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ABSTRACT OF DISSERTATION 

IMPROVING SOFTWARE MAINTAINABILITY THROUGH 

ASPECTUALIZATION 

The primary claimed benefits of aspect-oriented programming (AOP) are that 

it improves the understandability and maintainability of software applications by 

modularizing cross-cutting concerns. Before there is widespread adoption of AOP, 

developers need further evidence of the actual benefits as well as costs. Applying 

AOP techniques to refactor legacy applications is one way to evaluate costs and 

benefits. 

Aspect-based refactoring, called aspectualization, involves moving program code 

that implements cross-cutting concerns into aspects. Such refactoring can potentially 

improve the maintainability of legacy systems. Long compilation and weave times, 

and the lack of an appropriate testing methodology are two challenges to the aspec­

tualization of large legacy systems. We propose an iterative test driven approach for 

creating and introducing aspects. The approach uses mock systems that enable aspect 

developers to quickly experiment with different pointcuts and advice, and reduce the 

compile and weave times. The approach also uses weave analysis, regression testing, 

and code coverage analysis to test the aspects. We developed several tools for unit 

and integration testing. We demonstrate the test driven approach in the context of 

large industrial C + + systems, and we provide guidelines for mock system creation. 
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This research examines the effects on maintainability of replacing cross-cutting 

concerns with aspects in three industrial applications. We study several revisions of 

each application, identifying cross-cutting concerns in the initial revision, and also 

cross-cutting concerns that are added in later revisions. Aspectualization improved 

maintainability by reducing code size and improving both change locality and concern 

diffusion. Costs include the effort required for application refactoring and aspect 

creation, as well as a small decrease in performance. 

Michael Mortensen 
Department of Computer Science 
Colorado State University 
Fort Collins, Colorado 80523 
Summer 2009 
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Chapter 1 

Introduction 

Aspect-oriented programming (AOP) [40] provides a new construct, an aspect, to 

modularize scattered and tangled cross-cutting code. A concern is cross-cutting if 

it is called by or affects A cross-cutting concern is a feature, such as logging or 

synchronization, that is called by or affects many separate 

Typically an aspect combines advice - functionality to be woven into primary 

code - and a point-cut, which identifies the locations in the primary code, called 

joinpoints, where the advice is executed. Advice can be specified as before, after, or 

around advice: before advice executes before the joinpoint, after advice executes after 

the joinpoint, and around advice executes instead of the joinpoint but can execute the 

original joinpoint. The aspects are woven into the primary code by a preprocessor, 

compiler, or run-time system. 

Aspectualization is the process of refactoring an application by moving code that 

implements cross-cutting concerns into aspects. Aspectualization is intended to im­

prove design structure by modularizing cross-cutting code concerns [32]. We propose 

a test driven approach to aspectualize legacy systems. The approach addresses the 

challenges of long compile and weave times and lack of systematic testing techniques. 

We use mock systems to quickly prototype and validate aspects before weaving the 

aspects into a large system. Our approach tests aspects both at the unit level (with 

mock systems) and the integration level (with the whole system). We analyze the 
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weaving process and apply coverage criteria to test the aspects, and use existing 

system regression tests for integration testing. Our tools leverage information gener­

ated during weaving to automate this approach. We demonstrate the approach with 

examples of aspectualizing large C + + systems using AspectC++ 1. 

Aspectualization is intended to benefit the understandability and maintainability 

of the application. The primary goal of our study is to evaluate the effects of aspects 

on program maintainability. A secondary goal is to measure other costs of adopting 

AOP, including performance, testability, and defect introduction. A key goal of our 

study is to evaluate the effectiveness of using mock systems as a test-driven approach 

for aspectualizing legacy systems. 

Maintenance of legacy applications consumes more time and resources than any 

other part of the software lifecycle [75]. This research evaluates the costs and benefits 

of refactoring existing legacy software with aspects. Replacing a concern that is scat­

tered in many code locations with a single aspect can potentially reduce the number 

of changes during maintenance. For example, features such as caching, logging, and 

tracing typically require code to be scattered across many classes in many files, but 

this scattered code can be modularized as a single concern in one file using aspects. 

However, there are consequences associated with using aspects. Aspect pointcuts 

may be fragile, relying on naming conventions or program structures that can change 

over time. Maintenance changes that conflict with constructs used by pointcuts may 

introduce defects [41]. There are also one-time costs from restructuring a program 

to use aspects, including the cost of creating the aspects and removing the scattered 

code that is replaced by aspects. 

http://www.aspectc.org 
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Prior studies of costs and benefits of aspectualization focus on systems created 

as research projects [42], on only one revision [17, 42], or on a preselected set of 

aspects [10]. In this research we evaluate the maintenance of three legacy industrial 

applications by refactoring multiple cross-cutting concerns and follow the evolution 

across several revisions. In addition, we also refactor additional cross-cutting concerns 

that occur only in later revisions of the applications. 

We compare the aspectualized and original version of the applications as they 

evolve over six revisions in one application, seven in another application, and three in 

the third application. Our study demonstrates the types of cross-cutting concerns that 

occur in existing applications, and measures the costs and benefits of re-engineering 

these applications to adopt aspects. Because the applications were developed in the 

same application domain, some of the identified aspects were used in more than 

one application. For those aspects, we compare the benefits (e.g., code savings) in 

each application. For each aspect, we report the size of each mock system and time 

spent developing it. We also describe guidelines for creating mock systems during 

aspectualization. 
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Chapter 2 

Background 

We provide a brief overview of topics, including aspect-oriented programming, object-

oriented frameworks, refactoring and test-driven development. 

2.1 Aspect-oriented Programming 

Aspect-oriented programming has emerged as an approach for designing and imple­

menting complex systems, particularly for handling cross-cutting concerns that affect 

many modules. Over three decades ago, Parnas advocated modularity for the sake of 

changeability, independent development, and comprehensibility [62]. To illustrate the 

benefits of modularity, Parnas showed two different ways to divide the same system 

into modules. His work also illustrates a potential limitation of modular systems: 

designers have to choose how (from several possibilities) to modularize a system, and 

doing so forces them to model everything else in terms of this dominant decomposi­

tion. Tarr et al. [68] call this problem "the tyranny of the dominant decomposition". 

Kiczales et al. [38] state that "the central idea of AOP is that while the hierarchical 

modularity mechanisms of object-oriented languages are extremely useful, they are 

inherently unable to modularize all concerns of interest in complex systems". Aspect-

oriented systems extend procedural and object-oriented systems to explicitly model 

system concerns that crosscut the modularity of the system, with independent core 

concerns implemented in the existing language structure of classes and procedures. 
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The most popular aspect-oriented programming language is AspectJ, which is an 

aspect-oriented extension to the Java programming language [44]. AspectC+-1- is 

based on the syntax and semantics of AspectJ but uses the C + + language [49]. Key 

features of aspect-oriented languages include pointcuts, advice, introductions, and 

dynamic context capturing. Each of these features will be briefly described. 

Aspects typically contain constructs, known as advice, that are invoked at specific 

points of execution. Advice is analogous to methods of a class, but rather than being 

invoked directly, advice is associated with parts of the underlying C + + program (such 

as method calls or constructor invocations) [39]. There are three kinds of advice: 

before advice, after advice, and around advice. Before and after advice run, as the 

names suggest, before or after the associated method/constructor call, but around 

advice is called instead of the associated method, although around advice can choose 

to call the associated method using proceed [18]. 

The parts of the underlying program that can have advice associated with them 

are known as joinpoints. The joinpoints of a C + + program available to an aspect 

in AspectC++ include method and constructor invocations (at either the call site or 

execution site). In addition, AspectC++ provides reflection mechanisms to allow run­

time examination of the environment in which advice is being run [72]. A pointcut 

expression in an aspect specifies the joinpoints that a particular piece of advice will be 

associated with [49]. Pointcuts provide a form of "quantification" over the underlying 

program, since they allow specifying many joinpoints using a single expression that 

can use regular expressions (e.g., all methods matching Queue.get*) as well as class 

hierarchies (all methods matching ge t* that are part of the Queue class or a Queue 

subclass) [22]. 

Filman and Friedman [22] defined aspect-oriented programming in terms of quan­

tification and obliviousness, stating that "For true AOP, we want our system to work 

with oblivious programmers - ones who don't have to expend any additional effort 
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to make the AOP mechanism work." However, experience in using aspect-oriented 

programming has uncovered problems with obliviousness. One example of a lack of 

obliviousness is the occurrence of fragile pointcuts [41], which are pointcuts with high 

name-based coupling between aspects and core concerns. Faults related to fragile 

pointcuts may be introduced by non-local changes during maintenance. 

In addition to modifying an underlying program through advice, aspects can in­

troduce additional methods and data members to classes. New data members can 

track additional object-specific information (e.g., mutually exclusive locking state). 

Another example application of aspects is adding shadows to a graphical display sys­

tem, and associating a PointShadow object with each Point object [78]. Method 

introductions can define completely new members, or override an inherited method. 

If a class is a base class for other classes in a system, changes to its virtual (inher­

ited) methods will affect the class and its child classes. The effect on the system of a 

method definition (or redefinition) in a class hierarchy is termed binding (or dynamic) 

interference [66]. 

While most AspectC++ features can be realized by compile time analysis and 

code generation during a process known as weaving [39], AspectC+-1- also allows for 

specifying control-flow specific matches. The cf low construct is "evaluated at runtime 

and returns all joinpoints where the control flow is below a specific code joinpoint"; 

this is done using the call stack (control flow) of the program. Example uses of cf low 

include discriminating between calls to a method from inside a part of an application 

and associating advice code with the outermost call to a recursive function [49]. 

Development aspects, such as tracing or debugging, are used when testing and 

debugging software but are not part of a final shipped product [37]. Aspects that are 

used in production, such as logging or reporting errors in method parameters, may 

be observers or spectators since they do not modify the program state and since the 
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program still functions without them [15]. By contrast, other aspects are assistants 

that provide essential functionality of a delivered application [15]. 

2.2 Object-oriented Frameworks 

The three legacy applications we aspectualized use a common object-oriented frame­

work. An object-oriented framework is a set of related, cooperating classes targeted 

toward solving a problem in a particular domain. The framework classes define 

responsibilities, collaboration relationships between classes, and the thread of con­

trol [25]. Object-oriented frameworks have been in wide use since the 1980s and con­

sist of collections of collaborating, extensible class hierarchies. Fayad and Schmidt list 

four main benefits of using frameworks in building systems: modularity, reusability, 

extensibility, and inversion of control [63]. 

Middleware is often provided to application designers as an object-oriented frame­

work. Zhang and Jacobsen [76] identify five major architectural elements of middle­

ware systems, and then define aspects of middleware systems as "abstractions or 

implementations that crosscut any of these major architectural components". They 

refactored a CORBA middleware system to show that the middleware services can be 

provided as an aspect-based system [76]. Unlike Zhang and Jacobsen, our work evalu­

ates the effectiveness of using an aspects in conjunction with the original (unmodified) 

framework rather than refactoring the framework. Also, our research studies the im­

pact over time to the framework-based applications. 

2.3 Refactoring 

Refactoring is a process of restructuring software to improve its design. The focus is 

on improving modularity, understandability, and maintainability through a series of 

small behavior-preserving steps (which are termed refactorings). Because refactoring 

emphasizes behavior-preserving steps, testing is a critical step to check for unexpected 

7 



changes in the system. Problems in existing code that are candidates for refactoring 

are called smells; examples include duplicated code, long methods, and parallel in­

heritance hierarchies. These code smells are eliminated by applying one of the more 

than 75 refactorings presented by Fowler [23]. 

Just as Opdyke[61], Beck [8], and Fowler [23] have cataloged common refactorings, 

AOP techniques can also be used to refactor existing systems. Advocates of aspect-

oriented programming have enumerated AOP-based refactorings and evaluating the 

associated benefits and costs [43]. Coady and Kiczales [17] demonstrated the benefits 

of using aspects in operating system code by implementing four modules as aspects 

in an early version of FreeBSD and then observing the changes to those modules as 

they introduced the changes from two subsequent versions. 

Hannemann and Kiczales [32] implemented the original 23 design patterns [25] 

in Java and Aspect J and found that 17 of the patterns had improved code locality, 

reusability, composability, and unpluggability. Hannemann and Kiczales define un-

pluggability and pluggability as the ability to easily switch between using and not 

using a particular part of a design pattern in a system. A design is both pluggable 

and unpluggable if a component can easily be used or left out without major changes. 

Hannemann and Kiczales use locality to indicate that all code for a concern is im­

plemented an aspect. Reusability indicates that an aspect can be used in multiple 

instances of a design pattern, while composability means that a class may participate 

in multiple aspect patterns. 

They implemented tools to automate some of these refactorings, and demonstrated 

these tools on the JHotDraw application, which has over 240 user defined types and 

15,000 lines of code [30]. More recently, Garcia et al. [26] also measured the impact of 

using aspects to implement the original 23 design patterns, and found that most design 

patterns had better structural software properties, such as cohesion and coupling. 
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The aspect-oriented design patterns previously described [26, 32] were evaluated 

on a single system, not over time as changes were made. Coady and Kiczales did 

not single out design patterns in their research on changes to operating system code 

over time, but they used aspects and measure them over time, and reported that 

change proneness was improved by using aspects [17]. Our research uses a time-

based approach like Coady and Kiczales but we apply it to a set of framework-based 

applications that change over time. 

2.4 Test Driven Development 

In order to test code during development, approaches such as Test Driven Develop­

ment (TDD) advocate creating unit tests before the functional code is written [24, 35]. 

Creating unit tests up front provides an executable specification for each module and 

ensures that all code has tests to verify functionality. Using tests to drive develop­

ment also avoids scope creep the tendency to add extra functionality that is not 

needed - since the focus of development is on writing only the code needed for tests 

to pass. The unit tests are added to the system as annotated test classes and test 

methods. Test frameworks such as Cpp-Unit [1] and JUnit [2] are used to specify 

and execute unit tests. Before refactoring legacy code, unit tests should be created 

to avoid introducing errors [23]. 

To emulate a complex system dependency, test driven development may use a 

mock object (or mock) in place of the real object [5]. Mock objects are similar to 

stubs used in testing, but emulate a class or interface, and may provide some basic 

checking, such as the validity of argument values. 

We use two key ideas from test driven development: mock objects and using tests 

to drive development. The use of mock objects provides a context for creating and 

testing aspects. It is easier to weave a candidate aspect into a mock object than into 

a large system. Creating the mock system for testing aspects is similar in intent to 
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creating test classes and methods when using test driven development. By defining a 

way to unit test aspects, we can have confidence in aspects when we introduce them 

into a legacy system. 
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Chapter 3 

Related Work 

Other researchers are studying the challenges and benefits of using aspects. In this 

chapter, we present related work on aspects and maintainability, aspect mining, and 

aspect testing. 

3.1 Aspects and Maintainability 

Coady and Kiczales [17] evaluated aspects and modularity by refactoring four cross-

cutting concerns as aspects in revision 2 of FreeBSD. They reported several change 

metrics, such as the number of source code locations, functions, files, and sub­

directories that required modifications in the original and aspectualized versions of 

the code. They also reported finding additional benefits, including more localized 

change and reduced redundancy of scattered concern code. Our use of the source 

code repository of an existing application is similar to theirs, but we consider three 

applications rather than one, and we follow the changes across more revisions. We 

use similar measures, although we do not include directory change locality. Coady 

and Kiczales measured the number of source code locations (i.e. blocks of code) that 

change, which would correspond to changes in concern diffusion that we measured. 

In addition, we do not restrict the focus to the set of aspects identified in the first 

revision, but also look for additional aspects in subsequent revisions. 
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Kulesza et al. [42] created two versions of the same design as part of their re­

search, where one is a Java-based object-oriented application and the other uses 

Java and AspectJ. To create a second revision, they carry out a set of maintenance 

tasks, comparing the changes made in the three applications. They reported that 

aspects improve maintainability by improving cohesion and by reducing the number 

of changes. Our study differs by using legacy applications as candidates for aspectu-

alization, and also by evaluating the effects over many revisions rather than two. In 

addition, the revision differences we consider are based on actual source code changes 

and not high level design changes. Since we use legacy applications, our results also 

indicate what types of aspects occur in real applications, which avoids the bias of 

creating an application after having been exposed to aspect-oriented programming. 

Bruntink et al. [10] refactored a cross-cutting concern that implements the return 

code idiom in a large (15 million LOC) application. However, their focus is on the 

variability of this idiom and the challenges that occur during aspectualization. Rather 

than focusing on a single concern in one application, in this research we focus on 

multiple aspects across multiple revisions of legacy applications. 

Ceccato and Tonella [69] extended the object-oriented metric suite of Chidamber 

and Kemerer [14] for aspect-oriented software. These metrics differ from ours by 

focusing on coupling at the class and aspect level, while we focus on differences in 

measures such as size and change-proneness. In addition, our study comprises three 

legacy applications over multiple revisions, while their validation of the metrics was 

performed using two implementations of the observer pattern. 

Griswold et al. [29] refactored HyperCast, a large Java application for multicast 

networks, using AspectJ. They encountered difficulty in specifying pointcuts that 

would match the state-machine of HyperCast because they needed to specify mul­

tiple points within a method. They reported that many pointcuts were too tightly 

coupled to names, so that changes to primary classes would break them. They re-
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ported two types of development problems. First, the tight coupling between aspects 

and method names prevented the development of aspects in parallel with primary 

code refactoring because the aspects could only be developed after inspecting the 

core concerns. Second, they encountered cases where joinpoints were not accessible 

because the language (Aspect J) supports specifying joinpoints at the method call level 

and data member level, but not at the i f or switch statement level [67]. They pro­

pose the use of cross-cutting interfaces to improve the modularity of aspect-oriented 

applications, avoid fragile pointcuts, and enable parallel development of aspects and 

classes. 

Figueiredo et al. [21] studied the benefits of AOP in the context of software prod­

uct lines applications that are deployed on different hardware platforms. They 

consider two product lines and evaluate several revisions. Although they also evalu­

ate modularity and find that aspects provide benefits during maintenance, they focus 

on design stability of the product lines - how change impact, modularity, and de­

pendencies between components are affected when providing variations of the same 

application for different hardware targets (where some features are enabled and oth­

ers are disabled). They also consider multiple revisions, and report that aspects had 

positive impact. However, in the context of product lines, they reported that aspects 

provided better design stability only for optional or alternative features, and did not 

perform as well for required features. 

Bartsch and Harrison [6] created two online shopping applications, and had groups 

of subjects perform maintenance tasks on one of two separate applications, which were 

intended to be equally difficult to modify. Subjects performed tasks on one of the ap­

plications and completed a survey, which included information about how long certain 

tasks took. Bartsch and Harrison reported that the results appeared to slightly favor 

the object-oriented approach over the aspect-oriented approach. Although the test 

subjects were software professionals, the application was not an industrial application 

13 



and the same tasks were evaluated repeatedly, rather than evaluating maintenance 

over multiple revisions. 

Tsang, Clarke, and Baniassad [71] extended the Chidamber and Kemerer metrics 

and compared two real-time applications, one creating using real-time Java exten­

sions and the other created with Java and Aspect J. They did not aspectualize an 

application, but instead compared metrics of two applications to determine strengths 

and weaknesses of aspect-oriented programming. They found that aspects improved 

modularity by reducing coupling and cohesion. However, aspects increased metrics 

such as weighted metrics per class, since a method in an object-oriented application 

often corresponded to a method plus associated advice in the aspect-oriented appli­

cation. Our study uses metrics to compare three applications, but we compared an 

aspectualized application to its original. We focus on maintainability metrics such 

as size, change-proneness, and concern diffusion, and did not specifically measure 

coupling and cohesion. 

Hoffman and Eugster [34] aspectualized three Java applications, measuring cou­

pling, cohesion, size, concern diffusion, and the number of reusable operations. Al­

though their study considered multiple applications, they did not focus on maintain­

ability over multiple revisions. Instead, they compared Java, Aspect J, and a new 

language mechanism they proposed, explicit join points, in order to provide reusable 

aspects that were modular without the problems found with obliviousness. Their 

study focuses on evaluating and improving aspect-oriented languages, while we focus 

on how aspectualization can improve maintainability. 

3.2 Aspect Mining and Refactoring 

Aspectualizing involves finding crosscutting code, in a process called aspect mining, 

followed by refactoring. 
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Coady and Kiczales [17] refactor legacy operating systems written in C to use 

aspects. Two main criteria identify the aspects: intent and program structure. They 

report that using aspects helps to localize changes, reduces redundancy, and improves 

modularity. These benefits are realized with negligible performance impact. They 

found that aspects helped avoid brittleness, where a single functional change required 

many changes or introduced bugs in other parts of the system [18]. 

Some system-wide properties, particularly extra-functional properties such as per­

formance, synchronization or memory usage, occur because of architectural decisions 

that affect all modules; they are emergent properties that arise out of the collection of 

components. Lohmann et al. [50] propose the use of domain analysis, which produces 

feature diagrams, which guide the design of an architecture-neutral system. This ap­

proach allows aspects to be woven across multiple modules to configure non-functional 

properties. 

Hannemann, Murphy, and Kiczales [33] refactor cross-cutting concerns by identi­

fying roles performed by system components. Roles are mapped to design patterns 

and aspects using a tool that automates the transformation of the system from Java 

to AspectJ. Rather than identify component roles, we examine the code for scattered 

code fragments. 

One can use aspects to modularize framework-related code in applications that 

use frameworks. Our intent is similar to that of Ghosh et al. [27, 28], who differen­

tiate between business logic and code that interacts with middleware services, and 

implement middleware-related code with aspects. In a similar manner, as we an­

alyze framework-based code in separate applications, we identify aspects based on 

common infrastructure tasks, such as logging and event-handling. A study redesign­

ing the PURE operating system with AspectC+-1- explored multiple aspect-oriented 

changes [52]. Better solutions were obtained when the components and aspects were 
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designed together, since pointcuts in the aspects need to refer to structures within 

the components. 

Tonella and Ceccato [69] empirically assess aspectizable interfaces in the Java 

Standard Library. They use aspects to implement secondary concerns of classes and 

interfaces such as serializability or participation in a role of a design pattern (e.g., 

observable). They report that using aspects improves maintainability and under-

standability. We also seek to implement secondary concerns as aspects, but our 

refactoring is done within applications rather than in a framework or library. 

Marin, Moonen, and van Deursen [53] identify and use fine-grained refactoring 

types to identify and classify refactorings. A refactoring type documents a concern's 

intent, its typical idiomatic implementation without aspects, and an aspect-oriented 

mechanism to implement the concern. We also identify aspects based on intent and 

idiomatic implementation. 

Clone detection techniques [7] can also identify cross-cutting concerns. Bruntink 

et al. [13] evaluate the effectiveness of clone detection software in identifying cross-

cutting concerns in legacy C software, and report that error-handling code and pa­

rameter checking code were easiest to automatically identify. 

Older programming languages, such as C, do not explicitly support exceptions. 

Instead, they typically rely on an idiomatic approach for signaling and handling ex­

ceptions. One common idiomatic approach is the return code idiom [12], in which a 

special return code signals that an exception has occurred. Even though C+-1- sup­

ports exceptions, C + + code may rely on legacy code and libraries that are written in 

C and use the return code idiom. Common programming idioms, such as the return 

code idiom, result in code scattered throughout an application to check the return 

values of function calls, such as C system calls. An aspect allows replacement of 

this checking code with advice that executes after the function calls and throw an 

exception whenever a return code indicates an error. 

16 



3.3 Challenges of Testing Aspects 

Douence et al. [19] explore techniques to reason about or specify aspect-oriented 

systems to better understand the effects of aspects on the system. In general, complete 

verification of aspect behavior is not practical. Thus, we focus on improved testing 

techniques. 

Alexander, Bieman, and Andrews [3] describe a key problem related to testing 

aspects: aspects depend on weaving and do not exist independently, and are often 

tightly coupled to the context to which they are woven. Thus, aspects cannot be 

unit tested in isolation, but can only be tested in conjunction with the core concerns 

that they are woven with. We weave aspects with the core concerns in the mock 

system, and use the mock system method calls to provide unit testing of the woven 

functionality. 

Aspect-oriented programming can also introduce new faults, by way of faulty 

advice code or faulty pointcuts [3]. Existing AOP testing approaches focus on aspect-

specific faults [45, 54], or on coverage criteria to provide adequate testing of aspects in 

the context of a system. Proposed coverage criteria for aspects are based on dataflow 

coverage [77], path coverage [46], and state-based coverage [74]. Dataflow and path 

coverage require program analysis that is beyond the scope of our work. Our legacy 

systems do not have state diagrams to guide state-based testing. However, we do 

measure coverage of joinpoints matched by a pointcut, as described in Section 4.2. 

Zhou, Richardson, and Ziv [79] use an incremental testing approach in which 

classes are unit tested, aspects are tested with some classes, and then aspects are 

integrated one at a time with the full system. Test case selection forces the execution 

of specific aspects. Using our approach, iterative test cycles are applied to the mock 

system rather than the full system. Rapid iterations are achieved because the mock 

system and aspects can be compiled and woven in a small fraction of the time required 

to compile and weave the full system. 
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Lesiecki [47] advocates delegating advice functionality to classes, so that the classes 

used by advice can be unit tested directly. This is similar to the language approach 

of JAML [51], which implements aspects as classes that are woven by XML specifica­

tions. Lesiecki uses mock objects and mock targets to help unit test aspects and uses 

visual markup in the Eclipse Integrated Development Environment (IDE) to verify 

that pointcuts affected the expected program points. A mock target is similar to our 

concept of a mock system. However, a mock target is created from an aspect to unit 

test pointcut matching. By contrast, our mock systems are created from the real 

system based on how we expect aspects to be used in that system. 
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Chapter 4 

Aspectualization using Mock 
Systems 

We use the following steps [59] to aspectualize the original applications: 

1. Identify a cross-cutting concern that can be refactored as an aspect. 

2. Create a small mock system to iteratively develop and unit test a prototype 

aspect. The mock system mimics the program structures in the application (or 

real system) that the aspect must interact with. 

3. Refactor the application to use the aspect by removing duplicate or cross-cutting 

code from the application and then weaving the aspect. 

4. Conduct integration testing of the refactored application by executing the re­

gression tests. 

Figure 4.1 illustrates the approach. In the second step, developers use the mock 

system to iteratively experiment with alternative aspect pointcut specifications and 

advices to test that they correctly modularized the cross-cutting concerns. The point-

cut specifications must have the correct strength [3] so that they match all (and only) 

the desired joinpoints in the mock system. The intent is for the pointcut to match the 

desired joinpoints in the real system. Mock systems contain a small main() function, 

as well as class and function stubs to provide targets for pointcuts and to provide just 
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enough structure and functionality for the advice to interact with. In contrast to the 

application, which may have thousands of lines of code, mock systems often contain 

fewer than 100 lines of code. 

Creating and debugging aspects often requires developers to iteratively identify, 

develop, integrate, and test aspects. Thus, the steps may be repeated as needed. 

Problems encountered during integration may result in changing an aspect and re-

testing using the mock system. We describe each of the four steps in Sections 4.1 

through 4.4 below. 

4.1 Identifying Aspects in Legacy Systems 

The legacy systems we aspectualized consist of three VLSI CAD applications which 

are all based on a VLSI CAD framework [56]. We identify aspects in the system to 

factor out scattered identical or similar code, to enable fast debugging, and to provide 

automatic enforcement of system-wide policies. 

Like Coady and Kiczales [17], we use intent and structure as a primary means to 

identify aspects. We look for features that crosscut modules or provide the means 

(intent) to deal with crosscutting concerns (such as callbacks and mixins). For ex­

ample, we identify policies based on the design intent of a base class and scattered 

code in methods of its sub-classes. We also refactor system-wide concerns that affect 

performance and architectural decisions such as caching and system configuration, 

following the approach of Lohmann et al. [50]. 

We use aspects to modularize cross-cutting application code that uses framework 

methods and data structures. Since our example systems are framework-based, we 

seek candidate aspects such as code repeated when using the framework, or common 

idioms associated with parts of the framework. 

Due to a lack of appropriate tools for C + + code, we identify aspect candidates 

using manual inspection of source code, simple textual approaches such as grep, and 
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a tool we developed that identifies concerns based on word sets after function and 

method calls. We describe our concern identifier in Chapter 5. 

Because cross-cutting code typically involves many files and classes, code browsers 

and Unix utilities such as grep help to identify similar or related code. Aspect-mining 

tools that fully parse a program are a better long term approach [31]. In addition to 

using our own concern identifier tool, we use the CCFinder [36] clone detection tool. 

4.2 Using Mock Systems to Create and Unit Test 
Aspects 

In this step we aim to produce aspects with pointcut specifications and advice that 

will work correctly in the real system. Each identified cross-cutting concern is imple­

mented as an aspect. 

A mock system consists of functions and classes that implement a simple program 

with similar program structure and behavior as the real system, but on a much smaller 

scale: hundreds of lines of code (LOC) instead of tens of thousands. A mock system 

contains joinpoints that mimic the real system. The pointcuts are defined to match 

the mock system structure. We create the mock system by copying or implementing 

the subset of classes, methods, and functions in the real system that are relevant to 

an aspect. The methods and functions need only implement enough functionality for 

the mock system to run the test. The mock system may use assertions to aid in unit 

testing the aspect. Guidelines for this process are in Chapter 7. 

The overall goal of unit testing is to test that (1) the pointcuts have the correct 

strength and (2) the advice is correct. During test execution of the woven mock 

system, we aim to achieve joinpoint coverage and mock system statement coverage. 

Joinpoint coverage requires executing each joinpoint that is matched by each aspect. 

Thus, joinpoint coverage focuses on testing each aspect in all of the contexts where 
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it is woven. We use statement coverage to identify any mock system code that was 

not executed. 

To meet the goal of correct pointcut strength, we analyze the weave results to 

identify unused advice. In addition, for each advice of each aspect, we annotate some 

methods or functions in the mock system to indicate whether or not they should be ad­

vised. We use four types of annotations: ADVISED, NOT_ADVISED, ADVISED_BY(name), 

and NOT_ADVISED_BY(name). These annotations express the design intent — whether 

or not a core concern is expected to have advice that matches it. The name argument 

can be used to indicate a specific aspect that should or should not advise a method. 

We check whether the annotated methods had the expected advice (or lack or ad­

vice), depending on the annotation. One advantage that our annotations provide is 

that they are checked right after weaving, and do not depend on running the mock 

system. 

We use three support tools: weave analysis, advice instrumentation, and coverage 

measurement. Weave analysis evaluates pointcut strength, while advice instrumen­

tation and coverage analysis check that advice is tested in all contexts (joinpoints), 

supporting the goal of specifying correct advice. These tools are described in Chap­

ter 5. 

4.3 Removing Cross-Cutting Code 

Once we complete unit testing of the woven mock system, we apply the aspects to 

the real system. Refactoring involves removing scattered code, and may also involve 

restructuring or renaming core concerns so that pointcut statements can match the 

desired joinpoints in the program. The aspects are then woven with the refactored 

system. 

In most cases, the aspect pointcut does not need to be changed. However, some 

aspects, such as caching, define a pointcut as a list of all functions to cache. When 
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we use such aspects with the real system, the pointcut must change to reflect each 

cached method from the real system. 

4.4 Integration Testing of Refactored System 

This step tests whether or not aspectualizing the system introduces new faults by 

running existing regression test suites. We do not seek 100% statement coverage of 

the real systems, since the regression tests do not achieve complete coverage on our 

legacy systems even without aspects. We use joinpoint coverage to verify that advice 

that we are adding has been tested in all execution contexts, and add regression tests 

if needed to achieve joinpoint coverage. 

If a regression test fails, we determine the root cause of the failure. Suspected 

root causes can be simulated in the mock system by emulating the system context 

that contained a fault or that exposed a fault in the aspect. This allows us to observe 

the erroneous behavior in the mock system and fix it before we modify, weave, and 

compile the real system. During integration testing, any unused advice is reported as 

an error. In addition, annotations (such as Advised and NotAdvised) can be inserted 

in the real system to check that aspects advise the intended core concerns. 

4.5 Mock System Examples 

We used mock systems to aspectualize 14 aspects from three legacy systems at 

Hewlett-Packard. In this section we briefly describe two of legacy systems, and then 

describe four of the aspects and the mock systems used to develop and test them. We 

use these four aspects as a running example to illustrate our approach. 

4.5.1 The Legacy Systems 

The ErcChecker is a C + + application that consists of approximately 64,400 LOC. 

It performs 59 different electrical checks. Each electrical check implements a set of 
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virtual methods as a subclass of an abstract class ErcQuery. We use aspects to mod­

ularize the enforcement of two design policies related to the ErcQuery subclasses. We 

use an aspect to implement caching for functions that calculate electrical properties 

of objects in the ErcChecker. The original code had caching functionality scattered 

in each of these functions to improve performance. 

The PowerAnalyzer is a C + + application containing 13,900 LOC that is used to 

estimate power dissipation of electrical circuits. It consists of three smaller tools and 

a libPower library with some common code. Although the PowerAnalyzer uses an 

object-oriented framework, and defines and uses C + + classes, much of it is written 

as procedural functions rather than classes and methods. 

Both the PowerAnalyzer and ErcChecker make calls to the object-oriented frame­

work API to create an in-memory graph of instances of classes from the framework. 

The graph represents circuit elements (e.g. transistors and capacitors) and the con­

nectivity between those elements (called nets or nodes). 

4.5.2 ErcChecker Policies 

The ErcChecker has two policies that each electrical check must implement. The 

policies represent a set of features that each electrical check is supposed to provide, 

which are implemented as scattered code in the c rea teQuer iesO method of each 

ErcQuery subclass. 

The first policy aspect, QueryConf ig, provides run-time configuration, which al­

lows users to disable queries at run-time via an editable configuration file. Each 

c r ea t eQuer i e sO method has similar code with the following structure: 

s t a t i c void CLASS: : c r ea t eQuer i e sO { 
if(ErcFet::getQueryConfig("CLASS")==eOff){ 

/ / r u n - t i m e use r config d i sab led t h i s query 
r e t u r n ; 

} 
/ / c r e a t e and eva lua te query o b j e c t s . . . 
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Calls to ErcFet : : getQueryConf i g ( ) are almost identical in each subclass, with 

the word CLASS above being replaced by the actual name of each subclass. Because 

C + + lacks run-time reflection, the c rea t eQuer i e sO method uses the class name as 

a literal string when calling getQueryConf i g ( ) . 

This policy is always implemented as scattered code within the c rea teQuer iesO 

method of each ErcQuery subclass. Hence, the pointcut should just be °/0: : c r e a t e ­

Quer ie sO, with the AspectC++ wildcard (%) used to match c rea teQuer iesO in 

all subclasses. The advice uses the scattered call (the call to getQueryConf i g O ) and 

either proceed to the c rea t eQuer i e sO body or return without executing it. 

The second policy aspect, QueryPolicy, implements three of the six conceptual 

steps needed by each query, but with significant variation between the queries. These 

steps are: 

1. Call framework methods to identify needed circuit data. 

2. For each relevant part of the circuit, create an instance of the query class asso­

ciated with the check. 

3. Call the executeQueryO method on the query object from step two. 

4. Add queries that result in a failure or warning to a container class. 

5. Write the results of executeQueryO to a log file. 

6. Delete queries that did not result in a failure or warning. 

Although the first three steps vary significantly between the different subclasses, 

steps four through six use the same set of method calls and always follow a call to 

executeQueryO. Thus, a single aspect can implement steps four through six using 

a f t e r advice to provide the same functionality. Since steps four through six always 

follow a call to executeQueryO, the aspect uses executeQueryO as the pointcut. 
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4.5.2.1 Using t h e Mock Sys tem for Aspec t Crea t ion and Test ing 

Since both policy aspects use the same class hierarchy, the mock system models the 

ErcQuery base class and its subclasses. We created a mock ErcQuery class and four 

subclasses with method stubs based on different types of checks, such as transistor-

based checks and net-based checks. In addition, a driver file (main.cc) creates query 

objects, calls the c rea t eQuer i e sO and executeQueryO methods, and reports suc­

cess or failure. The LevelManager singleton class stores all objects related to failures 

and reports this information, so we need a mock class for the LevelManager. 

The subclasses in the mock system contain only the method call to be advised and 

the system methods used by that method and the advice. In the mock system, the 

sub-classes of ErcQuery emulate both types of query behavior: failing due to circuit 

errors and passing due to error-free circuits. 

With the mock system in place, we created and tested the QueryConfig and 

QueryPolicy aspects. The QueryConfig advice executes around each call to the 

c r ea t eQuer i e sO method, and extracts the class name from the joinpoint informa­

tion available through AspectC+-1- joinpoint API. The QueryConfig implementation 

is shown below: 

aspect QueryConfig -[ 
po in t cu t createQuery()=execution("% °l°h'- : c rea teQuer ies ( . . . ) " ) ; 

advice createQueryO : aroundO { 
s t r i n g jpName = J o i n P o i n t : : s i g n a t u r e ( ) ; 
i n t f i r s t _ s p a c e = jpName.findC ' ) ; 
i n t scope_operator = jpName . f ind (" : : " ) ; 

s t r i n g className=jpName.substr( f i r s t _ s p a c e + l , 
s c o p e _ o p e r a t o r - f i r s t _ s p a c e - l ) ; 

if(ErcFet::getQueryConfig(className)==eOff) 
r e t u r n ; / / u s e r config e x i s t s , SKIP 

t j p - > p r o c e e d ( ) ; 
} 

} ; 
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The QueryConfig prevents the call to c rea teQuer iesO by only calling 

proceedO when a configuration does not disable a query. 

The QueryPolicy aspect uses after advice to implement the last three steps of 

the query policy for each subclass. Its AspectC++ implementation is shown below: 

aspect QueryPolicy { 
po in tcu t exec_query(ErcQuery *query) = 

execution("% %: :execu teQuery ( . . . ) " ) && t h a t ( q u e r y ) ; 
advice exec_query(query) : after(ErcQuery *query) { 

i f (gRepor tAl l | | query->errorGenerated()) { 
LevelManager::addQuery(query); 
gLog->log() « "Query e r r o r : type : " 

« query->getName() 
« " s t a r t element: " 
« query->getStartName() 
« query->getSummary() « endmsg; 

query->logQueryDeta i l s ( ) ; 
} 
e l s e { 

gLog->log() « "Query ok: " 
« query->getName() 
« endmsg; 

query->logQueryDeta i l s ( ) ; 
d e l e t e query; 

} 
} 

} ; 

The QueryPolicy aspect uses the e r rorGenera tedO method to determine if the 

query that called executeQueryO found an error. If er rorGeneratedO returns 

true, then the query is added to the LevelManager, which stores all circuit failures so 

that the user can view them. If e r rorGenera tedO returns false, the advice deletes 

the query. 

Unit testing for both aspects was driven by code in the mock system that cre­

ated electrical query objects using our ErcQuery mock classes. We annotated the 

c r ea t eQuer i e sO method of each ErcQuery subclass to check that the pointcut 

matched. Statement coverage of the mock system found dead code and an unused 
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mock class method, enabling us to make changes to achieve 100% statement coverage 

of the mock system. 

4.5.2.2 Refactoring and Integration Testing 

Introducing the aspects requires removing all code that is duplicated by the aspect. 

Since the pointcuts matched methods (executeQueryO and c rea teQuer iesO) that 

are already in the real system, we did not rename or restructure the code to provide 

targets for aspects weaving. We encountered three challenges when refactoring to use 

the query behavior policy. 

The first challenge was that replacing custom text (scattered in each query) with 

an aspect changed the output of the program. Regression tests that rely on output 

logs fail due to the now standardized output. Although the standardization should 

improve the maintainability of the ErcChecker, it does require a one-time update of 

the expected test output files. 

The second challenge results from the asymmetric nature of aspect-oriented refac­

toring: removing the scattered code must be done for each subclass (typically man­

ually), while the aspect is woven automatically into all matching subclasses. The 

QueryPolicy aspect deletes query objects that do not detect electrical errors (step 

6 in section 4.5.2). During refactoring, if the object deletion code is not removed 

from the core concern, both the core concern and the aspect try to delete the same 

object, resulting in a memory fault. When we manually removed scattered code, we 

failed to remove the deletion code from one ErcQuery subclass. Finding the root 

cause of this defect in the real system was difficult because the defect results from 

an interaction between the aspect and underlying system, and the woven code can 

be hard to understand. To confirm the suspected root cause of this fault, we created 

another ErcQuery class in the mock system that deliberately called de lete outside 

the aspect to recreate the memory fault. 
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The third challenge was that we did not anticipate some necessary changes to the 

real system and aspect when we created the mock system and the aspect. During 

refactoring, we realized that 18 of the 59 ErcQuery subclasses printed out some ad­

ditional information between steps five and six (on p. 25), which were implemented 

by the advice [56]. In order for the aspect to work with all subclasses of ErcQuery, 

we (1) added an empty method to the base class, (2) refined the method to contain 

the logging statements in the subclasses that needed this feature, and (3) modified 

the advice to call the new method. We made these change to the ErcQuery class 

hierarchy and aspect in the mock system. We tested the changes in the mock system, 

made the changes to the real system, and continued refactoring the real system. 

4.5.3 ErcChecker Caching Aspect 

Caching is a common example in the AOP literature of a candidate aspect since its 

implementation is similar across all cached functions [44, 48]. We can identify cached 

functions since they use a local static set or static map. The ErcChecker contains 

38 functions that implement similar caching code, but are in various classes and do 

not have a common naming convention. The aspect pointcut specifies a list of all the 

functions to be cached, while the advice provides the caching functionality. 

4.5.3.1 Using Mock Systems for Aspect Creation and Testing 

We created one mock system to test the caching aspect's functionality, and another 

mock system to evaluate performance. The first mock system contains methods that 

have the same types of parameters and return values as the functions to be cached 

in the real system. The mock system methods are short (1-4 lines) and return a 

value based on the argument. For example, to test caching of methods with a bcmNet 

pointer parameter, we can use the GetNetValueO method below. 

i n t GetNetValue(bcmNet *n) /*AOP=ADVISED*/ 
{ 
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r e t u r n n->GetName() . length() ; 
} 

In the mock system, we can call GetNetValueO with different bcmNet instances 

and check for the correct return value. Then, with caching added, we can check that 

we still get the correct return values. 

For aspect-oriented caching, we checked several requirements using the mock sys­

tems. First, the cache must function properly. Second, the caching aspect must work 

correctly with different data types. Third, the cache should not introduce any notice­

able performance penalty; in fact, caching should improve performance. Fourth, we 

needed a way to determine if a cached function was actually using previously stored 

values (i.e. being called repeatedly with the same value), since unnecessary caching 

adds overhead without improved performance. 

The first mock system focused on functional behavior and modeled pointers to 

complex data types and different scalar types. The mock system imported the Block-

Data component from the ErcChecker. The BlockData component populates the 

framework with data, enabling caching to be tested with framework pointers. We 

explored a number of alternative caching implementations [55] using C + + templates 

and inheritance. 

We created caching aspects for procedural functions and object-oriented methods. 

For methods, the hash key stored is the object invoking the method, while for proce­

dural functions the hash key is the function parameter. The caching aspect for pro­

cedural functions is shown below. It stores the first argument to the cached function 

( t jp ->arg(0) ) and the return value ( t j p - > r e s u l t ( ) ) . The static map defined in the 

aspect uses AspectC++ type definitions. For example, Jo inPoin t : :Arg<0>: :Type 

is the data type for the first argument to the parameter of the function that matched 

the pointcut. 

aspect AbstractFunctionCache { 
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po in tcu t v i r t u a l ExecAroundArgToResultO = 0; 
advice ExecAroundArgToResultO : aroundO { 

J o i n P o i n t : : R e s u l t * r e s u l t _ p t r = NULL; 
s t a t i c map < 

typename JoinPoint : :Arg<0>::Type, 
typename J o i n P o i n t : : R e s u l t > t heResu l t s ; 

JoinPoint : :Arg<0>::Type *arg_ptr = 
(JoinPoint: :Arg<0>::Type*) t j p - > a r g ( 0 ) ; 

JoinPoint : :Arg<0>::Type arg = *arg_ptr ; 
i f ( t h e R e s u l t s . c o u n t ( arg ) ) { 

/ / a l r e a d y have the answer, r e t u r n i t 
r e s u l t _ p t r = t j p - > r e s u l t ( ) ; 
* r e s u l t _ p t r = theResu l t s [ arg ] ; 

} e l s e { 
/ / p roceed and s t o r e t h e answer 
t j p - > p r o c e e d ( ) ; 

r e s u l t _ p t r = t j p - > r e s u l t ( ) ; 
t heResu l t s [ arg ] = * r e s u l t _ p t r ; 

> 
} 

} ; 

The AbstractFunctionCache aspect defines a virtual pointcut. To use the cache, 

a concrete aspect extends the AbstractFunctionCache and defines the pointcut as 

a list of functions to be cached. Using the mock system, we tested that the pointcut 

matched intended functions. We tested that the advice avoided recomputation when 

calls used the same arguments. The mock system contained math functions (e.g., 

Square () and SquareRootO) for which a concrete aspect was created that cached 

their values. Although the pointcut was not the same in the mock system and real 

system, the abstract aspect with its virtual pointcut is the same in the mock and real 

systems. 

Because C + + supports an object-oriented style and a procedural style, the mock 

system had class-based method calls and procedure calls, and the aspects were de­

veloped to provide both types of caching. Our approach enabled developers to easily 
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switch between a simple cache or a slightly slower cache that reported on cache usage 

for each function so we could measure if caching was actually saving computation [55]. 

We created a second mock system to compare the performance of the AspectC++ 

approach to the original C + + cache. Using command-line parameters, we could 

specify which caching implementation to use and the number of times to execute the 

cached function. Because the execution of the second mock system only executed one 

set of caching benchmarks, we were able to use the Linux time command to measure 

the CPU time for each type of caching. 

4.5.3.2 Refactoring and Integration Testing 

The only change needed to weave the caching aspects with the full system was to 

expand the pointcut of the concrete caching aspects to match all cached functions. 

We changed the pointcut by using the names of the previously identified cached 

functions. 

When we removed the original caching code from methods in the real system, we 

added an annotation to indicate that the method should be advised and added it to 

the list of functions in the pointcut. The weave analyzer checked that the pointcuts 

defined when refactoring matched the intended functions. 

4.5.4 PowerAnalyzer Debugging Aspect 

The first aspect we used in the PowerAnalyzer was a development aspect to aid 

in debugging a case of abnormal termination. A framework method in the Power­

Analyzer called e x i t O after indicating that a null pointer had been encountered. 

Calling e x i t O limits visibility when using a debugger such as gdb because the pro­

gram terminates without preserving any system state. By contrast, using a s s e r t also 

exits a program, but creates a core file with the state of the program so that the call 

stack and program state can be analyzed. 
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The error message listed the name of the framework iterator method name. How­

ever, the method was in a base class that was inherited by several subclasses, so 

there were many candidate calls in the application that may have triggered the error. 

These calls represented possible locations of the defect and cross-cut 18 locations in 

four files. 

The prior approach to debugging such problems involved adding print statements 

around all calls that could have triggered the error. This required modifying all 18 

locations in four files, finding the defect and fixing it, and removing the 18 modifica­

tions from the four files. This process is tedious and error prone. A single aspect can 

automatically provide the same tracing, using the framework iterator initialization 

as the pointcut. The advice uses AspectC++ features to print the context of each 

iterator call. 

4.5.4.1 Using t h e Mock Sys t em for Aspec t Crea t ion and Test ing 

The mock system for the debug tracing aspect calls different types of framework 

iterators as well as similarly named methods that should not be matched by the Cad-

Trace aspect pointcut. We checked that the aspect prints out tracing statements only 

before the intended iterator calls. We also reused the BlockData component from the 

PowerAnalyzer to load framework data so that we could call framework iterators in 

the mock system. 

We used our annotations to indicate which methods in the mock system should 

be advised and which should not. The weave analyzer and joinpoint coverage data 

checked that the aspect matched only the desired framework calls. 

Since all the iterators initially call a Reset 0 method, the aspect used before 

advice associated with Reset 0 iterator methods. 

aspect CadTrace { 
advice c a l l ( ' 7 . ' / . I ter: : R e s e t ( . . . ) \ " ) 
: be fore ( ) { 

c e r r « " c a l l I t e r : : R e s e t for" 
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« JoinPoint::signature0 « " at jpid: " 
« JoinPoint::JPID « endl; 

} 
} ; 

The CadTrace aspect uses the AspectC++ joinpoint method, 

Jo inPoin t : : s i g n a t u r e ( ) , to print out which iterator is called. 

4.5.4.2 Refactoring and Integration test ing 

A development aspect for tracing calls does not require refactoring the core concerns, 

so integration only requires weaving the aspect into the application code. The aspect 

worked correctly with the libPower library on the first try and the call that triggered 

the framework error was located. After weaving the aspect with the Power Analyzer, 

we ran the test that was producing the program exit failure. 

4.5.5 PowerAnalyzer Timing Aspect 

The second PowerAnalyzer aspect modularizes code that reports the status of the 

application and writes to a log file. Because execution times for VLSI CAD software 

can be long (hours or even days), a common extra-functional concern is to write time 

stamps and elapsed time to a log file. The PowerAnalyzer uses a TimeEvent class, 

which contains a method to reset the elapsed time and a method to return the elapsed 

time as a string suitable for writing to a log file. 

The aspect instantiates a TimeEvent object within the advice body and uses the 

AspectC++ joinpoint API to print the context in which the TimeEvent object is 

being used. Since the TimeEvent is used within different functions, function names 

must be used as pointcut targets. In order to avoid enumerating all functions that 

should be associated with the TimeEvent, we decided to rename methods to begin 

with tmr if they should have the timing functionality. This enables the aspect to use 

a pointcut with a wildcard to indicate "all functions beginning with tmr". 
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Modularizing the code for capturing and recording timer information into a single 

aspect provides flexibility if the TimeEvent interface changes. In addition, if a different 

timing module were substituted, only the aspect would need to change, rather than 

scattered code in the PowerAnalyzer. 

4.5.5.1 Using t h e Mock Sys t em for Aspec t Crea t ion and Test ing 

The mock system for the Timer aspect has two methods beginning with tmr to match 

the pointcut and two other methods that do not match this pattern. The two methods 

that begin with the pointcut pattern have ADVISED annotations, while the other two 

have NOT_ADVISED annotations. One tmr method calls the other to test that timing 

works correctly with nested calls. The method bodies contain only print statements 

to show program flow and calls to a system function ( s leep( ) ) to insert delays that 

are measured by the TimeEvent class. The mock system does not rely on framework 

components, but uses the TimeEvent module, which already existed in the Power-

Analyzer. 

The Timer aspect uses around advice. The aspect instantiates a TimeEvent object 

to record the time, proceeds with the original function call, and then accesses the 

TimeEvent object to calculate and write the elapsed time. 

aspect Timer { 
po in tcu t tmr() = c a l l 0 7 , tmr°/„(. . . ) " ) ) ; 
advice tmr() : aroundO { 

TimeEvent t imer ; / / s e t up t imer 
t i m e r . R e s e t ( ) ; 
t j p - > p r o c e e d ( ) ; / / execute advised method 
/ / w r i t e out the time used 
P r i n t l ( 9 1 1 , "Time around °/„s: (%s)\n", 

J o i n P o i n t : : s i g n a t u r e ( ) , 
t imer .CheckTimeO); 

PowerMessage: :WriteBuf f e r s O ; 
} 

} ; 
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The mock system allowed us to quickly test the pointcut. We changed the pointcut 

twice as we corrected problems we encountered when advising nested calls. We also 

used the mock system to test how the advice instantiated the TimeEvent module and 

how timer log messages were formatted. 

4.5.5.2 Refactoring and Integration Testing 

AspectC++ relies on name-based pointcuts to weave in advice. Even though similar 

code to instantiate and use TimeEvent objects exists at many locations, there is no 

common structure or naming convention for the pointcut to match. To refactor the 

PowerAnalyzer, functions that used the TimeEvent class had the TimeEvent instance 

and calls removed, and were renamed from FunctionName to tmrFunctionName to 

match the pointcut specification. 

One challenge was that some of the application code was written as large, proce­

dural functions, including a 500 line function with 15 separate uses of the TimeEvent 

module. These separate uses were either loop statements or conceptually separate 

code blocks. For this function, we first used Extract Method refactoring [23]1. Cre­

ating a function with a name that begins with tmr allowed capturing the joinpoint in 

AspectC++. By using a meaningful function name, we could pass a single signature to 

the TimeEvent module instead of a separate descriptive argument for each TimeEvent 

call. For consistency, we applied the same aspect across all three executables of the 

PowerAnalyzer. 

Using name-based pointcuts results in tight coupling that can cause problems 

during maintenance due to name changes in functions [70]. There is tight coupling 

between the Timer aspect and the naming convention of methods. If a new function 

JThis refactoring step states: "Turn the fragment into a method whose name explains the purpose 
of the method." 
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is added that should use the timer, it must begin with tmr or it will not have the 

Timer functionality woven in. In addition, if someone changes one of the names of 

the functions so that it no longer begins with tmr, time logging will no longer occur 

for that function. If a function that does not need timing information is created with 

a name that begins with tmr, that function will match the pointcut and have Timer 

advice associated with it. Since PowerAnalyzer regression tests focus on functionality 

and not the time taken by system functions, an error associated with timing might 

not be immediately detected. Our annotations can be used in the real system to 

report when a change in the system or a pointcut change causes a pointcut to not 

match the intended joinpoint. 

We refactored the application so that the TimeEvent module is only invoked by 

the advice of the Timer aspect. To enforce this design decision, we added additional 

advice [55] that uses compile-time assertions in C + + [4] to trigger a compilation error 

if direct calls to the TimeEvent module are re-added in the core concerns. 
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Chapter 5 

Tools 

Four tools developed for this research support our aspectualization approach: 

1. Concern identifier searches for repeated word sets that may indicate crosscut-

ting concerns. 

2. Weave analysis checks for unused advice or advised methods without advice. 

3. Advice instrumentation supports coverage analysis. 

4. Aspect and system coverage measurement measures joinpoint coverage and 

statement coverage of the mock system. 

While the testing concepts are general and could be applied to other languages 

(such as Aspect J), our unit and system testing tools support AspectC++, and they 

leverage features of the AspectC++ weaver. The AspectC++ weaver writes infor­

mation about the weave to an XML file for use by IDEs such as Eclipse1. The XML 

weave file contains information on aspect advice and joinpoints, and the methods, 

functions, and advice associated with each joinpoint [60]. 

http://www.eclipse.org 
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5.1 Concern Identifier 

Similar code that occurs in several locations of an application following a function 

call may represent a crosscutting concern. We remove the scattered code and use 

it as the basis for advice. The pointcut uses the function call to advise the original 

location of the scattered code. The concern identifier tokenizes the lines of code 

that immediately follow each function call, creating a list of words (variable names, 

function and method names, and keywords) that follow the function call. The list 

of words is sorted alphabetically into a word set. The tool compares the word sets 

that follow a function call to the word sets that follow that same function call in 

other program locations. Function calls that have word sets with a high percentage 

of common words are flagged as potential aspects. 

The concern identifier finds cross-cutting concerns, such as the Excepter aspect 

described in Chapter 6, in which error handling was implemented with a function call 

(e.g. f openO) followed by code that checked the return value of the call. Since code 

that followed fopen() was similar throughout the application, the word sets were 

identified as similar and the error handling code was refactored as an aspect. 

5.2 Weave Analyzer 

The weave analyzer parses the XML weave file, which identifies the line numbers of 

joinpoints matched by each pointcut. Next, it reads the core concern source code to 

find the line numbers that have annotations indicating where advice should and should 

not be woven. Weave analysis checks for our four types of annotations: ADVISED, 

NOTJIDVISED, ADVISED_BY(name), and NOT_ADVISED_BY(name). 

By comparing line number information from the XML weave file with the lines 

that have annotations, the weave analyzer identifies lines of code with one of the 

following annotation violations: 

40 



1. Lines with an ADVISED annotation that are not matched by any pointcut. 

2. Lines with an ADVISED_BY(name) annotation that are not matched by a pointcut 

of the named aspect. 

3. Lines with a NOT_ADVISED annotation that are matched by any pointcut. 

4. Lines with a NOT_ADVISED_BY(name) annotation that are matched by a pointcut 

of the named aspect. 

For each of these annotation violations, the tool prints the line of source code 

and the preceding and succeeding lines to provide context. Checking for annotation 

violations helps identify pointcut strength errors by flagging pointcuts that do not 

match the developer's intent. The NOTJUDVISED annotations identify pointcuts that 

are too weak, matching methods the designer did not intend. The ADVISED annota­

tions identify pointcuts that are too strong (restrictive), missing intended joinpoints. 

In addition to checking annotations, the weave analyzer reports any advice whose 

pointcuts match no program joinpoints as an error. Unused advice indicates a point-

cut error. 

Example output of the location and body of unused advice that was identified by 

weave analysis of the ErcChecker mock system is shown below: 

We have UNUSED advice : 
Advice: a spec t : 0 f i d : l l i n e : 1 8 i d : 0 
t y p e : a f t e r l i n e s : 4 

F i l e : LogMath.ah a spec t : LogExecution l i n e s : 18-21 
advice ca l l ("% mth°/„(.. . ) " ) : a f t e r ( ) 
{ 

c e r r « " AFTER c a l l i n g " 
« J o i n P o i n t : : s i g n a t u r e ( ) 
« endl ; 

} 
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When a method with an ADVISED annotation does not have a matching pointcut, 

the tool prints the line of source code along with the preceding and succeeding lines. 

Example output for a such method is shown below: 

We have UNADVISED code: did not f ind a 
Po in tcu t for Line 13 of f i l e . /main .cc 
which was spec i f i ed as ADVISED 

void run_checks() / * AOP=ADVISED */ 
{ 

5.3 Advice Instrumenter 

As part of our build process, we instrument advice to enable the measurement of join-

point coverage. During execution of the mock or real system, we gather information 

about which aspects were executed, and, for each each aspect, which joinpoints are 

executed. To gather this data, we preprocess the aspects before weaving, and for each 

advice body we insert a call to a C + + macro, TESTJTRACE, which we define. This 

macro produces the following: the aspect filename, the source code line number of 

the advice body, and the joinpoint identifier where the aspect is executing. 

The aspect filename is determined in C + + by the C + + preprocessor directive 

__FILE__, which is replaced at compile time by the actual name of the file containing 

the directive. In AspectC++, aspect file names end .ah; file names are not changed 

during the weave. 

The source code line number of the advice body is inserted as an argument to 

the macro call that is added to the advice. Although C + + contains a directive to 

emit the actual line number of a statement, __LINE__, the number is determined at 

compile-time. Since AspectC++ uses source-to-source weaving, the line numbers 

emitted by the _LINE__ directive are based on the woven code rather than on the 

source code. The coverage analyzer (described in section 5.4) uses the XML weave 
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data, which refers to pre-weave source numbers. Thus, we cannot use the __LINE__ 

directive. Instead, the advice instrumenter embeds the pre-woven line number as a 

parameter to the TEST_TRACE macro. 

To obtain the joinpoint identifier, the TESTJTRACE macro uses an AspectC++ 

construct: Jo inPoin t : : JPID, which is an integer that can be accessed within advice 

code. The integer serves as the joinpoint identifier that was written to the XML 

weave file. 

5.4 Joinpoint Coverage Analyzer 

We measure joinpoint coverage during both mock and system testing. System join-

point coverage data is calculated during regression runs from the instrumented code. 

The generated data includes the original, pre-weave source code line number of the 

advice and the joinpoint ID (available in AspectC+-1- advice as Jo inPoin t : : JPID). 

This data is cross-referenced to the XML weave file to identify any advised joinpoints 

that were not executed. 

Existing statement coverage tools can check coverage of all mock system code 

during unit testing. We use gcov2 on the woven code, and generate coverage data for 

each source file. Statement coverage produced by gcov identifies missed core concern 

code in the mock system. Since the mock system is designed to emulate interactions 

between the aspect and real system and to call methods that will be advised, we use 

this coverage to check that we are actually testing all the interactions. 

The gcov output is a copy of the mock system code that marks how many times 

each line was executed. Our joinpoint coverage analyzer prints out any missed mock 

system statements from this gcov output file. Sample output is shown below: 

2http:/ /gcc.gnu.org/onlinedocs/gcc/Gcov.html 
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File QueryPolicy.ah was covered 
File main.cc was covered 
File query.h had 2 missed lines: 
###: 63:this-> exec_old_executeQuery(); 
###: 67:inline void exec_old_execute 

std::cerr « "Executing query 
File erc_main.cc had 2 missed lines: 
###: 64: cerr « "No LevelManager 
###: 65: return; 
TotalLinesMissed = 4 

The results above indicate that two code fragments were not used. The first 

unused code fragment reported (associated with lines 63 and 67 of query.h) refers 

to a method in the base class of a mock hierarchy. The method was overridden by 

every child class and thus was never used. We fixed this by converting it into a pure 

virtual method in the base class. The second unused code fragment (lines 64-65 of 

erc_main.cc) represents error handling code that was not tested. We covered this 

fragment by adding code to the mock system to test the error-handling code. Because 

the mock system is small and is created to test aspects, we aim for 100% statement 

coverage of the mock system. When using gcov and g++ in the mock system, we 

do not enable compiler optimizations, avoiding known interactions problems between 

gcov coverage and g++ optimization. 

Figure 5.1 shows the data read in and produced by three of the tools - weave 

analyzer, advice instrumenter, and coverage analyzer - and how the tools use data 

produced by the AspectC+-1- weaver. The advice instrumenter reads an aspect and 

adds a call to TEST_TRACE, with the '#' value indicating that an actual line number 

would be inserted. The weave analyzer reads the C + + source code and XML weave 

file, and is run after the code is woven. The coverage analyzer reads the XML weave 

file and output of the woven system to identify advised joinpoints that were not 

executed. 
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5.5 Discussion 

The AspectC++ weaver may eventually be extended by its developers to identify 

unused advice as an error when weaving. Even if such an extended weaver were avail­

able, our tools provide other capabilities not offered by the AspectC++ or AspectJ 

weavers. Our four compile-time assertions enable developers to indicate where they 

do and do not expect advice, so that pointcut errors can be caught immediately after 

weaving. These annotations help when creating a pointcut. 

Laddad [44] shows how to use the declare error construct in AspectJ to compare 

two pointcuts (i.e., an old one and a potential new one) to catch errors when a pointcut 

is changed. His approach does not help when a pointcut is initially created, nor does 

his approach compare the matched pointcuts to source code annotations that capture 

a developer's intent and expectation. 
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Chapter 6 

Legacy Systems and Aspects 

In this chapter, we describe the three legacy systems we used for the study. We also 

describe the cross-cutting concerns that were refactored as aspects. 

6.1 Legacy Systems 

The study subjects are three proprietary VLSI CAD applications of Hewlett-Packard: 

Ins tanceDrivers , PowerAnalyzer, and ErcChecker. All three are C + + applications 

that are based on an object-oriented C + + framework developed at Hewlett-Packard. 

The framework contains classes and method calls for use in the VLSI CAD domain to 

provide basic functionality (e.g., read circuit files and create graphs of connectivity) 

so that applications can focus on specific tasks (e.g., analyze power consumption and 

identify certain types of circuits). We refactored six cross-cutting concerns as aspects 

in two applications and seven in the third. There are fourteen distinct aspects in all. 

The initial version of the Ins tanceDr ivers application consists of 1,600 lines 

of code (LOC). The final revision has 3,300 LOC. This application identifies the 

instances (transistors) that drive electrical nets, providing electrical current. 

The initial version of the PowerAnalyzer application contains 13,900 LOC and 

16,600 LOC in the final revision. PowerAnalyzer estimates power dissipation of 

electric circuits. It consists of 3 smaller tools and a library of common code that the 

tools use. 
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The ErcChecker implements electrical circuit checks such as checking for proper 

transistor ratios between the pull-up and pull-down transistors of an inverter, checking 

for fan-out limits, and checking for drive strength problems. In order to understand 

(and ultimately correct) the violation, the circuit designer needs access to contextual 

circuit data, which the ErcChecker displays and writes to a log file. We aspectualized 

three revisions of the core application code, which has 51,600 LOC in the initial 

revision and 64,400 LOC in the final revision. 

6.2 Concerns 

We identified six cross-cutting concerns as aspects in the Ins tanceDrivers applica­

tion: Excepter, CheckFwArgs, Tracing, Caching, and CadTrace and Singleton. We 

identified seven cross-cutting concerns in the PowerAnalyzer application: Excepter, 

Timer, CheckFwArgs, FwErrs, FetTypeChkr, ViewCache, and UnitCvrt. We 

identified seven cross-cutting concerns as aspects in the ErcChecker: Excepter, 

CheckFwArgs, FwErrs, Caching, ErcTracing, QueryPolicy, and QueryConfig. 

Two aspects, CheckFwArgs and Excepter, are used by all three applications, and 

two others, Caching and FwErrs, are used by two applications. We created 14 aspects 

between the three applications. 

Table 6.1 shows the applications associated with each aspect. The first column 

lists the aspect. The second column contains an I if the aspect was used in Ins t ance -

Drivers , a P if the aspect was used in PowerAnalyzer, and an E if the aspect was 

used in ErcChecker. The first letter used indicates the application for which the 

aspect was first created. 

The CheckFwArgs and Excepter aspects were originally developed for the In ­

s tanceDrivers application. Reusing them in the PowerAnalyzer and ErcChecker 

applications required only a one line change in the pointcut of each aspect. The 

FwErrs aspect uses framework method names, which are the same in all applications, 
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Table 6.1: Aspect and Systems 
Aspect 
Caching 
CadTrace 
CheckFwArgs 
ErcTracing 
Excepter 
FetTypeChkr 
FwErrs 
QueryConfig 
QueryPolicy 
Singleton 
Timer 
Tracing 
UnitCvrt 
ViewCache 

Used In System 
E,I 
I 

I,P,E 
E 

I,P,E 
P 

P,E 
E 
E 
I 
P 
I 
P 
P 

and so required no changes when reused in the ErcChecker. The Caching aspect 

was originally developed for ErcChecker and used in the PowerAnalyzer. Aspect 

inheritance is used to define the application-specific pointcut. We describe each of 

the aspects below except for the Caching, CadTrace, QueryPolicy, QueryConfig, 

and Timer aspects, which we described in Chapter 4. 

6.2.1 CheckFwArgs 

The Ins tanceDr ivers application contains a utility layer that implements appli­

cation-specific algorithms for framework objects. This layer calls framework API 

methods using framework object pointers that are passed in as parameters to the 

utility layer functions. Object pointers should be checked to confirm that they are 

not null to prevent fatal run-time errors. Null pointer checking is performed in some of 

the functions in the original application. The CheckFwArgs aspect removes duplicate 

checking code and improves safety by automating this check consistently across all 

callsites. 
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We used template meta-programming and the AspectC++ reflection API to im­

plement the aspect, so that it can handle all framework utility methods even though 

they have different numbers of arguments and use several different framework and 

non-framework types as parameters. The aspect uses around advice, which returns if 

a null object is found, preventing the use of a null pointer with framework methods. 

The pointcut advises a group of functions without enumerating each one. We grouped 

the functions into a class as static methods, had the class inherit from an empty mixin 

class ( C + + allows multiple inheritance), and created a pointcut that specified all the 

methods of sub-classes of the mixin class. We chose the mixin name so that it would 

indicate that an aspect was advising this code, which communicates the relationship 

between the primary code and an aspect to developers in a less oblivious way, similar 

to annotation-based weaving. We also created a C + + macro that redirected existing 

calls to the original function names to the static class methods of the same name. 

6.2.2 ErcTracing 

The ErcTracing aspect provides detailed tracing for the ErcChecker, replacing scat­

tered inconsistent code. We had already developed the Tracing aspect, but because 

the Tracing aspect uses class data rather than global variables, we did not use as­

pect inheritance. The ErcTracing aspect contains seven advice blocks for different 

components in the ErcChecker. Each advice block uses a different global variable 

to indicate when tracing that subsection of code should be enabled. There are mi­

nor differences between the advice bodies, but all seven reuse the library of template 

metaprogramming code from the Tracing aspect to print method arguments. 

6.2.3 Excepter 

The Excepter aspect replaces similar code that checks return values from functions 

such as ge tenvO and fopen() . These functions use the return code idiom [11], 

i.e., they signal errors through return codes. The Excepter aspect provides a more 
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modular approach for consistently handling errors than the scattered checks [57]. It 

uses after advice to check the return value of each function call. If the return code 

is null, the advice throws an exception. The aspect contains a second advice that 

provides a try/catch block around main. The try/catch block catches the exception 

thrown by the first advice and exits. If developers want to catch the error in the 

function call itself instead of relying on main to exit, they must manually add a 

try/catch block around that function call to catch the exception thrown by the first 

advice. 

Both the Excepter and CheckFwArgs aspects provide error checking, which is an 

extra-functional concern. Such concerns relate to characteristics such as dependabil­

ity, configurability, and performance [50]. 

6.2.4 FetTypeChkr 

The FetTypeChkr replaces parameter checking that is done in the FetType class 

of the PowerAnalyzer application. The aspect uses the pointcut pattern-matching 

capability in AspectC+-1- to advise all methods of FetType that have an integer as 

the first parameter. The aspect advice validates that the range does not exceed the 

maximum value for the class, which is stored as a class attribute. The aspect replaces 

scattered checks on several methods with a single advice body to perform the same 

checking, thereby modularizing pre-condition contract checking for the class. This 

aspect is similar to design-by-contract checking aspects that have been explored by 

several researchers [9, 29, 73]. 

6.2.5 FwErrs 

The FwErrs aspect refactors cross-cutting code for handling framework-specific fail­

ures. We identified this aspect based on idioms in code that detects these errors and 

handles system shutdown due to fatal framework errors. This aspect differs from 

the Excepter aspect, which is for non-framework system calls in C or C + + where 
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the response to errors depends on the context of use. The FwErrs aspect, like the 

Excepter aspect, uses around advice to throw an exception when a return code from 

an advised method indicates an error. The aspectualized application relies on the 

aspect advice for main to catch the exception and exit. 

6.2.6 Singleton 

The Single ton aspect [32] modularizes similar code for a class that has multiple 

constructors for various contexts, but which all trigger the creation and sharing of a 

single instance. This aspect uses around advice with the core concern's static creation 

methods to ensure that a constructor is only called when the global instance has not 

already been created. 

6.2.7 Tracing 

The Tracing aspect refactors a concern commonly reported in the aspect-oriented 

programming literature - program tracing [65]. The Ins tanceDrivers application 

contains classes that have optional verbose output enabled via command-line argu­

ments. The verbose mode causes method calls and their return values to be reported, 

as well as calls and return values of any functions called from within the traced 

methods. Besides being scattered throughout the class, such tracing code is often 

inconsistent. The Tracing aspect's around advice uses template-metaprogramming 

in order to process and print out parameter values and return values regardless of the 

number of parameters, parameter types, or return type. 

6.2.8 Uni tCvr t 

For many scientific applications, units may be represented using different internal 

formats but must be written out with a standard unit of measure, such as nanome­

ters or picofarads. The UnitCvrt aspect replaces scattered code that converts CAD 

property data into a standard unit of measure before printing the data in reports. 
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The CAD property data is stored as property objects that are attached to electrical 

net objects. Not all properties need their values converted to standard measures; only 

properties that store the length and width of a transistor need to be converted. This 

aspect uses around advice to intercept all calls to the Get Value () method of the 

Proper ty class. The advice always calls proceed() so that the method is executed. 

Next, the advice calls the property's GetNameO method and if required, the value is 

converted into a standard unit of measure. 

6.2.9 ViewCache 

The ViewCache aspect provides caching of different data views in the PowerAna-

lyze r application. We could not extend the Caching aspect [55] from Ins t ance -

Drivers to create the ViewCache because of differences in caching between the two 

applications. The ViewCache does not cache a value for a function or method call like 

the Caching aspect. Instead, it provides primary code methods with the capability to 

avoid reloading the necessary component views (e.g., schematic view, electrical view, 

and layout view) when those views already exist within the loaded framework data. 

The ViewCache does not aspectualize application-specific loading of component views 

performed during framework initialization, but accesses the framework data only to 

check what views are already loaded. The ViewCache aspect uses around advice to 

replace scattered code that determines if the different views are already loaded into 

memory during certain operations. 
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Chapter 7 

Mock System Creation Guidelines 

A key feature of our approach is the use of a mock system. In the ideal case, a mock 

system will have a structure that allows aspects to be moved without change from 

the mock system to the actual system for integration testing. Thus, an important 

question is how to create a useful mock system. Based on our experience with the 

legacy applications, we developed a list of mock system creational patterns that can 

aid the developer of a mock system. Although we provide specific examples for 

each pattern, the patterns are described in general terms and represent solutions to 

common problems in developing mock systems. 

The patterns are based on characteristics of both the aspects and the real system. 

All of these patterns assume developers have identified potential joinpoints of aspects 

in the real system, which will be used as a guide when creating the mock system. 

7.1 Create Mock Methods for Spectator Aspects 

Spectator aspects are defined by Clifton and Leavens [16] as aspects that do not 

change the behavior of advised modules. Faults in spectators result in incorrect 

system behavior (e.g. missing or incorrect logging), but do not change the advised 

core concern. 
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7.1.1 Motivation 

Because spectators do not rely on the internal state of the methods and classes they 

advise, we use method stubs: methods with empty or trivial bodies. Spectators are 

validated by ensuring that the pointcut matches the expected joinpoints and that the 

advice functionality executes correctly. 

7.1.2 Mechanics 

Create method stubs with naming conventions such that the pointcut will match in 

the mock system and the real system. 

7.1.3 Example 

The Timer aspect in the PowerAnalyzer is a spectator that adds timing information 

without affecting the power analysis performed. An error in the aspect may result in 

incorrect times, and pointcut strength faults may result in the wrong methods being 

timed, but the functionality of the PowerAnalyzer is not affected. 

For the Timer aspect, methods to be timed must begin with tmr to match the 

pointcut: ca l l ("% tmr%(. . . ) ) ) ; . We created the mock system by writing method 

stubs that match this calling convention, which are called in main. 

7.2 Create Simple Functional Mock Methods for 
Non-functional Concerns 

Non-functional aspects [50] modularize cross-cutting concerns that improve non­

functional characteristics such as performance or dependability without changing the 

existing functionality. Unlike spectators, faults in non-functional aspects can change 

the observed behavior of the advised concerns. 
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7.2.1 Motivation 

We use mock methods that provide simple functionality when validating a non­

functional aspect. This differs from the mock method stubs in Section 7.1 because 

non-functional concerns, such as caching, must not only advise the right joinpoints 

without introducing defects to the advised methods, but also must implement the 

cross-cutting concern without changing the existing functionality. 

7.2.2 Mechanics 

1. Create mock classes and methods with the same parameter types and return 

types but with simpler functionality. 

2. Invoke the mock method with different parameter values from the main function 

to validate the non-functional property. 

A mock system for caching values can create a function that operates on the same 

types. Statement coverage (or even compile-time enabled print statements) can be 

used to ensure the advice is used. For caching, we want to ensure that the advice 

executes correctly when it should avoid a pre-computed method call and when it 

should not. Unit testing can explicitly call a function with the same value multiple 

times and ensure the output is always correct. 

7.2.3 Example 

The caching aspect in the ErcChecker should improve performance without affect­

ing functionality, but faulty advice can affect program modules. In addition, since 

caching is intended to improve performance, we want to validate that the cache is 

used whenever a function is called with a value that should already be cached. 

In the ErcChecker, the cached methods had object pointers as parameters and 

returned object pointers and scalars as values. An example method is to calculate 
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the fanout (integer) given an electrical net (bcmNet*). Thus, a mock system for 

caching with templates needs to validate that caching works correctly for various 

data types and that subsequent calls with the same input values are not recomputed. 

We want functions that work on the same types, but are simple to compute and 

validate. Rather than calculating fanout of an electrical net, we can create a function 

(GetNetLength) that returns the length of the net's signal name. 

i n t GetNetLength(bcmNet *n) 
•C 

r e t u r n n->GetName() . length() ; 
} 

We also create a similar function (GetWrongNetLength) with a different value, 

that is cached: 

i n t GetWrongNetLength(bcmNet *n) 

•C 
r e t u r n n->GetName().length()+10; 

} 

These functions need to be called in an interleaved fashion to validate that they 

are being cached separately, and that they return the correct value in each case. An 

example from the mock system is shown below: 

//code that sets up the framework context 

bcmCell *cell = GetTopCelK); 

//find 3 net objects... 

bcmNet *netl = FindNet( cell, "VDD" ); 

bcmNet *net2 = FindNet( cell, "GND" ); 

bcmNet *net3 = FindNet( cell, "clock" ); 

//make sure GetNetLength works, 

//when not cached (first call) 

//and when cached (second call) 

assert ( GetNetLength(net1) == 3); 

assert ( GetNetLength(net1) == 3); 

//interleave calls to GetNetLength and 
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/ / GetNetLength t o make sure they are not 
/ / 'mixing ' caches from d i f f e r e n t funct ions 
/ / t oge the r 
a s s e r t ( GetNetLength(net3) == 5 ) ; 
a s s e r t ( GetWrongNetLength(net3) == 10); 
a s s e r t ( GetWrongNetLength(net3) == 10); 
a s s e r t ( GetNetLength(net3) == 5 ) ; 

Code coverage tools, compile-time enabled debug output, or similar techniques 

can be used to ensure that the cache is actually used. In addition, the caching aspect 

can use an interface to the actual caching template so that a fast cache can be used 

as well as a slower cache that records hits and misses [55]. Calls to other data types 

that are cached were also included in the mock system. 

7.3 Reuse Real System Components 

Because the full system exists, components that are needed in the mock can sometimes 

be directly used. 

7.3.1 Motivation 

Often there is code in a large system, such as framework code, that is necessary 

to establish the initial state of the system before any advised methods are called. 

For example, a graphical system might have a common set of methods to create an 

environment for OpenGL or for a GUI windowing system. Our CAD applications 

require reading a netlist into memory before most framework methods may be called. 

We can import system components that are necessary for system initialization and 

copy in the small code sections that must be called to use these components. This 

avoids creating mock classes for large or complex components but still enables the 

mock system to have some actual functionality. 
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7.3.2 Mechanics 

1. Use components from the main system that provide essential system compo­

nents or services for the mock system. In C + + , this can be done by including 

a header file and linking against a system or framework library. 

2. Copy small code sections (e.g. less than 100 KLOC) that contain boilerplate 

code for using imported components. 

7.3.3 Example 

Aspects in the ErcChecker and Power Analyzer that rely on API calls or objects 

from HP's internal C + + framework were first created in mock systems. These mock 

systems reused a singleton class, BlockData, used by applications to provide a simple 

interface to framework methods for loading and initializing design data. 

In the mock system, we included the BlockData class header and copied the code 

that uses it to initialize the system. Importing this framework component enables 

framework-related aspects to interact with framework objects in the mock system. 

7.4 Emulate the Callsite Context for Joinpoints 

The mock system should create a callsite context that is similar to the expected 

joinpoints in the real system. 

7.4.1 Motivation 

Callsite context refers to information that the aspect uses from the joinpoint, includ­

ing method parameters and call flow information. In addition, changes to the control 

flow such as exceptions, method calls, and recursive calls should be identified. 

The mock system should have methods that are similar to the real system in terms 

of number of arguments (zero, some, many) and argument types (e.g., simple scalar 

types, user-defined types, pointers, and templatized types such as STL containers.). 
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Aspects that have the potential for recursive advice invocation should be modeled 

in the mock system to ensure that the aspect structure and method calls are safe 

in such a context. Two common ways for recursion to occur are having an advised 

method call another method advised by the same aspect and advising a recursive 

method. The mock system can create intra-method calls and recursive calls so that 

accidental infinite recursion, a common mistake in adopting AOP [44] is avoided. 

Aspects that throw or catch exceptions may be changing exceptions seen by callers 

as well as the resulting control flow. Thrown or caught exceptions can be simulated 

in the mock system. 

7.4.2 Mechanics 

1. Identify calling context passed in from the joinpoint, including parameter values 

and parameter types, especially templates and user-defined types. Create and 

advise mock methods with the same parameter types. 

2. If advice can throw or catch exceptions, then model that in the mock system. 

3. Identify call flow information (such as cf low) and recursion that exists in the 

real system and emulate it in the mock system. 

7.4.3 Example 

In the PowerAnalyzer, functions that were timed called lower level functions that 

were also timed. We modeled this structure in the mock system to ensure that the 

timing information for each function was correct and that the nested around advice 

of the aspect did not lead to problems. In the CachingAspect, we used the mock 

system to verify that the templatized cache used by the advice worked with a wide 

variety of built-in and user-defined data types. 
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7.5 Provide Functionality used by Advice 

If an aspect's advice makes calls to external components or other parts of the system, 

then this functional context needs to be present in the mock system. Advice functional 

context is different than the pointcut context (Section 7.4), since the advice context 

refers to components used by the advice. 

7.5.1 Motivation 

To execute and validate the advice, the mock system must provide the methods 

called by the advice as well as any data structures used by the advice. A Logging or 

Tracing aspect, for example, may instantiate and use a Logger object, which must be 

present in the mock system. A policy aspect that refactors scattered code must have 

enough of the system data structures emulated for the advice to run in a meaningful 

way. The components needed by the advice may either be mock classes or, like 

components necessary for system initialization (Section 7.3), may be imported from 

the real system. 

7.5.2 Mechanics 

1. Identify any components called by advice. 

2. Identify any data structures (classes, pointers to certain object types) used by 

the advice. 

3. Create mock components or reuse components so that advice functionality can 

be validated. 

7.5.3 Example 

The advice of the ErcChecker's QueryPolicy aspect performs logging of ErcQuery 

information, deletes ErcQuery objects that did not find electrical errors, and adds 
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ErcQuery objects that detect electrical failures to a container class (LevelManager). 

In order for the mock system to have enough functionality to validate the advice, 

the mock system needs to (1) create ErcQuery objects, (2) provide a Logging class 

that the advice uses, and (3) provide a mock LevelManager class. We created mock 

classes for all three of these requirements, implementing only the methods of the mock 

classes that are called. 

Providing these enables the aspect to be behaviorally validated in the mock sys­

tem. Using the same names for the Logging class and the mock container class 

(LevelManager) enables the aspect to function within the real system without changes 

to the advice. The QueryPolicy aspect affected more than fifty classes. During 

system refactoring, some issues were found that required changes to what system 

methods the advice used. We first emulated these changes in the mock system, then 

continued refactoring the real system. 

7.6 Check Potential Pointcut Strength Faults 

Faulty pointcuts that match too many or too few locations can be difficult to debug. 

By creating annotations in the mock system for methods that should and should not 

match a pointcut, we can guard against some of these faults. 

7.6.1 Motivation 

Pointcut strength faults [3] are particularly difficult to test for. One advantage that 

our annotations provide is that they are checked right after weaving, and do not 

depend on running the mock system. The mock system is created with annotated 

methods that are intended to be matched by an aspect as well as annotated methods 

that should not be matched. If multiple aspects exist in a mock system, our annota­

tion approach (see Section 5.2) allows us to specify the specific aspect that should or 

should not advise a method. 

62 



7.6.2 Mechanics 

1. Create names that should not match the pointcut but are similar, such as similar 

naming conventions or patterns. 

2. Create namespaces in C + + or user-defined types that have similar naming 

conventions as pointcuts. 

3. Model class hierarchies in the mock system to validate pointcut matching in 

base classes and subclasses. 

4. Use annotations (Advised, NotAdvised) to check for incorrect pointcuts imme­

diately after weaving. 

7.6.3 Example 

For pointcuts that use regular expressions such as 

call("Y/„ \ y , I t e r \ : \ : R e s e t ( . . . ) \ " ) 

we should create multiple method calls that we intend to match (e.g., 

I n s t l t e r : : R e s e t , N e t l t e r : : R e s e t ) . 

In addition, namespaces can affect whether pointcuts match, since °/0 in As-

pectC++ only matches one level (all classes) and not two levels of naming (all names­

paces and all levels). 

Annotations indicate and check that advice was not woven to some call sites and 

was woven to others, so that errors are caught immediately after weaving. Calls to 

the Reset method of an framework iterator were annotated to indicate the name of 

the aspect that should advise them: 

whi le( (n=ne t I t e rP t r ->Next ( ) ) ) {/*AOP=ADVISED_BY(PowerOnlyFilter)*/ 

The ADVISED_BY(PowerOnlyFilter) annotation is checked at weave-time to ensure 

that this line did have an associated advice joinpoint from the PowerOnlyFilter 
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aspect. We have also used annotations to indicate functions that should not have any 

advice: 

void lookAtInsts(bcmCell * c e l l ) / * A0P=N0ADVICE */ 

These types of annotations can also be used in the real system, and serve as compile-

time assertions that guard against accidentally changing the affect of pointcuts 

through either advice changes or core concern changes. 

Aspects that interact with class hierarchies should be tested within a mock class 

hierarchy that, like method calls, includes join points that should and should not 

match. With annotations, we can ensure that a pointcut does match both mock base 

classes and mock derived classes. This can catch pointcuts that only match a base 

class when they should work with all classes, and can identify pointcuts that are too 

broadly defined. 

7.7 Emulate Aspect-Aspect Interactions 

When multiple aspects are used in a system, we can emulate the ways that we antic­

ipate them interacting. 

7.7.1 Motivation 

Aspects may interact with one another by many means, including advising the same 

method and introducing members or methods to the same class [20]. These intended 

interactions should be modeled in a mock system by creating the conditions (e.g., 

overlapping pointcuts and introductions) that are anticipated in the full system. 

Although the full system may contain interactions that were not anticipated, using 

the mock system can ensure that the aspects can work together correctly in at least 

some situations. Like unit testing, this provides a small environment to validate basic 

functionality before large-scale integration. 
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7.7.2 Mechanics 

1. Identify and emulate aspects that share joinpoints. 

2. After weaving aspects with the main system, use analysis of weave results to 

identify any unexpected shared joinpoints that should also be tested within the 

mock system. 

7.7.3 Example 

Although our aspects for these systems were non-overlapping, we did consider imple­

menting caching with two overlapping aspects: one for function caching and one for 

hit/miss analysis of the cache. 

The two aspects were created with identical pointcuts so that both would advise 

the same methods. In the mock system, we realized that order of execution was 

important, because both aspects used proceed, and if the caching aspect executed 

first and had stored the value already, it returned without calling proceed, which 

prevented the other aspect from intercepting the call as well. 

One benefit of a mock system for testing aspect interference is that a small system 

can be set up with specific call orders. One drawback of mock systems is that there 

may be many complex scenarios that are not anticipated in the mock system. 
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Chapter 8 

Evaluation of Mock Systems 

We evaluate the costs and benefits of using mock systems in terms of our experiences. 

We evaluate the process in terms of four evaluation questions. The goal of the mock 

system evaluation is to answer the following research questions: 

1. Can mock systems be developed for aspects that will be woven with legacy 

systems? 

2. What costs are incurred in creating a mock system? 

3. Does using mock systems save time when creating an aspect requires multiple 

iterations of our approach? 

4. Did the aspects created using the mock system require changes to work with 

the real system? 

We use version 1.0pre3 of AspectC++, which is a source-to-source weaver: weav­

ing C + + code is followed by compiling the woven code. Our development environment 

for our tools is based on Linux and uses version 3.2.3 of the g++ compiler. We use 

version 3.2.3 of gcov (which depends on features of the g++ compiler) for measuring 

statement coverage. 

Since we were able to create a mock system for each aspect, the answer to the 

first question was always "yes". 
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For each aspect, we answer the second question by reporting the lines of code and 

time required to create it. Lines of code includes only new code created for the mock 

system, not components reused from the real systems. We report time spent creating 

the mock system, either by writing new code or reusing existing components. 

For the third question, we compare the time spent on creating the mock system 

to the compilation and weave time saved by using the mock system when multiple 

iterations were needed to create an aspect. We answer the fourth question by de­

scribing any changes made to pointcuts or advice when moving the aspects from the 

mock system to the real system. 

8.1 Cost of Developing Aspects with Mock Sys­
tems 

We show mock system cost measurements for the initial creation of each aspect in 

Table 8.1. The first column lists the aspect. The second column shows the size of 

the aspect (LOC). The third column shows the total time in minutes for all iterations 

used to create the aspect. The fourth column indicates the size (LOC) of the mock 

system. The last column shows the number of iterations it took us to create the 

aspect. The mock system creation time includes the time to create the aspect and 

mock system, and to iteratively test and refine the aspect using the mock system. If 

an aspect can be reused in more than one application, we do not repeat the mock 

system process, thereby decreasing the cost of future use of the aspect. 

The Caching aspect required the largest mock system and took the most iterations 

because of the complexity of the caching functionality. It was created for a separate 

application, ErcChecker, which required caching of both procedural functions and 

object-based method calls. In addition, we created several specialized caches through 

aspect inheritance that can also track cache hit rates and cache usage to report 

performance [55]. Thus, there are 130 lines of code in the set of four caches for reuse 
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Aspect 

Caching 
CadTrace 
CheckFwArgs 
ErcTracing 
Excepter 
FetTypeChkr 
FwErrs 
QueryPolicy 
QueryConfig 
Singleton 
Timer 
Tracing 
UnitCvrt 
Vie wC ache 

Table 8.1: Mock System Costs Per Aspect 
Aspect LOC 

130 
60 
29 
108 
28 
11 
16 
10 
14 
5 
12 
62 
26 
4 

Mock System 
Creation Time 

(minutes) 
65 
30 
50 
30 
50 
40 
15 
60 
30 
20 
30 
90 
75 
15 

Mock LOC 

600 
1 

76 
30 
125 
60 
25 
160 
20 
28 
50 
150 
122 
33 

Mock Iterations 

15 
1 
3 
2 
5 
3 
1 

10 
3 
3 
4 
8 
5 
1 

through aspect inheritance. The concrete realization has only three lines of aspect 

code to select the cache and specify the pointcut. When the Caching aspect was 

reused in Ins tanceDrivers , it had 33 LOC (30 for the base aspect and 3 for the 

pointcut). The mock system was reused and thus, had no new costs. 

The ViewCache aspect is a simplified type of cache. The experience with creating 

the Caching aspect enabled the rapid development of ViewCache; only one iteration 

was needed. 

The Single ton aspect is also structurally similar to the Caching aspect. The 

Single ton aspect advises a static creation method and avoids executing it more than 

once. Our experience with the Caching aspect helped us create the Singleton aspect 

with just three iterations in 20 minutes. 

The Tracing aspect took more time to create and more iterations than all but the 

Caching and ErcTracing aspect. The greater effort was due to the complex nature 

of the aspect, which uses C + + templates within the advice to check an arbitrary 
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number of parameters. In addition, virtual methods were used so that the advice 

could print out objects of many different data types. 

The ErcTracing aspect was created after Tracing. The mock system is larger, be­

cause the aspect contains seven advice blocks that advise different code components. 

Fewer iterations were required than for Tracing because of our prior experience de­

veloping Tracing. 

We also used templates that call virtual methods to create the CheckFwArgs as­

pect. Since we had already used the technique for Tracing, we could create the advice 

faster for CheckFwArgs. However, developing the pointcut required several iterations 

because of the complexity of using template metaprogramming and mixins. 

Developing the Excepter aspect required the third most iterations. The aspect 

must be woven with many functions that return several different data types (e.g., 

bool, i n t , and in t* ) . In addition, we explored approaches for using aspects to 

locally catch exceptions for non-fatal cases [57]. 

The FwErrs aspect is similar to Excepter, which allowed us to develop FwErrs 

with fewer iterations. Since FwErrs advises just a few framework methods rather 

than several different functions, the mock system was also smaller. 

For the Timer aspect, we created a mock system with function names beginning 

with tmr, and ensured that the advice correctly logged execution times of the func­

tions. Several iterations were required to get the functionality implemented correctly. 

The PowerAnalyzer had nested timed functions, which caused the early versions of 

our aspect code to incorrectly reset the start time for the outer method when invoking 

the nested method. We emulated the nested function structure in our mock system 

and made changes in the aspect to correctly handle this case. 

The pointcut for the FetTypeChkr aspect uses the class name and the type of the 

first argument so that only methods whose first argument was of type i n t would be 

matched. The mock system required 60 lines, most of which were in a class with the 
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same name as the one in the real application. We needed two iterations to correctly 

define the pointcut because we had not previously used pointcuts that matched both 

names and argument types. A third iteration completed the advice implementation. 

Because the UnitCvrt aspect advises functions that use the property objects de­

fined in the VLSI framework, its mock system uses code from the VLSI framework. 

The mock system creates several framework objects. Some of them have properties 

with names that indicate a unit conversion, and thus, must be advised by the aspect. 

To ensure that the aspect did not apply unit conversion to unintended objects, the 

mock system created objects with property names that did not indicate unit con­

version, and also objects with no properties added. We defined the correct pointcut 

in the first iteration. However, it took four iterations to create advice that would 

correctly and efficiently convert units of properties. This was a challenge because 

the properties are stored as strings. The advice must convert the string to a floating 

point number. Rather than storing the converted value as a string, the advice cached 

the converted value for each object. The next time the program tried to access a 

property of the object, the value was retrieved from the cache. 

The QueryPolicy and QueryConf ig aspects modularize cross-cutting code spe­

cific to the ErcQuery class, which is part of only the ErcChecker. In the mock system 

for QueryPolicy, we model the class hierarchy of the ErcQuery class. In addition, 

a driver file (main, cc) creates and executes query objects, storing results data inter­

nally. Once we had created the mock system for QueryPolicy, we were able to use it 

with only minor changes as the mock system for creating and testing the QueryConf ig 

aspect. 

Three factors influenced the amount of effort required to create and test an aspect 

using a mock system. First, aspects for which we needed to create larger mock 

systems tended to require more time to develop. We created larger mock systems 

when an aspect needed to be woven into more structures (e.g., several sub-classes 
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of a common base class) or interacted with the application in a way that required 

more functionality than empty stubs. Mock system development time can be reduced 

by reusing system code when possible [59]. Second, the aspects vary in size and 

complexity. For example, because the Caching aspect used inheritance and cached 

values of methods and functions using a variety of data types, creating it took longer 

than FwErrs, which used no inheritance and checked the return value of the advised 

functions. At times, there is tension between aspect complexity and refactoring cost. 

For example, renaming methods to begin with tmr simplified the pointcut of the 

Timer aspect, but required more refactoring cost. By contrast, using mixins and 

inheritance with the pointcut added time to the development of the CheckFwArgs 

aspect, but reduced the amount of refactoring required. Third, gaining experience 

with features of AspectC++ reduced the time required for aspects that used those 

features. Creation times for the ViewCache, FwErrs, and Singleton aspects were all 

reduced because we became familiar with the AspectC++ features needed. 

8.2 Time Saved using Mock Systems 

Table 8.2 summarizes our time cost and savings data for each aspect. The 'Mock 

System Creation Time' column contains the time (in minutes) spent creating the 

mock systems, while the 'Application Weave Time' is how long weaving and compiling 

took in the original application that first used the aspect. Each mock system was 

able to be compiled and woven in one minute or less. The 'Mock Iterations' column 

is the number of iterations used to create the aspect. The 'Time saved' column is the 

total time saved in the aspect creation by using mock systems. We calculated this 

by multiplying the time saved for a single iteration - Application Weave Time minus 

1 (since the mock systems compile and weave in 1 minute or less) by the number 

of iterations ('Mock Iterations'), and then subtracting the cost of creating the mock 
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system ('Mock System Creation Time'). For some aspects, such as CadTrace, the 

negative value indicates that there was not a time savings. 

Table 8.2: Mock Systems Time Savings 
Aspect 

Caching 
CadTrace 
CheckFwArgs 
ErcTracing 
Excepter 
FetTypeChkr 
FwErrs 
QueryPolicy 
QueryConfig 
Singleton 
Timer 
Tracing 
UnitCvrt 
ViewCache 

Mock System 
Creation Time 

(minutes) 
65 
30 
50 
30 
50 
40 
15 
60 
30 
20 
30 
90 
75 
15 

Application 
Weave Time 

(minutes) 
25 
6 
6 

25 
6 
15 
15 
25 
25 
6 
9 
6 
15 
15 

Mock 
Iterations 

15 
1 
3 
2 
5 
3 
1 

10 
3 
3 
4 
8 
5 
1 

Time Saved 
(minutes) 

295 
-25 
-35 
18 

-25 
2 
-1 

180 
42 
-5 
2 

-50 
-5 
-1 

Because the ErcChecker has the longest compilation and weave times, the aspects 

created for this application (Tracing, Caching, QueryPolicy, and QueryConfig) all 

showed a time savings for using mock systems. This savings varied from 18 minutes 

to 295 minutes depending on the number of iterations needed to create the aspect. 

Using mock systems for the PowerAnalyzer aspects (Timer, FwErrs, 

FetTypeChkr, ViewCache, UnitCvrt, and CadTrace) either resulted in a small savings 

of 2 minutes or cost of 25 minutes. Weave times was not the same for PowerAna­

lyze r aspects because not all aspects were woven into all of the subsystems of the 

PowerAnalyzer. Using mock systems for the Ins tanceDrivers aspects (Excepter, 

CheckFwArgs, Tracing, and Singleton) never saved time. Cost of using mock sys­

tems ranged from 5 to 50 minutes. 
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The time savings depends on the compilation and weave times of the original 

system and on the number of iterations required to create an aspect. For example, we 

used many iterations for the Caching aspect as we explored and evaluated different 

caching strategies. For the QueryPolicy aspects, the number of iterations results 

from the large number of classes involved in the refactoring and faults encountered 

during the refactoring. 

8.3 Changes Made to Aspects for the Real System 

Mock systems are intended to allow aspects to be developed and tested quickly and 

then moved without change to the target application. Here, we report on any changes 

that were made when moving aspects to the application or in later revisions of the ap­

plication. Aspect changes can be of two types: pointcut changes and advice changes. 

Table 8.3 lists each aspect in column one followed by the the kind of pointcut used 

in column two. Column three indicates the type of changes made, if any, to an aspect 

after it had been used in an application. The fourth and fifth column indicate the 

number of aspect defects or refactoring defects associated with an aspect. 

Five types of pointcuts were used: pattern, list, mixin, class name, and method 

name. A pattern pointcut uses a regular expression, such as tmr* to indicate where 

advice is woven. A list pointcut enumerates each function or method that is advised. 

A mixin pointcut specifies the name of a mixin class, which advice targets inherit 

from. The mixin class provides no functionality to the class, but enables easy pointcut 

specification. A class name pointcut specifies all methods of some class are advised. 

A method name pointcut specifies a single method name, although the method may 

be part of many classes in a class hierarchy, such as the executeQueryO method in 

the ErcQuery subclasses of the ErcChecker. 

Defects were made during the aspectualization of the Timer aspect and Excepter 

aspect. Both of these aspects required significant changes to be made to the appli-
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Table 8.3: Post-mock Aspect Changes 
Aspect 

Caching 
CadTrace 
CheckFwArgs 
ErcTracing 
Excepter 
FetTypeChkr 
FwErrs 
QueryPolicy 
QueryConfig 
Singleton 
Timer 
Tracing 
UnitCvrt 
ViewCache 

Pointcut 

List 
Pattern 
Mixin 

Pattern 
List 

Class Name 
Method Name 
Method Name 
Method Name 
Method Name 

Pattern 
Class Name 

Method Name 
Method Name 

Changes 

pointcut 
none 

advice 
pointcut 

pointcut;advice 
none 
none 
none 
none 
none 
none 
none 
none 
none 

Aspect 
defects 

0 
0 
1 
0 
2 
0 
0 
0 
0 
0 
0 
2 
0 
0 

Refactoring 
defects 

0 
0 
0 
0 
1 
0 
0 
3 
0 
0 
1 
0 
0 
0 

cation when using the aspect. Thus, in addition to requiring more refactoring effort, 

aspects that require many source code changes have a higher risk of introducing de­

fects during these changes. 

8.4 Mock Systems Discussion 

The mock systems for the four aspects were all small, with the compilation and weave 

times being dramatically less (one minute versus up to 25 minutes) than in the real 

system. None of the mock systems were difficult to create, with all taking an hour 

or less. The total time spent creating mock systems for the ErcChecker's caching 

aspect was 65 minutes, but this was because two mock systems were created. 

Even when mock systems do not save development time, they provide a more 

controlled environment for testing the aspect, just as traditional unit testing can 

focus more on a function or class before integration testing. For example, using a 

mock system for evaluating caching focuses solely on caching rather than testing the 
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caching aspect as part of the full system. Other types of testing, such as performance 

or stress testing, can be done with mock systems, such as our testing of caching 

behavior and performance. 

One additional cost of mock systems is that as an aspect evolves during develop­

ment, any changes need to be mirrored and validated in the mock system or the mock 

system becomes stale. However, the mock system changes can be used in regression 

testing to validate that an aspect still functions as expected when either the aspect 

or system structure change. 

One goal of mock systems is to create aspects that do not require change when wo­

ven with the real system. The only aspects that required pointcut changes were those 

that used an explicit list of functions to advise. If AspectC++ supported annotation-

based weaving, the caching aspect pointcut change could have been avoided. Weaving 

based on annotations is different from our own annotations, which are used to check 

the weave results. Instead, languages such as AspectJ allow developers to use anno­

tations as weave targets. While this requires the annotations to be inserted at all join 

points, it avoids depending on function names or naming conventions. If AspectC++ 

supported annotations, we could use annotation-based pointcuts for some aspects, 

and the mock system and real system could both contain annotations. 

We do not have tools that help automate the creation of mock systems. Although 

tools can potentially extract classes or interfaces from the real system, engineering 

judgment is required when deciding what classes and methods are needed in the mock 

system. 

8.5 Threats to Validity 

The evaluation of the new approach demonstrates that it can be applied to legacy 

systems. However, like most case studies, it is difficult to generalize from a small-scale 

study. Thus, there are threats to external validity. 
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This study applied the aspectualization process to only three legacy systems. The 

legacy systems were not selected randomly, which limits external validity. Certainly, 

different results are likely when applying the process to other systems. Still this study 

demonstrates that the process can work, and the use of mock systems can lower costs 

and help to find errors. 

Because of the limited nature of the evaluation, there are threats to internal 

validity, which is concerned with whether the new approach is actually responsible 

for the time savings and for revealing faults. One concern is that all of the aspect 

development and refactoring was performed by the same subject. This subject is 

also one of the developers of the approach, and clearly understands and believes in 

the approach. Others would not be biased, and might choose different aspects or 

implement them differently. In addition, the subject had development experience 

with the ErcChecker, and this potentially sped up aspect identification, refactoring, 

and mock systems development. For the PowerAnalyzer, although the developer did 

not participate in the design or development of the system, he did have some limited 

knowledge of the code based on making changes during maintenance. 

Construct validity focuses on whether the measures used represent the intent of 

the study. We reported on whether or not aspect pointcuts or advice changed when 

moving from the mock system to the real system, since this is one way of measuring 

if the mock structure is similar enough to the real system. Other approaches might 

use structural code metrics or defects found to measure how effective mock systems 

are at providing an adequate environment for developing aspects. Time savings is a 

key dependent variable; it is based on compilation and weave times and how many 

iterations were used in the mock system to create an aspect. This is a reasonable way 

to measure effort. However, all iterations may not require an equal amount of time 

to complete. 
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Chapter 9 

Evaluation of Maintainability 

The costs of mock system-based aspectualization include the costs related to identify­

ing aspects, developing mock systems, performing unit testing, creating aspect code, 

and changing primary code. If we used a different approach for aspectualization, 

the costs related to creating aspect code and changing primary code would be the 

same. We reported the cost of developing mock systems in Chapter 8 but the cost 

of identifying aspects is outside the scope of this dissertation. Thus, in this chapter, 

our focus is on the cost of aspect code creation and primary code changes. 

Each application has a source code repository that contains the version history of 

each source file. For each application, we start at revision 1, and identify and refactor 

cross-cutting concerns as aspects so that we have revision 1-aop (aspectualized version 

of revision 1). We report the cost incurred when aspectualizing the first revision of an 

application. We compare the original and aspectualized code for any revision of the 

software, using metrics such as size, execution time, memory usage, and test coverage. 

Next, we examine the changes made between the current revision (i.e. revision 

1) and the next revision (i.e. revision 2), making the functionally equivalent changes 

in aspectualized revision 1 (i.e. 1-aop) to create revision 2-aop. Some of the changes 

made between revisions may also correspond to cross-cutting concerns that could 

be refactored as aspects. Thus, in addition to the aspects identified in the initial 

revision, aspects may also be identified based on the changes occurring after the first 
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revision. We compare change-related metrics when going from revision N to revision 

N+l on the original and aspectualized branch of the code. We follow this process over 

several revisions so that costs and benefits can be measured in terms of long-term 

maintenance. 

Revision 1 

Initial 
refactoring 

Revision 1-aop 

Original 
changes 

Revision 2 

Corresponding changes 
to aspect and base code 

Revision 2-aop 

Original 
changes 

Original 
changes 

Corresponding changes 
to aspect and base code 

Revision n 

Revision n-aop 

Figure 9.1: Evaluating Aspectualization using Revision History 

Figure 9.1 shows the process. The rectangles represent revisions and the label, 

"Original changes", between revisions represent the changes that were made in the 

original application. Corresponding changes are made in the corresponding revisions 

of the aspectualized version. 

9.1 Initial Refactoring Change Impact 

We consider the code added, modified, or deleted when the aspect is first introduced 

to the application. The Ins tanceDr ivers data is shown in Table 9.1. The first 

column shows the aspect name. The second column shows the size of the aspect 

(LOC), which is not a refactoring cost, but is shown to contrast with the changes 

made to the primary code for each aspect. The next three columns (Additions, 

Changes, Deletions) show how many lines were added, changed, or deleted in the 

original application during aspectualization. The last column is the total number of 

lines changed - the sum of the number of lines added, modified, or deleted. 
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Table 9.1: Instance Drivers: Source Code Changes Made 

Aspect Name 

Caching 
CheckFwArgs 
Excepter 
Singleton 
Tracing 
Total 

Aspect Size(LOC) 

3 
29 
28 
5 

62 
127 

Changes to primary code (LOC) 
Additions 

0 
13 
0 
0 
0 
13 

Changes 
0 
7 
0 
0 
0 
7 

Deletions 
18 
0 
1 

11 
16 
46 

Total 
18 
20 
1 

11 
16 
66 

For the Ins tanceDr ivers application, 66 lines were changed, of which, 46 

(more than half) were deletions. Four of the aspects required only deletions. The 

CheckFwArgs aspect needed the most additions because its pointcut required that the 

advised functions be refactored as static methods of an advised class. The number of 

deletions is greater than the size of the aspect for most aspects. 

The Caching aspect uses aspect inheritance to reuse a more general caching aspect 

from a collection of abstract caching aspects that we had created for a separate 

application [55]. Although the base aspect size is 30 LOC, the table shows the size 

(3 LOC) of the application-specific derived aspect. 

The largest aspect, Tracing, required more lines to implement than the number 

of lines removed (16). However, during subsequent revisions, the use of Tracing 

resulted in 66 lines being removed by the last revision. 

The Excepter aspect allowed us to delete one line in the Ins tanceDrivers code 

because the error checking it provided was only implemented as a line check in one 

location in Ins tanceDrivers . The CheckFwArgs removed no lines because none of 

the checks it performs were implemented in the initial revision. 

Table 9.2 shows the changes made to the Power Analyzer during aspectualization. 

As with Table 9.1, we list each aspect, its size, the number of additions, changes, and 

deletions, and the total number of changes. 
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Table 9.2: Power Analyzer: Source Code Changes Made 

Aspect Name 

CadTrace 
Excepter 
CheckFwArgs 
Timer 
FwErrs 
FetTypeChkr 
ViewCache 
Total 

Aspect Size(LOC) 

8 
28 
29 
12 
16 
11 
4 

123 

Changes to primary code(LOC) 
Additions 

0 
17 
18 
34 
0 
0 
0 

69 

Changes 
0 
57 
4 
20 
0 
0 
1 

82 

Deletions 
0 

112 
81 
79 
16 
18 
21 

327 

Total 
0 

186 
103 
133 
16 
18 
22 

478 

The Timer aspect required the most additions and the second most changes. The 

additions represent the lines that we added when we used the Extract Method Refac-

toring approach to refactor blocks of code as new functions so that these functions 

could begin with the tmr prefix. The changes represent the modifications we made 

to the code that called existing functions that were renamed. 

The Excepter aspect required the most changes when code for checking and han­

dling return values was removed, but it also resulted in the largest number of deleted 

lines of code from the PowerAnalyzer. 

The lines added or modified in PowerAnalyzer for the Excepter aspect represent 

cases where we added local try/catch blocks to prevent applications from exiting on 

errors. The additions for the CheckFwArgs aspect are for converting the advised 

functions to static methods of classes. The CadTrace aspect does not replace any 

application code, but instead adds tracing information used to debug an application 

error. During normal use, it is disabled. 

The ViewCache aspect required a change to one line of code and the removal of 

21 lines, while FetTypeChkr and FwErrs each deleted fewer than twenty lines of code 

without requiring any change to the original application. The UnitCvrt aspect is 

not shown in Table 9.2 because the concern it represents was not implemented in 
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the initial revision. Instead, the concern was introduced during the transition from 

revision two to revision three. 

Table 9.3 shows the changes made to the ErcChecker during aspectualization. 

We list each aspect, its size, the number of additions, changes, and deletions, and the 

total number of changes. 

Table 9.3: ErcChecker: Source Code Changes Made 

Aspect Name 

Caching 
CheckFwArgs 
Excepter 
ErcTracing 
FwErrs 
QueryPolicy 
QueryConfig 
Total 

Aspect Size(LOC) 

130 
29 
28 
108 
16 
10 
14 

335 

Changes to primary code(LOC) 
Additions 

0 
0 
16 
0 
0 

73 
0 

89 

Changes 
0 
3 
11 
0 
0 

217 
0 

231 

Deletions 
184 
33 
24 

1057 
24 

335 
57 

1714 

Total 
184 
36 
51 

1057 
24 

625 
57 

2034 

The QueryPolicy aspect enabled many deletions by aspectualizing common policy 

code for the ErcQuery class. The changes and additions required during refactoring 

varied among the different subclasses of Ere Policy[56]. For 15 subclasses, we only 

made deletions. We added a method to 18 subclasses to consistently manage memory. 

The subclass consistency is necessary because the QueryPolicy aspect applies the 

same policy advice to all subclasses. In addition, six subclasses perform electrical 

checking in multiple phases, requiring that more than one location within the class 

be refactored. 

Both the QueryConfig and FwErrs aspect enabled deleting about the same num­

ber of lines as the size of the aspect and required no changes and additions. The 

CheckFwArgs also removed approximately the same number of lines of code as the 

size of the aspect; the 3 lines added were to move functions into classes as static meth­

ods so that the aspect pointcut use the class name rather than a list of functions. 
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The Caching aspect was the largest aspect used in the ErcChecker, but allowed 

more deletions than all but the ErcTracing aspect. The ErcTracing aspect provided 

the largest removal of core concern code of any aspect in the three applications. 

9.2 Size 

We compare the size of the original and aspectualized applications. We also show 

the equivalent application size, which represents the size the original application 

would have if concerns that were not fully or consistently implemented in the pri­

mary code had been included. In Ins tanceDrivers , these concerns were related to 

the Excepter, Tracing, and CheckFwArgs aspects. In the PowerAnalyzer, these 

concerns were related to the Excepter, CadTrace and CheckFwArgs aspects. The 

concerns implemented inconsistently in ErcChecker were CheckFwArgs, Excepter, 

and ErcTracing. 

Using the size of the equivalent implementation allows us to compare the aspec­

tualized solution to the amount of code that would have been needed to achieve the 

same level of checking and tracing in the original application. 

In the equivalent implementation, the code would be added at each location ad­

vised by the aspect. Thus, we calculated the equivalent size by multiplying the 

number of joinpoints advised by the aspect with the number of lines of code required 

in C + + to implement the advice. The size of the aspectualized application includes 

the refactored C + + code, the aspects, and any support code that is invoked from 

within the aspect advice. 

The data for the six Ins tanceDrivers revisions is shown in Table 9.4. Each row 

in Table 9.4 represents a revision, with the revision number shown in column one. The 

second column shows the size of the original C + + source code, and the third column 

shows the equivalent size. The 'AOP' column shows the size of the aspectualized 

application. The last column is the size of the aspectualized application (AOP) minus 
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Table 9.4: InstanceDrivers: Code Size (LQC) 
Revision 

1 
2 
3 
4 
5 
6 

Original 
1619 
1672 
1823 
2967 
3008 
3155 

Equivalent 
1972 
2025 
2209 
3473 
3544 
3743 

AOP 
1924 
1974 
2130 
3236 
3269 
3395 

AOP savings 
48 (2.4%) 
51 (2.5%) 
79 (3.5%) 

237 (6.7%) 
269 (7.5%) 
348 (9.3%) 

the size of the equivalent application. This number represents the reduction in size 

achieved by using aspects and shows that this size reduction grew over time as the 

size of the application grew. 

Table 9.5: Power Analyzer: Code Size (LQC) 
Revision 

1 
2 
3 
4 
5 
6 
7 

Original 
13,931 
14,861 
15,183 
15,356 
15,727 
16,412 
16,600 

Equivalent 
14,066 
15,000 
15,322 
15,499 
15,876 
16,567 
16,755 

AOP 
13,734 
14,638 
14,959 
15,128 
15,482 
16,118 
16,294 

AOP savings 
332 (2.4%) 
362 (2.4%) 
363 (2.4%) 
371 (2.3%) 
394 (2.5%) 
449 (2.7%) 
461 (2.8%) 

Table 9.5 contains the data for the PowerAnalyzer. Unlike InstanceDrivers , 

the concerns implemented as aspects were all present in the initial revision of the 

PowerAnalyzer. The last column, 'AOP savings', is cumulative: if 332 lines are 

removed due to aspectualization in revision 1 and 30 lines are removed due to aspects 

in revision 2, then revision 2 will show the aggregate savings of 362 lines of code. 

Some cross-cutting concerns, such as tracing, had new code added at each revision 

of the original application. Thus, aspectualization results in code savings with each 

revision because the changes are not scattered but are restricted to the Tracing 

aspect. This increased savings in later revisions was particularly apparent for In ­

s tanceDrivers with the Tracing aspect. 
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In the PowerAnalyzer, 72% (332/461 lines) of the AOP savings were realized with 

the initial revision. The initial benefit was much larger for PowerAnalyzer 332 lines) 

than for Ins tanceDr ivers (48 lines); aspectualization saved more code in the initial 

revision than the size of the aspects themselves. 

For the CheckFwArgs and Tracing aspects, we created a 200 LOC library that 

provides all the type-specific printing and checking methods needed to handle all the 

datatypes advised. The library that can be accessed by any datatype-based aspect. 

Its development represents a one time cost for these aspects. The library made the 

aspectualized Ins tanceDr ivers application larger than the original version, but with 

increased functionality. 

The data for three revisions of ErcChecker is shown in Table 9.6. In the initial 

revision, no checks were originally provided. There were three cases where a return 

code was not checked; we corrected this using the Excepter aspect. There were 

320 methods in the classes that used framework pointers without checking for null 

pointers; using CheckFwArgs fixed them. In revision four, we identified four checks 

that were missing in the original code; two were fixed by using the Excepter aspect 

and two were fixed by using the CheckFwArgs aspect. 

Table 9.6: ErcChecker: Code Size (LOC) 
Revision 

1 
2 
3 

Original 
51,692 
54,137 
64,145 

Equivalent 
52,664 
55,132 
65,154 

AOP 
50,492 
52,845 
62,608 

AOP savings 
2172 (4.1%) 
2287 (4.1%) 
2546 (3.9%) 

Like PowerAnalyzer, most of the AOP savings is realized in revision 1 of the 

ErcChecker. The ratio is even more pronounced for the ErcChecker, with 85% 

(2172/2546 lines) of the saving from revision 1. Aspectualization removed more code 

for the ErcChecker, which was by far the largest application. In terms of percentage 

saved, ErcChecker had a large percentage saved than PowerAnalyzer but saved less 

than half of the percentage in the final revision of Ins tanceDrivers . 
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9.3 Performance 

We present the data for woven code size along with memory and execution time 

performance data in Tables 9.7 and 9.8. The first column lists the revision. The 

second column shows the multiplicative increase in the number of lines of the woven 

code. For example, 4.3x means that the woven code is 4.3 times larger than the 

original code. The third column shows the percent increase in compiled object code. 

The fourth column shows the percent increase in regression test execution time. The 

fifth column shows the percent increase in memory usage. 

Table 9.7: InstanceDrivers: AQP Performance Data 
Revision 

1 
3 
4 
6 

Code Increase 
4.3x 
4.4x 
3.9x 
4.2x 

ObjCode Increase 
+54% 
+91% 

+119% 
+123% 

Run Time Increase 
+5.1% 
+5.0% 

+14.0% 
+18.0% 

Memory Increase 
+2.4% 
+2.1% 

+11.1% 
+15.0% 

Two factors explain the increases in Ins tanceDrivers memory usage and exe­

cution time for later revisions. First, more aspects were added to the application. 

Revision six has more aspect code woven in than revision one. Second, the regression 

tests evolved with the application. In the fourth revision, tests were added that had 

tracing enabled by default unlike some of the previous tests. Most of our aspects 

result in only a small increase in woven code size and have negligible effects on ex­

ecution time and memory usage. However, the Tracing and CheckFwArgs aspects 

increase execution time and memory usage due to the overhead of additional method 

calls to check and print method parameters. The size of the compiled object code 

increased until it was more than double (+123%) the original size. This code bloat is 

similar to what can occur when C + + programs with templates are compiled and is 

much larger than the increase in execution time or memory usage. 

The PowerAnalyzer data is shown in Table 9.8. The increases in PowerAnalyzer 

execution time, memory usage, and object size were less with later revisions, which we 
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Table 9.8: Power Analyzer: AOP Performance Data 
Revision 

1 
3 
5 
7 

Code Increase 
1.78x 
1.80x 
1.79x 
1.80x 

Obj Code Increase 
+30% 
+29% 
+29% 
+29% 

Run Time Increase 
+10.0% 
+9.1% 
+9.0% 
+9.0% 

Memory Increase 
+14.0% 
+12.1% 
+12.0% 
+12.0% 

attribute to the non-aspect code growing faster than the amount of aspect code in later 

revisions. Thus, by revision seven, the aspects made up a smaller overall percentage 

of the code. The increase in the code size of the Power Analyzer was less than half the 

increase of Ins tanceDrivers . This difference was due to the greater use of aspects 

that employ template metaprogramming to recursively expand argument lists into 

individual typed values. Although template metaprogramming led to high code bloat 

in the Ins tanceDrivers , it was used in aspects (Tracing and CheckFwArgs) that are 

called infrequently during application regression tests, and have minimal impact on 

performance. The PowerAnalyzer aspects, such as Excepter, intercept calls that are 

made frequently during regression tests, which causes a higher performance overhead. 

In the PowerAnalyzer, memory usage and execution times both consistently in­

creased by about 10%, primarily due to the consistent error checking implemented 

in the Excepter, CheckFwArgs, FetTypeChkr, and FwErrs aspects. The execution 

time also increased because the CheckFwArgs aspect processes each parameter; frame­

work pointers are checked and non-framework parameters are ignored. Calling the 

empty virtual 'no-op' function for non-framework parameters also introduces some 

overhead. These checks provide improved error detection and traceability without an 

order of magnitude increase in execution time and memory use, and reduce code size 

by eliminating scattered code to provide the same checks. 

When we performed the original regression, test data for ErcChecker was no 

longer accessible to us for proprietary reasons. Thus, we only present woven code size 

and object code size data for the ErcChecker, which is shown in Table 9.9. 
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Table 9.9: ErcChecker: AOP Woven Size Data 
Revision 

1 
2 
3 

Code 
Increase 

4.8x 
4.7x 
5.1x 

ObjCode 
Increase 
+125% 
+123% 
+136% 

The ErcChecker's increases in woven code size and compiled object size are sim­

ilar to Ins tanceDr ivers . The ErcChecker makes extensive use of template-based 

aspects, as does, Ins tanceDr ivers , which increases both woven code size and object 

code size. 

We present joinpoint data for Ins tanceDr ivers , PowerAnalyzer and ErcChecker 

in Table 9.10, using "n/a" for aspects that were not used in an application, and thus, 

are not applicable. This data is from the last revision of each application, thus all 

aspects were present in at least one of the applications. We see from the table that 

the Excepter was woven into more places in the PowerAnalyzer than the Ins t ance -

Drivers and ErcChecker. This explains why it had a greater impact on execution 

time and memory usage of the PowerAnalyzer. 

The Tracing aspect advises many joinpoints in InstanceDrivers , resulting in 

a large increase in the woven code size. Similarly, the ErcTracing aspect and 

CheckFwArgs aspects were woven in many joinpoints of ErcChecker. Analysis of 

ErcChecker individual regression runs confirmed that when only the Tracing aspect 

was disabled, average memory and execution time increases were only between 2-4% 

rather than 9-10%. Since tracing is only enabled in rare cases for debugging program 

or circuit problems, the average case for Ins tanceDrivers is the 2-4% increase. Since 

the verbose mode is only used for debugging, we assert that the larger performance 

increase in that case is acceptable because the aspect provides more thorough debug 

output. 
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Table 9.10: Joinpoint Data for all Applications 
Aspect 

Caching 
CadTrace 
CheckFwArgs 
ErcTracing 
Excepter 
FetTypeChkr 
FwErrs 
QueryPolicy 
QueryConfig 
Singleton 
Timer 
Tracing 
UnitCvrt 
ViewCache 

Instance-
Drivers 

Joinpoints 
3 

n /a 
9 

n /a 
11 

n /a 
n /a 
n /a 
n /a 

4 
n / a 
115 
n /a 
n /a 

Power-
Analyzer 

Joinpoints 
n /a 

8 
54 

n /a 
91 
14 
9 

n /a 
n /a 
n /a 
34 

n /a 
10 
10 

ErcChecker 

Joinpoints 
27 

n /a 
338 
211 
11 

n /a 
12 
45 
58 

n /a 
n /a 
n /a 
n /a 
n /a 

9.4 Change Locality 

We measure change locality by comparing the number of modules and files that we 

modified when going from revision N to revision N+l. A lower number indicates better 

change locality. We also counted the number of lines changed to go from one version 

to the next. 

Each row in Table 9.11 represents moving from one revision to the next one. For 

example, '1-2' in the 'Revisions' column means changes when moving from revision 

one to revision two. The 'Lines' and 'Lines(AOP)' columns show how many lines were 

modified in the original application and in the aspectualized application, respectively. 

Similarly, the 'Modules' and 'Modules(AOP)' columns compare how many modules 

were modified. Last, the 'Files' and 'Files(AOP)' columns compare how many source 

files were modified in the original and aspectualized application. The table shows 

that better change locality (i.e. lower number of modules and files changed) generally 

corresponds with fewer lines changed. 
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Table 9.11: InstanceDrivers: Change Locality 
Revisions 

1-2 
2-3 
3-4 
4-5 
5-6 

Lines 

56 
148 
1155 
59 
158 

Lines 
(AOP) 

53 
149 

1125 
49 
109 

Modules 

3 
8 

26 
10 
13 

Modules 
(AOP) 

2 
8 
26 
8 
9 

Files 

3 
9 
14 
9 
5 

Files 
(AOP) 

2 
9 
14 
8 
5 

The increase in lines changed when going from revision two to revision three was 

caused by the implementation choice in the CheckFwArgs aspect: we refactored the 

functions needing their framework pointers to be checked to static class methods, and 

added an additional wrapper class to hide this change from the rest of the application. 

This increase was small, and had the original code used methods of a class rather 

than functions, the AOP cost would be less. For all other revision changes, the 

aspectualized Ins tanceDr ivers application had fewer line changes. 

Aspects improved module change locality in three revisions and file change locality 

in two revisions. Module and file change locality were never worsened by aspectu-

alization. However, even when there were improvements, they tended to be small. 

This was because each new revision included changes in several core and crosscutting 

concerns at once. While aspects localized the changes in cross-cutting concerns, the 

changes in the core concerns still had to be implemented in several modules and files. 

The PowerAnalyzer change locality data is shown in Table 9.12. As in the In ­

s tanceDrivers , change locality either showed improvement or remained the same. 

The ErcChecker change locality data is shown in Table 9.13. As in the In ­

s tanceDr ivers and PowerAnalyzer applications, aspectualization provided a small 

decrease in module and file change locality. The small improvements were due to 

changes avoided because of the ErcTracer aspect. Like the Timer aspect in In ­

s tanceDrivers , the concerns aspectualized by QueryPolicy and QueryConfig had 
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Table 9.1 
Revisions 

1-2 
2-3 
3-4 
4-5 
5-6 
6-7 

Lines 

940 
322 
173 
371 
685 
188 

2: Power Analyzer: 
Lines 

(AOP) 
879 
320 
169 
354 
636 
178 

Modules 

78 
6 
21 
55 
77 
7 

Change Locality 
Modules 
(AOP) 

75 
5 
19 
53 
75 
5 

Files 

24 
4 
15 
16 
21 
5 

Files 
(AOP) 

23 
3 
13 
16 
21 
5 

few changes during the evolution of the ErcChecker. Thus, these did not decrease 

module and file change locality. 

Revs 

1-2 
2-3 

Table 9.13: ErcChecker: 
Lines 

4,638 
16,967 

Lines 
(AOP) 
4,546 
16,722 

Modules 

112 
317 

Change Locality 
Modules 
(AOP) 

109 
310 

Files 

47 
105 

Files 
(AOP) 

46 
103 

9.5 Concern Diffusion 

In Table 9.14 we list each aspect used in Ins tanceDrivers , the number of concern 

switches removed by the aspect, and any new concern switches that occur when 

aspects are used. Thus, although we do not measure concern diffusion over lines 

of code (CDLOC) directly, we measure the difference in CDLOC using the final 

revision of each application to manually compare the concern switch differences. The 

numbers in parentheses represent concern diffusion values when we consider equivalent 

functionality. 

The CheckFwArgs aspect lists two values in the reduction column: 0 and 18. The 

value, 0, reflects that no checking was done in the original code, hence no concern 

switching actually occurred. The value, 18, represents the number of concern switches 

(2 switches per method in 9 methods) that would have occurred if the concern had 

been implemented in every place (equivalent functionality). The addition of two new 
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Table 9.14: InstanceDrivers: Concern Diffusion 
Aspect 
Caching 
CheckFwArgs 
Excepter 
Singleton 
Tracing 
Total 

Concern Switch Reduction 
16 

0(18) 
16 
6 
78 

116(134) 

New Concern Switches 
0 
2 
0 
0 
0 
2 

concern switches reflects the restructuring that we performed in the core concern to 

allow us to use a simple pointcut as described in Section 6.2.1. 

For the Ins tanceDr ivers application, even without considering equivalent func­

tionality, 116 concern switches were removed and only two were added. 

Tab] 
Aspect 
CadTrace 
CheckFwArgs 
Excepter 
FwErrs 
FetTypeChkr 
Timer 
UnitCvrt 
ViewCache 
Total 

e 9.15: Power Analyzer: Concern Diffusion 
Concern Switch Reduction 

72 
84 
98 
18 
28 
68 
38 
20 

426 

New Concern Switches 
0 
8 
30 
0 
0 
0 
0 
0 
38 

We show the reduction in concern diffusion of the final revision of PowerAnalyzer 

in Table 9.15. Overall, concern diffusion decreases in PowerAnalyzer. The CadTrace 

reduction reflects that the equivalent amount of debugging would have resulted in 2 

switches before and 2 switches after each of the 18 joinpoints. The Excepter concern 

has a net decrease of 68 concern switches. At the locations where 30 concern switches 

were added, a concern switch was also removed at the same location. Adding and 

removing a concern switch was done when aspectualizing error handling. In the 

original application, errors in functions (such as f open) returned error codes that 

would be checked as follows: 
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fp = fopen(fi lename.mode); 

if(fp==NULL) { 

/ ' / e r r o r handl ing code 

} 

/ /back t o r egu l a r code 

This shows two concern switches: (1) error-handling, for when the variable fp is 

NULL, and (2) the primary code concern for which the file pointer f p will be used. 

For applications to catch errors locally, the developer must add a try/catch block 

around the function (f open) rather than checking the return value, as shown below: 

t r y { 

fp = fopen(fi lename,mode); 

> 

catch(anErrorOccurred e) { 

/ / e r r o r handl ing code 

} 

This represents two concern switches (switching to and from error handling code 

in the catch block). The net reduction in concern switches is 316 because Table 9.15 

shows 354 switches were reduced and 38 were added. 

We show the reduction in concern diffusion of the final revision of ErcChecker in 

Table 9.16. 

The CheckFwArgs and Excepter aspects list two values in the reduction column. 

The smaller value reflects the concern switches reduced in the original code. The 

larger parenthesized value represents the number of concern switches that would have 

occurred if the concern had been implemented in every place (equivalent functional­

ity)-

Each aspect reduced the number of concern switches. The QueryPolicy aspect 

required adding a new virtual method to the ErcQuery base class, and 14 of the 58 
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Table 9.16: ErcChecker: Concern Diffusion 
Aspect 

Caching 
CheckFwArgs 
Excepter 
ErcTracing 
FwErrs 
QueryPolicy 
QueryConfig 
Total 

Concern Switch 
Reduction 

216 
24 (38) 
14 (668) 

598 
12 
78 
114 

1,056 (1,724) 

New Concern 
Switches 

0 
0 
8 
0 
0 

57 
0 

65 

classes had to override this method. The changes to the base class and 14 sub-classes 

are where the 57 new concern switches were added. The Excepter class reduced 14 

switches, but 8 new concern switches were added as local try/catch blocks to handle 

some errors locally rather than exiting from the application. All other aspects reduced 

concern switches without adding new concern switches with a total of 1,020 concern 

switches reduced in the original application. 

9.6 Test Coverage 

We describe the challenges and trends we observed when we gathered test cover­

age data for four revisions of Ins tanceDr ivers and PowerAnalyzer. As previously 

mentioned, regression data was not available for ErcChecker. 

In Table 9.17 we show statement coverage data for four revisions of Ins t ance -

Drivers . The first column lists the revision, while the second and third column show 

missed lines of code and total lines for the original application, and the fifth and sixth 

columns show missed and total lines of woven code of the aspectualized application. 

The fourth and seventh columns show the percentage of missed lines of code for the 

original and aspectualized applications. For this study, we used the existing regression 

tests as is; we did not change them to try and achieve 100% coverage in the original 

or aspectualized applications. 
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Table 9.17: InstanceDrivers: Statement Coverage 
Revision 

1 
3 
4 
6 

Missed 
lines 
102 
116 
294 
320 

LOC 

1619 
1767 
2967 
3155 

Percentage 

6% 
7% 
10% 
10% 

Missed 
lines(AOP) 

624 
685 
428 
538 

LOC 
(AOP) 
7082 
8040 
11578 
13140 

Percentage 
(AOP) 
8.9% 
8.6% 
4.0% 
4.0% 

From Table 9.17, we observe that the aspectualized application always had more 

lines of missed code. The missed lines correspond to the primary code that did not 

get executed as well as the aspect code. If statements in the primary code are not 

executed by the test inputs, then any associated joinpoint-specific code will also be 

missed. Moreover, the woven code can also contain unreachable statements. Each 

joinpoint has methods, such as Jo inpo in t : : s i g n a t u r e ( ) , that can be used in the 

advice body of the aspect. If these joinpoint methods are not used by any advice, 

they are unreachable and will be marked as not covered by statement coverage tools. 

Table 9.17 reflects two significant changes that occurred in revision four of In -

s tanceDr ivers . The first change was that more than 1000 lines of code were added, 

the largest one-time increase for any revision. Secondly, because of the changes in 

the original code, the regression tests were updated by the original developers to test 

additional functionality, including more testing of the verbose-mode functionality, 

which provided much better testing for the Tracing aspect. Although the number 

of lines missed in revision four was still greater in the aspectualized version, the 

aspectualized version had a lower percentage of misses because previously missed 

Tracing aspect code was now being tested. 

Test data for four revisions of Power Analyzer is shown in Table 9.18. When we 

performed the study, about half of the original regression test data for Power Analyzer 

was no longer accessible to us for proprietary reasons. The missing regression test 

cases lower the coverage. Because our focus was on the aspectualization, attempting 
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Table 9.18: Power Analyzer: Statement Coverage 
Revision 

1 
3 
5 
7 

Missed 

2435 
2592 
2790 
3205 

LOC 

13,931 
15,183 
15,727 
16,600 

Percentage 

17.4% 
17.1% 
17.7% 
19.3% 

Missed 
(AOP) 
3500 
3811 
3995 
4467 

LOC 
(AOP) 
24,744 
27,292 
28,151 
29,760 

Percentage 
(AOP) 
14.1% 
14.0% 
14.2% 
15.0% 

to obtain the old test cases to construct new test cases was beyond the scope of this 

study. 

We were able to run gcov with the aspectualized application. However, the wo­

ven code contains new code generated through aspect weaving and an extra level of 

indirection for the advice to intercept and advise methods and functions. This made 

the report of missed lines more difficult to understand. 

Table 9.19: InstanceDrivers: Joinpoint Coverage 
Revision 

1 
3 
4 
6 

Covered 
Joinpoints 

54 
54 
85 
107 

Total 
Joinpoints 

77 
84 
114 
145 

Percentage 

70% 
64% 
75% 
74% 

Table 9.19 shows joinpoint coverage for the same revisions for which we reported 

statement coverage. The first column contains the revision number, the second col­

umn shows the number of covered (executed) joinpoints, while the third column shows 

the total number of joinpoints. The last column (Percentage) is the percentage of 

joinpoints covered. At revision three, the joinpoint coverage decreased because there 

were new joinpoints in the application which were not executed by the regression 

tests, even though the old joinpoints were covered. At revision four, when the regres­

sion tests were improved so that the Tracing aspect was executed more often, we see 

an increase in joinpoint coverage. 
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Table 9.20 
Revision 

1 
3 
5 
7 

: PowerAna 
Covered 

Joinpoints 
93 
113 
122 
134 

yzer: Joinpoint Coverage 
Total 

Joinpoints 
155 
183 
192 
211 

Percentage 

60% 
62% 
64% 
64% 

Table 9.20 shows joinpoint coverage for the PowerAnalyzer. Unlike I n s t a n c e -

Drivers , no changes occurred in the regression test suite of PowerAnalyzer between 

revisions. Thus, joinpoint coverage percentage for PowerAnalyzer remained about 

the same across all revisions. 

9.7 Defect Tracking 

We are interested in understanding what types of defects might be avoided with 

aspects, as well as what types of defects occur when using aspects or aspectualizing 

a application. For each revision, Table 9.21 shows the number of defects found in the 

original Ins tanceDr ivers during aspectualization and the number of defects that 

were introduced (and fixed) when aspectualizing the application. 

Table 9.21: InstanceDrivers: Defects 
Revision 

1 
2 
3 
4 
5 
6 

Defects in 
Original 

Application 
2 
0 
0 
2 
0 
0 

Defects Introduced 
When Aspectualizing 

Application 
2 
0 
1 
0 
0 
0 

In the original Ins tanceDr ivers application, the two defects found in revision one 

were both failures to check the return code of getenvO calls for errors. These were 

fixed by using the Excepter aspect. One defect in revision four was also related to not 
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checking ge tenvO error codes. The second defect was that the caching mechanism, 

which was manually implemented, did not cache the result in one case. This defect 

resulted in lower performance but did not give incorrect results. This was fixed when 

we used our Caching aspect. 

The first defect that we introduced in revision one was caused by the Tracing 

aspect, which accessed a class member variable when it advised a static method 

resulting in a null pointer access. The defect was fixed by making sure that we 

checked the ' t h i s ' pointer of the advised object in the aspect so that member data 

was only inspected on non-static methods. 

The second defect we introduced in revision one was that the template-based C + + 

support code for checking methods with an arbitrary number of parameters did not 

work with zero-argument methods. We tested the aspect with a variety of parameter 

types using a small mock system [59], but this testing did not include a zero argument 

method. 

At revision three, the woven code would not compile. The reason was that the 

CheckFwArgs aspect called a method that had to be defined and overridden for each 

framework pointer type used. The use of a new framework pointer as an argument 

caused a compilation error; we corrected this by defining the method for the newly 

used type. 

We show the number of PowerAnalyzer defects in Table 9.22. The defect found 

using the CadTrace aspect is not included, because the defect is not removed or 

avoided using aspects; instead, the aspect was used to avoid adding additional code 

to find the source of a defect. 

In revision one, of the 21 original defects, 12 resulted from failure to check return 

values, while nine defects resulted from failure to check for null framework parameters. 

We removed these defects when we used the Excepter and CheckFwArgs. In revisions 

two and four, the original code contained defects due to missed unit conversions, which 
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Table 9.22: Power Analyzer: Defects 
Revision 

1 
2 
3 
4 
5 
6 
7 

Defects in 
Original 

Application 
21 
1 
0 
2 
2 
2 
0 

Defects Introduced 
When Aspectualizing 

Application 
2 
0 
0 
0 
0 
1 
0 

were fixed when we used the UnitCvrt aspect. Also, in revision four the original code 

had a defect in the way the TimeEvent class was used. We fixed that by using the 

Timer aspect. Revisions five and six each contained two defects from failing to check 

for null framework parameters. 

We introduced two defects when we aspectualized revision one. One defect was 

due to an incorrect pointer reference when we added a method for the Timer aspect, 

while the other was due to incorrect try/catch logic added to handle an exception 

locally in conjunction with the Excepter aspect. We introduced a defect in revision 

six where one of the methods that was supposed to be advised by the Excepter aspect 

was not matched by the pointcut. We modified the aspect pointcut to include the 

new function. 

Table 9.23: ErcChecker: Defects 
Revision Defects in 

Original 
Application 

Defects Introduced 
When Aspectualizing 

Application 

1 
2 
3 

325 

In revision one, we removed two defects from the ErcChecker when aspectual­

izing: one ErcQuery that did not write its results to a log file, and one ErcQuery 
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that could not be disabled with run-time configuration commands. We fixed the first 

defect by using the QueryPolicy aspect and fixed the second using the QueryConf ig 

aspect. We identified three function calls whose return value was not checked; using 

the Excepter aspect provides these checks in the aspectualized version. We found 

320 methods that used framework pointers without checking for null, which we cor­

rected by using the CheckFwArgs aspect. We introduced two aspect-related defects 

in revision one. In both cases, we failed to remove code from the application that 

was replaced by the aspect's advice, resulting in both the aspect and the core concern 

attempting to free memory. 

In revision two, aspectualization removed eight defects from the original applica­

tion. The body of an ErcQuery class method missed the deletion of a query object 

from memory. We removed this defect by using the QueryPolicy aspect. We identi­

fied seven missing null pointer checks in revision two. The Excepter aspect handled 

two of them and CheckFwArgs handled five. We encountered one aspectualization 

error in revision two where new functions did not match the ErcTracing aspect's 

pointcut, disabling tracing for those functions. 

We identified five defects in the original application in revision three. One defect 

resulted from failure to check for framework initialization errors; using the FwErrs 

aspect provided this check. We found two defects where the checking provided by 

the CheckFwArgs aspect was missing, and two defects where the checking performed 

by the Excepter aspect was missing. We encountered one aspectualization error in 

revision three: the Excepter aspect did not advise a method that we expected it 

to advise. We detected this omission using our own weave analysis tool because the 

number of joinpoints advised did not change as expected. 

Eight of the nine aspectualization defects found in the Power Analyzer, Ins t ance -

Drivers , and ErcChecker can be categorized into three fault types we identified in 

previous work [58]: 
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• Incorrect advice behavior: two defects from revision one of InstanceDrivers; 

one defect in revision two of ErcChecker. 

• Advice syntax errors: one defect from revision three of InstanceDrivers. 

• Pointcut too weak: one defect in revision six of PowerAnalyzer; one defect in 

revision three of ErcChecker. 

• Accidental code duplication: two defects found in revision one of ErcChecker. 

We also encountered a new fault type: faults introduced in the core concern 

during aspectualization (two defects in revision one of PowerAnalyzer). These faults 

differ from 'Accidental code duplication' because they involve errors introduced when 

using aspects, rather than failing to reduce code replaced by aspects. We observed 

that aspectualization removed or avoided more defects than were introduced, and our 

regression tests identified the aspectualization defects listed above. 

9.8 Discussion 

For all three applications, using aspects requires a time investment to develop aspects 

and refactor the original application. However, more than half of the refactoring 

changes were deletions, and the overall effect was to reduce source code size. There 

were increases in execution time, memory size, and compiled object size. The largest 

increase was for object size, which indicates potential memory and execution time 

increases. However, for these applications, object code size itself was not critical, 

since large increases in object code size resulted in small increases in memory size 

and execution time. Memory and execution time increases were caused by the safety 

checks in the aspectualized version that the original application omits. Had the 

original application implemented the same checks, the increases in execution time 

and memory usage would have been smaller. In addition, aspects that perform these 
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checks can easily be enabled or disabled by a change in the aspect, while modifying 

the equivalent checking code in the original application would require many changes. 

Change locality was improved by using aspects. In general, aspectualization makes 

it possible to avoid many changes in the core concerns. However, in our study, we 

found that it caused two kinds of changes to the aspects or support code. First, 

for aspects such as the Excepter, whose pointcuts consisted of a list of functions, 

we needed to update the pointcut in subsequent revisions with additional function 

names to advise the new functions. Aspects, such as CheckFwArgs, whose pointcut 

was based on application code being part of a class or namespace, require that the 

core concerns adhere to that naming convention. Thus, new functions added to the 

core concern, which needed to be checked by the CheckFwArgs aspect, had to be 

enclosed within a class or namespace so that the pointcut matched them. 

Concern diffusion was reduced as aspects provided better modularity than the 

original object-oriented implementation. The use of aspects removed defects that 

occurred when a concern was inconsistently implemented in multiple locations. 

The benefits from using aspects in the three applications varied. For example, 

the ErcChecker had the largest reduction in source code size when revision one was 

refactored. By contrast, Ins tanceDr ivers had little initial code savings, but later 

revisions saved more code because several cross-cutting changes were avoided in the 

aspect-oriented implementation. Both the ErcChecker and the PowerAnalyzer real­

ized more than half of the code savings during aspectualization of revision one. The 

potential benefit of aspectualization depends on the amount of cross-cutting code 

in the original application. The final revision of PowerAnalyzer had 16,286 lines 

of code, with aspectualization providing a savings of 397 (2%). The final revision 

of the ErcChecker contained 62,608 lines of code, with aspectualization providing a 

savings of 2546 lines (4.1%). The final revision of Ins tanceDrivers had the highest 

percentage of cross-cutting code savings, with 348 lines saved out of 3395 (10%). 

101 



Much of the code in these applications is procedural C-style code with some object-

oriented code, which may be a factor in explaining the low percentage of cross-cutting 

code that was found. Object-oriented code has more structure than older C-style code, 

including class names, package names, and more uses of interfaces, which can be used 

in identifying aspects and creating pointcuts. The structural relationships found in 

object-oriented design patterns also facilitate aspectualization [32]. The ErcChecker 

has more object-oriented code than the other two applications, which was used by 

some aspects, such as the QueryPolicy and QueryConf ig aspects. 

In general, aspects that allow deleting the most lines of code do so by advising 

many joinpoints. For team-based development, one potential challenge may be in 

communicating these aspectual relationships between the advice and the joinpoints. 

As Griswold et al. [29] report, the obliviousness that name-based pointcuts provide 

may complicate maintenance and parallel development of aspects and core concerns. 

For our study, since one developer performed the aspectualization and maintenance 

between revisions, this was not a challenge, but it is a potential challenge when 

refactoring legacy applications that are being maintained by a large team. 

9.9 Threats to Validity 

Our evaluation demonstrates that maintainability can be improved with aspectual­

ization. However, like most case studies, it is difficult to generalize from a study of 

three applications. Thus, there are threats to external validity. Some of the threats 

to validity mentioned in Section 8.5 are threats here: three applications not selected 

randomly, one subject performing the studies, biases because the subject believes in 

aspect-oriented programming, and bias in what aspects were identified in the systems 

In addition, there are threats to internal validity when performing a maintainabil­

ity study such as this. The analysis of changes between revisions could have been 

influenced by the prior experience with the applications. When identifying aspects 
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from the first revision of a legacy application, a developer may be biased toward parts 

of an application that he knows were more change-prone, and may be biased against 

those parts of the application that were not change prone. The approach in this study 

was to only make changes that were necessary for using aspects; another approach 

would be to favor more extensive refactoring (e.g., adding more object-orientation to 

the primary code) before aspectualization. 

The developer who created the aspects reported the defects avoided by aspects and 

the defects caused by aspects. A different developer might find different defects in the 

original application and insert different defects during refactoring. In addition, any 

aspect developer might be unaware of defects in his or her aspectualized application 

that would be found by another developer or if the test coverage were higher. 

Using legacy applications to perform the study may pose problems. Legacy soft­

ware often reflects the decisions made based on the language used and tools available 

at the time of developing the software. Legacy code may be dated by a particular 

design style, such as the use or lack of design patterns, which may affect what types 

of refactoring can be performed. Some changes, such as those related to a concern 

that crosscuts many files, may not have been made in the original code because of 

the cost; however, had the original implementation used aspects from the beginning, 

such changes would have been less costly. 

Using legacy proprietary software can make it difficult to access the artifacts 

that are required to perform a study. Our study of regression test coverage for the 

PowerAnalyzer shows low coverage data because we did not have access to half of 

the original regression test suites. We did not have access to ErcChecker regression 

tests, which could mask some aspectualization defects. 

How we use source code repositories of legacy applications presents an additional 

threat to internal validity. The revisions we considered are major releases across 

a large set of files. In between two major releases (coarse-grained revisions) of an 
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application, two files might have different revision histories one might not have 

changed at all, while the other might have had several file revisions. For files that 

have multiple changes between revisions, a module in a file might have undergone 

several changes, only one of which is related to a cross-cutting concern. When that 

concern is refactored as an aspect, there will be a reduction in the amount of change in 

that module. However, since there are other changes in the module and the associated 

file, aspectualization alone is unable to reduce file and module change locality. A more 

fine-grained approach would consider each file's individual revision history. Using fine­

grained revisions for each file is likely to affect change locality results because each 

change would be smaller, and some changes would be related only to cross-cutting 

concerns. 

We used the unplanned changes that occurred in the legacy applications' revision 

history. We did not design the original application or the subsequent revisions to 

be explicitly adaptable for upcoming changes in later revisions. We selected aspects 

by identifying cross-cutting concerns in revision one and by identifying cross-cutting 

concerns in the code changes between subsequent revisions. A different approach 

would be to aspectualize a set of modules within an application that are expected to 

be more change-prone. In our study, the aspects themselves changed little or not at 

all. For example, the TimeEvent class used by the Timer aspect of Ins tanceDrivers 

did not change. Had the type of timing data or core concerns that collected this data 

changed, the Timer aspect itself would have required changes. However, our study 

did not encounter this type of change. 

Construct validity focuses on whether the measures used represent the intent of 

the study. We compared the original and aspectualized applications over the existing 

revision history, using code-based metrics such as lines of code, number of modules 

and files modified, and code concern diffusion. This is one approach for studying 

the effects of aspect-oriented technology on maintainability. Other researchers have 
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created two separate applications [42, 29], one designed with aspects and one de­

signed without aspects, rather than modifying the original application to incorporate 

aspects. Maintenance was simulated by implementing features defined in use cases. 

We identified cross-cutting concerns from source code and did not use requirements 

or design documents. A different approach would be to define aspects from design 

documents or indications of designer intent, which might identify aspects that are 

more abstract and less focused on scattered, similar code. 

Our results are dependent on the features and capabilities of AspectC++, which 

depend on the features of C + + . AspectC++ is based on the design and goals of 

Aspect J [64], but differences between C + + and Java are reflected in AspectC++. 

For example, as C + + lacks reflection, access to parameter type information is pro­

vided through a static, compile-time API. Language differences between C + + and 

Java, such as pointers, memory management, and operator overloading affect how 

design patterns such as singleton can be implemented, and cause AspectC++ not to 

support some features, such as getter and setter accesses of class attributes. Studies 

using a different primary code language and a different aspect-oriented language may 

encounter different challenges and benefits from aspectualization. 
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Chapter 10 

Conclusions and Future Work 

We developed a test driven approach for creating and unit testing aspects with mock 

systems, and for performing integration testing with these same aspects in the context 

of large legacy systems. We built tools for advice instrumentation, weave analysis, 

and coverage measurement that support our approach. 

We demonstrate our approach by refactoring three large legacy C + + applications. 

We also provide guidelines for the creation of mock systems. We show how using 

mock systems helps overcome the challenges of long compilation and weave times 

when refactoring large legacy systems. For the larger of the three systems, using a 

mock system saved between three and five hours for each aspect. Using mock systems 

and the tools helps validate aspects, explore different implementations, and identify 

pointcut and advice faults. 

Aspectualization enabled cross-cutting concerns to be implemented in a more 

modular way. Aspects improved maintainability in all applications as indicated by 

improved change locality and reduced concern diffusion. In addition, aspectualization 

reduced overall source code size and reduced the number of defects in the applications. 

Costs of aspectualization include the time and effort spent refactoring, an increase in 

execution time of 5%-18.0%, and increased memory usage of 2.4%-12.0%. 

The benefits of using aspects increased over subsequent revisions of the applica­

tions, suggesting that aspectualizing code that is being actively maintained can have 
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an increasing benefit over time. Most of the costs of aspectualization occur in the first 

revision that refactors with aspects. Part of the refactoring cost can also be viewed as 

a benefit — more than half of our changes were deletions of scattered, similar code. 

Such refactoring reduces the size of the code and improves modularity. After aspectu­

alization, future revisions of the three applications required fewer changes that were 

more localized. 

The reduction of code size depends on the amount of cross-cutting code in the 

original application. The percentage reduction in Ins tanceDrivers (10%) was 2.5 

times the percentage reduction in ErcChecker (3.9%), and was five times the percent­

age reduction in Power Analyzer (2%). For all three applications, the amount of code 

removed was always greater than the amount of code added or changed during aspec­

tualization. Even when the reduction in size is small, aspects modularize scattered 

code into a single module, which reduces the number of locations to modify in the 

future when that concern changes. For example, the tracing concern in Ins t ance -

Dr ivers changed in several revisions as more tracing was added to the application. 

These changes were unneeded when an aspect was used. Applications that contain 

more cross-cutting code would realize more benefit from aspectualization, as would 

applications where the cross-cutting code is change-prone. The ErcChecker shows 

the largest total code savings, but as a percentage was in the middle. 

Software quality was improved by aspectualization because some defects were 

removed or avoided. Although some testing challenges remain, we were able to use 

statement coverage and joinpoint coverage to identify untested code and help validate 

the changes made during aspectualization. We were also able to use our weave analysis 

tools and annotations to identify problems with pointcut strength. 
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10.1 Future Work 

Future work could explore four areas related to this research: testing, mock systems, 

tool development, and maintainability studies. 

10.1.1 Testing 

Testing more complex aspects leads to an open question: are there coverage criteria or 

measures that would be more effective than statement coverage or joinpoint coverage 

without being too cumbersome? Future work could explore coverage criteria and 

testing techniques for aspect-aspect interactions and for aspects that change static 

properties such as inheritance hierarchies. 

Our existing coverage-based approach could be extended to consider statement 

coverage within advice bodies. Since we gather statement coverage information from 

woven code, we would have to reverse-engineer the weaving process to match it to the 

original advice body. In addition, even if we knew that all advice statements were 

executed, we might want to know if all advice statements were executed at each join 

point. 

10.1.2 Mock Systems 

Mock systems could also be used to unit test other advice features, such as introduc­

tions, class hierarchy changes, exception softening, and advice precedence. We expect 

that introductions and hierarchy changes can be unit tested on mock systems that 

will then be modified by the aspect. 

More studies are also needed on using mock systems to evaluate adding many as­

pects to a system, particularly when there will be intended aspect-aspect interactions. 

In addition, strategies for effectively detecting or mitigating unintended aspect-aspect 

interactions need to be developed. In our preliminary studies we saw that mock sys­

tems can help isolate aspect-aspect interactions by easily creating structures based on 
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method names and class structures where multiple aspects interact in the small. Our 

weave analyzer could be extended to report joinpoints advised by multiple aspects so 

that developers are aware of them and test aspect interactions in a mock system. 

Additional research could explore ways to validate that a mock system is similar 

enough to the actual system. This is an important question, since unit testing with 

a mock system assumes the mock system provides a useful abstraction of the real 

system. 

Another interesting question is the effect of crosscutting interfaces [29] on mock 

systems. A crosscutting interface (XPI) uses a semantic description of intent and 

a pointcut designator signature to specify the dependencies between core concerns 

and aspects. Clearly defined interfaces for aspects might allow mock systems to be 

created to match the same XPI. 

Although mock systems are beneficial during refactoring of legacy systems, mock 

systems will need to be maintained with the aspects and system in order to remain 

relevant. A benefit of mock system maintenance is that mock systems can be used for 

regression testing of aspects to validate aspect and system changes during evolution. 

Understanding the costs and benefits of a mock system over time is an important 

extension of this work. In particular, future work could investigate co-maintenance 

of mock systems with the legacy system. 

Tools could be developed to create mock systems based on XPIs or on the proposed 

aspect pointcuts. Automating the creation of mock systems could reduce their cost. 

In addition, tools could then be used to update the mock system as the aspect or 

core concerns evolve. 

10.1.3 Tool Development 

Test tools, such as our advice instrumenter, weave analyzer, and coverage analyzer 

could be developed for other aspect-oriented languages, such as Aspect J. Our concern 
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identifier could be extended to look for other idioms, rather than solely focusing on 

word sets that follow function calls. 

Improving the incremental weaving and compilation capabilities of Aspect C+-|-

would help mitigate some problems we have described. However, during aspect devel­

opment both pointcuts and advice are frequently changing, requiring a full reweave 

and recompilation of the systems since aspect features (such as wildcards in pointcuts) 

require full system analysis. 

Aspect weavers could be extended to identify one of the errors detected by our 

static checking tools: unused advice. In addition, our compile-time assertions about 

where advice is expected (Advised, NotAdvised) could be provided by AspectC++ 

or AspectJ so that developers can more easily identify pointcut strength errors. 

10.1.4 Maintainability Studies 

Various other maintainability studies can be performed: 

• A study could consider the benefits of aspectualization when an aspectualized 

concern changes. For example, we could compare the changes required if the 

TimeEvent class changed in Ins tanceDrivers . 

• In our research, the applications changed but the underlying object-oriented 

framework remained static. A study could determine if aspectualization helps 

limit changes to an application when the underlying object-oriented framework 

changes. These changes could be simple version changes in a framework or much 

more complex changes, such as moving to a completely different framework. 

• A study could compare the effect of anticipated changes versus unanticipated 

changes on aspectualized legacy systems. 
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• A study might identify cross-cutting concerns using higher level abstractions 

such as design documents and requirements rather than those found directly in 

the code. 

• Instead of refactoring legacy code, one may study the evolution of applications 

that used AOP from the beginning. 

• Use applications or open source code repositories to do more fine-grained stud­

ies. For example, we could look at each revision of a single file or set of files, 

instead of our more coarse-grained approach of using application releases where 

some files have been revised several times between releases. 

• Identify the kinds of structural changes that make it easier to aspectualize an 

application. For example, adding namespaces and grouping functions into a 

class allowed us to define simpler pointcuts as well as minimize changes to the 

primary code. 

I l l 



REFERENCES 

[1] CppUnit website, h t t p : / / s o u r c e f o r g e . n e t / p r o j e c t s / c p p u n i t . 

[2] JUnit website, h t t p : //www. j u n i t . org. 

[3] Roger T. Alexander, James M. Bieman, and Anneliese A. Andrews. Towards the 
Systematic Testing of Aspect-Oriented Programs. Technical Report CS-4-105, 
Department of Computer Science, Colorado State University, March 2004. 

[4] Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design 
Patterns Applied. AW C + + in Depth Series. Addison Wesley, January 2001. 

[5] Dave Astels. Test Driven development: A Practical Guide. Prentice Hall Pro­
fessional Technical Reference, 2003. 

[6] Marc Bartsch and Rachel Harrison. An exploratory study of the effect of aspect-
oriented programming on maintainability. Software Quality Journal, 16(1) :23-
44, 2008. 

[7] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant'Anna, and Lor­
raine Bier. Clone detection using abstract syntax trees. In ICSM '98: Proceed­
ings of the 14-th IEEE International Conference on Software Maintenance, page 
368, Washington, DC, USA, 1998. IEEE Computer Society. 

[8] Kent Beck. Make it run, make it right: Design through refactoring. The 
Smalltalk Report, 6(4): 19-24, January 1997. 

[9] Lionel C. Briand, W. J. Dzidek, and Yvan Labiche. Instrumenting contracts 
with aspect-oriented programming to increase observability and support debug­
ging. In ICSM '05: Proceedings of the 21st IEEE International Conference on 
Software Maintenance, pages 687 690, Washington, DC, USA, 2005. IEEE Com­
puter Society. 

[10] Magiel Bruntink, Arie van Deursen, Maja D'Hondt, and Tom Tourwe. Sim­
ple crosscutting concerns are not so simple: analysing variability in large-scale 
idioms-based implementations. In AOSD '07: Proceedings of the 6th Interna­
tional Conference on Aspect-oriented Software Development, pages 199-211, New 
York, NY, USA, 2007. ACM. 

112 

http://sourceforge.net/projects/cppunit


[11] Magiel Bruntink, Arie van Deursen, and Tom Tourwe. Isolating idiomatic cross-
cutting concerns. In ICSM '05: Proceedings of the 21st IEEE International 
Conference on Software Maintenance, pages 37-46, Washington, DC, USA, 2005. 
IEEE Computer Society. 

[12] Magiel Bruntink, Arie van Deursen, and Tom Tourwe. Discovering faults in 
idiom-based exception handling. In ICSE '06: Proceeding of the 28th Interna­
tional Conference on Software Engineering, pages 242 251, New York, NY, USA, 
2006. ACM Press. 

[13] Magiel Bruntink, Arie van Deursen, Remco van Engelen, and Tom Tourw. On 
the use of clone detection for identifying crosscutting concern code. IEEE Trans­
actions on Software Engineering, 31(10):804-818, 2005. 

[14] Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object oriented 
design. IEEE Transactions on Software Engineering, 20(6):476-493, 1994. 

[15] Curtis Clifton and Gary T. Leavens. Observers and assistants: A proposal for 
modular aspect-oriented reasoning. In Gary T. Leavens and Ron Cytron, editors, 
FOAL 2002 Proceedings: Foundations of Aspect-Oriented Languages Workshop 
at AOSD 2002, number 02-06 in Technical Report, pages 33 44. Department of 
Computer Science, Iowa State University, April 2002. 

[16] Curtis Clifton and Gary T. Leavens. Obliviousness, modular reasoning, and the 
behavioral subtyping analogy. In Lodewijk Bergmans, Johan Brichau, Peri Tarr, 
and Erik Ernst, editors, SPLAT: Software Engineering Properties of Languages 
for Aspect Technologies, Mar 2003. 

[17] Yvonne Coady and Gregor Kiczales. Back to the future: A retroactive study of 
aspect evolution in operating system code. In Mehmet Ak§it, editor, Proceedings 
of the 2nd International Conference on Aspect-Oriented Software Development 
(AOSD-2003), pages 50-59. ACM Press, March 2003. 

[18] Yvonne Coady, Gregor Kiczales, Joon Suan Ong, Andrew Warfield, and Michael 
Feeley. Brittle Systems will Break — Not Bend: Can AOP Help? . In Proceed­
ings of the 10th ACM SIGOPS European Workshop on Operating Systems. ACM 
Press, September 2002. 

[19] Remi Douence, Pascal Fradet, and Mario Siidholt. Composition, reuse and in­
teraction analysis of stateful aspects. In Karl Lieberherr, editor, Proceedings 
of the 3rd International Conference on Aspect-Oriented Software Development 
(AOSD-2004), pages 141-150. ACM Press, March 2004. 

[20] Pascal Durr, Tom Staijen, Lodewijk Bergmans, and Mehmet Aksit. Reasoning 
about semantic conflicts between aspects. In Kris Gybels, Maja D'Hondt, Ist-
van Nagy, and Remi Douence, editors, 2nd European Interactive Workshop on 
Aspects in Software (EIWAS'05), September 2005. 

113 



[21] Eduardo Figueiredo, Nelio Cacho, Claudio Sant'Anna, Mario Monteiro, Uira 
Kulesza, Alessandro Garcia, Sergio Soares, Fabiano Ferrari, Safoora Khan, Fer­
nando Castor Filho, and Francisco Dantas. Evolving software product lines with 
aspects: an empirical study on design stability. In ICSE '08: Proceedings of 
the 30th International Conference on Software Engineering, pages 261-270, New 
York, NY, USA, 2008. ACM. 

[22] Robert E. Filman and Daniel P. Friedman. Aspect-oriented programming is 
quantification and obliviousness. In Robert E. Filman, Tzilla Elrad, Siobhan 
Clarke, and Mehmet Ak§it, editors, Aspect-Oriented Software Development, 
pages 21 35. Addison-Wesley, Boston, 2005. 

[23] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, August 1999. 

[24] Erich Gamma and Kent Beck. Test infected: Programmers love writing tests. 
Java Report, 3(7):37 50, July 1998. 

[25] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat­
terns: Elements of Reusable Object-Oriented Software. Addison Wesley, Read­
ing, MA, 1995. 

[26] Alessandro Garcia, Cludio Sant'Anna, Eduardo Figueiredo, Uira Kulesza, Car­
los Lucena, and Arndt von Staa. Modularizing design patterns with aspects: 
a quantitative study. In AOSD '05: Proceedings of the J^th International Con­
ference on Aspect-Oriented Software Development, pages 3-14, New York, NY, 
USA, 2005. ACM Press. 

[27] Sudipto Ghosh, Robert France, Devond Simmonds, Abhijit Bare, Brahmila Ka-
malakar, Roopashree P. Shankar, Gagan Tandon, Peter Vile, and Shuxin Yin. A 
middleware transparent approach to developing distributed applications. Soft­
ware Practice and Experience, 35(12):1131 1159, October 2005. 

[28] Sudipto Ghosh and Brahmila Kamalakar. An aspect-oriented approach to de­
veloping middleware-based applications. In OOPLA and GPCE Workshop on 
Model Driven Software Development, Vancouver, Canada, October 2004. Posi­
tion paper. 

[29] William G. Griswold, Kevin Sullivan, Yuanyuan Song, Macneil Shonle, Nishit 
Tewari, Yuanfang Cai, and Hridesh Rajan. Modular software design with cross-
cutting interfaces. IEEE Software, 23(l):51-60, 2006. 

[30] J. Hannemann, Gail Murphy, and Gregor Kiczales. Role-based refactoring of 
cross-cutting concerns. In J^th International Conference on Aspect-Oriented Soft­
ware Development (AOSD 2005), pages 135-146, March 2005. 

114 



[31] Jan Hannemann and Gregor Kiczales. Overcoming the prevalent decomposition 
in legacy code. In Peri Tarr and Harold Ossher, editors, Workshop on Advanced 
Separation of Concerns in Software Engineering (ICSE 2001), May 2001. 

[32] Jan Hannemann and Gregor Kiczales. Design pattern implementation in Java 
and AspectJ. In Cindy Norris and Jr. James B. Fenwick, editors, Proceedings of 
the 17th ACM conference on Object-oriented programming, systems, languages, 
and applications (OOPSLA-02), volume 37, 11 of ACM SIGPLAN Notices, pages 
161-173, New York, November 4-8 2002. ACM Press. 

[33] Jan Hannemann, Gail Murphy, and Gregor Kiczales. Role-based refactoring of 
crosscutting concerns. In Peri Tarr, editor, Proceedings 4th International Con­
ference on Aspect-Oriented Software Development (AOSD-2005), pages 135-146. 
ACM Press, March 2005. 

[34] Kevin Hoffman and Patrick Eugster. Towards reusable components with aspects: 
an empirical study on modularity and obliviousness. In ICSE '08: Proceedings of 
the 30th International Conference on Software Engineering, pages 91-100, New 
York, NY, USA, 2008. ACM. 

[35] David Janzen and Hossein Saiedian. Test-driven development: Concepts, taxon­
omy, and future direction. Computer, 38(9):43-50, 2005. 

[36] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Ccfinder: a multilin-
guistic token-based code clone detection system for large scale source code. IEEE 
Transactions on Software Engineering, 28(7):654-670, 2002. 

[37] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. 
Getting started with AspectJ. Communications of the ACM, 44(10):59 65, Oc­
tober 2001. 

[38] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. 
An overview of AspectJ. In J. L. Knudsen, editor, Proceedings of European 
Conference on Object-Oriented Programming 2001, LNCS 2072, pages 327-353, 
Berlin, June 2001. Springer-Verlag. 

[39] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, 
and J. Irwin. Aspect-oriented programming. Technical Report SPL97-008 
P9710042, Xerox PARC, February 1997. 

[40] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina 
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In 
Mehmet Ak§it and Satoshi Matsuoka, editors, ECOOP '97 — Object-Oriented 
Programming 11th European Conference, Jyvaskyld, Finland, volume 1241 of 
Lecture Notes in Computer Science, pages 220-242. Springer-Verlag, New York, 
NY, June 1997. 

115 



[41] Christian Koppen and Maximilian Storzer. PCDiff: Attacking the fragile point-
cut problem. In Kris Gybels, Stefan Hanenberg, Stephan Herrmann, and Jan 
Wloka, editors, European Interactive Workshop on Aspects in Software (EIWAS), 
September 2004. 

[42] Uir Kulesza, Cludio Sant'Anna, Alessandro Garcia, Roberta Coelho, Arndt von 
Staa, and Carlos Lucena. Quantifying the effects of aspect-oriented program­
ming: A maintenance study. In ICSM '06: Proceedings of the 22nd IEEE Inter­
national Conference on Software Maintenance, pages 223-233, Washington, DC, 
USA, 2006. IEEE Computer Society. 

[43] Ramnivas Laddad. Aspect-oriented refactoring part 1: Overview and process. 
Technical report, TheServerSide.com, 2003. h t tp : / /www.theservers ide .com/ 
r e s o u r c e s / a r t i c l e . j s p ? l = A s p e c t O r i e n t e d R e f a c t o r i n g P a r t l . 

[44] Ramnivas Laddad. Aspect] in Action: Practical Aspect-Oriented Programming. 
Manning, 2003. 

[45] Otavio Lemos, Fabiano Ferrari, Paulo Masiero, and Critina Videira Lopes. Test­
ing aspect-oriented programming pointcut descriptors. In Proceedings of the 2nd 
Workshop on Testing Aspect-Oriented programs, in conjunction with the Inter­
national Symposium on Software Testing and Analysis (ISSTA06), July 2006. 

[46] Otavio Augusto Lazzarini Lemos, Jose Carlos Maldonado, and Paulo Cesar 
Masiero. Structural unit testing of aspectj programs. In 2005 Workshop on 
Testing Aspect-Oriented Programs (held in conjunction with AOSD 2005), March 
2005. 

[47] Nick Lesiecki. Unit test your aspects. Technical report, Java Technology 
Zone for IBM's Developer Works, November 2005. http://www-128.ibm.com/ 
deve lope rworks / j ava / l i b r a ry / j - aopwork l l / . 

[48] Daniel Lohmann, Georg Blaschke, and Olaf Spinczyk. Generic advice: On the 
combination of AOP with generative programming in AspectC+-h In Gabor 
Karsai and Eelco Visser, editors, Proceedings of the Third Conference on Gener­
ative Programming and Component Engineering, volume 3286 of Springer- Verlag 
Lecture Notes in Computer Science, pages 55-74. Springer, October 2004. 

[49] Daniel Lohmann, Andreas Gal, and Olaf Spinczyk. Aspect-Oriented Program­
ming with C + + and AspectC++ (Tutorial). In Mira Mezini, editor, Proceedings 
of the 4th International Conference on Aspect-Oriented Software Development 
(AOSD-2005). ACM Press, March 2005. 

[50] Daniel Lohmann, Olaf Spinczyk, and Wolfgang Schrder-Preikschat. On the con­
figuration of non-functional properties in operating system product lines. In 
David H. Lorenz and Yvonne Coady, editors, ACPJ/.IS: Aspects, Components, 
and Patterns for Infrastructure Software, March 2005. 

116 

http://TheServerSide.com
http://www.theserverside.com/
http://www-128.ibm.com/


[51] Cristina Videira Lopes and Trung Chi Ngo. Unittesting aspectual behavior. In 
2005 Workshop on Testing Aspect-Oriented Programs (held in conjunction with 
AOSD 2005), March 2005. 

[52] Daniel Mahrenholz, Olaf Spinczyk, Andreas Gal, and Wolfgang Schrder-
Preikschat. An aspect-orientied implementation of interrupt synchronization in 
the pure operating system family. In Proceedings of the 5th ECOOP Workshop 
on Object Orientation and Operating Systems, Malaga, Spain, June 2002. 

[53] Marius Marin, Leon Moonen, and Arie van Deursen. An approach to aspect 
refactoring based on crosscutting concern types. In Martin Robillard, editor, 
MACS '05: Proceedings of the 2005 workshop on Modeling and analysis of con­
cerns in software, pages 1-5. ACM Press, May 2005. 

[54] Michael Mortensen and Roger T. Alexander. An approach for adequate testing 
of Aspect J programs. In 2005 Workshop on Testing Aspect-Oriented Programs 
(held in conjunction with AOSD 2005), March 2005. 

[55] Michael Mortensen and Sudipto Ghosh. Creating pluggable and reusable non­
functional aspects in AspectC++. In ACP4IS '06: Proceedings of the 5th Work­
shop on Aspects, Components, and Patterns for Infrastructure Software, pages 
1-7, Bonn, Germany, 2006. 

[56] Michael Mortensen and Sudipto Ghosh. Using aspects with object-oriented 
frameworks. In AOSD '06: 5th International Conference on Aspect-oriented 
Software Development Industry Track, pages 9-17, Bonn, Germany, March 2006. 

[57] Michael Mortensen and Sudipto Ghosh. Refactoring idiomatic exception han­
dling in C + + : Throwing and catching exceptions with aspects. In AOSD '07: 
6th International Conference on Aspect-oriented Software Development Industry 
Track, pages 9-15, Vancouver, British Columbia, Canada, March 2007. 

[58] Michael Mortensen, Sudipto Ghosh, and James Bieman. Testing during refactor­
ing: Adding aspects to legacy systems. In Proceedings of the 17th International 
Symposium on Software Reliability Engineering (ISSRE 06), Raleigh, North Car­
olina, USA. 

[59] Michael Mortensen, Sudipto Ghosh, and James Bieman. A test driven approach 
for aspectualizing legacy software using mock systems. In Information and Soft­
ware Technology, volume 50, pages 621 640. Elsevier, 2008. 

[60] Olaf Spinczyk and pure-systems GmbH. Documentation: AspectC++ Compiler 
Manual, May 2005. h t tp : / /www.aspec tc .org / f i leadmin/documenta t ion/ 
ac-compilerman.pdf. 

117 

http://www.aspectc.org/fileadmin/documentation/


[61] William Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, Uni­
versity of Illinois at Urbana-Champaign, 1992. f t p : / / s t . c s . u i u c . e d u / p u b / 
papers/refactoring/opdyke-thesis .ps .Z. 

[62] D. L. Parnas. On the criteria to be used in decomposing systems into modules. 
Communications of the ACM, 15(12):1053-1058, December 1972. 

[63] D. Schmidt and M. Fayad. Object-oriented application frameworks. Communi­
cations of the ACM, 10(40):32-38, 1997. 

[64] Olaf Spinczyk, Andreas Gal, and Wolfgang Schrder-Preikschat. AspectC-l—(-: an 
aspect-oriented extension to the C + + programming language. In CRPIT '02: 
Proceedings of the Fortieth International Conference on Tools Pacific, pages 53-
60, Darlinghurst, Australia, Australia, 2002. Australian Computer Society, Inc. 

[65] Olaf Spinczyk, Daniel Lohmann, and Matthias Urban. AspectC++: An AOP 
extension for C + + . In Software Developers Journal, number 7, pages 68-74. 
Software-Sydawnicto, Warsaw, Poland. 

[66] Maximilian Storzer. Analysis of Aspect J programs. In Boris Bachmendo, Stefan 
Hanenberg, Stephan Herrmann, and Giinter Kniesel, editors, 3rd Workshop on 
Aspect-Oriented Software Development (AOSD-GI) of the SIG Object-Oriented 
Software Development, German Informatics Society, March 2003. 

[67] Kevin Sullivan, William G. Griswold, Yuanyuan Song, Yuanfang Cai, Macneil 
Shonle, Nishit Tewari, and Hridesh Rajan. Information hiding interfaces for 
aspect-oriented design. In ESEC/FSE-13: Proceedings of the 10th European 
Software Engineering Conference held jointly with 13th ACM SIG SOFT Inter­
national Symposium on Foundations of Software Engineering, pages 166 175, 
New York, NY, USA, 2005. ACM. 

[68] Peri Tarr, Harold Ossher, Stanley M. Sutton, Jr., and William Harrison. N de­
grees of separation: Multi-dimensional separation of concerns. In Robert E. Fil-
man, Tzilla Elrad, Siobhan Clarke, and Mehmet Ak§it, editors, A sped-Oriented 
Software Development, pages 37-61. Addison-Wesley, Boston, 2005. 

[69] Paolo Tonella and Mariano Ceccato. Refactoring the aspectizable interfaces: An 
empirical assessment. IEEE Transactions on Software Engineering, 31(10):819-
832, 2005. 

[70] Tom Tourwe, Johan Brichau, and Kris Gybels. On the existence of the AOSD-
evolution paradox. In Lodewijk Bergmans, Johan Brichau, Peri Tarr, and Erik 
Ernst, editors, SPLAT: Software Engineering Properties of Languages for Aspect 
Technologies, Mar 2003. 

118 

ftp://st.cs.uiuc.edu/pub/


[71] Shiu Lun Tsang, Siobhan Clarke, and Elisa Baniassad. An evaluation of aspect-
oriented programming for Java-based real-time systems development. In Pro­
ceedings of The 1th IEEE International Symposium on Object-oriented Real-time 
distributed Computing (ISORC), pages 291-300, Los Alamitos, CA, USA, 2004. 
IEEE Computer Society. 

[72] Matthias Urban and Olaf Spinczyk. AspectC+-1- language reference. June 2004. 
h t tp : / / a spec t c .o rg / f i l eadmin /documen ta t ion /ac - l anguage re f .pd f . 

[73] Dean Wampler. Contract4J for design by contract in Java: Design pattern-like 
protocols and aspect interfaces. In ACP4IS '06: Proceedings of the 5th Workshop 
on Aspects, Components, and Patterns for Infrastructure Software, pages 27 30, 
Bonn, Germany, 2006. 

[74] Dianxiang Xu and Wiefing Xu. State-based incremental testing of aspect-
oriented programs. In Proceedings of the 5th International Conference on Aspect-
Oriented Software Development (AOSD 2006), March 2006. 

[75] Jos Pablo Zagal, Ral Santelices Ahus, and Miguel Nussbaum Voehl. 
Maintenance-oriented design and development: A case study. IEEE Software, 
19(4):100-106, 2002. 

[76] Charles Zhang and Hans-Arno Jacobsen. Refactoring middleware with as­
pects. IEEE Transactions on Parallel and Distributed Systems, 14(11):1058-
1073, November 2003. 

[77] J. Zhao. Unit testing for aspect-oriented programs. Technical Report SE-141-6, 
Information Processing Society of Japan (IPSJ), May 2003. h t t p : / /www. f i t . 
a c . j p / ~ z h a o / p u b / p s / i p s j - t r - s e - 1 4 1 - 6 . p d f . 

[78] J. Zhao and M. Rinard. Pipa: A behavioral interface specification language for 
Aspect J. In Proceedings of Fundamental Approaches to Software Engineering 
(FASE'2003), LNCS 2621, pages 150-165. Springer-Verlag, April 2003. 

[79] Yuewei Zhou, Debra Richardson, and Hadar Ziv. Towards a practical ap­
proach to test aspect-oriented software. In TECOS 2004: Workshop on Testing 
Componhent-Based Systems, Net. Object Days 2004, September 2004. 

119 

http://aspectc.org/fileadmin/documentation/ac-languageref.pdf
http://www.fit
http://ac.jp/~zhao/pub/ps/ipsj-tr-se-141-6.pdf

