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ABSTRACT OF DISSERTATION 

ON THE ROLE OF WARM RAIN CLOUDS IN THE TROPICS 

A combined optimal estimation retrieval algorithm has been developed for warm 

rain clouds using Tropical Rainfall Measuring Mission (TRMM) satellite measurements. 

The algorithm uses TRMM Microwave Imager (TMI) brightness temperatures that have 

been deconvolved to the 19-GHz field-of-view (FOV) to retrieve cloud liquid water path 

(LWP), total precipitable water, and wind speed. Resampling the TMI measurements to a 

common FOV is found to decrease retrieved LWP by 30%. 

These deconvolved brightness temperatures are combined with cloud fraction 

from the Visible Infrared Scanner (VIRS) to overcome the beam-filling effects and with 

rainwater estimates from the TRMM Precipitation Radar (PR). This algorithm is novel in 

that it takes into account the water in the rain and retrieves the LWP due to only the cloud 

water in a raining cloud, thus allowing the investigation of the effects of precipitation on 

cloud properties. The uncertainties due to forward model parameters and assumptions 

are computed and range from 1.7 K at 10 GHz to about 6K at the 37 and 85 GHz TMI 

channels. Examination of the sensitivities in the LWP retrieval shows that the cloud 

fraction information increases the retrieved LWP with decreasing cloud fraction and that 

the PR rainwater reduces retrieved LWP. 
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Retrieval algorithm results from December 2005 to January 2006 show that warm 

rain cloud LWP and the ratio of warm rain cloud LWP to rainwater both decrease by 50% 

over sea surface temperatures (SST) ranging from 292 to 302 K in the tropical western 

Pacific due to increased precipitation efficiency depleting more of the cloud water at 

higher SSTs. 

The LWP retrieval developed in this study is also applied to study the influence of 

warm rain clouds on atmospheric preconditioning for deep convection associated with 

tropical depression-type disturbances (TDs). Results show that positive warm rain cloud 

LWP anomalies occur with positive low-level moistening and heating anomalies prior to 

TD events, but that there is little variation in the properties of non-raining clouds. The 

moistening by these clouds is also shown to influence the generation of convective 

available potential energy (CAPE) prior to deep convection. 

Anita D. Rapp 
Department of Atmospheric Science 

Colorado State University 
Fort Collins, CO 80523 

Fall 2008 
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Chapter 1 

Introduction 

1.1 Motivation 

In the most recent assessment report by the Fourth Intergovernmental Panel on 

Climate Change (IPCC 2007), cloud feedback effects were reported to be the largest 

contributor to model differences in climate sensitivity estimates. Unraveling cloud 

feedback effect on the climate system is extremely difficult because of the complicated 

interactions between large-scale dynamics and small-scale changes in temperature, 

humidity, clouds, and precipitation. Because the warm SSTs in the tropical Pacific 

provide the necessary energy for deep convection, this region is often studied in attempts 

to assess cloud feedback effects. However, convective clouds produce competing 

positive and negative feedbacks on the climate system. Positive feedbacks occur when 

the clouds trap outgoing longwave radiation and negative feedbacks occur in the 

shortwave where clouds reflect incoming shortwave radiation. The strength and sign of 

feedback effects are highly dependent on the cloud properties. To complicate this, 

studies have shown that precipitation may play an important role in determining the 

properties of warm clouds. Therefore, changes to the rate at which cloud is converted to 
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precipitation with temperature may be extremely important to understanding shortwave 

cloud feedback effects. 

1.2 Warm Rain Clouds 

A substantial fraction of tropical convection is 'warm' clouds whose cloud top 

temperatures are below 273 K. Because of their strong reflection of solar radiation back 

to space, warm clouds mostly affect the shortwave portion of the radiation spectrum. In 

the longwave, these clouds absorb and re-emit the radiation at temperatures near that of 

the earth's surface, so they have less effect. Some of these warm clouds do precipitate 

and the dominant process by which precipitation forms is through collision and 

coalescence. Particles within the cloud begin to grow by condensation to a radius of 

about 20 urn, after which the collision efficiencies become large enough for the particle 

to experience rapid growth. This growth is influenced by a number of factors such as the 

cloud water content and the updraft velocity. In an enhanced SST scenario, the Clausius-

Clapeyron equation shows that an increase in temperature leads to an increase in water 

vapor. An increase in water vapor provides more available water for particle growth. Sun 

and Lindzen (1993) used a simple Bowen continuous growth model to show that particles 

grow 15% faster with an increase in surface temperature of 2 K assuming a constant 

updraft speed. Studies have also shown that an increase in SST results in enhanced 

vertical motion. Del Genio et al. (2005) also used a simple conceptual model to show 

that clouds below the freezing level form precipitation more efficiently at higher SSTs 

and at higher updraft speeds. These studies suggest that as the surface temperature 

increases, both updraft speed and water vapor increases, resulting in enhanced collision 
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and coalescence, which leads to greater precipitation formation. How this more efficient 

precipitation process affects the cloud remains a question of scientific study. Does the 

increase in water vapor result in the formation of enough cloud water to balance 

increased precipitation efficiency, so that the net cloud to rain ratio remains unchanged or 

does one process dominate the other? This is an important question and has substantial 

implications for warm rain clouds' radiative effects. 

Another important process that is affected by warm, precipitating clouds is 

atmospheric preconditioning for deep convection. These clouds are responsible for some 

of the transport of heat and moisture to the lower and middle-troposphere that helps to 

destabilize the atmosphere enough for deep convection form. What role the variability in 

the properties of warm rain clouds has in atmospheric preconditioning prior to deep 

convection remains a fundamental outstanding question. 

1.3 Cloud Property Retrievals 

Retrievals of cloud properties from satellite remote sensing are one of the tools 

frequently employed to answer questions regarding the variability in cloud microphysical 

and radiative properties. Cloud property retrievals from optical and microwave satellite 

measurements have a long history dating back to the 1960's. Using a single infrared 

sensor, scientists were first able to observe the temperature of the clouds and infer the 

height of the cloud tops from the Television Infrared Observation Satellite (TIROS) 

series. Beginning with the Electronically Scanned Microwave Radiometer (ESMR) 

onboard the Nimbus-5 satellite, microwave observations have been used to retrieve cloud 

water and precipitation. Today, there are many complicated algorithms for the retrieval 
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of cloud properties from both visible and microwave radiation, however, the underlying 

principles of each type of retrieval are the same. 

Retrievals of cloud properties from visible and near infrared (NIR) wavelengths 

operate on the principle that reflected solar radiation is dependent on the cloud's optical 

depth and mean particle size. At visible wavelengths, where there is little absorption of 

the radiation by the cloud droplets, the cloud's reflectance is mostly a function of optical 

depth. For NIR wavelengths where water vapor absorption is small, the cloud's 

reflectance is primarily dependent on the particle size. Theoretical radiative transfer 

calculations for reflection at visible and NIR wavelengths are performed over a variety of 

optical depth and particle sizes, as well as at a number of solar zenith and viewing zenith 

and azimuth angles. Given a set of visible and NIR observations, the optical depth and 

mean particle radius can be retrieved. Another important parameter that is related to the 

cloud optical depth and particle radius is the liquid water path (LWP) of the cloud. At 

visible wavelengths where the size parameter is large, i.e., the wavelength is small 

compared to the particle size, the extinction efficiency has a value of approximately 2 and 

the relationship between LWP, optical depth, and particle radius can be simplified as 

LWP « \PlreT (1.1) 

where pi is the density of water, re is the particle effective radius, and x is the optical 

depth. 

Utilizing emitted microwave radiation is another method for the retrieval of cloud, 

precipitation, and atmospheric properties. In the absence of scattering by ice, measured 

microwave brightness temperatures are directly related to the absorption and emission by 
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the water content in the atmosphere, in the form of clouds, precipitation, and water vapor. 

The cloud optical depth is just the integrated absorption due to the cloud water 

r = J0
Z (/0°° Qa n(r)nr2dr) dz (1.2) 

where Qa is the absorption efficiency, r is the cloud particle size, and n(r) is the number 

of particles of size, r. The absorption efficiency is proportional to the particle size, 

Qa=Cxr (1.3) 

where C; is assumed to be approximately constant and contains terms representing the 

imaginary index of refraction of liquid water and the wavelength. The liquid water 

content, LWC, in the clouds is defined as 

LWC = ^npt f™n(r)r3 dr (1.4) 

Substituting 1.3 and 1.4 into 1.2 yields, 

T = /Q
Z ( d J0°° n(r)nr3 dr)) dz = C2 /Q

Z LWC dz = C2 LWP (1.5) 

where the LWP is just the vertically integrated LWC and the constant C2 contains C/ and 

the other constants from Eq. (1.4). Therefore, a retrieval scheme for LWP can be 

developed that is based on the physics of microwave radiative transfer. In physical 

retrieval schemes, a forward radiative transfer model is used to simulate microwave 
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brightness temperatures. The forward model is inverted to retrieve the solutions for the 

parameters of interest, in this case cloud LWP, total precipitable water, and wind speed 

that yield simulated brightness temperatures that agree with the measured brightness 

temperatures. 

Both the instruments and the retrieval techniques have evolved and there are 

numerous optical and microwave retrievals of cloud properties and precipitation readily 

available to examine the properties of clouds in the Tropics. However, comparison of 

some of the most advanced products show discrepancies when the clouds are raining due 

to their limitations. Part of the work presented in this dissertation is aimed at addressing 

these discrepancies to study the LWP of clouds when they are precipitating. 

1.4 Current Study 

The work presented in this dissertation is aimed at understanding the role that 

warm rain systems play in the Tropics. One of the main goals of this work is to explore 

the role of the precipitation process in determining the liquid water content of warm rain 

clouds. However, to understand warm rain systems, a better representation of their 

properties is required. A retrieval algorithm for the study of cloud LWP of warm, 

precipitating clouds has been developed. To overcome the limitations of microwave or 

optical only retrievals of LWP in precipitating clouds, microwave, optical, and 

precipitation radar measurements are combined. Using information provided by the 

optical sensor and precipitation radar, the microwave measurements can be used to 

retrieve LWP associated with the cloud water content even when the clouds are 

precipitating. 
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The method for the inversion of microwave observations to retrieve cloud 

properties utilized in this study is the optimal estimation approach. Optimal estimation 

provides a framework to combining measurements, a forward model, and some a priori 

knowledge about the atmospheric state to retrieve cloud and atmospheric properties. It 

also allows for consideration of the uncertainties in the measurements, model, and 

assumptions made within the algorithm. This works builds on a previous algorithm 

developed by Elsaesser and Kummerow (2008) for the retrieval of parameters from non-

raining oceanic clouds. Because we are retrieving in raining scenes, a number of 

modifications must be made to the existing algorithm. The microwave observations are 

first deconvolved to a common resolution following the methods of Backus and Gilbert 

(1970). This resampling of the observations to a common field of view (FOV) is 

necessary because the retrieval also utilizes information from an optical instrument to 

define the cloud fraction within the microwave FOV. By using the visible and infrared 

channels as a cloud mask to calculate the cloud fraction within the footprint, we can 

account for some of the scene inhomogeneities due to the microwave instrument 

sampling both clear and cloudy scenes within the same FOV. The retrieval algorithm 

also uses rainfall estimates from precipitation radar to calculate the contribution of 

rainwater's emission and scattering to the microwave brightness temperatures, so that the 

retrieval need only find the solution for the total precipitable water and cloud LWP that 

accounts for the rest of the emission and scattering. 

The work from this study is separated into three chapters, which are written as 

independent papers. Understanding the sensitivities of the retrieval algorithm is very 

important to interpreting the results. The sensitivity of the retrieval to the addition of 
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deconvolved TMI brightness temperatures and the resultant beam-filling effects are 

presented in Chapter 2. Chapter 3 describes the retrieval algorithm and investigates the 

cloud fraction and rainwater sensitivities in the retrieval. Chapter 3 also explores the 

suggestion that precipitation increases occur at the expense of cloud water at higher 

SSTs. The retrieval algorithm described in Chapter 3 has many important applications. 

Another main goal of this work is to study the link between warm rain clouds and the 

preconditioning of the lower and middle troposphere for deep convection. The 

relationship between the properties of precipitating warm clouds and moistening and 

heating in the lower and middle troposphere is examined for tropical depression-type 

disturbances across the Pacific Ocean in Chapter 4. Finally, a summary of the 

dissertation is presented in Chapter 5. 

8 



Chapter 2 

On the Consequences of Resampling Microwave 

Radiometer Measurements for Use in Retrieval 

Algorithms 

2.1 Introduction 

Because of the single antenna used in making measurements at different 

microwave frequencies, the spatial resolution of the measurements varies with the 

frequency. However, use of microwave measurements at a common resolution in multi-

frequency retrievals of atmospheric parameters is often desirable and sometimes 

necessary. Data deconvolution has a long history of use in earth sciences. Backus and 

Gilbert (1970; hereafter BG) described a technique for inverting seismic data to retrieve 

Earth density profiles. This approach was first applied to resolution modification of 

satellite radiometer measurements by Stogryn (1978) and is now commonly used to 

resample data to a common resolution from microwave radiometer measurements 

observed by satellites. The BG approach to microwave radiometer measurement 

enhancement takes advantage of the overlapping antenna patterns by combining nearby 

measurements to increase the resolution. Retrievals of cloud water and rainfall are 
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commonly performed both with and without resampled microwave measurements. These 

retrievals are often used as comparisons or validation for one another and usually try to 

overcome beam-filling effects due to resolution differences by averaging the two 

retrievals to a common lower spatial resolution. The beam-filling effect, or the effect of 

partially cloud or rain-filled field of view (FOV) on the sampled microwave brightness 

temperatures (TB), has been documented by several studies for both clouds (e.g., Melitta 

and Katsaros 1995; Greenwald et al. 1997, Bremen et al. 2002) and rainfall (e.g., Chiu et 

al.1990; Short and North 1990; Kummerow 1998). Microwave instruments typically 

have large FOVs, which may contain both clear and cloudy areas. The sensor integrates 

over the entire scene to measure the radiance and compute the brightness temperature 

associated with that FOV. For an FOV with clear and cloudy areas, the radiance 

measured at the satellite and the resulting brightness temperature would be less than that 

for a completely cloud-filled scene and is known as the beam-filling effect (hereafter, 

BFE). The BFE is caused by the nonlinear relationship between microwave brightness 

temperatures and LWP or rain. Microwave TBs are an exponential function of LWP and 

rain. The concave shape of the exponential relationship always causes an underestimate 

in the TB if the parameter is not homogeneous, which can mean either a partially cloud-

filled FOV or completely cloud-filled FOV with an inhomogeneous distribution of LWP. 

This was demonstrated mathematically for rainfall in Appendix B of Graves (1993), 

however, the same is true for LWP. A number of studies have illustrated the BFE in 

LWP retrievals using microwave satellite data. Melitta and Katsaros (1995) combined 

passive microwave data from Special Sensor Microwave/Imager (SSM/I) with visible and 

infrared data to identify the BFEs at 37- and 85-GHz. They found that with decreasing 
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cloud fraction, lower microwave cloud liquid water path is retrieved at both 37 and 85 

GHz channels. Greenwald et al. (1997) quantified the BFE at 37 GHz using independent 

microwave and solar reflectance retrievals of LWP and computed a 22% reduction in 

microwave LWP for an average cloud fraction of 73%. The reduction in retrieved 

microwave LWP at lower cloud fractions, i.e., more inhomoegeneity, shown in these two 

studies is consistent with the underestimate in TBs due to BFEs. These studies examining 

the cloud LWP BFE focused on the comparing higher resolution retrievals from an 

independent method, such as visible/near-infrared retrievals, with the lower resolution 

microwave LWP retrieval. Comparing retrievals of the same dataset, where one is 

performed on the microwave measurements at their sampled native resolution and 

another is performed on the same data that has been resampled to a common resolution, 

shows that inhomogeneity effects are still very large. In this paper, we examine the 

consequences of data deconvolution on an optimal estimation retrieval algorithm that 

uses microwave radiometer measurements to retrieve cloud LWP, wind speed, and total 

precipitable water (TPW). Results show that data deconvolution has a substantial effect 

on the retrieved parameters when compared with retrievals performed on microwave 

radiometer observations at their native resolution due to BFEs. These effects will be seen 

to correspond to the intrinsic variability of the parameter within the FOV and are not 

eliminated by averaging two retrievals performed on different resolutions to a common 

spatial grid. 

2.2 Deconvolution Method 

The microwave radiometer dataset employed in this study is from the TRMM 
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TMI. The TMI is a conically scanning passive microwave radiometer with nine 

channels, summarized in Table 2.1. The resolution is diffraction limited and thus ranges 

from roughly 60 km at 10 GHz to 7 km at 85 GHz. More information regarding the 

instrument characteristics can be found in Kummerow et al. (1998). 

The TMI TBS are deconvolved to a common FOV corresponding to the 

horizontally polarized 19-GHz FOV using the BG as applied to the SSM/I sensor by 

Robinson et al. (1992). The method uses the spatial overlap of the antenna gain function 

of adjacent pixels in order to reconstruct the TB as it would be observed by a radiometer 

with any desired gain function. In this work the desired gain function is that of the 19-

GHz channel. The data could be resampled to a higher resolution, however, the 

associated noise becomes larger. The enhancement of the 10-GHz channel to the 19-GHz 

FOV increased the noise level from 0.54 K to about 1.5 K, which was deemed 

acceptable. Trying to increase the resolution of the 10-GHz channel to that of the 37-

GHz FOV would increase the noise to approximately 12.5 K, which could significantly 

affect the retrieval. 

The observed brightness temperatures, TN, at location, (x, y), are given by, 

TN (x, y) = JTB (x, y)Gidxdy (2.1) 

Table 2.1 TMI instrument characteristics. 

Channel 
Frequency 
Polarization 
FOV-Down track (km) 
FOV-Cross track (km) 

1 
10.65 

V 
59.0 
35.7 

2 
10.65 

H 
60.1 
36.4 

3 
19.35 

V 
30.5 
18.4 

4 
19.35 

H 
30.1 
18.2 

5 
21.3 

V 
27.2 
16.5 

6 
37.0 

V 
16.0 
9.7 

7 
37.0 

H 
16.0 
9.7 

8 
85.5 

V 
6.7 
4.1 

9 
85.5 
H 
6.9 
4.2 
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where TB{x,y) is the actual scene brightness temperature and Gt(x,y) is the antenna 

response function for observation i. Application of the deconvolution method to the TMI 

data to compute the effective brightness temperature, TBG, at the resolution of the 19-GHz 

channel is constructed by using a linear combination of nearby observations. This is 

expressed as, 

TBG(x,y) = Y,a,TN(x,y) = J £a,G,.(x,y) TB(x,y)dxdy (2.2) 

where, at, are coefficients that must be computed for each channel and scan position. 

These calculations are time consuming, but because the TMI antenna patterns and scan 

geometry are known and fixed, the coefficients only need to be calculated once and can 

then simply be applied to each orbit. We chose to use an 11 x 11 array of pixels 

surrounding the pixel to be deconvolved leading to a value of iV = 121. 

Because the antenna temperature measurement uncertainties are uncorrelated, 

standard propagation of errors provides the variance in the deconvolved TBs as, 

^2=(A^)2Xa,2 (2.3) 
i=i 

where ATrms is the uncertainty in the observed antenna temperatures. Due to this inherent 

uncertainty, the deconvolution technique requires a balance between resolution 

enhancement and amplification of noise. Therefore, following Robinson et al. (1992) we 

minimize the function, 

Q = Qo cos(r) + e2wsin(^), (2.4) 
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where the first term on the right hand side represents resolution enhancement and the 

second term represents the propagation of noise. The weighting between these terms is 

given by y, which may vary between 0° and 90°. Here w is a scale factor with units of K"2 

used to make the two terms on the right hand side of Eq. (2.4) dimensionally and 

numerically similar. As discussed by Stogryn (1978) the exact value of w chosen does not 

change the physical content of the theory and in this work the constant value of w = 10~12 

K"2 is found to be appropriate. 

In the case of the 21-, 37-, and 85-GHz channels the resolution is being degraded 

to that of the 19-GHz FOV. This is an averaging process, which naturally reduces error. 

As a result, amplification of noise is not a concern and we set y= 0 when computing the 

deconvolution coefficients for these channels. In the case of the 10-GHz channels, the 

resolution is enhanced and proper care must be taken to choose y carefully so as to 

minimize the amplification of noise. Through trial and error we find an appropriate value 

of yio be 85°, which heavily emphasizes the minimization of noise amplification while 

matching the resolution to 19-GHz FOV. 

After minimizing Eq. (2.4) to solve for the coefficients, at, they are applied to 

each TMI pixel to calculate TBG- These resampled TMI TBs are then used as input to the 

optimal estimation (OE) retrieval algorithm described briefly in the following section and 

the resultant changes in retrieved quantities due to deconvolution and their associated 

BFEs are analyzed. 
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2.3 Retrieval and Results 

The algorithm used in this paper to illustrate the effects of data deconvolution was 

first developed by Elsaesser and Kummerow (2008) for the retrieval of non-raining 

parameters over oceans and used passive microwave radiometer observations at their 

native resolution. Further development of this algorithm attempted to address scene 

inhomogeneities by accounting for both clear and cloudy areas within the TMI footprints 

by calculating cloud fraction from visible and infrared datasets. To define a cloud 

fraction over a given area required that the microwave measurements at the different 

frequencies be resampled to a common resolution. The BG method was applied to 

deconvolve the data to the resolution of the 19-GHz FOV as discussed in the previous 

section and the retrieval was run on both the native-resolution TMI measurements and the 

resampled TMI measurements. The differences between the retrievals are examined and 

the BFEs are assessed. 

Resampling the TMI data to the resolution of the 19-GHz FOV had a larger 

impact on the retrieval than expected. Figures 2.1a-d are a comparison of the TMI OE 

retrieval parameters at the native resolution of each TMI channel and the TMI OE 

retrieval deconvolved to the resolution of the 19-GHz channel for three months of data 

(December 2005 - February 2006) in the tropical western Pacific from 30°S - 30°N, 

130°E - 170°W. Figures 2.1a-c show that the deconvolution of the data has little effect 

on the retrieved TPW, however it results in a decrease in the retrieved LWP of about 

30%. The wind speed from the retrieval with the deconvolved data tends to consistently 

be 1 m s"1 higher up to wind speeds of about 10 m s"1 and up to 2 m s"1 lower for wind 

speeds of 20 m s"1. Though the scale of LWP in Figure 2.1a extends to 600 g m"2 to 
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Figure 2.1 Retrieval parameters, (a) LWP (g m" ), (b) TPW (mm), (c) wind speed 
(m s"1), and (d) y?, for TMI TBs at their native resolution (non-deconvolved) plotted 
against retrieval parameters from deconvolved TMI TBs. 
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illustrate that the LWP difference increases as LWP increases, it should be noted that the 

majority of the clouds have LWP values below 200 g m"2. A useful diagnostic that 

results from optimal estimation retrievals is the x2 statistic shown in Figure 2.Id. The x2 

value indicates how well the simulated TBs in the forward model of the retrieval 

algorithm match the observed TBS, therefore larger values of %2 suggest a poorer fit 

between simulated and measured TBS than low values of/2. One of the benefits of using 

deconvolved TBs over native TBS in the retrieval is the lowering of the %2 statistic, shown 

in Figure 2.Id, indicating that the resampled data results in a better fit retrieval solution 

than the native resolution retrieval. This is another example of scene inhomogeneity 

effects, since at the native resolution of the TMI dataset, the channels are sampling 

different scenes. 

Because the TPW is relatively insensitive to resampling, only the differences in 

the retrieved LWP and wind speeds are examined as a function of the cloud fraction 

within the 19-GHz FOV. Figure 2.2 shows LWP and winds retrieved with native 

resolution and deconvolved TMI TBs for different cloud fraction bins - 100% cloudy, 

greater than 75% cloudy, 50% to 75% cloudy, 25% to 50% cloudy, and less than 25% 

cloudy. This figure illustrates that as cloud fraction decreases, the systematic differences 

between the two retrievals increase. At cloud fractions greater than 75% the bias 

between the two retrievals ranges from 10% at low LWPs up to 35% at very high LWPs. 

For the lowest cloud fractions, the range in the bias is much larger, from 10% at low 

LWPs to almost 60% at high LWPs. The bias in the wind speed does not seem to be as 

large of a function of cloud fraction as the LWP, especially for wind speeds below 10 m 

s"1. At the highest wind speeds, the bias does slightly increase with cloud fraction. 
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Figure 2.2 Retrieval parameters, (a) LWP (g m"2), and (b) wind speed (m s"1) for 
TMI TBS at their native resolution (non-deconvolved) plotted against retrieval 
parameters from deconvolved TMI TBs as a function of cloud fraction. 

Figure 2.3 summarizes the difference in retrieved LWP and winds using native and 

deconvolved TBS as a function of cloud fraction. The retrieval algorithm in this study 

uses both the 37- and 85-GHz channels to retrieve LWP, but results in Figure 2.3 are 

similar to those shown by Melitta and Katsaros (1995). The difference between the 

retrievals increases with decreasing cloud fraction and between 70-75% cloudy, we find a 

reduction in cloud LWP for resampled TB retrievals of 20%, almost identical to that 

found by Greenwald et al. (1997). Above about 80% cloud fraction, the difference 

between retrieved LWP decreases substantially. As suggested in Figure 2.2, above cloud 

fractions of about 40%, the difference between the retrievals of wind speed does not 

substantially change with cloud fraction, with the native-resolution TBs retrieving about 

20% lower wind speed than the deconvolved TBs. 
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Figure 2.3 Percent difference in retrieved parameters (native resolution minus 
deconvolved) for, (a) LWP, and (b) wind speed, as a function of cloud fraction. 

While there will still be scene inhomogeneities within the resampled data, by 

limiting the sample to only 100% cloud fraction, we have at least reduced the effects of 

sampling a combination of clear and cloudy scenes, although the cloud fraction effects 

are not fully accounted for in the non-deconvolved retrieval. Because the cloud fractions 

were calculated for the deconvolved data, the clouds are only guaranteed to completely 

fill the 19-GHz footprint. It is likely that some of the observed differences can be 

attributed to the clouds not completely filling the large 10-GHz footprint, which may 

explain some of the 10% difference in Figure 2.3 at 100% cloudy. Another factor 

contributing to the differences at 100%) cloudy is the distribution of LWP within the 

FOV. Even at 100%> cloud fraction, variability of LWP within the FOV will affect the 

retrieved results. These retrievals would only be expected to be the same if the cloud 

completely filled the 10-GHz footprint and the LWP was homogeneous across the entire 

scene. 
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2.4 Synthetic Tests 

While we assume that beam-filling effects are responsible for these results, we 

test the effects of the deconvolution algorithm in a more controlled environment. A set of 

synthetic cloud scenes for a range of cloud LWP from 75 to 400 g m~2 is created. Each 

scene is 200 x 200 km at a resolution of 1 x 1 km and contains from 10 - 75% cloud 

coverage, where the cloud locations in the scene are chosen by a random number 

generator. Because the locations of the clouds are chosen randomly, the cloud fraction of 

the entire scene is not necessarily representative of the scene sampled for our retrieval. 

Clouds are created to be 25 x 25 km and each cloud within the scene is randomly 

populated with LWP values that return the chosen mean cloud LWP (75, 100, 200, 300, 

or 400 g m"2) with a standard deviation of 30%. Despite the fact that the clouds are 

originally 25 x 25 km, because of the random selection of the locations, clouds often 

merge to create a scene with a population of cloud sizes. 

For each l x l km pixel in the scene, we then run the forward model used in our 

retrieval with a prescribed 8 m s"1 wind speed, TPW value of 24 mm, and SST of 293 K, 

along with either zero LWP if the pixel is clear sky or their assigned cloud LWP value, to 

calculate the associated microwave brightness temperatures at each channel. The 

brightness temperatures for each frequency are then sampled in the center of the scene at 

both the resolution of each microwave channel as observed by the TMI and at the 

resolution of the 19-GHz FOV as would be calculated from the BG deconvolution 

algorithm. Using these brightness temperatures, the optimal estimation retrieval 

algorithm is run and the results are compared. Histograms of the frequency of LWP 

values retrieved at their native resolution and at their resampled resolution are plotted in 
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Figure 2.4, as well as the 'truth' for mean LWP assigned for the calculation of the 

microwave TBS. For the synthetic deconvolved LWP retrievals, the histogram shifts to 

the left toward lower values and the mean LWP retrieved for all scenes is about 33% 

higher in the native resolution retrievals. Figure 2.4 also shows that the histogram and 

mean LWP of deconvolved retrievals are more representative of the true mean LWP 

within the FOV than the native resolution retrieved LWP. Similar to the actual data, the 

synthetic results show that the retrieval using deconvolved TBS on average results in a 

lower retrieved LWP and an approximately 15% higher retrieved wind speed. To 

illustrate the effects of beam filling on cloud LWP, we compare the difference in 

retrieved results with the difference in cloud fraction of the 85-GHz FOV at its native 

resolution and cloud fraction at the resampled 19-GHz FOV in Figure 2.5. This figure 

shows that the percent difference in cloud LWP is strongly correlated with the difference 

in cloud fraction between the smaller 85-GHz and larger 19-GHz FOV sizes. Also, the 

majority of the points are located at positive cloud fraction differences, indicating that 

when cloud fraction is high for the smaller footprints, there is a tendency to move 

towards lower cloud fraction when resampled to the larger 19-GHz FOV. The likely 

explanation for this is that as the size of the FOV increases, there is a higher likelihood of 

viewing some clear area within the scene. The reduction in retrieved LWP as the FOV 

size increases is due to the nonlinear nature between the TBS and LWP that was 

previously described and is shown for the 85 GHz horizontally and vertically polarized 

channels in Figure 2.6. This bias in retrieved LWP is similar to the bias with FOV size 

shown by Graves (1993) and Ha and North (1995) for rainfall retrievals. 
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While these synthetic results clearly illustrate that BFEs are driving the 

differences between the native resolution and resampled retrievals, it is not yet clear 

which channels are most responsible for these differences. To examine this, we run 

several tests by substituting the 10-, 37- and 85-GHz deconvolved TBs individually and in 

combination into the synthetic scenes where all other channels are run with their native 

TMI resolution TBS. We omit the 19- and 21-GHz tests because the 19-GHz native-

resolution and deconvolved TBs are the same and the TBs at 21 GHz are so close that it 

makes no difference in the retrieved parameters. 

In the first test, we substitute only the 10-GHz deconvolved TB in the retrieval. 

For reference, Figures 2.7a and 2.7b are the synthetic retrieval results with all the 

channels sampled at either their native resolution or deconvolved resolution. The 

deconvolved LWP and wind speed results are plotted against the native resolution results 

with the deconvolved 10-GHz TB substitution in panels (a) and (b) of Figure 2.8. From 

these results, it is obvious that the 10-GHz channel provides little information for the 
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Figure 2.7 Deconvolved retrievals of (a) LWP and (b) wind speed plotted against 
retrievals of LWP using all native resolution TBS. 
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Figure 2.8 Deconvolved retrievals of LWP and wind plotted against retrievals of 
LWP using (a,b) native resolution TBs with 10-GHz deconvolved TB substitution, 
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cloud LWP, but it does result in an increase in the wind speed suggesting that the 

resampling of the low frequency channel is driving some of the change in retrieved wind 

speed. In the second and third tests we substitute the 37- and 85-GHz deconvolved TBs 

with the other channels at their native resolutions. The 37- and 85-GHz results are shown 

in Figures 2.8c,d and 2.8e,f, respectively. It is clear that the resampling of the high 

frequency channels are responsible for the lower LWP being retrieved, though neither 

channel alone fully explains the discrepancy observed in Figure 2.7a. It is interesting to 

note the effect that resampling the 85-GHz channel has on the wind speed retrieval, 

which suggests that some of the increased wind speed in retrievals using deconvolved 

TBS is actually a compensating effect that is produced as a by-product of retrieving the 

lower LWP. 

In the next test, we substitute both the 37- and 85-GHz deconvolved TBS, with the 

results shown in panels (a) and (b) of Figure 2.9. The LWP retrieval now retrieves the 

same solution as that with all of the channels resampled to the 19-GHz FOV and shows 

that the decrease in retrieved LWP using deconvolved brightness temperatures is fully 

explained by the high frequency channels. The 37- and 85-GHz channels are both being 

resampled to a resolution lower than their native resolution. While it is clearly scene 

dependent as shown by the scatter, Figure 2.5 showed that on average, moving from a 

higher resolution to lower resolution tends to reduce the cloud fraction, which lowers the 

emission signature and TBs and thus, the retrieved LWP. These results also show that the 

difference in retrieved wind speed with resampled data cannot be fully explained by 

compensating effects within the retrieval. The final test (shown in Figures 2.9c,d), which 

adds the deconvolved 10-GHz TBs to the previous test, yields the same results as the 
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Figure 2.9 Deconvolved retrievals of LWP and wind plotted against retrievals of 
LWP using (a,b) native resolution TBs with 37- and 85-GHz deconvolved TB 

substitution, and (c,d) native resolution TBs with 10-, 37-, and 85-GHz deconvolved 
TB substitution. 

retrieval run using all resampled TBS. It also supports our previous test result that the 

high frequency channels are solely responsible for the decreased LWP and that the 

increased wind speed is a combination of compensating effects from the reduced LWP 

retrieved from the combination of deconvolved 37- and 85-GHz TBs and the increase in 

speed due to the resampling of the 10-GHz channels. 
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To verify our tests on the real data, the optimal estimation retrieval algorithm was 

run with combinations of native resolution and deconvolved TMI brightness temperatures 

as in the fourth and fifth tests on our synthetic scene. While not shown here, the 

retrievals from the TMI data reproduced the results of our tests. Degrading the resolution 

of the 37- and 85-GHz frequencies resulted in consistently lower retrieved LWP with a 

compensating increase in wind speed. Enhancing the resolution of the 10-GHz 

frequencies did increase the wind speeds even more for wind speeds below 8 m s"1, as in 

our synthetic tests, however, above 8 m s"1 the addition of the resampled 10-GHz data 

tended to decrease the wind speed. 

As mentioned in the introduction, when comparing parameters that are retrieved 

at different resolutions, many users try to overcome resolution effects and BFEs by 

averaging the retrieved products, like LWP, to the lower resolution product or to a 

common resolution. Figure 2.10a shows the LWP from our two retrievals, one at the 

native TMI resolution and the other at the 19-GHz FOV resolution, averaged onto a 1 ° x 

1 ° grid for each swath. Averaging should account for spatial resolution differences, but 

any residual differences should be due to BFEs in the retrievals. While the bias is not as 

large as that shown in Figure 2.1, these results show that a significant bias of about 20% 

still exists between the LWP even after averaging. Greenwald et al. (1997) pointed out 

that BFEs are less of an issue when averaged over monthly timescales for large grid 

boxes. The deconvolved and native TMI resolution retrievals were averaged on a 1° x 1° 

grid for a month of data and plotted in Figure 2.10b. While even more differences are 

resolved by such large space-time averaging, a residual bias of about 10% still exists. 

Again, because of the nonlinear nature of the relationship between TBs and LWP, 
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Figure 2.10 1° x 1° LWP (g m2) retrieved with native resolution TMI TBs plotted 
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swath, and (b) monthly. 

averaging in radiance space is not comparable to averaging in parameter space and 

cannot account for the beam-filling effects even in retrievals performed on the same 

dataset at different resolutions. These effects become very important in work that uses 

retrievals of LWP in climate studies or in tuning model parameters to reproduce 

observational results. 

2.5 Retrieval without 85-GHz Channels 

Since microwave retrievals of LWP are based on the emission from cloud water 

and the effects due to scattering increase with frequency, many microwave retrievals of 

LWP do not use the 85-GHz channels. The synthetic retrieval results showed that much 

of the difference in retrieved LWP between native resolution and resampled data can be 

attributed to the 85-GHz frequency. Figure 2.11a shows the results from the optimal 

estimation retrieval for LWP using native TMI resolution and deconvolved TBs without 
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Figure 2.11 (a) TMI Retrieved LWP (g m ) and (b) synthetic LWP retrievals from 
native resolution (non-deconvolved) TBs plotted against retrieval parameters from 
deconvolved TBS without 85-GHz channels. 

the 85-GHz channels. For values of LWP below 200 g m" the two retrievals agree very 

well, but above that the deconvolved TBs retrieve up to 20% lower LWP. Figure 2.1 lb 

shows the results for the synthetic scenes retrieved without the 85-GHz channels. Like 

the real data, the synthetic results show pretty good agreement for lower LWPs, but the 

differences increase up to about 25% as the LWP increases. These differences are 

smaller than that shown for the retrieval using the 85 GHz because the relationships 

between LWP and TBs at the lower frequencies are not as nonlinear, so the BFEs are not 

as large. However, because the 37-GHz channel is being resampled to a larger FOV, 

some BFEs remain. 

2.6 Discussion 

Data deconvolution algorithms are commonly used to overcome the resolution 

differences inherent in satellite passive microwave remote sensing. We tested the effects 
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of data deconvolution in an optimal estimation microwave retrieval of LWP, TPW, and 

wind speed and found that beam-filling effects are substantial. Retrievals performed with 

TMI data as well as synthetic scenes show differences between retrieved LWP with 

native resolution and deconvolved TBS up to about 30%, although this increases with 

decreasing cloud fraction and increasing LWP. Differences in the cloud fraction between 

the 85-GHz FOV and the resampled 19-GHz FOV are found to be highly related to the 

differences in retrieved LWP. Synthetic results show that resampling the 37- and 85-

GHz channels to a lower resolution is responsible for the general decrease in LWP in the 

deconvolved retrievals, although the 85-GHz channels are the largest contributor. 

Synthetic results also indicate that the differences in wind speed retrieved with native 

resolution TBs and deconvolved TBs are due to a combination of resampling the 10-GHz 

channels and compensating effects of retrieving lower LWP solutions driven by the 

higher frequency channels. Retrievals performed without the 85-GHz channels show that 

using resampled data still results in lower retrieved LWP than the native resolution data 

due to BFEs, although the differences are about 10% smaller than retrievals with the 85-

GHz channels. 

The results from this study suggest that an understanding of the issues that arise 

from data resampling is absolutely imperative when it comes to evaluating parameters 

retrieved from microwave datasets. As it is intended, deconvolution algorithms allow the 

same scene to be sampled from each of the microwave channels, however, because of the 

beam-filling effects due to sub-FOV inhomogeneities in many of the properties that are 

often retrieved, such as cloud water and rainfall, the resultant retrieved quantity is 

strongly influenced by whether or not the retrieval algorithm developer has chosen to 
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resample the input data. Since clouds and rain are not uniform in nature, deconvolution 

of the high frequency microwave channels to a lower resolution increases BFEs and tends 

towards reducing cloud emission signatures and retrieved cloud LWP. 

The results from this work also show that the common technique of averaging 

inhomogeneous retrieved parameters from different resolution datasets to a common 

lower resolution may reduce some of the spatial resolution effects, but they cannot fully 

account for the beam-filling effects. This stems from the nonlinearities in the relationship 

between microwave brightness temperature and LWP and has significant implications for 

climate studies using these datasets. This paper serves as a reminder that choices made 

on input data resolution strongly influence retrieval results and that intercomparison of 

averaged retrieved properties that are not homogeneous does not eliminate for beam-

filling errors. For users of passive microwave cloud and precipitation datasets, the work 

in this study shows the effects that data resampling and beam-filling effects may have on 

retrieval products. It also emphasizes the importance of understanding these effects 

before undertaking any study utilizing the plethora of available microwave cloud and 

precipitation retrieval products. 
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Chapter 3 

A Combined Multi-Sensor Optimal Estimation 

Retrieval Algorithm for Oceanic Warm Rain Clouds 

3.1 Introduction 

In an effort to better understand the response of the hydrologic cycle to climate 

feedbacks, many recent studies have examined the response of tropical cloud processes to 

changes in SST. The majority of these studies (e.g., Ramanathan and Collins 1991; 

Lindzen et al , 2001; Hartmann and Larson, 2002) focused on deep convective clouds 

because of their contribution to total tropical rainfall and the large radiative impacts from 

the detrained anvil cirrus. However, in the midst of the controversy surrounding many of 

the theories regarding the response of deep convection to climate change, several studies 

have suggested another cloud type in the Tropics that may be sensitive to and important 

for our understanding of the response of the hydrologic cycle to anthropogenic warming. 

Petty (1999) found warm-topped clouds to be important to the population of precipitating 

clouds in the Tropics and suggested that the prevailing satellite retrieval methods, namely 

infrared and scattering-based passive microwave, might be inadequate to resolve these 

clouds. At the same time, Johnson et al. (1999) drew attention to the importance of 
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cumulus congestus clouds and suggested a new conceptual model of the tropical 

hydrologic cycle including this third mode of mid-level clouds, moving away from the 

more typical model of a bimodal cloud distribution of deep cumulonimbus and trade 

wind cumulus. And more recently in the Fourth IPCC Assessment, variability in global 

climate model (GCM) cloud feedback effects was mostly attributed to differences in the 

models' shortwave cloud feedback, which are dominated by the low and mid-level 

clouds. 

In an analysis using TRMM (Simpson et al., 1996) data, Lau and Wu (2003) 

further examined the role of warm precipitating clouds in the Tropics. This study 

exploited the fact that no SST can be retrieved from the TMI when a grid box is 

completely filled with rain, as would be the case in deep convection, but because of the 

nature of warm rain clouds, they do not typically fill a grid box and a valid TMI SST can 

be retrieved. A valid SST in the presence of rain was classified as warm rain and their 

results suggest that warm rain clouds are responsible for about 31% of the total rainfall in 

the Tropics. An earlier study by Johnson et al. (1999) indicated that mid-level congestus 

clouds contribute greater than 25% of the total tropical convective rainfall. In light of the 

fact that congestus clouds include both warm rain clouds, as well as those that reach the 

freezing level and glaciate, the Lau and Wu (2003) estimate is slightly higher than these 

earlier findings. It is also within the range of estimates by Petty (1999), who combined 

infrared satellite data with surface and ship stations and found that warm rain clouds were 

associated with 20-40% of the precipitation reports at these stations. The most recent 

estimates from CloudSat (Stephens et al., 2002), show that in the west Pacific low and 

middle clouds make up about 50% of the population of precipitating clouds and over the 
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entire Tropics, rain falls as frequently from low clouds as it does from both middle and 

deep convective clouds combined (Haynes, 2008). Each of the previous studies used 

different definitions of warm rain clouds, which may be responsible for the spread in 

warm rain estimates. In this study, we define warm rain clouds as clouds that are 

precipitating and have tops below the freezing level as indicated by infrared brightness 

temperatures above 273 K. 

The 2003 study by Lau and Wu also went a step further to investigate the 

precipitation efficiency of warm rain clouds. Using a climate model parameterization 

along with TMI-retrieved cloud liquid water and precipitation, they showed that an 

increased rate of conversion of cloud water to precipitation with increased SST occurs in 

warm rain clouds, especially for low rain rates. Their findings suggest that precipitation 

efficiency of warm rain clouds increases around 8% per degree increase in SST and that 

this increase in precipitation efficiency in warm rain may be at the expense of cloud 

water. In a previous study examining the influence of SST on deep convective cloud 

area, Rapp et al. (2005) used the ratio of cloud area, as defined by TRMM Visible 

Infrared Scanner (VIRS) infrared brightness temperatures, to rainfall rate from the 

Precipitation Radar (PR) as a proxy for the precipitation efficiency of rain clouds in the 

tropical western Pacific. The ratio of deep convective cloud area to rainfall was found to 

be insensitive to SST, however, warm rain clouds showed an approximate 5% decrease in 

the ratio of cloud area to rainfall per degree rise in SST. This is similar to the findings by 

Lau and Wu (2003) and provides more observational evidence supporting their 

suggestion that the increase in precipitation efficiency may be at the expense of cloud 

water. 
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While the findings of these studies are suggestive, each is subject to criticisms. 

The SST screening method of Lau and Wu (2003) is an ambiguous way of identifying 

warm rain systems. The study by Rapp et al. (2005) was designed for the identification 

of deep convection and was not originally intended to examine warm rain systems. The 

definitions by which the clouds were defined, namely that the clouds must have a rainfall 

rate greater than 10 mm hr"1, limit the population of warm rain systems observed in that 

study. With these criticisms in mind, we set out to further investigate the properties of 

warm rain clouds in the Tropics, but found that available cloud microphysical property 

datasets disagreed. Both microwave and optical retrievals are readily available to 

examine the properties of clouds in the Tropics, however, comparison of these products 

show discrepancies when the clouds are raining. Moderate Resolution Imaging 

Spectroradiometer (MODIS) 5 km cloud liquid water path (LWP) retrievals (Platnick et 

al., 2003; King et al., 1997) from the Version 5 Atmosphere Level 2 Joint Product from 

the Aqua satellite were matched to 0.25° Advanced Microwave Scanning Radiometer 

(AMSR-E) Version 5 retrievals from Remote Sensing Systems (RSS; Wentz and 

Meissner 2000) and compared for the tropical western Pacific. While the 0.25° resolution 

of the AMSR-E retrieval is coarse, each of the microwave channels used in the retrieval 

has a different FOV, so comparing at finer scales would be questionable. Using the 

MODIS cloud phase and cloud top temperature along with the AMSR-E rainfall retrieval 

as a rain mask, we were able to identify warm rain clouds in the tropical western Pacific. 

We examine this region because it is where warm rain clouds showed the sensitivity to 

SST in Rapp et al. (2005). Figures 3.1a and 3.1b from MODIS and AMSR-E, 

respectively, show the sensitivity of LWP retrievals to SST for non-raining clouds. Non-
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raining clouds show similar results for both retrievals, with LWP fairly constant over the 

observed range of SST. However, when examining the two LWP retrievals for the 

raining, warm clouds in Figures 3.1c and 3.Id, substantial differences are observed. The 

MODIS retrieval shows a strong decrease in LWP with increasing SST, while the 

microwave retrieval remains fairly constant. Although not shown here, examination of 

the MODIS retrievals of effective radius and cloud optical depth also reveals differences 

between non-raining and raining clouds. In non-raining clouds the effective radius 
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increases from 12 to 18 um and the optical depth decreases by about 30%, with the 

resultant LWP remaining nearly constant with SST. For the warm rain clouds, the 

effective radius has small variations over the range of SST shown in Figure 3.1, only 

varying from about 18 to 21 urn. However, the cloud optical depth decreases by about 

60% with SST, which is the reason for the large observed decrease in warm rain cloud 

LWP in Figure 3.1. Results from a modified Nakajima-King retrieval (Nakajima and 

King, 1990; Nakajima and Nakajima, 1995) applied to the TRMM VIRS data and RSS 

TMI retrievals show similar behavior. 

It is not surprising given the limitations of each of these methods that there are 

differences, but it illustrates the potential issues with using these retrievals for some 

climate studies. The microwave retrieval suffers from coarse resolution and may be 

viewing either clear sky or multiple cloud types within a single footprint containing a 

warm rain cloud. It is also possible that the coarse resolution affects warm rain cloud 

identification since these clouds may not fill the entire footprint and the signal may be too 

weak to retrieve rainfall. This could be why the MODIS cloud optical depth slightly 

decreases with SST for non-raining clouds since clouds may be misidentified as non-

raining. Another issue with the microwave retrieval is that the microwave retrieval is 

sensitive to both cloud and rain drops, so most retrieval algorithms use a LWP threshold 

to delineate clouds and rainfall, which can bias the results as shown by Berg et al. (2006) 

and O'Dell et al. (2008). In the microwave LWP retrieval shown in Figure 3.1, the LWP 

in raining clouds has a minimum threshold of 180 g m" and is parameterized as a 

function of the rain rate and an assumed cloud height based on SST. Because of the 
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retrieved LWP dependence on the rain rate, the shape of this curve is very similar to the 

shape of the mean rain rate curve for warm rain clouds. 

The visible/near-infrared retrieval calculates LWP as the residual of the retrieval 

of optical depth from the non-absorbing visible wavelengths and the retrieval of effective 

radius from the absorbing near-infrared wavelengths. The retrieval of effective radius is 

only sensitive to the cloud top, so the calculation of LWP could be biased, especially in a 

raining cloud where the larger drops are more concentrated near the cloud base. It is also 

possible that in a thick, precipitating cloud, much of the visible radiation may be scattered 

by the cloud drops before it reaches the rain in the lower portion of the cloud. 

Because we are most interested in how the rainfall is affecting the properties of 

the cloud, rather than the total column properties, we have developed a combined optimal 

estimation microwave retrieval algorithm that takes advantage of the strengths of these 

different datasets, as well as uses precipitation information that is available on the 

TRMM satellite to retrieve a microwave cloud LWP in a warm rain cloud. We stress the 

word cloud, because this retrieval estimates the LWP due to only the cloud water in a 

raining cloud. Using deconvolved TMI brightness temperatures along with cloud fraction 

information from VIRS and rain water estimates from the Precipitation Radar (PR), this 

retrieval improves on some of the resolution and sensitivity problems of microwave-only 

or visible/near-infrared retrievals and it also takes into account the emission and 

scattering from the rainfall to allow an estimate of LWP associated with the cloud water 

in a raining cloud. 
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3.2 Data 

The retrieval algorithm developed in this study combines data from microwave, 

visible/infrared, and precipitation radar sensors in an optimal estimation (OE) retrieval 

framework. We test the algorithm with data from the TRMM satellite from December 

2005 to February 2006 from 30°S-30°N, 130°E-170°W. However, this algorithm could 

also be applied by combining a visible/infrared sensor with the upcoming Global 

Precipitation Measurement (GPM) mission sensors. And though more difficult because 

the CloudSat radar does not scan the entire AMSR-E field of view, it may be possible to 

apply this algorithm to a combination of AMSR-E, MODIS, and CloudSat. 

3.2.1 Microwave Sensor 

The brightness temperatures used in this retrieval are from the TMI (Kummerow 

et al., 1998). The TMI is a conically scanning passive microwave radiometer that has 

eight channels that measure both vertical and horizontal polarizations at frequencies of 

10.7, 19.4, 37.0, and 85.5 GHz, and a ninth channel at 21.3 GHz that measures only the 

vertical polarization. The resolution of the measurements varies with the frequency and 

ranges from 7 x 5 km at 85.5 GHz up to 63 x 37 km at 10.7 GHz. The resolution 

difference can be a problem because of the inhomogeneity of the scenes viewed by the 

different channels. A deconvolution algorithm was applied to resample all of the TMI 

channels to a common resolution of the 19.4-GHz channel at 30 x 18 km. For the 

algorithm developed in this study a uniform FOV is a necessity because we are using the 

VIRS data to calculate cloud fraction within the microwave footprint. This requires that 
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the microwave data be at a common resolution. The deconvolution algorithm follows the 

method of Backus and Gilbert (1970) that has been shown to be successful at resolution 

modification of remotely sensed microwave data in numerous studies (e.g., Stogryn, 

1978; Robinson et al., 1992; Farrar and Smith, 1992; Long and Daum, 1998). This 

method uses a weighted sum of the observed brightness temperatures to construct a set of 

effective brightness temperatures at a single resolution. The Backus-Gilbert method 

calculates the weighting coefficients by choosing a factor that minimizes the error in the 

fit of the solution as well as minimizes the associated noise amplification. Calculating 

these weighting coefficients is time consuming, but since the TMI antenna patterns and 

scan geometry are known, the coefficients only need to be calculated once and can then 

simply be applied to each orbit. While it is possible to resample the data to the resolution 

of the highest frequency channels, the associated noise becomes very large. Making the 

enhancement of the 10-GHz channel to the 19.4-GHz FOV increased the noise level from 

0.54 K to 1.5 K. Resampling to a higher resolution would result in an even larger 

increase in noise, above which we felt the accuracy of the retrievals would suffer. As a 

result, the 19.4-GHz channel resolution was chosen because it was the best combination 

of enhanced resolution of the low frequency channels with an acceptable level of noise. 

3.2.2 Visible/Infrared Sensor 

The retrieval we have developed utilizes data from the VIRS on TRMM to 

characterize the cloud field within a TMI footprint. The VIRS (Kummerow et al., 1998) 

is a five-channel (0.63, 1.6, 3.7, 10.8, 12.0 um) scanning radiometer on the TRMM 
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satellite with a 2.11-km field-of-view at nadir and a swath width of 720 km. For this 

study, we use the visible and infrared channels as a cloud mask to determine the cloud 

fraction of a given TMI footprint. The VIRS pixels are collocated and matched to the 

TMI footprints and the cloud fraction is calculated as the ratio of matching VIRS pixels 

identified as cloud to the total matching VIRS pixels. A VIRS pixel is considered cloudy 

if the visible reflectance is greater than that of the characteristic clear-sky reflectance or if 

the infrared brightness temperature is lower than a threshold determined by the 

underlying SST. The pixel is further tested for ice contamination by checking that the 

infrared brightness temperature is not below 270 K and by checking the difference 

between the infrared channels to identify thin cirrus. The retrieval algorithm developed 

in this study is only designed for microwave footprints that contain water clouds, so any 

TMI footprint that contains matched VIRS pixels identified as ice clouds are flagged and 

no retrieval is performed. 

3.2.3 Precipitation Radar 

One of the most important additions to this algorithm is the information provided 

by the TRMM PR. The PR is a 13.8-GHz cross-track scanning phased-array radar with a 

4.3-km horizontal resolution at nadir and 215-km FOV. We are using the 2A25 dataset 

(Iguchi et al., 2000) that contains PR estimates of total precipitable water. This allows us 

to calculate the emission and scattering of the rainwater. In this way, we can separately 

calculate the contribution of the rainwater to the forward modeled brightness 

temperatures and retrieve only the LWP associated with the cloud water. As previously 

mentioned, almost all other microwave retrieval algorithms typically use a LWP 
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threshold to distinguish rain, but this method has been shown to result in discrepancies. 

Using rainwater information from the PR removes the need for thresholding and allows 

the more realistic treatment of cloud and rainwater necessary for this retrieval. 

3.2.4 Ancillary Data 

In this study, we specify SST, temperature lapse rate and water vapor scale height 

for calculating the upwelling radiances in the forward model. The SST data used in this 

study is retrieved daily from the TMI (Wentz and Meissner, 2000; Wentz et al., 2000) on 

0.25° x 0.25° grid. To describe the atmospheric temperature lapse rate and water vapor 

scale heights, daily values are computed from NCEP/NCAR reanalysis (Kalnay et al., 

1996) data on a 2.5° x 2.5° grid. The temperature lapse rate is computed as the average 

lapse rate from the surface to 250 hPa. To calculate the daily water vapor scale height, 

reanalysis specific humidity profiles from the surface to 300 hPa are fit with 

SH = SH0e~ (3.1) 

where SH is the specific humidity at height, Z, SHo is the specific humidity at the surface, 

and H is the water vapor scale height. Uncertainties due to these parameters must be 

specified in the forward model. For each 2.5° x 2.5° grid box, the standard deviation in 

lapse rate and scale height is computed for the three month period of study. For the 

period from January 2005 to February 2005, the region of study in the western Pacific has 

an average lapse rate of 6.4 K km"1 with an average standard deviation of 0.5 K km"1. 

The average water vapor scale height for this time period and region is 2.6 km with an 

average standard deviation of 0.6 km. The uncertainties in the forward model brightness 
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temperatures due to the NCEP/NCAR reanalysis lapse rates and water vapor scale heights 

are computed from these average standard deviations. 

3.3 Retrieval Algorithm 

Retrieval of atmospheric properties from microwave measurements is dependent 

on a number of factors, the forward model, assumptions about the model atmosphere and 

the uncertainties of the forward model itself, the assumptions in the forward model and in 

the measurements. In this study we employ the optimal estimation retrieval technique 

(Rodgers, 1976; Rodgers, 2000; Marks and Rodgers, 1993) for the inversion. An earlier 

version of our algorithm for non-precipitating clouds is thoroughly described in Elsaesser 

and Kummerow (2008), however, we have made several modifications to the forward 

model that allow us to account for partially cloud filled TMI footprints, as well as 

emission and scattering from rainwater. 

3.3.1 Forward Model 

Following Elsaesser and Kummerow (2008), the surface reflection and emission 

are calculated using the Deblonde and English (2001) model, which takes into account 

non-specular reflection to improve surface emissivity calculations at large viewing 

angles, and the Kohn (1995) model which improved on Wilheit (1997a,b) model with 

better treatment of multiple reflections, sea surface roughness parameters, and sea foam. 

A modified version of the Rosenkranz (1998) model is used to compute gaseous 

absorption by oxygen, nitrogen, and water vapor. In this study, we are retrieving cloud 
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systems that may only partially fill the microwave pixels and in which scattering may be 

present. Because the microwave pixels may contain both clear and cloudy areas, the 

calculation of brightness temperatures, TB, in the forward model is formulated as, 

TB = (1- a)TBCLR + aTCBLD (3.2) 

where a is the cloud fraction as defined by VIRS, TBCLR is the modeled clear sky 

brightness temperature and TBCLD is the modeled brightness temperature of the cloudy 

area. It is likely that there are slant path effects that influence our calculation of cloud 

fraction, however, this is limited somewhat by the fact that we are only using data within 

the 215 km swath width of the PR. The possible errors associated with the cloud fraction 

calculation are taken into account within the OE framework and are discussed in the 

following section. In the absence of rain the Rayleigh approximation is assumed and 

cloud liquid water absorption calculations are based on the Liebe et al. (1991, 1993) 

model. When rain is present and the Rayleigh assumption is no longer valid, the 

calculation of TBCLD includes Mie scattering effects. Using the rainwater estimate and top 

of the rain column from the PR and assuming a Marshall-Palmer drop size distribution 

(DSD; Marshall and Palmer, 1948), we calculate the contribution of the rainwater to the 

upwelling brightness temperature according to Lorenz-Mie theory. These calculations 

include many assumptions regarding the DSD and the accuracy of the PR rainwater 

estimates, which must be accounted for within the retrieval. The effects of these 

assumptions are investigated in more detail in the following section. 
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3.3.2 Retrieval Approach 

Following the work of Rodgers (1976), we employ the optimal estimation 

approach to the retrieval as in Elsaesser and Kummerow (2008). With the forward model 

described previously being denoted as F, we can express the TMI satellite measurements, 

y, as 

y = F(x,b) + s (3.3) 

where x is the retrieved atmospheric state, b represents other unretrieved a priori 

parameters in the forward model and s is an error term containing the uncertainties in the 

measurements, forward model, and the forward model assumptions. The problem is then 

to invert this equation by estimation the atmospheric state, x, that most likely produced 

the TMI measurements, y. Using Bayes theorem, the probably of a x being the true 

retrieved state given a set of TMI measurements, is proportional to the product of the 

probability of observing the TMI measurements, y, given a simulated state, x, and the a 

priori probability that is the atmospheric state, 

P{x\y) oc P(y\x) Pa(x). (3.4) 

The solution of retrieved state, x, occurs when a cost function, cD, is minimized. The cost 

function is given by 

O = (y - Fix, VfSy1 0 - Fix,b)) + ix- xJ'S^ix - xa) (3.5) 

where Sy represents the uncertainties associated with the measurements and the forward 

model, Sa represents the uncertainties of the a priori constraints on the retrieved state, and 
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xa is the a priori guess at the atmospheric state, x. Using Newtonian iteration, the value 

for x that minimizes the cost function can be found with 

xi+1 - xt=Sx [KjSy1 (y - F(x, b)) - S'1 (xt + xa)] (3.6) 

where 

5x = (s-1 + /rt
7s-1^r1 (3-7) 

is the error covariance matrix of the retrieved parameters and K is the kernel matrix 

expressing the sensitivity of the forward model to a perturbation in the retrieved 

parameters. The solution is found by iterating until the difference in retrieved states 

between successive iterations is less than the number of independent retrieved 

parameters. 

3.3.3 Retrieval Error Diagnostics 

One of the benefits of the optimal estimation approach to inversion is that it 

provides several diagnostics that indicate the quality of the retrieval. In Eq. (3.7), the 

error covariance of the retrieved parameters provides an estimate of the uncertainty in the 

retrieved state due to uncertainties in the measurements, the forward model, and in the a 

priori parameters. Diagonal elements of Eq. (3.7) represent the errors associated with 

each retrieved variable and the off-diagonal elements represent the correlations between 

errors the retrieved variables. From Eq. (3.7), it is obvious that the error of the retrieved 

parameters is dependent on both the uncertainties in the a priori parameters and the 
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xa is the a priori guess at the atmospheric state, x. Using Newtonian iteration, the value 

for x that minimizes the cost function can be found with 

xi+1 - Xi = Sx [KjS-^y - F(x, b)) - S" 1 ^ + *«)] (3-6) 

where 

S^iS^+KTSy1^-1 (3.7) 

is the error covariance matrix of the retrieved parameters and K is the kernel matrix 

expressing the sensitivity of the forward model to a perturbation in the retrieved 

parameters. The solution is found by iterating until the difference in retrieved states 

between successive iterations is less than the number of independent retrieved 

parameters. 

3.3.3 Retrieval Error Diagnostics 

One of the benefits of the optimal estimation approach to inversion is that it 

provides several diagnostics that indicate the quality of the retrieval. In Eq. (3.7), the 

error covariance of the retrieved parameters provides an estimate of the uncertainty in the 

retrieved state due to uncertainties in the measurements, the forward model, and in the a 

priori parameters. Diagonal elements of Eq. (3.7) represent the errors associated with 

each retrieved variable and the off-diagonal elements represent the correlations between 

errors the retrieved variables. From Eq. (3.7), it is obvious that the error of the retrieved 

parameters is dependent on both the uncertainties in the a priori parameters and the 
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uncertainties in the measurements and the forward model. TMI measurement 

uncertainties are described in Kummerow et al. (1998) and a thorough description of the 

a priori and forward model parameter uncertainties for non-raining scenes is given in 

Elsaesser and Kummerow (2008). Table 3.1 gives the uncertainties from Elsaesser and 

Kummerow (2008) for the SST and cloud height and the values for the uncertainty in 

lapse rate and scale height have been recomputed from the daily NCEP/NCAR reanalysis 

values described previously in section 3.2. However, the microwave TB deconvolution, 

the addition of fractional cloudiness from the VIRS, and the PR rain characteristics 

introduces other error sources that must be accounted for. 

The contribution to the forward model and measurement error covariance matrix, 

Sy, due to the resampling of the microwave TBS to a common resolution is computed at 

each channel and given as QBG in Table 3.2. It should be noted that the value given in 

Table 3.2 for CTBG is only for the pixel in the middle of the scan, since it varies with scan 

position. 

Utilizing cloud fraction from the VIRS also introduces uncertainty in the forward 

model calculations. Errors in the cloud mask due to thresholding techniques and slant 

path effects influence the weighting of the computed clear and cloudy TBs. Since 

Table 3.1 Forward model error sources (in K) for each TMI channel due to 
assumptions in SST (CTSST)? water vapor scale height (OSCLHT)> temperature lapse rate 
(OLR), and cloud height (OCLDHT). 

OSST 

OSCLHT 

OLR 

0"CLDHT 

10V 
0.35 
0.23 
0.01 
0.04 

10H 
0.14 
0.28 
0.04 
0.07 

19V 
0.21 
1.01 
0.09 
0.09 

19H 
0.07 
1.53 
0.04 
0.18 

21V 
0.30 
0.45 
0.37 
0.08 

37V 
0.02 
1.16 
0.05 
0.19 

37H 
0.18 
1.94 
0.12 
0.42 

85V 
0.24 
1.85 
0.42 
0.17 

85H 
0.04 
3.23 
0.23 
0.07 
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Table 3.2 Forward model error sources (in K) for each TMI channel due to 
brightness temperature deconvolution (OBG)> assumed cloud fraction errors (GFCLD)? 

errors in PR rainwater estimates and assumed DSD (ORW)-

OBG 

tfFCLD 

GRW 

10V 
1.39 
0.12 
0.82 

10H 
1.35 
0.19 
1.38 

19V 
0.50 
0.30 
1.86 

19H 
0.47 
0.50 
3.39 

21V 
0.43 
0.28 
1.59 

37V 
0.12 
0.87 
2.49 

37H 
0.10 
1.57 
5.72 

85V 
0.09 
1.61 
0.93 

85H 
0.17 
3.57 
2.06 

developing a better cloud mask is not the goal of this study and there is little information 

on the uncertainty in the cloud mask, here we use a simple cloud masking technique and 

assume up to a 30% error in our estimates of cloud fraction. Perturbing cloud fraction 

30%, we simulate the associated TBS and calculate the difference from the unperturbed 

cloud fraction TBS to estimate the contribution of errors in assumed cloud fraction, GYCLD, 

shown with the other sources in Table 3.2. 

In retrieving rainy scene parameters, the largest source of error comes from 

uncertainties in the PR-estimated rainwater used as input in the forward model. To 

calculate the uncertainty in the rainwater estimates, we have used the PR attenuation-

corrected reflectivity along with the PR-derived rainwater for warm rain clouds, shown in 

Figure 3.2. This figure shows that at any given reflectivity bin, there is a wide range of 

rainwater values depending on whether a convective or stratiform reflectivity-rainwater 

relationship is used in the 2A25 PR rainfall algorithm. The two different classifications 

are evident in Figure 3.2 by the split between clusters of points at higher reflectivities, 

however, over 90% of the warm rain profiles are below about 30 dBZ where the 

convective and stratiform curves are close to one another. The lack of certainty in storm 

classification and the scatter within the classifications suggests a mean uncertainty in PR-
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Figure 3.2 PR attenuation-corrected radar reflectivity (dBZ) with rainwater 
content (kg m"3). 

estimated rainwater content of about 50%. This uncertainty in rainwater stems from 

assumptions made in the PR algorithm regarding the drop size distribution (DSD) of the 

rainwater. In our forward model, rainwater absorption and scattering are calculated as 

functions of temperature, DSD, and PR rainwater content. In these calculations we are 

assuming an exponential DSD 

N(D) = N0e-AD (3.8) 

with a distribution intercept value, No, of 8 x 106 m~4 as given by the Marshall-Palmer 

distribution and prescribing the rainwater content and temperature. To maintain 

consistency between No and the PR rainwater content, we solve for the appropriate slope 

of the distribution, X. Because No is prescribed and may not represent the actual 
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distribution or that assumed by the PR, errors in this assumed value translate into errors 

in the calculation of absorption and scattering coefficients and ultimately into errors in 

the simulated TBS. 

To test the forward model sensitivity to errors in the rainwater and DSD, the PR 

rainwater and N0 values are perturbed by 50% and microwave TBs are simulated. The 

difference in brightness temperature is calculated from TBS using the original PR estimate 

and from TBS modeled with the Marshall-Palmer distribution No value. The total error due 

to PR rainwater and DSD assumptions is given as the sum of the square of the errors. 

This gives a reasonable estimate of the sensitivity of the forward model TB computation 

to PR-rainwater uncertainty and DSD assumptions and is shown as GRW in Table 3.2. 

One useful diagnostic that results from the optimal estimation technique used in 

this study to evaluate the quality of the retrieval is the %2 test where, 

X2 = (y - F{x, bjfs-\y - F(x, b)) + (xa - x)T5"1(x - *«)• (3-9) 

Generally speaking, %2 indicates how well the forward model TBs fit the observations. 

This should approximately follow a %2 distribution with the number of degrees of 

freedom equal to the number of dimensions of the observations,;;, if the forward modeled 

TBs agree with the observations within the error range. If y} is too small, then 

measurement errors may have been overestimated or the a priori is too loosely 

constrained. If % is very large, then either the forward model inadequately represents the 

physics or the assumed errors and Gaussian error distribution do not correctly describe 

the uncertainties in the measurements and the forward model. 
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3.4 Results 

To better understand the results from this retrieval algorithm, it is important to 

recognize the sensitivity of the retrieval to the addition of the parameters described in this 

paper. Results after the addition of the VIRS cloud fraction and PR rainwater are 

compared to the optimal estimation retrieval without this additional information to test 

the sensitivities. While Elsaesser and Kummerow (2008) validated the non-raining 

retrieval against both optical and other microwave retrievals, it is nearly impossible to 

validate LWP retrievals in the presence of rain, especially since we are only retrieving the 

cloud LWP, not the total. However, we will compare the results of our warm rain 

retrieval algorithm to the microwave and optical retrievals from Figure 3.1. 

3.4.1 Sensitivity to Cloud Fraction 

We test the retrieval's sensitivity to cloud fraction by examining the differences in 

the OE retrieval with and without the VIRS cloud fraction information for the same three 

months of data in the tropical western Pacific. Figures 3.3a-d show the differences 

between the retrieved cloud properties (retrieval with cloud fraction minus retrieval 

without cloud fraction) along with the standard deviation for a given prescribed cloud 

fraction. Not surprisingly, utilizing the VIRS cloud fraction tends to increase the 

retrieved cloud LWP especially at very low cloud fractions, however, there is little 

sensitivity in the TPW and wind speed except at cloud fractions below 20%. This lack of 

sensitivity to cloud fraction is most likely due to the more uniform nature of the TPW and 

wind fields compared to the more variable LWP field. From mid- to high- cloud 
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Figure 3.3 Difference in parameters, (a) LWP (g m" ), (b) TPW (mm), (c) wind 
speed (m s"1), and (d) x2, retrieved with and without cloud fraction plotted against 
VIRS cloud fraction. 
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fractions, the use of the VIRS cloud fraction information improves the fit of the retrieved 

properties, as shown by slightly lower %2 values in Fig. 3.3d, but at low- to mid-range 

cloud fractions, where even the TPW and wind field differences and standard deviations 

increase due to inclusion of cloud fraction, the resulting retrieved solution tends to be a 

poorer fit than without cloud fraction. Such low cloud fractions typically do not occur for 

TMI pixels containing rain, so it will not affect the warm rain cloud retrievals we are 

most interested in. 

3.4.2 Sensitivity to Rainwater 

One of the most important additions to this OE retrieval is the inclusion of the PR 

rainwater estimates, so that the cloud LWP can be retrieved in warm rain scenes. By 

modeling the contribution of the rainwater on the microwave TBS, we retrieve the LWP 

associated with the cloud and examine the role that precipitation plays in the properties of 

clouds. Figures 3.4a-d shows the retrieved properties and their standard deviations for 

warm raining scenes for an OE retrieval with and without the PR rainwater estimates. 

The inclusion of the rainwater inherently lowers the cloud LWP, but only affects the 

TPW at the high amounts of column water. At low wind speeds, the inclusion of 

rainwater increases the retrieved wind speed, while the opposite occurs for the higher 

wind speeds. While not shown, the majority of the large differences in TPW and wind 

speeds occurred at the highest rain rates, with the LWP differences being fairly constant 

for high rain rates. The lower %2 values indicate that the retrieved solution is a 

substantially better fit with the inclusion of the PR rainwater estimates. However, not 

reflected in these figures are pixels for which the retrieval cannot converge to a solution 
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with the inclusion of the PR rainwater. Although not frequent, it typically occurs at 

heaviest rain rates. Figures 3.5a-b depict portion of a TRJVIM swath that contains many 

warm rain clouds, as shown by the cloud top temperatures in the VIRS IR TBS and the PR 

rain rate map. Figures 3.5c-d show the resultant OE LWP retrieval without and with the 

PR rainwater information, respectively. In Figure 3.5c, the rainfall is evident in the high 

retrieved LWP, which corresponds to areas of rain in Figure 3.5b. By taking into account 

the rainwater, the retrieved LWP in Figure 3.5d represents the water in the cloud, not the 

total water in the column and is much more uniform, as expected in a cloud LWP field. 

The black areas of the retrieval within the clouds in Figure 3.5d are not pixels with zero 

LWP, but those in which the retrieval could not converge to a solution. As previously 

mentioned, they correspond with higher rain rate PR pixels, which most likely indicates 

that PR rainwater estimate is too high or that our assumptions regarding the rain DSD are 

inappropriate for this situation. 

3.4.3 Warm Rain Cloud Results 

The results in this section represent a total of over 300,000 TMI pixels containing 

warm rain clouds with no ice contamination during December 2005 to February 2006 

from 30°S - 30°N, 130°W - 170°E. Of the pixels with no ice contamination, 

precipitating clouds represent 10% of the total population of warm clouds. These results 

also show that 20% of the total rainfall is due to warm rain clouds. Both of these 

estimates are probably biased slightly low due to our strict definition of warm rain 

clouds, as well as the fact that we are excluding TMI pixels that may contain ice. Over 
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the range of SSTs observed in this region (-290 - 304 K), nearly 75% of the warm rain 

clouds occurred in a 4 K range of SST from 298 - 302 K. The results from this retrieval 

are very different for warm rain clouds compared to the AMSR-E microwave retrieval in 

Figure 3.1. This is expected since the AMSR-E retrieval is more indicative of the total 

LWP and includes the contribution from the rainwater. Figure 3.6a,b shows the non-

raining and warm rain cloud LWP retrievals, respectively, plotted against the underlying 

SST. Similar to Fig. 3.1, the non-raining cloud LWP in Fig. 3.6a shows very little 

sensitivity to SST, except for a small spike around 293 K. The non-raining OE retrieval 

does show a slightly lower mean LWP, around 75 g m"2, with SST than either the RSS 

AMSR-E (-100 g m"2) or the MODIS retrieval (-90 g m"2). Without additional 

information, it is not possible to assess which retrieval might be more accurate. We can 

nonetheless conclude that, irrespective of the method, the trends show mean LWP of non-

raining clouds is fairly insensitive to SST. 
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Figure 3.6 Mean TMI OE-retrieved LWP (g m"2) with SST (K) for (a) non-raining 
warm clouds and for (b) raining warm clouds. 
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Interestingly, the warm rain OE retrieval in Figure 3.6b shows a very strong decrease 

in cloud LWP with increasing SST. This is in good agreement with the MODIS warm 

rain LWP results in Figure 3.1. In a thick cloud that contains rain, it is quite likely the 

majority of the visible radiation has been scattered by the time it reaches the top of the 

rain column, so the MODIS retrieval is therefore mostly sensitive to the water in the 

cloud, not in the rain. This may be why the two retrievals operating on entirely different 

principles, the visible/infrared, which inadvertently does not see the rain, and the 

microwave OE retrieval, which directly accounts for the rain, yield comparable results. 

While these results are suggestive and indicate that cloud water may be more efficiently 

converted to rainfall at higher SST, we can examine the relationship between the rainfall 

and the cloud properties from our retrievals and determine how their interaction may be 

affected by surface temperature. Since the warm rain cloud LWP is decreasing with SST 

in Figure 3.6b, which is counter-intuitive, it suggests that in an increased SST 

environment, the convection may become more vigorous and the conversion of the cloud 

water to precipitation may be enhanced, resulting in the scavenging of cloud water for the 

production of more rainfall. To test this, the ratio of the cloud LWP to PR rainwater is 

compared in Figure 3.7 to gain a better understanding of how rainfall may be affecting 

the cloud with changing SST. 

The ratio of cloud LWP to PR rainwater in Figure 3.7 also shows a strong decrease 

with SST. At the lowest SSTs, the ratio of LWP to rainwater is almost two to one, but 

drops to almost one half at the higher SSTs. There also appears to be a shift in the slope 

of the decrease in this ratio near 297 K, with the ratio decreasing faster at lower SSTs 

than higher SSTs. Because we are examining a large region that includes both deep 
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Figure 3.7 Ratio of mean TMI OE-retrieved LWP to PR-estimated rainwater 
plotted against SST (K). 

tropics, as well as subtropical latitudes, this shift may indicate a change in rain regimes 

not apparent when just examining the relationship of LWP with SST. In the deep tropics, 

there are very few SSTs that fall below 297 K and examining the locations of the clouds 

shows that over 99% of the warm rain clouds with SSTs below 297 K occur between 20° 

- 30° S and 20° - 30° N. Above 297 K, warm rain clouds occur both in the subtropical 

and tropical regions of our domain. Though not shown here, examining the LWP and 

rainwater ratio for warm rain clouds only in the subtropical area of the domain shows that 

the strong decrease of about 10% per degree SST in Figure 3.7 for clouds with SSTs 

below 297 K, actually extends throughout the full SST range. In the tropical area of our 

domain, between 20°S and 20°N, where SSTs are above 297 K, the decrease is only 

about 6% per degree SST. Since clouds in the tropical region of the domain are more 

numerous, they dominate the trend seen in Figure 3.7 above 297 K. While the dynamics 
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influencing the clouds in the subtropical and tropical regions of our domain are very 

different, over the range of SSTs observed in the two different regions, both show that the 

rainwater is increasing at the expense of water in the cloud. 

One issue that has not been addressed is the use of PR rain estimates as the rain/no 

rain threshold. The PR is only sensitive to rain rates greater than approximately 0.5 mm 

hr"1, so there is light rainfall from warm clouds that is not being detected. To be sure that 

this threshold is not biasing the non-raining cloud results, we use a technique suggested 

by Rosenfeld and Gutman (1994) to identify clouds that may be precipitating below the 

sensitivity threshold of the TRMM PR. Using the VIRS effective radius retrieved from a 

modified Nakajima and King scheme, we employ an effective radius threshold of 14 urn 

to identify possible raining clouds that may have been included in the previous results 

and recalculate the mean LWP with SST for the non-raining clouds. Though not shown 

here, the overall results are not affected by the exclusion of possible precipitating clouds, 

with both the mean and trends remaining virtually unchanged. While inclusion of these 

clouds with the warm rain cloud results might be a better representation for all raining 

clouds, it is impossible with the available data to estimate the amount of rain water in 

these clouds, which could be anywhere from just above zero up to just below the 

sensitivity threshold of the PR. However, if the results in Figure 1 of Lau and Wu (2003) 

are valid, suggesting that the ratio of cloud water to rain rate decreases with SST much 

more rapidly for low rain rates, then this would only serve to enhance the decreasing 

trends observed in Figures 3.6 and 3.7. 
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3.5 Discussion 

In order to better understand the interaction between cloud properties and 

precipitation, an optimal estimation retrieval algorithm was developed for oceanic warm 

rain clouds that combines information from multiple sensors. By utilizing cloud fraction 

from the VIRS and rainwater estimates from the PR, we have not only eliminated some 

of the issues with microwave cloud property retrievals, but also enabled the retrieval of 

the water associated with the cloud instead of the total LWP. Examining the difference in 

retrieved parameters due to the addition of VIRS cloud fraction showed very little 

difference in TPW and wind speed for all but the lowest cloud fractions, with increased 

LWP for all cloud fractions. Comparing the OE retrieval with and without the PR 

rainwater estimates showed that the cloud LWP was always reduced in the presence of 

rain, but the wind speed could be affected in either direction and that the TPW retrieval 

was lower for higher column water amounts, with both of these differences occurring for 

the highest rain rates. Evaluation of the results also shows that the added information 

generally lowered the %2 diagnostic, suggesting that the extra information allows for a 

solution that better fits the measurements. 

Examination of the warm rain cloud results shows that the LWP in the cloud, 

when the rainwater contribution is taken into account, decreases with underlying SST. 

Both the magnitude and trend in LWP agree well with the MODIS LWP retrieval in the 

presence of rain, but not the AMSR-E retrieval, since it is sensitive to the total liquid 

water in the cloud and has the previously mentioned rain/LWP thresholding problem. 

The ratio of cloud LWP to PR rainwater also decreases with SST. This result is telling 

because it shows that the increase in rainwater at the expense of the water in the cloud is 
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enhanced as the surface temperature increases, supporting our conjecture and previous 

findings. These results suggest that in an increased surface temperature scenario, the rate 

at which cloud is converted to precipitation will increase, leaving less cloud water to 

moisten the lower and middle troposphere. Because cloud resolving models typically use 

an autoconversion threshold that is a function of cloud water content and cloud drop 

number concentration (e.g., Khairoutdinov and Kogan, 2000), for a given number 

concentration the availability of more water at higher SSTs will lead to higher cloud 

water contents and the rate of autoconversion should be increased. Whether or not 

climate models can reproduce this relationship is questionable. In a follow up to their 

2003 study, Lau et al. (2005) examined the sensitivity of a general circulation model 

(GCM) to microphysical processes that describe the conversion of cloud water to 

precipitation. They found that increasing the autoconversion rate did indeed lead to more 

rainfall but less cloud produced by the model. However, this study manually prescribed 

increases in the autoconversion rates and did not have an interactive autoconversion rate. 

Del Genio et al. (2005) discussed the deficiencies in many GCM schemes to accurately 

represent the cloud and precipitation processes and showed that an interactive cumulus 

scheme can produce results similar to this study for clouds below the freezing level. 

The implications of this increase in precipitation at the expense of cloud water 

have further impacts than just changes to the cloud and radiative properties. In a 

modeling study, Raymond and Torres (1998) showed that shallow and mid-level 

convective precipitation efficiency controlled the low and mid-level moistening and 

found that the moistening provided by these clouds is necessary to precondition the 

environment for deep convection. Johnson et al. (2001) supported this assertion with 
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observations from TOGA-COARE that evaporation of cumulus congestus convection in 

the lower and middle-troposphere preconditions the environment for deep convection. In 

a study of the mutual regulation of the tropical hydrological cycle and sea surface 

temperature, Stephens et al. (2004) also presents the humidistat feedback with evidence 

from TOGA-COARE and TRMM suggesting a 'destabilization phase' wherein shallow 

convection increases and moistens the lower troposphere to condition the atmosphere for 

deep convection. This moistening of the lower troposphere has also been linked to the 

timescales for deep convective outbreaks by Blade and Hartmann (1993), Hu and Randall 

(1994) and Kemball-Cooke and Weare (2001) and more recently in the previously 

mentioned Lau et al. (2005) modeling study. The increase in the rate of conversion of 

cloud water to precipitation as shown by the results in this study, leaves less water 

available to moisten the atmosphere, which many studies suggest may have implications 

for the onset of deep convection. 
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Chapter 4 

Interactions Between Warm Rain Clouds and Atmospheric 

Preconditioning in Tropical Disturbances 

4.1 Introduction 

Westward propagating synoptic-scale disturbances occur across the Pacific Ocean 

and the evolution of cloud and precipitation systems linked to westward propagating 

synoptic scale waves has been the focus of many studies since the 1940's. These easterly 

waves (Riehl, 1954) or tropical-depression type (TD; Takayabu and Nitta, 1993; 

Dunkerton and Baldwin, 1995) disturbances occur mostly in northern hemisphere 

summer on 3-6 day timescales in both the Atlantic and Pacific Oceans with some of them 

evolving into tropical storms or hurricanes. Recent studies of the structure of TDs (e.g., 

Peterson et al., 2003; Serra et al., 2008) show that low-level moistening and warming 

typically occurs ahead of the deep convection associated with the passage of the wave. 

This moistening and warming begins in the boundary layer several days prior to the deep 

convection. As the shallow cumulus convection deepens to mid-levels, the moist layer 

deepens. Using Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere 

Response Experiment (TOGA-COARE) data, Johnson et al. (2001) showed that increases 

in mid-level congestus clouds prior to deep convection were associated with the 
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deepening of the moist layer, which preconditioned the atmosphere for deep convection. 

This moistening and warming at the lower and mid-levels with upper level cooling and 

drying serves to increase the convective available potential energy (CAPE) to its peaks 

just before the passage of a TD trough. This increased instability allows the deep vertical 

development of convection (Peterson et al. 2003). While it appears that the moistening 

and warming provides the instability necessary for the deep convection associated with 

the TD, little attention has been paid to the warm, shallow and mid-level convection 

connected to these conditions. In a study examining the cloud activity associated with 

TDs, Cho and Ogura (1974) found that shallow convection was present everywhere in the 

wave disturbance. Johnson et al. (2001) also showed that the mid-level congestus clouds 

were present at all times during TOGA-COARE. However, this low- and mid-level 

moistening appears to only occur prior to deep convection, with the drying and cooling 

occurring after the deep convection. The fact that shallow and mid-level convection is 

present throughout a disturbance, but the moistening and warming only occurs ahead of 

the TD, suggests that a change in the behavior of the convection across the passage of the 

wave is occurring. The most shallow convection typically does not precipitate and all of 

the cloud water is available for mixing and evaporation to moisten the lower levels. As 

convection becomes more vigorous, cloud droplets are able to grow into precipitation-

sized particles through collision and coalescence and the cloud produces warm rain. This 

warm rain depletes some of the water in the cloud and leaves less cloud water available to 

moisten the low and mid-troposphere through evaporation and mixing. Since mid-level 

clouds have been shown to be prevalent throughout the Tropics, the deepening of the 

moist layer only prior to the deep convection suggests that before the TD these clouds 
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must be more efficient at moistening the lower and mid-troposphere than after the deep 

convection. Otherwise, the low- and mid-level temperature and humidity fields would 

not exhibit the structures observed by the aforementioned studies. It should be noted that 

in this study, we refer to the 'lower' troposphere and boundary layer interchangeably, as 

the layer below about 850 hPa. We use mid-level to refer to the area above the boundary 

layer up to the freezing level, from about 850 mb to near 500 hPa. Above 500 hPa is 

referred to as the upper levels. 

As previously mentioned, within the shallow and mid-level convection, there are 

populations of both precipitating and non-precipitating clouds. The behavior of warm, 

precipitating convection below the freezing level has been a recent subject of several 

investigations (e.g., Lau and Wu, 2003; Rapp et al., manuscript submitted 2008). These 

studies have shown that increases in the precipitation efficiency of warm precipitating 

clouds strongly influences the cloud amount and cloud liquid water path (LWP), which is 

related to the amount of water available to moisten the boundary layer and mid-

troposphere. While the resultant change in cloud water with precipitation has been 

hypothesized to control the amount of water available to moisten the lower and mid-

troposphere, thus affecting the preconditioning period required for deep convection (Lau 

and Wu, 2003; Lau et al., 2005; Rapp et al., manuscript submitted 2008), modeling 

studies have been performed (e.g., Lau et al., 2005; Del Genio et al., 2005) to examine 

the link between warm rain precipitation efficiency, low-level moistening and recycling 

timescales for deep convection related only to the Madden-Julian Oscillation (MJO). Lau 

et al. (2005) found that by increasing the precipitation autoconversion rate for warm rain 

in a general circulation model (GCM), less cloud was produced with more low-level 
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condensational heating, which destabilized the atmosphere and led to stronger, but more 

intermittent MJO events. Using observations, Benedict and Randall (2007) showed that 

stronger low-level convective heating and moistening associated with cumulus 

convection prior to deep convection coupled with the MJO led to stronger MJO events 

and implied that for weak MJO events, the cumulus convection was less effective at 

preconditioning the atmosphere. However, properties of these cumulus clouds were not 

examined and observational studies have yet to establish how changes in the properties of 

the warm rain clouds affect the moistening of the boundary layer and mid-troposphere. 

The aforementioned studies all examined the MJO, however, the MJO occurs on 

timescales of 40-60 days, so fewer events are available for study with satellite 

observations. Also, unlike other convectively-coupled equatorial waves, such as the 

MJO, TDs form, intensify, and decay in the eastern, central, and western Pacific making 

them ideal for investigating the relationship between warm rain cloud properties and 

moistening prior to deep convection across distinct large-scale dynamical environments. 

Recently, an algorithm was developed by Rapp et al. (manuscript submitted 2008) 

for the retrieval of cloud LWP in warm rain clouds. There are quite a few retrievals of 

cloud LWP already available, but optical and microwave methods yield very different 

results for warm raining systems due to their limitations when rainfall is present. To 

overcome some of the problems inherent in visible only or microwave only retrievals, 

Rapp et al. (manuscript submitted 2008) developed a multi-sensor optimal estimation 

retrieval algorithm that combines measurements from optical and passive and active 

microwave instruments on the TRMM satellite. The algorithm uses cloud fraction 

information from the visible sensor to overcome scene inhomogeneity issues and also 
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uses the information from the radar to constrain the amount of water in precipitation-

sized particles to retrieve the total water, as well as its rainfall and cloud water 

components. In this way, the retrieved LWP of the cloud water component combined 

with the rain water gives an important piece of information on the partitioning between 

cloud and rainwater and allows the investigation of how precipitation processes affect the 

cloud properties. Results from the Rapp et al. (manuscript submitted 2008) study 

supported previous findings that over the range of SSTs in the tropical western Pacific, 

the amount of LWP due to cloud water, when taking into account the amount of water in 

the rain, does decrease with temperature due to enhanced precipitation. 

The algorithm developed in that work now offers a framework for studying the 

potential effects that this reduction in cloud water in precipitating clouds may have on 

low- and mid-level moistening. TDs across the Pacific offer an excellent test bed for the 

investigation of how changes in warm rain cloud properties may contribute to the 

moistening and heating that is observed prior to the onset of deep convection associated 

with a TD. The results from the multi-sensor retrieval algorithm are applied here to 

examine these relationships. 

4.2 Data 

This study combines a number of datasets to identify TDs, composite dynamic 

and thermodynamic fields, and to retrieve cloud properties associated with tropical 

disturbances. Because TDs are most active in the warm seasons, data from April through 

September in 1998 to 2002 are analyzed. Since we are interested in examining the 
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variability of the relationship between cloud properties and lower-tropospheric 

moistening prior to the TD, we choose three locations spanning the Pacific Ocean for 

analysis; near Kwajalein at approximately 7.5°N, 167.5°E (KWAJ) in the western 

Pacific, the central Pacific at 7.5°N, 140.5°W (CPAC), and a location in the Tropical 

Eastern Pacific Process Study (TEPPS; Yuter and Houze 2000) region at 7.5°N, 

124.5°W. 

4.2.1 Precipitation Data 

Many studies have used outgoing longwave radiation or optical depth to perform 

analyses to identify TDs, however, Benedict and Randall (2007) showed that spectrally 

filtered precipitation was successful in identifying MJO events. Because of the strong 

connection between deep convection and heavy precipitation with the passage of a 

tropical disturbance, we also employ precipitation as the variable on which our analysis is 

based. The precipitation dataset used for identification of tropical disturbances is the 

Global Precipitation Climatology Project (GPCP) 1° x 1° daily merged precipitation 

dataset (Huffman et al., 2001), which blends several observational datasets to produce 

daily estimates of precipitation. For the equatorial region of interest in this study, GPCP 

calculates a threshold-matched precipitation index from infrared brightness temperatures 

where the relationship between the index and precipitation is guided by monthly, local 

SSM/I precipitation frequency and GPCP satellite-gauge precipitation estimates. 
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4.2.2 Thermodynamic Properties 

European Centre for Medium-Range Weather Forecasting (ECMWF) reanalysis 

(ERA-40) data are used to describe the thermodynamic atmospheric properties associated 

with the TDs. In the Pacific, rawinsonde and other data sources are sparse, so reanalysis 

data provides the best description of the TD environment. Comparison with Integrated 

Global Radiosonde Archive (IGRA; Durre et al., 2006) at KWAJ for the warm season in 

2002 shows very good agreement between the ERA-40 temperature and humidity 

profiles. Temperature differences are less than 1% and differences in specific humidity 

have a maximum of 8%. The 8% specific humidity differences are mostly confined to 

the levels near the surface and the differences above the near-surface level are less than 

about 4%. 

The ERA-40 at 2.5°x2.5° resolution are used at the three locations over the 

western, central, and eastern Pacific to produce composites of temperature, specific 

humidity and vertical velocity profiles coupled with the TD passage. The ERA-40 data 

are also used to calculate the convective available potential energy (CAPE). The 

composited fields are given as departures from the background state, which is defined by 

the mean of the respective fields for the three days prior and the three days after the dates 

identified as TDs by the procedures discussed in section 4.3. The date identified as a TD 

is excluded from the calculation of background state because the anomalous values 

associated with the wave passage are not representative of the background state. 
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4.2.3 Precipitating Cloud L WP 

There are multiple retrievals of cloud LWP, both optical and passive microwave, 

available for the study of LWP in non-raining clouds. However, the limitations of these 

algorithms mean that their estimates of LWP in raining clouds are questionable. Because 

we are interested in the role that precipitating clouds play in the moistening of the lower 

troposphere, we use a multi-sensor algorithm developed by Rapp et al. (manuscript 

submitted 2008) for the retrieval of cloud LWP in oceanic warm rain clouds. This 

algorithm combines measurements from the TRJVIM satellite to estimate the liquid water 

in the cloud, exclusive of the rainwater. In this way, we can identify how changes in the 

amount of cloud water left after the rainwater precipitates from the cloud may affect 

lower tropospheric water vapor and heating and thus, the instability. TRMM Microwave 

Imager (TMI) brightness temperatures are combined with Visible Infrared Scanner 

(VIRS) cloud fraction and Precipitation Radar (PR) rainwater estimates to retrieve cloud 

LWP in the presence of rain. The TMI is a nine-channel conically scanning passive 

microwave radiometer with horizontally and vertically polarized channels ranging from 

10.7 to 85.5 GHz. Because each TMI channel has a different spatial resolution, the TMI 

measurements are matched to a common resolution of the 19-GHz channel FOV 

following the methods of Backus and Gilbert (1970) so that we can calculate cloud 

fraction from VIRS to account for some of the sub-TMI footprint inhomogeneities. The 

VIRS is a spectroradiometer with five channels at center wavelengths of 0.623, 1.610, 

3.784, 10.826 and 12.028 um with a 2.11-km FOV at nadir. The VIRS pixels are 

collocated with the TMI pixels and visible reflectance and infrared brightness 

temperature thresholds from VIRS are used to determine how many matching VIRS 
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pixels within the TMI footprint are cloudy. This cloud fraction is then used in the 

forward model of the optimal estimation algorithm to weight the simulated TMI 

brightness temperatures of the cloud. Besides accounting for clear and cloudy areas 

within the TMI footprint, the algorithm also uses PR rainwater estimates to calculate the 

emission and scattering of the rain so that the LWP associated with only cloud water can 

be retrieved. 

Passive microwave instruments, like the TMI, are sensitive to the emission from 

the total column integrated liquid water content. Integrated liquid water contents are 

proportional to the sum of r3, where r represents the droplet radius. The power returned 

to an active radar by water droplets is dependent on the backscattering cross-section of 

the particles, which is proportional to the sum of r . This r dependence means that the 

larger, precipitation-sized drops dominate the radar signal and allow us to estimate the 

amount of water in the column that is associated with rain drops. We can exploit these 

sensitivities by combining the total water sensitivity of the TMI with the rainwater 

estimate of the PR to estimate the residual cloud liquid water that is required to match 

observed TMI brightness temperatures. 

The PR is a 13.8-GHz cross-track scanning phased array radar with an 

approximate 4.3-km resolution at nadir. PR pixels are matched to the TMI pixels and PR 

estimates of total precipitable water from the TRMM 2A25 dataset (Iguchi et al., 2000) 

are used to define the mean rainwater amount used in the retrieval algorithm. The PR 

rainwater estimate is then used in Lorenz-Mie calculations to calculate the emission and 

scattering contribution of the rainfall to the simulated brightness temperatures. The 

optimal estimation algorithm then iterates until the simulated solution for cloud LWP is 
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found that best matches the TMI measurements. The retrieved cloud LWP is used in this 

study to examine the relationship between precipitating cloud properties and lower- and 

mid-tropospheric moistening. It is important to note that we are most interested in the 

water available for mixing and evaporation to moisten the lower- and mid-troposphere. 

Therefore, when we are discussing non-precipitating clouds, the LWP refers to the total 

integrated column water content in the cloud. However, when referring to warm, 

precipitating clouds, the cloud LWP represents only the retrieved cloud water content 

available for moistening, not the total or rainwater content. 

4.3 TD Identification 

Lau and Crane (1995) described a method where they used occurrences of 

maximum cloud optical depth to identify synoptic disturbances. For each warm season in 

their analysis, nine key dates of maximum cloud optical depth associated with tropical 

disturbances were identified. The corresponding dynamic and thermodynamic fields 

were composited over the entire set of identified key dates. To identify deep convection 

associated with TDs, we employ the methods of Lau and Crane (1995) to select a set of 

key dates at each of the three locations, KWAJ, CPAC, and TEPPS, that correspond to 

heavy precipitation events in the GPCP data for the six-month warm seasons (April-

September) over the five years of study. For each warm season, nine dates with the 

highest precipitation amounts for each location are identified. As in Lau and Crane 

(1995), the dates are required to be separated from each other by at least four days. 

When two key dates fail to satisfy this requirement, the date with the lower precipitation 

amount is replaced with another date that was ranked just below the initial set of nine 
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dates. Figure 4.1 illustrates the success of this method and depicts two TDs that were 

identified on the key date of 14 July 2000 at the TEPPS and CPAC locations. The clouds 

coupled with the TDs exhibit the typical inverted ' V pattern associated with synoptic-

scale waves. 

To examine the evolution of tropical disturbances, the ERA-40 temperature and 

specific humidity and wind anomalies are calculated from three days prior to three days 

after each identified key date. The anomalies in cloud LWP are also calculated from the 

optimal estimation retrievals for both raining and non-raining clouds. Each of these 

fields from individual tropical disturbances are then averaged to obtain the composites for 

each location. 

4.4 Results 

4.4.1 KWAJ 

The ERA-40 composite profiles of temperature, specific humidity and vertical 

velocity anomalies for the 45-key maximum precipitation dates identified are shown 

Figure 4.2a-c. Lag 0 represents the date of maximum precipitation identified as a TD, 

with negative lags representing the three days prior and positive lags representing the 

three days after the TD. The temperature profile at KWAJ shows a strong cold anomaly 

centered near 700 hPa and another one near the surface beginning one day prior to the 

maximum precipitation and continuing two days after, due to strong downdrafts in deep 

convection. A warm anomaly aloft also associated with the deep convection is present. 

The deep convection also transports moisture throughout a very deep layer extending 
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Figure 4.1 GOES-10 visible albedo on 14 July 2000, where TDs are identified at 
both the TEPPS (T) and CPAC (C) locations. 

from the surface up to 250 hPa from Lag -1 to Lag +1, with the mid- to upper-levels 

remaining moist to Lag +2, presumably from stratiform precipitation. From Lag -3 to 

Lag -1 there are also positive temperature anomalies at both low and mid-levels. 

However, the mid-level warming from Lag -3 to Lag -2 occurs with negative specific 

humidity anomalies associated with subsidence drying as seen by the positive vertical 

velocity anomalies in Figure 4.2c. From Lag -3 to Lag -2, the low-level warming occurs 

with moistening and nearly neutral vertical velocity anomalies. At Lag -2 the low-level 

specific humidity anomalies show a strong positive increase with the strong mid-level 

positive moisture anomalies increasing slightly later between Lag -2 to Lag -1 . Cloud 

LWP anomalies for raining and non-raining clouds are shown in Figure 4.3a, with the 

CAPE anomalies shown in Figure 4.3b. Figure 4.3a shows that this low- and mid-level 

warming with moistening starting about two days prior to the TD is coincident with 

positive cloud LWP of precipitating cloud anomalies. Although non-raining clouds are 

present, there is almost no variability in their properties at KWAJ throughout the passage 
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Figure 4.2 ERA-40 anomalies in (a) temperature (K), (b) specific humidity (kg kg"1), 
and (c) vertical velocity (m s"1) at KWAJ (167.5°E, 7.5°N). 
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KWAJ KWAJ 

Figure 4.3 (a) Cloud LWP anomaly (g m"2) and (b) CAPE anomaly (J kg"1) 
composites for TD events at KWAJ (167.5°E, 7.5°N). 

of the TD. Anomalies in cloud LWP of precipitating clouds increase up to their max at 

Lag 0 and begin to decrease after TD. These raining clouds with increasing cloud LWP 

suggest that the raining clouds are becoming thicker. While this could be occurring 

simply due to a deepening of the precipitating clouds, examining anomalies in the ratio of 

cloud LWP to rainwater in Figure 4.4 demonstrates that this ratio increases with the 

positive LWP anomalies. This implies that the clouds are not as efficient at precipitating 

before the TD, leaving more of the cloud to mix or evaporate and moisten the lower 

troposphere. The anomaly in the ratio of cloud water to rainwater peaks at one day prior 

to the TD and the peak LWP anomaly. Therefore, despite the peak in cloud LWP of 

precipitating clouds with the TD, clouds are likely most (least) efficient at moistening 

(precipitating) one day prior to the TD. This agrees well with the strong increase in 

humidity anomalies of the boundary layer and mid-levels one day prior to the TD. After 

the TD, the anomalies in the ratio of cloud LWP to precipitation strongly decreases, 

suggesting less cloud due to more precipitation. Examining the CAPE anomalies in 
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Figure 4.4 Composite of the anomaly in ratio of cloud LWP to rainwater for 
precipitating clouds for TD events at KWAJ (167.5°E, 7.5°N). 

Figure 4.3b shows that the CAPE values are above average throughout the days before 

the TD and sharply decrease after the deep convection. The shape of the curve of the 

CAPE values strongly resembles the warm rain cloud LWP curve in Fig. 4.3a because of 

the moistening and warming related to positive anomalies in cloud LWP of precipitating 

clouds at the lower levels producing more instability. 

4.4.2 CPAC 

The evolution of the structure of the thermodynamic and cloud fields at the central 

Pacific location shows some variations from the KWAJ location. Figures 4.5a-c depict 

the ERA-40 composites of temperature, specific humidity, and vertical velocity 

anomalies, respectively. The raining and non-raining cloud LWP anomalies and CAPE 

anomalies at CPAC are shown in Figures 4.6a-b. In the CPAC region, the temperature, 

humidity, and vertical velocity anomaly fields show strong subsidence warming and 
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Figure 4.6 (a) Cloud LWP anomaly (g m2) and (b) CAPE anomaly (J kg"1) 
composites for TD events at CPAC (140.5°W, 7.5°N). 

drying all the way from 850 hPa to 250 hPa at Lag -3 to Lag -2 with little upper-level 

radiative cooling as seen at KWAJ. About two days prior to the TDs, below 850 hPa 

positive heating and moistening anomalies begin and by one day prior, the positive 

anomalies extend up to the mid-levels, indicated by the slight bulge in both the 

temperature and humidity anomalies. However, compared to KWAJ the deep convection 

associated with the TD at Lag 0 appears to be less vigorous. The mid- and low-level 

cooling and drying associated with the deep convective downdrafts and the upper level 

heating associated with latent heat release are much less at CPAC than at KWAJ. The 

vertical velocity anomalies are also weaker and peak at much lower levels, 750 hPa, 

compared to the 300 hPa peak at KWAJ. Despite it being less vigorous than at KWAJ, 

deep convection associated with the TD continues after the peak in precipitation, as 

evidenced by the upper-level negative vertical velocity anomalies and mid- to upper-level 

cooling extending to Lag +2. Again, coincident with positive heating and moistening 

anomalies, there are positive anomalies in cloud LWP of precipitating clouds beginning 
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at Lag -2, with almost no change in the properties of non-raining clouds. Unlike KWAJ, 

the anomalies in cloud LWP of precipitating clouds peak one day prior to the day, not 

coincident with the TD, however the CAPE anomalies are highest at Lag 0 and strongly 

decrease thereafter. Also different from KWAJ, at CPAC the CAPE anomalies are not 

high throughout the three days prior to the TD. It only begins to increase when the 

anomalies in cloud LWP of precipitating clouds are positive and low-level heating and 

moistening occur. The lower CAPE anomalies at Lag -3 at CPAC are probably due to 

the fact that the upper-levels are not as cold and dry as KWAJ prior to the TD. 

4.4.3 TEPPS 

Compared to the other two sites, the TEPPS location, shown in Figures 4.7a-c, 

exhibits the weakest anomalies in the thermodynamic fields and a different structure, 

especially in the humidity field. In Figure 4.7a, the temperature structure looks more like 

that of CPAC than KWAJ, although there is some upper level radiative cooling prior to 

the TD and stronger upper level heating from deep convection present at TEPPS at Lag 0. 

Prior to the TD the TEPPS location shows strong subsidence warming and drying from 

about 800 hPa to 400 hPa, slightly more shallow than at CPAC. There is also strong low-

level heating coincident with very strong moistening beginning earlier at TEPPS than the 

other two locations. This moistening extends from the surface to about 700 hPa from 

Lag -2 to Lag 0 -where there are two maxima in the moisture anomalies, one at 775 hPa 

and another at about 450 hPa. Positive moisture anomalies after the TD from the mid- to 

upper levels are more long-lived and deeper than at either KWAJ or CPAC, as evidenced 

by the upright specific humidity anomaly extending from about 750 to 250 hPa. At 
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KWAJ and CPAC, the dry layer at low levels begins to deepen between Lag 0 and Lag 

+1, but at TEPPS the drying from the low to mid levels happens more slowly. This is 

supported by the vertical velocity anomalies that show upward motion near 750 hPa and 

300 hPa extending into two days after the TD, whereas at CPAC and KWAJ upward 

motion was contained in the upper levels. The cloud LWP and CAPE anomalies in 

Figure 4.8a-b also show evidence for more long-lived convection after the TD. Large 

anomalies in cloud LWP of precipitating clouds occur prior to the TD and peak at Lag -1 

as at CPAC, however, they do not decrease as quickly and extend to about one and half 

days after the TD. This supports the lower level upward vertical velocity anomaly after 

the TD, as well as the positive specific humidity anomalies extending to lower layers for 

longer than at KWAJ and CPAC. The CAPE anomalies in Figure 4.8b also show that the 

CAPE begins to increase slightly earlier than at CPAC, likely related to the earlier 

positive anomalies in cloud LWP of precipitating clouds, heating, and moistening 

anomalies at low levels. Positive CAPE anomalies reach their max at Lag 0, but they do 
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Figure 4.8 (a) Cloud LWP anomaly (g m"2) and (b) CAPE anomaly (J kg"1) 
composites for TD events at TEPPS (124.5°W, 7.5°N). 
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not fall off immediately as at CPAC and KWAJ. The positive anomalies continue past 

Lag +1 in support of the other variables that show there is some ongoing convective 

processes at TEPPS after the maximum in deep convective precipitation. 

Another interesting difference at TEPPS compared to the other two locations is 

the larger positive anomalies in cloud LWP of non-precipitating clouds, which may be 

contributing to the strong low-level moistening prior to the TD. However these results 

may need to be viewed with caution. At this location where drizzling clouds are more 

common, it is possible that this anomaly in the non-raining clouds is due to precipitating 

clouds that have rain rates that are below the PR's sensitivity threshold of 0.5 mm hr"1. 

These clouds would not be identified by our algorithm as raining and therefore would be 

retrieving a larger total LWP that would be solely attributed to cloud. 

4.4.4 Influence of SST 

Much of the study of the variability in warm rain clouds is based on their response 

to SST. Studies by Lau and Wu (2003) and Rapp et al. (2005, 2008) showed that as the 

SST increases, warm rain cloud amount and LWP decreases due to increasing 

precipitation. These studies point to a fundamental change in the relationship between 

clouds and precipitation with SST. While there is some change in SST across the passage 

of a TD, with a peak approximately two days before and a minimum about a day after, 

this variation is very small (~ 0.1 K) because of the short timescales. However, "when 

examining the cloud properties and CAPE values of TDs in different mean SST 

environments, a pattern emerges. Figures 4.9a-c show the anomalies in cloud LWP of 

precipitating clouds at each location for TD events separated by the mean SST 
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Figure 4.9 Cloud LWP anomalies (g m"2) composited for (a) KWAJ, (b) CPAC, and 
(c) TEPPS, and CAPE (J kg1) composites at (d) KWAJ, (e) CPAC, and (f) TEPPS 
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environment. The mean SST is calculated for each location over all of the events and for 

each seven-day period surrounding the TD. The mean of the TD event is compared to the 

mean for all events and those TD events with a higher mean SST are labeled in Figs. 4.9 

as 'High SST' and events with a mean SST lower than the mean for all events are labeled 

'Low SST'. Each of the locations exhibited about a 1 K temperature difference between 

the high and low SST events. The average temperature for the high and low SST events is 

301.7 K and 302.6 K, respectively, at KWAJ, 300.3 K and 301.3 K at CPAC, and 300.6 

K and 301.5 K at TEPPS. At each location the curves of anomalies in cloud LWP of 

precipitating clouds are higher for low SST events than for high SST events. While this 

may seem counterintuitive, the LWP in the cloud, when the rainwater is accounted for, is 

lower at higher SSTs due to enhanced precipitation processes depleting the cloud water. 

This is very apparent at KWAJ in Figure 4.9a where there is little anomaly in cloud LWP 

of precipitating clouds at high SSTs, but very large anomalies in cloud LWP of 

precipitating clouds at low SST. Figure 4.9d illustrates the CAPE values at KWAJ for 

the same events, as well as the mean. This shows that for lower SST TD events, there are 

larger CAPE values than for the higher SST TD events, suggesting more instability in 

low SST events than high SST events. Although low-level moistening and heating 

related to anomalous cloud LWP are not the only factors affecting CAPE, they are a very 

large contributor to instability and most certainly account for some of the increase for low 

SST events. At the CPAC location, in Figures 4.9b and 4.9e, the differences between the 

high and low SST events are much smaller than at KWAJ. This is also reflected in the 

CAPE curves at CPAC being pretty close together except for at Lag 0. Interestingly, the 

mean SST at CPAC is lower than at either of the other locations, but the variability of 1 
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K in SST between the low events and high events is comparable to the 0.9 K differences 

at KWAJ and TEPPS. At TEPPS, similar to KWAJ, there is a large difference between 

the anomalies in cloud LWP of precipitating clouds for high and low SST TD events. 

Throughout the seven-day period the anomalies in cloud LWP of precipitating clouds at 

TEPPS are almost twice as high for low SST TD events as for high SST events. Like at 

KWAJ, the CAPE values for low SST TDs are higher. The days prior to the TD also 

show similar behavior to KWAJ where the CAPE values are high throughout this period 

and then decrease after the TD a bit more slowly than at KWAJ, which corresponds to the 

higher anomalies in cloud LWP of precipitating clouds for the TEPPS location after the 

TD. 

The higher CAPE values for low SST TD events is a direct result of enhanced 

moistening and warming of the low and mid levels related to the higher anomalies in 

cloud LWP of precipitating clouds. Composites of the thermodynamic fields for TD 

events separated by SST shows less moistening and warming at the low and mid levels 

prior to the TD when SSTs are high. The positive temperature anomalies are much 

deeper and stronger (~0.3 K) extending from the surface to about 750 hPa by Lag -1 for 

low SSTs, but only exist in the boundary layer up to about 850 hPa by Lag -1 with peak 

anomaly of only 0.1K for high SST TDs. The positive humidity anomalies for low SST 

TD events are also stronger, start earlier and build gradually for low SST TDs. At Lag -

2, very strong moist anomalies already extend throughout the boundary and by Lag -1 the 

positive moist anomalies have deepened into the mid levels for low SST TDs. For high 

SST TDs, the moist anomalies are delayed until Lag -1 , though they are comparable in 

magnitude to the anomalies for low SST events. 
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While increased positive anomalies in cloud LWP of precipitating clouds seem to 

be related to increased CAPE at lower SSTs, examination of the GPCP rain rates at each 

location for low and high SST TDs in Figs. 4.10a-c shows that deep convection results in 

more precipitation, despite the lower CAPE values, at higher SSTs. Other factors clearly 

play a role in determining the strength and timing of deep convection. Very strong 

differences in zonal wind components illustrate one reason why differences between low 

and high SST rain rates are observed. The zonal wind anomalies for low SST events in 

Figure 4.11a and for high SST events in Figure 4.11b show that strong wind shear is 

present for low SST TDs that is not present in the high SST events. This strong wind 

shear provides a likely explanation for why weaker deep convection with lower rain rates, 

despite the higher CAPE, is observed for lower SST TD events. At CPAC shear is also 

stronger for low SST TDs, however, at KWAJ zonal wind profiles are more similar 

between high and low SST events, with only slightly more shear at low SSTs. This is 

likely why temperature and moisture anomalies appear more vertically aligned with 

maximum precipitation than at the other locations and why precipitation differences in 

different SST environments are smaller. 

4.5 Summary 

Over a period of five warm seasons, TD events were identified using maximum 

precipitation occurrences in three locations across the Pacific Ocean following the 

methods of Lau and Crane (1995). Composite TD thermodynamic structure and 

associated cloud LWP anomalies as a function of the days before and after the maximum 

precipitation events were constructed. The composited thermodynamic fields revealed 
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Figure 4.10 Mean rain rate (mm hr"1) composites for high and low SST TD events 
at (a) KWAJ, (b) CPAC, and (c) TEPPS. 
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Figure 4.11 Zonal wind anomalies (m s"1) for TD events with (a) low SSTs and (b) 
high SSTs. 

temperature and humidity structures similar to that found by other studies. Ahead of the 

TD, moistening and warming occurs in the low and mid levels while the upper levels 

generally exhibit cooling and drying, which leads to an increase in the CAPE. Vertical 

velocity anomalies ahead of the TD showed subsidence through a very deep layer with 

rising motions present in the lowest layers beginning about two days prior to the 

precipitation maximum. Concurrent increases in cloud LWP of precipitating clouds and 

relatively no change in non-raining cloud LWP suggest that the low-level moistening and 

warming anomalies are related to the properties of the warm raining clouds. At the time 
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of maximum precipitation, when CAPE and vertical ascent are strongest a very deep 

layer is moistened and downdrafts associated with deep convection cool the low and mid 

levels while condensational heating warms the upper levels, though at some locations 

more than others. Anomalies in cloud LWP of precipitating clouds begin to decrease at 

the same time as the precipitation maximum indicating a shift to more efficient 

precipitation processes in warm clouds. After the TD, the profiles shift to descent with 

cooling and drying in the low levels with some residual mid- to upper-level ascent and 

moistening continuing about two days after the TD. CAPE values are rapidly depleted by 

the deep convection in the days following the precipitation maximum. After the TD, 

when low levels are dry and cool, the warm rain clouds present have lower cloud LWP 

anomalies. The thermodynamic structures shown here agree well with the previous 

eastern Pacific study by Petersen et al. (2003) and Serra and Houze (2002), as well as 

those shown by Serra et al. (2008) across the Pacific. However, this study highlights the 

role that warm rain clouds play in preconditioning the atmosphere prior to deep 

convection associated with TDs. 

Previous studies examining the sensitivity of warm rain cloud precipitation 

efficiency and cloud properties showed that there is a strong relationship with SST. By 

separating the TD events into those above and below the mean SST for each location, this 

sensitivity was highlighted. For higher SST events, anomalies in cloud LWP of 

precipitating clouds were actually lower than those for lower SST events due to the more 

efficient precipitation process at higher SSTs depleting more of the cloud water. Because 

less cloud water is available to moisten and destabilize the lower troposphere in high SST 

TD events, CAPE values were also lower at high SSTs than at low SSTs. However, 
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GPCP precipitation showed that CAPE is not necessarily a good indicator for the strength 

of the deep convection with higher rain rates occurring at lower CAPE values in the 

warmer SST environment. Strong zonal wind shear appears to play a significant role in 

producing weaker deep convection in low SST environments. 

While we have shown that anomalies in cloud LWP of precipitating clouds 

correspond to heating and moistening prior to deep convection, two major issues remain. 

First, it is not clear from these results whether the initial heating at low levels occurs due 

to the convection or another process. It is possible that there is a feedback effect between 

the initial low-level heating, perhaps due to sensible heat fluxes or advection, and the 

warm rain clouds. From these results, we cannot say for sure whether the clouds lead the 

warming and moistening or whether the low-level warming occurs, which then leads to 

the clouds that enhance the warming and moistening. The second major issue is that 

while the results show that the anomalies in cloud LWP of precipitating clouds are 

coincident with moistening, it is not clear what role turbulent mixing plays in this 

moistening. The amount of extra cloud water available for evaporation prior to the TDs 

is not nearly enough to explain the observed increases in moistening. The maximum 

anomalies in total precipitable water are about 1 to 2 mm prior to the deep convection, 

however, even if all of the anomalous cloud water is evaporated it would only account for 

about 0.1 mm or 10 % of the total increase in moistening. It may be that while 

evaporation of some of the excess cloud water contributes to this moistening, turbulent 

mixing may make an even larger contribution. Due to the sampling limitation of the 

TRMM satellite it cannot be examined here, however, this idea is not necessarily 

inconsistent with our results. It is possible that the less efficient precipitation process 
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leading to enhanced cloud LWP also changes the lifetime of the clouds. Because less of 

the cloud water has been depleted by precipitation, it may be that the cloud is more long-

lived and more moistening through mixing can occur. This will be the subject for future 

investigations using geostationary satellite data where the timescales of the clouds can be 

observed. 

Finally, while there are obvious differences in anomalies of cloud LWP of 

precipitating clouds between low and high SST TD events, clearly SST is not the only 

factor that affects the properties of warm rain clouds. SST has small variations over the 

course of the TD events, however, large changes opposite to the mean variability found in 

LWP with SST also occur throughout the passage of the TDs. Prior to TDs when SST is 

approximately 0.1 K higher than the mean, cloud LWP of precipitating clouds increases 

and after the TD when SST is about 0.1 K lower than the mean, it decreases. More work 

is needed to unravel the different factors that influence warm rain cloud microphysical 

processes and how the relationship between precipitation and cloud production interacts 

with the dynamical environment to modify deep convection. 
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Chapter 5 

Conclusions 

One of the most important goals of this study was to answer questions regarding 

the effects that the precipitation process has on properties of warm clouds. A new 

combined, multi- sensor optimal estimation algorithm was developed using TRMM 

satellite observations to retrieve the cloud LWP of warm clouds when they are 

precipitating. A thorough understanding of the sensitivities and uncertainties in the 

retrieval was required. One important aspect of the input data to this retrieval algorithm 

had larger than expected consequences and was presented in Chapter 2. So that each of 

the microwave channels viewed the same scene, each microwave frequency was matched 

to 19-GHz channel FOV. Resampling the data to a common resolution exposed one of 

the most significant issues in microwave retrievals of cloud properties - the beam-filling 

effect. Differences in using native resolution TBS and resampled TBS in retrievals of 

cloud LWP were found to be about 30%, with this difference being highly related to 

differences in cloud fraction between the native 85-GHz FOV and the resampled 19-GHz 

FOV. Using a synthetic retrieval, the high frequency channels at 37 and 85 GHz were 

found to be responsible for the large differences in LWP. Differences in wind speed were 

also related to the resampling of the 10-GHz channel, as well as the 85-GHz channel, 

which altered the wind speed as compensation for retrieving lower LWP. 
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The results from Chapter 2 illustrate an extremely important problem in 

microwave cloud property retrievals. This had to be considered when developing a 

retrieval for clouds that may not fill the large microwave footprints, like the warm rain 

clouds of interest in this study. To overcome the beam-filling problem shown in Chapter 

2, the algorithm described in Chapter 3 used visible and infrared data from VIRS to 

compute the cloud fraction within the resampled microwave FOVs. By using the VIRS 

data as a cloud mask, the contribution of the cloudy area TBs to the total simulated TBS 

could be weighted by the cloud fraction in the forward model. As expected, using the 

cloud fraction information raised the retrieved LWP and had very little effect on TPW 

and wind speed. 

One of the most important additions to the retrieval algorithm was the inclusion of 

the rainwater from the PR. By using the PR estimates to compute the emission and 

scattering due to the rainwater, the LWP associated with only the cloud water content 

was retrieved. The %2 diagnostic of the OE retrieval showed that both the VIRS cloud 

fraction and PR rainwater information improved the fit of the retrieval with the 

measurements. By combining the retrieved cloud LWP of precipitating clouds and the 

PR rainwater content, the partitioning between the cloud and precipitation and its 

relationship to SST could be explored. 

Results from the retrieval algorithm described in Chapter 3 showed that the cloud 

LWP of warm rain clouds decreases with increasing SST, in agreement with previous 

studies. The ratio of cloud LWP to PR rainwater was also shown decrease with SST in 

warm rain clouds. Together, these two results showed that as the surface temperature 

increases, cloud water is more efficiently converted to precipitation so that less cloud 
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water is available to moisten the lower and middle troposphere. Many studies have 

shown that moistening and preconditioning of atmosphere occurs prior to and may be 

necessary for the onset of deep convection. Since this preconditioning is clearly related 

to the amount of cloud water available to evaporate and moisten the low and mid levels, 

the retrieval algorithm described in Chapter 3 provided a new way to examine the part 

that precipitating clouds play in this preconditioning. 

To investigate the relationship between the properties of warm precipitating 

clouds and the preconditioning, deep convective events associated with TDs were 

identified. TDs occur at short timescales of three to six days, so anomalies in the 

thermodynamic structure and the retrievals of LWP were composited from three days 

prior to three days after the precipitation maxima. At all three locations spanning the 

Pacific Ocean, temperature and humidity both exhibited positive anomalies in the lower 

and mid levels prior to the onset of deep convection. This moistening and warming was 

also coincident with positive anomalies in cloud LWP of precipitating clouds, but almost 

no difference in non-raining cloud LWP. Together, these results suggest that the 

moistening and warming is related to the enhanced LWP in raining clouds, rather than the 

non-raining clouds. As the anomalies in cloud LWP of precipitating clouds increase and 

the low and mid levels are moistened and warmed, a resultant increase in CAPE values 

occurs. This destabilization and preconditioning of the atmosphere increases until the 

deep convection associated with the TD depletes the moisture and cools the lower and 

mid levels. 

The results of the retrieval algorithm in Chapter 3 showed that the cloud LWP of 

precipitating clouds was highly related to the SST. Separating the TD events by the mean 
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SST supported these findings and showed that cloud LWP anomalies were lower during 

higher SST TDs due to the more efficient precipitation process depleting more of the 

cloud water. The results from separating the high and low SST TD events further 

supports our conjecture that the anomalies in cloud LWP of precipitating clouds are 

related to the moistening and heating of the lower and mid levels and subsequent 

increases in instability and CAPE. When the SSTs were low, less efficient precipitation 

processes resulted in higher anomalies in cloud LWP of precipitating clouds, which 

meant that more cloud water was available for moistening as shown by the larger positive 

humidity anomalies at low and mid-levels. More moistening and heating for low SST 

TD events resulted in more instability and higher CAPE values. Combined with the 

findings from Chapter 3, it is clear that SST plays an important role in the relationship 

between precipitation and cloud water and that this affects warm rain clouds' ability to 

help moisten and destabilize the atmosphere for deep convection. 

This study focused on understanding the role of warm rain systems in the Tropics. 

A clear link between SST and the partitioning between cloud water and precipitation in 

warm rain clouds was shown. Results from the algorithm developed in this work also 

highlight the importance of moistening and heating from warm, precipitating convection 

in the destabilization of the atmosphere prior to the onset of deep convection associated 

with TDs. These results are similar to that shown by Benedict and Randall (2007) for the 

MJO, although they operate on a much a shorter timescale of one to three days in TDs, 

rather than one to three weeks for the MJO. While the findings from this study show a 

strong link between temperature, cloud and precipitation properties, and atmospheric 

instability prior to deep convection, obviously there is further study to be done. Results 
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show that positive LWP in warm precipitating clouds are coincident with moistening, 

however it is not clear whether the moistening is due to more water available for 

evaporation or due to the fact that the higher LWP clouds may be more long-lived and 

more mixing can occur. Another issue to address is that despite more instability for 

lower SST TDs, the associated deep convection was actually weaker due to wind shear. 

Across the passage of the TDs, a strong change in the cloud LWP of precipitating clouds 

occurred despite very small variations in SST. Both of these results indicate that small-

scale cloud and atmospheric processes cannot be decoupled from other large-scale 

dynamical processes. How other environmental variables affects warm rain clouds and 

how other factors that influence the timing and strength of deep convection interact with 

the preconditioning effects of warm, precipitating clouds remain areas for future 

investigations. 

The work presented here also provides another example of why there is such 

difficulty in assessing cloud feedback effects. While many feedback studies tend to make 

the assumption that one particular process is dominant (Stephens 2005), i.e., the 

longwave effect due to deep convective anvil cirrus, other effects are considered 

secondary. However, this work suggests that the interdependence of different types of 

precipitating cloud systems cannot be ignored, since the behavior of warm, precipitating 

clouds obviously influences the deep convection. Although other dynamical processes 

and forcings cannot be neglected, clearly warm, shallow convection plays a role in the 

timing and strength of deep convection. With such complicated interactions, more work 

is necessary to ascertain the different factors that influence warm rain cloud properties 

and how much control cloud microphysical and precipitation processes exert on the 
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atmospheric hydrologic cycle and cloud radiative feedback effects. For climate models 

to more accurately estimate future climate sensitivity, a better representation of warm 

rain clouds and their feedbacks on the environment and deep convection will be 

necessary. 
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