze into ice 

pellets first. The melting layer detection algorithm and fall speed spectra from vertically pointing 

radar also captured meaningful trends in the melting layer depth, height, and mean !HV during 

this transition from freezing rain to sleet at the surface. These findings demonstrate that this new 

radar-based winter hydrometeor classification algorithm is applicable for both research and 

operational sectors. 
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CHAPTER ONE 

Introduction 

 

1.1 Polarimetric radar properties of winter storms 

Reducing uncertainty associated with winter storm precipitation type, accumulation and 

timing is a paramount forecasting challenge (Ralph et al. 2005). These rapidly evolving 

mesoscale systems (usually as part of extratropical cyclones) will be better understood with the 

national dual-polarized radar upgrade through use of fuzzy-logic hydrometeor identification (Liu 

and Chandrasekar 2000). Cold season microphysical processes observable by dual-polarized 

radars and whose origins are generally well agreed upon include dendritic ice crystal growth 

(Kenndey and Rutledge 2011), ice particle density and shape modulations caused by riming and 

aggregation (Vivekanandan et al. 1994), as well as hydrometeor melting (Ryzhkov et al. 1998). 

While radar signatures of freezing rain and sleet have not been identified prior to this study, the 

near-surface phase change from either rain or freezing rain to sleet is discernable with 

polarimetric radars (Ryzhkov et al. 2011). However, the physical explanation for this refreezing 

signature is still unknown.  

Information about the distribution of sizes, orientations, shapes, and diversity of 

hydrometeors within a particular radar bin can be garnered from the differential reflectivity 

(ZDR), correlation coefficient (!HV), and specific differential phase (KDP) (Straka et al. 2000, 

Bringi and Chandrasekar 2001). The radar reflectivity factor (ZH) also gives an indication of 

hydrometeor size and concentration. This thesis focuses on automatically classifying the 

dominant winter hydrometeor types/processes based on the discriminatory power of these 

polarimetric radar variables, which are explained in more detail in Section 1.4.  
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1.2 Purpose of hydrometeor classification studies 

There are several motivations for discriminating hydrometeor types and precipitation 

transition processes with radar. One of the leading weather-related safety (Smith et al. 2012) and 

socioeconomic (Nygaard et al. 2011) hazards is aircraft icing in freezing temperatures when the 

air is saturated with respect to water. Radar detection of dendritic ice crystals, which also require 

this level of saturation, provides a necessary but insufficient indicator of super cooled liquid 

water (SCLW). Plate crystals grow at the same temperature ranges as dendrites but when the air 

is unsaturated with respect to water, so remote sensing discrimination between plates and 

dendrites could potentially characterize the environment’s saturation level (Williams et al. 2011). 

Most weather radars are incapable of directly sensing super cooled liquid drops due to their long 

wavelength relative to typical drop diameters (< 0.5 mm). SCLW also often exist simultaneously 

with larger ice crystals that dominate the returned radar signal. Satellites and space-borne cloud 

radars are better suited for SCLW detection, but only on spatial scales as fine as the entire radar 

domain. This is inadequate for making local aircraft operation decisions.  

A second winter hazard addressed by hydrometeor identification algorithms is enhanced 

production and subsequent aggregation of dendritic crystals aloft. More numerous large crystals 

resulting from these processes can lead to heavy surface precipitation rates, degradation of 

visibility, and disruptive snowfall accumulations (Fujiyoshi and Wakahama 1985, Kennedy and 

Rutledge 2011). ZH-snowfall relationships for quantitative precipitation estimation/forecasts and 

ice water content calculations may also be improved if the winter hydrometeor type is first 

determined (Vivekanandan et al. 1994, Mitchell et al. 1996, Wolfe and Snider 2012). The 

variable density of ice crystals is a major source of uncertainty in these techniques. 
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Routine, nation-wide dual-polarized radar observations that resolve cloud microphysical 

processes and discriminate winter precipitation type will also provide a foundation for evaluating 

and improving semi-melted/frozen hydrometeor microphysical parameterization schemes in 

numerical models (Cotton et al. 2011). Secondary ice formation processes are currently not well 

understood, measured, or represented in weather prediction models (Baumgardner et al. 2012, 

Thériault et al. 2006). The radar-derived vertical distribution, prevalence, and partitioning of ice 

and liquid species in clouds could be assimilated into these numerical models for better 

performance. Realistic simulations of warm- and cold-season weather systems require proper 

representation of mixed-phase precipitation in the model framework (Cotton et al. 2011). 

Knowledge of ice species within clouds gained from dual-polarized radars could also help 

evaluate cloud radiative properties and therefore climate feedbacks (Stephens 2005). 

Finally, the potential socioeconomic impacts and safety concerns associated with rain, 

freezing rain, and sleet are drastically different but the thermodynamic processes determining 

this precipitation transition are incredibly subtle (Ralph et al. 2005). Freezing rain produces a 

severe safety hazard to transportation and can topple trees and power lines from the weight and 

brittleness of glaciated ice (Cortinas et al. 2004). Conversely, sleet produces a much more muted 

socioeconomic impact, but one that is still greater than snow because accumulation of dense, 

high water content, frozen slush is difficult to remove (Gibson et al. 2009). The range of these 

hazards depends upon many competing, multiscale factors. These include the depth and 

temperature of the surface cold and elevated warm layers organized on the synoptic scale, 

mesoscale circulations and gradients of humidity and temperature, and the microscale latent 

heating caused by melting, refreezing, and evaporation (Stewart et al. 1990b). Rauber et al. 

(2001) suggest that the key to developing a mixed-phase precipitation forecast is to incorporate 
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more complex phase change physics, including the effect of different ice particle habits falling 

through the melting layer.  

Hydrometeor classification can also elucidate the connection between winter storm 

kinematics and thermodynamics. Some studies have hypothesized that dendritic growth and the 

existence of supercooled water are both controlled by a critical minimum updraft speed under 

proper temperature and moisture conditions (Auer and White 1982, Rauber and Tokay 1991). 

Parcels will moisten adiabatically during ascent, perhaps raising the saturation level enough to 

support rapid depositional growth. If small ice particles cannot accommodate the excess vapor, 

super cooled liquid water drops may form near cloud top. Vertical velocities within these regions 

can be derived with the horizontal wind fields from two or more Doppler radars (Davies-Jones 

1979). Hydrometeor classification and dual- or triple-Doppler wind fields from the CASA IP1 X-

band radar network (Dolan and Rutledge 2010) used in this study could help characterize the 

relationship between updraft speed and dendritic growth zones. Fall speed spectra from vertically 

pointing radars can also help identify regions where particles are melting, aggregating, and 

riming (Chandrasekar et al. 2011).   

 

1.3 Thesis objectives 

This study focuses on radar classification of winter storm hydrometeor type since surface 

mesonet and automated surface observing stations (ASOS), rapidly disseminated model output, 

and upper-air soundings cannot discriminate between different snow crystal types, rain, freezing 

rain, or sleet with much confidence for several reasons. ASOS instruments lack heated, tipping 

rain buckets so they do not autonomously measure or discriminate between semi- or completely 

frozen precipitation. Nearby stations often disagree greatly, contrary to coincident human 
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observations (Elmore et al. 2011). Sounding and forecast model output also lack spatiotemporal 

resolution on scales necessary to detect low-level, local, rapidly evolving precipitation type and 

intensity transitions. These methods also do not indicate which hydrometeor types may exist 

aloft, which certainly has implications for determining surface weather conditions.  

Hydrometeor classification algorithms using atmospheric soundings with X-, C-, and S-

band polarimetric radar observations have been successful for warm-season, convective 

precipitation (Liu and Chandrasekar 2000, Zrnic et al. 2001, Ryzhkov et al. 2005a, Dolan and 

Rutledge 2009, Park et. al 2009, Chandrasekar et al. 2011). An atmospheric sounding is mostly 

sufficient to describe thermodynamic conditions relevant to hydrometeor classification in this 

meteorological regime because the freezing level does not vary much in space or time. This is 

not the case for winter precipitation though, which has motivated use of a polarimetric radar 

based melting layer detection algorithm and perhaps additional steps to discern precipitation 

types below and above this bright band layer (Giangrande et al. 2004, Boodoo et al. 2010).  

To date, wintertime polarimetric algorithms using a radar-based melting layer detection 

algorithm and external temperature information from either a sounding or numerical model 

forecast have attempted to identify winter storm hydrometeor types with varying levels of 

success (Kouketsu and Uyeda 2010, Elmore et al. 2011, Schuur et al. 2012). Elmore et al. (2011) 

showed that the radar’s inability to identify the refreezing of raindrops and errors in the melting 

layer detection algorithm led to HCA failures and poor overall performance. Schuur et al. (2012) 

produced satisfactory results using an algorithm based on Rapid Update Cycle (RUC) model 

output temperature and moisture fields along with dual-polarized radar data. The methodology 

presented in Schuur et al. (2012) is particularly valuable in regions beyond the radar domain, at 

far ranges where the radar resolution is degraded, and below the lowest elevation angle scan 
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where surface weather conditions cannot be diagnosed by the radar at all. However, this study 

did not explore classification of various snow types such as dendrites, plates, and dry aggregated 

snowflakes. The recently discovered refreezing signature has not been implemented into a 

hydrometeor classification scheme either. It is important to note that both of these phenomena 

have been validated with external temperature in previous studies (Kennedy and Rutledge 2011, 

Ryzhkov et al. 2011), but they do not require temperature information for detection in real-time. 

Furthermore, none of these previous winter HCA studies have fully exploited the potential uses 

of KDP (especially at shorter radar wavelengths), which is extremely useful for distinguishing 

different ice crystal habits. 

Polarimetric signatures of various winter storm types/processes can be determined from 

theoretical electromagnetic scattering simulations, tested with radar observations, and validated 

with external temperature sources. Without in-situ observations of hydrometeor types from 

ground-based or aircraft data to compare with radar observations, this is the most objective 

methodology for building a robust HCA. Previous winter HCAs could then be greatly improved 

if these derived polarimetric signatures prove robust enough to not require temperature for real-

time detection (Zrnic et al. 2001). This approach is potentially very valuable since temperature 

information is not available at the same update frequency or spatial scale as radar data, which 

refreshes approximately every 5-10 minutes for domains ranging 100-250 km. Special soundings 

and fine scale model output can also be expensive and time consuming to acquire and use, 

whereas dual-polarized radars provide pertinent temperature information with a melting level 

detection algorithm at no additional cost.  

After identifying several steps of worthy research from this literature review, the three main 

hypotheses of this thesis are: 
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1) Dual-polarimetric radar signatures of winter storms are sufficient to identify the dominant 

classes of frozen and melting hydrometeors as well as the microphysical processes governing 

the near surface transition between frozen and liquid precipitation types without the use of 

external temperature information.  

2) When combined with radial velocity spectra from vertically pointing radar, the microphysical 

information gained from a hydrometeor classification algorithm could further elucidate 

precipitation processes such as ice crystal growth, riming, melting and aggregation. 

3) Shorter wavelength dual-polarimetric radars are superior to longer wavelength systems for 

determination of winter storm hydrometeor type when using KDP since this variable scales 

inversely with wavelength. 

In order to develop such a hydrometeor classification algorithm, scattering simulations of 

dual-polarimetric variables at X-, C-, and S-band wavelengths based on the physical properties 

of dendrites, plates, dry aggregated snow, rain, freezing rain, and sleet are performed and 

discussed in Chapter 2. We build a melting layer detection and hydrometeor classification 

algorithm based on these theoretical results in Chapter 3. Chapter 4 uses these algorithms to 

explore precipitation microphysical processes observed during three different winter storms that 

exhibited a melting zone, precipitation transition zone, dendritic growth zone, and refreezing 

zone (freezing of liquid drops into ice pellets near the surface). Chapter 5 discusses the 

operational viability of this hydrometeor classification algorithm at various wavelengths as well 

as the microphysical conclusions drawn from this new radar analysis on winter storms. 

 

 

 



8 

1.4 Explanation of radar variables 

Under simplified Rayleigh scattering conditions, the radar reflectivity factor (ZH) 

increases with number concentrations and drop diameter according to equation (1), where Ni is 

the particle concentration of drops with diameter Di. Subscripts (H,V) denote the transmitted and 

received polarization, respectively. ZH is strongly weighted by the size and density of the largest 

particles (Vivekanandan et al. 1994). Conversion to logarithmic units of dBz is accomplished by 

taking 10log10(ZH) in (1). 

      n 
(1) ZH = ZHH =! Ni Di

6   (mm6 m-3)  (Bringi and Chandrasekar 2001: Eq. 3.166) 
              i=1  

 As precipitation particles intercept electromagnetic radiation in both the horizontal and 

vertical direction, a differential phase shift and/or differential power return may occur between 

each polarization channel. Differential reflectivity is calculated as (2), and indicates whether a 

population of hydrometeors is mostly oblate (ZDR > 0), prolate (ZDR < 0), or spherical (ZDR ~ 0).  

 (2) ZDR = 10 log10 [ZHH / ZVV]   (Selinga and Bringi 1976) 

It is important to note that equations (1) and (2) are derived from Rayleigh scattering 

assumptions for spherical targets, but Rayleigh-Gans theory demonstrates that both ZH and ZDR 

still depend on the density and phase of oblate hydrometeors through the dielectric factor, K 

(Atlas et al. 1953). The power received by the radar is proportional to the modulus of K, or |K|2 

(Bringi and Chandrasekar 2001). 

An oblate particle will also produce a larger phase shift in the horizontal polarization than 

the vertical. This produces a positive differential propagation phase shift (ϕDP in units of 

degrees) across the range gate as expressed in (3).  

(3) ϕDP = ϕHH - ϕVV    (Rhinehart 2004: Eq. 10.5) 
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Apart from non-Rayleigh scattering, which causes additional phase fluctuations by contributions 

from the backscattering differential phase (!), the range (r in km) derivative of ϕDP can be 

calculated as the specific differential phase, KDP, according to (4). 

(4) KDP = ϕDP(r2) - ϕDP(r1)    (Hubbert and Bringi 1995) 
                     !!!!!! 
                          2(r2 - r1)  

KDP is expressed in terms of degrees of phase shift per kilometer along the radar beam. It can 

also be derived as the product of rain water content (W in units of g m-3) and the deviation of the 

mass-weighted mean axis ratio ( r" ) from unity, as shown in (5) where C ~ 3.75 for liquid 

hydrometeors. This relationship also illustrates KDP’s inverse relationship to the radar 

wavelength, !, in meters. 

(5) KDP =  
180
!   10-3 C W (1 - r" )  (Bringi and Chandrasekar 2001: Eq. 7.17) 

W is given by (6) where #W is the density of water in g m-3. 

" 

(6) W =  
"
6  #W # D3 N(D) dD   (Bringi and Chandrasekar 2001: Eq. 7.11) 

                                           0 

For ice particles, (7) is used, where #p is the assumed ice particle bulk density, C ~ 1.6, IWC is 

the ice water content, and r is the axis ratio (a/b) of the minor (vertical) to the major (horizontal) 

particle dimensions ranging from [0,1]. 

(7) KDP =10-3 
180
!   #p C (IWC) (1 - r)  (Bringi and Chandrasekar 2001: Eq. 7.101) 

Positive KDP is produced in regions of the cloud where high water content and/or oblate particles 

exist. Vertically aligned ice crystals, sometimes indicative of strong electric fields, cause KDP and 

ZDR < 0 (Carey and Rutledge 1998).  



10 

Specific differential phase is immune to radar calibration, so this variable is often used to 

improve attenuation correction, rainfall, and ice water content estimation methods (Ryzhkov et 

al. 1998, Bringi and Chandrasekar 2001). KDP calculation is difficult and not widely available 

though so its use in weather phenomenon studies is less documented relative to ZDR and !HV 

(discussed below). Moreover, KDP values at S-band are limited to a small magnitude due to its 

inverse wavelength dependence, which makes KDP seem less informative for operational (S-

bamd) forecasting purposes. However, this argument also provides that KDP is about 3 times 

greater at X-band (3.2 cm) than at S-band (11 cm) for a given precipitation type, which helps 

distinguish meteorological values from background noise. This study explores the use of KDP in a 

hydrometeor classification algorithm (HCA) at X-, C- (5.5 cm), and S-band wavelengths.  

The co-polar correlation coefficient, !HV, between copolar H and V channels gives a 

measure of particle shape, composition, and size diversity within the radar bin according to (8). 

Elements of the radar covariance matrix for each transmitted and received polarization are 

expressed by permutations of S while n represents the number of particles per unit volume. 

                          | < n SHH SVV > | 
(8) |!HV|  = !!!!!!!!!!! (Ryzhkov 2001) 

        (< n |SHH|2 > < n |SVV|2 > )1/2 

The numerator of (8) increases as SHH and SVV, the returned signal in each polarization, become 

less alike while the denominator normalizes !HV between 0 and 1. Therefore, the correlation 

coefficient decreases from unity as hydrometeor diversity increases, such as in the melting layer, 

or when signal strength decreases due to radar constraints and non-meteorological echo 

(Ryzhkov and Zrnic 1998b). 
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CHAPTER TWO 

Theoretical Electromagnetic Scattering Simulations of Winter Precipitation Types 

 

2.1 Methods: T-matrix and Mueller-matrix 

In order to develop a hydrometeor classification algorithm for application to cold season 

precipitation, T-matrix and Mueller-matrix scattering models were used to calculate the expected 

dual-polarimetric radar variable ranges for various winter hydrometeor types (Waterman 1965, 

Barber and Yeh 1975, Vivekanandan et al. 1991). The T-matrix model computes the radar 

backscattering cross section of particular hydrometeors for a given wavelength based on particle 

temperature, bulk density, axis ratio, and diameter range. Bulk density is defined as the ratio of 

the particle’s mass to its volume. Illustrated in Fig. 2.1, the axis ratio is assumed to be the ratio 

between the minor (vertical basal face) and major (horizontal prism face) dimensions of a 

particle (a/b), where values approach one for spheres. These particles are simply modeled as 

oblate spheroids instead of their actual branched or irregular shapes. This sufficiently represents 

various ice crystals and raindrops at X-, C-, and S-band weather radar wavelengths (Bringi and 

Chandrasekar 2001).  

The Mueller-matrix model calculates polarimetric radar (PR) variables for a 

parameterized distribution of each hydrometeor type. The radar bin is assumed to be filled with a 

homogeneous population of hydrometeors with a single specified phase: either partially frozen 

(constant air/ice/liquid mixture), completely frozen, or pure liquid. A population of particles 

undergoing various stages of melting or containing different hydrometeor types was not 

simulated in this case. The model uses the radar’s wavelength (!) and elevation angle, the 

particles’ mean canting angle ("M) and standard deviation of canting angle (#), as well as the 
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particle size distribution (PSD) type, mass-weighted median volume drop diameter (D0, 

calculated/input by T-matrix PSD parameters), slope parameter (!) for exponential PSD or size 

parameter (µ) for normalized gamma PSD (Ulbrich 1983, Bringi and Chandrasekar 2001), and 

number concentration (N0 for exponential or NW for normalized gamma PSD). The CANTMAT 

module is used for normalized gamma distribution simulations. CANTMAT is an interactive 

program that also calculates electromagnetic scattering properties and radar variables. The most 

important consideration for choosing DMIN and DMAX in these model is that they are considerably 

lower or higher than D0, respectively. This will ensure that the PSD shape and most of the 

distribution’s tail are represented.  

 

2.2 Radar and microphysical parameterizations for T-matrix and Mueller-matrix 

The microphysical parameters used in the T-matrix and Mueller-matrix simulations of 

raindrops, sleet, dry aggregated snowflakes, dendritic ice crystals, and plate-like ice crystals are 

summarized in Table 2.1. Freezing raindrops were modeled exactly like raindrops except at -1°C. 

Raindrops can exist at temperatures much lower than 0°C, but in order to discriminate rain vs. 

freezing rain (occurring at a cooler temperature than rain) below the melting layer, these 

temperature ranges are sufficient. Sleet is frequently referred to as an ice pellet and the two 

names are used interchangeably in this study. Wet or melting snow was modeled using a two-

layer T-matrix model by Dolan et al. (2012) similar to Depue et al. (2007). The wet snow 

category is used in a melting layer detection algorithm (Giangrande et al. 2008) to distinguish 

hydrometeors above and below this level, and is discussed in Chapter 3. Graupel is not currently 

included in this algorithm because it was not observed during the Oklahoma and Colorado winter 

storms studied here, but it is known to occur in other winter storms around the world (Takahashi 
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and Fukuta, 1988; Takahashi et al. 1999; Reinking 1975). A graupel category should be added in 

the future. Bullet, rosette, and stellar crystal shape extensions are too complex to be resolved by 

K- through S- band frequency radar systems (Vivekanandan et al. 1994). In addition to needle 

columnar crystals, these pristine ice particles do not pose a significant winter weather related 

hazard with which to motivate their inclusion in this hydrometeor classification algorithm. Given 

these considerations, we have attempted to model the appropriate range of hydrometeors 

expected from conceptual models of winter storms with consideration for the radar’s ability to 

distinguish such precipitation types. 

Higher radar elevation angles can degrade differential measurements such as ZDR and KDP 

(Ryzhkov et al. 2005b) when the radar beam is no longer oriented along the major (horizontal) 

particle axis. This will produce lower magnitude ZDR and KDP for oblate ice crystals (Evans and 

Vivekanandan 1990, Dolan and Rutledge 2009). Elevation angles of 30° (maximum angle for 

radars used in this study) and 1° were simulated to determine how the radar would realistically 

perceive such ice particles. Sleet and rain are only expected to exist below the melting level in 

the stratiform winter precipitation systems we are concerned with in this study. This assumption 

provides that low radar elevation angles are primarily responsible for interrogating these 

particles, so they are simply modeled with a horizontal radar viewing angle of 0° (default value 

for the CANTMAT module utilized to simulate rain, freezing rain, and sleet). Since the 

parameters used to model raindrops were quite broad, simulations using this single, low-level 

scanning angle sufficiently described what might otherwise happen at higher elevation angles 

utilized in reality.  

To represent the natural variability of falling precipitation in turbulent background flow, 

the canting angle of all hydrometeor types is represented as a Gaussian distribution about a mean 
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canting angle (!m) of zero (Beard and Jameson 1983, Hendry et al. 1976, Spek et al. 2008). 

Canting angles within a few degrees of zero are not thought to contribute to variables such as ZDR 

and !HV, but can significantly affect the linear depolarization ratio, LDR (Ryzhkov et al. 2001). 

However, LDR is not studied or computed here since the simultaneously transmitting dual-

polarized radars deployed by the National Weather Service and in the CASA IP1 network cannot 

retrieve this quantities. Furthermore, many studies have shown that the discriminatory power of 

LDR in hydrometeor classification algorithms is redundant to that already provided by ZDR, !HV, 

and KDP (Zrnic et al. 2001). 

Pristine snow crystals and snowflakes with large diameters and irregular shapes usually 

have fluttering or wobbling secondary motions as they fall that resemble helical or spiral motion, 

axial rotation, or glide-pitch swinging motions (Pruppacher and Klett 1997, henceforth PK97). 

This is represented by a standard deviation of the canting angle (") between 3-30° (Matrosov et 

al. 1996). Raindrops larger than 1 mm diameter deform into an equilibrium oblate spheroid shape 

as they fall so their " values are relatively lower at 1-10° (Ryzhkov et al. 2001). Sleet, similar to 

small, solid graupel, is rigid and more irregularly shaped than rain and therefore rotates around 

its major horizontal axis and tumbles erratically during decent, especially if multiple ice pellets 

are fused together (Spengler and Gokhale 1972). Correspondingly high " values between 60-80° 

typically used for hail (Knight and Knight 1970, Kennedy et al. 2001) were adapted for sleet. 

These irregular fall patterns decrease the effective axis ratio of the particles as scanned by the 

radar (Bringi et al. 2003b). Canting behaviors of various precipitation types may vary greatly 

from cloud-to-cloud or within time/space, but in the interest of distinguishing bulk hydrometeor 

types, we chose " angles which best characterized how each particle type might fall differently 

than another type. 
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2.3 Scattering Simulations 

Fig. 2.2 shows the KDP, ZDR, and ZH ranges for X-, C-, and S-band between the 5 major 

hydrometeor types modeled in this study: dendrites, plates, dry aggregated snowflakes, sleet, and 

rain based on theory alone. !HV is not shown since modeled !HV values were all above 0.99, 

which is not entirely representative of reality. This is the result of only parameterizing 

homogeneous mixtures of a single precipitation type, while various precipitation types usually 

coexist and may be undergoing various degrees of melting/freezing within the same radar gate. 

These simple !HV simulations do not lend any inherent discriminatory power towards the 

hydrometeor classification algorithm except to say that relatively high !HV should be expected 

everywhere except mixed phase regions or where different hydrometeor types coexist. It is 

noteworthy that the differences between KDP ranges for each precipitation type at X-band are 

higher magnitude than for other wavelengths. This makes each hydrometeor’s polarimetric 

variable range more exclusive and may lead toward more successful hydrometeor classification, 

which is discussed at length in Chapters 3 and 4. Simulated differences amongst ice categories 

and liquid categories are now examined with respect to the input parameters chosen for this 

microphysical model.  

 

2.3.1 Dendrite and plate crystal theory 

The temperature and saturation level with respect to both ice and water determine a 

crystal’s growth habit (Figs. 2.3 and 2.4 from PK97: Fig. 2-36(b) and Fig. 2-37). Since the 

saturation vapor pressure over ice is lower than that over water, a volume of air may be saturated 

with respect to ice but unsaturated with respect to water. When the air is only saturated with 

respect to ice and for temperatures between 0° to -40°C, columnar crystals may form. As the 
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relative humidity increases toward water saturation (ice supersaturation) and beyond, columns 

become less common and, particularly between the temperature ranges of -10° to -25°C, plate, 

sheath, needle, sector plate, and dendrite formation is favored (Fig. 2.5 from PK97: Plate 2). 

Dendritic growth requires large vapor density gradients toward the crystal, which peak between  

-13° to -17°C where the difference between the saturation vapor pressure over ice and that over 

water is greatest.  

Because of their skeletal framework and abundance of air in between crystalline branches 

and sectors, dendrites are modeled as oblate spheres with low bulk density between 0.3-0.5 g  

cm-3 (Fig. 2.6 from Heymsfield (1972): Fig. 5 and Fig. 2.7 from Fukuta and Takahashi (1999): 

Fig. 12). Their low density and oblate shape determines that dendrites tend to fall very slowly 

with their maximum dimension oriented horizontally (Fig. 2.8 from PK97: Fig. 10-42). Dendritic 

branches and stellar arms/sectors determine that these crystals flutter substantially during 

descent, represented by a 15° standard deviation of canting angle (Matrosov et al. 1996). These 

factors allow for more residence time in an environment with favorable dendritic growth 

conditions and for collisions between multiple dendrites to form large, irregular or elongated 

aggregates as their branches interlock. Thus, individual dendrites can have diameters from 0.03 

cm to at least 1.2 cm (Mitchell et al. 1996, PK97, Kennedy and Rutledge 2011). The minimum 

diameter modeled was 0.01 cm, while the maximum diameter allowed in the T-matrix 

simulations was only 1 cm. 

Similar to the T-matrix inputs for individual dendrites represented in Kennedy and 

Rutledge (2011), the axis ratios were modeled between 0.135 and 0.2. Any axis ratio of 

increasing oblateness beyond 0.135 caused unstable model results that would not converge 

(Matrosov et al. 2012). Finally, the PSD observed by Lo and Passarelli (1982) for pristine 
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dendrites prior to the onset of aggregation was applied in the model. Many studies have 

confirmed that an exponential PSD is sufficient to describe populations of dendrites, plates, and 

dry aggregated snowflakes (PK97). 

In reality, ice supersaturation and water saturation increase as updrafts supply vapor rich 

air upwards due to adiabatic moistening during ascent. The crystal growth regime might 

gradually transition between thick plates, thin plates, sector plates, and finally to dendrites if the 

moisture and temperature gradients are gradual, or the transition could be abrupt if there are 

localized regions of the cloud that become supersaturated quickly or are more favored by a 

dominant updraft region. However, this study’s hydrometeor scattering approach only represents 

the “extremes” of expected ice crystals between pristine dendrites and solid, hexagonal plates. 

Plates are modeled with the bulk density of pure ice, 0.9 g cm-3 (PK97). Plates have 

decreased collection efficiency and growth rates due to their geometry and lower ice 

supersaturation environments (Foster and Hallett 2008), so their maximum and minimum 

horizontal dimensions do not reach that of dendrites (Mitchell et al 1996). However, plates and 

dendrites should have a similar vertical thickness since they are growing exclusively in the 

horizontal (prism, a-axis) mode. This implies that plates are slightly less oblate than dendrites, 

which matches observations presented in Fig. 2.9 by Auer and Veal (1970: Fig. 11). They show 

that the axis ratio between the maximum vertical and horizontal dimensions produce a/b values 

as low as 0.0009 for 1 cm diameter dendrites, 0.03 for 0.25 cm diameter hexagonal plates, and 

0.45 for 0.05 cm diameter thick plates. While our simulation setups qualitatively follow the data 

from Auer and Veal (1970), our microphysical model is not designed to handle such small a/b 

values. Therefore, plates are modeled with axis ratios just above the values accepted for 

dendrites (Kennedy and Rutledge 2011), at 0.2 – 0.5 (Williams et al., 2011).  
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There is evidence from aircraft observations that N0 should be higher for populations of 

plate crystals than for dendrites because decreased aggregation and stinted growth rates allow for 

more prevalent, smaller sized drops (Bader et al. 1987). Accordingly, the plate PSD has a smaller 

minimum and maximum diameter (Mitchell 1996), which produces a higher slope parameter 

(Ryan 2000). This characterizes the exponential plate distribution with a lower D0, equal to 

3.67*!-1. Observed diameter ranges and D0 from samples of unrimed plate populations (Fig. 2.10 

from PK97: Fig. 2-53) match D0 values produced in these scattering simulations (Table 2.1). 

Under sufficient supersaturations and in the presence of supercooled liquid water drops, 

crystals of sufficient size may also grow by riming (Fig. 2.11 from PK97: Plate 4, Fujiyoshi and 

Wakahama 1985). This can change the crystals’ fall behavior, increase crystal bulk density, and 

therefore increase terminal velocity beyond 2 ms-1 (Zawadzki et al. 2001; Moismann 1995; Fig. 

2.12 from PK97: Fig. 10-44). However, riming has similar effects as aggregation and melting to 

the snowflake shape, making it appear more spherical to the radar by thickening the crystal and 

increasing its axis ratio toward unity. These competing effects contribute toward uncertainty in 

discerning crystal characteristics and therefore crystal growth environment (temperature and 

moisture levels) using dual-polarized radar. Results from the scattering simulations of plates and 

dendrites, and thus our ability to use radar to distinguish then, are now discussed.  

 

2.3.2 Dendrite and plate crystal scattering model results 

The simulated ranges of KDP, ZDR, and ZH for dendrites at X-, C-, and S-band frequencies 

are presented in Fig. 2.13 with S-band comparison ranges for dendrites from Kennedy and 

Rutledge (2011), Trapp et al. (2001), Ryzhkov et al. (2005a), and Straka et al. (2000). The S-

band simulated values from this study agree very well with those from previous works, as the 
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ranges overlap within reason. It should be noted that values from Straka et al. (2000) are based 

on many sources for both dendrites and plates. As will be discussed later, the high KDP from this 

study is indicative of dendrites but the higher ZDR return may be more representative of plates, 

which extends beyond the modeled ZDR values for dendrites. 

There is a slight increase in ZH and slight decrease in ZDR with increasing wavelength, 

which has been explained by Matrosov et al. (2005) as non-Rayleigh scattering effects of oblate 

spheroids. This argument also justifies why the KDP simulated at X-band is actually 3.7 times 

greater than at S-band even though the wavelength is only shorter by a factor 3.4. Scattering 

simulations of warm-season precipitation particles at X- and S- band by Dolan and Rutledge 

(2009) also produced similar results. These two non-Rayleigh scattering phenomena are evident 

in all our simulations of ice and liquid hydrometeors.  

 These model results suggest that the ~0.6° km-1 maximum KDP values for dendrites 

observed at S-band by Kennedy and Rutledge (2011) are nearly the maximum values possible for 

this wavelength. S-band KDP beyond 0.6-0.7° km-1 would likely be due to increased D > 1 cm, 

which the T-matrix and Mueller-matrix models cannot simulate but are known to occur in nature. 

Operational S-band dual-polarized radars must be designed to detect such small phase shifts and 

calculate KDP with high precision in order to confidently interpret KDP values as indicative of 

pristine, oblate ice crystals. KDP observations through dendritic growth zones at X-, C-, and S-

band from three different winter storms are compared to these scattering simulations in Ch. 4.  

 It is common knowledge that while KDP is dominated by particle axis ratio according to 

equations (5) and (7) in Chapter 1, there are additional competing factors at play. Fig. 2.14 shows 

the sensitivity of KDP, ZDR, and ZH for dendrites to variable input parameters from Table 2.1. KDP 

increases as bulk density, D0, and N0 increase or as axis ratio decreases. KDP is often described as 
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being independent of number concentration, but every particle in the PSD simulation was oblate. 

Accordingly, any increase in the number of oblate particles results in a positive contribution to 

KDP. These scatter plots also show that a change in axis ratio between 0.2-0.135 does not produce 

much increase in KDP, which remains high for all modeled a/b values. For these very oblate 

simulations, KDP actually appears more sensitive to changes in bulk density, D0, and N0.  

Also taken as a crude measure of oblateness, ZDR for dendrites increases for increasing 

bulk density and decreasing axis ratio. There is no dependence on N0 or D0 because this quantity 

is the ratio of reflectivity between the horizontal and vertical channels as expressed in (2), so 

PSD information effectively cancels between the numerator and denominator. The same cannot 

be said for ZH, which is the most sensitive variable to D0, and secondarily to bulk density 

according to these plots. The variable density of pristine and aggregated ice crystals is known to 

complicate the differential radar returns without appreciable differences in ZH (Trapp et al. 

2001). Reflectivity and therefore differential reflectivity have a D6 dependence according to (1) 

and (2), but ZDR is less dependent on diameter because this relationship is logarithmic. Specific 

differential phase has a D3 dependence through factors of liquid/ice water content (expressed in 

units of mass per unit volume) and deviation of the mass-weighted mean axis ratio from unity in 

equations (5), (6), and (7). 

 With slightly different microphysical parameterizations, simulated KDP, ZDR, and ZH for 

plates shown in Fig. 2.15 differ from that of dendrites. For instance, the maximum simulated ZDR 

is about 1.25 dB greater for plates than dendrites at all wavelengths, while the minimum values 

are only 0.5 dB greater. So the expected range of ZDR values is shifted upwards and slightly 

broadened between the two crystal types. KDP is doubled for dendrites compared to plates at all 

wavelengths while the minimum values for both categories are slightly greater than zero. Wolde 
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and Vali (2001) and Williams et al. (2011) provide observations of ZDR and ZH for plates at X- 

and C-band, respectively, also provided in Fig. 2.14, which generally contain the simulated 

values from our microphysical model. Straka et al. (2000) gives S-band values of KDP, ZDR, and 

ZH for a population containing plates and dendrites. As previously discussed, their high KDP is 

more representative of dendrites but their high ZDR corresponds well with plate simulations. Fig. 

2.16 illustrates the relationships between polarimetric radar (PR) variables and microphysical 

parameterizations for plates, which correspond to the same relationships observed for dendrites. 

Even though ZH varies very little between ice categories according to Fig. 2.2, dendrites 

have higher ZH than plates because DMAX and D0 are greater. This size factor evidently outweighs 

the role of density, which would otherwise tend to increase ZH for plates. Plates have higher 

density and are less oblate but have lower KDP and higher ZDR than dendrites. Figs. 2.14 and 2.16 

help explain the meaning behind this inverse ZDR-KDP relationship. 

There is an integration of the PSD involved in the IWC or W and r! terms of the KDP 

equations so increasing D0 and N0 contribute to greater KDP by both terms. The shape effect is 

important for determining KDP between plates and dendrites, but this factor is also weighted by 

mass so D0 and the shape of the PSD are also important considerations. Furthermore, the KDP 

return from the most oblate plates hardly even approaches the KDP from the lease oblate 

dendrites, both at a/b = 0.2. This reveals that while lower axis ratio contributes to higher KDP for 

dendrites as opposed to plates, it is not the only critical factor. 

KDP increases significantly for increasing N0, but N0 values modeled for plates were much 

higher than for dendrites (as previously explained). However, the highest N0 for plates barely 

produced a KDP as large as the lowest N0 for dendrites. So N0 is not the deciding factor between 

the inverse ZDR-KDP relationship either. 
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Bulk density is higher for plates, which should increase W and therefore KDP since these 

variables are directly proportional. From this mathematical standpoint, one might expect that a 

doubling of the density might at least double the KDP for plates compared to dendrites for nearly 

the same axis ratios. For instance, 0.5 g cm-3 maximum !bulk for dendrites produces nearly 2.5 

times the KDP return as the 0.3 g cm-3 minimum !bulk for dendrites, and plate bulk density is still 

much greater than this, at 0.9 g cm-3 (not simulated for dendrites because this would never occur 

in nature). Surprisingly, KDP is still higher for low-density dendrites than high-density plates. 

Examining the remaining microphysical differences between these two particle types, D0 

is 50% smaller for plates than dendrites, and perhaps not coincidentally, KDP is 50% smaller. The 

median volume drop diameter, D0, bisects the volume of particles within the distribution. It 

seems that the PSD shape, where the mass is situated among sizes, matters most in this case; 

more than N0, bulk density, and even axis ratio. The increased D0 produces larger oblate 

dendrites that actually overcome the expected enhancement of KDP by higher-density, more 

numerous plate crystals. This is most likely because D0 and therefore DM (the mean mass-

weighted volume diameter, which is proportional to and usually larger than the median mass-

weighted volume diameter D0 according to Ulbrich 1983) are factors in both the W and mass-

weighted axis ratio terms within the liquid KDP equation (5), or density and IWC terms of the 

frozen KDP equation (7). 

It is significant that these simple parameterizations produced radar results that are 

consistent with cloud microphysical theory. The physical explanation lies in the vapor 

depositional growth rate equations. The mass and diameter rate of change with time are both 

proportional to the diameter of the crystal such that a larger crystal can incorporate more vapor 

into its ice lattice structure. Furthermore, dendrites grow at higher saturation conditions, which 
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promote higher growth rates and resultant maximum diameters. While thick plates, hexagonal 

plates, and dendrites may all originate as small ice germs, they accordingly grow at different 

rates and achieve different maximum diameters. Dendritic arms also provide additional 

structures onto which vapor can collect, so that, again, dendrites can achieve larger diameters 

than plates. It follows that plates also have more numerous smaller particles in the distribution 

because these did not grow to longer dimensions. Although our microphysical model does not 

include any of these growth processes, the parameters used capture these important particle 

distribution characteristics and how the radar should perceive each snow crystal differently.  

Yet to be explained, plates have higher ZDR than dendrites despite their slightly increased 

axis ratio toward sphericity. Straka et al. (2000) suggests that plates should have the highest ZDR 

because of their geometry. ZDR is the reflectivity weighted mean axis ratio of the particle size 

distribution (Jameson 1983), so all other factors remaining equal, ZDR should increase for 

increasing oblateness. However, dendrites still have lower characteristic ZDR even though they 

are more anisotropic than plates. This is consistent with Bringi and Chandrasekar (2001), who 

argue that ZDR’s logarithmic dependence on axis ratio in (2) weakens its sensitivity to shape 

compared to KDP. The decrease in ZDR that should occur due to higher a/b for plates is evidently 

outweighed by an increase in !bulk. It is intriguing that of the competing factors, density seems 

most important for determining higher ZDR for plates than dendrites since this variable is so often 

taken as a proxy for hydrometeor shape. 

Dolan and Rutledge (2009) found that ZDR and KDP could decrease by as much as 0.5 dB 

and 0.1° km-1, respectively, when the radar viewing angle is increased from 1° to 30° for a 

monodisperse population of small, spherical, monodisperse rain drops at X- and S-band. Evans 

and Vivkeanandan (1990) found a more significant elevation angle effect on KDP and ZDR for 
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plates at Ka-band. KDP decreased by 8° km-1 while ZDR was diluted by 4 dB for this same 

difference in elevation angle because the major (horizontal) axis of the oblate crystal was no 

longer oriented along the beam in order to maximize the differential power return and phase 

shift. When examining a vertical cross section (Range Height Indicator – RHI) or quasi-

horizontally oriented sweeps from a full volume scan (Plan Position Indicator – PPI), this effect 

would manifest itself as a gradual non-meteorological lowering of ZDR and KDP with height from 

one elevation angle to the next, not with increasing range (height) along a single sweep. 

However, the latter could be occurring simultaneously due to non-uniform beam filling effects as 

the beam broadens with range, especially for shorter radar wavelengths (Ryhzkov et al. 2007). 

The maximum possible elevation angle for the radar systems used in this study is 30° and 

20° was the highest actually utilized. Fig. 2.17, 2.18, and 2.19 show how ZDR and KDP would 

behave at 30° compared to 1° (both angles were used in all previous figures). Maximum KDP for 

oblate crystals (Fig. 2.17) decreases more for shorter wavelengths: 0.48, 0.286, and 0.143° km-1 

difference for dendrites and 0.227, 0.131, and 0.065° km-1 difference for plates at X-, C-, and S-

band wavelengths, respectively. The minimum KDP values only decrease by 0.1° km-1 or less, 

which does not have an impact on the hydrometeor classification procedures. Since all KDP 

values decrease, the ranges between plates, dendrites, and dry aggregated snowflakes (incredibly 

low anyway) are still exclusive enough to classification purposes. The discriminatory power of 

KDP needed to distinguish the two oblate crystal habits is still lessened though, and more so at 

shorter wavelengths for which KDP is expected to be more informative. 

Fig. 2.18 shows that more significant ZDR changes occur for increasing elevation angle 

that might preclude successful discrimination between plates and dendrites. At 1° elevation 

angle, plates had 1.31 dB higher ZDR than dendrites and dendrites had 0.4 lower ZDR than plates. 
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These different ranges of expected values are more exclusive and more useful for hydrometeor 

classification than those at 30°, whereby ZDR for plates is only 0.8 dB greater than dendrites and 

the dendrites only have 0.3 dB lower ZDR than plates. In this way, the expected ZDR value ranges 

for plates and dendrites narrow and overlap more at higher elevation angles. The ZDR and KDP 

expected value ranges for all hydrometeor types at 30° viewing angle only are presented in Fig. 

2.19, which can be compared to Fig. 2.2. When both elevation angles are simulated, the expected 

value ranges for each oblate ice crystal are more mutually exclusive. 

To summarize, plates might be present in a particular radar bin, but ZDR might not 

increase beyond the dendrite range because the elevation angle dependence is dominating over 

the microphysics to determine the differential radar variables. Similarly, KDP might decrease 

because plates are more prevalent than dendrites and/or because the elevation angle has 

increased. Both dendrites and plates have reduced KDP and ZDR at higher slant viewing angles, 

but in the case of dendrites, this effect could simply be indicative of smaller diameter, lower 

density, and/or less oblate dendrites. These issues will still allow for successful classification of 

dendrites, whereas the elevation angle problem reduces the possibility of plate classification 

apart from dendrites. These issues are further complicated by decreasing radar power and thus 

decreasing signal to noise ratio (SNR) with range, such that ZDR may increase due to non-

meteorological reasons near the echo top or echo fringe where SNR < 5 dB (Ryzhkov et al. 

2005a). This is also unfortunately where oblate crystals usually grow. Perhaps a more advanced 

version of the hydrometeor classification algorithm discussed in Ch. 3 could incorporate 

elevation angle into the decision process to account for these issues. 

The PR differences between plates and dendrites are important because distinguishing 

these two ice categories is of great interest from a nowcasting perspective. Unlike plates, 
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dendrites can coagulate and then delay or prolong the melting process below. Accordingly, 

dendritic growth aloft could be associated with semi-melted or slushy particles below the melting 

layer which can promote the production of sleet over freezing rain in the presence of a 

sufficiently cold/deep layer of air (Thériault et al. 2006). More intense precipitation rates can 

also occur at the surface when aggregated snowflake diameters are larger or particles are more 

numerous (Kennedy and Rutledge 2011). The water-saturated conditions for dendritic growth 

may also be supportive of supercooled liquid water drops that are hazardous to aircraft, as 

opposed to benign conditions associated with only ice saturated conditions for plates.  

While it is of potentially great value to differentiate these two ice crystal types for the 

aforementioned reasons, it may not be a feasible goal for most radar systems. This is because 1) 

longer wavelength systems have a less distinguishing ZDR-KDP relationship and lower magnitude 

KDP signals all together, 2) ZDR must be well-calibrated and the KDP calculation must be very 

precise for the radar to resolve small changes in these variables associated with different crystal 

habits, 3) SNR must be greater than 5-10 dB for ZDR to be trustworthy, and 4) the elevation angle 

must be relatively low so that ZDR and KDP are not “diluted” by non-parallel beam-to-crystal 

orientation. The most difficult of these constraints to overcome are the last two, since plates and 

dendrites are inherently native in the upper (colder) regions of winter storms, which require high 

slant-range viewing angles to resolve. Spek et al. (2008) postulated that when dendrites and 

plates have similar radar cross sections (for small diameters) the other microphysical properties 

(axis ratio and density) are similar enough that there is no possibility to differentiate them. From 

this analysis we conclude that even the largest dendrites and plates may not be distinguishable. 
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2.3.3 Dry aggregated snowflake theory 

Snowflake aggregation is most prolific when temperatures approach 0°C and -15°C 

because 1) quasi-liquid layers form and promote sticking of individual crystals as well as the 

fusing of colliding particles between ice necks, and 2) dendritic ice crystals have high collection 

efficiencies from their slow fall speeds and long interlocking branches, respectively. For the 

latter reason, planar crystals with dendritic features are the most common components of 

aggregates (Fig. 2.20 from PK97: Plate 3, Jiusto and Weikmann 1973). PK97 affirm that bundles 

of needles are also observed, but aggregated snowflakes of simple, thick ice plates and short 

columnar crystals are rare, most likely due to unfavorable geometry. Since individual dendrites 

can reach at least 1.2 cm DMAX, aggregates of these crystals can easily exceed 2 cm. However, the 

highest DMAX in T-matrix is 1.0 cm. These snowflakes were modeled at -1° and -6°C to account 

for the sticking formation mechanism. We did not lower the temperature further because this 

would produce a negligible change in the dielectric constant and therefore the radar variables. 

A power law relationship was required to describe the bulk density of snowflakes as a 

function of size. Clumps of dendrites with very large combined diameters have extremely low 

bulk density because there are many air pockets in between branches and the mass is distributed 

across a larger volume. However, some smaller, compacted aggregates will have higher bulk 

density. Fig. 2.21 illustrates this well-established diameter-density relationship with multiple 

empirically derived formulas from observations (Magono and Nakamura 1965, Holroyd 1971, 

Locatelli and Hobbs 1974, Fabry and Szyrmer 1999, Hogan et al. 2000, Brandes et al. 2007). The 

majority of naturally occurring, larger aggregates should have !bulk ~ 0.05 g cm-3, while bulk 

density could range anywhere from 0.01 to 0.2 g cm-3. Only the smallest snowflakes will 

approach !bulk  > 0.15 g cm-3 (PK97). The Hogan et al. (2000) relationship was used in this 
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microphysical model because of its derivation from aggregated snowflake observations. 

However, a sensitivity study confirmed that any of these exponential formulas (except Magono 

and Nakamura 1965) produce nearly the same electromagnetic scattering result. It should be 

noted that Zhang et al. (2011) used dual-polarimetric radar and 2-dimensional video disdrometer 

(2DVD) observations of snowflakes in Oklahoma to determine that these accepted formulas 

(Brandes et al. 2007 in particular) may underestimate the bulk density of snowfall in particular 

geographic regions or during certain storms. We remain confident in our choice of scattering 

parameterizations though because simulated D0 values (Table 2.1) agree well with many 

snowflake size distribution observations (Locatelli and Hobbs 1974, Lo and Passarelli 1982, 

Herzegh and Jameson 1992, Vivekanandan et al. 1994, Barthazy et al. 1998, Spek et al. 2008).  

Aggregates tend to cant over larger angles or tumble more dramatically than pristine 

crystals because of their longer diameter and more irregular shape (Kajikawa 1982). The ! value 

for aggregates was accordingly doubled from that of dendrites and plates to 30° (Matrosov et al. 

1996, Kennedy and Rutledge 2011). Instead of modeling aggregates with even lower, very oblate 

axis ratios and extremely high standard deviation of canting angle (perhaps more true to nature), 

the axis ratios are raised to effectively represent a nearly spherical particle with moderate ! 

(manual approximation of nature). Effective axis ratios then range between 0.7 – 0.9 after many 

literature examples (Barthazy 1998, Vivekanandan et al. 1994, Herzegh and Jameson 1992, 

Dolan and Rutledge 2009, Kennedy and Rutledge 2011).  

The PSD of aggregated snowflakes is “flattened” compared to that of their pristine 

component crystals. This is accomplished by decreasing N0, decreasing the slope parameter, 

increasing D0, and increasing DMIN (Lo and Passarelli, Spek et al. 2008). This process can be 

explained physically by the aggregation (consumption) of many smaller sized crystals into larger 



29 

ones. Mass is accordingly shifted from smaller to larger size intervals (Spek et al. 2008, Lo and 

Passarelli 1982). 

 

2.3.4 Dry aggregated snowflake scattering model results 

Fig. 2.22 presents the polarimetric radar variable ranges for dry aggregates. These values 

correspond well to those given in Ryzhkov et al. (2005a), Dolan and Rutledge (2009), and Straka 

et al. (2000) for aggregates at both X- and S-band radar frequencies. Recall that ZH is insensitive 

to axis ratio but depends strongly on D6 (Vivekanandan et al. 1994). Since snowflakes have the 

largest D0 of all frozen hydrometeors simulated in this study, it is no surprise that Fig. 2.2 

illustrates these hydrometeors with the highest modeled ZH (Ohtake and Hemni 1970, Ryzkhov 

and Zrnic 1998a, Boucher and Wieler 1985). Ironically, snowflakes also produce the lowest KDP 

and ZDR. 

The ZDR range for aggregates is extremely low and mutually exclusive from other 

hydrometeor types according to Fig. 2.2, which will aid in the classification algorithm. Ryzhkov 

et al. (2005a) suggest that ZDR tends to decrease as ZH increases, or as aggregation progresses and 

diameters of coagulated snowflakes increase. Trapp et al. (2001) confirms that, compared to 

pristine crystals, ZDR should be substantially lower for aggregates because of their decreased 

density and erratic fall behavior.  

Simulated KDP for snowflakes is near zero but still contained within the ranges for other 

ice crystals, providing less discriminatory power for hydrometeor classification than ZDR. The 

radar variables associated with aggregates are expressed as a function of microphysical 

parameters in Fig. 2.23. These scatter plots illustrate that KDP increases for decreasing axis ratio, 

increasing N0, and increasing D0, consistent with previous arguments for component ice crystals. 
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ZDR also has a slight dependence on D0, which is not exhibited by plates or dendrites. The 

greatest variation in ZH for aggregates is actually produced by variable N0 as opposed to D0. The 

sensitivity of radar variables to bulk density of snowflakes was not analyzed because these 

values are intrinsic to the program through use of the empirical formula. However, a hypothetical 

scattering simulation showed that a majority of the high ZDR and KDP contributions are made by 

the highest density aggregates.  

  

2.3.5 Rain, freezing rain, and sleet theory 

Raindrops falling at terminal velocity with diameters greater than 1 mm deform into 

oblate spheroids due to aerodynamic drag forces (PK97, Beard and Chuang 1987). The 

CANTMAT module allowed use of empirically derived drop shape models to express the axis 

ratios of sleet and raindrops in terms of their diameter (Pruppacher and Pitter 1971; Figs. 2.24 

and 2.25 from Beard and Chuang 1987: Fig. 7 and 10; Andasager et al. 1999; Thurai and Bringi 

2005; Huang et al. 2008). A normalized gamma drop size distribution was utilized to more 

accurately represent the natural variability of stratiform rain and sleet below the melting level 

(Ulbrich 1983; Willis 1984; Bringi et al. 2003a; Fig. 2.26 from Gibson et al. 2009: Fig. 10).  

Stratiform rain has a characteristically different DSD than convective rain, a phenomenon 

first investigated for its enhanced radar bright band (Waldvogel 1974). The convective rain DSD 

owes its existence to quickly falling graupel and hail particles formed by strong updrafts that fall 

and melt in warm subcloud temperatures. This rain regime does not necessarily produce a 

significant radar bright band. Conversely, stratiform rain is associated with gentler upward 

vertical velocities and the generation of pristine ice crystals which aggregate as they fall toward 

the melting level. The gradual, and therefore radar observable, melting (wetting) of these large 
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aggregates where T > 0°C produces a population characterized by more numerous larger 

raindrops, fewer smaller sized drops, lower NW, lower size parameter (µ), and larger D0. The 

combined effects of aggregation and melting modulate the exponential PSD of snow crystals and 

snowflakes to a normalized gamma distribution for rain with µ between 0.5 - 2.0 (Fig. 2.27 from 

Ulbrich 1983: Fig. 2). 

Raindrops and wet snowflakes freeze into ice pellets either individually at subzero 

temperatures (IP-a type), or by colliding with snowflakes, ice pellets or other suitable freezing 

nuclei (IP-b type, Thériault et al. 2006; Fig. 2.28 from Thériault et al. 2010: Fig. 1). Every 

raindrop is expected to have the potential to turn into an ice pellet in favorable freezing 

conditions (Gibson et al. 2009), but the IP-b formation process is not a one-to-one conversion, 

which might increase D0 and decrease Nw. Nevertheless, the stratiform rainfall DSD was used for 

sleet because the parameters in Table 2.1 are broad enough to account for both refreezing 

mechanisms.  

The resultant sleet shape can be quasi-spherical and similar to that of raindrops, but more 

often than not these hydrometeors have bulges, spicules, spikes, or are fused together by ice-

necks (Gibson and Stewart 2007). A frozen drop’s thin ice shell can rupture or crack shortly after 

freezing begins, allowing supercooled water from the interior to fuse the two freezing/frozen 

particles together and/or become frozen into an irregular protuberance (Spengler and Gokhale 

1972). This nonspherical, rigid shape induces erratic tumbling, which is represented in the 

scattering simulations by an increased standard deviation of the canting angle as previously 

described. As will be illustrated later, the decreased dielectric factor and increased canting of 

these irregular particles dominates their polarimetric radar variable ranges, so the sleet diameter 

range was not extended to reflect the coagulation of multiple frozen drops or snow pellet fusions. 
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Furthermore, previous studies have not conclusively documented sleet’s increased maximum 

size beyond that of rain or an alternative PSD outside the natural variability of rainfall (Gibson et 

al. 2009, Stewart et al. 1990b). Ice pellets were therefore modeled as completely frozen oblate 

spheroids with the same diameter-shape relationships and diameter ranges as rain. 

Sleet has been observed to form at a variety of subfreezing temperatures (Gibson et al. 

2009), while -4°C is recognized as the temperature that distinguishes clear from opaque ice 

pellets (Spengler and Gokhale 1972). When drops freeze very quickly or at T < -4°C, they are 

often opaque because more air bubbles remain trapped within the ice structure.  

 

2.3.6 Rain, freezing rain, and sleet scattering model results 

The modeled polarimetric variables for rain at various wavelengths are compared to 

literature examples of stratiform rain (Straka et al. 2000 at S-band for DSDs characterized by 

various DMAX values), convective rain, and drizzle (Dolan and Rutledge 2009 at X- and S-band) 

in Fig. 2.29. Since convective rainfall according to Dolan and Rutledge (2009) is characterized 

by higher N0 (up to 100,000 cm-1 m-3) and D0 (up to 0.35 cm), our stratiform rainfall scattering 

results have slightly lower ZDR and ZH values. Raindrops produced by melted snow typically 

have diameters less than 3 mm (Stewart et al. 1984). With this interpretation in mind, the model 

results agree well with these related studies. KDP values derived for raindrops are also reasonable 

compared to observations (Bringi and Chandrasekar 2001, Straka et al. 2000) and are discussed 

later with Fig. 2.35. 

KDP, ZDR, and ZH for ice pellets at X-, C-, and S-band radar wavelengths are compared 

with literature results for high-density graupel in Fig. 2.30 since sleet was modeled as pure ice. 

No polarimetric radar observations of sleet are available with which to directly test the 
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microphysical parameterizations or scattering results. As expected, sleet polarimetric radar (PR) 

variables simulated in this study are much lower than that derived or observed for high-density, 

rimed graupel, whose D0 range is much higher: between 0.3-0.75 cm (Dolan and Rutledge 2009 

at X-and S-band, Straka et al. 2000 at S-band). Graupel was not modeled or including in the 

hydrometeor classification algorithm, but these literature examples suggest that the 

distinguishing factor between graupel and other winter hydrometeor types discussed so far would 

be very high ZH, beyond what is expected for rain, dry aggregates, or wet snow, combined with 

high !HV. ZDR and KDP for graupel would be contained within the ranges for oblate crystals and 

rain, so these variables likely would not be as helpful in the fuzzy-logic process.  

Fig. 2.31 shows the relationships of PR variables at X-band derived for rain (and sleet in 

a qualitative sense) to the microphysical parameters from Table 2.1. ZDR and KDP do not vary 

much between the ! values used. More !-related PR variability is noted for sleet than rain 

because sleet ! ranges were wider. KDP seems most sensitive to changes in D0 and N0, while ZDR 

and ZH depend mostly on D0. Figs. 2.32 and 2.33 illustrate the nonlinear behavior between these 

three PR variables and the standard deviation of the canting angle for rain at C-band, but not at 

other wavelengths or for sleet. These results are reminiscent of non-Rayleigh scattering by oblate 

raindrops at C-band frequency (Keenan et al. 2001, Zrnic et al. 2000), which may not occur for 

the ice medium. There is also a nonlinear relationship between D0 and the three PR variables for 

both rain and sleet at all wavelengths, illustrated in both Fig. 2.31 and Fig. 2.34. KDP is the only 

PR variable shown in the latter figure, but this effect is also consistent for ZH and ZDR across all 

wavelengths and for both hydrometeor types. This could be due to the parameterized shape of the 

normalized gamma particle distribution.  
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A sensitivity study was performed to test the radar’s potential ability to differentiate rain, 

freezing rain, and sleet with two different fall behaviors. The sleet category was modeled as pure 

ice with raindrop shapes and PSDs at -4°C for X-, C-, and S-band wavelengths and either the low 

standard deviation of canting angles used for rain or for tumbling graupel. Freezing rain was 

modeled exactly as rain except at -1°C and only for C-band radar frequency since these 

preliminary results were sufficient for this exercise. Fig. 2.35 shows the KDP, ZDR, and ZH 

scattering results for these hydrometeor test types. 

The relative dielectric constant changes caused by 1) decreased dielectric factor, density, 

and temperature from rain (RN) to sleet (SL_1, with the same fall behavior as rain), and 2) only a 

decrease in temperature from rain to freezing rain (-RN) can be isolated from this subset of data. 

There was a negligible difference between PR variables for rain and freezing rain at C-band and 

a much larger difference between rain (RN) and sleet (SL_1). This shows that the density and 

composition difference between ice and water is more significant for determining the PR 

variables than the change in temperature alone.  Water has higher polarizability from its 

permanent dipole moment and the enhanced readiness with which water molecules will align to 

an external (incident) electric field. Accordingly, the dielectric factor of ice is 20% of that for 

water and this reduces the radar backscattering cross section, which reduces each PR variable for 

sleet (SL_1) compared to rain. 

However, Fig. 2.35 shows that the difference in PR variables between RN and SL_1 

categories is not as significant as the decreases shown from RN to SL_2. The fall behavior of 

tumbling ice pellets (SL_2) accounted for an additional 53% decrease in maximum ZDR and KDP 

and only a 0.3% additional decrease in maximum ZH than SL_1 at all three radar frequencies. 

Canting should only affect the differential measurements through their sensitivity to differential 
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phase shifts and backscattered power between the H and V channels. This quantitatively shows 

that fall behavior is an important factor, in addition to the dielectric factor and density, for 

determining the different polarimetric radar properties of sleet and rain. 

This analysis also confirms that the differences between freezing rain, sleet, and rain are 

not large enough to distinguish these hydrometeors without the use of temperature. The radar 

values produced by freezing rain or sleet could simply be attributed to light rain. For instance, 

observations of rain by dual-polarimetric radars routinely exhibit a slight decrease in ZH and KDP 

with a negligible change in ZDR toward the ground due to evaporation in subsaturated air 

(Kumjian and Ryzhkov 2010). Evaporation causes shrinking of all diameters, preferential 

evaporation of the smallest drops, and a decrease in number concentration. Furthermore, freezing 

rain is simply supercooled rain that glaciates upon contact with the earth’s surface, which is often 

below even the lowest radar elevation angle scans. So it is still “rain” in the regions where it can 

be interrogated by the radar and therefore a radar-only hydrometeor classification algorithm 

cannot logically include freezing rain as a category. Nevertheless, incorporation of near-surface 

and surface temperature could lead to the reclassification of rain as freezing rain at these levels.  

While the ambiguities implied by these scattering simulations negate the possibility for a 

radar to distinguish these precipitation types without external information, the actual freezing 

process might be identifiable. Sleet and rain were modeled separately here, as opposed to a more 

realistic mixture of frozen, partially frozen, and unfrozen drops (Fujiyoshi and Wakahama 1985). 

The rate of refreezing is controlled by the amount of water in the drops, so the drop size 

distribution of rain affects the refreezing process and vice-versa (Thériault et al. 2006). By this 

logic, the smallest precipitation sized drops and those that contain some portion of ice should 

freeze more quickly into sleet while the largest, liquid particles may remain unfrozen for much 
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longer fall distances through the surface cold layer. In this way, semi-melted particles below the 

melting layer promote the production of sleet instead of freezing rain.  

This mixed phase particle population would be diverse with respect to densities (between 

that of pure ice and water ~ 0.9 to 1.0 g cm-3), orientations (significantly different fall behaviors 

between liquid and frozen drops), compositions, and possibly even fall speeds. Raindrops are 

thought to fall faster than sleet when particle size is small since rain is denser, but sleet has the 

ability to coagulate and reach larger maximum diameters beyond the equilibrium size of 

raindrops dictated by hydrodynamic forces. Therefore, we expect large, heavier sleet particles to 

have a greater terminal velocity than raindrops beyond a certain diameter range (Spengler and 

Gokhale 1972). The number concentration and D0 will also increase if type-b ice pellets form by 

colliding with supercooled drops. All or some of these factors could be manifested by 

characteristic trends in ZDR, ZH, !HV, and/or KDP within the refreezing zone just above the surface 

during a winter storm. The T-matrix and Mueller-matrix models were not used to model 

mixtures of different hydrometeors, so we must rely on observations to confirm this theory, 

which are presented in Chapter 4. More complex electromagnetic scattering simulations could be 

performed, but were beyond the scope of this thesis.  

 

2.4 Summary 

Radar constraints combined with nearly overlapping variable ranges complicate the 

ability of a polarized radar to confidently differentiate plates and dendrites. However, both oblate 

crystal types are certainly distinguishable from dry aggregated snowflakes through use of ZDR, 

especially at shorter wavelengths where KDP ranges for each pristine crystal are larger and 

therefore more exclusive. While homogeneous populations of rain, freezing rain, and sleet 
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appear nearly the same to a dual-polarized radar, the freezing process could be identifiable 

because of characteristic changes in the drop size distribution, composition, and fall behavior 

toward the ground.  

These results show that the ultimate ZH, ZDR, and KDP within a particular radar bin 

depends on many competing microphysical and radar scanning factors, some of which become 

more important than others at specific value ranges or environments. For instance, density, axis 

ratio, diameter, and number concentration compete to determine an inverse ZDR-KDP relationship 

between dendrites and plates. That plates have higher ZDR while dendrites have higher KDP was 

counterintuitive at first but is reasonable considering how these radar variables are calculated 

from first principles. Raindrops have significantly higher PR variables than sleet because of their 

higher dielectric constant (primarily due to density and liquid composition, and secondarily by 

lower temperature) and smoother fall behavior. Finally, the effects of mass-weighted D3 and 

reflectivity-weighted D6 factors also complicate the calculation of these polarimetric radar 

variables since they appear in some equations more than once and are not always apparently 

included in simplified forms of the equations. 

This chapter has demonstrated the complexity and uncertainty involved in analyzing 

multiple polarimetric radar variables simultaneously during a winter storm to deduce dominant 

hydrometeor type. A hydrometeor classification algorithm is a useful way to automatically apply 

fuzzy-logic to this decision process (Liu and Chandrasekar 2000, Zrnic et al. 2001, Chandrasekar 

et al. 2011). Since we have verified these theory-based electromagnetic scattering results, we can 

now use them to develop such an algorithm. This will be the subject of the next chapter. 
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Table 2.1. Microphysical parameters for T-matrix and Mueller-matrix used to calculate dual-polarimetric radar variables for various 
hydrometeor types.  

Hydrometeor 
Type 

Axis 
Ratio Temp !bulk Dmin Dmax "D 

Mean 
Canting 
Angle 
(#m) 

SD of 
Canting 
Angle 

($) PSD Type No or NW Do 

Slope (%) 
or Size 

Parameter 
(µ) 

Radar 
Elev. 
Angle 

  a/b °C g cm-3 cm cm cm ° °   cm-1 m-3 cm  cm-1 ° 

Rain 
1,3,4,
5,8 * 10 1.0 0.01 0.5 - 0 

1 
4 
10 

normalized 
gamma 

2,000 
8,000 
20,000 
60,000 

0.05 
0.1 
0.15 
0.2 

0.5 
1.0 
1.5 
2.0 0 

Sleet 
1,3,4,
5,8 * -4 0.9169 0.01 0.5 - 0 

60 
70 
80 

normalized 
gamma 

2,000 
8,000 
20,000 
60,000 

0.05 
0.1 
0.15 
0.2 

0.5 
1.0 
1.5 
2.0 0 

Dry 
Aggregated 
Snowflakes 

0.7 
0.8 
0.9 -6, -1 

Hogan 
et al. 
(2000) 0.08 1.0 0.001 0 30 exponential 

20,000 
40,000 
60,000 

0.334 
0.306 
0.282 

11 
12 
13 

1 
30 

Dendrites 

0.135 
0.15 
0.2 -15 

0.3 
0.4 
0.5 0.02 1.0 0.001 0 15 exponential 

100,000 
200,000 
300,000 

0.122 
0.105 
0.092 

30 
35 
40 

1 
30 

Plates 

0.2 
0.3 
0.5 -13 0.9 0.0015 0.5 0.0005 0 15 exponential 

100,000 
300,000 
600,000 
900,000 

0.061 
0.052 
0.046 

60 
70 
80 

1 
30 

* selected drop shape models for Cantmat simulations:  
1 – Pruppacher and Pitter (1971) 
3 – Beard and Chuang (1987) 
4 – Andsager et al. (1999) 
5 – Thurai and Bringi (2005) “ogimi” 
8 – Huang et al. (2008) “bridge”

Fig. 2.1. Ice crystal dimension diagram. 
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Fig. 2.2. Simulated KDP, ZDR, and ZH for plates, dendrites, dry aggregated snowflakes, sleet, and 
rain from our electromagnetic scattering model at X-, C-, and S-band radar wavelengths.
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Fig. 2.3. From Pruppacher and Klett (1997). 
 
 

 
Fig. 2.4. From Pruppacher and Klett (1997). 
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Fig. 2.5. From Pruppacher and Klett (1997).
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Fig. 2.6. From Heymsfield (1972). 
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Fig. 2.7. From Fukuta and Takahashi (1999). 
 

 
Fig. 2.8. From Pruppacher and Klett (1997). 
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Fig. 2.9. From Auer and Veal (1970). 
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Fig. 2.10. From Pruppacher and Klett (1997). 
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Fig. 2.11. From Pruppacher and Klett (1997).  

 
Fig. 2.12. From Pruppacher and Klett (1997). 
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Fig. 2.13. Simulated ranges of KDP, ZDR, and ZH for dendrites at X-, C-, and S-band wavelengths 
(X_SIM: purple, C_SIM: red, S_SIM: blue) compared to results from Kennedy and Rutledge 
(2011) for dendrites at S-band (green), Trapp et al. (2001) and Ryzhkov et al. (2005a) for 
dendrites at S-band (orange), and Straka et al. (2000) for dendrites and plates at S-band (cyan). 
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Fig. 2.14. Sensitivity scatter plots of simulated KDP, ZDR, and ZH for dendrites to variable 
microphysical parameterizations from Table 2.1 at X-band wavelength. 
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Fig. 2.15. Simulated ranges of KDP, ZDR, and ZH for plates at X-, C-, and S-band wavelengths 
(X_SIM: purple, C_SIM: red, S_SIM: blue) compared to results from Wolde and Vali (2001) 
when available for plates at X-band (green), Williams et al. (2011) when available at C-band 
(orange), and Straka et al. (2000) for dendrites and plates at S-band (cyan). 
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Fig. 2.16. Sensitivity scatter plots of simulated KDP, ZDR, and ZH for plates to variable 
microphysical parameterizations from Table 2.1 at X-band wavelength. 
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Fig. 2.17. KDP dependence on simulated radar elevation angle for a) dendrites and b) plates at X-
band (purple), C-band (blue), and S-band (red) wavelengths. 
 

 
Fig. 2.18. ZDR dependence on simulated radar elevation angle for a) dendrites and b) plates at X-
band (purple), C-band (blue), and S-band (red) wavelengths. 
 

A B 

A B 
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Fig. 2.19. Simulated a) KDP and b) ZDR for plates, dendrites, dry aggregated snowflakes, sleet, 
and rain from at X-, C-, and S-band radar wavelengths for 30° elevation angle only. Compare 
with Fig. 2.2 for scattering simulations at both 1° and 30° elevation angle.  

A 

B 
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Fig. 2.20. From Pruppacher and Klett (1997). 
 

Fig. 2.21. Diameter-bulk density relationships derived from various studies. 
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Fig. 2.22. Simulated ranges of KDP, ZDR, and ZH for dry aggregated snowflakes at X-, C-, and S-
band wavelengths (X_SIM: purple, C_SIM: red, S_SIM: blue) compared to results from 
Ryzhkov et al. (2005a) for aggregates at S-band combined where applicable with Dolan and 
Rutledge (2009) for aggregates at X-band (green) and S-band (orange) and Straka et al. (2000) 
for aggregates at S-band (cyan). 
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Fig. 2.23. Sensitivity scatter plots of simulated KDP, ZDR, and ZH for dry aggregated snowflakes 
to various microphysical parameterizations from Table 2.1 at X-band wavelength. 
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Fig. 2.24. From Beard and Chuang (1987).  
 

 
Fig. 2.26. From Gibson et al. (2009). 

Fig. 2.25. From Beard and Chuang (1987). 
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Fig. 2.27. From Ulbrich (1983). 

 
Fig. 2.28. From Thériault et al. (2010). 
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Fig. 2.29. Simulated ranges of ZDR and ZH for sleet at X-, C-, and S-band wavelengths (X_SIM: 
purple, C_SIM: red, S_SIM: blue) compared to results from Dolan and Rutledge (2009) for 
drizzle and convective-regime rain at X-band (purple) and S-band (blue) and from Straka et al 
(2000) for rain with D0 < 1 mm, 1 mm < D0 < 2 mm, D0 > 2 mm, and D0 > 3 mm with large 
drops at low number concentrations at S-band (blue).  
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Fig. 2.30. Simulated ranges of KDP, ZDR, and ZH for sleet at X-, C-, and S-band wavelengths 
(X_SIM: purple, C_SIM: red, S_SIM: blue) compared to results for high-density graupel from 
Dolan and Rutledge (2009) at X-band (green) and S-band (orange) and from Straka et al. (2000) 
at S-band (cyan). 
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Fig. 2.31. Sensitivity scatter plots of simulated KDP, ZDR, and ZH for rain to various microphysical 
and radar parameterizations from Table 2.1 at X-band wavelength. 
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Fig. 2.32. Sensitivity scatter plots of simulated KDP, ZDR, and ZH for rain to standard deviation of 
canting angle for X-, C-, and S-band wavelengths. 
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Fig. 2.33. Sensitivity scatter plots of simulated KDP, ZDR, and ZH for sleet and rain to standard 
deviation of canting angle at C-band wavelength. 
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Fig. 2.34. Sensitivity scatter plots of simulated KDP for rain and sleet to D0 at X-, C-, and S-band 
wavelengths. 
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Fig. 2.35. Simulated ranges of KDP, ZDR, and ZH for rain (RN), freezing rain (-RN) at C-band 
only, sleet with fall behavior of rain (SL_1) and sleet with realistic, tumbling fall behavior of 
graupel (SL_2) at X- (purple), C- (red), and S-band (blue) wavelengths. 
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CHAPTER THREE 

Development of Melting Layer Detection and Hydrometeor Identification Algorithms 

 

3.1 Radar specifications and winter storm case studies 

This winter hydrometeor classification algorithm (HCA) was tested with three different 

polarimetric radar systems at three different operating frequencies using radar observations from 

three different winter storms. Table 3.1 shows the various radar specifications, with KOUN listed 

simply as a reference. Volume Coverage Patterns (VCPs) for each radar used in this study are 

illustrated in Fig. 3.1. Table 3.2 contains a summary of each precipitation event. The CASA 

(Collaborative Adaptive Sensing of the Atmosphere) IP1 (Integrated Project One) network in 

southwestern Oklahoma includes four X-band dual-polarized radars with overlapping domains 

(McLaughlin et al. 2009, Junyent et al. 2010). According to the Oklahoma radar map in Fig. 3.2, 

the CASA network falls within the larger range of OU-PRIME (University of Oklahoma 

Polarimetric Radar for Innovations in Meteorology and Engineering, OKU), a C-band radar in 

Norman, OK. Both systems took measurements during a freezing rain and sleet event on 28 

January 2010 as well as a transition event between rain to blizzard conditions on 24 December 

2009. CSU-CHILL (Colorado State University, originally developed by the Universities of 

Chicago and Illinois) is a S- and X-band dual-wavelength, dual-polarized radar in Greeley, CO. 

This radar captured simultaneous dual-wavelength observations of a snowstorm along the Front 

Range of the Rocky Mountains on 3 February 2012. CSU-CHILL and OU-PRIME performed 

routine vertical cross-section scans (RHI – Range Height Indicator) at predefined azimuths. 

Since this type of scan is helpful to discern the vertical distribution of polarimetric variables, 

RHIs were also reconstructed from CASA PPI scans. OU-PRIME and CSU-CHILL at X-band do 
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not have dense enough upper-level volume coverage patterns with which meaningful, additional 

RHIs can be made. Hydrometeor classification algorithms at various wavelengths for the same 

meteorological phenomena are developed and evaluated with these rich datasets.  

 

3.2 Radar data processing and quality assurance 

Quality control and post-processing efforts to produce comparable ZH, ZDR, KDP, and !HV 

between each radar system are briefly discussed. The specific differential phase (KDP) was 

calculated for each radar system using the Wang and Chandrasekar (2009) method contained in 

the DROPS module. KDP is only calculated where !HV  > 0.75 (CASA) or 0.80 (CHILL and OU-

PRIME) to exclude non-meteorological echo and regions of the melting layer where polarimetric 

radar variables fluctuate too rapidly for reliable determination of KDP. DROPS was also used to 

calculate the signal to noise ratio (SNR). 

Each of the three CASA radars operating during the 2009 and 2010 winter storms 

required an individual ZDR bias correction. The corrections in Table 3.3 were determined by 

analyzing many ZDR histograms from the dry aggregated snowflake region above the melting 

layer, within which ZDR should be approximately zero (Ryzhkov et al. 2005b, Brandes and Ikeda 

2004). This manual correction method approaches the ideal 0.1 dB accuracy standard, except 

during situations with differential attenuation at increasing range beyond the melting level or a 

wet/iced over radome. Ideally, zenith pointing radars are used to determine the ZDR bias, but 

CASA’s maximum elevation angle is less than 30°. ZDR should be nearly zero in drizzle for 

scanning radars at any elevation angle, but Giangrande and Ryzhkov (2004) show that ZDR 

during light rain can exceed 0.5 dB because drizzle only constitutes a small fraction of the total 

precipitation volume.  
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Although CASA’s gate spacing (100 m) provides fairly high radial resolution, the beam 

width is relatively large (1.8 deg). Non-uniform beam filling degrades the polarimetric variables 

beyond ~25 km in range of these radars (Ryzhkov 2007). OU-PRIME also suffered from this 

issue beyond ~85 km. This was accounted for by restricting the ranges within which the melting 

layer detection algorithm is performed, since it relies on the spatial distribution and vertical 

extent of polarimetric radar signatures.  

One of CASA’s strategies is to deploy a network of many small, low-cost radars for a 

distributive, collaborative, adaptive sensing (DCAS) of the atmosphere. CASA radars operate at 

a relatively low average transmitting power to achieve this goal, which produces a low signal to 

noise ratio (SNR) at ranges much farther than 20 km. !HV is systematically lower for shorter 

wavelengths, klystron systems, and low SNR (below 20 dB at S-band according to Ryzhkov and 

Zrnic 1998b). CASA radars use magnetrons, but the shorter wavelength and lower signal 

strength cause !HV to significantly decrease with range. This field was therefore corrected for 

noise using the bias-corrected ZDR (in linear units as !DR in (10)) and SNR. This equation required 

a correction on the second term since this text was last printed, according to (9). 

(9) !HV-NOISE = !HV-QC [1 + (1 / SNR)]-1/2 * [1 + (!DR / SNR)]-1/2  

(Bringi and Chandrasekar 2001: Eq. 6.122 with correction) 

(10) !DR  = 10.0 exp (0.1 ZDR)   (Bringi and Chandrasekar 2001: Notations) 

Fig. 3.3 shows an example of the KSAO (Chickasha, OK) radar’s uncorrected !HV, 

corrected !HV, radar reflectivity factor, and signal to noise ratio at 4.8° elevation angle during the 

24 December 2009 blizzard. This image also illustrates CASA’s targeted sector scanning 

strategy at every elevation angle except 1°. The CASA !HV field was improved by these efforts, 

but was still well below 0.9 within meteorological echo where ZH > 15 dBz beyond 25 km range 
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from the radar. This prompted use of SNR and range thresholds in the melting layer detection and 

hydrometeor classification algorithms to help discriminate where !HV decreases from unity 

because of phase change as opposed to signal attenuation and/or nonuniform beam filling. Signal 

to noise ratio is actually quite high in the melting layer so SNR thresholds of 30 dB for CASA, 10 

dB for OU-PRIME, and 25 dB for CHILL were used to classify wet snow. A 5 dB SNR and 5 

dBz ZH non-meteorological echo threshold was also employed for all algorithms.  

 

3.3 Rayleigh scattering assumptions and attenuation 

The radar equation for calculating reflectivity assumes all targets are oblate spheroids 

composed of liquid water, which is obviously not valid during winter storms. The variable 

density of ice between frozen (and perhaps rimed) hydrometeors is a major source of uncertainty 

for interpreting radar data. We specified physically realistic ice particle densities in the scattering 

simulations, but there is no way to know how representative these values are for every storm in 

every region (Zhang et al. 2011). Another related unknown is the dielectric factor, which is 

included in the radar backscattering cross section used to calculate every dual-polarized radar 

variable. We specified the dielectric factor in the T-matrix and Mueller-matrix models according 

to the actual hydrometeor composition (ice, water, or an air/ice/water mixture), but a single value 

is assumed when the radar is scanning in real-time. The scattering simulations and radar 

observations agree quite well despite these uncertainties. 

The maximum diameter of spherical, liquid hydrometeors that still satisfy Rayleigh 

scattering conditions decreases with decreasing wavelength: approximately 2.1 mm at X-band, 

3.5 mm at C-band, and 7 mm at S-band (Gunn and East 1954). These thresholds should be 

relaxed for frozen particles due to their lower dielectric factor and bulk density compared to 
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liquid water. Both of these factors contribute to the radar backscattering cross section used to 

determine the critical diameter. Dendrites, plates, and aggregates of dendrites with diameters 

exceeding the Rayleigh scattering threshold certainly exist aloft during winter storms. However, 

after careful interrogation of over 50 hours of radar data, even the X-band datasets did not appear 

to exhibit patterns suggestive of significant attenuation or backscattering differential propagation 

phase (!) errors that would greatly impact HCA performance. 

The radar may interpret an ice particle as completely liquid if a water coating as thin as 

10% of the melting ice particle’s diameter develops (Aden and Kerker 1951). Furthermore, a 

thinner water coating is needed to produce this result for shorter wavelength radars. Non-zero ! 

in regions of melting snowflakes from X- and C-band observations confirm departure from the 

non-Rayleigh scattering regime. These areas must be interpreted with caution.  

For similar reasons, differential attenuation also occurs within and beyond the melting 

layer for low radar elevation angles during periods of heavy stratiform precipitation. When the 

radar beam intersects the radar bright band at a shallow angle, it becomes nearly oriented along 

the major, horizontal axis of large, water-coated aggregates. This substantially decreases ZH 

while producing negative ZDR and noisy KDP beyond the melting layer in a radial fashion that is 

non-meteorological and physically unrealistic. An example of these differential attenuation 

issues at C-band wavelength during a winter storm where sleet is occurring at the surface is 

shown in Fig. 3.4. Attenuation correction for large, wet snowflakes is an ongoing topic of 

research (León et al. 2011), since most algorithms were originally designed for convective, 

warm-season precipitation. Therefore, no attenuation correction was performed on these data 

except for the effect of gases on OU-PRIME observations. Finally, ground clutter contamination 
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in OU-PRIME data was not removed so it produces an erroneous wet snow classification that 

should be ignored. 

 

3.4 Melting layer detection and hydrometeor classification algorithm development 

3.4.1 Overview 

The fuzzy-logic hydrometeor identification algorithm described in Dolan and Rutledge 

(2009) was adapted for winter precipitation types to include cold, stratiform rain, sleet, wet snow 

(indicative of the melting layer), dry aggregated snowflakes, dendrites, and plates. A variable 

weighting system was also designed to optimize the algorithm’s decision-making process 

between certain precipitation types. This substantially increased the skill of the algorithm. As is 

typical for many HCAs, classification is performed on each pixel without knowledge of 

decisions made for nearby pixels or how the radar variables trend with height and time. To 

address these deficiencies, the nearest-neighbor approach, use of texture fields (Ryzhkov et al. 

2005b), and 2-dimensional membership beta functions (Zrnic et al. 2001) have proven useful in 

other HCA studies. We did not explore these concepts here though. The reader should refer to 

Chandrasekar et al. (2011) for a more detailed review of radar-based hydrometeor classification 

algorithms. 

This algorithm produces a score between zero and one for each possible hydrometeor 

type within each radar bin based on how well the suite of polarimetric radar (PR) observations 

falls within the membership beta function ranges (ranges of expected values) for a given 

precipitation category. The score is also affected by how heavily each PR variable is weighted in 

the decision process. The hydrometeor class with the highest score is considered the “dominant” 

hydrometeor type. The slope of the membership beta functions (MBF) can be specified for either 
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strict or relaxed conformity of the observations into a range of expected values. Sometimes it is 

beneficial to decrease the slope parameters in this way or widen the MBFs to produce an overlap 

between different hydrometeor categories. This can prevent data gaps where classification would 

have been rendered impossible. The X-band membership beta functions for each level of the 

hydrometeor classification algorithm are shown graphically in Figs. 3.5, 3.6, and 3.7. MBFs for 

C-band (Figs. 3.8, 3.9, and 3.10) and S-band (Figs. 3.11, 3.12, and 3.13) are approximately the 

same except for smaller magnitude ranges of KDP. Slope parameters are provided in Tables 3.4, 

3.5, and 3.6. The weighting system used for each PR variable during each classification step is 

illustrated in Figs. 3.14, 3.15, and 3.16. It is significant that this single weighting system worked 

well on all four radar platforms and at all three weather radar wavelengths (X-, C-, and S-band). 

The algorithm methodology is described first, and then the derivations of these membership beta 

functions and weighting functions are explained. 

 

3.4.2 Hydrometeor classification algorithm methodology 

Park et al. (2009) suggests that HCA performance can be optimized if individual 

algorithms are developed for each major precipitation regime. It may be unrealistic to design a 

single algorithm (one set of membership beta functions) to handle convective and stratiform 

precipitation in both the warm and cold season. Rather, multiple algorithms could be used and 

combined in a decision tree with some minor input from the user, atmospheric soundings, or 

numerical weather prediction (Schuur et al. 2012). Our study settled on a two- or four-step 

hydrometeor classification approach for each 10° azimuth sector within full volume scans or 

along a single azimuth for vertical cross section radar scans. In the interest of developing an 

algorithm that can be used operationally, it should be noted that performing multiple iterations of 
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hydrometeor classification did not significantly increase the time required to complete these 

steps on a radar volume scan. In fact, it was much more computationally expensive and time 

consuming to interpolate temperature from a sounding to the radar coordinate system in order to 

use it as a variable in the algorithm. 

The use of multiple HCA steps was motivated by failed attempts to include all five 

hydrometeor types in the same decision process, even when temperature was the most heavily 

weighted variable in the algorithm. These errors occurred because the expected polarimetric 

variable ranges for rain and sleet nearly encompass the ranges for all other hydrometeors 

according to scattering simulations in Fig. 2.2. Light rain and dry aggregated snow, with 

moderate ZH, near zero ZDR, and low KDP, are virtually indistinguishable without prior 

identification of the melting layer, which separates the two phenomena (Ryzhkov and Zrnic 

1998b). 

Assuming a winter precipitation regime to begin with, dry aggregated snowflakes, 

dendrites, plates, and wet snow are classified within the radar volume first. “Melting pixels” are 

counted if wet snow is classified between acceptable melting layer elevations (1-4 km) and at 

ranges that exclude clutter contamination nearest to the radar, beam broadening, and beam ascent 

with propagation (5-40 km only). Following methodology from Giangrande et al. (2008) and 

Boodoo et al. (2010), statistics are performed on the heights of all accepted melting layer pixels 

to determine the melting layer (ML) base (20th percentile), median (50th percentile), mean, and 

top (80th percentile) height. These percentile values were tested by Boodoo et al. (2010) with a 

three-year climatology comparison between radar, wind profiler, and RUC data. The 80th 

percentile height (ML top) was highly correlated with the 0°C wet-bulb temperature level. These 
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procedures could be further modified to detect variable melting layer heights as a function of 

range along a particular azimuth window. 

A PPI radar scan from OU-PRIME through the bright band of a winter storm at 1545 

UTC on 28 Jan 2010 in Fig. 3.17 shows the melting layer descending toward the west. The radar-

derived statistics as a function of azimuth for this radar volume are compared to the sounding 

indicated 0°C height in Fig. 3.18. The sounding (Fig. 3.19) was taken at the same location as 

OU-PRIME and within an hour of the radar data used to compute these statistics. There is 

excellent agreement between each dataset. However, the radar offers this temperature 

information at higher spatiotemporal resolution for no additional cost, as opposed to acquiring 

and using special soundings or model simulations.  

If a sufficient number of melting layer pixels (>1 00, Giangrande et al. 2008) were 

identified in the radar volume, a “warm” HCA is performed to classify either rain, sleet, or more 

melting snow below the melting layer median height. Recall that wet snow or semi-melted ice 

particles that survive their descent through the melting layer can promote a transition from 

freezing rain to sleet near the surface (Thériault et al. 2006). Since scattering simulations and 

HCA testing confirmed that sleet and rain cannot be distinguished without temperature 

information, the possibility of sleet is simply classified if T < 0°C according to the most recent 

sounding. 

The third HCA step is a reclassification of dry aggregated snowflakes, dendrites, or plates 

above the melting layer median height. The membership beta functions and weighting functions 

are slightly different for this iteration since proper ice crystal classification is now the priority, as 

opposed to wet snow classification. This second “cold” HCA, the warm HCA, and the wet snow 

pixels from the first cold HCA are combined in the final, fourth step. Because wet snow can be 
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spuriously classified aloft where !HV is anomalously low, pixels are not considered representative 

of the melting layer in this final step if they are higher than 0.5 km above the ML top or if SNR is 

below some threshold value based on the particular radar. Alternatively, if a ML was not 

indentified in the first cold HCA, the second cold HCA can be used as the final algorithm result 

assuming the entire atmospheric column is below freezing. If a melting layer is not identified in a 

particular scan, the ML information from the previous time step can also be extended in time, if 

appropriate. Similarly, ML information from a particular sector can be applied to sectors where a 

ML could not be identified for non-meteorological reasons.  

These HCA steps are shown graphically in Fig. 3.20 for the same PPI scan in Fig. 3.17. 

Fig. 3.20-a (FH) shows the first cold HCA, which is primarily used to identify the melting layer 

by the wet snow category (yellow). The warm HCA (FW) between sleet, rain, and wet snow is 

created in Fig. 3.20-b. Sleet is appropriately classified below 800 m ASL according to the depth 

of the T < 0°C layer indicated by the sounding in Fig. 3.19. Then the second cold HCA (FC) 

reclassifies dendrites, plates, and dry aggregated snow to better represent the upper levels of the 

storm, shown in Fig. 3.20-c. Dendrites are classified in the southwest quadrant of this scan where 

ZDR and KDP are enhanced, corresponding to heights where the temperature approaches -15°C 

according to the sounding. In fact, the hydrometeor classification algorithm usually shows 

dendrites at the optimum -15°C temperature level or colder and extending down into regions that 

are ~5-10°C warmer, which matches our theoretical understanding of these crystals (PK97). 

Aggregates are chosen as the dominant hydrometeor type where both ZDR and KDP are near zero. 

For the final version of the HCA (FN) in Fig. 3.20-d, the warm and second cold HCA results are 

used below and above the ML median height along with appropriate wet snow pixels from the 

first cold HCA. It is up to the user or perhaps some external information as to which 
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hydrometeor classification provides the best diagnosis for the given weather situation. For 

instance, one must take into account that insufficient melting within the temperature inversion 

could lead to snow at the surface even when a bright band occurs. 

All single and dual-polarimetric hydrometeor classification algorithms to date have relied 

heavily on a sounding or model output temperature fields (Liu and Chandrasekar 2000, Zrnic et 

al. 2001, Ryzhkov et al. 2005, Park et al. 2009, Dolan and Rutledge 2009, Elmore et al. 2011, 

Schuur et al. 2012). However, Zrnic et al. (2001) confirmed that excluding temperature from a 

warm-season convective HCA exercise only slightly degraded the accuracy and smoothness of 

the algorithm results. Scattering simulations from Chapter 2 suggest that the dual-polarimetric 

signatures between different hydrometeor types are sufficiently robust and exclusive enough to 

classify these phenomena without the use of external temperature, except between pure rain, 

freezing rain, and sleet. 

It is plausible that ice water content (IWC), ice mass, or ice fraction could be used to 

distinguish a vertically or horizontally oriented transition from rain/freezing rain to sleet within 

the radar domain. However, these derived quantities are not pursued in this study because their 

calculation depends on many assumptions that render it unreliable, especially during winter 

storms. For instance, knowledge of the “rain line” to relate ZDR and ZH during rain must be 

known prior to the calculation, KDP must be very accurate, and the storm should cover a large 

area from which to calculate such bulk statistics (Cifelli et al. 2002, Carey and Rutledge 2000). 

However, winter storms have low echo tops, KDP was less trustworthy near the ground (and 

ground clutter) where the sleet classification should occur, and the rain-snow relationship was 

unavailable for these cases. Vivekanandan et al. (1994) showed that ice scatterers are not only 

nonspherical, but are also of varying bulk density, and these conditions lead to large variability 
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in the ZH-IWC relationship, up to 2 orders of magnitude. They suggest that the IWC calculation 

method should be refined by first identifying the ice particle habit and density to decide which 

particular power law relationship is more accurate. This provides motivation for the current 

study. IWC can also be calculated directly from KDP and ZDR if these variables are trustworthy 

(Ryzhkov et al. 1998). 

 

3.4.3 Development of wet snow membership beta function 

Wet snow can be identified by the radar bright band with low !HV, high ZH, and enhanced 

ZDR according to Fig. 3.21 from Brandes and Ikeda (2004: Fig. 1). The microphysics of melting 

snowflakes leads to !HV and ZDR signatures being displaced slightly below the classic ZH bright 

band, near the bottom of the ML (Ryzhkov and Zrnic 1998).  

!HV is considered the most reliable indicator of the melting layer because of its relation to 

hydrometeor diversity induced by phase change (Giangrande et al. 2008). This field can 

approach values as low as 0.50 when the melting/isothermal layer near 0°C is extensive enough 

to fill the entire radar beam. Otherwise, the melting layer signatures may be diluted by non-

uniform beam filling (Ryhkov and Zrnic 1998b, Ryzhkov 2007). 

Photographs provided by Fujiyoshi (1986) in Fig. 3.22 help explain the snowflake 

melting process and its interaction with electromagnetic radiation indicated in Fig. 3.21. ZH 

begins to increases by 5-10 dBz just above the 0°C level because snowflakes become wetted in 

the first stage of melting (Fig. 3.22-a). This increases the particles’ effective density and 

dielectric constant to that of water while their diameters remain very large (Zrnic et al. 1993, 

Vivekandandan et al. 1993, Ryzhkov and Zrnic 1998a). Meltwater drops migrate to the 
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concavities between crystals and branches initially (Knight 1979), and then accumulate on the 

tips of dendritic branches as melting proceeds.  

The snowflakes become more jagged and the original crystalline structure becomes 

hardly discernable by stage 2 (Fig. 3.22-b). The melted diameters are largest in this stage because 

sticking promotes further aggregation (Barthazy et al. 1988). Zrnic et al. (1993) confirms that the 

largest particles are found 100-200 m below the ZH maximum, or with the ZDR maximum. 

Observations from Fujiyoshi (1986) also showed that rain drops and snowflakes in different 

stages of melting usually fall together. The presence of oblate raindrops, large snowflakes, and 

smaller, nearly melted particles in the same radar gate contribute to reduced !HV at this level. 

In the third stage of melting (Fig. 3.22-c), the snowflakes start to collapse and thin, so 

that by stage 4 (Fig. 3.22-d) they are smooth, without holes, but still irregularly shaped. These 

particles are denser, have liquid water content > 50%, and have much smaller melted diameters 

(< 3 mm) so their fall speed drastically increases. Rapidly decreasing number concentration from 

size sorting between melted and semi-melted particles dictates that the ZH enhancement 

terminates abruptly with decreasing altitude, even more so than it began aloft (Giangrande et al. 

2008).  

At stage 5 (no photograph) the original snowflake is completely indistinguishable and is 

more lens-shaped than spherical. This oblateness factor helps explain why other PR variables 

decrease much more rapidly than ZDR below the bright band, as seen in Fig. 3.21. C-band 

OUPRIME observations during stratiform winter precipitation in Fig. 3.23 also show this 

lingering ZDR enhancement just below the melting layer but above the relatively homogeneous 

values in the rain region. 
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Dolan et al. (2012) simulated the polarimetric radar variables expected for melting snow 

with a dual-layer electromagnetic scattering T-matrix and Mueller-matrix model. These ranges 

were used as a first guess for developing the wet snow membership beta function. Then PR 

variable ranges were optimized, weighted, and extended to be more mutually exclusive from 

plates, dendrites, and dry aggregated snow as well as representative of the noise encountered 

within the ML for various radars. Non-Rayleigh scattering due to large, melting aggregated 

snowflakes in the melting layer can produce extreme or erroneous values of KDP, so this variable 

was excluded from the wet snow HCA altogether with a weighting factor of zero. ZDR can also 

fluctuate wildly in the ML for similar reasons, so its variable range was widened between -2 to 8 

dB. This range included negative values to accommodate differential attenuation above the ML, 

but this would ideally be accounted for by an attenuation correction algorithm. Since ZH does not 

always exhibit a strong bright band signature, especially compared to !HV and ZDR, ZH had the 

lowest weighting in the wet snow decision process and its variable range was widened 

extensively from 5-45 dBz (Straka et al. 2000). 

 

3.4.4 Adaptation of remaining membership beta functions from scattering 

simulations 

With the exception of wet snow, the membership beta functions were derived directly 

from the scattering simulation ranges in Chapter 2 and then adjusted to cover all realistic 

scenarios and make each category more mutually exclusive. For instance, since all dry 

aggregated snowflakes modeled by the T-matrix and Mueller-matrix were oblate with a single 

density relationship based on diameter, the minimum ZH was manually extended to a more 

practical value of zero (Straka et al. 2000). The ZDR range for aggregates was also widened to 
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include negative values (likely encountered due to noise and differential attenuation above the 

ML) and up to +1 dB. While most observations of dry aggregated snowflakes barely exceed 0.25 

dB (Herzegh and Jameson 1992), 1 dB is an acceptable value for classification purposes 

considering the effect of noise, uncertainty, and the varying degree of aggregation (Bader et al. 

1987, Illingworth et al. 1987, Straka et al. 2000).  

Simulated KDP for aggregates was extremely close to zero, but the upper bound for this 

membership beta function was raised based on the degree of noise in the KDP calculation due to 

low correlation coefficient, low SNR, and strong gradients in differential phase on the fringes of 

precipitation echoes, within the melting layer, and around ground clutter (Wang and 

Chandrasekar 2008, Ryzhkov and Zrnic 1998b). This was a critical step toward increasing the 

algorithm’s performance. KDP values can be very small for longer wavelengths and the degree of 

uncertainty in its calculation, especially in and around the ML, must be taken into account by the 

HCA somehow. Previous hydrometeor classification algorithms have employed the use of 

confidence vectors for this reason (Park et al. 2009). Trial and error efforts to reduce dendrite 

over-classification of anomalously high KDP regions just above the ML determined that the 

maximum acceptable aggregate KDP range should be increased to 0.2° km-1 for X- and S-band 

CHILLL, 0.35° km-1 for OU-PRIME at C-band, and 0.5° km-1 for the CASA X-band radars. 

HCA performance in and around the melting layer was highly sensitive to these “confidence 

windows” for each radar platform/wavelength/resoultion. These values are still lower than the 

KDP expected for dendrites or nearby wet aggregates in the melting layer. KDP can reach 0.5 – 1° 

km-1 within the ML at S-band where backscattering differential phase (!) remains near zero for 

particles with diameters less than ~10 mm (Zrnic et al. 1993a, Straka et al. 2000). If this 

algorithm were applied to another radar system, a 0.2-0.5° km-1 KDP error range for the dry 
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aggregated snowflake category could be introduced based on the radar wavelength and spatial 

resolution. Otherwise, no additional modifications would be necessary.  

The minimum ZH for dendrites was lowered to zero while the ZDR range associated with 

dendrites and plates was widened by at least 0.5 dB. Even after this initial relaxation of the 

MBFs, the dendrite category’s lower ZDR bound still needed to be extended down to 1.0 dB to 

meet the aggregate range. Otherwise, hydrometeors with ZDR between 1.0 and 1.5 dB would have 

been unclassifiable. The dendrite category was modified as opposed to plates since ZDR should be 

higher for latter hydrometeor. 

 

3.4.5 !HV membership beta functions 

Scattering simulations were only performed for a homogenous collection of specific 

hydrometeor types without accounting for mixtures of particles or various stages of melting, so 

the modeled !HV was always greater than ~0.99 (Balakrishnan and Zrnic 1990b). !HV was 

manually allowed to range between 1.0-0.90 for all hydrometeors except wet snow, which 

encompassed 0.6-0.95 (Illingsworth and Caylor 1989, Ryzhkov and Zrnic 1998a, Straka et al. 

2000). Trial and error revealed that the overlap between these categories was critical for 

satisfactory results.  

Using mutually exclusive !HV bounds for wet snow versus other categories about either 

0.95 or 0.90 led to two major errors, respectively: 1) over-classification of wet snow at 

increasing range where !HV decreased due to signal quality, and 2) over-classification of 

dendrites at the fringes of the melting layer where high ZDR and moderately high !HV dominated 

the HCA fuzzy-logic. Widening the MBF for wet snow as well as dry aggregated snowflakes to 

incorporate uncertainty, noise, and the displacement of PR signatures within the bright band also 
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helped mitigate this error without compromising the mesoscale variability of the ML signature 

found in the !HV field.  

3.4.6 Development of weighting functions 

Hydrometeor classification was more successful when a variable weighting system was 

used for each level of the algorithm: cold HCA # 1 in Fig. 3.14 between wet snow, dry 

aggregated snowflakes, dendrites, and plates; warm HCA in Fig. 3.15 between wet snow, rain, 

and sleet; and cold HCA # 2 in Fig. 3.16 between dry aggregated snowflakes, dendrites, and 

plates. The algorithm was very sensitive to small changes in the distribution of weights, 

seemingly more so than to the variability in spatial resolution and data quality between each 

radar system. This was somewhat surprising given the vastly different radar characteristics 

described in Table 3.1, but encouraging of this algorithm’s suitability for many radar platforms. 

!HV was weighted highest for wet snow detection. However, the more !HV was weighted, 

the thinner the classified ML became since this polarimetric signature is usually strong and 

narrow in the vertical direction. Higher !HV weighting also resulted in over-classification of 

dendrites at the fringes of the ML because ZDR and ZH were still high even though !HV could have 

recovered toward unity. 

KDP and ZDR have strong importance when differentiating oriented crystals and dry 

aggregated snowflakes. However, it was found that KDP must be weighted slightly above ZDR 

during crystal classification to keep the decision process mutual between these two variables. 

Otherwise, high ZDR will dominate the HCA. For instance, Fig. 3.24 shows the HCA results 

within a dendritic growth zone where ZDR and KDP were competing. KDP is enhanced from the 

dendritic growth zone down to the ML (2-4 km) but ZDR is only strongly positive in an elevated 

region above 2.5 km. Dendrites are most likely growing where the ZDR and KDP signatures 
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maximize near 4 km (Kennedy and Rutledge 2011). Crystal aggregation occurs as these pristine 

crystals descend. The reflectivity-weighted ZDR variable is more sensitive to diameter (by D6) 

than the mass-weighted KDP variable (by D3). Therefore, ZDR can become “diluted” by the 

presence of small, spherical targets or large, tumbling aggregates that overwhelm the particle 

size distribution with a low ZDR value, even if large oriented crystals are also present. KDP is only 

sensitive to oblate particles such that effectively spherical targets within the radar bin do not 

make any contribution to this variable. This explains why KDP remains relatively high even when 

dendrites are aggregating because some large, oblate, pristine crystals are still present that can 

produce high values all the way down to the melting level.  

These trends suggest that positive ZDR only occurs when oriented crystals are pristine 

since this variable tends toward zero as aggregation begins, whereas enhanced KDP can be 

indicative of any pristine dendrites remaining in the PSD. Therefore, KDP was weighted highest 

in the snowflake and snow crystal categories. 

Another case where KDP and ZDR compete for the snow type classification is when ZDR > 

2 dB (relatively high) but KDP remains near zero (and SNR is still high enough to indicate a trust-

worthy scattering regime). These trends suggest plates could be present, but plates were seldom 

classified compared to dendrites. In fact, Fig. 3.25 shows the extent to which they were identified 

at all during these three case studies. This may be because plates occur less often, are simply not 

occurring in these case studies, or overlapping membership beta functions and radar constraints, 

such as increased elevation angle, prevent the natural ranges of ZDR from approaching such high 

values needed to discriminate plates from dendrites.  

This algorithm should be run on data during a time when plates were actually reported at 

the surface before the algorithm’s ability to detect plates from dendrites is officially evaluated. 
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Recently, Williams et al. (2011) and others at the National Severe Storms Laboratory have 

shown that exceptionally high ZDR in potential plate-crystal regions of winter storms appear in 

“cocoon” orientations at the tops of precipitating echoes, not in pockets contained within the 

cloud as for dendritic growth zones (Kennedy and Rutledge 2011). This physically suggests that 

plate classifications should not be collocated with that of dendrites because these crystal types 

might grow in different regions of the cloud, likely due to different temperature and saturation 

conditions. 

Another hypothesis is that, before water saturation is reached, small crystals may grow as 

plates. Then once the humidity increases beyond water saturation and into ice supersaturated 

conditions, dendritic or sector branches would grow on top of, or superimposed on the edges of, 

crystals that previously looked like plates. This theory also suggests that plates and dendrites 

might not coexist in the same area because their growth habit depends on the environment. If the 

environment is suitable for plates, the radar should be able to identify them. We suggest that a 

ratio or 2-dimensional membership beta function (Zrnic et al. 2001) could be derived and used to 

exploit the inverse KDP-ZDR relationship between these two crystal categories in a future version 

of this hydrometeor classification algorithm. 

ZH has a low weight for all hydrometeor classifications because it is generally innocuous 

for all ice types without any significant trends with the differential measurements (Trapp et al. 

2001). Temperature is the leading variable in the warm HCA but it has a 0.0 weight in both cold 

HCAs.  

Testing proved that temperature was not necessary for the classification of hydrometeors 

above or within the melting layer because the signatures in !HV, ZDR and KDP were sufficiently 

robust. Furthermore, inclusion of temperature tended to degrade the classification by producing 
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non-meteorological, horizontally oriented blocks of hydrometeor classification, as illustrated in 

Fig. 3.26 (from approximately the same time period and geographic region as Figs. 3.20, 3.24, 

and 3.25). First, the melting layer may have spatiotemporal variability that cannot be captured 

with a sounding. The radar and sounding indicated 0°C heights from these two sources might not 

agree either. Second, Fig. 3.26 also shows how the algorithm may use temperature to classify 

plates above dry aggregated snowflakes, and some dendrites farther above the plates. This is 

physically unrealistic since most snowflakes are made up of dendritic component crystals and 

plates have unfavorable geometry for coagulation. Third, dendritic and plate crystal growth are 

based on temperature and saturation. When the algorithm uses temperature as a variable, it 

produces a strict ice crystal classification that is horizontally oriented and may or may not 

coincide with dual-polarimetric signatures for oblate crystals. If plates or dendrites exist within 

the cloud, scattering results and obsevations suggest that they will produce enhanced KDP and 

ZDR signatures. The sounding-indicated -13 to -17°C region roughly corresponds to where 

oriented crystals should begin to grow, but the KDP and/or ZDR signatures may extend further 

toward the ML if dendritic crystals fall longer distances before they aggregate. This process is 

not represented in Fig. 3.26 because it is not allowed when temperature is driving the 

hydrometeor classification algorithm. 

 

3.5 Summary 

The success of the HCA algorithm depends on proper development of the weighting 

functions and adaptation of the membership beta functions from theory. Care must be taken to 

adjust these parameters such that the algorithm is not being tuned for a specific variable or 

situation. Rather, the radar algorithm’s decision-making process should follow universal, 
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physical principles of winter storms. Realistic hydrometeor classifications also require precise 

dual-polarimetric radar observations. When this is not possible, noise and uncertainty can be 

taken into account by widening the ranges of expected values in the membership beta functions 

or relaxing the slope parameters. 

KDP has much greater magnitude ranges for shorter wavelengths and each radar system 

has different spatial resolution, transmitting power, quality of measurements, and calculation 

methods. Before these issues were dealt with by a tailored dry aggregated snowflake KDP 

error/confidence window, the longer wavelength systems produced more erroneous hydrometeor 

classifications in and around the melting layer. This was because meteorological KDP values were 

less exclusive from noise. Then trial and error revealed that a single weighting scheme worked 

equally well on all three radar systems at various wavelengths in both Oklahoma and Colorado. 

It was originally hypothesized that the X-band HCA would naturally be more trustworthy while 

the S-band algorithm might require fine-tuning for the same quality of results. However, these 

findings suggests that this algorithm could be run on data from any radar system once an 

appropriate dry aggregated snow KDP confidence window is determined based on radar 

wavelength and spatial resolution. Chapter 4 illustrates how the X-band algorithm may be more 

reliable because of its dependence on KDP, but the same methodology is still robust and 

applicable for X-, C-, and S-band wavelength systems during most continental winter 

precipitation regimes. The algorithm produced accurate results with low ZH weighting and 

without temperature information, except for sleet classification. Further validation and analyses 

of winter storm microphysics with the HCA are presented in Chapter 4. 
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Table 3.1. Specifications of radars used in this study with the dual-polarimetric WSR-88D as a reference. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Name CSU-CHILL X CASA OU-PRIME CSU-CHILL S (KOUN) WSR-88D 

Wavelength 3.2 cm 
X-band 

3.2 cm 
X-band 

5.44 cm 
C-band 

11.01 cm 
S-band 

10.0 - 11.1 cm 
S-band 

Frequency 9410 MHz 9410 MHz 5510 MHz 2725 MHz 2700-3000 MHz 
Antenna 
Diameter 8.5 m 1.2 m 8.5 m 8.5 m 8.5 m 

Height (ASL) 1432 m 350 m 342 m 1432 m 381 m 
Nyquist 
Velocity 16 m s-1 35 m s-1 16.05 m s-1 26 m s-1 21-35 m s-1 

PRF 2000 s-1 Dual 1600-2400 s-1 1180 per s-1 800 - 12000 s-1 300-1300 s-1 
Pulse Width 650 ns 660 ns 800 (400 - 2000) ns 200-1600 ns 1600 - 4500 ns 
Max Range 75 km 40 km 120 km 150 km 250 km 

Peak Power 12 kW per 
channel 

10 kW                    
per channel 1000 kW 800 kW 750 kW 

Transmitter Magnetron Magnetron Magnetron Klystron Klystron 
Beam Width 0.33° 1.8° 0.45° 1.1° 0.95° 

Gain 56 dBi 36.5 dBi 50 dBi 43 dBi 44.5 dBi 
Gate Spacing 75 m 100 m 125 m 150 m 250 m 

Scanning 
Strategy PPI, 4 RHIs, base PPI PPI, 2 RHIs, zenith PPI, 4 RHIs, base PPI 

Update Time 5-10 min 3 min 7 min 10 min 5 min 

Latitude 40.44625° (Network center) 
34.82764° 35.180299° 40.44625° 35.2361° 

Longitude -104.63708° (Network center) 
-98.1006945° -97.4355° -104.63708° -97.4633° 
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Fig. 3.1. Volume Coverage Patterns for X- and S-band CSU-CHILL, C-band OU-PRIME, and X-band CASA IP1 radars. 
Each ray’s sweep number and elevation angle (°) are labeled according to the system’s scanning strategy. 
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Table 3.2. Winter storms used to test hydrometeor classification algorithm (HCA). 
 
Date Location &  

Radars Used 
Duration of 
precipitation 
studied 

Time  
TSFC < 0°C 
at radars 

Forcing Mechanisms for 
Precipitation 

Precipitation Type 
Evolution 

24 Dec 
2009 

Oklahoma 
OU-PRIME/CASA 
 

0900 –  
2359 UTC 

1300 –  
1400 UTC 

Mid-latitude cyclone passage 
southeast of radars, low-level 
isentropic lift and advection of 
warm moist air from Gulf of 
Mexico toward Oklahoma, 
westward passage of transition 
zone precipitation band past radars 
as surface temperatures dropped 
below freezing, temperature 
inversion remained strong to the 
east of the transition zone, then the 
entire atmospheric column cooled 
over time, leading to blizzard 
conditions throughout the entire 
radar domain 

Convective rain then 
westward passage of 
a precipitation band 
marking transition 
between rain/freezing 
rain/sleet to blizzard 
conditions 

28 Jan 
2010 

Oklahoma 
OU-PRIME/CASA 

1130 – 
2359 UTC 

1230 –  
1245 UTC 

Mid-latitude cyclone with 
stationary front south of radars, 
low-level isentropic lift and 
advection of warm moist air from 
Gulf of Mexico toward Oklahoma, 
weakening of temperature 
inversion and 
strengthening/deepening of surface 
cold layer over time 

Stratiform rain 
leading to freezing 
rain and finally sleet 

3 Feb 
2012 

Colorado 
CSU-CHILL X & S 

0300 –  
0700 UTC 

Entire time 
period 
below 0°C 

Upslope, easterly flow into Front 
Range Mountains, mid-latitude 
cyclone west of radar 

Stratiform snow 
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Fig. 3.2. Oklahoma topographical map (meters ASL) with purple 40-km range rings around four 
CASA X-band radars (KSAO, KRSP, KLWE, and KCYR described in Table 3.3) and maroon 
120-km range ring around OU-PRIME C-band radar (OKU). Although not used in this study, 
KOUN is a nearby dual-polarimetric S-band radar while KTLX and KFDR are the closest 
National Weather Service S-band WSR-88D radars (adapted from Dolan and Rutledge 2010). 
 
 Table 3.3. ZDR bias for each CASA radar operational during two Oklahoma winter storms 

 

Name KSAO KCYR KRSP 
Location Chickasaw, OK Cyril, OK Rush Springs, OK 
Altitude (ASL) 375 m 460 m 442 m 
Latitude 35.031390 34.87398 34.8128 
Longitude -97.956111 -98.25212 -97.93056 
2009 ZDR Bias (dB) 0.6 -0.3 -2.3 
2010 ZDR Bias (dB) 1.3 -1.6 before 1404 UTC 

-0.35 after 1404 UTC 
-0.8 
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Fig. 3.3. Example of the original CASA !HV field (a) and !HV after being corrected for noise (b) 
for a given radar reflectivity factor ZH (c) and signal to noise ratio (d). 

A B 

C D 
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Fig. 3.4. OU-PRIME vertical cross section scan of (a) radar reflectivity: ZH, (b) differential reflectivity: ZDR, (c) specific differential 
phase: KDP, and (d) correlation coefficient: !HV showing differential attenuation through the melting layer of a winter storm. 

A B 

C D 
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Fig. 3.5. X-band membership beta functions of radar reflectivity (ZH), differential reflectivity 
(ZDR), specific differential phase (KDP), and correlation coefficient at lag zero (!HV) for 
hydrometeors allowed above and within the melting layer: wet snow, dry aggregated snowflakes, 
dendrites, and plates (cold HCA #1). 
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Fig. 3.6. X-band membership beta functions of radar reflectivity (ZH), differential reflectivity (ZDR), specific differential phase (KDP), 
correlation coefficient at lag zero (!HV), and temperature (Temp) for hydrometeors allowed below the melting layer: wet snow, rain, 
and sleet (warm HCA) 
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Fig. 3.7. X-band membership beta functions of radar reflectivity (ZH), differential reflectivity (ZDR), specific differential phase (KDP), 
and correlation coefficient at lag zero (!HV) for hydrometeors allowed above the melting layer: plates, dendrites, and dry aggregated 
snowflakes (cold HCA #2) 
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Fig. 3.8. C-band membership beta functions of radar reflectivity (ZH), differential reflectivity 
(ZDR), specific differential phase (KDP), and correlation coefficient at lag zero (!HV) for 
hydrometeors allowed above and within the melting layer: wet snow, dry aggregated snowflakes, 
dendrites, and plates (cold HCA #1). 
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Fig. 3.9. C-band membership beta functions of radar reflectivity (ZH), differential reflectivity (ZDR), specific differential phase (KDP), 
correlation coefficient at lag zero (!HV), and temperature (Temp) for hydrometeors allowed below the melting layer: wet snow, rain, 
and sleet (warm HCA) 
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Fig. 3.10. C-band membership beta functions of radar reflectivity (ZH), differential reflectivity (ZDR), specific differential phase (KDP), 
and correlation coefficient at lag zero (!HV) for hydrometeors allowed above the melting layer: plates, dendrites, and dry aggregated 
snowflakes (cold HCA #2) 
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Fig. 3.11. S-band membership beta functions of radar reflectivity (ZH), differential reflectivity 
(ZDR), specific differential phase (KDP), and correlation coefficient at lag zero (!HV) for 
hydrometeors allowed above and within the melting layer: wet snow, dry aggregated snowflakes, 
dendrites, and plates (cold HCA #1). 
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Fig. 3.12. S-band membership beta functions of radar reflectivity (ZH), differential reflectivity (ZDR), specific differential phase (KDP), 
correlation coefficient at lag zero (!HV), and temperature (Temp) for hydrometeors allowed below the melting layer: wet snow, rain, 
and sleet (warm HCA) 



 

100 

Fig. 3.13. S-band membership beta functions of radar reflectivity (ZH), differential reflectivity (ZDR), specific differential phase (KDP), 
and correlation coefficient at lag zero (!HV) for hydrometeors allowed above the melting layer: plates, dendrites, and dry aggregated 
snowflakes (cold HCA #2) 
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Table 3.4. Slope parameters for X-, C-, and S-band Cold HCA #1 membership beta functions 
between plates (PL), dendrites (DN), dry aggregated snowflakes (AG), and wet snow (WS). 

Variable PL DN AG WS 
ZH 10 5 5 10 
ZDR 10 10 15 10 
KDP 5 5 5 5 
!HV 10 10 10 30 

 
Table 3.5. Slope parameters for X-, C-, and S-band Warm HCA membership beta functions 
between wet snow (WS), sleet (SL), and rain (RN). 

Variable WS SL RN 
ZH 15 15 10 
ZDR 5 8 10 
KDP 8 8 6 
!HV 10 10 30 

Temp 20 40 15 
 
Table 3.6. Slope parameters for X-, C-, and S-band Cold HCA #2 membership beta functions 
between plates (PL), dendrites (DN), and dry aggregated snowflakes (AG). 

Variable PL DN AG 
ZH 10 5 5 
ZDR 10 10 15 
KDP 5 10 5 
!HV 10 10 10 

 
 

 
Fig. 3.14. Weighting functions for the X-, C-, and S-band first cold HCA between wet snow, 
dendritic crystals, plate crystals, and dry aggregated snowflakes. Percentage values show the 
relative weighting each variable receives in the hydrometeor classification algorithm score. 
Separate weighting distributions and variables were used to classify certain hydrometeors.  
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Fig. 3.15. Weighting functions for the X-, C-, and S-band Warm HCA between wet snow, rain, 
and sleet. Percentage values show the relative weighting each variable receives in the 
hydrometeor classification algorithm score. Separate weighting distributions and variables were 
used to classify certain hydrometeors.  
 

 
Fig. 3.16. Weighting functions for the X-, C-, and S-band second cold HCA between dendritic 
crystals, plate crystals, and dry aggregated snowflakes. Percentage values show the relative 
weighting each variable receives in the hydrometeor classification algorithm score. 
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Fig. 3.17. (a) ZH, (b) ZDR, (c) KDP, and (d) !HV through the melting layer of stratiform winter 
precipitation along the 2.44° elevation angle. 
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Fig. 3.18. Melting layer detection algorithm statistics for each 10° azimuth window based on the 
PPI scan in Fig. 3.16. All “melting pixels” are indicated in yellow with the 20th, 50th, and 80th 
percentile heights in black. The solid black line is the median melting layer height. The dashed 
red line is the mean melting layer height. The 0°C level according to the KOUN 15 UTC 
sounding (Fig. 3.18) from approximately the same location is shown in blue.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.19. 28 January 2010 15 UTC sounding at KOUN in Norman, OK (Univ. of Wyoming). 
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Fig. 3.20. (a) First cold HCA, (b) warm HCA, (c) second cold HCA, and (d) final combined 
HCA between plates (PL-purple), dendrites (DN-blue), dry aggregated snowflakes (AG-green), 
wet snow (WS-yellow), sleet (SL-orange), and rain (RN-red) for the same PPI sweep in Fig. 3.16 
(HID = hydrometeor ID, UC = unclassified/clear air/non-meteorological echo). -15°C isotherm 
shown from 15 UTC sounding in Fig. 3.19.
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Fig. 3.21. from Brandes and Ikeda (2004). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.22. Photographs of snowflakes during stages one (a), two (b), three (c), and four (d) of 
melting from Fujiyoshi (1986). 
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Fig. 3.23. Vertical cross section scan of differential reflectivity ZDR during stratiform 
precipitation. 
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Fig. 3.24. CASA KSAO vertical cross section scan of ZH (a), ZDR (b), KDP (c), and hydrometeor classification (d) between plates, 
dendrites, dry aggregated snowflakes, wet snow, sleet, and rain with 15 UTC KOUN sounding isotherms from Fig. 3.19. 

A B 

C D 



109 

Fig. 3.25. CASA KSAO vertical cross section scan of ZH (a), ZDR (b), KDP (c), and hydrometeor classification (d) between plates, 
dendrites, dry aggregated snowflakes, wet snow, sleet, and rain with 15 UTC KOUN sounding isotherms from Fig. 3.19. 
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Fig. 3.26. OU-PRIME vertical cross section scan of hydrometeor classification (a) between plates, dendrites, dry aggregated 
snowflakes, wet snow, sleet, rain, and unclassified echo using temperature (b) as a variable after interpolation from the 15 UTC 
KOUN sounding in Fig. 3.19. 
 

A B 
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CHAPTER FOUR 

Microphysical Processes in Winter Storms Identified with the Melting Layer Detection and 

Hydrometeor Classification Algorithms 

 

4.1 Overview 

The hydrometeor classification algorithm developed herein is intended to reveal four 

microphysical processes in winter storms. These include the dendritic growth zone, the transition 

zone as evidenced by the vertical bright band, the melting layer and its transformation into an 

isothermal layer, as well as the refreezing zone where raindrops/semi-melted ice particles 

become ice pellets just above the surface. We define the 0°C level to exist at the melting layer 

(bright band) top (Boodoo et al. 2010). While these phenomena are validated by temperature 

information from upper-air soundings, this analysis demonstrates that these processes can be 

identified solely by the polarimetric radar variables. Doppler velocity indicated fall speed spectra 

from vertically pointing radars are also explored to further understand the nature of winter 

storms. 

 

4.2 Dendritic growth zone 

Long lasting signatures of enhanced KDP and ZDR near the -15°C level were isolated to 

determine the maximum KDP and ZDR values associated with dendrites during each winter storm 

case. These variables tended to maximize at and below this temperature level, as illustrated by 

the upper-level 16.9° PPI scan of the hydrometeor classification and interpolated 12 UTC 

temperature field during stratiform winter precipitation in Fig. 4.1. The melting level in this case 

is marked by wet snow while rain and possibly sleet exist below where the sounding T < 0°C. 
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We are confident in the upper KDP and ZDR bounds derived from scattering simulations 

because these values agree extremely well with observations from each radar platform. 

Maximum observed ZDR ranged from 2-2.5 dB for C-band OU-PRIME as well as X- and S-band 

CSU-CHILL. Then the CASA radars showed ZDR ~ 4 dB within dendritic growth zones, which is 

probably not trustworthy because the ZDR bias for these radars was determined manually and 

might not be ideal for upper-portions of the storm. Therefore, these observed ZDR values for 

dendrites are lower than the maximum values expected from scattering simulations (3.9 dB). 

However, these crystals were viewed by the radar at high elevation angles, which can account for 

up to ~1.25 dB ZDR decrease when the elevation angle reaches 30°. The ZDR elevation angle 

effect discussed in Section 2.3.2, whereby oblate crystals produce a lesser ZDR return when the 

radar beam is no longer oriented along the horizontal axis of the hydrometeor, may account for 

this discrepancy. 

Maximum KDP values modeled for dendrites at X-, C-, and S-band were 1.97, 1.14, and 

0.57° km-1 respectively, which agreed well with previous studies as stated in Section 2.3.2. For a 

comparison between X- and S-band, coincident CSU-CHILL dual-wavelength vertical cross 

section (RHI) scans of KDP and the hydrometeor classification through dendritic growth zones 

are shown in Figs. 4.2 and 4.3 from two different time periods on 3 February 2012. The top 

panels in each figure show S-band data with corresponding X-band data in the lower panels. KDP 

values are approximately three times greater in magnitude at the shorter wavelength, which 

produces more robust and clear dendritic classification over aggregates. It is notable that KDP at 

S-band in Fig. 4.2-a was barely above zero, which could have been attributed to noise, while KDP 

in Fig. 4.2-c at X-band wavelength was clearly indicative of dendritic crystals. In the absence of 

a strong S-band KDP signature, the S-band HCA in Fig. 4.2-b (incorrectly) identifies plates near 
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echo top height where SNR is low and therefore ZDR is erroneously high. This demonstrates the 

greater discriminatory power of KDP at shorter wavelengths for ice crystal classification. 

Maximum KDP from CSU-CHILL at X- and S-band during this case were 2.0 and 0.7°    

km-1, respectively. KDP reached 2.3° km-1 during the 2009 winter storm for the CASA X-band 

KCYR radar, which is shown by the vertical cross section scan in Fig. 4.4. The highest value 

recorded from either the 2009 or 2010 storm by the C-band OU-PRIME radar was 1.3 ° km-1, 

illustrated by RHIs though a dendritic growth zone in Fig. 4.5 and 4.6. These observed specific 

differential phase values are only slightly higher than those suggested by our scattering 

simulations (by 0.1-0.3° km-1 between S- to X-band respectively). This is likely because we 

could only model oblate particles as large as 1 cm but dendrites commonly exceed this value in 

nature (PK97). 

Another additional discrepancy indicated by observations but not accounted for in the 

scattering model was a slight reduction in !HV within the dendritic growth zone (Ryzhkov et al. 

2011). This signature was not robust or persistent, but is noticeable in Fig. 3.17 and 4.5. Prolific 

ice crystal growth by vapor deposition could produce some extremely large, low bulk density 

crystals in the presence of other smaller dendrites. Larger crystals might also have more erratic 

fall behavior. Varying density and canting between hydrometeors as well as a broadened size 

distribution could explain the reduced !HV pattern. This hypothesis should be confirmed with a 

more sophisticated electromagnetic scattering model that can represent larger particle diameters. 

Figs. 4.1-4.6 also demonstrate that KDP and sometimes ZDR tend to decrease above the 

dendritic growth zone toward echo top height. This usually leads to classification of dry 

aggregated snow in the upper-most regions of the cloud. We do not believe this phenomenon is 

an artifact caused by high radar viewing angle, which would have caused a systematic decrease 
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in these variables from lower to higher rays, not along the same ray as demonstrated in these 

figures. While classification of aggregates above dendrites is physically unrealistic, these 

polarimetric signatures could be indicative of small, less numerous, pristine ice crystals. Lower 

ice water content could also explain the reduction in KDP. Smaller sized, less numerous, and 

perhaps less oblate crystals would produce lower ZDR according to the sensitivity studies 

discussed in Section 2.3.2.  

Rauber and Tokay (1991) suggest that under sufficient water saturation conditions, 

crystals may be too small near cloud top to incorporate excess vapor, which often results in the 

formation of supercooled liquid drops. As illustrated in Fig. 4.7 (from PK97: Fig. 2-39 and 2-41), 

these drops can freeze into spatial crystals or double dendrite crystals, which may continue to 

grow by vapor deposition as they descend. If the temperature is close to -15°C, dendritic 

branches will form. Without in-situ observations of super cooled liquid drops or a 

characterization of the temperature or humidity within the upper region of the cloud (where 

hydrometeors are too small to be detected by weather radars), we cannot make any claims about 

the possible link between aviation icing hazards and dendrites classified by this algorithm. 

However, a field study could be designed to test the HCA’s use in discerning this relationship. 

High-resolution RHI images, such as Figs. 4.5 and 4.6, often revealed that dendritic 

growth zones exist above enhanced bright band melting signatures and enhanced ZDR “curtains” 

of heavier rain below these melting regions. This could correspond to aggregation of dendritic 

crystals aloft that, when wetted due to melting within the bright band, produce larger, oblate 

raindrops near the surface. An additional “heavy” rain category could be added to the algorithm 

to represent this ZDR variability. Many studies have postulated that surface precipitation types 

and rates are modulated or intensified by the habit and type of crystals falling through the 
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melting layer (Fujiyoshi and Wakahama 1985, Rauber et al. 2001, Thériault et al. 2010, Kennedy 

and Rutledge 2011). 

4.3 Vertical bright band transition zone 

Stewart et al. (1992) describe the transition zone between rain, freezing rain, sleet, and 

snow as well as their separation by a vertical bright band (VBB). Their schematic drawing of this 

common environment is shown in Fig. 4.8. The hydrometeor classification algorithm developed 

here does a good job discriminating where the melting layer descends toward the ground as a 

VBB as opposed to areas of strong precipitation. The discriminating factor between these two 

scenarios is !HV, which remains high for rain but is characteristically low where hydrometeors 

are melting. ZH, ZDR, and KDP are strongly positive in both cases (Ryzhkov and Zrnic 1998a). 

A vertical bright band structure is revealed in a CASA RHI with all four dual-

polarimetric radar variables in Fig. 4.9 and the corresponding hydrometeor classification in Fig. 

4.10. This “second cold” HCA result only classifies plates, dendrites, dry aggregated snowflakes, 

or wet snow. Since the algorithm identifies the melting layer height as a function of azimuth, not 

range (although it could be modified to do so in the future), it cannot decide to classify rain 

enclosed by the vertical bright band as well as dry aggregated snow beyond 15 km. The 

algorithm and surface weather reports confirm that snowflakes did fall to the ground in this 

region though. The algorithm accurately depicted the vertical bright band intersecting the 

ground, but erroneously classified dendrites close to the radar below the melting layer. 

 

4.4 Melting and isothermal layer 

The melting layer detection algorithm isolates individual radar bins where melting is 

most likely occurring and calculates the melting layer top, median, and base heights (Giangrande 
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et al. 2008). The melting layer top and base heights can also be used to approximate the depth of 

this phase change zone. During the 28 January 2010 ice storm in Oklahoma, a strong temperature 

inversion near 850 hPa existed above a low-level cold layer. While the surface temperature 

remained near -1.5°C throughout the entirety of the storm (~12 UTC to 00 UTC), these cold and 

warm layers changed relative depths and intensities (coldness and warmness, respectively) to 

support a transition from freezing rain to sleet by about 21 UTC according to ASOS reports. The 

upper-air soundings from 15 UTC on 28 Jan through 00 UTC on 29 Jan are shown in Fig. 4.11. 

The minimum temperature within the surface cold layer lowered from -4.5°C to -8.3°C 

between 15 UTC and 18 UTC and then increased slightly to -7.0°C by 21 UTC and -4.5°C at 00 

UTC. Meanwhile, the maximum inversion temperature decreased with time from 5.6°C at 15 

UTC and 18 UTC to 3.8°C at 21 UTC and finally 3.6°C by 00 UTC. The cold layer extended 

from the surface to 455 m, 655 m, 685, and finally 655 m AGL according to these soundings. As 

the cold region deepened, the elevated layer where T > 0°C thinned from approximately 1800 to 

1000 m. 

It is well understood that the radar bright band is typically narrower than the layer where 

temperatures are above freezing since signs of melting usually do not begin until a couple 

hundred meters below the 0°C level (Austin and Bemis 1950). The bright band depth indicated 

by the melting layer detection algorithm during this time only ranged between 200-400 m, but 

actually deepened slightly over time. This was visibly noticeable in the high-resolution OU-

PRIME RHIs, which were used to track the minimum correlation coefficient, the melting layer 

top, median, and base heights, as well as the melting layer depth shown in Fig. 4.12. Only data 

within 5-40 km of the radar and where SNR > 5 dB were included in this analysis to exclude 
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errors induced by beam broadening and ground clutter. 5-7 min update frequency between RHI 

scans introduced some variability or noisiness in these time series data. 

!HV remained above ~0.88 within the radar bright band while freezing rain was reported 

at the surface, but became markedly lower just before the surface precipitation transition to sleet 

around 21 UTC. Fig. 4.13 shows one of the OU-PRIME vertical cross section scans used to 

create the plot in Fig. 4.12, which is very representative of the !HV field from 2100 – 2359 UTC 

during sleet. Lower !HV beyond the typical melting layer values suggests a modification of the 

phase change process such that hydrometeor diversity enhanced even more than usual. This RHI 

also shows excursions of low !HV extending toward the surface from the base of the melting 

layer. Furthermore, there are several pixels of low !HV below these excursions near the ground. 

This long-lived, robust radar signature suggests that particles were not completely 

melting within the temperature inversion, such that semi-melted particles survived and 

descended toward the surface. This is further supported by the fact that the temperature inversion 

was weakening, possibly due to latent cooling associated with melting, while the surface cold 

layer was deepening and becoming colder. These wet snowflakes and/or partially melted drops 

would have readily frozen into ice pellets within the low-level cold layer because of their 

imbedded ice nucleus (Thériault et al. 2006). Once ice pellets form, they can help initiate contact 

freezing with supercooled raindrops. The quasi-liquid layer provided by ruptured liquid core 

pellets and semi-melted particle surfaces may also help fuse nearby ice pellets together.  

Contoured Frequency by Altitude Diagrams, or CFADS, of Doppler velocity were 

constructed to examine the vertical structure of the melting layer during this transition from 

another perspective (Yuter and Houze 1995). OU-PRIME performed vertically pointing scans 

during this event. The radial velocity in this case measures the difference between air motion 
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(negligible in synoptically forced ascent regions) and hydrometeor fall speeds. Data below 0.5 

km AGL are not shown due to ground clutter contamination. 

The Doppler spectra of stratiform precipitation began to shift after remaining relatively 

constant from 12 – 20 UTC. Fig. 4.14 shows four CFADS of Doppler velocity during the 22 

UTC hour. Meaningful trends in these data that might have indicated riming or some low-level 

precipitation change were not apparent between 21-22 UTC. 22 UTC CFAD observations and 

the hydrometeor classification from this time period confirm that pristine crystals typically only 

fall at 0-1 m s-1 (negative in these plots), increasing slightly toward 2 m s-1 during aggregation 

(Spek et al. 2008). Terminal velocity may exceed 2 m s-1 where riming occurs (Zawadzki et al. 

2001), which was not observed in this study. Fall speeds drastically increase up to 8-10 m s -1 

within the melting layer where centimeter-sized, irregular snowflakes collapse into denser, 

millimeter-sized drops with less aerodynamic drag force. The region over which this fall speed 

increase occurs, between the red horizontal lines in Fig. 4.14, serves as a proxy for the melting 

layer depth, so the progression in this figure indicates that the melting layer did in fact deepen 

from less than 1 km to over 1.5 km as it descended toward the ground. 

Unlike the sounding analysis, which may not be representative of an entire region or time 

period, these unique radar observations suggest an isothermal layer was forming. This is an 

important microphysical process for determining surface precipitation type (Stewart et al. 1992, 

Heymsfield et al. 2004). Melting requires latent heat from the surrounding environment, which 

cools the temperature inversion over time toward 0°C. A deepening, or spreading out, of the 

elevated warm layer, which can be identified from this kinematic and microphysical radar 

analysis but not from the soundings, usually accompanies this cooling process. 
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By the same token, evaporation below cloud base typically cools and moistens the 

atmosphere, which can modulate the surface cold layer to promote sleet over freezing rain. Both 

of these microphysical processes were likely instrumental in the surface precipitation type 

transition and melting layer evolution observed during this case study. These microphysical and 

kinematic melting layer metrics could be incorporated into a more advanced hydrometeor 

identification algorithm since they seem directly and indirectly indicative of the transition 

between liquid to frozen precipitation types at the surface (Chandrasekar et al. 2011) 

 

4.5 Refreezing zone 

It has been demonstrated that the smallest supercooled drops or semi-melted particles 

below the melting layer where T < 0°C may freeze into ice pellets before larger particles do so 

because they contain less liquid water (Thériault et al. 2006). This is contrary to the volume 

dependence on freezing for much smaller cloud particles, which suggests larger cloud drops 

freeze more readily than smaller cloud drops since the former have a higher probability of 

containing a freezing nucleus with a smaller energy barrier to overcome (PK97). This size-

sorting process may be critical in explaining the low-level trends observed in ZH, ZDR, and !HV 

during times that freezing rain occurred at the surface as opposed to sleet during the 2010 ice 

storm. Fig. 4.15 shows a vertical cross section of these three variables plus KDP through 

stratiform precipitation at 1625 UTC while Fig. 4.16 illustrates the same at 2220 UTC. There is 

no vertical variation between these variables in the earlier time period when freezing rain 

occurred, but a horizontally oriented enhancement of ZH and ZDR with a decrease in !HV is 

noticeable around 680 m AGL at the later time period when sleet was reported at the surface. 

This height corresponds exactly with the height of the surface cold layer indicated by the 21 
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UTC sounding in Fig. 4.11-c. In fact, the signature becomes well established for the first time 

around 2130 UTC shortly after sleet is first indicated by a central OK ASOS station. The 

polarimetric refreezing pattern gradually intensifies and deepens vertically along with the surface 

cold layer evolution described previously. The ZH signature is slightly elevated above the !HV and 

ZDR trends. KDP also exhibits a slightly positive trend during this time, but not in every radar 

scan. More fine-scale KDP smoothing and calculation is likely necessary to discern the true KDP 

trend in the refreezing zone, but was not attempted for this work.  

To demonstrate the prolific nature of this multi-variate signature in time and space during 

the precipitation type transition period, OU-PRIME RHIs are used to calculate the mean ZDR, 

mean ZH, and minimum !HV along a single azimuth within 5-40 km ranges from the radar. These 

azimuthal averages are presented in Fig. 4.17 during periods of time when this refreezing 

signature was and was not present. These two time periods contain the RHIs shown in Fig. 4.15 

and 4.16. Each colored line in Fig. 4.17 represents data from a separate radar scan, with later 

time periods in warmer colors. Between 16-17 UTC, there is no vertical variation of ZH or ZDR 

below the melting layer, which is centered ~1.8 km. Minimum !HV within these scans increases 

toward the surface, characteristic of stratiform rain and freezing rain. These variables have a 

significant trend toward the surface in every scan between 22-23 UTC. It is notable that these 

trends are evident in the time- and range-averaged fields. ZDR begins to increase around 700 m 

AGL (height of the surface cold layer) while !HV decreases and ZH exhibits an increase then 

decrease about an inflection point. ZH is slightly higher during the sleet time period than for 

freezing rain, but this is simply because the stratiform precipitation captured in the 22-23 UTC 

RHIs was slightly more intense. 
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Ryzhkov et al. (2011) documented these same refreezing zone patterns during other 

mixed-phase wither storms with S- and C-band polarimetric radars, but the physical origin of 

these trends has not yet been explained. It seems obvious that these robust dual-polarimetric 

radar signatures are associated with the refreezing process since decreased !HV indicates diversity 

among the particle size distribution, enhanced ZDR indicates a change in density and/or 

oblateness, and ZH is also sensitive to particle size and number concentration. We argue that the 

preferential freezing of smaller drops before larger ones could essentially mask the polarimetric 

contributions of these small, nearly spherical particles because of their decreased dielectric effect 

and density of ice compared to water. Ice pellets also tumble as they fall, as opposed to liquid 

drops, so their fall behavior should further decrease their contribution to ZDR and KDP according 

to the discussion in Section 2.3.6. The remaining liquid drops would be very large and oblate, 

which may help overcome the usual ZDR dilution effect of small spherical drops. Then the drop 

size distribution would be effectively characterized only by the large liquid hydrometeors that 

have not yet frozen. This process would presumably produce an enhancement of ZH and ZDR with 

a decrease in !HV, which matches these observations. Kumjian and Ryzhkov (2008) used a 

similar size-sorting argument to explain the ZDR arc associated with tornadic supercells. 

The differential variables may continue trending toward the surface because the drop size 

distribution is continually changing as the largest drops finally freeze. Conversely, ZH exhibits a 

much more muted signature and actually recovers below an inflection point. This is most likely 

due to the competing dielectric effect, ZH’s insensitivity to hydrometeor shape, and a possible 

decrease in number concentration as supercooled liquid drops freeze into ice pellets. ZDR and !HV 

are conversely insensitive to total number concentration, so their trends usually extend all the 

way toward the surface. The size-sorting refreezing process and coagulation of frozen drops to 
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ice pellets could also increase DM, the mass-weighted mean volume diameter (Thériault 2010). 

This IP-b growth mechanism supports a systematic increase in ZDR and ZH.  

These theories seem plausible given the nature of dual-polarimetric variables for frozen 

hydrometeors explored in Chapters 2 and 3 of this thesis. A microphysical bin model simulation 

and extensive winter storm field observations of drop size distributions within the lowest 2 km of 

the atmosphere should be carried out to test the true origin of this distinctive refreezing pattern. 

More sophisticated electromagnetic scattering simulations could also be conducted. 

The CASA radars also detected a refreezing pattern in the 2009 case study very close to 

the radar site ahead of an approaching vertical bright band. The surface precipitation type was 

reported to transition from rain to freezing rain, sleet, and finally snow by ASOS as the vertical 

bright band progressed through the domain. A CASA KSAO vertical cross section of ZH, ZDR, 

KDP, and !HV through this combination transition-refreezing zone is illustrated in Fig. 4.18. There 

is no trend in KDP according to this plot, but this is likely because a more fine-scale KDP 

smoothing and calculation technique is required. Robust, horizontally oriented signatures of ZH, 

ZDR, and !HV are present near the surface within the first 8 km of the radar. These trends follow 

the outline of the surface cold layer according to our understanding of the vertical bright band 

and nearby sounding temperature data. The refreezing signature was only identifiable very close 

to the CASA radars. This is likely because sufficient vertical and horizontal resolution is needed 

to capture the drop size distribution fluctuations within each radar bin. 

Polarimetric detection of the refreezing process is remarkable considering that pure rain, 

freezing rain, and sleet cannot be distinguished by the radar according to theory and practice. 

The indication of sleet by enhanced ZDR and ZH is ironic because this signature may actually be 

produced by the liquid hydrometeors in the PSD. Furthermore, scattering simulations suggest 
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that pure sleet without hydrometeors in various stages of freezing is actually associated with 

lower values of ZH, ZDR, and KDP.  

It is also significant that this signature can be identified by the radar without temperature 

information so long as the radar’s spatial resolution is sufficient. This provides motivation to use 

gap-filling X-band radar networks for hydrometeor identification (McLaughlin et al. 2009) 

because the radar’s angular resolution, or beam width, is determined by the radar’s antenna size 

and wavelength. Shorter wavelength radars can achieve narrower beam widths for the same size 

radar dish as longer wavelength systems or can have the same beam width as longer wavelength 

systems with a much smaller, cheaper, and transportable antenna dish. Please see Table 3.1 for 

examples of this relationship for the radars used in this study.  

The CASA X-band hydrometeor classification algorithm can actually detect this 

refreezing phenomenon, although it incorrectly identifies it as dendrites below the melting layer 

as shown in Fig. 4.19 for the corresponding dual-polarimetric radar variables in Fig. 4.18. This 

classification likely occurred because KDP happened to be high (> 0.25 ° km-1) in this region, 

which is not always the case depending on the calculation methodology for this variable. High 

ZDR, moderate ZH, and !HV values still above what is expected within the melting layer will most 

likely prevent classification of the refreezing signature apart from dendrites or rain within this 

fuzzy-logic framework. Use of texture fields and/or two-dimensional membership beta functions 

within a more advanced algorithm could likely isolate the relatively low magnitude variations of 

these three variables. Texture fields should also improve the accuracy of the melting layer 

detection algorithm. Surface temperature (easily attainable in most locations) may still be the 

only variable that can indicate a transition between freezing rain and rain. 
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Fig. 4.1. PPI scans through stratiform winter precipitation at 16.9° elevation angle from the CASA KSAO radar of the a) hydrometeor 
classification between plates, dendrites, dry aggregated snowflakes, wet snow, sleet, rain, and unclassified non-meteorological or 
clear-air echoes; and b) interpolated temperature field from the 12 UTC nearby KOUN sounding. 

A B 
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Fig. 4.2. Dual-wavelength S- (upper panels) and X-band (lower panels) CSU-CHILL vertical cross section scans of KDP in a) and c) 
through a dendritic growth zone indicated by the hydrometeor classification algorithm in b) and d) at 0457 UTC on 3 February 2012. 

A B 

C D 
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Fig. 4.3. Dual-wavelength S- (upper panels) and X-band (lower panels) CSU-CHILL vertical cross section scans of KDP in a) and c) 
through a dendritic growth zone indicated by the hydrometeor classification algorithm in b) and d) at 0625 UTC on 3 February 2012 
with 00 UTC KDNR (Denver, CO) sounding isotherms. 

A B 

C D 
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Fig. 4.4. CASA KCYR vertical cross section scan of ZH (a), ZDR (b), KDP (c), and hydrometeor classification (d) between plates, 
dendrites, dry aggregated snowflakes, wet snow, rain, sleet, and unclassified echo through a dendritic growth zone on 24 Dec 2009 
with 12 UTC KOUN sounding isotherms.

A B 

C D 
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Fig. 4.5. OU-PRIME vertical cross section scan of ZH (a), ZDR (b), KDP (c), and !HV (d) through a dendritic growth zone on 28 January 
2010. 
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Fig. 4.6. OU-PRIME vertical cross section scan of hydrometeor classification between plates, dendrites, dry aggregated snowflakes, 
wet snow, rain, sleet, and unclassified echo through the dendritic growth zone from Fig. 4.5 with 15 UTC KOUN sounding isotherms 
from Fig. 4.11a.
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Fig 4.7. a) and b) from Pruppacher and Klett (1997).

A 
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Fig. 4.8. From Stewart et al. (1992). 
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Fig. 4.9. CASA KSAO vertical cross section scan of ZH (a), ZDR (b), KDP (c), and !HV (d) through the vertical bright band, separating 
colder air with snow to the west (beyond 12 km) and warmer temperatures with a transition to rain at closer ranges to the radar. 

A B 

C D 
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Fig. 4.10. CASA KSAO vertical cross section scan of hydrometeor classification between plates, dendrites, wet snow, dry aggregated 
snowflakes, and unclassified echo through a vertical bright band shown in Fig. 4.9 where the melting layer intersected the ground. 
Dendrites are erroneously classified close to the radar between 0-10 km range near the surface because only frozen or melting species 
were allowed in this classification algorithm step. Rain, freezing rain, and sleet were actually falling east of transition zone 
precipitation band in this region while aggregated snowflakes are correctly identified to the west, beyond the vertical bright band 
between 13-18 km. 
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Fig. 4.11. 28-29 January 2010 Skew-T diagrams at KOUN in Norman, OK (Univ. of Wyoming). 
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Fig. 4.12. Time evolution of the melting level depth multiplied by 
10 (purple), melting level top/bottom height (black, dashed), 
melting level median height (blue, dashed) and mean !HV of 
melting level pixels determined by the hydrometeor classification 
algorithm for OU-PRIME 330° RHIs. Surface precipitation type 
changed from freezing rain to sleet around 21 UTC. 

Fig. 4.13. OU-PRIME vertical cross section scan of !HV 
about 1 hour after the transition from freezing rain to sleet at 
the surface. 
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Fig. 4.14. Contoured Frequency by Altitude Diagrams (CFAD) of vertical velocity (w) from vertically-pointing OU-PRIME scans as 
the melting layer decended and surface precipitation changed from freezing rain to sleet. Frequency levels (%) of w are contoured on 
top of individual data points (circles). w = 0 m s-1 shown by red dashed line; w > 0 m s-1  for updrafts; w < 0 m s-1  for fall speeds. Red 
solid lines indicate approximate depth over which fall speeds increase due to hydrometeor melting. 
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Fig. 4.15. OU-PRIME vertical cross section scan of ZH (a), ZDR (b), KDP (c), and !HV (d) when freezing rain was reported at the surface. 
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Fig. 4.16. OU-PRIME vertical cross section scan of ZH (a), ZDR (b), KDP (c), and !HV (d) when sleet was reported at the surface with 21 
UTC KOUN sounding isotherms. 
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Fig. 4.17. Vertical trends of mean ZDR (a, d), mean ZH (b, e), and minimum !HV (c, f) along particular RHI azimuths during hours when 
stratiform freezing rain (upper panels) or sleet (lower panels) were reported at the surface with 21 UTC KOUN sounding isotherms.
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Fig. 4.18. CASA KSAO vertical cross section scan of ZH (a), ZDR (b), KDP (c), and !HV (d) when a refreezing signature was identified 
within 0-8 km of the radar ahead of the vertical bright band intersecting the ground near 20 km, which was propagating westward. 
Shown with 12 UTC KOUN sounding isotherms.
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Fig. 4.19. CASA KSAO vertical cross section scan of hydrometeor classification between plates, dendrites, dry aggregated 
snowflakes, wet snow, and unclassified echo when a refreezing signature was identified within 0-8 km of the radar. Shown with 12 
UTC KOUN sounding isotherms. Dendrites are erroneously classified below the melting layer and within the refreezing zone since 
this version of classification only included frozen and melting hydrometeors. 
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CHAPTER FIVE 

Summary and Conclusions 

 

5.1 Review of winter hydrometeor classification algorithm development and 

performance at various wavelengths 

Despite anomalous propagation, differential attenuation, and some non-Rayleigh 

scattering effects, this radar-based winter hydrometeor classification algorithm performed well 

for the C-band OU-PRIME, X- and S-band CSU-CHILL, and X-band CASA IP1 radars. To 

achieve this, detailed electromagnetic scattering simulations of the most common precipitation 

types found in winter storms, excluding graupel, were conducted at each wavelength (X-, C-, and 

S-band) for the first time. Theoretical results from this exercise were used to develop a variable 

weighting system for the algorithm that capitalizes on the strengths of specific dual-polarimetric 

variables in differentiating between certain classes of hydrometeors. A melting layer detection 

algorithm was also implemented, which identifies wet snowflakes without the use of external 

temperature.  

These modifications were applied to the warm-season convective precipitation 

classification algorithm originally developed by Dolan and Rutledge (2009) to develop a more 

versatile classification algorithm applicable to winter precipitation. The algorithm was tested on 

three different winter storms in both Colorado and Oklahoma. It was found that a single 

hydrometeor classification methodology produced robust results at X-, C-, and S-band for these 

cold-season, continental precipitation systems. However, the algorithm’s performance was 

slightly more robust and reliable at shorter wavelengths because of its dependence on KDP. 
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5.2 Hydrometeor classification between pristine and aggregated ice crystals  

Dendrites, dry aggregated snow, and wet snow were confidently detected from 

polarimetric radar variables without the use of external temperature. The melting layer detection 

algorithm was necessary to constrain rain and sleet below this level. Plate crystals were difficult 

to discriminate from dendrites based on scattering simulations, and were rarely detected by the 

algorithm in practice. This could either be because plates do not actually occur very often, were 

not present in our three case studies, or because these two crystal types are hard to distinguish 

with radar. More in-situ observations are necessary to validate these findings.  

There is motivation to distinguish plates from dendrites because only the latter indicate 

that the environment is saturated with respect to water. This provides a necessary but insufficient 

criterion for the existence of super cooled liquid water. Without any reports of supercooled drops 

or in-situ measurements of temperature and humidity within the cloud, we cannot draw any 

conclusions about this aircraft-icing hazard within or around the dendritic growth zone. 

However, this hydrometeor classification algorithm could be used in concert with aircraft 

observations and cloud radar data to derive a relationship between these two phenomena.   

Additionally, prolific aggregation of dendritic crystals (not plates) can enhance surface 

precipitation rates and delay or prevent complete melting if snowflakes become very large and 

the temperature inversion is weak (Kennedy and Rutledge 2011, Thériault et al. 2006). The 

prevalence of semi-melted particles below the melting layer in subfreezing temperatures also 

promotes the production of ice pellets as opposed to freezing rain, which have drastically 

different socioeconomic impacts. In this way, the dominant ice crystal habit aloft is very 

important for discerning the surface precipitation type (Rauber et al. 2001). 
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5.3 Hydrometeor classification between rain, freezing rain, and sleet  

Homogeneous populations of rain, freezing rain, or sleet cannot be distinguished with 

radar alone because the ranges of expected polarimetric radar (PR) variables derived from 

electromagnetic scattering simulations significantly overlap. While ZH, ZDR, and KDP should 

decrease from rain to freezing rain, and especially from rain to sleet because of the combined 

effects of decreased density, decreased dielectric factor, and more irregular fall behavior, these 

lower magnitude PR values could simply be attributed to light rain (Kumjian and Ryzhkov 

2010). Freezing rain is only rain that glaciates on the ground, so radar identification of this 

hydrometeor type is futile. Atmospheric soundings are used in this algorithm to indicate whether 

freezing rain or sleet might be possible where T < 0°C below the melting layer. 

However, observations from this study document that a dual-polarized radar with high 

spatial resolution can accurately identify the transition from liquid drops to ice pellets. Persistent, 

robust !HV, ZDR, and ZH patterns occur in a horizontally oriented fashion just above the ground. 

These signatures extend over the exact depth of the surface cold layer indicated by atmospheric 

soundings only during times when sleet is reported by automated surface observing stations 

(ASOS). KDP did not exhibit persistent meaningful trends in this region, but sometimes showed a 

positive enhancement where ZDR also increased. A finer-scale KDP calculation methodology is 

needed to capture the true refreezing trend of this variable. 

It is hypothesized that this refreezing signature is produced by a modulation of the drop 

size distribution such that smaller drops freeze into ice pellets first (Thériault et al. 2006). The 

diversity between large, oblate, liquid drops and small, ice pellets could create the noticeable 

reduction in !HV. Since these frozen particles will have slightly lower density, a lower dielectric 

factor, and will tumble as they fall, their contribution to ZDR and ZH may be effectively masked in 
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the presence of the larger, unfrozen particles which primarily determine ZH and ZDR. Ice pellets 

can grow both by refreezing of individual drops as well as collisions between ice pellets with 

nearby supercooled liquid drops. The latter process leads to a local reduction in total number 

concentration (Thériault et al. 2010). Combined with the lower dielectric factor of ice, this may 

help explain the reduction in ZH often seen below the initial ZH maximum as well as the 

relatively low magnitude change in ZH altogether. !HV and ZDR are independent of number 

concentration so their trends are observed to continue toward the surface so long as the freezing 

induced size-sorting process continues. These refreezing signature hypotheses should be tested 

with a bin microphysical model, in-situ observations, and more detailed electromagnetic 

scattering simulations. More detailed analysis of other mixed-winter precipitation systems should 

be conducted to determine whether the refreezing signature tends to precede, coincide, or appear 

after sleet is reported at the ground.  

 

5.4 Melting layer variability during transition from freezing rain to sleet 

Fall speed spectra from vertically pointing radars and the melting layer detection 

algorithm for scanning radars both captured the melting layer variability during the transition 

from freezing rain to sleet. With higher spatiotemporal resolution than soundings or model 

output, these radar analysis methods helped reveal the production of a deep isothermal layer due 

to microscale latent heating/cooling effects (Stewart et al. 1992, Heymsfield et al. 2004). Vertical 

bright band structures, associated with a surface precipitation type transition where the melting 

layer intersects the ground, were also frequently observed. These melting layer trends could be 

used as indicators of microphysical processes in a more sophisticated hydrometeor classification 

algorithm or at least consulted in a nowcasting decision process.  
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5.5 Suggestions for future algorithm development and applications 

A more advanced hydrometeor classification algorithm with two-dimensional 

membership beta functions (Zrnic et al. 2001) and texture fields (Ryzhkov et al. 2005) that 

emphasize the spatial variability of dual-polarimetric fields could improve the automatic 

detection of wet snow and is most likely necessary to automatically detect the refreezing process. 

In addition to the suggestions already presented, planned future work with this algorithm 

includes the development of a graupel category as well as testing during lake-effect snowstorms 

with the Valparaiso University C-band polarimetric radar and cases when plate crystals were 

known to occur. These next steps would improve the algorithm for applications in the 

operational sector. Methodologies developed here can also be applied to a multiple-wavelength 

hydrometeor classification algorithm for radars that operate simultaneously at more than one 

frequency and for various radars that are collocated. X-band radars are more prone to attenuation 

as well as non-Rayleigh scattering effects and cannot sense hydrometeors at as far ranges from 

the radar as S-band systems. However, shorter wavelength radars are more sensitive to 

meteorological fluctuations in the differential propagation phase and therefore the specific 

differential phase. For these reasons, a dual-wavelength HCA would help capitalize on the 

strengths of each operating frequency demonstrated in this thesis and previous studies. 

Furthermore, the horizontal wind fields from the CASA radars could be used in a triple-

Doppler wind synthesis to derive vertical velocities in clouds with and without organized regions 

of dendrites (Dolan and Rutledge 2010). This could possibly help verify whether a critical 

updraft speed is necessary for prolific dendritic crystal growth (Auer and White 1982, Rauber 

and Tokay 1991). The subtle updrafts within the dendritic growth zone could also be studied 

with vertically pointing radar data when the ascending velocity exceeds crystal terminal velocity. 
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Finally, information about the distributions and frequencies of various hydrometeor types gained 

from this algorithm could be used in the future to enhance ice water content calculations, 

quantitative precipitation estimation, and numerical modeling parameterizations (Vivekanandan 

et al. 1994, Mitchell 1996, Cotton et al. 2011).  
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