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ABSTRACT 
 

 

ECONOMIC AND ENVIRONMENTAL EVALUATION OF EMERGING ELECTRIC VEHICLE 

TECHNOLOGIES 

 

 

As the transportation sector seeks to reduce costs and greenhouse gas (GHG) emissions, electric 

vehicles (EVs) have emerged as a promising solution. The continuous growth of the EV market 

necessitates the development of technologies that facilitate an economically comparable transition 

away from internal combustion engine vehicles (ICEVs). Moreover, it is essential to incorporate 

sustainability considerations across the entire value chain of EVs to ensure a sustainable future. The 

sustainability of EVs extends beyond their usage and includes factors such as battery production, 

charging infrastructure, and end-of-life management. Techno-economic analysis (TEA) and life cycle 

assessment (LCA) are key methodologies used to evaluate the economic and environmental components 

of sustainability, respectively. This dissertation work uses technological performance modeling 

combined with TEA and LCA methods to identify optimal deployment strategies for EV technologies. 

A major challenge with the electrification of transportation is the end of life of battery systems. 

A TEA is utilized to assess the economic viability of a novel Heterogeneous Unifying Battery (HUB) 

reconditioning system, which improves the performance of retired EV batteries before their 2nd life 

integration into grid energy storage systems (ESS). The modeling work incorporates the costs involved in 

the reconditioning process to determine the resale price of the batteries. Furthermore, the economic 

analysis is expanded to evaluate the use of HUB reconditioned batteries in a grid ESS, comparing it with 

an ESS assembled with new Lithium-ion (Li-ion) batteries. The minimum required revenue from each ESS 

is determined and compared with the estimated revenue of various grid applications to assess the 
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market size. The findings reveal that the economical market capacity of these applications can fully meet 

the current supply of 2nd life EV batteries from early adopters in the United States (U.S.). However, as EV 

adoption expands beyond early adopters, the ESS market capacity may become saturated with the 

increased availability of 2nd life batteries. Despite the growing interest in EVs, their widespread adoption 

has been hindered, in part, by the lack of access to nearby charging infrastructure. 

This issue is particularly prevalent in Multi-Unit Dwellings (MUDs) where the installation of 

chargers can be unaffordable or unattainable for residents. To address this, TEA methodology is used to 

evaluate the levelized cost of charging (LCOC) for Battery Electric Vehicles (BEVs) at MUD charging hubs, 

aiming to identify economically viable charger deployment pathways. Specifically, multiple combinations 

of plug-in charger types and hub ownership models are investigated. Furthermore, the total cost of 

ownership (TCO) is assessed, encompassing vehicle depreciation, maintenance and repair, insurance, 

license and registration, and LCOC. The study also conducts a cradle to grave (C2G) LCA comparing an 

average passenger BEV and a gasoline conventional vehicle (CV) using geographical and temporal 

resolution for BEV charging. The TCO is coupled with the C2G GHG emissions to calculate the cost of 

GHG emissions reduction. The analysis demonstrates that MUD BEVs can reduce both costs and GHG 

emissions without subsidies, resulting in negative costs of GHG emissions reduction for most scenarios. 

However, charging at MUDs is shown to be more expensive compared to single-family homes, 

potentially leading to financial inequities.  Additional research is required to assess the advantages of 

public charging systems and commercial EVs.  

While home charging is typically the primary option for EVs, public charging infrastructure is 

necessary for long-distance travel and urgent charging. This is especially important for commercial 

vehicles, which rely on public charging to support their operational requirements. Various charging 

systems have been proposed, including Direct Current Fast Charging (DCFC), Battery Swapping (BSS), 

and Dynamic Wireless Power Transfer (DWPT). This work includes a comparison of the TCO and global 
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warming potential (GWP) of EVs of various sizes, specifically examining the charging systems utilized to 

determine precise location-specific sustainability outcomes. Nationwide infrastructure deployment 

simulations are conducted based on the forecasted geospatial and temporal demand for EV charging 

from 2031 to 2050. The TEA and LCA incorporate local fuel prices, electricity prices, electricity mixes, 

and traffic volumes. To account for the adaptability of variables that highly influence TCO and GWP, 

optimistic, baseline, and conservative scenarios are modeled for EV adoption, electricity mixes, capital 

costs, electricity prices, and fuel prices. The change to TCO by switching from ICEVs to EVs is shown to 

vary across scenarios, vehicle categories, and locations, with local parameters dramatically impacting 

results. Further, the EV GWP depends on local electricity mixes and infrastructure utilizations. This 

research highlights the dynamic nature of EV benefits and the potential for optimal outcomes through 

the deployment of multiple charging technologies. 

In conclusion, this research underscores the significance of strategically deploying EV charging 

infrastructure and utilizing retired EV batteries for grid energy storage. Instead of posing a challenge at 

end of life, these batteries are shown to be a solution for grid energy storage. The study also highlights 

the economic advantages of different charging infrastructure types for EVs and their role in driving EV 

adoption, resulting in potential GHG emissions reductions and consumer savings. Ultimately, 

widespread EV adoption and decarbonization of electrical grids are pivotal in achieving climate goals. 
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CHAPTER 1: INTRODUCTION 

 
 
 

In pursuit of national climate goals, the United States (U.S.) White House has set a target for 

electric vehicles (EVs) to account for 50% of vehicle sales by 2030 [1]. This ambitious target aims to 

reduce greenhouse gas (GHG) emissions from the transportation sector, which contributed to 29% of 

U.S. GHG emissions in 2019 [2]. Achieving this target necessitates a significant transformation of both 

the electric grid and the transportation system. To support this transition, there is a critical need for 

technological solutions that facilitate strategic charging infrastructure deployment and address end-of-

life challenges. These solutions must establish a sustainable future for both sectors, and their 

effectiveness can be evaluated through Techno-Economic Analysis (TEA) and Life Cycle Assessment 

(LCA). 

The widespread use of lithium-ion (Li-ion) batteries in EVs and grid storage is driven by their 

lightweight design, high energy density, low self-discharge, and reliable performance [3,4]. Li-ion 

batteries are expected to remain the preferred battery chemistry in the near future, and ongoing 

research and development (R&D) efforts are focused on improving Li-ion battery chemistries to develop 

the next generation of battery technologies [5–7]. However, it is projected that the world's lithium 

reserves can only produce batteries for approximately one billion EVs with a capacity of 40 kilowatt-

hours (kWh) each. Therefore, to sustainably meet the projected demand for EVs and grid storage, 

recycling or reusing EV batteries will be necessary [8]. The increasing demand and limited supply of Li-

ion batteries will have remarkable impacts on various supply chains, particularly in managing EV 

batteries at the end of their 1st life. The retired EVs of early adopters have recently given rise to the need 

for effective strategies to handle these batteries. 
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The end of the 1st life for EV batteries occurs when the State of Health (SOH) of the battery 

reaches approximately 80%. At this point, the batteries can no longer reliably meet the high-

performance criteria required for use in EVs. However, they can still be potentially reused for less 

demanding applications or recycled. While Li-ion recycling will likely be necessary, research by Olsson et 

al. (2018) suggests that reuse and subsequent recycling are complementary processes that extend the 

resource cycle more effectively than recycling alone [9]. To address this challenge, Original Equipment 

Manufacturers (OEMs) have initiated 2nd life battery businesses and have begun selling batteries to 2nd 

life enterprises. However, minimal work has been done to evaluate the economic viability of utilizing 2nd 

life EV batteries in grid applications. As more grid applications seek to reduce the costs of energy 

storage, targeted R&D, based on TEAs of innovative technological solutions such as 2nd life battery 

reconditioning, are needed to cost-effectively utilize the increasing supply of 2nd life batteries resulting 

from broader EV adoption. 

Early EV adoption has predominantly been limited to residents of single-family homes, partly 

due to their higher household incomes and access to charging infrastructure [10]. Battery electric 

vehicles (BEVs), the most popular type of EV currently [11], rely solely on stored electrical energy from 

charging. Thus, charging infrastructure is needed to limit range anxiety at several vehicle destinations 

such as homes, public, and workplaces [12,13]. In California, home charging was found to be the primary 

charging location for 94% of EV owners living in single-family homes [14]. However, only 48% of 

California's EV owners living in Multi-Unit Dwellings (MUDs) primarily charged their vehicles at home 

due to limited access to home chargers [14]. Deploying chargers at MUDs presents unique challenges, 

including outdated or inadequate electrical service and high capital costs for MUD residents [14–16], 

many of whom have low-to-moderate incomes [10,14]. To overcome the financial barriers faced by 

residents from installing EV charging infrastructure, it is necessary to explore solutions that can reduce 

charging costs and shift the upfront investment burden to potential investors, such as private 
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companies, utilities, and property owners. TEA can used to evaluate the charging costs associated with 

various ownership models and charger types for MUD charging hubs. Thus, the economic feasibility of 

different combinations can be assessed, enabling a comprehensive evaluation of charger deployment 

options. 

While home charging remains the primary option for personal vehicle owners, public charging 

infrastructure is essential, particularly for those without access to home charging or requiring additional 

range during their journeys [12,13]. Unlike home charging, which typically occurs at the vehicle’s 

destination, public charging typically occurs between vehicle destinations and thus interrupts the 

vehicle’s trip [12]. As vehicle electrification expands to include medium and heavy-duty classes, which 

have larger battery capacities than light-duty vehicles [17–19], it becomes imperative to explore 

charging technologies that can reduce charging durations and enhance convenience. 

Traditional charging technologies involve physically connecting the vehicle to a plug while 

stationary, with power levels typically ranging from 1.9 to 50 kilowatts (kW), resulting in lengthy 

charging times. However, advancements in charging systems offer alternatives that can dramatically 

reduce these durations. Direct Current Fast Charging (DCFC) enables vehicles to be charged with up to 

350 kW of power while stationary, substantially reducing the time required for charging. Battery 

Swapping (BSS) eliminates real-time charging by replacing the depleted battery with one charged in 

advance using a traditional charger [20]. Dynamic Wireless Power Transfer (DWPT) enables vehicles to 

charge while driving on high traffic density roadways using 50 kW pads embedded in the pavement [21]. 

Each of these charging systems possesses distinct parameters and characteristics [22–24], and it is 

essential to assess their economic viability and environmental impact through TEA and LCA to ensure 

their sustainability before widespread deployment. 
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Previous TEA and LCA studies of EVs have highlighted the importance of EV usage and battery 

production in terms of GHG emissions and total cost of ownership (TCO) [22,25]. The cost of EV usage 

primarily stems from charging, which varies depending on the location and charger type, emphasizing 

the importance of evaluating the economics of charging systems [26]. Additionally, the emissions 

associated with EV usage depend on the grid mix that supplies electricity to the charger [27]. Literature 

has shown substantial variations in GHG emissions reductions across different U.S. state grid mixes, 

ranging from 10% to 87% in 2020 [28]. Furthermore, considering that grid mixes are non-uniform and 

GHG emissions vary throughout the day, it is important to consider the time-of-day that the EV charges 

[29]. The choice of charging system also impacts usage emissions, and the size of the vehicle's battery 

can differ between charging systems. Notably, DWPT charging enables the use of smaller batteries, 

resulting in reduced costs and emissions associated with battery production [24]. Moreover, the total 

GHG emissions from battery production, on a per kWh discharged basis, can be lowered by providing a 

2nd life to the batteries. 

This dissertation aims to address the aforementioned challenges faced by the transportation 

system and electric grid resulting from vehicle electrification. The scope of this work spans the entire 

value chain of EV systems, including an assessment of the economic viability of 2nd life battery systems 

and a detailed evaluation of home and public charging infrastructure through integrated TEA and LCA. 

By using TEA and LCA methodologies, this research seeks to gain a comprehensive understanding of EV 

technologies from both economic and environmental perspectives. The outcomes of this work will serve 

as valuable guidance for decision-makers and support future R&D efforts for EV technologies. 
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CHAPTER 2: TECHNO-ECONOMIC ANALYSIS OF A NOVEL METHOD TO 

RECONDITION SECOND LIFE ELECTRIC VEHICLE BATTERIES1 

 

 

 

2.1 Introduction 

In 2019 there were 2.8 million (M) EVs produced globally, and EVs are expected to be a quarter 

of market sales by 2030 [30]. This surge in EV adoption emphasizes the expanding market for EV 

batteries and underscores the importance of exploring opportunities for their 2nd life usage. By 

leveraging the potential of 2nd life applications, the lifecycle of EV batteries can be extended, 

contributing to resource efficiency and sustainability in the EV industry.  

While OEMs have begun developing 2nd life battery applications, minimal work has been done to 

evaluate the economic viability of using 2nd life EV batteries in grid applications. Mathews et al. (2020) 

determined a utility scale solar-plus-storage system would be profitable if 2nd life batteries are sold for 

<60% of the price of a new battery [31]. Neubauer and Pesaran (2011) determined area regulation to be 

profitable while electric service power quality, wind generation grid integration, short duration 

transmission and distribution upgrade deferral, and voltage support will likely be profitable [32]. Song et 

al. (2019) found 2nd life batteries used in wind farms currently not economical [33]. Other studies 

determined residential demand management coupled with photovoltaics would be profitable [34], [35]. 

Heymans et al. (2014) found that load leveling would only be profitable under favorable conditions [36]. 

 
1 This chapter was published as a peer-reviewed journal article: Horesh N, Quinn C, Wang H, Zane R, Ferry M, Tong 
S, Quinn J. Driving to the future of energy storage: Techno-economic analysis of a novel method to recondition 
second life electric vehicle batteries. Applied Energy 2021;295:117007. 
https://doi.org/10.1016/j.apenergy.2021.117007. 
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While these studies have investigated the market potential for 2nd life ESS, these studies simply 

leveraged prior estimates for battery acquisition costs and performance. This is a major assumption and 

does not accurately capture the market price and performance of 2nd life batteries considering 

technology advancements focused on reconditioning of batteries. 

Cready et al. (2003) quantified the battery resale price and repurposing costs for used Nickel 

Metal Hydride EV battery modules, and the results show that labor dominates the cost of repurposing 

[37]. A study by Neubauer et al. (2015) estimated the costs to repurpose EV Li-ion battery modules, 

however, the resale price was simply calculated by multiplying the price of a new battery by the health 

factor of the 2nd life battery [38]. While various studies have estimated the cost of a repurposed 2nd life 

battery systems, to our knowledge none have evaluated the cost of using reconditioning techniques to 

improve the performance of a 2nd life ESS.   

Second life battery reconditioning represents an exciting opportunity to improve the 

performance and thus the value of 2nd life batteries. This research chapter evaluates the economics to 

recondition batteries using a novel reconditioning process that uses a Heterogeneous Unifying Battery 

(HUB) system to improve SOH uniformity of the cells in each battery module without the need to 

deconstruct the battery module. The HUB reconditioning process economics were modeled using two 

different scenarios: reconditioning with grid services (RGS) and reconditioning through energy shuffle 

(RES). The economics of the HUB reconditioning methods are directly compared to the traditional 

repurposing process which sorts battery modules to produce battery packs with similar SOHs. This work 

determines the resale price after HUB reconditioning or repurposing batteries and then expands the 

system boundary of the economic analysis to include energy or power services that leverage the 2nd life 

batteries. The economics of the 2nd life batteries are compared to new Li-ion batteries used for power 

and energy services. Specifically, the cost and performance of the 2nd life and new Li-ion batteries for 

multiple power and energy applications are considered. The work includes a sensitivity analysis to 
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support strategic investment in R&D to drive the technology towards commercialization. The novelty of 

the work includes the economic evaluation of 2nd life battery reconditioning that enables improved 

performance as compared to repurposing with an extended system boundary used to evaluate the 

viability of grid ESS.  

2.2 Methods 

This work includes a battery performance model coupled with techno-economic analysis (TEA) 

methodology to evaluate the economic viability of two novel HUB reconditioning pathways (RGS and 

RES) as well as a direct comparison to traditional repurposing. The RGS scenario performs grid services 

at certain times in the day to charge and discharge the battery modules which is required for 

reconditioning. The RES scenario constantly shuffles energy between two battery banks reducing the 

time for reconditioning. 

Two system boundaries were used to evaluate the technology; the first determined the 

minimum battery selling price for a 2nd life battery and the second expanded the system boundary to 

determine the minimum required revenue from a grid ESS that uses 2nd life batteries. All scenarios and 

methods assumed relevant expenses and revenue streams to operate a facility in California. California 

was chosen since it has an expanding battery storage market and the most EV sales in the U.S. since 

2011 [39], [40]. 

2.2.1 TEA Overview 

2.2.1.1 System Boundary and Scenarios 

Figure 1 shows a framework and description of the scenarios, economics, sensitivity analysis, 

and market potential developed. The economic analysis included two system boundaries: 2nd Life Resale 

and Grid ESS. The resale system boundary was limited to the scenarios of reconditioning or repurposing 

of batteries to define the required resale price of 2nd life batteries. The grid ESS system boundary 
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included all aspects of the resale system boundary and extended the economic assessment to also 

include the use of 2nd life batteries in an ESS to provide either power or energy grid services. 

Repurposing was used for comparison in both the 2nd life resale and grid ESS system boundary scenarios 

while a new Li-ion battery scenario was used as a comparison to the reconditioned batteries in the grid 

ESS system boundary. A sensitivity analysis was performed for the energy market ESS to identify high 

impact inputs of each battery type. Also, the market potential of the ESS with different battery types 

was determined based on the revenues and market sizes of energy and power applications. 

 

Figure 1: Flow diagram of the scenarios used to evaluate the economics of 2nd life battery resale and 

grid ESS. The resale scenario was for 2nd life batteries that use the processing methods of RGS, RES, and 

repurpose. The ESS scenario was for new and 2nd life batteries that were used in either power markets or 

energy markets. The sensitivity analysis was for energy market ESS that have new Li-ion, RGS, RES, or 

repurposed batteries. The economic outputs from the ESS were used to determine the market potential 

of each of the battery types. 

As shown in Figure 1, three 2nd life battery processing scenarios were modeled: RGS, RES, and 

repurpose. The economics of these methods are presented in the subsequent sections of 2.2.2 

Recondition with Grid Services (RGS), 2.2.3 Recondition through Energy Shuffle (RES), and 2.2.4 



9 
 

Repurpose. Each of these methods had specific operational parameters that characterized the key 

performance of the process with a summary presented in Table 1. 

Table 1: Key performance parameters for 2nd life battery processing scenarios RGS, RES, and repurpose. 

Assumption RGS RES Repurpose Units 

Annual Battery Yield 122 (Eq. 1) 219 (Eq. 1) 219 (Eq. 2) MWh 

Battery Acquisition Price 35 [38] 35 [38] 35 [38] $/kWh 

C-rate 0.5 (a) 0.5 (a) 0.5 (a) 1/h 

Viable Product 99% [38] 99% [38] 99% [38] % 

 Reconditioning/ Repurposing 
Cycles 

300 (a) 300 (a) 2 (a) 
Cycles 

Cycles per Day 3.35 (b) 6 (c) - Cycles/day 

Roundtrip Efficiency 90% [31] 90% [31] 90% [31] % 

DC-DC Converter/ BMS Cost 500 (a) 500 (a) - $/kW 

Electricity Purchase Price 0.16 [41] 0.14 [42] 0.16 [41] $/kWh 

Warranty 5% [38] 5% [38] 5% [38] % 

Adapter Tub Price 100 (a) 100 (a) - $/kWh 

Facility Size 2,463 (T. A2) 2,463 (T. A2) 1,620 (T. A2) m2 

(a) Developer input (b) Based on CAISO RTM energy arbitrage from 2018 [43] (c) 4-hour cycles and 24-
hour operation 

All methods evaluated both a baseline and target scenario. The baseline scenario represented 

the best estimates for a system built in 2019. The target scenario represented potential improvements 

to the system based on preliminary findings from R&D efforts. The assumptions in Table 1 were for the 

baseline scenarios and the assumptions for the target scenario for each method are shown in Table A1. 

The target scenarios include potential reductions in the reconditioning cycles, labor task times, 

warranty, transportation distance, hardware costs, and acquisition price. 

The annual battery yield (Table 1) of each method was used to compute the variable operational 

costs and annual revenue from battery sales. The annual battery yield of the two HUB reconditioning 

methods varied depending on the number of reconditioning cycles that could be achieved each day due 

to the system operation. The annual battery yield (Y) was calculated (Eq. 1) based on the facility 

reconditioning capacity (Crec), number of reconditioning cycles needed (N), and average number of 

reconditioning cycles per day (n). 
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𝑌 = 𝐶𝑟𝑒𝑐 ∗ 365 ∗ 𝑛/𝑁   (1) 

The annual battery yield of the repurposing method (Y) was set equal to the annual battery yield 

of the RES method for comparison. Repurposing was assumed to take three days (t). The facility 

repurposing capacity (Crep) was calculated using Eq. 2. 

𝐶𝑟𝑒𝑝 = 𝑌 ∗ 𝑡/365   (2) 

2.2.1.2 TEA Methodology 

Capital costs, operational costs, grid revenue, and annual battery yields from the facility were 

used as inputs into a yearly discounted cash flow rate of return (DCFROR) analysis. This methodology is 

consistent with previous repurposing studies that quantified the cost of repurposing [37], [38]. The 

DCFROR used nth plant assumptions which most notably assumed an internal rate of return (IRR) of 10%, 

a 35% tax rate, and debt financing at 50%. The capital costs included all of the expenses incurred in year 

zero of the cashflow during the 1-year build period which included the facility building, grid connection 

equipment, and facility equipment expenses. The operational costs consisted of the expenses incurred 

after year zero while the facility was in operation for years 1 through 20. The operational costs did not 

account for changes to market prices over time. The DCFROR analysis calculated the minimum battery 

selling price by adjusting the required revenue from the 2nd life battery resale such that a Net Present 

Value (NPV) of zero was achieved in the 21-year cashflow. The minimum battery reselling price was 

computed for the HUB reconditioned and repurposed batteries. The economic analysis for the grid ESS 

determined the required revenue in a 31-year cashflow for the ESSs instead of a selling price for the 

batteries. For both system boundaries, the reconditioning and repurposing facilities were assumed to 

operate for 20-years. Thus, a 31-year cashflow was used for the grid ESS to account for the batteries 

processed in the final year of the facility that were then used in ESSs; the batteries processed in the final 

year of the facility were retired from the grid ESS 10 years later (Table 2). The new Li-ion battery 

scenario used a 21-year cashflow that also computed the required revenue from the ESS. Each grid ESS 
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was assumed to operate for 20 years for both 2nd life and new Li-ion ESSs. All expenses were converted 

to 2019 values using producer price indexes.  

2.2.2 Recondition with Grid Services (RGS) 

We assumed that OEMs disassemble battery packs and extract modules prior to acquisition. 

Once the modules were acquired and transported to the reconditioning facility, the modules underwent 

the reconditioning process to balance the SOH of the cells within the modules without deconstruction. 

The HUB system used a modular DC-DC power converter matrix with isolated series output connections 

to achieve fully independent control of energy flow to each of the battery cells [44]. This provided 

model-based control that drove each battery’s SOH towards uniformity. The energy flow required for 

reconditioning was used to perform grid services in the energy arbitrage market. 

2.2.2.1 Capital Costs 

The capital costs of the reconditioning facility consisted of the facility building ($2.4M [45], [46], 

[47], [48]), grid equipment ($3.1M [49], [50]), and facility equipment ($9.2M [47], [51], [52], [53]). To 

determine these costs, a commercial sized facility with a reconditioning capacity of 30 MWh-nameplate 

was assumed. The electronics power rating (P) was computed (Eq. 3) based on the reconditioning 

capacity (C), average usable battery capacity (U), and C-rate (R) (Table 1). 

𝑃 = 𝐶𝑈𝑅   (3) 

A detailed breakdown of the analysis for the facility size (Table A2), facility building (Table A3), 

grid equipment (Table A4), and facility equipment (Table A5) is presented in Appendix A. 

2.2.2.2 Operational Costs 

Electricity 

The aim of using grid services to complete reconditioning cycles was to gain a net profit from 

charging and discharging the batteries. Energy arbitrage was chosen as the grid service since it had the 
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appropriate C-rate and load profile for reconditioning batteries. The grid profits were estimated to be 

0.02 $/kWh per cycle or $820K annually for energy arbitrage in the California Independent System 

Operator (CAISO) Real-Time Market (RTM) using 2018 historical pricing data; details of our study are 

provided in Appendix A [43]. This estimate accounted for the grid participation fees and efficiency losses 

for a ½ C-rate system. The auxiliary electricity used for lighting and HVAC (heating, ventilation, and air 

conditioning) was assumed to be supplied by Pacific Gas and Electric rather than from CAISO and the A-

10 Tariff (0.16 $/kWh) was used and thus resulted in an annual cost of $82K [41].  

All Other Costs  

The remainder of the operational costs were transportation (90 thousand (K) $/year [54], [55]), 

battery acquisition (35 $/kWh-nameplate [38]), variable labor (6.31 $/kWh-nameplate or 772K $/year 

[56], [57]), fixed labor (457K $/year [57], [58], [59], [60]), insurance (80K $/year), and warranty (5% of 

resale price [38]). Appendix A includes details on the costs of transportation (Table A6), labor (Table A7), 

and facility operations.  

2.2.3 Recondition through Energy Shuffle (RES) 

The RES scenario used the same process as in 2.2.2 Recondition with Grid Services to cycle the 

batteries to get a unified SOH. The primary difference was that the energy used for reconditioning was 

supplied by the utility and discharged to another battery bank rather than back to the grid. The energy 

taken from the utility resupplied the energy that was lost due to charging and discharging losses from 

shuffling energy between battery banks. 

2.2.3.1 Capital Costs 

The same building costs ($2.4M) and facility equipment costs ($9.2M) were used as in the 

Recondition with Grid Services scenario (section 2.2.2). The grid equipment ratings were reduced 

relative to the Recondition with Grid Services scenario since the only power drawn from the grid for 
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reconditioning was to replenish the energy lost due to charging and discharging efficiencies. With lower 

ratings, the grid equipment costs were $574K.  

2.2.3.2 Operational Costs 

Electricity 

The electricity used for reconditioning to charge the batteries from the grid was an expense 

since the energy was not discharged back to the grid like in 2.2.2 Recondition with Grid Services. The 

levelized cost of electricity for a continuous load was estimated to be 0.14 $/kWh with the Pacific Gas 

and Electric E-20 tariff (higher load) and the annual electricity cost was estimated to be $808K annually 

[42]. The electricity cost included the electricity used for both auxiliary and reconditioning loads. The 

auxiliary load (72K $/year) was the same as in the Recondition with Grid Services scenario (section 2.2.2) 

but this scenario used a less expensive E-20 tariff for electricity charges. The annual reconditioning load 

(L) was calculated using Eq. 4 based on the reconditioning capacity (C), average usable battery capacity 

(U), roundtrip efficiency (E), and average number of reconditioning cycles per day (n) (Table 1 and Table 

2). 

𝐿 = 𝐶𝑈(1 − 𝐸)𝑛365          (4) 

All Other Costs 

The other operational costs were similar to that of the Recondition with Grid Services scenario 

(section 2.2.2) since the same battery acquisition (35 $/kWh-nameplate), fixed labor (457K $/year), 

insurance (80K $/year), and warranty costs (5% of resale price) were assumed. The energy shuffle 

method had a higher battery yield (Table 1) which increased the total variable costs. The average 

discounted transportation costs were estimated to be $107K per year, and the variable labor costs were 

estimated to be 6.31 $/kWh-nameplate or $1.4M annually.  
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2.2.4 Repurpose 

The repurposing method did not change the SOH of individual cells in modules. Rather, the 

repurposing method sorted modules by their SOHs and then the similar SOH modules were combined to 

make a “new” 2nd life battery pack. The repurposing method required the battery module to be 

inspected, tested, and then binned by SOH. The battery modules were inspected to check the integrity 

of the module prior to charging and discharging. The modules that passed the initial inspection were 

then characterized by charging and then discharging the modules at a ½ C-rate. The modules were 

subsequently binned by sorting and then placing them in a battery pack. The pack was then packaged by 

connecting the contacts and inspecting the pack. The battery pack was tested for quality assurance with 

a full charge and discharge cycle at a ½ C-rate.  

2.2.4.1 Capital Costs 

For comparison purposes, the facility processing capacity was calculated to be 1.8 MWh (Eq. 2) 

in order to have the same annual yield as the RES scenario (Table 1). The capital costs included the 

facility building ($1.7M) and facility equipment ($3.9M). It was assumed that grid equipment was not 

needed since the repurposing facility drew low power and did not perform grid services.  

2.2.4.2 Operational Costs 

Labor 

The operational costs were similar to the reconditioning methods (Sections 2.2.2 and 2.2.3) with 

minor changes presented in Appendix A. The variable labor cost was estimated to be 10.17 $/kWh-

nameplate or $2.2M annually [56], [57]. The fixed labor was estimated to be $470K annually [58], [59], 

[60], [61].  

All Other Costs 
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The same costs as section 2.2.3 were used for transportation (107K $/year), battery acquisition 

(35 $/kWh-nameplate), insurance (80K $/year), and warranty (5% of resale price). The same A-10 

electricity rate (0.16 $/kWh) that was used for section 2.2.2 auxiliary loads was used based on the total 

electricity load [41]. The electricity costs were from the lights, battery testing, and HVAC, and the total 

electricity costs were $100K annually.  

2.2.5 Energy Storage System (ESS) Revenue 

An alternative to computing the selling price of the battery module was to compute the 

required revenue from the battery in a 2nd life grid ESS. The scenarios considered were RGS, RES, 

repurpose, and new Li-ion. The ESSs with 2nd life batteries were compared to a new Li-ion battery ESS 

used for grid applications to determine the competitiveness of each technology. The high impact 

assumptions for each scenario’s estimates are in Table 2.  

Table 2: Major assumptions of ESS with scenarios of RGS, RES, repurpose, and new Li-ion 

Assumption RGS RES Repurpose 
New Li-ion 

Units 
Today 2030 

Battery Module Price NA NA NA 209 [49] 110 [62] $/kWh 

Battery Life 10 [38] 10 [38] 10 [38] 10 [63] 10 [63] Years 

Power Applications 
ESS Cost 

449 [49] 449 [49] 449 [49] 449 [49] $/kW 

Energy Applications 
ESS Cost 

743 [49] 743 [49] 743 [49] 743 [49] $/kW 

ESS Life 20 [64] 20 [64] 20 [64] 20 [64] Years 

C-rate Power 
Applications 

1 [65] 1 [65] 1 [65] 1 [65] 1 [65] 1/h 

C-rate Energy 
Applications 

0.25 [65] 0.25 [65] 0.25 [65] 0.25 [65] 0.25 [65] 1/h 

Individual System Size 4 [65] 4 [65] 4 [65] 4 [65] 4 [65] MW 

Initial SOH/Usable 
Capacity 

80% [66] 80% [66] 80% [66] 100% 100% % 

Depth of Discharge 50% [38] 50% [38] 50% [38] 80% [63] 80% [63] % 

Annual Operating Cost 10 [63] 10 [63] 10 [63] 10 [63] 10 [63] $/kW 
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The assumptions in Table 2 are for the baseline scenario. The target scenario assumptions for 

the ESS are shown in Table A8. The ESS target scenario included all inputs from the resale target 

scenario (Table A1). The target scenario was based on improvements from R&D and projections for ESSs 

in 2025. Specifically, the target scenario reduced the ESS capital cost, ESS operating cost, battery 

acquisition prices, and increased the depth of discharge (DOD). 

2.2.5.1 Energy Storage System Costs 

Capital Costs 

The ESS costs (Table 2) were determined for power and energy applications estimated by Fu et 

al. (2018) [49]. The ESS costs were defined as all ESS costs except for the battery. For power 

applications, the ESS was sized for a 1-hour discharge duration or 4-MW (4-MWh) [65],[67], and the ESS 

was estimated to cost 449 $/kW or $1.8M per ESS [49]. The power applications considered were 

spin/non-spin reserve, voltage support, and frequency regulation. A description of each power 

application can be found in Balducci et al. (2018) [67]. For energy applications, the ESS was sized for a 4-

hour discharge duration or 4-MW (16-MWh) [65],[67], and the ESS was estimated to cost 743 $/kW or 

$3.0M per ESS [49]. The energy applications considered were energy arbitrage, transmission congestion 

relief, and demand charge reduction. A detailed breakdown of costs for the power and energy ESSs are 

shown in Table A9. 

Operational Costs 

Each ESS was assumed to have a yearly operating cost of 10 $/kW [63]. The ESS operational 

costs also included a disposal cost of 5 $/kWh-nameplate for the batteries removed from the ESS. Upon 

disposal, the batteries were recycled by a separate business.  
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2.2.5.2 Second Life Batteries 

The grid ESS cashflow expanded upon the resale cashflows from RGS, RES, and repurpose. The 

cashflows from the resale scenario were expanded upon by adding the costs to build and operate the 

ESSs. A new 2nd life ESS was assumed to be built while the batteries continued to be processed. Each ESS 

was assumed to have debt financing as described in 2.2.1.2 TEA Methodology. Once the batteries were 

processed, they were transported to the ESS site. The batteries were then installed in the ESS and 

connected to the grid to perform grid services; the ESS grid services were different than the grid services 

performed for RGS. The reconditioned batteries were expected to have a longer life than repurposed 

batteries; however, since there was limited aging data for reconditioned batteries, the reconditioned 

batteries and repurposed batteries were assumed to have the same aging behavior. The batteries were 

projected to last for 10 years in a moderate climate such as Los Angeles [38]. Each ESS was assumed to 

last for 20 years of service with the first set of batteries replaced by recently processed batteries after 

10 years of service [64]. ESSs were built until the first set of 2nd life batteries needed to be replaced. 

Thus, new ESSs were built from years 1 through 10. Then in years 11 through 20, the initial batteries 

were swapped with batteries that were recently processed. The ESSs and second set of batteries were 

then decommissioned in years 21 through 30. The total ESS capacity from years 0 through 30 was 

determined as the sum of the capacities multiplied by the DOD (Table 2) of the ESSs at each respective 

time. The maximum capacity of all the ESSs was 1.6 GWh which occurred from years 11 to 20. The ESS 

capacity over time is shown in Figure A1. 

2.2.5.3 New Li-ion Battery 

A yearly DCFROR analysis was used for a new Li-ion battery. The ESS cost and assumptions from 

2.2.5.1 Energy Storage System Costs were used. The new Li-ion batteries were assumed to cost 209 

$/kWh in year zero of the cashflow [49]. The batteries were assumed to last 10 years with an 80% DOD 

before needing replacement [63]. A new Li-ion battery was then be swapped in for a projected cost of 
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110 $/kWh in 2030 [62]. The required revenue for power and energy applications was then calculated 

based on this cashflow.  

2.2.5.4 Market Potential 

The required revenue for the 2nd life ESSs from grid applications were compared to the current 

market revenue from power and energy applications to assess the economic viability. The potential 

capacity (Pcap) from each application that could satisfy the minimum revenue of an ESS at a given 

revenue value was calculated by Eq. 5 using the market capacity (M) and percentile of revenue (Rper).  

𝑃𝑐𝑎𝑝 =  𝑀(1 − 𝑅𝑝𝑒𝑟)   (5) 

For each application, the potential capacity represents the portion of the market capacity with a 

revenue value equal to or greater than the revenue value at the given percentile. Balducci et al. (2018) 

provided a range of revenues from numerous energy storage valuation studies in terms of the minimum 

(0th percentile), 25th percentile, mean, 75th percentile, and maximum (100th percentile) [67]. The mean 

was assumed to be a reasonable approximation of the median. The percentiles of revenue that were not 

specified in Balducci et al. (2018) were linearly interpolated between the given percentiles.  

2.2.6 Sensitivity Analysis 

A sensitivity analysis was performed to identify high impact inputs in the TEA model and 

demonstrate how changes to these high impact inputs impacts the economics of the battery storage 

systems evaluated. Specifically, a sensitivity analysis of all baseline inputs of the ESS scenarios for RGS 

(105 inputs), RES (105 inputs), repurpose (96 inputs), and new Li-ion (24 inputs) were completed for 

energy applications. The 2nd life ESS scenarios included inputs from both the resale and expanded 

system boundaries. The sensitivity analysis varied each input independently by ± 50% and then recorded 

the respective result. A ± 50% variation to the inputs was deemed appropriate to encapsulate the 
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uncertainty of the high impact inputs such as battery life which has been estimated to be between 5 [66] 

and 16 years [31]. 

2.3 Results and Discussion  

The results from this work are presented in three sections: 2nd Life Battery Resale Price for RGS, 

RES, and repurpose processing methods; Grid ESS where 2nd life batteries processed and integrated into 

an ESS for grid applications; and Sensitivity Analysis to support future research direction.  

2.3.1 2nd Life Battery Resale Price 

The minimum viable resale price based on the DCFROR analysis for 2nd life batteries (excluding 

battery performance) is shown in Figure 2 for the RGS, RES, and repurpose processing methods. A 

baseline and target scenario are evaluated for each of the three processing methods and the red 

diamonds denote the minimum viable resale price. Repurposing and RGS are found to be the most 

economical pathway for 2nd life battery processing under the baseline and target scenarios respectively. 

However, the repurpose scenario only provides a 10% advantage in the baseline scenario and assumes 

that the repurposed batteries would have equal lifetime performance as the HUB reconditioned 

batteries. The baseline and target results for 2nd life battery resale are further discussed in 2.3.1.1 and 

2.3.1.2.  
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Figure 2: Baseline and target resale prices per kWh-nameplate for the recondition with grid services, 

recondition through energy shuffle, and repurpose scenarios.  

2.3.1.1 Baseline Scenario 

The baseline resale prices for RGS, RES, and repurposing are 62.21, 61.89, and 55.65 $/kWh-

nameplate respectively. The RES method has a higher annual yield (219 MWh) than RGS (122 MWh). 

The higher throughput for RES is due to the ability to continually recondition the batteries (charge and 

discharge) without the need to wait for optimal times to participate in the energy arbitrage market to 

maximize grid profits (Table 1). While the systems are assumed to be continually cycled, proper charging 

levels are maintained to protect the system electronics from overheating. The repurposing method was 

modeled to have the same annual yield as the RES method of 219 MWh (Table 1). With a higher battery 

yield due to reduced time in the facility, the RES and repurposing processes distribute the fixed capital 

and operational costs across the resale price of more batteries due to a higher annual yield thus 

reducing these impacts.  
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The baseline resale price of RES is lower than RGS, however, the repurposing method has the 

lowest baseline resale price of all the scenarios (55.65 $/kWh-nameplate). The resale price does not 

account for the potential battery life improvement and reliability from reconditioning. Repurposing has 

high labor costs while the HUB reconditioning processes also have high capital costs due to the facility 

equipment, facility building, and grid equipment. The high labor cost of the repurposing method is due 

to the labor intensity of the repurposing process. The impact of the high labor cost for the repurposing 

method is approximately equal to the impact of the high capital cost in the RES method. In the DCFROR 

analysis, an annual operational cost of $1M from years 1 to 20 is equivalent to a capital cost of $9M in 

year 0. Thus, there is a trade-off between increasing capital costs to reduce operational costs and vice 

versa which is demonstrated by the reconditioning and repurposing scenarios.  

One major operational difference between reconditioning and repurposing is that 

reconditioning is an energy intensive process and repurposing is not. The RGS method eliminates 

electrical operational costs required for battery reconditioning cycles by participating in the energy 

arbitrage market. Using historical CAISO data, the simulated grid service revenues from energy arbitrage 

are 6.40 $/kWh-nameplate of battery or 0.02 $/kWh of profit per cycle for RGS. Since the RES method 

does not participate in grid services, our model assumes a 10% energy loss during each reconditioning 

cycle that must be resupplied at a cost of 0.14 $/kWh (Table 1) to maintain system functionality. The 

total cost of electricity used for reconditioning cycles for the RES method is 3.36 $/kWh-nameplate. 

Thus, the difference between the RGS profits and RES costs for reconditioning cycles is a substantial 9.76 

$/kWh-nameplate. The RGS method does not generate enough revenue from grid services to offset the 

opportunity cost of waiting to perform reconditioning cycles. The opportunity cost is defined as the time 

the batteries are idle when they could be actively reconditioned through energy cycling. This 

opportunity cost results in a lower annual yield and therefore fewer battery sales. As a result, the RGS 

method has the highest resale price for the baseline scenario.  
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Under the baseline scenario, the RGS method could be competitive with the RES method if the 

revenue from grid services increases. The baseline resale price of RES is 61.89 $/kWh-nameplate. For the 

baseline RGS to have the same resale price as the baseline RES, the grid services would need to profit 

$857K annually which is a mere 4% increase to the baseline revenue assumption. This value could be 

surpassed by stacking the grid services of frequency regulation and energy arbitrage [68]. This is not 

included in the primary analysis of the RGS method due to uncertainties on the compatibility of 

frequency regulation with the SOH balancing process and participating in these two markets 

simultaneously.  

The estimated resale prices of each of these methods can be compared to the resale prices of 

prior EV battery repurposing studies [37], [38]. Repurposing batteries consists of testing and repackaging 

modules without balancing the cell SOH in modules [38]. Based on 2nd life battery health factors, 

Neubauer et al. (2015) calculated the resale price of repurposed batteries to have equivalent values to 

new EV Li-ion batteries [38]. Neubauer et al. (2015) estimated the resale price of batteries after 

repurposing to be between 44 $/kWh and 180 $/kWh [38]. Cready et al. (2003) estimated the resale 

price of repurposed batteries to be 145 $/kWh [37]. Cready et al. (2003) used a bottom up approach to 

determine the resale price which consisted of a repurposing cost of 64 $/kWh and an acquisition price of 

81 $/kWh. These studies, like ours, show battery acquisition and labor to be the largest contributors to 

the resale price. These studies also show capital costs to be a minor contributor to resale price like ours. 

Our analysis determines the repurposing battery resale price to be 55 $/kWh under the baseline 

scenario. Thus, all the methods analyzed in our study are shown to be on the lower-end of estimated 

repurposing costs primarily due to a lower acquisition price associated with recent reductions to new Li-

ion EV battery prices. The target scenario is shown to have lower repurposing costs than all the previous 

studies considered above. 
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2.3.1.2 Target Scenario and Future Reductions 

The target scenario improves the battery economics by reducing the reconditioning cycles, labor 

task times, warranty, transportation distance, hardware costs, and acquisition price based on expected 

improvements to the process through research and commercialization. The majority of reductions for all 

methods is due to the acquisition price decreasing from 35 $/kWh-nameplate (Table 1) in the baseline 

scenario to 21.50 $/kWh-nameplate in the target scenario (Table A1). The target RGS scenario (34.41 

$/kWh-nameplate) and target RES scenario (35.51 $/kWh-nameplate) are less than the target resale 

price of repurposing (37.93 $/kWh-nameplate), primarily due to fewer reconditioning cycles needed for 

SOH balancing. With fewer reconditioning cycles, the battery yield (Eq. 1) is increased, consequently 

reducing the impact of fixed capital and operational costs through a higher annual yield. As a result, RGS 

has a lower resale price than RES.  

There are several improvements that could be made to the reconditioning process to further 

decrease the price in the future. Decreasing the number of cycles required to balance battery module 

SOH by improving balancing schemes would lower the price substantially for the RGS and RES methods. 

Reducing the number of cycles to 50% of the assumed values in the target scenario results in a battery 

resale price of 31 and 30 $/kWh-nameplate for RGS and RES. The capital costs could be reduced by 

decreasing hardware costs from manufacturing. Little reduction to the transportation cost would be 

achievable as this analysis already assumes a class 8 freight truck could be filled to its full capacity with 

batteries. Each method would increase in price if the current transportation regulation is used which has 

a maximum battery weight of 333 kg per truck [54]. The increase in resale price due to transportation 

for the baseline RGS, RES, and repurpose methods would be 6.67, 6.87, and 7.33 $/kWh-nameplate, 

respectively [69], [70], [71]. This assumes that cargo vans are used as the transportation vehicle instead 

of a class 8 freight truck. Lastly, as mentioned in the previous paragraph, a reduction in battery 

acquisition cost ultimately has the largest impact (Figure A2).  



24 
 

New EV Li-ion batteries are estimated to cost 195 $/kWh in 2020 so the 2nd life batteries (RGS 62 

$/kWh) would have a resale price less than a new Li-ion battery today [7]. However, new EV Li-ion 

batteries could optimistically cost as little as 50 $/kWh in 2030 [7]. Therefore, there is uncertainty on the 

competitiveness of 2nd life batteries in the future. With a lower new Li-ion battery price in the future, the 

acquisition price of the 2nd life batteries would likely decrease [38]. Assuming the acquisition price of 2nd 

life batteries decreases linearly as a fraction of the price of new Li-ion batteries, the resale price of the 

2nd life batteries would decrease as shown in Figure A2. In 2030, the new Li-ion baseline price is 

estimated to be 75 $/kWh so the 2nd life acquisition price would be 13.50 $/kWh-nameplate 

representing a 21.50 $/kWh-nameplate reduction compared to the baseline. Each of the baseline 2nd life 

scenarios with the 2030 acquisition price would continue to have a lower price per usable capacity 

(Table 2) than a new Li-ion battery in 2030 (Figure A2). With an adjusted acquisition price, a new Li-ion 

battery would become less expensive than the baseline resale prices of RGS, RES, and repurpose 

scenarios at a price of 43, 43, and 33 $/kWh of usable capacity, respectively. 

Assuming 2nd life batteries to be economical in the future, 2nd life batteries could be used in a 

variety of applications. If a 2nd life battery is of high enough quality it could go back into an EV [72]. 

Alternatively, 2nd life batteries could be used for stationary residential, commercial, and utility 

applications; specifically, 2nd life batteries could be integrated with renewable energy for energy storage 

in residential and utility settings [31], [73]. Finally, 2nd life batteries could also be used to perform 

various grid services such as spin/non-spin reserve, voltage support, frequency regulation, energy 

arbitrage, transmission congestion relief, and demand charge reduction [73].  

2.3.2 Grid Energy Storage System (ESS) 

The system boundary of the analysis is expanded to evaluate the economic feasibility and 

competitiveness of using 2nd life batteries in grid energy storage markets. Baseline and target scenarios 

are completed for the processing methods of RGS, RES, and repurpose. A baseline and target scenario 
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for a new Li-ion battery ESS is used to create a comparison to the 2nd life battery scenarios. The grid 

applications analyzed for two different ESS systems are power applications and energy applications. The 

power applications are sized for applications that require high power and a fast discharge rate (1-hour) 

while the energy applications are sized for applications that require bulk energy and a slow discharge 

rate (4-hour). The minimum required revenue of each scenario is shown in Figure 3 and discussed in 

2.3.2.1 ESS Minimum Revenue. The minimum required revenue of the baseline RES and target RGS 

scenarios are compared in 2.3.2.2 Market Potential to the revenue potentials of power applications 

(spin/non-spin reserve, voltage support, and frequency regulation) and energy applications (energy 

arbitrage, transmission congestion relief, and demand charge reduction). Baseline RES and target RGS 

are the least expensive reconditioning scenarios. The economically viable applications for the baseline 

RES scenario include frequency regulation, transmission congestion relief, and demand charge 

reduction. With improved economics, the target RGS scenario is viable for two additional applications: 

energy arbitrage and spin/non-spin reserve.  
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Figure 3: The required revenue for 2nd life batteries as compared to new Li-ion batteries in (A) power 

markets (B) energy markets with baseline and target scenarios.  

2.3.2.1 ESS Minimum Revenue 

The baseline RGS, RES, and repurpose scenarios are shown to require less revenue for both 

power (P) and energy (E) applications (P: 87-89 $/kW-y; E: 184-194 $/kW-y) than the baseline new Li-ion 

scenario (P: 103 $/kW-y; E: 253 $/kW-y) (Figure 3). This is due to the lower combined costs of 2nd life 

battery acquisition and processing (P: 18-20 $/kW-y; E: 72-80 $/kW-y) relative to the battery acquisition 

cost of a new Li-ion battery (P: 36 $/kW-y; E: 146 $/kW-y). The target new Li-ion battery is shown to 
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have a lower grid revenue requirement (P: 76 $/kW-y; E: 182 $/kW-y) than all the baseline 2nd life 

battery scenarios (P: 87-89 $/kW-y; E: 184-194 $/kW-y) and a higher grid revenue requirement than all 

the target 2nd life battery scenarios (P: 62-63 $/kW-y; E: 122-126 $/kW-y). Overall, the 2nd life batteries 

are preferable to new Li-ion batteries. However, as new Li-ion battery prices are reduced, as shown by 

the target scenario, the answer from this analysis could change. As discussed in 2.3.1 2nd Life Battery 

Resale, the reduction in 2nd life battery price is smaller than the reduction in new Li-ion battery price 

implying a reduction in new Li-ion acquisition costs would be greater.  

The target scenario for new Li-ion batteries in an energy application (Figure 3B) has the largest 

cost reduction from the battery acquisition cost. However, all other power and energy market target 

scenarios see the largest reduction from the ESS equipment costs; the ESS equipment costs are assumed 

to be reduced by 23% in the target scenario [63]. The ESS equipment cost is the largest cost component 

for the majority of scenarios with the exceptions being for the baseline and target new Li-ion energy 

market scenarios. The energy market ESS scenarios are dominated by costs assessed on a per unit 

energy basis such as battery acquisition and processing. Alternatively, the costs assessed on a per unit 

power basis are more prevalent for the power market ESS as shown by ESS operation.  

These results can be compared to benchmarked annual costs found in literature. New Li-ion 

ESSs deployed in 2018 and 2025 are estimated to have annual costs of 294 $/kW and 241 $/kW for 4-

hour systems (energy applications) [63]. Our estimate for the new Li-ion baseline scenario (253 $/kW) is 

lower than the 2018 benchmark and higher than the 2025 benchmark since we used a longer lifetime of 

the ESS (20 years) and the same 10 year lifetime of the batteries. This is mainly driven by the assumed 

longer lifetime in this study (20 years). The new Li-ion target scenario estimate (182 $/kW) is lower than 

both the 2018 and 2025 benchmarks. 
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The results from our study do not account for the value of performance differences among new, 

reconditioned, and repurposed batteries. A new battery is expected to have the best performance since 

the cells have a uniform 100% SOH upon deployment of the ESS. EV battery aging has been shown to 

vary by manufacturer, generating a wide-range of battery performance characteristics [74]. HUB 

reconditioning aims to balance the SOH of cells and continuously monitor the battery’s performance 

over hundreds of cycles. As a result, HUB reconditioning can produce battery modules with an improved 

SOH and also a more accurate understanding of the performance characteristics of the battery modules 

than traditional repurposing can achieve. The performance characteristics of the battery dictate the 

suitability of the ESS to be used for certain power and energy market applications [66]. The minimum 

revenue for both power and energy market ESSs are compared to their respective market application 

revenues in the following section. 

2.3.2.2 Market Potential 

The ESS minimum revenue for power market ESSs (Figure 3A) is compared to the range of 

market revenues from the applications of spin/non-spin reserve, voltage support, and frequency 

regulation. The potential market size of the applications in the U.S. is also considered for spin/non-spin 

reserve, voltage support, and frequency regulation are 6.0-GW, 9.2-GW, and 1.0-GW [65]. The energy 

applications include energy arbitrage, transmission congestion relief, and demand charge reduction 

which have market capacities of 18.4-GW, 36.8-GW, and 32.1-GW in the U.S. [67].  

The potential capacity of the power and energy applications that could satisfy the minimum 

required revenue of the ESSs (Figure 3) are shown in Figure 4. Market size data from Eyer & Corey 

(2010) and revenue data from Balducci et al. (2018) are combined using Eq. 5 [65], [67] and shown in 

Figure 4. The minimum required revenue from the baseline and target RES method (Figure 3) is plotted 

by the vertical lines in Figure 4. The market size to the right of the vertical line represents the size of the 

application’s market that could satisfy the revenue requirement of the ESS. 
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Figure 4: Market size for applications based on the total market size [65] and percentile of revenue from 

estimates in literature for energy storage in (A) Power Markets and (B) Energy Markets [67].  

Power Markets 

As shown in Figure 4A, frequency regulation is the only power application necessary to satisfy 

the minimum revenue of the baseline RES ESS. However, at the baseline minimum ESS revenue the 

capacity of the frequency regulation market (63%) to meet that revenue is only 0.64-GW (0.64-GWh). 

This analysis modeled the maximum ESS capacity online for the baseline RES method to be 1.6 GWh so 

the 2nd life batteries could not exclusively be used for frequency regulation or power applications. For 
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the power applications ESS target revenue value (Figure 4A), the 2nd life batteries could be used for 

spin/non-spin reserve and frequency regulation which have potential capacities of 0.27-GW and 0.74-

GW. The target ESS scenario has a maximum capacity online of 2.0-GW, therefore the power 

applications could not satisfy the revenue requirement of the target ESS scenario. The 2nd life capacity of 

the target scenario could satisfy up to 73% of the frequency regulation market size, 5% of the spin/non-

spin reserve market size, and none of the voltage support market size. The 2nd life batteries could also 

be used for energy applications. 

Energy Markets 

The energy applications of transmission congestion relief, demand charge reduction, and energy 

arbitrage each have a higher market capacity than all the power applications combined. As shown in 

Figure 4B, the minimum revenue for the baseline scenario is 194 $/kW-year which could be satisfied by 

the energy applications of demand charge reduction (5.7-GW or 22.8-GWh) and transmission congestion 

relief (5.8-GW or 23.2-GWh). The minimum revenue from the target scenario is 123 $/kW-year which 

could be satisfied by each of the energy applications. Energy arbitrage, transmission congestion relief, 

and demand charge reduction have potential market capacities of 2.2-GW (8.8-GWh), 12.8-GW (51.2-

GWh), and 13.5-GW (54.0-GWh) at the target scenario’s minimum revenue value. The target scenario 

2nd life capacity (0.5-GW or 2-GWh) could satisfy up to 0.6% of the total market size (87.3-GW or 349-

GWh) for the considered energy applications. The results indicate that the reconditioned batteries in 

this analysis could have their revenues satisfied by power and energy applications. However, it is also 

important to consider the total size of the 2nd life EV battery market in the U.S.  

Overall 2nd Life Market 

The size of the total 2nd life EV market can be approximated based on the cumulative capacity of 

EVs sold in the U.S. The cumulative capacity of EV batteries sold from 2010 to 2019 is 61.5-GWh in the 
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U.S. [75].  A fraction of the total capacity of EVs is expected to have a 2nd life. Bloomberg New Energy 

Finance assumed that about 27% of the EV batteries available in 2025 could be used for 2nd life 

applications based on their end of 1st life performance [76]. The reconditioning process has the potential 

to enable a larger portion of available batteries to be used for 2nd life applications due to performance 

improvement. The size of the 2nd life market will ultimately be dictated by the demand from economical 

applications.  

This analysis assumes that only 2nd life batteries will satisfy the markets for the power and 

energy applications considered. The total potential capacity of 2nd life batteries that could have their 

baseline revenue satisfied by the three economical grid applications considered is 46.6-GWh. For the 

target scenario, the total 2nd life capacity that could be satisfied is 115-GWh from the five economical 

applications considered. If only 27% of the EV batteries sold from 2010 to 2019 have a 2nd life (16.6-

GWh), the baseline and target ESS scenario would have their revenues satisfied by participating in the 

power and energy markets. If all of the EV batteries sold from 2010 to 2019 have a 2nd life (61.5-GWh), 

then the target scenario would be able to satisfy all of the batteries’ minimum revenues however the 

baseline scenario would only be able to satisfy 76% of 2nd life batteries’ minimum revenues.  

The range of application revenues represent the distribution of revenue values determined in 

literature. The study by Balducci et al. (2018) looked at studies that examined multiple electricity 

markets such as CAISO, New York Independent System Operator (NYISO), and Midcontinent 

Independent System Operator (MISO) [67]. Each of these electricity markets have different generation 

sources, transmission networks, and loads which impact the value of an ESS for certain applications. The 

potential ESS market size for the applications is also dependent on the generation sources and loads. 

The revenue differences between electricity markets indicates that 2nd life batteries could be economical 

in certain markets and not economical in others.  
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2.3.3 Sensitivity Analysis 

Sensitivity analyses of the baseline inputs for RGS, RES, repurpose, and new Li-ion are 

completed for 3.2 Energy Storage System energy applications. The sensitivity analyses of the TEA inputs 

are shown in Figure 5 for the 10 most sensitive inputs from each scenario.  

 

Figure 5: Sensitivity analysis of the 10 most sensitive model inputs for (A) RGS ESS (B) RES ESS (C) 

repurpose ESS (D) new Li-ion ESS. 

As shown in Figure 5, the DOD is the most sensitive variable for all scenarios. For 2nd life 

batteries, the DOD is typically operated between 15% to 65% state of charge which is considered best 

practice [31]. The aging of reconditioned 2nd life batteries is an area of uncertainty so the DOD may have 

a different optimal operating range than repurposed batteries. The battery life is one of the top four 

most sensitive variables for each scenario. The lifetime of 2nd life batteries is an area of uncertainty since 
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there is limited aging data on 2nd life batteries. A 50% increase to the battery lifetime is shown to have a 

much lower impact than a 50% decrease due to the time value of money in the DCFROR analysis. The 

battery acquisition price is a sensitive variable for every scenario in Figure 5 since it is a high cost in the 

cashflows. The battery acquisition price also makes the viable product for the repurposing and 

reconditioning scenarios very sensitive, as shown in Figure 5A-C. A lower viable product results in more 

batteries acquired which are disposed rather than used in the ESS. In Figure 5A-B, the reconditioning 

time is sensitive since it determines the battery yield. The roundtrip efficiency of the RES scenario 

(Figure 5B) is shown to be sensitive due to its impact on the reconditioning electricity cost from charging 

and discharging cycles. The sensitivity analysis also shows that decreasing the cost of the ESS installation 

and electrical balance of system will lower the minimum revenue required. The TEA assumptions, 

including the internal rate of return, loan term, income tax rate, and loan interest rate, are shown to be 

sensitive in Figure 5. Therefore, the TEA results would change substantially with different economic 

assumptions, but the comparisons of the technologies should remain consistent.  

2.4 Conclusion 

The cost to process batteries for a 2nd life was determined for the methods of RGS, RES, and 

repurposing with a comprehensive high-fidelity model. The results indicated the RES is likely the most 

cost-effective reconditioning method. The traditional repurposing approach was shown to be less 

expensive than reconditioning for the baseline scenario but more expensive for the target scenario. The 

resale price of reconditioned batteries was determined to be between 34 $/kWh and 62 $/kWh. This 

range of resale prices was less than the price of a new Li-ion battery today and most estimates for 2030. 

The 2nd life battery ESSs were shown to be more economical compared to new Li-ion ESSs for both 

power and energy applications. The 2nd life ESSs were determined to be economically feasible for both 

power and energy applications with the latter having a much larger potential market size. The combined 

market size of power and energy applications is expected to be able to satisfy the market size and 
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minimum revenue of 2nd life battery ESSs in the U.S.. R&D should be focused on reducing battery prices, 

ESS costs, and 2nd life processing costs as well as reducing the uncertainty of 2nd life battery 

performance. 
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CHAPTER 3: TECHNO-ECONOMIC AND LIFE CYCLE ASSESSMENT OF 

MULTI-UNIT DWELLING ELECTRIC VEHICLE CHARGING HUBS2 

 
 
 

3.1 Introduction 

In an effort to achieve national climate goals, in 2021 the U.S. set a target for EVs to reach 50% 

of vehicle sales by 2030, and subsequently allocated $7.5 billion from the Bipartisan Infrastructure Law 

to fund the deployment of charging infrastructure [1]. Home charging has emerged as the primary 

venue for personal EV charging, yet MUDs currently lack the charging infrastructure needed to support 

EV adoption [14]. Oftentimes, MUD management may need to facilitate charger installations by 

remedying restrictions such as policies and parking arrangements [77]. Deploying chargers at MUDs can 

be challenging due to outdated or insufficient electrical service and expensive capital costs for MUD 

residents [14–16]. Therefore, the deployment of chargers at MUDs using public and private funds will be 

necessary to not only provide equitable access to home charging but also facilitate the adoption of BEVs 

[10,14] to lower vehicle GHG emissions [28] from the growing population of 80M multi-unit dwellers in 

the U.S. [78]. 

As a result, detailed information on the economics and environmental benefits of MUD charging 

hubs is needed to strategically deploy the chargers. However, there is minimal information on the 

levelized cost of charging (LCOC) at MUDs since most studies focus on early BEV adopters who live in 

single-family homes [10]. A recent national level analysis by Borlaug et al. (2020) overlooked MUDs and 

found the LCOC to vary by charger power level, region, charger utilization, price of electricity at different 

 
2 This chapter was published as a peer-reviewed journal article: Horesh N, Zhou Y, Quinn J. Home charging for all: 
Techno-economic and life cycle assessment of multi-unit dwelling electric vehicle charging hubs. Journal of Cleaner 
Production 2023;383:135551. https://doi.org/10.1016/j.jclepro.2022.135551. 
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charging locations (single-family home, workplace, public), and charger capital costs (installation, 

procurement) [26]. Moreover, Borlaug et al. (2020) determined BEVs charged at single-family homes to 

be less expensive to fuel than gasoline conventional vehicles (CVs). However, Level 2 (L2) charger 

installation costs are typically more expensive at MUDs than at single-family homes [16] and vary greatly 

between MUDs based on the existing electrical infrastructure [77]. Consequently, Williams and DeShazo 

(2015) found MUD BEV L2 charging to only be less expensive than gasoline CV fueling for some 

scenarios, which depended on installation costs and utilizations [79]. Williams and DeShazo (2015) used 

a range of installation costs and utilizations coupled with pricing scenarios to compute the net present 

value. Thus, Williams and DeShazo (2015) did not attempt to estimate the average LCOC at MUDs but 

rather demonstrated pricing structures that yield a positive net present value [79]. Alternatively, 

Peterson (2011) estimated the average LCOC at MUDs in California, and the results show the LCOC to be 

less expensive when shared by multiple users [77]. However, Williams and DeShazo (2015) and Peterson 

(2011) only considered installation costs and California electricity prices, neglecting key TEA inputs like 

operational costs and taxes [77,79].  

Regardless, qualitative findings from Peterson (2011) indicate initial capital costs are the primary 

barrier for charger installations by prospective owners [77]. A review by LaMonica and Ryan (2022) 

found current charger owners to include utilities, property owners, private companies, and vehicle 

owners [80]. Hall and Lutsey (2017) note that utilities may be well suited to develop charging 

infrastructure in underserved areas such as MUDs but may be regulatory restricted in certain states [81]. 

While some studies have evaluated the LCOC at MUDs for resident-owned stations [77,79], these 

studies did not model community charging hubs or include real-world utilization data, utility and private 

company ownership models, or high-fidelity techno-economic analysis (TEA) modeling. To guide 

decision-makers (policymakers, BEV owners, MUD owners, investors) on how to economically deploy 

charging infrastructure at MUDs, the LCOC needs to be quantified using MUD specific inputs to 
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determine the financial impact of who owns the hub, what types of chargers are deployed, and where 

the chargers are deployed. 

Furthermore, the economic efficiency of reducing GHG emissions from the vehicle sector with 

MUD BEVs depends on not only the LCOC but also the BEV GHG emissions at the service location. 

Specifically, BEV emissions depend on the grid mix that supplies the electricity to the chargers [27]. 

Burnham et al. (2021) found U.S. state grid mixes to vary greatly, resulting in a wide range of BEV GHG 

emissions reductions (2020: 10% to 87%) [28]. Additionally, since grid mixes are not uniform and hence 

GHG emissions vary significantly throughout the day, Fernández (2018) deduced that BEV GHG 

emissions should correspond with when the BEV charges [29]. Thus, BEV GHG emissions results from 

Burnham et al. (2021) and other studies nonspecific to MUD BEV charging schedules do not accurately 

estimate MUD BEV GHG emissions. While many studies have investigated BEV GHG emissions, to the 

author’s knowledge none have coupled the MUD charging profile with a temporal grid mix and 

evaluated the cost of GHG emissions reduction for MUDs. 

This research chapter compares the economics and GHG emissions of BEVs at MUDs and 

gasoline CVs using both geospatial and temporal resolution. MUD specific parameters are leveraged to 

determine the LCOC for different community charging hub ownership models (resident, utility, private 

company), charger types (Level 1 (L1), L2, DCFC), and locations (50 states). This work uses data from 

thousands of real-world MUD charging sessions to characterize the charging schedule and utilization of 

chargers at MUDs. This work features a sensitivity analysis to identify high impact TEA and LCA inputs. 

Furthermore, the economic system boundary expands upon the LCOC to account for the TCO for BEVs 

and gasoline CVs. The difference between BEV’s and gasoline CV’s TCO and GHG emissions are then 

combined to calculate the cost of GHG emissions reductions, an indicator of the cost effectiveness of 

GHG reducing technologies. The contribution of this work is the quantification of MUD specific LCOCs for 
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different scenarios, MUD specific GHG emissions, and the cost of GHG emissions reductions, all of which 

can be used by decision-makers to strategically deploy MUD charging infrastructure. 

3.2 Methods 

This work evaluated the sustainability of MUD community charging hubs with a coupled TEA 

(3.2.1) and LCA (3.2.2) for different ownership models, regions, charger types, and cases as shown in 

Figure 6. The TEA calculated the LCOC at MUDs and the LCA quantified the cradle to grave (C2G) GHG 

emissions from multi-unit dwellers’ BEVs. The MUD charging hub was compared to the refueling costs 

and GHG emissions of an equivalent gasoline CV to assess sustainability metrics. The final stage of this 

analysis leveraged the results of the TEA and LCA to determine the cost of GHG emissions reduction 

(3.2.3). These analyses used the Charging Hub Economic and Costing Tool (CHECT) developed at Argonne 

National Laboratory [82]. 
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Figure 6. Flow diagram of the scenarios used to evaluate the levelized cost of charging (LCOC), total cost 

of ownership (TCO), cradle to grave (C2G) greenhouse gas (GHG) emissions, and cost of GHG emissions 

reduction for Multi-Unit Dwelling (MUD) battery electric vehicle (BEV) charging. The MUD BEV was 

compared to a gasoline conventional vehicle (CV) for each analysis. The sensitivity analysis was 

performed for the LCOC and GHG emissions.  

3.2.1 Techno-economic Analysis 

3.2.1.1 Techno-economic Analysis Scenarios 

As shown in Figure 6, the TEA evaluated the economics for a community charging hub with 9 

baseline and 9 optimistic scenarios (ownership model, charger type) at one service location in each U.S. 

state. The hub served 30 BEVs with one DCFC, three L2, and six L1 chargers located in community 
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parking spaces at or nearby a MUD. The acquisition of the spaces was assumed to be facilitated by MUD 

management or the lot owner at no additional cost [77]. For each charger type, a baseline and optimistic 

case was formulated such that the baseline case was representative of current economics and the 

optimistic case was representative of future economics achieved. The baseline case assumed mean 

capital and operational costs (Table 3) along with real-world utilization data while the optimistic case 

assumed the minimum capital and operational costs (Table 3) combined with increased utilization in the 

future. 

Table 3. Capital and operational costs of Level 1, Level 2, and DCFC chargers for baseline and optimistic 

cases. 

Parameter Optimistic Baseline Units 

Capital Costs    

Level 1 Procurement $0 [83] $56 [83] $/charger 

Level 1 Installation $0 [83] $171 [83] $/charger 

Level 2 Procurement $2,270 [15] $2,500 [15] $/charger 

Level 2 Installation $1,436 [16] $4,266 [16] $/charger 

DCFC Procurement $21,105 [15] $29,442 [15] $/charger 

DCFC Extra Cable $1,583 [15] $2,638 [15] $/extra-cable 

DCFC Installation $9,188 [84] $25,578 [84] $/charger 

Credit Card Reader $343 [15] $700 [15] $/charger 

Operational Costs    

Network Contract $198 [15] $223 [15] ($/charger-year) 

Data Contract $83 [15] $161 [15] ($/hub-year) 

Level 2 Maintenance $23 [26] $125 [26,85] ($/charger-year) 

DCFC Maintenance $211 [26] $1,472 [26,85] ($/charger-year) 

 

The ownership model of the MUD charging hub dictated the applicability of each cost from 

Table 3, since the ownership model determined who paid for the charging infrastructure and how the 

hub was managed. In this study, three ownership models were formulated: resident, utility, and private 

company. Under a resident ownership model, it was assumed that either the residential property owner 

(condo, building) or homeowner association owned the charging hub [77], and therefore had a 

residential load. Based on our discussions with two utility companies (Commonwealth Edison and 

Baltimore Gas & Electric), the utility ownership model assumed that the utility owned the charging hub 
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and billed the customers along with the existing residential building load. A private company that owned 

the charging hub, such as a charger vendor, automaker, or investor, would require a separate load from 

the MUD building and be classified as a commercial load.  

3.2.1.2 Techno-economic Analysis Methodology 

Capital costs, operational costs, electricity costs, and charger utilization at the MUD charging 

hub were inputs into the 31-year DCFROR, which is a consistent methodology with other TEA studies 

[86,87]. The DCFROR assumed capital debt financing of 50% with an annual 6% interest rate over a 10-

year period; combined state and federal income tax of 26%; sales tax of 4.5%; and an IRR of 3% for 

resident, 6% for utility, and 10% for private company owners. The initial capital costs included 

procurement, installation, and credit card reader and were assumed to be incurred during the build 

period, the first year of the cashflow. The chargers were modeled to be replaced after 15-years [26] of 

operation, which required an additional procurement capital cost and debt financing in year 16. After 

the build period (year 1), the operational costs, electricity costs, and charger utilization were applied for 

30-years or two charger lifetimes. The costs and utilization were set to be constant throughout the 

entire 31-year cashflow. The 31-year DCFROR calculated the LCOC by solving for the minimum energy 

selling price such that a net present value of zero was achieved (Eq. B1-B8). All costs were converted to 

2021 values using producer price indexes [88–90].  

3.2.1.3 Capital Costs 

The capital costs from Table 3 were scaled by the number of chargers by type for the modeled 

MUD charging hub: six L1, three L2, and one DCFC station with one extra cable. The charging hub had 

three types of capital costs: 1) procurement (baseline: $40K; optimistic: $29K), the cost to acquire the 

chargers and extra DCFC cable; 2) installation (baseline: $39K; optimistic: $13K), the make-ready costs of 

the site and installation costs of the chargers; and 3) credit card reader (baseline: $7.0K; optimistic: 

$3.4K), the device that collected payment from users at each station.  
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3.2.1.4 Operational Costs 

The three types of operational costs (Table 3) for the modeled charging hub (six L1, three L2, 

and one DCFC station) were 1) data contracts (baseline: 160 $/year [15]; optimistic: 83 $/year [15]), 

which provided internet capabilities to the charging hub; 2) network contracts (baseline: 2.2K $/year 

[15]; optimistic: 2.0K $/year [15]), which collected data and enabled smart charging; and 3) maintenance 

(baseline: 1.9K $/year [26,85]; optimistic 280 $/year [26]), estimated from literature (1% [26] to 10% 

[85]  for the baseline scenario to be  % of each station’s procurement cost annually. Based on our 

discussions with two utility companies (Commonwealth Edison and Baltimore Gas & Electric), data and 

network contracts were included for utility and private company ownership models but not for resident 

ownership models.  

3.2.1.5 Charger Utilization 

EV charging session data (Figures B1-B2) from Electric Vehicle Widescale Analysis for 

Tomorrow’s Transportation Solutions (EV WATTS) were collected intermittently from October 2019 

through October 2021 [91]. The charging data at MUD venues were processed (detailed in Appendix B) 

to determine MUD charger utilization behavior (Figure B3) for 6.6-kW L2 and 50-kW DCFC; L1 utilization 

was simulated from the L2 sessions. To determine the utilization at each station (Table 4), the mean 

daily utilization (sessions/day-charger), mean session power (kW), and mean charge duration 

(hours/session) were calculated for L2 and DCFC. The number of chargers at the hub was found to not 

clearly impact utilization (Figure B4) likely because the charger per vehicle ratio is far from reaching 

saturation. Therefore, more chargers are installed in the locations with high charging demand. The 

baseline case used outputs directly from EV WATTS data to compute the total daily energy consumption 

(kWh/day-charger) using Eq. 6.  𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑖𝑙𝑦 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = (𝐷𝑎𝑖𝑙𝑦 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛) (𝑆𝑒𝑠𝑠𝑖𝑜𝑛 𝑃𝑜𝑤𝑒𝑟) (𝐶ℎ𝑎𝑟𝑔𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛) (6) 
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The optimistic case used an increased utilization that could be realized by a mature market [92]. 

The utilization demonstrated by Tesla Superchargers (>50-kW), which averaged 171 kWh/day-charger in 

July 2019, was used as the reference point to estimate an optimistic utilization rate of the future MUD 

charging hub [93]. To calculate the total daily energy consumption (Eq. 6), the optimistic case used the 

mean session power and mean charge duration from EV WATTS but increased the mean daily utilization 

(sessions/day-charger) such that the charger would be used 30% of the time [92], as shown in Eq. 7.  

𝐷𝑎𝑖𝑙𝑦 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = (30%) (24)/ (𝐶ℎ𝑎𝑟𝑔𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛)  (7) 

Table 4. Charger utilization of Level 1, Level 2, and DCFC for cases (a) baseline [91] & (b) optimistic [92]. 

Charger Type 

Daily Utilization 

(sessions/day-

charger) 

Session Power 

(kW) 

Charge Duration 

(hours/session) 

Total Daily Energy 

Consumption 

(kWh/day-

charger) 

Level 1 1.0a, 1.3b 1.5 5.4 8.0 a, 11 b 

Level 2 1.6 a, 2.0 b 5.2 3.6 30 a, 37 b 

DCFC 2.6 a, 11 b 33 0.65 56 a, 240 b 

 

3.2.1.6 Electricity Costs 

The MUD hub’s electricity costs included an electricity rate ($/kWh), demand charge ($/month-

kW), and fixed charge ($/month-hub). The charger utilization schedule (Figure B3) was coupled with an 

appropriate utility rate schedule based on each scenario’s service location  ownership model  and 15-

minute peak power demand (47-kW). The peak power demand was computed as the maximum summed 

product of the number of active chargers (Figure B3) and session power (Table 4). Utility rate schedules 

in each U.S. state (Tables B1-B2) were acquired from the Utility Rate Database [94] (except California 

[95,96]) for residential (resident, utility) and commercial loads (private company). The three focus 

locations (Chicago, Illinois; Westchester, New York; and Los Angeles, California) were chosen since they 

have a large MUD presence and different commercial electricity schedule characteristics (Appendix B).  
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3.2.1.7 Gasoline Equivalent Cost 

The gasoline equivalent cost ($/kWh) of an average passenger vehicle at the focus locations was 

computed using Illinois, New York, and California fuel prices from January to November 2021. The 

gasoline equivalent cost (Gas) was computed using Eq. 8 with the following four inputs: 1) energy per 

gallon (gal) of gasoline (EGG = 33.7 kWh/gal), 2) location (L) gasoline price (PL = 3.1-4.1 $/gal [97–99]), 3) 

powertrain efficiency ratio (PER = 4.5), which is the amount of tractive work relative to the fuel energy 

consumed for an average passenger BEV (155 miles per gallon gasoline equivalent (MPGGE)) and 

gasoline conventional vehicle (34 MPGGE) from 2020 to 2050 [100], and 4) BEV charging efficiency (CE = 

0.85) [100]. 

𝐺𝑎𝑠𝐿 = (𝑃𝐿)(𝑃𝐸𝑅)(𝐶𝐸)/(𝐸𝐺𝐺)  (8) 

3.2.2 Life Cycle Assessment 

The LCA utilized the Greenhouse gases, Regulated Emissions, and Energy use in Technologies 

(GREET) model from 2021 [100] to compare the C2G GHG emissions of an average U.S. passenger 

gasoline CV (34 MPGGE) to an average passenger BEV (155 MPGGE) at MUDs. The C2G system boundary 

was composed of two cycles from GREET 2021: 1) the fuel-cycle (3.2.2.1) and 2) the vehicle-cycle 

(3.2.2.2) [100]. The functional unit was grams (g) of Carbon Dioxide equivalent (CO2e) per mile driven.  

3.2.2.1 Fuel-cycle 

The fuel-cycle emissions in GREET included the average (rather than marginal [101]) emissions 

from the feedstock, fuel, and vehicle operation [100]. The fuel-cycle emissions were determined with 

geographical (state) and temporal (hourly & yearly) resolution for BEVs and temporal (yearly) resolution 

for gasoline CVs. The GREET model included projections for improved vehicle fuel economies (kWh/mi) 

from 2020 to 2050. Accordingly, the GREET model was run from 2020 to 2050 with 5-year increments 

for both gasoline CVs and BEVs. All default inputs from GREET for a gasoline CV were used and most 

default inputs from GREET for a BEV were used except the grid mix [100]. Specifically  GREET’s default 
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grid mixes were replaced with grid mix projection data from Cambium 2020 (detailed in Appendix B) 

[27] to enhance the geographical (state & U.S. aggregate) and temporal (hourly) resolution of the BEV 

fuel-cycle GHG emissions. 

3.2.2.2 Vehicle-cycle 

The second cycle of the C2G system boundary was the vehicle-cycle, and the vehicles were 

assumed to use the default conventional materials [100]. For BEVs and gasoline CVs, the vehicle-cycle 

included emissions from components; assembly, disposal, and recycling (ADR); batteries; and fluids. The 

change to C2G GHG (Δ C2G GHG) emissions from BEVs relative to gasoline CVs was computed using Eq. 9 

which combined the vehicle-cycle (VEH) GHG emissions with the fuel-cycle (FUEL) GHG emissions.  

∆ 𝐶2𝐺 𝐺𝐻𝐺 = (𝐹𝑈𝐸𝐿𝐵𝐸𝑉 + 𝑉𝐸𝐻𝐵𝐸𝑉 − 𝐹𝑈𝐸𝐿𝐶𝑉 − 𝑉𝐸𝐻𝐶𝑉)/ (𝐹𝑈𝐸𝐿𝐶𝑉 + 𝑉𝐸𝐻𝐶𝑉)  (9) 

3.2.3 Cost of Greenhouse Gas Emissions Reduction 

In culmination, the cost of GHG emissions reduction was evaluated at the focus locations to 

determine the cost effectiveness of reducing GHG emissions from deploying BEVs rather than gasoline 

CVs. The cost of GHG emissions reductions was evaluated by combining the respective TEA and LCA 

results for BEVs and gasoline CVs. The system boundary of the TEA was expanded to determine the TCO 

($/mi) to match the LCA’s C2G system boundary. The TCO was computed using the Alternative Fuel Life-

Cycle Environmental and Economic Transportation (AFLEET) [25,102] modeling framework and inputs 

from 2020 (assumptions in Appendix B). The TCO includes vehicle depreciation, maintenance and repair, 

insurance (state dependent), license and registration (state dependent), and LCOC (scenario 

dependent). Custom inputs were entered into AFLEET to update vehicle prices [103] and be consistent 

with this study’s TEA  LCOC  and LCA  fuel economy & vehicle lifetime  assumptions. The TCO was 

calculated for the 54 BEV LCOC scenarios and 3 gasoline CVs (gas CV) refueling scenarios from 3.2.1. The 

cost of GHG emissions reduction was calculated using Eq. 10 with the following numerator and 

denominator: the numerator was the BEV TCO scenario (n) minus the corresponding gasoline equivalent 
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(CV) TCO at the location L and the denominator was the average (2020-2050) BEV’s C2G GHG emissions 

at the location L minus the average (2020-2050) gasoline CV’s C2G GHG emissions. 

𝐶𝑜𝑠𝑡 𝑜𝑓 𝐺𝐻𝐺𝑛 = (𝑇𝐶𝑂𝐶𝑉,𝐿 − 𝑇𝐶𝑂𝐵𝐸𝑉,𝑛)/ (𝐶2𝐺𝐵𝐸𝑉,𝐿 − 𝐶2𝐺𝐶𝑉)   (10) 

3.2.4 Sensitivity Analysis 

A sensitivity analysis was performed to identify   sensitive TEA and LCA inputs. All TEA (46) and 

major LCA (8) inputs were independently adjusted by ±50%. The sensitivity analysis of the TEA was 

performed for 9 baseline LCOC scenarios (charger types, ownership models) at each focus location 

(Illinois, New York, California). The sensitivity analysis of the LCA was performed for the U.S. aggregate 

mix scenario in 2020 and 2050. 

3.3 Results and Discussion 

The results from this work are presented in three sections: Techno-economic Analysis, Life Cycle 

Assessment, and Cost of Greenhouse Gas Emissions Reductions. The TEA section presents the LCOC at 

MUDs, the LCA section presents the GHG emissions reductions from MUD BEVs relative to gasoline 

conventional vehicles, and the cost of GHG emissions reduction section combines the results from the 

LCA and TEA to evaluate the cost of GHG emissions reduction based on the LCOC scenarios. 

3.3.1 Techno-economic Analysis 

This section consists of three parts: the LCOC in 3 focus locations with all charger levels 

considered, the LCOC in 50 states focusing on L2, and a sensitivity analysis. Capital, operational, and 

electricity costs combined with utilization estimates are used to determine the costs associated with 

multiple charger options (L1, L2, DCFC) and charging hub ownership models (resident (Res.), utility 

(Util.), private company (PrC.)) to evaluate 9 baseline and 9 optimistic charging scenarios at each hub 

location. The LCOC is shown to vary substantially between charger types, charging locations, ownership 

models, and cases.  
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3.3.1.1 Focus Locations 

The MUD charging LCOC results for the focus locations (Illinois, New York, California) are 

presented by major cost component, with a direct comparison to a traditional gasoline fueled vehicle in 

the same three locations based on 2021 gasoline fuel prices (Figure 2). The gasoline equivalent cost is 

presented in terms of the charging cost on per kWh supplied basis. Results show the economically 

optimal charger is either a L1 or L2 depending on ownership type and location. DCFC has the highest 

improvement potential to be cheaper than the gasoline equivalent with higher utilization. 
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Figure 7. Breakdown of the baseline and optimistic levelized cost of charging (LCOC) for a Level 1 (L1), 

Level 2 (L2), and Direct Current Fast Charging (DCFC) station at a Multi-Unit Dwelling (MUD) in Illinois 

(IL), New York (NY), and California (CA) for resident (Res.), utility (Util.), and private company (PrC.) 

ownership models. The levelized cost of charging is compared to the gasoline equivalent cost (Gas) in the 

same three locations in 2021 [97–99]. 
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Two key metrics are considered to determine the best charger type for BEV owners: BEV owner 

savings from the LCOC (0.12-1.02 $/kWh) relative to the gasoline equivalent cost (0.35-0.47 $/kWh); and 

the performance, assessed here as the charging duration (L1: 5.4 hours; L2: 3.6 hours; DCFC: 0.65 hours) 

needed for the BEV to reach the desired state of charge. DCFC is considered to have the best 

performance since it has the shortest charging duration (Table 4). However, the baseline LCOC scenario 

for DCFC (0.42-1.02 $/kWh) is shown to be economically disadvantageous relative to the gasoline 

equivalent for every ownership model and location. Alternatively, the baseline LCOC scenarios for L1 

(0.14-0.36 $/kWh) and L2 (0.18-0.36 $/kWh) are shown to be economically favorable to the gasoline 

equivalent. Therefore, under the baseline case, which represents current market conditions and 

utilization, L1 and L2 are the suggested charger types due to their economical LCOCs with L2 chargers 

demonstrating a better performance. However, if the future economics encompassed by the optimistic 

case are achieved (higher utilization, reduced costs), then there will be significant cost savings for DCFC 

(44-79%) and only minor cost savings for L1 (7.3-30%) and L2 (13-37%) compared to the baseline. 

Resultantly, the optimistic LCOC scenario for DCFC (0.15-0.35 $/kWh) is economically advantageous 

relative to the gasoline equivalent and has a similar LCOC as L1 (0.12-0.30 $/kWh) and L2 (0.14-0.31 

$/kWh). Thus, DCFC has a competitive LCOC and the best performance making it the most appealing 

charger type for BEV owners under the optimistic case. 

The ownership model, in addition to the charger type, has a substantial impact on the LCOC 

especially for the baseline case. The ownership model may be determined by a combination of the 

preferences of the property manager or residents and the desires or allowances of the local utility or a 

private company to fulfill the MUD’s charging needs. The ownership model determines the following:    

the type of utility schedule (residential, commercial), which impacts the electricity rate, demand charge, 

and fixed charge; 2) the applicability of data and network contracts; and 3) the IRR (Res: 3%; Util: 6%; 

PrC: 10%) of the DCFROR, which impacts the capital costs (procurement, installation, credit card reader). 
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For the baseline DCFC scenarios, the ownership model makes a larger change to the LCOC than for L1 

and L2 by contributing a total difference of 10-93% primarily due to the electricity schedule (0-0.30 

$/kWh) and IRR (0.04-0.10 $/kWh). Specifically, the resident and utility ownership models benefit from 

not having a demand charge in their residential schedule, whereas the private company uses a 

commercial schedule that has an expensive demand charge (0.15- .   $/k h  due to DCFC’s high power 

rate (50-k   coupled with the baseline case’s low utili ation  Table 4). Thus, under the baseline case, 

DCFC is much less expensive for resident or utility ownership models than private company ownership 

models.  

Moreover, the resident ownership model is the least expensive ownership model for most 

scenarios (Figure 7). This ownership type uses a residential electricity schedule, avoids data and network 

contract costs, and has the lowest IRR of 3%. Under utility and private company ownership models, the 

combined cost from data (0.01 $/kWh) and network (0.08 $/kWh) contracts are expensive for the 

baseline L1 scenario due to their low utilization (Table 4), suggesting the utility and private company 

ownership models may not be suitable for L1 chargers considering their 19-64% higher LCOC than a 

resident ownership model. The data and network contract costs for baseline L2 (0-0.02 $/kWh) and 

DCFC (0-0.01 $/kWh), however, are minor. In total, the ownership model for baseline L2, which also 

impacts the electricity schedule (0-0.03 $/kWh) and IRR (0.01-0.03 $/kWh), is shown to be of lower 

importance to the LCOC (9.1-33%) than for baseline L1 and DCFC. Likewise, the optimistic case shows 

the ownership model to have a minimal impact on the LCOC for each charger type, 0.06 $/kWh for L1, 

 .   $/k h for L2  and  . 3 $/k h for DCFC. The optimistic case’s higher utilization and reduced costs 

decrease several LCOC components that are affected by the ownership model including the electricity 

schedule (demand charge and fixed charge), data and network contracts, and IRR (procurement, 

installation, credit card reader). 
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Although the optimistic case reduced many LCOC components, the electricity rate ($/kWh) 

remained unchanged between the baseline and optimistic case (and between charger types) and 

accounted for different portions of each location’s LCOC:  2-89% in Illinois; 3-90% in New York; and 11-

91% in California. When the capital and operational costs are minimal and the utilization is high, as 

shown by the optimistic L1 charger with a resident ownership model (Figure 7), the lowest achievable 

LCOC is limited by the electricity rate at the service location. In this instance, the electricity rate 

contributes 89-91% to the total cost (IL: 0.11 $/kWh; NY: 0.14 $/kWh; CA: 0.22 $/kWh), demonstrating 

that the LCOC is largely dependent on the electricity costs at the service location.  

Utilization has the highest or second highest impact on LCOC. Specifically, it impacts all cost 

components but the electricity rate in Figure 7. The optimistic case assumes a higher utilization such 

that the chargers deliver energy 30% [92] of the time  based on the Tesla chargers’ utili ation [93]. In 

comparison, under the baseline case, which represents current market conditions (Figure B5), the 

chargers deliver energy 22% of the time for L1, 24% of the time for L2, and 7% of the time for DCFC [91]. 

Due to the differences between the observed utilization and the expected utilization, the real-world cost 

of charging may be between this study’s baseline and optimistic LCOC estimates. The median MUD 

charging cost of L2 (0.23 $/kWh) and DCFC (0.25 $/kWh) derived from EV WATTS [91] is shown to be 

similar to the LCOC estimated in this analysis. The lower charging cost from the EV WATTS data could be 

due to the stations receiving subsidies or enduring a loss until higher utilization is achieved [80].   

EV WATTS also shows the L2 charging cost at MUDs is more expensive than at every other venue 

(0.09-0.20 $/kWh) except retail (0.23 $/kWh) [91]. Moreover, the data show L2 charging at MUDs (0.23 

$/kWh) is 64% more expensive than at single-family homes (0.14 $/kWh). When harmonizing the 

assumptions of this study with single-family home charging (assumptions in SI, Figure B6), the equivalent 

home charging scenarios show the single-family home LCOC is 0.16 $/kWh in Illinois (MUD: 0.18 $/kWh), 

0.19 $/kWh in New York (MUD: 0.22 $/kWh), and 0.29 $/kWh in California (MUD: 0.33 $/kWh). Thus, 
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based on the DCFROR, the MUD LCOC with resident ownership is more expensive than the single-family 

home LCOC at every location modeled (IL: 13%; NY: 16%; CA: 14%). Uniquely, MUD charging hubs can 

also be owned by a utility or private company, in addition to a resident, which could make home 

charging at MUDs even more expensive (IL: 38-50%; NY: 32-37%; CA: 21-24%) than at single-family 

homes. Therefore, the authors deduce that charging at MUDs will be financially inequitable relative to 

single-family homes but by a lesser amount (<64%) than the median EV WATTS charging costs suggest. 

3.3.1.2 All States 

The LCOC results at the focus locations (Figure 7) are expanded to all 50 states considering the different 

electricity rates.  

Figure 8 shows the results for L2 while Figures B7-B8 show results for L1 and DCFC. Among 

states, the baseline LCOC varies from 0.09 to 0.43 $/kWh for L1, 0.13 to 0.44 $/kWh for L2, and 0.36 to 

1.02 $/kWh for DCFC. In comparison, gasoline equivalent costs (on September 2, 2022) vary from 0.38 to 

0.60 $/kWh (Figure B9). Gasoline price is from AAA (2022) [104]. 
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Figure 8. Baseline and optimistic levelized cost of charging (LCOC) for Level 2 (L2) stations in 50 U.S. 

states at Multi-Unit Dwellings under residential (Res.), utility (Util.), and private company (PrC.) 

ownership models. The gasoline equivalent cost ranges from $0.38 to $0.60 per kWh (Figure B9). 

As displayed in Figure 8, the least cost ownership model for each state varies by case and 

charger type. The largest difference in baseline LCOC between ownership models for each state ranges 
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from 0.09 to 0.16 $/kWh for L1, 0.03 to 0.12 $/kWh for L2, and 0.06 to 0.44 $/kWh for DCFC. Thus, the 

ownership model’s importance depends on the state. Nevertheless  the resident ownership model has 

the lowest LCOC under the baseline case in nearly all 50 states and in most states under the optimistic 

case for L1 (45) and L2 (38). Contrarily, the private company ownership model has the lowest optimistic 

LCOC for DCFC in 19 states. Therefore, when demand charges are spread across a higher utilization in 

the optimistic case, the total electricity cost of commercial electricity schedules (private company) can 

be less expensive than residential schedules (resident, utility) in certain states. 

3.3.1.3 Sensitivity Analysis 

Sensitivity analysis is performed for every baseline case by ownership model at focus locations. 

Results for the 10 most sensitive inputs are presented in Figure 9 for California. Similar trends are found 

for Illinois (Figure B10) and New York (Figure B11). 
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Figure 9. Sensitivity of techno-economic analysis (TEA) model inputs for a Multi-Unit Dwelling (MUD) 

charging hub in California (CA) with baseline scenarios: Level 1 (L1), Level 2 (L2), and Direct Current Fast 

Charging (DCFC) stations; and resident, utility, and private company ownership models. Abbreviations: 

year (y), federal (Fed.), network (Ntwk.), contract (Contr.), charger (cha.), number (num.). 

As illustrated in Figure 9, utilization (Table 4) is sensitive in every scenario since it affects most 

costs (except electricity rate). EV WATTS charging data [91] represent current charger utilization. The 

daily utilization keeps evolving and hence has a high uncertainty due to factors such as tenant status and 

BEV adoption [77,92]. Additionally, the electricity rate is sensitive especially for L1 and L2. Moreover, the 

electricity rate can substantially vary by service location and rate type. Credit card readers for L1 may or 

may not be needed at the hub depending on the location’s regulations [105]. In addition, sales tax in 

California for L1 is shown to be sensitive under the resident ownership. Furthermore, network contracts 

are sensitive for L1 under utility and private company ownership primarily due to L1 having a lower 

utilization than L2 and DCFC (Table 4). Demand charges in California and New York are sensitive for L2 

stations under private company ownership. Further, the maximum demand of L2 stations under private 

company ownership is sensitive in New York. Lastly, the LCOC is sensitive to the number of DCFC 

stations in California and New York under private company ownership.  

3.3.2 Life Cycle Assessment 

The LCA results include the C2G GHG emissions from the fuel-cycle and vehicle-cycle (BEV: 63 

gCO2e/mi; Gas CV: 35 gCO2e/mi [100]). The fuel-cycle shows the impact of an evolving grid mix for 

charging and vehicle fuel efficiency (detailed in Appendix B, Figure B12). Figure 10 shows the C2G GHG 

reduction from switching from a gasoline CV to a BEV charging at the MUD in each contiguous state. 

Results show the BEVs reduce C2G GHG emissions relative to gasoline CVs (U.S. average) for all 48 

contiguous states’ grid mixes in 2 2  and 2     but some states’ grid mixes have lower BEV GHG 

emissions than others. These results are consistent with previous studies [27,28].  
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Figure 10. Change (Δ) in cradle to grave (C2G) greenhouse gas (GHG) emissions for the 48 contiguous 

states in 2020 and 2050 by using an average passenger Battery Electric Vehicle (BEV) rather than an 

average passenger gasoline conventional vehicle (CV).  

As shown in Figure 10, BEVs can substantially reduce C2G GHG emissions in states with low GHG 

emitting grid mixes like Washington (2020: -81%; 2050: -78%). However, states with high GHG emitting 
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grid mixes like Kentucky (2020: -10%; 2050: -52%) can have a much lower reduction to GHG emissions as 

low emitting states. The total impact of BEV adoption for each state also depends on the number of 

vehicles in the state. For this reason, the states with a high population of MUD vehicles and low GHG 

emitting grids can benefit from MUD vehicle electrification. 

3.3.2.1 Sensitivity Analysis 

Sensitivity analysis is performed for the U.S. aggregate emissions reduction from 2020 to 2050. 

Results are presented in Figure 11. 

 

Figure 11. Sensitivity of Life Cycle Assessment (LCA) inputs for the change in cradle to grave (C2G) 

greenhouse gas (GHG) emissions for the U.S. aggregate grid mix in 2020 and 2050 by using an average 

passenger battery electric vehicle (BEV) rather than an average passenger gasoline (Gas) conventional 

vehicle (CV).  

As shown in Figure 11, results are sensitive to gasoline CV emissions factors and vehicle fuel 

economies. Additionally, grid emissions factors are more sensitive in 2020 while BEV lifetime and BEV 

vehicle-cycle are more sensitive in 2050. This is due to the BEV vehicle-cycle contributing more to total 

BEV emissions when the grid emissions reduce in 2050. Moreover, vehicle-cycle emissions per mile 

driven are reduced with a longer BEV lifetime. 

3.3.3 Cost of Greenhouse Gas Emissions Reduction 

The cost of GHG emissions reduction quantifies the economic efficiency of a GHG reducing 

technology, such as BEVs, which enables strategic cost-effective investments from policymakers. This 
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analysis includes the costs and emissions over the entire life of each vehicle type. The TCO of BEVs (0.45-

0.72 $/mi) and gasoline CVs (0.53-0.60 $/mi), shown in Figure B13, includes the LCOC for every scenario 

determined in 3.3.1 plus all other major cost components (vehicle depreciation, maintenance and 

repair, insurance, and license and registration). Section 3.2 (Figure 10) shows that a BEV has lower C2G 

GHG emissions than an equivalent gasoline CV in Illinois (-60%), New York (-72%), and California (-69%) 

on average from 2020 to 2050 (5-year increments). Results presented in Figure 12 illustrate the costs or 

cost savings in terms of GHG emissions. Specifically, since BEV has lower emissions, a positive cost per 

tonne of CO2e (tCO2e) shows a BEV to be more expensive and a negative cost per tCO2e shows a BEV to 

be less expensive relative to a gasoline CV.  
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Figure 12. Cost of greenhouse gas (GHG) emissions reduction from battery electric vehicles (BEVs) that 

charge at a Multi-Unit Dwelling (MUD) instead of gasoline conventional vehicles from 2020 to 2050. 

Results are based on cradle to grave GHG emissions and the total cost of ownership which includes the 

levelized cost of charging (LCOC) for Level 1, Level 2, and Direct Current Fast Charging (DCFC) in Illinois 

(IL), New York (NY), and California (CA) under resident (Res.), utility (Util.), and private company (PrC.) 

ownership models. A negative cost means that the MUD charging scenario for BEVs would be less 

expensive and reduce GHG emissions relative to a gasoline conventional vehicle. A positive cost means 

that the MUD charging scenario for BEVs would be more expensive and reduce GHG emissions relative to 

a gasoline conventional vehicle. 
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As shown in Figure 12, under certain scenarios, MUD BEVs can have a lower TCO and lower C2G 

GHG emissions than a gasoline CV resulting in a negative cost of GHG emissions reduction. However, 

under baseline parameters for DCFC, the cost of GHG emissions reduction is positive for all (48 to 452 

$/tCO2e) but one scenario meaning MUD BEVs may need a subsidy to be competitive with gasoline CVs. 

In relation to other technologies and policies that reduce GHG emissions, MUD BEVs are shown to 

potentially be a cost-effective (-$318 to $452 $/tCO2e) way to reduce GHG emissions. Gillingham and 

Stock (2018) found vehicle related policies to have positive costs, including Gasoline Tax (18-47 $/tCO2e), 

CAFE Standards (48-310 $/tCO2e), Renewable Fuel Subsidies (100 $/tCO2e), Biodiesel (150-420 $/tCO2e), 

Cash for Clunkers (270-420 $/tCO2e), and Dedicated Battery Electric Vehicle Subsidy (350-640 $/tCO2e) 

[106]. An alternative to vehicle related policies is direct air capture (134-342 $/tCO2e) which also has 

positive costs [107]. In conclusion, this study demonstrates that MUD BEVs can reduce both costs 

(without subsidies) and GHG emissions for the vehicle owners, making MUD charging infrastructure a 

cost-effective investment that can reduce U.S. GHG emissions to help meet the U.S.’s climate goals 

[108]. 

3.4 Conclusion 

The LCOC and C2G GHG emissions for BEVs at MUDs was evaluated and determined to yield 

both driver savings (except baseline DCFC) and GHG emissions reductions (10-86%) across the U.S. 

relative to gasoline CVs. Thus, MUD BEV charging infrastructure can be a cost-effective endeavor to 

reduce GHG emissions. However, regulatory restrictions for utilities and private companies to own and 

operate MUD charging hubs need to be lifted to facilitate greater charger deployment. Currently, 

property owners and homeowner associations may be hesitant to bear the financial and logistical 

burden of owning chargers. The results from this study demonstrate that utility and private company 

ownership models result in a large LCOC premium for L1 chargers and a moderate LCOC premium for L2 

chargers relative to the resident ownership model. Furthermore, DCFC chargers were shown to be 
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expensive for the baseline scenarios but economical for the optimistic scenarios especially under private 

company ownership. Until the optimistic scenario’s parameters are achieved for DCFC  this study 

recommends the following two sets of combinations of MUD charger deployment scenarios: 1) L1 for 

resident ownership which has long charging durations but large cost savings; and 2) L2 for resident, 

utility, or private company ownership which have moderate charging durations and moderate cost 

savings. Moreover, the LCOC is sensitive to charger utilization so adequate usage is needed to be cost 

comparable with the gasoline equivalent. Future work will consider different mixes of L1, L2, and DCFC 

chargers to analyze the trade-off between charging time and cost. 
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CHAPTER 4: COMPARISON OF THE COST AND ENVIRONMENTAL 

IMPACT OF ELECTRIC VEHICLE CHARGING SYSTEMS IN THE UNITED 

STATES3 

 
 
 

4.1 Main 

The U.S. is currently undertaking an ambitious initiative to deploy public charging infrastructure 

to facilitate the widespread adoption of EVs necessary for achieving climate targets [1]. As EVs continue 

to gain popularity in all vehicle classes, ensuring uninterrupted transportation has become a critical 

objective for policymakers and stakeholders [1,13]. While initial efforts have focused on deploying L2 

and DCFC infrastructure [109], a significant challenge lies in the charging time required to replenish EV 

batteries [13]. Long charging times pose potential inconveniences for EV drivers, particularly those 

embarking on long journeys or requiring urgent charging [13]. Addressing this issue necessitates the 

implementation of charging systems capable of addressing consumer needs [13,110]. With the 

electrification of medium-duty vehicles (MDVs) and heavy-duty vehicles (HDVs) [110], the infrastructure 

needs to accommodate a broader range of vehicles beyond passenger cars and light-duty trucks (LDTs) 

[111]. Consequently, it is imperative to transition towards technologies that minimize dwell times for all 

vehicle types, such as 350-kW DCFC, BSS, or DWPT [111].  

Each of these technologies presents a distinct set of benefits and challenges. DCFC operates 

similarly to traditional liquid refueling and allows for scalability by increasing the number of stations 

 
3 This chapter was submitted for publication as a peer-reviewed journal article: Horesh N, Trinko D, Quinn J.C. 
(Manuscript in review). Comparing Costs and Climate Impacts of Electric Vehicle Charging Systems in the United 
States. 
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according to demand. However, the intermittent high-power loads of DCFC present challenges to the 

electrical grid and costs to the consumer [112]. In contrast, BSS optimizes loads by charging batteries 

before they are swapped, but it relies on battery standardization to cater to different vehicle brands 

[111]. Moreover, the implementation of BSSs requires two different sizes: a small size for cars and LDTs 

and a large size for MDVs and HDVs [113]. Alternatively, DWPT inductively charges vehicles while they 

are in motion using embedded electronics in the roadway, effectively reducing the required battery size 

and eliminating the need for vehicles to stop between destinations [24]. DWPT, however, may cause 

traffic disruptions during roadway replacements, has limited deployment experience, and is capital 

intensive [114,115]. Despite the well-understood performance of these technologies, there remains a 

meaningful gap in understanding the economic and environmental implications that would arise from 

their widescale deployment. 

This research chapter addresses this gap by simulating the nationwide deployment of DCFC, BSS, 

and DWPT and assessing the global warming potential (GWP) and TCO of EVs utilizing these systems. By 

leveraging geospatial charging demand, emissions, and cost data, this study determines precise location-

specific sustainability outcomes. Deployment scenarios for the charging systems, spanning from 2031 to 

2050, are formulated based on the geospatial demand derived from traffic data forecasts [116] and 

three EV adoption scenarios (Figures C1-C2): optimistic, baseline, and conservative [110,117]. DCFC and 

BSS charging infrastructure is strategically placed at existing DCFC sites, gas stations, and surface parking 

lots near grid interconnections. At each charging site, the number of charging stations for DCFC and 

number of batteries for each vehicle category using the BSS is adjusted to accommodate the charging 

demand up to the charging site’s limited power  spatial, and time capacities (Eqs. 11-12) [13]. In 

contrast, DWPT infrastructure is deployed along major roadways to ensure that EVs can maintain their 

state of charge, consequently requiring a fixed amount of infrastructure (Eqs. 13-14) [114]. Specifically, 

in optimistic and baseline EV adoption scenarios, DWPT is deployed on interstates, freeways, and 
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principal arterial roads, thereby reducing the required EV battery sizes to a range of 56-kilometers (35-

miles) (Tables C1-C2, Figure C3) [24]. However, with fewer EVs, the conservative EV adoption scenario 

assumes that only interstates are electrified, necessitating the use of full-size batteries for EVs. 

Simulation results are used to determine the levelized cost of charging (Eqs. 15-23) and GWP for each 

DCFC site, BSS site, and DWPT roadway  accounting for each location’s design, utilization, electricity 

costs, and electricity mix. The levelized cost of charging is used to determine the TCO for EVs, which is 

then compared to internal combustion engine vehicles (ICEVs) and hybrid electric vehicles (HEVs) over a 

10-year period per vehicle-kilometer travelled (VKT) [25]. The TCO encompasses location-specific 

charging/fuel costs, license and registration fees, insurance expenses, as well as average depreciation 

and maintenance costs in the U.S. (Tables C2-C7). Additionally, the GWP of EVs is compared to ICEVs and 

HEVs over their full vehicle lifetime per VKT [100]. The GWP encompasses all attributional emissions, 

including local and time-specific charging emissions, local embodied charging infrastructure emissions, 

and the U.S. average embodied vehicle emissions for EVs, as well as fuel and embodied vehicle 

emissions for ICEVs and HEVs (Figures C4-C5, Tables C8-C13, Eq. 24). Finally, to account for the 

adaptability of variables that highly influence TCO and GWP, optimistic, baseline, and conservative 

scenarios are modeled for electricity mixes, capital costs, electricity prices, and fuel prices (Figures C6-

C7). These scenarios result in a total of 81 TCO and 9 GWP comparisons for each charging system with 

results presented as interactive figures. 

4.1.1 Cost Savings from EV Adoption 

The change in combined TCO when switching from ICEVs to EVs (Eqs. 25-26) is illustrated on a 

county level in interactive Figure 13 (Data C1), which displays the results specific to the chosen scenarios 

for EV adoption, capital costs, electricity prices, and fuel prices. The findings suggest that the economic 

impacts of vehicle electrification in the U.S. are location-dependent and subject to variable changes, 

emphasizing the necessity of a dynamic figure. The change in TCO is weighted by EV adoption from 2031 

https://colab.research.google.com/drive/12nsObq1nqsj1W7OY4caAuYccnlXMIhGx?usp=sharing
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to 2050 and presented for baseline scenarios as a percentage in Figure 13A-C and in billions (B) of 2022 

U.S. Dollars (USD) in Figure 13D-F. 

 

Figure 13. Total change in cost due to electric vehicle (EV) adoption. County level results are presented 

for the change in total cost of ownership due to the transition from internal combustion engine vehicles 

(ICEVs) to EVs (A-C) as a percentage and (D-F) in billions (B) of 2022 United States Dollars (USD). Each 

map corresponds to EVs charged via (A, D) Direct Current Fast Charging (DCFC), (B, E) Battery Swapping 

(BSS), and (C, F) Dynamic Wireless Power Transfer (DWPT). The baseline scenarios are shown in this 

static figure with all scenarios shown in the interactive Figure 13 or Data C1. Instructions for the 

interactive figure are in Appendix C. 

Depending on the assumptions for each technology, the TCO of EVs can vary from being more 

favorable than ICEVs to less favorable, as demonstrated in interactive Figure 13 when combining 

conservative fuel prices with optimistic EV adoption, capital costs, and electricity prices, or vice versa. 

Moreover, the change to the TCO by switching from ICEVs to EVs varies depending on the location, with 

local fuel prices, electricity prices, and traffic volumes playing a considerable role in the change. In highly 

trafficked areas, substantial reductions in TCO are typically observed both as a percentage and in USD. 

Conversely, low traffic areas typically show a relative increase in TCO, although the national impact in 

terms of USD remains limited due to fewer VKT. For instance, DWPT demonstrates the largest range of 

TCO change (-31% to +429%) and charging costs (interactive Figure C8), primarily due to the heavy 

dependence on infrastructure utilization for upfront capital cost recovery. Thus, the capital cost 

https://colab.research.google.com/drive/12nsObq1nqsj1W7OY4caAuYccnlXMIhGx?usp=sharing
https://colab.research.google.com/drive/12nsObq1nqsj1W7OY4caAuYccnlXMIhGx?usp=sharing
https://colab.research.google.com/drive/12nsObq1nqsj1W7OY4caAuYccnlXMIhGx?usp=sharing
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allocation for using DWPT roadways may need to be based on a national average to ensure price equity. 

The charging cost for DCFC is heavily influenced by local demand charges (USD/kW per month), 

allocated based on site utilization (interactive Figure C9). In contrast, BSS exhibits minimal price 

variability within a state by optimizing charging times to minimize electricity costs (interactive Figure 

C9). 

Although the charging cost for BSS has limited geographical variability, it is highly dependent on 

the assumptions around capital cost and EV adoption. Specifically, BSS has large capital costs, which can 

be reduced on a per kWh dispensed basis through lower battery prices (90-150 USD/kWh [118]) and 

greater utilization. Moreover, DWPT exhibits a wide range of capital costs (0.94M-5.4M USD/lane-

kilometer [24,114,119]) across different scenarios due to the technology being in the R&D phase. 

Consequently, DWPT can have the highest or the lowest capital cost per kWh dispensed (interactive 

Figure C9). This highlights the opportunity for cost reduction in DWPT, driven by the potential to 

decrease infrastructure capital expenses and its high utilization capacity. In contrast, DCFC incurs the 

highest electricity costs, mainly due to demand charges that are challenging to reduce given the 

requirement of supplying electricity at high power levels simultaneously with urgent charging. Further, 

projected electricity price scenarios exhibit minimal variations (Figure C6). Conversely, the energy or fuel 

price scenarios for ICEVs are highly variable (Figure C7) and impact whether EVs are economically 

favorable. The EV adoption scenarios, however, pose ambiguity as charging costs typically decrease with 

greater EV adoption, yet the combined change to the TCO from all vehicle categories can increase due to 

a higher portion of EVs in a vehicle category where EVs are more expensive than ICEVs.  

The TCO of EVs can be lower than that of ICEVs for cars and LDTs but are in general higher for 

MDVs and HDVs, as illustrated in interactive Figure 14 (Data C1) with results reactive to the selected 

scenarios. Figure 14 presents the aggregated TCO at the national level for ICEVs, HEVs, DCFC-EVs, BSS-

https://colab.research.google.com/drive/12nsObq1nqsj1W7OY4caAuYccnlXMIhGx?usp=sharing
https://colab.research.google.com/drive/12nsObq1nqsj1W7OY4caAuYccnlXMIhGx?usp=sharing
https://colab.research.google.com/drive/12nsObq1nqsj1W7OY4caAuYccnlXMIhGx?usp=sharing
https://colab.research.google.com/drive/12nsObq1nqsj1W7OY4caAuYccnlXMIhGx?usp=sharing
https://colab.research.google.com/drive/12nsObq1nqsj1W7OY4caAuYccnlXMIhGx?usp=sharing
https://colab.research.google.com/drive/12nsObq1nqsj1W7OY4caAuYccnlXMIhGx?usp=sharing
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EVs, and DWPT-EVs under baseline scenarios. The variation of TCO among vehicle categories is due to 

the distinct contributions of each cost component to the overall TCO of the vehicles.  

 

Figure 14. Breakdown of the 10-year total cost of ownership. Results are presented for an average (A) 

passenger car, (B) light-duty truck, (C) medium duty vehicle, and (D) heavy duty vehicle in the contiguous 

United States. The vehicle types include electric vehicles charged via Direct Current Fast Charging (DCFC-

EV), Battery Swapping (BSS-EV), and Dynamic Wireless Power Transfer (DWPT-EV). The EVs are 

compared to an average internal combustion engine vehicle (ICEV) and hybrid electric vehicle (HEV) from 

each vehicle category. The baseline scenarios are shown in this static figure with all scenarios shown in 

the interactive figure or Data C1. Instructions for the interactive figure are in Appendix C. 

The breakdown of the TCO in Figure 14 reveals several noteworthy findings. Depreciation 

emerges as a major cost contributor for cars, LDTs, and MDVs across all technologies. When comparing 

HEVs to ICEVs, there is a trade-off between higher depreciation costs and reduced maintenance and fuel 

costs for HEVs. Similarly, there are lower maintenance costs and higher depreciation costs for EVs in the 

car and LDT categories. In contrast, EV maintenance costs are more expensive for HDVs due to 

expensive battery replacements within the initial 10-year lifespan, resulting from the combined factors 

of higher annual VKT and limited battery cycle life (Table C2). As a result, the DWPT-EV, with a reduced 

battery size that effectively lowers depreciation and maintenance costs, is the only electric HDV to 

demonstrate a cost advantage over an ICEV and HEV. Moreover, electric MDVs charged through DCFC or 

https://colab.research.google.com/drive/12nsObq1nqsj1W7OY4caAuYccnlXMIhGx?usp=sharing
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BSS exhibit cost advantages over ICEVs and HEVs solely in scenarios with high fuel prices, whereas MDVs 

charged via DWPT can achieve lower costs across all fuel price scenarios. 

4.1.2 Reduction to Global Warming Potential from EV Adoption 

The change in GWP resulting from EV adoption (Eqs. 27-28) is examined at the county level in 

interactive Figure 15 (Data C1), and the results reflect the optimistic, baseline, or conservative scenarios 

selected for EV adoption and electricity mixes. The findings highlight the influence of the grid mix and 

infrastructure utilization on GWP changes from 2031 to 2050, presented both as percentages (Figure 

15A-C) and in kilograms of Carbon Dioxide equivalent (CO2e) (Figure 15D-F) for the baseline scenarios. 

 

Figure 15. Total change to global warming potential (GWP) from electric vehicle (EV) adoption. The maps 

are for the change in GWP of on-road vehicle transportation in United States counties by switching from 

internal combustion engine vehicles (ICEVs) to EVs charged via (A, D) Direct Current Fast Charging 

(DCFC), (B, E) Battery Swapping (BSS), and (C, F) Dynamic Wireless Power Transfer (DWPT). The results 

are presented as (A-C) a percentage and (D-F) in billions (B) of kilograms (kg) of Carbon Dioxide 

equivalent. The baseline scenarios are shown in this static figure with all scenarios shown in the 

interactive figure or Data C1. Instructions for the interactive figure are in Appendix C. 

The percent change in GWP is predominantly influenced by the local electricity mix for DCFC-EVs 

and BSS-EVs, while for DWPT-EVs, it is dependent on infrastructure utilization, as depicted in Figure 15. 

In numerous locations, the scenarios for electricity mix and EV adoption change whether EVs increase or 

reduce transportation GWP. Deploying DWPT in areas with lower utilization may increase the county 

https://colab.research.google.com/drive/12nsObq1nqsj1W7OY4caAuYccnlXMIhGx?usp=sharing
https://colab.research.google.com/drive/12nsObq1nqsj1W7OY4caAuYccnlXMIhGx?usp=sharing
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GWP by up to 167% but these areas have a limited national impact in terms of kilograms of CO2e due to 

fewer VKT. Similarly, certain areas may experience an increase in vehicle GWP due to an electricity mix 

with a high carbon intensity, which depends on the scenario. Conversely, when infrastructure utilization 

is high and charging emissions are small due to a clean grid, the reduction in county-level GWP 

emissions can reach up to 71%. 

Overall, EVs have a lower GWP nationally than ICEVs and HEVs across all scenarios and vehicle 

categories, as demonstrated in interactive Figure 16 (Data C1) and summarized in Figure 16 for baseline 

scenarios. The breakdown of GWP reveals that the contribution of time-of-day (Figures C4-C5) charging 

emissions is similar for all EV charging systems, while vehicle and infrastructure emissions differ. 

Figure 16. Breakdown of the lifetime global warming potential. Results are for an average (A) passenger 

car, (B) light-duty truck, (C) medium duty vehicle, and (D) heavy duty vehicle in the contiguous United 

States.  The vehicle scenarios include electric vehicles (EVs) charged via Direct Current Fast Charging 

(DCFC-EV), Battery Swapping (BSS-EV), and Dynamic Wireless Power Transfer (DWPT-EV). Results are 

compared to an internal combustion engine vehicle (ICEV) and hybrid electric vehicle (HEV) from each 

vehicle category. The baseline scenarios are shown in this static figure with all scenarios shown in the 

interactive figure or Data C1. Instructions for the interactive figure are in Appendix C. 

The breakdown presented in Figure 16 reveals that infrastructure emissions have a minimal 

contribution for DCFC-EVs, whereas they become substantial for BSS-EVs and DWPT-EVs, primarily due 

https://colab.research.google.com/drive/12nsObq1nqsj1W7OY4caAuYccnlXMIhGx?usp=sharing
https://colab.research.google.com/drive/12nsObq1nqsj1W7OY4caAuYccnlXMIhGx?usp=sharing
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to the embodied emissions associated with high battery and concrete usage, respectively. Notably, the 

vehicle emissions reduction achieved through a reduced battery size in DWPT-EVs does not fully offset 

the infrastructure emissions when compared to DCFC-EVs. Additionally, HEVs exhibit considerable 

emissions reductions compared to ICEVs, although their emissions are still much higher than those of 

EVs, even in scenarios with conservative EV adoption and electricity mix. This highlights the critical 

importance of EVs in decarbonizing the transportation sector. Moreover, the magnitude of this impact 

depends on both the decarbonization of the electricity mix and the level of EV adoption, as illustrated in 

interactive Figure 16. 

4.1.3 Charging System Implications 

The transition from ICEVs to EVs could lead to remarkable changes to transportation TCO and 

GWP, electricity grid infrastructure, and automotive manufacturing. The results of this study show that 

from 2031 to 2050, on-road transportation costs can change by -22% to +11% and GWP can change by -

53% to -19% depending on various adoption and technology scenarios. During this period, the annual 

average electricity generation would increase by 16% to 38% relative to 2022 levels [120], potentially 

requiring utilities to upgrade distribution and generation capacities. Controlling the charging loads from 

BSS and DWPT could reduce the need for distribution and generation capacity upgrades, in contrast to 

DCFC [113,121]. Furthermore, the total (2031-2050) anticipated battery production needed for full-size 

EV batteries ranges from 13 to 31 terawatt-hours, highlighting the necessity for major expansions to 

production capacity compared to the global production of 700 gigawatt-hours in 2022 [122]. However, 

by using a smaller battery size, DWPT could reduce the battery production needed by 79%. This 

reduction could alleviate the global resource and manufacturing constraints associated with battery 

production [8]. 

DWPT, however, requires an order of magnitude higher capital investment at 134B to 1.7 trillion 

USD, as compared to 41B to 115B USD for BSS and 23B to 52B USD for DCFC. Notably, DWPT provides a 

https://colab.research.google.com/drive/12nsObq1nqsj1W7OY4caAuYccnlXMIhGx?usp=sharing
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much larger share of charging for EVs at 35-61% for cars, 32-61% for LDTs, 29-56% for MDVs, and 67-

83% for HDVs. In comparison, DCFC and BSS are estimated to supply 5% of charging for cars and LDTs, 

0.6% for MDVs, and 14% for HDVs. Therefore, DCFC and BSS deployment assumes EVs will primarily use 

home, workplace, or fleet charging [26,123].  

Given that both DCFC and BSS charging infrastructure can be implemented simultaneously, their 

deployment can be optimized in areas where they offer the most cost-effective solution [124]. For 

instance, BSS is more advantageous in regions with high demand charges or time-of-use rates, whereas 

BSS may be less favorable in low-traffic areas due to expensive upfront capital costs. Moreover, each 

size of the BSS caters to different vehicle categories, with a small size for cars and LDTs and a large size 

for MDVs and HDVs. Thus, the deployment of BSS could be focused exclusively on MDVs and HDVs, 

which is especially advantageous due to their pressing charging requirements coupled with longer dwell 

times when utilizing DCFC to charge their larger battery capacities and the ability for fleets to overcome 

social challenges with BSS. DWPT eliminates dwell times, but has been shown to be most cost effective 

when utilized by all vehicle categories [114]. Further, if the deployment of DWPT is restricted to specific 

corridors, then it may necessitate EVs to utilize full-size batteries and multiple charging systems. 

Ultimately, the most suitable charging system will differ depending on the location and stakeholders 

involved, considering the geographical variations in TCO, GWP, and performance across different 

charging systems. 

4.2 Methods 

An integrated TEA and LCA was developed to comprehensively compare the widescale 

deployment of DCFC, BSS, and DWPT charging infrastructure in the contiguous U.S. In this analysis, the 

three charging systems were deployed independently to facilitate comparison. The analysis focused on 

four vehicle categories: passenger car, LDT, MDV, and HDV For each of the vehicle categories, the TCO 

and C2G GWP were evaluated for each of the EV charging systems and compared to a representative 
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HEV and ICEV with a functional unit of one VKT. The analysis assumed the charging infrastructure was 

implemented in 2030 and online from 2031 to 2050, a 20-year lifetime [114].  

4.2.1 Charging System Energy Usage 

To assess the portion of each vehicle's overall energy consumption contributed from different 

charging systems, the usage of public charging was evaluated for DCFC, BSS, and DWPT. The DWPT 

system was assumed to maintain the vehicle's state of charge while driving on the electrified roadway, 

whereas the DCFC and BSS systems were modeled to provide energy only during daytime trips. The 

vehicle energy efficiencies per VKT were 0.19-kWh for cars, 0.30-kWh for LDTs, 0.68-kWh for MDVs, 

1.34-kWh for HDVs, and 1.35-kWh for buses [100]. The usage of these systems was categorized into 

stationary charging usage (DCFC and BSS) and electrified roadway usage (DWPT). Cars, LDTs, MDVs, and 

HDVs were assumed to utilize the stationary charging systems and electrified roads. Buses were 

included in the usage of the electrified roadway; however, their TCO and GWP were not explicitly 

modeled in the analysis. 

4.2.1.1 Stationary Charging System Usage 

For each vehicle category, the usage of stationary charging systems was modeled separately. 

Cars and LDTs were assumed to have the same usage since they are both considered light-duty vehicles. 

Among light-duty vehicles, only BEVs were assumed to utilize the infrastructure, as plug-in hybrid 

electric vehicles are typically incompatible with the high-power rates of DCFC and the standardized 

battery sizes required for BSS. Hence, it was estimated that 82% of electric cars and LDTs would use the 

infrastructure [125]. Observational data indicated that public charging usage for light-duty vehicles is 

around 6%, resulting in a 5% usage of public charging for electric cars and LDTs [126].  

However, due to the lack of available data for electric MDVs and HDVs, the usage of public 

charging was simulated for multiple vehicle operating ranges [127] and corresponding battery sizes. 
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MDVs and HDVs were assumed to undergo overnight charging and start each day with a fully charged 

battery [123]. The battery sizes were divided into 90-kWh battery modules [128], and the number of 

modules onboard the EV was determined to minimize battery expenses while ensuring that the vehicle 

required no more than one public charging event per day during the operator's required driving break 

[129]. The simulated driving break was modeled such that the vehicle’s state of charge would be above 

20% before the charging event to maintain battery health and below 80% at the end of the charging 

event to optimize charging time [130]. The vehicle was assumed to only charge the minimum amount to 

complete its trip. The battery size, portion of VKT in the vehicle category, and portion of public charging 

usage were presented in Table C1 for each operating range. The average portion of energy supplied 

from public charging, weighted by VKT in each operating range, was found to be 0.6% for MDVs and 14% 

for HDVs. 

4.2.1.2 Electrified Roadway Usage 

The electrified roadway was assumed to provide continuous power, maintain the vehicle’s state 

of charge, and be used by cars, LDTs, MDVs, HDVs, and buses. The minimum portion (R) of each roadway 

segment (i) that needed to be electrified for each vehicle category was calculated in Eq. 14 based on the 

segment’s speed limit  S), receiving pad power rating (P) of 50-kW, number of receiving pads (N) on the 

vehicle (v), vehicle energy efficiencies per VKT (EE), charging efficiency (CE) of 85%, and amount failed 

(F). The amount failed was calculated in Eq. 13 based on the VKT by each vehicle type over the life of the 

roadway segment, number of receiving pads on the vehicle, failure rate (FR) of 2.87 pads per million 

hours [131], number of roadway pads (RP) per segment (200 per kilometer (km)), and speed limit. 

 Fi = ∑ FR ∗ VKTi,v ∗ Nv/(RPi ∗ Si)v   (13) Rv,i = Si ∗ EEv/(P ∗ Nv ∗ CE ∗ Fi)  (14) 
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The electrified portion of roadway was modeled based on the vehicle category that needed the 

highest portion electrified. The number of receiving pads for each vehicle category depended on their 

charging requirements and wheelbase allowances, with cars having one pad, LDTs having two pads, 

MDVs having four pads, and HDVs and buses having five pads [114]. 

4.2.2 Time of Day Usage 

Time-of-day resolution was added to the EV energy demand using arrival and departure time 

data for cars, LDTs, MDVs, and HDVs. The charging schedule for DWPT and BSS was aligned with the 

vehicles' in-route periods since these systems have minimal charging times (Figure C4). In contrast, the 

DCFC schedule corresponded to the vehicles' dwell periods due to the slower charging rate of DCFC 

(Figure C5). 

The arrival and departure time data for cars and LDTs were extracted from the 2017 National 

Household Survey, which provides trip data for various vehicles [132]. Specifically, the schedule for cars 

was derived from 280K automobile trips, while the LDT schedule was based on 289K van, sport utility 

vehicle, pickup truck, other truck, and recreational vehicle trips. The energy consumed during each trip 

was assumed to represent the amount of energy replenished through charging. For in-route charging, 

the trip energy was evenly distributed throughout the trip, calculated based on the trip distance and 

vehicle energy efficiency. For charging during car and LDT dwell periods, the energy was replenished up 

to the amount consumed during the trip. The charging schedules for cars and LDTs can be seen in Figure 

C4. 

The charging schedule for MDVs and HDVs was determined using the National Renewable 

Energy Laboratory's Fleet DNA database, which contains operating data for commercial fleet vehicles 

[133]. The MDV schedule was developed from 1,471 trips made by class 3 to 7 delivery trucks and vans, 

while the HDV schedule was based on 969 trips made by class 8 tractors. The trip data was categorized 
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into each vehicle operating range and weighted by VKT from Table C1; trip data for over 322 VKT (200 

vehicle miles travelled) was used for all operating ranges above 322-km. It was assumed that the VKT for 

each trip was evenly distributed between the arrival and departure times, resulting in a distribution of 

the in-route charging profile throughout the day. The weighted average charging schedules for MDVs 

and HDVs were illustrated in Figure C5. 

4.2.3 Deployment of Infrastructure 

Deployment scenarios were developed for DCFC, BSS, and DWPT to assess the charging cost and 

GWP of individual charging locations across the U.S. The estimated usage of each charging system was 

scaled using yearly traffic data and EV adoption projections. Vehicle traffic data from the Freight 

Analysis Framework Version 4 (FAF4) provided VKT estimates for 2012 and 2045 on 663K individual 

roadways for freight trucks (MDV and HDV) and all vehicles [116]. These estimates were interpolated 

and extrapolated linearly up to 2050. 

To break down the FAF4 data by vehicle category, multiple datasets from the Federal Highway 

Administration (FHWA) were utilized, incorporating the 2019 FHWA VKT data and their projected 

increase in 2049 [134]. The FHWA VKT data included breakdowns for cars, light trucks (LDTs), single-unit 

trucks (MDVs), combination trucks (HDVs), motorcycles, and buses [135,136]. The FHWA VKT data were 

used to calculate the portion of vehicles in the FAF4 data that fell into the categories of cars, LDTs, 

MDVs, and HDVs based on the percentage of FHWA VKT from each vehicle category on state roadways, 

including interstates (FAF4 interstates), other arterials (FAF4 freeways, principal arterials, and minor 

arterials), and other road types (FAF4 major collector and minor collector) [136]. It is worth noting that 

the FAF4 data did not include VKT on local roads. As a result, the FAF4 VKT data for stationary charging 

systems (DCFC and BSS) were scaled to match the total VKT of the FHWA data for each vehicle category 

in 2019 and 2049. In contrast, the FAF4 data for DWPT were not scaled to match the FHWA VKT total, as 

the VKT on individual roads was directly used in the analysis. 
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The VKT data, categorized by vehicle type on each roadway segment, were combined with EV 

adoption forecasts, a charging efficiency of 85% for each system [100], and vehicle energy efficiencies to 

estimate the charging demand from EVs. To account for uncertainty, three EV adoption scenarios were 

considered: optimistic, baseline, and conservative. The optimistic adoption curves for MDVs and HDVs 

were derived from Konstantinou and Gkritza (2023) [110], while the conservative and optimistic 

scenarios for cars, LDTs, and buses, as well as the conservative and baseline scenarios for MDVs and 

HDVs, were obtained from Mai et al. (2018) [117]. The baseline scenario for cars, LDTs, and buses 

represented the average of the conservative and optimistic EV adoption rates. The EV adoption 

forecasts for cars, LDTs, MDVs, and HDVs from 2030 to 2050 can be seen in Figure C1, with the adoption 

forecast for buses shown in Figure C2. 

In summary, the energy demand for public EV charging was computed on major roadways in the 

contiguous U.S. from 2031 to 2050. The energy demand included hourly and yearly resolution for cars, 

LDTs, MDVs, and HDVs.  

4.2.3.1 Stationary Charging 

The yearly energy demand on the roadways from each EV adoption scenario was used to 

allocate EV charging to suitable charging sites. A total of 122K potential charging site locations were 

identified, including 85K gas stations [137], 30K public surface parking lots [137], and 7K existing DCFC 

sites [109]. The suitability of the sites for high-power charging stations was evaluated based on their 

proximity to grid interconnections and minimum EV charging utilization. Since load growth from 

widescale EV adoption was expected to require new substations, the location of grid interconnections 

was modeled as transmission lines with voltages under 200-kV [138] rather than existing substations. 

Site locations within 6-km of grid interconnections [139], based on the 95th percentile of existing DCFC 

sites, were deemed to be within the maximum proximity to grid interconnections. Further, sites within 
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1.5-km were not restricted on their maximum power due to the allowances of line extension policy 

[140]. Sites with power limitations were restricted to a maximum power of 2.5-megawatts [141].  

DCFC sites without power limitations were restricted to a maximum daily energy dispensed of 

30% of the time [92] for 32 stations with space constraints, as observed. The DCFC stations were set to 

use either 150-kW or 350-kW chargers as observed from major charging networks [15]. In contrast, BSS 

energy dispensation was constrained by a 3-minute swap time [142], limiting the maximum number of 

swaps during peak demand hours to prevent queuing. Each BSS site was designed to have two sizes of 

swapping stations: a small size for cars and LDTs, and a large size for MDVs and HDVs.  

The maximum capacity (m1) of each site (i) was used in a gravity model [143] (Eq. 12) to allocate 

the yearly demand for EV charging on each roadway segment to the nearest 30 sites. The allocation of 

EV charging (F) to each site was also based on the amount of charging demand on the roadways (m2), 

the distance between the charging site and roadway (d), and a scalar (g). The scalar g was computed in 

Eq. 11 to ensure that the sum of F was equal to m2 for each roadway segment.  

g =  [∑ m1i/di2301 ]−1
  (11) 𝐹𝑖 = 𝑔 ∗ 𝑚1𝑖 ∗ 𝑚2/𝑑𝑖2  (12) 

The allocation of EV charging to each site was then corrected to ensure that the maximum 

capacity of the site was not exceeded, and sites with very low usage were removed to avoid poor 

economics. The minimum allowed energy allocated to a DCFC site was set such that one 150-kW charger 

would dispense energy at least  % of the time based on today’s conditions [15], which represented the 

minimum usage threshold for the highest demand year. Similarly, each BSS site was designed to have a 

total energy demand of at least 4 swaps per day for both sizes of swapping stations during the highest 

demand year. Eqs. 11 and 12 were then used to allocate the energy for the remaining viable locations.  
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The required amount of charging equipment at each site was then determined based on its 

expected usage. For DCFC sites, the number of chargers needed was calculated separately for the first 

(2031-2040) and second (2041-2050) 10-year life of the equipment. DCFC sites with low expected usage 

were equipped with 150-kW chargers, whereas those with high expected usage were equipped with 

350-kW chargers. Specifically, 150-kW chargers were only deployed at sites where the highest usage 

was below the maximum capacity of a single 350-kW charger during the initial 10-year period, and also 

below the maximum combined spatial capacity of 32 150-kW chargers over the full 20-year period. 

Alternatively, for BSS sites, the number of batteries and support equipment needed was determined 

annually, with a minimum usage of 4 batteries per site. Figure C3 shows the coverage of DCFC and BSS 

infrastructure within 80-km (50 miles [1]) for each EV adoption scenario. 

4.2.3.2 Dynamic Wireless Power Transfer 

DWPT infrastructure was deployed on major roadways in the contiguous U.S. to maintain every 

vehicle's state of charge. The energy dispensed from the electrified roadway was set to match the 

vehicle energy consumption on each roadway. If over half of vehicle traffic saturates the electrified lane, 

a second lane is assumed to be electrified in each direction, reducing the utilization by half for the 

analyzed lane. In the optimistic and baseline scenarios, one electrified lane was deployed in each 

direction on interstates, freeways, and principal arterial roadways. This allowed every vehicle's battery 

to be reduced to a 56-km (35-mile) range (Table C2) as illustrated in Figure C3 [24]. For the conservative 

EV adoption scenario, where EV adoption was lower, electrified lanes were only deployed on interstates, 

and vehicles required the same full-size batteries as with DCFC and BSS. The FAF4 dataset contained 

data for 75K of 76K km of interstates, 25K of 30K km of freeways, and 240K of 251K km of principal 

arterial roads in the contiguous U.S. [144]. Notably, the FAF4 data accounted for the combined VKT from 

both directions of traffic, and the length of the roadway segment represented the distance for one 
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direction only. As a result, the electrified distance for one lane in both directions encompassed twice the 

length of the roadway segment. 

4.2.4 Techno-economic Analysis 

The TEA conducted an evaluation of the charging cost and TCO for EVs using DCFC, BSS, and 

DWPT charging systems. In this study, only public charging costs from these systems were considered 

for the TCO comparison, although the actual TCO would include a mix of charging costs from home, 

workplace, and public locations. To capture the full range of values, optimistic, baseline, and 

conservative scenarios were developed for capital costs (Table C2), electricity prices (Figure C6), and EV 

adoption (Figures C1 and C2), resulting in 27 charging cost and TCO scenarios for EVs. Additionally, 

optimistic, baseline, and conservative scenarios were developed for traditional fuel prices (Figure C6) to 

evaluate refueling costs for ICEVs and HEVs.  

4.2.5 Levelized Cost of Charging 

The charging cost for each DCFC site, BSS site, and DWPT roadway segment was evaluated 

individually using a DCFROR. The DCFROR considered capital costs, operational costs, electricity costs, 

and utilization. The DCFROR assumed a 5% internal rate of return, capital debt financing of 50% with 6% 

interest and 10-year loan term, state and average local sales tax (Table C7) [145], federal (21%) and 

state income tax (Table C7) [146], and a modified accelerated cost recovery system (MACRS) 

depreciation schedule. The cashflow spanned 21-years, including a 1-year build period and a 20-year 

operating life (2031 to 2050). The charging cost was calculated such that a net present value of zero was 

achieved. All costs were converted to 2022 U.S. Dollars (USD) using consumer price indexes [147,148] 

and producer price indexes [149–152]. 
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4.2.5.1 Capital Costs 

The capital costs for DCFC, BSS, and DWPT were evaluated individually and listed in Table C2. For 

every system, it was assumed that utilities would cover the cost of substations and line-extensions up to 

a certain distance [140], with expenses being recouped through electricity sales. As noted in Nelder and 

Rogers (2019), however, certain utilities might have imposed line-extension fees [15]. Further, this study 

assumed that the land of each site was owned already and did not depreciate. Therefore, capital costs 

were limited to the installation and procurement of all necessary components of the charging system. 

The capital costs for DCFC were calculated by scaling the costs (Table C2) with the number of 

chargers at the site. These costs included a procurement component that was scaled linearly and an 

installation component that decreased on a per charger basis as the number increased. The 

procurement cost was incurred in 2030 and 2040, corresponding to the number of chargers deployed 

during each respective 10-year period. The installation costs, on the other hand, were incurred upfront 

in 2030 to future-proof the charging system for both sets of charger lifespans. 

In contrast, the capital costs for BSS (Table C2) included fixed costs for the small (19 square 

meters) and large (46 square meters) sizes of BSSs, which covered the automated storage and retrieval 

system required for battery swapping and the building housing the BSS. The number of cabinets, 

comprising containers, thermal management systems, and fire suppression systems, were determined 

based on the number of batteries needed to meet the annual demand. Furthermore, the number of 

chargers for each BSS was calculated based on the maximum charging load from 2031 to 2040 and from 

2041 to 2050, utilizing 7.7-kW chargers for the small BSS and 50-kW chargers for the large BSS. Similar to 

DCFC, the procurement costs for the chargers were incurred in 2030 and 2040 for the first and second 

set of chargers required, respectively. The installation, automated storage and retrieval system, and 

building costs were incurred in 2030, while the battery and cabinet costs were incurred in the respective 

years when they were added to the BSS. 
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For DWPT, the capital cost (Table C2) was scaled according to the electrified distance of each 

roadway. Separate estimates were utilized for urban and rural roads, taking into account the substantial 

difference in civil costs between the two [153]. The electronics cost was assumed to be the same for 

both urban and rural roads. For the optimistic scenarios, the low estimate from Limb et al. (2019) was 

used for rural roads, while the high estimate was used for urban roads [24]. As for the baseline and 

conservative scenarios, the electronics cost of 1.6M USD per km (adjusted to 2022 USD [149]), as 

reported by Haddad et al. (2022), was employed [119]. The conservative civil cost for urban roads was 

derived from the 1st-of-a-kind case in Trinko et al. (2022), with a lower contingency cost of 10% 

compared to the original 30% [114]. The baseline urban civil cost was also adapted from Trinko et al. 

(2022), incorporating a combination of the 1st-of-kind and nth-of-a-kind cases, which is further detailed 

in Table C3 [114]. Regarding the civil costs for rural roads, the nth-of-kind case from Trinko et al. (2022) 

was utilized for the baseline scenario, while the estimate from Haddad et al. (2022) was adapted 

(without substation) for the conservative scenario [119]. 

4.2.5.2 Operational Costs 

The DCFC sites were modeled to have data contracts, network contracts, and maintenance costs 

annually (Table C2). BSS sites were modeled to only have maintenance costs (Table C2) on the chargers. 

The replacement of BSS batteries was assumed to be the responsibility of the vehicle owner. The 

operational costs for DWPT consisted of replacing failed roadside inverters (Table C2) with a mean time 

to failure of 101 years [154]. Since the failed DWPT roadway pads were modeled to have excess capacity 

in the design (Eq. 12), they were not replaced. The maintenance costs of the roadway were assumed to 

be out of scope since they are typically paid for by taxes, which are not part of the DCFC and BSS 

analysis. 
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4.2.5.3 Electricity Costs 

Commercial electricity schedules from the U.S. Utility Rate Database [94] were collected [82] for 

the largest utility company in each state to determine electricity costs for each DCFC site, BSS site, and 

DWPT roadway segment on an annual basis. The electricity schedules were categorized into demand 

charges (USD/kW-month), electricity rates (USD/kWh), and fixed charges (USD/month), with applicable 

demand charges and electricity rates determined by the time-of-day charging profiles (Figure C4 for 

DWPT and Figure C5 for DCFC). The fixed charges were assessed to each BSS and DCFC site as well as to 

each DWPT roadway segment per 16 lane-km of electrified road. The most affordable schedule was 

selected based on the service location and power range for each load, with BSS charging profiles 

optimized to minimize electricity costs. 

The BSS charging profile was optimized to ensure that each battery could be fully charged prior 

to the swap, with a one-hour buffer period. The charging time (t) required to charge the battery of each 

vehicle (v) was calculated using Eq. 24, which accounts for the charger rating (p) (7.7-kW for small BSS 

and 50-kW for large BSS), average power rate (a) (95%), charging efficiency (e) (85%), starting state of 

charge (socs) (20%), final state of charge (socf)  (80%), and battery size (b) (Table C2).  

𝑡𝑣 = (𝑠𝑜𝑐𝑓 − 𝑠𝑜𝑐𝑠) ∗ 𝑏𝑣/(𝑎 ∗ 𝑝𝑣 ∗ 𝑒)  (24) 

The minimum number of batteries needed was determined by considering the required charging 

time and the swap schedule of batteries within the BSS (Figure C4). These constraints were integrated 

into the charging load optimization algorithm, which aimed to minimize electricity costs while ensuring 

that each battery was charged within the designated window and that the daily charging volume met 

the demand from EVs. 

Once the electricity costs were calculated for each charging system, the electricity costs were 

adjusted using the 2022 and 2031 to 2050 price projections for generation (electricity rate) and 
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distribution (demand charge) from the Annual Energy Outlook (AEO) (2023) [155]. Three scenarios were 

considered (Figure C6) to account for future changes in electricity prices: optimistic, using the AEO low 

macro and low renewable technology cost case; baseline, using the AEO reference case; and 

conservative, using the AEO high macro and high renewable technology cost case. 

4.2.5.4 Solving for Charging Cost 

For each DCFC site, BSS site, and DWPT roadway, the charging cost was iteratively calculated to 

achieve a net present value of zero in the discounted cashflow analysis [156]. This was done using Eqs. 

15-23. The yearly (y) discount factor (df) (Eq. 15) was computed using the internal rate of return (irr).  

dfy = (1 + irr)−y  (15) 

The loan payment for the initial capital debt financing in 2030 was computed using Eq. 16. The 

loan payment was based on the capital cost, investor equity (ey), loan interest rate (IntRate), and loan 

term (term). 

loany = cpx0 ∗ (1 − ey) ∗ IntRate/(1 − (1 + IntRate)−term)  (16) 

The loan interest payment, which is tax deductible, was computed in Eq. 17. The loan interest 

payment was determined by subtracting the loan principal from the loan payment. 

inty = loany − (cpx0 ∗ (1 − ey)/term)  (17) 

The depreciation (dep) of the initial capital was computed using Eq. 18 based on a MACRS rate, 

salvage value (SalvageValue), and capital cost [157]. Specifically, a 10% salvage value and 5-year MACRS 

rate were used for all DCFC and BSS capital costs except installation. DCFC and BSS installation used a 

salvage value of 0% and 10-year MACRS rate. Further, DWPT used a 0% salvage value and 15-year 

MACRS rate for all capital costs. 

depy = MACRSY ∗ (1 − SalvageValue) ∗ cpx0  (18) 
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The annual revenue (rev) of each DCFC site, BSS site, and DWPT roadway was calculated in Eq. 

19 using the charging cost (ChargingCost) and annual utilization (use). The additional revenue from the 

capital salvage value was assumed to cancel out with the disposal cost of the infrastructure. 

revy = ChargingCost ∗ usey  (19) 

The annual taxable income (TaxInc) was determined using Eq. 20 based on the revenue, 

depreciation, electricity costs (ele), operational costs (opx), loan interest, and negative taxable income 

from the previous year (NegTaxInc). The taxable income from the previous year was only carried over if 

it was negative. 

TaxIncy = revy − depy − eley − opxy − inty + NegTaxIncy−1  (20) 

The income tax (IncTax) was computed in Eq. 21 based on the taxable income and income tax 

rate. The income tax rate was a combination of federal income tax (FedTax) and the state income tax 

(StateTax) specific to the charging location (Table C7). 

IncTaxy = TaxIncy ∗ (StateTax +  FedTax ∗ (1 − StateTax))  (21) 

The total annual expenses (exp) were computed (Eq. 22) by combining the income tax, capital 

costs, investor equity, loan payments, electricity costs, operational costs, and sales tax (sTax). The sales 

tax represented the average combination of state and local sales taxes paid by the vehicle operator. 

expy = (IncTaxy + ey ∗ cpx0 + cpxy>0 + Ly + eley + opxy) ∗ (1 + sTax)  (22) 

Finally, the net present value (npv) was solved for in Eq. 23. Eqs. 19-23 were iteratively 

computed by adjusting the charging cost until the net present value was within 0.01 USD of zero. 

npv = [∑ revy ∗ dfy201 ] − [∑ expy ∗ dfy200 ]  (23) 

4.2.6 Total Cost of Ownership 

The TCO analysis utilized the charging cost results for DCFC, BSS, and DWPT to estimate the 

charging cost for EVs per VKT. The TCO of each modeled EV was compared to that of a HEV and an ICEV. 
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The fuel prices for HEVs and ICEVs were broken out by state and adjusted to 2031 through 2050 values 

(Figure C7) for optimistic (AEO low oil price case), baseline (AEO reference case), and conservative (AEO 

high oil price case) scenarios [155].  

The TCO was computed over the first 10 years of the vehicle's life and included the charging 

(Figure C8) or fueling cost (Table C4), depreciation (Table C2), maintenance (Table C2) [102], license and 

registration (Table C5), and insurance (Table C6) expenses. The analysis of ICEVs and HEVs considered 

gasoline fuel for cars and LDTs, and diesel fuel for MDVs and HDVs. Cars and LDTs were assumed to have 

a discount factor of 1.2% for yearly expenses, while MDVs and HDVs had a discount factor of 3% [25]. 

The purchase price (Table C2) for each vehicle category was determined based on an average 

vehicle. For EVs, the purchase price included the cost of the EV without the battery and the marked-up 

cost of the EV battery (Table C2). The price of an EV without the battery was obtained from Burnham et 

al. (2021) for a 2025 model year midsize sedan (car), pickup truck (LDT), class 6 pickup/delivery truck 

(MDV), and sleeper tractor (HDV) [25]. The battery size for electric LDTs was adjusted to match the 

range of an electric car by considering vehicle efficiencies [158]. Reduced battery sizes were determined 

for a 56-km operating range with a maximum depth of discharge of 80%. 

The depreciation cost was calculated annually based on the purchase price. Cars and LDTs lost 

29% of their original value in the first year and 11% of their remaining value in each consecutive year 

[25]. For MDVs and HDVs, 9% of their remaining value was lost every year [25]. Insurance costs were 

assessed based on the remaining value of the vehicle each year and the location of the charging system. 

License and registration costs were fixed annually and varied by state. Maintenance costs were based on 

the U.S. average fixed rate per VKT plus any battery replacement costs. Battery life was assumed to be 

1000 full cycles for full size batteries [159], while reduced battery sizes charged via DWPT were assumed 

to have the same life in years due to optimal operating characteristics, such as a smaller depth of 
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discharge and a state of charge that can be maintained around 50% [160–162]. Based on these 

assumptions, only electric HDVs needed battery replacements in the first 10-year period due to their 

high annual VKT [163]. The sum of the vehicle costs was discounted along with their yearly utilization to 

obtain the TCO on a per VKT basis. 

The impact of switching from ICEVs to EVs charged with DCFC, BSS, or DWPT systems (cs) was 

calculated using Eq. 25 for the percentage change (∆TCO%) and Eq. 26 for the change in USD (∆TCO$). 

These equations used the TCO of an ICEV (TCOICEV) and an EV (TCOEV) for each vehicle category (v), as 

well as the VKT of EVs (VKTEV) and the VKT of all vehicle powertrains (VKTAll). 

∆TCO%CS = 1 + ([∑ VKTEV,v ∗ (TCOEV,cs,v − TCOICEV,v)v ]/[∑ VKTAll,v ∗ TCOICEV,vv ])  (25) ∆TCO$CS = ∑ VKTEV,v ∗ (TCOEV,cs,v − TCOICEV,v)v   (26) 

4.2.7 Life Cycle Assessment 

An attributional LCA was conducted to compare the GWP of EVs charged with DCFC, BSS, and 

DWPT, as well as ICEVs and HEVs. Specifically, the impact assessment used an economic allocation 

method and the 100-year G   from the Intergovernmental  anel on Climate Change’s  I CC  6th impact 

assessment report [164]. The study used a C2G system boundary with a functional unit of one VKT. For 

EVs, the emissions were divided into charging emissions, embodied charging infrastructure emissions, 

and embodied vehicle emissions for different vehicle categories: cars, LDTs, MDVs, and HDVs. Charging 

and infrastructure emissions were allocated on a per unit of energy dispensed basis (kWh). The study 

used Ecoinvent 3.8 and openLCA 3.10 to collect the life cycle inventory data for charging infrastructure 

and charging emissions [165]. The GREET (2022) model [100] was used to determine embodied vehicle 

emissions, as well as the HEV and ICEV feedstock, fuel, and vehicle operation emissions (Table C8). The 

feedstock and fuel emissions were combined as the equivalent infrastructure emissions for HEVs and 

ICEVs.  
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4.2.7.1 Charging Infrastructure 

The DCFC infrastructure emissions were calculated based on the charger pedestal, power 

cabinet, implementation, and construction (Table C9) [166]. The pedestal inventory data were taken 

from Ecoinvent 3.8 and scaled to a weight of 250-kilograms (kg) for 150-kW and 350-kW chargers 

[165,167]. Emissions from the power cabinet were broken out by material (Table C10) using primary 

data for a weight of 1340-kg per 150-kW charger and 2680-kg per 350-kW charger [167]. 

Implementation emissions for DCFC were adapted from Lucas et al. (2012) [168]. 

The BSS infrastructure emissions included the charger pedestal, battery, battery cabinet, 

automated storage and retrieval system, building, and construction (Table C11). The emissions of each 

BSS site were scaled based on the amount of equipment used. 

The DWPT infrastructure emissions were based on the electronics, pavement, and construction 

(Table C12). DWPT infrastructure components were based on Marmiroli et al. (2019), however, the 

emissions factors were adjusted to use concrete rather than asphalt and use the IPCC 6th impact 

assessment [169]. The emissions for DWPT were scaled based on the electrified distance. 

4.2.7.2 Charging Emissions 

The emissions from EV charging were calculated using the forecasted hourly electricity mix in 

134 Cambium (2022) zones from 2031 through 2050 [170]. Three electricity mix scenarios were 

examined: optimistic, based on the Cambium (2022) mid-case with 100% decarbonization by 2035; 

baseline, based on the Cambium (2022) mid-case; and conservative, based on the Cambium (2022) high 

renewable energy cost. The charging emissions were calculated using the average electricity 

consumption mix from each zone, rather than the marginal mix [101]. 

The consumption mix was determined by tracking the net energy imports and exports from each 

zone within the Western, Eastern, and Texas U.S. interconnections. Furthermore, the electricity mix 
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used for charging energy storage resources was accounted for and assigned to the mix at the time of EV 

charging. Emissions factors for various grid resources in North American Reliability Corporation regions 

were obtained from Ecoinvent 3.8, encompassing both operating and embodied emissions (Table C13) 

[165]. Notably, carbon capture associated with the electricity grid was not attributed to EV charging as it 

was beyond the system boundary. 

The charging emissions (ChgGWP) were computed on a per unit of energy basis (kWh) using Eq. 

27. The calculation was based on each grid resource’s  r) emissions factor (EF) and fraction of the 

consumption mix (M) at the time-of-day (h), year (y), and location (z) of charging. 

ChgGWPh,y,z =  ∑ EFz ∗ Mr,h,y,zr   (27) 

The charging emissions were then scaled (Eq. 28) by the hourly and yearly charging load (load) 

from each DCFC site, BSS site, and DWPT road segment to get the average charging emissions per unit of 

energy (kWh) over the life of each system. 

ChgGWPz =  [∑ ∑ ChgGWPh,y,z ∗ loadh,y,z24h=120y=1 ]/[∑ ∑ loadh,y,z24h=120y=1 ]  (28) 

4.2.7.3 Embodied Vehicle Emissions 

Embodied vehicle emissions for each vehicle type were calculated using a representative 2025 

vehicle with conventional materials from GREET (2022) [100]. Specifically, the vehicle modeled for each 

vehicle category from GREET (2022) were a passenger car, pickup truck (LDT), class 6 pickup-and-

delivery truck (MDV), and class 8 sleeper-cab truck (HDV). 

The vehicle emissions were divided into components; assembly, disposal, and recycling (ADR); 

batteries; and fluids. EV battery sizes (Table C2) were input into GREET (2022) for the corresponding 

charging system and EV-adoption scenario [100]. The batteries for both EVs and HEVs were assumed to 

be manufactured in China and use a Li-ion chemistry. One replacement of the hybrid electric HDV 

battery was assumed to occur over the vehicle’s lifetime. Further  electric MDVs and HDVs were 
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calculated to average 1.7 and 2.9 battery replacements in their lifetime, while cars and LDTs had none. 

The modeled vehicle emissions are summarized in Table C8. 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

 
 
 

5.1 Overall Conclusions 

The findings and recommendations derived from this research can guide policymakers, industry 

stakeholders, and researchers in making informed decisions to accelerate the adoption and deployment 

of EV technologies, contributing to the broader goals of reducing costs, mitigating GHG emissions, and 

creating a sustainable transportation sector. The detailed modeling and analysis conducted in this study 

have provided a comprehensive understanding of the cumulative costs and emissions associated with 

EVs, illuminating key factors that drive the economics and environmental impacts of these technologies. 

The research emphasizes that the economic viability of EV technologies is highly influenced by capital 

utilization, highlighting the need for efficient resource allocation and utilization to maximize economic 

benefits. Simultaneously, the study underscores the crucial role of transitioning to cleaner energy 

sources in order to leverage the full environmental benefits of EVs, as the emissions from EVs are 

strongly influenced by the local electricity mixes. The findings demonstrate the economic feasibility of 

integrating 2nd EV batteries into grid ESS to provide grid services, offering a promising sustainable 

solution for meeting future energy demands. Moreover, the research demonstrates that careful 

consideration of charger levels and hub ownership models enables the economical deployment of 

charging infrastructure at MUDs. This allows for widespread EV adoption, thereby reducing GHG 

emissions. Furthermore, the study highlights the varying degrees of economic and environmental 

advantages associated with different types of public charging systems, dependent on specific levels of 

EV adoption, traffic volumes, capital costs, and electricity prices. By tailoring the selection and 

deployment of charging systems, stakeholders can optimize the outcomes in terms of both economics 

and environmental sustainability. 
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5.2 Future Research on Second Life Batteries 

The TEA model built to assess the economic viability of reconditioning 2nd life batteries was able 

to determine the minimum required resale price of the batteries while in the R&D phase. Future work 

should focus on updating the TEA model to incorporate updated cost and performance estimates as the 

reconditioning technology for 2nd life batteries progresses towards commercialization. The modeled 

usage of the 2nd life batteries in a grid ESS remains limited due to a lack of experimental data on the 

cycle life of the batteries. The model should be improved by integrating battery aging to analyze 

dynamic battery performance and improve accuracy in quantifying battery usage in grid ESSs performing 

specific grid services.  

Additionally, conducting a LCA is necessary to determine the environmental impacts of different 

refurbishing methods. The GHG emissions associated with the reconditioning process should also be 

compared to new Li-ion batteries to assess emissions savings achieved through battery reuse. 

5.3 Future Research on Multi-Unit Dwelling Charging Hubs 

The TEA and LCA models for MUD charging hubs were evaluated to determine the consumer 

savings and GHG emissions reductions associated with deploying MUD charging infrastructure. Future 

work could enhance the TEA by incorporating specific costing data for a range of MUD characteristics, 

including installation costs for both new and existing buildings to identify potential cost advantages from 

future-proofing new MUD constructions. Additionally, the fixed utilization level per charger in the TEA 

model should be changed such that the charging costs are evaluated by varying the number of chargers 

while maintaining a fixed total utilization from the charging hub. By incorporating variable charger 

utilization and comparing the charging costs with waiting time, charging hub owners can determine the 

optimal number of chargers that provides a balance between cost and waiting times. Furthermore, a 

comparison between the charging costs of individually owned chargers at MUDs and MUD charging 
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hubs should be conducted to quantify the potential savings associated with shared charging 

infrastructure. 

5.4 Future Research on Public Charging Infrastructure 

An integrated TEA and LCA was conducted for the deployment of DCFC, BSS, and DWPT to 

assess the TCO and GWP of EVs using these charging systems. However, the study was limited and can 

be expanded to understand additional factors that influence the overall advantages of each charging 

system. A more comprehensive understanding of the performance characteristics of each charging 

system can be achieved by quantifying the value of time savings associated with charging for both 

personal and commercial vehicles. Considering that charging time is known to impact EV adoption, 

future work should incorporate varying levels of EV adoption based on consumer preferences. 

Additionally, assessing the infrastructure upgrades required to support each charging system can be 

accomplished by evaluating the capacity of existing substations and feeders at each charging location. 

Improvements to the LCA should incorporate the assessment Particulate Matter 2.5 impacts on 

human health. The geospatial and temporal EV charging demand and generation electricity mixes 

modeled in this work should be leveraged to quantify these emissions. The human health impacts 

should be assessed on a local level to determine the net change in Particulate Matter 2.5 due to varying 

levels of EV adoption. 

To optimize the deployment of charging infrastructure, the TEA and LCA should include various 

charging venues (home, fleet, workplace) and explore combinations of public charging systems. This 

would provide a holistic evaluation encompassing TCO, GWP, performance, and human health for a 

comprehensive understanding of vehicle electrification. 
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APPENDIX A 

 

Table A1. Target resale scenario input changes 

Input Grid Services Energy Shuffle Repurpose Units 

Reconditioning Cycles a 200 200 - cycles 

Acquisition Cost b 21.50 21.50 21.50 $/kWh-nameplate 

DC-DC Converter/BMS a 250 250 - $/kW 

Adapter Tub a 50 50 - $/kWh-nameplate 

Testing Equipment a - - 1,718,750 $ 

Trip Distance c 100 100 100 miles 

Labor Task Time a -25% -25% -25% % reduction 

Warranty a 1% 1% 1% % of resale price 

a. Target reductions from learning 
b. Reduction in acquisition price assumed to be 18% [38] of new electric vehicle battery price. New 
electric vehicle battery price is assumed to be $120/kWh in 2025 [7].  
c. Reduced trip distance is assumed for a widespread adoption of second life batteries. 

 
Table A2. Area breakdown for recondition with grid services, recondition through energy shuffle, and 

repurpose. Estimates were guided by wbdg.org 

Area Name Grid Services Energy Shuffle Repurpose 

Transport 683 m2 683 m2 444 m2 

Park Forklifts 9 m2 9 m2 9 m2 

Process Batteries 619 m2 619 m2 619 m2 

Recondition or Repurpose 743 m2 743 m2 139 m2 

Store Batteries 121 m2 121 m2 121 m2 

Shipping and Receiving 98 m2 98 m2 98 m2 

Offices 42 m2 42 m2 42 m2 

Bathrooms 74 m2 74 m2 74 m2 

Break Room 74 m2 74 m2 74 m2 

Parking Lot 604 m2 604 m2 604 m2 

Total Facility Size 2,463 m2 2,463 m2 1,620 m2 

Total Land 3,067 m2 3,067 m2 2,224 m2 

 

Facility Building 

The facility building costs were scaled based on the total facility size. The facility building costs 

included the land, enclosure, foundation, lights, furnishings, HVAC (heating, ventilation, and air 

conditioning), plumbing, electrical, roof, fire safety, flooring, walls, doors, parking lot, permits and 
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inspections, engineering, construction management, and contingency. The fire safety costs accounted 

for the NFPA 855 standard that stated water was the preferred agent to suppress Li-ion battery fires 

[171]. Therefore, a sprinkler, a heat and smoke detection system, and an alarm system were included in 

the facility cost estimates to comply with this standard. 

Table A3: Facility building cost breakdown 

Cost Name Grid Services Energy Shuffle Repurpose 

Land a $303,043 $303,043 $219,806 

Enclosure b $188,230 $188,230 $123,852 

Foundation c $165,056 $165,056 $119,720 

Lights d $27,503 $27,503 $18,364 

Furnish Secondary Rooms e $79,892 $79,892 $79,892 

HVAC f $132,556 $132,556 $87,220 

Plumbing g $148,463 $148,463 $97,686 

Electrical h $55,674 $55,674 $36,632 

Roof i $184,518 $184,518 $121,410 

Fire Safety j $95,021 $95,021 $73,568 

Flooring k $231,980 $231,980 $152,639 

Walls and Doors l $57,435 $57,435 $48,383 

Parking Lot m $20,990 $20,990 $20,990 

Permits and Inspections n $41,131 $41,131 $33,778 

Engineering o $121,204 $121,204 $86,376 

Construction Management p $86,575 $86,575 $49,358 

Contingency q $173,149 $173,149 $123,394 

Producer Price Index r +11% +11% +11% 

Total $2,353,636 $2,353,636 $1,663,562 

a. Assumes $400,000 per acre based on a review of land costs by sacbee.com 
b. Assumes a cost of $7.1/ft2 for a steel building based on costs from buildingsguide.com 
c. Facility and parking lot foundation assumed to cost $5/ft2 based on costs from buildingsguide.com 
d. Assumes inside facility with 70 lumens/ft2, 10000 lumens/light, $44/light-installation from RSMeans 
2016 Building Construction Cost Data, and $100/light. Loading dock lights $780 from RSMeans 2016 
Building Construction Cost Data 
e. Assumes $14,000 per bathroom, office area $70/ft2, and breakroom $20,000 
f. Assumes $5/ft2 
g. Assumes $5.5/ft2 
h. Assumes $2.1/ft2 

i. Assumes $5.5/ft2 for commercial roofing from westroofingsystems.com. Assumes $1.46/ft2 from 
RSMeans 2016 Building Construction Cost Data 
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j. Assumes sprinkler system costs $2/ft2 from costowl.com. From RSMeans 2016 Building Construction 
Cost Data the alarms cost $4600, heat & smoke detectors cost $0.37/ft2, and 4 carbon dioxide 
extinguishers cost $6924 each. 
k. Assumes concrete costs 113/ft3 from NRMCA.org and a depth of 16 inches. From RSMeans 2016 
Building Construction Cost Data finishing costs $2.15/ft2 for hardener, $0.50/ft2 for dustproof, and 
$0.52/ft2 for epoxy.  
l. Assumes 20 ft walls with costs of $1.15/ft2 for drywall and $2.53/ft2 for insulation based on RSMeans 
2016 Building Construction Cost Data. Assumes dock door costs $3000, 5 steel doors cost $1200 each, 
and 5 wood doors cost $100 each based on RSMeans 2016 Building Construction Cost Data. 
m. From RSMeans 2016 Building Construction Cost Data assumes asphaltic concrete paving costs 
$3.16/ft2 and marking costs $22.5 per stall for 20 stalls.  
n. From RSMeans 2016 Building Construction Cost Data assumes $10,250 to inspect steel building, 
$4,426 to inspect concrete flooring, $600 parking lot inspection, and 1.5% of all building costs for 
permits.  
o. Assumed to be 7% of building costs based on RSMeans 2016 Building Construction Cost Data 
p. Assumed to be 5% of building costs based on RSMeans 2016 Building Construction Cost Data 
q. Assumed to be 10% of building costs based on RSMeans 2016 Building Construction Cost Data 
r. Producer price index for new industrial buildings was 119.1 in January 2016 and 132.7 in January 2019 
[48]. 
 
Table A4. Grid equipment cost breakdown. Approximated from Fu et al. (2018) [49] 

Area Name Grid Services Energy Shuffle 

Transformer a $134,400 $13,440 

Inverter b $840,000 $84,000 

Grid Electronics Installation c $864,000 $86,400 

Interconnection d $360,000 $36,000 

Subtotal $2,198,400 $219,840 

Grid Permitting e $295,000 $295,000 

EPC Overhead Labor f $259,200 $25,920 

EPC Overhead Equipment g $115,692 $11,569 

EPC Contingency h $65,952 $6,595 

Developer Overhead i $65,952 $6,595 

EPC/Developer Net Profit j $109,920 $10,992 

Producer Price Index k -0.4% -0.4% 

Total $3,098,909 $574,434 

a. $11.2/kW  
b. $70/kW 
c. For 0.5 C-rate system costs $36/kWh 
d. $30/kW 
e. $295,000 per system 
f. 30% of labor costs 
g. 8.67% of equipment costs 
h. 3% of subtotal 
i. 3% of subtotal 
j. 5% of subtotal 
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k. Producer Price Index for electric transmission and control was 166.5 in January 2018 and 165.9 in 
January 2019 [50].  

 
Facility Equipment 

The facility equipment costs for RGS and RES included the loading dock, freight trucks, forklifts, 

DC-DC converter, and adapter tub. The DC-DC converter functioned as the battery management system 

(BMS) and controlled the flow of energy into the modules undergoing reconditioning. The DC-DC 

converters were assumed to have a lifetime of 15,000 cycles. The adapter tubs enabled hot-swapping of 

the battery modules to provide a plug-n-play connection between the battery modules and DC-DC 

converter which provided the cell-level balancing. The adapter tubs were assumed to be replaced every 

10 years to account for new battery designs. All other equipment was assumed to last for 20 years; the 

lifetime of the facility.  

The repurposing method required different facility equipment than RGS and RES. The 

repurposing facility equipment consisted of the loading dock, freight truck, forklifts, and testing 

equipment. The testing equipment was assumed to be replaced every 10 years. 

Table A5. Facility equipment cost breakdown. 

Cost Name Grid Services Energy Shuffle Repurpose 

Loading Dock a $8,500 $8,500 $8,500 

Freight Truck(s) b $190,000 $190,000 $190,000 

Forklift c $20,000 $40,000 $40,000 

Testing Equipment d - - $3,437,500 

DC-DC Converter/BMS e $6,000,000 $6,000,000 - 

Adapter Tub f $3,000,000 $3,000,000 - 

Total $9,218,500 $9,238,500 $3,934,503 

a. $8,500 for from RSMeans 2016 Building Construction Cost Data. 
b. Estimated to be approximately $150,000 for a new class 8 semi-truck based on listings from 
kenworthsalesco.com. Trailer estimated to cost $40,000 based on listings from arrowtruck.com 
c. Estimated to cost $20,000 per forklift based on toyotaforklift.com 
d. Power cycling equipment costs $150,000 per unit according to an industry expert. 22 power cycling 
units needed. Data acquisition hardware costs $15,000 per unit according to an industry expert. 11 data 
acquisition units needed. 
e. Estimated to cost $500/kW according to the developer 
f. Estimated to cost $100/kWh according to the developer 
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Transportation 

To acquire and sell the batteries they must be transported to and from the facility. The batteries 

were collected as modules from the OEM [37], [38]. Li-ion batteries are classified as Class 9 hazardous 

materials [54], therefore, the batteries needed to be fully covered by individual non-metallic inner 

packaging to comply with Part 49 of the Code of Federal Regulations. Reusable packaging was assumed 

to cost $200 per module and be replaced every 5 years. The weight limit to transport standalone Li-ion 

batteries is 333 kg unless additional requirements are met [54]. This analysis assumed the additional 

requirements were met or the regulation will be changed in the future so that a class 8 freight truck can 

be filled to its gross weight limit of 36,287 kg [55]. The average discounted transportation costs were 

$90 thousand (k) annually, and details of the transportation costs are shown in Table A6. 

Table A6. Transportation parameters. 

Cost Name Grid Services Energy Shuffle Repurpose 

Fuel Cost a $5,616/year $9,936/year $9,936/year 

Driving Cost b $3,952/year $6,992/year $6,992/year 

Insurance Cost c $10,000/year $10,000/year $10,000/year 

Maintenance Cost d $1,560/year $2,760/year $2,760/year 

Packaging e $244,800 $244,800 $244,800 

Loading & unloading f $10,400/year $18,400/year $18,400/year 

Trip Distance 200 miles 200 miles 200 miles 

Trips g 52/year 92/year 92/year 

Average total yearly 
discounted cost h $90,235 $106,795 $106,795 

a. $0.54/mile spent on diesel fuel according to thetruckerreport.com 
b. $0.36/mile to pay the driver and $0.02/mile for permits, licenses, and tolls according to 
thetruckerreport.com.  
c. Estimated to be over $6,500 per year according to thetruckerreport.com. Assumed $10,000 per year-
truck to be conservative. 
d. $0.12/mile to for repairs and maintenance. $0.03/mile to replace tires according to 
thetruckerreport.com  
e. Packaging in each truck assumed to cost $200 per module. Replace packaging every 5 years. 
f. Assumed to take 6 hours to load a truck and 4 hours to unload a truck. Labor rate of $20/hour 
assumed. 
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g. Assumes max cargo weight of 27,216 kg and module weight of 22.2 kg to have 1,224 modules per trip. 
Total trips needed determined by the number of modules needed to be transported to have the facility 
at full refurbishing capacity. This accounts for viable product. 
h. Calculated as discounted cost to account for packaging costs every 5 years 
 

Reconditioning facility operation 

Once the batteries were transported to the facility, they underwent an inspection consistent 

with the UL 1974, Standard for Evaluation for Repurposing Batteries [172]. The batteries were then 

transported to the reconditioning area or storage area. For reconditioning, the batteries were placed in 

an adapter tub connected to the DC-DC converter. The batteries underwent reconditioning for several 

days using the energy from charge and discharge cycles for grid services. Cell level SOH balancing was 

monitored and controlled by the DC-DC converter and decentralized controllers. Once the cells in the 

battery module had an optimized standard deviation of cell SOH, the battery module was removed from 

the adapter tub, transported to the packaging area, prepared for shipping, and placed in the storage 

area until the next outgoing shipment. 

 
Table A7. Breakdown of yearly labor costs. 

Cost Name Grid Services Energy Shuffle Repurpose 

Forklift a, b $110,902 $198,630 $198,630 

Inspect b, c $268,619 d $481,108 d $85,734 e 

Characterize b, c - - $85,734 f 

Bin c - - $980,792 g 

Package c $336,990 h $603,561 h $603,564 h 

Test c - - $113,168 i 

Subtotal Variable Labor $716,511 $1,283,302 $2,067,621 

Taxes j $55,530 $99,456 $160,241 

Total Variable Labor $772,040 $1,382,758 $2,227,861 

Clerical k $34,040 $34,040 $34,040 

Facility Manager l $105,480 $105,480 $105,480 

Sales Engineer m $103,900 $103,900 $103,900 

Reconditioning Monitors c $181,069 n $181,069 n - 

Supervisors - - $193,020 o 

Subtotal Fixed Labor $424,489 $424,489 $436,440 

Taxes j $32,898 $32,898 $33,824 
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Total Fixed Labor $457,387 $457,387 $470,264 

Total $1,229,427 $1,840,146 $2,698,126 

a. Estimated a forklift operator can transport 24 modules/hour. Each module is transported five times by 
the forklift in the facility. Forklift operator has a wage of $17.24/hour according to USBLS for material 
moving machine operators.  
b. Labor used for non-viable product 
c. Technician labor rate of $20.69/hour according to USBLS 2019 occupation code 51-9061 
d. Estimated one person spends 25 minutes to inspect one module  
e. Inspect 10 modules with 45 minutes of labor 
f. Characterize 10 modules with 45 minutes of labor 
g. One person spends 13 minutes/kWh to grade, sort, and place the cells 
h. Estimated one person spends 32 minutes to wire, close, fasten, and inspect one module 
i. Estimated one hour of labor is required to test 10 modules  
j. 6.2% Social Security, 1.45% Medicare, and 0.1% Employment Training Tax 
k. $34,040/year according to USBLS for a General Office Clerk 
l. $105,480/year according to USBLS for an Industrial Production Manager 
m. $103,900/year according to USBLS for a Sales Engineer 
n. One reconditioning monitor working for 24-hours every day of the year 
o. Three supervisors each with a salary of $64,340 according to USBLS job code 51-1011 

 
 

 

 

Table A8. Target ESS scenario input changes. 

Input 
Grid 

Services 

Energy 

Shuffle 
Repurpose 

New Li-ion 
Units 

2025 2035 

Reconditioning Cycles a 200 200 - - - cycles 

Acquisition Cost 21.50 b 21.50 b 21.50 b 140 c 105 c $/kWh-nameplate 

DC-DC Converter/BMS a 250 250 - - - $/kW 

Adapter Tub a 50 50 - - - $/kWh-nameplate 

Testing Equipment a - - 1,718,750 - - $ 

Trip Distance d 100 100 100 - - miles 

Labor Task Time a -25% -25% -25% - - % reduction 

Warranty a 1% 1% 1% - - % of resale price 

Depth of Discharge 60% e 60% e 60% e - - % 

ESS Costs f -23% -23% -23% -23% - % reduction 

ESS Operating Costs f 8 8 8 8 8 $/kW-year 

a. Target reductions from learning 
b. Reduction in acquisition price assumed to be 18% [38] of new electric vehicle battery price. New 
electric vehicle battery price is assumed to be $120/kWh in 2025 [7].  
c. Cost reduction based on projections by Mongird et al. (2019) [63] for new grid Li-ion batteries in 2025 
and 2035. 
d. Reduced trip distance is assumed for a widespread adoption of second life batteries. 
e. Upper range of depth of discharge estimate by Neubauer et al. (2015) [38]. 
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f.  Cost reductions based on capital and operational projections by Mongird et al. (2019) [63] for Li-ion 
batteries in 2025. 

 
 

Table A9. ESS cost breakdown for a 4-MW system. Approximated from Fu et al. (2018) [49]. 

Area Name Power Applications Energy Applications 

Inverter a $280,000 $280,000 

Structural Balance of System b $76,000 $208,000 

Electrical Balance of System c $324,000 $576,000 

Installation Labor and Equipment d $248,000 $368,000 

EPC Overhead e $104,000 $192,000 

Sales Tax f $115,313 $332,993 

Land g $16,680 $16,680 

Grid Permitting h $295,000 $295,000 

Interconnection i $120,000 $120,000 

Contingency j $59,499 $159,030 

Developer Overhead k $59,499 $159,030 

EPC/Developer Net Profit l $99,166 $265,050 

Producer Price Index m -0.4% -0.4% 

Total $1,790,681 $2,961,073 

a. $70/kW  
b. $19/kWh for 1 C-rate, $13/kWh for 0.25 C-rate 
c. $81/kWh for 1 C-rate, $36/kWh for 0.25 C-rate 
d. $62/kWh for 1 C-rate, $23/kWh for 0.25 C-rate 
e. $26/kWh for 1 C-rate, $12/kWh for 0.25 C-rate 
f. 7.5% of installation costs 
g. $4.17/kW 
h. $295,000 per system 
i. $30/kW 
j. 3% of installation costs 
k. 3% of installation costs 
l. 5% of installation costs 
m. Producer Price Index for electric transmission and control was 166.5 in January 2018 and 165.9 in 
January 2019 [50].  
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Figure A1. Total ESS capacity from years 0 through 30 for recondition with grid services (RGS), 

recondition through energy shuffle (RES), and repurpose. RES and repurpose have the same total ESS 

capacity. 

 

Figure A2. Projected electric vehicle battery prices from 2020 to 2030 for new Li-ion batteries [7] and 

second life batteries. Second life batteries include recondition with grid services (RGS), recondition 

through energy shuffle (RES), and repurpose. Second life batteries are assumed to have an acquisition 

cost of 18% of the price of a new electric vehicle battery [38].  

Energy Arbitrage 

The potential revenue from energy arbitrage was derived from 1-year (2018) of historical CAISO 

RTM Location Marginal Pricing (LMP) data obtained from CAISO OASIS [43]. The data was cleaned to 
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remove nodes with missing pricing data. In total there were 9,452 nodes analyzed. To determine the 

potential revenue based on the pricing data, an algorithm was developed to optimize the revenue from 

the LMPs. The algorithm used the constraints and properties relevant to an ESS. The maximum capacity 

was for 2 hours of storage which corresponded to a maximum charge and discharging rate of 0.5-C. The 

roundtrip efficiency (Eff) was 90%. The constraints consisted of differences between charge and 

discharge LMPs and state of charge (SOC) as shown below. 

𝐿𝑀𝑃𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 ∗ 𝐸𝑓𝑓 > 𝐿𝑀𝑃𝐶ℎ𝑎𝑟𝑔𝑒  (A1) 

0% ≤ 𝑆𝑂𝐶 ≤ 100%  (A2) 

The algorithm was written such that the revenue was maximized. The system size was assumed 

to be small enough to not change the LMP. The output of the algorithm gave the annual grid profits and 

mean number of cycles per day from each node. The mean number of cycles per day among nodes was 

determined to be 3.35 and was used for the RGS scenario. From these results, the 75th percentile of 

revenue (48.87 $/kWh-year) was used. It was assumed that only 70% of the potential revenue (34.21 

$/kWh-year) could be captured due to imperfect price forecasting [173]. Thus, the grid profits per cycle 

(G) were determined by the annual grid profits (P), cycles per day (C), and usable capacity (U) as shown 

below. 

𝐺 = 𝑃∗𝑈𝐶∗365  (A3) 

  



114 
 

APPENDIX B 

 
 
 
Supplemental Techno-economic Analysis Methodology 

The LCOC was iteratively (due to income tax) computed to get a net present value of zero using 

Equation B8 with inputs from Equations B1-B7. Equation B1 computes the yearly (y) revenue using the 

LCOC and yearly utilization of the chargers.  

(𝑅𝑒𝑣𝑒𝑛𝑢𝑒)𝑦 = 𝐿𝐶𝑂𝐶 ∗ (𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛)𝑦   (B1) 

The depreciation schedule for the capital costs was determined using the 5-year Modified 

Accelerated Cost Recovery System (MACRS) rate for procurement and credit card reader costs as well as 

the 10-year MACRS for installation costs [157]. The salvage values, which impact depreciation (Equation 

B2), of the capital were assumed to be 10% for procurement, 0% for installation, and 0% for credit card 

readers. Salvage values were assumed to cancel out decommissioning costs. 

𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑦 = (𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐶𝑜𝑠𝑡) ∗ (1 − 𝑆𝑎𝑙𝑣𝑎𝑔𝑒 𝑉𝑎𝑙𝑢𝑒) ∗ (𝑀𝐴𝐶𝑅𝑆 𝑅𝑎𝑡𝑒)𝑦 (B2) 

The taxable income was computed in Equation B3 using the yearly revenue (Eq. B1), operational 

cost, electricity cost, depreciation (Eq. B2), loan interest, and any carried over negative taxable income 

from the previous year. 

𝑇𝑎𝑥𝑎𝑏𝑙𝑒 𝐼𝑛𝑐𝑜𝑚𝑒𝑦 = (𝑅𝑒𝑣𝑒𝑛𝑢𝑒)𝑦 − (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑠𝑡)𝑦 − (𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝐶𝑜𝑠𝑡)𝑦 −(𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛)𝑦 − (𝐿𝑜𝑎𝑛 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡)𝑦 + (𝐶𝑎𝑟𝑟𝑖𝑒𝑑 𝑂𝑣𝑒𝑟 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑇𝑎𝑥𝑎𝑏𝑙𝑒 𝐼𝑛𝑐𝑜𝑚𝑒)𝑦−1  (B3) 

The yearly income tax was computed using Equation B4 with that year’s taxable income (Eq. B3) 

and income tax rate (26%). A negative taxable income resulted in zero income tax. 

𝐼𝑛𝑐𝑜𝑚𝑒 𝑡𝑎𝑥𝑦 = (𝑇𝑎𝑥𝑎𝑏𝑙𝑒 𝐼𝑛𝑐𝑜𝑚𝑒)𝑦 ∗ (𝐼𝑛𝑐𝑜𝑚𝑒 𝑇𝑎𝑥 𝑅𝑎𝑡𝑒)  (B4) 
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The yearly discount factor was computed using Equation B5 using the internal rate of return 

which depends on the ownership model (Res.: 3%; Util.: 6%; PrC.: 10%). 

𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝐹𝑎𝑐𝑡𝑜𝑟𝑦 = 1/(1 + 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑅𝑒𝑡𝑢𝑟𝑛)𝑦  (B5) 

Next, the discounted expenses were calculated in Equation B6 using the capital costs paid 

upfront by the investor (Capital Costs by Investor), loan payment, operational cost, electricity cost, 

income tax (Eq. B4), sales tax (4.5%), and discount factor (Eq. B5). 

𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠 =  ∑ [(𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝑠 𝑏𝑦 𝐼𝑛𝑣𝑒𝑠𝑡𝑜𝑟)𝑦 +𝑦=300(𝐿𝑜𝑎𝑛 𝑃𝑎𝑦𝑚𝑒𝑛𝑡)𝑦 + (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑠𝑡)𝑦 + (𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝐶𝑜𝑠𝑡)𝑦 + (𝐼𝑛𝑐𝑜𝑚𝑒 𝑇𝑎𝑥)𝑦] ∗(𝑆𝑎𝑙𝑒𝑠 𝑇𝑎𝑥) ∗ (𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝐹𝑎𝑐𝑡𝑜𝑟)𝑦   (B6) 

Then in Equation B7 the net present value (NPV) was set to zero by calculating the discounted 

revenue needed to equal the discounted expenses. The discounted revenue used the LCOC, discount 

factor (Eq. B5), and utilization. 

 𝑁𝑃𝑉 = 0 = {∑ (𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝐹𝑎𝑐𝑡𝑜𝑟)𝑦 ∗ (𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛)𝑦30 1 } ∗ 𝐿𝐶𝑂𝐶 − (𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠)  (B7) 

Finally, the LCOC was solved for in Equation B8 by rearranging Equation B7. 

𝐿𝐶𝑂𝐶 = (𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠) / {∑ (𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝐹𝑎𝑐𝑡𝑜𝑟)𝑦 ∗ (𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛)𝑦30 1 }  (B8) 

Charger Utilization 

The processed MUD data included 586K L2 charging sessions at 4.3K ports in 27 states (Figure 

B1) and 1.3K DCFC charging sessions at 13 DCFC ports in 4 states (Figure B2). The data were collected 

from October 2019 to October 2021. The charging schedule (Figure B3) for each charger type was 

simulated from the EV  ATTS data by using each session’s start time  charge duration  and power. 

The Level 1 charger utilization simulation had the following assumptions: 
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• Used once per day  

• Have a session power of 1.5-kW (L2 max: 6.6-kW; L1 max: 1.9-kW)  

• Charge duration was limited to be no greater than the dwell time 

• Charging session energy was limited to be no greater than the L2 charging session energy 
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Figure B1. Number of Multi-Unit Dwelling Level 2 sessions by state. 
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Figure B2. Number of Multi-Unit Dwelling DCFC sessions by state. 

 

 

Figure B3. Average hourly charging profile for Level 1, Level 2, and DCFC at multi-unit dwellings from the 

EV Watts dataset.  
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Figure B4: Utilization for Level 2 and DCFC as a function of the number of chargers at the Multi-Unit 

Dwelling hub. 

The baseline scenario leverages utilization parameters from the processed EV WATTS charging 

data collected intermittently from October 2019 through October 2021 [91] to determine the LCOC 

based on current market conditions. However, the utilization for current market conditions may not be 

representative of the ordinary utilization since the period of data collection coincided with the COVID-19 

pandemic. Surprisingly, the total daily energy consumption of L2 chargers (Figure B5) has a 17% higher 

median (by state) utilization during the pandemic than preceding the pandemic (before March 11, 

2020). 
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Figure B5. Utilization of Multi-Unit Dwelling Level 2 chargers in states Before COVID-19 and During 

Covid-19. 

 

Figure B6. Total daily energy consumption of level 2 chargers at different venues. 
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Electricity Costs 

The different commercial electricity schedule characteristics of the focus locations were: 

• Illinois had moderate electricity rates (0.080 $/kWh) and low demand charges (7.8 

$/month-kW) [174]. 

• New York had low electricity rates (0.026 $/kWh) and high demand charges (19 

$/month-kW) [175]. 

• California had time-of-use pricing with high electricity rates (0.086-0.14 $/kWh) and high 

demand charges (16-34 $/month-kW) [96], representing an upper bound on electricity 

costs. 

Residential Schedules 

Table B1. Residential electricity schedules used to calculate electricity costs for all states. 

State Full Name Utility Name with Link 

Alabama Alabama Power Co: Plug-In Electric Vehicle (EV) Alabama Power Co 

Alaska Chugach Electric: Residential Service (Flat) Chugach Electric 

Arizona Arizona Public Service: Residential Time of Use (Saver 
Choice) TOU-E (TOU) 

Arizona Public Service 

Arkansas Entergy Arkansas: General Purpose Residential Service 
(RS) Single Phase (Flat) 

Entergy Arkansas 

California Southern California Edison: TOU-EV-1 Domestic Time-
of-Use Electric Vehicle Charging (TOU) 

Southern California 
Edison 

Colorado Public Service Co of Colorado: Residential Energy Time 
Of Use (Schedule RE-TOU) (TOU) 

Public Service Co of 
Colorado 

Connecticut NSTAR Electric Co Connecticut: Greater Boston 
Residential R-1 (A1) (Flat) 

NSTAR Electric Co 
Connecticut 

Delaware Delmarva Power: Residential Service (Flat) Delmarva Power 

District of 
Columbia 

Potomac Electric Power Co: Residential - Schedule R 
(Flat) 

Potomac Electric Power 
Co 

Florida Florida Power & Light Co: RS-1 Residential Service 
(Flat) 

Florida Power & Light 
Co 

Georgia Georgia Power: Schedule TOU-PEV-8 - Plug-in Electric 
Vehicle (EV) 

Georgia Power 

Hawaii Hawaiian Electric Co: Schedule "R" Residential Service - 
Single Phase (Flat) 

Hawaiian Electric Co 

Idaho Idaho Power Co: Schedule 1 - Residential Service (Flat) Idaho Power Co 

https://apps.openei.org/USURDB/rate/view/5d9b6a915457a3d965598dcd#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/58b85b225457a3bf72fbf84a
https://apps.openei.org/USURDB/rate/view/5cacc7715457a393487780e2
https://apps.openei.org/USURDB/rate/view/5d5d6ea55457a3a910f1ab35
https://edisonintl.sharepoint.com/teams/Public/TM2/Shared%20Documents/Forms/AllItems.aspx?id=%2Fteams%2FPublic%2FTM2%2FShared%20Documents%2FPublic%2FRegulatory%2FTariff%2DSCE%20Tariff%20Books%2FElectric%2FSchedules%2FResidential%20Rates%2FELECTRIC%5FSCHEDULES%5FTOU%2DEV%2D1%2Epdf&parent=%2Fteams%2FPublic%2FTM2%2FShared%20Documents%2FPublic%2FRegulatory%2FTariff%2DSCE%20Tariff%20Books%2FElectric%2FSchedules%2FResidential%20Rates
https://edisonintl.sharepoint.com/teams/Public/TM2/Shared%20Documents/Forms/AllItems.aspx?id=%2Fteams%2FPublic%2FTM2%2FShared%20Documents%2FPublic%2FRegulatory%2FTariff%2DSCE%20Tariff%20Books%2FElectric%2FSchedules%2FResidential%20Rates%2FELECTRIC%5FSCHEDULES%5FTOU%2DEV%2D1%2Epdf&parent=%2Fteams%2FPublic%2FTM2%2FShared%20Documents%2FPublic%2FRegulatory%2FTariff%2DSCE%20Tariff%20Books%2FElectric%2FSchedules%2FResidential%20Rates
https://apps.openei.org/USURDB/rate/view/618940545457a35a1c4097ec
https://apps.openei.org/USURDB/rate/view/618940545457a35a1c4097ec
https://apps.openei.org/USURDB/rate/view/5cd3415b5457a3fc7154e9d2
https://apps.openei.org/USURDB/rate/view/5cd3415b5457a3fc7154e9d2
https://apps.openei.org/USURDB/rate/view/5d4ae61b5457a3573bddb2db
https://apps.openei.org/USURDB/rate/view/5d77c7625457a3df2e7db2ea#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5d77c7625457a3df2e7db2ea#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/6223d5ad0c99a04a6c518505#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/6223d5ad0c99a04a6c518505#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/60e705185457a322248b4567
https://apps.openei.org/USURDB/rate/view/5d42f7bd5457a3be02dc8c3b
https://apps.openei.org/USURDB/rate/view/5f2827535457a3e90fb5c37f
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Illinois Commonwealth Edison Co: BES - Residential Multi 
Family Without Electric Space Heat Delivery Class (Flat) 

Commonwealth Edison 
Co 

Indiana Duke Energy Indiana: RS - Residential Service (Flat) Duke Energy Indiana  

Iowa MidAmerican Energy Co: RATE RST - RESIDENTIAL 
TIME-OF-USE SERVICE (TOU) 

MidAmerican Energy 
Co 

Kansas Kansas City Power & Light Co: Residential Standard 
Service (Schedule RS) (Flat) 

Kansas City Power & 
Light Co 

Kentucky Kentucky Utilities: Residential Service (Flat) Kentucky Utilities 

Louisiana Entergy Louisiana: Residential and Farm Service - 
Single Phase (RS-L) (Flat) 

Entergy Louisiana 

Maine Central Maine Power Co: A-TOU Residential Service 
Time-of-Use (TOU) 

Central Maine Power 
Co 

Maryland Baltimore Gas & Electric Co: Residential Optional Time 
of Use (Schedule RL) (TOU) 

Baltimore Gas & 
Electric Co 

Massachusetts NSTAR Electric Co Massachusetts: Greater Boston 
Residential R-1 (A1) (Flat) 

NSTAR Electric Co 
Massachusetts 

Michigan DTE Electric: Residential Time of Day Full Service (TOU) DTE Electric 

Minnesota Northern States Power Co: Residential Service - 
Overhead Standard (A01) (Flat) 

Northern States Power 
Co 

Mississippi Mississippi Power Co: Residential Electric Service (R-
57) Single-Phase (Flat) 

Mississippi Power Co 

Missouri Union Electric Co: 1(M) Residential Service Rate (Flat) Union Electric Co 

Montana NorthWestern Energy: Rate 10: Residential Electric 
(Flat) 

NorthWestern Energy 

Nebraska Nebraska Public Power District: Residential Service 
(Flat) 

Nebraska Public Power 
District 

Nevada Nevada Power Co: ORS-TOU Optional Residential 
Service Time of Use (TOU) 

Nevada Power Co 

New Hampshire NSTAR Electric Co New Hampshire: Greater Boston 
Residential R-1 (A1) (Flat) 

NSTAR Electric Co New 
Hampshire 

New Jersey Public Service Electric & Gas Co: RS - Residential 
Service (Flat) 

Public Service Electric 
& Gas Co 

New Mexico Public Service Co of New Mexico: 1A (Residential 
Service) (Flat) 

Public Service Co of 
New Mexico 

New York Consolidated Edison Co - SC-1—Residential & Religious 
Service [Westchester]. (Flat) 

Consolidated Edison Co 

North Carolina Duke Energy Carolinas: RS (Residential Service) (Flat) Duke Energy Carolinas 

North Dakota Northern States Power Co: Residential Time of Day 
Service (D02/D04) Standard (TOU) 

Northern States Power 
Co 

Ohio Columbus Southern Power Co: Residential Service: 
SCHEDULE R-R (Flat) 

Columbus Southern 
Power Co 

Oklahoma Oklahoma Gas & Electric: R-1 (Residential Service) 
(Flat) 

Oklahoma Gas & 
Electric 

Oregon Portland General Electric Co: Residential Service (Rate 
7) (Flat) 

Portland General 
Electric Co 

Pennsylvania PECO Energy Co: Residential Service (R) (Flat) PECO Energy Co 

https://apps.openei.org/USURDB/rate/view/60e74e585457a3fc068b4567#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/60e74e585457a3fc068b4567#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5c377a905457a3ed7291e8ca
https://apps.openei.org/USURDB/rate/view/5d03d5565457a37929557795#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5d03d5565457a37929557795#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/6137c4d55457a3885b649603
https://apps.openei.org/USURDB/rate/view/6137c4d55457a3885b649603
https://apps.openei.org/USURDB/rate/view/5e96173b5457a35e22a1e57f
https://apps.openei.org/USURDB/rate/view/611431ba5457a3d957f802c7
https://apps.openei.org/USURDB/rate/view/5cd498125457a3c83d54e9d9#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5cd498125457a3c83d54e9d9#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5d5461015457a3514435a086
https://apps.openei.org/USURDB/rate/view/5d5461015457a3514435a086
https://apps.openei.org/USURDB/rate/view/5cd3415b5457a3fc7154e9d2
https://apps.openei.org/USURDB/rate/view/5cd3415b5457a3fc7154e9d2
https://apps.openei.org/USURDB/rate/view/5b8455df5457a3904fedfe04#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/602bff135457a3ca7e742553#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/602bff135457a3ca7e742553#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5c48ce5e5457a32306427930#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5ec294c45457a3796881625b
https://apps.openei.org/USURDB/rate/view/590ce2cd5457a372535789ff#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/58d29f125457a38e36d557ef
https://apps.openei.org/USURDB/rate/view/58d29f125457a38e36d557ef
https://apps.openei.org/USURDB/rate/view/5d14e5055457a34e17de8450#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5cd3415b5457a3fc7154e9d2
https://apps.openei.org/USURDB/rate/view/5cd3415b5457a3fc7154e9d2
https://apps.openei.org/USURDB/rate/view/60f979925457a3861f8fa93b
https://apps.openei.org/USURDB/rate/view/60f979925457a3861f8fa93b
https://apps.openei.org/USURDB/rate/view/60819df45457a385197a1e68
https://apps.openei.org/USURDB/rate/view/60819df45457a385197a1e68
https://apps.openei.org/USURDB/rate/view/6112d1675457a35c66f802ca#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/611290f55457a3035af802c6#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/592475a15457a3bc03de90e0#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/592475a15457a3bc03de90e0#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/539f70e5ec4f024411ecdf9f#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/539f70e5ec4f024411ecdf9f#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/60d088345457a34e2c33a104#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/60d088345457a34e2c33a104#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5cc0d5255457a3c25067107e#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5cc0d5255457a3c25067107e#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/6113f5fc5457a33c08f802c6
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Rhode Island The Narragansett Electric Co: A-16 (Residential Service) 
(Flat) 

The Narragansett 
Electric Co 

South Carolina Duke Energy Carolinas: Residential Service Time-of-Use 
(R-TOUD-55) Single Phase (TOU) 

Duke Energy Carolinas 

South Dakota Otter Tail Power Co: Residential Service (Rate Code 
101) (Flat) 

Otter Tail Power Co  

Tennessee Nashville Electric Service: RS Residential Service (Over 
4000kWh) (Flat) 

Nashville Electric 
Service 

Texas Oncor Electric Delivery Co: Residential (by Green 
Mountain Energy Company) (Flat) 

Oncor Electric Delivery 
Co 

Utah PacifiCorp - Utah: Schedule 1 (Residential Service - 
Single Phase) (Flat) 

PacifiCorp - Utah 

Vermont Green Mountain Power Corp: Rate 01 Residential 
Service (Flat) 

Green Mountain Power 
Corp 

Virginia Virginia Electric & Power Co: Residential Schedule 1 
(Flat) 

Virginia Electric & 
Power Co 

Washington Puget Sound Energy: 7 (Residential Service - Single 
Phase) (Flat) 

Puget Sound Energy 

West Virginia Appalachian Power Co:  
Schedule RS: Residential Service (Flat) 

Appalachian Power Co 

Wisconsin Wisconsin Electric Power Co: Residential (Single-Phase) 
Rg 1 (Flat) 

Wisconsin Electric 
Power Co 

Wyoming PacifiCorp - Wyoming: 2 Residential Service Single 
Phase (Flat) 

PacifiCorp - Wyoming 

 

Commercial Schedules 

Table B2. Commercial electricity schedules used to calculate electricity costs for all states. 

State Full Name Utility Name with Link 

Alabama Alabama Power Co: BEVT Business Electric Vehicle - 
Time of Use (EV, any) 

Alabama Power Co 

Alaska Chugach Electric: Large General Secondary Service 
Rates (Flat, >20 kW) 

Chugach Electric 

Arizona Arizona Public Service: Small General Service (E-32 S) 
Primary (Flat, 20-100 kW) 

Arizona Public Service 

Arkansas Entergy Arkansas: Small General Service (SGS) (Flat, 
<100 kW) 

Entergy Arkansas 

California Southern California Edison: TOU-GS-2 Time-of-Use 
General Service—Demand Metered (TOU, 20-200 kW) 

Southern California 
Edison 

Colorado Public Service Co of Colorado: Transmission Time Of 
Use (Schedule TTOU) (TOU, >25 kW) 

Public Service Co of 
Colorado 

Connecticut NSTAR Electric Co: Western Massachusetts Primary 
General Service G-2 (Flat, <350 kW) 

NSTAR Electric Co 

https://apps.openei.org/USURDB/rate/view/5d434dc55457a3c72fdc8c3d#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5d434dc55457a3c72fdc8c3d#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5d922b6d5457a36a1961b9f2#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5b2c135a5457a39865e5d862
https://apps.openei.org/USURDB/rate/view/5d66d4e45457a3ed13c68cde
https://apps.openei.org/USURDB/rate/view/5d66d4e45457a3ed13c68cde
https://apps.openei.org/USURDB/rate/view/5cca1e6e5457a39d3ce327dd#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5cca1e6e5457a39d3ce327dd#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/60b65a5b5457a3367a7ef40e#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5d3f1baa5457a3f84fdc8c3b
https://apps.openei.org/USURDB/rate/view/5d3f1baa5457a3f84fdc8c3b
https://apps.openei.org/USURDB/rate/view/6112873b5457a3c50cf802c6#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/6112873b5457a3c50cf802c6#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5d13d5f05457a3db7dde8451#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5c474ea65457a35a4642792e
https://apps.openei.org/USURDB/rate/view/5e9485335457a3bf19a1e57d#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5e9485335457a3bf19a1e57d#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5cf52b3b5457a36b2326c07d
https://apps.openei.org/USURDB/rate/view/62c600d3957b1157960f8dc9#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/58b867ce5457a3d603fbf84a#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/6272e3d80be5c2606c5ff727#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5d5d82f85457a3b13af1ab35#1__Basic_Information
https://library.sce.com/content/dam/sce-doclib/public/regulatory/tariff/electric/schedules/general-service-&-industrial-rates/ELECTRIC_SCHEDULES_TOU-GS-2.pdf
https://library.sce.com/content/dam/sce-doclib/public/regulatory/tariff/electric/schedules/general-service-&-industrial-rates/ELECTRIC_SCHEDULES_TOU-GS-2.pdf
https://apps.openei.org/USURDB/rate/view/5a6b9a0a5457a38e75e4a644
https://apps.openei.org/USURDB/rate/view/5a6b9a0a5457a38e75e4a644
https://apps.openei.org/USURDB/rate/view/5cd49fa45457a3c83d54e9db
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Delaware Delmarva Power: Medium General Service - Secondary 
(Flat, 30-300 kW) 

Delmarva Power 

District of 
Columbia 

Potomac Electric Power Co: General Service Primary 
Service - Schedule GS3A (Flat, 25-100 kW) 

Potomac Electric Power 
Co 

Florida Florida Power & Light Co: GSD-1 (General Service 
Demand) (Flat, 25-500 kW) 

Florida Power & Light 
Co 

Georgia Georgia Power: Time of Use-High Load Factor Schedule 
TOU-HLF-10 (TOU, >30 kW) 

Georgia Power 

Hawaii Hawaiian Electric Co: SCHEDULE EV-C COMMERCIAL 
ELECTRIC VEHICLE CHARGING SERVICE PILOT - Demand 
Service (EV, any) 

Hawaiian Electric Co  

Idaho Idaho Power Co: Schedule 7 - Small General Service 
(Flat, <1000 kW) 

Idaho Power Co 

Illinois Commonwealth Edison Co: BES-Small Load Delivery 
Class (Secondary) (Flat, <100 kW) 

Commonwealth Edison 
Co 

Indiana Duke Energy Indiana: CS - Commercial Service (Flat, 
<75 kW) 

Duke Energy Indiana  

Iowa MidAmerican Energy Co: RATE GET - GENERAL ENERGY 
TIME-OF-USE SERVICE (Commercial) (TOU, <200 kW) 

MidAmerican Energy 
Co 

Kansas Kansas City Power & Light Co: Medium General Service 
(Schedule MGS) (0-199 kW) Primary (Flat, <200 kW) 

Kansas City Power & 
Light Co 

Kentucky Kentucky Utilities: General Service (Single Phase) (Flat, 
<50 kW) 

Kentucky Utilities 

Louisiana Entergy Louisiana: Small General Service (GS-L) Three 
Phase (Flat, <500 kW) 

Entergy Louisiana 

Maine Central Maine Power Co: MGS-P-TOU Medium General 
Service - Primary - Time-Of-Use (Three Phase) (TOU, 
20-400 kW) 

Central Maine Power 
Co 

Maryland Baltimore Gas & Electric Co: Schedule GS General 
Service Small (TOU, <60 kW) 

Baltimore Gas & 
Electric Co 

Massachusetts NSTAR Electric Co: Western Massachusetts Primary 
General Service G-2 (Flat, <350 kW) 

NSTAR Electric Co 

Michigan Consumers Energy Co: General Service - Primary, CVL 1 
(Rate GP) (Flat, <100 kW) 

Consumers Energy Co 

Minnesota Northern States Power Co - Minnesota: General 
Service (A14) Primary Voltage (Flat, 25-1000 kW) 

Northern States Power 
Co - Minnesota 

Mississippi Mississippi Power Co: General Service Electric Heating 
- High Voltage (GSEH-HV-12) Three-Phase (Flat, >25 
kW) 

Mississippi Power Co 

Missouri Union Electric Co: 2(M)Small General Service - Three 
Phase (Flat, <100 kW) 

Union Electric Co 

Montana NorthWestern Corporation: GSEDS-1 Primary Non-
Demand (Flat, <1000 kW) 

NorthWestern 
Corporation 

Nebraska Nebraska Public Power District: General Service Three-
Phase (Flat, <200 kW) 

Nebraska Public Power 
District 

Nevada Nevada Power Co: GS-1 (Small General Service) (Flat, 
<50 kW) 

Nevada Power Co 

https://apps.openei.org/USURDB/rate/view/5d4aefee5457a3473eddb2db
https://apps.openei.org/USURDB/rate/view/5d7804275457a3452b7db2ec
https://apps.openei.org/USURDB/rate/view/5d7804275457a3452b7db2ec
https://apps.openei.org/USURDB/rate/view/62c485eb08c6fa2d4b5663d8
https://apps.openei.org/USURDB/rate/view/62c485eb08c6fa2d4b5663d8
https://apps.openei.org/USURDB/rate/view/60e70aa75457a3ff068b4567#1__Basic_Information
https://apps.openei.org/IURDB/rate/view/5579ba015457a305178ba376
https://apps.openei.org/USURDB/rate/view/5f2828b25457a3e70fb5c37f
https://apps.openei.org/USURDB/rate/view/60e771195457a3fc068b4568
https://apps.openei.org/USURDB/rate/view/60e771195457a3fc068b4568
https://apps.openei.org/IURDB/rate/view/5c377c8b5457a3347f91e8cc
https://apps.openei.org/IURDB/rate/view/5d03d7d25457a3ad2d557797
https://apps.openei.org/IURDB/rate/view/5d03d7d25457a3ad2d557797
https://apps.openei.org/USURDB/rate/view/5d1640805457a38c10de8453
https://apps.openei.org/USURDB/rate/view/5d1640805457a38c10de8453
https://apps.openei.org/USURDB/rate/view/5e961bd85457a35e22a1e582#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/611437c25457a3ed32f802c7
https://apps.openei.org/USURDB/rate/view/5cd4a1e95457a39c5954e9d7
https://apps.openei.org/USURDB/rate/view/5cd4a1e95457a39c5954e9d7
https://apps.openei.org/USURDB/rate/view/597769945457a3832a23732c#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/597769945457a3832a23732c#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5cd49fa45457a3c83d54e9db
https://apps.openei.org/USURDB/rate/view/5d112f0b5457a38969de8452#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/604b87855457a34b6a09d556#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/604b87855457a34b6a09d556#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5c48e2bb5457a3c140427931
https://apps.openei.org/USURDB/rate/view/5ec297a75457a37c6881625c#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5d6026ba5457a3a66ef1ab35
https://apps.openei.org/USURDB/rate/view/5d6026ba5457a3a66ef1ab35
https://apps.openei.org/USURDB/rate/view/58d2a2c55457a34941d557ef
https://apps.openei.org/USURDB/rate/view/58d2a2c55457a34941d557ef
https://apps.openei.org/IURDB/rate/view/5d641c115457a37801c68cdb


125 
 

New Hampshire Public Service Co of NH: General Service Three Phase 
(Flat, <100 kW) 

Public Service Co of NH 

New Jersey PECO Energy Co: GS-PD (Primary-Distribution Power) 
Procurement Class-2 (Flat, <100 kW) 

PECO Energy Co 

New Mexico Public Service Co of NM: 2B Small Power Service - TOU 
(TOU, <50 kW) 

Public Service Co of NM 

New York Consolidated Edison Co-NY Inc SC-9—General Large 
Low Tension Service [Westchester] (Flat, 10-1500 kW) 

Consolidated Edison Co 
- NY  

North Carolina Progress Energy Carolinas: Medium General Service 
Schedule (MGS-58) Three Phase (Flat, 30-1000 kW) 

Progress Energy 
Carolinas 

North Dakota Northern States Power Co - North Dakota: Small 
General Time-of-Day kWh Metered Service (A16) 
(TOU, <1000 kW) 

Northern States Power 
Co - North Dakota 

Ohio Columbus Southern Power Co: General Service - Low 
Load Factor, Primary Voltage: SCHEDULE GS-2 (Flat, 
10-50 kW) 

Columbus Southern 
Power Co 

Oklahoma Oklahoma Gas & Electric Co: GS-1 (General Service) 
(Flat, <400 kW) 

Oklahoma Gas & 
Electric Co 

Oregon Portland General Electric Co: Large Non-Residential 
Service, Three Phase (Rate 83) (TOU, 30-200 kW) 

Portland General 
Electric Co 

Pennsylvania PECO Energy Co: General Service Polyphase Service 
(GSA) Class 2 (Flat, <100 kW) 

PECO Energy Co 

Rhode Island The Narragansett Electric Co: G-02 (General C & I Rate) 
(Flat, 10-200 kW) 

The Narragansett 
Electric Co 

South Carolina Progress Energy Carolinas: Small General Service TOU 
(Schedule SGS-TOU-58) (TOU, 30-1000 kW) 

Progress Energy 
Carolinas 

South Dakota Otter Tail Power Co: General Service Primary (Rate 
403) (Flat, 20-80 kW) 

Otter Tail Power Co  

Tennessee Nashville Electric Service: TGSA - 1 - General Power 
Time-of-Day (TOU, <50 kW) 

Nashville Electric 
Service 

Texas Oncor Electric Delivery Co: Small Non- Residential LSP 
POLR(GREATER THAN 10KW) (Flat, >10 kW) 

Oncor Electric Delivery 
Co 

Utah PacifiCorp - Utah: Schedule 6 (General Service - 
Distribution Voltage) (Flat, 35-1000 kW) 

PacifiCorp - Utah 

Vermont Green Mountain Power Corp: Rate 08: General Service 
Three Phase (Flat, <200 kW) 

Green Mountain Power 
Corp 

Virginia Virginia Electric & Power Co: GS-2T Time-of-Use (TOU, 
30-500 kW) 

Virginia Electric & 
Power Co 

Washington Puget Sound Energy: 24 (General Service - Three 
Phase) (Flat, <50 kW) 

Puget Sound Energy 

West Virginia Appalachian Power Co - West Virginia: Schedule GS 
TOD: General Service Time-of-Day (Primary) (TOU, 10-
150 kW) 

Appalachian Power Co - 
West Virginia 

Wisconsin Wisconsin Electric Power Co: General Secondary 
(Three-Phase) Cg 1 (Flat, <10000 kW) 

Wisconsin Electric 
Power Co 

Wyoming PacifiCorp - Wyoming: 28 (General Service - Three 
Phase Primary) (Flat, 20.5-1000 kW) 

PacifiCorp - Wyoming 

https://apps.openei.org/USURDB/rate/view/5d4458c45457a3b94cdc8c3d
https://apps.openei.org/IURDB/rate/view/5ba92b615457a3832cc4a515
https://apps.openei.org/USURDB/rate/view/60819f0d5457a3e50c7a1e68#1__Basic_Information
https://openei.org/apps/USURDB/rate/view/5cd1fc7e5457a3a52a54e9d8#1__Basic_Information
https://openei.org/apps/USURDB/rate/view/5cd1fc7e5457a3a52a54e9d8#1__Basic_Information
https://apps.openei.org/IURDB/rate/view/5e84d2325457a3b248ba48d9
https://apps.openei.org/IURDB/rate/view/5e84d2325457a3b248ba48d9
https://apps.openei.org/USURDB/rate/view/604b86745457a3794709d555
https://apps.openei.org/USURDB/rate/view/604b86745457a3794709d555
https://apps.openei.org/USURDB/rate/view/539fb785ec4f024bc1dc0d1f
https://apps.openei.org/USURDB/rate/view/539fb785ec4f024bc1dc0d1f
https://apps.openei.org/USURDB/rate/view/60d0894b5457a3fd4d33a104
https://apps.openei.org/USURDB/rate/view/60d0894b5457a3fd4d33a104
https://apps.openei.org/USURDB/rate/view/5cc70eda5457a3450ee327dc
https://apps.openei.org/USURDB/rate/view/5cc70eda5457a3450ee327dc
https://apps.openei.org/USURDB/rate/view/61141c5c5457a3f75af802cd#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5d4351225457a38f63dc8c3c
https://apps.openei.org/USURDB/rate/view/5d4351225457a38f63dc8c3c
https://apps.openei.org/USURDB/rate/view/5e84d5825457a3d037ba48d8#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5e84d5825457a3d037ba48d8#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5b85a1f75457a30544edfe00#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5d66e3055457a37b09c68cdb
https://apps.openei.org/USURDB/rate/view/5d66e3055457a37b09c68cdb
https://apps.openei.org/USURDB/rate/view/539fba32ec4f024bc1dc2b4f
https://apps.openei.org/USURDB/rate/view/539fba32ec4f024bc1dc2b4f
https://apps.openei.org/USURDB/rate/view/62698f4bd43e72653443c397#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5d3f1d815457a3171bdc8c3b#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5d3f1d815457a3171bdc8c3b#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/61128e255457a3e430f802c8
https://apps.openei.org/USURDB/rate/view/61128e255457a3e430f802c8
https://apps.openei.org/USURDB/rate/view/5d13e1d25457a36004de8450
https://apps.openei.org/IURDB/rate/view/5c4761195457a3013d42792e
https://apps.openei.org/IURDB/rate/view/5c4761195457a3013d42792e
https://apps.openei.org/USURDB/rate/view/5e949f135457a35e22a1e57e#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5e949f135457a35e22a1e57e#1__Basic_Information
https://apps.openei.org/USURDB/rate/view/5cf57bc65457a3961d26c07d
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Single-Family Homes 

The scenarios for the single-family home have the following six assumptions: 1) MUD resident 

ownership model without credit card readers and taxes, 2) Illinois, New York, or California service 

locations 3) procurement cost of 490 $/charger [15] and installation cost of 1.7K $/charger [16], 4) one 

L2 charger at the site, 5) single-family home utilization (Figure B6), and 6) no fixed charge.  

MUD Levelized Cost of Charging 
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Figure B7. Baseline and optimistic levelized cost of charging (LCOC) for Level 1 (L1) stations in 50 U.S. 

states at Multi-Unit Dwellings under residential (Res.), utility (Util.), and private company (PrC.) 

ownership models. The gasoline equivalent cost ranges from $0.38 to $0.60 per kWh (Figure B9). 
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Figure B8. Baseline and optimistic levelized cost of charging (LCOC) for Direct Current Fast Charging 

(DCFC) stations in 50 U.S. states at Multi-Unit Dwellings under residential (Res.), utility (Util.), and private 

company (PrC.) ownership models. The gasoline equivalent cost ranges from $0.38 to $0.60 per kWh 

(Figure B9). 
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Figure B9. Gasoline equivalent cost per kWh in the United States on September 2, 2022 [104]. 

 

Sensitivity Analysis 

 

Figure B10. Sensitivity of techno-economic analysis (TEA) model inputs for a Multi-Unit Dwelling (MUD) 

charging hub in Illinois (IL) with baseline scenarios: Level 1 (L1), Level 2 (L2), and Direct Current Fast 
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Charging (DCFC) stations; and resident, utility, and private company ownership models. Abbreviations: 

year (y), federal (Fed.), network (Ntwk.), contract (Contr.), charger (cha.), number (num.). 

 

 

Figure B11. Sensitivity of techno-economic analysis (TEA) model inputs for a Multi-Unit Dwelling (MUD) 

charging hub in New York (NY) with baseline scenarios: Level 1 (L1), Level 2 (L2), and Direct Current Fast 

Charging (DCFC) stations; and resident, utility, and private company ownership models. Abbreviations: 

year (y), federal (Fed.), network (Ntwk.), contract (Contr.), charger (cha.), number (num.). 

Cambium Implementation Into GREET 

The Cambium data had hourly grid mix projections for every day of the year, every 2 years, on a 

state basis from 2020 through 2050; the aggregated U.S. mix was also included. Before being imported 

into GREET, the Cambium grid mix was converted into the mean hourly mix for 2020, 2025 

(interpolated), 2030, 2035 (interpolated), 2040, 2045 (interpolated), and 2050. In total, 8232 Cambium 

grid mix scenarios were individually run in GREET and recorded to determine the BEV fuel-cycle GHG 
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emissions for each scenario; the scenarios were from each combination of the time-of-day (24 hours), 

geographical location (48 states & 1 U.S. average), and year (2020 to 2050 with 5-year increments). 

Hourly BEV fuel-cycle GHG emissions were then coupled with the MUD charging site’s schedule  Figure 

B1) to determine the fuel-cycle GHG emissions of each of the 5-year increments (2020-2050). 

Cambium Grid Resources 

The grid resources by year projected by NREL Cambium were be binned into the following 

GREET categories: 

• Residual Oil: oil-gas-steam 

• Natural Gas: natural gas combined cycle, natural gas combined cycle with carbon capture & 

storage, and natural gas combustion turbine 

• Coal: coal and coal with carbon capture & storage 

• Nuclear: nuclear 

• Biomass: biomass 

• Others: behind the meter PV, concentrated solar power, utility-scale PV, geothermal, hydro, 

offshore wind, onshore wind, hydro storage, battery storage, and Canadian imports. 

Fuel-cycle Results 

An average passenger si e BEV’s hourly fuel-cycle GHG emissions for Illinois, New York, and 

California grid mixes are determined for the years 2020 and 2050. The respective grid mix (BEV: hour & 

year) and vehicle parameters (BEV & Gas CV: year) are embodied in the fuel-cycle GHG emissions on a 

per mile basis for a BEV and gasoline CV in Figure B12. The gasoline CV fuel-cycle GHG emissions are 

based on a national average passenger size gasoline CV in 2020 and 2050. The BEVs are shown to have 

lower fuel-cycle GHG emissions than gasoline CVs every hour of the day in 2020 and 2050. The hours 

with low GHG emissions are due to electricity generation from low GHG emitting resources such as 
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renewables (2 gCO2e/kWh), nuclear (6 gCO2e/kWh), and biomass (53 gCO2e/kWh). These results are 

consistent with previous studies [27,28].  

 

Figure B12. Hourly battery electric vehicle (BEV) fuel-cycle greenhouse gas (GHG) emissions for annual 

averages in 2020 and 2050 for Illinois (IL), New York (NY), and California (CA) grid mixes. The BEV fuel-

cycle GHG emissions are compared to a 2020 and 2050 gasoline conventional vehicle (Gas CV) in the 

United States. Abbreviations: Carbon Dioxide Equivalent (CO2e), gram (g). 

The BEV fuel-cycle GHG emissions vary by both hour and year with the latter having a larger 

impact for California and New York (Figure B12). In 2020 the BEV fuel-cycle GHG emissions range 

between 82-114 gCO2e/mi in Illinois, 81-92 gCO2e/mi in New York, and 71-129 gCO2e/mi in California. In 

comparison, the 2050 BEV fuel-cycle GHG emissions range between 63-117 gCO2e/mi in Illinois, 20-37 

gCO2e/mi in New York, and 13-54 gCO2e/mi in California. Thus, the hourly fuel-cycle GHG emissions are 

reduced from 2020 to 2050 in New York and California by 49-64 gCO2e/mi (-76% to -59%) and 58-75 

gCO2e/mi (-82% to -58%), respectively. In Illinois, however, the hourly BEV fuel-cycle GHG emissions in 

2020 differ from 2050 by -35 to +39 gCO2e/mi (-42% to +35%) meaning fuel-cycle GHG emissions can be 
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higher in 2050 than in 2020 depending on the time-of-day. Considering that the BEV fuel economy 

improves from 103 MPGGE in 2020 to 166 MPGGE in 2050 (+61%), the 2050 Illinois grid mix has higher 

GHG emissions per unit of energy (kWh) by using more natural gas (2020: 17-21%; 2050: 41-73%) and 

less nuclear (2020: 51-58%; 2050: 0%). Additionally, the gasoline CV reduces emissions by 131 gCO2e/mi 

(-47%) from 2020 (26 MPGGE) to 2050 (38 MPGGE) due to an improved fuel economy. Thus, from 2020 

to 2050 the gasoline CV has a higher nominal reduction to fuel-cycle GHG emissions than the BEV in all 

three locations, but a lower relative change to fuel-cycle GHG emissions than the BEV in California and 

New York. Furthermore, the fuel-cycle GHG emissions reduction from BEVs by time-of-day relative to 

gasoline CVs in 2020 is 72-80% in Illinois, 77-80% in New York, and 68-83% in California; and in 2050 is 

58-73% in Illinois, 87-93% in New York, and 80-95% in California. Based on the variability of fuel-cycle 

GHG emissions reductions by time-of-day and location, the time and location at which the BEV charges 

will substantially impact the fuel-cycle GHG emissions. The time-of-day is shown to be especially 

important to grid GHG emissions in Illinois and California but makes little difference in New York, since 

New York interchanges low GHG emitting resources (nuclear & renewables) during 2020 and small 

interchanges (Δ <12%) between renewables and natural gas in 2050. This variability underscores the 

need to understand when and where the BEVs are charging so the appropriate GHG emissions are 

assigned to them. Moreover, in states with high hourly variability, the BEV charging schedule could be 

optimized to only charge at the time-of-day when grid GHG emissions are lowest. 

In California the emissions are lowest during the daytime (8am-3pm) in 2020 and 2050 when the 

mix is comprised of more renewables (Ren) (2020: 25-58%; 2050: 60-90%) and less natural gas (NG) 

(2020: 35-64%; 2050: 10-43%); that is also true for Illinois in 2050 (Ren: 18-49%; NG: 43-71%). 

Contrastingly, the GHG emissions in Illinois are lowest at nighttime (8pm-3am) in 2020 when the mix is 

comprised of more renewables (8-14%), more nuclear (51-58%), less coal (11-18%), and less natural gas 

(17-21%). At a given service location, the optimal times to charge may also depend on the price of 
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electricity from time-of-use rates. Therefore, the optimal times to charge could be determined from 

both an economic and environmental perspective and get more complicated if a carbon tax is involved. 

For this limited analysis, however, the total fuel-cycle GHG emissions are calculated by coupling the 

hourly fuel-cycle GHG emissions with the hourly MUD charging schedule (Figure B3).   

Total Cost of Ownership 

The custom inputs entered into AFLEET for each TCO scenario are:  

• 173K vehicle miles travelled (VMT) over a 15-year period [100]. 

• Fuel efficiency [100] (BEV: 132 MPGGE; Gas CV: 34 MPGGE) that accounted for an 85% BEV 

charging efficiency and 155 MPGGE BEV fuel economy. 

• LCOC from the TEA for each gasoline CV (3) and BEV (54) scenario. The MUD LCOC was assumed 

to be the BEV’s LCOC hence public and workplace charging costs were not included. 

• Medium sized vehicle price in 2020 (Gas CV: $28K; BEV: $35K [103]) that translated to a 

depreciation value of $25K per gasoline CV and $31K per BEV. 

Default inputs in AFLEET include: 

• Maintenance and repair (Gas CV: $32K; BEV: $20K) 

• Insurance (Gas CV: $16K-$23K; BEV $18K-$26K) 

• License and registration (Gas CV: $320-$2.1K; BEV $320-$3.5K) 
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Figure B13. Breakdown of the baseline and optimistic total cost of ownership for a Level 1, Level 2, and 

DCFC station at a Multi-Unit Dwelling (MUD) in Illinois (IL), New York (NY), and California (CA) for 

resident (Res.), utility (Util.), and private company (PrC.) ownership models. The total cost of ownership 

for a gasoline conventional vehicle in Illinois, New York, and California is also included for comparison. 
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APPENDIX C 

 
 
 
Supplementary Text 

This section provides instructions on how to open and operate the interactive figures. The 

interactive figures include Figs. 1-4 and figs. S8-S9. Another short set of instructions are also included 

within the notebook. The static figures can be downloaded from Data C1 if you prefer not to use the 

interactive figures. 

Step 1: Select the Link to the Google Colab Notebook 
Please click the following link to go to the Google Colab Notebook: 

https://colab.research.google.com/drive/12nsObq1nqsj1W7OY4caAuYccnlXMIhGx?usp=sharing 

You may be prompted to sign-in to your google account if you are not already. Sign-in to your 

google account to access the notebook. 

Step 2: Run the Notebook 
To run the notebook, go to the “Runtime” ribbon and press “Run all”. Expect about a 6  second 

runtime. Note that a warning will pop-up and the code can be viewed by expanding the headers. The 

script imports the zip folders that contain the images into the notebook workspace, but nothing is 

downloaded to the computer.  lease press “Run Anyway”. 

  

https://colab.research.google.com/drive/12nsObq1nqsj1W7OY4caAuYccnlXMIhGx?usp=sharing
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Step 4: View the Figures 
Each figure is viewed by expanding the section under the figure’s header. The header section is 

expanded by clicking the arrow to the left of the header. 

 

 

Step 5: Adjust the Scenarios 
The figure shown is updated based on scenarios selected with the slider bars. The values of the 

slider bars are 0 for optimistic, 1 for baseline, and 2 for conservative. 
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Figure C1. Electric vehicle (EV) adoption scenarios for modeled vehicles. Optimistic (Opt.), baseline 

(Base.), and conservative (Cons.) adoption rates are presented for electric passenger cars (Car), Light 

Duty Trucks (LDT), Medium-duty Vehicles (MDV), and Heavy-Duty Vehicles (HDV) [110,117]. 
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Figure C2. Electric vehicle adoption scenarios for buses. Adoption curves are presented for optimistic 

(Opt.), baseline (Base.), and conservative (Cons.) scenarios [117]. 
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Figure C3. Charging infrastructure deployment coverage. Coverage is shown by the darkened color for 

(A-C) optimistic, (D-F) baseline, and (G-I) conservative electric vehicle adoption scenarios with 

deployment for (A, D, G) Direct Current Fast Charging, (B, E, H) Battery Swapping, and (C, F, I) Dynamic 

Wireless Power Transfer. A coverage radius of 80 kilometers (50 miles) is used for each Direct Current 

Fast Charging and Battery Swapping site. Dynamic Wireless Power Transfer roads have a 56 kilometer 

(35-mile) radius for optimistic and baseline deployment scenarios. The radius for conservative Dynamic 

Wireless Power Transfer roadways is 214 kilometers (133 miles), which represents the shortest range 

among electric vehicle categories.



141 
 

 

Figure C4. Portion of daily vehicle travel during each hour of the day. Results are shown for passenger 

cars (Car), Light Duty Trucks (LDT), buses (Bus), Medium-duty Vehicles (MDV), and Heavy-Duty Vehicles 

(HDV) [132,133].  



142 
 

 

Figure C5. Portion of daily direct current fast charging during each hour of the day. Results are shown for 

passenger cars (Car), Light Duty Trucks (LDT), Medium-duty Vehicles (MDV), and Heavy-Duty Vehicles 

(HDV) [132,133]. 
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Figure C6. Forecasted electricity prices from 2022 to 2050. Optimistic, baseline, and conservative 

scenarios are presented for a set of electricity rates (energy) and corresponding demand charges (power) 

[155]. 
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Figure C7. Forecasted fuel prices from 2022 to 2050. Optimistic, baseline, and conservative scenarios are 

presented for gasoline and diesel fuel [155]. 
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Figure C8. Levelized cost of charging in United States counties. Results are presented for (A) Direct 

Current Fast Charging (DCFC), (B) Battery Swapping (BSS), and (C) Dynamic Wireless Power Transfer 

(DWPT). The baseline scenarios are shown in this static figure with all scenarios shown in the interactive 

figure or Data C1. 

 

 

Figure C9. Breakdown of the charging/fuel cost. Average costs in the contiguous United States are shown 

for electric vehicles charged via Direct Current Fast Charging (DCFC-EV), Battery Swapping (BSS-EV), and 

Dynamic Wireless Power Transfer (DWPT-EV). Results are compared to an average internal combustion 

engine vehicle (ICEV) and hybrid electric vehicle (HEV) fueled by gasoline or diesel for the vehicle 

categories of (A) passenger car, (B) light-duty truck, (C) medium duty vehicle, and (D) heavy duty vehicle. 

The baseline scenarios are shown in this static figure with all scenarios shown in the interactive figure or 

Data C1. 

 

 

  

https://colab.research.google.com/drive/12nsObq1nqsj1W7OY4caAuYccnlXMIhGx?usp=sharing
https://colab.research.google.com/drive/12nsObq1nqsj1W7OY4caAuYccnlXMIhGx?usp=sharing
https://colab.research.google.com/drive/12nsObq1nqsj1W7OY4caAuYccnlXMIhGx?usp=sharing
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Table C1. Vehicle operating ranges and battery sizes for medium duty vehicles (MDVs) and heavy duty 

vehicles (HDVs). Abbreviations: kilometer (km), mile (mi), vehicle kilometer travelled (VKT), kilowatt-hour 

(kWh). 

Primary 

Operating 

Range [127] 

Operating 

Distance 

Portion 

of MDV 

VKT 

[127] 

Portion 

of HDV 

VKT 

[127] 

MDV 

Battery 

Size 

HDV 

Battery 

Size 

MDV 

Portion 

Public 

Charging 

HDV 

Portion 

Public 

Charging 

Off-road 0 km 0.89% 2.7% 90 kWh 90 kWh 0% 0% 

Under 80 km  
(50 mi) 

40 km 79% 23% 90 kWh 90 kWh 0% 0% 

81 to 161 
km (50-100 
mi) 

121 km 13% 14% 180 kWh 270 kWh 0% 0% 

162 to 322 
km (101-200 
mi) 

241 km 3.7% 12% 180 kWh 360 kWh 12% 11% 

323 to 805 
km (201- 
500 mi) 

563 km 1.8% 19% 450 kWh 810 kWh 5.3% 14% 

806 km (501 
mi) or more  

889 km 1.7% 30% 720 kWh 990 kWh 4.0% 33% 

 

Table C2. Parameters used for charging systems and vehicles. Capital and operational costs for Direct 

Current Fast Charging (DCFC), Battery Swapping Stations (BSS), and Dynamic Wireless Power Transfer 

(DWPT) systems, along with Total Cost of Ownership (TCO) parameters for the modeled passenger car 

(car), light-duty truck (LDT), medium-duty vehicle (MDV), and heavy-duty vehicle (HDV) as well as electric 

vehicle (EV), hybrid electric vehicle (HEV), and internal combustion engine vehicle (ICEV). The table shows 

values for (A) optimistic, (B) baseline, and (C) conservative scenarios in 2022 United States Dollars (USD). 

Abbreviations: thousand (k), kilowatt (kW), kilowatt-hour (kWh), vehicle kilometers travelled (VKT). 

Parameter Value Units 

Direct Current Fast 

Charging 

  

150-kW Procurement (A) 103k, (B) 119k, (C) 136k [15] USD/charger 

350-kW Procurement (A) 174k, (B)  189k, (C) 204k [15] USD/charger 

150-kW Installation 
(chargers/site) 

59k (1), 47k (2), 35k (3-5), 23k (6+) [141] USD/charger 

350-kW Installation 
(chargers/site) 

82k (1), 65k (2), 48k (3-5), 32k (6+) [141] USD/charger 

Maintenance 5% of procurement [156] %/charger-year 

Network Contract 229 [15] USD/charger-year 

Data Contract 165 [15] USD/charger-year 

Battery Swapping Station   

7.7-kW Procurement (A) 3.4k, (B) 3.7k, (C) 4.1k [15]  USD/charger 

50-kW Procurement (A) 27k, (B) 38k, (C) 49k [15] USD/charger 

7.7-kW Installation 2.9k [141] USD/charger 
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50-kW Installation 22k [141] USD/charger 

Battery Cabinet 175 [176] USD/kWh-
nameplate 

Automated Storage and 
Retrieval System 

(A) 48k, (B) 95k [177], (C) 143k USD/BSS 

Building 3.1k [178] USD/square-meter 

Maintenance 5% of procurement [156] %/charger-year 

Dynamic Wireless Power 

Transfer 

  

Rural Implementation (A) 0.94M [24], (B) 2.7M [114,119], (C) 3.9M [119] USD/lane-km 

Urban Implementation (A) 2.2M [24], (B) 4.2M [114,119], (C) 5.4M 
[114,119] 

USD/lane-km 

Replacement Inverter 487k [119] USD/km 

Total Cost of Ownership   

EV Price without Battery 25k (car), 32k (LDT), 100k (MDV), 150k (HDV) [25] USD/vehicle 

EV Battery Price (A) 90, (B) 118, (C) 150 [118] USD/kWh-
nameplate 

EV Battery Full-size 70 (car) [158], 112 (LDT), 122 (MDV), 549 (HDV) kWh/vehicle 

EV Battery Short Range 13 (car), 21 (LDT), 48 (MDV), 94 (HDV) kWh/vehicle 

HEV Selling Price 36k (car), 51k (LDT), 101k (MDV), 190k (HDV) [25] USD/vehicle 

ICEV Selling Price 33k (car), 45k (LDT), 93k (MDV), 179k (HDV) [25] USD/vehicle 

EV Maintenance 0.07 (car), 0.08 (LDT), 0.10 (MDV), 0.11 (HDV) 
[102]  

USD/VKT 

HEV Maintenance 0.10 (car), 0.11 (LDT), 0.11 (MDV), 0.12 (HDV) 
[102] 

USD/VKT 

ICEV Maintenance 0.11 (car), 0.15 (LDT), 0.15 (MDV), 0.13 (HDV) 
[102] 

USD/VKT 

Annual VKT 20k (car), 17k (LDT), 20k (MDV), 96k (HDV) [163] VKT/vehicle-year 

ICEV Fuel Economy 51 (car), 36 (LDT), 11 (MDV), 13 (HDV) [100] VKT/gallon 

HEV Fuel Economy 77 (car), 52 (LDT), 17 (MDV), 14 (HDV) [100] VKT/gallon 

 

Table C3. Breakdown of the baseline scenario’s urban roadway civil cost for dynamic wireless power 
transfer. The values are in 2022 United States Dollars (USD). 

Parameter Value (thousand USD per lane-km) 

Electrical 727 [114] 

Pavement Removal 106 [114] 

Traffic Control 112 [114] 

Signage 12 [114] 

Soft Cost 820 [114] 

Pavement 552 [114] 

Install materials 69 [114] 

Subtotal 2398 

Contingency 10% [114] 

Total 2638 
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Table C4. Average gasoline and diesel fuel prices from 2022 in United States Dollars (USD). 

Parameter Regular Gasoline (USD/gallon) [104] Diesel (USD/gallon) [104] 

Alabama 3.121 4.148 

Arkansas 3.091 3.975 

Arizona 3.939 4.439 

California 4.924 5.598 

Colorado 3.938 4.668 

Connecticut 3.322 4.668 

Delaware 3.263 4.105 

District of Columbia 3.511 4.734 

Florida 3.325 4.416 

Georgia 3.263 4.292 

Iowa 3.25 3.935 

Idaho  3.679 4.489 

Illinois 3.658 4.306 

Indiana 3.404 4.456 

Kansas 3.091 3.918 

Kentucky 3.17 4.127 

Louisiana 3.1 4.05 

Massachusetts 3.3 4.757 

Maryland 3.303 4.217 

Maine 3.429 5.179 

Michigan 3.548 4.421 

Minnesota 3.32 4.052 

Missouri 3.056 3.904 

Mississippi 3.018 4.026 

Montana 3.274 4.219 

North Carolina 3.256 4.174 

North Dakota 3.276 4.327 

Nebraska 3.291 4.043 

New Hampshire 3.264 4.777 

New Jersey 3.304 4.32 

New Mexico 3.424 4.162 

Nevada 4.344 4.694 

New York 3.466 4.996 

Ohio 3.41 4.319 

Oklahoma 3.077 3.814 

Oregon 3.91 4.714 

Pennsylvania 3.634 4.841 

Rhode Island 3.292 4.713 

South Carolina 3.18 4.071 

South Dakota 3.346 4.144 

Tennessee 3.159 4.078 

Texas 3.079 3.868 

Utah 3.85 4.433 

https://gasprices.aaa.com/?state=AL
https://gasprices.aaa.com/?state=AR
https://gasprices.aaa.com/?state=AZ
https://gasprices.aaa.com/?state=CA
https://gasprices.aaa.com/?state=CO
https://gasprices.aaa.com/?state=CT
https://gasprices.aaa.com/?state=DE
https://gasprices.aaa.com/?state=DC
https://gasprices.aaa.com/?state=FL
https://gasprices.aaa.com/?state=GA
https://gasprices.aaa.com/?state=IA
https://gasprices.aaa.com/?state=ID
https://gasprices.aaa.com/?state=IL
https://gasprices.aaa.com/?state=IN
https://gasprices.aaa.com/?state=KS
https://gasprices.aaa.com/?state=KY
https://gasprices.aaa.com/?state=LA
https://gasprices.aaa.com/?state=MA
https://gasprices.aaa.com/?state=MD
https://gasprices.aaa.com/?state=ME
https://gasprices.aaa.com/?state=MI
https://gasprices.aaa.com/?state=MN
https://gasprices.aaa.com/?state=MO
https://gasprices.aaa.com/?state=MS
https://gasprices.aaa.com/?state=MT
https://gasprices.aaa.com/?state=NC
https://gasprices.aaa.com/?state=ND
https://gasprices.aaa.com/?state=NE
https://gasprices.aaa.com/?state=NH
https://gasprices.aaa.com/?state=NJ
https://gasprices.aaa.com/?state=NM
https://gasprices.aaa.com/?state=NV
https://gasprices.aaa.com/?state=NY
https://gasprices.aaa.com/?state=OH
https://gasprices.aaa.com/?state=OK
https://gasprices.aaa.com/?state=OR
https://gasprices.aaa.com/?state=PA
https://gasprices.aaa.com/?state=RI
https://gasprices.aaa.com/?state=SC
https://gasprices.aaa.com/?state=SD
https://gasprices.aaa.com/?state=TN
https://gasprices.aaa.com/?state=TX
https://gasprices.aaa.com/?state=UT
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Virginia 3.236 4.273 

Vermont 3.443 4.591 

Washington 4.247 5.027 

Wisconsin 3.338 3.937 

West Virginia 3.421 4.442 

Wyoming 3.433 4.526 

 
Table C5. Annual license and registration costs. Costs are for cars, light-duty trucks (LDTs), medium-duty 

vehicles (MDVs), and heavy-duty vehicles (HDVs) in United States Dollars (USD). 

State Car (USD) [25] LDT (USD) [25] MDV (USD) [25] HDV (USD) [25] 

Alabama 50 50 586 816 

Arizona 160 205 210 930 

Arkansas 20 24 130 1350 

California 133 378 1325 2119 

Colorado 173 198 1788 2105 

Connecticut 178 176 281 1520 

Delaware 40 40 877 709 

District of Columbia 72 155 125 340 

Florida 23 33 589 995 

Georgia 20 20 365 400 

Idaho 53 51 517 3202 

Illinois 151 151 1698 2790 

Indiana 21 30 811 1351 

Iowa 153 214 1060 1695 

Kansas 43 52 132 1727 

Kentucky 21 21 704 1445 

Louisiana 10 30 348 494 

Maine 35 35 638 835 

Maryland 135 162 596 1288 

Massachusetts 30 30 840 1200 

Michigan 97 141 975 1277 

Minnesota 55 55 865 1760 

Mississippi 29 21 1663 2872 

Missouri 57 57 63 1720 

Montana 115 102 415 315 

Nebraska 21 21 138 933 

Nevada 33 33 986 1360 

New Hampshire 31 43 557 1240 

New Jersey 49 69 162 841 

New Mexico 40 55 172 172 

New York 24 39 334 968 

North Carolina 39 57 871 963 

North Dakota 66 126 632 1059 

Ohio 36 36 740 1351 

Oklahoma 81 79 653 954 

https://gasprices.aaa.com/?state=VA
https://gasprices.aaa.com/?state=VT
https://gasprices.aaa.com/?state=WA
https://gasprices.aaa.com/?state=WI
https://gasprices.aaa.com/?state=WV
https://gasprices.aaa.com/?state=WY
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Oregon 132 132 220 320 

Pennsylvania 38 38 882 1688 

Rhode Island 48 58 140 1044 

South Carolina 40 40 844 1600 

South Dakota 65 95 873 1311 

Tennessee 27 27 898 1334 

Texas 51 51 180 840 

Utah 77 68 420 660 

Vermont 76 76 271 1910 

Virginia 31 36 600 980 

Washington 68 88 771 1832 

West Virginia 52 52 755 980 

Wisconsin 85 100 1135 2578 

Wyoming 183 240 60 60 

 

Table C6. Annual insurance costs for a car, light-duty truck (LDT), medium-duty vehicle (MDV), and 

heavy-duty vehicle (HDV). Cost is per thousand United States Dollars (USD) of vehicle value. 

State Car (USD) [25] LDT (USD) [25] MDV (USD) [25] HDV (USD) [25] 

Alabama 43.00 43.00 59.00 61.75 

Arizona 35.75 35.75 35.00 51.25 

Arkansas 53.25 53.25 63.00 64.75 

California 53.75 53.75 68.00 61.00 

Colorado 50.75 50.75 42.00 52.50 

Connecticut 40.50 40.50 97.25 73.75 

Delaware 39.25 39.25 99.75 85.25 

District of Columbia 36.00 36.00 55.00 56.75 

Florida 39.25 39.25 74.00 84.50 

Georgia 43.75 43.75 87.25 89.50 

Idaho 38.00 38.00 39.50 39.00 

Illinois 40.75 40.75 44.25 59.75 

Indiana 36.00 36.00 48.50 48.25 

Iowa 40.75 40.75 32.25 38.50 

Kansas 57.25 57.25 38.25 44.00 

Kentucky 58.75 58.75 66.25 67.25 

Louisiana 53.00 53.00 113.25 101.75 

Maine 29.50 29.50 54.75 59.75 

Maryland 35.50 35.50 63.75 69.50 

Massachusetts 34.75 34.75 31.25 73.75 

Michigan 66.50 66.50 51.25 59.75 

Minnesota 39.75 39.75 55.50 55.50 

Mississippi 45.75 45.75 20.50 20.25 

Missouri 54.25 54.25 44.00 51.00 

Montana 52.75 52.75 37.25 41.25 

Nebraska 49.75 49.75 36.00 37.50 
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Nevada 43.00 43.00 61.25 73.25 

New Hampshire 32.50 32.50 39.25 49.50 

New Jersey 32.25 32.25 119.25 87.75 

New Mexico 38.50 38.50 42.00 42.25 

New York 41.25 41.25 101.00 73.50 

North Carolina 26.50 26.50 42.75 46.00 

North Dakota 50.00 50.00 37.00 40.00 

Ohio 31.75 31.75 40.75 43.00 

Oklahoma 55.75 55.75 53.75 58.00 

Oregon 34.75 34.75 48.75 48.75 

Pennsylvania 44.75 44.75 43.25 54.00 

Rhode Island 51.75 51.75 80.75 74.75 

South Carolina 36.25 36.25 54.00 58.00 

South Dakota 68.25 68.25 38.50 39.00 

Tennessee 55.00 55.00 55.00 59.75 

Texas 41.75 41.75 60.50 62.75 

Utah 31.50 31.50 52.50 48.25 

Vermont 39.25 39.25 39.75 41.75 

Virginia 30.75 30.75 57.25 57.00 

Washington 32.25 32.25 48.75 55.00 

West Virginia 46.00 46.00 67.25 63.50 

Wisconsin 39.75 39.75 38.50 40.00 

Wyoming 56.25 56.25 28.25 31.00 

 

Table C7. State level income and sales tax rates. Sales taxes rates are an average of the combined county 

and state rates. 

State Income Tax [146] Sales Tax [145] 

Alabama 6.5% 9.2% 

Arizona 4.9% 8.4% 

Arkansas 5.3% 9.5% 

California 8.8% 8.8% 

Colorado 4.6% 7.8% 

Connecticut 7.5% 6.4% 

Delaware 8.7% 0.0% 

District of Columbia 8.3% 6.0% 

Florida 5.5% 7.0% 

Georgia 5.8% 7.3% 

Idaho 5.8% 6.0% 

Illinois 9.5% 8.8% 

Indiana 4.9% 7.0% 

Iowa 5.5% 6.9% 

Kansas 4.0% 8.7% 

Kentucky 5.0% 6.0% 

Louisiana 3.5% 9.5% 
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Maine 3.5% 5.5% 

Maryland 8.3% 6.0% 

Massachusetts 8.0% 6.3% 

Michigan 6.0% 6.0% 

Minnesota 9.8% 7.5% 

Mississippi 5.0% 7.1% 

Missouri 4.0% 8.3% 

Montana 6.8% 0.0% 

Nebraska 5.6% 6.9% 

Nevada 0.0% 8.2% 

New Hampshire 7.5% 0.0% 

New Jersey 6.5% 6.6% 

New Mexico 4.8% 7.8% 

New York 6.5% 8.5% 

North Carolina 2.5% 7.0% 

North Dakota 3.6% 7.0% 

Ohio 0.0% 7.2% 

Oklahoma 4.0% 9.0% 

Oregon 6.6% 0.0% 

Pennsylvania 9.0% 6.3% 

Rhode Island 7.0% 7.0% 

South Carolina 5.0% 7.4% 

South Dakota 0.0% 6.4% 

Tennessee 6.5% 9.5% 

Texas 0.0% 8.2% 

Utah 4.9% 7.2% 

Vermont 8.5% 6.2% 

Virginia 6.0% 5.8% 

Washington 0.0% 9.3% 

West Virginia 6.5% 6.5% 

Wisconsin 7.9% 5.4% 

Wyoming 0.0% 5.2% 

 

Table C8. Breakdown of vehicle emissions. The global warming potential is given for multiple vehicle 

types: electric vehicles (EV), hybrid electric vehicles (HEVs), and internal combustion engine vehicles 

(ICEVs); and vehicle categories: car, light-duty truck (LDT), medium-duty vehicle (MDV), and heavy-duty 

vehicle (HDV). Abbreviations: Carbon Dioxide Equivalent (CO2e), metric tonne (t), gram (g), vehicle 

kilometer traveled (VKT). 

Parameter Car [100] LDT [100] MDV [100] HDV [100] 

Embodied Vehicle Emissions 

EV Full-Size 
Battery 

5.7 tCO2e/ battery-
life 

9.0 tCO2e/ battery-
life 

11 tCO2e/ battery-
life 

37 tCO2e/ battery-
life 

EV Reduced 
Battery 

1.0 tCO2e/ battery-
life 

1.7 tCO2e/ battery-
life 

5.3 tCO2e/ battery-
life 

9.0 tCO2e/ battery-
life 
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EV Other 
Components 5.0 tCO2e/life 8.4 tCO2e/life 34 tCO2e/life 74 tCO2e/life 

HEV 6.1 tCO2e/life 10 tCO2e/life 38 tCO2e/life 83 tCO2e/life 

ICEV 6.2 tCO2e/life 10 tCO2e/life 37 tCO2e/life 81 tCO2e/life 

Feedstock and Fuel Emissions 

HEV 26 g-CO2e/VKT 39 g-CO2e/VKT 123 g-CO2e/VKT 156 g-CO2e/VKT 

ICEV 40 g-CO2e/VKT 57 g-CO2e/VKT 191 g-CO2e/VKT 164 g-CO2e/VKT 

Operating Emissions 

HEV 112 g-CO2e/VKT 166 g-CO2e/VKT 597 g-CO2e/VKT 757 g-CO2e/VKT 

ICEV 171 g-CO2e/VKT 243 g-CO2e/VKT 924 g-CO2e/VKT 793 g-CO2e/VKT 

 

Table C9. Breakdown of Direct Current Fast Charging infrastructure emissions. Abbreviations: Carbon 

Dioxide Equivalent (CO2e), metric tonne (t). 

Parameter Value (t-CO2e/charger) 

Charger Pedestal 7.1 [165,167] 

150-kW Power Cabinet 2.4 

350-kW Power Cabinets 4.9 

Implementation 7.9 [168] 

Construction 1.4 [166] 

Total 150-kW 19 

Total 350-kW 21 

 

Table C10. Breakdown of one power cabinet’s global warming potential. Abbreviations: Carbon Dioxide 

Equivalent (CO2e), kilogram (kg). 

Material Emissions Rate (kg-CO2e/kg) Weight (kg) Total GWP (kg-CO2e) 

Steel 1.1 [165] 847 915 

Copper 0.82 [165] 327 267 

Fiberglass 8.8 [165] 45 400 

Aluminum 7.3 [165] 115 844 

Ferrite 2.0 [165] 6 12 

Total  1340 2439 

 

Table C11. Breakdown of Battery Swapping (BSS) infrastructure emissions. Abbreviations: Carbon Dioxide 

Equivalent (CO2e), kilogram (kg), kilowatt-hour (kWh). 

Parameter Value Units 

7.7-kW Charger Pedestal 312 [165,179] kg-CO2e/charger 

50-kW Charger Pedestal 4673 [165,180] kg-CO2e/charger 

7.7-kW Construction 200 [166] kg-CO2e/charger 

50-kW Construction 1380 [166] kg-CO2e/charger 

Automated Supply and 
Retrieval System 

346 [165] kg-CO2e/BSS 

Building 36 [165] kg-CO2e/square-meter 

Car Battery 5348 [100] kg-CO2e/battery 
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LDT Battery 8961 [100] kg-CO2e/battery 

MDV Battery 10694 [100] kg-CO2e/battery 

HDV Battery 36865 [100] kg-CO2e/battery 

Battery Cabinet 270 [165,181] kg-CO2e/kWh 

 

Table C12. Breakdown of Dynamic Wireless Power Transfer infrastructure emissions. Abbreviations: 

Carbon Dioxide equivalent (CO2e), metric tonne (t), kilometer (km). 

Parameter Value (t-CO2e/lane-km) 

Electronic Components [169] 

Transformer 18.58 [165] 

AC/DC Converter 16.10 [165] 

Shelter 0.11 [165] 

Super-Capacitors Box 0.01 [165] 

Control Power Supply 0.38 [165] 

Coil 2.90 [165] 

Connectors 0.06 [165] 

Capacitors 2.06 [165] 

Power Electronics Board 0.53 [165] 

Housing 0.55 [165] 

Connectors 0.06 [165] 

Distribution lines 25.19 [165] 

Pavement 

Concrete 3388.35 [114,165] 

Reinforcement bars 63.20 [114,165] 

Transportation 

Electronic Components 0.54 [165,169] 

Pavement 21.19 [165,169] 

Equipment 0.43 [165,169] 

Construction 

Milling 0.36 [165,169] 

Sweeping 0.02 [165,169] 

Paver 0.32 [165,169] 

Total 3540.95 

 

Table C13. Emissions factors for Cambium (2022) resources. All values are in kilograms of Carbon Dioxide 

equivalent per kilowatt-hour. Unknown values are either set equal to zero or equal to the value from 

other regions. Abbreviations: oil-gas-steam (o-g-s), natural gas combined cycle (gas-cc), natural gas 

combustion turbine (gas-ct), hydropower (hydro), onshore wind (wind-ons), offshore wind (wind-ofs), 

concentrating solar power (csp), utility scale photovoltaics (upv), behind-the-meter photovoltaics 

(distpv), pumped hydro storage (phs), bioenergy with carbon capture and storage (beccs), renewable 

energy combustion turbine (re-ct), coal with carbon capture and storage (coal-ccs), natural gas combined 

cycle with carbon capture and storage (gas-cc-ccs), Midwest Reliability Organization (MRO), Northeast 
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Power Coordinating Council (NPCC), Reliability First Corporation (RFC), SERC Reliability Corporation 

(SERC), Texas Reliability Entity (TRE), Western Electricity Coordinating Council (WECC). 

Cambium (2022) 

Resource [182] 
MRO 

[165] 
NPCC 

[165] 
RFC [165] SERC [165] TRE [165] 

WECC 

[165] 

nuclear 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 

coal 1.25 1.24 1.21 1.28 1.23 1.23 

o-g-s 1.27 1.18 1.22 1.03 1.10 1.86 

gas-cc 0.44 0.44 0.43 0.46 0.43 0.42 

gas-ct 0.68 0.66 0.64 0.74 0.64 0.60 

hydro 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 

geothermal 0.067 0.067 0.067 0.067 0.067 0.067 

biomass 0.041 0.041 0.041 0.041 0.041 0.041 

wind-ons 0.015 0.015 0.015 0.015 0.015 0.015 

wind-ofs 0.016 0.016 0.016 0.016 0.016 0.016 

csp 0.047 0.047 0.047 0.047 0.047 0.047 

upv 0.068 0.068 0.068 0.068 0.068 0.056 

distpv 0.071 0.071 0.071 0.071 0.070 0.059 

phs 0.029 0.029 0.029 0.029 0.029 0.029 

battery 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 

beccs 0 0 0 0 0 0 

re-ct 0 0 0 0 0 0 

coal-ccs 0 0 0 0 0 0 

gas-cc-ccs 0 0 0 0 0 0 

canada 0.40 0.42 0 0 0 0.45 
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Data C1 

Below are the links to the direct download of the static figures. The figure downloads are 

separated such that they are less than 25-MegaBytes each, however, the cumulative file size is about 

250-MegaBytes. Note that it is recommended to try to use the interactive figures instead 

(Supplementary Text), so the figures can be viewed seamlessly and do not need to be downloaded. 

Figure 13. Total change in cost due to electric vehicle (EV) adoption. 
County level results are presented for the change in total cost of ownership due to the transition from 

internal combustion engine vehicles (ICEVs) to EVs (A-C) as a percentage and (D-F) in billions (B) of 2022 

United States Dollars (USD). Each map corresponds to EVs charged via (A, D) Direct Current Fast 

Charging (DCFC), (B, E) Battery Swapping (BSS), and (C, F) Dynamic Wireless Power Transfer (DWPT). The 

numbers in the file names correspond to [EV adoption; capital cost; electricity price; fuel price] with 

scenario values of 1 for optimistic, 2 for baseline, and 3 for conservative. 

Link to download (A):  https://drive.google.com/uc?export=download&id=1nJmobH9Qd-90CJuT-
bTWdylGh5BGitre; 
Link to download (B):  https://drive.google.com/uc?export=download&id=1LZOzT7VuXOwvpx-
cXcLSGsWohA_G4gFb; 
Link to download (C):  
https://drive.google.com/uc?export=download&id=1Wf_YZiZ0vaZMTOAEo8tTxsSgdkICfP1D; 
Link to download (D):  
https://drive.google.com/uc?export=download&id=1uM5sNUrRfZe0qhPtHK0SER5BaWzfeZm; 
Link to download (E):  
https://drive.google.com/uc?export=download&id=1388qQJqZHnyNtrs39pc8jtlQ3NAT4XVO; 
Link to download (F):  https://drive.google.com/uc?export=download&id=1-
RSfxkWh8CJmNqMHBy75OMAvT-_Mq8r3  

 

Figure 14. Breakdown of the 10-year total cost of ownership. 
Results are presented for an average (A) passenger car, (B) light-duty truck, (C) medium duty vehicle, and 

(D) heavy duty vehicle in the contiguous United States. The vehicle types include electric vehicles charged 

via Direct Current Fast Charging (DCFC-EV), Battery Swapping (BSS-EV), and Dynamic Wireless Power 

Transfer (DWPT-EV). The EVs are compared to an average internal combustion engine vehicle (ICEV) and 

hybrid electric vehicle (HEV) from each vehicle category. The numbers in the file names correspond to [EV 

adoption; capital cost; electricity price; fuel price] with scenario values of 1 for optimistic, 2 for baseline, 

and 3 for conservative. Link to download: 

https://drive.google.com/uc?export=download&id=1Yv6dAYRmojcg2pb34xJMT6QRQeNOKDRF. 
 

Figure 15. Total change to global warming potential (GWP) from electric vehicle (EV) adoption.  
The maps are for the change in GWP of on-road vehicle transportation in United States counties by 

switching from internal combustion engine vehicles (ICEVs) to EVs charged via (A, D) Direct Current Fast 

https://colab.research.google.com/drive/12nsObq1nqsj1W7OY4caAuYccnlXMIhGx?usp=sharing
https://drive.google.com/uc?export=download&id=1nJmobH9Qd-90CJuT-bTWdylGh5BGitre
https://drive.google.com/uc?export=download&id=1nJmobH9Qd-90CJuT-bTWdylGh5BGitre
https://drive.google.com/uc?export=download&id=1LZOzT7VuXOwvpx-cXcLSGsWohA_G4gFb
https://drive.google.com/uc?export=download&id=1LZOzT7VuXOwvpx-cXcLSGsWohA_G4gFb
https://drive.google.com/uc?export=download&id=1Wf_YZiZ0vaZMTOAEo8tTxsSgdkICfP1D
https://drive.google.com/uc?export=download&id=1uM5sNUrRfZe0qhPtHK0SER5BaWzfeZm
https://drive.google.com/uc?export=download&id=1388qQJqZHnyNtrs39pc8jtlQ3NAT4XVO
https://drive.google.com/uc?export=download&id=1-RSfxkWh8CJmNqMHBy75OMAvT-_Mq8r3
https://drive.google.com/uc?export=download&id=1-RSfxkWh8CJmNqMHBy75OMAvT-_Mq8r3
https://drive.google.com/uc?export=download&id=1Yv6dAYRmojcg2pb34xJMT6QRQeNOKDRF
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Charging (DCFC), (B, E) Battery Swapping (BSS), and (C, F) Dynamic Wireless Power Transfer (DWPT). The 

results are presented as (A-C) a percentage and (D-F) in billions (B) of kilograms (kg) of Carbon Dioxide 

equivalent. The numbers in the file names correspond to [EV adoption; electricity mix] with scenario 

values of are 1 for optimistic, 2 for baseline, and 3 for conservative. 

Link to download (A-C):  
https://drive.google.com/uc?export=download&id=1dFxwqK2lNXCIedRstfVl4Qq890OXVbHx;  
Link to download (D-F): 
https://drive.google.com/uc?export=download&id=1ozqPKqDPLVwX4An0BrPQLg6aJx8ZrSuq. 

 

Figure 16. Breakdown of the lifetime global warming potential.  
Results are for an average (A) passenger car, (B) light-duty truck, (C) medium duty vehicle, and (D) heavy 

duty vehicle in the contiguous United States.  The vehicle scenarios include electric vehicles (EVs) charged 

via Direct Current Fast Charging (DCFC-EV), Battery Swapping (BSS-EV), and Dynamic Wireless Power 

Transfer (DWPT-EV). Results are compared to an internal combustion engine vehicle (ICEV) and hybrid 

electric vehicle (HEV) from each vehicle category. The numbers in the file names correspond to [EV 

adoption; electricity mix] with scenario values of 1 for optimistic, 2 for baseline, and 3 for conservative. 

Link to download: 

https://drive.google.com/uc?export=download&id=12ZT3IIvbezkXq3mK8Avu88x_GuD3e7zh. 

 

Figure C8. Levelized cost of charging in United States counties. 
Results are presented for (A) Direct Current Fast Charging (DCFC), (B) Battery Swapping (BSS), and (C) 

Dynamic Wireless Power Transfer (DWPT). The numbers in the file names correspond to [EV adoption; 

capital cost; electricity price] with scenario values of 1 for optimistic, 2 for baseline, and 3 for 

conservative. Link to download: 

https://drive.google.com/uc?export=download&id=1XFjSzAZtMryOgmuoiAtGBG_-HjzJpUXw. 

 

Figure C9. Breakdown of the charging/fuel cost. 
Average costs in the contiguous United States are shown for electric vehicles charged via Direct Current 

Fast Charging (DCFC-EV), Battery Swapping (BSS-EV), and Dynamic Wireless Power Transfer (DWPT-EV). 

Results are compared to an average internal combustion engine vehicle (ICEV) and hybrid electric vehicle 

(HEV) fueled by gasoline or diesel for the vehicle categories of (A) passenger car, (B) light-duty truck, (C) 

medium duty vehicle, and (D) heavy duty vehicle. The numbers in the file names correspond to [EV 

adoption; capital cost; electricity price; fuel price] with scenario values of 1 for optimistic, 2 for baseline, 

and 3 for conservative. Link to download: 

https://drive.google.com/uc?export=download&id=1bTR6pbAy-k6UabRSWS5rR4U7sfW1y7jd. 

 

 

https://drive.google.com/uc?export=download&id=1dFxwqK2lNXCIedRstfVl4Qq890OXVbHx
https://drive.google.com/uc?export=download&id=1ozqPKqDPLVwX4An0BrPQLg6aJx8ZrSuq
https://drive.google.com/uc?export=download&id=12ZT3IIvbezkXq3mK8Avu88x_GuD3e7zh
https://drive.google.com/uc?export=download&id=1XFjSzAZtMryOgmuoiAtGBG_-HjzJpUXw
https://drive.google.com/uc?export=download&id=1bTR6pbAy-k6UabRSWS5rR4U7sfW1y7jd

