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ABSTRACT OF DISSERTATION 

CHARACTERISTICS OF CERTAIN FAMILIES OF RANDOM 

GRAPHS 

Many random network models can be expressed as the product space of the 

probability space of the individual edges. In these cases, the model can be 

expressed using a matrix of the probabilities of each edge. I then analyze 

these models using their respective probability matrices. Degree distribu

tion and the larger eigenvalues are among the attributes whose values can 

be bound by examining the same attributes of the probability matrix. I 

also bound the difference between the eigenvalues of the adjacency matrix 

of a member of a random graph model and the eigenvalues of the proba

bility matrix for the model. In addition I find the neighborhood expansion 

properties for three separate edge-product models. 
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Chapter 1 

INTRODUCTION 

This dissertation begins with an exploration of general applications of 

graph theory. This includes some history as well as current applications 

and some attributes of interest. The second chapter provides an overview 

of random graphs. The third chapter focuses specifically on random graph 

models in which edges are determined independently of each other. It is in 

chapter three that I extend some of what is known about the Erdos-Renyi 

model to other random graph models. Chapters four and five deal with 

specific random graph models. 

1.1 Applications of Graphs 

The study of graphs began with an application to the real world. In 

1736, L. Euler published a paper demonstrating that it was impossible 

to walk through the city of Konigsberg, crossing each of the city's seven 

bridges exactly once. Since then, there have been many studies of graph 

theory that pertain to applications. Outside of the mathematical world, 

however, graphs are usually known as networks. In this thesis, the terms 

network and graph are used interchangeably, with preference being given 

to the language in the appropriate reference document. 
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One of the best-known examples of a real-world network study is S. 

Milgram's Small World experiment [32][44]. In this experiment, a set of 

people were given a letter to somehow deliver to a target, about whom 

several items of information were provided. Information was gathered about 

each participant along the way. The goal of this experiment was to gather 

information about existing social networks. In particular, Milgram found 

that in the cases where the letter was successfully delivered to its target, 

there was an average of six links in the chain. While the social network 

itself was never calculated, these papers did infer information about the 

network. 

M. Newman, in his review paper, "The Structure and Function of Com

plex Networks" [37], notes several applications of graph theory. In partic

ular he notes that social networks have have been studied since the 1930s. 

In a social network, the vertices typically represent people and the edges 

represent some sort of connection. This connection can require marriage 

or parentage, as in the case of a family tree, or it may require only sim

ple contact, as in a network that is used to predict the spread of an easily 

transmitted disease. 

Since there is ambiguity regarding the nature of connection, there are 

issues with accuracy in reporting real-world social networks. As D. Watts 

noted in his book Small Worlds, people do not always agree on whether 

they are friends [47]. Collaboration and communication networks have thus 

been studied as surrogates, since it is possible to obtain reliable data regard

ing such connections as coauthorship [34] [35] [36], appearances in the same 

movie [39][49], or even telephone calls made in a single day [1]. Once we 

have a defined social network, we can then simulate the progress of some

thing that can be communicated such as a disease or an idea. Perhaps it is 
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even possible to find characteristics of such a network that would allow us 

to predict the outcome of some process. 

Similar to social networks are technological networks. Studies here 

have included power grids, roads, airline routes, and, of course, the physi

cal structure of the Internet. Transportation networks have vertices which 

represent locations and edges which represent means of getting to those 

locations, such as roads, railroads, scheduled flights, or shipping lanes. In 

the case of a computer network, the vertices represent computers, routers, 

hubs, and switches, while the edges most often represent physical wires or 

wireless connections. 

A third category given by Newman is information networks. These 

are directed networks in which an edge is placed from vertex Vi to vertex 

Vj if the paper represented by Vi refers to the paper represented by Vj. 

Examples of information networks include citation networks and the logical 

structure of the World Wide Web [3]. A similar network in an ecological 

setting can be found in the flow of water through a watershed. Further 

examples of applications are given in laypeople's terms in the trade books 

by D. Watts [48] [47] and A-L. Barabasi [9]. 

As real-world networks have been examined, many of them have been 

found to possess a power-law distribution for the degrees of the vertices. 

R. Albert and A-L. Barabasi note several of these in their review paper [2]. 

In a graph with a power-law distribution (sometimes called a scale-free 

graph) with parameters a and 7, the number of vertices with degree x is 

approximately eax~1. In particular, the Internet, the World Wide Web, 

the movie actor network, the collaboration network in mathematics and 

neuroscience, and the citation network all were found to have power-law 
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distributions with 2 < 7 < 3. This conclusion is not unanimous as S. Bansal 

et al. argued for an exponential distribution in several social networks [8]. 

1.2 Interesting Attributes 

There are several definitions and useful facts that will be used through

out this paper. This first set of definitions is available in almost any graph 

theory textbook, but these formulations are taken from [17]. 

Definition 1.2.1. A graph G is a set of vertices, denoted by V(G), together 

with a set of edges, E(G), such that each edge is an unordered pair of 

vertices. An edge between two vertices Vi and Vj is denoted by {vi,Vj}. 

Definition 1.2.2. A simple graph is a graph such that no vertex is adjacent 

to itself and there exists at most one edge between any two vertices. 

Definition 1.2.3. For any two vertices vt and Vj, Vi is adjacent to Vj if 

K « j } 6 £ ( G ) . 

Definition 1.2.4. The adjacency matrix of a graph or a digraph is a matrix 

A, in which the entry a^ denotes the number of edges from vertex i to vertex 

j . In an undirected graph, the adjacency matrix is symmetric, so a^ = a^. 

In a simple graph, each either 0 or 1. 

Definition 1.2.5. A path from vertex u to v of length t is an ordered 

sequence of distinct vertices u = VQ, V\,..., vt = v such that for 0 < i < t, 

{vi,vi+l}eE{G). 

Definition 1.2.6. For any two vertices vx,Vj G V{G), the distance between 

Vj, and Vj, denoted by d(vi,Vj) is the shortest path length between Vi and Vj. 
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Definit ion 1.2.7. A graph is connected if for any two vertices Vi and Vj 

there is a path from Vi to Vj. 

Definit ion 1.2.8. In a connected graph G, the diameter ofG is diam(G) = 

max^iV.ev(G) d(vi,Vj). IfG is not connected, diam((?) = max/cie#(G) diam(i^j), 

where K{G) is the set of all connected components of G. 

Definit ion 1.2.9. In a graph G, the average distance of G is the average 

over distances between pairs of vertices. If a graph has multiple components, 

the average distance of G is the average over all finite distances between 

pairs of vertices. 

Definit ion 1.2.10. The degree of a vertex Vj £ V(G), is given by 

dj = \{e £ E(G) such that e = {VJ, Vi) for some v^ 6 V(G)}|. 

Definit ion 1.2.11. The volume of a subset of S C V(G) is defined to be 

Definit ion 1.2.12. The kth order volume of S C V(G) is defined to be 

volfc(S) = £ „ , e s 4 -

Definit ion 1.2.13. The kth order volume of a graph G is 

vo\k(G)=vo\k(V(G)). 

Definit ion 1.2.14. The average degree of a graph G is d(G) = JyL^ • 

Defini t ion 1.2.15. The second-order average degree of a graph G is 

A variety of network attributes have been studied over the past several 

years. Some of these include connectivity, the size of components, distance 

between vertices, degrees of vertices, clustering, degree correlation, and 
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spectrum. While this information is in itself interesting, when it is gathered 

from a real-world network we can learn how different processes may affect 

this network. If a disease hits a social network, these attributes will affect 

how the disease progresses. Likewise, if our network represents a patchy 

habitat, these attributes will determine where an animal can go, along with 

how quickly it can get there. Other processes that have been explored are 

removal processes, in which vertices or edges are removed from the graph 

to see how this changes the attributes of the graph. 

Is a graph connected? If a path exists from each vertex to every other 

vertex, the graph is connected. A process on a disconnected graph cannot 

pass from one component to another, a fact recognized by the application 

of quarantines to prevent disease spread. Likewise, a graph is fc-vertex-

connected if the graph cannot be disconnected by the removal of any k 

vertices. The level of vertex connectivity is often used as a measure of 

robustness for a network. Likewise a graph is called &-edge-connected if 

it cannot be disconnected by the removal of any k edges. The level of 

edge-connectivity would likely be of great interest when examining a trans

portation network. If a graph is not connected, the immediate question is 

how large is the largest component? This information tells us the largest 

number of nodes that any process starting on a single component can affect. 

What is the degree distribution of a graph? The answer to this question 

can inform us how fast a process can take place. If all vertices are of low 

degree, it will take several steps for a process that moves by single steps 

to reach all vertices. For example, if the highest degree in a graph on 

n vertices is 3, a process will take at least [log3(n)] time steps to reach 

every vertex. If, on the other hand, there are a few vertices of large degree 
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(noted in disease modeling papers as superspreaders), then the process can 

drastically accelerate [8]. Another piece of information that is helpful for 

analysis is the distribution of the second-order degree of each vertex, i.e. 

the number of paths of length two which start at each vertex. 

The question of transitivity or clustering addresses the likelihood that 

two vertices are adjacent if each of them is adjacent to a third vertex. This 

notion was first promoted by D. Watts and S. Strogatz [49], who observed 

that many real-world networks appear to have a higher level of transitivity 

than the random graphs which had been developed at the time. In short 

the transitivity, or clustering coefficient, of a graph G, C(G), is given by 

C(G) = AL), where T(G) represents the number of triangles in G and 

A(G) represents the number of adjacent pairs of edges in G. When the 

degree sequence for G is given by {d\, d^,..., dn}, the denominator A(G) is 

simply ~ X^r=i (2)- The clustering coefficient, however, gives a misleading 

characterization of a graph in which triangles are rare but cycles of other low 

degrees are common. One example of this type of network is the (mostly 

bipartite) sexual contact network. If we were to attempt to predict the 

spread of a sexually transmitted disease over a network assuming that the 

near-zero clustering coefficient implies a random structure, we would likely 

fail. 

1.3 Graph Spectra 

Broad bounds exist in the literature regarding some of the eigenvalues 

and their relationships to other characteristics of the graph. Each graph has 

five matrices which are recognized as being of particular concern. Recall 

that the adjacency matrix, A, is formed by letting a^ = 1 if there is an edge 
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from vertex Vi to vertex Vj. The degree matrix, D, is the diagonal matrix 

formed by letting da be the degree of vertex Vi. The combinatorial Laplacian 

is given by L = D — A. The transition matrix is given by M — D~lA. The 

normalized Laplacian is given by 

C = D-WLD-1'2 = I - D-l'2AD-ll2. 

If di = 0 for some i, then the (i, i)th value of D~l is defined to be 0. This, 

of course, occurs only when there is an isolated vertex. 

For a nondirected graph A, D, L, and C are symmetric and real, re

sulting in all of the eigenvalues being real. The matrix M is similar to the 

matrix D~XI2AD~XI2 which is real and symmetric. Thus the eigenvalues of 

M are also real. 

For the purposes of this paper, A,(T) is the ith largest eigenvalue of a 

matrix T and Ht(T) is the ith smallest eigenvalue of T. Since the eigenvalues 

of these matrices are real, the ordering of eigenvalues is done according 

to real values. Thus y,\{A) < mu2(A), while |/ii(^4)| > |/Z2(-<4)|- Since 

/ij(£) = 1 — Aj(M), it is only necessary to determine the eigenvalues of one 

of these two matrices. 

In some ways, the largest eigenvalue of A determines how a process can 

spread. From [17], the spectral radius of a graph G, X\(A), is related to the 

number of walks of length k on G. As k becomes very large, the ratio of 

walks of length k to walks of length A; — 1 is AI(J4). If all walks of length k 

have equal probability, the entries in the unit principal eigenvector indicate 

what proportion of a walk of length k will be on each vertex for large k. 

Also y/(l/n) £ X i $ ^ M-4) < dmax [29][19]. If a connected graph G has 

m edges and n vertices, AI(J4) < \/2m — n + 1 [50] [19]. 
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M. Draief, A. Ganesh, and L. Massoulie found in their 2008 article that 

\\{A) gives specific thresholds for virus spread on networks using an SIR 

model with each infection attempt having probability of success [5: 

Theorem 1.3.1. [21, Theorem 2.1jlf (3\i{A) < 1, then the total number 

of nodes removed in an SIR model, |Y(oo)|, satisfies for any e > 0, and for 

some constant C(e), Pr[|Y(oo)| > v / |X(0) |n1 / 2 + e] < Cn~l, where |X(0)| is 

the initial number of infectives. 

Thus Ai(A) determines whether the infection will spread to some frac

tion of the entire network or be limited to a number of nodes. 

The largest eigenvalue of M is 1. The eigenvector of M corresponding 

to the eigenvalue 1 gives the proportion of time spent on each vertex in a 

random walk [30]. The second-largest eigenvalue of M gives the mixing rate 

of random walks on G, indicating how long it will take to reach the stable 

distribution [30]. Also, from [18], ^(C) > diam(G
1

)vol(G) • 

Another result from F. Chung relates the size of the neighborhood of 

a set S C V[G) to the size of S and /i2(£). Let T(S) = {VJ : 3vt e 

S,{vi,Vj} e E(G)}. Let Sc = {Vi E V(G) : vt <£ S}. Then the following 

holds: 

Lemma 1.3.2. [18][Lemma 6.2] For G not a complete graph, 

voi(r(5)) > i 

vol(S) l - ( l - ( A 2 ( M ) ) 2 ) ^ g l -

This lemma specifically indicates how quickly the neighborhood of a 

set expands. 

Prom N. Alon comes have the following result. For two disjoint sets of 

vertices B and C, let c = —, let b = —, let a be the distance between C 

and B. Then b < 1 + , 2 ( L^m a x C g 2 , or a2 < ^ J ^ . In particular, if C 

and B are both single vertices, then (diam(G))2 < ( n 2 ~ 2 ^ m a x [4] . 
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Chapter 2 

AN OVERVIEW OF RANDOM GRAPHS 

2.1 Definitions 

It is difficult to find a definition of a random graph that is simultane

ously broad enough and precise enough to be useful. F. Chung and L. Lu 

define a random graph as being "a probability space (consisting of some 

family T of graphs) together with a probability distribution (which assigns 

to each member of T a probability of being chosen)" [17]. I find that this 

definition is better suited for a random graph model, with the term "ran

dom graph" applied to a selection from the random graph model. More 

specifically, by adapting R. Diestel's explanation [20] of the most common 

random graph model, we can view any random graph model on N ver

tices as being a probability space {G(N),S, P) where <5{N) is the set of all 

graphs G on the vertex set {t>i,i>2,... ,VN} and the probability measure P 

is determined by the particular model we are using. Once the probability 

measure is chosen, any attribute a of a graph on N vertices defines a ran

dom variable. The advantage of this formulation is that if a maps Q{N) to 

R, then we can talk about the expectation and variance of a. For the ran

dom graph models in which the number of edges between any two vertices 

is determined independently, the probability space for the whole model is 

simply the product space of probability spaces for the individual edges. For 
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models in which the number of edges between each pair of vertices Vi and Vj 

is determined by an independent Bernoulli random variable a -̂, we can set 

up a probability matrix P. To construct this matrix, let pij = Pr(a^ = 1). 

The distribution of the random graph model is then denoted by G(P). In 

this case, the adjacency matrix A is a matrix-valued random variable. 

A random matrix is a matrix whose entries are random variables. Thus 

the matrix itself can be seen as a random variable. When analyzing edge-

product models, we treat the adjacency matrix of G ~ G(P) as a random 

matrix. Thus we can use results for random matrices to characterize edge-

product random graphs. 

Some models of random graphs that have been published recently do 

not fall within this definition, as the algorithms for their construction may 

involve the introduction of new vertices as well as the addition of edges. 

Thus if our random graph model produces graphs iteratively, we use what 

B. Bollobas terms a random graph process [15]: a Markov chain whose state 

space is graphs. In [15], these graphs are on a fixed set of vertices. Since 

models have been introduced which affect the size of the vertex set, we can 

expand the definition by defining Q = \JN>1 G(N) and allowing the random 

graph process to have state space Q. 

There are few real-world examples of networks that could truly be con

sidered random, ad-hoc wireless networks being a notable exception. If, 

however, we find that a large proportion of graphs with certain character

istics behave in some way, we can generalize the effects of a process on this 

type of graph by simulating the process on a set of random graphs that 

share these characteristics, or even by analyzing the model that produces 

such graphs. If, for example, we assume that all social networks have an 
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exponential degree distribution, then we can simulate the progress of a cer

tain disease on random graphs with the proper exponential distribution and 

use the results to predict what will happen in real life. There are two ma

jor assumptions here. The first is that we do not need any characteristics 

other than degree distribution to model this disease with sufficient accu

racy. The second assumption is that the real-world network behaves in the 

same manner as the networks which are drawn from our chosen model. 

One difficulty regarding research into what is already known about ran

dom graphs is that much of the available information is contained in either 

the physics literature or in the literature specific to a particular discipline in 

which random networks are used. One reason for this is that with current 

computing power it is easier to run simulations and analyze the results than 

it is to prove theorems. 

2.2 Published models 

The paper cited by M. Newman in [37] as the first systematic study 

of a random graph, Connectivity of Random Nets [43], was published by 

R. Solomonoff and A. Rapoport in 1951. Solomonoff and Rapoport gave 

a general algorithm for generating a random net with N neurons, where 

each neuron has exactly a axones connecting it to other neurons. Then, 

generalizing to the instance where the average number of axones per neuron 

is a, they proceeded to analyze expected connectivity and the expected 

number of neurons that are at distance k from an initial neuron. Most of 

the analysis in that paper uses the fact that all neurons are qualitatively 

the same, so it suffices to examine only one. Further, they specifically 

take advantage of the fact that the network in the neighborhood of any 
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given neuron is very close to being a tree. In the same paper Solomonoff 

and Rapoport note the usefulness of random graphs in epidemiology and 

mathematical genetics. 

In 1959, P. Erdos and A. Renyi [23] built on previous efforts, exploring 

a model of a random graph with n vertices and m edges. These edges are 

then distributed randomly among the pairs of vertices with equal probabil

ity. This family of graphs was denoted by Gn,m. In the probability space 

formulated in section 1.2, each graph with n vertices and m edges has equal 

probability. In this same paper, an alternative model was suggested, GniP, 

which is now called the Erdos-Renyi model. To generate a graph according 

to Gn^p start with n vertices and fix 0 < p < 1. Then let the adjacency 

of each vertex pair be determined by a Bernoulli random variable a^ with 

Pr(ojj = 1) = p. This graph model is then denoted by Gn<p. Thus the prob

ability measure is supported on the set of simple graphs with |V(G)| = n 

and 0 < E(G) < Q) • The number of edges in a graph G ~ Gn>p is then 

given by a binomial distribution. 

In 1978, E. Bender and E.R. Canfield determined the number of graphs 

with a specific degree distribution [13]. Building from here, M. Molloy 

and B. Reed designed an algorithm for generating a random graph with a 

specified degree distribution by assigning a certain number of half-edges to 

each vertex and then proceeding to pair them randomly [33]. This paper, 

according to M. Newman, introduced the first random graph model to allow 

for a degree distribution that is neither Poisson nor constant [37]. The 

model was then analyzed to find conditions for the formation of a giant 

component of a graph generated by this model. 

According to R. Durrett [22], the first "small-world" graph was devel

oped by B. Bollobas and F. Chung in 1988 [14]. While Milgram had only 
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inferred information about a social network, Bollobas and Chung designed 

a random graph model to have a small average degree and small diame

ter. This model is generated by creating an N-cycle on N vertices and 

then adding edges using a random matching between vertices. The results 

of that paper show that the diameter of such a graph is proportional to 

y/fcgN. 

D. Watts and S. Strogatz published their "small-world" network model 

in 1998 to attempt to better model social networks [49], This model starts 

by establishing a one-dimensional periodic lattice (or ring lattice) of N 

vertices, each vertex having initial degree 2k. This lattice is formed by 

arranging the vertices in a circle and then creating an edge between each 

vertex and its k closest neighbors on each side. An example is given in 

Figure 2.1. Then one of the endpoints of each edge is changed with a 

certain probability, p. In this model, self-adjacencies and multiple edges are 

explicitly prohibited. The structural properties of the graphs are quantified 

by characteristic path length L(p), or average distance between all vertex 

pairs, and the clustering coefficient C(p), the likelihood of two vertices 

being adjacent given that they are both adjacent to a third vertex. While 

it would be expected that a high C(p) is correlated directly with a high 

L(p), Watts and Strogatz found that relatively low values of p (around 

0.01) result in both a high C(p) and a low L(p). While this became the 

standard small-work network and is easily generated for simulation, it has 

significant disadvantages for mathematical analysis. 

The difficulties of analyzing the Watts-Strogatz model led Newman 

and Watts to publish a slightly different model [42], in which the structure 

of a lattice is maintained and an edge is added between each vertex pair 
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Figure 2.1: A ring lattice with 16 vertices and radius 2 

with a certain probability, <j>. In the Newman-Watts model, multiple edges 

between vertex pairs are allowed. This greatly eases the analysis of the 

model, as the probability of events relies on only 2 parameters: N and 0. 

At low values of <fi, they found that the characteristics of graphs generated 

by this model are empirically very close to those of graphs generated by the 

Watts-Strogatz model. 

Further advancement of this type of model occurred when A.D. Bar

bour and G. Reinert [11] analyzed small world networks using a continuous 

circle model. Starting from the parameters N, k, and p from the Watts-

Strogatz model, we embed a network of N vertices in E2 as a circle of 

circumference N and assume that the given radius k is the distance around 

the circle that a process can move in one step. We then insert a set of 

random chords, the number of which is determined by a random variable 

drawn from a Poisson distribution with mean nkp. The chords are then 

treated as having length zero. This then provided some level of rigor to the 

information that had already been gathered empirically. 
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In 1999, Barabasi and Albert [10] published a preferential attachment 

model in order to try to replicate the power-law distribution they and others 

had found in various networks that were found empirically. This model 

starts with a small number of vertices in place and then iteratively adds 

a new vertex with a certain degree. Edges are then assigned between the 

new vertex and the existing vertices according to a formula that makes it 

more likely for a vertex with a higher degree to receive a new edge than a 

vertex with a lower degree. This was an attempt to provide the mechanism 

for the power-law distribution of vertex degrees that had been observed in 

multiple settings, such as the World Wide Web and collaboration networks. 

The guiding principle for this model is "the rich get richer". 

In their 2000 paper [1], W. Aiello, F. Chung, and L. Lu proposed a 

model for a generalized random graph, G(w). To generate a graph using 

the Cr(w) model, start with a sequence of expected degrees, u>i,... ,w^, 

for N vertices, vi,...,vn. The probability that any two vertices t>; and 

Vj are adjacent is then given by WiWjpw, where pw = Y2k=\wk- ^n order 

for none of the probabilities to be greater than one, it is necessary that 

maxjtyf < X^=i wk- The G(w) model is a probability space on G{N), be

ing the product space of the individual edges. This model was initially used 

to analyze graphs whose degree sequences obey a power-law distribution. 

It can, however, be applied to most degree sequences. Unlike earlier algo

rithms which resulted in a power-law degree distribution, this model does 

not try to mimic how any real-world network might be formed. 

This is by no means an exhaustive list of random graph models. These 

models are those which pertain most directly to the present work. The 

models examined in this dissertation are either modifications or analogs of 

those presented above. 
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The following definitions apply only to random graphs. 

Definition 2.2.1. The expected volume of a random graph G is denoted by 

Vol(G). 

Definition 2.2.2. The expected kth-order volume of a random graph G is 

denoted by Volfc(G). 
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Chapter 3 

RESULTS FOR ALL EDGE-PRODUCT 
RANDOM G R A P H MODELS 

In the case of an edge-product random graph model, we can obtain 

probability bounds for several attributes of the realizations of that model. 

The expected degree of any vertex vt is the sum of the entries in the ith 

row of the probability matrix. The expected eigenvalues of a graph chosen 

according to a given probability matrix are not generally the eigenvalues 

of the probability matrix, though the eigenvalues of the probability matrix 

do provide bounds for the expected eigenvalues. This is particularly useful 

because it is much easier to find the spectrum of a single matrix than it 

is to find the spectra of several matrices. If our goal is to determine how 

a process will run on a certain type of network we can use the informa

tion gathered from the probability matrix to predict the probability of the 

process achieving a certain result. One example would be whether an SIR 

disease process will affect more than a fixed number of nodes. 

3.1 Degree distributions of edge-product random graphs 

There is a set of properties regarding degree distribution which hold 

true for all random graph models that can be generated from any probability 

matrix. Let P be a symmetric matrix with each p^- G [0,1]. Let Q(P) be 
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the product space of the probability spaces generated by a^ = a^ and 

dij ~ Ber(py). Let G ~ ^ ( P ) . Recall then that the adjacency matrix A 

is a matrix-valued random variable. Most of these distribution bounds are 

derived from the Chernoff inequalities listed in the appendix. 

Lemma 3.1.1. (Analog of [17, Lemma 5.6]) For a graph G ~ G{P), let 

Wi = YTj=lPij- F°r 0,11 C> 0, 

degree di of vertex Vi satisfies 

Wi = Y?j=iPij- F°r °^ c > 0) with probability at least 1 — exp (—c2/2), the 

di > Wi~ Cy/W~i. 

With probability at least 1 — exp f — 2n+c/(3+ fSP» )> ^ satisfies 

di < Wi + C\Jw~i. 

Proof. This lemma is a direct result of the fact that Wi is the sum of inde

pendent Bernoulli random variables. Apply Theorem A-l to X)?yi a u w ^ n 

A = Cy/wi, giving the desired result. • 

We gain from this lemma a probability distribution for the degree of 

each vertex. 

Lemma 3.1.2. (Analog of [17, Lemma 5.9]) For G ~ G(P) and for 

0 < c < y/Vol(S), with probability at least 1 — 2 exp (—3c2/7), the volume 

of a subset S C V{G) satisfies |vol(5) - Vol(5)| < c^/Vol{S). 

Proof. Let Sc = {v £ V(G),v £ S}. We can view vol(S') as a sum of 

independent random variables: 

vol(S) = J2 J2 av= Yl aio + 2 Yl air 
vi£Svj£V{G) VieS,Vj€Sc i<j,Vi,VjeS 
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By definition, the expected value of vol(5) is Vol(S'). Let A be the 

adjacency matrix for G. In order to bound the volume using Theorem A-4 

and Theorem A-5 we must know E\^2,Vi&s S?=i(ati)2]- Using the fact that 

each Oy ~ Ber(py) and so ay- = ay-, we have 

E 
Vi€S Vj&S Vi€S,Vj€S,i<j Ui£S,Uj€5c 

< 2£[vol(S)]. 

Since we have assumed c < i^/Vo^S1), Theorem A-4 gives us 

c2Vol(S) 
Pr[vol(5) > Vol(S) + cy/Vol(S)] < exp 

2(2Vol(5) + 2CyVop)/3)_ 

< exp (-3c2/16) . 

Likewise, from Theorem A-5, 

Pr[vol(S) < Vol(S) - c^/Vol{S)} < exp (-3c2/16). 

D 

This lemma gives us bounds on the volume of a set of vertices. Further, 

if we let S = V(G), we then have the following corollary. 

Corollary 3.1.3. (Analog of [17, Lemma 5.8]) For G ~ G(P) and for 

0 < c < y/Vol(G), with probability at least 1 — 2exp (—c2/6), the volume of 

G satisfies |vol(G) - Vol(G)| < cy/Vo\(G). 

3.2 Spectra of edge-product random graphs 

Some work has been done regarding the spectra of specific random 

graph models. This work has been either empirical in nature or related 
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only to models without any intrinsic structure, e.g. those for which all 

vertices of degree m have the same probability of being adjacent to any 

given vertex. I. Farkas et al. noted that for G ~ Gn<p, the eigenvalues of 

A(G) follow a semicircle distribution other than in the case where n is large 

p is small [24]. In this same paper, they described the distribution of the 

eigenvalues for the Watts-Strogatz model as having several sharp maxima 

for low values of p, attributing this to the remnants of the initial lattice. 

Since most real-life networks have a structure which is denned by more 

than the degree sequence, it would be good to find a unified theory for all 

edge-product random graph models. To this end, we use the Courant-Weyl 

inequalities to determine the maximum difference between the ith largest 

eigenvalue of a probability matrix P and the zth largest eigenvalue of the 

adjacency matrix of a graph obtained from the model described by P. 

Theorem 3.2.1. [19, Theorem 2.1] For all symmetric matrices S and T, 

Xi+j+1(S + T)< Xi+1(S) + Xj+i(T) and 

Xn-i-jiS + T)> Xn^(S) + Xn-jiX). 

The consequence of Theorem 3.2.1 that will be used most heavily is 

\\i(S)-\i(T)\<\i(S-T). (3.2.1) 

Thus we can bound the distance of any Xi(A) from Aj(P) by the spectral 

radius of A — P. Also, if the random variable with the greatest variance 

has expected value a, then Xi(A — P) < X\(B — a(J — I)), where B ~ Gn,a 

and J is the all Is matrix. While direct application of this theorem does 

give us some bounds, we can do better. 

The following statements from N. Alon et al, Z. Fiiredi and J. Komlos, 

and V. Vu provide a means of finding probability bounds for X\(A — P). 
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Proposition 3.2.2. [5, Theorem 1 and concluding remarkjLet M be an 

nxn symmetric random matrix with each m^ a random variable supported 

on [0,1]. For every integer 1 < s < n, the probability that \S(M) deviates 

from its median by more than t is at most 4exp (—t2/8s2). 

Since the conditions for this theorem require that for 1 < i < j < n, 

mij = niji be independent real random variables with m^ 6 [0,1], this 

result cannot be applied directly to either the combinatorial or normalized 

Laplacian matrix of a random graph family. On the other hand, the results 

of this proposition do not depend on n or on the variance of the random 

variables. Thus when the expected eigenvalues are large, Proposition 3.2.2 

is effective for providing bounds that are small relative to the size of the 

expected eigenvalues. 

Suppose G ~ Q{P). Let A be the adjacency matrix of G. Let of7- = 

Pij(l — Pij), the variance of a^, and let a2 = maxlcr^}. Let Q = A — P. 

From Z. Fiiredi and J. Komlos [25], we have for k < a^-^n1/6, 

Pr[Aj((2) >2as/n + c] < ^ ( 1 - r—-£= J (3.2.2) 

£ ̂ exp ( w f e - c ) (3'2-3) 
This inequality of Z. Fiiredi and J. Komlos is an intermediate result 

on the way to their theorem which allows the probability of the second 

eigenvalue being less than the given bound to go to 1 as n —» oo: 

Theorem 3.2.3. [25, Theorem 1] For a symmetric random matrix A, with 

each aij having a common expectation /J, and variance a2, with probability 

tending to 1, max,>2 |A;(yl)| < 2ay/n + 0(n 1 / 3 logn) . 
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Theorem 3.2.4. [25, Theorem 2] Under the conditions of Theorem 3.2.3, 

in case JJ, — 0 we have maxi<j<n |Aj(A)| < 2o~y/n + 0(n 1 / 3 logn) (with 

probability tending to 1). 

V. Vu then generalized inequality (3.2.2), again letting n —> oo for the 

theorem, to allow for k < <71//3n1,/4, giving the following: 

Theorem 3.2.5. [46, Theorem 1.3] Let a and Q be defined as for equa

tion 3.2.2. Then there exists a constant c — c(a) such that 

Ai(Q) < 2a^, + cn1/i\nn 

holds almost surely. 

In addition, we know that the largest absolute eigenvalue of a matrix is 

an operator norm. Thus the following holds for any two symmetric matrices 

S and T of equal dimension, 

Ai(S + r ) < A 1 ( S , ) + A1(T). 

If we are looking at a random graph model which uses k different proba

bilities, this can be used to our advantage by letting Aai be the adjacency 

matrix of edges that occur with probability on. Then, letting Pai be the 

probability matrices with their respective a; entries, 

k 

Ai(A-P)<5]A1(/l t t,-PaJ. (3.2.4) 

We can then use inequality (3.2.2) to find probability bounds for each 

Ai(Aai — PQi). This method will only be helpful with a small number 

of distinct probabilities. This will be applied to models with 2 distinct 

probabilities of adjacency in section 5.2. 
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In the special case of G„iP, we get slightly better bounds on eigenvalues 

than the current known results. Z. Fiiredi and J. Komlos used a procedure 

very similar to rinding the largest eigenvalues of A — P to get their results for 

the distribution of the smaller eigenvalues of G ~ G„vP [25]. They, however, 

used the fact that A2(̂ 4) < Xi(A — pj), where J is the all-ones matrix. 

Using the fact that \2{P) = —p and the results of Equation 3.2.2, 

however, we have the following: 

Corollary 3.2.6. For G ~ Gn,p, 

Pr [\2(A) > 2aV^ - p] < v^ (1 - ^ = J 

where a2 = p(l — p). 

Since the difference between Theorem 3.2.3 and Corollary 3.2.6 is a 

constant, there is no improvement on the theorem itself. The only improve

ment is found when trying to calculate the upper bound of \z{A) for a 

particular model. 

3.3 Constructing a probability matrix for a patchy habitat prob
lem 

Prom the previous results we can construct a probability matrix that 

will generate a random graph model with a certain set of desired attributes. 

The expected degree of each vertex is controlled completely by the sums of 

the probabilities of the individual edges. We also have some control over the 

eigenvalues of the adjacency matrix through the Courant-Weyl inequalities 

as given by Inequality (3.2.1). 

If our desired network should always contain {vi,Vj}, then we set 

Pij = 1. Likewise, if the desired network should never have {VJ, Vj}, then we 
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set pij = 0. One particular application of this is modeling the boundaries 

of a patchy habitat. It has been noted that it is necessary to to allow for 

the influence of the boundaries of a study area [7]. The network models 

discussed by D. Urban et al. in their review article [45] do not address the 

issue of network boundaries. 

Suppose there is a study area containing habitat patches for a given 

species that has a range larger than the study area. We might know all 

of the connections between the habitat patches within the study area. We 

may also know from which patches the species can leave or enter the study 

area. In order to model the boundary, we invent other patches that are 

outside the study area and assign probabilities of connections between the 

known patches and the invented patches using whatever data is available. 

It is important to note that these probability values need not be the same. 

An example of this is given in figures 3.1 through 3.4. 

We can then establish the spectrum of P and the spectral radius of 

A — P. For the simplified case of one distinct probability, m "outside" 

nodes, and r "inside" nodes which can connect to the "outside", A — P 

has a spectral radius at most 2>/(r + m)p{\ — p), which is the spectral 

radius of A - P for G ~ Gm+rjP. Thus, any attributes of a network that are 

correlated with the spectrum are then bounded. If, for example, we consider 

the progress of an introduced species to be similar to a disease process 

(with low probability of "recovery" if there are not attempts to eradicate 

the species from the patches), we can apply the results of Theorem 1.3.1 to 

find out whether this species will spread through the network or if it will 

remain confined to a few patches. 

One reason for proceeding in this manner rather than by modifying 

movement parameters between the patches within the study area is that 
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Figure 3.1: A simple set of habitat patches 

/ 0 1 0 1 1 0 0 0 \ 
1 0 1 0 0 1 1 0 
0 1 0 0 0 0 1 0 
1 0 0 0 0 0 0 1 
1 0 0 0 0 1 0 1 
0 1 0 0 1 0 11 
0 1 1 0 0 1 0 1 

\ 0 0 0 1 1 1 1 0 / 

Figure 3.2: The adjacency matrix for the graph in Figure 3.1 



Figure 3.3: A simple set of habitat patches with added "outside" patches. 
The dashed lines indicate edges that exist with some probability p G (0,1). 

27 



/ 0 1 0 1 1 0 0 0 1 p O p \ 
l O l O O l l O p l p O 
O l O O O O l O O p l p 
l O O O O O O l p O p l 
1 0 0 0 0 1 0 1 0 0 0 0 
0 1 0 0 1 0 1 1 0 0 0 0 
0 1 1 0 0 1 0 1 0 0 0 0 
0 0 0 1 1 1 1 0 0 0 0 0 
l p O p O O O O O p p p 
p l p O O O O O p O p p 
O p l p O O O O p p O p 

\ p O p l O O O O p p p O / 

Figure 3.4: The adjacency matrix for the graph in Figure 3.1 

the use of a random graph model allows for the elimination of a species 

within the study area followed by a natural return from outside the study 

area. This would be useful when deciding whether an invasive species is 

likely to establish itself within the network despite efforts to remove it from 

each patch. We can account for any such efforts by establishing a higher 

"recovery" rate. 
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Chapter 4 

THE MODIFIED CHUNG-LU MODEL 

The G(w) model as described previously allows for each vertex to be 

self-adjacent with probability wfpw. Since self-adjacency in real-world net

works is often either much higher or much lower than this, I have modified 

this model slightly so that self-adjacencies are avoided. In the modified 

Chung-Lu model, G(u) on G(n), we start with an n-dimensional vector u.. 

The probability that any two vertices Vi and Vj are adjacent is then given 

by 
\UiUjp for i^ j 

Pij = < n , . . . where 
10 tor i — j 

n 

Like the G(w) model it is necessary that Ui < \/YlTj=iuj f° r a ^ -̂ The 

G(u) model does then avoid self-adjacency, but at the cost of simplicity of 

results. For example, the expected degree of vertex vt is given by 

E[di] = Wi = Ui- u\p. (4.0.2) 

As the G(u) model is based on the G(w) model, this chapter is based 

largely on the work of F. Chung and L. Lu in [17]. Some of the lemmas 

that were developed for G(w) have been redeveloped here for G(u) with 
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explicit probability bounds. In this chapter we first look at bounds for the 

volumes of sets of vertices. We will then find probability bounds for the 

volume of the neighborhood of a set of vertices. We will finish our tour of 

this particular random graph model with a look at a special case: G„iP. 

4.1 Bounds for the volumes of sets 

Several bounds exist for specific attributes of G(u) relating to the vol

ume of a set of vertices and the number of edges between sets of vertices. 

We would like to know the number of edges between any two subsets, 

S and T of V(G) where G ~ G(u). If these two subsets are disjoint, then 

the probability that any given edge has an endpoint in S is v°uG\ • The 

probability that the other endpoint of this edge is in T is V°1(GI • So the 

probability that any given edge has one endpoint in S and one endpoint 

in T is °VolLG( • Since the expected number of endpoints is Vol(G), the 

expected number of edges between S and T is °Vol(-G) • 

If S fl T ^ 0, further definition is needed regarding the counting of 

edges. Let 

e(S,T) = \{{vi,Vj} : Vi G S,Vj e T}\. (4.1.1) 

This definition does count each edge with both endpoints in S 0 T twice. 

For G ~ G(w), we find that e(S,T) = Vol
v^ )

1gj ( r ) from the fact that the 

proportion of endpoints of E(G) in S is V°J J , the proportion of endpoints 

of E(G) in T is J g g , and the total number of endpoints of E{G) is Vol(G). 

The model G(w) is not so well behaved. In order to give the general case, 

we must account for the fact that if vertex Vk is in STlT, then Equation 4.1.1 

includes a non-zero probability of an edge from Vj~ to itself. An exact for

mula for E[e(S, T)] is given by (J2Vi€s
 ui)Q2Vj€T w j)p-(Efcesnr u\p)i w h i c h 
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unfortunately does not appear to translate nicely into terms of expected 

volumes. We therefore need to introduce a new quantity. 

Definition 4.1.1. For G ~ G{u), and S C V{G), Vol(S) = £„ . 6 S Ui. 

Likewise, Vol(G) = Vo\(V(G)) = EVi€V{G)ui- We als° denote (Vol(-S))'c by 

Vo\k{S). 

Note that p = -^1 . The quantity Vol(G) is the expected volume of G 

in the G(u) random graph model. Since we have eliminated the possibility 

of self-adjacency in the G(u) random graph model, Vol(G) > Vol(G). 

In order to find the probability that there is no edge between S and T 

when 5 and T are disjoint, we need to describe the neighborhood of a set 

S. Let Sc denote V{G) - S. 

Definition 4.1.2. For S C V(G), the neighborhood of S, denoted by T(S), 

consists of all vertices adjacent to some vertex in S, but not in S; 

T(S) = fa e Sc : 3vt G S such that {vuVj} € E(G)}. 

Lemma 4.1.3. (Analog of [17, Lemma 5.12]) For G ~ G(u) and for any 

two disjoint subsets S and T C V(G), 

Pr[r(5) n T = 0] < exp(-Vbl(S)Vol(T)p). 

Proof By definition, E v es u * = Vol(5), Ylv€Tuj = Vol(T), a n d 

Pr[{uj, Vj} e E(G)] = UiUjp. 

Since the presence of each edge is determined independently, 

Pr[r(S) n T = 0] = H (l-uiUjP) 

< exp I - ^2 uiuoP I 
Y ViZS.v-jiET J 

= exp (-Vol(S)Voi(7>) . 
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• 

We can also find bounds for the number of edges between any two sets. 

Lemma 4.1.4. For G ~ G{u), and for S,T C V{G), 

Vol(G) fce^r 

Proof. By definition, e(S,T) - E ^ e s ^ e r - s ^ u + ^ ^ s . ^ r n s ^ y w h e r e 

Xij ~ Ber(pii3-). So 

E[e(S,T))= J2 WiP 

= Yl UiUJP~ Yl UkP 
Vi€.S,Vj£T vkeSnT 

\J2u>) \Ylunp- H u 

\vteS / \vjeT J vk€Sr\T 
Vol(S)Vol(T) v ^ 2 

Vol(G) u f c€5nT 

D 

With the expected value in hand, we can find bounds for the distribu

tion. 

Lemma 4.1.5. For G ~ G{u), let S,T C V(G). Then for 

0 < c < ^ g g m , e(5, T) *at»/Zu 

e ( S , r ) - ( w ( S ) W ( 7 > - ] T u ^ j > c ^ /vb l (5 )W(T)p 
V fceSnr / 

-3c 2 

< 2exp ( — 
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Proof. Let e = e(S, T). Applying Theorem A-3 with A = Cy/E[e(S,T)}, we 

have 

Pr | e - E [ e ] | >c^/E\e) < exp 

< exp 

2(l + c / 3 v / £ M ) , 

3c2 ' 

Substituting the value obtained in Lemma 4.1.4 for E[e(S, T)], we have our 

result. D 

We can now apply this information to determine the expected number 

of edges within a set S C V(G), applying Lemma 4.1.4 to the special case 

of T = S. 

Lemma 4.1.6. For G ~ G{u) with Vol(G) > 0 and S C V(G), 

• 2 , . — -

E[e(S,S)] = 
Vol (S) - Voh(S) 

Vol(G) 

Thus we can achieve probability bounds for the number of edges within 

a set SC V(G). 

Theorem 4.1.7. For G ~ G(u) and S C V(G) and for all 0 < c < 

2vVr^ ' ™ ^ probability at least 1 — 2exp(—3c/7), f/ie number of 

edges from S to itself satisfies /<-. <« Vol (S)-Vol a(5) 
^ ' ^ Vol(G) < 

c . /Vol (S)-Vol2(S) 
Vol(G) • 

Proof. By Lemma 4.1.6, e(5r, 5) is a sum of independent Bernoulli random 

variables with E[e(S,S)] = ^'\?.~Yfa(g) • Let e = e(S,5) . We can then 
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apply Theorem A-l using 

Pr | e - £ [ e ] | > c / e [ e ] <exp _ icvm? 

exp 

exp -

2E[e} + c/E\e\/3/ 

3c2E[e] \ 

'6E[e}+c^/E\e\) 

3c2 \ 

6 + cy/E\e} 

< exp | - y ) . 

n 

We can also find probability bounds for the volume of a set. We first 

find the expected volume of a set S C V(G) in relation to Vol(5) and \S\. 

This will prepare us to be able to work on the problem of neighborhood 

growth. 

Lemma 4.1.8. For G ~ G{u) and for S C V(G), 

Vol(S) - min <Jy Vol(G), \S\\ < Vol(S) < Vol(S). 

Proof. From Lemma 3.1.1 and Equation 4.0.2, 

Vol(S) = Y, 0* - U"P) 
Vi€S 

Vi€S 

Since each u* < y/Vo\(G) and Vol2(5) < Vol2(G), 

Vol(S) - p Y ui > ™(S) ~ P • min{(Vol(G))3/2, |S|Vbl(G)} 

= Vo\{S) - min{VVol(G), |5|}. 
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Further, since pJ2Viesul > °> Vol(5') < Vol{S), giving 

Vol(S) - min{^Vol(G), \S\} < Vol(S) < Vol(S). 

D 

With the expected volume of a set in hand, we can then pursue prob

ability bounds for the volume of a set. 

Theorem 4.1.9. ForG~ G(u) , S C V{G), andc < (Vol(S)-yJVol(S))3, 

with probability at least 1 — exp(—3c/7), the following hold: 

Vol(S) - VVol(S) - — < vol(S) 
Vol(S) - y Vol(S) 

vol(S) < Vol(S) + 
Vol(S) - y/vol(S) 

Proof. By Lemma 4.1.8, Vol(5) - y/vo\(S) < Vol(S) < Vol(S). 

Thus we can apply Theorem A-2, using A = Vol
c,g), which gives us 

Pr |vol(5)-Vol(5)| > < e x p | _ ; ( ^ ' ( S ) ) : 

Vol(5)J - * V 2Vol(5) + (c/3Vol(5)) 
3c2Vol(5) \ 

6(Vol(5))4 + cVol(5)7 
3c2 

= exp j -

= exp 
6(Vol(5))3 + c 

< exP ( - y ) • 

Since Vol(S) > Vol(S) - y/Vol(S), ^ < ^ ( a ) _ c ^ ( s ) , which com-

pletes the inequality. 

• 
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We also can achieve alternative bounds that are based also on \S\. This 

would prove useful if y Vol(S') > \S\. 

Theorem 4.1.10. For G ~ G(u), for S C V(G) such that 

\S\ < min{^/vol(G),Vol(5)}, and for c < (Vol(S) - \S\)3, with probability 

at least 1 — exp (—3c/7), 

Vol(S) - \S\ - ^—^ < Vol(S) < Vol(S) + ° 
Vol(S) - \S\ Vol{S) - \S\ 

Proof. By Lemma 4.1.8 Vol(S) - m i n | y / \ ^ l ( G ) , | 5 | | < Vol(5) < Vol(5). 

Thus we can apply Theorem A-2, using A = VouS), which gives us 

(c/Vol(5))2 

Pr | v o l ( S ) - V o l ( S ) | > C 

Vol(5)J - e X P l 2Vol(5) + (c/3Vol(S)) 

/ 3c2Vol(5) 

~ e X P V 6(Vol(5))4 + cVol(5) 

/ 3c2 

~ e X P ^ 6(Vol(5))3 + c 

• 3c < exp 
7 

Since V o l ( 5 ) > V o l ( 5 ) - | 5 | , ^ < ^ - ^ . D 

Note that if Vol(S) < | 5 | , then at least one vertex u* G S has expected 

degree less than one. Thus, in this case, we expect at least one vertex in S 

to be isolated. 

4.2 Neighborhood Expansion of G(u) 
(Adaptations of [17], section 5.6 to G(u)) 

The prevalent cause of interest in the study of graphs is a desire to know 

how processes work on these graphs in order to apply this knowledge to real 

life networks. Two problems in the field of ecology for which graphs are 

used are determining disease spread among a population and determining 

36 



the spread of invasive organisms across a set of habitat patches. Both of 

these questions are related to neighborhood expansion. 

Recall the definition of the neighborhood of S C V(G), Definition 4.1.2. 

We also consider the neighborhood of a neighborhood. The kth neighbor

hood of S is denoted as follows: T°(S) = S and for k > 1, Tk{S) = 

r{Tk-\S)). Note that by definition, for k > 1, Tk{S) C Tk+2{S). It is, 

however, entirely possible for there to exist a vertex Vi such that vt £ S, 

but Vi $ V2(S), by having Vi be adjacent only to other members of S. In 

this case, if G is connected, V{ is in Tk(S) for some k > 2 and then also in 

T f c + 2(5). 

For this section we will assume that we are working with a set S such 

that Vol(5) is relatively small compared to Vol(G). In particular, we assume 

that there exists some a such that 

Vol(S)unW> < a < 1. (4.2.1) 

Lemma 4.2.1. For G ~ G(u), for a given set S C V(G) and a vertex 

Vj 0 S, and for a satisfying Inequality (4.2.1), 

Vol(S)ujp - a2 < PT[VJ e r (5)] < Vo\{S)ujp. 

Proof. From the proof of 4.1.3, 

Pr[vj?T(S)]=l[(l-uiuip) 

Vi€S 

= 1 -UjP^Ui + lfjp2 ^2 UhUi2~U)p3 X ] uhui2
ui3 + ••• 

Note that 

^ uhUi2...uik < Y2 Ui) =Vol(S' ) . 
Vil,...,vik£S \yi1,...,ViheS J 
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Thus 

U)PH J2 uilUi2...uik < {ujPm(S))h. (4.2.2) 

Therefore u)pk £ilii2i... | ifc uhuh ...uh < ak. 

Since a < 1, the absolute values of the terms of the alternating series in 

equation (4.2.2) are bounded by a controlled decreasing sequence. 

Thus 

Prfo G T(S)} = 1 - Prfo * T(S)} 

> ujPVd(S) - u)p2 ( V o l V ) - Vol2(S)) 

> UjpVo\(S) - a2. 

Likewise, since the absolute values of the terms of this alternating series in 

equation (4.2.2) are bounded by a controlled decreasing sequence, 

P r [^ G T(S)] < UjpVol(S). 

D 

The expected degree of a vertex given that it is in some neighborhood is 

not quite the same as the expected degree of a vertex without that condition. 

Lemma 4.2.2. For G ~ G(u), for a given set S C V(G) and a vertex 

Vj £ S, and for a satisfying Inequality (4.2.1), Uj — ujp < E[dj\vj 6 T(S)] < 

uJ-u
2

P + u3p^l(S)(l-z^^). 

Proof. According to Bayes' Theorem, for any variable A and any event B, 

E[A) = E[A\B}Pv[B} + E[A\Bc]Pv[Bc}. Thus E[A\B] = ^ l - W j i r ^ 0 ! , 
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We apply this equation using A = dj with B being the event Vj £ T(S), 

E[dj\vj eT(S)} 

Prfo 6 r(5)] 

Let 0j(S) = Ptlv%r(S)] a n d l e t P = P r t u j e r ( s ' ) ] - T h e n 

Eld^eTiS)} 

\ui6V(G) \«i6V(G) u*eS 

= Pj(S) (Vol(G) - uj - (1 - p)(Vol(G) - Vol(S) - uj-)) 

= 0j(S) (Vol(G) - U j - Vol(G) + Vol(S) + u,-+ 

(Vol(G) - Vol(S))p - Uj PT[VJ £ r (S)]) 

= # ( S ) (Vol(5)(l -p) + Vol(G)p - uiJD) 

u j P V o l ( g ) ( l - p ) , 

2 (ujP\k>\(S) — ' 
= Uj - uJ/0 + I — — - U^Vo^S) 

< Wj + ujPVo\(S) [ 1 l 

= Uj — UjP + UjpVo\(S) I 1 

ujPVo\(S)-a\ 

1 

UjpVol(S) - a2 J 

S i n c e wvSKW-p) > 0 ) £ ^ . e r ( 5 ) | > u . _ u2p = w._ u 

If a is small, then E[dj\vj G T(S)] is very close to Uj. 

Corollary 4.2.3. For G ~ G(it), /or a gwen set S C V(G), /or a <?roen 

vertex Vj € T(5), /e£ a satisfy Inequality (4.2.1). Then with probability 

at least 1 — exp [—-§-), dj > Uj — ujp and with probability at least 1 — 

e x P (-2(i+c/(C3+v^-))) - ^ < u3 - ujPVol(S) (—^^ - l ) + Cy/Sj. 
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Proof. We apply Theorems A-4 and A-5 with A = c^/uj, recognizing that 

Uj > Eldjlvj £ T(S)]. O 

In the case of a set consisting of a single vertex, S = {vi}, we have 

Pv[dj = X\VJ e T{S)] = Pr[d,- = x\Xtj = 1] 

_ Pr[(d,- = x) n (Xij = 1) 

PrlXij = 1] 

E r = i {uiUjpPT [EvitsXiJ = x - !]) 

= Pr 

UiUjP 

J2 Xij=x-\ 
viesc 

If Uj is small, this particular operation will almost shift the distribution up 

by one; Pr[dj = X\VJ € T(S)] « Pr[dj = x - 1], 

L e m m a 4.2 A. (Analog of Lemma 5.14 in [Itf) For G ~ G(u), /or a given 

set S C V(G), and for a satisfying Inequality (4.2.1), the expected volume 

ofF(S) satisfies 

Vo\2(S
c)Vol(S)p < Vol(r(5)) < p(Vol{S) + a) (Vol2(5c) + Vol(5 c ) ) . 

Proof. From the definitions of expected volume and T(S), 

Voi(r(5)) = ]T Eldj\v> e r^Prfo e r(5)l 

- ] C ((UJ ~ ^VX^VoK-S') - a2)) by Lemma 4.2.2 

> ]T KVol(5)) 

= Vol2(5c)Vol(5) /9. 
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Since Vol(S) < Vol(S) < Vol(S) + a, 

Vol{F(S)) = J2 E\dj\vi e r(5)l FvivJ e r(S)) 
vrfS 

< £ ( (« iPW(5)) ( *j - u)p + ujPV6L(S) ( 1 ^ J -
v#s \ \ \ ujPVol(S) - a\ 

< Y^ (ujpVoliS^Uj - u)p + UjpVo\(S) - 1)' 

< £ ( ( ^ + l)pVd(S)x )Wj 

< p (Vol(S) + a) (Vol2(5c) + Vol(Sc)) 

D 

There is an immediate corollary about neighborhood growth. 

Corollary 4.2.5. For G ~ G(u) and for a given set S C V(G), 

v*<sC" * VjWrs i1+^m)(VoWsC)p+:) • 
Proof. This is proven by dividing the results of Lemma 4.2.4 by Vol(.S') and 

recognizing that Vol(Sc)p < 1. • 

Proportionally, the difference between the upper and lower bounds 

is greatest as Vol(S) approaches ^ 5 i . Also, if Vol(5c) is very close to 

Vol(G), the lower bounds match the results given in Lemma 5.14 in [17]. 

In order to bound the volume of T(S), it is necessary to determine the 

covariance of combinations of random variables. In general, if Xi,..., Xm 

and Yi,...Yn are random variables, then 

( 77i n \ m n 

t=l j=l / i=\ j=\ 
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Also, in general, if X\,..., Xn are random variables, then 

n n n 

V a r ( ^ X i ) = ^ ^ C o v ( X i ) X i ) 

n 

= Yl V a r ( * o + 2 E C o v ( X i ' **)• 
i=l i<j 

Lemma 4.2.6. For any random variables X\, X2, Y\, Y2, Z\, and Z2 

which are pair-wise independent other than (Y\,Y2), {Xi,Zi), and (X2,Z2), 

Qov{Xx + Y1Z1, X2 + Y2Z2) = E{Z1Z2}COY(Y1, Y2) 

Proof. By the definition of covariance, 

C o v ^ + Y,ZU X2 + Y2Z2) = E[{X, + YlZ1)(X2 + Y2Z2)) 

- E\XX + Y1Z1]E[X2 + Y2Z2] 

= E[X\X2 + X\Y2Z2 + X2Y\Z\ + Y\Y2Z\Z2\ 

- (EIX,} + E^Z^E^] + E[Y2Z2}) 

= ElX.Xi] + E[XXY2Z2\ + E\X2YXZX\ + E^XY2ZXZ2\ 

- {E\XX\ + EVx\E\Zx\){E\X2\ + E[Y2]E[Z2}) 

= EiXilElXi) + ElX^EWElZz] + E^E^E^} 

+ ElYyjElY^ElZ^Efo} - (EiX^EiX,} 

+ E[XX)E[Y2]E\Z2) + EiX^ElY^EiZ,) 

+ £[r1]£[r2]£[z1]£[z2]) 

= Cov(YuY2)E[ZlZ2\. 

D 

This result will allow us to prove the following statement regarding 

probability bounds for vol(r(5)): 
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Theorem 4.2.7. Let G ~ G(u). Let S be some subset of V(G), such 

that 2 < Vol(S) < max{y 2Vol(G), (Vol(G))3/4}. Then for all c > 1, with 

probability at least 1 — \ , 

vol(r(S)) > Vol2(5c)Vol(5)p - c\J 2(Vol2(5) - Vol2(S)) + 1 and 

vol(r(5)) < p (Vol(5) + |S|) (Vol2(5c) + Vol(5c)) 

+ c\/2(Vol2(5)-Vol2(S,)) + l. 

Proof. From Lemma 4.2.4, the expected volume of T(S) satisfies 

Vo\2{Sc)Wol{S)p < Vol(r(5)) < p (Vol(S) + a) (Vol2(5c) + Vol(5c)). 

Let Xr(S) be the indicator function of r(S), so that Xr(S)(vj) is o n e if 

u er(5) , and is zero otherwise. Then we can calculate the volume of T(S) 

by the following sum of characteristics of a disjoint union. 

E di = E ^r(S)(wj) E ^ ' + £ XJfe 

= E ( £ * « + E fexr(5)K))j, 

since XT(S)(VJ) £„ j 6S .Xy = X ^ e s ^ r 

For convenience, we denote the following terms for each vertex Vj <E 5C : 

£ j = E X ^ + E (XifcXr(S)K)) 
^ G S vkesc 

Sj — 2_j Xij 

sf = 5 3 xJfc 
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We note that all variables Sj are mutually independent. The variables 

Sf, however, are not independent. 

We then compute the covariance of these variables using Lemma 4.2.6 with 

X1 = Sj, X2 = Sk, Y, = Sf, Y2 = Sf, Zx = xrwivj), and Z2 = Xr(S)(vk). 

Thus we have the following: 

Cav(Dj,Dk) = E[Xr(S)(vk)xrls)(vj)]Cov(Sj',Sk'), 

where 

C o v ( ^ , ^ ) = IE 7 ^jm J ^ f̂cm 
i » m e s c v % 6 S c 

- £ 7 , ^j'm 
, € S C 

£ 

= £ 
vmeSc-{vk} v7n€Sc-{vj} 

E £ 

We can again use Lemma 4.2.6 to reduce this by setting 

^ i = J2vm€sc-{vk}
 xim, X2 = J2vm€Sc-{vj} Xkm, and Yl = Y2 = Xjk: 

Cov(S^S^) = Cov(Xjk,Xjk) 

= Var(Xjfc)-

Thus, Cov(Dj,Dk) = E[xr(S)(vk)xr(s)(vj)]V&r(Xjk). Lemma 4.2.1 then 

tells us that E[xr(s)(vj)} = Pr[i/,- e r(5)] < Vol(S)ufe/o. So 

2„,2 2\ Cov(Dj, Dfc) < Vol (S)ujUkP (ujUkp — UjUkp 
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Then Var(£>j + Dk) < Var (£>,-) + Var(Dfc) + 2Vol (S)p{p% - p%). 

Since Sj is a sum of independent random variables, 

VBi(Sj) = J2Vax(Xij) 
Vi€S 

= 2_, UiUjp — u2u2p2, and 
Vi€S 

Var(5f) = £ Var(A-,-fc) 
vkesc 

= Y^ UjUkp - u)u\p2. 
Vk€SC 

We can also bound Var (xr(s){vj)(Sf)): 

Var(Xr (5)(«i)(Sf)) = E [xns)(vj)\Sf)r\ - {E [xm(vi)(Sf )])2 

> [Xns^f] - (E [xr^vj)})2) (E [(Sf)2] - ( £ [5f] ) : 

+ E 

-2E 

-en 2 (x r ( 5) (^ ) )1 (£[S?]) + (E [xrwM])'E \{Sf) TC\2' 

(xW"i)) E {(Sf) ?C\2 

= Var(Xr(5)K))Var(5f) 

+ E [xr(s)K)] ((2?[S?])2 + E [xrwM] E[Sf] - 2E[(Sf)2]) 

= Var(Xr(S)K))Var(5f) 

+ E [xnsM] (Var(5f) - (E[(Sf )2] - £[S?])) . 

If E[Sf ] > 1, Var(Sf) < (£[(Sf )2] - £[Sf]). 

Thus, Var (x r (s)fa)(Sf)) < Var (xr (5 )(^)) Var (Sf). 

Also, since Xr(s)(vj) is a Bernoulli random variable, 

Var(xr(5)(^)) < E[xr(S)(uj)]-
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We can then bound Var(D,-) as follows: 

Varp , ) = WW + Var (xr(5)(^)(5f)) 

< Vai(5,-) + Var (xr (5 )(^)) Var ((Sf)) 

< u2
jP

2Y^l(S) - u2
jP

2V^\2(S) 

+ ujPV^\{S)(u2
jP

2V^\(Sc) - u2
P

2V^l2(S
c)). 

Then 

Vax(vol(r(5))) = Y, V a r ( D i ) + E Cov^-.Dfc) 

< £ Var(^) + 2Vol2(5)P ( E & ~ E & 

^XVar^ + ^ f ^ ^ e ^ , ^ ) ] ) , 

since (p2
fc - p3

fc) < lpjk_ 

Thus 

Var(vol(r(5))) = V d ^ S ^ V o l V ) - Vol2(5
c)p2Vol2(5) 

+ Vol3(5
,c)p3Vol(5)Vol2(,SC) 

- W 3 ( S VVd(S)Vol 2 (S c ) + Y ^ l l ( E [ c ( 5 c i 5 c } ] ) 

= (Vol2(Sc)p2 + Vol3(S
,c)Vol(,S)p3) (Vol2(5) - Vol2(5)) 

2 
Vo" 

+ 
2Vol (G) 

— - 2 

< 2(Vol2(5) - Vol2(5)) + ™$S) (E[e(Sc, Sc)]) , 
2Vol (G) 

since we assume that Vol(S) < (Vol(G))3/4 and Vol(S) > 2. 
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Thus 

Var(vol(r(S))) < 2(Vol2(5) - Vol2(S)) 

Vol2 (S) /Vo l 2 (5 c ) -Vo l 2 (5 c ) \ 
+ 2Vof(G) V Vol(G) / 

< 2(VolV) - Vol2(S)) + -S^ f̂ -Vol̂  
2(Vol(G)) V Vo?(G) . 

2(Vol(G)) V Vol ( G ) / 

So if 2 < Vol(S) < max{y /2Vol(G), (Vol(G))3/4}, 

Var(vol(r(5))) < 2(Vol2(S) - Vol2(S)) + 1. 

Therefore, by Chebyshev's Theorem, for all c > 1, 

Pr |vol(r(5)) - Vol(r(5))| > cy/2(Vo\(S) - Vol2(5)) + 1 

Thus by Lemma 4.2.4, with probability at least 1 — -\, 

1 

c2 

vol(r(5)) > Vol2(5c)Vol(5)/9 - Cy2(Vol2(5) - Vol2(S)) + 1) and 

vol(r(5)) < p(Vol(5) + \S\) (Vol2(Sc) + Vol(5c)) 

+ cV2(Vol2(5)-Vol2(5)) + l. 

D 

In [17], mention is made that estimates for neighborhood growth of 

G(w) are only valid when Vol(5) = o(Vol(G)/iurna.E). The obvious question 

is what happens when Vol(S') is comparatively large? Unfortunately, the 

best I can do at this time is a lower bound for the probability that a vertex 

is in the neighborhood of some set: PT[VJ G T(S)] > 1 — exp (—Vol(S)wjp). 
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4.3 Special case: the Erdos-Renyi graph model 

The random graph family G(n, u), where u, = np for all i < n, is 

precisely the Erdos-Renyi graph model GUtP. Thus we can obtain estimates 

of probability bounds for the G„iP using the results of the previous section. 

It should be noted that the number of edges incident to any set of vertices 

S C V(G) is a binomial random variable and thus can be computed ex

actly. B. Bollobas in [15] provides proofs that the distributions of degrees 

and volumes tend toward Poisson as n becomes very large. The following 

results regarding the volumes of subsets, being estimates of Poisson ran

dom variables, are not the best available probability bounds, but merely 

illustrations of the preceding results. 

Lemma 4.3.1. (Analog of [17, Lemma 5.6]) For G ~ Gn<p, and for all 

c > 0, with probability at least 1 — exp(—c2/2), the degree ck of vertex 

Vi G V(G) satisfies di > (n — l)p — CyJJn — \)p. With probability at least 

1 — exp I —. ), di satisfies a\ < -^4 + c\/(n — \)p. 

Lemma 4.3.2. (Analog of [17, Lemma 5.9]) For G ~ Gn,p and for 0 < c < 

y/\S\(n — l)p, with probability at least 1 — 2 exp (—3c2/7), the volume of a 

subset S of V{G) satisfies |vol(5) - \S\(n - l)p| < cy/\S\{n - l)p. 

Proof Apply Lemma 3.1.2 with Vol(5) = \S\{n - l)p. D 

Corollary 4.3.3. (Analog of [17, Lemma 5.8]) For G ~ Gn<p and for 0 < 

c < y/n(n — l)p, with probability at least 1 — 2exp(—c2/6), the volume of 

of G satisfies |vol(G) — n(n — l)p| < cy/n(n — l)p. 

Proof Apply Corollary 3.1.3 with Vol(G) = n{n - l)p. D 
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The following results relate the number of edges which have an endpoint 

in a given set to characteristics of that set. 

Lemma 4.3.4. (Analog of [17, Lemma 5.12]) For G ~ Gn>p and for any 

two disjoint subsets S andT C V(G), Pr[T{S) n T + 0] < e x p ( - | 5 | | r | p ) . 

Proof. This is a special case of Lemma 4.1.3 with UiUjp = p for all Vi E S 

and Vj € T. • 

Lemma 4.3.5. For G ~ GniP and for any two subsets S and T of V(G) 

andforO <c< y/\S\\T\p, e(S,T) satisfies 

Pr \e(S,T) - (\S\\T\p - | 5 n T | p ) | > c^\S\ff\P < 2e~ 

Proof. Apply Lemma 4.1.5 with Vol(S) = |5|np, Vol(T) = \T\np and 

Voi(5nr) = \snr\p. n 

Theorem 4.3.6. For G ~ Gn,p and S C V(G) and for all 0 < c < Jgz, 

with probability at least 1 — 2exp (—3c/7), 

e(S,S)--\S\p(\S\-l) <^\s\(\s\-i)P. 

Proof. As with Lemma 4.1.4 

E[e(S,S)]= £ P 
i<j,Vi£S,Vj€S 

= \\S\(\S\ - l)p. 
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We then apply Theorem A-l using A = Cy/E[e(S,S)] : 

Pr[|e(5, S) - E[e(S, S)]\ > cy/E[e(S,S)]] 

< e x p / cV(E[e(S,S)])2 

= exp 

= exp 

< exp 

2E[e(S, S)] + cy/E[e(S,S)]/3/ 

3c2E[e{S, S)] \ 

'6E[e(S,S)] + Cy/E[e(S,S)]J 

3c2 \ 

6 + cy/E[e(S,S)]i 

3cs 

T 

D 

Lemma 4.3.7. For G ~ G„iP, for a given set S C V(G) and a vertex 

Vj £ S, let t = min{:r, \S\}. Then 

Prfc = x\v3 E T(S)] = U A r - ( l - P ) l / • 

Proof. We begin by using Bayes' Theorem and then substitute in the ap

propriate values, taking advantage of the fact that ptj = p for all i and 

J-

Prfd- - x\v G r f ^ l - Pr[(dj = X) n {Vj e T{S)] 
Fr[d, - x\u, E L{b)\ - Pr[Vjer(S)) 

__ TLi {ls
r
])pra-p)t-r{n'x

1:iS])px-r(i-p)n-1-t+T 

i-(i-Pys\ 

l - ( l - p ) l 5 l 

n 

Lemma 4.3.8. For G ~ G„iP and for a given set S C V(G), 
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Proof. The number of vertices which are not adjacent to | 5 | is given ap

proximately by a Poisson random variable with A = ( 1 _\ | s | • D 

L e m m a 4.3.9. (Analog of Lemma 5.14 i>n [17]) For G ~ Gn# and for 

S C V(G), Vol(r(5)) = (n - 1) (n - | 5 | - j ^ ) 

Proof. This is a special case of Lemma 4.2.7 with UiUjp = p for all Uj, Vj 6 

V(G). D 
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Chapter 5 

RESULTS FOR EDGE-PRODUCT 
MODELS WITH IDENTICAL DEGREE 

DISTRIBUTION 

Two edge-product models that yield nicely to analysis by means of their 

probability matrices are a matrix-based small world (hereafter referred to 

as MSW) model and a hierarchical model. 

The MSW model began as an edge-product approximation to the Watts-

Strogatz and Newman-Watts models. The implementation was inspired by 

D. Higham's 2003 paper regarding small perturbations in a transition ma

trix for a Markov process [28]. The primary difference between this model 

and Higham's is that Higham's model does not permanently establish an 

"edge", but rather allows for a small probability of movement from one 

state to a random state at each timestep. 

Much work has been done on the detection of communities within net

works. M. Newman noted the community structure present in social, bio

logical, and information networks before providing an algorithm for dividing 

networks into communities using spectral techniques [38]. Distinct commu

nities have been found in examination of food webs, friendship networks, 

and collaboration networks [26]. R. Guimera et. al. found distinct com

munities within a corporation using email messages as a proxy [27]. Thus 
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a random network model that incorporates such structure may be useful. 

The hierarchical model creates these communities using different probabil

ities for adjacency based on whether two vertices are in a common block. 

5.1 The matrix-based small world and hierarchical models 

Like the Watts-Strogatz and Newman-Watts models, the MSW model 

starts with a one-dimensional lattice (see Figure 2.1) with n vertices of 

radius r and assigns a certain probability a to the existence of edges that 

are contained within the lattice. The remaining vertex pairs are adjacent 

with probability /3 < a. If a = 1, this model generates a Newman-Watts 

small world graph without multiple edges. The goal of this model was to 

generate an edge-product analog of the Watts-Strogatz small world model. 

If /? = n-2r-i ' ^ e n ^ e MSW model will generate a graph with a 

similar degree distribution to that generated by the Watts-Strogatz model 

with probability of rewiring 1 — a. These particular parameters are a result 

of keeping the underlying lattice structure and mean degree. The mini

mum degree for any vertex in the Watts-Strogatz model with an average 

of 2r neighbors is r [12]. This is a direct result of the algorithm fixing one 

endpoint of each edge before rewiring. As n increases, the degree distribu

tion for the Watts-Strogatz small world model approachs r + Binom(a, r) + 

Poisson((n — 2r — 1)(1 — a)). The degree distribution for the MSW model 

as n increases approaches Binom(o;, 2r) + Poisson((n — 2r — l)(/3)). The 

degree distributions for these two models where 0 = _2r"-i differ then by 

Binom(a, r) — r. The mean degree for both models is 2r and as r increases 

the degree distributions of both models approach a Poisson distribution 

with mean 2r. 
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a a 0 0 0 0 0 ... 0 a 
\a a a 0 P 0 0 ... a 0 J 

Figure 5.1: The probability matrix for a MSW random graph model with 
radius 3 

Figure 5.2: A realization of a MSW random graph model with 105 vertices, 
radius 10, a = 0.9, 0 = 0.01. 
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/ 0 a a a a 0 
a 0 a a a 0 
a a 0 a a 0 
a a a 0 a 0 
a a a a 0 0 
0 0 0 0 0 0 
0 0 0 P 0 a 

0 .. 
0 •• 
0 .. 
0 •• 
0 •• 

a 
0 .. 

0 0\ 
0 0 
0 0 
0 P 
P P 
P P 
P P 

P p P P p p p ... 0 a 
\0 P 0 0 P P P ... a 0 J 

Figure 5.3: The probability matrix for a hierarchical random graph model 
with cluster size 5 

The hierarchical model begins with a set of clusters of vertices for which 

the probability of adjacency between any two vertices in the same cluster 

is given by a and the probability of adjacency between any two vertices 

in different clusters is given by 0 < a. This model attempts to build 

communities within a random graph whose members are very likely to be 

adjacent to each other, but with weak connections between communities. 

5.2 Spectra of graphs with identical degree distribution 

From [19], we know that for any regular graph of degree d, X\(A) = 

d and that the associated eigenvector is 1. Since this is true for a one-

dimensional lattice with no additional edges as well as for random regular 

graphs, clustering or other structure within a graph appears not to have 

a significant effect on the spectral radius of the adjacency matrix. Recall 

that for any graph G, \i(A) satisfies the following [29][19]: 

Ai(i4) < m a x d i (5.2.1) 
i 

n z—' 
t=i 
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Figure 5.4: A realization of a hierarchical random graph model with cluster 
size 21, a = 0.9, 13 — 0.01. Note the five clusters. 
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Figure 5.5: A different view of the graph in Figure 5.4. The five clusters 
are more clearly seen here. 
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Let P be the probability matrix for a family of random graphs in which 

each vertex has the same expected degree d. This matrix is positive semi-

definite and irreducible. Since the vertices have the same expected degree, 

PI = dl. By the Perron-Frobenius theorem only the dominant eigenvalue 

has a corresponding eigenvector consisting entirely of nonnegative entries. 

Thus Ai(P) = d. 

Lemma 5.2.1. Let G(P) be a family of random graphs with the probability 

matrix P in which every vertex has the same degree distribution ifPr[dj > 

t] — P for each vertex Vj, then 

Pr[max{dj} > t] < 1 - pn. 
j 

Likewise ifPr[dj < t] = q, then 

Pr[min{dj} <t]<l-qn. 
j 

Proof. Consider two vertices, Vi and Vj. By definition, di and dj are sums 

of independent Bernoulli random variables. There is one random variable 

that is both of these sums, aij. Calculating the covariance, we then find 

that Cov[di,dj] = Pij, indicating that di and dj are positively correlated. 

Thus for all t, 

Prldj > t\di <t}< Pr[dj > t] and (5.2.3) 

Pi[dj < t\di >t}< Pr[dj < t}. (5.2.4) 

• 

Lemma 5.2.2. For a family of random graphs in which every vertex has 

the same expected degree d, 

Pr[Ai(A) <d-t]< exp(- t 2 /2d) . 
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Proof. From Inequality (5.2.1), Xi(A) > y ^ E ^ i ^ Also> s i n c e 

Jk £"=i d2i ^ i EILi d>> A i (^ ) > d- W e c a n t h e n u s e Chernoff's inequal

ity, Theorem (A-2) with v = d and find 

Prpf <d-t]< exp(- i 2 /2d) . (5.2.5) 

a 

Lemma 5.2.3. For a family of random graphs in which every vertex has 

the same degree distribution with expected degree d and variance (o~2), 

Pr[Ai(/L) < d + t] > (1 - exp(- i 2 /2(a 2 + t/2>))n. 

Proof, By Perron's Theorem, ||A|| < maxj Y^j=i aij- Let dt = X)"=1 a^. 

Then E[di] = d and Var[^] = £ " = 1 Var[ay]. We use Theorem A-3 to find 

Pv[di > d + t] < exp f2(Var[d
f.]+t/3))- Recall that X^A) < maxi{di}. By 

Inequality 5.2.3, Pr[dj > a\dj < a] < Pr[d; > a] for all a. Thus 

Pr[Ai(4) > d + t] < 1 - (1 - exp (-i2 /2(Var[^] + t/3)))n. (5.2.6) 

• 

For a random graph model in which each vertex degree has the same 

distribution with E[di] = d and Var[dj] = a2, let 

7i = l.mVd (5.2.7) 

Note that these are the values of t if we set the right-hand sides of 

inequalities (5.2.5) and (5.2.6) to 1/2. Thus we are able to bound the 

median value of d. 
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Then we can use equation (3.2.2) to give possibly tighter bounds for 

the largest eigenvalue of A. Let 71 = 1.177 \fd. Using the values of 71 and 

72. Since Pr[|A - Amed| > t] < 4e~£2/8, 

Pr[A £ (d - 71 - 3.59, d + 72 + 3.59)] < .05. It should be noted that the 

variances of the random variables here only affect the value of 7,. 

Looking at the possibility of an epidemic on this network, we can then 

pair this result with Theorem 1.3.1 and find that if the probability of success 

for each attempted infection /? satisfies /? < d * 59, then the probability 

that an epidemic will occur is less than 2.5%. 

We now look at the smaller eigenvalues of A. We start by finding 

Xi(P — A) in order to be able to use Theorem 3.2.1. In the case where each 

row of P includes s — 1 entries having the value a and n — s — 1 entries 

having the value /3, one quantity tends to arise frequently. Let 

<f> = 2y/n(s - l ) a ( l - a) + 2yjnf5{\ - /?) (5.2.9) 

Lemma 5.2.4. Let P be a symmetric probability matrix with s — 1 entries 

in each row having the value a and n — s — 1 entries in each row having the 

value p. Let <j> be defined as in equation 5.2.9. For G ~ G(P), 

P r [ A i ( i 4 - P ) ><p + 2c] 

< max < exp 
c4 

2 ( n ( s - l ) a ( l - a ) + c2/3) 

c 
exp 2n1 /302/3(1_/?)2/3< 

Proof. Let Aa be the adjacency matrix of edges which exist with probability 

a. Let Pa be the probability matrix of edges which exist with probability 

a. We then find an upper bound for \\(Aa — Pa) as follows: 

Xi(Aa -Pa< y/Tr(AQ - Paf). 
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Algebra tells us that E[Ti(Aa - Pa)
2} = n(s - l ) a ( l - a). We can then 

find an upper bound for Tr(Aa — Pa)
2 using Theorem A-l, giving us 

Pv[Tr(Aa-Pa)
2-n(s-l)a(l-a) > c) < exp (--— —-£ r—-^) 

\ 2{n(s — l)a(l - a) + c/S) J 

Since (E[\i(Aa - Pa})2 < £[(Ai(i4a - Paf) and a2 + b2 < (a + b)2 for all 

a, b > 0, we then have 

Pr[Ai(4, - Pa) > y/n{s - l ) a ( l - a) + c] 

< exp 
c4 

2 ( n ( s - l ) a ( l - a ) + c2/3)y ' 

Defining ^ and Pp in the same way as Aa and PQ, 

P r M A s - P^) > 2 ^ / 3 ( 1 - / ? ) + c] < v ^ e x p f— 
1/3/32/3(2 _ ^ ) 2 / 3 

Then, since 

Pr[A + B - E[A + B] > 2t] < max {PT[A - E[A] > t],Pv[B - E[B] > t}} , 

we have our result. • 

In most cases, including any time n1//3 > c3, 

)>{*& 2(n(s-l)a(\-a)+c2/3)l ^ \2n1/3/32/3(i_/3)2/ . We will thus use the estimate 

PrfrCA - P) > <t> + 2c] < exp ( - ^ ^ _ ^ / s ) • (5-2.10) 

Lemma 5.2.4, together with Theorem 3.2.1 then gives bounds for \i(A). 

We now look for way to bound A2(M) = \2(D~1A). We rely on the 

following theorem from A.R. Amir-Moez to show that An(£)_1)A,(y4) < 

Xi(D-lA)<Xl(D-')Xi(A). 

T h e o r e m 5.2.5. [6, Special Case of Theorems 3.9 and 3.10] Let S and T 

be any linear transformations on Kn. Then the following hold: 
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1. Xi{ST)>Xn{S)Xi{T). 

2. Xi(ST) < X^XiiT). 

The next step is determining bounds for Ai(D-1) and An(D_1). 

Lemma 5.2.6. For a family of random graphs in which all vertices have 

the same degree distribution with E[di] = w, let H = wl — D. Then 

1 1 
W1_ (K(H) 

KiD-1) = 

Proof. As denned in the statement, D — wl — H so D = wl(l — {wI)~lH). 

Recall that the eigenvalues are ordered according to their real value. Thus, 

since di > 0 for all i, A;(£)-1) = —j^. Thus 

XiiD'1) = m{wl{l - {wiylH)Yl 

= -m (i - -H" 

w \ w 

= -ll + tii(--H 
= I (i-*,(!* 

= - (i - (-xm 
w \ \w 
1 1 
w> hiiMl 

D 

We can now bound the largest and smallest eigenvalues of D . 

Lemma 5.2.7. For a family of random graphs in which all vertices have 

the same degree distribution with E[d\] = w, 

1 9t 
P r M Z T 1 ) < - + 4 l > 1 - nexp (-t2/2(w + i/3)) 

w wz 

62 



Proof. Let s = maxj{u> — di}. Then Ai(.E') = s and s = tw — minjjdj}. So 

l + ^ < 1((wI)-1E)<l + %. S o i + ^ < l ( jD-i) < I + 1 | . Applying 

Theorem A-l we find 

Pr[di > t] < 1 - exp (-t2/2(w + t/3)) . 

We then observe that the bounds provided by independent variables are 

wider than the bounds of positively correlated variables, so 

Pr[oUax > t] < (1 - exp (-t2/2(w + t /3)) )" . 

• 

L e m m a 5.2.8. For a family of random graphs in which all vertices have 

the same degree distribution with E[di] = w, 

1 t t2 

Pr[ n{D~l) > _ + _ ] > l n exp(-t2/2(w + t/3)). 
w wz wA 

Proof. We proceed exactly as in the proof of Lemma 5.2.7 to find n(D~l) = 

w^Cj=ow~~' n(Ey• Then let s = maxj{dj — w}. Then n{E) = —s and 

s = msxiidi) - w. So 1 - £ < n{W~lE)<l ± + £. 

Thus - —% < n(D~l) < - —% + -^r. The remainder follows exactly as 

for Lemma 5.2.7. 

• 

This approach can be used to find the largest and smallest eigenvalues 

of D~l when the vertices do not all have the same expected degree. It is, 

however, necessary in this case to multiply the different probabilities that 

each vertex has degree greater than t to determine Pr[minj{dj} > t]. 

We are now able to find probability bounds for l(M): 
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Theorem 5.2.9. For a family of random graphs in which each vertex is 

adjacent to s — 1 vertices with probability a and to n — s — 1 vertices with 

probability (3 and E[di] = w, let (f> be defined as in equation (5.2.9). Then 

for c < w, Aj(M) satisfies the following: 

Pr •*,(*, _M£)<*+fc 
w w 

< nexp(-c 2 /2(w + c/3)) 

c 
+ exp -

2 n l / 3 / ? 2 /3 ( 1 _ / })2 /3 

Proof By definition, A*(M) = X^D^A). From Theorem 5.2.5, 

Xi(M) < X^D-^KiA). 

Using Inequality 5.2.10, 

P r ^ ) - XZ(P) > ^ + c] < exp ( - ^ ^ _ ^ / s ) • 

Using Lemma 5.2.7, 

1 2r 
P r ^ Z r 1 ) > - + — ] < nexp (-c2/2(u; + c/3)) 

w wi v 

2 

Finally, since - < 1, -£* < - . W W 

a 

Using this result with Lemma 1.3.2, we have with probability greater 

than (1 - e x p ( - c 2 / 2 0 + c/3)))n + exp (-2 n l / 3 / 32/3 ( 1^ )2/3) , 

vol(r(5)) > 1 
VOl(S) 1 _ n _ (*i(P)+<l>+3c\2^o\(SC) 

vol(G) 
_ n - Ai(^)-t-^+3cV 

where </> = 2^71(5 - l ) a ( l - a) + 2^n(3(l - (5). 
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5.3 A direct computation of neighborhood growth in the MSM 
and hierarchical models 

In general it is not as easy to determine the rate of neighborhood growth 

for graphs that are distributed according to an MSM or hierarchical model 

as it is for graphs that are distributed according to a modified Chung-Lu 

model, The primary difficulty stems from the importance of the individual 

vertices in relationship to each other. Since a graph distributed according 

to a modified Chung-Lu model is locally tree-like, we can find the likelihood 

that any two members of a set S C V(G) are adjacent to one vertex in Sc. 

For the MSW and hierarchical models we must consider whether members 

of a set S C V(G) are more likely to be adjacent to a single vertex in 

Sc. In this discussion of neighborhood growth, it is assumed that n is very 

large compared to the other quantities. Thus we can get a general idea of 

how neighborhood expansion proceeds before it is limited by the number of 

vertices. 

For S C V(G), let P ( S ) be defined as in section 4.2. Let Tk(S) = 

ulor(S). Let 7fc(S) = |r f c(5)|. Let Ak(S) = Tk(S) - rfc_1(5r). Let 

5k(S) = |A/c(5)|. To investigate the growth of Tk(S) it is necessary to 

define an induced subgraph. 

Definition 5.3.1. Let S C V(G). The subgraph ofG induced by S, denoted 

by G[S], is the subgraph of G such that V(G[S\) = S and 

E(G[S}) = {{vi,vj}eG\vi,vjeS}. 

For a ring lattice L and for nonempty S C V(L) let t^S) be the 

number of components of L[S]. Let tk
L(S) = tL(Tk{S)). 
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As noted in [40], for G ~ GniP and for small k, 

k 

lk(S) ^ \S\^((n - 1)PY 
2=0 

« |5 | ( (n - l )p ) f c . 

Lemma 5.3.2. On a ring lattice L with radius r and k < 2"t 1 1 , then the 

following are true: 

1. 2rk + \S\ < 7fc(5) < (2rk)tL{S) + \S\. 

2. If the connected components of L[S] are distributed uniformly over L, 

P r r , f c ( c \ _ r n ] _ v 2 H * _ 1 (w"7fc-l(s)"i"1)("-rfc-i(g)-J-m)(t*"1(5))(m-i) 
^n-7fc_l(S)-*L (S)J 

Proo/. The proof of (1) is by induction on k. 

As denned, TQ(S) = S, so equality holds. Assume that Lemma 5.3.2 

holds for k and that k + 1 < r̂~j J . Then each component of L[Tk(S)] 

expands by at most 2r, so 7fc + 1(5) < 7fe(Sr) + 2rtk
L(S). Expansion on 

the lattice requires that 1 < tk
L

+l(S) < tk
L{S). Since k + 1 < £=^j and 

lk(S) < 2rkti(S), there are at least 2rti{S) vertices in L — L[Tk{S)]. Again, 

because of the the structure of the lattice, at least 2r of these vertices are 

in Tk+1(S). Thus 7 fc+1(5) - 7fc(5) > 2r. 

For (2) we must determine the expected rate at which the connected 

components of L[Tk(S)] grow together. We will do this by counting the pos

sible ways in which the gaps between the connected components of L[Tk(S)] 

are arranged. The number of ways in which t'l(S) of these gaps can be 

arranged is equivalent to the number of ordered partitions of the integer 

\V(G) - Tk(S)\ into tkAS) parts. So there are f Z V / i f ; 1 ) w aY s i n w h i c h 

these gaps can be arranged. Assuming that each arrangement is equally 
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likely when a set S is randomly selected, the probability that tk
L(S) — m 

can be determined given the values of tk^l(S) and jk-i(S). 

,*-!/ / n - 7 f c - i (S ) -2 r^ - i (S ) - l x 

Pr[t*(S) = tt\S)] = XS»\ 

(n - 7fc-i(g) ~ 2 r ^ 1 ( g ) - l)! (n - 7fc-i(S) - ^ O S ) - l ) ' 

(n - 7*-i(5) - 2 r ^ 1 ( 5 ) - 1*~l(S) - l)! (n - 7*-i(5) - 1)! 

^ (n - 7fc-i(5) - 2rtk
L~\S) - l ) ^ ^ ) , ^ - ! ^ * - . ^ , ! ) 

(n - 7 f c _ 1 (5) - l ) („-T f c„ l (5)-^-i(s)- i ) 

where (x)(y) = g . 

If *£-1(S) is small compared to n -7 f c _ i (S) , then tk
L(S) = t£_1(£) with 

high probability. 

If TO < t^~1(S'), then we need to consider the size of Sk(S). Since 

we have m partitions, we know that 5k(S) > 2rm. In addition, at least 

tk
j~

1(S) — m vertices must be in Ajt(S'), since there are ^ _ 1 ( 5 ) — TO sections 

of V(G) — Tk^i(S) that are now in Tk(S). Thus, there are 

^ V " i - l / ^ ( m - 1 ) ! 
j—2rm j=2rm v ' 

ordered partitions of V(G) — Tk{G) into TO parts. 

Therefore 

a r t ^ f S ) / n - 7 f c - i ( S ) - j - l \ 

Pr[t*(S)=m] = £ V ^ M ' 
j = 2 r m I t * _ 1 ( 5 ) - l ' 

2rt*- (n - 7 f c-i(5) - j - l ) ( n_7 f c_ l ( S )_,_m ) ( t '~1(5)) ( m_1 ) 

a 
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Observe that when tk
L(S) is small in relation t o n - 7^(5), 

E[ti(S)} * tk
L~\S) 

From Lemma 5.3.2 we see that neighborhoods on a ring lattice expand 

at most linearly. The neighborhoods on G ~ Gn,P, however, expand ex

ponentially. Any small perturbation of a ring lattice into an MSM model, 

however, changes the rate of neighborhood growth dramatically. 

Proposition 5.3.3. When G is distributed according to an MSW model, 

Tk{S) expands exponentially for small k. 

Proof. Since some edges are present in G with probability a and others are 

present with probability /?, it is necessary to consider the two mechanisms of 

growth separately. Recall that tk
L(S) is the number of connected components 

olL[Tk{S)}. 

First, consider growth along the edges that are present with probability 

a. Let A£(S) be Ak(S) n {v^ such that 3VJ G L[rk-i(S)} where ptj = a}. 

An upper bound for this growth is given in the proof of Lemma 5.3.2: 

E[\Ak
a(S)\] < 2rtk~\S). If vertex vt is a potential member of A*(5), then 

Pv[{vi,Vj} G E(G) for some Vj G TA;_I(5)] > a. Thus a lower bound for 

this growth is given by |A*(5)| > 2raE[tk
I~

1(S)]. 

Now consider the growth along edges that are present with probability 

(5. For each of the vertices Vi in Ak-i(S), we can find the edges which cause 

tk
L(S) > tk

L'1(S). Any edges from Vi to Vj G rfc_i(5) will neither increase 

th
L{S) nor expand Tk(S). Likewise, any edges from v% to v3 G A^(5) will 

neither increase tk
L(S) nor expand r^(5) . Finally, the vertices Vj which are 

adjacent in L to any vertices in L[Fk-\(S)] will expand Tk{S) but will not 

increase tk
L(S). Thus there are n — 2(r + l )^""^^) - 7^-1 (5) vertices which 
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we must consider. Each of these vertices has probability (1 — /J)*5*-1^ of 

not being in Tk{S). 

So the expected increase by means of edges which are present with 

probability 0 is ( n - 2 ( r + l)^"1(>S)-7 f c_i(5)) (l - (1 - / 3 ) ^ - l ( s ) ) . Further, 

these vertices also increase tk
L{S). So, taking this information together with 

Lemma 5.3.2, 

E[tk
L(S)} « (n - 2(r + l ) ^ ' 1 ^ ) - lk-x(S))5k^(S)(3 

l-'iS) 2rt*"1( 

E m E ^ ) ___ «£<*> (n _ 7fc_i(5) _ i _ l)(n^_i{s)^m) ft"*(5))^, 

As in the proof of Lemma 5.3.2, if tk
L~1(S) and jk(S) are both small 

relative to n, E[tk
L(S)\ > ^(S). Thus E \^%] > 1. Therefore Tk(S) 

expands exponentially. 

D 

Since the MSW model was designed to approximate the Watts-Strogatz 

small world model, this can help to explain why the characteristic path 

length decreases rapidly when the probability of rewiring is small as noted 

in [49]. 

Proposition 5.3.4. For a graph G that is distributed according to a hier

archical model, neighborhood growth occurs exponentially. 

Proof. Let G be a graph distributed according to a hierarchical model with 

w clusters C\.. .Cw, each containing s vertices. For G, neighborhood ex

pansion is slightly slower than for H ~ G„iP. Within each cluster vertices 

are added to 1^(5) in the same way as for Gs,a-

Let the set Tk = {d\3vj G Ci n rfc_i(5)}, indicating the clusters in which 
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vertices are added to Tk{S) with probability at least a. At step k, each ver

tex in cluster Cj has probability 1 - (l - j3)\^k-i(S)\ w l -exp(-/3 |A f c_1(5) | ) 

of being in Tk{S). Thus Pr[C» G Tk(S)\ « 1 - exp(-s/?|A fc_i(S)|). 

So £[|Tfc|] « O - \Tk\) (1 - exp(-s/3|A fc_i(5)|)). Thus the expansion 

between clusters also proceeds at a rate greater than for H ~ Gu,,i-exp(-s/3)-

D 

The hierarchical model also allows for a low characteristic distance 

paired with a high clustering coefficient. A hierarchical graph model with 

1050 vertices arranged in 50 clusters of 21 vertices each with a = 1 and 

13 = 0.0003 has a mean characteristic distance of 5.32 and a mean clustering 

coefficient of 0.967. 

Lemma 1.3.2 relates vol(F(5)) to vol(S'), vol(G), and A2(M). Empiri

cally, A2(M) for the MSW and Hierarchical models is larger than for a ring 

lattice. 

5.4 An example 

As an example, consider the following families of random graphs on 

1050 vertices: a MSW model with r = 10, a = 0.9, and 0 = 0.005; a hi

erarchical model with 50 blocks of 21 vertices, a = 0.9, and f3 = 0.005; 

and a model in which each vertex is adjacent to 20 randomly selected 

vertices with probability a = 0.9, and to the other 1029 vertices with 

probability /? = 0.005. Thus each for each vertex E[di\ = 23.145 and 

Var[di] = 6.919275. Using Theorem A-2, Pr[dmin < 11.358] < 0.05. Us

ing Theorem A-3 Pr[dmax > 38.633] < 0.05. The differences between these 

models are noted in Table 5.1. 
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Hierarchical MSW Random 
E[di] 
Var(^) 

Ai(P) 
A2(P) 
mean(Ai(^4)) 
mean(A2(i4)) 
me&n(Xi(A — 
Characteristic 

P)) 
• distance 

Maximum distance 

23.145 
6.919 

23.145 
17.883 
23.493 
18.756 
5.556 

3.0 
4 

23.145 
6.919 
23.145 
17.895 
23.476 
19.418 
5.555 

2.8 
4 

23.145 
6.919 

23.145 
7.717 

23.456 
9.367 
5.546 

2.6 
3 

Table 5.1: Comparison of eigenvalues for the Hierarchial, MSW and Ran
dom families 
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Chapter 6 

FUTURE DIRECTIONS 

In this dissertation I demonstrated the use of the Courant-Weyl in

equalities to find probability bounds for graphs that are distributed accord

ing to models in which all of the vertices share a common degree distrib

ution. Such bounds can, however, be found for any edge-product model. 

Further work remains to be done concerning probability bounds for the 

eigenvalues of A — P where P is an arbitrary probability matrix. 

Both the MSW and hierarchical model can be further generalized. One 

generalization of the MSW model is the use of more than two values for pij, 

if intermediate probabilities of adjacency are desired. The construction of 

the hierarchical model does not require all clusters to be of the same size. It 

would also be possible to establish multiple levels of adjacency probability. 

Both of these aspects remain to be explored. 
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Appendix A 

CHERNOFF INEQUALITIES 

The following Chernoff inequalities are used to prove probabilities con

cerning the characteristics of edge-product random graphs. The formula

tions are taken from [17]. 

Theorem A - l . Theorem 2.4 in [17], from [16] 

Let X\,..., Xn be independent random variables with 
(Pr[Xl = l}=pl 

\PT[Xi = 0] = 1 - Pi. 

If X = Y^=i X%, with expected value E[X] = Y^=iPi> then 

(Lower tail) Pr[X < E[X] - A] < exp {-\2/2E[X}), 

(Upper tail) Pr[X > E[X] + A] < exp (-m$+x/3)) • 

Theorem A-2. Theorem 2.6 in [17], from [31] 

Let X\,..., Xn be independent random variables satisfying 

Xi < E[Xj\ + M, for 1 < i < n. For the sum X = YH=i X% with expected 

value 

E[X] = Y,?=x E[Xi] and variance Var(X) = X),"=i Var(Xi), 

Pv[X > E[X) + u}< exp ( - 2 ( V a r ( / ; + M , / 3 ) ) • 

Theorem A-3. Theorem. 2.7 in [17], from, [31] 

Let X\,..., Xn be independent random variables satisfying 
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Xi < E[Xi] + M, for 1 < i < n. For the sum X — YA=I -^i with expected 

value 

E[X] = £ " = 1
 Ei^} and variance Var(X) = J™=\ Var(Xi), 

Vx[X < E\X] -u}< exp ( - a £ n j f g [ ; c ? 1 ) • 

Theorem A-4. Theorem, 2.8 in [17] 

Suppose X\,..., Xn are independent random variables satisfying 

Xi<M, fori <i < n. Let X = £ " = 1 X{ and let \\X\\ = v D I U E\Xi\-

Then 

Pr[X>E[X] + u]<e,P(-2illx/+M^). 

Theorem A-5. Theorem 2.9 in [17] 

Suppose Xi,..., Xn are independent random variables satisfying Xi < M, 

forl<i<n. Let X = £ " = 1 X% and let \\\X\\ \ = y/^UWCf]- Then 

Pv[X < E[X) -u]< exp ( - 5 1 ^ ) . 

Lemma A-6. Let a,b E R+ such that a > b. Let n € N, n > f. Let 

(aj, 0 2 , . . . , an) be a sequence of numbers such that 0 < a-t < b for all i and 

£ ? = 1 a, = a. Then YJU a\ ^ abk~l for allkeN 

Proof. The proof is by induction on k: 

For our base case, k — 1, Y^l=i ai ~ a = ab° ~ a°h~l • 

We then assume that X^"=i(ai)fc — abh~l for some k > 1. 

Then 6£"= 1(ai) f c < abk. Since each a, < b, £ " = 1 af+1 < ahk• Therefore 

E"=ia? ^ a6fc_1 for a11 k G N- D 
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