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ABSTRACT  

THE ROLE OF FRESHWATER SNAILS IN THE TRANSMISSION OF 

INFLUENZA A VIRUSES  

Waterfowl are the natural reservoirs for avian influenza (AI) viruses.  Avian 

influenza virus infections in these birds are generally subclinical, but they shed 

infectious virus through feces for several days, typically into water.  Further, AI 

viruses can remain infectious in water for weeks.  This characteristic enhances 

transmission of AI viruses among waterfowl because transmission is not 

constrained by direct contact.  The prevalence of AI virus infection in waterfowl 

populations follows a cyclical pattern; prevalence is highest in the population 

after the breeding season.  Shedding of AI viruses is nearly undetectable in these 

waterfowl populations by winter, yet the prevalence cycle repeats itself annually.  

Somehow, AI viruses are reintroduced to host populations.  The mechanisms 

that drive the prevalence patterns observed in waterfowl are likely numerous and 

complex, but AI viral persistence in water is probably critical.  Persistence of AI 

viruses in water also potentially exposes other organisms to the virus.  Aquatic 

invertebrates, such as snails, are likely exposed to AI viruses while feeding on 

detritus in aquatic habitats, and gastropods are a common food source for many 

species of waterfowl.  This trophic interaction may potentially serve as an 

additional route of AI virus transmission and maintenance.  In this study, two 

species of freshwater snails (Physa acuta and P. gyrina) were experimentally 
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exposed to avian influenza virus (H3N8) to determine: 1) whether the snails have 

cellular receptors capable of binding to AI viruses, 2) whether snails can 

bioaccumulate AI viruses, 3) how long bioaccumulated AI viruses are maintained 

and remain infectious in snail tissues, and 4) whether Physa spp. can serve as 

mechanical vectors of AI viruses.  My results indicated that, while Physa spp. 

snails sequestered infectious AI virus, the duration was short-lived and no 

transmission occurred.  These data suggest that the snail species examined do 

not directly impact AI virus transmission among waterfowl; however, in the 

process of feeding on snails, waterfowl may be exposed to AI viruses both via 

water and ingestion such that other avenues of investigation are warranted. 
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INTRODUCTION 

Influenza A Viruses 

Influenza A viruses (family Orthomyxoviridae, genus Influenzavirus A) are 

some of the most widespread and important pathogens in the world.  These 

viruses are primarily pathogens of aquatic birds, but have adapted to infect a 

wide range of avian and mammalian hosts including humans.  The clinical signs 

of the resulting disease range from subclinical to high mortality, depending on 

host species and viral strain (1992).  Disease associated with influenza A viruses 

has caused regional epizootic events in poultry and wildlife leading to massive 

mortality events.  In addition, influenza A viruses are the etiologic agents 

responsible for recurring annual epidemics in humans, and have caused three 

pandemics leading to nearly 60 million human deaths in the last century 

(Webster et al. 1992).   

Although influenza A viruses have become established in a wide range of 

animal species, birds belonging to the Orders Anseriformes and Charadriiformes 

are considered to be the primordial reservoirs for all influenza A viruses 

(Stallknecht and Brown 2008).  Viruses carried by these reservoirs afford 

sufficient genetic diversity for the emergence of an epizootic in other species.  

The influenza A viruses that typically cause disease in humans, swine, horses, 

and dogs demonstrate both antigenic drift and genetic shift, while avian influenza 

(AI) viruses currently appear to be in evolutionary stasis (Webster et al. 1992). 
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Most AI viruses target the intestinal epithelial cells of susceptible birds.  

Infected cells release viral particles into the intestines and are subsequently shed 

through feces into water (Stallknecht and Brown 2008).  Avian influenza viruses 

are capable of remaining viable in water for several months (Stallknecht et al. 

1990b, Brown et al. 2007).  Viability in water is dependent on several factors, 

including water salinity and pH and viral subtype (Stallknecht et al. 1990a).  

Transmission between individuals and populations includes not only direct 

contact, but indirect contact via exposure to infectious virus in aquatic 

environments.  This can occur several days or weeks after infected birds have 

left the area  (Stallknecht et al. 1990b, Brown et al. 2007).  

Biological Properties 

Influenza A viruses are enveloped RNA viruses with an eight-segmented, 

single-stranded, negative-sense genome.  The eight gene segments of influenza 

A viruses encode 10 proteins.  These proteins include surface proteins 

hemagglutinin (HA) and neuraminidase (NA), and a membrane ion channel 

protein.  Internal proteins include nucleoproteins, matrix protein, and three 

polymerase proteins: a polymerase basic protein 1, a polymerase basic protein 2, 

and a polymerase acidic protein (Webster et al. 1992).  In addition, the genome 

codes for two nonstructural proteins, nonstructural protein 1, and nonstructural 

protein 2 (Palese and Shaw 2007).  

Morphologically, influenza A viruses are extremely variable, ranging from 

spherical (80 – 120 nm diameter) to long filamentous forms (up to several 

microns in length).  Influenza A virus isolates collected directly from animals are 
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usually characterized by the presence of a significant proportion of filamentous 

virions (Chu et al. 1949). However, multiple passages in eggs often results in 

mostly spherical virions (Choppin et al. 1960).  These morphological changes 

appear to be controlled by the M1 and M2 proteins (Hughey et al. 1995, 

Bourmakina and Garcia-Sastre 2003).  

Influenza A virus subtypes are identified by their surface proteins.  

Currently, 16 hemagglutinin (H1 – H16) subtypes and nine neuraminidase (N1 – 

N9) subtypes have been identified.  Influenza A viruses are further categorized 

by their host species, location, and the year they were isolated.  For example, 

A/Chicken/Alabama/75 (H4N6) is an influenza A virus sample collected from a 

chicken in Alabama in 1975 with H4 and N6 surface proteins.  Subtypes isolated 

from birds are categorized as avian influenza viruses, and are classified further 

as either high-pathogenicity avian influenza (HPAI) or low-pathogenicity avian 

influenza (LPAI) viruses depending on the virulence of the virus in young 

chickens.  An AI virus is considered HPAI if it causes 75% mortality in 4 – 8 

week-old chicken chicks; conversely, LPAI viruses often cause only mild to 

severe respiratory disease in chickens with limited mortality (Perdue and Swayne 

2005). 

Epidemiology 

The host’s cellular membrane consists of biological molecules and 

carbohydrates including glycoproteins; the principal sugars of glycoproteins are 

sialic acids and galactose.  Sialic acids (SA) are terminal sugars on the 

glycoprotein; the SAs are classified by the conformation of the linkage to 
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galactose by an α-2 carbon.  Hemagglutinin of influenza A viruses attaches to the 

SA on the host cell during the initial phase of an infection.  The HA proteins have 

a strong specificity to either the α2,3- or the α2,6-SA-galactose linkage.  The 

expression of the SA receptors on the hosts’ cells varies by both tissue type and 

animal species.  The differential expression of receptors and the affinity of the HA 

protein for a specific SA-galactose linkage contribute to host specificity.  The 

intestinal epithelial cells of birds often express α2,3 SA receptors and thus are 

susceptible to infection by influenza A viruses with an affinity for α2,3 SA-

galactose linkages (i.e., avian influenza viruses).  The respiratory epithelial cells 

of humans express α2,6 SA receptors and are susceptible to influenza A viruses 

capable of binding with a 2,6 SA-galactose linkages (Suarez 2008).   

In addition to HA specificity and cellular membrane attributes, 

pathogenicity is also determined by available proteases in the host.  During the 

primary phase of all influenza A virus infections, HA is cleaved into HA1 and HA2 

subunits by proteases found in the cells in the host.  Trypsin (or trypsin-like) 

proteases, precipitated by the presence of extra-cellular arginine, cleave all HA 

subtypes, but trypsin is typically only locally available in the respiratory tissues of 

mammals and the enteric tracts of birds (Klenk et al. 1975).  However, the HA 

protein of HPAI is also cleaved by furin, a protease found in most mammalian 

and avian cells, in the presence of multiple basic extra-cellular amino acids 

(lysine and arginine).  This allows HPAI viruses to replicate efficiently in a wide 

range of cell types, including brain, heart, muscle, and pancreas, thereby 

allowing for a systemic infection (Suarez 2008).   
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Genetic Plasticity 

Influenza A viruses are genetically extremely variable due to a high 

mutation frequency. This genetic plasticity provides influenza A viruses the 

means to evade host immune responses through genetic drift and genetic shift.  

Genetic drift can occur in any of the eight genes, including the surface 

glycoproteins; mutations in the surface proteins can potentially alter the severity 

of disease and possibly the host range (Burnet 1951, Peiris et al. 2007, Suarez 

2008).  The segmented genome of influenza A viruses provides a mechanism for 

genetic shift – the recombination of two distinct influenza A virus subtypes.  

Genetic shift allows for sudden and significant changes in the genome, 

potentially creating a new influenza virus strain, and possibly leading to dramatic 

changes in the pathogenicity and the extent of the host range (Webster 1997).   

Despite the genetic variability of influenza A viruses, AI viruses are 

thought to be in evolutionary stasis within waterfowl hosts, and have established 

tight host-pathogen relationships.  Evolutionary changes are generally slow 

within the host populations as most of the coding for internal genes show little 

change at the amino acid level (Kida et al. 1987).  However, the surface 

glycoproteins of the virus evolve more rapidly, showing a greater genetic diversity 

with multiple antigenic subtypes (Stallknecht and Brown 2008).  Such changes 

may allow new influenza A virus strains to cross the species barrier.  Once the 

species barrier is broken, the new influenza A virus strain may evolve rapidly, 

driven by high mutation rates and the new host’s immune response (Webby et al. 

2007).  Genetic analysis of human influenza strains demonstrates that antigenic 
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drift has occurred extensively (Kida et al. 1987).  Further, as the virus becomes 

adapted to the new host, it may lose the ability to replicate in the old host 

(Perdue 2008), potentially creating a unique viral lineage (Peiris et al. 2007).   

  Viral strains resulting from antigenic drift are largely responsible for 

annual influenza A outbreaks in humans, while viral changes due to antigenic 

shift have precipitated catastrophic pandemics (Webby et al. 2007).  Pandemics 

are relatively rare, but can happen when new subtypes are efficiently transmitted 

from human-to-human.  In 1957, the reassortment of an H1N1 influenza A virus 

subtype resulted in a pandemic that killed nearly 4 million people.  The 

reassorted H1N1 subtype had HA, NA, and PB1 genes from an avian influenza 

virus (Kawaoka et al. 1989).  The pandemic of 1968 (H3N2) occurred when the 

HA (H3) and the PB1 genes were replaced with avian-like influenza virus genes 

(Bean et al. 1992).  Finally, the pandemic of 1918 (H1N1), which killed an 

estimated 50 million people, may have arisen through the direct adaptation of an 

avian influenza virus from an unknown source (Taubenberger and Morens 2006).     

Ecology 

Avian influenza viruses are nearly ubiquitous in aquatic birds throughout 

the world (Webster and Bean 1998). Waterfowl and shorebirds are considered to 

be the natural reservoirs for these viruses (Stallknecht and Brown 2008).  Aquatic 

birds are generally considered to be ‘donors’ of AI viruses; that is, they introduce 

the virus into human or domestic animal populations but their role in the spread 

of epidemic agents is thought to be limited (Sims et al. 2005).  This hypothesis 

may not be supported for highly pathogenic strains of AI viruses.  The HPAI virus 
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(H5N1) responsible for the recent epizootic in Asia probably mutated from a LPAI 

virus strain that was initially introduced to domestic poultry by waterfowl.  The 

new more virulent strain was introduced back into migratory wild waterfowl, and 

these birds may have subsequently served as traffickers of this new strain 

(Webby et al. 2007). 

Transmission of influenza A viruses can occur through a variety of 

mechanisms and varies by host species and subtype.  In birds, AI viruses are 

primarily transmitted through a fecal-oral route. Virus replicates in the intestinal 

epithelial cells in infected birds and is shed into the environment via feces.  

Exposure of immunologically naïve birds can occur through ingestion of the 

infectious AI virus present in the environment (Suarez 2008).  This allows AI 

viruses to be transmitted among waterfowl with the aquatic environment acting 

as a viral source (Webster et al. 1978).  Outbreaks on poultry farms have been 

traced to untreated environmental water (Alexander 1993), and, in an 

experimental setting, VanDalen et al. (2010) demonstrated transmission between 

mallards via contaminated water.   

Mammalian strains, such as swine and human influenza viruses, cause 

respiratory diseases and are transmitted by the nasopharyngeal route 

(Kothalawala et al. 2006).  Equine influenza viruses (H3N8) have been 

transmitted to racing dogs via horsemeat (Crawford et al. 2005), and HPAI virus 

(H5N1) was transmitted experimentally to herring gulls via infected chicken meat 

(Brown et al. 2008).  Finally, outbreaks of HPAI virus (H5N1) in waterfowl have 

preceded influenza A virus detection of the same viral strain in both domestic 
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cats (Felis catus) and stone martens (Martes foina) indicating scavenging or 

predation may have facilitated transmission of AI viruses to mammals (Amonsin 

et al. 2007, Klopfleisch et al. 2007, Leschnik et al. 2007) 

Water is considered to be the primary transmission facilitator of AI viruses 

among waterfowl (Webster et al. 1978).  Influenza A viruses can remain viable in 

water for up to four months (Stallknecht et al. 1990b, Brown et al. 2007), and like 

most viruses, influenza A viruses have an affinity for suspended solids in the 

aquatic environment.  Viruses that bind to these solids survive longer in natural 

water and may settle and accumulate in the sediment (Bitton 1980).  The affinity 

of viruses for suspended solids is based on the electrostatic attraction of virions 

and the abiotic particulate matter; viruses are negatively charged, and many 

sediment particles are positively charged (Bitton 1980, Goyal et al. 1980, Chang 

et al. 1981).  This creates an environment that exposes animals feeding in the 

sediment to infectious influenza A viruses. 

Influenza A Viruses In Wildlife  

As reservoirs of AI viruses, waterfowl infected with LPAI viruses typically 

exhibit no clinical signs, yet an infected bird may continue to shed viable virus for 

up to 4 weeks (Webster and Bean 1998).  Additionally, as previously mentioned, 

AI viruses can remain viable in water for long periods.  Ecologically, these 

characteristics of AI viruses are important for maximizing transmission potential, 

as viral shedding and the viral persistence in water eliminates the need for direct 

contact among individuals and populations (Stallknecht et al. 1990b, Brown et al. 

2007). 
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In North America, waterfowl breed in Alaska and the northern territories of 

Canada.  Prior to post-breeding migration in July and August, adult and juvenile 

birds congregate in large interspecific groups in Canada and the United States 

(Webster and Bean 1998, Elphick et al. 2001).  The prevalence of AI virus 

infections in these waterfowl populations is highest during the marshalling period, 

primarily affecting hatch-year birds, with as many as 30% of juveniles shedding 

AI viruses (Webster and Bean 1998).  North American waterfowl are typically 

infected with H3, H4, and H6 hemagglutinin subtypes (Stallknecht et al. 1990c).  

During fall (southward) migration prevalence of AI virus infection declines as the 

birds move south (Webster and Bean 1998).  By the time the population reaches 

Mississippi in November, prevalence has declined to nearly undetectable levels.  

However, each fall the cycle repeats on the marshalling areas (Webster et al. 

1976, Stallknecht et al. 1990c).The mechanisms that allow this cycle to continue 

are poorly understood.   

Evidence exists for the presence of continuous low level infections and 

transmission among wild ducks.  Blue-winged teal (Anas discors) may be an 

important species in this scenario, as they migrate southward early, prior to peak 

AI virus prevalence in juvenile ducks.  This provides the wintering grounds with a 

potentially large population of immunologically naïve birds (Stallknecht et al. 

1990c).  Additionally, AI viruses have been detected in several species of duck 

(A. crecca, A. cyanoptera, A. discors, A. fulvigula, and A. acuta) in Texas during 

February, prior to northward migration (Hanson et al. 2005), and ducks (including 
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A. platyrhynchos, A. discors, and A. acuta) in Alberta, Canada were shedding AI 

viruses after spring migration (Sharp et al. 1993).   

Charadriiformes, especially the families Scolopacidae (sandpipers and 

turnstones) and Laridae (gulls and terns), are also major avian reservoirs of AI 

viruses (Olsen et al. 2006).  Similar to waterfowl, shorebirds are relatively 

resistant to AI virus-induced clinical signs.  However, unlike waterfowl, shorebirds 

are most commonly infected with H13 and H16 subtypes (Fouchier et al. 2005), 

and annual AI virus epizootics occur during spring (northward), rather than fall, 

migration (Krauss et al. 2004).   

Aquatic Invertebrates 

As filter feeders, bivalves pump large amounts of water across their gills, 

filtering particulate matter including potential food, microscopic plants and 

animals, and other benthic debris (Elston 1997).  This feeding mechanism can 

result in the bioaccumulation of viruses that are in the water column.  Typically, 

these viruses do not infect or replicate in bivalves, but these animals act as 

transient reservoirs for infectious virus particles (Elston 1997).  The trapped 

viruses can be mechanically transmitted to susceptible vertebrate hosts through 

predation or scavenging (Elston 1997).   Infectious viruses detected in bivalve 

tissues include enteroviruses, hepatitis A viruses, noroviruses, and rotaviruses 

(Meyers 1984, Le Guyader et al. 1994, Le Guyader et al. 2000, Lees 2000).   

There have been mixed results of experiments investigating the potential 

for the bioaccumulation of influenza A viruses by bivalves.  Stumpf et al. (2010)  

demonstrated that zebra mussels (Dreissena polymorpha) bioaccumulated an 
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infectious LPAI virus (H5N1) and maintained detectable infectious virus for 14 

days.  Huyvaert et al. (unpublished data) detected LPAI viral RNA in Asiatic clam 

(Corbicula fluminea) tissues from clams that were exposed to infected water for 

up to24 hours..  However, a study by Faust et al. (2009) indicated that Asiatic 

clams remove infectious LPAI and HPAI viruses (H3N8 and H5N1 subtypes, 

respectively) from the water, rendering the viruses innocuous to wood ducks (Aix 

sponsa). 

Freshwater gastropods, such as snails, are primarily herbivores and 

detritivores, scraping algae and other food particles off of sediment in aquatic 

habitats such as lakes and ponds (Vaughn 2009).  This feeding mechanism 

exposes snails to any contaminants that are electrostatically attracted to the 

sediments (Bitton 1980).  Although no information exists regarding the capability 

of snails to retain viruses that are non-infectious to snails, freshwater snails are 

capable of bioaccumulating electrostatically charged environmental contaminants 

such as copper (Frakes et al. 2008).  In addition, Physa spp. are known to 

accumulate toxins such microcystins (hepatotoxins produced by cyanobacteria) 

and likely transmit these toxins to predators via ingestion (Zurawell et al. 1999). 

Freshwater snails, Physa acuta and P. gyrina, are distributed throughout 

North America.  These species are habitat generalists and utilize a wide range of 

aquatic environments (Dillon et al. 2005, Turner and Montgomery 2009).  Physa 

spp. are a prey item of several aquatic bird species including black-bellied tree 

ducks (Dendrocygna autumnalis), spectacled eiders (Somateria fischeri), upland 

sandpipers (Bartramia longicauda) and mottled ducks (Anas fulvigula) (Bolen and 
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Forsyth 1967, Brooks 1967, Robinson et al. 1997, Petersen et al. 2000, Houston 

and Bowen 2001, Bielefeld et al. 2010).  In addition, gastropods are a common 

prey item of waterfowl such as mallards (Anas platyrhynchos) and mallards are 

generally considered important to the ecology of AI viruses (Swanson et al. 1985, 

Stallknecht and Shane 1988). 

Research Questions 

.  The annual cyclical pattern of AI virus prevalence in waterfowl is driven 

by many ecological factors including environmental persistence and the migration 

patterns of key waterfowl species (Brown 2007).  Avian influenza viruses persist 

in water for long periods and early migrating waterfowl species are factors in 

maintaining this cyclical pattern (Webster et al. 1978, Hinshaw et al. 1980, 

Stallknecht et al. 1990c).  But there are likely other contributing factors driving 

this phenomenon.   

All animals that share the aquatic environment with waterfowl are likely 

exposed to any AI viruses in the environment.  However, no information exists on 

the influence of non-waterfowl species on AI virus ecology.  Aquatic 

invertebrates, such as snails, are exposed to AI viruses whenever waterfowl are 

shedding virus into the shared habitat.  What happens to AI viruses when snails 

are exposed?  Do snails bioaccumulate AI viruses?  How long do 

bioaccumulated AI viruses persist in snail tissues?  Do bioaccumulated AI 

viruses remain infectious in snail tissues?  Can snails act as mechanical vectors 

of AI virus via ingestion by waterfowl predators?  And finally, do snails contribute 

to the annual cyclical pattern of AI virus prevalence observed in waterfowl?  



13 

These questions formed the motivation for a series of studies reported here 

evaluating: a) whether Physa spp. snails have SA receptors commonly found in 

aquatic bird species in the orders Anseriformes and Charadriiformes, b) whether 

and to what degree Physa spp. snails bioaccumulate a LPAI virus, and c) 

whether mallards allowed to ingest infected Physa spp. snails develop AI 

infection and transmit infectious virus to conspecifics. 
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CHAPTER 1 

EVALUATING A UBIQUITOUS FRESHWATER SNAIL (PHYSA SPP.) FOR 

INFLUENZA A VIRUS CELLULAR RECEPTORS 

SYNOPSIS 

Waterfowl are reservoirs for avian influenza (AI) viruses.  Although there 

are multiple routes of transmission, these viruses are often transmitted via water.  

Persistence of infectious AI viruses in water allows transmission to occur days or 

possibly months later.  This component of AI viral ecology enhances 

transmission of the virus between waterfowl because transmission among 

susceptible waterfowl is not constrained by direct contact.  Aquatic invertebrates, 

such as snails, are also likely exposed to AI viruses while feeding on detritus in 

aquatic habitats and many waterfowl species feed extensively on gastropods.  

Any substances ingested by snails are likely ingested, secondarily, by waterfowl, 

thus potentially providing an additional transmission mechanism for AI viruses.  

In the following studies, I used lectin binding staining assays to determine 

whether Physa spp. snails have sialic acid receptors that are capable of binding 

to influenza A viruses.  My results suggest that Physa spp. snails have sialic acid 

receptors that can bind waterfowl AI virus subtypes.  The ability of snails to bind 

AI viruses suggests these snails are physiologically capable of bioaccumulating 

the viruses.   Further, the bioaccumulation of AI viruses by snails may lead to 
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transmission of AI viruses through ingestion of the snails by susceptible species 

such as waterfowl.   

INTRODUCTION 

Aquatic birds are considered natural reservoirs for avian influenza (AI) 

viruses (Stallknecht and Shane 1988, Webster et al. 1992).  Avian influenza 

(family Orthomyxoviridae, genus Influenzavirus A) viral infections in aquatic birds 

are subclinical, generally limited to the intestines, and are nearly ubiquitous in 

aquatic bird populations.   Infected birds can shed infectious virus for several 

weeks (Webster et al. 1978, Hinshaw et al. 1980, Alexander 1993).  Avian 

influenza virus is shed through feces into the environment, often into water and 

water is considered the primary transmission facilitator of AI viruses among 

waterfowl (Webster et al. 1978, Hinshaw et al. 1979, VanDalen et al. 2010).   

Prevalence of AI virus infection among waterfowl populations is cyclical, 

with the highest shedding rate in North American birds during fall, prior to 

migration (Hinshaw et al. 1985).  After breeding, North American waterfowl 

congregate in large interspecific groups in Canada and the United States prior to 

fall migration (Webster and Bean 1998, Elphick et al. 2001).  Typically, the 

prevalence of AI viruses in these waterfowl populations is highest during this 

marshalling period, but once the fall migration begins, AI prevalence declines as  

birds move south (Webster and Bean 1998).  Detection of AI viruses in waterfowl 

populations reaches very low levels by the time these birds reach their wintering 

grounds in late fall or early winter (Webster et al. 1976, Stallknecht et al. 1990c).  

The cyclical pattern of AI virus infection in waterfowl is likely due to an interaction 
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of factors including environmental viral persistence, and the migration patterns of 

multiple waterfowl species (Brown 2007). 

Most research investigating environmental persistence of AI viruses has 

mainly centered on abiotic mechanisms.  Avian influenza viruses can remain 

viable in water for up to four months allowing transmission to occur among 

individuals and populations without the need for direct contact (Hinshaw et al. 

1979, Stallknecht et al. 1990b, Brown et al. 2007).  Viral persistence in water is 

enhanced in turbid water because influenza A viruses have an affinity for 

suspended solids in the aquatic environment.  Viruses that bind to these solids 

remain viable longer than unbound virus and bound particles may accumulate in 

the sediment (Bitton 1980).  The affinity of viruses for suspended solids is due to 

the opposing electrostatic charges of virions and the particulate matter (Bitton 

1980, Goyal et al. 1980, Chang et al. 1981), so animals feeding in the sediment 

are likely exposed to AI viruses when they are present. 

Tadpole snails (Physa acuta and P. gyrina) have an extensive range in 

North America; they are found in virtually all freshwater habitats from the arctic 

regions south to Texas (Baker 1972, Dillon et al. 2005, Turner and Montgomery 

2009).  These snails feed exclusively on green algae and detritus on virtually all 

surfaces including pond sediment (Dillon 2000, Vaughn 2009). Tadpole snails 

are also  known to bioaccumulate toxins including hepatotoxins; it is likely these 

toxins are transmitted to predators that consume affected snails (Zurawell et al. 

1999).  Predators of tadpole snails include fish, mammals, and other aquatic 

invertebrates (Dillon et al. 2005, Turner and Montgomery 2009).  In addition, 
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tadpole snails are a prey item of several aquatic bird species including black-

bellied tree ducks (Dendrocygna autumnalis), spectacled eider (Somateria 

fischeri), upland sandpiper (Bartramia longicauda), and mottled duck (Anas 

fulvigula) (Bolen and Forsyth 1967, Brooks 1967, Robinson et al. 1997, Petersen 

et al. 2000, Houston and Bowen 2001, Bielefeld et al. 2010).  Further, gastropods 

in general are a prey item of several aquatic bird species including mallard (Anas 

platyrhynchos), northern shoveler (A. clypeata), ruddy duck (Oxyura 

jamaicensis), red knot (Calidris canutus), herring gull (Larus smithsonianus), 

great black-backed gull (L. marinus), and glaucous gull (L. hyperboreus)  

(Tinbergen 1961, Siegfried 1976, Swanson et al. 1985, Thompson et al. 1992, 

The Birds of North America 2004). 

A requirement of AI virus infection is cellular binding; the primary event of 

infection is the binding of the viral hemagglutinin to sialic acid receptors on the 

surface of host epithelial cells (Suarez 2008).  The conformation of the sialic 

acids is important in determining the susceptibility of the cells to AI viral binding.  

Most AI viruses bind to receptors with sialic acids having an α2,3 linkage to the 

penultimate galactose; swine influenza viruses bind preferentially to sialic acids 

with an α2,6 linkage (Wan and Perez 2006, Suarez 2008).  Humans, swine, and 

several species of birds have been evaluated for sialic acid receptors capable of 

binding with influenza A viruses (Gambaryan et al. 2003, Thompson et al. 2006, 

Wan and Perez 2006), but very little information exists about the presence of 

receptors in aquatic invertebrates.   
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Bioaccumulation refers to the accumulation of substances (e.g., viruses, 

bacteria, toxicants) in the tissues of an organism through any exposure route, 

such as respiration, ingestion, or absorption (Farris and Van Hassel 2007).  

Aquatic invertebrates have been shown to bioaccumulate infectious viruses 

including enteroviruses, hepatitis A viruses, noroviruses, and rotaviruses (Meyers 

1984, Le Guyader et al. 1994, Le Guyader et al. 2000, Lees 2000).  

Bioaccumulation occurs because these viruses bind to the intestinal epithelial 

cells of oysters, mussels, and clams (Tian et al. 2007).  The ability of aquatic 

invertebrates to bioaccumulate viruses may play an important role in the 

transmission cycle of avian influenza viruses by providing an additional route of 

transmission.  In order to examine snails as a viable candidate for AI viral 

bioaccumulation, it is important to demonstrate that there are sites within snail 

tissues that are capable of binding the viruses.  

In this study, I stained snail tissues with lectins that bind to specific sialic 

acids (SA) to evaluate whether AI virus binding sites exist on snail epithelial cells.  

Using three lectins, I tested tissues from Physa spp. snails for the presence of 

three different sialic receptors: receptors found in two orders of aquatic birds 

(Anseriformes and Charadriiformes) and swine.  The presence of these different 

lectins on the stained snail tissues would indicate that influenza A viruses that 

typically infect Anseriformes, Charadriiformes, and swine may also bind to snail 

tissues.  The binding of AI viruses would represent the potential ability of the 

snail tissues to capture the viruses.  In addition, depending on the location of the 

sialic acid receptors within the snails, potential binding sites may suggest that 
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bioaccumulation may occur.  These potential binding sites may also lead to 

transmission of AI viruses to animals that ingest the snails. 

METHODS 

Sample collection and preparation.  Snails were gathered during two collection 

events in fall 2010. Tadpole snails (P. acuta and P. gyrina, n = 300) were 

collected by hand from a private lake in Loveland, Colorado, USA.  In both 

collection events, the snails were placed in 5-gallon buckets with lake water and 

transported to the National Wildlife Research Center in Fort Collins, Colorado, 

USA.  The snails were transferred to four 12-gallon aquaria (Marineland, 

Cincinnati, OH) and fed algae wafers (Hikari, Himeji, Japan) and fresh greens.   

Water was partially (25%) changed weekly and completely changed once every 5 

weeks.    

In December 2010, 6 large snails (0.6 – 0.8g) were selected from the 

aquaria.  The snails were placed in a 10% formalin solution, allowed to fix for 48 

hours, and then transferred to 70% ethanol.  After fixation, the snails were 

removed from the shell, sliced longitudinally, embedded in paraffin, cut with a 

microtome, and the cut sections were placed on positively charged microscope 

slides (Fisher Scientific, Pittsburgh, PA). 

Tissue staining. I used two lectin binding assays to detect influenza A virus 

receptors in snails.  One assay was designed to detect sialic acids that have an 

affinity for AI viruses (SAα2,3Gal).  Further, this assay employs two lectins 

(MAA1 and MAA2) to differentiate between sialic acid receptors that are capable 

of binding with AI viruses that are typically found in Anseriformes 
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(SAα2,3Galβ1,4GlcNAc) and those typically found in Charadriiformes 

(SAα2,3Galβ1,3GalNAc).  A second assay used Sambucus nigra agglutinin 

(SNA) to detect sialic acids that have an affinity for swine influenza viruses 

(SAα2,6) (Ito et al. 1998, Suzuki et al. 2000, Thompson et al. 2006).   

These assays were performed several times on tissues from all 4 

individual snails using multiple sections (n = 4) per individual.  Each assay 

included three sections (slides) from two individuals; one received the lectin 

treatments, while the other served as a negative control and received only 

phosphate-buffered saline (PBS).  Additionally, each assay included positive 

control tissues known to express the sialic acid receptors of interest.  The 

positive control tissues included mallard intestines for the MAA1 and MAA2 

assays, and swine trachea for the SNA assay (Ito et al. 1998). 

I used protocols developed at the University of Georgia, Department of 

Pathology (see Appendix I).  Briefly, slides were warmed at 62°C for 15 – 30 

minutes, deparaffinized in xylene and ethanol baths and then rinsed in double 

distilled water.  The slides were transferred immediately to warm citrate buffer 

and heated in a steamer (Black and Decker, New Briton, CT) for 35 minutes.  

After rinsing with double distilled water, the slides were incubated at room-

temperature in 3% hydrogen peroxide for 15 minutes, and then rinsed again in 

double distilled water.  These steps were conducted for both the MAA and SNA 

assays. 

The assay to detect the AI virus receptors continued with multiple room-

temperature incubation steps.  First, slides were incubated in Carbo-Free 
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blocking solution (Vector Laboratories, Burlingame, CA) for 15 minutes, followed 

by a second incubation in fluorescein-conjugated Maackia amurensis-1 lectin 

(MAA1; Vector Laboratories, Burlingame, CA) for 1 hour.  Subsequently, the 

slides received a second treatment with fluorescinated Maackia amurensis-2 

lectin (MAA2; Vector Laboratories, Burlingame, CA), with an additional 1-hour 

incubation.  The slides were incubated a fourth time for 2 hours with Streptavidin 

Alexa Fluor 546 (Invitrogen, Carlsbad, CA) to counterstain the tissues.  The 

negative control slides were incubated with PBS in place of MAA1, MAA2, and 

Streptavidin.  Finally, a drop of Prolong Gold (Invitrogen, Carlsbad, CA) was 

applied directly over each tissue section, and a cover slip was quickly placed on 

all slides.  The slides were allowed to cure in the dark for 24 hours and then 

visualized under fluorescence microscopy. 

The SNA assay to detect swine influenza virus receptors continues after 

the hydrogen peroxide treatment.  Treated slides received fluorescein-conjugated 

Sambucus nigra and were incubated at room temperature for 1 hour, while the 

negative control slides received only PBS.  After this step and a PBS rinse, 

Prolong Gold and a cover slip were placed on all slides.  The slides were allowed 

to cure for 24 hours and visualized under fluorescence microscopy. 

RESULTS 

Results from the MAA 1 and MAA 2 assays demonstrated that only MAA 1 

lectin bound to Physa spp. snail tissues, with all (n = 8 from 6 different snails) 

stained sections showing lectin binding; however, there was no evidence of MAA 

2 binding in any snail tissue.  The receptors were distributed in the digestive 
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system of the snails with Anseriformes-type sialic acid receptors found in the 

stomach and intestines (Figures 1.1 and 1.2).  There was no evidence of 

fluorescence in any of the negative control tissues (n = 4; Figure 1.1).  The 

positive-control mallard intestinal tissues showed lectin binding sites, and the 

untreated mallard tissues did not display any auto-fluorescence (negative control; 

Figures 1.3). 

The SNA assays revealed no lectin-binding to snail tissues.  The snail 

tissues did not show any evidence that swine or human influenza viruses would 

be able to bind to sialic acid receptors of the snail epithelial tissues.  The positive 

control swine trachea sections showed lectin binding sites and the swine trachea 

did not display any auto-fluorescence (negative control; Figure 1.4). 

DISCUSSION 

The mechanisms that drive the cyclical pattern of AI virus infection 

prevalence in waterfowl are likely only partially understood.  Water is generally 

considered an essential component in the transmission cycle of AI virus; however 

the source of AI virus that leads to inter-seasonal transmission is unknown.  Viral 

persistence in water and early migrating waterfowl, such as blue-winged teal 

(Anas discors), may contribute to maintaining the cyclical prevalence patterns 

observed in waterfowl (Stallknecht et al. 1990c, Sharp et al. 1993, Hanson et al. 

2005), but there may be other factors that preserve seasonal prevalence 

patterns. 

As infected waterfowl shed AI virus into the water of lakes, ponds, and 

streams along the North American flyways, freshwater aquatic invertebrates are 
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potentially exposed to these viruses.  The results from this study indicate that 

Physa spp. have sialic acid receptors on the gastrointestinal epithelial cells 

capable of binding to these AI viruses.  The presence of these cellular receptors 

suggests that these snails may also be capable of bioaccumulating AI viruses.   

The ability of tadpole snails to bioaccumulate AI viruses may impact AI 

ecology by extending the window for potential transmission of AI virus to 

susceptible avian hosts.  Bioaccumulated AI virus in snails may be mechanically 

transmitted to snail predators such as mallards during periods when the viral titer 

of the water is too low to initiate direct transmission.  Mallards are important in AI 

virus transmission cycles; these waterfowl are commonly infected with AI viruses, 

and shed high quantities of AI virus (Stallknecht and Shane 1988, Olsen et al. 

2006).  Mallards often share the aquatic habitat with Physa spp., and 25% of the 

typical mallard diet consists of gastropods (Swanson et al. 1985, Turner and 

Montgomery 2009).  In addition, if Physa spp. snails are effective 

bioaccumulators of infectious AI viruses, snails have the potential to serve as 

mobile traffickers of AI virus.  Tadpole snails commonly attach to floating debris 

such as leaves and logs (Vaughn 2009).  As the flotsam moves with the currents, 

the snails, and any bioaccumulated AI virus, would move to new areas.  This 

may provide AI viruses with a mechanism to move to locales that do not have 

infectious AI virus in the water and thus expose additional waterfowl to the virus 

through a non-traditional route.  The presence of AI receptors in these snails 

suggests that the snails may contribute in some way to maintaining the cyclical 

transmission pattern seen in waterfowl.   
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Finally, I found  no evidence that the snails used in this study possessed 

any of the cellular sialic acid receptors capable of binding to AI viruses that 

typically infect Charadriiformes, such as H13 and H16 subtypes (Fouchier et al. 

2005).  Several gull species consume freshwater snails (Tinbergen 1961, The 

Birds of North America 2004), but this study indicates that it is unlikely tadpole 

snails could act as a mechanical vector of these AI viruses.  In addition, the 

snails lack influenza receptors capable of binding to swine influenza viruses, 

suggesting that swine foraging in aquatic habitats would be unlikely to be 

exposed to influenza A viruses via snails.    

While these results suggest that the potential exists for bioaccumulation of 

Anseriformes-specific viruses to occur in freshwater snails, a great deal of 

research will be required before definitive conclusions about the role of aquatic 

snails in AI virus transmission can be made.  In order to implicate Physa spp. 

snails in AI virus transmission, experiments to show actual viral bioaccumulation, 

the persistence of detectable infectious virus, and the likelihood of transmission 

via snail tissues will need to be conducted.  Nevertheless, my results showing the 

presence of SAα2,3Galβ1,4GlcNAc receptors – those most commonly found in 

the enteric epithelial tissues of Anseriformes – suggests that the capacity for 

snail tissues to bind AI viruses exists and this highlights the notion that Physa 

spp. snails may play a role in the transmission of AI viruses among waterfowl.  
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Figure 1.1.  Intestinal tissues of tadpole snails (Physa spp.) stained for the 
presence of sialic acid receptors capable of binding with avian influenza viruses.  
A) is stained with the lectins Maackia amurensis (MAA) 1 and 2.  The MAA1 
(gold) has bound to potential sialic acids most commonly found in waterfowl 
(SAα2,3Galβ14GlcNAc), while there is no binding of MAA2 (green), a sialic acid 
receptor more commonly found in Charadriiformes species.  B) is the 
corresponding negative control tissue; these tissues received only PBS in place 
of MAA1 and 2 lectins. 
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Figure 1.2. Stomach tissues of tadpole snails (Physa spp.) stained for the 
presence of sialic acid receptors capable of binding with avian influenza viruses.   
The tissues were stained with Maackia amurensis (MAA) 1 and 2 lectins.  The 
MAA1 (gold) has bound to potential sialic acids most commonly found in 
Anseriformes species (SAα2,3Galβ14GlcNAc), while there is no binding of MAA2 
(green) which would indicate the sialic acid more commonly found in 
Charadriiformes species.  
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Figure 1.3. Mallard (Anas platyrhynchos) intestines stained for the presence of 
sialic acid receptors capable of binding with avian influenza viruses.  The tissues, 
serving as positive control tissues, were stained with the lectins Maackia 
amurensis (MAA) 1 and 2.  A) MAA1 (gold) has bound to sialic acid receptors 
most commonly found in Anseriformes (SAα2,3Galβ14GlcNAc), and MAA2 
(green, not visible) preferentially binds with sialic acid receptors more commonly 
found in Charadriiformes (SAα2,3Galβ1,3GalNAc).  B) shows the corresponding 
negative control tissue; this tissue received only PBS in place of MAA1 and 2 
lectins.  
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Figure 1.4. Swine (Sus scrofa) trachea stained with Sambucus nigra (SNA) for 
the presence of sialic acid receptors (SAα2,6Gal) capable of binding with swine 
influenza viruses.  These tissues served as positive control tissues for the SNA 
assay.  A) is stained with SNA represented by green demonstrating the presence 
of influenza A virus receptors.  B) is the corresponding negative control tissue; 
this tissue received only PBS in place of SNA lectins.  
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CHAPTER 2 

BIOACCUMULATION AND PERSISTENCE OF AVIAN INFLUENZA VIRUS IN 

TADPOLE SNAILS (PHYSA SPP.)  

SYNOPSIS 

Environmental persistence of avian influenza (AI) viruses provides a 

mechanism for viral transmission among waterfowl without direct contact of 

individuals.  Infected waterfowl shed AI viruses into the environment and AI 

viruses remain infectious in water for long periods, likely exposing multiple animal 

host species to the virus.  Freshwater snails are likely exposed to AI viruses 

when infected waterfowl shed virus into lakes, ponds, and streams, and these 

snails are a common food source of many species of waterfowl.  This trophic 

interaction may serve as a novel route of AI virus transmission.  In the 

experiments described here, I exposed Physa spp. snails to an AI virus (H3N8) 

to determine whether snails can bioaccumulate the virus and, if so, how long the 

virus persists in the snail tissues.  The snail tissues were destructively sampled 

and tested by quantitative real-time RT-PCR.  The experiments demonstrated 

that Physa spp. snails do bioaccumulate AI viral RNA in their tissues at low titers 

for at least 96 hours.  These results indicate that it may be possible for 

transmission to occur between waterfowl via ingestion of a natural invertebrate 

prey item. 
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INTRODUCTION 

Aquatic birds, especially species in the orders Anseriformes (waterfowl 

such as ducks and geese) and Charadriiformes (gulls and terns) are considered 

the natural reservoirs for avian influenza (AI) viruses (Stallknecht and Brown 

2008).  Avian influenza (family Orthomyxoviridae, genus Influenzavirus A) virus 

infections in these birds are generally subclinical, but the birds can shed 

infectious virus for several weeks (Webster et al. 1978, Hinshaw et al. 1980, 

Alexander 1993).  These viruses replicate well in the intestines and are shed in 

high concentrations in the feces; this results in infectious virus being deposited 

into the environment, especially water (Webster et al. 1978).  Once in water, AI 

viruses can remain viable for up to four months allowing transmission to occur 

among individuals and populations without the need for direct contact 

(Stallknecht et al. 1990b, Brown et al. 2007). 

Prevalence of AI virus infection among waterfowl populations is cyclical, 

with the highest shedding rate in North American birds occurring during fall, prior 

to migration (Hinshaw et al. 1985).  After breeding but before migration, North 

American waterfowl congregate in large interspecific groups in Canada and the 

United States (Webster and Bean 1998, Elphick et al. 2001).  Typically, the 

prevalence of AI viruses in these waterfowl populations is highest during this 

marshalling period, but once the fall migration begins, AI prevalence declines as 

the birds move south (Webster and Bean 1998).  The frequency of AI virus 

infections in waterfowl populations is low by the time these birds reach their 

wintering grounds in late fall and early winter (Webster et al. 1976, Stallknecht et 
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al. 1990c).  However, this AI virus transmission cycle begins again the next fall 

on the marshalling areas.  The mechanisms that drive this AI virus transmission 

cycle are likely related to an interaction of several factors including environmental 

viral persistence, and the ecology of multiple waterfowl species (Brown 2007).   

Most research investigating environmental persistence of AI viruses has 

centered on abiotic mechanisms.  Avian influenza virus persistence in water is 

influenced by temperature, pH, salinity, and AI virus subtype (Stallknecht et al. 

1990b, Brown et al. 2007).  In addition, AI viruses have an affinity for suspended 

solids in the aquatic environment (Bitton 1980).  Viruses that bind to these solids 

remain viable longer, allowing viruses to settle and accumulate in the sediment 

(Bitton 1980).  Further work has demonstrated that AI viruses persist in ice, mud, 

and soil (Zhang et al. 2006, Vong et al. 2008).  Few studies have examined 

potential biotic factors associated with AI viral persistence in aquatic 

environments.   

Bioaccumulation refers to the accumulation of any substance (e.g., 

viruses, bacteria, toxins) in the tissues of an organism through any exposure 

route, such as respiration, ingestion, or absorption (Farris and Van Hassel 2007).  

Molluscs are known to bioaccumulate infectious viruses such as enteroviruses, 

hepatitis A viruses, noroviruses, and rotaviruses (Meyers 1984, Le Guyader et al. 

1994, Le Guyader et al. 2000, Lees 2000). The viruses bind to the intestinal 

epithelial cells of the shellfish (Tian et al. 2007).  Similarly, freshwater aquatic 

invertebrates are potentially exposed to AI viruses during the seasonal shedding 

of virus by waterfowl and may bioaccumulate virus in their epithelial cells.  Zebra 
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mussels (Dreissena polymorpha) bioaccumulated and maintained infectious AI 

virus (low pathogenic H5N1) in their tissues for 14 days (Stumpf et al. 2010).  In 

contrast, Asiatic clams (Corbicula fluminea) bioaccumulated LPAI, but the tissues 

failed to transmit AI virus to wood ducks (Aix sponsa) via ingestion (Faust et al. 

2009).  Nonetheless, no studies have examined the potential role of aquatic 

snails in AI virus transmission. 

Tadpole snails (Physa acuta and P. gyrina) are distributed throughout 

North America; these species are habitat generalists allowing them to utilize a 

wide range of aquatic environments (Dillon et al. 2005, Turner and Montgomery 

2009).  These species feed exclusively on green algae and detritus (Dillon 2000, 

Vaughn 2009), and are known to accumulate toxins such as microcystins 

(hepatotoxins produced by cyanobacteria) through ingestion.  These toxins are 

likely to be transmitted to predators as they consume these invertebrates 

(Zurawell et al. 1999).  Tadpole snails are a prey item of several aquatic bird 

species including black-bellied tree ducks (Dendrocygna autumnalis), spectacled 

eider (Somateria fischeri), upland sandpiper (Bartramia longicauda) and mottled 

duck (Anas fulvigula) (Bolen and Forsyth 1967, Brooks 1967, Robinson et al. 

1997, Petersen et al. 2000, Houston and Bowen 2001, Bielefeld et al. 2010).  In 

addition, at least 51 species of aquatic bird species, including mallard (Anas 

platyrhynchos), northern shoveler (A. clypeata), ruddy duck (Oxyura 

jamaicensis), red knot (Calidris canutus), herring gull (Larus smithsonianus), 

great black-backed gull (L. marinus), and glaucous gull (L. hyperboreus) 
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consume gastropods (Tinbergen 1961, Siegfried 1976, Swanson et al. 1985, 

Thompson et al. 1992, The Birds of North America 2004).   

Tadpole snails share aquatic environments with waterfowl, so it is likely 

they are exposed to AI viruses that have been shed into the water by infected 

birds.  However, no information exists regarding the potential effects to predators 

and scavengers consuming these exposed snails.  In chapter 1, I demonstrated 

that Physa spp. snails have sialic acid receptors capable of binding to AI viruses.  

To further study the potential relationship between freshwater snails and AI 

viruses, here I report on an experimental exposure study to evaluate the potential 

of Physa spp. snails to bioaccumulate AI viruses.  In the following experiments, I 

exposed tadpole snails (Physa acuta and P. gyrina) to an AI virus to determine 

whether: 1) snails bioaccumulate AI viruses, 2) snails bioaccumulate AI viruses 

differently depending on exposure method, 3) the presence of a snail affects the 

viral concentration of the water in aquaria, and 4) how long AI virus persists in 

snail tissues. 

METHODS 

Snail collection.  Freshwater snails (P. acuta and P. gyrina, n = 300) were 

collected by hand from a private lake in Loveland, CO on two occasions in 

August 2010.  In both collection events, the snails were placed in 5-gallon 

buckets with lake water and transported to the National Wildlife Research Center 

in Fort Collins, Colorado.  The snails were transferred to four 12-gallon aquaria 

(Marineland, Cincinnati, OH) and fed algae wafers (Hikari, Himeji, Japan) and 

fresh greens.   Water was partially (≈25%) changed weekly and completely 
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changed once every 5 weeks.  Prior to each experiment, snails were transferred 

to small containers (BacT Bottle, Fisher Scientific, Pittsburgh, PA), one snail per 

aquarium, these served as mini-aquaria.  The mini-aquaria were partially filled 

with well water (collected from Colorado State University Foothills Fisheries 

Laboratory, Fort Collins, CO) leaving space (3 – 5 cm) above the waterline.  The 

mini-aquaria were loosely covered to allow air exchange but to prevent snail 

escape.  In addition to water, the snails were provided with algae and greens as 

food items, and each time the aquaria water was replaced, new food items were 

added to the aquaria.  Only snails greater than 80 mm were used in the following 

experiments and the temperature in the room that the aquaria were housed was 

maintained at 17 – 20°C. 

Exposure 

Virus preparation.  An AI virus isolate (A/H3N8/mallard/CO/2008) from a 

mallard used in an unrelated experimental infection study at the National Wildlife 

Research Center (originally collected from wild bird feces 

A/H3N8/mallard/C0/187718/2008) was propagated in embryonated chicken 

eggs, resulting in a viral stock of 107 EID50/mL.  The inoculum was made by 

diluting the virus stock in BA-1 (M199, 0.05 M Tris, pH 7.6,1% bovine serum 

albumin, 0.35 g/L sodium bicarbonate, 100 U/ml penicillin, 100 g/ml streptomycin, 

and1 g/ml amphotericin B) resulting in an inoculum of approximately 105 

EID50/mL. 

Experiment 1.  To test for viral bioaccumulation in snail tissues, the aquaria with 

snails were randomly assigned to one of two treatment groups: inoculation (n = 
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40), and negative control (n = 10) and snails were transferred to new mini-

aquaria with fresh well water (50 mL).  The inoculation group received 0.5mL of 

the AI virus inoculum making the concentration of virus in the aquaria water 

approximately 103 EID50, while the negative control received 0.5 mL of BA-1.   

Immediately after inoculation, a 1 mL water sample was collected from 

each aquarium (beginning-exposure water), and the snails were allowed to 

remain in the inoculated water for 36 hrs.  After this exposure period, the 

ending-exposure water sample (1 mL) was collected, and the snails were rinsed 

with 10 mL of fresh well-water and transferred to new aquaria with fresh well 

water (50 mL); this is the depuration period.  After 2 hours of depuration, half of 

the aquaria were sampled (inoculated n = 20, and negative-control n = 5); a 

sample of the depuration water (1 mL), and the snail were collected.  After 24 

hours of depuration, the remaining aquaria were sampled (depuration water and 

snail; inoculated, n = 20; negative control, n = 5).  

Snails collected at the end of the depuration periods were removed from 

the shell by cutting along the inner spiral of the shell until the body became free.  

The shell-less snail was placed in a microcentrifuge tube (Fisher Scientific, 

Pittsburg PA) with 1mL BA-1, and a single 4 mm stainless steel ball bearing 

(Grainger, Fort Collins, CO).  The samples were stored on wet ice until 

processing.  Once in the lab, the tissues were placed in chilled racks 

(TissueLyser Adapter Set, Qiagen, Valencia, California) and agitated for 10 min 

at 25 Hertz using a Mixer Mill homogenizer (Retsch MM301, Newton, 
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Pennsylvania), and then centrifuged (10,000×g) for 3 minutes.  The supernatant 

was transferred to cryovials and frozen at -80°C. 

Experiment 2.  To test for the best exposure method, 144 aquaria with 100 mL 

well-water were randomly assigned to 2 treatments, single- or multiple-

inoculation (n = 72/treatment).  These groups were further divided into 3 groups 

each: the inoculation group (TX) received a snail and an inoculation (n = 

40/treatment), no-snail negative control (SC) received an inoculation but no snail 

(n = 16/treatment), and no-virus negative control (VC) received a snail but no 

virus (n = 16/treatment).  Each group was further divided equally into 4 

subgroups corresponding to sampling and inoculation time stamps, detailed 

below and in Figure 2.1. 

On the first day of exposure, all TX and SC aquaria were inoculated with 

the viral stock (105 EID50), with the single-inoculation group receiving a full dose 

(1 mL) of inoculum creating an estimated 103 PCR EID50, and the multiple-group 

received a one-quarter dose (0.25 mL) creating an estimated 102.4 EID.  The 

single- and multiple-inoculation VC subgroups received 1 mL or 0.25 mL of BA-1 

respectively.    

After 24 hours, the aquaria water was replaced with fresh well-water in all 

TX and VC subgroups (both single- and multiple-inoculation).  Snails from all 

single-inoculation TX and SC aquaria subgroups, one multiple-inoculation TX 

subgroup, and one multiple-inoculation VC subgroup were allowed to depurate.  

The remaining multiple-inoculation TX and SC aquaria were re-inoculated with 

another one-quarter dose (0.25 mL) of viral stock, and multiple-inoculation VC 
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subgroups received another 0.25 mL aliquot of BA-1.  The following day, the 

depurating snails were removed from aquaria and sampled and processed as 

outlined above (Figure 2.1). 

Each subsequent day, from 2 – 4 days post-inoculation (DPI), the water in 

the aquaria was replaced with fresh well-water in all remaining TX and VC 

subgroups (multiple inoculation).  One subgroup from the multiple-inoculation 

treatment group was allowed to begin depurating, while the remaining multiple-

inoculation TX and SC subgroups were re-inoculated with another one-quarter 

dose (0.25 mL) of viral stock, and remaining multiple-inoculation TX and SC 

subgroups received 0.25mL BA-1 on each of these days.  Lastly, the multiple-

inoculation SC subgroup corresponding to the newly depurating subgroup was 

removed after sampling.   

On the final day of the experiment (5 DPI), the remaining subgroup of 

depurating snails (single-inoculation TX and VC, and multiple-inoculation TX and 

VC) were removed from the depurating water, sampled and processed as above. 

A water sample (1 mL) was collected from each aquarium after each 

inoculation (beginning-exposure water) and again 24 hours later (ending-

exposure water).  After the depuration period, a sample of the depuration water 

(1 mL) and the entire snail were collected.  The snail tissue was processed as 

previously described for experiment 1.  All samples were initially stored on wet 

ice and then frozen at -80°C after each sampling session. 

Experiment 3.  To test for the effects of snails on viral persistence, 72 new 

aquaria were prepared with fresh well water (100 mL).  Snails (n = 60) were 
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transferred to the new aquaria (1 snail/aquarium), and the aquaria with snails 

were randomly assigned to one of two treatment groups: inoculated (INOC, n = 

48), or no virus negative control (NV, n = 12).  The remaining 12 aquaria served 

as the no snail negative control (NS).  The INOC and NS groups received 1 mL 

of the AI virus inoculum pipetted directly into the water of each aquarium 

resulting in a viral titer of approximately 103 EID50.mL, while the negative virus 

control group received 1 mL of BA-1.   

The snails were allowed to remain in the inoculated water for 96 hours.  At 

the end of this exposure period, each snail was removed from the inoculated 

water, rinsed with 10 mL fresh well water using a serological pipette, and 

transferred to a new aquarium with fresh well water (100 mL).  The NS group 

aquaria were sampled and removed (detailed below).  The INOC and NV groups 

were allowed to depurate for 24 – 192 hours. 

After 24 hours of depuration, one-quarter of the snails from INOC (n = 12) 

and NV (n = 3) aquaria were removed.  The remaining snails were allowed to 

continue to depurate.  This step was repeated at 48 and 96 hours for an 

additional one-quarter of the snails from both the INOC and NV groups.  The 

remaining snails from the INOC and NV aquaria (n = 12 and n = 3 respectively) 

were sampled after 192 hours of depuration.  In addition, depuration water was 

replaced at 48, 96, and 144 hours for the aquaria that continued to depurate past 

48 hours.   

Immediately after inoculation, a 1 mL water sample was collected from 

each aquarium (beginning-exposure water), and a second water sample (1 mL; 
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ending-exposure water) was collected at the end of the exposure period (96 

hours).  Samples of depuration water (1 mL) and snail tissues were collected at 

the end of the depuration period for each snail and its aquarium.  The snail tissue 

was processed as previously described for experiment 1.  All samples were 

initially stored on wet ice and then frozen at -80°C after each sampling session. 

Sample testing.  All samples were tested in duplicate by quantitative real-time 

RT-PCR (qrtRT-PCR) for viral RNA detection and quantification using a protocol 

developed at the National Veterinary Services Laboratories (United States 

Department of Agriculture, Ames, IA).  Ribonucleic acid (RNA) was extracted 

using the MagMAX-96 AI/ND Viral RNA Isolation Kit (Ambion, Austin, TX).  

Primers and probe specific for the influenza A virus matrix gene developed by 

Spackman et al (2003) were used in conjunction with the ABI One-step RT-PCR 

master mix and the ABI 7900 Real Time PCR System (Life Technologies 

Corporation, Carlsbad, CA) with thermocycler conditions developed by Aguero et 

al (2007).  All samples related to the same aquarium (beginning-exposure water, 

ending-exposure water, depuration water, and snail tissue) were tested in 

duplicate on the same extraction plate to reduce the possibility of inducing an 

extraction effect on the analysis.  Calibrated controls with known viral titers (102 

EID50/mL–105 EID50/mL) were included on each plate to construct a 4-point 

standard curve.  Sample viral RNA quantities were extrapolated from the 

standard curves and presented as PCR EID50 equivalents/mL.  Tissue samples 

were considered positive if both replicate qrtRT-PCR results were greater than 

100 PCR EID50 equivalents.  Experiments conducted at the National Wildlife 
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Research Center demonstrate that the qrtRT-PCR assay used to analyze the 

samples can detect known influenza A viral titers of 100 EID50 90% of the time 

(unpublished data); both of the replicate samples tested were required to be 

above this threshold to be considered positive.  

Data Analyses 

The qrtRT-PCR data from both experiments were analyzed using SAS 9.2 

software (SAS Institute, Cary, NC).  In addition, Akaike’s Information Criterion, 

with small sample size correction (AICc) was used for model selection and 

multimodel inference (Burnham and Anderson 2002).  Models with a ∆AICc < 2 

retained enough weight to be considered viable.     

Experiment 1.  In the first snail exposure experiment, I used Proc MIXED 

implemented in SAS to determine whether AI virus RNA was retained in the snail 

tissues.  I constructed 5 models to determine the effects of a viral inoculation and 

depuration hours had on the detection of AI viral RNA in the snail tissues.  The 

model set included a model with no effects, two models with a continuous 

inoculation effect, or depuration hours (2 and 24 hours; categorical), and two 

models with additive and interactive effects.  The two main effects (viral 

inoculation and depuration hours) were considered fixed effects and the 

detection of viral RNA in tissues was the dependent variable (continuous). 

Experiment 2.  For the second experiment, I analyzed the PCR data using Proc 

MIXED to examine the effects of exposure method (single vs. multiple 

inoculations) on the detection of AI viral RNA in snail tissues and depuration 

water.  To accomplish this, I constructed 5 models to determine the effects of the 
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exposure method, and viral titer of the beginning-exposure water.  The model set 

included a model with no effects, two models with exposure method (single or 

multiple inoculation) or a continuous inoculation effect (EID50 equivalents/mL), 

and two models with additive and interactive effects.  The exposure method and 

inoculation effect were considered fixed and the detection of viral RNA in tissues 

was the dependent variable. 

Experiment 3.  In the third experiment I performed two analyses of the PCR 

data.  In the first analysis, I used Proc GLIMMIX to examine the effects of the 

viral titer of the beginning-exposure water and depuration duration on the 

detection of virus in the snail tissues.  I constructed 5 models to evaluate the 

effects of depuration time and viral titer of beginning-exposure water on the 

likelihood of a PCR-positive snail.  The model set included a model with no 

effects, two models with viral titer of beginning-exposure water (continuous) and 

depuration duration effect (categorical; 1, 2, 4, or 8 days), and two models 

incorporating both additive and interactive effects of these variables.  The two 

main effects (beginning-exposure water and depuration duration) were 

considered fixed effects and the detection of viral RNA in tissues (binomial) was 

the dependent variable. 

In the second analysis, I used Proc MIXED implemented in SAS to 

evaluate the presence of snails on viral RNA decline in water.  Viral decline was 

determined by change in viral titers between the beginning-exposure water and 

the ending-exposure water (96 hour exposure).  All samples without virus were 

excluded from the analysis.  I developed 5 models including a model with no 
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effects, two single effect models (i.e., presence of a snail and viral titer of the 

beginning-exposure water), a model incorporating additive effects of snail 

presence and viral titer of the beginning-exposure water, and a fully interactive 

model. The variables snail presence (categorical) and viral titer of the beginning-

exposure water (continuous) were treated as fixed effects while the dependent 

variable, viral decline, was continuous. 

RESULTS 

Experiment 1.  The data from the first experiment indicate that AI viruses appear 

to be retained at low titers in the tissues of snails for up to 24 hours, with 22% (9 

of 40) of snail tissues testing positive for AI viral RNA, with 30% (n = 20) of snail 

tissues testing positive after 2 hours depuration, and 15% (n = 20) of snail tissues 

testing positive after 24 hours of depuration (Table 2.1).  The top model included 

the single effect of beginning-exposure water viral titer and held an AICc weight 

of 0.65 (Table 2.2).  The top three models carried a total AICc weight of more 

than 0.95.  The cumulative AICc weights for the variables within the model set 

were 0.32 for depuration hours and 0.96 for viral titer of the inoculating dose 

(Table 2.3). 

Experiment 2.  The data from the second experiment regarding inoculation 

method showed that snail tissues also retained AI viruses with 14% (11 of 80) 

testing positive for AI virus RNA (Table 2.4).  In addition, the top model in the 

analysis evaluating the effects of exposure method on viral titer carried an AICc 

weight of 0.88 and included the single effect of exposure method (Table 2.5).  

Using estimates of the total quantity of virus detected in the snail tissue as a 
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function of exposure method from the top model, higher viral titers resulted from 

the single inoculation group compared to the multiple inoculation group (single 

inoculation 3.86 PCR EID50 equivalents, SE 1.61; multiple inoculation 1.93 PCR 

EID50 equivalents, SE 0.81).  Nevertheless, the two exposure methods had 

overlapping confidence intervals (Figure 2.2).  The evidence ratio of the top 

model to the only other model carrying any weight (no effects; AICc weight = 

0.12) was 7.3:1, indicating that the top model was seven times more likely than 

the model of no effect. 

Experiment 3.  Results from the third experiment showed that the proportion of 

qrtRT-PCR-positive tissue samples declined from 33% (4/12) at 24 hours to 0% 

by 96 hours post-depuration (Figure 2.3).  In addition, viral RNA was 

undetectable in the depuration water by 48 hours post-depuration.  Both the viral 

titer of the beginning-exposure water and depuration duration influenced the 

detection of AI virus by qrtRT-PCR.  The top two models were the interactive 

model, which held an AICc weight of 0.66, and the additive model which carried 

an AICc weight of 0.22 (Table 2.6).  Thus, the likelihood of detecting AI virus in 

snail tissues is dependent on both viral titer of the beginning-exposure water and 

depuration duration.  The remaining models, the two single effect models (viral 

titer of the beginning-exposure water or depuration duration) and the model of no 

effect carried a cumulative AICc weight of 0.12, demonstrating that these 

variables alone had little influence on the detection of AI virus RNA in snail 

tissues. The results indicate that exposing snails to AI viruses may lead to 

bioaccumulation of AI viruses, but viral persistence in the tissues may be short-
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lived as demonstrated by the lack of positive samples past 48 hours of 

depuration (Figure 2.3). 

Analysis of the effect of snails on viral decline in the aquarium water 

suggested that the presence of snails had an effect on viral decline.  The top 

model was the additive model which included both the viral titer of the beginning-

exposure water and the presence of a snail; this model carried an AICc weight > 

0.99  (Table 2.7). 

DISCUSSION 

The mechanisms that drive the cyclical pattern of AI virus infection 

prevalence in waterfowl are only partially understood.  Environmental persistence 

and early migrating waterfowl species such as blue-winged teal (Anas discors) 

likely contribute significantly to maintaining AI viral infection in waterfowl species 

(Brown 2007).  However, there are probably additional dynamics that influence 

the seasonal prevalence patterns of AI virus infection. The ability of aquatic 

invertebrates to bioaccumulate AI viruses may be a factor in the cyclical AI virus 

prevalence patterns seen in waterfowl, particularly if aquatic invertebrates 

harboring bioaccumulated virus in their tissues are consumed as prey items.     

A previous study (Chapter 1), showed that Physa spp. snails have sialic 

acid receptors like those of Anseriformes (ducks, geese, swans) suggesting that, 

if Physa spp. snails bioaccumulate AI virus in their tissues, they may be an 

important biotic component of AI virus transmission in the wild.  The results from 

these experiments indicate that tadpole snails do bioaccumulate AI viruses in 

their tissues.  This is evidenced by snail tissues testing positive for viral RNA in 
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all three experiments, and data showing that the presence of a snail affects viral 

decline in aquaria water.  While viral titers in snail tissues were relatively low (< 

101.8 PCR EID50 equivalents) and lasted less than four days, these results 

suggest that snails could act as mechanical vectors.   

Both the first and third experiments reported here showed that the 

concentration of virus at the beginning of the exposure period was important in 

terms of whether or not virus was detected in snail tissues and that the duration 

of persistence of virus in snail tissues declined with lengthening depuration 

duration.  These results indicate that snail exposure events of low concentration, 

as might occur when only small numbers of infected waterfowl are depositing 

virus into the aquatic environment, are likely less important for virus transmission 

and persistence compared to high concentration events as might happen at the 

beginning of the marshaling period.   

In addition, freshwater snails are likely exposed to low titers of AI virus 

nearly continuously during marshaling and fall migration, so the multiple 

inoculation method is probably a more ecologically relevant exposure method.  

However, the results from the second experiment demonstrated that any 

difference between exposure methods for detecting AI viruses by RT-PCR is 

likely not biologically significant.  Rather, a single exposure of a snail to virus, if 

delivered during a window of opportunity for transmission (e.g., pre-breeding or 

during the marshaling period) and is of high concentration, may contribute to viral 

persistence in a wild system.  
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Direct exposure to infectious virus in water is likely a more efficient 

transmission mechanism for AI viruses to susceptible hosts like waterfowl 

(Webster et al. 1978, Hinshaw et al. 1980, Alexander 1993, VanDalen et al. 

2010).  Avian influenza viruses remain infectious for long periods, as long as 54 

days at 17°C (Stallknecht et al. 1990b), whereas, the AI virus in the snail tissues 

in these experiments was undetectable by four days post-depuration.  This 

implies that water is an ideal transmission mechanism, and in a lake-type setting, 

where the water currents are with relatively limited, recently shed AI virus would 

remain in the water column, available to other waterfowl.  However, in a stream-

type setting, where waters are constantly flowing, any AI virus in the water 

column moves downstream.  Avian influenza viruses that are bound to the 

sediment have an extended persistence and remain more stationary (Bitton 

1980), making the infectious virus more readily available to animals that feed in 

the sediment, including aquatic invertebrates such as snails.  This could mean 

that the viral titer of the snail tissues may be higher than the water, making the 

snails a source of infectious virus in stream settings. 

Several aspects of AI virus ecology were not addressed in these 

experiments.  The experiments described in this chapter were conducted using 

one AI virus subtype, and two snail species from the same genus, in well-water 

with no sediment, at 17 – 20°C yet all of these factors are known to contribute to 

AI virus persistence in water (Bitton 1980, Stallknecht et al. 1990b, Brown et al. 

2007).  It is likely these factors also affect the uptake of virus by snails and the 

persistence of AI in snail tissues.  Decreasing the water temperature would have 
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increased viral persistence in the water (Brown et al. 2007), and presumably viral 

persistence in snail tissues.  However, because the feeding rate of snails is 

influenced by temperature, food ingestion and viral uptake should be slower at 

lower temperatures (Navarro et al. 2002, Selck et al. 2006).  This indicates that 

there may be an optimal temperature range for both AI virus persistence in water 

and nutrient uptake by snails; this optimal temperature likely varies depending on 

snail species (Navarro et al. 2002, Selck et al. 2006).   

In addition, sediment was excluded from these experiments to reduce 

confounding variables, but the presence of sediment may change the viral 

uptake.  Tadpole snails gleaning detritus and algae feed from the sediment, 

ingesting particulate matter (Vaughn 2009); and AI virus is electrostatically 

attracted to the sediments (Bitton 1980, Goyal et al. 1980, Chang et al. 1981).   

These aspects of snail ecology and viral properties suggest the presence of 

sediments would likely increase viral exposure of the snails 

Additional studies are needed to show whether snails harboring 

bioaccumulated AI viruses in their tissues contribute to transmission.  Studies to 

determine whether bioaccumulated virus remains infectious and experiments 

demonstrating whether snails can act as mechanical vectors via ingestion by 

susceptible waterfowl are essential.   Mallards (Anas platyrhynchos) are 

important AI virus reservoirs and likely have a significant impact on the seasonal 

variation of AI virus prevalence in aquatic environments (Stallknecht and Shane 

1988).  Further, mallards consume gastropods, including snails, throughout the 

year and a typical female mallard’s diet includes as much as 25% snails in the 
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pre-breeding season (Swanson et al. 1985).  While water appears to be a better 

medium for the persistence of AI viruses based on the experiments presented 

here, no studies have yet examined whether transmission of AI viruses occurs 

via ingestion of snail prey by susceptible waterfowl and how this mechanism may 

fit into the larger question about the maintenance of the cyclical pattern of AI 

virus infection prevalence observed in waterfowl.
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TABLES 

 
Table 2.1.  Summary of results from an experimental demonstration of the 
possible short-term bioaccumulation of AI viral RNA in snail (Physa spp.) tissues.  
Aquarium water titers are means of 20 aquaria per group.  Snail tissues were 
tested after depuration and were considered positive if both PCR replicates were 
positive and had an average viral concentration of at least 100 PCR EID50 
equivalents.   
 

Snail tissues Aquarium water 
titers (log10+1) 

 

Number 
 

 

Titers (log10+1) Depuration 
hours 0 hrs 36 hrs 

 

Tested Positive 
 

Average Range 
2 3.42 3.00 

 

20 6 
 

0.85 0.00 − 1.86 
24 3.41 2.93 

 

20 3 
 

0.43 0.00 − 1.31 
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Table 2.2.  Candidate model set and model rankings for an experiment 
(Experiment 1) analyzing viral RNA detection in snail tissues as a function of the 
viral titer of the inoculating water (IW, continuous) and depuration duration in 
hours (Dh; 2, 24). K is the number of parameters in each model, the -2logL is the 
-2log likelihood, AICc is Akaike’s Information Criterion with a small sample size 
correction factor, ΔAICc is the AIC difference of each model relative to the best 
model in the model set, and the AICc weights quantify the probability a model is 
the best model given the data and the model set.   
 

 
 
 

Model K -2logL AICc ∆AICc 
AICc 

Weight
Beginning-exposure water (BEW) 3 381.70 387.95 0.00 0.651
Dh+BEW 4 380.50 388.92 0.97 0.247
Dh+BEW+(Dh*BEW) 5 379.70 390.34 2.39 0.060
Intercept-only 2 386.90 391.02 3.07 0.030
Depuration hours (Dh) 3 385.70 391.95 4.00 0.012



62 

Table 2.3.  Cumulative AICc weights for variables within the candidate model set 
assessing the effects of viral titer of the water and depuration duration on AI viral 
persistence in snail tissues (see also Table 2.2).  The AICc weights represent the 
cumulative weight of evidence for the effect of a particular variable on viral RNA 
detection in snail tissues by qrtRT-PCR.   
 

Effect 
Cumulative 

AICc weights 
Main effects 

Depuration hours 0.318
Beginning-exposure water (BEW) 0.958

Two-way interactive   
Depuration hours * Beginning-exposure water (BEW) 0.060
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Table 2.4.  Summary of results from an experimental demonstration of the possible short-term bioaccumulation of AI viral 
RNA in snail (Physa spp.) tissues.  Aquarium water titers are means of 12 aquaria per group.  The aquaria water samples 
from the multiple inoculation subsets were tested 24 hours after each inoculation.  Snail tissues were tested after 
depuration and are considered positive if both PCR replicates were positive and had a viral concentration of >100 PCR 
EID50 equivalents.   
 

Aquarium water  Snail tissues 
 

Depuration water 
Titers (log10+1) Titers (log10+1) 

 

Titers (log10+1) 
Group 

Sub-
set 0 hrs 24 hrs 

Inoc-
ulation

Depuration 
hours Aquaria

RNA
+ Avg Max 

 

RNA
+ Avg Max 

1 1.90 1.49 1 24 10 1 0.08 0.34  
 

1 0.29 1.02 
 

   
 

        

2 2.03 
1.88 

1.55 
1.67 

1 
2 24 10 0 0.03 0.12  0 0.03 0.06 

 
   

         

3 
2.01 
1.79 
1.86 

1.53 
0.81 
1.62 

1 
2 
3 

24 10 1 0.11 0.51  0 0.05 0.21 
             

Multiple 
inoculation 

4 

2.18 
2.16 
2.12 
2.18 

1.66 
1.79 
2.02 
1.77 

1 
2 
3 
4 

24 10 2 0.31 0.92  0 0.02 0.09 

  

   

         

1 2.74 2.49 1 24 10 4 0.92 1.76  
 

1 0.15 0.47 
2 2.74 2.44 1 48 10 1 0.20 0.70  

 
0 0.12 0.23 

3 2.76 2.38 1 72 10 1 0.08 0.43  
 

0 0.06 0.17 
Single 

inoculation 
4 2.81 2.53 1 96 10 1 0.19 0.57  

 
0 0.16 0.45 
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Table 2.5.  Candidate model set and model rankings for an experiment 
(Experiment 2)  evaluating viral RNA detection in snail tissues as a function of 
exposure method (EM, 1, 2) and viral titer of the inoculating water (IW, 
continuous). K is the number of parameters in each model, the -2logL is the -2log 
likelihood, AICc is  Akaike’s Information Criterion with a small sample size 
correction factor, ΔAICc is the AIC difference of each model relative to the best 
model in the model set, and the AICc weights quantify the probability a model is 
the best model given the data and the model set.   
 

 
Model K -2logL AICc ∆AICc 

AIC 
Weight

Exposure method (EM) 3 538.60 544.92 0.00 0.885
Intercept-only 2 542.80 546.96 2.04 0.115
Beginning-exposure water (BEW) 3 552.00 558.32 13.40 0.000
IW+ BEW 4 547.90 556.43 11.52 0.000
IW+ BEW +(IW* BEW) 5 555.90 566.71 21.80 0.000
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Table 2.6.  Candidate model set and model rankings for an experiment 
(Experiment 3) evaluating the effects of the viral titer of the beginning-exposure 
water and depuration duration on detection of AI virus RNA by qrtRT-PCR in 
Physa spp. snail tissues.  Models in this set included viral RNA detection in snail 
tissues as a function of the viral titer of the inoculating water (IW, continuous) and 
depuration duration (DD; 1, 2, 4, 8 days). K is the number of parameters in each 
model, the -2logL is the -2log likelihood, AICc is Akaike’s Information Criterion 
corrected for small sample sizes, ΔAICc is the AICc difefrence of each model  
relative to the best model (most supported model = 0) in the model set, and AICc 
weights quantify the probability a model is the best model given the data and the 
model set. 
   

 
 
 

 

Model K -2logL AICc ∆AICc 
AICc 

Weight
BEW+DD+(BEW*DD) 4 609.67 617.00 0.00 0.663
BEW+DD 3 612.78 618.78 1.78 0.218
Intercept-only 2 615.90 619.90 2.90 0.071
Beginning-exposure water (BEW) 3 614.76 620.76 3.76 0.030
Depuration duration (DD) 3 615.33 621.33 4.33 0.017
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Table 2.7.  Candidate model set and model rankings for an experiment 
(Experiment 3) evaluating viral decline in aquarium water over 24 hours as a 
function of the presence of a snail (Snail; 0, 1) and viral titer of the beginning-
exposure water (IW). K is the number of parameters in each model, the -2logL is 
the -2log likelihood, AICc is Akaike’s Information Criterion with a small sample 
size correction factor, ΔAICc is the AIC difference of each model relative to the 
best model, and the AICc weights quantify the probability a model is the best 
model given the data and the model set.   
 

Model K -2logL AICc ∆AICc 
AIC 

Weight 
Snail+BEW 4 596.30 604.67 0.00 0.996
Beginning-exposure water (BEW) 3 604.80 611.02 6.35 0.002
Snail+BEW+(Snail* BEW) 5 600.10 610.67 5.99 0.002
Intercept-only 2 805.40 809.51 204.84 0.000
Presence of snail (Snail) 3 795.10 801.32 196.65 0.000
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FIGURES  

 

Figure 2.1.  Experimental design and sampling scheme of exposure methods for 
an experiment evaluating the degree of virus accumulation by snails depending 
on inoculatuon mode (Experiment 2).  Physa spp. snails were exposed to avian 
influenza virus (H3N8) in two different ways.  One set of treatment groups was 
exposed in a single inoculation while the others received multiple inoculations.  
Both treatments had 3 groups, and each group was equally divided into four 
subgroups.  All aquaria waters were sampled at the time of inoculation and again 
24 hours later; water from the multiple-inoculation treatment groups were 
sampled multiple times, after each inoculation and again 24 hours later.  The 
aquaria water and snail tissues were sampled at the end of depuration.  
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Figure 2.2.  Comparison of two methods of exposure of a freshwater snail (Physa 
spp.) to avian influenza virus (AI; H3N8).  Aquaria with 1 snail each (n = 
40/group) were inoculated with either a single full dose (1 mL), or 1 – 4 ¼ doses 
(0.25 mL) of 105 EID50 (egg infectious dose 50).  The snails were exposed, 
allowed to depurate and their tissues were tested by quantitative real-time RT-
PCR.  The PCR results were compared to positive control samples with known 
titers (EID50) measured by virus isolation in embryonated chicken eggs.   
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Figure 2.3.  Physa spp. snails exposed to avian influenza virus for 24 hours and 
then sampled after depuration durations of 1, 2, 4, or 8 days (n = 12/time period).  
The samples were tested in duplicate by quantitative real time RT-RCR and 
tissues were considered positive if both wells were above 100 PCR EID50 
equivalents.   
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CHAPTER 3  

EXPERIMENTAL TRANSMISSION OF A LOW PATHOGENIC AVIAN 

INFLUENZA VIRUS BETWEEN MALLARDS VIA FRESHWATER SNAILS 

(PHYSA SPP.) 

SYNOPSIS 

The ability of avian influenza (AI) viruses to remain infectious in water for 

extended periods provides the virus a mechanism that allows transmission to 

occur long after shedding birds have left the area.  However, this also exposes 

other aquatic animals to AI viruses, including freshwater invertebrates.  Previous 

experiments demonstrated that AI viral RNA can be sequestered in snail tissues.  

In this study, I determined whether freshwater snails (Physa acuta and P. gyrina) 

can serve as a mechanical vector of AI viruses via ingestion.  In the first 

experiment, I exposed 20 Physa spp. snails to an avian influenza virus (H3N8) 

and inoculated embryonated chicken eggs with the homogenized snail tissues.  

The results indicate that sequestered AI viruses remain infectious in snail tissues, 

with 10% of the snails infecting eggs.  In a second experiment, I exposed snails 

to water contaminated with the feces of AI virus-inoculated mallards.  The 

exposed snails were fed to an immunologically naïve group of mallards to 

evaluate ingestion of freshwater snails as an alternate route of AI virus 

transmission.  None of these naïve mallards developed an infection indicating 
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that transmission via ingestion likely did not occur.  Results of this study suggest 

that this particular trophic interaction may not play an important role in the 

transmission of AI viruses in aquatic habitats.   

INTRODUCTION 

Wild birds, especially species in the orders Anseriformes (waterfowl such 

as ducks and geese) and Charadriiformes (gulls and terns) are considered the 

natural reservoirs for avian influenza viruses (Stallknecht and Shane 1988, 

Webster et al. 1992).  Avian influenza (AI; family Orthomyxoviridae, genus 

Influenzavirus A) viruses are transmitted among aquatic birds primarily through 

an indirect fecal-oral route involving fecal-contaminated water in aquatic habitats 

(Webster et al. 1978).  Avian influenza virus infections in these birds are 

generally subclinical, but the birds can shed infectious virus for several weeks 

(Webster et al. 1978, Hinshaw et al. 1980, Alexander 1993).  Environmental 

persistence in water allows transmission to occur among individuals and 

populations without the need for direct contact (Stallknecht et al. 1990b, Brown et 

al. 2007).     

Prevalence of AI virus infection among waterfowl populations is cyclical, 

with the highest shedding rate in North American birds occurring during fall, prior 

to migration (Hinshaw et al. 1985).  After breeding but before migration, North 

American waterfowl congregate in large interspecific groups in Canada and the 

United States (Webster and Bean 1998, Elphick et al. 2001).  Typically, the 

prevalence of AI viruses in these waterfowl populations is highest during this 

marshalling period, but once the fall migration begins, AI prevalence declines as 
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the birds move south (Webster and Bean 1998).  The frequency of AI virus 

infections in waterfowl populations is virtually undetectable by the time these 

birds reach their wintering grounds in late fall and early winter (Webster et al. 

1976, Stallknecht et al. 1990c).  Prevalence reaches high levels again in the fall 

on the marshaling areas and this cycle of AI viral prevalence in waterfowl is 

repeated annually. Nevertheless, the mechanisms that drive this pattern are only 

partially understood.  Environmental persistence and migration habits of multiple 

waterfowl species are likely critical to maintaining this cyclical pattern (Brown 

2007), but there may be other factors that contribute to this facet of AI virus 

ecology.    

Most research investigating environmental persistence of AI viruses has 

mainly centered on abiotic mechanisms.  Avian influenza virus persistence in 

water is influenced by temperature, pH, salinity, and AI virus subtype. 

(Stallknecht et al. 1990b, Brown et al. 2007).  In addition, AI viruses have an 

affinity for suspended solids in the aquatic environment (Bitton 1980).  Viruses 

that bind to these solids remain viable longer, allowing viruses to settle and 

accumulate in the sediment (Bitton 1980).  Other researchers have demonstrated 

that AI viruses persist well in ice, mud, and soil (Zhang et al. 2006, Vong et al. 

2008).   

Few studies have examined potential biotic factors associated with viral 

persistence in the aquatic environment.  Bioaccumulation refers to the 

accumulation of substances (e.g., viruses, bacteria, toxicants) in the tissues of an 

organism through any exposure route, such as respiration, ingestion, or 
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absorption (Farris and Van Hassel 2007).  Freshwater aquatic invertebrates are 

potentially continuously exposed to AI viruses during the seasonal shedding 

period of waterfowl.  Bioaccumulation of virus by aquatic invertebrates may 

impact the ecology of AI viruses by creating a “reservoir” for the virus and 

extending the infectious period.  Alternatively, aquatic invertebrates, such as 

Asiatic clams, appear to remove infectious viruses from the environment (Faust 

et al. 2009).  Zebra mussels (Dreissena polymorpha) bioaccumulated and 

maintained infectious AI virus (low pathogenic H5N1) in their tissues for 14 days 

(Stumpf et al. 2010).  Asiatic clams (Corbicula fluminea) bioaccumulated LPAI, 

but the tissues failed to transmit AI virus to wood ducks (Aix sponsa) (Faust et al. 

2009).  In any case, no studies have examined the potential role of aquatic snails 

in AI virus persistence and transmission. 

Tadpole snails (Physa acuta and P. gyrina) are found throughout North 

America in virtually all freshwater habitats (Dillon et al. 2005, Turner and 

Montgomery 2009).  These snails feed exclusively on green algae and detritus 

on the sediment (Dillon 2000, Vaughn 2009), and are known to accumulate 

toxins such as microcystins (hepatotoxins produced by cyanobacteria) through 

ingestion which they likely transmit to predators (Zurawell et al. 1999).  Physa 

spp. are a prey item of several aquatic bird species including black-bellied tree 

ducks (Dendrocygna autumnalis), spectacled eiders (Somateria fischeri), upland 

sandpipers (Bartramia longicauda) and mottled ducks (Anas fulvigula) (Bolen and 

Forsyth 1967, Brooks 1967, Robinson et al. 1997, Petersen et al. 2000, Houston 

and Bowen 2001, Bielefeld et al. 2010).  In addition, at least 51 species of 
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aquatic bird species, including mallards (A. platyrhynchos), northern shovelers 

(A. clypeata), ruddy ducks (Oxyura jamaicensis), red knots (Calidris canutus), 

herring gulls (Larus smithsonianus), great black-backed gulls (L. marinus), and 

glaucous gulls (L. hyperboreus) consume gastropods (Tinbergen 1961, 

Ingolfsson 1976, Siegfried 1976, Swanson et al. 1985, Thompson et al. 1992, 

The Birds of North America 2004).   

Physa spp. share the aquatic environment with waterfowl and it is likely 

that these snails are exposed to AI viruses that have been shed into the water by 

infected birds.  In Chapter 1, I demonstrated that Physa spp. snails have sialic 

acid receptors capable of binding avian influenza viruses, similar to those found 

in Anseriformes, and in Chapter 2, I showed that these snails can bioaccumulate 

AI viral RNA.  In the following experiments, I exposed tadpole snails (Physa 

acuta and P. gyrina) to an AI virus to determine whether: 1) AI viruses remain 

infectious after bioaccumulation in snail tissues, and 2) AI viruses can be 

mechanically transmitted from infected mallards to naïve mallards via ingestion of 

snails harboring infectious virus.       

METHODS 

Snail collection.  Tadpole snails (P. acuta and P. gyrina, n = 300) were collected 

by hand from a private lake in Loveland, CO on two occasions during August 

2010.  Snails were placed in 5-gallon buckets with lake water, transported to the 

National Wildlife Research Center (NWRC) in Fort Collins, CO, and transferred to 

four 12-gallon aquaria (Marineland, Cincinnati, OH).  The snails were maintained 

for eight months and fed algae wafers (Hikari, Himeji, Japan), and spinach 
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supplied ad libitum.  Adult snails in the colony repeatedly laid eggs and 

numerous eggs hatched.  Subsequently, the offspring of captive snails were 

retained and used in these experiments. 

Virus preparation.  An AI virus isolate (A/H3N8/mallard/C0/2008) from a cloacal 

swab of an experimentally infected mallard (originally collected from wild bird 

feces A/H3N8/mallard/C0/187718/2008) was propagated in embryonated chicken 

eggs, resulting in a viral stock at 107 EID50.  The inoculum used here was made 

by diluting the viral stock in BA-1 (M199, 0.05 M Tris, pH 7.6, 1% bovine serum 

albumin, 0.35 g/L sodium bicarbonate, 100 U/ml penicillin, 100 g/ml streptomycin, 

and1 g/ml amphotericin B) to obtain an inoculum concentration of approximately 

106 EID50. 

Snail Experiment 

Inoculation.  One day before inoculation, 36 large (shells 9 – 11 mm in length) 

adult snails (Physa spp.) were transferred to three 4L glass beakers (12 

snails/beaker) and these were partially filled with 2L of well-water (collected from 

Colorado State University Foothills Fisheries Laboratory, Fort Collins, CO).  A 

spinach leaf and algae wafers were provided as food items.  The beakers were 

moved into a biosafety cabinet, and the snails were allowed to acclimate to this 

new environment for 24 hours.  On inoculation day, two aquaria were inoculated 

with 2mL of prepared AI virus stock creating aquaria water with a virus 

concentration of approximately 103 EID50 and the third aquarium was inoculated 

with 2mL of BA-1 to serve as a negative control.  Water in all three aquaria was 

agitated to create a homogeneous mixture.  
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Exposure and depuration.  Snails were maintained in these beakers with virus-

spiked water for 72 hours.  After this exposure period, individual snails were 

removed from the aquaria, rinsed with 10 mL fresh well-water, and transferred to 

three clean glass beakers with 2 L of fresh well-water and new food items.  The 

transferred snails were allowed to depurate for 24 hours. 

Sampling.  Immediately after inoculation, a 1 mL water sample (beginning-

exposure water) was collected from each aquarium.  At the end of the exposure 

period (72 hours), a second water sample (ending-exposure water; 1 mL) was 

collected.  A depuration water sample (1 mL) was collected at the end of the 

depuration period.  Finally, snail tissues were harvested, and any egg sacs laid 

during depuration were opportunistically collected.  The beginning-exposure and 

ending-exposure water samples were stored at -80°C until testing and the 

depuration water, snail tissues, and egg sacs were stored at -20°C for <24 hours 

before testing. 

Snails collected at the end of the depuration period were removed from 

the shell by cutting along the inner spiral of shell until the body was freed from 

the shell.  The shell-less snail tissue was placed in a microcentrifuge tube (Fisher 

Scientific, Pittsburg, PA) with 1 mL BA-1, and a single 4 mm stainless steel ball 

bearing (Grainger, Fort Collins, CO).  The samples were stored on wet ice until 

processing.  Once in the lab, tissues were placed in chilled racks (TissueLyser 

Adapter Set, Qiagen, Valencia, California) and agitated for 10 min at 25 Hertz 

using a Mixer Mill homogenizer (Retsch MM301, Newton, Pennsylvania), 
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followed by centrifugation at 10,000×g for 3 min.  The supernatant was then 

transferred to cryovials. 

Viral Assays.  To conserve resources, only subsets of samples were tested by 

virus isolation (VI; assay details are given below) and quantitative real-time 

reverse transcriptase polymerase chain reaction (qrtRT-PCR; assay details are 

given below).  Thirty-seven samples were tested by VI in chicken embryos.  To 

confirm viral inoculation of the water, the subset included three initial water 

samples (n = 1/treatment beaker), and three ending-exposure water samples (n 

= 1/treatment beaker).  To detect viral bioaccumulation by snails the subset also 

included 25 snail tissues (n = 10/exposed beaker, and n = 5 negative control).  

To detect any release of virus by snails, five depuration water samples (n = 

2/exposed beaker, n = 1 negative control), and one egg sac sample (exposed) 

were tested.   

Thirty samples were tested by qrtRT-PCR for viral RNA detection and 

quantification. To confirm and quantify the viral titer of the beginning-exposure 

and ending-exposure water samples, this subset included three initial water 

samples (n = 1/ treatment beaker), three second water samples (n = 1/ treatment 

beaker), and inocula.  In order to identify potential bioaccumulated virus and virus 

defecated into the depuration water as AI virus, 20 snail tissues (n = 8/exposed 

group, and n=4 negative control), five depuration water samples (n = 2/exposed 

group, n = 1 negative control), and one egg sac sample (exposed) were tested 

qrtRT-PCR. Table 3.1 summarizes these assay subsets. 
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Mallard Experiment 

Mallards.  Thirty one-day-old mallard ducklings were purchased in April 2011 

(Stomberg’s Chicks and Game Birds, Pine River, MN). The birds were raised 

indoors for 4 – 8 weeks (room size 3.8×3.7×2.6 m), fed commercially available 

chick starter feed, and provided with water enhanced with an electrolyte/vitamin 

powder (Durvet, Blue Springs, MO) ad libitum in poultry waterers; pools for 

bathing were added to the pens when mallards were 10 days old for enrichment.  

A pre-experiment blood sample (0.6 mL) and cloacal swabs (placed in BA-1) 

were collected from each individual when the ducklings were 20 days old.  The 

blood was stored at -20°C for 24 hours until testing; the swab samples were 

stored at -80°C until testing. 

Inoculated Group 

Housing.  A group of 12 mallards was randomly selected from the set of 30 

animals at four weeks old.  This cohort served as the inoculation group.  These 

birds were separated into four sets of three animals each (3 inoculated sets and 

one negative control set) and housed apart from the remaining 18 in four pens 

(2.6×2.2×2.1m).  A temporary wall (Zipwall® Arlington, MA) was used to partition 

a portion of the room to house the negative control birds.  Each pen included a 

60-liter stock tank to serve as a pond, a poultry waterer, and food bowls.   

Snails were moved into the building on the same day as the mallards.  

Four 12-gallon aquaria (200 – 300 snails/aquarium) were placed adjacent to the 

treatment pens, and the entire volume of water in each snail aquarium was 

replaced with fresh well-water and food items.  In addition, each pen/aquarium 
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combination had a 200-liter storage tank filled with fresh well-water to be used to 

replenish ponds (Figure 3.1).  To facilitate water transfer from the ponds to the 

snail aquaria and from the storage tanks to the ponds, 12-volt pumps (LVM, 

Hoddesdon. Herts, UK) were placed in each mallard pond and water storage 

tank.   

Inoculation.  Two days after the first cohort of mallards was moved into the new 

building the mallards (n = 9 in 3 pens) were inoculated with 1 mL of 

approximately 106 EID50 of AI virus.   The inoculum for each bird was divided 

between routes of exposure: each bird received a portion of the inoculum orally 

(0.6 mL), intranasally (0.2 mL), and intraocularly (0.2 mL).  The intranasal and 

intraocular inoculations were equally divided between the nares or orbits of each 

bird.  Three mallards serving as negative controls were sham-inoculated, as 

described above, with 1mL of BA-1 (Figure 3.2).   

Transferring water.  On 2 days post-exposure (DPE), approximately 40 L of 

water was siphoned out of each aquarium.  The aquaria were refilled with water 

pumped directly from the mallard pond, and the mallard ponds were refilled with 

clean well-water from the storage tank.  A similar process was repeated daily on 

3 – 7 DPE; however, the water that was transferred into the aquaria was a 5:1 

mixture of fresh well-water and mallard pond water.  This change was made 

because the snails had moved out of the aquaria water likely due to the high 

concentration of nitrogen compounds in the mallard pond effluent. 

Sampling.  Oropharyngeal and cloacal swabs were collected from all 12 

mallards on days 2 – 7 DPE; swabs were placed in BA-1 and stored at -80°C.  
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Additionally, water samples (1 mL) were collected from the mallard pond and 

aquaria daily during this period.  After sample collection on 7 DPE, all 12 

mallards were euthanized with an intravenous injection of Beuthanasia®-D 

Special (1 mL/kg; Schering-Plough, Summit, NJ). 

Snails.  Snails were initially exposed to mallard pond water two days after the 

mallards were inoculated, and were continuously exposed to the mallard pond 

water for more than 8 days.  Following this exposure period, the snails were 

removed from the aquaria and rinsed with fresh well-water.  The food items were 

removed, the aquaria were disinfected (10% bleach solution), rinsed, and refilled 

with fresh well-water.  The snails were placed back into the aquaria, and new 

food items were added to the aquaria.  The snails were allowed to depurate for 

24 – 36 hours.  

Snail-exposed Group 

Housing.  Twelve more mallards were randomly selected from the remaining set 

of 18 at six weeks of age.  This cohort served as the snail-exposed group.  Like 

the first cohort, these birds were separated into four sets of three animals each (3 

inoculated sets and one negative control set) and housed in the same pens as 

the inoculated ducks.   

Exposure.  Twelve hours after these mallards were placed in the new pens, 

each was caught, restrained, hand-fed 1g of virus-exposed snails, and released 

back into the pen.  The following day, 6 – 7 g of virus-exposed snails was offered 

in a bowl in each pen and the mallards were allowed to free-feed until the snails 

were consumed.  At the time of feeding, ten snails from each aquarium were 
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retained to assess tissue concentrations of virus in the snails offered to mallards.  

These snails were removed from the shell, placed in 1.0mL BA-1 (1 snail/vial), 

and homogenized as described earlier. 

Sampling.  Oropharyngeal and cloacal swabs were collected from all 12 

mallards on days 2 – 7 DPE; swabs were placed in BA-1 and stored at -80°C.  

Additionally, water samples (1 mL) were collected from the aquaria daily during 

this period.  At 14 DPE, blood was collected from all 12 mallards (0.6 mL) and 

the mallards were euthanized after sampling with an intravenous injection of 

Beuthanasia®-D Special (1 mL/kg).   

Unexposed Group.  The final six mallards remained in the pre-exposure 

housing room.  These birds were maintained as described earlier and were 

isolated from the exposed mallards and snails; these mallards served as 

additional negative controls for the ELISA assays.  At eight weeks old, after the 

preceding mallard experiment, these mallards were bled for a second time (0.6 

mL).  The blood samples were centrifuged (10,000×g for 5 min) and the serum 

was tested for influenza A virus antibodies by ELISA prior to storage. 

Sample Testing 

Swabs, Water and Snails.  Oral and cloacal swabs, water samples, and snail 

tissues were temporarily stored on wet ice and then frozen at -80°C prior to 

testing.  These samples were tested by qrtRT-PCR for the presence of the 

influenza A virus matrix gene.  To conserve resources, inoculated mallard swab 

samples (n = 9) were only tested on alternating days; swab samples collected 

from four mallards on days 2, 4, and 6 DPE were tested, and swab samples 



87 

collected from the remaining five mallards on days 3, 5, 7 DPE were tested 

(Table 3.1).  All swabs collected from the snail-inoculated mallards, all water 

samples from both mallard cohorts and snail tissue samples were tested by 

qrtRT-PCR as detailed below. 

Blood.  All blood samples were centrifuged (10,000×g for 5 min) and the serum 

was evaluated for influenza A virus antibodies using a commercially available 

blocking enzyme-linked immunosorbent assay (bELISA; FlockCheck AI MultiS-

Screen antibody test kit, IDEXX Laboratories, Westbrook, ME). 

Assays 

Virus Isolation.  I used published protocols (Szretter et al. 2006) for this assay. 

In brief, 200 embryonated specific pathogen-free (SPF) chicken eggs were 

incubated for 10 days.  Eggs were inoculated (0.5 mL) with water or snail sample 

supernatant (0.5 mL/snail) in replicate (five eggs/sample); positive and negative 

control eggs were included in the assay.  The eggs were incubated for five 

additional days.  Each day, eggs were inspected for signs of egg death such as 

unresponsive embryo or degraded blood vessels.  Allantoic fluid was collected 

from dead eggs (eggs that were dead by 1 day post-inoculation were discarded), 

and tested by hemagglutination assay (HA) for virus following Spackman (2008).  

Allantoic fluid was also cultured on blood agar to detect any pathogenic bacteria.  

Samples that caused egg death after 1 day post-inoculation and were HA 

positive were tested by qrtRT-PCR to confirm the presence of influenza A virus 

RNA. 
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Real time RT-PCR.  I used a protocol developed at the National Veterinary 

Services Laboratories (United States Department of Agriculture, Ames, IA) for 

the qrtRT-PCR.  All samples were tested in duplicate.  RNA was extracted using 

the MagMAX-96 AI/ND Viral RNA Isolation Kit (Ambion, Austin, TX). Primers and 

probe specific for the influenza type A matrix gene developed by Spackman et al. 

(2003) were used in conjunction with the ABI one-step RT-PCR master mix and 

run on an ABI 7900 Real Time PCR System (Life Technologies Corp, Carlsbad, 

CA) with thermocycler conditions developed by Aguero et al (2007).  Calibrated 

controls with known viral titers (102 EID50/mL–105 EID50/mL) were included on 

each plate to construct 4-point standard curves. Sample viral RNA quantities 

were interpolated from the standard curves and presented here as PCR EID50 

equivalents/mL.  Samples were considered positive if both replicate results were 

greater than 101 PCR EID50 equivalents.    

RESULTS 

Snail Experiment 

Two of twenty (10%) of the virus-exposed snail tissue samples caused 

egg death and were positive by HA and by qrtRT-PCR.  All of the initial water 

(2/2) and second water (2/2) samples of both exposed beakers were positive by 

both VI and qrtRT-PCR.  The mean titer of the initial water was 103.0 PCR EID50 

equivalents, and declined to 102.0 PCR EID50 equivalents in the second water 

samples.  Only 50% (2/4) of the depuration water was VI and HA positive for 

infectious influenza A viruses and none were PCR positive.  All of the negative 

control samples were negative by HA, VI, and qrtRT-PCR.  
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Mallard Experiment 

Prior to the experiment, all 30 mallards were negative for AI virus 

antibodies by bELISA.  All 12 inoculated mallards became infected with AI virus 

as indicated by oral and cloacal shedding.  Oral and cloacal swabs from the 

inoculated mallards (2 and 7 DPE) tested positive for high titers of influenza A 

virus by qrtRT-PCR (Figure 3.2).  Pond water samples taken from pens of 

inoculated mallards all tested positive for the presence of AI virus by qrtRT-PCR.  

Aquarium water samples tested positive for AI virus RNA for all days between 2 

and 11 DPE. 

The swabs collected from snail-exposed mallards were all negative by 

qrtRT-PCR.  In addition, the blood samples from these birds tested negative by 

bELISA.   However, there was serologic activity in the snail-exposed mallards 

with two individual mallards with a absorbance change between the pre-exposure 

bleed and the post-exposure bleed >0.25 absorbance units.  The negative control 

mallards as well as the unexposed group all had an absorbance change < 0.05 

units.  Finally, 13% (4/30) of the snail tissues exposed to the duck pond water 

were positive for AI viral RNA by RT-PCR. 

DISCUSSION 

The prevalence of AI virus infection in waterfowl follows an annual cycle, 

but our knowledge of the factors that influence this cycle is incomplete.  Early 

migrating waterfowl species may contribute to maintaining AI viral infection in 

waterfowl species, because this migration pattern leaves large segments of the 

waterfowl population naïve to the currently circulating AI virus strain.  The 
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persistence of AI viruses in water most likely plays a vital role in maintaining the 

annual cycle because it allows the exposure of immunologically naïve waterfowl 

to AI viruses weeks after infected birds leave the area (Brown 2007).  Additional 

factors, such as the persistence of virus in aquatic invertebrate prey items, may 

also contribute to the seasonal prevalence patterns of AI virus infection.  

Avian influenza virus persistence in water enhances viral transmission 

among waterfowl, but it also exposes other animals to the virus including aquatic 

invertebrates.   Bioaccumulation of AI viruses by these invertebrates could 

provide an additional route of exposure particularly through ingestion of them as 

prey items.  Previous experiments (Chapters 1 and 2) showed that Physa spp. 

snails are capable of bioaccumulating AI viruses at low titers for at least 48 

hours.  This experiment provides additional data, revealing that bioaccumulated 

AI viruses remain infectious in snail tissues and that mallards will readily eat 

virus-exposed snails, but the quantity of snails fed to the mallards was likely too 

low to produce viral shedding, or a significant antibody response. 

The quantity of snails fed to the mallards in the second experiment was 

likely smaller than what some waterfowl consume regularly.  Mallards are 

important AI virus reservoirs and likely have a significant impact on the seasonal 

variation of AI virus prevalence in aquatic habitats like marshaling and breeding 

areas (Stallknecht and Shane 1988).  Mallards consume snails throughout the 

year, but snail consumption increases in spring, prior to the breeding season; 

25% of the female mallard diet consists of snails during this period (Swanson et 

al. 1985).  While no published data exist describing the total volume of food 
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consumed by wild mallards, the recommended volume of feed for captive 

mallards is 120g of feed/day (Ash 1969).  Assuming that wild mallards eat as 

much food as captive mallards, they may consume as much as 30g of snails/day.  

Consumption of a larger quantity of virus-exposed snails, even at the low titers in 

tissues demonstrated in chapter 2, suggests that infection of mallards via 

ingestion of snails could occur.   

Although transmission did not occur in this study, two mallards that had 

fed on exposed snails demonstrated a change in antibody levels, while the 

mallards fed on unexposed snails showed virtually no change in antibody levels.  

All of the sera samples were considered negative for antibodies to influenza A 

virus, but the difference in the change of absorbance levels for two of the fed 

mallards suggests that the concept of AI virus transmission by consumption of 

freshwater snails may be worth exploring further.    

These experiments demonstrated that infectious AI virus is maintained 

briefly in snail tissues, long enough for tissue samples to be infectious to 

embryonated eggs.  However, transmission of an AI virus (H3N8) to mallards 

through ingestion failed to occur.  This study, along with previous experiments 

described in this dissertation, demonstrates that, while snails may be capable of 

serving as mechanical vectors for the transmission of AI viruses, the window of 

opportunity would likely be short.  This brief period of infectiousness would not 

likely have a substantial impact on the transmission or maintenance of AI viruses.  

Nevertheless, snails may play a minor role in the maintenance of AI virus 

infections in wild waterfowl either directly through ingestion of larger quantities of 
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infected snails, through ingestion of more snails with a higher viral titer or 

indirectly through the act of waterfowl feeding on snails which may expose the 

birds to any AI viruses in the environment, thus facilitating transmission.  These 

questions and others regarding the optimal environmental conditions for virus 

persistence and transmission in aquatic environments warrant additional careful 

study under both laboratory and wild conditions.  
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TABLES 

Table 3.1. A synopsis of the samples collected and tested from both the snail 
exposure experiment and the mallard/snail transmission experiment.  Due to 
financial limitations, not all samples collected were tested.  The sample testing 
scheme was weighted towards the exposed snails in the snail experiment and 
the snail-exposed mallards in the mallard experiment.   
 

Samples Assays 
Type Collected Tested PCR VI ELISA 

Snail Experiment 
Aquaria (n = 3) 

Initial water  
Second water 
Depuration water 

Snails (n = 36) 
Tissues 

 
6 
6 
6 
 

36 

 
6 
6 
6 
 

25 

 
3 
3 
5 
 

20 

 
3 
3 
5 
 

25 

 

Mallard Experiment 
Inoculated mallards (n = 12) 

Oral swabs 
Cloaca swabs 

Pens (n=4) 
Pond water 
Aquaria 

Snails (n=1000) 
Tissues 

Snail-exposed mallards 
(n=12) 

Oral swabs 
Cloaca swabs 
Blood 

Unexposed mallards (n = 6) 
Blood 

 
72 
72 
 

24 
24 
 

40 
 

72 
72 
12 
 
6 

 
36 
36 
 

24 
24 
 

40 
 

72 
72 
12 
 

6 

 
36 
36 
 

24 
24 
 

40 
 

72 
72 
 

  
 
 
 
 
 
 
 
 
 
 

12 
 
6 
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FIGURES 

 
Figure 3.1.  Mallard pen configuration with aquarium, duck pond, and water 
storage. Each pen had a mallard pond inside for the mallards to bathe, and an 
aquarium and extra water storage tank placed just outside of the pen.  After the 
mallards were inoculated (2 – 7 days post-exposure), a portion of aquarium water 
was drained, pond water was pumped into the aquarium to replace the drained 
water, and then water was pumped from the storage tank into the mallard pond. 
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Figure 3.2. Experimental design of the mallard snail-exposure experiment 
detailing the timelines of the three groups of animals.  This experiment was 
designed to test for mechanical transmission of avian influenza virus between 
mallards (Anas platyrhynchos) via ingestion of Physa spp. snails.   
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Figure 3.3.  Avian influenza viral RNA detected in directly exposed mallards 
(cloacal swabs), and aquarium water (transferred from the mallard ponds). 
Samples from the two groups of mallards were tested on alternating days (group 
1 on odd days and group 2 on even days, 95% confidence interval shown for 
aquarium water).  
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APPENDIX I 

Tissue Staining Procedure  

Maackia amurensis I and II lectins 
 

These assays were developed at by Elizabeth Howerth and Monique Silva 
Franca at the University of Georgia, College of Veterinary Medicine, Department 
of Pathology. 
 
1.0 PURPOSE 

1.1 For detection of sialic acid (SAα2,3Gal), the cellular binding site for 
avian influenza viruses and differentiating between gull influenza 
virus subtype receptors (SAα2,3Galβ14GlcNAc) and duck influenza 
virus subtype (SAα2,3Galβ13GalNAc).   

2.0 PROCEDURES 
2.1 Tissue preparation 

2.1.1 Collect appropriate tissues and place in formalin for 2 – 3 
days.  Tissues should include positive controls such as duck 
intestines. 

2.1.2 Remove tissues from formalin and place in 70% ethanol for 
at least 1 day. 

2.1.3 Cut formalin-fixed tissue sections nickel-sized and place in 
tissue cassettes.  Label cassettes appropriately, and place in 
fresh 70% ethanol. 

2.1.4 Take tissue cassettes to Diagnostic Laboratory and request 
unstained positively charged (“+” on slide) slides.  Get at 
least 2 slides cut from each tissue, 1 will be stained with the 
florescent marker, the other will serve as negative control to 
detect auto-florescence. 

2.2 Supplies and reagents 
Equipment 
• Steamer (Black and Decker Flavor Scenter Steamer Plus™) 
• Tissue staining system with at least 8 wells 
• Upright slide rack 
• 1-2 vertical staining jar with lid 



102 

• Parafilm, cut into slide sized pieces, enough for each slide 

Reagents 
• Xylene – in 3 wells 
• 100% ETOH – in 2 wells 
• 95% ETOH – in 1 well 
• 75% ETOH – in 1 well 
• DDH2O – in 1 well (fresh each time) 
• Sodium citrate solution:  

o Combine 1.457g powder with 200mL DDH20 
o Using a pH meter, add 1M HCl slowly to solution until pH 

is 6.0 
o Add 300mL DDH2O 

• 3% H2O2 – if using 30% H2O2, make 1:10 dilution with 
methanol 

• 1X Carbo-Free blocking solution – 1mL 10X Carbo-Free 
blocking solution (Vector labs SP-5040)  

• PBS 
• Maackia amurensis I lectin (MAAI; Vector Laboratories, 

F1311) 
• Maackia amurensis II lectin (MAAII; Vector Laboratories, 

B1265) 
• Streptavidin Alexa Fluor 546 (Invitrogen, S-11225) 
• Prolong Gold (Invitrogen, P36931) 

2.3 Staining procedure 
2.3.1 Wear gloves whenever handling slides to protect slides from 

any oil and lotions on hands. 
2.3.2 Prepare steamer by adding water.   
2.3.3 Put the slides in the oven at 62-63C for at least 30 minutes 

(not above 63 C) – softens paraffin. 
2.3.4 Deparaffinized the slides in xylene solutions and hydrate in 

ethanol and DDH2O.   
• Xylene well 1 (10 min) 
• Xylene well 2 (5 min) 
• Xylene well 3 (5 min) 

Note: These steps should be conducted in a fume hood 
as xylene fumes are hazardous.  Additionally, care 
should be used when handling slide racks.  The slide 
rack handles will not be immersed in the xylene, but 
racks should be gently immersed (while wearing gloves) 
to prevent splashing. 

2.3.5 Hydrate the slides in ethanol solutions and DDH2O (fresh 
water every time). 
• 100% ethanol well 1 (5 min) 
• 100% ethanol well 2 (5 min) – turn on steamer, fill clean 
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vertical staining jar with sodium citrate buffer 
• 95% ethanol 5 min – start warming citrate buffer by 

placing vertical staining jar into steamer 
• 75% ethanol 5 min 
• Rinse in fresh DDH2O 

2.3.6 Transfer slides to warm citrate buffer, allow slides to steam 
for 35 minutes. 

2.3.7 Remove slide bath with slides from steamer, carefully drain 
buffer, and rinse 3 times with DDH2O by refilling and draining 
vertical staining jar.   

2.3.8 Refill vertical staining jar with 3% H2O2, incubate slides at 
room temperature for 15 minutes.   

2.3.9 Prepare 1X Carbo-Free blocking solution (1mL 10X Carbo-
Free+10mL PBS) during incubation. 

2.3.10 Drain H2O2 and rinse slides 3 times with DDH2O as 
described in 2.2.7. 

2.3.11 Place slides flat on rack in square bioassay dish (245mm2).  
Pipette enough 1X Carbo-Free blocking solution to cover 
tissue, replace cover on dish, and allow slide to incubate at 
room temperature for 15 min. 

 
2.3.12 MAAI lectin procedure 

2.3.12.1 Prepare the MAAI lectin solution (F1311) at a 
1:100 dilution during incubation step, 3μLMAA1 + 
297μL PBS)/slide.  Remember, only ½ of the 
slides will receive the lectin solution. Wrap vial in 
aluminum foil to keep dark and cool. 

2.3.12.2 Fill conical vial with enough PBS for the negative 
control slides – 300μLPBS/slide. 

2.3.12.3 Separate the negative control slides from treated 
slides. 

2.3.12.4 Tip each slide individually to pour-off Carbo-Free 
blocking solution, but keep slide in dish.   

2.3.12.5 Pipette 300μL MAAI lectin solution on to each 
treated slide making sure the tissue is covered.  

2.3.12.6 Pipette 300μL PBS over each negative control 
slide making sure the tissue is covered. 

2.3.12.7 Gently place un-stretched Parafilm strip over each 
slide, the capillary action of the liquid will form a 
seal between Parafilm and liquid.   

2.3.12.8 Place cover over tray, cover with foil to block light, 
and place in dark place (e.g. drawer). 

2.3.12.9 Allow to incubate at room temp for 1 hour. 

2.3.13 MAA2 lectin procedure 
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2.3.13.1 Prepare the MAA2 lectin solution (F1265) at a 
1:50 dilution during incubation step, 6μLMAA1 + 
294μL PBS)/slide.  Remember, only ½ of the 
slides will receive the lectin solution. Wrap vial in 
aluminum foil to keep dark and cool 

2.3.13.2 Fill conical vial with enough PBS for the negative 
control slides – 300μLPBS/slide, and the PBS 
wash step – several mL PBS/slide. 

2.3.13.3 Dump MAA1 solution and pat bottom of slides dry 
on paper towel. 

2.3.13.4 Using your fingers, tilt slide to 45° angle, gently 
wash each slide 3x with several mL of PBS. 

2.3.13.5 Pat bottom of slides dry on paper towel and 
replace on rack. 

2.3.13.6 Pipette 300μL MAA2 lectin solution on to each 
treated slide making sure the tissue is covered. 

2.3.13.7 Pipette 300μL PBS over each negative control 
slide making sure the tissue is covered. 

2.3.13.8 Gently place un-stretched Parafilm strip over each 
slide, the capillary action of the liquid will form a 
seal between Parafilm and liquid.  

2.3.13.9 Place cover over tray, cover with foil to block light, 
and place in dark place (e.g. drawer). 

2.3.13.10 Allow in incubate at room temp for 1 hour. 

2.3.14 Streptavidin Alexa Fluor 546 solution procedure  
2.3.14.1 Prepare the streptavidin Alexa Fluor 546 solution 

at a 1:100 dilution during incubation step, 
3μLMAA1 + 297μL PBS)/slide.  Remember, only 
½ of the slides will receive the lectin solution. 
Wrap vial in aluminum foil to keep dark and cool. 

2.3.14.2 Pour-off MAA2 solution.  
2.3.14.3 Using your fingers, tilt slide to 45° angle, gently 

wash each slide 3x with several mL of PBS. 
2.3.14.4 Pat bottom of slides dry on paper towel and 

replace on rack. 
2.3.14.5 Pipette 300μL Streptavidin solution on to each 

treated slide making sure the tissue is covered.  
2.3.14.6 Pipette 300μL PBS over each negative control 

slide making sure the tissue is covered. 
2.3.14.7 Gently place un-stretched Parafilm strip over each 

slide, the capillary action of the liquid will form a 
seal between Parafilm and liquid.  

2.3.14.8 Place cover over tray, cover with foil to block light, 
and place in dark place (e.g. drawer). 

2.3.14.9 Allow in incubate at room temp for 2 hours. 
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2.3.15 Prolong Gold procedure 
2.3.15.1 Pull Prolong Gold (ProLong® Gold antifade 

reagent with DAPI, cat# P36931) from freezer 
about 15 minutes before incubation step is 
complete.   

2.3.15.2 Pour-off Streptavidin solution.  
2.3.15.3 Using your fingers, tilt slide to 45° angle, gently 

wash each slide 1x with several mL of PBS. 
2.3.15.4 Pat bottom of slides dry on paper towel and move 

slides to clean dry rack on rack. 
2.3.15.5 Using disposable pipettes, place 1 drop of Prolong 

Gold on each slide, and gently place cover slip 
over tissue.  Hold slip cover edge along slide edge 
and allow cover slip to drop over Prolong Gold. 

2.3.15.6 Check for bubbles, if bubbles near tissues, use 
fine clean, dry pipette tip to push bubble towards 
edge.   

2.3.15.7 Replace slides on rack. 
2.3.15.8 Replace tray cover and cover with foil and place in 

dark place (e.g. drawer) for 24 hours.  

2.3.16 Visualization under the fluorescent/confocal microscope 
2.3.16.1 Filters should include  

• DAPI to visualize the nucleated cells 
• FITC to visualize gull influenza virus 

subtype receptors (SAα2,3Galβ14GlcNAc) 
receptors 

• TRITC to visualize duck influenza virus 
subtype (SAα2,3Galβ13GalNAc) receptors 

2.3.16.2 Initially observe positive control tissues in the 
microscope to make sure assay worked. 

2.3.16.3 View negative control positive tissue to check for 
auto-fluorescence. 

2.3.16.4 View remaining tissues while checking negative 
controls for auto-fluorescence. 

2.3.16.5 Protect slides from the light at all times, leaving 
out only long enough to microscopically view. 

2.3.17 Store slides in refrigerator in the dark. 
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Tissue staining procedure 

For detection of mammalian influenza virus receptors 

Lectin Histochemistry 

Fluorescein Sambucus Nigra 

 
1.0 PURPOSE 

1.1 For detection of sialic acid (SAα2,6Gal), the cellular binding site for 
human and pig influenza viruses. 

2.0 PROCEDURES 
2.1 Tissue preparation 

2.1.1 Collect appropriate tissues and place in formalin for 2 – 3 
days.  Tissues should include positive controls such as pig 
trachea.   

2.1.2 Remove tissues from formalin and place in 70% ethanol for 
at least 1 day. 

2.1.3 Cut formalin-fixed tissue sections nickel-sized and place in 
tissue cassettes.  Label cassettes appropriately, and place in 
fresh 70% ethanol. 

2.1.4 Take tissue cassettes to Diagnostic Laboratory and request 
unstained positively charged (“+” on slide) slides.  Get at 
least 2 slides cut from each tissue, 1 will be stained with the 
florescent marker, the other will serve as negative control to 
detect auto-florescence. 

2.2 Supplies and reagents 
Equipment 

• Steamer (Black and Decker Flavor Scenter Steamer Plus™) 
• Tissue staining system with at least 8 wells 
• Upright slide rack 
• 1-2 vertical staining jar with lid 
• Parafilm, cut into slide sized pieces, enough for each slide 

Reagents 
• Xylene – in 3 wells 
• 100% ETOH – in 2 wells 
• 95% ETOH – in 1 well 
• 75% ETOH – in 1 well 
• DDH2O – in 1 well (fresh each time) 
• Sodium citrate solution:  

o Combine 1.457g powder with 200mL DDH20 
o Using a pH meter, add 1M HCl slowly to solution until 

pH is 6.0 



107 

o Add 300mL DDH2O 
• 3% H2O2 – if using 30% H2O2, make 1:10 dilution with 

methanol 10mL PBS 
• PBS 
• Sambucus nigra (SNA; Invitrogen, F1301) 
• Prolong Gold (Invitrogen, P36931) 

2.3 Staining procedure. 
2.3.1 Wear gloves whenever handling slides to protect 

tissues/slides from any oil and lotions on hands. 
2.3.2 Prepare steamer (Black and Decker Flavor Scenter Steamer 

Plus™) by adding water.   
2.3.3 Put the slides in the oven at 62-63C for at least 30 minutes 

(not above 63 C) – softens paraffin. 
2.3.4 Deparaffinize the slides in xylene solutions and hydrate in 

ethanol and DDH2O.  
• Xylene well 1 (10 min) 
• Xylene well 2 (5 min) 
• Xylene well 3 (5 min) 

Note: These steps should be conducted in a fume hood 
as xylene fumes are hazardous.  Additionally, care 
should be used when handling slide racks.  The slide 
rack handles will not be immersed in the xylene, but 
racks should be gently immersed (while wearing gloves) 
to prevent splashing. 

2.3.5 Hydrate the slides in ethanol solutions and DDH2O (fresh 
water every time). 

• 100% ethanol well 1 (5 min) 
• 100% ethanol well 2 (5 min) – turn on steamer, fill clean 

vertical staining jar with sodium citrate buffer 
• 95% ethanol 5 min – start warming citrate buffer by placing 

vertical staining jar into steamer 
• 75% ethanol 5 min 
• Rinse in fresh DDH2O 

2.3.6 Transfer slides to warm citrate buffer, allow slides to steam 
for 35 minutes. 

2.3.7 Remove slide bath with slides from steamer, carefully drain 
buffer, and rinse 3 times with DDH2O by refilling and draining 
vertical staining jar.   

2.3.8 Refill vertical staining jar with 3% H2O2, incubate slides at 
room temperature for 15 minutes.  

2.3.9 Prepare the SNA lectin solution (F1301) at a 1:100 dilution 
during incubation step, 3μLSNA + 297μL PBS)/slide.  
Remember, only ½ of the slides will receive the lectin 
solution. Wrap vial in aluminum foil to keep dark and cool. 
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2.3.10 Fill conical vial with enough PBS for the negative control 
slides – 300μLPBS/slide.  

2.3.11 Drain H2O2 and rinse slides 3 times with DDH2O as 
described in 2.2.7. 

2.3.12 SNA lectin procedure. 
2.3.12.1 Place slides flat in slide staining system (or on 

rack in square bioassay dish), keeping negative 
control slides separate from treated slides.   

2.3.12.2 Pipette 300μL SNA lectin solution on to each 
treated slide making sure the tissue is covered.  

2.3.12.3 Pipette 300μL PBS over each negative control 
slide making sure the tissue is covered. 

2.3.12.4 Gently place un-stretched Parafilm strip over each 
slide, the capillary action of the liquid will form a 
seal between Parafilm and liquid.   

2.3.12.5 Place cover over tray, cover with foil to block light, 
and place in dark place (e.g. drawer). 

2.3.12.6 Allow in incubate at room temp for 1 hour. 

2.3.13 Prolong Gold procedure. 
2.3.13.1 Pour-off SNA solution.  
2.3.13.2 Using your fingers, tilt slide to 45° angle, gently 

wash each slide 3x with several mL of PBS. 
2.3.13.3 Pat bottom of slides dry on paper towel and move 

slides to clean dry rack on rack. 
2.3.13.4 Using disposable pipettes, place 1 drop of Prolong 

Gold on each slide, and gently place cover slip 
over tissue.  Hold slip cover edge along slide edge 
and allow cover slip to drop over Prolong Gold.  
Several pipettes may be needed for this 
procedure. 

2.3.13.5 Check for bubbles, if bubbles near tissues, use 
fine clean, dry pipette tip to push bubble towards 
edge.   

2.3.13.6 Replace slides on rack. 
2.3.13.7 Replace tray cover and cover with foil and place in 

dark place (e.g. drawer) for 24 hours.  

2.3.14 Visualization under the fluorescent/confocal microscope 
2.3.14.1 Filters should include: 

• DAPI to visualize the nucleated cells 
• FITC to visualize gull influenza virus subtype 

receptors (SAα2,3Galβ14GlcNAc) receptors 
• TRITC to visualize duck influenza virus 

subtype (SAα2,3Galβ13GalNAc) receptors 
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2.3.14.2 Initially observe positive control tissues in the 
microscope to make sure assay worked. 

2.3.14.3 View negative control positive tissue to check for 
auto-fluorescence. 

2.3.14.4 View remaining tissues while checking negative 
controls for auto-fluorescence. 

2.3.14.5 Protect slides from the light at all times, leaving 
out only long enough to microscopically view. 

2.3.14.6 Store slides in refrigerator in the dark. 
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