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FOREWORD 

This is one of a series of Technical Reports prepared under a grant 

by the Office of Water Resources Research whi ch supports a project at 

Colorado State University entitled "Metropol i tan .Water Inte lligence Systems." 

The objective of the project is to develop criteria and information for the 

development of met ropolitan water intelligence systems (MWIS ) . The MWIS 

is a specialized form of the managemen t i n format ion and control system 

concept which is becoming popular as a tool in industri al applications. 

The project consists of three phases, each lasting about one year. 

This report was prepared during Phas e II. Basic ob j ectives f or Phase I 

were to: 

1. Investi gate and describe modern automation and control 

syst ems for the operation of urban water faci l ities 

with emphasis on combined sewer systems . 

2. Develop criteria fo r managers, planners, and designers 

to use in t he consideration and deve l opment of centralized 

automation 8!d cont .ol systems for the operation of 

combined sewer sys tems. 

3. Study the feasibili t y, both technical and social , of 

automation and con trol systems for urban water facilities 

with emphasis on combined sewer systems . 

Bas i c obj ectives for Phase II are : 

1 . Formulate a design strategy for the automat ion and 

control of combined sewer systems. 

2. Develop a model of a real-time automation ~~d 

control system (RTACS model). 

3. Describe the requi r ements for computer and cont r ol 

equipment for automat i on and control systems. 

4. Describe nontechnic~l problems associated with the 

implementation of automation and control systems. 
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This report concentrates on methods of developing control logic 

for automated operation of ambient and/or auxiliary storage capabilities 

within combined sewer systems, with the objective of minimizing overflows 

to receiving waters. The enormous number of control opportunities req~es 

that the control problem be formulated as an optimization problem. The 

problem is defined as one of mi nimi zing total weighted overflows, subject 

to an assumed hydraulic model des cribing flow and storage dynamics, as 

well as other physical constraints. The optimization problem tends to 

increase in complexity and degree of nonlinearity as less idealized flow 

models are utilized. This report concentrates on limited subbasin analysis, 

with the view that the large-scale problem is ultimately solved by a master 

control algorithm that ties the subbasins together in an iterative fashion. 

Finite-dimensional optimization techniques appear to have greater 

potential for effective solution, over infinite-dimensional techniques 

(i.e., application of continuous-time optimal control theory) . The primary 

reasons are (i) difficulty of obtaining solutions by the latter, (ii) 

operation of the real system in discrete time. Within the category of 

finite-dimensional optimization, indirect solution of the optimization 

problem through application of generalized duality theory has greater 

potential for finding global solutions than direct application of mathematical 

programming techniques. This is made possible through development of 

an app~oximate-fifow technique that significantly reduces the total number 

of variab les involved in the problem. Considerable off-line computational 

work is required to fully verify these assertions. 

* * * * * 
This report was supported by OWRR grant number 14-31-0001-3685, 

Title II, Project No. C-3105, from funds provided by the United States 

Department of Interior as authorized under the Water Resources Research Act 

of 1964, Public Law 88-379, as amended. 

* * * * * 
The following technical reports were prepared during Phase I of the 

CSU-OWRR project, Metropolitan Water Intelligence Systems. Copies may 

be obtained for $3.00 from the National Technical Information Service, 

U. S . Department of Commerce, Springfield, VA 22151. (When ordering, 

use the report title and the identifying number noted for each report.) 
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MATHEMATICAL NOT A TTON 

In t~ ~epont, no~ no~ona£ eonvenlenee, no attempt ~ made to 
futingu_,U,h beX.ween eo£wnn and ~ow veetoM. It ~ p~eoumed that the 
~ead~ ean c:LWtingu_,U,h t~ no~ him.oeln. 

f(x) 

V f (x) 
X 

x. (k) 
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x •y 

{x jP (x ) } 

Ia , b] 

convex set 

i nt (S) 

a veeto~ x = (x1 , ... ,xn), or an element of (s) 

n-dimensional Eu~dean .opaee En. If x . > 0 
l-

n + (i = 1, ... ,n) , then x s (E ) . 

a veeto~-valued nunetion f(x) = (fl(x), ... ,fm(x) ), 
n m m also denoted as f :E + E or f(•) s E . 

the gMcU.ent vector of f, or V f(x) 
X 

component of a matnix of numbers, also denoted as 

x(k) sEn (k = l, ... ,m), x.(•) sEn (i = l, ... ,n), 
l m+n or x ( • ) s E · • 

.oea£~ p~o duet of two vector s 
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x •y = I x . y . . 
i= l l l 

n x,y s E , where 

.oet S of elements x s En satisfying some given 

property P, where s is a subset of or 

set defi ned over cio~ed int~va£ a~ x ~ b , x,a,b s En. 

set defined over open int~va£ a< x < b, x,a,b s En. 

s et S i s eonve.x if and only if for every x,y s S c En, 

(ax + (1- a)y) s S, for all as [0,1]. 

the intvuo~ of the set 

set contained in S. 

or the largest open 
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c.aJLtUJian. p!Lodu.c;t of two sets m n m+n X c E , y c E ; or ex X Y) c E 

vector of de!Livative6 
dx

1 
(t) dxn (t) 

( dt . , ... , dt ). 

global ~olu.tion. of optimization problem min{f(x) /xES}, 
* where S CEn, or f(x) ~ f(x), for all xES. 

lo~ ~olution. of opt1m1zation problem mi n{f(x) /xES}, 
0 

or f(x) ~ f(x), for all X E SnN; where S c En , 
0 0 N = (x - E,x + E), for some scalar E > 0. 

equal by definition 

forward implication (-i.mpliv.,) 

reverse implication (is implied by) 

equivalence, or if and only if (i66l 
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I. INTRODUCTION 

A. THE CONTROL PROBLEM 

The pollution of bodies of water adjacent to urban centers, due to 

storm-produced overflows from combined sewer systems, is rapidly becoming 

a serious, nationwide problem [1]. In seeking methods of combatting this 

problem, attention has been focused on two areas: (i) improving the quality 

of the overflows, through sewer separation or reduced treatment processes 

that can handle large flow rates, and (ii) reduction of the magnitude of 

the overflows, by (a) somehow reducing storm inflows to the sewer system, 

(b) using storage capabilities within the sewers themselves (ambient ~to~ge), 

or (c) construction of additional storage facilities within the system 

(a~ ~to~ge) [1]. 

The use of (b) or (c) (or their appropriate combination) has arisen 

as a particularly attractive alternative, due to generally lower predicted 

costs and potentially greater effectiveness in dealing with the overflow 

problem. The U. S. Environmental Protection Agency is currently supporting 

a number of research and development studies in this area [15]. The goal 

is to utilize storage capabilities in such a way that flood peaks in the 

system can be lowered to a degree cbnsistent with maximum advanced treatment 

plant inflow rates. Direct control is carried out through computerized 

remote operation of intake and outlet valves, regulators, adjustable weirs 

placed in sewers to effect ambient storage, etc. [2]. The complex and 

large-s cale nature of the storage control problem should be readily apparent, 

since there may be hundreds of cont r ol points throughout the sewer system 

of a large urban center. There is critical need to take full advantage 

of current advances in computer technology (hardware and software) and 

-1-
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systems engineering. The high speed digital computer is required at 

all leve l s - from data collection and processing to implementation of 

sophisticated control logic. 

Effective direct storage control, however, cannot be executed without 

intensive investigation in the following areas [7]: 

1. storm prediction modeling 

2. rainfall-runoff modeling 

3. hydraulic modeling of the sewer system 

4. design and operation of sensor networks for detecting 

rainfall and sewer flow rates 

5. statistical analysis of noise-corrupted measurements 

and i nformation , us ed as input for contro l st r ategies. 

The above studies are necessary for accurately forecasting the 

magnitudes of flow rates throughout the sewer system, due to rainstorm 

activity. Ideally, this information is utilized in an automated 6eedbaQQ 

QOn.:tfwl process. As a storm passes over an urban center, sensors detect 

increas i ng rainfal l and sewer f low rates. This i nformat ion is passed to 

a computer control center vi a t elecommunicat i on and is fe d i nto flow 

pr edict ion model s 9 from whi ch a control strategy is generated, based on a 

programmed control logic . As the control strategy is generated and 

implemented, new information i s detect ed as t he s t orm continues , and the 

cycl e continues , resul t i ng in contro l s t rategies that ar e periodical l y 

monitored and updated in such a way as to effectively respond to the 

uniqueness of a parti cul ar s t orm event. 

B. OFF-LINE VS. ON -L INE OPTIMIZATION 

Our particul ar concern here is with control logi c development, since 

the complexities involved seem to have impeded progress in this area. Some 
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of the difficulties to be expected are discussed by McPherson [22]. A 

number of cities such as Cleveland [2], Detroit [1], Seattle [17], 

Chicago I lS], and San 'Francisco [26] appear to be in the early stages of 

control system development, but little specific information on control 

logic studi es i s current ly available. Aside from some incomplete work 

by Bel l, and others [4,5,6, and 7], which is summarized in a subsequent 

chapter of this report, accomplishments are meager in this area. 

The enormous number of control alternatives possible precludes 
~ 

anything but application of modern systems techniques, particul arly in 

the area of optimization theory. Control logic is determined t hrough 

formulation of the control problem as an optimization problem where we 

seek to minimize total weighted overflows from the combined sewer system, 

subject to a number of constraints. The constraints include: (i) mass-

bal ance equations describing the dynamics of flow and storage throughout 

the system, and (ii) physical limitations placed on flow rates and 

quantities in storage, due to: the dimensions of the sewers, capacities 

of ambient and auxiliary storage, and capacities of treatment plant 

facilities. The mass-balance equations are based on models constructed 

to simulate the behavior of the system. In general, realistic flow models 

result in complex optimization problems, so that studies are needed to 

determine t he optimum trade-off. 

There is ques tion as to whether optimization should be carried out 

a l l ofi 6-line, all on-line, or a mixture of the two. Off -line optimization 

results in general operating policies, based on historical rainfall data, 

which are programmed into the control computer operating the system. 

On-line optimization, on the other hand, is carried out by the control 

computer in real time, and is based on historical records augmented by 

the particular storm occuring at the moment. It appears that a combination 
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of the two is necessary. Some on~line work is required, since it is 

impossible to model all possible storm situations in an off~line manner. 

It is, however, generally limited to simplified sewer flow models (e.g., 

linear), so that the optimization algorithm can be guaranteed to find a 

global solution. Off-line studies are free to use more rea l istic models, 

and therefore serve to augment the on-line work. The primary emphasis 

here is on the former. 

C. SYSTEM DECOMPOSITION 

The large-scale nature of the optimization prob l em requires that attempts 

be made to decompose the sewer system into a set of mildly interconnected 

subsys tems or .6ubbM-<.Vll.l, which are temporarily disconnected. For example, 

the San Francisco system seems particularly well suited to decomposition, 

as schematical ly represented in Figure I-1 [26]. 

The advantage6 of decomposing a large-scale system are the following: 

1. Greater conceptual understanding of the behavior of the 

system is attained when effort is made to identify and 

analyze s ubparts or subsystems within the large-s cal e sys t em. 

2. Mathematical programming techniques are available [21] , such 

t hat interconnections between the subsystems can be t emporarily 

cut, and contr ol policies developed fo~ the isolated subsystems. 

Each subsystem is then concerned with a l imited number of 

control variab les and a fraction of the total amount of data is 

necessary to operate the system . The result is considerable 

increase in system rel i ability toward achieving the overall 

system goal s. The subsystems can then be recomposed together 

by a master control which achieves t he recomposi t ion in some 

kind of iterative fashion. 
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3. Generally, less computer hardware is required for the 

decomposition approach than for centralized approaches. 

Essentially, computer storage is replaced by additional 

computer time. Less required computer hardware usually 

means greater reliability. 

The emphasis in this report is on smaller scale subbasin analysis. 

Future reports will deal with development of master controllers that 

tie the subbasins together. With this plan in mind, we will use simplified 

storage configurations in discussing the various optimization formulations 

and solution strategies, thus preventing unwieldy notation in the 

presentation. Extensions to more complicated configurations should be 

reasonably obvious. 

D. OBJECTIVES 

The undertaking of this part icular study has been motivated by the 

following: 

1. The need for a broad, comprehensive evaluation of the 

basic optimization methodologies with regard to the ir 

specifi c applicability to solution of the optima l control 

problem for combined sewers. 

2. The need for summarizing and critically analyz ing current 

published attemp ts at formulating and solving the control 

problem via particular optimization techniques. As 

mentioned previously, however, little is available at 

the present time. 

3. The necessi t y for generating new ideas with regard to 

specific optimization strategies for dealing with the 

complexities of the control problem that have so far 

hindered actual imp lementation for real time sys t ems. 
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The basic objective here is to attempt to satis fy the above needs. 

Chapter I I is concerned with analyzing which of the fo l l owing broad 

categories is most applicable to our problem: finite or infinite-

dimensional optimi zat ion methods. One shoul d decide at an early s t age 

whi ch of these avenues to explore, before specific opt i mi zation strategies 

can be fo rmulated . Current applications of infi nite-dimensional opt imization 

(or continuous~time optimal control theory) are considered i n Chapt er III, 

mainly based on t he work of Bel l , et . ~· f 4,5,6 , and 7] , and are critically 

evaluated. Chapt er IV explores finite""dimensional techniques such as 

linear, nonlinear, and dynamic programmi ng, and conc ludes with some ideas 

on application of i ndirect or dual approaches t o t he cont r ol problem. 

These approaches revolve around t he concept of apptwxA.ma.te.- 6low, and it 

is the author 's opinion that they open the door to dealing with the 

difficulties t hat have so far hindered direct application of more conventional 

optimization techniques. 



-8-

II. FINITE AND INFINITE-DIMENSIONAL OPTIMIZATION 

A. A RESERVOIR CONTROL PROBLEM 

A.l Discrete Time Case [finite-dimensional op t imizat i on] 

Suppose we are concerned with minimizing overflows at a particular 

control point i (~ 2). 

R. (k) (storm 
1 ~ r input) 

Q. (k) 
(throughput) (to t reatment) 

Qi-1 (k) .. s. (k) 1 ... 
r 

1 
.... 

0. (k) (overflow) 
1 

~, 

FIGURE 1 

COMBINED SEWER STORAGE 

where t he time ho rizon is broken up into M discrete intervals 

0 ~ tl < t2 <•••< tM < tM+l ~ Tf 

where interval k is def ined by ftk' tk+l]' where ~t = tk+ l - tk 

for all k = l ,, ,, ,M. For t his problem 

s. (k) 
1 

= the storage (i.e ., ambient and/or auxiliary) in the sewer at 

contro l point i, at the beginning of time period k (i.e., 

R. (k) 
1 

= the average rate of direct stormflow input to contro l point i , 

during time period k 

Q, (k) 
1 

= t he average rate of throughput in the sewer from control point i, 

during period k 

0. (k) 
1 

= the average rate of overflow to r eceiving water s f rom control 

point i, durin g period k 
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Qi_1 (k) =the sewer throughput rate from upstream control point i- 1, 

during period k. 

Since our goal is to minimize overflows, an optimization problem can 

be formulated. In formulating this problem let us assume Qi-l (k) is 

given for all k, and temporarily drop the subscript i. Therefore, we 

can lump Qi_ 1 (k) into the term R(k) as given input to control point i 

[Problem Al] : [the wk (k = 1, .. . ,M) are weighting factors] 

subject to: 

dynamics (or 
state equation) 

initial condition 

state-space 
constraint 

final condition 

control constraint 

M 
minimize L wkO(k)~t 

S(k),O(k),Q(k), k=l 

k = 1, ... ,M 

S(k+l) = S(k) - [Q(k) + O(k) - R(k)]~t 
(k = 1, ... ,M) 

S(l) = c (given) 

0 ~ S (k) < S , k = 2, ..• ,M max 

S = S (may be specified) 
M+l final 

0 ~ Q(k) ~~ax' k = l, ... ,M 

where Smax and ~ax are upper bounds on storage and throughput, 

(1) 

(la) 

(lc) 

(ld) 

(le) 

respectively. If s (k) represents ambient storage, then S can be max 

considered as a variable S (k), where some kind of adjustable weir is max 

utilized in the sewer. Then we would add the constraint 

S (k) < S for all k max - max 

where S is the upper bound on storage obtained when the weir height max 

is maximized . 

Definitions 
~ 

s (k) = the state variable, or the state of the system at any 

time k. It is a dependent variable, since it is a 

function of Q(k'), O(k'), k' = 1, ... ,k-1 
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Q(k), 0 (k) 
ll 

the eontno£ or de~ion vaniab£~, since they are 

independent variables and directly controllable 

k 
ll the particular ~tage of the dynamic process. 

Problem Al is a straightforward linear programming problem. There 

are several other ways of formulating this single reservoir problem, but 

they involve introduction of some degree of nonlinearity. For example, 

suppose we let Q(k) represent total outflow from the reservoir (including 

overflows). The objective function then becomes 

min I 
h:K 

[S (k) - S ] 
max 

S(k) ,Q(k), 

k = l, ... ,M 

where (Smax no longer an upper bound on S(k)) 

K = {k iSCk) - S > 0} max-

and the state equation is 

S(k+l) = S(k) - Q(k) + R(k), k = l, .. . ,M 

Even though we now have only one decision variable Q(k), the 

objective function is piecewise linear, but not linear. This problem, 

however, is solveable by dynamic programming, which will be discussed 

further in a subsequent chapter. 

A.2 Continuous-Time Case [infinite-dimensional optimization] 

Suppose we let llt ~ 0, or equivalently, let M ~ oo. That is, 

Equation (la) can be written as 

S(tk + llt) - S(tk) 

llt 

Taking the limit llt ~ 0 of both sides yields 

dS(t) 
dt -[Q(t) + O(t) - R(t)] 
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Therefore, the continuous-time version of Problem Al is [Problem A2]: 

subject to: 

minimize 

S(t),O(t),Q(t), 

for all te[O,Tf] 

Tf 
f w(t)O(t)dt 
0 

(2) 

dynamics (or 
state equation) 

dS(t) 
dt = -[Q(t) + O(t) - R(t)], t e [O,Tf] (2a) 

initial condition 

state-space 
constraint 

final condition 

control constraint 

A.3 Discussion 

S(O) = c (given) 

0 ~ S(t) ~ Smax' for all te[O,Tf] 

S(Tf) = Sfinal (may be specified) 

0 ~ Q(t) ~~ax' for all te[O,Tf] 

(2b) 

(2c) 

(2d) 

(2e) 

For the practical problem of optimally controlling combined sewer 

overflows via storage regulation, it is safe to assume that controls will 

be carried out in discrete time intervals. This is due to the following 

factors associated with on-line, automated control : 

1. There is a finite amount of time required to actually effect 

control. That is, time is required for passage of information, 

the opening and closing of valves and regulators, the inflation 

and deflation of adjustable weirs, etc. 

2. On-line control requires the processing of rainfall and sewer 

flow data, which is sampled at discrete-time [e.g., for the 

San Francisco system, data is collected every 15 seconds 126]]. 

3. Sufficient data must be collected in order to make a reasonable 

prediction of future storm input so that the next control can 

be effected . There is an interesting trade-off here: 

(a) Large intervals between control would allow the 

processing of more data, resulting in more accurate 
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prediction. Though the individual controls are 

more optimal in the sense that they are based on 

more accurate data, the system is less controllable 

due to the large intervals. 

(b) Small intervals between control would result in less 

accurate storm prediction. Though the system is more 

controllable than in case (a), there is greater question 

as to the optimality of the controls. 

Suppose it is decided that actual control of the system must occur 

between a discrete interval Lit 
actual (which may be variable). Then 

* there are two basic ways of determining the optimal controls Q (k) and 

* 0 (k), where lltactual = tk+l- tk: 

(i) Finite-Dimensional Optimization: Solve Problem Al, 

letting Lit = lltactual/m, where m is some integer 

* * ~ l, and determine Q (k),O (k) from these results. 

(ii) Infinite-Dimensional Optimization: Solve Problem A2, 

* * and determine Q (t),O (t) 

* from which Q (tk) 

for all k. 

for all 0 < t < T , 
- - f 

can be easily found 

We are ultimately interested in considering the very general control 

problem involving many reservoirs in a complex of interraction. There 

is the need, then, to utilize realistic flow routing methods, which will 

unfortunately introduce nonlinearities into the state equation. In 

addressing ourselves to the general, complex control problems, we must 

decide which of these two solution approaches [(i) or (ii)] is most 

appropriate for the particular problem at hand. In attempting to answer 

this question, we will utilize a very general formulation of the control 

problem . 
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B. NECESSARY CONDITIONS FOR DISCRETE-TIME OPTIMAL CONTROL 

Consider the following general control problem, letting ~t = 1 

[Problem B]: 

M 
min l f(x(k),u(k)) + ¢(x(M+l)) 
x,u k=l 

[where x = (x(l), ... ,x(M+l)), u = (u(l), ... ,u(M)) and ¢(·) is an 

added term associated with the final state.] 

subject to: 

dynamics 

initial condition 

state-space 
constraint 

final condition 

control constraint 

x(k+l) = x(k) + g(x(k) ,u(k)) 
(k = 1, ... ,M) 

x(l) = c (given) 

q(x(k)) .:_ 0, k = 1, ... ,M 

p (x (M+ 1)) = 0 

h(x(k),u(k)) .:_ 0, k = l, ... ,M 

which is equivalent to Problem Al if we define 

u(k) ~ (Q(k),O(k)) 

x(k) ~ S(k) 

f(· ,u(k)) ~ O(k) 

¢(•) ~ 0 

g(·,u(k)) ~ Q(k) - O(k) + R(k) 

p(x(M+l)) ~ S(M+l) - Sfinal 

(a) 

q(x(k)) ~ 

_ill_ 

[S(k) - sm] 
or S (k) [S (k) - S ] max - s (k) 

h ( ·, u(k)) ~ [Q(k) - Q,.ax] 
or Q(k)[Q(k) -~ax] 

- Q(k) 

{notice that (a) and (b) are exactly equivalent} 

(3) 

(3a) 

(3b) 

(3c) 

(3d) 

(3e) 
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In general, then, u(k),x(k),g(•,•),q(•),p(·), and h(·,·) can 

themselves be vectors, for all k. For generality, let us specify that 

m n n 2n n u(k)eE , x(k)eE , g(•,•)eE, q(•)eE [for case (a)], q(•)eE 

I for case (b)], 
n 

p ( •) eE , 
9., 

and h ( • , •) eE , for all k. For Problem Al, 

then, m = 2, n = 1, and 9.. = 2. 

If we assume that all functions are differentiable for all x,u, 

then the necessary conditions for an optimal solution to Problem B are 

the Kuhn-Tucker conditions 129]. 

The Lagrangian for Problem B is: 

M 

L(x,u,A,r,p,n) = I f(x(k),u(k)) + ¢T(x(M+l)) 
k=l 

* * 

M 
+ I A(k)•[x(k) - x(k+l) + g(x(k),u(k))] 

k=l 

M 
+ I y(k)•q(x(k)) + p•p(x(M+l)) 

k=2 

M 
+ I n(k)•h(x(k),u(k)) 

k=l 

(4) 

If x ,u solves Problem B, then the following conditions must be satisfied: 

(a) feasibility 

* * * * x (k+l) = x (k) + g(x (k),u (k)) 
(k = 1, .. . ,M) 

* q ( x (k) ) ..::._ 0 , k = 1, . . . , M 

* p(x (M+l)) = 0 

* * h (x (k), u (k)) ..::._ 0, k = 1, ... ,M 

* nM * 2n(M) + and there exist Lagrange multipliers A e E , y e (E ) , 

* p 
n 

e E ' and * £M + n e (E ) , such that 

(b) complementary slackness 

M 

I * * y (k)•q(x (k)) = 0 
k=l 

(5) 

(6) 

(7) 

(8) 

(9) 
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M 

!: * * * n (k) •h(x (k),u (k)) = 0 
k=l 

(c) stationaritr 

* * * * * * 
V L(x ,u .~ ,y ,p ,n ) = 0 

u 
* * * * * * 

VxL(x ,u .~ ,y , p ,n ) = 0 

(10) 

(11) 

(12) 

Again, these conditions are only necessary for an optimal solution. 

That is, they may be satisified at points other than the global optimum 

(e.g., maxima, local minima , saddle-points, etc . ). To guarantee that 

these conditions are both necessary and sufficient (i.e., their 

* * simultaneous solution will yield the global so l ution x ,u ), we must 

assume additionally that [29] : 

(i) f c · , • ) , <PT c · ) convex (or pseudo -convex) 

(ii ) q(·),h(·,·) convex (or quasi-convex) 

(iii) q(·' •) ,p(·) linear 

There is danger in using the Kuhn-Tucker conditions for finding 

* * x ,u if these assumptions do no t hold for a particular problem. In 

general, finite-dimens ional optimi zation prob lems are not solved via the 

Kuhn-Tucker conditions, but rather, direct methods are utilized which 

generally can guarantee covergence to a local optimum, under certain mild 

conditions. Infinite-dimensional optimization problems, on the other hand, 

many times are solved using the continuous-time version of the Kuhn-Tucker 

conditions. Continuous-time problems with a high degree of nonlinearity can 

therefore present serious computational difficulties. 

C. NECESSARY CONDITIONS FOR CONTINUOUS-TIME OPTIMAL CONTROL 

For the discrete-time problem (Problem B), a nominal time increment of 

~t = 1 was assumed. As we let ~t ~ 0 (or M ~ oo), we obtain the 

continuous-time version of Problem B [Problem C] : 
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x(t), u(t) 
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Tf 
f f(x(t),u(t))dt + ¢(x(Tf)) 
0 

for all tE[O,Tf] 

subject to : 

dynamics (or 
state equat ion) 

initial condition 

state-space 
constraint 

final condition 

control constraint 

. 
x( t) = g(x(t) , u(t)) , for all tE[O,Tf] 

x(O) = c 

q(x(t)) .2_ 0, for all tE[O,Tf] 

p(x(Tf)) = 0 

h(x(t),u(t)), for all tE[O,Tf] 

(13) 

(13a) 

(13b) 

(13c) 

(13d) 

(13e) 

Since the Kuhn -Tucker conditions app ly to the discrete-time problem 

for finite M, then the limiting conditions as M ~ oo must be the 

necessary conditions for an optimal solution to Problem C. 

Equation (ll) is 

* * * * * Vuf(x (k),u (k)) +A (k)•Vug(x (k),u (k)) 

* * * + n (k)·Vuh(x (k),u (k)) = 0 (14) 

(for k = 1, .. . ,M) 

and Equation (12) is 

* * * * V f(x (k),u (k)) + A (k) -A (k- 1) 
X 

* * * +A (k)·V g(x (k),u (k)) 
X 

* * 
(15) 

+ y (k)·Vxq(x (k)) 

* * * + n (k)·Vxh(x (k),u (k)) = 0 

(for k = 2, ... ,M) 

* * * * Vx¢(x (M+l)) - \ (M) + p ·Vxp(x (M+l)) = 0 (16) 

C.l From Discr ete-Time to Continuous-Time 

The continuous - time ne cessary conditions can be placed in a more concise 

format if we define the following function, called the modifiied Hamiltonian I25]t 

t 
Jpg. 110] 
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H(x(k),u(k),>.(k),y(k),n(k)) 

~ H(x(k),u(k),A(k)) + y(k)•q(x(k)) 

+ n(k) •h(x(k) ,u(kJJ 

H(x(_k) ,u(k),~(k)) 
ts. . 
= f(x(k) ,u(k)) + ?< (k) •g(x(k) ,u(k)) 

and is called the Hamiltonian. 

Therefore, we can replace Equation (13) with 

- * * * * * 
VuH(x (k),u (k),A (k),y (k),n (k)) = 0 

(k = 1, . .. ,M) 

and Equations (14) and (15) with 

* * - * * * * * A (k-1) = A (k) + V H(x (k),u (k) ,A (k) ,y (k),n (k)) 
X 

(k = 2, . . . ,M) 

* * * * A (M) = V ~(x (M+l)) + p ·V p(x (M+l)) 
X X 

Taking the limits of (18), (19) and (20) 

(for all k = 1, . . . ,M+l) [28]t 

lim 
L'lt -+ 0 

- * * * * * 
v H(x (k),u (k),A (k),y (k),n (k) 

u 

- * * * * * 
= V uH (x ( t) , u ( t) , A ( t) , y C t) , n ( t) ) 

lim 
L'.t -+ 0 

(for all t E IO ,Tf]) 

* * * * A (k). - A (k-1) 
= 

lim A (k+l) - A (k) 
L'.t L'. t -+ 0 L'.t 

•* * * * * * 
= A (t) = vxH(x (t) ,u (t) ,A (t) ,y (t) ,n (t)) 

lim 
At -+ 0 

(for all t E [O,TfJ) 

* * * 
Vx~(x (Tf)) + p · Vxp(x (Tf)) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 
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C.2 Necessary Conditions 

We can now write the necessary conditions for the continuous-time 

problem. * n * m If X (t) s E , u (t) E E (for all t E [O,Tf]) solve 

Problem C, then the following conditions must be satisfied: 

(a) feasibility 

* * * 
x (t) = g(x (t) ,u (t)), x (O) = c 

* q(x (t)) .::_ 0 

* * h(x (t),u (t)) < 0 

* and there exist multipliers A (t) 
n 

E E ' 

(b) complementary slackness 

* * y (t) •q(x (t)) = 0 

* * * 
n (t)•h(x (t),u (t)) = o 

(c) stationarity [from (22), (23) and (24)] 

- * * * * * 
vuH(x (t),u (t),A (t),y (t),n (t)) = 0 

·* 
A (t) 

- * * * * * 
= - V H(x (t) ,u (t) ,A (t) ,y (t) ,n (t)) 

X 

* * * 
= Vxcj>(x (Tf)) + p ·Vxp(x (Tf)) 

(or 

(25) 

(26) 

(27) 

(28) 

n + 
E (E ) ) , 

(29) 

(30) 

(31) 

(32) 

(33) 

These conditions correspond to the necessary conditions obtained from 

* n p E E , 

application of variational theory directly to Problem C l27]. Equation (32) 

is called the adjo~nt equation and Equation (33) is called the tna~v~atity 

c.ond.{;t{_on. 

C.3 Solution Difficulties 

It appears on the surface that transformation from the discrete case 

to the continuous case is straightforward. A number of serious difficulties 

arise in the continuous case, however, that are not evident in the discrete 

case. Notice that the above necessary conditions are valid, in general, 
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* only if u (t) is continuous over [O,Tf]. The existence of the state-space 

(q(·) 2 0) and control (h(•,•) 2 0) constraints, however, will tend to 

* produce discontinuities in u at a finite number of points 'j s [O ,Tf]' 

j = 1' ... ,J, where < ••• An additional set of necessary 

conditions , called Qonn~ on jump QOndition6 [11] is therefore required for 

t hese T .. In general, the more state-space and control constraints there 
J 

are, the more points of discontinuity there will be; and hence, the number 

of conditions to be satisfied increases proportionately. 

One method of alleviating the problem of added corner conditions is 

to place (13c) and (13e) into the objective function (13) through use of 

arbitrary penalty functions. For example 

p = 
Tf J f(x(t),u(t))dt + ¢(x(Tf)) 

0 
Tf 2 Tf 2 

+ K1 J (q(x(t)) dt + K2 J (h(x(t), u(t)) dt (34) 
0 0 

is an example penalty function. The result is an unconstrained optimal 

control prob l em, where the above necessary conditions are applicab l e. The 

* * parameters K1 and K2 are adjusted until an optimal solution x , u is 

produced which satisfies the constraints. Also, a penalty of the form 
2 

K3(p(x(Tf)) 

could be added also, allowing elimination of the transversality conditions. 

Penalty function methods, however, generally suffer from convergence problems, 

especially if the constraints can be satisfied only as K . -+ oo, 
l 

for all 

There are other difficulties associated with penalty function methods, as 

discus s ed in Bryson and Ho [9]. 

Even if it is possible to reduce the number of necessary conditions, 

there remains t he di fficult two-point boundanq-value pnoblem to be solved. 

i. 

That is, Equations (25 ) and (32) must be solved simultaneously, where there 
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are only given final conditions associated with (32) (the transversality 

conditions (33)). Since numerical integration methods require that all 

initial conditions be given, A(O) must be guessed and adjusted until 

the transversality condition is satisfied. This trial and error procedure 

is computationally inefficient, and if a high degree of nonlinearity exists 

in the problem, the current solution may never be attained. This is primarily 

due to i~tab~y difficulties, where small changes in A(O) produce 

large changes in A(Tf). 

* Solution procedure generally starts with determination of u (x(t),A(t),t) 

as a function of x and A from Equation (31), and then the two-point 

boundary-value problem is attempted. An alternative to using (31) is to 

apply the Maximum P~nc{pl~ [25]. Here, the Hamiltonian H is utilized in 

place of H (so that the complementary slackness conditions can be eliminated) 

and (31) is replaced with 

* ff(4(t),u (t),A(t)) ~ H(x(t),u(t),A(t)) (35) 

* for all u satisfying (28), from which u (x(t),A(t),t) can hopefully be 

* determined. It may not be possible to determine u (x(t),A(t),t) from (31) 

or (35). The so-called ~ingulan case is an example, where control u(•) 

appears linearly in f(•,•) (or not at all), and so can not be explicitly 

determined from (31). 

We see, then, that aside from the inherent dangers of using necessary 

* * conditions to find x ,u , the actual solution can be extremely difficult 

for nontrivial continuous control problems. Considerable effort has therefore 

been directed, in recent years, towards applying methods .original developed 

for finite-dimensional problems to infinite-dimensional problems. These 

would be termed "direct" methods, since the necessary conditions are 

essentially ignored and an initial guess 0 0 x (t),u (t) (for all 

starts an iterative process that attempts to successively decrease the 
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objective function (subject to the constraints) in some fashion. Some of 

the methods that have been applied include gradient methods, conjugate 

directions, Newton-Raphson, and others. In general, these methods are 

more difficult to apply to infinite-dimensional problems than finite-

dimensional problems, with computer storage capabilities being a consistent 

constraint. 

D. SUMMARY AND DISCUSSION 

Let us summarize what has been shown in this chapter: 

1. There are two basic approaches to solving the optimal control 

problem of minimizing overflows from combined sewer systems: 

(a) Solve the finite-dimensional problem [Problem B], where 

the time horizon has been discretized, and determine 

the optimal controls for each interval. 

(b) Solve the infinite-dimensional problem [Problem C] and 

discretize the resulting continuous-time optimal controlt 

accordi ng to the interval ~t actual 

2. The necessary conditions for the continuous-time optimal control 

problem can be derived as limiting versions (as ~t + 0) of 

the Kuhn-Tucker necessary conditions for the discrete-time problem. 

3. Infinite-dimensional optimization is more heavily dependent 

upon utilizing necessary conditions for determining opt imal controls 

than is finite-dimensional optimization. Since necessary conditions 

are generally app l icable at local minima, maxima, saddle-points, etc., 

solution results can be deceiving for nonlinear problems (unless 

condi tions (i ) - (iii) of Section B hold, thus assuring that the 

Kuhn- Tucker condi t ions are both necessary and sufficient). 

tNote: Since integration must be carried out numerically on a digital 
computer, then this control will actually be discretized, though the time 
intervals used for integration ot << ~t 1' actua 
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4. The necessary conditions for infinite-dimensional problems 

* * are difficult to solve simultaneously (for x ,u ) because: 

(a) Large numbers of constraints (on control and state 

variables) tend to create large numbers of necessary 

conditions (corner conditions) and the control logic 

becomes increasingly complex. 

(b) Computational inefficiency arises in solution of the 

two-point boundary-value problem, and the possibility 

of divergence is ever-present for nonlinear problems, 

due to instability. 

5. Data for the combined sewer problem are taken in discrete-time. 

But notice, for example, that Problem A2 requires that continuous 

data R(t) (for all t E: IO,Tf]) be given. Thus, a continuous 

curve must be approximated from the discrete data. Since there 

are an infinite number of such approximations (based on whatever 

fitting criteria are used), the uniqueness of the resulting 
"{-: 

optimal control u (t) may be questionable. 

These statements seem to suggest that finite-dimensional optimization 

is superior, at least for our problem. Notice, however, that if M is 

large (which may be necessary for accurate control), that the number of 

variables involved in Problem B would quickly tax the rapid-access storage 

capacity of even the largest digital computers. If this is the case, there 

may be no other alternative but to apply continuous-time control theory. On 

the other hand, we could arbitrarily decrease M (i.e ., increase lit) so 

that Problem B becomes solveable, with a resulting decrease in the accuracy 

* of the control. Though the resulting u is optimal with respect to these 

coarser intervals, it will probably be suboptimal with respect to the more 

realistic finer intervals. 
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For the combined sewer problem, it appears that M can be kept 

to a reasonable size (allowing solution by finite-dimens i onal methods), 

due to s tatements 1, 2, and 3 in section A.3 of this chap t e r . In addition, 

control polici es can probably be developed storm by storm, so that a 

pr oblem need not be defined over s everal storms. t As Canon, et. al. [10], 

have s uccinctly stated, the " . .. main reason for att ach ing so much importance 

to discret e opt imal control is technical and s t ems from the cons tantly 

increasing use of di gital computers i n the control of dynamical systems. 

In any computation carried out on a digital computer, we can do no better 

than obtain a finite set of real numbers. Thus, in solving a continuous 

optimal control problem ... we are forced to resort to some form of 

discreti zat ion." The question, then, is whether to discretize prior to 

computation (as in fin ite-dimens ional optimization) or during and subsequent 

t o computation (as i n infini te- dimensional optimization). For the combined 

sewer problem, the author's recommendation is that t he former be stressed. 

The fo ll owing chapter wi l l ser ve to suppor t the above conclusions 

concerning i nfinite-d imensional optimization , as it i s applied to some 

simplified subbasin confi gurations . This will be followed by a chapter on 

finite-dimensional optimi zation te chniques, concluding with a pr oposed 

solution procedure based on recent advances in duality theory. 

t 
Ipgs . 1 and 2J 
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III. APPLI CATIONS OF CONTINUOUS-TIME CONTROL THEORY 

A. INTRODUCTION 

The following applications represent the first att empts at solving 

the optimal control problem for combined sewer systems , as far as this 

aut hor is aware. Most of the work has been carried out by W. Bell, and 

reported in [5], [6], and [7]. It may be valuable t o attempt solution of 

a control prob lem by continuous-time theory before f inite-dimensional 

work, since finite-dimensional optimization t ends to require a larger 

initial investment in computer time and demands a greater quantity of 

computer storage. For nonlinear , nonconvex probl ems, it is usual l y 

impossible to determine a phiohi whether or not these at tempts will be 

successful. As it becomes increasingly evident that the difficulties are 

insurmountable, effort should be shifted to finite-dimensional optimization. 

Such is the experience with the combined sewer control problem. 

Considerable difficulty has been encountered with applying continuous-time 

theory to even very idealized subbasin configurations of at most two or 

three reservoirs , with time lag in flow routing neglected. This experi ence 

has discouraged fur t her extension to more realistic configurations, and 

current research effort is concentrating on solving the control problem by 

finite-dimensional optimization techniques. However, the initial efforts 

in continuous-time control are reported here for the following reasons : 

1. To give evidence as to the viability of shifting 

emphasis to finite-dimensional op t imization. 

2. Limited results have been obtained for certain 

specialized cases, and it is hoped that they will 

serve to aid in generating accurate initial guesses 

for direct solution of the finite-dimensional problems. 
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B. AMBIENT STORAGE 

B.l Two Reservoirs in Series 

Bell and Wynn [5] have applied continuous - time control theory to the 

problem of minimizing overflows from a system composed of two reservoirs 

in series, where storage is defined in terms of water accumulation behind 

an adjustable weir pl aced in the sewer. 

where (at time t) 

SEWER 

FIGURE III-1 

AMBIENT STORAGE IN SERIES 

R, (t) = rate of direct input to storage behind weir i 
~ 

s. (t) = accumulated storage behind weir i 
~ 

0. (t) = rate of overflow from reservoir i to receiving 
~ 

(to treatment) 

waters 



Ql (t) 

Q2(t) 

r 
1 
(t) 

r 2(t) 

hi (t) 

di (t) 
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= throughput rate from reservoir 1 to reservoir 2 

= rate of flow to treatment plant 

= variable radius oi orifice controlling throughput from 

reservoir 1 

= variable orifice radius for flow to treatment 

= t he head over weir i 

= depth of fl ow at weir i 

In the example one-reservoir problem discussed in Chapter II [Problem A2], 

Q(t) and O(t) represented the control variables, and S(t) was the state 

variable. The state variable S(t) is actually a direct, one-to-one 

function of d(t), so we can replace S(t) with d(t) as the state 

variable. For flow through an orifice 

2 
Q. (t) = a.r1 (t) ld.(t) , 

1 1 1 
i = 1,2 (1) 

where a. 
1 

is a given constant. Therefore, we can replace Q. (t) with 

ri (t) as a control variabl e. For flow over a weir 

3j 2 
O. (t ) = b.h . (t) , 

1 1 1 
i = 1, 2 

J. 

(2) 

where b. i s a given constant. Likewise, we rep lace O. (t) with h. (t) 
1 1 1 

as a control vari abl e . [Note: weir height is uniquely de fined by h and d]. 

The following state equations are expressed with the assumption that 

there are negligible time lags. Future work should cons ider not only time 

lags, but backwater effects in the flow routing. By conservation of mass 

(3) 

(4) 



where A,_(d , (t)), 
~ ~ 
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i = 1,2, are given area-depth relationships, 

characteristic of the sewer and its slope, such that 

S. (t) = d. (t)A. (d. (t))' 
l l l l 

i = 1,2 

Since we wish to minimize total volume of accumulated overflow, 
. 

let o(t) = O(t), or 

• 3/ 
o, (t) = b.h. (t) 2, 

).. l l . i = 1' 2 (5) 

Hence , the 0. (t) 
l 

are int r oduced as additional state variables, and the 

infinite-dimensional problem is [weighting factors are represented by 

min 

d(t) ,o(t) ,r(t) ,h(t) 

for all t E [0, T f] 

subject to: 

state equations [Equations 

initial conditions d(O) ,o (0) 

final conditions [none] 

state- space d(t). [d(t) 
constraints 

r(t) • [ r(t) 

control constraints h(t). [h (t) 

(3)' ( 4), and (5)] 

(given) 

- d ] < 0 max -

- r ] < 0 max 

- d(t)] < 0 I 2 
R

2
(t) + blrl (t) ldl (t) ~ Ql,max 

and Q
1 

are given upper bounds. Notice that ,max 

Inequalities (7), (8) and (9) ar e pl aced in the form of case (b) 

IChapter II, Section B]. Inequality (9) assures that h(t) cannot 

(6) 

(7) 

(8) 

(9) 

(10) 
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exceed d(t), whereas (10) states that direct input to reservoir 2, 

plus throughput from reservoir 1, mus t be less than or equal to the 

~aximum capacity of the sewer Q between r eservoirs 1 and 2 . 
1 ,max 

In terms of the general format of Problem C [Chapter II, Section C] 

u(t) 
1:. 

(r(t) ,h (t)) 4 => m = 

x(t) 
1:. 

(d(t) ,o (t)) 4 => n = 

f( · ' .) 
1:. 

0 

¢(x(Tf)) 
(:, 
= w•o(T ~) 

t 

... and so on. The necessary conditions [Chapter II, Section C. 2] are now 

written, including appropriate corner conditions, and an attempt is made 

* * * * to find r (t),h (t),d (t),o (t) that will satisfy them . 

Bell has written a computer program for this problem and discussed 

the resul t s in an unpub lished report [4]. To avoid the di f fi cult two -

point boundary-value problem, a successive approximation s cheme is utilized, 

which a llows t he state equations to be solved i ndependent ly of the adjoint 

equations . Referring to the general f ormat of Probl em C, Chapter II, 

the procedure is basically: 

(a) Guess an initial feasible estimate of 

* 1:. * 
u = {u (t),O ~ t ~ Tf}' and call it 

Set iteration number j = 0. 

(b) Solve the state equations by numerical 

integration and determine feas i ble 

xj+l ~ {xj+l(t ),O ~ t ~ Tf} . 

0 
u . 

(c) The given control uj is now ignored and 

xj+l is used in the simultaneous solution of 

the adjoint equat i ons (I I-32), the control 

equations ( II- 31), and t he complementary slackness 
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conditions (II - 29) and (II-30) , yie l ding 

j+l 'j+l j+l 
u 'II. ' y and 

j+l n . fNote: the 

adjoint equations must be integrated backwards 

from t = Tf to t = 0]. 

(d) At this point, al l necessary conditions are 

satisfied, except f or t he fact t hat , in general, 

uj(t) f uj+l(t), f or all t. For some tolerance 

e::, an example "stop" criterion, not necessarily 

used by Bell, is : 

luj (t) - uj+l(t) I < e::, for all t? 

(;L) If YES, STOP . 

(ii) If NO, set j + j+l; GO TO (b) 

The results from experience with t he computer program can be 

summarized as follows [4]: 

1. The following assumptions were made: 

(i) w1 < w2, or greater weight was placed on overflows 

from the downstream reservoir 

(ii ) r
2

(t ) was el iminated as a variable, and assumed 

(iii) 

to be a given constant 

When d
2 

( t) = d , h2 ( t) > 0 . max This simplifies 

the corner condi tions, since we are excluding the 

possibility that h2(t) = 0 when d2 (t) = d • 
max 

2. The computer program did not converge to t he optimal solution, 

but tended to oscillate closely around it . The necessary 

condit ions were analyzed by hand, and it was found that control 

tended t o be of a bang-bang nature (i .e., instantaneous switching 



-30-

occurred at various points, where control was 

transferred from one control constraint boundary 

to another). In general, the optimal control stayed 

on either state-space or control constraint boundaries 

at all times. 

3. Singularity (as discussed in Chapter II) appeared as 

a consistent difficulty, since the objective function (6) 

is only defined at T f' Therefore, at those times t 

where a certain number of the multipliers A(t),y(t), or n(t) 

vanish, then there is the possibility that one or more of 

the control variables will vanish from the control equations 

* (II-31). The problem, then, is how to find a unique u (t). 

Bell I4J also examined a problem of two reservoirs in parallel. No 

computer program was written, but analysis of the necessary conditions 

by hand pr oduced some approximate results. It was noted that control, 

again , was of the bang-bang type. Bell also found that the problem of 

singulari ty did not occur if the throughputs Q. were placed in the 
l 

objective function, along with appropriate weighting factors. Notice 

that there are two ways that this can be done. To the objective function, 

add either the term 

(i) 
T 2 

- f f I I 
0 i=l 

2 
v. (t)a.r. (t) /d. (t)]dt 

l l l l 

where \). (t) 
l 

are weighting factors, or 

(ii) let q(t) = Q(t), and add the term - [v·q(Tf)] . 

It is not clear from [4] which approach Bell applied, but it seems that 

the danger of singularity still remains with approach (ii) [Notice the 
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minus sign, since we wish to maximize throughput] . It appears that 

approach (i ) would el iminate the possibility of singularity, at least 

for r(t). 

In general, it must be concluded that t he control logic for even 

thes e very simple problems, with several i dealized assumptions, is complex 

enough to discourage further extension t o mo r e realist ic problems. For 

this pr oblem, the difficult t wo-point boundary-value problem was avoided 

by using a successive approximation scheme. For nonlinear problems, 

however, successive approximation methods can be hi ghly unstable, even 

when i n i tial guesses u0 (t) * are very close to u (t) [24] . The lack of 

convergence here seems to present some evidence to this effect. 

8.2 A Three-Reservoir Problem 

Results from the two-reservoir prob lems previously described have 

been extended by Bell, Wynn, and Smith [7] to a three reservoir problem, 

whose configuration is shown in Figure III-2. 

T. ~Ct) 
dl (t) 

r 
1 
(t) 

'FIGURE Ill -2 

A THREE-RESERVOIR PROBLEM FOR AMBIENT STORAGE 
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In extending the formulations for the two-reservoir problems to 

this three-reservoir problem, it is desired to introduce throughput 

into the objective function, along with appropriate weighting factors, 

so that the problem of singular control, hopefully, does not appear . 
. 

Therefore, let q(t) = Q(t), or 

. 2~,-
q. (t) = a.r. (t) :Yd. (t), 
~ 1 1 1 

i = 1,2,3 

so that q(t) is considered as a new state variable. 

The optimization pr obl em is: 

min 

d(t) ,o(t) ,q(t) ,r(t) ,h(t) 

for all t s [0, T f] 

[where 3 + d ( •) , o ( • ) , q ( •) , r ( • ) , h ( •) , w, \J E (E ) , and v is the vector 

of we ighting factors associated with accumulated overflows] 

subject to: 

state equations 

initial conditions 

final conditions 

state-space 
constraints 

control constraints 

!Equations (3) and (4)], plus 

• 2 
d3 (t ) = IR3(t) - b

3
r 3(t) ld3(t) -

!Equation (S)], for i 

[Equation (11)], for i 

d(O) ,o (0), and q (0) 

[none] 

d(t) . [d(t) - d ] < 0 max -

= 1,2,3 

= 1,2,3 

(given) 

r(t) • [r(t) - rmaxJ < 0 

h(t)·IhCtl - d(t)J < o 
2 

R2 (t) + bl r 1 (t) )dl (t) .S. Ql ,max 

a h (t) 
3

/ 2 ] 
3 3 

I A3 (d3(t)) 

2 2 ,....,--.,..,.....,-
b2r2(t) )d2(t) + b3r 3(t) )d 3(t) .5. Q2,max 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 
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Inequality (18) has been added to insure that total flow to the 

treatment plant, does not exceed Q In terms of the general 2,max' 

format of Problem C 

u(t) 
/'::,. 

(r(t) ,h(t )) 6 => m = 

x(t) 
/'::,. 

(d(t),o(t)pq (t) ) => n = 9 

f(· ,· ) 
/'::,. 

0 

<P (x(T f ) ) 
/'::,. = w·o(Tf) - v• q(Tf) 

The obj ective function has been formulated in such a way that 

overflows are minimized and throughputs maximized, based on t he choice 

of weight ing factors. Selection of appropriate weighting factors will 

probably be based primarily upon the relative level s of pollution at 

the var ious control point s. It appears that pollution would tend to 

increase downstream, so t hat and Again, time delays 

are neglected for this problem, as refl ected i n t he state equations. 

As before, t he necessary conditions, i ncluding all corner condi tions, 

are written for this pr oblem, and an attempt is made to so l ve them 

simul taneously. The computer programs wer e developed for t his purpose, 

and discus sed in [4] and [7]: 

1. The f irst pr ogram followed t he same basic successive 

approximat ion scheme as carried out fo r the two reservoir 

problem, except that a perturbation procedure was included 

as an attempt to get arou~d the problem of singul ari ty. As 

far as this aut hor is aware, no convergence has been attained 

as yet. If instabi lity of the successive approximation 

method was a f actor in the lack of convergence for the 

two-reservoir pr oblem, then it seems that this would be 

further accentuated for the more complicated three-reservoir 

problem. 
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2. In order to simplify the control logic and reduce the 

total number of necessary conditions, a penalty function 

approach was utilized as an alternative. As discussed 

in Chapter II , penalty terms of the form seen in Equation 

(II-34) can be added for all the state-space and control 

constraint s, thus leaving an unconstrained control problem. 

The probl ems associated with large numbers of corner 

conditions are avoided . As discussed in Chapter II, however, 

penal ty function methods suffer from difficul ties of their 

own. There is a large element of trial and error i nvolved, 

and the control problem must be solved several times, each 

time adjusting the parameters K1 and K2, until the correct 

* * K
1 

,K2 are found such that the state-space and control 

constraints are indirectly satisfied. Bell [4] indicates 

that convergence has been attained in some cases, but that 

the fo l lowing difficulties arose in connection with the 

penalty function method; 

(a) A saddle-point tended to occur at r = 0. Since 

we ar e dealing with necessary conditions, there 

was danger that a saddle-point solution would result, 

rather than the true global mi ni mum. Thi s was 

dealt with by requiring that r .::._ E: , where E: 

is an arbitrari ly small number. 

(b) Singularity still tended to be a problem, even though 

the addition of the penalty terms i nsures that the 

control variables appear explicitly in the contro l 

equations (as long as K. -f. 0). 
::l 

Various attempts have 

been made to overcome this problem, but success is not 

assured as yet. 
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C. AUXILIARY STORAGE 

For situations where auxiliary storage dominates over ambient 

storage (e .g . , the San Francisco system), extensions of Problem A2 

[Chapter II] are more appropriate. That is, instead of defining 

control variables in terms valve of settings and adjustable weir heights, 

we return to defining control in the broader sense of flow rates, as 

before. This may also be a viable alternat ive for analyzing ambient 

storage by continuous-time theory. The following formulation, therefore, 

is applicable to both ambient and auxiliary cases. Suppose we have been 

* able to determine Qi (t), for all t s [O,Tf]' as well as the optimal 

* storage Si (t). It is a relatively simple matter to determine t he 

* * optimal orifice settings r. (t) 
1 

and head over the weir h. (t) 
1 

from 

these values. Let us formalize these ideas by setting up the preceding 

three-reservoir problem as an extension of Problem A2: 

subject to: 

min 

S(t) ,O(t) ,Q(t) 

for all t s [ 0, T f] 

state equations 

Tf 
J [w(t)•O(t) + v(t)•Q(t)]dt 
0 

initial conditions S (O) given 

state-space 
constraints 
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control constraints 

where 
3 + 

S ( • ), 0 ( • ), Q ( • ) , w ( • ) , \) ( • ) s (E ) , and we are using case (a) 

{Chapter II, Section B] for the control constraints to keep the problem 

1
. t 1near. 

An alternative formulation, perhaps more amenable to efficient 

computation, and comparable to the approach used in the ambient storage 

case , is t o define the objective func t ion as 

min 

S(t) ,o(t) ,q(t) ,O(t) ,Q(t) 

for all t s fO,T] 

and add on the additional state equations 

q(t ) = Q(t)' 

;(t) = O(t ), 

Q(O) 

0 (0) 

given 

given 

The above problem is a linear control problem, for which there are 

a nwnber of highly developed, efficient algorithms for solving them [19]. 

These algor ithms are bas ed on applications of generalized linear programming 

fl4], r ather than standar d opt i ma l contr ol theory , as described i n Chapter II. 

These methods appear t o have gr eat pot ential for solving s ubbasin problems 

i nvolving sever a l more reservoirs than the s i mple three - reservoi r example 

discussed here. 

In order to apply standard optimal control theory, the obj ective function 

shoul d be at least quadratic, so as to avoid the singularity problem discussed 

in Chapter II. One possibility would be to use a criterion of the form 

tNotice that 
functions of S. 

Qmax and ~ax are actually variables, since they are 
For the above formulation, aver age values are used. 
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though there is some question as to the equivalence of this criterion 

to our basic objective of minimizing overflows. The resulting problem 

has a quadratic criterion and a linear set of constraints. Perhaps 

no other subject in the area of continuous-time control theory has 

received more attention in past years than the linear-quadratic problem. 

The two-point boundary-value problem for this formulation is easily 

solved by the ~weep method and solution of the well-known matnix-RiQatti 

equations [25].t 

Computational experience is not yet available on application of the 

above ideas to the combined sewer problems. It appears, from the above 

discussion, that there would be less difficulty in applying these 

approaches to the ambient storage case, than that originally attempted 

by Bell I 4]. 

D. DISCUSS ION 

There i s little doubt that continued effort towards obtaining 

convergence for the ambient storage formulations will eventually succeed, 

particularly via penalty function approaches. As seen in some of the 

discussion concerning the three-reservoir problem, however, the effort 

tends to involve a good deal of problem manipulation, intuitive insight, 

and a measure of good luck. Again the major point we are emphasizing 

here is not the impossibility of solving individual control problems, but 

the great deal of effort involved in obtaining a solution. There seems, 

in general, to be a high level of programming skill required. Since the 

eventual hope is to consider models 
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1. composed of several interconnected reservoirs in 

a variety of configurations 

2. which include realistic flow routing components 

that properly allow for time lag between control points 

3. that consider backwater effects in flow routing. The 

idea l situation i s that the full St. Venant equations 

are utilized, 

so that from the above experience, it must be concluded that each 

particular mode l situation would require a unique effort in obtaining 

solutions that would probably not be applicable to other models. 

The auxiliary storage formulation of the pr evious s ection was seen 

to also be applicable to t he ambient storage case, and perhaps a more 

effective approach. It was shown that highly effective computational 

techniques are available for solving these problems, both for the 

completely linear case and the linear-quadratic case. 

The major concern, however, is extension to more realistic flow 

routing techniques, thus introducing nonlinearities into the state 

equations. The highly efficient methods previously alluded to must 

then be abandoned, unless we attempt to linearize the nonlinear equations 

and converge to the solution of the original nonlinear problem in some 

kind of iterative fashion. This is the essence of a method called 

Quaoitineanization, developed by Bellman and Kalaba [8]. Due to the 

nonconvexity of control problems with nonlinear state equations (i.e., 

nonlinear equality constraints resul t in a nonconvex constraint region, 

in general), this approach tends to be rather unstabl e [24 ]. If we 

at t empt to return t o app lication of standard continuous control theory 

to the nonlinear control problem, we are again thwarted by the difficult 

two-point boundary-value problem, as well as other hinderances, as discussed 

in Chapter II. 
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IV. MATHEMATICAL PROGRAMMING APPROACHES 

A. INTRODUCTION 

As was shown in Chapter II, finite -di mensional optimization appears 

to be better suited to the problem of optimal control of combined sewer 

overflow. We found this to be due part icularly to: 

(i) the physical nature of the system 

(i.e., control is actually effected in discrete-time) 

(ii) the difficulty of applying optimal control theory 

(infinite-dimensional optimization), since it is based 

on necessary conditions for optimality 

Methods used to solve finite-dimensional optimization problems are 

lumped under the term mathematical p~gnamming . That is, linear, nonlinear, 

and dynamic programming are all mathematical programming techniques. The 

variety of techniques is large, particularly under the category of nonlinear 

programming. Again, mathematical programming methods usually are not based 

upon solution of necessary conditions, as in continuous-time control theory. 

Necessary conditions may be used, however, for checking the optimality of 

solutions determined by other means. 

The purpose of this chapter is to discuss some of t he techniques 

available and concl ude with a methodology the author feels is most conducive 

to the problem at hand. Emphasis will be placed on the advantages and 

disadvantages of each technique, based on the following questions: 

1. How realistic a model concerning the flow dynamics of the 

system can be utilized? 

2. Can the method tolerate a large number of variables? That is, 

is it conducive to decomposition, since the large-scale problem 

must eventually be dealt with? 
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3. Will the method guarantee convergence to global or just 

local solutions? 

The general finite-dimensional problem is repeated from Chapter II 

[Problem B]: 

M 
min L f(x(k),u(k)) + <P(x(M+l)) 
x,u k=l 

[where x = (x(l), ... ,x(M+l), u = (u(l), .. . ,u(M))] 

subject to : 

x(k+l) = x(k) + g(x(k),u(k)) 
(k = 1, ... ,M) 

x(l) = c 

q (x (k)) ~ 0, k = 1 , ... ,M 

p (x (M+ 1)) = 0 

h (x (k) , u (k)) < 0, k = 1, . .. ,M 

The particular technique to be applied depends upon: 

(i) the nature of f(· ,•) and <P(·) 

(i.e . , their linearity, nonlinearity, nonconvexity, 

continuity, etc.) 

(ii) the nature of g ( ·, ·) , q ( ·) , p ( ·) , and h ( ·, ·) 

(iii) the number of state variables (n) and decision or 

control variables (m) at each stage 

B. AN EXAMPLE THREE-RESERVOIR PROBLEM 

(1) 

(la) 

(lb) 

(lc) 

(ld) 

(le) 

As explained in Chapter I, we are primarily interested in subbasin 

analysis here. Future work will concentrate on fitting the subsystems into 

a large-scale framework. Let us then consider an example subbasin 

configuration composed of three auxiliary reservoirs in series, with 

overflow possible from each reservoir, where 



0. (k) 
l 

s. (k) 
l 

R1 (k) ,, 
s1 (k) 

01 (k) 
n 

I 

Ql (k) 

Ql (k) ----· 
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R2 (k) 
, 

s2 (k) 

02 (k) ,, 
FIGURE IV-1 

I 

Q2(k) 

Q2(k) 

EXAMPLE THREE-RESERVOIR PROBLEM 

R3(k) 

s3 (k) 
Q3(k 

= average rate of overflow from reservoir i, during period k 

= average rate during period k of lumped direct stormflow 

input which is translated from the near vicinity of 

reservoir i [Note: assume that all direct input can be 

lumped, as shown in Figure IV-1, with negligible direct 

input occuring between reservoirs] 

= average rate of throughput during period k, from 

reservoir i, with Q3(k) going to treatment [i = 1,2] 

= the routed or translated throughput from reservoir i, 

entering reservoir i+l [i = 1,2] 

= storage in reservoir i ' at the beginning of period k. 

A common method of flow routing is the Muskingum method [12], where 

I I I 

Qi (k+l) = Q. (k) + T. (Q. (k) ,Q. (k) ,Q. (k+l)) 
l l l l l 

(2) 

(k = l, . .. ,M-1) 

The transformation T. may be linear or nonlinear, depending upon whether 
l 

or not the coefficients associated with the Muskingum method are considered 

to be functions of flow rate. Backwater effects are not properly considered 

here, as in more realistic methods [12], but (2) will suffice for now. 
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We would like to formulate an optimization problem for minimizing 

0 (k)' for all k, which is consistent with the general format of 

Problem B. This is hindered by the present form of Equation (2), since 

it is not consistent with the general format for dynamic or state equations 

(i.e ., k+l appears on the right-hand side). This can be remedied by 

defining a new state variable V. (k), and replacing (2) with [assuming 
l 

.M = 1] : 

I t I 

Q. (k+l) = Q. (k) + T. (Q. (k) ,Q. (k),V. (k)) (3) 
l l l l l l 

Q. (k+1) = Q. (k) + [V. (k) - Q. (k)] (4) 
l l l l 

(k = l, ... ,M-1) 

We see that (2) <=> (3), (4); Q. (k) is now regarded as a state variable, 
l 

and V. (k) as a control variable, since Q. (k+1) is dependent upon V. (k). 
l l l 

We can now formulate the optimization problem [Problem D]: 

M 
min I wk •0 (k) (5) 

I k=l 
S,Q,Q ' 

v,o 

E3(M+1) V E3M 0 E E3M I 
E E2M] I where S, Q E E and Q ' ' 

subject to: 

s1 (k+1) = s1 (k) + R1 (k) - Q1 (k) 01 (k) (6) 

I 

s2(k+1) = s2 (k) + R2 (k) + Q1 (k) - Q2 (k) .. 02 (k) (7) 

I 

dynamic s 3(k+l) = S3(k) + R3(k) + Q2 (k) - Q3(k) - 03(k) (8) 

equations I I I 

Q. (k+1) = Q. (k) + T. (Q. (k) ,Q. (k) ,V . (k)) (9) 
l l l l l l 

Q. (k+1) = Q. (k) + [V. (k) - Q. (k) ] (10) 
l l l l 

(i = 1,2 k = 1, . .. ,M) 
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s. (1) = s? (given) 
l l 
I 

Qj (1) = 0 (given) 

Q. (1) = 0 
l 

0 < S.(k) < S. 
- 1 - 1,max 

I 

0 < Q. (k) < Q. 
- J - J ,max 

0 < Q. (k) < Q. - 1 - 1,max 

S. (M+l) = 0 
l 
I 

Q. (M+l) = 0 
J 

Q. (M+l) = 0 
l 

l 0 < v. (k) < Q. - 1 - 1,max 

0 (k) 2:. 0 

i = 1,2,3; j = 1,2 

i = 1,2,3; j = 1,2 

k = 2, ... ,M 

i = 1,2,3; j = 1,2 

i = 1,2,3 

k = 1, ..• ,M 

I 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(1 7) 

(18) 

Physically speaking, Q. and Q. are only defined for k = l, ... ,M. 
l l 

In order to be consistent with the general format, we are defining 
I /J. 

Q.(M+l) = Q. (M+l) = 0, and expressing them as final conditions. Notice 
l l 

that (14) is arbitrary, and we could simply specify 

S . (M+ 1 ) > 0 ( 19) 
l -

as a more realistic final condition. This is, however, not consistent 

with the general format of Problem B. The transversality conditions for 

this situation are the same, however, with the exception that the 

multiplier p is now nonnegative. 

u(k) !J. (V(k) ,O(k)) 6 => m = 

!J. I 

x(k) (S(k),Q(k),Q (k)) => n = 9 

f (. 'u (k)) !J. 
wk •0 (k) 

Hx(M+l)) ~ 0 
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For this problem, then, there are a total of 15M variables (state and 

control) and 22M constraints, not including nonnegativity restrictions. 

Suppose, for example, that a storm lasts for about an hour, and control 

is exercised every 5 minutes. Then M = 12, the number of variables is 

180, and there are 264 constraints. Therefore, optimization techniques 

applied to Problem D must involve some kind of decomposition strategy, 

where the original problem is replaced by several smaller problems. 

C. DIRECT METHODS 

C.l Linear Programming 

If the transformation T. is linear, then Problem D can be solved 
~ 

by linear programming, and a global solution is assured if the problem 

is well-posed. It should be pointed out that in applying linear 

programming, there is no need to transfor~ the problem into the format 

of Problem B (resulting in Problem D). The original routing relation 

(Equation (2)) suffices, and there is no need to add variables v. (k) 
1 

and the 

constraints (4). The number of variables is therefore reduced to 12M, and the 

number of constraints to 16M. We will refer to this modified problem as Problem D. 

TRere are several ways of decomposing the linear programming problem, 

including Dantzig-Wolfe decomposition 121], generalized linear programming 

J14J, and Rosen's partition programming [21]. Specialized techniques 

have been developed specifically for linear control problems {14], and 

have the advantage of being computationally efficient even if M is very 

large. Another technique, using generalized duality theory, that is 

discussed in a subsequent section, maybe applicable to linear control. 

Considerable reduction in computational load can be gained by solving 

Problem D via its dual. For the primal problem, we must add [12M - 9] 

slack variables to the state-space and control constraints. Therefore, 
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a 16M x 16M basis must be used . For the dual problem, the basis will 

be 12M x ' l2M. Some computational results are reported in [30] . 

With respect to the questions asked in the introduction to this 

chapter, the linear programming approach can be evaluated as follows: 

1. The linearity of T. 
l 

implies that flow routing is 

independent of flow rates in the sewer, which is not 

consistent with reality. The question is, what 

magnitude of error is introduced? If the error is 

tolerable, then a linear programming approach may 

be feasible. This error can only be evaluated, for 

particular problems, by comparing the linear routing 

with more realistic routing procedures. 

2. As mentioned above, a number of efficient procedures 

are available for decomposing Problem Dwhen M is 

large. 

3. The linear programming algorithm assures convergence 

to a global solution, as long as the problem is well -posed . 

C. 2 Dynamic Programming 

ln applying dynamic programming to Problem D, we need not make 

any assumptions regarding 

I 

T .• 
l 

Fk(S (k),Q(k),Q (k)) 

The basic recursion relations are : 

I 

(20) 

= min Iwk·O(k) + Fk+l(S(k+l),Q(k+l),Q (k+l))] 

V(k) ,0 (k), 

[subject to 

(6) - (10), 

(11) - (13) , 

and (17), (18)] 
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where (20) is applicable for k = l, ... ,M-1 (initial conditions for 
I 

k=l are given) and is solved for all combinations of S(k),Q(k),Q (k), 

with each variable taking on a finite number of values in the intervals 

IO,Smax]' fO,~ax]' and [O,~ax], respectively. Fork= M+l 

I 

FM(S (M) ,Q(M) ,Q (M)) 

= min 

V(M) ,o (M) 

Isubject to 
(14) - (18)] 

It is immediately evident that Problem D cannot be solved by 

conventional dynamic programming, due to the so-called [8a] 

"curse-of-dimensionality." There are a total of 9 state variables 

at each stage. If the above intervals are discretized into L-1 

subintervals, then a total of L9 values must be stored at each stage, 

(21) 

far exceeding the capacity of any computer, assuming L is a reasonable 

number. By "reasonable," we mean that it is large enough to insure a 

global solution. 

The only way to obtain any kind of solution to (20) and (21) is 

to reduce L, which leads us into the possibil ity of applying incremental 

dynamic programming [20]. Here, L = 3, and we start with an initial 

guess for the optimal control v0(k),0°(k)) and perturb around the state 

variables resulting from these controls (S0 (k),0°(k),Q
10

(k)). The 

perturbation is generally limited to one step above or below s0 (k),Q0 (k),Q
10

(k), 

for all k, which explains why L = 3. A new optimal control v1(k) ,o1(k) 

is then determined for this limited state-space, and the procedure is 

repeated until convergence is attained. Since we are making no assumptions 

regarding T., 
~ 

incremental dynamic programming can, in general, only 

insure convergence to local solutions. 
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Our evaluation of the applicability of dynamic programming is: 

1. Realistic flow routing procedures may be utilized, 

since dynamic programming requires no restrictive 

assumptions regarding the transformation T .. 
1 

2. Dynamic programming is a decomposition technique 

in itself, since the or iginal problem is decomposed 

into a set of subproblems which are defined for 

each stage. The subproblems, however, become unwieldy 

from a computer storage standpoint (rapid-access storage) 

as the number of state variables increases. For only 

one reservoir, standard dynamic programming could be 

applied. For more t han one, it must be abandoned. 

3. For general problems involving more than one reservoir, 

incremental dynamic programming can be applied as a 

means of obtaining at least a local solution. 

C.3 Nonlinear Programming Methods 

Al l nonlinear programming codes require that assumptions (i) - (iii), 

i n Section B of Chapter II, be applicable, in order for convergence to 

a global sol uti on to be assured. t The objective function for our problem 

is, of course, linear, but a nonlinear transformation function T. 
1 

i mmediately violates assumption (iii). Since (3) is an equality constraint, 

the constraint region defined by (3) is convex if and only if (3) is 

linear [18]. Therefore, nonl inear programming met hods are poorly suited 

for Problem D if a high value is placed on obtaining global solutions. 

Optimization problems with nonlinear equality constraints are generally 

considered to be the most difficult fl8] . Our evaluation, then, is 

t Note: that is, with the exception of direct enumeration or 
grid-search methods. 
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Most nonlinear programming codes require that T. be 
l 

at least continuous, in order for a solution to be 

obtained. Usually, stronger assumptions of differentiability 

are required for the algorithms to operate properly. These 

assumptions do not seem restrictive for utilization of 

realistic flow routing procedures . 

The nonlinearity of T.' 
l 

and hence the non·convexi ty of 

Problem D, limits the possible de composition methods that 

could be applied. The two most important methods would 

probably be (i) Geoffrion's resource directive approach [16] 

and (ii) application of generalized duality theory [see 

Appendix]. 

3. In general, all standard nonlinear programming codes, that 

are not based on grid search methods operating over the 

entire constraint region of a problem, can at most guarantee 

convergence to local solutions. 

D. AN INDIRECT METHOD - THE APPROXIMATE-FLOW TECHNIQUE 

D.l Introduction 

In addressing ourselves to the most general combined sewer problem 

for a particular subbas in, where 

(i) there are several interconnected storage basins 

(ii) realistic routing procedures are utilized, thus 

introducing nonlinearities into the state equations, 

and therefore resulting in nonconvexity of the 

control problem~ 

we can conclude that direct application of 

1. linear programming is not possible , unless some kind of 

linearization procedure is carried out. In general, though, 
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global solution of the original nonlinear problem is 

difficult to attain by these methods 

2. standard dynamic programming, though being a global solution 

technique, is not feasible, due to dimensionality difficulties 

caused by interconnection of several reservoirs. Incremental 

dynamic programming is applicable, but can only guarantee 

local solutions. 

3. nonlinear programming methods can only assure convergence 

to local solutions. 

The following technique may be an answer to both the problem of 

obtaining global solutions and the dimensionality difficulties encountered 

in applying dynamic programming. 

D.2 Approximation of Routed Flow 

Suppose we are given arbitrary functions ~(a,t), ~(B,t), with 
I* 

para:Il)eters a, B, respectively, such that if Q (k) , k = 1, •.. ,M, 

is the global solution (assuming that it is unique) to Problem D, then 

* * there exis t a ,B such t hat 

I* 

Ql (k) 

I* k = 1, ... ,M 
Q2 (k) = 

Then, the following problem can be written which is exactly equivalent 

to Problem D IProblem El]: 

M 

min L wk•O(k) 
I k=l 

S,Q,Q . ' 

(22) 

V,O,a,B 



subject to: 

state 
equations 

initial 
conditions 

state-space 
constraints 

final 
conditions 

control 
constraints 
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s1 Ck+l) = s1 (k) + R1 (k) - Ql (k) - 01 (k) (23) 

s2(k+l) = s2 (k) + R2 (k) + <l>(a,tk) Q2(k) - 02 (k) (24) 

S3(k+l) = s3 (k) + R3 (k) + 1)J(S,tk) Q3(k) 03(k) (25) 
I I I 

Q. (k+l) = Q. (k) + T. (Q. (k) ,Q. (k) ,V. (k)) (26) 
1 1 1 1 1 1 

Q. (k+ 1) = Q. (k) + [V.(k)- Q.(k)] (27) 
1 1 1 1 

(i = 1,2; k = 1, ... ,M) 

I 

S(l),Q (l),Q(l) (given) 

s (k) < s - max (28) 
I 

Q (k) 2. ~ax (29) 
k = 2, ... ,M I 

<P(a,tk) Ql (k) = 0 (30) 
I 

1)! (S, tk) Q2(k) = 0 (31) 

{(!M) = 0 
I 

Q (M+l) = 0 

Q(M+l) = 0 

Q(k) 2. ~ax' k = 1, ••. ,M (32) 

where 3+ 1 2+ a b 
S ( •) , Q ( o) , 0 ( •) , S , 0 , wk .E (E ) ; Q ( o) E (E ) ; a E E , S E E . max 'max 

Problem El is not i n the strict format of Problem D, due t o the 

inclusion of a,S as variables and the form of the state-space constraints. 

We will see, however, how Pr oblem El can be decomposed into subproblems 

which are consistent with the general format. Notice, also, that each of 

the state-space constraints can be replaced by t wo inequalities . The 

addition of (30) and (31) insures the equivalence of D and El, since we 

I* 
have assumed that an exact fit can be made between the Q. (k) (k = 1, ... ,M) 

1 

* * and given functions ~(a ,tk)' 1)J(S ,tk). 
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In general, however, it is impossible to find a function that will 

give an exact fit. Thus, solution of Problem El would produce solutions 

'* Q that would be suboptimal, since (30) and (31) must be satisfied . 

The closeness of the fits would tend to increase as a and b increase. 

But since a and S are now variables, we desire to limit their sizes 

to a degree that will facilitate solution. Taking this into account, 

we would like to modify El in the following way [Problem E2] : 

subject to : 

M 
min L fwk•O(k) + 

' k::;l 
S,Q,Q ' 

' 2 
Ql (k)] 

' 2 

V,O,a, S 
+ [~(S ,tk) - Q2 (k)] ] 

(33) 

[all t he constraints of Problem El , with the exception of (30) and (31)] 

There are no weighting factors attached to the 3rd term of the objective 

function, s i nce proper adjustment of the wk,~k can produce any desired 

relat ive weighting among all the terms . For Problem E2, we can now allow 

some err or in the fitting process . As long as this error is tolerable , 

t hen even t hough Problem E2 is no longer exactly equivalent to El , for all 

practi cal purposes, we can replace El with E2. 

The advantage of placing the problem in the form of E2 is that we 

can now decompose the problem into a set of dynamic programming problems, 

for which di mensionality is no longer a great problem. This is accomplished 

by the power fu l p~oj ection theo~em [16], which states that we can write 

Probl em E2 in the following equivalent form [Problem E3] : 

where 

min v(a , (3 ) 

a ,(3 

(34) 
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I 2 
v(a,S) = min Ql (k)] 

I 2 (35) 

v,o + [~(S,tk) - Q2(k)] ] 

subject to: 

fthe constraints associated with Problem E2] 

The problem has now been pnoj~ct~d onto the space of the a,S. The 

minimization carried out in (35) is based on given a,S, and is referred 

to as the ~nnen pnoblem. The outen pnoblem is represented in (34). 

Strictly speaking, we should replace min in (35) with ~n6 (infimum, or 

greatest lower bound), but (35) holds as long as we assume that a minimum 

exists i n (35) fo r all a a E: E , 
b s E E . To assure this, it may be 

necessary to place arbitrary upper and lower bounds on a , S. 

With a,S now representing given parameters for the inner problem, 

the inner problem is now completely decomposible i nto thr ee, independent, 

three-dimensional dynamic programming subproblems. In general , 

Sub£roblem i (for i = 1, 2,3) is 

wher e 

subject to : 

r (6) -

min 
I 

S , , Q. ,Q.' 
1 1 1 

v. , 0 . 
1 1 

for 

for 

fo r 

i = 1' TERM . 
1 

i = 2, TERM. 
1 

i = 3 , TERM. 
1 

(18) ' for appropri at e 

I 2 
= J.lk f<P( a ,tk) Ql (k) ] 

I 2 r ~ cs, tk) Q2 (k) ] 

= 0 

i] 

(36) 

Each of t hese subproblems is s olved by dynamic programming in the 

format of (20) and (21), except that the s t ate and control vectors 
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depicted in (20) and (21) are replaced with their respective · components 

for the ith subproblem. 

In summary, we have replaced the original 9-dimensional dynamic 

programming problem (which was impossible to solve) · with an outer, 

unconstrained nonlinear programming problem involving a total of a + b 

variables, which at each iteration solves a total of three, three-dimensional 

dynamic programming subproblems. If the dynamic programming subproblems 

are efficiently programmed, then computer storage should no longer be a 

problem. There are, however, two difficulties that present themselves: 

(a) Since the 3-dimensional dynamic programming 

subproblems are solved a number of times, depending 

on how long it takes the outer problem to converge, 

the amount of computer time required will render 

solution by this approach infeasible. 

(b) As we begin to consider more complex subbasin 

configurations involving many reservoirs, the outer 

prob lem wil l involve a quantity of variables that 

increases in proportion to the number of reservoirs. 

Hence, it will become mor e and more difficult to 

i nsure convergence t o global solution of the outer 

prob lem. For nonconvex problems, ·the only sure way 

of findi ng global s olutions is via grid-search techniques. 

As t he dimens i onality of the outer problem increases, 

gri d-s earch becomes less feasible, due to the enormous 

number of computations involved in any direct enumeration 

procedure. 

The above discussion points to two goals: 

(i) Somehow reduce the computational effort involved in the 

inner problem. 
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(ii) Provide some means of keeping the outer problem of 

reasonable size. 

The following section addresses itself to (i), and opens the way to 

consideration of (ii). 

D.3 Approximation of Flow prior to Routing 
I 

Suppose that instead of approximating the routed flows Q. c.) 
1 

by 

the functions ~(·,·) and ~(·,·), fori= 1,2, respectively, we 

approximate the throughflows Q. c.) 
1 

prior to routing. Then the following 

problem can be written which is exactly equivalent to Problem D {Problem Fl]: 

subject to: 

state 
equations 

initial 
condit ions 

state-space 
constraints 

final 
conditions 

M 
min I wk •0 (k) 

I k=l s ,Q ' 
Q,O,a , S 

s1 (k+l) = s1 (k) + R1 (k) - Ql (k) - 01 (k) 
I 

S2(k+l) = s2 (k) + R2 (k) + Ql (k) - Q2 (k) 02 (k) 
I 

s 3 (k+l) = s3 (k) + R3 (k) + Q2(k) Q3(k) 03 (k) 
I I I 

Ql (k+ 1) = Ql (k) + T1 (Q1 (k),~(a,tk),~(a,tk+l)) 
I I I 

Q2 (k+l) = Q2(k) + T2 (Q2 (k),~(B,tk),~(B,tk+l)) 
(k = 1, . . . ,M) 

I 

s (1) ,Q (1) (given) 

0 < S(k) < S 
- - max 

I 

0 2._ Q (k) 2._ ~ax 
k = 2, ... ,M 

S(M+l) = 0 
I 

Q (M+l) = 0 

(37) 

(38) 

(39) 

c 40) 

(4la) 

(4lb) 

(42) 

( 43) 
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0 .::_ Q(k) .::_~ax (44) 

control 
<P(a, tk) Ql (k) 0 k 1, ... ,M ( 45) = = constraints 

1/JCS,tk) - Q2 (k) = 0 ( 46) 

As before, in considering that it is generally impossible to obtain 

an exact fit, as required in (45) and (46), we apply the projection theorem 

to a modification of Problem Fl, where (45) and (46) are deleted as 

constraints and the objective function includes the fitting error as an 

optimality criterion IProblem F2] : 

where 

min v(a,S) 

a, S 

v (a, S) = min 
I 

S,Q ' 

Q,O 

subject to: 

M 

I 
k=l 

2 
Iwk·OCk) + ~kr~ca,tk) Q1 Ck)J 

2 
{$(S,tk) - Q2(k)] 

( 48) 

fthe constraints associated with Problem Fl, with (45) and (46) deleted] 

Again, the inner problem ( 48) is decomposable into three independent 

subproblems, corresponding to each reservoir . The importance difference 

from the previous formulation (Problem E3) is that these subproblems can 

be solved as o~e-dimenolo~al dynamic programming problems. In the previous 
I 

fo rmulation, we approximated the dependent or state variable Q , so 

that it was required to retain it in the subproblems. In this present 

formulation, we are approximating the independent or control variable Q, 
I 

so that given a,B from the outer problem, Q is uniquely specified as 
I 

a func t ion of a,B. Since Q no longer appears in the objective function, 

we can delete it from our problem. This is accomplished by noting that (41) 
I 

can be written in the following equivalent forms [assuming Q. (1) 
1 

given]: 
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I I I 

Q1 (2) = Q1 (1) + T1 (Q1 (1) ,lj>(a,t1) ,lj>(a,t
2
)) 

I I I 

Q1 (3) = Q1 (1) + T1 (Q1 (1) ,¢(a,t1) ,lj>(a,t
2
)) 

I I 

+ T1 ((Q1 (1) + T1 (Q1 (1) ,lj>(a,t1) ,lj>(a , t 2)), 

¢(a,t2) ,cj>(a,t 3)) 

( 49a) 

I I 

Q1 (M+l) = Q1 (1) + 
M 

!: 
k 1 =1 

I 

T1 (Q1 (k
1 ),~(a,tk 1 ),~(a,tk 1 + 1 )) 

M I 

I 
k 1=1 

T1 (Q1 (l),~(a,tk 1 ),~(a,tk 1 +l)), 

I 

Ithe relations for Q2(k), k = l, . . . ,M are of the same form, except 
(49b) 

~(a,tk) is replaced with ~(S , tk) ' for all k] 
I 

Since the vector Q (k) has now been represented as a function of 
I 

a,S (referred to as Q (a,S,k)), let us modify F2 in such a way that 
I 

Q (a,S,k) is deleted from the inner problem [Problem F3] : 

I 

min v(a,S,Q (a,S,•)) (50) 

a ,S 

subject to : 

(49a), (49b), and (43) 

I I I 

wher e Q (a,s,k) = CQ1 (a,k),Q2Cs,k)), and 

I 

v (a, S, Q (a, S, · )) 

(51) 

subject to: 

Ithe constraint s associated with Problem Fl, with (43), (45), and 

( 46) deleted] 
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The inner problem (51) can now be decomposed into the following 

subproblems: 

Subproblem 1: 

min 

subject to: (all variables assumed nonnegative) 

s
1 

(1) ,s
1 

(M+l) (given) 

s
1 

(k) "' s - 1 ,max' k = 2, ... ,M 

Ql (k) :2. Ql max' k = 1, ... ,M • 
' 

which is easily solved as a one-dimensional dynamic programming problem 

c_s
1 

(k) as the state variable) with two decision variables at each stage k 

(Ql (k) ,01 (k)). 

Subproblem 2: 

min 

subject to : 

I 

S2 (k+l) = s2(k) + R2(k) + Q1 (a,k) - Q2 (k) - o
2

(k) 

s 2 (1) ,s2 CM+l) (given) 

S2(k) < s2 ' k = 2, ... ,M - ,max 

Q2(k) ~ Q2 max' k = 1,, . . ,M 
' 

I 

where Q have been given as a parameters from the outer problem. 
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Subproblem 3: 

min 

subject to: 

s3 c 1 ) , s 3 CM+ 1 ) (given) 

S3 (k) < s k = 2, ••• ,M - 3,max' 

Q3(k) .::_ Q3,max' k = 1, ... ,M 

All of the above subproblems are solveable as one-dimensional dynamic 

programming problems, with two control or decision variables at each 

stage, We can further reduce the computation time by utilizing the 

formulation discussed in Section A.l, Chapter II. That is, we let 

Q(_k) = Q(k) + O(k) 

and replace the overflow terms in the objective functions for the 

subproblems with 

0 (k) = rs (k) - smax] 

fo r all k e K., where 
l 

K. = {kiS . (k) - S. > 0}, l l l,max - i 1, 2, 3 

so t hat we have only one control variable 

each stage k, and the upper bound s max 

Q. (k) 
l 

for subproblem 

is ignored. 

i, 

(52) 

(53) 

at 

We have, therefore, realized goal (i), given in Section D.2 . Our 

attention now focuses on goal (ii). Before discussing ways of meeting 

this goal, it should be noted that the above method of reducing the number 
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of control variables at each stage from two to one, though resulting 

tn less computation time for the inner problem, introduces additional 

nonconvexity into the outer problem, thus making it more difficult 

to find a global solution. The proper trade-off between time and 

nonconvexity can only be resolved through extensive computational 

experience. 

D.4 Application of Generalized Duality Theory 

Having found ways of significantly lessening the computational 

burden associated with the inner prob lem, we now address ourselves to 

global solution of the outer problem. We see from Problem F3 that as 

the number of reservoirs increases to N > 3 , then the number of 

variables associated with the outer problem increases to approximately 

a X N, where a represents the average number of components of the 

parameter vectors associated with the functions approximating throughflow 

Q. 

·For illustrative purposes, let us return to Problem F3 (where N = 3), 

and place it in the following equivalent form [Problem G] : 

I I I I I 

min v(a,S,a ,S ,Q (a ,S ,k)) (54) 
I I 

a,S,a ,S 

subject to: 
I I 

(49) and (43) (with a,S replaced by a ,S , respectively), plus 

I a I Eb where a,a E: E ;(3, B E: ' 

a a 

B s 

and 

I 

= 

= 

0 

0 

(55) 

(56) 
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v (a, S, a , S , Q (a , S ) ) 

subject to: 
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2 
Ql (k)] 

2 
+ I~(S,tk) - Q2 Ck)J J 

Ithe constraints of Fl with (4 3) , (45), and (46) deleted] 

I I I 

(57) 

Notice that Q has been expressed as a function of a ,S , but 

that addition of (55) and (56) preserves the equivalence of F3 and G. 

The advantage of using Problem G over Problem F3 is that we can place 

(55) and (56) into (54) via introduction of genenalized Lagnange 

mu.Lt-[pliVL6 A, as discussed at length in the Appendix . Hence, we 

write the dual nunetion (see Appendix) associated with the outer problem 

of Problem G or 

I I I ' ' h(A) ;:::: min {v(a,S,a ,S ,Q (a ,S ,k)) 
I I 

a,S,a ,S (58) 
' ' + A • Ia - a ] + A2·Is - s ]} 1 

a b a+b where A E E x E , or A E E 

subject to : 

( 49) and ( 43) 

which is decomposable as follows 

h(A) = {min [v 1 (a) + Al •a] 
a 

I ' + min [v 2 (a , S) - A •a + A2 · SJ 
' 

1 (59) 

a ,!3 
I 

+ min [v 3 (S ) - \ · S]} 
' 

2 
s 
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where 

v 
1 

(a) is the solution of Subproblem 1 

(stated in Section D. 3) 

I 

v2 (a ,~) is the solution of Subproblem 2, 

with a replacing a. 
I 

v3 (~ ) is the solution of Subproblem 3, 
I 

with ~ replacing ~ . 

It is seen in (59) that for given the outer problem can be 

expressed as three independent ~ub-outen pnoblem~, each involving no 

more than a+ b variables. In extending this method to N reservoirs, 

there will in turn be N sub-outer problems, each involving approximately 

2a variables where a represents the average number of parameters 

associated with each approximating function utilized. 

The A's must now be properly adjusted until (55) and (56) are 

satisfied which is hopefully accomp l ished by solving the dual pnoblem. 

Such will be the case if a ~addle-point exists [see Appendix]. Solution 

of the dual problem then indirectly s olves the original N reservoir 

problem (by Theorems 1 and 2 in the Appendix) . The dual problem, for 

the example three-reservoir problem, is 

max h(A) (60) 

and for the general N reservoir problem 

max h (>-) (61) 

where aN is appnoxhna.tely the dimension of A, 
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On the surface, it seems that we have accomplished little, in 

that even though the outer problem has been decomposed, it in turn has 

been imbedded in a dual problem which involves a large number of dual 

variables (:aN). The advantage is that the dual problem is guaranteed 

to always be concave, no matter how nonconvex the sub-outer problems 

happen to be (by theorem 6 in the Appendix). By keeping the dimensionality 

of t hese sub-outer problems v. to a restricted level, we increase the 
l. 

assurance of finding global solutions for them. 

D.S Discussion 

Let us summarize the conditions presented in the Appendix which give 

assurance that solution of the dual problem (61 ) . can be found, and that 

this solution will indirectly solve the original N-reservoir problem, 

as represented in Problem El for N = 3: 
I I I 

1. The vectors a,B,a ,B ,S,Q,Q , and 0 must be contained 

in closed and bounded sets· 

2. The objective functions associated with the subproblems 

given in Section D.3 must be continuous functions of all 

of the above variables. 

3. For all given A in the dual problem, the dual function 

must yield g-unique (which is a generalization of uniqueness) 

* * I* I* * * I* 
solutions a ,B ,a ,B ,S ,Q ,Q 

* 4. There exists a finite A such that 

* ah(A ) = 
()A. 

0 
l. 

for i l, ... ,aN. 

* and 0 . 

Condition 1 is obviously satisfied for our problem, as long as we 

place an arbitrary upper bound on 0, and arbitrary upper and lower bounds 
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I I 

on a,S,a , 8 , such that the optimal solu' ·ons are contained in t he 

interior s of these i ntervals. Condition 2 is satisfied as long as 

the functions appr oximating Q (¢(• , • ),~( ·,·) , ••• , etc .) are continuous 

f unctions of t heir respect ive paramebers. Condit i ons 3 and 4 are mor e 

diffi cul t t o assur e. It shoul d be po inted out , however, that t hese 

are only ~ufifiieient condition6, and t hat a saddle -point may exist even 

though they are not strictly satisfied. 

As stated previously , the goal of the dual prob lem i s to adj ust the 

A until (55) and (56) are satis fi ed indirect ly (t his corresponds to 

maximizing the dual function h(A)) . If conditions 1 and 2 above are not 

* strictly satisfied, then there may exist no A s uch that (55) and (56) 

are exactly satisfied. This corresponds to a duality gap , and implies 

that a ~addle-point does not exist [see Appendix] . It may be, however, 

* that there exis ts a A such that (55) and (56) are a&t.o~t sat isfied, or 

* * '* * Ia ( A ) - a (A ) I = E 

* * '* * Is (A ) - s (A ) I= cr 

where vectors E and a have tolerabl y small components. In this case, 

the duality gap is considered negligible, and a saddle -point is assumed 

to exist. These questions cannot be fully r esolved without extensive 

computational experience. 

A suggested algorithm for solvi ng the dual problem (61) foll ows: 

(a) Adjust the A1 S for the dual problem utilizing 

a rapidly converging unconstrained maximization 

algorithm (e. g. , Davidon-Fletcher -Powell, Powell's 

method, or steepest ascent [18]) . I f the method 

requires derivatives, assume that the dual function 
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is differentiable , and use the gradients 

defined in the Appendix . 

(b) Ideally, for each given A in the dual 

problem, global solutions to the sub -outer 

problems should be f ound. If a ~ 3, then 

grid- search methods can probably be used. For 

a > 3, constrained minimization methods can 

be used until the dual problem begins to 

conver ge. At this point, greater attempts 

should be made at attaining global solutions . 

(c) The subproblems associated with the i nner 

problem are easily solved via one-dimens ional 

dynamic programming. Since they wil l be solved 

numerous times as 
I I 

A, and in turn , a,S,a ,S 

are adjusted, it is extremely important that computer 

codes be written as efficient l y as possible. 

In addition to t he diffi culty of assuring that Condit ions 3 and 4 

above are satisfied, t here is the problem of finding approximation 

functions ¢( ·,· ) ,~(·,· ), •·· , etc., which wi ll give accurate fits, 

while utilizing as few parameters as possible, so that global solution 

of the outer problem is more easily attained. 

Aside from t hese d.ifficul ties and uncertai nties in applying the dual 

approach, using flow approximation, the fo llowing advantages are clear: 

1. There is pot ential for being able t o obtain a solution 

which is assured to be the global solution . Such assurance 

is gener ally never possib le when di rectly applying nonlinear 

programming a l gori t hms to nonconvex problems such as this. 
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2. Even if a saddle~point does not exist, or there exists 

* no A such that (55) and (56) are satisfied, the amotmt 

of infeasibility may be negligible, for practical purposes. 

3. For larger duality gaps, the infeasible solutions may be 

useful for generating accurate initial approximations for 

initiating a direct nonlinear programming code. 
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V. SUMMARY AND CONCLUSIONS 

The optimal control problem associated with automated operation of 

ambient and/or auxiliary storage capabilities within combined sewer 

systems can be formulated as either a finite,...dimensional (discrete-time) 

or infinite-dimensional (continuous~time) optimization problem. Both 

involve discretization at some stage, since digital computers can only 

deal with finite quantities of real numbers. For the former, discretization 

is carried out prior to problem solution, whereas for the latter it is 

effected during and subsequent to computation, since actual control of 

the system is carried out in discrete,...time. 

It was concluded that finite-dimensional optimization (FDO) is 

preferable to infinite-dimensional optimization (IDO) for the combined 

sewer problem, due to the following factors: 

1. Actual operation of the system is carried out in discrete 

real-time. The size of FDO problems can be unwieldy 

if the time intervals are too small, so t hat IDO may be the 

only alternative. It appears, however, that intervals will 

be of moderate size, due mainly to the need for collecting 

and analyzing adequate quantities of sensor data in these 

intervals, for reasonable storm and flow prediction. 

2. IDO is based on solving necessary conditions for optimality, 

which apply at solutions other than the desired global 

solution. FDO relies less on necessary conditions. 

3. In general, for nonlinear problems, it is easier to obtain 

at least local solutions by FDO than IDO. It was shown 

that the necessary conditions for IDO can be derived as 

limiting cases of the necessary conditions for FDO. But there are 

difficulties in solving the former that do not arise in the latter. 
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4. In applying IDO, a continuous curve must be f itted to 

discrete rainfall data. Since there are an i nfinite 

number of such curves, the question of uniqueness of 

solutions arises. 

These conclusions seem to be supported by computational experience. 

Applications of IDO t o ambient stor age models failed to give solutions 

in most cases, even though the flow model and system configuration was 

extremely idealized. This can be cont rasted with the ease of obtaining 

results by linear programming for a comparably simple flow model and 

auxiliary storage configuration~ as reported in [30]. There is some 

questionp however, about the validity of comparing these results, since 

the ambient storage model required solution of more complicated equations, 

even though the flow routing assumptions were of comparable simplicity. 

As dis cussed in Chapter II I, however, i t seems possible to treat the 

amb i ent cas e from an auxiliary storage viewpoint, though no computational 

results ar e available as yet. 

Turni ng to FDO, it was shown that linear fl ow routing model s (e.g., 

the Muskingum method with constant coefficients) resulted in a large-scale 

linear prograi1lming problem, for which there are a number of efficient 

decomposition st rategies availabl e. If the error introduced by linear 

routing is tolerable, linear programming may be feasible for effective 

on-line optimization~ since global solut ions to linear pr oblems are 

assured (under mi ld assumptions) i n a finite number of iterations, by 

the simplex method. 

Introduct ion of any degree of nonlinearity in the flow routing method 

(e.g., the Muskingum method with variable coefficients) results in a 

nonconvex FDO prob lem. Dynamic programming can deal with the nonconvexity 

problem, but the so-called curse- of~ dimens ionality precludes its applicability. 
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Incremental dynamic programming is a possibility, but can only give 

local solutions, in general. Nonlinear programming algorithms also 

suffer from the fact that convergence is generally to local solutions. 

Even if a global solution happens to be determined, there is no known 

way of verifying its globality, other than by inefficient direct 

enumeration. 

In order to deal particularly with the prob lem of finding global 

solutions, an approximate~flow technique was developed which, in 

conjunction with generalized duality theory and the projection theorem, 

resulted in one~dimensional dynamic programming problems imbedded in 

constrained nonlinear programming prob lems of limited dimension, which 

in turn were imbedded in a dual problem for which global so lution is 

assured as long as global solutions can be ob t ained for the interior 

subproblems. The dual problem solves (globally) the original control 

probl em if and only if a saddle-point exists . If a saddle-point does 

not exi st (which is not det erminable a p!Uo!U for nonconvex problems), 

an infeas ible solution to the control problem results. If t he infeasibility 

is of tolerable magnitude, then this solution wi ll be adequate. Otherwise, 

t he infeasible so lution may be used t o gener at e accurate initial approximations 

for direct application of constrained nonlinear programming algorithms . 

• 
Considerable computational experience is necessary in order to verify 

the applicability of t he approximate,.., flow technique, It appears, though, 

that this method opens the way fo r finding global solutions to the nonconvex 

control problems resulting from realistic flow routing procedures. The 

goal is to obtain considerable off.,.. line optimization results bas-ed on a 

large variety of historical and synthetically generated storm situations, 

so that optimal rule curves and operating pol icies can be programmed into 
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the on-line computer system. These policies can perhaps be utilized 

in conjunction with on-line optimization by linear programming. 

Though simplified linear flow models are required for the latter, 

on-line optimization has the advantage of being able to respond to 

the uniqueness of the particular storm event occurring in real time, 

which is not possible if all optimization is carried out off-line. 
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APPENDIX 

SUMMARY OF GENERALIZED DUALITY THEORY 

The following is a concise review of the basic concepts and results 

of generalized duality theory, and is taken from [19b]. As discussed in 

Section D. 4, Chapter IV, application of generalized duality theory opens 

the way to dealing with the complex, .large-scale nature of the combined 

sewer problem, which arises even in subbasin analysis. In particular, 

there is potential for indirectly finding global solutions to the large-scale 

nonconvex control problem discussed in Chapter IV, whereas direct nonlinear 

programming techniques can generally only find local solutions. The great 

advantage of the dual approach is that its solution will either give the 

global solution desired, or give an infeasible solution, under certain mild 

assumptions . If the infeasibility is of small degree, then this solution 

will suffice. Direct methods, on the other hand, produce solutions which 

are generally impossible to define as being local or global. 

Most of this material is condensed from excellent presentations by 

Lasdon I21], Banerjee I3], and Varaiya [27]: 

Given the pnimal p~oblem 

subject to 

where X 

min f(x) 

XEX 

g. (x) < 0 
1 -

(i = 1, ... ,m) 

is a subset of 

m 
L(x,A) = f(x) + l 

i=l 
A. g . (x), 

1 1 

we can write the 

for A. > 0 
l 
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A point 0 0 0 0 is -6a.ddi.e-po.in:t for L (x , >. ) , >. ~ 0, X €X, a 

it satisfies 

(i) L(xo,>.o) 0 
~ L(x,>. ), for all xe:X 

(ii) L(xo,>.o) 0 
~ L(x ,>.), for all >. > 0 

The du.ai.. n u.nctio n is 

h(>.) = min L(x,>.) 
xe:X 

and the du.a.t pJtoblem is 

max h(A) 
>.e:D 

where 

D = PI>.~ 0, min L.(x,>.) exists}. 
xe:X 

Theorem 1 

The point 0 0 0 0 (x ,>. ), for x e:X, >. ~ 0, is a saddle point for 

L(x,).) iff: 

(a) 

(b) 

(c) 

x0 minimizes 

0 
g(x ) ~ 0 

0 0 >. g(x ) = 0 

0 L(x,>. ) over X 

if 

[Note: >. 0 
> 0 associated with condition (a) are called geneJta.lized 

La.gJr.ange mu.UipUeJ!.-6 (GLM)]. 

proof: (=>) 

The first inequality (i) above is equivalent to (a). The second (ii) 

states that 

f(x0
) + ).

0 g(x0
) > f(x0

) + >.g(x0
) 

=> (A - >.0 )g(x0
) ~ 0 => g(x

0
) ~ 0, for all >.>O 

Now, 0 0 >.i = 0, i = l, ... ,m, =>A g(x) > 0 
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then 

(<=) 

But since 
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A > 0 and g(x0
) < 0 => A0 g(x0

) < 0 

A
0

g(x0
) = 0. 

L(x0
,\

0
) = f(x0

) + A0 g(x0
) = f(x0

) 

0 0 0 L(x ,'A) = f(x ) + \g(x ) 

0 0 0 0 Ag(x ) ~ 0, L(x ,A) ~ L(x ,\ ) 

Condition (a) is equivalent to Inequality (ii) I I 

Theorem 2 

If is a saddle-point for L(x,\), then 

primal problem. 

proof: 

0 
X 

0 f(x) +A g(x), for all xe:X 

But 0 0 0 0 A g(x ) = 0 => f(x ) ~ f(x) + A g(x) 

0 
=> f(x ) ~ f(x). II 

Questions that immediately arise include: 

solves the 

1. Do such GLM vectors \ 0 e:D exist such that the original primal 

problem is solved? 

2. If they do exist, how can they be determined? 

Theorem 3 

If the primal problem satisfies: 

(i) X convex, 

(ii) f and gi convex, i = l, ... ,m, 

(iii) there exists ie:X s.t. g(i) < 0, 

then x0 is a solution to the primal problem <=> there exists \ 0 e:D 

such that (x0 ,A 0
) is a saddle-point for L(x,A). 

proof: (see Karlin [19a] or Lasdon [21]). II 
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Therefore, for convex programming problems with certain constraint 

qualification, the existence of a saddle-point is guaranteed. Such 

assurance is not automatic for more general nonconvex problems. 

Theorem 4 

proof: 

h(~) ~ f(x), for all XEX, for all A€0 

h(~) = min (f(x) + Ag(x)) 
xe:X 

~ f(x) + >.g(x) 

But, for all x£X and for all Ae:D, >.g(x) ~ 0. Therefore, 

h(>.) .:_ f(x), for all x£X, for all >.e:D. II 
A du.aU..ty gap exists if h(A) < f(x), for all xe:X, for all 

Ae:D. In this case, there exists no optimal GLM vector ~0 > 0 such 

that the primal problem can be solved. 

Theorem 5 (Karlin [19a]) 

min max L(x,A) = 
x~X Ae:D 

max min L(x,>.) 
Ae:D xe:X 

if and only if there exists a saddle-point. 

proof: (see Karlin [19a] or Lasdon [21]). II 

Theorem 6 

The set D is convex, and h(A) is concave over D. 

proof: Let A1,A2e:D. For ae:[O,l], 

A = aAl + (1 - a)A > 0 2 -

=min L(x,(a~ 1 + (1- a)A2)) 
xe:X 

L(xi(aA1 + (1 - a)A 2) = f(x) + (a). 1 + (1 - a)). 2)g(x) 



+ (1 - a) f(x) + (1 - a) A2g(x) 

Therefore, 

> a min L(x,A
1

) 
xe:X 

=min [aL(x,A
1

) + (1 - a) L(x,A
2
)] 

xe:X 

+ (1 - a) min L(x,A
2

) 
xe:X 

Having established the concavity of the dual function, even though 

f and g may be nonconvex, it is clear that any solution to the dual 

problem must be a global answer . 

Theorem 4 states that this answer will be at least a lower bound 

for f(x). Unless strict concavity can be established, there may not be · 

a unique A0 associated with the global solution. In addition, it is 

important that h(A) be differentiable over the entire set D if 

gradi ent-type methods are to be used for converging to the solution of 

the dual problem. The concept of g-uniquene6~ is used to establish 

the differentiability of h(A}. 

Defini t ion: Let DCEm and h:D+E1 be concave over the convex set D, 

where E1 = E 1U{ +~}U{-®} , A vector c e: Em is called a ~ubg~dient 

of n(· ) at ~ e: D if h (A) ~ h (X) + c (A- X), for all Ae:D. The set of 

-
subgradients of h(·) at A is represented by ah(A). [Note: the 

inequality is reversed if h is convex]. 

Certain properties of h(·) over D can be listed which follow 

directly from it s concavity (see Rockafeller [25a]) : 

(i ) h(·) i s cont i nuous on the interior of D. 

(ii) h (A) = + ~ f or some A e: in t (D) => h( A) = + ~ for all 

'- e: int (D). 



-78-

(iii) h(•) is differentiable at Xe:D => h(·) has a unique 

subgradient at A. 

Definition: A nonempty set ACEn is called g-unique if a map 

g(•) is constant over A. 

Let 

X(A) = {xe:XI x minimizes L(x,A)}, for all AED 

Theorem 7 

For any Xe:D and xe: X(X), · g(x) is a subgradient of h(·) 

at L 

Since ie:X(X) , 

f(x) + Xg(x) = h(X), and 

f(i) + Ag(x) >min [f(x) + Ag(x)] = h(A) 
xe:X(A) 

(for all Ae:D) 

Subtracting the first line from the second gives 

Ag(iJ - XgciJ ~ h(A) - hCXJ 

or 

h(A) ~ h(X ) + g(x)(A- X) 

Therefor e 

.gCx)e:ahCXJ. II 

Corollary 8_ 

If X(A) is g-unique for all A£ int(D), then h(·) has a 

unique subgradient, and is therefore differentiable at all points in 

int(D). 

proof: Follows immediately from concavity of h(•) and Theorem 7. I I 
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Suppose 

(i) X is a closed and bounded subset of En. 

(ii) f(x) and g. (x) 
1 

(i = 1 ~ .. . ,m) are continuous on X 

Then D = (Em)+ since min L(x,.A) is guaranteed to exist. (See 
XEX 

Lqenberger [2la], p. 128). 

Theorem 9 

If (i) and (ii) above hold, t hen X(.A) is g-unique for all .AED 

iff h(•) is differentiable over D. 

proof: (see Las don I21]) II 
Notice that a special case of g-uniqueness occurs when there is a 

unique solution to min L(x.~) for some .AED, or X(~) contains only 
XEX 

one vector x(~). In general, then, when g-uniqueness holds at some 

~ED, 

ahC~l _ -
aA. - gi (x(.A)). i = 1, ... ,m 

1 

Theorem 10 

Assume (i) and (ii) above hold, let .A0 solve the dual problem, 

and assume that h is differentiable at .A0
. Then any element 

X0~xc~ 0 ) 1 h . 1 bl ~ h so ves t e pr1ma pro em. 

:e_roof: 

Since D = (Em)+ and h is differentiable at then the 

following conditions hold: 

(a) .x.o > 0 => 
ah(.X0

) 0 
0 = g. (x ) = 1 n. 1 1 

(b) .A. o 0 => 
ah(.X0

) 0 
= :::: g . (x ) < 0 

1. n. 1 -1 

Therefore, all the conditions associated with Theorem 2 hold. II 


