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ABSTRACT 
 
 
 

THE INTERACTION OF FREE-LIVING AMOEBA WITH RICE BACTERIAL AND 

FUNGAL PATHOGENS 

 
 

Free-living amoebae are ubiquitous microbes found in the soil and water across 

the globe. Amoebae live a predominantly heterotrophic lifestyle – preying on a variety of 

organisms including bacteria, fungi and even other protists. Although extensively 

studied, their potential as a biocontrol for agricultural pathogens is largely unexplored. 

As many pathogens occupy the same habitat as amoeba, we investigated their 

interactions as a first step to determine if amoeba are possible biocontrol agents. Our 

research focuses on two important pathogens of rice, the bacteria Xanthomonas oryzae 

and the fungus Rhizoctonia solani.    

Much of this thesis centers on the interaction between amoebae and X. oryzae, 

which is explored in depth and presented in the first chapter. Experimentation involved 

five common amoebal species and two highly virulent X. oryzae pathovars. Microscopy 

and vitality assays of amoebae-bacteria co-cultures first established that X. oryzae does 

not grow or dies in the presence of our amoebae. On the other hand, amoebae are not 

adversely affected, with most cells remaining alive in the metabolically active 

trophozoite form. Although the bacteria are harmed in this interaction, it is likely not 

through phagocytosis, the most common and well-studied tactic that amoeba use to 

feed. Observations made through confocal microscopy revealed that X. oryzae was 

rarely detected inside amoebae. Furthermore, lysis of amoebae after exposure to 
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bacteria did not yield any viable bacteria, suggesting that either bacteria are rarely 

internalized and/or that X. oryzae does not survive in the amoeba cell. Conversely, 

amoebal trophozoites have no impact on the biofilms of X. oryzae either. These data 

indicate that amoeba do not directly or physically interact with X. oryzae. Instead, our 

amoeba-conditioned media assays reveal that amoeba alter the media and render it 

harmful to X. oryzae. The most likely scenario is that amoeba secrete a bactericidal 

agent into their surroundings. At this time, we have yet to isolate or identify the 

compound, but its presence may prove to be a boon with a variety of applications.  

The dynamics between amoeba and R. solani were not studied as extensively, 

but the basic interaction is presented in the appendices of this thesis. Again, five 

amoeba species were incubated with mature R. solani mycelia. First, co-cultures were 

observed with a compound microscope. Acanthamoeba and Dictyostelium did not have 

any effect on the fungi. Acanthamoeba species physically associated with the mycelia, 

but also rapidly encysted – suggesting some antiprotozoal activity from R. solani. D. 

discoideum had no interaction with the fungi: the trophozoites did not attach to the 

mycelia and neither cysts nor spore-forming bodies were seen. V. vermiformis was the 

only amoeba with some effect on the fungi. In co-cultures, fungal mycelium developed a 

shriveled and wrinkled morphology. V. vermiformis was attached to the fungi and most 

amoebae remained as viable trophozoites. V. vermiformis and its interaction with R. 

solani was further examined using scanning electron microscopy, which further 

corroborated the light microscope observations. While the reason/effect of the shriveling 

is unknown, it is a potential avenue for further experiments.  
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INTRODUCTION 
 
 
 

As the global population continues to climb, the food producers of the world must 

increase their output to meet new demand – a solution that is not the easiest to 

implement. One of the largest obstacles producers face are plant pathogens that reduce 

yield quality and amount. An estimated 20 to 40% of all crops produced are ultimately 

lost due to pathogens (1). Currently, the two most commonly used counter-measures 

are application of chemical controls and integration of pathogen resistance into the 

plants themselves. There are limits to these techniques; however, chemical controls 

require re-application and have difficulty reaching deep, persistent bacterial pathogens 

while resistant varieties are often based on single-gene mechanisms, which can be 

overcome by the targeted pathogen (2, 3). It is especially important to identify novel 

ways to combat pathogens for staple crops, such as rice (Oryza sativa).  

Rice is the most significant staple food crop in the world. Statistics compiled by 

the International Rice Research Institute, Africa Rice Center, and International Center 

for Tropical Agriculture reveal just how vital this crop is. Over half the world relies on 

rice as part of their daily diet, especially a large portion of impoverished households. 

Rice farming ranks as one of the highest in terms of land usage for food production and 

for economic activities, producing nearly 700 million tons annually (4). As with other 

agricultural systems, rice production is constantly under duress from pathogens. Three 

major diseases of rice are bacterial blight, bacterial leaf streak and rice sheath blight (5-

8).  
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Xanthomonas oryzae is a gram-negative bacterium and the causative agent of 

two distinct and severe diseases on rice. X. oryzae pathovar (pv.) oryzae colonizes the 

vasculature and causes bacterial blight while pv. oryzicola inhabits the intracellular 

space of the mesophyll and leads to bacterial leaf streak (9). Both pathovars are of 

major concern to rice production as 10 to 20% of rice crops are commonly lost, and up 

to 50% yield is lost in severe outbreaks (10). Due to its impact on a staple crop, X. 

oryzae is placed under extensive international quarantines and is designated as a 

Select Agent by the U.S. Animal and Plant Health Inspection Services (11). For the rice-

X. oryzae pathosystem, there are no known broad-spectrum means of control against 

this pathogen.  

Rice sheath blight is caused by the fungus, Rhizoctonia solani. R. solani is 

further divided into subgroups based on its propensity to form anastomoses and display 

similar host ranges (12). Individuals from the same group can connect and fuse mycelia, 

even from different points of origin. Anastomosis group 1 (AG1) is the largest threat to 

cereal crops and is found world-wide (13). As a persistent and virulent, soil-borne 

pathogen, R. solani is also difficult to control and can reduce yields by half in ideal 

conditions for pathogen survival and growth (6). R. solani persists in soil and in fields by 

use of sclerotia, condensed bodies of fungal hypha that may survive in soil for up to two 

years (6, 14). Additionally, the broad host spectrum of R. solani allow the fungus to 

persist in alternative hosts for several seasons (15). Compounding the issue of 

pathogen persistence is that there are currently no resistance genes identified for R. 

solani, although potential quantitative trait loci that increase plant resistance have been 

identified (14, 16, 17). To reduce instances and severity of outbreaks from X. oryzae 
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and R. solani, additional methods of control must be implemented. To that end, we 

propose the use of free-living amoeba as a biological control for these two pathogens.  

 Free-living amoeba are natural inhabitants of soil and water. The majority of 

amoeba species are heterotrophic and prey on bacteria, fungi, and other protozoa (18, 

19). This natural bacterial antagonism combined with their overlapping habitat with 

many pathogens makes free-living amoeba a candidate as a biocontrol agent. The 

antibacterial activities of many amoeba and their deployment in model environments 

have been validated in the laboratory and in model environments (18, 20-23). Perhaps 

most well-known is the ability of amoeba to engulf and digest bacteria to feed, in a 

process resembling phagocytosis in human macrophages (24, 25). In addition to 

phagocytosis, amoebae can kill bacteria through direct contact or by secretion of 

antimicrobials. The genus Acanthamoeba secretes proteases and other compounds 

capable of killing a variety of bacteria (26, 27). Naegleria and Entamoeba species lyse 

bacteria shortly after contact, using membrane proteins to puncture bacterial 

membranes or by triggering host-cell caspases (28, 29). Unsurprisingly, these 

interactions do not always favor amoeba. Bacteria and fungi can defend themselves by 

killing amoeba or forcing amoeba into their dormant cyst morphology, in other cases 

amoebae are used as a reservoir for intracellular pathogens (30-34). Given the broad 

spectrum of possible interactions, it was imperative to establish the basic dynamics 

between the two plant pathogens and amoeba as a first step.  

The experiments listed herein involve two pathovars of X. oryzae, one strain of R. 

solani, and their interactions with five amoeba species: Acanthamoeba polyphaga, A. 

lenticulata, A. castellanii, Dictyostelium discoideum and Vermamoeba vermiformis. 
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These amoeba species are commonly used in laboratory studies and found in soils 

worldwide, even in rice paddies (35-38). To our knowledge, there are no described 

interactions between X. oryzae or R. solani with these five amoeba species. Some 

similar studies suggest an interface, however. Habte and collaborators (39) inoculated 

Xanthomonas campestris into soils occupied by free-living protozoa and determined 

that bacterial numbers declined, although the predator in this interaction was never 

identified. Homma and Ishii also added R. solani hyphae into soil samples and 

determined that a mycophagous amoeba or amoebae punctured the hyphal cell wall to 

feed on cytoplasmic contents (40). Again, the amoeba species was not identified.   

Amoebae may also benefit the plants themselves indirectly through their feeding 

behaviors. Rhizosphere studies of rice and Arabidopsis thaliana in combination with 

Acanthamoeba castellanii showed marked differences in microbiome composition, root 

architecture, and increased overall biomass of the plants (22, 41). It is thought that 

grazing by protozoa contributes greatly to the exogenous nitrogen pool, thus it is not 

surprising that amoebae influence plant development (42). It’s likely a complex dynamic 

between plants, bacteria and microfauna (43), but the interplay is complicated through 

all of the possible interactions (44).  

Scope of thesis. 

The diverse interactions of amoebae with microbes in the soil and environment 

suggest that amoebae might be manipulated for control of plant pathogens of rice.  

In this study, I describe the dynamics between two pathovars of X. oryzae and 

their interaction with five amoeba species: Acanthamoeba polyphaga, Acanthamoeba 

lenticulata, A. castellanii, Vermamoeba vermiformis and Dictyostelium discoideum. I 
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began by incubating the amoebae and bacteria together, periodically assaying the 

population counts and morphology of the two organisms. Additionally, the biofilms of X. 

oryzae were exposed to amoebae and assessed for amoebic grazing. I concluded that 

the amoebae do not ingest the bacteria but that the cell-free supernatants of amoeba 

cultures are sufficient to kill bacteria. While unexpected, the bactericidal effect of the 

amoebae establishes their potential as a biocontrol against X. oryzae.  

In a similar process, amoebae and R. solani co-cultures observed under light and 

scanning electron microscopy revealed diverse reactions. Acanthamoeba species 

physically associated with the fungi, but rapidly encysted and had no adverse effects on 

the fungi. D. discoideum did not interact with the fungi at all, displaying neither 

attachment nor formation of spore-forming bodies. Finally, V. vermiformis attached to 

the fungi and caused a shriveling of the mycelia, however the significance is yet to be 

determined.  
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Chapter I: Free-living amoeba and Xanthomonas oryzae 
 
 
 

Introduction 

Free-living amoeba (FLA) are ubiquitous microorganisms found in soil and water 

across the globe. Amoebae live a predominantly heterotrophic lifestyle – preying on a 

variety of other microorganisms such as bacteria, fungi and even other protists. 

Amoebae can directly and indirectly impact plants. For example, Acanthamoeba 

castellanii, when added to the rhizospheres of rice or Arabidopsis thaliana, markedly 

changes the plants’ microbiome composition and root architecture, and increases dry 

biomass (22, 41). Amoebae also influence plant development, likely through increases 

in the soil nitrogen pool (42). 

Bacteria-amoeba dynamics are complex and nuanced. Amoebae can greatly 

alter bacterial community composition and structure due to their prolific grazing and 

prey selectivity (43, 45). Not all bacterial species are preyed upon equally; bacteria have 

evolved a variety of defense mechanisms to deter amoebal feeding. Some bacteria use 

biofilms to shield themselves from feeding, while others directly lyse amoeba, either 

after internalization or through secretion of toxic factors (18, 46, 47). Other bacterial 

species prevent lysis after phagocytosis, and, in fact, exploit the amoeba as a reservoir 

or host (33, 48, 49). 

Amoebae-bacteria interactions have been described for diverse combinations, 

including interactions with both animal and plant bacterial pathogens (19, 21, 33, 50-

52). In cases where amoebae detrimentally affect the bacteria, it may be possible to 

exploit that relationship to reduce bacterial loads in a system. For example, use of 
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amoebae to reduce populations of plant pathogenic bacteria has been proposed as a 

form of biocontrol (53-55).  However, due to the interaction specificity of the amoebae-

bacteria combination and the large amount of work required to describe those 

interactions, general themes for outcomes have not yet been identified. 

Bacterial pathogens of major importance but with no described interactions with 

free-living amoeba are the rice (Oryza sativa) pathogens within the species 

Xanthomonas oryzae. X. oryzae are gram-negative bacteria and the causative agents of 

two distinct and severe diseases on rice. X. oryzae pathovar (pv.) oryzae colonizes 

plant vasculature and causes bacterial blight while pv. oryzicola inhabits the spaces 

between mesophyll cells and leads to bacterial leaf streak (9). Both pathovars are of 

major concern to rice production as 10 to 20% of a crop is commonly lost; in severe 

outbreaks crop loss may total 50% (10). This devastation is a salient issue as rice is one 

of the most important food crops, feeding over half of the world’s population and a 

majority of the impoverished (4). Due to its impact on a staple crop, X oryzae is 

regulated by extensive international quarantines and is designated as a Select Agent by 

the U.S. Animal and Plant Health Inspection Services and the Centers for Disease 

Control (11). The most common method to minimize disease impacts is the deployment 

of resistant rice varieties. However, resistant varieties have only been developed 

against X. oryzae pv. oryzae, and this pathogen readily evolves to overcome host 

resistance mechanisms (56-58). To date, affordable, effective and sustainable chemical 

controls are not available (7). As such, alternative strategies to control the diseases are 

needed.  
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There are several reasons to consider the interface between amoebae and X. 

oryzae for pathogen control. Both organisms are found in soil, plant debris or on the 

surfaces of plants (8, 43, 51, 59), thus it is plausible that there is contact between the 

amoebae and the bacteria. As detailed above, there are several possible scenarios for 

outcomes following amoebae-bacteria contact, but these are not known for X. oryzae – 

amoeba interactions. Previous work showed that populations of a closely related 

bacteria, X. campestris, decline when the bacteria are inoculated into soil occupied by 

protozoa (39), but the authors did not identify which protozoa or other soil factors were 

responsible for the effect. Given amoebal dietary preferences and the various strategies 

bacteria use to avoid predation by amoeba, our goal was to characterize the 

interactions of five different amoebae, Acanthamoeba polyphaga, A. lenticulata, A. 

castellanii, Vermamoeba vermiformis and Dictyostelium discoideum with the two 

pathovars of X. oryzae. Based on interactions with other bacteria, we hypothesized that 

the interactions would be antagonistic, with bacterial numbers being reduced in the 

presence of amoebae. However, our studies demonstrated that the tested amoeba were 

bactericidal or bacteriostatic, and that conditioned media from amoeba cultures were 

sufficiently lethal to X. oryzae. 

Materials and Methods 

Amoeba and X. oryzae culturing  

 A. polyphaga Linc-AP1, A. castellanii ATCC 30234, and A. lenticulata ATCC 

30841 were cultured at 28°C in a modified PYG media (ATCC medium 712, pH of 6.9). 

V. vermiformis ATCC 50237 was cultured at 28 °C in a modified PYNFH media (ATCC 

medium 1034, pH of 6.4) and D. discoideum ATCC NC4A1:DBS0236602 was 
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maintained at room temperature in a modified HL5 media (pH 6.7); media were modified 

according to Wheat et al. (25). Amoeba cultures were inoculated into 100 x 15 mm petri 

dishes with 30 mm walls holding 10 mL of media supplemented with 1x Gibco 

penicillin/streptomycin (Invitrogen; Carlsbad, CA, USA) from frozen stocks. Once initial 

cultures reached turbidity, Acanthamoeba species and V. vermiformis were passaged 

every 5 days by transferring 500 µL of culture into 10 mL of fresh media. D. discoideum 

were passaged every 3 days. Amoeba cultures were used for only three passages 

before disposal.  

 X. oryzae pvs. oryzae (strain PXO99A) and oryzicola (strain BLS256) were 

maintained on peptone sucrose agar media (PSA; 10 g/L Bacto peptone, 10 g/L 

sucrose, 1 g/L monosodium glutamate, and ± 16 g/L Bacto agar) at 28 °C. Bacteria 

were streaked onto PSA from frozen glycerol stocks and cultured for two to three days 

before use.  

Co-culture Kinetics 

Confluent cultures of amoeba were starved overnight in diluted media at the 

temperatures described above, except for D. discoideum, which did not survive 

incubation in the diluted media. Acanthamoeba were starved at 1/5 strength PYG 

diluted with Page’s modified Neff amoeba saline (PAS) while V. vermiformis was 

starved in 1/2 PYNFH media diluted with PS broth (25). Amoebal cell density was 

calculated using a direct cell counting method involving trypan blue exclusion and a 

hemocytometer. Only cultures consisting of at least 90% viable trophozoites were used. 

Amoeba cultures were adjusted to concentrations of 2×105 cells/mL.  
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 X. oryzae cells were suspended into 1X phosphate buffered saline (PBS; 8.0063 

g/L NaCl, 0.2013 g/L KCl, 1.4916 g/L Na2HPO4, and 0.245 g/L KH2PO4) and washed 

three times with centrifugations at 2500 x G for 5 min to remove extracellular 

polysaccharide and biofilm. After washing, cells were suspended to an OD600 of 0.2, 

roughly 3×107 CFU/mL.  

 Amoeba and X. oryzae co-cultures were prepared in 1.5 mL microcentrifuge 

tubes at an amoeba-to-bacteria cell ratio of 1:10. The final volume of co-cultures per 

tube equaled 500 µL with approximately 1×105 trophozoites and 1×106 CFU bacteria. 

Controls with a single species in the starvation media were included and triplicates of 

each combination were prepared for processing at 0, 4, and 24 h. At the designated 

sampling times, cultures were spun at 150 x G for 2 min to pellet amoeba. The 

supernatant was removed for viable cell count assays of X. oryzae. The amoebic pellet 

was washed once with 1 mL of PAS,  spun at 150 x G for 2 min, then suspended in 500 

µL PAS supplemented with 30 µg/mL gentamicin for 1 h to lyse any extracellular X. 

oryzae adhering to the amoebae (50). The amoebic pellet was then washed three times 

in the conditions described above, and then suspended in 200 µL of PAS. Amoeba were 

disrupted by passaging through a 27-gauge syringe seven times and lysate was used in 

viable cell count assays of X. oryzae internalized inside amoeba (60).  

 Co-culture supernatants and amoeba lysates were assayed for live X. oryzae by 

ten-fold serial dilutions down to 1×10-6. 10 µL of the original fraction and all dilutions 

were plated on PS agar in technical triplicates, and, after two days at 28 °C, the 

bacterial colonies were counted.     
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Confocal microscopy 

Amoeba and bacterial cultures were prepared similarly to the kinetic assays. 

Additionally, X. oryzae cells were stained with the LIVE/DEAD BacLight cell viability kit 

(Invitrogen L7007) following removal of biofilm. Co-cultures were prepared in the same 

manner as described above and samples were processed at 0, 4, and 24 h. Cultures 

were spun at 150 x G for 2 min and supernatant was discarded. The amoebal pellet was 

treated with 100 µg/mL gentamicin, and after 1 h, washed three times. Cells were fixed 

using 100 µL 4% paraformaldehyde (w/v; dissolved in PBS). Immediately after fixative 

addition, 25 µL aliquots of each replicate were pooled together and 75 µL 0.4% trypan 

blue was added to determine viability of amoebae. Samples were fixed for 48 h at 4 °C 

in the dark, then washed once and suspended in 100 µL PAS. Fixed samples were 

stored up to 2 weeks at 4 °C in the dark.  

 Amoebae were imaged for internalized X. oryzae on a Zeiss LSM510 inverted 

confocal laser scanning microscope. Samples were excited with a 488 nm laser and 

emission filters were set to 480 nm and 590 nm for Syto9 and propidium iodide, 

respectively. At a 630x magnification, three random fields were taken per sample and 

images were taken at ten different depths in 0.5 - 1.5 µm increments. Images were 

compiled into one using the Zeiss Zen 2009 software. Total amoeba, number of 

encysted amoebae, and the number of amoebae with internalized fluorescent signals 

were recorded.  

 Samples fixed concurrently with trypan blue were imaged on a Zeiss Axioskop 

light microscope. Samples were added to a hemocytometer and counted for number of 

live and dead amoeba.  
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Conditioned media assays 

Amoeba culture densities were calculated using a hemocytometer and 0.4% 

trypan blue and cultures were adjusted to 5×104 cells/mL. Amoeba cultures were 

aliquoted into 15 mL conical tubes with 5 mL of culture in each, one conical tube held an 

aliquot at 5×105 cells/mL for the high density amoeba-only conditioning treatment. 

Amoeba aliquots were spun at 200 x G for 5 min and supernatant was discarded. Cells 

were suspended in 1X culturing media, except for V. vermiformis, which was suspended 

in a 1:1 mix of PYNFH and PS broth.  

Washed X. oryzae pv. oryzae was added to one tube of amoeba at an amoeba-

to-bacteria ratio of 1:10 (approximately 5×105 CFU). X. oryzae pv. oryzicola was added 

in the same manner to another aliquot of amoeba. The four conditioning cultures (low 

and high density amoeba-only and two amoeba + X. oryzae) were incubated at 28 °C, 

except for D. discoideum, which was incubated at room temperature. After 48 h the 

cultures were spun at 1000 x G for 5 min. The supernatant from each was passed 

through a cellulose acetate syringe filter with 0.22 µm pores (VWR #28145-477; 

Randor, PA, USA). An aliquot of each was tested for pH levels.  

Fresh X. oryzae cells were washed three times in 1X PBS to remove biofilm and 

suspended to an OD600 of 0.1. 10 µL of X. oryzae and 190 µL of conditioned media 

were seeded into a 96-well microplate. High-density conditioning media supplemented 

with fresh media were mixed in a 1:1 ratio prior to addition and diluted fresh media 

controls were included. Samples were prepared in triplicate for sampling at each time 

point at 4 and 24 h, two samples of each pathovar in fresh media and in HD conditioned 

media were sampled at 0 h to establish initial bacterial density. Microplates were 
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incubated at 28 °C and samples were diluted and plated for viable bacteria as described 

in the co-culture kinetics.  

Crystal violet staining of biofilms 

Suspensions of both X. oryzae pathovars were adjusted to OD600 of 0.5; 

bacteria were not washed in order to retain their biofilm. Aliquots (150 µL of each 

pathovar) were added to an untreated, polystyrene 96-well microplate (Corning #3370) 

in replicates of 24. The plate was enclosed in a sealable plastic bag and incubated at 28 

°C for 24 h to allow bacteria to form biofilms.  

Amoebae were starved overnight in diluted media as performed for the co-culture 

kinetics (except for D. discoideum). Amoeba cell density was calculated using 0.4% 

trypan blue and a hemocytometer. Aliquots of amoeba cultures were generated at 

concentrations of 1×105, 1×103, and 1×101 cells/mL by spinning and resuspending in 

fresh starvation media. X. oryzae liquid cultures were removed from the microplate, 

leaving the ring-shaped biofilm and associated bacteria. 200 µL of each amoeba 

concentration was added to the biofilms in replicates of six, and fresh media controls 

were added as well. The microplate was sealed in a plastic bag and returned to a 28 °C 

incubator.  

 Biofilms were exposed to amoeba for 24 or 48 h, at which point an adapted 

crystal violet staining method was applied to quantify remaining biofilm (61). Briefly, 

after removal of liquid cultures and rinsing with 200 µL of distilled water, the biofilm was 

treated with 200 µL of 0.5% crystal violet (w/v; dissolved in 10% ethanol) per well.  After 

15 min, crystal violet was removed, the wells were rinsed once with 150 µL of distilled 

water, and the remaining crystal violet was dissolved with 200 µL of 90% ethanol. The 
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microplate was agitated at medium intensity for 2 min on a Biotek Powerwave HT plate 

reader, and absorbance at 570 nm was recorded.  

Results with Discussion 

X. oryzae survival is reduced in the presence of amoeba trophozoites 

Amoeba trophozoites and X. oryzae bacterial cells were co-cultivated to 

determine the impact on bacterial populations and amoebal morphology and survival 

over time. Amoebae species, except D. discoideum, were incubated in diluted media 

overnight prior to co-cultivation to encourage phagocytosis. D. discoideum was 

incubated in full strength media prior to co-cultivation because it did not survive 

starvation induced by diluted media.  Nine of the ten amoeba-X. oryzae combinations 

resulted in significant growth disparities over time (Figure 1). A. lenticulata, A. 

polyphaga, V. vermiformis and D. discoideum were bactericidal, with significant 

reductions in bacterial numbers (CFU) after 24 h (Tukey’s test, p < 0.05). A. lenticulata 

and V. vermiformis displayed the strongest effects against the bacteria, as bacteria 

were undetectable at 24 h in some cases. The rate of bacterial cell death varied 

between amoeba species and X. oryzae pathovar, and occasionally between replicates 

of the same amoebae/bacteria combination; however, the trends remained consistent. 

In co-cultures with A. castellanii, bacterial numbers at 24 h did not differ significantly 

from initial densities, indicating a bacteriostatic effect from the amoeba.  

In these studies, the proportion of dead or encysted amoebae was the same over 

the 24 h experiment (Table 1). About 5% cysts and dead trophozoites were observed at 

24 h, but this did not differ from observations during standard culturing phases. 

Acanthamoeba and Vermamoeba species generally encyst in adverse conditions, such 
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as extreme temperatures, lack of food, or conflict with other microorganisms (62, 63). 

The unchanged morphology and viability of the amoebae suggests that X. oryzae has 

no deleterious effect on these FLA. Conversely, these data support that the strains from 

all five amoebal species were antagonistic to both bacterial pathovars. 

X. oryzae are rarely consumed by amoebae  

Protozoa are known to preferentially feed on gram-negative bacteria, but not all 

gram-negative bacteria are affected in the same way (45, 64). In many cases, amoebal 

trophozoites ingest bacteria as whole cells during feeding (24, 63). To determine if X. 

oryzae are ingested by any of the five amoeba species, at 4 and 24 h after amoeba 

were incubated with X. oryzae cells, gentamycin was added to lyse bacteria remaining 

outside the amoeba (Figure 2) (65).  Very few amoebae (< 8%) were observed with 

internalized, stained X. oryzae for the three Acanthamoeba species, and even fewer for 

V. vermiformis (3.3%) and D. discoideum (2.3%). The rare bacteria that were observed 

inside amoeba remained in the cytosol, rather than in digestive food vacuoles. Viable 

bacteria were not detected in lysates of amoebae after co-culture with X. oryzae, 

suggesting that X. oryzae does not survive inside amoeba. Stained X. oryzae-only 

controls remained fluorescent after over two weeks of incubation and fixation and up to 

an additional week in storage at 4 °C, demonstrating the lack of signals was not from 

dye degradation. Stained X. oryzae cultures grew at similar rates to unstained cultures, 

suggesting the dye does not have effects on bacterial growth and survival.   

 The lack of internalized bacteria suggests phagocytosis is not the primary 

method of bacterial antagonism. The low rates of bacterial consumption were likely not 

caused by inhibition of amoebic activity or by antagonism of the amoebae by X. oryzae, 
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because trypan-blue staining of amoebae did not show amoeba cell death. Additionally, 

we did not observe any diffuse signals indicative of fluorescent bacteria being digested 

(24). The amoebae may be engulfing and rapidly digesting the bacteria, but that 

scenario is unlikely as bacterial populations were unchanged for the first 4 h of co-

culturing in most interactions (Figure 1). In conjunction, these results suggest that 

amoebae lyse X. oryzae, but not through phagocytosis. Without internalization, X. 

oryzae is likely incapable of using the amoebae as a reservoir to benefit itself, as has 

been observed for some bacteria (25, 48, 49).  

Amoebae do not degrade X. oryzae biofilms  

In a natural context, X. oryzae may use a biofilm and exopolysaccharides to 

prevent predation by FLA (46, 66). Using crystal violet assays, we found that most 

amoebae did not have an effect on the integrity of the X. oryzae biofilms. Of the five 

amoeba species, only A. lenticulata significantly degraded biofilms compared to fresh 

media controls (Figure 3 and Figure A1), but only to a minimal degree.   

The other four amoeba species do not reduce biofilm, which suggests that the 

biofilm serves as a form of protection against amoebic predation. Future work should 

include quantification of bacterial populations inside the biofilm after addition of 

amoebae.    

FLA cell-free supernatants of some FLA are bacteriostatic or bactericidal X. oryzae 

FLA are known to secrete compounds that lyse and/or kill bacteria (26, 67, 68). 

To explore the possibility that amoebae release factors capable of killing X. oryzae, 

bacterial cells were inoculated into cell-free media previously used to culture amoeba, 

which we designate as conditioned media. Media conditioned with low densities of the 
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five amoebae were suppressive or toxic to X. oryzae cells, because bacterial cell 

numbers either grew to a smaller maximal density or decreased (Figure 4). The 

suppressive effect was stronger in media conditioned with a high density of amoeba. In 

nine of the ten amoeba – X. oryzae combinations, the high-density conditioned media 

did not yield any bacterial colonies. The pronounced effect from the high-density media 

suggests that the bactericidal result is directly proportional to the concentration of the 

conditioning culture. 

To test if nutrient deprivation in the conditioned media affected bacterial 

numbers, we included fresh media supplements into the experiment (Figure 4). The 

addition of fresh media may also indicate if the bacterial killing effect can be reduced by 

dilution. While conditioned media from each amoeba species largely had the same 

effect on both pathovars, only high-density conditioned media from A. castellanii and V. 

vermiformis remained bactericidal to X. oryzae pv. oryzae after fresh media was added. 

In some cases, fresh media supplements to the high-density amoebal conditioned 

media diluted or negated the bactericidal effect. The reduced or abolished bactericidal 

effect from the fresh media supplement indicates that nutrient deprivation may partially 

be the cause of harmful effects of Acanthamoeba on X. oryzae. 

FLA species may also secrete different antimicrobial factors into their 

surroundings (26, 68, 69), and the fresh media supplements may dilute the factor and/or 

allow X. oryzae to grow at sufficient rates to overcome cell death in the case of 

Acanthamoeba species. On the other hand, fresh media supplements did not abolish 

the bactericidal effects from D. discoideum and V. vermiformis, suggesting that nutrient 

deprivation is not a cause for those two species. Another possibility is that the amoebae 
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secrete different compounds altogether, and the impact of each is altered to varying 

degrees by dilution with the fresh-media supplements. Identification of the factors 

involved in bacterial toxicity may clarify the differences we observe in conditioned media 

treatments, but is beyond the current scope of this work.  

Our results suggest that amoebae constitutively secrete an antibacterial factor. In 

the co-culture assays, bacterial cell density was reduced for most amoeba-bacteria 

interactions in the first 4 h (Figure 1). To determine if the bactericidal response is 

stimulated by the presence of X. oryzae, we included a conditioning treatment of low-

density amoeba with X. oryzae at a ratio of 1:10. Media conditioned with amoebae and 

with or without X. oryzae, both caused bacteria loss in most amoebae and pathovar 

combinations (Figure 4 and Figure A2). Therefore, amoeba likely do not require the 

presence of X. oryzae for antimicrobial production.  

We also observed bacterial loss at roughly the same rates in the conditioned 

media assays and co-culture assays. A. lenticulata, A. polyphaga and V. vermiformis 

significantly reduced bacterial density starting at 4 h in both assays, while A. castellanii 

did not have significant effects on pv. oryzicola until 24 h. The major discrepancy 

between the conditioned media assays and the co-cultures is from D. discoideum. This 

amoeba was bactericidal beginning at 4 h in the conditioned media assays, but had no 

significant impacts at the same time point in the co-cultures. However, both experiments 

are designed with different amoebal incubation times and densities, likely changing how 

much of the antibacterial agent was produced and secreted.  
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Conclusion 

We identify amoeba species that suppress multiplication or kill cells of two 

important rice bacterial pathogens, X. oryzae pvs. oryzae and oryzicola. The 

mechanisms for suppression or killing are not due to phagocytosis, but are most likely 

due to the amoeba’s ability to secrete toxic or inhibitory compounds. Our findings 

present a previously unknown dynamic between two microorganisms that likely 

encounter one another in the phytobiome. Future studies should explore the potential of 

these amoebae as biocontrol agents in the field. 
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Table 1. Summary of confocal microscopy results. 

Co-cultivation with X. oryzae pv. oryzae 

Amoeba A. lenticulata A. polyphaga A. castellanii D. discoideum V. vermiformis 

With internal 

bacteria 
4.5% 7.5% 0.0% 2.3% 3.3% 

Encysted 

(0h/24h) 
6.9/0.6% 8.7/2.5% 3.9/4.1% 2.7/0.0% 5.2/6.1% 

Amoeba with internalized bacteria after 24 h of co-culture and summary of amoebal 
morphology at 0 and 24 h after co-cutlure. Only data for X. oryzae pv. oryzae is shown.  
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Figure 1. Populations of X. oryzae pvs. oryzae and oryzicola decline or remain 
static when co-cultured with amoeba trophozoites.  
Trophozoites were cultured with X. oryzae cells and bacterial numbers were assessed 
at 0, 4 and 24 h. Data from at least four biological replicates were log transformed 
before calculating the means and standard error bars. * denotes p < 0.05 and ** 
denotes a p < 0.01 compared to initial CFU/mL values at 0 h. Statistical significance 
tested using a two-way ANOVA (Tukey test) on the log-transformed data. 
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Figure 2.  Representative confocal tile scan demonstrating rare internalization of 
X. oryzae by amoebae (A. castellanii depicted). 
Two instances of internalized bacteria are indicated by white arrows and magnified in 
the insets. Magnification = 630x, scale bars are 10 µm in length. Merged channels for 
propidium iodide and Syto9 are shown. Composite image built from replicate scans and 
processed into a maximum intensity projection by the Zeiss LSM software. Black arrows 
indicate trophozoites with a single Syto9-stained X. oryzae pv. oryzae cell. The 
presence of bacteria does not force encystment (cyst indicated by black arrow). For 
each amoeba/bacteria combination, the experiment was repeated three times, and all 
experiments had similar results.  
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Figure 3. A. lenticulata trophozoites cause negligible changes in pre-formed X. 
oryzae biofilm.  
Graphs are calculated from six biological replicates per box plot. * denotes p < 0.05, 
significance calculated using Tukey test in a one-way ANOVA.  
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Figure 4. The filtered supernatant from some amoeba cultures are bacteriostatic 
or bactericidal to X. oryzae. 
Representative experiments are presented for each amoeba species. LD = low density 
conditioning culture; LD + Xo = conditioning culture with low density amoeba and X. 
oryzae at 1:10 ratio; HD = high density conditioning culture; HD + fresh media = HD 
treatment supplemented with fresh media in a 1:1 mix, final concentration of fresh 
media supplement equals fresh media only control. Black X’s denote no bacteria could 
be cultured. Fold change is calculated as the log(CFU/mL) at 24 h over log(CFU/mL) at 
0 h. Each treatment was performed in biological triplicates.  
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Appendix A: Supplementary Figures 
 
 
 

 

Figure A1. Crystal violet assays following X. oryzae biofilm exposure to amoeba 
trophozoites.  
Graphs are calculated from a representative experiment with six biological replicates 
per box plot. * denotes p < 0.05, significance calculated using Tukey test in a one-way 
ANOVA.  
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Figure A2. Log cfu/mL of X. oryzae in the conditioned media assays, plotted over 
time.  
LD = low density conditioning culture; LD + Xo = conditioning culture with low density 
amoeba and X. oryzae at 1:10 ratio; HD = high density conditioning culture; HD + fresh 
media = HD treatment supplemented with fresh media in a 1:1 mix, final concentration 
of fresh media supplement equals fresh media only control. ** denotes a p < 0.01 and * 
denotes p < 0.05 compared to the media-only treatment. Statistical significance tested 
using two-way ANOVA, Tukey test. N = 4-6 biological replicates. 
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Appendix B: Free-living amoeba and Rhizoctonia solani 
 
 
 

Introduction 

 Rhizoctonia solani is a significant fungal pathogen of rice that is particularly 

difficult to control. This fungus is the causative agent of rice sheath blight, a necrotic 

disease characterized by lesions initiating at the apical ends of rice sheaths. R. solani is 

further divided into subgroups based on its propensity to form anastomoses between 

individuals from the same anastomosis group, and anastomosis group 1 (AG1) is the 

largest threat to cereal crops worldwide (12, 13). As a persistent and virulent, soil-borne 

pathogen, R. solani is difficult to control and can reduce yields by half in ideal conditions 

(6). R. solani persists in soil and in fields by use of sclerotia, condensed bodies of fungal 

hypha that may survive in soil for up to two years (6, 14). Additionally, the broad host 

spectrum of R. solani allow the fungus to persist in alternative hosts for several seasons 

(15). Compounding the issue of pathogen persistence is that there are currently no 

resistance genes identified for control of R. solani, although potential QTL that increase 

plant resistance have been identified (14, 16, 17). To reduce instances and severity of 

outbreaks from X. oryzae and R. solani, additional methods of control must be 

implemented. To that end, we propose the use of free-living amoeba as a biological 

control for these two pathogens.  

 Historically, there are few publications regarding the interaction of free-living 

amoeba and R. solani. Sclerotia and hyphae inoculated into soil samples showed signs 

of extensive predation by mycophagous protozoa (40). The authors treated the soil with 

various antimicrobial agents to remove prokaryotes and recovered amoebae from the 
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soil, although the authors only identified the potentially responsible amoebae at a genus 

level, based on morphology. While the R. solani – amoeba dynamic is sparsely 

investigated, there are well-described interactions between other fungi and amoeba. 

The conidia of Cochliobolus sativus were lysed by multiple perforations in the cell wall 

after incubation in soil samples, and some amoeba are capable of engulfing entire 

conidia and then encysting to slowly digest their prey inside the cyst (70, 71). The 

Acanthamoeba genus also preys on a variety of fungi pathogenic to mammals, such as 

Blastomyces dermatitidis and Cryptococcus neoformans (31). Interestingly, some 

strains of C. neoformans can survive inside A. castellanii and use the amoeba as an 

infection reservoir and source of future infections (31).  

 Given their proximity in the phytobiome, we hypothesize that free-living amoeba 

do interact with R. solani, despite the lack of specific information in the literature. We 

observed amoeba and fungi co-cultures by light and fluorescence microscopy. Of the 

five amoebae: Acanthamoeba lenticulata, A. polyphaga, A. castellanii, Dictyostelium 

discoideum and Vermamoeba vermiformis, we found that V. vermiformis caused the 

most noticeable changes in the fungi and we further explored their interactions with 

scanning electron microscopy.  

Materials and Methods 

Amoebae and fungi culturing conditions 

A. polyphaga, A. castellanii, and A. lenticulata were cultured at 28°C in a 

modified PYG media, V. vermiformis was cultured at 28 °C in a modified PYNFH media 

and D. discoideum was maintained at room temperature in a modified HL5 media (25). 

Amoeba cultures were inoculated from frozen stocks into 100x15 mm petri dishes with 

30 mm walls holding 10 mL of media supplemented with 1x Gibco 
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penicillin/streptomycin (Invitrogen; Carlsbad, CA, USA). Once initial cultures reached 

turbidity, Acanthamoeba species and V. vermiformis were passaged every 5 days by 

transferring 500 µL of culture into 10 mL of fresh media. D. discoideum was passaged 

every 3 days. Amoeba cultures were kept and used up to passage level three before 

disposal.  

R. solani was cultured on 1/2 strength potato dextrose agar (Difco) from frozen 

stocks prepared on barley seeds according to Webb et al. (72). Initial cultures were 

incubated at 22 °C with 16 h of light for 10 days, then stored at 4 °C as a source of agar 

plugs. Source plates were kept for up to three weeks before starting new cultures from 

stock. Agar plugs of mycelium were subcultured onto autoclaved cellophane overlaid 

onto 1/2 potato-dextrose agar (PDA) and incubated for 7-10 d at the above conditions 

before use in experiments.  

Co-cultures of amoebae and R. solani 

Confluent cultures of amoeba were starved overnight in diluted media at the 

temperatures described above, except for D. discoideum, which was kept in full strength 

media. Acanthamoeba were starved at 1/5 strength PYG while V. vermiformis were 

starved in 1/2 PYNFH, media was diluted using Page’s modified Neff amoeba saline 

(PAS; Wheat et al, 2014). Amoebic cell density was calculated using a direct cell 

counting method involving trypan blue exclusion and a hemocytometer. Only cultures 

with over 90% viable trophozoites were used. Amoeba cultures were adjusted to 

concentrations of 2×105 cells/mL in fresh, diluted media.  

Disks of fungal mycelium were cut with an ethanol and flame sterilized soil borer 

with an internal diameter of 5 mm. Fungal disks were removed from the agar plate using 
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sterile forceps and rinsed once in sterile distilled water and transferred to a 1.5 mL 

centrifuge tube. 500 μL of amoebae culture was added to the fungi. Each amoebae and 

fungi combination was prepared in triplicate for sampling at each time point of 0, 24, and 

48 h. Co-cultures with Acanthamoeba sp. or V. vermiformis were incubated at 22 or 28 

°C and cultures with D. discoideum were incubated at 22 °C.  

Microscopy 

At the sampling time, co-cultures were spun at 150x G for 3 min and the 

supernatant was removed. Samples were washed three times with 500 μL of PAS with 

centrifugation at 150x G for 3 min each time. After washing, samples were fixed with 

100 μL of 4% paraformaldehyde (PFA) for 48 h. After fixation, samples were spun and 

suspended in 30 μL of PAS. For viability staining, samples were first dyed with 4 μL of 8 

mg/mL fluorescein diacetate (FDA; dissolved in DMSO) and 25 μL of 2 mg/mL 

propidium iodide (PI; dissolved in DMSO) for 15-20 min in the dark. Samples were then 

washed and fixed as noted previously.  

Samples were set on a microscope slide and a coverslip was attached before 

observation with the microscope. Standard light and fluorescence microscopy was 

conducted on a Zeiss Axioskop microscope. FDA was visualized using Chroma 

Technology filters with 480 nm and 535 nm excitation and emission filters respectively, 

and PI was visualized with Chroma Technology filters with 535 excitation and 610 nm 

emission wavelengths.  

Confocal laser scanning microscopy was carried out on a Zeiss LSM 510 

inverted microscope.  

Scanning Electron Microscopy 
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Amoebae and fungi were cultured separately as detailed above beforehand. Co-

cultures were prepared where the two organisms were allowed to directly contact one 

another and additional cultures were prepared where the two were barred from physical 

contact. In the former, amoebae were adjusted to a concentration of 2×105 

trophozoites/mL and 10 mL of the culture was added to a high-wall petri dish. Fifteen 

discs of R. solani were added to the culture and the dish was sealed with Parafilm and 

placed in a plastic baggie. To separate the two species, co-cultures of V. vermiformis 

and R. solani for SEM were prepared following a modified procedure from (40). Two 

nuclepore membranes (Whatman #110610; Maidstone, UK) 25 mm in diameter with 1.0 

µm pores were used to sandwich three fungal discs, the edges of the membrane 

sandwiches were sealed with silicon vacuum grease. A total of five sandwich 

membranes were added to a petri dish of V. vermiformis, prepared as previously 

described. Co-cultures were incubated at 22 °C with 16 h of light. At 0, 2, 6, 12, and 24, 

three disks from each culture were transferred to individual micro-centrifuge tubes and 

spun once at 150x G for 3 min. Supernatant was discarded and samples were washed 

once in 500 μL PAS. After centrifugation and removal of the wash, samples were fixed 

in 2.5% glutaraldehyde buffered in 0.15M SPB, pH 7.0 (22 °C for 30-60 min, followed by 

4 °C). Tissue samples were dehydrated through a graded ethanol series, followed by 

final dehydration using a BioRad E3000 critical point dryer (Quorum Technologies, East 

Sussex, England).  All samples prepared for SEM were sputter coated with 10nm gold, 

imaged at 5kV with a JEOL JSM-6500F Field Emission Scanning Electron Microscope 

(FESEM).  All images were captured as tiff files. 
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Results with Discussion 

Microscopy reveals a diverse array of reactions 

In co-cultures of amoeba trophozoites and R. solani mycelium, each genera of 

amoeba displayed varying reactions to the fungi. At 24 and 48 h, the three 

Acanthamoeba species encysted at higher rates than the amoeba-only control in PAS 

non-nutrient media (Figure B1). The cysts tended to clump together around the 

mycelium rather than float in the culture. No impacts on the fungi were observed: the 

mycelium remained intact with no visible perforations or loss of nuclei. Propidium iodide 

(PI) stains the nuclei of R. solani red, and the stained nuclei were still visible after co-

culturing the fungi with amoebae. In addition, the cell wall remained smooth and mycelia 

grew in one direction with right-angle branching of new cells.    

D. discoideum did not have any apparent physical interaction with the fungi. 

Under standard microscopy the amoeba did not attach to the fungi or form sporulating 

bodies, a sign of nutrient deprivation or environmental incompatibility. The fungi had no 

visible alterations either: the mycelium remained intact and no punctures were present 

(Figure B1).  

V. vermiformis was the only amoeba species to have a noticeable effect on the 

fungus. Trophozoites were physically attached to the mycelium and remained viable at 

24 hours into co-culture (Figure B2). Mycelia exhibited a distinct morphology as a result 

of culturing with the amoebae. The fungal cell surface became mottled and shriveled 

(Figure B3). The shriveling is apparent as soon as 24 hours after co-cultivation (Figure 

B4). This is a stark contrast from the smooth cell walls and branching hyphae that R. 

solani normally develops during growth (73). Even when V. vermiformis and R. solani 

are physically separated by membranes in the same media, the mycelia display the 
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same morphology. While transient contact can occur through the 1 µm pores of the 

membrane, the amoebae are unlikely to attach and physically wrap around the 

mycelium. Perforations with smooth and rounded edges were detected on the fungal 

mycelium of the physically-separated co-cultures. However, these events were rare. 

No annular depressions or perforations were seen on the cell walls under light 

microscopy; however, that may be due to a limitation in resolution. In all three amoebic 

culturing media, R. solani grew in radial size, indicating that the media were a sufficient 

nutrient source. Growth rates and viability were not otherwise assessed however.  

It is not surprising that the panel of amoeba presented a variety of interactions 

with the fungi. Some bacterial species are known to antagonize amoebae and force 

encystment or even lyse the amoebae (48, 50). The cause of encystment in 

Acanthamoeba is not known at this time, and we have not ruled out nutrient deprivation 

as the factor. To our knowledge, there are no characterized mechanisms of anti-

amoebic activity from R. solani. The reason for the cysts’ physical association with the 

fungi is not understood either. One explanation could be that Acanthamoeba 

trophozoites attach and attempt to feed, but subsequently encounter an antagonist and 

encyst.  

The shriveling response of the fungi after exposure to V. vermiformis suggests 

some form of antagonism. Because the same response occurred with and without direct 

contact of the two organisms, it is possible the fungi is reacting to a secreted amoebal 

factor. The extent of the response is still uncharacterized and the effects of amoebal 

secretions on fungi is not well studied. However, primary research demonstrated that 

some plant extracts are capable of causing similar responses in R. solani (73, 74). The 
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rare perforations suggest that V. vermiformis can puncture R. solani cell walls. Our co-

culture experiments only went to 24 h, perhaps extra exposure time between the two 

species will allow for more perforations. Currently, this project’s findings are 

underdeveloped but does have avenues to explore, primarily determining if the fungal 

response is due to a secreted factor and discerning the factor’s identity.   
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Figure B1. Light microscopy of amoeba and R. solani co-cultures. A) A. polyphaga 

and R. solani after 48 h. B) A. castellanii and R. solani after 24 h. The smooth and 
straight cell walls of R. solani are easily visible, indicated by a white arrow. C) D. 

discoideum and R. solani after 24 h. All images were taken at 630x magnification.  
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Figure B2. Light and fluorescence microscopy of V. vermiformis and R. solani. A) 
Co-culture imaged at 24 h where the shriveled morphology of the mycelia is noticeable. 
B) Fluorescence image of the same culture as A, with the emission of FITC and PI 
overlaid. C) Co-culture at 24 h, again the shriveled morphology and physical association 
of amoeba and fungi is visible, denoted by white arrows.  
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Figure B3. Scanning electron microscopy of V. vermiformis and R. solani after 24 

h in co-culture, organisms were not separated by a nuclepore membrane. A) A V. 

vermiformis trophozoite is partially wrapped around mycelium. B) A close-up image of 
the shriveled mycelium. C) A wider image of mycelia. Scale bars are 10 µm in length. 
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Figure B4. Scanning electron microscopy of V. vermiformis and R. solani after 24 

h in co-culture, organisms were separated by a nuclepore membrane with 1 µm 

pores. A) R. solani and V. vermiformis co-cultures at 0 h (left) and 24 h (right). The 
mycelium of R. solani still develops a shriveled exterior even without direct contact from 
the amoeba. Scale bars are 10 µm in length. B) One of three perforations with smooth 
edges detected on the mycelia. Scale bar is 1 µm in length.  
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Appendix C: Other contributions 
 
 
 

 The final section details my contributions to the manuscripts by Triplett et al. and 

Shidore et al. (75, 76). Full details of the overall project objectives, experimental design, 

rationale, results and conclusions can be found in the respective publications.  

Contribution to: AvrRxo1 is a bifunctional type III secreted effector and toxin-antitoxin 

system component with homologs in diverse environmental contexts 

Plasmid construction 

For expression in pDEST527 and comparative growth curves, avrRxo1 homologs 

from plant pathogens were amplified from bacterial DNA using primers XeENTR_F and 

-R (Xe strain Xcv85-10), XtENTR_F and -R (Xt strain UPB468), BaENTRF and R (Ba 

strain Ba3549), and AcENTR_F and -R (Ac strain AAC00-1), and CfENTR_F and R (Cf 

strain DSM2262). PCR products were cloned into pENTR-D-Topo (Life Technologies) 

and recombined into pDEST527 using the LR Clonase II enzyme mix according to 

manufacturers’ instructions. pDEST527 constructs were fully sequenced and 

transformed into E. coli strain BL21(DE3), and transformants were confirmed by PCR. 

avrRxo1 homolog activity assays 

Fresh overnight cultures of BL21(DE3) strains carrying pDEST527-based vectors 

were suspended at 107 CFU/mL or 106 CFU/mL (OD600 of 0.01 or 0.001, respectively) 

in four replicate tubes of LB broth containing 100 μg/mL ampicillin and 1 mM IPTG. 

Cultures were distributed into four wells each of a 96 well plate, totaling 16 replicate 

cultures per treatment. Cultures were incubated at 37°C with shaking, and OD600 was 

measured every two hours for 12 h. 
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Contribution to: The effector AvrRxo1 phosphorylates NAD in planta 

Inoculation of rice leaves with Xanthomonas oryzae pv. oryzicola 

Leaves of 6-week-old Oryza sativa ssp. Japonica cv. Kitaake were inoculated 

with cell suspensions of X. oryzae pv. oryzicola strains (OD600 = 0.2) prepared in water 

from a 48- to 72-h-old PSA plate cultures. The inoculations were done by infiltration of 

the suspensions on the abaxial leaf surface using a needleless syringe. For LC-MS 

based metabolic profiling, leaf discs were collected 12, 24, 48 hours post inoculation, 

macerated in liquid nitrogen and stored at -80⁰ C until further use. 

Induction of Rxo1-mediated HR response in rice 

Four-week-old transgenic rice plants (cv. Kitaake) expressing Rxo1 (77) were 

grown in a growth chamber, and fully-expanded leaves were inoculated with 108 cfu/mL 

X. oryzae strain X11-5A carrying pHM1, pHM1-AvrRxo1, pHM1-AvrRxo1-T167N, or 

pHM1-AvrRxo1-D193T by leaf infiltration by needleless syringe as described by (77). 

Inoculation sites were photographed at 5 days post infiltration. 

 

 

 

  

 


