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FOREWORD

This is one of a series of Technical Reports prepared under a grant
by the Office of Water Resources Research which supports a project at
Colorado State University entitled 'Metropolitan Water Intelligence Systems."
The objective of the project is to develop criteria and information for the
development of metropolitan water intelligence systems (MWIS). The MWIS
is a specialized form of the management information and control system
concept which is becoming popular as a tool in industrial applications.

The project consists of three phases, each lasting about one year.
This report was prepared during Phese II. Basic objectives for Phase I
were to:

1. Investigate and describe modern automation and control
systems for the operation of urban water facilities
with emphasis on combined sewer systems,

2. Develop criteria for managers, planners, and designers
to use in the consideration and development of centralized
automation =znd control systems for the operation of
combined sewer systems.

3. Study the feasibility, both technical and social, of
automation and control systems for urban water facilities
with emphasis on combined sewer systems.

Basic objectives for Phase II are:

1. Formulate a design strategy for the automation and
control of combined sewer systems.

2. Develop a model of a real-time automation and
control system (RTACS model).

3. Describe the requirements for computer and control
equipment for automation and control systems.

4. Describe nontechnical problems associated with the

implementation of automation and control systems.
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This report concentrates on methods of developing control logic
for automated operation of ambient and/or auxiliary storage capabilities
within combined sewer systems, with the objective of minimizing overflows
to receiving waters. The enormous number of control opportunities requires
that the control problem be formulated as an optimization problem. The4
problem is defined as one of minimizing total weighted overflows, subject
to an assumed hydraulic model describing flow and storage dynamics, as
well as other physical constraints. The optimization problem tends to
increase in complexity and degree of nonlinearity as less idealized flow
models are utilized. This report concentrates on limited subbasin analysis,
with the view that the large-scale problem is ultimately solved by a master
control algorithm that ties the subbasins together in an iterative fashion.

Finite-dimensional optimization techniques appear to have greater
potential for effective solution, over infinite-dimensional techniques
(i.e., application of continuous-time optimal control theory). The primary
reasons are (i) difficulty of obtaining solutions by the latter, (ii)
operation of the real system in discrete time. Within the category of
finite-dimensional optimization, indirect solution of the optimization
problem through application of generalized duality theory has greater
potential for finding global solutions than direct application of mathematical
programming techniques. This is made possible through development of
an approximate-4Low technique that significantly reduces the total number
of variables involved in the problem. Considerable off-line computational
work is required to fully verify these assertions.

* % ok k%

This report was supported by OWRR grant number 14-31-0001-3685,
Title II, Project No. C-3105, from funds provided by the United States
Department of Interior as authorized under the Water Resources Research Act
of 1964, Public Law 88-379, as amended.
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The following technical reports were prepared during Phase I of the
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be obtained for $3.00 from the National Technical Information Service,
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use the report title and the identifying number noted for each report.)
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MATHEMATICAL NOTATION

In this heport, forn notational convenience, no attempt Ls made to
distinguish between column and row vectors., 1t 4s presumed that the
readen can distinguish this forn himsels,

x € E a vecton x = (X,,...,X ), oOr an element of (e)
1 n T

n-dimensional Euclidean space E°. If x, >0

(t = 1l,0¢.,0),; °‘then x g (En)+.
f(x) a vectorn-valued function f£(x) = (fl(x),...,fm(x)),

also denoted as f:E' ~ E" or f(*) ¢ E",
V..£(x) the gradient vector of f, or V_f(x) = (Qf_ éﬁ-)
b.d - # X X ’""’an ’
xi(k) component of a matix of numbers, also denoted as

x(k) ¢ E" (k=1,...,m), x; (+) ¢ E" (i=1,...,n),

or x(¢) € g
xey scalan pﬁoduct of two vectors x,y € E', where

Xy =) Xy

i=1

{x[P(x}} set S of elements x e E" satisfying some given

property P, where S 1is a subset of En, or S CE".
[a,b] set defined over closded interval a < x <b, x,a,be E".
(a,b) set defined over open interval a < x < b, x,a,b e E",
convex set set S 1is convex if and only if for every x,y € S C:En,

(ox + (1-a)y) € S, for all o e [0,1].
int(S) the {nteilon of the set S CZEn, or the largest open

set contained in S.



XxY

x(t)

ne

-V=-

cantesian product of two sets X CELY cB; or (X =) &BY

dx, (t) dx_(t)
e T BEL

vector of derlvatives

global s0fution of optimization problem min{f(x)|x e S},
*
where S CZEn, or f(x) < f(x), for all x e S.

Local solution of optimization problem min{f(x)|x e S},
8 CZEn, or fx°) < f(x), for all x e SMIN; where

N = Cxo - e,xo + ¢), for some scalar e > 0.

equal by definition

forward implication (dmplies)

reyerse implication (is {mplied by)

equivalence, or if and only if ({{§]

n
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I. INTRODUCTION

A. THE CONTROL PROBLEM

The pollution of bodies of water adjacent to urban centers, due to
storm-produced overflows from combined sewer systems, is rapidly becoming
a serious, nationwide problem [1]. In seeking methods of combatting this
problem, attention has been focused on two areas: (i) improving the quality
of the overflows, through sewer separation or reduced treatment processes
that can handle large flow rates, and (ii) reduction of the magnitude of
the overflows, by (a) somehow reducing storm inflows to the sewer system,
(b) using storage capabilities within the sewers themselves (ambient stonrage),
or (c) construction of additional storage facilities within the system
(auxiliony storage) [1].

The use of (b) or (c) (or their appropriate combination) has arisen
as a particularly attractive alternative, due to generally lower predicted
costs and potentially greater effectiveness in dealing with the overflow
problem. The U. S. Environmental Protection Agency is currently supporting
a number of research and development studies in this area [15]. The goal
is to utilize storage capabilities in such a way that flood peaks in the
system can be lowered to a degree consistent with maximum advanced treatment
plant inflow rates. Direct control is carried out through computerized
remote operation of intake and outlet valves, regulators, adjustable weirs
placed in sewers to effect ambient storage, etc. [2]. The complex and
large-scale nature of the storage control problem should be readily apparent,
since there may be hundreds of control points throughout the sewer system
of a large urban center. There is critical need to take full advantage

of current advances in computer technology (hardware and software) and

il



systems engineering. The high speed digital computer is required at
all levels - from data collection and processing to implementation of
sophisticated control logic.

Effective direct storage control, however, cannot be executed without
intensive investigation in the following areas [7]:

1. storm prediction modeling

2. rainfall-runoff modeling

3. hydraulic modeling of the sewer system

4. design and operation of sensor networks for detecting

rainfall and sewer flow rates

5. statistical analysis of noise-corrupted measurements

and information, used as input for control strategies.

The above studies are necessary for accurately forecasting the
magnitudes of flow rates throughout the sewer system, due to rainstorm
activity. Ideally, this information is utilized in an automated §eedback
contrwl process. As a storm passes over an urban center, sensors detect
increasing rainfall and sewer flow rates. This information is passed to
a computer control center via telecommunication and is fed into flow
prediction models, from which a control strategy is generated, based on a
programmed control logic. As the control strategy is generated and
implemented, new information is detected as the storm continues, and the
cycle continues, resulting in control strategies that are periodically
monitored and updated in such a way as to effectively respond to the

uniqueness of a particular storm event.

B. OFF-LINE VS. ON-LINE OPTIMIZATION

Our particular concern here is with control logic development, since

the complexities involved seem to have impeded progress in this area. Some



of the difficulties to be expected are discussed by McPherson [22]. A
number of cities such as Cleveland [2], Detroit [1], Seattle [17],
Chicago [15], and San Francisco [26] appear to be in the early stages of
control system development, but little specific information on control
logic studies is currently available. Aside from some incomplete work
by Bell, and others [4,5,6, and 7], which is summarized in a subsequent
chapter of this report, accomplishments are meager in this area.

The enormous number of control alternatiyes possible precludes

—

anything but application of modern systems techniques, particularly in
the area of optimization theory. Control logic is determined through
formulation of the control problem as an optimization problem where we
seek to minimize total weighted overflows from the combined sewer system,
subject to a number of constraints. The constraints include: (i) mass-
balance equations describing the dynamics of flow and storage throughout
the system, and (ii) physical limitations placed on flow rates and
quantities in storage, due to: the dimensions of the sewers, capacities
of ambient and auxiliary storage, and capacities of treatment plant
facilities. The mass-balance equations are based on models constructed
to simulate the behavior of the system. In general, realistic flow models
result in complex optimization probiems, so that studies are needed to
determine the optimum trade-off.

There is question as to whether optimization should be carried out
all off-Line, all on-£ine, or a mixture of the two. Off-line optimization
results in general operating policies, based on historical rainfall data,
which are programmed into the control computer operating the system.
On-line optimization, on the other hand, is carried out by the control
computer in real time, and is based on historical records augmented by

the particular storm occuring at the moment. It appears that a combination



of the two is necessary. Some on-line work is required, since it is
impossible to model all possible storm situations in an off-line manner.
It is, however, generally limited to simplified sewer flow models (e.g.,
linear), so that the optimization algorithm can be guaranteed to find a
global solution. Off-line studies are free to use more realistic models,
and therefore serve to augment the on-line work. The primary emphasis

here is on the former.

C. SYSTEM DECOMPOSITION

The large-scale nature of the optimization problem requires that attempts
be made to decompose the sewer system into a set of mildly interconnected
subsystems or subbasins, which are temporarily disconnected. For example,
the San Francisco system seems particularly well suited to decomposition,
as schematically represented in Figure I-1 [26].

The advantages of decomposing a large-scale system are the following:

1. Greater conceptual understanding of the behavior of the
system is attained when effort is made to identify and
analyze subparts or subsystems within the large-scale system.

2. Mathematical programming techniques are available [21], such
that interconnections between the subsystems can be temporarily
cut, and control policies developed for the isolated subsystems.
Each subsystem is then concerned with a limited number of
control variables and a fraction of the total amount of data is
necessary to operate the system. The result is considerable
increase in system reliability toward achieving the overall
system goals. The subsystems can then be recomposed together
by a master control which achieves the recomposition in some

kind of iterative fashion.
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3. Generally, less computer hardware is required for the
decomposition approach than for centralized approaches.
Essentially, computer storage is replaced by additional
computer time. Less required computer hardware usually
means greater reliability.

The emphasis in this report is on smaller scale subbasin analysis.

Future reports will deal with development of master controllers that

tie the subbasins together. With this plan in mind, we will use simplified
storage configurations in discussing the various optimization formulations
and solution strategies, thus preventing unwieldy notation in the
presentation. Extensions to more complicated configurations should be

reasonably obvious.

D. OBJECTIVES
The undertaking of this particular study has been motivated by the
following:

1. The need for a broad, comprehensive evaluation of the
basic optimization methodologies with regard to their
specific applicability to solution of the optimal control
problem for combined sewers.

2. The need for summarizing and critically analyzing current
published attempts at formulating and solving the control
problem via particular optimization techniques. As
mentioned previously, however, little is available at
the present time,

3. The necessity for generating new ideas with regard to
specific optimization strategies for dealing with the
complexities of the control problem that have so far

hindered actual implementation for real time systems.



The basic objective here is to attempt to satisfy the above needs.
Chapter II is concerned with analyzing which of the following broad
categories is most applicable to our problem: finite or infinite-
dimensional optimization methods. One should decide at an early stage
which of these avenues to explore, before specific optimization strategies
can be formulated. Current applications of infinite-dimensional optimization
(or continuous~time optimal control theory) are considered in Chapter III,
mainly based on the work of Bell, et. al. [4,5,6, and 7], and are critically
evaluated. Chapter IV explores finite-~dimensional techniques such as
linear, nonlinear, and dynamic programming, and concludes with some ideas
on application of indirect or dual approaches to the control problem.

These approaches revolve around the concept of approximate-gfow, and it
is the author's opinion that they open the door to dealing with the
difficulties that have so far hindered direct application of more conventional

optimization techniques.



II. FINITE AND INFINITE-DIMENSIONAL OPTIMIZATION

A. A RESERVOIR CONTROL PROBLEM

A.1 Discrete Time Case [finite-dimensional optimization]

Suppose we are concerned with minimizing overflows at a particular

control point 1 (> 2).

R. (k) (storm
S input)

Q, () Q, ()
(throughput) ——m——p> Si(k) —————&» (to treatment)

Oi(k) l(overflow)

FIGURE 1
COMBINED SEWER STORAGE

where the time horizon is broken up into M discrete intervals

08 ¢ <t ceeect,<t, . A7

1 2 M M+1 f

where interval k 1is defined by [tk, tk+1]’ where At = tk+1 - tk

for all k =1,...,M. For this problem

Si(k) = the storage (i.e., ambient and/or auxiliary) in the sewer at
control point 1, at the beginning of time period k (i.e.,
at time tk)

Ri(k) = the average rate of direct stormflow input to control point i,
during time period k

Qi(k) = the average rate of throughput in the sewer from control point i,
during period k

Oi(k) = the average rate of overflow to receiving waters from control

point i, during period k



Qi_l(k) = the sewer throughput rate from upstream control point i - 1,
during period k.

Since our goal is to minimize overflows, an optimization problem can
be formulated. In formulating this problem let us assume Qi-l(k) is
given for all k, and temporarily drop the subscript 1i. Therefore, we
can lump Qi_l(k) into the term R(k) as given input to control point i

[Problem Al]: [the Wy (k =1,...,M) are weighting factors]

M
minimize ] w, 0(k)At (1)
k=1
S(k),0(k),Q(k),
k & 1lssnesM
subject to:
dynamics (or S(k+1) = S(k) - [Q(k) + O(k) - R(k)]At (1a)
state equation) (k = 14 .:;M)
initial condition S(1) = ¢ (given)
state-space 0 < S(k) :-Smax’ k = 25.0:,M (1c)
constraint
i iti = b ified
final condition Swe1 = Sginal (may be specified) (1d)
control constraint 0 < Q(k) f-Qmax’ k=1,...,M (le)

where Smax and Qmax are upper bounds on storage and throughput,
respectively. If S(k) represents ambient storage, then Smax can be
considered as a variable smax(k)’ where some kind of adjustable weir is
utilized in the sewer. Then we would add the constraint

8§ (k=<8 for all k
max — maxX

where gﬁax is the upper bound on storage obtained when the weir height

is maximized.

Definitions

A
S(k) = the state variable, or the state of the system at any
time k. It is a dependent variable, since it is a

function of Q(k'), O(k"), k' = 1,...,k-1
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Q(k), 0(k) = the control or decision variables, since they are
independent variables and directly controllable
k 2 the particular 4fage of the dynamic process.

Problem Al is a straightforward linear programming problem. There
are several other ways of formulating this single reservoir problem, but
they involve introduction of some degree of nonlinearity. For example,
suppose we let Q(k) represent total outflow from the reservoir (including

overflows). The objective function then becomes

min [S(k) - S ]
- kgK =
S(k),Q(k),
k=1,...,M

where (SmaX no longer an upper bound on S(k))
K={k[s) -s >0}
and the state equation is
S(k+1) = S(k) - Q(k) + R(kK), k=1,...,M
Even though we now have only one decision variable Q(k), the
objective function is piecewise linear, but not linear. This problenm,
however, is solveable by dynamic programming, which will be discussed

further in a subsequent chapter.

A.2 Continuous-Time Case [infinite-dimensional optimization]

Suppose we let At > 0, or equivalently, let M » «. That is,
Equation (la) can be written as

S(tk + At) - S(tk)
At = _[Q(tk) £ O(tk) N R(tk)]

Taking the limit At = 0 of both sides yields

g%g_t_)_ = -[Q(t) + 0(t) - R(t)]

(for all 0 < t E.Tf)
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Therefore, the continuous-time version of Problem Al is [Problem A2]:

T
minimize f £ w(t)0(t)dt (2)

S(t),0(t),Q(t),

for all te[O,Tf]
subject to:
dynamics (or dS(t) _
initial condition S(0) = ¢ (given) (2b)
state-space 0<8(t) <8 ,» forall te[0,T.] (2¢)
constraint
final condition S(Tg) =S¢y, (may be specified) (24d)
control constraint 0 < Q) f-Qmax’ for all te[O,Tf] (2e)

A.3 Discussion

For the practical problem of optimally controlling combined sewer
overflows via storage regulation, it is safe to assume that controls will
be carried out in discrete time intervals. This is due to the following
factors associated with on-line, automated control:

1. There is a finite amount of time required to actually effect
control. That is, time is required for passage of information,
the opening and closing of valves and regulators, the inflation
and deflation of adjustable weirs, etc,

2. On-line control requires the processing of rainfall and sewer
flow data, which is sampled at discrete-time [e.g., for the
San Francisco system, data is collected every 15 seconds [26]];

3. Sufficient data must be collected in order to make a reasonable
prediction of future storm input so that the next control can
be effected. There is an interesting trade-off here:

(a) Large intervals between control would allow the

processing of more data, resulting in more accurate
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prediction. Though the individual controls are
more optimal in the sense that they are based on
more accurate data, the system is less controllable
due to the large intervals.

(b) Small intervals between control would result in less
accurate storm prediction. Though the system is more
controllable than in case (a), there is greater question
as to the optimality of the controls.

Suppose it is decided that actual control of the system must occur
between a discrete interval Atactual (which may be variable). Then
there are two basic ways of determining the optimal controls Q*(k) and

*
0 (k), where At t

getudl ~ Chel ~ Y%7

(i) Finite-Dimensional Optimization: Solve Problem Al,

letting At = Atactual/m’ where m 1is some integer

* *
> 1, and determine Q (k),0 (k) from these results.

(ii) Infinite-Dimensional Optimization: Solve Problem A2,

* *
and determine Q (t),0 (t) for all 0 < t j»Tf,

* *
from which Q (t and O (t can be easily found

K i)

for all k.

We are ultimately interested in considering the very general control
problem involving many reservoirs in a complex of interraction. There
is the need, then, to utilize realistic flow routing methods, which will
unfortunately introduce nonlinearities into the state equation. In
addressing ourselves to the general, complex control problems, we must
decide which of these two solution approaches [(i) or (ii)] is most
appropriate for the particular problem at hand. In attempting to answer
this question, we will utilize a very general formulation of the control

problem.
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B.

NECESSARY CONDITIONS FOR DISCRETE-TIME OPTIMAL CONTROL

Consider the following general control problem,

[Problem B]:

M
min ) £(x(k),u(k)) + ¢(x(M1))
x,u k=1
[where x = (x(1),...,x(M1)), u= (u(l),...,uM))

added term associated with the final state.]

subject to:

dynamics x(k+1) = x(k) + g(x(k),u(k))
(k= 1,0ve:M)

initial condition x(1) = ¢ (given)

state-space’ qxk)) <0, k=1,...,M

constraint

final condition p(xM+1)) =0

control constraint h(x(k),uk)) <0, k=1,

which is equivalent to Problem Al if we define

u) & @),000)
x() 2 sk
£(-,u) & o)
) £ o
g(-,uk) £ Q) - 0(K) + R(K)
p(x(M1)) & s@w1) - S
- (;a)— -
Q(x() & JORES -
[ 5(k)
hout) & e - o,
-
| om0

{notice that (a) and (b) are exactly equivalent}

letting At

and ¢(*)
.M
()
[SC) -s ..

]

Q[ - Q]

is

1

(3)

(3a)

(3b)

(3¢)

(3d)

(3e)
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In general, then, wu(k),x(k),g(*,°*),q(*),p(*), and h(-,* can
themselves be vectors, for all k. For generality, let us specify that
u(k)eEm, x(k)eEn, g(-,~)eEn, q(-)eEzn [for case (a)], q(-)eEn
[for case (b)], p(*)eE®, and h(:,*)eE®, for all k. For Problem Al,
then, m =2, n=1, and & = 2.

If we assume that all functions are differentiable for all x,u,
then the necessary conditions for an optimal solution to Problem B are
the Kuhn-Tucker conditions [29].

The Lagrangian for Problem B is:

M
L(X,u,A,T,p,n) = kz £(x(K),u(k)) + ¢p(x(M+1))
=1
M
+ kzl ACk) *[x(k) - x(k+1) + g(x(k),u(k))]
o (4)
+ ) v eqx(k)) + prp(x(M+1))
k=2
M
+ F n(k) *h(x(k),u(k))
k=1

* *
If x ,u solves Problem B, then the following conditions must be satisfied:

(a) feasibility

* * * *
x (k+1) = x (k) + g(x (k),u (k)) (5)
(k & Ljuxs ;M)
*
qx (k)) <0, k=1,...,M (6)
*
p(x (M+1)) = 0 (7
h(x (K),u (K)) <0, k=1,...,M (8)
and there exist Lagrange multipliers A* € EnM, y* € (EZn(M))+’
p* € En, and n* € (EQM)+, such that
(b) complementary slackness
M * *
P v (Keqlx (k) =0 (9)

k=1
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M * * *
kzl n (k) *h(x (k),u (k)) =0 (10)

(c) stationarity

* * * * * o
VuL(x sU 324 51 0 0 )

n
o

(1n
(12)

* % e % * e
VXL(X M A JF #8 40 )

1
o

Again, these conditions are only necessary for an optimal solution.
That is, they may be satisified at points other than the global optimum
(e.g., maxima, local minima, saddle-points, etc.). To guarantee that
these conditions are both necessary and sufficient (i.e., their
simultaneous solution will yield the global solution x*,u*), we must
assume additionally that [29]:
(1) f(-,-),¢T(-) convex (or pseudo-convex)
(11i) g(*)sh(*;°) convex (or quasi-convex)
(1ii) qe*.*)sp(*) linear
There is danger in using the Kuhn-Tucker conditions for finding
x*,u* if these assumptions do not hold for a particular problem. In
general, finite-dimensional optimization problems are not solved via the
Kuhn-Tucker conditions, but rather, direct methods are utilized which
generally can guarantee covergence to a local optimum, under certain mild
conditions. Infinite-dimensional optimization problems, on the other hand,
many times are solved using the continuous-time version of the Kuhn-Tucker

conditions. Continuous-time problems with a high degree of nonlinearity can

therefore present serious computational difficulties.

C. NECESSARY CONDITIONS FOR CONTINUOUS-TIME OPTIMAL CONTROL

For the discrete-time problem (Problem B), a nominal time increment of
At = 1 was assumed. As we let At - 0 (or M -+ «), we obtain the

continuous-time version of Problem B [Problem C]:
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min [ £ ,umat + o(x(rp) (13)
x(t) ,u(t) 0
for all te[O,Tf]

subject to:
dynamics (or x(t) = g(x(t),u(t)), for all te[0,T,] (13a)
state equation) -
initial condition x(0) = ¢ (13b)
state-space q(x(t)) <0, for all ts[O,Tf] (13c)
constraint
final condition p(x(Tf)) =0 (13d)
control constraint h(x(t),u(t)), for all te[O,Tf] (13e)

Since the Kuhn-Tucker conditions apply to the discrete-time problem
for finite M, then the limiting conditions as M - « must be the
necessary conditions for an optimal solution to Problem C.

Equation (11) is

VR (0,u (1) + A (07 g(x (K),u ()

0 (0T h(x (), (K) = 0 (14)
(for k = 1,...,M)
and Equation (12) is
fo(x*(k),u*(k)) S0 - A (k-1)

PV g (x (), (k)

* * (15)
£y (07 a(x (1)
£ 0 (VA (), (K) = 0
(for k = 2,...,M)
Vo0 (1)) - AT ¢ o 7 p(x (1)) = 0 (16)

C.1 From Discrete-Time to Continuous-Time

The continuous-time necessary conditions can be placed in a more concise

format if we define the following function, called the modified Hamiltonian [25]+

—I.
[pg. 110]
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Hx(K) ,uk) ;A (k) 5y (k) ,n (k)
£ H(x(),ulk),AK) + v(K) qx(K)
+ n(k) *h(x(k),uk))
where
H e (k) ,u (k) 2 (K))
2 E(x(K),u(k) + A(K) g (x(K),u(k))
and is called the Ham{ltonian.
Therefore, we can replace Equation (13) with

VG (0,0 (k)0 (K),y (K),n (K) = 0
kK=1,...,M

and Equations (14) and (15) with

N k-1) = AR+ VG ()0 (0,0 (K0, (), (K)
k =2,...,M

200 =V g(x Q1)) + 0 T p(x (WD)
Taking the limits of (18), (19) and (20)
(for all k = 1,...,M+1) [28]"
lin v A (K),0 (0,0 00,y (K),n (k)
AE =0

= VA (0,0 (0,4 (8,7 (8),n (1))
(for all t e [0,T.])

lim AK) - A (k-1) _ lim A (k+1) - A (k)

At >0 At At - 0 At

= 37(t) = VA (0,0 (8),07(8),7 (8),n (1))
(for all t e [O,Tf])

S *
lim A(M) = A (T

)
At > 0 .

= Vx¢(x*(Tf)) + p*'pr(x*(Tf))

Tngs. 447-8]

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)
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C.2 Necessary Conditions

We can now write the necessary conditions for the continuous-time

* *
problem. If x (t) e En, u (t] & E" (for all t e [O,Tf]) solve

Problem C, then the following conditions must be satisfied:

* *
and there exist multipliers X (t) e En, Yy (t) e (Ezn)+ (or € (En)+), 0

and

(a) feasibility

X (6) = glx (£),u (), x(0) = ¢ (25)
q(x (£)) 0 (26)
P(x (TP) = 0 (27)
h(x (t),u (t)) < 0 (28)

* ,Q/+
n (t) € () , such that

(b) complementary slackness

Y (8)-q(x (£)) = 0 (29)
() *h(x (t),u (t)) = 0 (30)

(c) stationarity [from (22), (23) and (24)]

v AT (8,0 (8,07 (8),y (t),n (8)) = 0 (31)
V) = v (), (0,07 (0,7 (0,0 () (32)
(TP = T ox (TR) + 0 ¥ p(x (TQ) (33)

These conditions correspond to the necessary conditions obtained from

application of variational theory directly to Problem C [27]. Equation (32)

is called the adjoint equation and Equation (33) is called the transversality

condition.

C.3 Solution Difficulties

It appears on the surface that transformation from the discrete case

to the continuous case is straightforward. A number of serious difficulties

arise in the continuous case, however, that are not evident in the discrete

case.

Notice that the above necessary conditions are valid, in general,
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*
only if wu (t) 1is continuous over [O0,T The existence of the state-space

f]'
(q(*) < 0) and control (h(*,*) < 0) constraints, however, will tend to
produce discontinuities in u* at a finite number of points Tj € [O,Tf],
j=1,...,J, where Tl < T, <eon Ty An additional set of necessary
conditions, called cosner ox fump conditions [11] is therefore required for
these Tj. In general, the more state-space and control constraints there
are, the more points of discontinuity there will be; and hence, the number
of conditions to be satisfied increases proportionately.

One method of alleviating the problem of added corner conditions is

to place (13c) and (13e) into the objective function (13) through use of

arbitrary penalty functions. For example

T

LN Foram,uc))dt + gx(1p)
T

Te s s 2

+ K [T (@) dt + K, [T (h(x(t),u(t)) dt (34)
0 ' 0

is an example penalty function. The result is an unconstrained optimal

contrcl problem, where the above necessary conditions are applicable. The

* *

parameters Kl and K2 are adjusted until an optimal solution Xx ,u is

produced which satisfies the constraints. Also, a penalty of the form
Ky (Px(Ty)

could be added also, allowing elimination of the transversality conditions.
Penalty function methods, however, generally suffer from convergence problems,
especially if the constraints can be satisfied only as Ki - o, for all 1.
There are other difficulties associated with penalty function methods, as
discussed in Bryson and Ho [9].

Even if it is possible to reduce the number of necessary conditions,
there remains the difficult Awo-point boundary-value problem to be solved.

That is, Equations (25) and (32) must be solved simultaneously, where there
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are only given final conditions associated with (32) (the transversality
conditions (33)). Since numerical integration methods require that all
initial conditions be given, A(0) must be guessed and adjusted until

the transversality condition is satisfied. This trial and error procedure

is computationally inefficient, and if a high degree of nonlinearity exists

in the problem, the current solution may never be attained. This is primarily
due to Amstability difficulties, where small changes in A(0) produce

large changes in X(Tf).

Solution procedure generally starts with determination of u*(x(t),X(t),t)
as a function of x and A from Equation (31), and then the two-point
boundary-value problem is attempted. An alternative to using (31) is to
apply the Maximum Principfe [25]. Here, the Hamiltonian H is utilized in

place of H (so that the complementary slackness conditions can be eliminated)

and (31) is replaced with
HEx(t),u (£),0(8)) < H(x(t),u(t) ,A(t)) (35)

for all u satisfying (28), from which u*(x(t),k(t),t) can hopefully be
determined. It may not be possible to determine u*(x(t),k(t),t) from (31)
or (35). The so-called singular case is an example, where control wu(*)
appears linearly in f(-,*) (or not at all), and so can not be explicitly
determined from (31).

We see, then, that aside from the inherent dangers of using necessary
conditions to find x*,u*, the actual solution can be extremely difficult
for nontriyial continuous control problems. Considerable effort has therefore
been directed, in recent years, towards applying methods original developed
for finite-dimensional problems to infinite-dimensional problems. These
would be termed "direct'" methods, since the necessary conditions are
essentially ignored and an initial guess xo(t),uo(t) (for all t e [O,Tf])

starts an iterative process that attempts to successively decrease the
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objective function (subject to the constraints) in some fashion. Some of
the methods that have been applied include gradient methods, conjugate
directions, Newton-Raphson, and others. In general, these methods are
more difficult to apply to infinite-dimensional problems than finite-
dimensional problems, with computer storage capabilities being a consistent

constraint.

D. SUMMARY AND DISCUSSION

Let us summarize what has been shown in this chapter:
1. There are two basic approaches to solving the optimal control
problem of minimizing overflows from combined sewer systems:

(a) Solve the finite-dimensional problem [Problem B], where
the time horizon has been discretized, and determine
the optimal controls for each interval.

(b) Solve the infinite-dimensional problem [Problem C] and
discretize the resulting continuous-time optimal control+
according to the interval Atactual

2. The necessary conditions for the continuous-time optimal control
problem can be derived as limiting versions (as At > 0) of

the Kuhn-Tucker necessary conditions for the discrete-time problem.

3. Infinite-dimensional optimization is more heavily dependent

upon utilizing necessary conditions for determining optimal controls

than is finite-dimensional optimization. Since necessary conditions

are generally applicable at local minima, maxima, saddle-points, etc.,
solution results can be deceiving for nonlinear problems (unless
conditions (i) - (iii) of Section B hold, thus assuring that the

Kuhn-Tucker conditions are both necessary and sufficient).

TNote: Since integration must be carried out numerically on a digital
computer, then this control will actually be discretized, though the time

i - 4 .
ntervals used for Integration 8t << Atactual
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4. The necessary conditions for infinite-dimensional problems
are difficult to solve simultaneously (for x*,u*) because:

(a) Large numbers of constraints (on control and state
variables) tend to create large numbers of necessary
conditions (corner conditions) and the control logic
becomes increasingly complex.

(b) Computational inefficiency arises in solution of the
two-point boundary-value problem, and the possibility
of divergence is ever-present for nonlinear problems,
due to instability.

5. Data for the combined sewer problem are taken in discrete-time.
But notice, for example, that Problem A2 requires that continuous
data R(t) (for all t e [O,Tf]) be given. Thus, a continuous
curye must be approximated from the discrete data. Since there
are an infinite number of such approximations (based on whatever
fitting criteria are used), the uniqueness of the resulting
optimal control u*(t) may be questionable.

These statements seem to suggest that finite-dimensional optimization
is superior, at least for our problem. Notice, however, that if M is
large (which may be necessary for accurate control), that the number of
variables involved in Problem B would quickly tax the rapid-access storage
capacity of even the largest digital computers. If this is the case, there
may be no other alternative but to apply continuous-time control theory. On
the other hand, we could arbitrarily decrease M (i.e., increase At) so
that Problem B becomes solveable, with a resulting decrease in the accuracy
of the control. Though the resulting u* is optimal with respect to these
coarser intervals, it will probably be suboptimal with respect to the more

realistic finer intervals.
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For the combined sewer problem, it appears that M can be kept
to a reasonable size (allowing solution by finite-dimensional methods),
due to statements 1, 2, and 3 in section A.3 of this chapter. In addition,
control policies can probably be developed storm by storm, so that a
problem need not be defined over several storms. As Canon, et. al. [10],+
have succinctly stated, the "...main reason for attaching so much importance
to discrete optimal control is technical and stems from the constantly
increasing use of digital computers in the control of dynamical systems.
In any computation carried out on a digital computer, we can do no better
than obtain a finite set of real numbers. Thus, in solving a continuous
optimal control problem... we are forced to resort to some form of
discretization.'" The question, then, is whether to discretize prior to
computation (as in finite-dimensional optimization) or during and subsequent
to computation (as in infinite-dimensional optimization). For the combined
sewer problem, the author's recommendation is that the former be stressed.

The following chapter will serve to support the above conclusions
concerning infinite-dimensional optimization, as it is applied to some
simplified subbasin configurations. This will be followed by a chapter on
finite-dimensional optimization techniques, concluding with a proposed

solution procedure based on recent advances in duality theory.

TIpgs. 1 and 2]
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ITI. APPLICATIONS OF CONTINUOUS-TIME CONTROL THEORY

A. INTRODUCTION

The following applications represent the first attempts at solving
the optimal control problem for combined sewer systems, as far as this
author is aware. Most of the work has been carried out by W. Bell, and
reported in [5], [6], and [7]. It may be valuable to attempt solution of
a control problem by continuous-time theory before finite-dimensional
work, since finite-dimensional optimization tends to require a larger
initial investment in computer time and demands a greater quantity of
computer storage. For nonlinear, nonconvex problems, it is usually
impossible to determine a piioil whether or not these attempts will be
successful. As it becomes increasingly evident that the difficulties are
insurmountable, effort should be shifted to finite-dimensional optimization.
Such is the experience with the combined sewer control problem.
Considerable difficulty has been encountered with applying continuous-time
theory to even very idealized subbasin configurations of at most two or
three reservoirs, with time lag in flow routing neglected. This experience
has discouraged further extension to more realistic configurations, and
current research effort is concentrating on solving the control problem by
finite-dimensional optimization techniques. However, the initial efforts
in continuous-time control are reported here for the following reasons:
1. To give evidence as to the viability of shifting
emphasis to finite-dimensional optimization.
2. Limited results have been obtained for certain
specialized cases, and it is hoped that they will
serve to aid in generating accurate initial guesses

for direct solution of the finite-dimensional problems.
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B. AMBIENT STORAGE

B.1 Two Reservoirs in Series

Bell and Wynn [5] have applied continucus-time control theory to the
problem of minimizing overflows from a system composed of two reservoirs
in series, where storage is defined in terms of water accumulation behind

an adjustable weir placed in the sewer.

R, (8)

e
! S,(8) s 0 (1)
dl(t) hl(t)
i
7

1

T Q, ()

SEWER

)\\\\ 0,(t)

h, (t)

Qz(t) (to treatment)

FIGURE III-1
AMBIENT STORAGE IN SERIES

where (at time t)

R (t) rate of direct input to storage behind weir i
i

5 (1)

accumulated storage behind weir 1

Oi(t) rate of overflow from reservoir i to receiving waters



-26~

Ql(t) = throughput rate from reservoir 1 to reservoir 2
Q2(t) = rate of flow to treatment plant
rl(t) = yariable radius ol orifice controlling throughput from

reservoir 1

r2(t) = variable orifice radius for flow to treatment
hi(t) = the head over weir 1
di(t) = depth of flow at weir i

In the example one-reservoir problem discussed in Chapter II [Problem A2],
Q(t) and O(t) represented the control variables, and S(t) was the state
variable. The state variable S(t) 1is actually a direct, one-to-omne
function of d(t), so we can replace S(t) with d(t) as the state

variable. For flow through an orifice
, ,
Qi(t) = airl(t) /di(t 4 i=1,2 (1)

where a; is a given constant. Therefore, we can replace Qi(t) with

ri(t) as a control variable. For flow over a weir
3/ .
Oi(t) = bihi(t) 5 i=1,2 (2)

where bi is a given constant. Likewise, we replace Oi(t) with hi(t)

as a control variable. [Note: weir height is uniquely defined by h and d].
The following state equations are expressed with the assumption that

there are negligible time lags. Future work should consider not only time

lags, but backwater effects in the flow routing. By conservation of mass

3 2

3,(6) = Ry () - ahy (8) /2 - byr (00 VA TO] / Ay (4 (8)) (3)
2 3

8,(t) = [Ry(t) + by (t) YA CE) - ajh(t) /2

(4)
2 i
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where Ai(di(t))’ i=1,2, are given area-depth relationships,

characteristic of the sewer and its slope, such that
Si(t) = di(t)Ai(di(t))’ i=1,2

Since we wish to minimize total volume of accumulated overflow,

let o(t) = O(t), or
v 3/2 .
0, (t) = byh, (t) /2, i=1,2 (5)

Hence, the oi(t) are introduced as additional state variables, and the
infinite-dimensional problem is [weighting factors are represented by

the vector w = (wl,wz)]:

min w-o(Tf) (6)
d(t),o(t),r(t) ,h(t)

for all t e [O,Tf]

[where d(*),0(*),r(*),h(*) e EH"]

subject to:

state equations [Equations (3), (4), and (5)]
initial conditions d(0),0(0) (given)
final conditions [none]
state—sPace d(t)-[d(t) - dmax] <0 (7
constraints

r(t)[r(t) -1 ] <0 (8)
control constraints hi(t)-[h(t) - d{t)] <= 0 (9)

2
Ry(t) + byr (8) /4 (8) < Q oo (10)

where d ST

S — and Ql,max are given upper bounds. Notice that

Inequalities (7), (8) and (9) are placed in the form of case (b)

[Chapter II, Section B]. Inequality (9) assures that h(t) cannot
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exceed d(t), whereas (10) states that direct input to reservoir 2,
plus throughput from reservoir 1, must be less than or equal to the
maximum capacity of the sewer Q1 — between reservoirs 1 and 2.

G 3

In terms of the general format of Problem C [Chapter II, Section C]

8 (x(t),h(t)) => m

u(t) = = 4
x(t) & (d(©),0(t)) => n=4
£fs,v) B g
P(TP) & weo(T)

...and so on. The necessary conditions [Chapter II, Section C.2] are now
written, including appropriate corner conditions, and an attempt is made
to find r (t),h (t),d (t),0 (t) that will satisfy them.
Bell has written a computer program for this problem and discussed
the results in an unpublished report [4]. To avoid the difficult two-
point boundary-value problem, a successive approximation scheme is utilized,
which allows the state equations to be solved independently of the adjoint
equations. Referring to the general format of Problem C, Chapter II,
the procedure is basically:
(a) Guess an initial feasible estimate of
w f),0 <t <), andcall it o
Set iteration number j = 0.
(b) Solve the state equations by numerical
integration and determine feasible
xj+1 a {xj+1(t),0 £t j_Tf}.
j

(c) The given control u’ 1is now ignored and

x3+1 is used in the simultaneous solution of
the adjoint equations (II-32), the control

equations (II-31), and the complementary slackness
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conditions (II-29) and (II-30), yielding
uJ+1,AJ+1,YJ+1, and nJ+1. [Note: the
adjoint equations must be integrated backwards

from t=T. to t=0].

f

At this point, all necessary conditions are
satisfied, except for the fact that, in general,
j+1

uJ(t) # u’ “(t), for all t. For some tolerance

€ an example '"'stop" criterion, not necessarily

3

used by Bell, is:
]uj(t) - u3+1(t) | < e, for all t?

FE) I1f YEs, STOP,

(ii) If NO, set j —+ j+1; GO TO (b)

The results from experience with the computer program can be

summarized as follows [4]:

1. The following assumptions were made:

(1)

(ii)

(iii)

w or greater weight was placed on overflows

<
L g
from the downstream reservoir
rz(t) was eliminated as a variable, and assumed
to be a given constant

When dz(t) =d - hz(t) » 0. This simplifies

max

the corner conditions, since we are excluding the

possibility that h2(t) = 0 when dz(t) = dmax'

2. The computer program did not converge to the optimal solution,

but tended to oscillate closely around it. The necessary

conditions were analyzed by hand, and it was found that control

tended to be of a bang-bang nature (i.e., instantaneous switching
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occurred at various points, where control was

transferred from one control constraint boundary

to another). In general, the optimal control stayed

on either state-space or control constraint boundaries

at all times.

3. Singularity (as discussed in Chapter II) appeared as

a consistent difficulty, since the objective function (6)

is only defined at T.. Therefore, at those times t

where a certain number of the multipliers A(t),y(t), or n(t)

vanish, then there is the possibility that one or more of

the control variables will vanish from the control equations

(II-31). The problem, then, is how to find a unique u*(t).

Bell J4] also examined a problem of two reservoirs in parallel. No
computer program was written, but analysis of the necessary conditions
by hand produced some approximate results. It was noted that control,
again, was of the bang-bang type. Bell also found that the problem of
singularity did not occur if the throughputs Qi were placed in the
objective function, along with appropriate weighting factors. Notice
that there are two ways that this can be done. To the objective function,
add either the term
Al

2 2
(i) - = ‘([, f[izl v, (Ba, T, (1) /di(t)]dt

where vi(t) are weighting factors, or
(i) let d(t) = Q(t), and add the term - [v-q(Tf)].

It is not clear from [4] which approach Bell applied, but it seems that

the danger of singularity still remains with approach (ii) [Notice the
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minus sign, since we wish to maximize throughput]. It appears that
approach (i) would eliminate the possibility of singularity, at least
for r(t).

In general, it must be concluded that the control logic for even
these very simple problems, with several idealized assumptions, is complex
enough to discourage further extension to more realistic problems. For
this problem, the difficult two-point boundary-value problem was avoided
by using a successive approximation scheme. For nonlinear problems,
however, successive approximation methods can be highly unstable, even
when initial guesses uo(t) are very close to u*(t) [24]. The lack of

convergence here seems to present some evidence to this effect.

B.2 A Three-Reservoir Problem

Results from the two-reservoir problems previously described have
been extended by Bell, Wynn, and Smith [7] to a three reservoir problem,

whose configuration is shown in Figure III-2.

R, ()

0, (t)

Q, (t)

Q,(t)

(to treatment)

FIGURE III-2
A THREE-RESERVOIR PROBLEM FOR AMBIENT STORAGE
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this three-reservoir problem, it is desired to introduce throughput

into the objective function, along with appropriate weighting factors,

so that the problem of singular control, hopefully, does not appear.

Therefore, let d(t)

q; (t)

Q(t), or

2 i -
a, T, (t) /Ei(t), i=1,2,3

so that q(t) is considered as a new state variable.

The optimization problem is:

for all

[where d(<),o(*),q(*),r(),h(*),w,v e (E3)+, and v 1is the vector

min [w=o(Tg) - veq(Tg]
d(t),o(t),q(t),r(t),h(t)

t e [0,T

£l

of weighting factors associated with accumulated overflows]

subject to:

state equations

initial conditions
final conditions

state-space
constraints

control constraints

<

[Equations (3) and (4)], plus

[Equation (5)], for i = 1,2,3
LFEquation (1) ], for & = 1,2.,3
d(0),0(0), and q(0) (given)

[none]

d(t)[d(t) - dmax] <0

7~

< 2
Rz(t) + blrl(t) /dl(t

L

r(t) [r(t) - rmax] <0

h(t)-[h(t) - d(t)] <O

)iQLmu

2 2
b,r,(t) sz(t) + bor (t) /d3(t5 =Q

o 2 3
d,(t) = [Ry(t) - byr (t) /A, (8] - agh,(t) /2

/ Ay (dyg (1))

2 ,max

(11)

(12)

(13)

(14)

(15)
(16)
(17)

(18)
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Inequality (18) has been added to insure that total flow to the
treatment plant does not exceed Q2 _— In terms of the general
5

format of Problem C

u(t) & (e(t),h(e) A
x(t) & @®),0(t),q)) => n =9
e, 3 & 1
$(x(Tg)) 2 weo(Ty) - veq(Ty)

The objective function has been formulated in such a way that
overflows are minimized and throughputs maximized, based on the choice
of weighting factors. Selection of appropriate weighting factors will
probably be based primarily upon the relative levels of pollution at
the various control points. It appears that pollution would tend to
and v, > v

1 2 1 2"

are neglected for this problem, as reflected in the state equations.

increase downstream, so that w, < w Again, time delays

As before, the necessary conditions, including all corner conditions,
are written for this problem, and an attempt is made to solve them
simultaneously. The computer programs were developed for this purpose,
and discussed in [4] and [7]:

1. The first program followed the same basic successive
approximation scheme as carried out for the two reservoir
problem, except that a perturbation procedure was included
as an attempt to get around the problem of singularity. As
far as this author is aware, no convergence has been attained
as yet. If instability of the successive approximation
method was a factor in the lack of convergence for the
two-reservoir problem, then it seems that this would be

further accentuated for the more complicated three-reservoir

problem.
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In order to simplify the control logic and reduce the

total number of necessary conditions, a penalty function
approach was utilized as an alternative. As discussed

in Chapter II, penalty terms of the form seen in Equation
(I1-34) can be added for all the state-space and control
constraints, thus leaving an unconstrained control problem.
The problems associated with large numbers of corner
conditions are avoided. As discussed in Chapter II, however,
penalty function methods suffer from difficulties of their
own. There is a large element of trial and error involved,
and the control problem must be solved several times, each

time adjusting the parameters K, and K until the correct

1 2?

are found such that the state-space and control

* %
K K,
constraints are indirectly satisfied. Bell [4] indicates
that convergence has been attained in some cases, but that
the following difficulties arose in connection with the
penalty function method:

(a) A saddle-point tended to occur at r = 0. Since
we are dealing with necessary conditions, there
was danger that a saddle-point solution would result,
rather than the true global minimum. This was
dealt with by requiring that = > e, where =
is an arbitrarily small number.

(b) Singularity still tended to be a problem, even though
the addition of the penalty terms insures that the
control variables appear explicitly in the control
equations (as long as Ki # 0). Various attempts have

been made to overcome this problem, but success is not

assured as yet.



o

C. AUXILIARY STORAGE

For situations where auxiliary storage dominates over ambient
storage (e.g., the San Francisco system), extensions of Problem A2
[Chapter II] are more appropriate. That is, instead of defining
control variables in terms valve of settings and adjustable weir heights,
we return to defining control in the broader sense of flow rates, as
before. This may also be a viable alternative for analyzing ambient
storage by continuous-time theory. The following formulation, therefore,
is applicable to both ambient and auxiliary cases. Suppose we have been
able to determine Qi*(t), for all t ¢ [O,Tf}, as well as the optimal
storage Si*(t). It is a relatively simple matter to determine the
optimal orifice settings ri*(t) and head over the weir hi*(t) from

these values. Let us formalize these ideas by setting up the preceding

three-reservoir problem as an extension of Problem A2:

T
min [T o + ver) -aende
S(£),0(£),Q(¢)  °
for all t e [O,Tf]
subject to: (
ds :
1 _
= R(B) - 0,() - QD)
d82
state equations < rolke Rz(t) - Oz(t) + Ql(t) = Qz(t)
dS3
L
initial conditions S(0) given
state-space 0 <S8(t) <S8

: max
constraints
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‘ o(t) >0
0<Qt) <Q
QO & Qa0 2 Qe

control constraints (

where S(°),0(+),Q(*),w(*),v(") ¢ (E3)+, and we are using case (a)
[Chapter II, Section B] for the control constraints to keep the problem
linear.

An alternative formulation, perhaps more amenable to efficient
computation, and comparable to the approach used in the ambient storage

case, is to define the objective function as

min wﬁo(Tf) + veq(T
S(t),o(t),q(t),0(t),Q(t)
for all t e [0,T]

)

and add on the additional state equations

Q(t), Q) given

o(t), 0(0) given

q(t)
o(t)

The above problem is a linear control problem, for which there are
a number of highly developed, efficient algorithms for solving them [19].
These algorithms are based on appliéations of generalized linear programming
[14], rather than standard optimal control theory, as described in Chapter II.
These methods appear to have great potential for solving subbasin problems
involving several more reservoirs than the simple three-reservoir example
discussed here.

In order to apply standard optimal control theory, the objective function
should be at least quadratic, so as to avoid the singularity problem discussed

in Chapter II. One possibility would be to use a criterion of the form

TNotice that Qp.x and Qﬁax are actually variables, since they are
functions of S. For the aboyve formulation, average values are used.
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2 2
w (0(TY) " + v+ (@(TQ)

though there is some question as to the equivalence of this criterion
to our basic objective of minimizing overflows. The resulting problem
has a quadratic criterion and a linear set of constraints. Perhaps
no other subject in the area of continuous-time control theory has
received more attention in past years than the linear-quadratic problem.
The two-point boundary-value problem for this formulation is easily
solved by the sweep method and solution of the well-known matrix-Ricatti
equations [25].+

Computational experience is not yet available on application of the
above ideas to the combined sewer problems. It appears, from the above
discussion, that there would be less difficulty in applying these
approaches to the ambient storage case, than that originally attempted

by Bell [4].

D. DISCUSSION

There is little doubt that continued effort towards obtaining
convergence for the ambient storage formulations will eventually succeed,
particularly via penalty function approaches. As seen in some of the
discussion concerning the three-reservoir problem, however, the effort
tends to involve a good deal of problem manipulation, intuitive insight,
and a measure of good luck. Again the major point we are emphasizing
here is not the impossibility of solving individual control problems, but
the great deal of effort involved in obtaining a solution. There seems,
in general, to be a high level of programming skill required. Since the

eventual hope is to consider models

Tngs. 102-3]
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1. composed of several interconnected reservoirs in
a variety of configurations
2. which include realistic flow routing components
that properly allow for time lag between control points
3. that consider backwater effects in flow routing. The
ideal situation is that the full St. Venant equations
are utilized,
so that from the above experience, it must be concluded that each
particular model situation would require a unique effort in obtaining
solutions that would probably not be applicable to other models.

The auxiliary storage formulation of the previous section was seen
to also be applicable to the ambient storage case, and perhaps a more
effective approach. It was shown that highly effective computational
techniques are available for solying these problems, both for the
completely linear case and the linear-quadratic case.

The major concern, however, is extension to more realistic flow
routing techniques, thus introducing nonlinearities into the state
equations. The highly efficient methods previously alluded to must
then be abandoned, unless we attempt to linearize the nonlinear equations
and converge to the solution of the original nonlinear problem in some
kind of iterative fashion. This is the essence of a method called
Quasilinearization, developed by Bellmen and Kalaba [8]. Due to the
nonconvexity of control problems with nonlinear state equations (i.e.,
nonlinear equality constraints result in a nonconvex constraint region,
in general), this approach tends to be rather unstable [24]. If we
attempt to return to application of standard continuous control theory
to the nonlinear control problem, we are again thwarted by the difficult
two-point boundary-value problem, as well as other hinderances, as discussed

in Chapter II.
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IV. MATHEMATICAL PROGRAMMING APPROACHES

A. INTRODUCTION

As was shown in Chapter II, finite-dimensional optimization appears
to be better suited to the problem of optimal control of combined sewer
overflow. We found this to be due particularly to:

(1) the physical nature of the system
(i.e., control is actually effected in discrete-time)
(ii) the difficulty of applying optimal control theory
(infinite-dimensional optimization), since it is based
on necessary conditions for optimality

Methods used to solve finite-dimensional optimization problems are
lumped under the term mathematical programming. That is, linear, nonlinear,
and dynamic programming are all mathematical programming techniques. The
variety of techniques is large, particularly under the category of nonlinear
programming. Again, mathematical programming methods usually are not based
upon solution of necessary conditions, as in continuous-time control theory.
Necessary conditions may be used, however, for checking the optimality of
solutions determined by other means.

The purpose of this chapter is. to discuss some of the techniques
available and conclude with a methodology the author feels is most conducive
to the problem at hand. Emphasis will be placed on the advantages and
disadvantages of each technique, based on the following questions:

1. How realistic a model concerning the flow dynamics of the

system can be utilized?

2. Can the method tolerate a large number of variables? That is,

is it conducive to decomposition, since the large-scale problem

must eventually be dealt with?
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3. Will the method guarantee convergence to global or just
local solutions?
The general finite-dimensional problem is repeated from Chapter II
[Problem B]:
| M
min )} £(x(K),u(®) * ¢(x(M+1)) 1)
x,u k=1

[where x = (x(1),...,xM+1), u= (u@),...,u(M))]

subject to:

x(k+1) = x(k) + g(x(k),u(k)) (1a)
k=1,...,M)

x(1) = ¢ (1b)

q(x(k)) <0, k=1,...,M (1c)

p(x(M+1)) = 0 (1d)

h(x(k),u(k)) <0, k=1,...,M (1e)

The particular technique to be applied depends upon:
(i) the nature of f(-," and ¢(*)
(i.e., their linearity, nonlinearity, nonconvexity,
continuity, etc.)
(ii) the nature of g(+,*), q(*), p(*), and h(-,*)
(iii) the number of state variables (n) and decision or

control variables (m) at each stage

B. AN EXAMPLE THREE-RESERVOIR PROBLEM

As explained in Chapter I, we are primarily interested in subbasin
analysis here. Future work will concentrate on fitting the subsystems into
a large-scale framework. Let us then consider an example subbasin
configuration composed of three auxiliary reservoirs in series, with

overflow possible from each reservoir, where
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EXAMPLE THREE-RESERVOIR PROBLEM

average rate of overflow from reservoir i, during period k

average rate during period k of lumped direct stormflow
input which is translated from the near vicinity of
reservoir i [Note: assume that all direct input can be
lumped, as shown in Figure IV-1, with negligible direct
input occuring between reservoirs]

average rate of throughput during period k, from

reservoir i, with QSCk) going to treatment [i = 1,2]

the routed or translated throughput from reservoir 1,
i+l

entering reservoir [1=1,2]

storage in reservoir i, at the beginning of period k.

A common method of flow routing is the Muskingum method [12], where

Q (k) + T, (Q (K),Q, (k) ,Q; (k+1)) ©)

1,...,M-1)

Q; (k+1)
(k

The transformation Ti may be linear or nonlinear, depending upon whether

or not the coefficients associated with the Muskingum method are considered

to be functions of flow rate.

Backwater effects are not properly considered

here, as in more realistic methods [12], but (2) will suffice for now.
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We would like to formulate an optimization problem for minimizing
O(k), for all k, which is consistent with the general format of
Problem B. This is hindered by the present form of Equation (2), since
it is not consistent with the general format for dynamic or state equations
(i.e., k+1 appears on the right-hand side). This can be remedied by

defining a new state variable Vi(k), and replacing (2) with [assuming

At = 1]:
Qs (k+1) = Q (k) + T, (Q; (K),Q; (K) ,V, (k) (3)
Q; (k1) = Q; (k) + [V;(K) - Q; (1] )
(k =1,...,M-1)

We see that (2) <=> (3),(4); Qi(k) is now regarded as a state variable,
and Vi(k) as a control variable, since Qi(k+1) is dependent upon Vi(k).

We can now formulate the optimization problem [Problem D]:

min ) W +0 (k) (5)
1 k=1
S’Q:Q y
V,0

3(M+1) v 3M 3M Z2M
E

[where S,Q € E e E" ,0 g E and Q' e E7]

subject to:

(5,061) = 5,00 + RGO - Q) - 0, () (6)
5,0¢61) = 5,00 + Ry(K) + Q(K) - Q(K) - 0,(K) (7
dynautc Sp(k+l) = S,(K) + R (k) + Q,(K) - Q;(K) - 0,(K) (8)
b Q (k+1) = Q, (k) + T, (Q; (K),Q; (K),V; (K)) (9)
Q; (k1) = Q1) + [V;(K) - QK] (10)
4 G=1,2 k=1,...,M
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o} .
Si(l) = Si (given)
initial ) _ . . .
conditions Qj (1) =0 (glven) 1= 1’2,3: J = 1’2
Q1) =0
028,00 £y a
state-space : i=1,2,3;3=1,2
constraints 0 5‘Qj(k) f-Qj,max (12)
k = 2, ,M
0 f_Qi(k) f-Qi,max (13
final i _ . L
conditions | &ML =0 i=1,2,3;j = 1,2 (15)
Q; (M+1) = 0 (16)
control 0 5-Vi(k) i-Qi,max i=1,2,3 (17)
constraints 0 (k) > 0 K=1,....M (18)

'
Physically speaking, Qi and Qi are only defined for k =1,...,M.
In order to be consistent with the general format, we are defining
1
Qi(M+1) = Qi(M+1) A 0, and expressing them as final conditions. Notice

that (14) is arbitrary, and we could simply specify
si(M+1) >0 (19)

as a more realistic final condition. This is, however, not consistent
with the general format of Problem B. The transversality conditions for
this situation are the same, however, with the exception that the

multiplier p 1is now nonnegative.

u(k) £ (V(K),0(k)) =>m=6
x4 500,000,Q ®) = n=9
£0-,uk) 2 0, 00
s(x#1)) 2 0
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For this problem, then, there are a total of 15M variables (state and
control) and 22M constraints, not including nonnegativity restrictionms.
Suppose, for example, that a storm lasts for about an hour, and control
1s exercised every 5 minutes. Then M = 12, the number of variables is
180, and there are 264 constraints. Therefore, optimization techniques
applied to Problem D must involve some kind of decomposition strategy,

where the original problem is replaced by several smaller problems.

C. DIRECT METHODS

C.1 Linear Programming

If the transformation Ti is linear, then Problem D can be solved
by linear programming, and a global solution is assured if the problem
is well-posed. It should be pointed out that in applying linear
programming, there is no need to transform the problem into the format
of Problem B (resulting in Problem D). The original routing relation
(Equation (2)) suffices, and there is no need to add variables Vi(k) and the
constraints (4). The number of variables is therefore reduced to 12M, and the
number of constraints to 16M. We will refer to this modified problem as Problem D.
There are several ways of decomposing the linear programming problem,
including Dantzig-Wolfe decomposition [21], generalized linear programming
[14], and Rosen's partition programming [21]. Specialized techniques
have been developed specifically for linear control problems [14], and
have the advantage of being computationally efficient even if M is very
large. Another technique, using generalized duality theory, that is
discussed in a subsequent section, maybe applicable to linear control.
Considerable reduction in computational load can be gained by solving
Problem D via its dual. For the primal problem, we must add [12M - 9]

slack variables to the state-space and control constraints. Therefore,
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a 16M x 16M basis must be used. For the dual problem, the basis will
be 12M x 12M. Some computational results are reported in [30].
With respect to the questions asked in the introduction to this
chapter, the linear programming approach can be evaluated as follows:
1. The linearity of Ti implies that flow routing is
independent of flow rates in the sewer, which is not
consistent with reality. The question is, what
magnitude of error is introduced? If the error is
tolerable, then a linear programming approach may
be feasible. This error can only be evaluated, for
particular problems, by comparing the linear routing
with more realistic routing procedures.
2. As mentioned above, a number of efficient procedures
are available for decomposing Problem D when M is
large.
3. The linear programming algorithm assures convergence

to a global solution, as long as the problem is well-posed.

C.2 Dynamic Programming

In applying dynamic programming to Problem D, we need not make

any assumptions regarding Ti' The basic recursion relations are:

F(S(K),QK),Q (K)) (20)

. min [y -0Ck) + Fk+1(5(k+l),Q(k+1),Q'(k+1))]
V(k),0(k),
[subject to
(6) - (10),
(1) - (13),
and (17),(18)]
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where (20) is applicable for k = 1,...,M-1 (initial conditions for

'
k=1 are given) and is solved for all combinations of S(k),Q(k),Q (k),
with each variable taking on a finite number of values in the intervals

[0o,s_ 1, IO,Qmax], and [O,Qmax], respectively. For k = M+l

max

Fy(SQN,Q00,Q (1)
(21)
= min [wyr0 (M) ]
VM) ,000)
[subject to

(14) - (18)]

It is immediately evident that Problem D cannot be solved by
conventional dynamic programming, due to the so-called [8a]
"curse-of-dimensionality." There are a total of 9 state variables
at each stage. If the above intervals are discretized into L-1
subintervals, then a total of L9 values must be stored at each stage,
far exceeding the capacity of any computer, assuming L 1is a reasonable
number. By ''reasonable,'" we mean that it is large enough to insure a
global solution.

The only way to obtain any kind of solution to (20) and (21) is
to reduce L, which leads us into ‘the possibility of applying incremental
dynamic programming [20]. Here, L = 3, and we start with an initial
guess for the optimal control Vo(k),OO(k)) and perturb around the state
variables resulting from these controls (So(k),oo(k),Q'O(k)). The
perturbation is generally limited to one step above or below So(k),QO(k),Q'O(k),
for all k, which explains why L = 3. A new optimal control Vl(k),Ol(k)
is then determined for this limited state-space, and the procedure is
repeated until convergence is attained. Since we are making no assumptions
regarding Ti’ incremental dynamic programming can, in general, only

insure convergence to local solutions.
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Our evaluation of the applicability of dynamic programming is:

1. Realistic flow routing procedures may be utilized,
since dynamic programming requires no restrictive
assumptions regarding the transformation Ti'

2. Dynamic programming is a decomposition technique
in itself, since the original problem is decomposed
into a set of subproblems which are defined for
each stage. The subproblems, however, become unwieldy
from a computer storage standpoint (rapid-access storage)
as the number of state variables increases. For only
one reservoir, standard dynamic programming could be
applied. For more than one, it must be abandoned.

3. For general problems involving more than one reservoir,
incremental dynamic programming can be applied as a

means of obtaining at least a local solution.

C.3 Nonlinear Programming Methods

All nonlinear programming codes require that assumptions (i) - (iii),
in Section B of Chapter II, be applicable, in order for convergence to
a global solution to be assured.f The objective function for our problem
is, of course, linear, but a nonlinear transformation function Ti
immediately violates assumption (iii). Since (3) is an equality constraint,
the constraint region defined by (3) is convex if and only if (3) 1is
linear [18]. Therefore, nonlinear programming methods are poorly suited
for Problem D if a high value is placed on obtaining global solutions.
Optimization problems with noﬁlinear equality constraints are generally

considered to be the most difficult [18]. Our evaluation, then, is

il ; : : s :
Note: that is, with the exception of direct enumeration or
grid-search methods.
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1. Most nonlinear programming codes require that Ti be
at least continuous, in order for a solution to be
obtained. Usually, stronger assumptions of differentiability
are required for the algorithms to operate properly. These
assumptions do not seem restrictive for utilization of
realistic flow routing procedures.

2. The nonlinearity of Ti’ and hence the nonconvexity of
Problem D, limits the possible decomposition methods that
could be applied. The two most important methods would
probably be (i) Geoffrion's resource directive approach [16]
and (ii) application of generalized duality theory [see
Appendix].

3. In general, all standard nonlinear programming codes, that
are not based on grid search methods operating over the
entire constraint region of a problem, can at most guarantee

convergence to local solutions.

D. AN INDIRECT METHOD - THE APPROXIMATE-FLOW TECHNIQUE

D.1 Introduction

In addressing ourselves to the most general combined sewer problem
for a particular subbasin, where
(i) there are several interconnected storage basins
(i) realistic routing procedures are utilized, thus
introducing nonlinearities into the state equations,
and therefore resulting in nonconvexity of the
control problem,
we can conclude that direct application of

1. linear programming is not possible, unless some kind of

linearization procedure is carried out. In general, though,
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global solution of the original nonlinear problem is
difficult to attain by these methods

2. standard dynamic programming, though being a global solution

technique, is not feasible, due to dimensionality difficulties
caused by interconnection of several reservoirs. Incremental
dynamic programming is applicable, but can only guarantee
local solutions.

3. nonlinear programming methods can only assure convergence

to local solutions.
The following technique may be an answer to both the problem of
obtaining global solutions and the dimensionality difficulties encountered

in applying dynamic programming.

D.2 Approximation of Routed Flow

Suppose we are given arbitrary functions ¢(a,t), ¢(B,t), with
L
parameters o,B, respectively, such that if Q (k), k =1,...,M,
is the global solution (assuming that it is unique) to Problem D, then

K *
there exist o ,B such that

Q () = (e’ 1)

]

Q, () = V(& ,t;)

Then, the following problem can be written which is exactly equivalent

to Problem D [Problem El]:

M

min ’ w *0 (k) (22)
v k=1

$,Q,Q ,

V,0,a,8
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subject to: r

Sl(k+1) = Sl(k) # Rl(k) - Ql(k) = Ol(k) (23)
52(k+1) = Sz(k) + Rz(k) + ¢(@,tk) = Qz(k) - 02(k) (24)
somations < Sz(1) = Sg0K) + Rg(K) + ¥(B,ty) - Qg(k) - 05()  (25)
Q, (k+1) = Q. (k) + Ti(Qi(k),Qi(k),Vi(k)) (26)
Q, (k+1) = Q; (k) + [Vi(k) = Qi(k)] (27)
L (1=1,2; k=1,...,M
initial ! .
condicions  S(1),Q (1),Q)  (given)
o
S(K) <S8 (28)
state—space < 4 K i~Qmax K =2 . ..M (29)
constraints ¢(a,tk) _ Qi(k) -0 (30)
w(B,tk) = Qz(k) =0 (31)
K.,
(S(M+1) = 0
final ! _
conditions < Q ORi) =0
QM+1) = 0
‘o trol
gozsiiaints Q) 4 Qo k=1,....M (32)

where $(+),Q(+),0(+),8 _,Q u e N0 () ¢ EH e e B8 ¢ EV.

Problem E1 is not in the strict format of Problem D, due to the

inclusion of a,B8 as variables and the form of the state-space constraints.

We will see, however, how Problem El can be decomposed into subproblems

which are consistent with the general format. Notice, also, that each of

the state-space constraints can be replaced by two inequalities. The

addition of (30) and (31) insures the equivalence of D and El, since we
1%

have assumed that an exact fit can be made between the Qi (k) (k=1,.:

* *
and given functions ¢ (a ,tk), V(B ,tk).

.M
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In general, however, it is impossible to find a function that will
give an exact fit. Thus, solution of Problem E1 would produce solutions
Q'* that would be suboptimal, since (30) and (31) must be satisfied.
The closeness of the fits would tend to increase as a and b increase.
But since o and B are now variables, we desire to limit their sizes

to a degree that will facilitate solution. Taking this into account,

we would like to modify El1 in the following way [Problem E2]:

M 1 2
min Z [wk 0 (k) * Nk[¢ (OL, tk) - Ql (k)]
S Q Q' k=1 1 2
s ? ® N’(B,tk) & Qz(k)] ]
V,0,0,B

(33)

subject to:

[all the constraints of Problem El, with the exception of (30) and (31)]

There are no weighting factors attached to the 3rd term of the objective
function, since proper adjustment of the wy oMy can produce any desired
relative weighting among all the terms. For Problem E2, we can now allow
some error in the fitting process. As long as this error is tolerable,
then even though Problem E2 is no longer exactly equivalent to El1, for all
practical purposes, we can replace El with E2.

The advantage of placing the problem in the form of E2 is that we
can now decompose the problem into a set of dynamic programming problems,
for which dimensionality is no longer a great problem. This is accomplished
by the powerful profection theorem [16], which states that we can write

Problem E2 in the following equivalent form [Problem E3]:

min  v(a,B) (34)
fX.:B

where



B

M 1 2
v(a,8) = min J [uc0(k) + wlo(e,ty) - Q(K)]

k=1
S,Q,Q ,

! 2 (35)

subject to:

[the constraints associated with Problem E2]

The problem has now been projected onto the space of the a,8. The
minimization carried out in (35) is based on given a,B, and is referred
to as the Anner problem. The outer probLem is represented in (34).
Strictly speaking, we should replace min in (35) with 4n{§ (infimum, or
greatest lower bound), but (35) holds as long as we assume that a minimum
exists in (35) for all a e Ea, B e Eb. To assure this, it may be
necessary to place arbitrary upper and lower bounds on a,B.

With o,B now representing given parameters for the inner problem,
the inner problem is now completely decomposible into three, independent,

three-dimensional dynamic programming subproblems. In general,

Subproblem i (for i = 1,2,3) is

min
1
Si’Qi ’Qi)
Ve 50
i?71

I~ 2

[wlkol(k) + TERMi] (36)

k=1

where
1 2
for i =1, TERM. = uk[¢(0¢,tk) & Ql(k)]

1 2
0

for i = 2, TERM

for i = 3, TERM.
subject to:

[(6) - (18), for appropriate 1i]

Each of these subproblems is solved by dynamic programming in the

format of (20) and (21), except that the state and control vectors
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depicted in (20) and (21) are replaced with their respective components
for the ith subproblem.

In summary, we have replaced the original 9-dimensional dynamic
programming problem (which was impossible to solve) with an outer,
unconstrained nonlinear programming problem involving a total of a + b
variables, which at each iteration solves a total of three, three-dimensional
dynamic programming subproblems. If the dynamic programming subproblems
are efficiently programmed, then computer storage should no longer be a
problem. There are, however, two difficulties that present themselves:

(2) Since the 3-dimensional dynamic programming
subproblems are solved a number of times, depending
on how long it takes the outer problem to converge,
the amount of computer time required will render
solution by this approach infeasible.

(b) As we begin to consider more complex subbasin
configurations involving many reservoirs, the outer
problem will involve a quantity of variables that
increases in proportion to the number of reservoirs.
Hence, it will becomz more and more difficult to
insure convergence to global solution of the outer
problem. For nonconvex problems, the only sure way
of finding global solutions is via grid-search techniques.
As the dimensionality of the outer problem increases,
grid-search becomes less feasible, due to the enormous
number of computations involved in any direct enumeration
procedure.

The above discussion points to two goals:

(i) Somehow reduce the computational effort involved in the

inner problem.
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(ii) Provide some means of keeping the outer problem of
reasonable size.
The following section addresses itself to (i), and opens the way to

consideration of (ii).

D.3 Approximation of Flow prior to Routing

1
Suppose that instead of approximating the routed flows Qi(°) by
the functions ¢(¢,*) and ¢(°,°), for i = 1,2, respectively, we
approximate the throughflows Qi(') prior to routing. Then the following

problem can be written which is exactly equivalent to Problem D [Problem F1]:

M
min Y w, *0(k) (37)
sq, kI K
Q,0,0,8
subject to:
(-Sl(k+l) = Sl(k) + Rl(k) - Ql(k) - Ol(k) (38)
S,(k+1) = S,(k) + Ry(k) + Q; (k) - Q,(k) - O,(k) (39)
state _ !
equations = < S5(k+1) = S;(k) + Ry(k) + Q,(k) - Qz(k) - O5(k) (40)
Q; (k+1) = Q; (k) + T;(Q (k),¢(a,ty ), Casty 1)) (41a)
Q(k+1) = QuK) * T,(Q(K),u(8,t,) (8 t,,,)) (41b)
| k=1,...,M
initial L .
conditions BlLhe (1) Leien)
state-space 0 =S = Spax (42)
constraints 0 E_Q'(k) f-Qmax k=2, »M (43)

final SQRd) = O

.. §
conditions Q (M+1) = 0
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0 =@kl 2Q... - (44)
control s | $(t) ~QK) =0 k=1,...M (45)
VB, - Q) = 0 (46)

As before, in considering that it is generally impossible to obtain
an exact fit, as required in (45) and (46), we apply the projection theorem
to a modification of Problem Fl, where (45) and (46) are deleted as
constraints and the objective function includes the fitting error as an

optimality criterion [Problem F2]:
min v(a,B8)
a,B

where

2
v(e,8) = min ] [u 0) + wlele,t) - Q)]
2

Sééb’ [W(8,t) ~ Q, ()]

(48)

subject to:

[the constraints associated with Problem F1, with (45) and (46) deleted]

Again, the inner problem (48) is decomposable into three independent
subproblems, corresponding to each reservoir. The importance difference
from the previous formulation (Problem E3) is that these subproblems can
be solved as one-dimensional dynamic programming problems. In the previous
formulation, we approximated the dependent or state variable Q', SO
that it was required to retain it in the subproblems. In this present
formulation, we are approximating the independent or control variable Q,

1
so that given o,B8 from the outer problem, Q 1is uniquely specified as

1
a function of a,B. Since Q no longer appears in the objective function,
we can delete it from our problem. This is accomplished by noting that (41)

|
can be written in the following equivalent forms [assuming Qi(l) given]:
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Q(2) = Q (1) + T (Q(1),6(0,t,),6(e,t,))
Q, (3)

1]

Q, (1) + T, Q) (1),6(e,t,),6(e,t,))
# T 0Q (1) + T, Q) (1),000,t,),6(0,t)),
6(a,t,),0(a,t )

(49a)
] 1] » M 1
QM+1) = @, (1) + k'ZI T, Q") 0(e,ty )00ty 4, )
1 M 1
+ T ((Q (1) + k'gl AICHORICRNSRICR AN
(s ty) s (a,ty, 1))
[the relations for Q'(k), k=1,...,M are of the same form, except

2 (49b)

¢(u,tk) is replaced with w(B,tk), for all k]
1
Since the vector Q (k) has now been represented as a function of
1
a,B (referred to as Q (ao,B,k)), let us modify F2 in such a way that

1
Q (¢,B,k) 1is deleted from the inner problem [Problem F3]:

min  v(a,B,Q (a,8,)) (50)

a,B

subject to:

(49a), (49b), and (43)

where Q' (a,8,K) = (O (4,k),Q,(g,k)), and

- M
vie8:Q (@:,)) = min w000 ¢ wle(e,ty) - Q, 0)1°
5,Q,0 (51)

+ Tp(esty) - Q0017

subject to:
[the constraints associated with Prohlem F1, with (43), (45), and

(46) deleted]
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The inner problem (51) can now be decomposed into the following
subproblems:

Subproblem 1:

: M 2
T T e 0, + w et - Q)]
k=1
515420,

subject to: (all variables assumed nonnegative)

S (r1) = S, + R (K) - Q1) - 0;(K)
5,(1),5, (1)  (given)

5, (k) 58 k=2,...,M

1,max’
Q) £Q pays K

]
—
-
e
=
e

which is easily solved as a one-dimensional dynamic programming problem

(Sl(k) as the state variable) with two decision variables at each stage k

Q; (k),0, (k).

Subproblem 2:

M 2
532000,

svbject tox

5,0cr1) = 8,() + Ry() + Q) (@,K) - Q (k) - 0,(K)
Sz(l),Sz(M+1) (given)

;00 £8; 1o K= 2,.0M

Qﬂmi%mu’ k

1]
—
-
A
=

1
where Q have been given as a parameters from the outer problem.
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Subproblem 3:

M
min él [mskos(k)]
83’Q3’03

subject to:

So(k+1) = S5(k) * Ry(k) + Q;ce,k) - Qg(K) - 0,(K)
S5(1),S;(M+1)  (given)

S50K) <S5 o K= 2,000 M

ELJERE

it
—
-
-
=

All of the above subproblems are solveable as one-dimensional dynamic
programming problems, with two control or decision variables at each
stage. We can further reduce the computation time by utilizing the

formulation discussed in Section A.1, Chapter II. That is, we let

Q&) = Q(k) + 0(k)

and replace the overflow terms in the objective functions for the

subproblems with
oK) = [S() - 8,1 (52)
for all k e Ki’ where

K, = {k|Si(k) - si,max =0}, i=1, 2,3 (53)

so that we have only one control variable Qi(k) for subproblem i, at
each stage k, and the upper bound Smax is ignored.

We have, therefore, realized goal (i), given in Section D.2. Our
attention now focuses on goal (ii). Before discussing ways of meeting

this goal, it should be noted that the above method of reducing the number
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of control variables at each stage from two to one, though resulting
in less computation time for the inner problem, introduces additional
nonconvexity into the outer problem, thus making it more difficult

to find a global solution. The proper trade-off between time and
nonconvexity can only be resolved through extensive computational

experience.

D.4 Application of Generalized Duality Theory

Having found ways of significantly lessening the computational
burden associated with the inner problem, we now address ourselves to
global solution of the outer problem. We see from Problem F3 that as
the number of reservoirs increases to N > 3, then the number of
variables associated with the outer problem increases to approximately
a x N, where a represents the average number of components of the
parameter vectors associated with the functions approximating throughflow
Q.

For illustrative purposes, let us return to Problem F3 (where N = 3),

and place it in the following equivalent form [Problem G]:

] { 1 1}
— v(s,8,a ,8 ,Q (& ,8 ,K)) (54)

subject to:

1 1
(49) and (43) (with a,8 replaced by o ,8 , respectively), plus

o-a =20 (55)

™
i

™w
1

(e

(56)

1 1
where a,a € Ea;B,B e E7, and
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T 1 1 v
V(_OL,B,OL sB )Q (OL 3B ))

M 2
= min  } [ c0(k) + wlo(e,t) - Q k)] (57)
5,0,0 7

2
subject to:

[the constraints of F1 with (43), (45), and (46) deleted]

1 f 1
Notice that Q has been expressed as a function of o ,8 , but

that addition of (55) and (56) preserves the equivalence of F3 and G.
The advantage of using Problem G over Problem F3 is that we can place
(55) and (56) into (54) via introduction of generalized Lagrange
multipliens K, as discussed at length in the Appendix. Hence, we
write the dual function (see Appendix) associated with the outer problem
of Problem G or
T B N
) = mi? {v(a,8,0 ,8 ,Q (o ,B8 ,k))

{

o,B,0 ,B8 (58)
1 1]
+ A1~[a - o ]+ AZ'[B -8 11

b

where A ¢ E? x E , or A€ Ea+b

subject to:

(49) and (43)
which is decomposable as follows

h(A) = {min [Vl(a) + Al'a]
a
+ Tin [Vz(a',B) - A 'a' + AZ'B] (59)

o ,B
+ min [VB(B ) - A2°B]}

1

8

1
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where
vl(u) is the solution of Subproblem 1
(stated in Section D.3)
vz(a',B) is the solution of Subproblem 2,
with a' replacing o.
VS[B') is the solution of Subproblem 3,
with 8' replacing 8.

It is seen in (59) that for given A, the outer problem can be
expressed as three independent sub-oufer problems, each involving no
more than a + b variables. In extending this method to N reservoirs,
there will in turn be N sub-outer problems, each involving approximately
2a variables where a represents the average number of parameters
associated with each approximating function utilized.

The A's must now be properly adjusted until (55) and (56) are
satisfied which is hopefully accomplished by solving the dual problem.
Such will be the case if a saddle-point exists [see Appendix]. Solution
of the dual problem then indirectly solves the original N reservoir
problem (by Theorems 1 and 2 in the Appendix). The dual problem, for

the example three-reservoir problem, is

max h(}) (60)

A€ Ea+b

and for the general N reservoir problem

max h(}) (61)

A€ EaN

where aN 1is approximately the dimension of 2,
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On the surface, it seems that we have accomplished little, in
that even though the outer problem has been decomposed, it in turn has
been imbedded in a dual problem which involves a large number of dual
variables (% aN). The advantage is that the dual problem is guaranteed
to always be concave, no matter how nonconvex the sub-outer problems
happen to be (by theorem 6 in the Appendix). By keeping the dimensionality

of these sub-outer problems v, toa restricted level, we increase the

assurance of finding global solutions for them.

D.5 Discussion
Let us summarize the conditions presented in the Appendix which give
assurance that solution of the dual problem (61) can be found, and that
this solution will indirectly solve the original N-reservoir problem,
as represented in Problem El1 for N = 3:
1. The vectors a,B,a',S',S,Q,Q', and O must be contained
in closed and bounded sets.
2. The objective functions associated with the subproblems
given in Section D.3 must be continuous functions of all
of the above variables.
3. For all given A in the dual problem, the dual function
must yield g-unique (which is a generalization of uniqueness)
* * 1% 1% * * 1% *
solutions o ,8 ,0a ,8 ,S ,Q ,Q , and O .
4. There exists a finite A* such that
oh(n
for i=1,...,aN.
Condition 1 is obviously satisfied for our problem, as long as we

place an arbitrary upper bound on O, and arbitrary upper and lower bounds
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on o,B,0 ,B , such that the optimal solutions are contained in the
interiors of these intervals. Condition 2 is satisfied as long as
the functions approximating Q (¢(*,°),¥(*,*), °°° , etc.) are continuous
functions of their respective parameters. Conditions 2 and 4 are more
difficult to assure. It should be pointed out, however, that these
are only sufgicient conditions, and that a saddle-point may exist even
though they are not strictly satisfied.

As stated previously, the goal of the dual problem is to adjust the
A until (55) and (56) are satisfied indirectly (this corresponds to
maximizing the dual function h(A)). If conditions 1 and 2 above are not
strictly satisfied, then there may exist no k* such that (55) and (56)
are exactly satisfied. This corresponds to a duality gap, and implies
that a saddle-point does not exist [see Appendix]. It may be, however,

*
that there exists a A  such that (55) and (56) are aZmosl satisfied, or
% % T %
la(A) - ()] =c¢
*I* t% %
6 3) -8 (A)l= o

where vectors € and ¢ have tolerably small components. In this case,
the duality gap is considered negligible, and a saddle-point is assumed
to exist. These questions cannct be fully resolved without extensive
computational experience.
A suggested algorithm for solving the dual problem (61) follows:
(a) Adjust the A's for the dual problem utilizing
a rapidly converging unconstrained maximization
algorithm (e.g., Davidon-Fletcher-Powell, Powell's
method, or steepest ascent [18]). If the method

requires derivatives, assume that the dual function



is differentiable, and use the gradients
defined in the Appendix.

(b) Ideally, for each given A in the dual
problem, global solutions to the sub-outer
problems should be found. If a < 3, then
grid-search methods can probably be used. For
a > 3, constrained minimization methods can
be used until the dual problem begins to
converge. At this point, greater attempts
should be made at attaining global solutions.

(c) The subproblems associated with the inner
problem are easily solved via one-dimensional
dynamic programming. Since they will be solved
numerous times as A, and in turn, a,B,a',B'
are adjusted, it is extremely important that computer
codes be written as efficiently as possible.

In addition to the difficulty of assuring that Conditions 3 and 4
above are satisfied, there is the problem of finding approximation
functions ¢(°,*),¥(*,°*), *** , etc., which will give accurate fits,
while utilizing as few parameters as possible, so that global solution
of the outer problem is more easily attained.

Aside from these difficulties and uncertainties in applying the dual
approach, using flow approximation, the following advantages are clear:

1. There is potential for being able to obtain a solution

which is assured to be the global solution. Such assurance

is generally never possible when directly applying nonlinear

programming algorithms to nonconvex problems such as this.



65~

Even if a saddle-point does not exist, or there exists

no A such that (55) and (56) are satisfied, the amount
of infeasibility may be negligible, for practical purposes.
For larger duality gaps, the infeasible solutions may be
useful for generating accurate initial approximations for

initiating a direct nonlinear programming code.



V. SUMMARY AND CONCLUSIONS

The optimal control problem associated with automated operation of
ambient and/or auxiliary storage capabilities within combined sewer
systems can be formulated as either a finite-dimensional (discrete-time)
or infinite-dimensional (continuous-time) optimization problem. Both
involve discretization at some stage, since digital computers can only
deal with finite quantities of real numbers. For the former, discretization
is carried out prior to problem solution, whereas for the latter it is
effected during and subsequent to computation, since actual control of
the system is carried out in discrete-time.

It was concluded that finite-dimensional optimization (FDO) is
preferable to infinite-dimensional optimization (IDO) for the combined
sewer problem, due to the following factors:

1. Actual operation of the system is carried out in discrete

real-time. The size of FDO problems can be unwieldy

if the time intervals are too small, so that IDO may be the
only alternative. It appears, however, that intervals will
be of moderate size, due mainly to the need for collecting
and analyzing adequate quantities of sensor data in these
intervals, for reasonable storm and flow prediction.

2. IDO is based on solving necessary conditions for optimality,
which apply at solutions other than the desired global
solution. FDO relies less on necessary conditions.

3. In general, for nonlinear problems, it is easier to obtain
at least local solutions by FDO than IDO. It was shown
that the necessary conditions for IDO can be derived as

limiting cases of the necessary conditions for FDO. But there are

difficulties in solving the former that do not arise in the latter.



4. In applying IDO, a continuous curve must be fitted to
discrete rainfall data. Since there are an infinite
number of such curves, tﬁe question of uniqueness of
solutions arises.

These conclusions seem to be supported by computational experience.
Applications of IDO to ambient storage models failed to give solutions
in most cases, even though the flow model and system configuration was
extremely idealized. This can be contrasted with the ease of obtaining
results by linear programming for a ccmparably simple flow model and
auxiliary storage configuration, as reported in [30]. There is some
question, however, about the validity of comparing these results, since
the ambient storage model required solution of more complicated equations,
even though the flow routing assumptions were of comparsble simplicity.

As discussed in Chapter III, however, it seems possible to treat the
ambient case from an auxiliary storage viewpoint, though no computational
results are available as yet,

Turning to FDO, it was shown that linear flow routing models (e.g.,
the Muskingum method with constant coefficients) resulted in a large-scale
linear programming problem, for which there are a number of efficient
decomposition strategies available.. If the error introduced by linear
routing is tolerable, linear programming may be feasible for effective
on-line optimization, since global solutions to linear problems are
assured (under mild assumptions) in a finite number of iterations, by
the simplex method.

Introduction of any degree of nonlinearity in the flow routing method
(e.g., the Muskingum method with variable coefficients) results in a
nonconvex FDO problem. Dynamic programming can deal with the nonconvexity

problem, but the so-called curse-of~dimensionality precludes its applicability.
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Incremental dynamic programming is a possibility, but can only give
local solutions, in general. Nonlinear programming algorithms also
suffer from the fact that convergence is generally to local solutioms.
Even if a global solution happens to be determined, there is no known
way of verifying its globality, other than by inefficient direct
enumeration.

In order to deal particularly with the problem of finding global
solutions, an approximate-flow technique was developed which, in
conjunction with generalized duality theory and the projection theorem,
resulted in one-dimensional dynamic programming problems imbedded in
constrained nonlinear programming problems of limited dimension, which
in turn were imbedded in a dual problem for which global solution is
assured as long as global solutions can be obtained for the interior
subproblems. The dual problem solves (globally) the original control
problem if and only if a saddle-point exists. If a saddle-point does
not exist (which is not determinable a paloil for nonconvex problems),
an infeasible solution to the control problem results. If the infeasibility
‘is of tolerable magnitude, then this solution will be adequate. Otherwise,
the infeasible solution may be used to generate accurate initial approximations
for direct application of constrained nonlinear programming algorithms.

Considerable computatio;al experience is necessary in order to verify
the applicability of the approximate-flow technique, It appears, though,
that this method opens the way for finding global solutions to the nonconvex
control problems resulting from realistic flow routing procedures. The
goal is to obtain considerable off-line optimization results based on a
large variety of historical and synthetically generated storm situations,

so that optimal rule curves and operating policies can be programmed into
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the on-line computer system. These policies can perhaps be utilized
in conjunction with on-line optimization by linear programming.
Though simplified linear flow models are required for the latter,
on-line optimization has the advantage of being able to respond to
the uniqueness of the particular storm event occurring in real time,

which is not possible if all optimization is carried out off-line.
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APPENDIX

SUMMARY OF GENERALIZED DUALITY THEORY

The following is a concise review of the basic concepts and results
of generalized duality theory, and is taken from [19b]. As discussed in
Section D.4, Chapter IV, application of generalized duality theory opens
the way to dealing with the complex, large-scale nature of the combined
sewer problem, which arises even in subbasin analysis. In particular,
there is potential for indirectly finding global solutions to the large-scale
nonconvex control problem discussed in Chapter IV, whereas direct nonlinear
programming techniques can generally only find local solutions. The great
advantage of the dual approach is that its solution will either give the
global solution desired, or give an infeasible solution, under certain mild
assumptions. If the infeasibility is of small degree, then this solution
will suffice. Direct methods, on the other hand, produce solutions which
are generally impossible to define as being local or global.

Most of this material is condensed from excellent presentations by
Lasdon [21], Banerjee [3], and Varaiya [27]:

Given the paimal problem

min f(x)

xeX
subject to

g;(x) <0

iA=1,...,m
where x = (xl,...,xn); X is a subset of En, we can write the
Laghangian function as
m

L(x,\) = £f(x) + igl ;8 (x), for A, >0
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o * 0, xoeX, is a 4addle-point for L if

A point (x°,x°), A
it satisfies
1) Lx°,2%) < L(x,2%), for all xeX
(ii) L(x%,2% > Lx°,0), for all A > 0
The dual function is

-

h(A) = min L(x,A)
xeX

and the dual problem is

max h(})
AeD
where
D={x|]x >0, min L(x,)) exists}.
xeX
Theorem 1

The point (xo,Ao), for xoeX, 32 > 0, is a saddle point for

L(x,)) 1iff:
(a) x° minimizes L(x,Ao) over X
) g™ <0
(©) A% = 0
[Note: = > 0 associated with condition (a) are called generalized
Lagrange multipliens (GLM)].
proof: (=>)
The first inequality (i) above is equivalent to (a). The second (ii)
states that
£(x%) + 2%g(x%) > £(x°) + Ag(x")
=> (A - A9 g(x") <0 => g(x") <0, for all A>0

Now, 1, = 0, i=1,...,m => %% >0
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But since A >0 and g(xo) <0 => Aog(xo) <0
then - 2% &%) = o.
(<=)
L(x°,2% = £x%) + 2% (%) = £(x°)
] Lx%,A) = £x°) + ag(x®)
But since g (x?) <0, Lix,0) < Lx° %)

Condition (a) is equivalent to Inequality (ii) ll

Theorem 2

If (xo,Ao) is a saddle-point for L(x,X), then x° solves the

primal problem.

proof:
£x°) + 2% () < fx) + 2%g(x),  for all xeX
But Aog(xo) =0 => f(xo) < f(x) + Aog(x)

= £(x°) < £(x). Il
Questions that immediately arise include:
1. Do such GLM vectors A%D exist such that the original primal
problem is solved?

2. If they do exist, how can they be determined?

Theorem 3
If the primal problem satisfies:
(i) X convex,
(ii) f and g5 convex, i = 1,...,m,
(iii) there exists XxeX s.t. g(Xx) < 0,
then x° is a solution to the primal problem <=> there exists %D
such that (x°,A°) is a saddle-point for L(;,A).

proof: (sée Karlin [19a] or Lasdon [21]). ||
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Therefore, for convex programming problems with certain constraint
qualification, the existence of a saddle-point is guaranteed. Such

assurance is not automatic for more general nonconvex problems.

Theorem 4
- h(d) < f(x), for all xeX, for all AeD
proof:
h(}) = min (£(x) + 2g(x))

xeX
< f(x) + Ag(x)

But, for all xeX and for all AeD, Ag(x) < 0. Therefore,
h(x) < £(x), for all xeX, for all AeD. [
A duality gap exists if h(A) < f(x), for all xeX, for all
AeD. In this case, there exists no optimal GLM vector X > 0 such

that the primal problem can be solved.

Theorem 5 (Karlin [19a])

min max L(x,A) = max min L(x,})
xeX AeD xeD xeX

if and only if there exists a saddle-point.

proof: (see Karlin [19a] or Lasdon [21]). ||

Theorem 6
The set D is convex, and h()) is concave over . D.
proof: Let Al,xst. For qe[0,1],
A= aAl + (1 - a))\2 >0

h(all + (1 - a)kz) = mig L(x,(aAl + (1 - a)kz))
Xe

L(x, (e + (1 = a)hy) = £0x) + (@r) + (1 - a)),)g(x)

= af(x) + aklg(x)



-77-

*(1-a) £ + (1 - a) 2e(x)
Therefore,

h(akl + (1 - a)x = min [aL(x,Al) + (1 - a) L(x,Az)]

)
2 xe X

> a min L(x,Al) + (1 - a) min L(x,Az)
xeX xeX

=oh(A) + (1 - @) h(A) > -=. ||

Having established the concavity of the dual function, even though
f and g may be nonconvex, it is clear that any solution to the dual
problem must be a global answer.

Theorem 4 states that this answer will be at least a lower bound
for f(x). Unless strict concavity can be established, there may not be’
a unique 2° associated with the global solution. In addition, it is
important that h(A) be differentiable over the entire set D if
gradient-type methods are to be used for converging to the solution of
the dual problem. The concept of g-uniqueness 1is used to establish

‘the differentiability of h(A).

Definition: Let DCE™ and h:D—*ffl be concave over the convex set D,
where El = EIU{+w}U{—m}. A vector ¢ e E" is called a subgradient
of h() at XeD if h(A) < h(X) + c(A - X), for all AeD. The set of
subgradients of h(-) at A is represented by ah(i). [Note: the
inequality is reversed if h is convex].

Certain properties of h(-) over D can be listed which follow
directly from its concavity (see Rockafeller [25a]):

(i) h(+) 1is continuous on the interior of D.

(ii) h(d) = + » for some A e int(D) => h()) = + =« for all

A e int (D).
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(1ii) h(*) is differentiable at AeD => h(*) has a unique

subgradient at A.

Definition: A nonempty set ACE™ is called g-unique if a map
g(*) 1is constant over A.

Let

X(A\) = {xeX| x minimizes L(x,A)}, for all AeD

Theorem 7

For any AeD and xe X(1), g(x) is a subgradient of h(*)
at A
proof:

Since xeX(}),

f(x) + Ag(x) = h(}), and

£(x) + Ag(x) 2 min  [£(x) + Ag(x)] = h(})
xeX(A)

(for all 2AeD)
Subtracting the first line from the second gives

Ag(x) - Ag(x) > h(x) - h(})

or
h(x) <hQ) + g - X)
Therefore
.g(X)edh(X). [
Corollagz é

If X(A) is g-unique for all Xe int(D), then h(*) has a
unique subgradient, and is therefore differentiable at all points in
int(D).

proof: Follows immediately from concavity of h(:) and Theorem 7. ||
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Suppose

(i) X 1is a closed and bounded subset of E".

(ii) f£f(x) and gi(x) (i=1,...,m) are continuous on X
Then D = (Em)+ since min L(x,A) 1is guaranteed to exist. (See
Luenberger [21a], p. 128;?X
Theorem 9

If (i) and (ii) above hold, then X(A) is g-unique for all AeD
iff h(°) is differentiable over D.
proof: (see Lasdon [21]) I

Notice that a special case of g-uniqueness occurs when there is a
unique solution to mi; L(x,A) for some AeD, or X(X) contains only

Xe

one vector x(1). In general, then, when g-uniqueness holds at some

AeD,

3h (A - ) '
—§§Tl = gi(x(l)), i=1,...,m
i

Theorem 10
Assume (i) and (ii) above hold, let - solve the dual problem,
and assume that h 1is differentiable at 2°.  Then any element

xosX(Ao) solves the primal problem.

proof:

Since D= (E™" and h is differentiable at A°, then the

following conditions hold:

1 A,
i
0
0 .5 9h(2™) o
(b) 2" =20-=> Sy g;(x) <0

Therefore, all the conditions associated with Theorem 2 hold. ||



