TA7 26 CER 47-52-35 copy 2

m-1602 Copy No. 19

M-1602

Morton W. Billinger

REPORT ON MINERALIZATION OF GROUND AND SURFACE WATERS OF THE SOUTH PLATTE WATER IN COLORADO

by

J. W. Tobiska and W. E. Code

Miscellaneous Journal Series No. 500 Colorado Agricultural Experiment Station

REPORT ON MINERALIZATION OF GROUND AND SURFACE WATERS OF THE SOUTH PLATTE VALLEY IN COLORADO(1)

by

J. W. Tobiska(2) and W. E. Code(2)

FOREWORD

The work under this project was done cooperatively between the Chemistry and Civil Engineering Sections of the Colorado Agricultural Experiment Station. It was initiated by J. W. Tobiska as leader of the then Chemistry Section (1943) under his Project No. 1 approved September 1, 1943. The original project number assigned by the Civil Engineering Section was C.E.-B6 but as of the date of this report (1952) it is known as Number 114. The collection of water samples and preparation of this report (1951) was done by W. E. Code. Chemical analyses were made by J. W. Tobiska and associates during the years 1943, 1944, and 1945. This report is substantially that of presenting the water analyses and the location of the points of sampling.

Reasons for Undertaking Survey

The use of saline and alkali waters for irrigation is common in the West. Its use has had a history of varying effects on soils. Whether it has been detrimental or not has depended upon the character of the salts, their concentration, the character of the soil and methods of applying water. In some instances no particular damage to the soils

- Miscellaneous Journal Series No. 500. Colorado Agricultural Experiment Station, Colorado State College of Agriculture and Mechanic Arts.
- (2) Agricultural Chemist and Associate Irrigation Engineer respectively, Colorado Agricultural Experiment Station.

has been observed but in others, lands have been either abandoned or seriously affected due to salt concentration. The severe cases have usually been associated with high water tables. Relatively high concentrations when the sodium content is low may be used safely on a permeable soil when the movement of moisture is principally downward. If unwise irrigation practice is employed with highly saline waters on many soils, difficulties can be expected. This is particularly applicable to sprinkler irrigation in which only light applications might be the rule.

Clays have the property of adsorbing calcium, magnesium, sodium and other ions. If an excess of sodium ions is adsorbed by the clay particles, much damage is done to the physical character of the soil and a direct effect on plant growth is possible. One criterion used in connection with the acceptibility of saline irrigation water is that the percentage of sodium should not exceed roughly 50 percent of the total dissolved solids when the total concentration reaches about 2000 p.p.m. Waters containing more than about 2000 p.p.m. total dissolved solids regardless of sodium content should be regarded as of doubtful quality for use on some soils.

Much of the return water used in Colorado contains a fairly heavy concentration of salts as does the ground water in certain localities. Except in a few instances where high water tables are involved, it has not been demonstrated that Colorado soils have been greatly affected. No research of a continuing character has been carried on to discover whether changes are occurring in the soils. Such a study would have to be of a rather lengthy and costly nature. Since water analyses are part of the problem and not quite so involved, it was decided that such a survey be made (profitably) in the South Platte Valley. A knowledge of water quality would have immediate value as well as becoming a basis for comparison with any future surveys of a similar character. It was anticipated upon the initiation of this project that further duplicating surveys would be made in the future to determine whether irrigation waters were changing in character through the years.

GENERAL CONSIDERATIONS

When new lands come under an irrigation program one result is a rising water table. Should underdrainage be inadequate the water table may reach the land surface and waterlog the soil. Salts in solution then concentrate at the surface usually destroying it for agricultural purposes. When underdrainage is good, the water table may not rise to the surface but escape into stream channels. Salts leached from the soil are carried away with the escaping stream. Good drainage is therefore essential in an irrigated area. If the natural conditions are inadequate artificial drains must be installed. Should such salt laden waters be again used for irrigation, some of the salts may be redeposited in soils farther downstream. Through evaporation and plant use, some of these salts may lodge in the soil with detrimental results. The history of irrigation in the South Platte in Colorado is that of the appearance of return water in streams not long after its inception. Return water is used and reused extensively in the lower reaches of the South Platte.

It is reasonable to suppose that mineralization changes have occurred and are still occurring in the soils and in the ground water producing changes in the quality of water in the streams. Whether these changes are in the direction of increase or decrease is not known because no investigation has been made along this line. One might suppose that mineralization might reach a peak and then improve as time went on. Certainly the leaching effect of irrigation on soils should be greater in the beginning. However if all the water is consumed by reuse and through transpiration and evaporation, none will move out of the state. This is nearly the truth in the South Platte in that roughly only about 10 percent of the water originating in the basin, large floods excepted, passes out of Colorado at the state line. The result might be thought of as salt removal from the upper areas to the lower areas through the reuse of return waters.

Is there a threat to the State's irrigated agriculture through translocation of salts or the continued use of salt laden waters? Not much is known about such matters since much time must pass before some effects become apparent. What changes are to be expected in mineral content of ground waters that would affect their use for human consumption? Many municipalities and a large farm population depend upon such sources. What changes will occur through the importation of additional water into the basin from the Western slope? These are only some of the questions upon which there is no information. The changes are probably subtle and many years must pass before significant changes become apparent. Therefore it has been thought advisable to start gathering such data fully realizing that much time, several generations perhaps, will pass before any trends are observable. To make such data useful, the survey must be repeated at intervals. It has been thought that 10 years might be an appropriate interval.

COMMENTS ON CONDUCT OF SURVEY

Mistakes and omissions have probably occurred in selecting sources of samples. Some sources may have no significance. Perhaps an insufficient number was taken. Some of these deficiencies can be corrected in the next survey. Among surface samples, perhaps some should have been taken from Bear Cr., Clear Cr. and Boulder Cr. Instead of spring and fall sampling, perhaps samples should be taken on the basis of stream-flow variation. Only 2 drains were sampled. More would be advisable.

Samples from idle irrigation wells taken by submerging a quart milk bottle may possibly be questioned. The milk bottle sampler was held in a weighted steel cage supported by a long rope. It was lowered rapidly to points much below the water surface in taking a sample. It is believed that samples taken while the well is being pumped would be better. Such conditions obtain only during the irrigation season and many useless trips might be necessary before a visit would coincide with a pumping period. Much of the sampling in this survey was done in connection with other work to save travel expense. Some of the wells chosen are questionable as to their truly representing much area or a general condition. Numbers 73, 78, 76 and 56 are particularly suspect.

The program of sampling envisioned the bracketing of an irrigation season with a spring and fall sampling, making 4 in all. Sampling started in the fall of 1943 and ended in the spring of 1945. Four samples were taken from most sources but many were limited to 3 and from some only 1 or 2. It may well be that 2 samples from wells are sufficient and that those taken from stream flow should be at least 4 in number and distributed according to the amount of water in the stream. It would be well to choose a normal season of run-off as indicated by snow surveys.

COMMENTS ON ANALYSIS DATA

Stream Flow

The salt content of the waters in streams issuring from the mountains is generally very low. The highest content found on 4 streams was 257 parts per 1,000,000 but the average is more in the neighborhood of 100 parts per 1,000,000. As groundwater return becomes effective the salt content increases. On the main stem of the South Platte during periods of normal flow there is a progressive increase in salt content as far as Kersey. Below this point no consistent increase is apparent; in fact in the lowest reaches a small decrease may exist. Fig. 1 shows these conditions graphically.

The Cache la Poudre, Big Thompson and St. Vrain seem to pick up salts at a faster rate than the main stem. On each of these tributaries the salt concentration near the mouth was as great or greater than for any station on South Platte itself. The discharge of these waters into the main stream accelerates the concentration between Platteville and Kersey but the actual concentration is less because of dillution by the larger stream flow.

As the discharge of all streams increases on the arrival of the spring snow melt or from local storms, the concentration of salt drops. This condition is obvious from inspection of the tabulated data. The salt content of the stream at the time of sampling however has no logical or consistent relationship to the total salt being carried by the stream. One principal reason for the existence of this condition is that of the diversion of water by the many ditches along the courses of all streams. Thus two water samples taken at a station as practically the same discharge may have a considerable difference in salt concentration. With such a factor greatly influencing the results, relationships between salt content and volume of flow are not to be expected. It will therefore be practically impossible to detect with any assurance of accuracy changes that might occur in the future unless those changes are of considerable magnitude.

Drain Water

Samples of water were taken from two drains. No. 79 is from a farm tile drain and is on the same farm from which well water sample No. 78 was obtained, 5 miles northwest of Longmont. This water, although containing about 2100 parts per million total solids, has but about half the salt content as the nearby well. The water in the well is influenced by the marine deposited Pierre shale. No. 16 is from an open drain about 3 miles long near La Salle and has a sustained flow of over 15 cubic feet per second. This water is almost identical with that of the LaSalle well No. 30. In the first case sub-surface drainage conditions are very poor while in the second the conditions are excellent.

Reservoirs

The quality of waters contained in reservoirs is rather constant and generally is in accord with the composition of the waters at the point of diversion. Two exceptions to this are evident. The salt content of water in Reservoir No. 6 (sample No. 72) is much higher than that of the diverted water. This reservoir receives water through Reservoir No. 5 which is supplied through long and devious channels from the North Fork of the Poudre and passes through mineral laden soils. It also receives water from Reservoir No. 2 which is fed from the Poudre direct. The result is a water containing 2 to 3 times as much as that of Terry Lake (sample No. 74). New Windsor Reservoir (sample No. 60) may be affected in a similar manner since the salt content is significantly higher than Terry Lake and their points of diversion are only $2\frac{1}{2}$ miles apart. It is possible however that more return water flows into New Windsor since its point of diversion is downstream.

One sample from Milton Reservoir (No. 59) was taken in very shallow water as the reservoir was being filled. It is quite probable that salts leaching out of the soil had increased the salt content above the average for the entire reservoir contents. Possibly the sample should be discarded for this reason.

Riverside, Empire, Prewitt and Julesburg Reservoirs are filled with waters composed very largely of return flow. The salt content of the waters impounded in these reservoirs closely follows the composition of the waters in the stream at the point of diversion. They no doubt reflect closely the average character of irrigation water used below Kersey.

Ground Water

In nearly all cases (exceptions No. 73, No. 78, No. 34) wells from which samples were taken are located in areas where water bearing gravel occurs in such thickness that irrigation wells are possible. Generally the samples represent either the first water encountered or a mixture of waters above the shales or sandstones. Exceptions to these are No. 58 where the water is drawn from a stratum at 75 feet and No. 46 where the water is drawn from a stratum at 115 feet and No. 30 at 65 feet.

Variation in quality between water bearing gravels separated by extensive impervious strata is common especially in an irrigated district. Downward percolating waters from irrigation canals and from irrigated fields tend to increase the salt content of the first waters encountered. If the separation consists of local lenses of clay only, then there will probably be little change in the chemical composition of the water throughout its depth. Groundwater movement in the Valley of the South Platte in Colorado so far as information is now available, is in the general direction of the surface drainage. In the central part of the valley trough, the flow is in the direction of the trough. At the valley sides where the water table is higher than the stream bed. the flow will be towards the valley trough. This situation permits percolating waters from beyond the valley terraces to under-run other waters of local origin. Such waters when not originating in irrigation areas are usually of better quality than those beneath irrigated lands. Thus wells drawing water from the deeper strata often produce water of better quality than shallower wells. No wells sampled represent this condition so far as is known.

One might think that mineralization of ground waters in an irrigated area would increase as distance increased from the points of first application. In case of the South Platte the waters issuing from the mountains are guite pure. A very large part of these waters is diverted close to the mountains and losses from the canals and reservoirs return to the stream at points lower down. These return waters have picked up salts in the soils and therefore become highly mineralized in a short distance from the first diversions. Return waters as they accumulate or mix with other waters are rediverted for use farther downstream and it is not at all improbable that some parts of the original supply is used three or four times. The expectation then is that both ground waters and surface flow in the main channel would contain increasing amounts of dissolved minerals. This is true only in a broad way according to the findings of this survey.

The underlying shales of the South Platte Valley are geologically the Laramie and Pierre formations of the Upper Cretacious. The latter was laid down in salt water and therefore highly mineralized and being practically impervious, has retained these minerals. Soils derived from such formations contain these salts in varying degrees. Because of these conditions very highly mineralized gound waters are found close to the mountains especially where underdrainage is poor. Samples No. 73 and No. 78 particularly illustrate this. Sample No. 67 comes from an area underlain with Pierre shale and probably explains the high salt content here.

The best ground water discovered in this survey was on Box Elder Creek northeast of Denver, No. 22, and another in the southern part of Prospect Valley. The underlying rock in this area is the Denver formation, not laid down in salt water. Number 56 is at the boundary of the Denver and Laramie and should be of fair quality. No explanation is available as to why it is not. Better quality was found lower down on the Bijou (Nos. 37, 38, and 81) where the alluvium is underlain by the Laramie and Fox Hills. The ground water of the Bijou and Box Elder should be largely derived from surface flows which are of good quality as are the waters contained in the Laramie and Fox Hills which may outcrop in these areas.

In Prospect Valley the increasing mineralization from south to north can be accounted for by irrigation. It is probable that the source of water in the case of No. 58 is not influenced by this irrigation as it comes from below an impervious clay and is several miles below the last irrigation and not in the direct path of ground water flow from the irrigated area.

Inspection of the data and Fig. 2 show an increasing salt content of the ground waters of the main stem of the river and tributary valleys as far down as Kersey. Below this point the salt content follows no particular partern. Sample No. 40 shows a very heavy mineralization while that of No. 44, 48 miles farther down stream shows less than those samples at or just below Kersey. It appears that local conditions greatly influence water quality and that irrigation may not be solely responsible for high mineralization.

LOCATION AND DESCRIPTION OF SOURCES OF WATER SAMPLES

not cheeked

RIVER WATERS

South Platte River

Sample No.

- 26 Taken from Highline Ditch 0.6 mi. south of Watertown. This is bypassed water and is immediately returned to the river. Gaging station nearby.
- 1 Taken from bridge over river at west edge of Littleton. Gaging station.
- 3 Taken from bridge over river on Colorado Highway 224 just below Burlington Dam at north city limit of Denver. Water quantities are those at gaging station 3 miles above.
- 6 Taken from bridge over river on Colorado Highway 7 just west of Brighton. Water quantities are averages of Henderson and Ft. Lupton gaging stations.
- 20 Taken from bridge over river on road ½ mile north of Platteville. Water quantities are those at Ft. Lupton 10 miles upstream.
- 15 Taken from bridge over river 1 mile east of Evans. Water quantities are estimates by Code.
- 10 Taken from bridge over river on Colorado Highway 37 2 miles north of Kersey. Gaging station.
- 43 Taken from bridge over river 3[±] miles west of Orchard. Gaging station.
- 42 Taken from bridge over river at north edge of Ft. Morgan. Gaging station.
- 23 Taken from bridge over river on U. S. Highway 6, 1[±] miles west of Merino. Water quantities are those at Balzac gaging station 6 miles above.
- 49 Taken from bridge on U. S. Highway 6 over river east of Sterling. Sample taken from east one of 3 channels because others contain sugar factory waste. Water quantities are estimated by Code.
- 48 Taken from bridge over river on State Highway 25, one mile south of Grook. Water quantities estimated by Code with reference to Julesburg gaging station.

St Vrain Creek

- 7 First bridge over creek below Lyons or if creek is dry here, from small canal crossing highway $\frac{1}{2}$ mile below Lyons. Stream flow estimates by Code.
- 19 County highway bridge over creek about 1 mile above confluence with South Platte. Gaging station.

Big Thompson River

- 55 Dam at mouth of canon or near headgates of Handy Ditch. Stream flow data from gaging station at this point.
- 17 Bridge on State Highway 257 near Millikin above confluence with Little Thompson and waste water from Johnstown sugar factory. Estimates of stream flow by Code.

Cache la Poudre River

- 14 Dam at head of Jackson Ditch near Bellvue. Stream flow estimates by Code.
- 12 Dam at head of Lake Canal near Fort Collins. Stream flow estimates by Code.
- 13 Bridge on county road in NE 2 Sec. 36 T. 6 N., R. 66 W. Near Greeley and above sewage contamination of city. Stream flow estimates by Code.

RESERVOIRS

- 57 Barr Lake, 3 miles southeast of Brighton. Samples taken at west outlet gates on face of dam. Filler canal heads in South Platte at Burlington Dam. Capacity 32,200 ac. ft.
- 59 Milton Reservoir, 11 miles north of Hudson. Sample taken from face of dam on May 10, 1945, but from west shore May 1, 1944 and east shore Nov. 10, 1944. Fills through Barr Lake and picks up seepage water from Beebe Draws Capacity 24,400 ac. ft.
- 75 Boyd Lake, 2 miles northeast of Loveland. Sample taken at outlet at south end. Filled from Big Thompson River in part through Louden Ditch which heads about 5 miles west of Loveland. Capacity 44,000 ac. ft.

72 Reservoir No. 6 of the North Poudre System, 2 miles southwest of Wellington. Fills from the North Poudre and at least in part through other higher reservoirs. Sample taken on dam face. 3

- 74. Terry Lake, 2 miles north of Ft. Collins. Fills from Poudre River from a point near Laports. Samples taken from dam face at most southerly point. Cacpacity 8,200 ac. ft.
- 60. New Windsor Reservoir, 3 miles north of Windsor. Fills from the Cache la Poudre through the Larimer and Weld Canal (Eaton) which heads 2 miles west of Ft. Collins. Capacity 18,600 ac. ft.
- 69. Riverside Reservoir, 15 miles east of Kersey on north side of South Platte River. Fills from South Platte from point 4 miles east of Kersey. Samples taken from face of dam at outlet. Capacity 57,500 ac. ft.
- 62 Empire Reservoir, 20 miles east of Kersey on south side of South Platte River. Fills from South Platte at a point 6 miles east of Kersey. Sample taken from beach at point nearest U. S. Highway 6. Capacity 37,700 ac. ft.
- 66 Prewitt Reservoir, 4 miles south of Merino. Fills from South Platte from a point 4 miles northwest of Brush. Samples taken from face of dam. Capacity 32,800 ac. ft.
- 64 Julesburg Reservoir, 6 miles west of Sedgwick. Fills from South Platte at a point near Proctor. Samples taken from face of dam. Capacity 28,200 ac. ft.

DRAINAGE WATER

- 79 A farm tile drain about ½ mile long on Byron Smith farm in NW ½ Sec. 24 T. 3 N., R. 70 W. Samples taken at outlet.
- 16 Latham Drain 1 mile west of LaSalle. An open drain about 3 miles long. Samples taken at ditch crossing 600 feet above county road bridge near outlet.

WELLS

Arapahoe County

2 Irrigation well 32 feet deep, 48-in. diameter concrete casing. Depth to water 4 feet. On river bottom land 0.1 mile west of bridge over South Platte at west edge of Littleton. Owner T. A. Koldeway. Samples taken by lowering sampler in idle well. Domestic well 21 feet deep. Depth to water 8 feet. On main street south of railroad, last house of 3 west of a corner west of business district of Byers. Owner R. C. Floreth. Samples taken from outside faucet.

Adams County

56

- 4 Domestic well 32 feet deep, 4-inch metal casing. Depth to water about 28 feet. Well is in basement of dwelling owned by R. E. Murfine, one block east, 2 blocks north of school and is first house north of a brick house in Adams City. Land description NW 1, NE 1, Sec. 6 T. 3 S., R. 67 W. Samples taken from yard hydrant.
- 5 Brighton, City supply. Wells 38 feet deep, 12 feet diameter, 22 feet to water. Samples taken from outside hydrant at water works and are a composite of 3 wells.
- 22 Irrigation well near center of Sec. 35 T. 2 S., R. 65 W. west one of two. Depth about 50 feet, metal casing 48 inches in diameter. Depth to water 16 feet. Sample taken from discharge pipe once and at other times by means of sampler in idle well.
- 37 Irrigation well 85 feet deep. Depth to water 30 feet. East one of two in SW 4 Sec. 29 T. 1 S., R. 60 W. Owner J. D. Singleton. Sampler taken by starting pump.

Boulder County

78 Stock well 60 feet deep, 6-in. metal casing. Depth to water 8 feet. In garage of owner Byron Smith in SW corner NW 1 Sec. 24 T. 3 N. R. 70 W. Sample taken direct from pump.

Larimer County

- 54 Irrigation well 24 feet deep, 48-inch metal casing. Depth to water 7 feet. In NE 4 Sec. 17 T. 5 N., R. 68 W. and is the north one of 2 such wells. Owner George Peak. Samples taken with sampler from idle well.
- 53 Domestic well 12 feet deep, 15-in. metal casing. In front of log house east side of road and 0.2 mi. south of U.P.R.R., 1 mile south of LaPorte, Owner E. S. Devore. Samples taken directly from Mand pump.
- 50 Irrigation well 17 feet deep, brick curb 8 feet in diameter. Depth to water 5 feet. On south side of State Highway 14 (old concrete) 0.3 mi. east of Andersonville road in SW 4 Sec. 7 T. 7 N., R. 68 W. Owner Adam S. Schneider. Samples taken with sampler from idle well.

11 Wellington public water supply. Source is from metal cased wells on north side of town 52 feet deep. Depth to water 20 feet. Samples taken from faucet in a garage on main street. 5

73 Stock well. Dug well 36 feet deep, 28 feet to water. Among outbuildings back of dwelling in SE 1 NE2 Sec. 2 T. 8 N., R. 68 W. Owner G. Wich. Well is on high ground with large seep area 1 mi. north. Samples taken from hand pump.

Weld County

- 9 Municipal supply town of Nunn. Well is about 35 feet deep and metal cased. Samples taken from faucet in garage.
- 8 Municipal supply of town of Pierce. Well is 35 feet deep and me tal cased. Samples taken from an outdoor yard hydrant.
- 24 Domestic well at Olive Branch School, District 62 in NE Sec. 28 T. 8 N., R. 65 W. Well is of unknown depth but not greater than 40 feet and is metal cased. Samples taken directly from hand pump.
- 25 Municipal supply of town of Ault. Supply is from 2 wells one in town at tank and other $\frac{1}{2}$ mile west of town. Samples are from well in town which is 38 feet deep and has concrete block curb 11 feet in diameter. Samples taken at pump house in such a manner as to avoid composite sample.
- 61 Irrigation well 17 feet deep, 36 inch metal casing. Depth to water 9 feet. In SE 1 Sec. 17 T. 6 N., R. 67 W. Owner Henry Kraus. Samples taken with sampler from idle well.
- 33 Stockwell, feet deep, g inch casing. Depth to water about 15 feet. Among outbuildings at first house west of Farmer's Spur on North side of R. R. in SW ½ 28 T. 6 N., R. 66 W. Owner Mrs. Rika Anderson. Samples taken direct from pump.
- 32 Domestic well 40 feet deep, me tal casing. Depth to water 25 feet. In NW 4 Sec. 17 T. G N., R 65 W. Owner Harry Farr. Samples taken from faucet under tank.
- 31 Stock well 28 feet deep, metal casing. Depth to water 13 feet. Adjacent to feeding corral east of dwelling in. NW 1 Sec. 34 T. 6 N., R. 65 W. Owner Ildo Williams. Samples taken from hydrant.

- Domestic well 50 feet deep, 6-inch metal casing. Depth to water 10 feet. Adjacent to dwelling 1/8 mile south of Barnesville School. Owner Mrs. Grace Baker. In SE, SE Sec. 18 T. 6 N., R. 63 W. Samples taken directly from hand pump.
- 18 Domestic well 15 feet deep metal cased. In milk house O.h mi. west of Daniels School and I.I miles east of water tower at Millikin on north side of highway. Owner Wm Wambolt. Samples taken from trough used to cool milk.

27

- 30 Municipal water supply of LaSalle. Two wells 30 feet apart 65 to 70 feet deep, lower 15 feet only, perforated. Depth to water 12 feet. Samples taken from hydrant at filling station on U. S. Highway 85.
- 71 Municipal water supply of Kersey. Well probably 70 feet deep. Depth to water 27 feet. Samples taken from taps in stores.
- 52 Stock well 60 feet deep 6 inch metal casing. Depth to water 20 feet. First house on west side country road north from U. S. Highway 6 in SE 4 Sec. 25 T 5 N., R. 64 W. Mutual Savings & Life Ins. Co. cwner. Samples taken directly from pump.
- 70 Domestic well 70 feet deep, metal cased. Depth to water estimated 10 feet. On soupth side country road in NE corner NW Sec. 4 T. 4 N., R. 63 W. Owner R. C. Croissant. Samples taken from pump in milk house.
- 34 Domestic well 26 feet deep, 6-inch casing. Considered very poor, unhealthful water by tennant. Well is inside porch of house on edge of terrace about ½ mile south of bridge on county road, west side of road in SW ½, Sec. 3 T. 3 N., R. 67 W. Owner Arthur Steyaert. Samples direct from pump but last 3 samples taken when house was vacant and well not in use.
- 21 Irrigation well, 65 feet deep, 48-inch metan casing. Depth to water 16 feet. Well is about 300 feet southwest of dwelling in SE 1 Sec 31 T. 4 no. R. 66 W. Owner Farr Farms Co. Samples taken with sampler from idle well.
- 82 Irrigation well 63 feet deep 24-in. metal casing. Depth to water 16 feet. In SW 1 SE 1 Sec. 12 T 1 N., R. 65. W. Owner John Bernhardt. Sample taken direct from pump.
- 83 Irrigation well 171 feet deep, metal cased. Depth to water 92 feet. North one of 2 wells about 600 feet apart. In NW 1 SE 1 Sec. 27, T. 1 N., R. 63 W. Owner Wm C. Vogt. Sample taken direct from pump.

6

35 Domestic well 86 feet deep, 6-in. casing. Depth to water 62 feet. At tavern and cafe about 150 feet west of corner in SE & Sec. 3 T. 1 N., R. 63 W. Taken from tap inside of tavern. 7

- 84 Irrigation well 84 feet deep, metal cased. Depth to water 20 feet. In NE 1/2 Sec. 22 T. 2 N., R. 63 W. Owner John Zimbleman. Sample taken from pump discharge.
- 58 Domestic well 80 feet deep, 6-in. casing. Depth to water, 6 feet. Casing perforated bottom 7 feet only which probably taps a different quality than exists in upper strata. Well is at a dwelling at northwest corner of street intersection, 1 block east of school house at Roggen. Owner Wm Cooper.
- 77 Irrigation well 35 feet deep, 48-in. concrete rings. Depth to water 28 feet. North one of 4 in battery of wells in SW 4 SW 4 Sec. 6 T. 2 N., R. 68 W. Owner K. Mayeda. Samples taken with sampler from idle well.
- 76 Stock well 30 feet deep. Depth to water, 4 feet. In bottom land of St. Vrain Cr. Water is pumped 1 mile west to dwelling and corrells. In NW 1 Sec 16 T. 3 N., R.67 W. Roy L. Goodwin, owner. Samples from hydrant at dwelling.

Morgan County

- 39 Domestic well 114 feet deep, 5-in. casing. Depth to water 53 feet. Casing perforated bottom 24 feet only. Well is located in dooryard of farmstead in SW corner Sec. 22 T. 3 N., R. 60 W. Owner B. A. Holden. Kiowa drainage. Sample taken directly from pump.
- 38 Domestic well, 58 feet deep, metal casing. Depth to water about 46 feet. Well is in outbuilding of farmstead in SW corner Sec. 7, T. 2 N., R. 59 W. Owner J. W. Maddox. Samples taken direct from pump or from barrel containing freshly pumped water.
- 81 Domestic well 160 feet deep, metal cased. Depth to water about 50 feet. Well is west of dwelling in NE corner SE ¹/₄ Sec. 24 T. 3 N., R. 60 W. Owners Doctors Widney and Ringle of Greeley. Samples taken from tap in dwelling.
- 46 Domestic well 120 feet deep, 6-in. metal casing. Depth to water 43 feet. Casing perforated from 110 to 120 feet. Quality varies among the various strata. Well is on city lot at 115 West Street, Ft. Morgan. Owner L. L. Canfield. Samples taken from yard hydrant.

- 67 Irrigation well 70 feet deep, 48-in. steel casing.
 Depth to water 33 feet. In SW 4 SE 4 Sec. 1
 T. 1 N., R. 56 W. Owner Mrs. John Shaw. Samples taken with sampler from idle well.
- 28 Stock well 35 feet deep, 6-in. metal casing. Depth to water 19 feet. In shed 300 feet east of dwelling in SE Cor SW 1 Sec. 23 T. 4 N., R. 56 W. Owner Hansen Bros. Samples taken direct from pump.

Logan County

- 51 Domestic well 18 feet deep, 5-in. metal casing. Depth to water 11 feet. In basement of dwelling on north (west) side of U. S. Highway 6 4 mile S. W. of Merino. Owner J. W. County. Samples taken from tap inside dwelling.
- 80 Domestic well. Dug about 20 feet deep. Depth to water about 10 feet. In dooryard on west bank of Pawnee Creek In NW 1 Sec. 24 T. 7 N., R. 53 W. Owner Mary Conti. Samples taken from pump driven by windmill.
- 40 Municipal supply, town of Iliff. Well is 80 feet deep. Depth to water 15 feet. Casing perforated full length. Samples taken from tap in store.
- 65 Domestic well. Sand point driven to 35 feet. Depth to water less than 10 feet. Located in dooryard of dwelling 400-500 feet north of Griff beet dump in NW corner Sec. 6 T. 9 N., R. 50W. Owner J. K. Crum. Samples taken from yard hydrant.
- 47 Municipal supply, town of Crook. Well 51 feet deep, 18-in. metal casing. Depth to water estimated 10 feet. Bottom 22 feet perforated. Samples taken from tap in garage.

Sedgwick County

- 63 Domestic well. Drilled, shallow depth. At 1½ story stucco house on north side of county road 0.8 mile west of Sedgwick School, in SE ½ Sec. 12 T. 11 N., R. 47 W. Owner Mrs. Anna Jenig. Samples direct from hand pump.
- 44 Reserve, little-used well in power house, town of Julesburg. Depth 28 feet, 24-in casing, depth to water 10 feet. Samples taken either by starting pump, or with sampler from idle well.

		Stream Flow	Reservoir Contents	Depth Depth to of Water Well	pH	Total Solids	Vol. Solids	Organic	COZ	Cl	NOz	Si02	SO4	Ca	Mg	Na.	Remarks
		C.f.s.	ac.=ft.	ft. ft.		p.p.m.	p.p.m.		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	****
							STREAM	IS									
South PI	latte at Wa	tertown						7									
26	4-4-44	12			7.3	141	12	tr.	30	20	0	15	20	21	7	13	
	11-3-44	14			7.3	257	25	lt. tr.	48	52	0	9	54	34	14	32	
	4-13-45	23			7.5	173	19	lt.	35	32	0	9	29	26	8	19	
South P	latte at Li	ttleton															
1	11-5-43	19			7.7	341	36	tr.	83	30	0	17	78	54	15	36	
	4-4-44	72			7.7	298	17	tr.	60	23	0	33	68	46	12	27	
	11-3-44	10			7.5	375	25	sl.	95	36	0	16	106	54	18	41	
	4-13-45	20臣			7.7	274	22	lt.	72	32	0	15	61	46	11	27	
South Pl	latte at no	rth city	limit Denve	r													
3	11-5-43	120			6.9	665	83	odor.	168	127	0	15	138	61	16	120	
	4-24-44	322			6.8	392	27	lt.	95	46	õ	21	74	87	11	44	
	11-3-44	68			7.1	667	44	mod.	145	160	0	19	137	634		47	
	5-4-45	238			7.1	443	48	heavy	132	78	32	14	97	57	11	55	
South Pl	latte at Br	ighton															
6	11-5-43	100E			7.7	635	55	odor.	143	82	tr.	15	174	78	18	94	
Ŭ	4-24-44	320E			6.9	529	30	lt.	85	42	10	10	182	73	17	45	
	11-3-44	100E			7.5	667	50	sl.	132	80	0	16	193	84	20	22	
	1-26-45	100		7.5	7.7	731	87	~ ~ *	200		3	20	200	01	20	~~	
	3-13-45	65			7.7	743	125				\$ 12						
	5-4-45	100E			7.3	505	46	mod.	108	58	4	12	148	66	14	55	
	6-1-45	120			6.8	258	51										
South Pl	latte below	Plattevi	1110														
20	11-15-43	7 5E			8.1	765	48	lt.	155	70	tr.	16	247	99	27	104	
	4-24-44	375E			7.3	709	44	tr.	95	70	4	10	251	84	24	105	
	11-7-44	150E			7.5	754	40	sl.	145	72	4	22	246	101	26	87	
	5-5-45	100E			7.9	714	55	mod.	120	76	4	12	248	90	24	104	
South Pl	latte below	Evans															
15	11-15-43	200E			7.7	1306	109		192	52	0	20	54.9	142	70	145	
10	4-28-44	1000E			7.7	770	77	mod. lt.	192	28	0	22 15	542 348	146	41	145	
	10-23-44	100E			7.9	1475	140	mod.	155	52	tr.	17	728	153	81	150	
	4-30-45	400E			7.9	1049	148	lt.	120	46	2	11	505	105	62	106	

Table of Water Quality Data in Parts per Million Compiled by Drainages in Down-Stream Order 1

X

X

0000000- 0-75- 0-0-0-0-0	Conditional Condition of the Condition o			Well	Contraction in the literature												
Sample	Date	Stream Flow	Reservoir Contents	Depth De	of	Total Solids	Vol. Solids	Organic	coz	CI	NO3	SiO2	SO4	Ca	Mg	Na	Remarks
		c.f.s.	acft.			p.p.m.	p.p.m.		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
South PI	latte at Ker	sey					- and										
10	11-12-43	313			7.6	1207	145	odor.	198	48	0	15	598	163	72	146	
10	5-5-44	2490			7.4	605	53	sl.	72	26	0	17	265	73	29	70	
	10-26-44	209			7.9	1461	140	mod.	168	54		19	700	151	78	135	
	1-26-45	200 506			7.7	1258	161	mode	100	04	0	19	100	101	10	100	
	4-30-45	496			7.8	1238	159	mad	120	48	4	10	593	127	69	125	
	3-13-45	391			7.9	1374	198	mod.	120	40	2	10	090	161	03	120	
		982			7.8	1120	198				0						
	6-1-45	904			1.00	1120	705										
South Pl	atte above	Orchard															
477	13 00 47				0.3	1701	227		100	10	~	73	204	3.50		200	
43	11-20-43	80			8.1	1301	113	tr.	168	48	0	31	394	159	58	128	
	5-5-44	2980			7.4	682	63	sl.	72	28	0	20	307	77	32	76	
	10-23-44	142			8.0	1194	92	mode	145	52	0	15	623	118	62	114	
	1-26-45	78			7.9	1252	137				2						
	3-13-45	81			8.0	1270	183		745		4		03.0	3.54		07	
	4-30-45	178			7.9	1293	133	lt.	145	52	0	14	613	154	55	97	
	6-1-45	408			7.7.	1155	191										
South Pl	atte at Ft.	Morgan			1			Same .									
42	11-20-43	142			8.0	1291	112	mod.	143	50	0	25	325	160	54	134	
20	5-2-44	1790			7.5	770	82	tr.	95	32	0	13	351	93	37	82	
	10-23-44	150			8.1	1235	108	modo	120	50	0	18	620	134	56	118	
	5-2-45	330					108			52							
	0-2-40	330			7.9	1291	116	sl.	120	26	0	18	622	158	52	108	
South Pl	atte above	Merino															
Donor 12					07												
23	11-19-43	30E			8.2	1476	132	tr.	150	54	tr.	19	567	188	62	140	
	5-2-44	1600E			7.7	897	74	tr.	95	34	0	17	422	113	42	93	
	10-25-44	10E			8.1	1322	104	mod.	108	54	õ	23	679	166	58	106	
	5-1-45	40E			7.9	1437	144	mod.	132	58			694	186		114	
								ALC U.C	2010		· ·	~~					
South Pl	atte at Ste	rling															
49	11-20-43	50E			8.1	1303	103	tr.	132	48	0	29	382	166	55	123	
	5-3-44	1600E			7.7	949	86	sl.	85	38	0	20	439	119	43	100	
	10-25-44	50E			8.0	1182	91	lt.	120	48	tr.	36	584	136	49	113	
	5-2-45	100E			8.0	1339	123	lt.	120	56	tr.	24	657	166	48	111	
South	Platte at	Crook															
48	11-20-43	60E			8.1	1420	87	tr.	143	66	0	41	407	151	52	141	
			-														
	Platte at 11-20-43 5-3-44 10-25-44 5-2-45		-			1420 1089 1364 1594	87 90 90 133	tr. sl. m. hy. mod.	143 108 120 132	56 44 72 80	0 4 0 0	41 21 35 24	407 517 704 790		52 46 48 55	141 121 120 134	

-2-

second the second of the

1

Sample	Date	Stream Flow	Reservoir Contents	Depth Depth to of Water Well	pH	Total Solids	Vol. Solids	Organic	COg	CI	NOZ	SiO2	SO4	Ca	Mg	Na
		c.f.s.	ac. ft.			p.p.m.	p.p.m.		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
South P	latte at Ovi	.d														
36	11-20-43	100			8.1	1282	105	sl.	132	62	tr.	24	537	177	46	140
00	5-3-44	1600			7.9	1213	98	tr.	108	48	0	24	565	151	51	137
	10-25-44	107			8.0	1298	104	lt.	108	74	tr.	31	636	178	45	104
	5-2-45	187			8.1	1474	141	mod.	120	70	0	23	736	174	51	108
St. Vrai	in at Lyons															
7	11-15-43	5			7.1	53	13	tr.	25	2	tr.	9	5	7	tr.	3
	5-16-44	232			6.3	52	18	lt.	12	4	0	13	13	5	2	3
	11-1-44	10			6.7	146	30		48	10	tr.	9	30	26	2 8 2	5
	6-1-45	392			6.7	39	15	lt.	12	4	0	7	1	2	2	5
st. Vra:	in at mouth															
19	11-15-43	79			7.5	1580	197	hy. tr.	275	38	0	17	529	144	92	159
10	4-24-44	531			7.9	835	101	lt.	95	18	õ	14	395	77	53	88
	11-7-44	66			7.3	1493	127	m. hy.	288	32	õ	4	563	138	88	168
	5-5-45	223			7.6	601	78	mod.	85	34	1	14	280	60	36	65
ig Thor	apson near m	nouth of (canon													
55	11-26-43	25			6.7	40	11	mod .	12	2	0	7	0	6	3	4
	5-16-44	825			6.3	55	21	sl.	7	5	0	8	14	4	2	3
	11-7-44	28			6.9	56	7	sl.	12	6	0	15	10	9	1	4
	5-10-45	800 300			6.8	46	19	lt.	25	8	0	9	16	19	1	2
Big Thor	npson near M	lilliken														
						0.015			000				0.03	050		002
17	11-15-43	10E			7.7	2643	392	hy. tr.	288	38	0	17	821	258	88	221
	4-24-44	20E			8.1	2527	287	tre	168	36	0	14	1328	168	199	222
	11-10-44	10E			7.1	1972	163	m. hy.	300	32	0	21	706	257	115	130
	5-10-45	20E			7.7	2372	339	mod.	155	70	0	9	1249	236	164	210
lache la	Poudre at	Bellvue														
14	11-13-43	44			7.6	128	15	tr.	55	6	0	7	11	26	7	8
	5-16-45	602			6.8	85	24	lt.	18	4 8	0	18	14	12	3	4
	12-1-44	30			7.7	160	15	tr.	48	8	0	10	26	29	3 8	4 8
	5-18-45	558			6.9	64	20	lt.	25	8	0	8	22	19	1	4
		Ft. Colli	ins													
ache la	a Poudre at															
					7.9	575	57	tre	132	10	0	10	209	99	31	37
ache la 12	11-13-43 12-1-44	4E 6E			7.9 7.9	575 534	57 47	tr. tr.	132 108	10 14	o tr.	10 11	209 192	99 89	31 28	37 32

or and the set of the same

Sample	Date	Stream Flow	Reservoir Contents	Depth Depth to of Water Well	pH	Total Solids	Vol. Solids	Organic	CO3	CI	NOZ	Si02	SO4	Ca	Mg	Na	
		c.f.s.	ac.ft.			p.p.m.	p.p.m.		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Cache la	a Poudre abo	ve Greele	у														
13	11-15-43	10est.			8.0	2373	268	sl.	186	48	tr.	21	1197	237	154	206	
	5-1-44	50est.			7.9	2171	174	tr.	145	24	4	13	1134	216	145	371	0
	10-23-44	15est.			8.0	2381	270	lt.	180	52	8	17	1255	237	156	10 -	-?
	4-30-45	30est.			8.0	2278	293	mod.	155	58	4	11	1170	221	153	228	
Latham I	Drain near 1	LaSalle															
16	11-15-43	16E			8.3	792	68	tr.	150	56	24	17	259	106	34	94	
	4-28-44	16E			8.1	797	62	tr.	120	64	20	20	254	90	42	33	
	11-10-44	18E			8.0	763	65	tr.	145	60	24	24	271	93	35	85	
	5-10-45	18E			7.9	746	88	sl.	132	72	20	15	259	108	28	65	
							RESERV	OTDO									
Barr Lak	ce near Brig	ton - Ad	ams County				AD SEA V	CIUS									
					3.1												
57	4-24-44		28,700		8.3	497	37	sl.	108	68	0	10	120	59	14	12	
	11-3-44		2,200		7.3	451	57	mod.	85	66	0	1	134	49	14	71	
	5-4-44		25,500		7.8	517	49	m. hy.	120	74	32	19	128	69	14	50	
		ar Platte	ville - Wel	d County													
59	5-1-44		17,700		8.1	1313	116	lt.	132	120	0	40	558	133	49	103	
	11-10-44		4,450		7.9	934	49	mod.	85	100	0	17	410	64	39	140	
	5-10-45		10,400		7.3	949	69	m. hy.	95	100	0.	13	413	66	40	117	
Riversid	le Reservoir	• near Mas	ters - Weld	County													
69	5-5-44		56,000		7.7	1167	118	lt.	108	48	4	22	546	114	65	133	
	4-30-45		53,700		7.9	1237	155	mod.	132	62	tr.	8	593	119	64	134	
Empire I	Reservoir ne	ar Wiggin	as - Weld Co	unty													
~~			F4 300			1245			100	10			F40	100	0.5	370	
62	5-1-44		34,100		7.7	1147	111	1t.	108	46	4	7	549	107	63	136	
	10-23-44		2,400		7.1	1367 1230	132 145	m. hy.	48	68 54	0 4	11 13	757 605	93	73 68	173	
	4-30-45		33,800		1.1	1200	140	mod.	108	04	*	10	000	111	00	136	
Prewitt	Reservoir n	near Merin	o - Washing	ton County													
66	5-4-44		30,000		8.0	1241	126	lt.	108	48	0	16	624	144	57	136	
	10-25-44		2,500		7.3	1538	162	m. hy.	60	64	0	7	835	148	74	125	
	5-1-45		26,400		7.8	1311	157	mod .	95	58	0	14	664	154	57	132	
Julesbur	g Reservoir	near Sed	and the second second	gwick County													
												26					
64	5-3-44		22,100		7.6	1439	115	lt.	95	66	0		724	158	57	174	
	10-25-44		16,400		7.9	1565	111	m. hy.	108	72	0	25	814	237	62	124	
	5-2-45		22,800		7.9	1521	157	mod.	95	84	0	22	786	164	58	167	

Sample	Date	Stream Flow c.f.s.	Reservoir Contents ac. ft.	We Depth to Water ft.	Depth	рH	Total Solids p.p.m.	Vol. Solids p.p.m.	Organic	CO3	CI	NO3	sio ₂	SO4	Ca	Mg	Na. ppm	Remarks
Number	6 Reservoir	near Wel	lington - I	arimer	County	r												
72	5-9-44		7,500			8.1	1083	130	lgt.	95	18	0	.93	553	103	72	99	
	11-6-44		3,430			7.9	1553	182	mod.	72	26	0	14	822	126	102	142	
	5-18-45		3,400			8.0	1745	241	mod.	108	58	0	12	951	144	117	123	
ferry L	ake near Ft	. Collins	- Larimer	County														
74	5-16-44		6,900			7.9	575	65	sl.	60	10	0	10	282	66	42	42	
	12-1-44		850			7.9	1101	132	sl.	85	18	0	15	568	128	65	78	
	5-18-45		4,900			7.9	621	75	lgt.	60	18	0	8	331	67	43	50	
New Win	dsor Reserv	oir near	Windsor - V	Weld Con	unty													
60	5-1-44		14,600			7.9	1208	135	lgt.	95	22	0	6	638	134	78	96	
	10-23-44		3,060			7.9	1142	135	m. hy.	72	22	0	15	612	113	77	88	
	4-30-45		11,900			7.8	840	108	mod.	85	20	0	7	438	104	53	51	
Boyd La	ke near Love	eland - L	arimer Cour	nty														
75	5-16-44		30,000			7.9	519	52	mod.	65	13	0	11	234	62	31	50	
	11-7-44		26,300			7.9	582	44	mod.	95	20	0	8	245	74	34	55	
	5-10-45		25,700			8.0	596	63	mod.	95	42	0	5	270	67	37	56	
								WELI	LS									
South P	latte Drain	age Direc	t - Arapaho	e Coun	ty													
2	11-5-43			4	32	7.1	455	47	tr.	125	36	tr.	24	108	67	15	62	
	4-4-44					7.0	692	38	tr.	132	41	4	21	223	106	26	62	
	11-3-44					7.0	568	36	sle	132	48	8	20	162	87	21	48	
	4-13-45					7.3	685	42	sle	145	48	tr.	19	216	109	24	76	
Adams C	ounty																	
4	11-5-43			28	32	7.9	1107	73	tr.	132	102	48	23	433	178	28	63	
	4-24-44					7.7	984	61	tr.	108	88	24	21	330	154	23	104	
	11-3-44					7.7	982	63	sl.	120	90	48	19	366	151	23	108	
	5-4-45					7.7	986	108	sl.	132	82	32	18	364	154	22	61	
5	11-5-43			22	38	7.9	999	66	tr.	180	91	32	22	332	138	37	134	
	4-24-44					7.3	978	69	tr.	180	90	20	20	287	134	36	122	
	11-3-44					7.3	901	62	sle	155	90	32	25	301	109	34	112	
	5-4-45					7.4	955	108	sl.	155	92	28	20	299	135	33	68	
											-							
feld Co	unty										10							
	unty 11-15-43			11	65	7.7	571	53	tr.	150	58	48	22	164	78	21	56	
Neld Co 21				11	65	7.7	571 560	53 41	tr.	150 95	58 30 50	48 32	22 21	164 138	77	20	59	
	11-15-43			11	65													

-5-

Sample	Date	Stream Flow c.f.s.	Reservoir Contents ac. ft.	We Depth to Water ft.	Depth of	pН	Total Solids p.p.m.	Vol. Solids p.p.m.	Organic	CO3	CI	NO3	si02	SO4	Ca. ppm	Mg	Na. ppm	Remarks
Weld Con	inty																	
30	11-15-43 4-28-44 11-10-44 5-10-45			12	70	7.5 7.3 7.4 7.4	758 783 801 791	56 65 67 72	tr. tr. tr. tr.	155 108 108 145	62 68 66 70	10 24 32 24	19 20 27 20	252 241 259 257	71 101 104 119	47 35 37 35	42 92 82 80	
71	5-5-44 10-26-44 4-30-45			27	70E	7.1 7.9 7.5	1864 1732 1887	162 130 244	sl. lgt. sl.	252 215 180	70 70 84	14 8 20	24 29 26	799 785 863	196 178 199	86 83 86	216 157 218	
52	11-20-43 5-1044 10-26-44 4-30-45			20	60	7.9 7.9 7.9 7.5	2221 2282 2378 2465	185 223 253 333	mod. lgt. lgt. hy.	228 215 228 215	98 102 112 136	0003	26 19 16 16	960 1064 1152 1178	300 241 301 319	241 108 100 98	239 260 264 204	
70	5-5-44 10-23-44 4-30-45			12	70	7.1 7.9 7.7	2048 1876 1840	154 156 196	tr. sl. sl.	205 205 215	90 94 82	16 8 16	28 37 29	909 889 824	244 217 234	84 71 63	204 241 226	
Morgan (County																	
46	11-18-43 5-2-44 10-23-44 4-30-45			50	120	7.7 7.7 7.9 7.9	1560 1498 1629 1592	137 96 112 185	lgt. tr. lgt. sl.	192 155 180 155	54 56 68 60	8 4 6 12	20 28 27 25	624 672 774 714	283 286 302 291	134 50 51 49	117 84 108 81	
28	11-19-43 5-2-44 10-24-44 5-1-45			20	35	7.2 7.3 7.9 7.7	1494 1767 1402 1734	130 176 118 247	sl. tr. mod. sl.	180 145 155 192	60 62 64 68	12 4 0 4	26 27 26 24	571 833 655 776	188 196 171 226	180 87 60 71	157 174 156 178	
Logan Co	ounty																	
51	11-20-43 5-4-44 10-25-44 5-1-45			11	18	7.5 8.0 7.8 7.9	1559 1379 1847 1459	119 135 205 195	lgt. tr. tr. lgt.	168 145 145 132	60 50 78 58	12 0 12 3	31 24 30 22	595 641 893 690	200 176 228 180	183 58 78 59	168 137 158 154	
- 80	10-25-44 5-1-45			12 E	20	8.0	1464 1479	112 134	tr. sl.	145 155	60 62	18 4	47 33	685 684	217 217	55 55	129 133	
40	11-20-43 5-3-44 10-25-44 5-2-45			15	80	7.9 7.7 8.1 7.8	3852 3926 4122 4223	185 223 227 273	mod. sl. m. hy. mod.	258 228 240 265	150 154 190 270	0000	30 33 29 32	667 2066 2210 2201	248 231 286 308	98 109 107 113	762 802 738 307	— ×
65	5-3-44 10-25-44 5-2-45			8 E	35	7.7 8.0 7.7	2344 1894 2235	192 89 200	mod. mod. mod.	205 168 180	100 86 94	0 0 1	78 49 52	1092 936 1086	229 183 233	83 57 72	330 296 306	

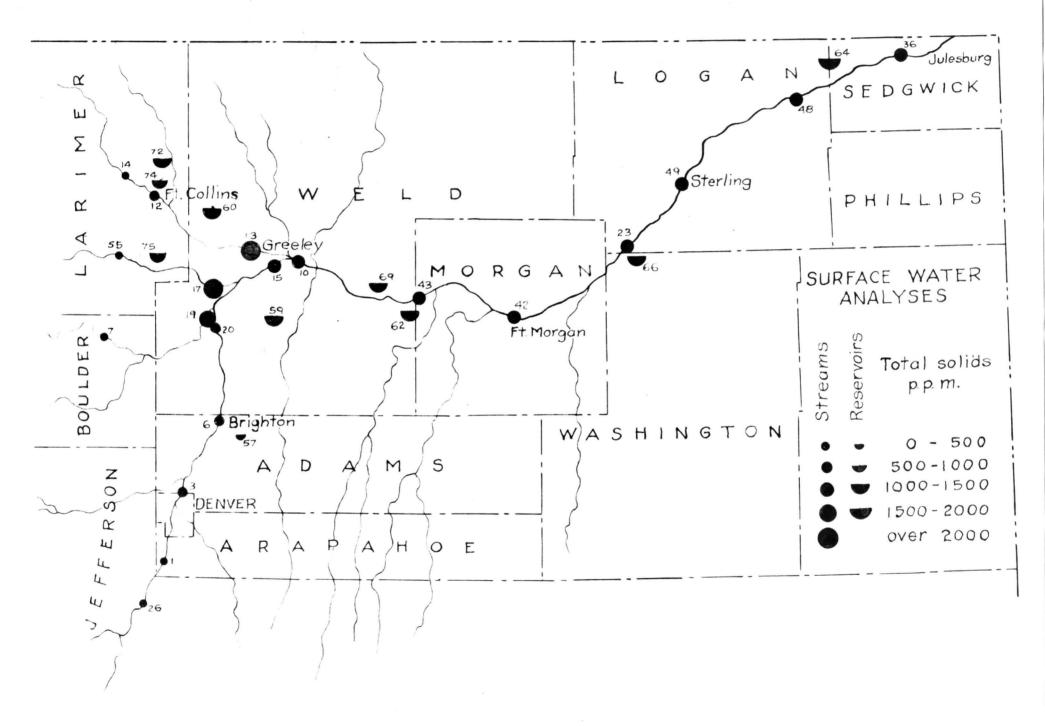
				We.	11											tigh up randorm			
Sample	Date	Stream Flow	Reservoir Contents	Depth to Water	Depth of Well	pH	Total Solids	Vol. Solids	Organic	CO3	CI	NO3	SiO2	so4	Ca	Mg	Na	Remarks	
		c.f.s.	ac. ft.	ft.	ft.		p.p.m.	p.p.m.		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Logan Co	ounty																		
47	11-20-43 5-3-44 10-25-44 5-2-45			10Ē 3.2	51	8.1 7.9 8.1 7.7	1449 1508 1470 1507	94 102 89 129	mod. lgt. mod. mod.	155 155 155 155	94 100 102 106	0000	36 33 36 34	607 659 653 669	208 213 215 214	114 42 40 39	163 174 156 169		
Sedgwic	k County																		
63	5-3-44 10-25-44 5-2-45					7.7 7.9 7.8	1961 1800 2025	189 148 216	tr. sl. sl.	132 132 168	114 92 116	40 4 24	50 47 47	890 897 941	213 243 275	77 56 63	177 10 207	- ?	
44	11-20-43 5-2-44 10-25-44 5-2-45			10	28	7.9 7.6 7.8 7.7	1339 1254 1312 1294	85 83 79 113	tr. tr. sl. sl.	155 120 132 120	68 62 84 70	24 16 12 16	50 48 52 47	583 552 593 574	187 183 195 191	103 34 37 34	134 128 122 120		
Cao Larimer	che la Poudr County																		
53	11-24-43 5-16-44 12-1-44 5-18-45				12	7.7 7.3 7.1 7.3	673 547 736 440	59 38 53 28	sl. tr. sl. lgt.	132 95 95 120	7 8 12 16	0000	22 17 17 10	274 221 341 152	151 120 156 99	82 27 31 19	19 15 18 10		
50	11-24-43 5-16-44 11-26-44 5-18-45			6	17	7.9 7.1 6.9 7.0	584 615 596 569	59 39 41 54	sl. tr. sl. lgt.	168 162 155 168	12 15 18 16	0000	17 18 26 20	162 185 168 186	110 110 106 110	107 43 39 37	27 33 34 35		
Weld Con	unty																		
61	5-1-44 10-23-44 4-30-45			7	16	7.9 7.9 7.4	1408 1564 1637	180 172 251	tr. sl. sl.	168 132 155	24 34 34		23 23 17	640 812 780	190 196 211	81 91 93	99 107 104		
33	11-15-43 5-1-44 10-23-44 4-30-45					7.9 7.3 7.9 7.5	2502 2249 2320 1965	273 295 299 297	tr. tr. sl. lgt.	240 215 240 215	106 116 128 96	56 64 32 40	22 25 24 21	696 1010 1010 869	254 215 233 195	203 172 174 140	89 191 211 123		
Larimer	County																		
11	11-13-43 5-9-44 11-26-44 5-18-45			25	52	7.5 7.7 8.1 7.5	991 1000 992 942	113 103 111 127	tr. 0 sl. sl.	118 114 120 106	38 25 27 27	20 40 32 24	19 27 21 22	401 394 379 379	135 134 136 131	55 54 54 49	82 131 94 65		
73	5-19-44 11-26-44			28	36	7.7	2694 2286	376 304	0 tr.	180 48	30 28	96 64	13 20	1386 1184	388 274	187 157	114 153		

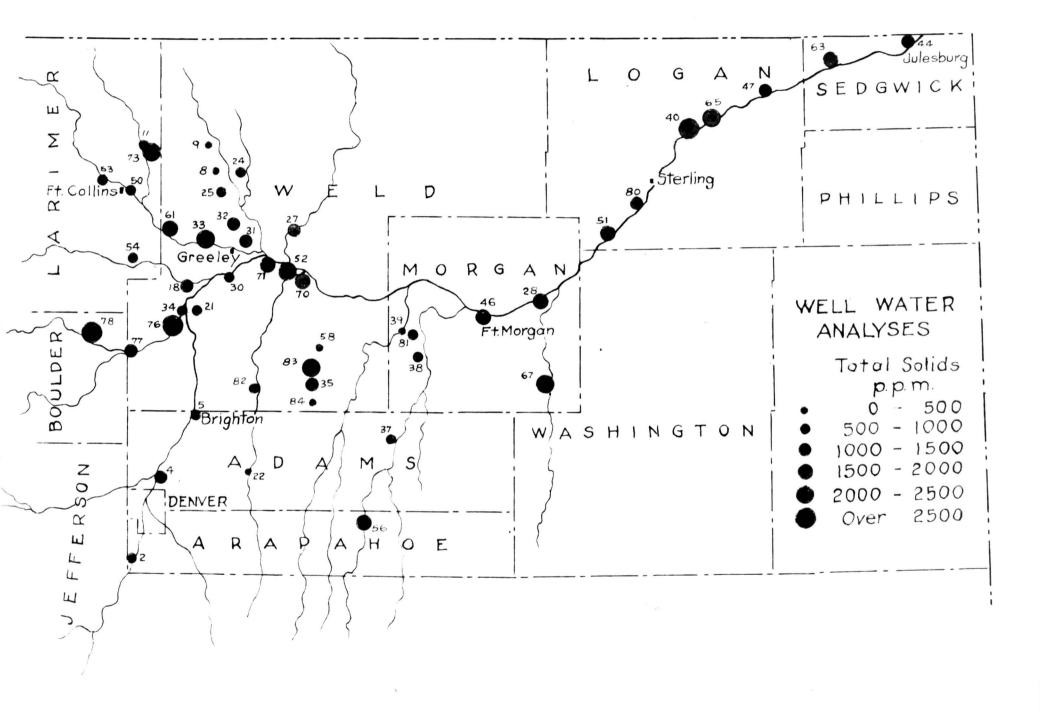
-7-

600

				We	11													and the second state and
Sample	Date	Stream Flow	Reservoir Contents	Depth to Water	Depth of Well	pH	Total Solids	Vol. Solids	Organic	cog	CI	NOZ	Si02	so4	Ca	Mg	Na	Remarks
_		c.f.s.	ac. ft.	ft.	ft.		p.p.m.	p.p.m.		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
	g Thompson																	
Larimer	councy																	
54	11-26-43 4-24-44 11-7-44			7	24	8.1 7.3 7.5	708 827 838	70 63 56	sl. tr. lgt.	98 108 145	8 10 18	00	12 12 15	305 349 358	134 119 163	96 53 40	35 42 33	
	5-10-45					7.3	954	92	lgt.	120	22	0	16	470	183	48	45	
Weld Con	unty																	
18	11-15-43 4-24-44 11-10-44 5-10-45			10 <u>e</u>	15	7.7 7.7 7.9 7.3	1631 1431 1370 1484	195 163 168 221	tr. sl. tr. lgt.	150 120 132 132	28 26 32 32		17 14 19 13	700 719 700 772	167 151 126 172	86 82 81 83	163 156 146 93	
Wel Boulder	lls - St. Vr County	rain																
78	5-16-44 11-1-44 6-1-45			8	60	7.5 7.3 7.3	4683 5047 4619	426 561 578	0 tr. sl.	155 180 168	20 40 52	16	9 16 12	2814 2999 2691	511 475 504	355 400 326	286 312 217	
Weld Con	unty																	
77	5-16-44 11-1-44 4-11-45			28 32	35	7.5 7.5 7.7	1191 1156 1174	152 164 162	tr. sl. sl.	240 240 252	15 18 22	16	18 20 18	472 511 473	96 63 88	110 111 102	135 128 102	
76	5-16-44 5-5-45			6E	30	7.9 7.2	4438 1845	602 247	lgt. lgt.	168 145	118 76	0 4	9 10	2413 919	336 148	294 121	448 188	
34	11-15-43 4-24-44 11-7-44 5-5-45			15	26	8.2 7.9 7.7 7.7	525 567 545 551	40 45 36 65	tr. tr. sl. sl.	132 120 120 108	40 44 42 42	20 20	24 22 24 27	132 164 146 158	70 79 75 68	72 29 25 24	62 68 66 43	
Weld Con	lls - Lone I unty	ree Cree	k															
9	11-12-43 5-5-44 10-27-44 5-17-45			25E	35	7.9 7.7 7.7 7.3	400 398 396 410	54 43 39 53	0 sl. lgt.	108 95 108 108	14 14 16 18	80 64 64 70	17 27 19 23	34 46 53 48	76 80 81 90	13 11 14 11	24 tr. 22 24	
8	11-12-43 5-5-44 10-27-44 5-17-45			27.	35	8.0 7.5 7.9 7.7	431 420 394 419	41 33 25 34	tr. lgt. sl. lgt.	138 120 120 120	28 22 24 24	tr. 32 32 36	23 26 22 23	60 55 54 72	86 84 82 94	15 13 14 12	32 27 27 30	

-8-


V


Sample	Date	Stream Flow	Reservoir Contents	to Water	Depth of Well	рĦ	Total Solids	Vol. Solids	Organic	Ŭ	CI	NO3	Si02	SO4	Ca	Mg	Na	Remarks
	+++++++++++++++++++++++++++++++++++++++	C.f.s.	ac. ft.	ft.	ft.		p.p.m.	p.p.m.		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Weld Co	unty																	
24	11-12-43 5-5-44 10-27-44 5-17-45			10	58	7.9 7.7 7.9 7.7	614 610 547 635	42 39 36 50	tr. O sl. lgt.	168 132 145 155	14 14 20 20		10 26 18 26	198 181 176 206	57 94 77 111	24 23 20 24	80 69 74 62	
25	11-12-43 10-27-44 5-17-45			28	38	7.9 7.7 7.6	700 631 642	69 48 3 9 59	tr. sl. sl.	192 155 155	14 20 22	32	20 47 24	185 169 173	130 116 137	26 24 21	50 39 45	
32	11-15-43 5-5-44 10-27-44 5-10-45			27	40	8.1 7.5 7.9 7.9	1102 1145 1033 1181	98 111 92 128	tr. tr. lgt. lgt.	168 145 155 155	24 22 28 18	28 24	33 24 26 27	463 458 442 523	146 167 153 183	47 49 41 46	41 88 81 66	
31	11-12-43 5-5-44 10-26-44 5-10-45			12	28	7.7 7.5 7.7 7.7	1427 1356 1374 1376	147 134 134 157	tr. tr. sl. sl.	180 145 145 145	42 30 48 46	12 4 12 28	23 31 29 28	662 614 625 644	220 198 206 208	57 55 54 52	111 110 110 82	
	lls - Crow (reek																
Weld Con	unty																	
27	11-12-43 5-5-44 10-27-44 5-17-45			12	50	7.6 7.7 8.1 7.8	1444 1365 1397 1503	73 77 74 106	tr. tr. sl. lgt.	180 168 155 145	34 30 46 44	16 20 16 32	31 40 36 36	684 650 594 702	118 107 88 137	42 40 33 45	229 263 260 140	
We	lls - Box El	lder Cree	k															
dams Co	ounty																	
22	11-16-43 4-7-44 11-7-44 5-4-45			16	50E	7.3 7.3 7.5 7.5	259 278 279 282	18 18 22 20	tr. sl. tr. sl.	83 78 85 95	12 12 16 18	tr. 4 tr. 4	21 31 17 21	30 40 44 48	52 50 56 59	8 9 8 8	18 10 18 17	
feld Con	unty																	
82	11-3-44			9	63	7.3	781	61	tr.	168	72	24	25	277	121	22	84	
We: Weld Con	lls-Prospect mty	Valley							~									
83	1144			98	171	7.7	369	25	-	- 72	20	1	22	106	63	10	37	
35	11-18-43 4-26-44 11-8-44 5-3-45			59	86	8.0 7.7 7.9 7.8	1003 998 1006 1226	84 70 58 118	tr. tr. sl. sl.	120 120 108 120	58 64 68 84	16	18 24 23 19	432 418 482 550	184 140 184 231	80 46 29 33	74 68 73 69	

-9-

				We	11													
Sample	Date	Stream Flow	Reservoir Contents		Depth of	рH	Total Solids	Vol. Solids	Organic	coz	CI	NOg	Si02	so4	Ca	Mg	Na.	Remarks
		c.f.s.	ac. ft.	ft.	ft.		p.p.m.	p.p.m.		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Weld Co	unty																	?
84	1144			21	84	7.3	2191	366		84	160	4	27	1000	329	60	2	
58	4-26-44 11-28-44 5-3-45			6	80	7.6 7.7 7.7	440 411 412	30 23 30	tr. tr. sl.	95 85 85	8 12 14	4 tr. 4	13 17 14	143 143 142	71 66 77	14 14	36 36 32	
	lls - Kiowa County	Creek																
39	11-18-43 5-1-44 _2	64		54		7.7	519 471	20 15	tr. tr.	132 120	14 12	0	24 14	163 142	67 69	12 9	73 73	
	10-2-44 4-30-45					7.7	526 467	19 15	tr. sl.	120 120	16 16	0	21 17	187 149	75 67	10 7	46 53	
	lls - Bijou e County	Creek																
56	4-7-44 6-15-45			8	21	7.7	1977 1843	143 153	lgt. sl.	108 120	33 30	26 32	19 17	1006 1126	228 201	58 48	243 196	
Adams C	ounty																	
37	11-18-43 5-1-44 10-26-44 5-3-45			30	87	7.5 7.3 7.5 7.1	649 714 577 714	33 37 31 37	sl. tr. lgt. sl.	120 120 108 120	14 20 12 20	0 6 4 tr.	20 29 22 19	268 284 244 301	103 113 89 116	15 13 13 11	70 30 45 53	
38	11-18-43 5-1-44 10-23-44 5-3-45			48	58	7.7 7.7 7.9 7.7	696 563 557 563	46 30 26 30	tr. tr. sl.	120 108 108 108	16 12 22 16	00000	92 22 19 19	214 214 211 217	99 97 100 98	17 15 22 12	57 55 53 42	
81	10-26-44 5-3-45			55	160	8.1 7.7	971 1013	53 77	tr. tr.	108 120	18 20	000	22 19	480 488	123 133	27 26	137 106	
We Morgan	lls - Beaver County	Creek																
67	5-4-44 6 17-24-44 5-1-45			33	70	7.9 7.9 7.6	1937 2145 2200	247 202 271	tr. tr. sl.	132 155 155	20 24 26	40 32 32	44 25 17	995 1152 1146	277 321 348	97 105 102	99 134 139	
Latham	Drain near L	aSalle																
16	11-15-43 4-28-44	16E 16E				8.3	792 797	68 62	tr. tr.	150 120	56 64	24 20	17 20	259 254	106 90	34 42	94 33	
Smith .	11-10-44 5-10-45 Drain	18E 18E				8.0	763 746	65 88	tr. sl.	145 132	60 72	24 20	24 15	271 259	93 108	35 28	85 65	
79	5-16-44 11-1-44 6-1-45					7.9 7.5 7.3	2277 1966 2181	253 228 255	tr. sl.	132 120	22 24	10 0	14 17	1273	278 262	146	160 121	
	0-1-40					7.3	2181	255	slo	120	30	12	14	1177	263	127	162	

-10-

