

THESIS

DECENTRALIZED AND DYNAMIC COMMUNITY FORMATION IN P2P NETWORKS

AND PERFORMANCE OF COMMUNITY BASED CACHING

Submitted by

Chepchumba Soti Limo

Department of Electrical and Computer Engineering

In partial fulfilment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2015

Master’s Committee:

 Advisor: Anura P. Jayasumana

 Liuqing Yang

 Christos Papadopoulos

Copyright by Chepchumba Soti Limo 2015

All Rights Reserved

ii

ABSTRACT

DECENTRALIZED AND DYNAMIC COMMUNITY FORMATION IN P2P NETWORKS

AND PERFORMANCE OF COMMUNITY BASED CACHING

Distributed Hash Tables (DHT) are commonly used in large Peer-to-Peer networks to

increase the efficiently of resolving queries. Minimizing the resource discovery time in P2P

networks is highly desirable to improve system-wide performance. Distributed caching is an

approach used to reduce the look-up time. File sharing P2P networks have shown that there

exists nodes/users who share similar interests based on semantics, geography, etc., and a

group of nodes that share similar interests are said to form a community. A Community Based

Caching (CBC) algorithm where nodes make caching decisions based on personal interests is

investigated. One of CBC’s major contributions is that it alleviates the issue of nodes being

limited to caching resources that are popular relative to the entire network. Instead, caching

decisions are primarily based on a node's community affiliations and interests. Community

discovery algorithms that currently exists either need a centralized source(s) to aid in community

discovery or require additional messaging and complicated computations to determine whether

to join a group or not. In many cases, nodes are also limited to being members of only one

community at a time. A dynamic and decentralized community discovery algorithm, Dynamic

Group Discovery (DGD), is proposed. DGD also allows nodes to be members of multiple

communities at the same time. DGD's behavior and performance is then evaluated in conjunction

with the Community Based Caching algorithm. To aid in group discovery during run time (i.e.,

dynamically), DGD uses special keys with embedded group identification information. Oversim,

a flexible overly network simulation framework is used to evaluate the proposed DGD algorithm.

Performance of DGD is compared to Chord and Static Group Allocation (SGA), in which group

iii

identification is done only once. Performance is evaluated for different network sizes,

community sizes, and asymmetry among communities. Performance results are presented and

analyzed when queries are resolved using cache data versus when queries are resolved using

non-cache data. The analysis shows that DGD generally improves lookup performance when

cache data is used to resolved queries. However, when non-cache data is used, DGD

occasionally performs slightly worse than Chord and SGA. For example, in a network with

10,000 nodes, asymmetrical communities and no churn group churn, DGD outperforms Chord

by approximately half a hop and 0.1 seconds in latency. When churn was introduced to the same

network, DGD performance drops by approximately one hop and 0.15 seconds in latency. The

results also show that approximately 90% of the queries are resolved using non-cache data and

therefore, even though DGD is guaranteed to reduce lookup time when asymmetrical

communities are present and cache records are to used to resolve queries, it is often not enough

to significantly improve overall system performance. The results however confirm that caching

resources based on personal interests really does reduced lookup performance when resolving

queries using cache records.

iv

ACKNOWLEDGMENTS

I am elated to have completed my research work and this accomplishment would not

have been possible without the many people who have helped me along the way. First and

foremost, I would like to express my deepest and utmost gratitude to my advisor Dr.

Jayasumana. He gave me the opportunity to work under him and always found a way to chuck

the best in me. I am also very grateful for his patience, guidance and encouragement when my

research was not looking very promising. His fresh perspectives, rigorous reviews and

constructive criticism were invaluable and I would not have made it this far without him.

I would also like to sincerely thank my other committee members: Dr. Liuqing Yang and

Dr. Christos Papadopoulos who were not only my professors, but also amazing mentors. Their

advice and perspective is largely the reason I made it through graduate school. My deepest

gratitude to my colleagues: Dr. Vidarshana Bandara, Yi Jiang, Negar Mshorraf and Aly Fathi

Boud for their comments on my work and the many laughs we shared which helped create an

amazing work environment. A very special thank you to two of the most special friends I have

made in Fort Collins: Aisha Jama and Donnyale Ambrosine, who have played instrumental roles

in molding me into the woman I have become.

Finally, I would like to sincerely thank my parents and siblings. I am forever indebted to

them for the sacrifices they made for me and for their unending and unconditional love and

support that brought me this far. Thank you and am truly blessed to call you my family.

v

TABLE OF CONTENTS

Abstract .. ii

Acknowledgements .. iv

Chapter 1 – Introduction ...1

1.1 Introduction ..1

1.2 Motivation ..2

1.3 Problem Statement and Contribution Summary ..4

1.4 Outline..5

Chapter 2 – Background and Related Work ..6

2.1 Introduction ..6

2.2 Understanding Community Behavior in Networks..6

2.3 Key Generation Techniques Used in P2P Networks ...10

2.4 Previous Work Aimed at Community Discovery in P2P Networks11

2.5 P2P Architectures...15

Chapter 3 – Problem Statement ...17

3.1 Introduction ..17

3.2 Community Identification Based on Website Queried ..17

3.3 Community Identification Based on Personal Interests ...17

3.4 Community Identification Based on Acquired Interests ..18

vi

3.5 Summary ..18

Chapter 4 – Dynamic Community Formation in P2P Networks ...20

4.1 Introduction ..20

4.2 Key Generation and Group ID Finger Table Mapping ..20

4.3 Community Discovery Algorithm ...22

4.3.1 Establishing Group Interest..22

4.3.2 Maintenance of Group ID Finger Tables ...24

4.3.3 Summary of Algorithm ..27

Chapter 5 – Simulation and Performance Analysis ...29

5.1 Introduction ..29

5.2 Key Creation ..29

5.2.1 Determining Size and Symmetry of Community...29

5.2.2 Key Generation ..30

5.3 Key Sorting and Query Creation..31

5.4 Runtime Simulation Logic Flow ..32

5.4.1 Network Initialization Inserting Keys ..32

5.4.2 Querying Resources and Community Formation ..35

5.4.3 Group Churn at Runtime ..36

5.5 Performance Parameters ..37

vii

5.6 Simulation Validation ..38

5.6.1 Algorithm Performance without Using Group ID Finger Table39

5.6.2 Community Discovery and Performance ...41

5.6.2.1 Community Growth and Boundary Conditions41

5.6.3 Performance When Group Churn is Introduced ..44

5.7 Results and Analysis ..46

5.7.1 Case 1: Varying Number of Nodes – Asymmetrical Communities46

5.7.2 Case 2: Varying Size of Communities ...58

5.7.3 Case 3: Varying Number of Nodes – Symmetrical Communities72

5.7.4 Case 4: Introducing Group Churn ..80

Chapter 6 – Conclusion and Future Work ...88

6.1 Summary and Conclusion ..88

6.2 Future Work ...89

References ..91

Appendix A ..95

List of Abbreviations ...103

1

CHAPTER 1

INTRODUCTION

1.1. Introduction

Peer-to-peer (P2P) network applications have evolved from the days of predominantly

using it for file sharing purposes to now having a vast array of applications that include digital

crypto currency applications like Bitcoin [1]; free movie streaming multimedia applications such

as the recently discontinued Popcorn Time [3]; video conferencing applications such as Skype

[35]; and even online gaming sites like World of Warcraft [36], only to name but a few.

One way of guaranteeing improved system-wide performance in P2P networks is by

reducing the amount of time a node/user takes to find a resource in the network. In an attempt to

minimize resource discovery time, various caching schemes such as Beehive [37] and PoPCache

[38] have been proposed. However, [37] and [38] are designed to favor the most popular requests

and/or resources with respect to the entire network. It is also worth noting that popularity of

queries in P2P networks generally follow a Zipf’s distribution [2] [40], which essentially means

that there are few items which are very popular resulting in a large number of queries looking for

them, while a large number of items that are significantly less popular thus accounting for a very

small number of queries. Therefore, if Beehive or PoPCache are selected as the caching scheme

of choice, then queries to the popular resources will be favored and majority of the nodes will not

benefit from caching.

Within a P2P network, there exist nodes with similar interests and a cluster of such nodes

are said to belong to a community [29]. For example, BitTorrent [41] has a large variety of user

groups with varying interests such as music, movies and software etc., and these users form

2

associated clusters within the BitTorrent network. Similarly, Tomnod, a website that harnesses

the power of crowdsourcing to identify satellite images with the aim of solving real world

problems, has projects in various areas of interest and users who choose to be involved are

essentially joining a community of people who are trying to achieve a common goal. An example

of a well-known Tomnod project is that of attempting to locate the disappeared Malaysia

Airlines MH370 [5] [6] [7].

The existence of communities in the network can be used to implement “smart” routing

which yields improved quality of search results [10] and also lowers resource discovery (also

referred to as lookup) times. A proactive caching algorithm that exploits the existence of

communities is presented in “Community-Based Caching for Enhanced Lookup Performance in

P2P Systems” [29]. In [29] sub-overlays, based on pre-assigned static community identification,

are formed and the proposed Community Based Caching (CBC) scheme (a potential replacement

for Beehive and PoPCache) is proven to enhance lookup performance in P2P networks.

1.2. Motivation

Community behavior is dynamic in that they appear, grow, diminish and eventually

disappear over time and this phenomenon has been observed repeatedly in the Internet. For

example, the Tomnod project where a community of users identified possible airplane remains of

the missing Malaysia Airlines MH370 began with the unfortunate disappearance of the aircraft

[5] [6] [7], grew as the news of the incident spread across the globe and then began to die out as

media coverage also reduced, and finally the project was closed and with that the community

disappeared. A second example on community formation, growth and disappearance in the

Internet is that of the rumor about the discovery of a new particle with similar characteristics as

3

the Higgs boson; which is considered the most elusive particle in modern science and whose

existence has been hypothesized since 1964 [8] [9]. Domenico et al., [9] analyzed the number of

Twitter messages associated with the rumor between July 1st and July 7th 2012 for their study. In

their findings, the number of messages grew steadily as the rumor spread with the peak observed

around July 4th when the official announcement about the discovery was made. After July 4th, the

number of Twitter messages steadily declined and over time and fewer messages on the rumor

were observed.

Nodes joining a network tend to have varying interests; they may even have multiple

interests and as such should be allowed to be members of multiple communities at the same time.

For example in standard file sharing P2P network, a node that joins may be interested in music,

software and movies. Ideally, such a node should be able to join the music, software and movie

communities at the same time.

In simulation and testing of the Community Based Caching (CBC) algorithm [29], a

community is viewed as a group of nodes that query the same website (e.g. BitTorrent) for

resources. Even though there is commonality between such nodes, i.e., querying form the same

website, BitTorrent has access to a wide variety of resource. Therefore, the main limitation of

viewing communities from this perspective is that nodes are unable to take advantage of the fact

that they may have similar interests at a lower level other than that of querying the same website.

For example, let there be a Node_A that is interested in music and movies and another Node_B

that is interested in software and computer games. If both Node_A and Node_B query site X for

resources, then according to [29], Node_A and Node_B belong to the same community.

However, based the definition of a community above, this is not very accurate since Node_A and

Node_B have different interests at a lower level.

4

Also, there are two more assumptions made in [29] to simplify the simulation and testing

of the Community Based Caching (CBC) algorithm that need to be modified in order to truly test

the efficiency of CBC: 1) community assignments of nodes was done statically at the beginning

for the simulation, and 2) nodes were limited to being members of one community at a time.

These two assumptions, are not in line with the basic principles of community existence

discussed above, i.e., they should appear and disappear dynamically and that a node could be a

member of multiple communities at a time.

In conclusion, the Community Based Caching algorithm is a novel concept that has been

proven to enhance lookup performance when communities in the network are static and

restricted to belonging to one group. However, as demonstrated by the examples given above,

appearance and disappearance of communities is essentially a dynamic process and it is

imperative for nodes to have the ability to be a part of multiple communities at the same time.

Therefore, it is necessary to ensure that the CBC algorithm truly enhances lookup performance

when nodes are allowed to join communities dynamically and also have the ability to be a part of

multiple communities at the same time.

1.3. Problem Statement and Contribution Summary

Community Based Caching has been proven to work for nodes in the network that belong

to one community for the entire lifetime of the node [29]. This thesis proposes a novel approach

for community formation that takes into consideration the dynamic nature of communities and

also allows nodes to belong to multiple communities at any given time. In addition, the proposed

community formation algorithm involves having special keys created using a novel approach

5

which allows for unsupervised appearance and disappearance of communities because no static

community assignment is done.

1.4. Outline

The rest of this thesis is organized as follows. Chapter 2 reviews the background and

related work. We expound on the problem statement in Chapter 3. In chapter 4, a detailed

discussion of the Dynamic Group Discovery algorithm is presented. Chapter 5 covers the

simulation implementation of the Dynamic Group Discovery algorithm and also includes case

studies and results used to determine the algorithm’s optimal region of operation. Chapter 5 also

provides simulation results that compare Community Based Caching algorithm performance

when communities in the network are statically assigned versus when communities are formed

dynamically. Summary and future work is given in chapter 6.

6

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1. Introduction

Existence of communities in P2P networks has been established in numerous

publications. Since group presence in the network is a characteristic that can be exploited for

gains in different areas, it has been studied extensively and as result multiple community

discovery algorithms have been proposed. In this section, we shall first look into understanding

community behavior in networks in order to take advantage of all known community

characteristics to develop a decentralized community discovery algorithm. Next, we shall review

some publications that motivated the proposed Dynamic Group Discover algorithm (DGD). In

addition, since DGD is dependent on a novel key generation technique, will also look into

existing key generation procedures that have been used in P2P networks. Lastly, because the

proposed DGD algorithm is built on top of an existing P2P architecture, we shall also look into

the common types of P2P structures that are currently in existence.

2.2. Understanding Community Behavior in Networks

This section looks into research done on communities in the Internet, in an effort to: 1)

understand natural community existence and formation in the network, and 2) pin-point

characteristics that can be used to design an efficient algorithm that exploits existence of

communities and their properties.

Before diving into the details of community behavior in networks, we will give a formal

definition of communities that will apply whenever “communities” or “groups” are referred in

7

this thesis. A community is simply defined as a subset of peers or nodes with similar interests

[29]. Figure 2.1 below shows a structured overly network with 12 nodes labeled A to K. From

the figure, there are two communities (also referred to as suboverlays) that have formed on top of

the already existing overlay. This is shown by the solid blue line and the dashed black line.

Notice that the nodes connected with the solid blue and dashed black line are a subset of the

nodes that make up the network. Also note that not all nodes in the network belong to a

community for example node B and node F. Another example is illustrated in Figure 2.2 below,

which shows an unstructured overlay that consists of nodes which are grouped into three

communities. Therefore, regardless of whether the network is structured or unstructured, a

cluster of nodes that share similar interests are referred to as a community.

Figure 2.1: A structured overly network (chord) with two communities formed on top of the

overlay [29].

Next we look at the three main causes of correlation in social networks as described in

[11] which consequently leads to grouping of nodes with similar interests. These causes include:

1) homophily, which is the tendency to befriend others who perform similar actions [12]; 2)

8

influence/induction, which suggests doing something because a friend did it, for example buying

a pair of shoes; and 3) environment, which suggests sharing the same information with people

living in the same geographical area. The causes highlighted above can be viewed as a basis of

community existence and identification in networks. Even though the findings are based on

studies done on social networks, the proposed bases above could be generalized and applied to

the entire Internet and particularly to P2P networks.

The existence of strong and weak ties in the network also influence natural community

existence, discovery and expansion of the same. Strong ties, which are considered connections to

neighbors that are used regularly, exist between neighbors who have a lot in common.

Conversely, weak ties are connections between nodes that are not regularly used. Weak ties are

valuable because they are believed to have more diverse information about resources available in

the network and also tend to exist between nodes that occupy different sections of the graph [13].

This is attributed to the fact that the tie frequency of communication is directly proportional to

mutual interest between nodes [13]. Weak ties are therefore crucial in discovering nodes in the

network that may share similar interest so as to potentially form mutually beneficial relationships

such as communities.

Another characteristics of naturally occurring communities in a network is the existence

of densely linked clusters. This is partly due to society’s natural way of dividing people into

social groups for example families, villages, etc., [18][19]. In the World Wide Web’s, topically

related pages link more densely among themselves creating communities [21]. Within the

clusters, there exists densely connected nodes and some nodes in a cluster form loose

connections with other nodes in different clusters [14][15]. These loose inter-cluster connections

9

ensure connectivity throughout the network and that no cluster is isolated from the network as

demonstrated in Figure 2.2,2 below.

Figure 2.2: The three shaded regions represent three different naturally occurring communities

that have dense connections within but loose connections with other nodes in different

communities [15].

The definition of a cluster as described above does not account for situations where there

is overlap between communities; which is also a naturally occurring phenomenal in networks as

described in [16] [17]. Therefore, there is a possibility of having dense inter-cluster connections

and loose internal links within a cluster [20] as illustrated in Figure 2.3 below.

Figure 2.3: Illustration of two overlapping communities with dense external links.

10

In summary, the four general characteristics of naturally occurring communities in

networks described in this section are:

i. Correlation of nodes due to homophily, influence/induction and environmental

influences

ii. Existence of strong and weak ties in the network (and more so the existence of weak

ties) that tend to disseminate information about more diverse information available in

the network

iii. Natural occurring clusters due to society’s natural way of dividing people into social

groups and

iv. The natural occurrence of overlapping communities in the network

These characteristics are used as guidelines in the design of the proposed decentralized DGD

algorithm that is discussed in Chapter 4.

2.3. Key Generation Techniques Used in P2P Networks

Most structured P2P networks utilize a Distributed Hast Table (DHT) with <key, value>

entries that are used to assign ownership to resources [4]. Resources are represented using <key,

value> can be assigned using centralized key generating infrastructure or consistent hashing

algorithms such as SHA-1 in [4]. Based on our research, there are no key generating algorithms

that include information about the type of content represented by the key; for example, does the

generated key represent a music file or software etc.

In order to facilitate dynamic discovery of communities in the network, it becomes

imperative for nodes to be able to learn about groups at run time, and preferably not have to

query a central source for this information. The idea of decentralized key generation is proposed

11

in [27], which demonstrates that it is possible to have a key generating algorithm that is publicly

known by all nodes in the network and still have secure communication in the network, even

when up to 75% of the network edge is compromised; for example, when nodes are controlled by

an adversary.

Since there is a constant stream of messages containing keys being forwarded in P2P

networks, it becomes increasingly attractive to have these keys contain some form of meta-data

appended to them using a key generation algorithm that is publicly known by all nodes in the

network. This could be advantageous because when a node receives a query, it can extrapolate

information about the key and consequently learn about other interests in the network at runtime.

This information could also potentially aid in decentralized community discovery at runtime.

2.4. Previous Work Aimed at Community Discovery in P2P Networks

Comtella [45] is a small scale P2P file sharing system used to develop a trust-based

community formation approach to help users get more relevant information from searches done

in a network. In Comtella, a user can search for papers and/or comments, and based on the

ratings of papers in the results lists the user can decide what paper is worth reading. However,

ratings are biased in that users can rate papers at their discretion and not everybody has the same

interests or the same level of background knowledge to rate papers “accurately.” To overcome

this usability problem, a community formation algorithm based on trust is proposed in [22].

Every node in the network has an agent that is used to track similarity in ratings given by users

and an agent is limited to tracking ratings in only one category. The community is maintained by

the creator and a node will prefer to build a community that is only useful it itself because

community maintenance needs dedicate resources. Before building a community, the creator

12

starts by building trust in other agents and this is done by experience and once it finds agents it

can trust, it invites them to join its community CNEW. If an agent that is invited to join CNEW is

already part of another community C0, it can suggest to the creators of both CNEW and C0 to join

and form a bigger community. Members of each community decide if joining communities is

good based on trust for each other, and if majority of the members vote not to combine, the

individual agents decide whether to join CNEW or C0 based on trust. Community maintenance is

done by the creators and it is done periodically. If an agents reputation is tainted and falls below

the specified threshold to maintain trustworthy status, or if new agents not cleared by the creators

have joined the community and are found to be untrustworthy, they are expelled from the

community by the creator [23]. The main limitations of this algorithm is that community

maintenance is centralized and nodes are limited to being members of one community per

category.

Liu et al., [24] propose an algorithm where communities can be established using a

hierarchical structure. Web domain visitations and frequency of visits are used as the basis to

determine a node’s interest profile. An order-based approach is presented to determine similarity

between nodes in the network such that if the similarity measure between Pi and Pj is greater than

a certain threshold Ω then Pi can determine, with a specified confidence level q, that Pj is

considered to be among the top (1-p) quantile most similar nodes in the network. Pi chooses its

threshold value Ω such that if similarity value calculated is greater than Ω then the node will be

among its top (1-p) fraction of nodes in its community. The initiator node specifies N random

walks to peers in the network where N is the number of samples needed by the node to calculate

its Ω, p and q value. Whenever a peer is chosen, it sends a reply to the initiator and an end-to-end

connection is established. After Ω, p and q are set, the initiator node sends out a discovery

13

message with a set time-to-live defining maximum number of hops. If a node Pk’s similarity with

the initiator is within a specified range, it sends a reply to the initiator and also forwards

discovery message to all its neighbors except the source of the message. The initiator analyzes

Pk’s similarity and decides whether or not to send an invitation based on the quantiles estimated

above. Once Pk gets the message, it either accepts or declines it. If it accepts, initiator is added to

Pk’s local cache. With an aim of expanding the network, if an invitation is accepted, then both

nodes exchange each other’s cache contents [24].

A robust self-adjusting algorithm that has the capacity to form communities and search

for resources efficiently is proposed in [25]. Data inserted into the network is arranged in abstract

categories called information profiles. When a node A wants to find other nodes with similar

interests, it sends out a discovery message with the desired information profile. The message is

routed using either flooding [33] or greedy routing, which in this case means preferring to

forward messages to neighbors in your community over regular neighboring nodes. Each node

that receives the message calculates the similarity between the profile in the message and its

own, determines a similarity measure and compares this measure with a predetermined threshold.

A search hit occurs when a node B determines that the similarity measure is greater than or equal

to the threshold. If a search hit occurs, then a direct connection is made between the nodes A and

B. B then replicates the discovery messages and forwards them to its neighbors. The idea behind

proliferation of the discovery message at the node where the hit occurred is that, since nodes

with similar interests tend to be present in the same neighborhood, then the likelihood of other

nodes in the network discovering similar communities is increased. Each node is limited as to

how many edges it can have connected to other community members. If both A and B reach their

14

maximum at the same time, then the edge AB is deleted. If either A or B reach its maximum,

then another random edge is selected at random and deleted.

Khambatti et al. [26] propose a community discovery algorithm on which the node

interests are represented using attributes which can be classified as either personal, claimed or

group. All interests of a node are classified under personal, and the claimed attributes are a

subset of personal attributes that represent interests the node chooses to make public because by

default all attributes are private for security purposes. Nodes determine group attributes based on

geographic location, e.g., if a node is at the Colorado State University campus, then it is part of

the CSU group. Before a community of nodes is fully formed and considered stable, nodes send

out group discovery messages that include a set of its claimed attributes. When a peer receives

the group discovery message, it finds the intersection between the set of claimed attributes in the

message and its personal attributes. If a personal attribute in the resulting set is not claimed, the

interest is then added to the claimed. This is done because it is beneficial for a node to make

public as many attributes as possible in order to take advantage of the benefits of being in a

community but at the same time having the ability to only share information that it wants to

make public. Community membership/joining is based on weighted calculations done by the

node to determine if the node should join a community it has discovered.

In conclusion, the algorithms summarized above either need a centralized node to maintain

community formation or need to send out additional messages in order to discover nodes with

similar interests in the network. The proposed DGD algorithm discussed in Chapter 4 utilizes

messages that are already being propagated in the network to disseminate information about

existing communities. Piggy-backing group information in key also alleviates the need for

additional information profile match calculations to determine potential community members.

15

2.5. P2P Architectures

There are two main types of P2P architectures, structured P2P and unstructured P2P.

Nodes in structured P2P networks use a specified algorithm to determine where to forward

queries whereas in unstructured P2P networks, flooding [33] is mostly utilized. The latter can be

expensive and does not have any guarantees in terms of performance. Figure 2.4 below from [32]

illustrates the unpredictable nature of flooding versus Chord [4], Pastry [30] and Content-

Addressable Networks (CAN) [31]. The last three are algorithms are all types of structured

overlay P2P networks.

Figure 2.4: Cost of discovering resources in terms of average number of hops against varying

network sizes using different forwarding algorithms.

In conclusion, a decentralized dynamic group discovery algorithm that utilizes already

existing messages being forwarded in the network is desired and from the discussion above, is

achievable. A public key generation algorithm can exist without compromising the security of

the other nodes in the network. Designing the algorithm on top of a structured network would be

16

more beneficial versus that over an unstructured network because of the guarantee in

performance given by the former.

17

CHAPTER 3

PROBLEM STATEMENT

3.1. Introduction

Studies discussed in Chapter 2 show that communities occur naturally in the network, and

in an aim to minimize resource discovery times, exploiting the existence of communities is

increasingly desirable. This section will cover three main methods establishing similarity

between nodes in P2P networks. These include and may not be limited to: commonality between

nodes based on querying from the same website; a node’s personal interests; and acquired

interest due to queries processed by a node. We conclude this section by reiterating the problem

statement that drives the algorithm discussed and evaluated Chapter 4 and 5 respectively.

3.2. Community Identification Based on Websites Queried

In [29], communities are defined as a subset of nodes that share similar interests. For

example, if a group of nodes are constantly accessing the local news website for updates, then

these nodes can be said to belong to the news community. Similarly, in file sharing P2P networks

if a node queries the same website, for example BitTorrent [41] or The Pirate Bay [43] for files,

then these nodes can be grouped together and identified as belonging to either the BitTorrent or

The Pirate Bay community.

3.3. Community Identification Based on Personal Interests

Nodes join P2P networks to either query for resources, make resources available or both.

For example, a Node_A joins the network and not only would it like to query for music files, but

18

it also has a movie file that it is willing to share with other nodes in the network. A second

Node_B would like to query for music files while a third Node_C would like to query for movie

files. In this case, ideally Node_A and Node_B would join the music community based on their

personal music interest and similarly, Node_A and Node_C would join the movie community.

Note that the decision to join a community is independent on whether a node would like to share

or query for a resource.

3.4. Community Identification Based on Acquired Interests

The last type of community identification scheme we shall look at is based on acquired

interest. Depending on where a node is located in the network graph and the algorithm used to

forward queries, a node could decide to join a community based on the number of queries it

receives for keys that belong to a particular group. For example, if Node_A joined the network

and it is interested in querying for music files, then naturally based on its personal interest

Node_A would join the music community. In addition, because of Node_A’s location in the

network it is constantly being requested to resolve queries for keys that belong to the movie

community and therefore, Node_A could join the movie community to potentially improve

lookup performance for movie files. If Node_A chooses to join the movie community, it would

be because of an acquired interest largely due to the type of query requests processed.

3.5. Summary

Communities occur naturally in the network and it is desirable to take advantage of this

phenomenon to potentially improve resource lookup times. To accomplish this, a decentralized

19

community discovery algorithm that does not require complex computation and/or multiple

additional messages between nodes is desired. The proposed Community Based Caching (CBC)

scheme in [29] was proven to work for: 1) communities that are static (i.e., a node could not

change interests), 2) nodes that are restricted to belonging to one community at a time and 3)

similarity basis for community formation was based on websites queried as described in Section

3.1 above. To further validate CBC’s capabilities of enhancing lookup performance in P2P

networks, it is tested in conjunction with the proposed Dynamic Group Discovery (DGD)

algorithm whose design goals are to have a robust decentralized and dynamic community

discovery algorithm that allows nodes/users to: 1) be members of multiple communities at the

same time, 2) add, join or leave communities at will and 3) have similarity basis for communities

based on personal interests and acquired interests as described in Section 3.2 and 3.3 above.

20

CHAPTER 4

DYNAMIC COMMUNITY FORMATION IN P2P NETWORKS

4.1. Introduction

This chapter covers the algorithm used to achieve dynamic community formation in P2P

networks. First, the proposed key generation technique is introduced. Second, details on how

establishing group interest is covered and this is followed by logic used to maintain group links

in the dynamic network environment. Finally, we conclude the chapter with a summary of the

proposed algorithm.

4.2. Key Generation and Group ID Finger Table Mapping

The approach used in the community discovery algorithm described below is dependent

on resources being represented using a special key value. This approach is inspired by the user

profiles defined in [14] where it is important to create accurate profiles for each resource in the

network to facilitate community discovery between nodes.

In the proposed key generation design, resources have a corresponding key value that is

used to identify it. The last 12 bits of every key are reserved for interest identification purposes

where there are three levels of identification; four bits for each level. The three levels of

identification used are as follows:

1. Level 1 (mandatory) – reserved for general data classification e.g., music, movies, and

software. The idea is that every key in the network can be associated with some high level

class and this information is made available using this level.

2. Level 2 (optional) – reserved to specify geographical location e.g., USA, Canada etc.

21

3. Level 3 (optional) – reserved to specify genre e.g., comedy, hip-hop, drama etc.

Having more levels of identification would be beneficial because this would allow for

more accurate community matchups. However, for out work three levels is considered sufficient

and a good trade-off between the amount of detail included about the key (i.e., metadata

appended at the end of each key) and the number of bits left to represent the actual key. Note that

the latter dictates the actual size of the key space and consequently determines the maximum

number of nodes that can exists in the network at a given time. Therefore, it is important to

ensure that a sufficient number of bits is allocated to represent the key.

The first level is made mandatory because every key in the network can to be classified

under some category for example music, software, movies etc. as seen in common P2P resource

discovery sites such as BitTorrent [41] and Pirate Bay [42]. If the level identification is not

available or applicable for level 2 and 3 then a 0 is assigned to it. Note that level 1 cannot have a

0 assignment since it is mandatory. Table 4.1 below shows examples of keys generated with

appended group ID information.

Table 4.1: An example of keys to be inserted in the network.

Key

Group ID

Level 1

Group ID

Level 2

Group ID

Level 3 Final Key

0123456789abcdef music => 1 Canada => 2 hip-hop => 3 0123456789abcdef 123

a123456789bcdef0 music => 1 N/A=> 0 drama => 9 a123456789bcdef0 109

b123456789bcdef0 movies => 3 USA => 3 comedy => 6 b123456789bcdef0 236

In order to guarantee a certain level of performance, we opt to use a structured P2P

network versus a random network for our simulations. The structured network selected for this

thesis is Chord [4], which is popular and widely used in P2P networks. As part of the Chord

22

algorithm, each node maintains two tables, i.e., a finger table mapping and a distributed hash

table (DHT) for keys it is responsible for.

To aid in dynamic community discovery, in addition to the two tables mentioned above,

each node maintains a map of group(s) it is interested in and fingers to nodes belonging to the

said group(s). This information is stored in a table we shall refer to as the group ID finger table.

Nodes learn about the presence of other with similar interests in the network through regular

messages forwarded to it. In the case of Chord, these messages include PUT and GET. PUT

messages are used by nodes to insert keys into the network for resources that it chooses to make

available the network, while GET messages are used by nodes to query for resources. An

example of the group ID finger table is shown in Table 4.2 below.

Table 4.2: An example of entries in group ID finger table.

An important property of the entries in the group ID finger table is that initially the

mappings begin as weak ties (as described in [14] and [15]) and depending on the type of queries

the node receives, the entries have the potential to turn into strong ties.

4.3. Community Discovery Algorithm

4.3.1. Establishing Group Interest

When a node joins the network, it is assumed that it already knows what communities it

would be interested in joining based on its personal interests. A node’s personal interests are the

Group ID Finger To Group Member

123 node A

109 node B

206 node C

345 node D

23

first entries to be inserted into the group ID finger table and they are represented using the group

ID number and a finger to itself. These entries are very important in the algorithm because they

form the basis for future entries. As an example, Table 4.3 below shows the first two entries in a

node’s group ID finger table. When the node (identified as node A) joins the network, it knows

that it is interested in music from America and comedy movies from Europe.

Table 4.3: Example of a node’s initial group ID finger table.

In accordance with the Chord algorithm, when a node is ready to make a resource

available to the entire network, it sends out a PUT message containing the key representing the

resource. Take for example a Node_A which would like to insert a key is whose value is 1120.

The Chord algorithm guarantees the existence of a Node_X in the network that is responsible for

keys in a specified range [α, β) such that α ≤ 1120 ≤ β. When Node_A sends out the PUT

message, it is forwarded towards Node_X and when Node_X receives the message, it adds an

entry to its DHT with the key 1120 and a pointer to the Node_A. Forwarding of the message

towards Node_X is aided by Chord’s finger table which also guarantees that the PUT message

destined for Node_X will be delivered within log2 𝑁 hops, where N is the number of nodes in the

network.

Note that there is a little overlap in the information stored in all the three tables discussed

above. The whole point of creating the additional group ID finger table is to potentially reduce

the cost of resolving queries by using the premise, “ask those who probably know first,” and in

Group ID Finger To Group Member

120 node A

239 node A

xxx TBD

xxx TBD

24

our case this translates to ask members within the community first before deciding to use

Chord’s prescribed finger table. The details of how forwarding decisions are made are covered

below in Sections 4.2.2 and 4.2.3.

4.3.2. Maintenance of Group ID Finger Tables

This section focuses on how nodes grow and maintain the group ID finger table using

GET messages. A Node_A receives a GET message querying for a key 2912, however, it is

unable to resolve the query and therefore needs to forward it to another node in the network that

may be able to resolve it. To do this, Node_A first extracts to the group ID appended to the query

(in this case it is 912) to see if it is already a member of the group. Based on Node_A’s initial

group ID finger table defined in Table 4.3.1.1 above, it is only interested in joining group 1xx

and/or 2xx. Also note also that at this point, Node_A has not discovered any other nodes in the

network with similar interest. Therefore, since it is unable to resolve the query and it does not

know of any other nodes in group 9xx, Node_A uses its Chord fingers to determine the query’s

next hop and also logs that it has attempted to resolve a query belonging to group 912.

Node_A receives another GET message but this time the key being queried is 2122. Let

us assume that Node_A is unable to resolve the query and so far there have been no updates to its

group ID finger table. In this case, Node_A uses its Chord finger table to determine its next hop

and logs that it has attempted to resolve a query belonging to group 122. This is also the first

time that Node_A gets a hint that there may exist other nodes in the network that have similar

interests.

As Node_A continues to process GET messages, as it keeps track of the number of

processed queries based on group. Note that from above, Node_A is keeping track of messages

25

that belong to all groups regardless of its personal interests. When Node_A processes λ number

of queries for a group it is interested in, for example 122, it attempts to discover other nodes in

the network with similar interests by sending out a FIND GROUP message to its neighbors. If

Node_A processes μ number of queries for a group it is not interested in, for example 912, this is

an indication that Node_A occupies a position in the network where it is constantly being

requested to process queries belonging to group 912 and therefore, it is in Node_A’s best interest

to join group 9xx to potentially take advantage of forwarding queries to community members

and Community Based Caching. To do this, Node_A adds an entry to its group ID finger table

and also sends out a FIND GROUP message. Note that there are two different thresholds used

i.e., λ for already existing interests and μ for acquired interests due to queries processed. λ is

used to ascertain that indeed there are other nodes in the network with interests similar to a

node’s initial personal interest and μ is used to justify joining a group that a node was not

initially interested in, with an aim of attempting to improve general system performance. Ideally

λ << μ because a node should favor joining communities based on personal initial interest rather

than acquired interest.

Table 4.4: Updated group ID finger table after Node_A decides to join group purely based on

GET messages processed.

If a FIND GROUP reply is received, then it will contain finger(s) to other nodes in the

network that share similar interests and these entries are added to the group ID finger table. For

example, if a FIND GROUP reply for group 122 contained fingers to Node_X, Node_Y and

Group ID Finger To Group Member

120 node A

239 node A

912 node A

xxx TBD

26

Node_Z, then Node_A updates its group ID finger table accordingly and this signifies Node_A

joining community 1xx which already has Node_X, Node_Y and Node_Z as members. Table 4.5

below illustrates this update. Note that a FIND GROUP reply could have information about more

than 1 node in the network. This is because all the nodes in the network are trying to find

communities it can join and if a node has been in the network longer than another, then the

probability it will have more knowledge of existing communities is high.

Table 4.5: Node_A’s updated group ID finger table after receiving a reply for FIND GROUP

request done for group 122.

Due to limited resources, the group ID finger table can only hold so many entries. To

ensure maximum use of the group ID finger table, each node is limited to having σ number of

fingers to nodes in the same group. In addition, each node keeps track of how often it uses each

finger and whenever σ limit is reached, the least used finger is deleted to make room for a

potentially better finger. If more than 1 node have the same frequency, then a node is picked at

random and deleted. For example, if σ = 3 and Node_A discovers a Node_H belonging to group

135 and it would like to update its group ID finger table whose current state is represented by

Table 4.6 below, entry 122 with finger to Node_X will be deleted and a new entry for group 135

to Node_H will be added. Similarly, Node_A discovers a group 545 to Node_C, since both

Group ID Finger To Group Member

120 node A

239 node A

912 node A

122 node X

122 node Y

122 node Z

xxx TBD

xxx TBD

xxx TBD

27

entries for group 122 pointing to Node_X and group 420 pointing to Node_X have only been used

once, Node_A will pick one of entries at random and replace it with an entry for 545 to Node_C.

Table 4.6: Sample snap shot of Node_A’s group ID when it is full.

Finally, whenever a node is ready to leave the network, based on the chord algorithm, a

LEAVE message is sent and nodes in the network adjust their chord finger table and Distributed

Has Tables (DHTs) accordingly. Similarly, nodes would be able to use the same LEAVE

message to determine what entries in its group ID finger table are no longer valid. For example,

if Node_G leave the network, the entry in Node_A’s group ID finger table is no longer valid.

Therefore, whenever a node learns of another node’s departure, it can also delete any associated

entries in it group ID finger table.

4.3.3. Summary of Algorithm

Below is pseudo code summarizing the algorithm described above. The main addition to

the algorithm highlighted below is that messages are not forwarded within the community

Group ID Finger To Group Member
Frequency of

Use

120 node A N/A

239 node A N/A

912 node A N/A

122 node X 1

122 node Y 7

122 node Z 9

912 node X 20

235 node E 4

420 node G 1

Max

σ = 3 reached

28

indefinitely. The number of hops when trying to resolve a query within a community is limited

to(log2 𝑁)/2. This limitation is put in place to guarantee a certain level of performance with our

algorithm. If a query cannot be resolved within the community in half the time it would have

taken Chord, then nodes result to using chord fingers to avoid worsening system performance.

// Maintaining group ID finger table

void forward(key, msg, nextHop*)

{

if msg type = GET

{

 extract group ID from key;

 if group ID finger table // is there interest

 {

 if finger not pointing to me and hops < (log2 𝑁)/2
 {

 set nextHop using entries in group ID finger table;

 }

 else

 {

 Use chord to set nextHop;

}

 }

 else

 {

 Keep track of specific GET message;

 Use chord to set nextHop;

 if specific GET messages received λ OR μ times

 Send FIND GROUP request;

 }

 }

}

void handle_FINDGROUP_response(groupID, finger)
{

 if <group ID, finger> pair already exist // done to avoid duplicates

 return;

if group ID finger table is at capacity

{

 if one least used finger can be identified

 delete it;

 else // i.e., multiple fingers with same low frequency use number

 pick one at random and delete;

 {

 add new found finger;

}

29

CHAPTER 5

SIMULATION AND PERFORMANCE ANALYSIS

5.1. Introduction

In this section details of the simulation implementation used to test the Dynamic Group

Discovery algorithm as described in Chapter 4 is discussed. Oversim [36], an event driven and

flexible network simulation framework is used. This section will cover the following: how keys

for specific simulation runs were created; query generation for a simulation run based on the

keys created; group discovery and formation at runtime; how group churn is introduced in the

network at runtime; steps taken to validate the simulator and finally case studies used to present

results and analyze DGD’s performance.

5.2. Key Creation

40 character long keys are generated using a programming script. As discussed in

Chapter 4, the first 37 characters are reserved for the key hash value and the remaining 3

characters are reserved for group identification information. The following subsections detail

steps taken to generate keys and queries that were used for simulations.

5.2.1. Determining Size and Symmetry of Community

Communities can either be symmetrical (i.e., all the same size) or asymmetrical. In an

attempt to reach the desired symmetry at runtime, the number of keys belonging to a particular

group is limited.

30

If symmetrical communities are desired, the maximum number of keys K that can belong

to a particular group is simply given by 𝐾 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐾𝑒𝑦𝑒𝑠 𝑡𝑜 𝑏𝑒 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒

𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝑟𝑜𝑢𝑝𝑠
 . On the contrary, if

asymmetrical communities are desired, the logic summarized below is an example of how K is

determined for each community.

5.2.2. Key Generation

The key hash (i.e., the first 37 characters of each key) consists of randomly selected

hexadecimal numbers. After the 37 character key is generated, group information is selected and

appended to the key in order to create the desired 40 character key. To do this, a random number

between 1 and the desired number of groups is selected for level 1 identification. If the selected

number belongs to a group that has already reached its limit K, then another random number is

selected at random. This process is repeated until a valid level 1 ID is picked. For level 2 and 3

identification, a random number between 0 and 9 is picked. Note that no additional checks are

done for these last two levels because even though important, they are not involved in the big

picture division of groups which will be discussed in the next section.

The keys created in this section are used to generate queries and this is discussed in

Section 5.3 below.

// K_1, K_2, … , K_n represent max number of keys in group 1, 2 , … , n

newMax = totalDesiredKeys;

K_1 = random_number(1, newMax);

newMax = totalDesiredKeys -- K_1;

K_2 = random_number(1, newMax);

newMax = totalDesiredKeys -- (K_1 + K_2);

…

// For last group

K_n = totalDesiredKeys -- (sum of all groupMax set up to this point);

31

5.3. Key Sorting and Query Creation

The queries used during a simulation are based on keys which already exist in the

network. Querying for resources that are known to exist in the network guarantee that all queries

will be resolved, allowing for accurate measurements of query resolution time. This section

describes steps taken to create queries based on the keys that have been generated in Section 5.2

above.

The first step is to sort the keys from Section 5.2 into separate files based on their group

ID. The granularity of sorting is limited to key type (i.e., level 1) information only. Sorting is

done so that during runtime, nodes can know what query file to read from based on their

interests. For example, if a node is interested in music it will be able to search for music files that

already exists in the network by reading the query file with music keys. Also, for simulation

purposes, nodes are limited to querying for resources that belong to groups of keys it has inserted

into the network. For example, if a Node_A inserts keys into the network which belong to music

and movie resources, Node_A will be limited to querying for music and movie files.

Sorting is also necessary since query popularity within different communities in the

network are known to follow Zipf’s distribution with different α parameters. Therefore, sorting

of queries allows us to assign a different α to each community. It is also important to note that

even though queries in individual communities follow Zipf’s distribution, when all the queries in

the network are aggregated, the result may not necessarily follow a Zipf’s distribution. This is

illustrated in Figure 5.2.1 below.

32

Figure 5.2.1: (a) Community 1; (b) Community 2; (c) Aggregate popularity distribution of both

community 1 and 2.

After sorting, each key in the sorted file is assigned a frequency number f based on the

Zipf’s distribution with a specified parameter α. Ideally, different communities should be

assigned a different α parameter [29], but to simplify the simulation, all groups are assigned the

same α = 1.0.

5.4. Runtime Simulation Logic Flow

In this section, the Overism implementation of the dynamic group discovery algorithm is

discussed.

5.4.1. Network Initialization Inserting Keys

Network formation and initialization begins. This stage uses the network formation rules

defined for the Chord algorithm [4]. To ensure the network is fully formed and stable, the

simulation is allowed to run for 1000 seconds.

After network initialization, nodes begin to read from the key file generated in section 5.1

above. If Node_A reads a key abcdef123 from the key file, it first extracts the group ID

information from the key (i.e., 123) and adds an entry into its group ID finger table with the

finger pointing to itself. Entries added to the group ID finger table at this stage will determine

33

what query file the node will read from when it is ready to start querying for resources. Table 5.1

below shows entries in Node_A’s group ID finger table after it has read from the key file twice.

This implementation detail is based on the premise that a node joining the network would be

interested in joining a community whose members have resources similar to its own. For

example, if Node_A joins the network and it is willing to make available some music files, then

there is a high probability that Node_A will be querying for music files and therefore Node_A

would want to join the music community.

Table 5.1: Example of entries in the group ID finger table after Node_A reads from the provided

key file twice.

Once the node has added the associated entry into its group ID finger table, it creates a

PUT message and inserts it into the network. The PUT message is how 1) a node makes its

resources available to the network and 2) how the node which will be responsible for resolving

queries for the key being inserted learns about the key and its source. To further explain how

PUT messages are handled in the network, an example of a simplified network is shown in figure

5.1 below. The network shown can have up to 8 nodes at a time but currently only consists of

three nodes which occupy position 0, 1 and 3 respectively. As an example, if node 1 inserts a key

with value 6 into the network using a PUT message, node 1 will use its Chord finger table to

determine the PUT message’s next hop. According to its finger table the next hop would be node

0. Since node 0 is the successor for all keys between 4 and 0 it knows that it is responsible for

Group ID Finger To Group Member

123 node A

256 node A

xxx TBD

xxx TBD

34

resolving all queries for keys that are in this range. Therefore, once node receives the PUT

message from 1, it adds an entry to its DHT with a finger pointing to node 1.

Figure 5.1: Example of a simplified Chord network [4].

It is also important to note that querying only starts when all the keys in the key file provided

have been inserted into the network. The logic used to insert keys into the network using

Oversim is summarized below.

void handle PUT event

{

 key = read from key file;

 if key is unspecified // i.e., all keys have been read from key

file

 {

 schedule GET event;

}

else

{

 extract group ID information from key;

 add entry to group ID finger table;

 create PUT message and send it out to network;

 schedule next PUT event;

}

}

35

5.4.2. Querying Resources and Community Formation

Queries are sent only when all the keys intended for the simulation run have been

inserted into the network. Query messages are sent out using a GET message and these messages

are sent out when a GET event is processed. Nodes read from the query files created in Section

5.2 above based on “personal interests” established in Section 5.4.1 above. For example, if

Node_A is only interested in group 1, it will always read from the query file with group 1 keys.

However, if Node_A is interested in multiple groups for example group 1 and 2, at runtime

Node_A will choose one group and read from the associated query files. How often Node_A

reads from either of the query files depends on how many keys it inserted for each group. For

example, if 20% of the keys Node_A inserted belonged to group 1 and the other 80% belonged to

group 2, then Node_A will read from the group 1 query file 20% of the time and the rest of the

time it will read from the group 2 query file.

When a Node_B receives a query Q it first checks to see if it can resolve it. If Node_B

cannot resolve Q, it either uses its group ID finger table or Chord finger table to decide where to

forward the query as summarized in Chapter 4 Section 4.3.3. Whenever a node is processing a

query, the first thing it does is extract the group ID information embedded in the query’s key. If

the key belongs to a group the node is already interested in, this is an indication that there exists

other nodes in the network with similar interest. Ideally at this point, the node processing the

query should send out a FIND GROUP message to its neighbors and wait to see if it gets a

response. However, nodes do not have infinite resources and therefore limited as to how many

entries it can have in its group ID finger table. Section 4.2.3 in Chapter 4 describes in detail the

logic implemented to ensure entries added to the group ID finger table yield optimal results.

After a GET event is processed, the logic below is used to schedule the next one.

36

5.4.3. Group Churn at Runtime

To simulate growing, diminishing and finally disappearance of groups, a third type of

message called REMOVE is introduced. The purpose of this message is to tell nodes to remove a

particular group entry from their group ID finger tables. Measurements are then taken to

determine the effects of deleted entries on query resolution time.

After a specified period of time has elapsed, each node schedules an event to read from a

file that contains group IDs that exist in the network. Equipped with the information retrieved

from the file, the node creates a REMOVE message and sends it out to all its neighbours. Since

the source node information in the REMOVE message may not be accurate (i.e., the node

inserting the REMOVE message may not belong to the group contained in the message) a max

hop count is included in the message to limit the number of times the message is forwarded

before being dropped.

void handle GET event

{

 select group ID file to read from; // Based on personal interest

query = read from key from query file;

 if query is unspecified // i.e., all keys have been read from query

file

 {

 return; // do nothing

}

else

{

 create GET message with query;

 send out GET message;

 schedule next GET event;

}

}

37

Nodes are limited to removing group ID entries with fingers to all nodes other than itself.

This is done to ensure that the basis of a node’s interest, which was established when inserting

keys using PUT messages, is preserved. Ensuing a node’s interest basis is not lost during group

churn is critical because it is used to facilitate re-growing of communities since GET messages

and REMOVE messages are circulating in the network at the same time. The logic below

summarizes how REMOVE messages are processed by each node.

In the next section, parameters needed to test the algorithm is discussed.

5.5. Performance Parameters

In order to test the Dynamic Group Discovery algorithm in conjunction with Community Based

Caching algorithm proposed in [29], we are interested in measuring query resolution times in

terms of hops and latency with respect to:

1. The entire network

2. Within the community

These two scenarios are considered mainly because our goal is to improve lookup performance

by taking advantage of existence of groups without degrading overall system performance. In

order to achieve this, every query reply is tagged with information on whether the reply is based

void hand_REMOVE_request(group id, finger, maxHops, curHops)

{

 if <group ID, finger> pair exist

 delete entry

if curHops < maxHops

 forward message to all nodes in group ID finger table

}

38

on cached data or application data (i.e., non-cache data.) To ensure that the cache response is

truly from a community member, each node is limited to caching resources of communities it has

joined.

5.6. Simulator Validation

Verification of implemented dynamic group discovery (DGD) algorithm was tested under

various conditions to validate that the simulator works as expected. To achieve this, a series of

simulations were run to:

1. Verify that the performance of DGD is comparable to Chord when the group

implementation feature is switched off.

2. Validate that communities are able to grow and/or decline over time when PUT, GET and

REMOVE messages are processed.

3. Verify that community formation works as designed by ensuring that the number of

members in a community does not exceed the number of nodes in the network at runtime,

and that the communities formed exhibit the features discussed in Chapter 2.

The two parameters that were varied during the validation process are network size and

community symmetry. The algorithm was tested with a “big” (2000 nodes) and “small” (500

nodes) network and with both symmetrical and asymmetrical communities present. This was

done to ensure that performance of the algorithm is consistent regardless of network size and

symmetry of communities present.

39

5.6.1. Algorithm Performance without Using Group ID Table

Figure 5.2 to 5.6.1.2 below summarize results of Chord compared to the dynamic group

discovery (DGD) algorithm when group ID finger table is not being utilized. As expected,

DGD’s performance over time is very similar to Chord and the difference between average

number of hops and latency negligible in all cases presented above.

Figure 5.2: Average number of hops to resolve a query with application data using Chord and a

network using Dynamic Group Discovery.

Figure 5.3: Average latency to resolve a query with application data using Chord and a network

using Dynamic Group Discovery.

40

Figure 5.4: Average number of hops to resolve a query with cache data using Chord and a

network using Dynamic Group Discovery.

Figure 5.5: Average latency to resolve a query with cache data using Chord and a network using

Dynamic Group Discovery.

41

5.6.2. Community Discovery and Performance

5.6.2.1. Community Growth and Boundary Conditions

Figure 5.6 below shows group growth in a network with 2,000 nodes and 5 communities.

Figure 5.6: Group growth in a network with 2,000 nodes, and asymmetrical groups and no group

churn is introduced.

First observation made is that no community grows beyond the number of nodes that are

currently in the network and this is the first indication that DGD is working as expected. Second,

notice that group 2 has approximately 2000 members compared to other groups such as 3 and 4

that have 900 and 1600 members respectively. These numbers imply that there are nodes in this

network of 2000 nodes that belonged to more than one community. This observation is in line

with the group membership requirement discussed in Chapter 2, which is that nodes should be

allowed to be members of more than one community at the same time. This leads into the third

observation that since nodes in the network can belong to more than one community at time, then

42

inevitably, there is overlap between the communities. The degree of overlap varies and from [17]

[18], we know that the degree of inter-community connections is directly proportional to the

community overlap. Therefore, since group 2 and 3 have the largest number of member nodes,

we expect to see a lot of overlap between the two communities. On the contrary, group 1 and 5

that only have 300 and 350 member nodes and therefore the overlap between these two

communities will be minimal. Lastly, the graphs show community growth varies over time and

even though the growth patterns may be similar, the growth rate of a community is independent

to others. The abrupt group growth seen in group 2 and 3 is as a result of many nodes inserting

keys that belong to group 2 and 3 at the beginning of the simulation which is expected behavior.

To verify that REMOVE messages affect the size of communities in the network, a

smaller network of 500 nodes is used. Note that all communities present in Figure 5.7 and 5.6.2.3

are symmetrical.

43

Figure 5.7: Group growth in a network with 500 nodes, and symmetrical groups and no group

churn is introduced.

Figure 5.8: Group growth in a network with 500 nodes, and symmetrical groups and group

churn is introduced.

44

In Figure 5.7, no group churn was introduced for the entire simulation run. However,

REMOVE messages were introduced in the simulation run represented by Figure 5.8 and it is

clear that all communities experience a steady decline in size. The steady and similar decline in

all communities is due to the fact that communities are symmetrical.

The results presented in this section (5.6.2) confirm that:

1. Communities that exist in the network are discoverable by other nodes as seen by the

steady and sometimes abrupt increase group size over time.

2. Nodes are able to join and leave communities at will.

3. Nodes are able to be members of multiple communities at time.

4. Because of observation 2 above, there exists a certain degree of overlap between

independent communities.

5.6.3. Performance When Group Churn is Introduced

Figure 5.9 and 5.6.3.2 below show how resolving queries using cache records vary when

there is no group churn versus when group churn is introduced in terms of hops and latency.

REMOVE messages were sent beginning at 5000 seconds and the yellow plot represents

performance in the simulation when group churn was introduced. The erratic behavior exhibited

after 5000 seconds to could be attributed to invalid group ID finger table entries caused by the

REMOVE message which resulted in longer and unexpected query resolution times.

45

Figure 5.9: Average number of hops needed to resolve a query using cache data. Results include

Chord, CBC + DGD without churn, CBC + DGD with churn, CBC with static group assignment.

Figure 5.10: Average latency to resolve a query using cache data. Results include Chord, CBC +

DGD without churn, CBC + DGD with churn, CBC with static group assignment.

46

Based on the results presented in this section we can conclude that all the features in the

simulator work as expected and in the next section, various cases are presented to characterize

DGD and determine its optimal performance region.

5.7. Results and Analysis

Highlighted in the subsections that follow are cases under which DGD was tested. The

different scenarios are used to analyze DGD’s performance and determine the optimal conditions

for the algorithm to perform best. The goal of this section is to characterize the proposed

dynamic group discovery algorithm and to compare Community Based Caching performance

when group discovery is both static and dynamic.

5.7.1. Case 1: Varying Number of Nodes – Asymmetrical Communities

The number of nodes was varied between 500 and 10,000 while the number of keys for

each run was kept constant. Each simulation used 40,000 keys and the group distribution was as

follows: 40% of the keys belonged to group 1; another 40% of the keys belonged to group 2 and

the remaining 20% of the keys was equally divided between groups 3 to 9. Each node in the

network maintained a maximum group ID finger table of 160 and was limited to having a

maximum of 3 fingers to other nodes in the network which belonged to the same group.

Depending on the network size, an attempt to resolve queries within the group was limited to

(log2 𝑁)/2 where N is the number of nodes in the network. λ (threshold to search for group

members based on personal interests) and μ (threshold to search for group members based on

messages being forwarded) used by each node were set to λ=2 and μ=20. Per the simulation

47

discussion covered in section 5.4 above, a node queried for resources based on personal interests

which is established when PUT-ing keys in the network.

Figure 5.11 and 5.12 below summarize the average cost of resolving queries using

application and cache data respectively. A high level analysis of the results show that DGD’s

performance is generally better than Chord’s. The trend in both DGD and Chord is that the

higher the number of nodes in the network, the longer it takes to resolve queries. This is expected

because both algorithms are designed to resolve queries in O(logN) hops or less. Even though the

average number of hops to resolve queries follow an upward trend as nodes increase in the

network, it is not always the case for latency. This is because latency is measured based on the

query round trip time (RTT) which could be affected by many varying network factors such as

link loss, varying buffer sizes in different nodes etc.

Figure 5.11 shows that DGD begins to perform significantly worse than Chord when the

network size is greater than 2,000 nodes. This can be attributed to a couple of factors which

include: growing network size, number of queries being propagated and how the DGD algorithm

works. To expound on this observation, from Table 5.2 to 5.7.1.10, shows the average number of

queries propagated during the entire simulation run is approximately 245,000 for all network

sizes. Note that DGD depends on query messages being propagated to learn about nodes with

similar interests. We therefore expect that the more queries in the network, the higher the

chances of group discovery. This theory can be confirmed by the number of links recorded

within each group (see Table 5.2 to 5.7.1.10). In the 500 node network, both group 1 and 2 show

that 1,500 links were formed within each group which implies that each node had an average of 3

links. This observation is in line with the parameters set for the case study above, i.e., each node

is limited to having a maximum of 3 fingers to other nodes within the same group. The same

48

conclusion can be drawn for networks with 1,000 and 2,000 nodes. However, for networks with

5,000 and 10,000 nodes, the average number of links per node is 1.12 and 0.45 respectively; and

again this can be attributed to the relatively low number of query messages in larger networks.

Due to low linkage within groups in larger networks and the fact that DGD is a hybrid of Chord

and “smart flooding,” there is a high probability that precious hops will be used to forward

queries to group members who are unable to resolve the query. Essentially the “smart flooding”

seizes to be smart and consequently affects performance of the algorithm.

An important observation made is that DGD’s performance based on cache records (see

Figure 5.12) is always better than Chord’s. This is because caching records in DGD is primarily

based on personal interests whereas this is not the case in Chord. Therefore as expected, query

resolution using cache data is better when nodes base their caching decisions on personal

interests and not based on system wide popularity.

49

Figure 5.11: Average cost of query resolution based on non-cache data for varying network

sizes in Chord and DGD.

Figure 5.12: Average cost of query resolution based on cache data for varying network sizes in

Chord and DGD.

50

To understand DGD’s behaviour characterized above, Table 5.2 to table 5.11 below

summarize the total number of queries resolved using application data, cache data, number of

links formed within each group and the percentage of nodes in the network that are members of

the group.

The first observation made is that the average DGD readings represented in Figure 5.11

and 5.7.1.3 follow the exact same pattern as average query resolution times recorded within

group 1 and 2 and is illustrated in Figure 5.15 and 5.7.1.8. This behavior can be attributed to the

fact that majority of the queries being circulated in the network are for keys which

predominantly belong to group 1 and group 2. Also, as expected the counts recorded in Table 5.2

to 5.7.1.10 verify that majority of the queries in all five simulation runs belonged to group 1 and

2.

Figure 5.13: Average cost of query resolution based on non-cache data for varying network

sizes in Chord, DGD, DGD group1 and DGD group 2.

51

Figure 5.14: Average cost of query resolution based on cache data for varying network sizes in

Chord, DGD, DGD group1 and DGD group 2.

Second, even though DGD’s average performance is mainly driven by the values

recorded in group 1 and 2, its average is slightly higher. This is because of degraded performance

observed in group 3 to 9 which is due to the fact that there are few links within these groups and

this results in not so “smart” routing as described above. Also, the effects of group 3 to 9

averages does not affect DGD’s average greatly because the number of data points in these

groups is significantly less than those in group 1 and 2 combined. Figure 5.15 and 5.7.1.6 which

show the average performance between DGD’s average and individual group averages between 3

and 9.

52

Figure 5.15: Average cost of query resolution based on non-cache data for varying network

sizes in DGD and DGD group 3 and DGD group 9.

The unpredictable trends observed in group 3 to 9 in Figure 5.16 below is because of the

low number of queries resolved using cache data and this theory is confirmed by Figure 5.23

where all there were “enough” queries resolved using cache data to establish a trend. Query

counts for the different network sizes are summarized in Table 5.2 to 5.7.1.10.

53

Figure 5.16: Average cost of query resolution based on non-cache data for varying network

sizes in DGD and DGD group 3 and DGD group 9.

Table 5.2: Summary of number of queries resolved using application data and cache data in

DGD; number of links formed within each group and node membership per group for a 500 node

network.

500 Nodes

App

Count

Cache

Count

of

Links

% of Mem.

Nodes

%age of

Queries

 Group 1 98629 6482 1500 100% 46%

 Group 2 98423 5921 1500 100% 46%

 Group 3 2494 139 181 96% 1%

 Group 4 2566 151 180 96% 1%

 Group 5 2480 100 192 96% 1%

 Group 6 2499 123 223 96% 1%

 Group 7 2458 112 172 96% 1%

 Group 8 2541 155 168 96% 1%

 Group 9 2610 111 194 96% 1%

54

Table 5.3: Summary of average, minimum, maximum and standard deviation of hops needed to

resolve queries for a 500 node network.

500

Nodes

App

Mean

App

Min

App

Max

App Std

Dev

Cache

Mean

Cache

Min

Cache

Max

Cache

Std Dev

 Group 1 4.02 0 12 2.26 4.83 2 12 1.79

 Group 2 4.01 0 12 2.29 4.90 2 12 1.78

 Group 3 4.81 0 11 1.81 5.99 2 11 2.25

 Group 4 4.96 0 12 1.64 5.22 2 11 1.90

 Group 5 4.80 0 13 1.81 5.52 2 11 2.10

 Group 6 4.80 0 11 1.78 5.28 2 11 1.89

 Group 7 4.91 0 11 1.71 5.38 2 11 2.10

 Group 8 4.94 0 12 1.69 5.72 2 11 1.88

 Group 9 4.74 0 11 1.82 5.95 2 11 2.25

Table 5.4: Summary of number of queries resolved using application data and cache data in

DGD; number of links formed within each group and node membership per group for a 1,000

node network.

1,000 Nodes

App

Count

Cache

Count

of

Links

% of Mem.

Nodes

%age of

Queries

 Group 1 98632 8353 2996 100% 45%

 Group 2 98590 8730 2998 100% 46%

 Group 3 2815 180 114 70% 1%

 Group 4 2859 180 126 70% 1%

 Group 5 2707 150 101 70% 1%

 Group 6 2725 227 123 70% 1%

 Group 7 2845 248 146 70% 1%

 Group 8 2811 203 125 70% 1%

 Group 9 2789 174 113 70% 1%

55

Table 5.5: Summary of average, minimum, maximum and standard deviation of hops needed to

resolve queries for a 1,000 node network.

1,000

Nodes

App

Mean

App

Min

App

Max

App Std

Dev

Cache

Mean

Cache

Min

Cache

Max

Cache

Std Dev

 Group 1 4.41 0 13 2.46 5.15 2 13 1.92

 Group 2 4.42 0 13 2.46 5.29 2 13 1.93

 Group 3 5.27 0 13 1.86 5.84 2 13 1.82

 Group 4 5.35 0 10 1.74 5.52 2 9 1.70

 Group 5 5.23 0 11 1.83 5.58 2 11 1.73

 Group 6 5.35 0 13 1.89 5.92 2 13 1.86

 Group 7 5.47 0 13 1.78 5.79 2 13 1.69

 Group 8 5.50 0 12 1.80 5.56 2 12 1.76

 Group 9 5.33 0 10 1.88 5.67 2 9 1.60

Table 5.6: Summary of number of queries resolved using application data and cache data in

DGD; number of links formed within each group and node membership per group for a 2,000

node network.

2,000 Nodes

App

Count

Cache

Count

of

Links

% of Mem.

Nodes

%age of

Queries

 Group 1 98631 9877 5294 100% 45%

 Group 2 98591 10101 5344 100% 45%

 Group 3 3066 226 58 50% 1%

 Group 4 3108 351 43 50% 1%

 Group 5 3215 213 71 50% 1%

 Group 6 3232 240 52 50% 1%

 Group 7 3211 317 63 50% 1%

 Group 8 3169 405 62 50% 1%

 Group 9 3171 265 41 50% 1%

56

Table 5.7: Summary of average, minimum, maximum and standard deviation of hops needed to

resolve queries for a 2,000 node network.

2,000

Nodes

App

Mean

App

Min

App

Max

App

Std Dev

Cache

Mean

Cache

Min

Cache

Max

Cache

Std Dev

 Group 1 4.66 0 15 2.54 5.31 2 15 2.21

 Group 2 4.70 0 16 2.54 5.40 2 16 2.18

 Group 3 5.53 0 13 1.89 5.89 2 13 1.75

 Group 4 5.74 0 13 1.79 5.73 2 9 1.51

 Group 5 5.57 0 13 1.91 5.82 2 10 1.73

 Group 6 5.55 0 14 1.88 5.63 2 14 1.73

 Group 7 5.64 0 14 1.84 5.83 2 9 1.60

 Group 8 5.83 0 11 1.79 5.98 2 10 1.64

 Group 9 5.59 0 11 1.84 5.85 2 11 1.67

Table 5.8: Summary of number of queries resolved using application data and cache data in

DGD; number of links formed within each group and node membership per group for a 5,000

node network.

5,000 Nodes

App

Count

Cache

Count

of

Links

% of Mem.

Nodes

%age of

Queries

 Group 1 98633 12025 5745 100% 44%

 Group 2 98591 12466 5803 100% 44%

 Group 3 3943 434 11 24% 2%

 Group 4 4151 500 10 24% 2%

 Group 5 3963 456 22 24% 2%

 Group 6 4081 490 23 24% 2%

 Group 7 3940 468 8 24% 2%

 Group 8 4064 493 13 24% 2%

 Group 9 4049 422 12 24% 2%

57

Table 5.9: Summary of average, minimum, maximum and standard deviation of hops needed to

resolve queries for a 5,000 node network.

5,000

Nodes

App

Mean

App

Min

App

Max

App Std

Dev

Cache

Mean

Cache

Min

Cache

Max

Cache

Std Dev

 Group 1 5.11 0 18 2.70 5.55 2 18 2.58

 Group 2 5.13 0 18 2.71 5.68 2 18 2.65

 Group 3 6.03 0 12 2.05 6.29 2 10 1.75

 Group 4 5.96 0 12 2.07 6.20 2 11 1.79

 Group 5 6.05 0 16 2.13 6.75 2 16 2.22

 Group 6 6.02 0 12 2.06 6.48 2 12 1.91

 Group 7 6.05 0 12 2.04 6.19 2 11 1.88

 Group 8 6.09 0 12 2.06 6.26 2 11 1.73

 Group 9 6.00 0 13 2.09 6.55 2 12 2.00

Table 5.10: Summary of number of queries resolved using application data and cache data in

DGD; number of links formed within each group and node membership per group for a 10,000

node network.

10,000 Nodes

App

Count

Cache

Count

of

Links

% of Mem.

Nodes

%age of

Queries

 Group 1 98633 14822 4574 90% 42%

 Group 2 98590 14863 4599 90% 42%

 Group 3 5373 729 9 13% 2%

 Group 4 5307 804 4 13% 2%

 Group 5 5423 745 6 13% 2%

 Group 6 5479 837 4 13% 2%

 Group 7 5516 829 8 13% 2%

 Group 8 5424 931 7 13% 2%

 Group 9 5327 796 8 13% 2%

58

Table 5.11: Summary of average, minimum, maximum and standard deviation of hops needed to

resolve queries for a 10,000 node network.

10,000

Nodes

App

Mean

App

Min

App

Max

App Std

Dev

Cache

Mean

Cache

Min

Cache

Max

Cache

Std Dev

 Group 1 5.40 0 20 2.80 5.91 2 20 2.95

 Group 2 5.44 0 20 2.78 5.93 2 20 2.88

 Group 3 6.19 0 16 2.19 6.65 2 16 2.00

 Group 4 6.19 0 13 2.18 6.38 2 11 1.98

 Group 5 6.13 0 13 2.26 6.55 2 12 1.96

 Group 6 6.18 0 13 2.20 6.55 2 11 1.92

 Group 7 6.13 0 14 2.22 6.54 2 12 1.92

 Group 8 6.26 0 13 2.15 6.77 2 12 1.93

 Group 9 6.21 0 13 2.24 6.49 2 12 1.98

In conclusion, the number of links within group members is directly proportional to the

number of queries propagated for the group. If there exists groups in the network that are

predominantly large, and majority of the queries being forwarded in the network belong to these

groups, then we see that DGD yields better results than Chord.

5.7.2. Case 2: Varying Size of Communities

For all simulation runs the total number of keys used was divided into two parts; subset 1

consisted of 80% of the keys and subset 2 had the remaining 20%. To vary the size of the

communities, the number of communities in each subset was varied in such a way that there was

always a total of 9 communities. To start, all the keys in subset 1 belonged to group 1 and group

2 to 9 equal shared the keys in subset 2. For the second run, group 1 and 2 equally shared keys in

subset 1 and group 3 to 9 equally shared keys in subset 2. For the third run, group 1 to 3 equally

shared keys in subset 1 and group 4 to 9 equally shared keys in subset 2. This pattern was

59

repeated until group 1 to 8 equally shared keys in subset 1 and all the keys in subset 2 belonged

to group 9. Finally, the two subsets were merged and all the keys shared equally between group 1

to 9.

All runs used 40,000 keys and the network consisted of 2,000 nodes. Each node in the

network maintained a maximum group ID finger table of 160 and was limited to having a

maximum of 3 fingers to other nodes in the network which belonged to the same group.

Depending on the network size, an attempt to resolve queries within the group was limited to

(log2 𝑁)/2 where N is the number of nodes in the network. λ (threshold to search for group

members based on personal interests) and μ (threshold to search for group members based on

messages being forwarded) used by each node were set to λ=2 and μ=20. Per the simulation

discussion covered in Section 5.4 above, a node queried for resources based on personal interests

which is established when PUT-ing keys in the network.

Figure 5.17 and 5.7.2.2 shows how DGD’s performance generally compares to Chord’s.

Since the network size does not change, Chord’s performance stays relatively the same for all

simulation runs. However, for DGD we see an upward trend in the cost of resolving queries

which can be attributed to the reduced number of links within groups. As noted in case 1 above,

the number of links within a group is directly proportional to the cost of query resolution using

DGD.

60

Figure 5.17: Average cost of query resolution based on non-cache data for varying community

sizes in Chord and DGD.

Figure 5.18: Average cost of query resolution based on cache data for varying community sizes

in Chord and DGD.

61

As expected, DGD performance using cache records is always better than Chord’s but we

see performance drops when the size of community reduces. Again, the degraded performance

can be attributed to reduced community sizes which translates to reduced linkage within the

groups and this trend is clearly illustrated in Figure 5.18 above. A break in the upward trend is

represented by a sudden dip when 8 communities are equally sharing keys in subset 1 and there

is only 1 group in subset 2. This sudden change is an indication of improved performance in

DGD and to understand why this is the case, we shall use Figure 5.19 and Table 5.12 to 5.7.2.18

below.

When subset 1 had only group 1 keys and group 2 to 9 shared the keys in subset 2, group

1 keys were the majority and consequently, queries propagated in the network were for keys that

predominantly belonged to group 1. Table 5.12 confirms this by showing that 92% of the queries

belonged to group 1. Since query propagation is what aids in group discovery, we see that

approximately 5990 links were formed within group 1 which implies that on average, each node

had 2.9 fingers to other nodes in group 1. It is also worth noting that this observation is in line

with the parameters that were set at the beginning of the simulation, i.e., nodes are limited to

having a maximum of three fingers to other nodes within the same group. When group 1 and 2

are the only groups sharing keys in subset 1, notice the drastic improvement in query resolution

performance observed in group 2. Table 5.14 again confirms that the improved performance in

group 2 is due to the fact that majority of the queries being propagated belong to the group 1 and

2 which aids in group discovery and again, improved linkage within the community. In this case,

nodes that belonged to group 1 and 2 both had an average of 2.6 fingers to other nodes.

The trend of seeing significant improvement in performance whenever a group is

removed from subset 2 and added to subset 1 is consistent only up until when there are 6 groups

62

in subset 1 and 3 groups in subset 2. However, when group 7 is added to subset 1 and group 8

and 9 are the only ones sharing keys in subset 2, the performance of all groups is relatively the

same. This is because in this case, the communities are almost exactly symmetrical since 7

groups are equally sharing 80% of the keys and 2 groups are equally sharing 20% of the

remaining keys. To confirm this observation, the percentage of queries propagated during run 7

(see Table 5.18) is very close to those recoded during run 9 (see Table 5.20) when all

communities were intentionally made perfectly symmetrical.

During run 8, DGD’s average performance suddenly improves as shown in Figure 5.17

and 5.7.2.2. From Figure 5.19 and table 5.19 below, it is clear to see that DGD’s general

improved performance is due to group 9. Again in this case, majority of the queries propagated

belonged to group 9, which aided link growth within the group and consequently led to improved

query resolution times.

Figure 5.19: Average cost of query resolution per group based on non-cache data for varying

community sizes in DGD.

63

Table 5.12: Summary of number of queries resolved using application data and cache data in

DGD; number of links formed within each group and node membership per group for 1

community in subset 1 and 8 communities in subset 2.

1 Community

App

Count

Cache

Count

of

Links

% of Mem.

Nodes

%age of

Queries

Group 1 114807 10245 5990 100% 92%

Group 2 1194 100 10 42% 1%

Group 3 1222 90 19 42% 1%

Group 4 1213 99 28 42% 1%

Group 5 1227 110 8 42% 1%

Group 6 1198 100 6 42% 1%

Group 7 1243 109 22 42% 1%

Group 8 1205 101 9 42% 1%

Group 9 1268 93 3 42% 1%

Table 5.13: Summary of average, minimum, maximum and standard deviation of hops needed to

resolve queries for 1 community in subset 1 and 8 communities in subset 2.

1 Community

 App

Mean

App

Min

App

Max

App

Std

Dev

Cache

Mean

Cache

Min

Cache

Max

Cache

Std

Dev

 Group 1 4.68 0 16 2.53 4.90 2 16 2.18

 Group 2 5.59 1 10 1.85 5.81 3 10 1.91

 Group 3 5.62 0 13 1.92 5.67 2 9 1.84

 Group 4 5.69 0 15 1.78 5.77 3 15 1.81

 Group 5 5.55 0 10 1.82 5.61 2 9 1.60

 Group 6 5.58 0 10 1.86 5.60 3 10 1.61

 Group 7 5.60 0 11 1.91 5.86 2 10 1.64

 Group 8 5.54 0 11 1.75 6.11 2 10 1.73

 Group 9 5.65 0 11 1.82 5.98 2 9 1.83

64

Table 5.14: Summary of number of queries resolved using application data and cache data in

DGD; number of links formed within each group and node membership per group for 2

communities in subset 1 and 7 communities in subset 2.

2 Communities

App

Count

Cache

Count

of

Links

% of Mem.

Nodes

%age of

Queries

Group 1 98631 9877 5294 100% 45%

Group 2 98591 10101 5344 100% 45%

Group 3 3066 226 58 49% 1%

Group 4 3108 351 43 48% 1%

Group 5 3215 213 71 49% 1%

Group 6 3232 240 52 48% 1%

Group 7 3211 317 63 48% 1%

Group 8 3169 405 62 48% 1%

Group 9 3171 265 41 50% 1%

Table 5.15: Summary of average, minimum, maximum and standard deviation of hops needed to

resolve queries for 2 communities in subset 1 and 7 communities in subset 2.

2 Communities

 App

Mean

App

Min

App

Max

App

Std

Dev

Cache

Mean

Cache

Min

Cache

Max

Cache

Std

Dev

 Group 1 4.66 0 15 2.54 5.31 2 15 2.21

 Group 2 4.70 0 16 2.54 5.40 2 16 2.18

 Group 3 5.53 0 13 1.89 5.89 2 13 1.75

 Group 4 5.74 0 13 1.79 5.73 2 9 1.51

 Group 5 5.57 0 13 1.91 5.82 2 10 1.73

 Group 6 5.55 0 14 1.88 5.63 2 14 1.73

 Group 7 5.64 0 14 1.84 5.83 2 9 1.60

 Group 8 5.83 0 11 1.79 5.98 2 10 1.64

 Group 9 5.59 0 11 1.84 5.85 2 11 1.67

65

Table 5.16: Summary of number of queries resolved using application data and cache data in

DGD; number of links formed within each group and node membership per group for 3

communities in subset 1 and 6 communities in subset 2.

3 Communities

App

Count

Cache

Count

of

Links

% of Mem.

Nodes

%age of

Queries

Group 1 93508 9665 4623 100% 30%

Group 2 93500 10444 4687 100% 30%

Group 3 93091 10375 4651 100% 30%

Group 4 5417 498 144 53% 2%

Group 5 5378 457 108 53% 2%

Group 6 5467 670 115 53% 2%

Group 7 5353 496 126 52% 2%

Group 8 5449 514 90 53% 2%

Group 9 5306 753 112 53% 2%

Table 5.17: Summary of average, minimum, maximum and standard deviation of hops needed to

resolve queries for 3 communities in subset 1 and 6 communities in subset 2.

3 Communities

 App

Mean

App

Min

App

Max

App

Std

Dev

Cache

Mean

Cache

Min

Cache

Max

Cache

Std

Dev

 Group 1 4.72 0 15 2.52 5.51 2 15 2.11

 Group 2 4.76 0 15 2.52 5.61 2 15 2.17

 Group 3 4.75 0 15 2.53 5.54 2 15 2.18

 Group 4 5.60 0 15 1.93 5.95 2 14 2.04

 Group 5 5.55 0 14 1.90 5.82 2 12 1.62

 Group 6 5.72 0 15 1.90 6.30 2 15 1.86

 Group 7 5.53 0 15 1.95 5.92 2 15 1.93

 Group 8 5.57 0 14 1.90 5.88 2 14 1.74

 Group 9 5.69 0 14 1.87 6.31 2 10 1.68

66

Table 5.18: Summary of number of queries resolved using application data and cache data in

DGD; number of links formed within each group and node membership per group for 4

communities in subset 1 and 5 communities in subset 2.

4 Communities

App

Count

Cache

Count

of

Links

% of Mem.

Nodes

%age of

Queries

Group 1 89867 10023 4111 99% 22%

Group 2 89869 9727 4064 99% 22%

Group 3 89849 9985 3944 99% 22%

Group 4 89685 9465 4205 99% 22%

Group 5 9164 1156 293 61% 2%

Group 6 9097 1089 277 61% 2%

Group 7 9191 1111 202 60% 2%

Group 8 8950 1034 259 60% 2%

Group 9 9320 888 235 60% 2%

Table 5.19: Summary of average, minimum, maximum and standard deviation of hops needed to

resolve queries for 4 communities in subset 1 and 5 communities in subset 2.

4 Communities

 App

Mean

App

Min

App

Max

App

Std

Dev

Cache

Mean

Cache

Min

Cache

Max

Cache

Std

Dev

 Group 1 4.83 0 15 2.50 5.59 2 15 2.16

 Group 2 4.76 0 15 2.51 5.64 2 15 2.22

 Group 3 4.79 0 15 2.51 5.68 2 15 2.10

 Group 4 4.79 0 15 2.52 5.66 2 15 2.14

 Group 5 5.63 0 15 1.93 5.95 2 15 1.82

 Group 6 5.61 0 14 1.98 5.88 2 14 1.95

 Group 7 5.59 0 15 1.94 5.78 2 11 1.67

 Group 8 5.58 0 15 1.91 5.97 2 15 1.88

 Group 9 5.51 0 15 2.00 5.94 2 15 2.00

67

Table 5.20: Summary of number of queries resolved using application data and cache data in

DGD; number of links formed within each group and node membership per group for 5

communities in subset 1 and 4 communities in subset 2.

5 Communities

App

Count

Cache

Count

of

Links

% of Mem.

Nodes

%age of

Queries

Group 1 86457 9393 3569 98% 18%

Group 2 86668 9625 3663 97% 18%

Group 3 86225 9422 3633 97% 17%

Group 4 86667 9191 3842 97% 18%

Group 5 86669 9275 3700 98% 18%

Group 6 15198 1829 560 69% 3%

Group 7 15346 1761 509 69% 3%

Group 8 15326 1565 533 68% 3%

Group 9 15387 1358 631 69% 3%

Table 5.21: Summary of average, minimum, maximum and standard deviation of hops needed to

resolve queries for 5 communities in subset 1 and 4 communities in subset 2.

5 Communities

 App

Mean

App

Min

App

Max

App

Std

Dev

Cache

Mean

Cache

Min

Cache

Max

Cache

Std

Dev

 Group 1 4.82 0 15 2.46 5.64 2 15 2.07

 Group 2 4.82 0 15 2.54 5.88 2 15 2.13

 Group 3 4.84 0 16 2.52 5.71 2 16 2.16

 Group 4 4.82 0 15 2.51 5.72 2 15 2.06

 Group 5 4.79 0 15 2.49 5.60 2 15 2.15

 Group 6 5.51 0 14 2.03 5.91 2 14 1.88

 Group 7 5.43 0 15 2.13 6.10 2 15 1.98

 Group 8 5.45 0 15 2.15 6.24 2 15 2.21

 Group 9 5.33 0 14 2.14 5.87 2 14 1.97

68

Table 5.22: Summary of number of queries resolved using application data and cache data in

DGD; number of links formed within each group and node membership per group for 6

communities in subset 1 and 3 communities in subset 2.

6 Communities

App

Count

Cache

Count

of

Links

% of Mem.

Nodes

%age of

Queries

Group 1 84775 9838 3252 96% 15%

Group 2 84775 9638 3272 95% 15%

Group 3 83928 9344 3540 95% 14%

Group 4 83532 9760 3303 96% 14%

Group 5 84800 9191 3415 95% 15%

Group 6 84717 9208 3359 96% 15%

Group 7 24507 2707 763 75% 4%

Group 8 24084 3020 927 76% 4%

Group 9 24758 2407 968 75% 4%

Table 5.23: Summary of average, minimum, maximum and standard deviation of hops needed to

resolve queries for 6 communities in subset 1 and 3 communities in subset 2.

6 Communities

 App

Mean

App

Min

App

Max

App

Std

Dev

Cache

Mean

Cache

Min

Cache

Max

Cache

Std

Dev

 Group 1 4.90 0 15 2.46 5.72 2 15 2.18

 Group 2 4.91 0 16 2.50 5.80 2 16 2.16

 Group 3 4.85 0 15 2.49 5.76 2 15 2.13

 Group 4 4.94 0 15 2.48 5.92 2 15 2.13

 Group 5 4.87 0 15 2.49 5.77 2 15 2.06

 Group 6 4.90 0 15 2.48 5.68 2 15 2.07

 Group 7 5.34 0 15 2.19 6.03 2 15 2.01

 Group 8 5.38 0 15 2.19 5.83 2 15 2.11

 Group 9 5.27 0 15 2.25 6.08 2 15 2.23

69

Table 5.24: Summary of number of queries resolved using application data and cache data in

DGD; number of links formed within each group and node membership per group for 7

communities in subset 1 and 2 communities in subset 2.

7 Communities

App

Count

Cache

Count

of

Links

% of Mem.

Nodes

%age of

Queries

Group 1 82996 9318 3034 93% 12%

Group 2 82773 10275 3074 93% 12%

Group 3 83058 9566 2936 92% 12%

Group 4 82996 9179 3096 93% 12%

Group 5 80885 9737 3065 93% 11%

Group 6 83001 8800 2980 94% 12%

Group 7 81141 9098 2992 93% 11%

Group 8 67683 7267 2681 90% 9%

Group 9 66691 7551 2604 89% 9%

Table 5.25: Summary of average, minimum, maximum and standard deviation of hops needed to

resolve queries for 7 communities in subset 1 and 2 communities in subset 2.

7 Communities

 App

Mean

App

Min

App

Max

App

Std

Dev

Cache

Mean

Cache

Min

Cache

Max

Cache

Std

Dev

 Group 1 4.95 0 15 2.45 5.84 2 15 2.04

 Group 2 4.99 0 15 2.44 5.87 2 15 2.00

 Group 3 4.94 0 15 2.43 5.77 2 15 2.08

 Group 4 4.98 0 15 2.46 5.87 2 15 2.13

 Group 5 5.04 0 15 2.41 5.81 2 15 2.07

 Group 6 4.92 0 15 2.47 5.90 2 15 2.15

 Group 7 4.92 0 15 2.44 5.82 2 15 2.03

 Group 8 5.01 0 15 2.46 5.95 2 15 2.13

 Group 9 5.01 0 15 2.44 5.97 2 15 2.16

70

Table 5.26: Summary of number of queries resolved using application data and cache data in

DGD; number of links formed within each group and node membership per group for 8

communities in subset 1 and 1 community in subset 2.

8 Communities

App

Count

Cache

Count

of

Links

% of Mem.

Nodes

%age of

Queries

Group 1 30406 3288 1387 89% 9%

Group 2 30430 3515 1501 89% 9%

Group 3 30541 3466 1569 89% 9%

Group 4 31834 3541 1458 89% 10%

Group 5 30358 2974 1370 90% 9%

Group 6 30863 3581 1574 88% 9%

Group 7 30496 3267 1480 90% 9%

Group 8 30037 3512 1452 90% 9%

Group 9 89848 9907 4319 100% 27%

Table 5.27: Summary of average, minimum, maximum and standard deviation of hops needed to

resolve queries for 8 communities in subset 1 and 1 community in subset 2.

8 Communities

 App

Mean

App

Min

App

Max

App

Std

Dev

Cache

Mean

Cache

Min

Cache

Max

Cache

Std

Dev

 Group 1 5.05 0 14 2.30 5.63 2 14 1.92

 Group 2 5.07 0 15 2.34 5.79 2 15 2.16

 Group 3 5.08 0 15 2.31 5.74 2 15 2.03

 Group 4 5.04 0 14 2.34 5.82 2 14 2.11

 Group 5 5.08 0 15 2.32 5.74 2 15 2.12

 Group 6 5.10 0 15 2.31 5.71 2 15 2.15

 Group 7 5.08 0 15 2.33 5.79 2 15 2.12

 Group 8 5.02 0 15 2.28 5.73 2 15 2.07

 Group 9 4.69 0 15 2.52 5.53 2 15 2.14

71

Table 5.28: Summary of number of queries resolved using application data and cache data in

DGD; number of links formed within each group and node membership per group for 9 groups

equally sharing all the keys in the network.

9 Communities

App

Count

Cache

Count

of

Links

% of Mem.

Nodes

%age of

Queries

 Group 1 81274 10742 3012 92% 11%

 Group 2 81621 10232 2873 92% 11%

 Group 3 82723 9411 2978 92% 11%

 Group 4 82921 10002 3060 93% 11%

 Group 5 82295 9374 3026 92% 11%

 Group 6 82288 9819 3079 92% 11%

 Group 7 82878 9084 3028 93% 11%

 Group 8 82758 8562 3018 92% 11%

 Group 9 79907 9433 2861 92% 11%

Table 5.29: Summary of average, minimum, maximum and standard deviation of hops needed to

resolve queries for 9 groups equally sharing all the keys in the network.

9 Communities

 App

Mean

App

Min

App

Max

App

Std

Dev

Cache

Mean

Cache

Min

Cache

Max

Cache

Std

Dev

 Group 1 5.02 0 15 2.42 5.83 2 15 2.08

 Group 2 4.99 0 15 2.43 5.81 2 15 2.14

 Group 3 4.96 0 15 2.48 5.94 2 15 2.12

 Group 4 5.00 0 16 2.44 5.70 2 16 2.06

 Group 5 4.99 0 15 2.46 5.97 2 15 2.15

 Group 6 5.01 0 15 2.46 5.92 2 15 1.98

 Group 7 4.94 0 16 2.47 5.87 2 16 2.02

 Group 8 4.92 0 15 2.48 5.95 2 15 2.15

 Group 9 5.02 0 15 2.47 6.01 2 15 1.99

72

This case study has reaffirmed the conclusion made in case 1; that the number of links

within group members is directly proportional to the number of queries propagated for the group.

Another observation made is that even though Figure 5.17 shows that DGD’s average hop count

using non-cache data is significantly worse than Chord’s, the average hop count observed never

goes above 5 which is still within acceptable range by Chord’s standards; i.e., queries are

resolved in O(log 𝑁) hops or less and in this case where the network consists of 2,000 nodes, this

translates to 10 hops or less.

5.7.3. Case 3: Varying Number of Nodes – Symmetrical Communities

This case is very similar to case 1 above. The only difference is that the instead of having

asymmetrical communities, all communities are the same size. Figure 5.20 and 5.7.3.2 show that

in general Chord outperforms DGD which is the opposite of what was observed in case 1 above.

Combining analysis of case 1, 2 and 3, we see that in order for DGD to truly improve lookup

performance, two conditions need to be met:

1. First, there needs to be a sufficient number of links within group members. From Table

5.17, sufficient can be taken to mean that on average, each node needs to know of at least

1.5 other nodes in the group.

2. Second, at least 15% of the total number of queries (see Table 5.17) in the network need

to belong to a community before any improved performance is observed.

From Figure 5.22 and 5.7.3.4 it is clear to see that the variance in performance of query

resolution per community in DGD is minimal. This is mostly due to the fact that all queries are

divided equally among all the available groups and therefore no one group has an advantage over

73

the other. Also, for all runs, the percentage of queries per group is 11% which is lower than the

15% determined above for improved performance. Therefore, if there are symmetrical

communities in the network, then there is a low likelihood that DGD will outperform Chord.

Figure 5.20: Average cost of query resolution based on non-cache data for varying number of

nodes in Chord and DGD but with uniform communities.

74

Figure 5.21: Average cost of query resolution based on cache data for varying number of nodes

in Chord and DGD but with uniform communities.

Figure 5.22: Average cost of query resolution per group based on non-cache data for varying

number of nodes in Chord and DGD but with uniform communities.

75

Figure 5.23: Average cost of query resolution per group based on non-cache data for varying

number of nodes in Chord and DGD but with uniform communities.

Table 5.30: Summary of number of queries resolved using application data and cache data in

DGD; number of links formed within each group and node membership per group for a 500 node

network.

500 Nodes

App

Count

Cache

Count

of

Links

% of Mem.

Nodes

%age of

Queries

Group 1 75322 6727 1493 100% 11%

Group 2 78439 5491 1496 100% 11%

Group 3 80964 5640 1490 100% 11%

Group 4 82919 6145 1493 100% 12%

Group 5 79194 4822 1493 100% 11%

Group 6 82344 5854 1496 100% 12%

Group 7 82871 4952 1497 100% 11%

Group 8 80129 4528 1492 100% 11%

Group 9 75972 4596 1491 100% 11%

76

Table 5.31: Summary of average, minimum, maximum and standard deviation of hops needed to

resolve queries for a 500 node network.

500 Nodes

App

Mean

App

Min

App

Max

App

Std

Dev

Cache

Mean

Cache

Min

Cache

Max

Cache

Std

Dev

 Group 1 4.38 0 13 2.10 5.13 2 13 1.69

 Group 2 4.30 0 13 2.14 5.12 2 13 1.78

 Group 3 4.34 0 13 2.14 5.18 2 13 1.86

 Group 4 4.29 0 13 2.15 5.06 2 13 1.79

 Group 5 4.25 0 13 2.16 5.14 2 13 1.81

 Group 6 4.33 0 12 2.17 5.34 2 12 1.72

 Group 7 4.26 0 13 2.21 5.35 2 13 1.85

 Group 8 4.21 0 13 2.24 5.25 2 13 1.75

 Group 9 4.29 0 13 2.22 5.33 2 12 1.76

Table 5.32 Summary of number of queries resolved using application data and cache data in

DGD; number of links formed within each group and node membership per group for a 1,000

node network.

1,000 Nodes

App

Count

Cache

Count

of

Links

% of Mem.

Nodes

%age of

Queries

Group 1 80116 8233 2467 99% 11%

Group 2 82218 7969 2542 99% 11%

Group 3 82820 7357 2533 99% 11%

Group 4 82224 7881 2562 100% 11%

Group 5 82789 6884 2554 99% 11%

Group 6 80906 7769 2550 99% 11%

Group 7 81504 6647 2554 99% 11%

Group 8 82070 6327 2616 99% 11%

Group 9 78546 7191 2557 100% 11%

77

Table 5.33: Summary of average, minimum, maximum and standard deviation of hops needed to

resolve queries for a 1,000 node network.

1,000 Nodes

App

Mean

App

Min

App

Max

App

Std

Dev

Cache

Mean

Cache

Min

Cache

Max

Cache

Std

Dev

 Group 1 4.75 0 14 2.37 5.72 2 14 2.00

 Group 2 4.76 0 13 2.34 5.70 2 13 1.86

 Group 3 4.70 0 13 2.35 5.68 2 13 1.87

 Group 4 4.72 0 13 2.32 5.42 2 13 1.91

 Group 5 4.67 0 13 2.35 5.55 2 13 1.95

 Group 6 4.74 0 14 2.35 5.70 2 14 1.81

 Group 7 4.66 0 14 2.37 5.66 2 14 1.89

 Group 8 4.64 0 13 2.40 5.66 2 13 1.89

 Group 9 4.76 0 14 2.42 5.94 2 14 1.84

Table 5.34: Summary of number of queries resolved using application data and cache data in

DGD; number of links formed within each group and node membership per group for a 2,000

node network.

2,000 Nodes

App

Count

Cache

Count

of

Links

% of Mem.

Nodes

%age of

Queries

Group 1 81581 10765 3033 92% 11%

Group 2 81786 10167 2871 92% 11%

Group 3 82491 9394 2930 92% 11%

Group 4 82922 9819 3111 93% 11%

Group 5 82252 9310 3046 92% 11%

Group 6 82584 10073 3140 92% 11%

Group 7 82878 9011 3019 93% 11%

Group 8 82761 8522 3072 92% 11%

Group 9 80264 9314 2893 92% 11%

78

Table 5.35: Summary of average, minimum, maximum and standard deviation of hops needed to

resolve queries for a 2,000 node network.

2,000 Nodes

App

Mean

App

Min

App

Max

App

Std

Dev

Cache

Mean

Cache

Min

Cache

Max

Cache

Std

Dev

 Group 1 5.03 0 15 2.42 5.82 2 15 2.07

 Group 2 4.99 0 15 2.42 5.81 2 15 2.15

 Group 3 4.96 0 15 2.48 5.93 2 15 2.12

 Group 4 4.99 0 16 2.44 5.70 2 16 2.06

 Group 5 4.98 0 15 2.46 5.96 2 15 2.14

 Group 6 5.02 0 15 2.46 5.93 2 14 1.95

 Group 7 4.93 0 16 2.47 5.89 2 16 2.02

 Group 8 4.92 0 15 2.48 5.95 2 15 2.16

 Group 9 5.03 0 15 2.47 6.04 2 15 2.03

Table 5.36: Summary of number of queries resolved using application data and cache data in

DGD; number of links formed within each group and node membership per group for a 5,000

node network.

5,000 Nodes

App

Count

Cache

Count

of

Links

% of Mem.

Nodes

%age of

Queries

Group 1 82410 14439 2055 65% 11%

Group 2 82569 13164 2172 65% 11%

Group 3 82822 12189 2087 66% 11%

Group 4 82923 13081 2194 66% 11%

Group 5 81746 12581 2039 66% 11%

Group 6 82754 13133 2166 65% 11%

Group 7 82879 12917 2277 67% 11%

Group 8 82761 11766 2233 66% 11%

Group 9 80426 12377 2048 65% 11%

79

Table 5.37: Summary of average, minimum, maximum and standard deviation of hops needed to

resolve queries for a 5,000 node network.

5,000 Nodes

App

Mean

App

Min

App

Max

App

Std

Dev

Cache

Mean

Cache

Min

Cache

Max

Cache

Std

Dev

 Group 1 5.49 0 18 2.63 6.27 2 18 2.16

 Group 2 5.42 0 18 2.62 6.22 2 18 2.25

 Group 3 5.42 0 18 2.61 6.23 2 18 2.28

 Group 4 5.43 0 18 2.62 6.25 2 18 2.39

 Group 5 5.45 0 18 2.64 6.35 2 17 2.30

 Group 6 5.43 0 17 2.64 6.38 2 17 2.27

 Group 7 5.43 0 18 2.63 6.40 2 18 2.28

 Group 8 5.37 0 17 2.66 6.33 2 17 2.33

 Group 9 5.43 0 18 2.63 6.42 2 18 2.22

Table 5.38: Summary of number of queries resolved using application data and cache data in

DGD; number of links formed within each group and node membership per group for a 10,000

node network.

10,000 Nodes

App

Count

Cache

Count

of

Links

% of Mem.

Nodes

%age of

Queries

Group 1 82410 15137 1137 43% 11%

Group 2 82569 15247 1287 43% 11%

Group 3 82823 14210 1128 43% 11%

Group 4 82923 14651 1325 43% 11%

Group 5 82794 14510 1263 43% 11%

Group 6 82755 14809 1255 43% 11%

Group 7 82879 14475 1253 43% 11%

Group 8 82761 13844 1234 42% 11%

Group 9 82529 15311 1180 42% 11%

80

Table 5.39: Summary of average, minimum, maximum and standard deviation of hops needed to

resolve queries for a 10,000 node network.

10,000 Nodes

App

Mean

App

Min

App

Max

App

Std

Dev

Cache

Mean

Cache

Min

Cache

Max

Cache

Std

Dev

 Group 1 5.64 0 19 2.70 6.40 2 19 2.34

 Group 2 5.61 0 20 2.70 6.38 2 19 2.43

 Group 3 5.60 0 19 2.66 6.39 2 19 2.33

 Group 4 5.61 0 19 2.69 6.37 2 19 2.41

 Group 5 5.61 0 20 2.69 6.45 2 20 2.37

 Group 6 5.68 0 20 2.69 6.46 2 19 2.37

 Group 7 5.65 0 19 2.68 6.54 2 19 2.32

 Group 8 5.62 0 20 2.66 6.48 2 20 2.28

 Group 9 5.63 0 20 2.67 6.49 2 20 2.30

5.7.4. Case 4: Introducing Group Churn

For this case, the experiment was set up exactly as in Case 1 but the churn feather was

switched on. The simulator ran for 5,000 simulation seconds before REMOVE events (which

consequently lead to deletion of entries in the group ID finger table) were scheduled. This

allowed the network to settle before introducing churn for the rest of the simulation run that

lasted for 10,000 simulation seconds. Also for this case, in addition to Chord and DGD, results

for static group assignment (SGA) as described in [30] was also analyzed.

As expected, the trend in performance with increased network size is similar to that

observed in Case 1 (see Table 5.2 to 5.11 and Table 5.40 to 5.7.4.10). The main difference noted

is that DGD with churn recorded degraded performance compared to DGD without churn when

resolving queries using cache data (see Figure 5.25), but performance using non-cache data for

both DGD with and without churn is comparable (see Figure 5.24).

81

Figure 5.24: Average cost of query resolution based on non-cache data for varying number of

nodes in Chord and DGD with churn, DGD without churn and static group assignment.

Figure 5.25: Average cost of query resolution based on cache data for varying number of nodes

in Chord and DGD with churn, DGD without churn and static group assignment.

82

As previously explained, we expect that resolving queries using non-cache data in DGD

will result in slightly degraded performance because it is a hybrid of Chord and “smart flooding.”

From Figure 5.24, we observe that the effects of churn on query resolution performance using

non-cache data is almost negligible, however, this is not the case for queries resolved using

cache data (see Figure 5.25). One consistent and important observation made in all cases

discussed where the communities are asymmetrical, is that approximately 90% of all the queries

propagated are resolved using application data. Based on this knowledge, we can conclude that

the effects of the churn introduced easily went unnoticed when resolving queries using non-

cache data, because the numbers queries affected were not enough to cause any significant effect

on the overall performance. Conversely, with only 10% of the queries being resolved using cache

data, the effects of churn are very evident and we see that query resolution using cache data

worsened by approximately one hop.

Table 5.40: Summary of number of queries resolved using application data and cache data in

DGD; number of links formed within each group and node membership per group for a 500 node

network.

500 Nodes

App

Count

Cache

Count

of

Links

% of Mem.

Nodes

%age of

Queries

Group 1 116368 7705 1500 100% 46%

Group 2 115229 6877 1500 100% 46%

Group 3 2919 150 204 95% 1%

Group 4 2985 174 212 92% 1%

Group 5 2885 114 223 93% 1%

Group 6 2908 132 257 93% 1%

Group 7 2826 122 197 94% 1%

Group 8 2957 172 194 92% 1%

Group 9 3053 130 217 90% 1%

83

Table 5.41: Summary of average, minimum, maximum and standard deviation of hops needed to

resolve queries for a 500 node network.

500 Nodes

App

Mean

App

Min

App

Max

App

Std

Dev

Cache

Mean

Cache

Min

Cache

Max

Cache

Std

Dev

 Group 1 4.02 0 12 2.26 4.83 2 12 1.79

 Group 2 4.01 0 12 2.29 4.90 2 12 1.78

 Group 3 4.81 0 11 1.81 5.99 2 11 2.25

 Group 4 4.96 0 12 1.64 5.22 2 11 1.90

 Group 5 4.80 0 13 1.81 5.52 2 11 2.10

 Group 6 4.80 0 11 1.78 5.28 2 11 1.89

 Group 7 4.91 0 11 1.71 5.38 2 11 2.10

 Group 8 4.94 0 12 1.69 5.72 2 11 1.88

 Group 9 4.74 0 11 1.82 5.95 2 11 2.25

Table 5.42: Summary of number of queries resolved using application data and cache data in

DGD; number of links formed within each group and node membership per group for a 1,000

node network.

1,000 Nodes

App

Count

Cache

Count

of

Links

% of Mem.

Nodes

%age of

Queries

Group 1 248335 20997 3000 100% 46%

Group 2 247293 21952 3000 100% 46%

Group 3 6857 340 261 74% 1%

Group 4 6905 466 316 75% 1%

Group 5 6612 351 292 75% 1%

Group 6 6708 529 283 75% 1%

Group 7 6932 768 319 75% 1%

Group 8 6969 564 279 73% 1%

Group 9 6830 379 249 74% 1%

84

Table 5.43: Summary of average, minimum, maximum and standard deviation of hops needed to

resolve queries for a 1,000 node network.

1,000 Nodes

App

Mean

App

Min

App

Max

App

Std

Dev

Cache

Mean

Cache

Min

Cache

Max

Cache

Std

Dev

 Group 1 4.41 0 13 2.46 5.15 2 13 1.92

 Group 2 4.42 0 13 2.46 5.29 2 13 1.93

 Group 3 5.27 0 13 1.86 5.84 2 13 1.82

 Group 4 5.35 0 10 1.74 5.52 2 9 1.70

 Group 5 5.23 0 11 1.83 5.58 2 11 1.73

 Group 6 5.35 0 13 1.89 5.92 2 13 1.86

 Group 7 5.47 0 13 1.78 5.79 2 13 1.69

 Group 8 5.50 0 12 1.80 5.56 2 12 1.76

 Group 9 5.33 0 10 1.88 5.67 2 9 1.60

Table 5.44: Summary of number of queries resolved using application data and cache data in

DGD; number of links formed within each group and node membership per group for a 2,000

node network.

2,000 Nodes

App

Count

Cache

Count

of

Links

% of Mem.

Nodes

%age of

Queries

Group 1 515072 53904 5991 100% 45%

Group 2 509440 51832 5990 100% 45%

Group 3 15772 1015 325 53% 1%

Group 4 15685 2008 399 52% 1%

Group 5 15830 1300 376 52% 1%

Group 6 15951 1488 343 51% 1%

Group 7 16079 1683 375 52% 1%

Group 8 15757 2131 331 52% 1%

Group 9 16019 1567 256 53% 1%

85

Table 5.45: Summary of average, minimum, maximum and standard deviation of hops needed to

resolve queries for a 2,000 node network.

2,000 Nodes

App

Mean

App

Min

App

Max

App

Std

Dev

Cache

Mean

Cache

Min

Cache

Max

Cache

Std

Dev

 Group 1 4.66 0 15 2.54 5.31 2 15 2.21

 Group 2 4.70 0 16 2.54 5.40 2 16 2.18

 Group 3 5.53 0 13 1.89 5.89 2 13 1.75

 Group 4 5.74 0 13 1.79 5.73 2 9 1.51

 Group 5 5.57 0 13 1.91 5.82 2 10 1.73

 Group 6 5.55 0 14 1.88 5.63 2 14 1.73

 Group 7 5.64 0 14 1.84 5.83 2 9 1.60

 Group 8 5.83 0 11 1.79 5.98 2 10 1.64

 Group 9 5.59 0 11 1.84 5.85 2 11 1.67

Table 5.46: Summary of number of queries resolved using application data and cache data in

DGD; number of links formed within each group and node membership per group for a 5,000

node network.

5,000 Nodes

App

Count

Cache

Count

of

Links

% of Mem.

Nodes

%age of

Queries

Group 1 1331723 199671 14417 99% 44%

Group 2 1302451 191502 14380 99% 43%

Group 3 50929 7843 384 31% 2%

Group 4 51382 10111 380 33% 2%

Group 5 51363 7369 445 31% 2%

Group 6 51458 8639 436 31% 2%

Group 7 50971 9259 393 32% 2%

Group 8 50654 10726 410 32% 2%

Group 9 51019 7966 413 33% 2%

86

Table 5.47: Summary of average, minimum, maximum and standard deviation of hops needed to

resolve queries for a 5,000 node network.

5,000 Nodes

App

Mean

App

Min

App

Max

App

Std

Dev

Cache

Mean

Cache

Min

Cache

Max

Cache

Std

Dev

 Group 1 5.11 0 18 2.70 5.55 2 18 2.58

 Group 2 5.13 0 18 2.71 5.68 2 18 2.65

 Group 3 6.03 0 12 2.05 6.29 2 10 1.75

 Group 4 5.96 0 12 2.07 6.20 2 11 1.79

 Group 5 6.05 0 16 2.13 6.75 2 16 2.22

 Group 6 6.02 0 12 2.06 6.48 2 12 1.91

 Group 7 6.05 0 12 2.04 6.19 2 11 1.88

 Group 8 6.09 0 12 2.06 6.26 2 11 1.73

 Group 9 6.00 0 13 2.09 6.55 2 12 2.00

Table 5.48: Summary of number of queries resolved using application data and cache data in

DGD; number of links formed within each group and node membership per group for a 10,000

node network.

10,000 Nodes

App

Count

Cache

Count

of

Links

% of Mem.

Nodes

%age of

Queries

Group 1 2725108 524221 26533 92% 43%

Group 2 2643437 508973 26657 92% 42%

Group 3 134554 27997 452 24% 2%

Group 4 133428 37898 379 26% 2%

Group 5 134463 32446 497 24% 2%

Group 6 137248 34632 539 24% 2%

Group 7 137135 29405 646 25% 2%

Group 8 135358 38284 383 25% 2%

Group 9 134967 28501 445 25% 2%

87

Table 5.49: Summary of average, minimum, maximum and standard deviation of hops needed to

resolve queries for a 10,000 node network.

10,000 Nodes

App

Mean

App

Min

App

Max

App

Std

Dev

Cache

Mean

Cache

Min

Cache

Max

Cache

Std

Dev

 Group 1 5.40 0 20 2.80 5.91 2 20 2.95

 Group 2 5.44 0 20 2.78 5.93 2 20 2.88

 Group 3 6.19 0 16 2.19 6.65 2 16 2.00

 Group 4 6.19 0 13 2.18 6.38 2 11 1.98

 Group 5 6.13 0 13 2.26 6.55 2 12 1.96

 Group 6 6.18 0 13 2.20 6.55 2 11 1.92

 Group 7 6.13 0 14 2.22 6.54 2 12 1.92

 Group 8 6.26 0 13 2.15 6.77 2 12 1.93

 Group 9 6.21 0 13 2.24 6.49 2 12 1.98

Another important observation made in the results presented in Case 4 is that, DGD

without churn outperforms SGA by approximately half a hop when cache data is used (see

Figure 5.4.7.2). However, the latter case outperforms DGD by approximately one and half hops

when using non-cache data to resolve queries (see Figure 5.4.7.2). The significant improvement

observed in SGA could be attributed to the fact that forwarding of queries is not only based on

community identification, but also the location of the next hop in the network. DGD’s better

performance when resolving queries with cache data could be attributed to the fact that more

accurate community membership decisions are made based on a node’s personal interest and that

a node can be a member of multiple communities at the same time. Given that majority of the

queries in the system are resolved using non-cache data, this explains why SGA has the best

overall system performance when compared to Chord and DGD.

88

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1. Summary and Conclusion

P2P applications have increased and evolved over time and with the ever increasing

number of users in P2P networks, maintaining performance expectations becomes increasingly

difficult. Solutions such as caching have been proposed, however, commonly used caching

schemes only favor resources that are popular relative to the entire network. The reality is that

query requests in P2P networks are characterized by the Zipf’s law which loosely translates to;

there are there are few popular queries and many unpopular queries in the network. With this

type of distribution, already existing caching schemes such as PopCache and Beehive are not

very effective because only a small subset of nodes in the network can benefit from them.

Communities (grouping based on similar interests) is a natural occurring phenomenon in

P2P networks. With an aim to optimize caching, a Community Based Caching (CBC) algorithm

is proposed in [29] and confirms that caching based on community interests indeed improves

lookup performance in P2P networks. However, the simulation network used to confirm results

in [29] contained nodes were limited to belonging to only one group and where community

assignment was done in a centralized manner. In addition, once a node joined a community, it

could not change its membership. As discussed in Chapter 1 and 2, community membership is

something that should happen dynamically over time and nodes allowed to be members of

multiple communities at the same time.

In this thesis, we focus of developing a decentralized dynamic community formation

algorithm that is defined in Chapter 4. Keys with group identification information appended to

89

them are used to aid in group discovery. The proposed key generation algorithm would be

something that is known by all nodes in the network and therefore all nodes would be able to

extrapolation vital group ID information and search of potential group members when

applicable. Details of simulation implementation are covered in Chapter 5 and also cases

presented to characterize and determine DGD’s effect on CBC are analyzed. Findings show that

even though DGD improved lookup performance when using CBC, this is only the case when

there is no churn in the network. The work presented in has not only began paved the way for

decentralized and dynamic group discovery in P2P networks, but it has also shown there is great

potential to improve lookup performance in networks that are constantly growing with robust

solutions.

6.2. Future Work

An important observation made in Chapter 5 is that static group assignment (SGA) as

presented in [29] resulted in significant improvement when resolving queries using non-cache

data. This was attributed to the fact that forwarding decisions were not only based on

communities, but also location of the next hop in the network. Similarly, in an attempt to

improve DGD’s performance, replacing “smart flooding” with logic where the distance of the

next hop is considered in addition to group membership, could potentially aid in improving

DGD’s overall performance.

Another observation made in Chapter 5 is that churn only affected query resolution using

cache data. In order to find DGD’s optimal region of performance, it would be desirable to find a

consistent way of measuring churn in the network and then varying the churn rate and observing

its effect on DGD and CBC.

90

The dynamic group discovery algorithm proposed is dependent on each node knowing

exactly how many nodes are present in the network at any given time. This information is used to

determine how many attempts should be made at resolving a query in the group level before

resorting to using the underlying algorithm. When testing the algorithm in Chapter 5, the number

of nodes present in the network was always know. However, in a real network, nodes are

constantly joining and leaving the network and in order for the algorithm to work, nodes need to

find a way to accurately determine the number of total nodes present.

DGD is also dependent on maintaining an additional group ID finger table. Knowing that

resources are finite, it becomes increasingly desirable to find ways of finding the optimal group

ID finger table size and also finding optimal ways of adding entries into the table when a group

member is discovered. For example, if each node checked its already existing finger table to see

how far the potential new group ID finger entry is located relative to other fingers that already

exists, then this may be one way of optimizing entries in the group ID finger table.

Additionally, testing DGD’s performance when used on top of other types of structured

P2P networks such as Pastry and Content Address Networks could be done to ensure DGD’s

portability and robustness.

91

REFERENCES

[1] Bitcoin, (2014, Dec 20), “Bitcoin” [Online]. Available: https://bitcoin.org/.

[2] L. A Adamic and B. A. Huberman, (2014, Feb 2), “Zipf’s law and the Internet” [Online].

Available: http://www.hpl.hp.com/research/idl/papers/ranking/adamicglottometrics.pdf.

[3] Ernesto, (2014, Oct 30), “Popcorn Time Under ‘Legal Investigation,’ Switches Domain”

[Online], Available: https://torrentfreak.com/popcorn-time-legal-investigation-switches-domain-

141014/.

[4] I. Stocia et al., “Chord: a scalable peer-to-peer protocol for internet applications,” in

IEEE/ACM Transactions on Networking, vol. 11, no. 1, Feb. 003, pp.17-32.

[5] Tomnod, (2014, March 11),”Tomnod” [Online]. Available: http://www.tomnod.com/.

[6] K. L. Painter, (2014, March 11),” Digital Globe lunches crowdsource search for missing

Malaysian plane” [Online]. Available:

http://www.denverpost.com/business/ci_25315311/digitalglobe-launches-crowdsource-search-

missing-malaysian-plane.

[7] R. Wilson, (2014, Feb 10), “Trending on Twitter: A look at Algorithms Behind Trending

Topics” [Online]. Available: http://www.ignitesocialmedia.com/twitter-marketing/trending-on-

twitter-a-look-at-algorithms-behind-trending-topics/.

[8] Higgs, P. Brocken, “Symmetries and the masses of gauge bosons.” Phys. Rev. Lett. 13,

508 (1964).

[9] M. De Domenico, A. Lima and M. Musolesi, “The Anatomy of a Scientific Rumor” in

Nature, vol. 3, no. 10, 2013. [Online]. Available: http://dx.doi.org/10.1038/srep02980.

[10] K. Liu et al., “Client-side Web Mining for Community Formation in Peer-to-Peer

Environments,” in The ACM SIGKDD Exploration Newsletter, vol. 8, no. 2, pp. 11-20,

December 2006.

[11] A. Anagnostopoulos, R. Kumara and M. Mahadian, “Influence and Correlation in Social

Networks,” in Proceedings of the 14th ACM SIGKDD international conference on knowledge

discovery and data mining, pp. 7-15, New York, USA, 2008.

[12] D. Centrola et al., “Homophily, Cultural Drift, and the Co-Evolution of Cultural

Groups,” in Journal of Conflict Resolution, vol. 51, no. 6, pp. 905-929, December 2007.

https://torrentfreak.com/popcorn-time-legal-investigation-switches-domain-141014/
https://torrentfreak.com/popcorn-time-legal-investigation-switches-domain-141014/
http://www.denverpost.com/business/ci_25315311/digitalglobe-launches-crowdsource-search-missing-malaysian-plane
http://www.denverpost.com/business/ci_25315311/digitalglobe-launches-crowdsource-search-missing-malaysian-plane
http://www.ignitesocialmedia.com/twitter-marketing/trending-on-twitter-a-look-at-algorithms-behind-trending-topics/
http://www.ignitesocialmedia.com/twitter-marketing/trending-on-twitter-a-look-at-algorithms-behind-trending-topics/

92

[13] E. Bakshy et al., “The Role of Social Networks in Information Diffusion.” In

Proceedings of the 21st international conference on World Wide Web, pp. 519-528, New York,

USA, 2012.

[14] M. Girvan and M. E. J. Newman, “Community Structure in Social and Biological

Networks,” in Proceedings of the National Academy of Sciences of the United States of

America, vol. 99, no. 12, pp. 7821-7826, USA, June 2002.

[15] M. E. J. Newman, “Modularity and Community Structure in Networks,” in Proceedings

of the National Academy of Science of the United States of America, vol. 103, no. 23, 8577-

8582, USA, June 2006.

[16] Y. Ahn, J. P. Bagrow and S. Lehmann, “Link Communities Reveal Multiscale

Complexity in Networks,” in Nature, vol. 466, no. 7307, pp. 761-764, August 2010.

[17] J. Yang and J. Leskovec, “Defining and Evaluating Network Communities Based on

Ground Truth,” in Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics,

article no. 3, New York, USA, August 2012.

[18] S. L. Feld, “The focused organization of social ties,” in American Journal of Sociology,

vol. 86, no. 5, pp. 1015-1035, March 1981.

[19] G. Simmel, “Conflict and the web of group affiliations.” in Place of publication: Free

Press, New York 1964.

[20] J. Yang and J. Leskovec, “Community-Affiliation Graph Model for Overlapping

Network Community Detection,” in 2012 IEEE 12th International Conference on Data Mining,

pp. 1170-1175. 2012.

[21] G. Flake, S. Lawrence, and C. Giles, “Efficient Identification of Web Communities,” in

Proceedings of the sixth ACM SIGKDD international conference on knowledge discovery and

data mining, pp. 150-150, New York, USA, 2000.

[22] J. Vassileva, R. Cheng, L. Sun and W. Han, “Stimulating User Participation in a File-

Sharing P2P System Supporting University Classes,” in P2P Journal, July 2004.

[23] Y. Wang and J. Vassileva, “Trust-Based Community Formation in Peer-to-Peer File

Sharing Networks,” in Proceedings of the IEEE/WIC/ACM International Conference on Wen

Intelligence, pp. 341-348, Washington, DC, USA, 2004.

93

[24] K. Liu et al., “Client-side Web Mining for Community Formation in Peer-to-Peer

Environments,” in ACM SIGKDD Explorations Newsletter, vol. 8, no. 2, pp. 11-20, New York,

USA, December 2006.

[25] T. Das, S. Nandi and N. Ganguly, “Community Formation and Search in P2P: A Robust

Self-Adjusting Algorithm,” in Proceedings of the first international conference on

COMmunication, Systems And NETworks, pp. 1-8, New Jersey, USA, 2009.

[26] M. Khambatti, K. Ryu and P. Dasgupta, “Peer-to-Peer Communities: Formation and

Discovery,” in P2P Journal, 2002.

[27] M. Granvovetter, “The Strength of Weak Ties,” in American Journal of Sociology, vol.

78, no. 6, pp. 1360-1380, USA, May 1973.

[28] M. G. Madiseh, M. L. McGuire and S. W. Neville, “Secret Key Generation within Peer-

to-Peer Network Overlays,” in P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC),

2012 Seventh International Conference, pp. 156-163, Victoria, BC, November 2012.

[29] H. M. N. D. Bandara and A. P. Jaysumana, “Community-Based Caching in Enhanced

Lookup Performance in P2P Systems,” in Parallel and Distributed Systems, IEEE Transactions,

vol. 24, no. 9, pp. 1752-1762, USA, September 2013.

[30] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Object Location,

and Routing for Large-Scale Peer-to-Peer Systems,” Proceedings of the IFIP/ACM International

Conference on Distributed System Platforms (Middleware), pp. 329-350, London, UK,

November 2001.

[31] S. Ratnasamy et al., “A Scalable Content-Addressable Network,” in Proceedings of the

2001 conference on Applications, technologies, architectures and protocols for computer

communications, pp. 161-172, New York, USA, August 2001.

[32] M. Kelaskar et al., “A Study of Discovery Mechanisms of Peer-to-Peer Applications,”

in Cluster Computing and the Grid, 2002 IEEE/ACM International Symposium, pp. 444, May

2002.

[33] V. K. Paruchuri, A. Durresi and R. Jail, “Optimized Flooding Protocol for Ad hoc

Network,” unpublished.

[34] I. Baumagart, B Heep and S. Krause, “OverSim: A Flexible Overlay Network Simulation

Framework,” in IEEE Global Internet Symposium, pp. 70-84, May 2007.

94

[35] S. A. Baset and H. G. Schulzrinne, “An Analysis of the Skype Peer-to-Peer Internet

Telephony Protocol,” in Proceedings of the 25th IEEE International Conference on Computing

Communications, pp. 1-11, Barcelona, Spain, April 2006.

[36] N. Christin, “Peer-to-Peer Networks: Interdisciplinary Challenges for Interconnected

Systems,” in Information Assurance and Security Ethics in Complex Systems: An

Interdisciplinary Perspective, 2010.

[37] V. Ramasubramanian and E. G. Sirer, “Beehive: O(1) Lookup Performance for Power-

law Query Distributions in Peer-to-Peer Overlays,” in Proceedings of the 1st conference on

Symposium on Networked Systems Design and Implementation, vol. 1, pp. 8, Berkeley,

California, USA, May 2004.

[38] W. Rao et. al., “Optimal Proactive Caching in Peer-to-Peer Network: Analysis and

Application,” in Proceedings of the 16th ACM conference on information and knowledge

management. pp. 663-672, New York, USA. November 2007.

[39] G. Camarillo, (2014, Feb 2), “Peer-to-Peer (P2P) Architecture: Definition, Taxonomies,

Examples and Applicability,” [Online]. Available: https://tools.ietf.org/html/rfc5694

[40] L. A Adamic, (2014, Feb 2), “Zipf’s, Power-laws and Pareto – a ranking tutorial,”

[Online]. Available: http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html.

[41] Wikipedia: BitTorrent. Available: http://en.wikipedia.org/wiki/BitTorrent.

[42] Wikipedia: The Pirate Bay. Available: http://en.wikipedia.org/wiki/The_Pirate_Bay.

[43] (2015, March 1) “Data, data everywhere” in The Economist. Available:

http://www.economist.com/node/15557443.

[44] Internet World Status. Available: http://www.internetworldstats.com/stats.htm.

[45] Multi-Agent Distributed Mobile and Ubiquitous Computing Lab (2014, December 12).

Available at: http://madmuc.usask.ca/peer-motivation.htm

https://tools.ietf.org/html/rfc5694
http://www.economist.com/node/15557443
http://www.internetworldstats.com/stats.htm
http://madmuc.usask.ca/peer-motivation.htm

95

APPENDIX A

A.1. Oversim Simulation Introduction

Oversim [36], is an event driven and flexible network simulator framework which was

chosen to simulate and analyze DGD performance. This sections includes routines, written in

C++ programming language, which illustrate how the simulator was used to achieve desired

results. Some of the functional implementation included in this section include; establishing

group interest, forwarding messages based on acquired group interest, handling find group

member requests and replies and finally, deleting group members from the group ID finger table.

A.2. Establishing and Acquiring Group Interest

 Per the algorithm described in Chapter 4, a node’s initial basis for group interest is

established when it joins the network and is based on personal interests. The routine called to set

this up is highlighted in the void MyChord::addGroupIdFinger(…) function below. Nodes

were also able to acquire interest at runtime depending on what type of queries being processed.

Interest acquisition was handled in the NodeVector* MyChord::findNode(…) routine and the

snippet of code with this logic is presented below.

96

void MyChord::addGroupIdFinger(const OverlayKey& key, const NodeHandle& sourceNode)

{

 int groupID = 0;

 groupID = getgroupID(key);

 bool isAlreadyMemeberOfGroup = fingerTable->groupExists(groupID);

 /**

 Adding node to finger table vector.

 NOTE: 'sourceNode' when this function is called must not be

 another node in the network

 **/

 bool addSuccess = fingerTable->addGroupIdFinger(groupID,sourceNode);

 if(!addSuccess)

 throw cRuntimeError("MyChord::addGroupIdFinger: Problem with

 adding a groupID finger");

 if (groupID >= 100 && groupID < 200)

 { if(!isAlreadyMemeberOfGroup)

 {

 addToDynamicGroupIdInterestList(groupID);

 groupID_1_stats++; // Record statistics

 RECORD_STATS(globalStatistics->recordOutVector("MyChord:

 Group 1 Size", groupID_1_stats));

 RECORD_STATS(globalStatistics->recordOutVector("MyChord:

 Group 1 Address", thisNode.getKey().hash()));

 }

 }

 else if (groupID >= 200 && groupID < 300)

 {

 if(!isAlreadyMemeberOfGroup)

 {

 addToDynamicGroupIdInterestList(groupID);

 groupID_2_stats++;

 RECORD_STATS(globalStatistics->recordOutVector("MyChord:

 Group 2 Size", groupID_2_stats));

 RECORD_STATS(globalStatistics->recordOutVector("MyChord:

 Group 2 Address", thisNode.getKey().hash()));

 }

 }

 ...

 else if (groupID >= 900 && groupID < 1000)

 {

 addToDynamicGroupIdInterestList(groupID);

 if(!isAlreadyMemeberOfGroup)

 {

 groupID_9_stats++;

 RECORD_STATS(globalStatistics->recordOutVector("MyChord:

 Group 9 Size", groupID_9_stats));

 RECORD_STATS(globalStatistics->recordOutVector("MyChord:

 Group 9 Address", thisNode.getKey().hash()));

 }

 }

}

97

NodeVector* MyChord::findNode(const OverlayKey& key, int numRedundantNodes,

 int numSiblings, BaseOverlayMessage* msg)

{

 ...

 if (findGroupMembers && (msg->getEncapsulatedPacket() != NULL))

 {

 BaseOverlayMessage* innerMsg =

 static_cast<BaseOverlayMessage*>(msg->getEncapsulatedPacket());

 if((innerMsg->getEncapsulatedPacket() != NULL)

 && (innerMsg->getType() == APPDATA))

 {

 MyDHTGetMessage* dhtGetMsg =

 dynamic_cast<MyDHTGetMessage*>(innerMsg->getEncapsulatedPacket());

 // Message received is a valid DHT GET message

 if(dhtGetMsg != NULL)

 {

 bool isNexHopSet = false;

 // Checking to see if we can add this node to

 // our groupID finger table

 if(useDynamicGroupAlloc && dhtGetMsg != NULL)

 {

 bool sendFindGroupRequest = false;

 // Extract group ID information

 int dynamiceGroupID = getdynamiceGroupID(key);

 // Check if interest in group ID exists

 if(fingerTable->groupRangeExists(dynamiceGroupID))

 {

 if (dhtGetMsg->getMyHopCount() < maxGETHops)

 {

 GroupMap* groupVect =

 fingerTable->

 getGroupIdFingers(dynamiceGroupID, thisNode);

 // We have finger to node in same group

 if (groupVect->size() != 0)

 {

 // Set next hop

 nextHop = new NodeVector();

 for(unsigned int i=0;

 i < groupVect->size(); i++)

 {

 // If it's not mine

 if(groupVect->at(i).sourceNode

 != thisNode)

 {

 groupVect->

 at(i).sourceNode.setPort(1024);

 nextHop->

 push_back(groupVect->

 at(i).sourceNode);

 isNexHopSet = true;

 }

 }

 nextHop->downsizeTo(numRedundantNodes);

 }

 delete groupVect;

 // Is max number of fingers reached for group?

 && Is max entries for table reached?

 if ((!fingerTable->

 isMaxFingersReached(dynamiceGroupID,

 maxFingersToGroups, thisNode)

)

98

 && (fingerTable->getGroupSize() <

 (unsigned)maxGroupIdTableSize)

)

 {

 sendFindGroupRequest = true;

 }

 }

 }//if(groupFingerTable->groupExists(dynamiceGroupID))

 // Build and send 'find group member' request

 if (sendFindGroupRequest)

 {

 MyFindGroupMemberMessage* findMemberMsg =

 new MyFindGroupMemberMessage("FINDGROUPMEMBER");

 findMemberMsg->setCommand(FINDGROUPMEMBER);

 findMemberMsg->setOriginalSrcNode(getThisNode());

 findMemberMsg->setGroupId(dynamiceGroupID);

 findMemberMsg->setHopCount(0);

 sendMessageToUDP(successorList->

 getSuccessor().nodeHandle,

 findMemberMsg

);

 }

 if(isNexHopSet)

 return nextHop;

 }//if(useDynamicGroupAlloc && dhtGetMsg != NULL)

 // groupID == -1 means that it is invalid

 if(!isNexHopSet && useDynamicGroupAlloc)

 nextHop = closestPreceedingNode(key, -1);

 else

 nextHop = closestPreceedingNode(key, -1, true);

 }

 else

 nextHop = closestPreceedingNode(key, -1);

 }

 else

 nextHop = closestPreceedingNode(key, -1);

 }

 ...

}

99

A.3. Handling ‘Find Group Member’ Requests and Replies

 Nodes discovered other group members in the network with the help of special ‘Find

Group Member’ messages. This code snippets below, i.e., void MyChord::

handleFindGroupMemberRequest(…) and void

MyChord::handleFindGroupMemberReply(…), show how each node processes ‘Find Group

Member’ messages to achieve the primary goal, which is to discover as many group members as

possible, all while being cognizant of the availability of limited resources.

void MyChord::handleFindGroupMemberRequest(MyChordMessage* chordMsg)

{

 MyFindGroupMemberMessage* findGroupMsg =

 check_and_cast<MyFindGroupMemberMessage*>(chordMsg);

 if(useDynamicGroupAlloc)

 {

 GroupMap* groupVect = fingerTable->getGroupIdFingers(

 findGroupMsg->getGroupId(),

 thisNode);

 if ((groupVect->size() == 0) &&

 (findGroupMsg->getHopCount() < (maxFindGroupMemberHops - 1)))

 {

 //// If no exact match, forward message to next node

 MyFindGroupMemberMessage* forwardMsg =

 new MyFindGroupMemberMessage("FINDGROUPMEMBER");

 forwardMsg->setCommand(FINDGROUPMEMBER);

 forwardMsg->setOriginalSrcNode(

 findGroupMsg->getOriginalSrcNode());

 forwardMsg->setGroupId(findGroupMsg->getGroupId());

 forwardMsg->setHopCount(findGroupMsg->getHopCount() + 1);

 sendMessageToUDP(successorList->

 getSuccessor().nodeHandle, forwardMsg);

 return;

 }

 else if (groupVect->size() != 0)

 {

 MyFindGroupMemberReply* replyMsg = new

 MyFindGroupMemberReply("FINDGROUPMEMBERREPLY");

 replyMsg->setCommand(FINDGROUPMEMBERREPLY);

 replyMsg->setGroupId(findGroupMsg->getGroupId());

 replyMsg->setSucNodeArraySize(groupVect->size());

 for(unsigned int k = 0; k < groupVect->size(); k++)

 replyMsg->setSucNode(k, groupVect->at(k).sourceNode);

 sendMessageToUDP(findGroupMsg->getOriginalSrcNode(), replyMsg);

 return;

 }

 }

}

100

void MyChord::handleFindGroupMemberReply(MyChordMessage* chordMsg)

{

 MyFindGroupMemberReply* findGroupReply =

 check_and_cast<MyFindGroupMemberReply*>(chordMsg);

 if(useDynamicGroupAlloc)

 {

 for(unsigned int i = 0;

 i < findGroupReply->getSucNodeArraySize(); i++)

 {

 // Is max number of fingers reached for group?

 if ((!fingerTable->isMaxFingersReached(findGroupReply->

 getGroupId(),

 maxFingersToGroups, thisNode)))

 {

 bool add = false;

 // Is max entries for table reached?

 if (fingerTable->getGroupSize() >

 (unsigned)maxGroupIdTableSize)

 {

 // Need to decide what node to delete

 add = fingerTable->

 sepcialDeleteFromGroupFingerTable(thisNode);

 }

 else // max not reached

 add = true;

 if (add)

 {

 const NodeHandle& groupSourceNode =

 fingerTable->getGroupPair(findGroupReply->getGroupId(),

 findGroupReply->getSucNode(i));

 // If entry doesn't exist then add it

 if(groupSourceNode.isUnspecified())

 {

 if (findGroupReply->

 getSucNode(i).isUnspecified())//Not given

 {

 std::cout

 << "MyChord::handleFindGroupMemberReply()::

 Node at index "

 << i << " is unspecified" << endl;

 continue;

 }

 bool addSuccess = fingerTable->

 addGroupIdFinger(

 findGroupReply->getGroupId(),

 findGroupReply->getSucNode(i)

);

 if (!addSuccess)

 throw cRuntimeError(

 "MyChord::handleFindGroupMemberReply():

 Problem occurred when adding key");

 }

 }

 }

 }

 return;

 }

 else if (...)

 {

 ...

 }

}

101

A.4. Deleting Group Members from Finger Table

 As part of maintaining the group ID finger table, once a node leaves the network and

consequently, is no longer a member of any group, any entries of such nodes are deleted from the

group ID finger table. To simulate this, a special DHT remove message was used and the code

snippet below highlights the logic used to delete entries from the group ID finger table.

NodeVector* MyChord::findNode(const OverlayKey& key,

 int numRedundantNodes,

 int numSiblings,

 BaseOverlayMessage* msg)

{ ...

 if (useDynamicGroupAlloc)

 {

 MyDHTRemoveMessage * dhtRemoveMsg = NULL;

 if(msg->getEncapsulatedPacket() != NULL)

 {

 BaseOverlayMessage* innerMsg = static_cast<BaseOverlayMessage*>

 (msg->getEncapsulatedPacket());

 if((innerMsg->getEncapsulatedPacket() != NULL)

 &&(innerMsg->getType() == APPDATA))

 dhtRemoveMsg = dynamic_cast<MyDHTRemoveMessage*>

 (innerMsg->getEncapsulatedPacket());

 // If message is a remove message

 if(dhtRemoveMsg != NULL)

 {

 // Checking to see if exact match exists

 if(fingerTable->groupExists(dhtRemoveMsg->getGroupId()))

 {

 // Get fingers with exact group

 GroupMap* groupVect = fingerTable->

 getGroupIdFingers(dhtRemoveMsg->getGroupId(),

 thisNode);

 // We have entry in table

 if (groupVect->size() != 0)

 {

 // Loop through vector requesting to delete items

 // that don't belong to me

 bool status;

 for(unsigned int i=0; i < groupVect->size(); i++)

 {

 if(groupVect->at(i).sourceNode != thisNode)

 {

 status = fingerTable->deleteGroupIdFinger(

 dhtRemoveMsg->getGroupId(),

 groupVect->at(i).sourceNode);

 if (!status)

 throw cRuntimeError("MyChord::findNode:

 problem with deleting node...");

 GroupMap* groupVect2 = fingerTable->

 getRangeGroupIdFingers(

 dhtRemoveMsg->getGroupId(),

 thisNode);

 }

 }

 }

102

 delete groupVect;

 }

 if (dhtRemoveMsg->getCurHops() <

 dhtRemoveMsg->getMaxHops())

 {

 dhtRemoveMsg->setCurHops(dhtRemoveMsg->getCurHops()

 + 1);

 // forward message to all neighbours in groupID

 // finger table

 nextHop = new NodeVector();

 GroupMap* groupVect = fingerTable->

 getRangeGroupIdFingers(dhtRemoveMsg->getGroupId(),

 thisNode);

 if (groupVect != 0)

 {

 for(unsigned int i=0; i < groupVect->size(); i++)

 {

 groupVect->at(i).sourceNode.setPort(1024);

 nextHop->push_back(groupVect->

 at(i).sourceNode);

 }

 }

 else

 {

 for (uint32_t i = 0;

 i < successorList->getSize(); i++)

 nextHop->push_back(successorList->

 getSuccessor(i).nodeHandle);

 }

 delete groupVect;

 nextHop->downsizeTo(numRedundantNodes);

 return nextHop;

 }

 else

 {

 dhtRemoveMsg->setCurHops(dhtRemoveMsg->getCurHops()

 + 1);

 nextHop = new NodeVector();

 nextHop->push_back(thisNode);

 nextHop->downsizeTo(numSiblings); //Reduce if too much

 return nextHop;

 }

 }

 }

 }

 ...

}

103

LIST OF ABBREVIATIONS

DHT – Distributed Hash Tables

P2P – Peer-to-Peer

DGD – Dynamic Group Discovery

DCD – Dynamic Community Discovery

SGA – Static Group Assignment

CBC – Community Based Caching

Mem. – Member

Min – Minimum

Max – Maximum

Std – Standard

Dev – Deviation

