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ABSTRACT 
 
 
 

AN ANALYSIS OF THE PHYSIOLOGY AND ENVIRONMENTAL INTERACTIONS THAT 

INFLUENCE SPECIES-SPECIFIC TRANSPIRATION ESTIMATES 

 
 

 Transpirational water loss from vegetation constitutes a major component of the global 

hydrologic cycle; influencing energy balance and carbon cycling at multiple scales. At the leaf 

level, the control of transpiration is partitioned between environmental demand and physiological 

mechanisms that regulate water loss while allowing adequate carbon uptake for photosynthesis 

(An). Since the development of the Penman-Monteith potential evaporation equation, numerous 

research studies have focused on improving transpiration predictions over a range of spatial and 

temporal resolutions. Currently, efforts to predict transpiration must strike a balance between the 

predictive accuracy of complex models and the ease of implementation of generalized models. 

An example of a complex and accurate model is MAESTRA, a framework that uses an iterative 

leaf energy balance approach to simultaneously solve for An, stomatal conductance (gs), and 

transpiration - linking gs and An to account for the physiological mechanisms that regulate 

species specific water loss. The over-arching goal of this dissertation was to break MAESTRA 

down into its constituent physiological and environmental components while retaining 

transpiration predictive accuracy; distilling the large number of model inputs down to a few key 

parameters to reduce the time and labor of model parameterization.      

 In Chapter 2 of this dissertation, my first goal was to calibrate and validate MAESTRA 

on a species-specific basis for five tree species and then, using the range of physiology values 

measured among species, perform a sensitivity analysis to identify key parameters for 
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transpiration predictive accuracy. Two parameters from the Ball-Berry-Leuning gs sub-model 

emerged as particularly important with a >20% influence on transpiration estimates: g0, the 

minimum gs as An 0 and g1 the marginal cost of water per unit of carbon gain. I then illustrated 

how the influence of g0 increases substantially under lower light conditions (up to a 70% effect) 

while never decreasing below 20% in high light conditions. Finally, I assessed the accuracy of 

the traditional method of obtaining g0 (i.e. as an extrapolated intercept of a linear regression fit to 

An-gs data collected in well-lit conditions) compared to g0 values measured with a hand-held 

porometer in the absence of light. I found that regression derived g0’s underestimated leaf 

minimum gs. Moreover, MAESTRA was more accurate, in comparison to measured 

transpiration, when parameterized with the observed values of g0 instead of g0 values obtained 

from the regressions (root mean square error from modeled-versus-measured regressions of 

0.0067 and 0.0410 g m-2 s-1 respectively). 

 The third chapter of my dissertation focused on within canopy variation in wind speed 

and its influence on leaf energy balance, boundary layer conductance (gbV) and transpiration 

estimates. I found that α, an exponential coefficient that ranges from 0-3 to describe the decrease 

in wind speed with depth into the canopy, varied among species and over the season. The 

development of canopy leaf area index (LAI) was closely linked with seasonal changes in α 

among species, but a simple empirical model that also included leaf width (Lw) and canopy 

height was a better predictor (R2 = 0.77 and 0.92 for LAI and the empirical model respectively). 

Maximum gbV in the early season ranged from ~2 to 3.5 mol m-2 s-1 among the study species and 

declined steadily as the canopy LAI increased to ~0.5 to 1.0 mol m-2 s-1. The resulting Ω values 

(a ratio between gbV and gs that describes how well vegetation is coupled to the environment) 

followed a similar albeit inverted parabolic trend to the evolution of gbV. Finally, I completed a 
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theoretical exercise using the validated model sets from Chapter 2 to determine the influence of a 

discrete increase in wind speed (0.6 to 2.4m s-1) over a variety of environmental conditions. The 

influence of wind speed on transpiration ranged from -30 to 20%, varying with other 

environmental conditions.  

 The third chapter of my dissertation served as a culmination of the first two chapters; 

implementing MAESTRA as a real-time irrigation scheduling tool in a container grown tree 

nursery. I compared the performance of trees irrigated by species-specific MAESTRA 

parameterization to trees that were irrigated with a substrate moisture sensing method. Trees 

grown with the MAESTRA based irrigation produced 11-53% greater leaf area and 3.4-11% 

greater stem caliper with 18-56% more water applied than the moisture sensing method. 

Irrigation application efficiency was lower in the MAESTRA based method (80.1% compared to 

89.5% for the sensing-based method), but both methods were within the range of suggested best 

management practices. After the season of irrigation scheduling was completed, I performed 

post-hoc model runs to determine how much accuracy would have been lost from estimates of 

species-specific irrigation if generalized multi-species physiological parameter means were used 

instead. By limiting species-specific parameterization to g0 and g1 alone, transpiration estimates 

could be within 10% error > 65% of the time and within 20% error > 95% of the time. 

 Overall, my dissertation had three main conclusions: (1) g0 and g1 are the two most 

important parameters for predicting transpiration with linked An-gs modeling schemes, and that 

the ease of obtaining g0 using simple hand held equipment should facilitate improved species-

specific parameter values for modeling efforts at multiple scales, (2) the influence of wind speed 

on transpiration ranges from -20 to 30% and accurate representation of within canopy wind 

variability is necessary for accurate representation of gbV and leaf energy balance (3) the 
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complexity of MAESTRA transpiration estimates can be greatly reduced by focusing efforts on 

accurate representation of g0 and g1, which will possibly allow for MAESTRA to be an effective 

yet realistic and scalable irrigation scheduling tool.  
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Chapter 1: Introduction 

 
 

“What we observe is not nature itself, but nature exposed to our method of questioning.” 

-Werner Heisenberg, Physics and Philosophy: The Revolution in Modern Science 

 

Background 

 The exchange of mass and energy between vegetation and the atmosphere follows a suite 

of biophysical and physiological principles that can be assembled into mathematical models. One 

such assemblage is MAESTRA, a spatially-explicit and semi-mechanistic model capable of 

resolving flux estimates in three dimensions (Wang and Jarvis, 1990; Medlyn, 2004). The 

MAESTRA model follows an iterative procedure that uses estimates of leaf level energy balance, 

net photosynthesis (An), stomatal conductance (gs), and measured meteorology to scale up to 

estimates of canopy fluxes of mass and energy exchange (Wang and Jarvis, 1990). The An 

predictions are derived from the mechanistic biochemical sub model developed by Farquhar and 

von-Caemmerer (1980) and input in the Ball-Berry-Leuning (BBL) gs model (1995) for 

predictions of stomatal conductance defined as: 

 𝑔𝑠 = 𝑔0 +
𝑔1𝐴𝑛

(𝑐𝑠 − Γ) �1 + 𝑉𝑉𝑉
𝐷0

�
 (1) 

 where g0 is the minimum gs value defined as gs as An  0 as leaf absorbed light  0, g1 is the 

marginal water cost per unit carbon gain, cs and VPD are the [CO2] and vapor pressure deficit at 

the leaf surface respectively, Γ is the CO2 compensation point (where CO2 production from 

cellular respiration is equal to that fixed by photosynthesis), and D0 is an empirical coefficient. 

The BBL model has been subjected to decades of validation, and is often deployed in other 
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model assemblages that predict water and carbon flux at scales from the leaf to the globe (e.g., 

Ball et al., 1987; Leuning, 1995; Sellers et al., 1996; Bauerle et al., 2004; Oleson et al., 2013). 

 Integral to accurate model predictions is accurate characterization of input parameters 

and a thorough understanding of their function and impact within the model (Reynolds and 

Acock, 1985). However, due to the time and resources involved in acquiring each parameter, 

there is a need to understand which parameters have the greatest impact on model output and 

how their influence varies with regard to changes in environmental conditions. The purpose of 

this dissertation was to investigate MAESTRA model formulation and identify key parameters 

that influence transpiration predictions. The linked An-gs formulation of MAESTRA is similar to 

larger scale models (e.g., SiB2 or CLM; Sellers et al., 1996; Oleson et al., 2013 respectively) 

making the results of this dissertation applicable at larger scales. Additionally, the strength of the 

MAESTRA model lies in its predictive and semi-mechanistic formulation that can account for 

changes in environmental conditions in real time. For example, wind speeds can vary greatly 

over the day and with depth into the canopy. Hence, the second goal of this dissertation was to 

characterize the vertical gradient in wind speed in tree canopies and to quantify the influence that 

wind has on leaf boundary layer conductance, heat exchange and transpiration. Finally, the 

knowledge gained in executing the first two goals of this dissertation was used to initiate a real-

time irrigation scheduling tool that uses MAESTRA estimates of transpiration to automatically 

determine irrigation volumes among tree species. 

 

General research methodology 

 This research was undertaken as part of a five year grant awarded from the USDA, 

Specialty Crops Research Initiative (SCRI). The majority of this research was completed at 
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Willoway Nurseries Inc. located near Avon, OH, USA. Willoway is a large nursery (ca. 900 

acres) and utilizes a pot-in-pot production system for the majority of their ornamental tree 

production. The owner of Willoway has also implemented a successful waste water recapture 

system and is invested in water resource conservation. Supplemental studies have been 

completed at the Colorado State University Horticulture Field Research Lab, campus 

greenhouses, and at USDA research greenhouses. 

 The first summer of research (2010) was devoted to characterizing the physiology, 

morphology and canopy aerodynamics of 10 tree species with economic and ecological 

significance. Canopy aerodynamic measurements were carried over into the second growing 

season with the intent of improving the spatial resolution of the canopy wind profile. The second 

year was also devoted to utilizing knowledge gained through modeling exercises to calibrate and 

validate MAESTRA for five of the ten species physiologically characterized in the first year. 

Calibration and validation were accomplished by the use of the water balance method (water 

used per tree = water applied – water leached). A thorough description of this large-container 

water balance research site is available in Zhu et al. (2005). Once validated, I implemented 

MAESTRA in the third summer (2012) to control irrigation in real time for five tree species. The 

fourth summer involved minor studies to supplement present data and post-hoc model runs and 

data analysis.  
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Chapter 2: The implications of minimum stomatal conductance on modeling water flux in 

forest canopies 

 
 

Overview 

Stomatal conductance (gs) models are widely used at a variety of scales to predict fluxes 

of mass and energy between vegetation and the atmosphere. Several gs models contain a 

parameter that specifies the minimum gs estimate (g0). Sensitivity analyses with a canopy flux 

model (MAESTRA) identified g0 to have the greatest influence on transpiration estimates 

(seasonal mean of 40%). A spatial analysis revealed the influence of g0 to vary (30-80%) with 

the amount of light absorbed by the foliage and to increase in importance as absorbed light 

decreased. The parameter g0 is typically estimated by extrapolating the linear regression fit 

between observed gs and net photosynthesis (An). However, our measurements demonstrate that 

the gs-An relationship may become nonlinear at low light levels and thus, extrapolating values 

from data collected over a range of light conditions resulted in an underestimation of g0 in Malus 

domestica when compared to measured values (20.4 versus 49.7 mmol m-2 s-1 respectively). In 

addition, extrapolation resulted in negative g0 values for three other woody species. We assert 

that g0 can be measured directly with diffusion porometers (as gs when An ≤ 0), reducing both the 

time required to characterize g0 and the potential error from statistical approximation. 

Incorporating measured g0 into MAESTRA significantly improved transpiration predictions 

versus extrapolated values (6% overestimation versus 45% underestimation respectively), 

demonstrating the benefit in gs models. Diffusion porometer measurements offer a viable means 

to quantify the g0 parameter, circumventing errors associated with linear extrapolation of the gs-

An relationship. 



7 
 

Introduction 

Leaf stomatal conductance (gs) changes in response to physiological signals and 

environmental conditions to balance carbon assimilation with water loss (e.g. Wong et al., 1979). 

Hence, the ability to accurately predict the gs response to changes in environmental conditions is 

central to estimating carbon and water flux at multiple scales. Damour et al. (2010) recently 

compared 35 gs models that ranged from phenomenological to semi-mechanistic. Of the 35 

models, the Ball, Woodrow and Berry (1987) model (BWB), later modified by Leuning (1995) 

(BBL), has been subjected to decades of testing and validation (e.g., Ball et al., 1987; Leuning, 

1990; Leuning, 1995; Nijs et al., 1997; Medlyn et al., 2001; Katul et al., 2010; Way et al., 2011). 

Relative to other gs models, the BWB is easier to apply and requires only four input parameters. 

The ease of parameterization and predictive accuracy under variable environments make the 

BWB gs model commonly used at a variety of scales (e.g., Baldocchi and Meyers, 1998; Cox et 

al., 1998; Battaglia et al., 2004; Hanson et al., 2004; Sato et al., 2007; Friend et al., 2009; 

Damour et al., 2010; Landsberg and Sands, 2010), including large scale land surface schemes 

(e.g. Sellers et al., 1996; Oleson et al., 2010).  

The BWB, and more recent BBL model, have semi-mechanistic predictive capabilities 

that scale gs linearly with foliage net photosynthesis (An) in lieu of a direct response of the 

stomata to absorbed solar radiation at the leaf-level (PARL) (Zeiger, 1983; Pieruschka et al., 

2010). For this study, we opted to use the BBL model because it has been shown to be more 

effective at closing the carbon budget when compared to the BWB (Way et al., 2011). The 

Leuning (1995) modification to the BWB model substituted vapor pressure deficit (VPD) for 

humidity, accounting for air temperature, and added the CO2 compensation point (Γ), to estimate 

gs as:  
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 𝑔𝑠 = 𝑔0 +
𝑔1𝐴𝑛

(𝑐𝑠 − Γ) �1 + 𝑉𝑉𝑉
𝐷0

�
 (1) 

where cs and VPD are [CO2] and vapor pressure deficit at the leaf surface respectively, D0 and g1 

are empirical coefficients and g0 characterizes the basal gs prediction. It is common to see g0 

defined in one of two ways: (1) as a “fit” parameter – an extrapolated intercept from the least 

squares regression between gs and model parameters (e.g., Ball et al., 1987; Ball, 1988; Collatz et 

al., 1991; Medlyn et al., 2011; Way et al., 2011) or (2) as the value of gs when An ≤ 0 (e.g., 

Leuning, 1990; Leuning, 1995; Dewar, 2002; Lombardozzi et al., 2012). Although these two 

definitions are similar, it is the second description that links a physiological significance to g0 

and implies that the parameter can be measured directly. Curiously, even the studies that define 

g0 by the second definition have estimated the parameter value from the relationship between gs 

and model parameters. Because model parameters vary among formulations (Ball et al., 1987; 

Leuning, 1995; Medlyn et al., 2011) and become irrelevant when An ≤ 0, we use the term gs-An as 

a surrogate for the relationship between gs and model parameters. Nevertheless, no study that we 

are aware of has compared observed and extrapolated values of g0 when parameterizing the 

BWB or BBL models or the effect of the two different parameterization methods on the accuracy 

of model estimates. 

Several potential sources of error can underlie statistical estimations of g0. First, data for 

the gs-An regression are often collected mostly under well-lit conditions with a well-stirred 

cuvette that disrupts boundary layer conditions (Ball, 1988; Leuning, 1990; Collatz et al., 1991; 

Leuning, 1995; Dewar, 2002; Medlyn et al., 2011; Way et al., 2011). Second, in the original 

BWB description, Ball (1988) acknowledged that the gs-An relationship, in low light, may 

deviate from the linear relationship. Despite this observation, Ball used an extrapolated g0 that 



9 
 

was “not statistically different from zero” for parameterizing the C3 species Glycine max while 

noting higher observed values. Likewise, Collatz et al. (1992) reported that observed g0 was 

greater than extrapolated values in the C4 species Zea mays. Third, it is common to see 

extrapolated values of g0 that are not biophysically possible (i.e. negative values) (Ball and 

Farquhar, 1984; Schulze et al., 1987; Shimono et al., 2010; Medlyn et al., 2011). Fourth, when 

the same data set is used to parameterize different gs models (e.g., the BWB versus the BLB) the 

resulting extrapolated values of g0 can differ significantly (Way et al., 2011). Lastly, least 

squares estimates can be greatly influenced by the quantity and/or quality of data points used to 

perform the regression. This can be particularly vexing in studies of the gs-An relationship as data 

collection can be time-consuming due to the stomatal equilibration period (up to 15 minutes per 

data point (Franks and Farquhar, 1998; Woods and Turner, 2006)), and the need for multiple data 

points to extrapolate a single g0 estimate with acceptable error. 

A growing consensus in the literature acknowledges nighttime gs across species (e.g., 

Donovan et al., 2003; Barbour and Buckley, 2007; Howard and Donovan, 2007; Seibt et al., 

2007; Christman et al., 2008) and plant functional types (PFTs) (reviewed in Caird et al., 2007), 

whereas a consistent g0 response to water stress has been lacking. The use of observed nighttime 

gs for g0 parameterization in gs models has not yet been recognized and may represent a 

significant disconnect between plant physiology studies and ecological modeling efforts. 

Currently, when not extrapolated from gs-An data, g0 values in gs models are assumed to be 

constant and/or unrealistically low (e.g., Sellers et al., 1996; Wang and Leuning, 1998; Tuzet et 

al., 2003; Oleson et al., 2010; Ono et al., 2013). The relative ease of measuring gs under dark 

conditions (i.e. when An ≤ 0) with a diffusion porometer may improve on g0 estimates, 
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warranting a reexamination of how g0 is characterized, how g0 may respond to seasonal drought 

episodes and the extent to which observations of g0 affect whole canopy transpiration estimates. 

In this study we set out to characterize g0 at the leaf-level, using nighttime in-situ 

observations, in response to season and water stress. We hypothesized that the g0 parameter 

could be measured and used to improve predictions of canopy transpiration in deciduous species. 

We scaled up observed g0 values from the leaf to the canopy with MAESTRA, a 3-dimensional 

process based canopy transpiration model that can successfully predict forest canopy 

transpiration (Bauerle et al., 2004a; Hanson et al., 2004; Medlyn et al., 2005; Medlyn et al., 

2007; Bowden and Bauerle, 2008). We used MAESTRA, validated on a species-specific basis, 

as a tool to spatially investigate how g0 influences canopy transpiration estimates and responds to 

changes in the environment. 

 

Materials and Methods 

Site characteristics and plant material 

The main design of this study included two separate research sites (Table 2.1). One, 

located in Avon, OH, was utilized to parameterize and validate MAESTRA and the other, 

located in Fort Collins, CO, was constructed to monitor the drought and seasonal response of g0 

(growing season was day of year 167-271). A third, supplemental glass house study, took place 

in Fort Collins, CO (see description below). A full description of the site design for the OH site 

can be found in Zhu et al. (2005). Briefly, the OH site was subdivided into six plots, each 

containing 25 subsurface 57 L socket containers (a pot-in-pot production system). Five sockets 

comprised each row (five rows per plot), connected in series via PVC to channel container 

leachate into a tipping bucket (FC525, Texas Electronics Inc., Dallas, TX, USA). Tipping bucket 
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tips were continuously counted and recorded at 1 minute intervals (model CR23X, Campbell 

Scientific, Logan UT, USA). Additionally, one socket per row was equipped with a Theta Probe 

substrate moisture sensor (model ML2x, Dynamax Inc. Houston, TX, USA) to determine bulk 

container substrate electric permittivity (εa). A two-point calibration, specific to the substrate 

used in this study, was completed to allow for ± 1% volumetric water content (VWC) 

measurement accuracy. Environmental variables (temperature, wind speed, relative humidity, 

precipitation and incident photosynthetically active radiation (PARI) were measured every 

minute and averages stored at 5-minute intervals (model EM50R, Decagon Devices Inc., 

Pullman, WA, USA). 

 In the OH study we used four tree species with broad ecological and commercial 

significance (Acer rubrum L. ‘Red Sunset’, Betula nigra ‘Cully’, Carpinus betula ‘Columnaris’ 

and Cercis canadensis) in 57 L containers. One year old whips were potted into a soil-less 

organic substrate consisting of a mixture of 64% pine bark, 21% peat moss, 7% Haydite, and 7% 

sterilized regrind. The remaining 1% was slow release fertilizer 12-0-42 (Agrozz Inc., Wooster, 

OH, USA). For irrigation, each container had two 180° spray stakes (PC Spray Stake, Netafim 

Inc., USA, Fresno, CA, USA) operating at a flow rate of 12 L h -1. Substrate moisture status was 

continually monitored and kept within a VWC range of 35-42% (VWC >43% was predetermined 

to exceed the maximum container substrate water holding capacity).  

The CO site consisted of eight rows of five replicates each in a pot-in-pot system. The 

same plant material was studied at the CO and OH site, except Quercus rubra replaced Acer 

rubrum L. ‘Red Sunset’ at the CO site to broaden the among-species range in growth rates and 

physiological properties. All else being equal, the CO trees were one year older than those in OH 

and were top-dressed with time release fertilizer (18-5-9, Osmocote Classic; The Scotts Co., 



12 
 

Marysville, OH, USA) at the beginning of the season. For the CO water stress study, five 

replicates each per species were assigned randomly to either well-watered or water-stressed 

treatments and each treatment was randomly assigned to a uniformly irrigated row. Replicate 

trees assigned to the well-watered treatment were irrigated to maintain a VWC between the 

ranges of 35-42% – checked weekly with a hand-held Theta Probe. Water deficit irrigation 

amounts were calculated as a percentage of the well-watered treatment and consisted of the 

following irrigation amounts held for 10-14 days each: 100%, 80%, 60%, 40%, 20%, and 0%. 

This irrigation schedule included occasional returns to well-watered status (100%) in an effort to 

characterize the underlying effect that water deficits may have on g0.  

 

Measurements of g0 and gs  

 All gs and g0 measurements were collected with hand-held steady-state diffusion 

porometers (SC-1, Decagon Devices Inc., Pullman, WA, USA) on three randomly selected trees 

per treatment per species. The parameter g0 in the BBL gs models is defined by Leuning (1995) 

to be gs as An  0 as PARL  0. Using this definition as justification, we sought to investigate 

the influence of observed g0 (gs measured under dark conditions – one h after nightfall) on model 

output as opposed to statistically derived estimates. Midday gs measurements were collected on 

the same leaves as g0 near solar noon on concurrent cloudless days. Both midday gs and g0 

measurements at the CO site were collected ten times over the course of the season (day of year 

167-271) from two leaves per tree and averaged. All leaves sampled were fully expanded and 

from south facing sun-exposed branches. At the OH site, g0 was measured similar to the trees in 

CO (three times during the season - day of year 155, 208 and 235). 
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Model Parameterization 

A full description of MAESTRA is beyond the scope of this paper, however, significant 

background information, as well as equations, may be found in Bowden and Bauerle (2008) and 

Bauerle and Bowden (2011), with a full description of the leaf to crown transpiration linkage 

given in Medlyn et al. (2007). Briefly, MAESTRA is a hierarchical and iterative computational 

framework that spatially integrates estimates of leaf energy balance, photosynthesis and gs by 

computing grid-point-specific fluxes of mass and energy throughout the entire crown. For gs 

specifically, photosynthesis estimates (derived from the Farquhar photosynthesis model) are 

combined with meteorological variables and static leaf-level estimates of g0, g1, Γ and D0 to 

calculate a gs prediction via the BBL gs model. The gs prediction is then combined with 

meteorological variables in an isothermal form of the Penman-Monteith equation to compute 

latent heat exchange and a transpiration estimate. Because latent heat loss alters the leaf energy 

balance, initial energy balance estimates are then adjusted and the process is repeated iteratively 

until estimates reach convergence. This approach has been successfully implemented to predict 

transpiration fluxes in various models (e.g., Meyers and Paw U, 1987; Collatz et al., 1991; 

Baldocchi et al., 2002; Medlyn et al., 2007; Staudt et al., 2010).  

Leaf-level physiological input parameters were determined primarily by the use of gas 

exchange analysis with a CIRAS-2 portable photosynthesis system (PP Systems International 

Inc., Amesbury, MA, USA). Bauerle and Bowden (2011) reported six parameters of high 

importance (>5% impact) when estimating transpiration. Therefore, a strong emphasis was 

placed on the careful acquisition of these parameter values (Table 2.2). Five of the parameters 

(maximum rate of carboxylation (Vcmax), maximum rate of electron transport (Jmax), dark 

respiration (Rd), quantum yield (α), and genotype stomatal response coefficient (g1)) are 



14 
 

determined through the analysis of photosynthesis versus CO2 and light response curves 

constructed with the CIRAS-2. A sixth parameter, leaf width (Lw), was measured every other 

week throughout the growing season. The D0 parameter was assumed to be 1500 Pa (Leuning, 

1995; Bauerle and Bowden, 2011). Canopy and tree physical characteristics (canopy width in the 

x and y axes, canopy and stem height and stem caliper) were collected at the same time. We 

measured canopy leaf area (on alternating weeks) throughout the growing season by counting the 

total number of leaves in individual crowns and multiplying by the average area per leaf – 

determined by image analysis (Image-J, NIH, Washington, D.C., USA) on 20 randomly selected 

leaves from three separate randomly selected trees per treatment. We determined genotype 

specific leaf transmittance, absorptance and reflectance with a SPAD meter (SPAD-502, Konica 

Minolta Global, Ramsey, NJ, USA) on the same leaves measured for gas exchange, following 

the procedure in Bauerle et al. (2004b). 

 

Model validation 

We ran MAESTRA for weather data collected at one minute intervals and recorded on a 

five-minute time-step from the OH site to compute species-specific water use estimates over the 

season. To calculate measured water use, we subtracted daily leachate volume from the volume 

of water applied per treatment (irrigation + precipitation – leachate). We then compared weekly 

simulated and measured water use averages. 

 

Simulation experiments 

 Once validated, we simulated stands that were parameterized with physiology from leaf-

level gas exchange (as described above) for Acer rubrum (Table 2.2). Representative forest 
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stands consisted of 5 m stem spacing, 7.5 m live crown length plus 2.5 m of stem height, and a 5 

m crown width shaped as a half-ellipsoid. Simulations aimed to investigate the impact of g0 on 

transpiration estimates of an individual canopy within a forest. To investigate gradients in the 

parameter effect of g0 on transpiration along a canopy depth profile, the canopy was separated 

into a three dimensional grid of 36 cells with equal volumes, for which point estimates of An, gs, 

and transpiration were calculated. Whole canopy estimates were calculated as the sum of point 

estimates from the 36 sub-volumes. To determine the g0 parameter effect on transpiration 

estimates we held all other input parameters constant and varied the g0 parameter input from the 

measured mean value (42.57 mmol m-2 s-1) ± one standard deviation (20.47 - 64.67 mmol m-2 s-

1). The parameter effect was then calculated as the absolute value of the difference between 

transpiration output from MAESTRA parameterized with the upper and lower standard 

deviations normalized by output from the mean value and then multiplied by 100. 

To simplify the BBL model for the purposes of this study, and convey the influence of 

each portion separately, we condense the dynamic portion of the model (to the right of the 

addition sign that encompasses the gs-An linkage) with a single term (βgs) expressed as: 

 𝛽𝑔𝑠 =  
𝑔1𝐴𝑛

(𝑐𝑠 − Γ) �1 + 𝑉𝑉𝑉
𝐷0

�
 (2) 

This allows the BBL model to be separated into two constituent parts as: 

 Σ𝑔𝑠 = 𝑔0 + 𝛽𝛽𝑠 (3) 

where Σgs represents the total gs prediction. Equation 2 illustrates that the βgs component in the 

simplified version (Equation 3) of the BBL model is coupled to An – derived from the 

mechanistic Farquhar photosynthesis model (Farquhar et al., 1980).  

 



16 
 

Comparison of observed and extrapolated g0 values 

 To illustrate the difference in transpiration estimates between observed g0 and those 

derived by statistical estimation with the least squares fit to the gs-An relationship, we acclimated 

one year old Malus domestica (n = 4) trees planted in 38 L containers with a commercial potting 

mix in a climate controlled glass house for seven days. Once acclimated, we collected data to 

parameterize MAESTRA (see description above). To characterize the gs-An relationship in well-

lit conditions, we collected measurements at PARL levels ranging from 200 to 1000 μmol m-2 s-1. 

Preliminary tests indicated that stomatal equilibration took a maximum of 11 minutes at each 

light level, thus we allowed 12 minutes for gs acclimation at each step. Stabilized readings were 

taken at 13, 14, and 15 minutes and averaged. To illustrate the fine-scale departure from linearity 

in the gs-An relationship under low-light conditions, we observed gs and An at PARL levels of 0, 

25, 50, 75 and 100 following the same stomata acclimation procedure outlined above. Both the 

high and low-light measurements were completed in sequence on the same leaf to produce one 

single gs-An relationship per replicate. The individual replicates were then pooled to derive an 

estimate of g0. Estimates were determined as the x-y intercept of a linear regression between 

observed gs and BBL model input parameters calculated as: 

 𝐴𝑛
𝐶𝑠 − Γ �

1 +  
𝑉𝑉𝑉
𝐷0

�
−1

 (4) 

Together with gs-An characterization, each container was irrigated daily to container 

capacity, wrapped in plastic (to eliminate water loss to evaporation) and monitored 

gravimetrically at minute intervals with a series of scales (Adam CBK, Adam Equipment Inc., 

Bletchley Milton Keynes, UK). Water use was computed from 30-minute averages. Gravimetric 

water use and glass house environmental conditions were recorded for four continuous days 

(Decagon EM50R, Decagon Devices Inc., USA). Immediately after four days of continuous 
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gravimetric measurements, individual crown physical dimensions were recorded and leaves were 

removed, bagged, and scanned (Model 3100, Li-Cor Biosciences, Inc., Lincoln, NE, USA). 

MAESTRA was parameterized on an individual replicate basis and simulations were conducted 

on a 30-minute time step. MAESTRA simulated whole tree transpiration estimates were 

compared to 30-minute averages of gravimetric water use.  

 

Results 

Species, seasonal and drought response of g0 and midday gs 

Seasonal means of g0 differed significantly among species (P = 0.009 one-way ANOVA). 

Figure 2.1 shows that observations of g0 did not change significantly over the course of the 

growing season in Acer rubrum, Carpinus betula or Cercis canadensis (P > 0.1 for all, repeated 

measures ANOVA), whereas Betula nigra had a significant seasonal change (P = 0.01). 

However, when the final measurement time-point is removed from the analysis, the seasonal 

response of Betula nigra was no longer significant (P = 0.34). Whole-season means between the 

droughted and well-watered treatments did not differ significantly in any of the species (P > 0.1 

for all analyses, two sample t-test). However, the drought treatment means were lower for every 

species except Carpinus betula, which had a higher g0 under drought conditions. There was not a 

significant interaction between water stress level and season in any species (P > 0.05). When all 

species were pooled, g0 averaged 38.4 mmol m-2 s-1 and showed no significant response to 

drought (P = 0.79); but a significant curvilinear response of midday gs to drought was observed 

(Fig. 2.2, P = 0.0036).  
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MAESTRA validation and g0 investigations 

 In comparison to measured weekly transpiration, MAESTRA accurately estimated 

species-specific whole tree water use (Fig. 2.3). Root Mean Square Error (RMSE) of measured 

versus predicted transpiration ranged from 0.014 kg m-2 d-1 in Acer rubrum to 0.031 kg m-2 d-1 in 

Betula nigra. There was a general trend towards a slight overestimation of model estimates, 

evident by a Mean Bias Error (MBE) ranging from 0.031 kg m-2 d-1 in Cercis canadensis to 

0.074 kg m-2 d-1 in Carpinus betula, however, transpiration was slightly biased towards 

underestimation in Betula nigra (MBE of -0.01 kg m-2 d-1).  

 A sensitivity analysis demonstrated that g0 was the most significant parameter for 

estimating seasonal canopy transpiration (Fig. 2.4a). The mean seasonal parameter effect of g0 

was 43.4% with a standard deviation of 9.5%. The analysis also showed the g1 parameter to be 

highly significant with a mean of 25.2% and standard deviation of 4.1%. Alpha, Vcmax and Jmax 

had significant impacts (> 5%) on transpiration estimates as well (Fig. 2.4a). Seasonal estimates 

of transpiration varied significantly when MAESTRA was parameterized with upper or lower 

bounds (mean ± one standard deviation) of measured g0 values for Acer rubrum (Fig. 2.4b), but 

the estimates appear to be influenced more by the lower as opposed to upper bound value. Figure 

2.4c illustrates the parameter effect of g0 on daily estimates of water flux changes throughout the 

season.  

When the canopy was separated into a three dimensional x, y, and z grid of equal sub 

volumes, there was strong spatial variation in the within-canopy g0 parameter effect (Fig. 2.5). In 

simulated canopies with relatively low total leaf area index (LAI) (e.g., LAI = 2 m2 m-2), the 

effect was less pronounced, but as LAI increased (e.g., LAI = 5 or 10 m2 m-2) there was a large 

increase in the parameter effect with increasing depth into the canopy (Fig. 2.5). Regression 
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analyses revealed the parameter effect of g0 to be strongly correlated with leaf absorbed PARL 

(R2 = 0.93) and temperature (R2 = 0.72). However, when the effect of leaf temperature (Tleaf) was 

tested in the absence of light there was no change in the g0 parameter effect, indicating that PARL 

was driving the variation in parameter effect, not Tleaf. 

The influence of g0 is the greatest under low-light conditions, but it can still have a 

substantial parameter effect (~30%) under sparse foliage conditions (e.g., LAI < 2) and in 

portions of the canopy that remain well-lit (e.g., Fig. 2.5 LAI 5 and 10). Likewise, g0 can have 

100% of the control on gs predictions when An ≤ 0, but the g0 parameter effect on Σgs decreases 

to ~30% at PARL levels above ~400 μmol m-2 s-1 (Fig. 2.6). At lower PARL levels, An is usually 

below light saturation for C3 foliage and the g0 component becomes larger than βgs, thus 

contributing to the majority of Σgs. However, as PARL and An increase, the influence of βgs 

increases and g0 and βgs converge at a species-specific threshold PARL level (~125 μmol m-2 s-1, 

in the case of red maple). At ~125 μmol m-2 s-1, each contributes exactly 50% to Σgs. As leaf 

PARL absorption continues to increase above the threshold light level, βgs then has the majority 

of influence on Σgs.  

 

Comparison of observed and estimated g0 values 

For the trees measured in OH, estimates of g0 from least squares fits were significantly 

different than observed values (P < 0.005). Three species had negative values of g0 from 

statistical estimates and the error range of the fourth species included a negative intercept (Table 

2.2). In the fine-scale studies with Malus domestica, observed values of g0 were ~150% larger 

than those derived from least squares estimates (Fig. 2.7). The inset in Figure 2.7 shows that the 
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g0 estimates extrapolated from observed versus BBL model parameters (Equation 4) was not 

different than gs-An g0 estimates (cf. Fig. 2.7 and inset).  

 

Comparison of observed and estimated g0 canopy transpiration estimates 

The MAESTRA model was more accurate when parameterized with observed values of 

g0 as compared to g0 values obtained from a least squares fit to the gs-An relationship (RMSE of 

0.0067 and 0.0410 g m-2 s-1 respectively). Over a four day period, total observed values of g0 

resulted in a slight overestimation (mostly occurring at night, see below) of water flux (6%), 

whereas the least squares derived g0 value resulted in a ~41% underestimation of transpiration 

(MBE of 0.0003 and -0.0021 g m-2 s-1 respectively; Fig. 2.8). When error and bias estimate 

statistics (i.e. RMSE and MBE respectively) are partitioned into daytime and nighttime 

components, we found predictions from observed values to be overestimated at night (RMSE and 

MBE of 0.0089 and 0.0015 g m-2 s-1 respectively) versus extrapolated g0 values (RMSE and 

MBE of 0.0028 and -0.0005 g m-2 s-1 respectively). During the daytime, however, observed g0 

input resulted in smaller transpiration estimate error and slight negative bias statistics (RMSE 

and MBE of 0.0022 and -0.0006 g m-2 s-1 respectively) as compared to extrapolated g0 input 

values (RMSE and MBE of 0.0382 and -0.011 g m-2 s-1 respectively).  

 

Discussion 

Typically, g0 has not been measured directly but has instead been defined as a fit value, 

extrapolated from a linear regression. Other studies have forgone the data collection required to 

characterized the gs-An relationship (and thus g0) and have instead assumed constant and often 

unrealistically low values for g0. In this paper, we challenge these paradigms by showing how 
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the linear fit estimates of g0 can yield erroneous canopy transpiration predictions and small errors 

in g0 can have a substantial effect on transpiration estimates. We designed this study to have four 

primary objectives: (1) to characterize observed g0 changes over an entire growing season in 

droughted and well-watered deciduous trees, (2) to validate a canopy transpiration model 

parameterized with leaf-level g0 measurements, (3) to use the validated model to investigate the 

spatial influence of the g0 parameter on water flux estimates in forest canopies, and (4) to test the 

hypothesis that MAESTRA parameterized with directly observed g0 values would produce more 

accurate estimates of transpiration than if it were parameterized with g0 values from statistical 

estimation.  

 The lack of a consistent g0 response to drought (Figs. 2.1 and 2.2) conflicts with the 

findings of several other studies that have shown a decrease in g0 under drought stress (Running, 

1976; Cavender-Bares et al., 2007; Zeppel et al., 2011). We did, however, find a midday gs water 

stress response (Fig. 2.2), suggesting that the drought response mechanisms that control midday 

gs versus g0 may not be linked. In several desert species, Ogle et al. (2012) also found that 

midday gs and g0 decouple, whereas Mott and Peak (2010) reported a coupled response for g0 

and gs in the herbaceous species Tradescantia pallida. These two studies highlight the 

inconsistencies amongst reports attempting to explain the g0 response. Moreover, they emphasize 

that no one causative environmental factor seems to explain the observed differences. Pressure 

probe studies have attempted to implicate guard cell mechanics as the source of species 

difference in g0 (Franks and Farquhar, 1998; 2007), while observed g0 variation within species 

has often been attributed to environment (Matyssek et al., 1995; Cavender-Bares et al., 2007; 

Howard and Donovan, 2007; Scholz et al., 2007; Zeppel et al., 2011). Figure 2.2 supports the 

hypothesis that inter-specific differences may be governed by guard cell mechanics by showing 
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that drought-induced minimum midday gs (0% applied irrigation) is similar to our observed gs 

under dark conditions. Another study investigating the response of understory leaves to sun 

flecks (Allen and Pearcy, 2000) determined that leaves with a higher g0 can reach maximum 

photosynthesis faster than leaves that began at a lower g0. Unknown however, is whether g0 is 

homogenous throughout a forest canopy (especially large and complex canopies), if it varies 

along a canopy depth profile, or if it differs between sun versus shade leaves. To further 

understand g0, within canopy variability and driving mechanisms should be investigated.  

Over the course of an entire growing season, g0 was by far the most influential parameter 

on water flux estimates in simulated tree canopies (Fig. 2.4a). Our three-dimensional analysis 

revealed (1) an increase in the parameter effect of g0 with increasing canopy LAI and (2) an 

increasing parameter effect towards the center of individual crowns and forest canopies (e.g., 

Fig. 2.5). The spatially-variable transpiration response to g0 may be explained by a gradient in 

environmental variables. Even though MAESTRA is a three-dimensional canopy model, it is 

unable to resolve within-canopy CO2 concentration gradients and wind speed attenuation is 

calculated at each vertical-layer (i.e. in 2-dimensions). However, Tleaf and PARL are both 

resolved three dimensionally. Regression analyses revealed that these two factors are correlated 

with the g0 parameter effect on transpiration estimates. To isolate the influence of Tleaf and PARL 

from one another we held one constant and varied the other over a realistic range, finding that 

both were correlated with the g0 parameter effect. We then analyzed the canopy transpiration 

response in the absence of within canopy light variation and found the parameter effect of g0 was 

not influenced by changes in Tleaf. Instead, the parameter effect remained steady at approximately 

80% across a range of Tleaf. The lack of a Tleaf effect can be attributed to the difference in 

transpiration estimates when βgs is zero (PARL = 0), thus leaving Σgs entirely dependent upon g0 
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over the tested range of Tleaf (Fig. 2.6). The lack of a g0 response to Tleaf may appear counter-

intuitive, but it is important to note that the magnitude of the g0 parameter effect is inversely 

proportional to the contribution of βgs to Σgs. As the contribution of βgs is driven by the 

magnitude of An (thus PARL) lower PARL levels create an environment where g0 has the 

maximum influence on transpiration estimates. 

 Typically, g0 has been parameterized by a linear least squares fit to the gs-An relationship 

or to a linear fit between model parameters (Equation 4) and observed gs (both of which 

produced similar intercepts in our fine-scale study in Malus domestica (Fig. 2.7)). Unfortunately, 

this statistical method is prone to errors (e.g., linear fits that result in negative values) (Ball and 

Farquhar, 1984; Schulze et al., 1987; Medlyn et al., 2011). Medlyn et al. [Medlyn et al., 2011] 

provides a prime example of the error influence in a recent effort to reconcile empirical and 

optimal gs theories into a simple theoretical framework when they attempt to drop g0 from a form 

of the BBL model. The de-emphasis on g0 was based in part on the conventional optimal gs 

theory that gs = 0 when An = 0 (Cowan and Farquhar, 1977). While g0 was ultimately retained, 

this example illustrates, yet again, that using linear extrapolation to derive g0 neglects to 

recognize the potential for the gs-An relationship to depart from linearity at lower light levels 

(Ball, 1988; Collatz et al., 1991). Our measurements in Malus domestica show a large departure 

from linearity at lower light levels (Fig. 2.7), with a lower asymptote to gs measurements being 

achieved well above the light compensation point (LCP; horizontal dashed line in Figure 2.7). 

We note that the measured LCP for Malus domestica was low (~10 μmol m-2 s-1; data not 

shown), thus our measurements were unable to provide a high degree of gs resolution near the 

LCP. However, this point may be moot because gs appeared to reach an asymptote well above 

the LCP (Fig. 2.7). The same departure from linearity was evident in the trees measured in OH, 
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for which statistical estimates of g0 in three out of four species were negative and substantially 

disagreed with observed values.  

Small errors in g0 parameterization can act multiplicatively on transpiration estimates and 

can compound errors over longer time periods (e.g., Fig. 2.3). To illustrate this we parameterized 

two versions of MAESTRA for Malus domestica, one with observed g0 (49.7 mmol m-2 s-1) and 

one with statistically estimated g0 (20.4 mmol m-2 s-1, Table 2.2). When parameterized with 

observed g0 the model performed with a slight overestimation (~6%) over a four-day period with 

the majority of overestimation occurring at nighttime. However, when parameterized with g0 

values from statistical estimates, the model did not perform as well, underestimating water use 

by >40% (Fig. 2.8). We were unable to test the influence of the extrapolated g0 values from the 

trees measured in OH because negative g0 inputs cause a fatal error within the MAESTRA 

programming. While the influence of g0 on transpiration estimates is greater under lower light 

conditions (Fig. 2.5), it is important to note that the mathematical formulation of the BBL 

equation (e.g. Equation 1) specifies that g0 will be applied across the entire range of gs 

predictions. Hence, in the Ball-Berry family of equations the g0 parameter independently 

influences daytime as well as nighttime transpiration estimates.   

Our finer scale tests that use observed versus extrapolated g0 for Malus domestica 

transpiration estimates point to g0 having a substantial influence on transpiration estimates at 

night. Published reports show significant levels of nighttime transpiration (up to 25% of daytime) 

(e.g., Daley and Phillips, 2006; Dawson et al., 2007). In extreme cases, such as well-watered 

fast-growing Eucalyptus species, weekly measurements of nighttime transpiration can approach 

80% of daytime (Benyon, 1999). Thus, nighttime estimates of transpiration should be given 

greater importance in future research. Our data show similar trends in containerized Malus 
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domestica grown under glass house conditions, with nighttime transpiration ranging from 10-

25% of average daytime water use (Fig 2.8). We found that observed g0 improved the predictive 

accuracy of canopy transpiration estimates versus extrapolated g0 and the improved accuracy was 

more pronounced during the daytime periods. However, the slightly lower accuracy of 

MAESTRA during nighttime periods could be due to our low resolution wind data at nighttime, 

where intermittent venting in the glass house produces low and variable wind speeds that could 

influence nighttime transpiration.  Additionally, there have been reports that g0 can vary slightly 

throughout the nighttime, therefore our measurements 1 h after sunset may not be entirely 

representative of the dark period (e.g., Howard and Donovan, 2007).  

If typical methods of obtaining g0 through statistical estimation are faulty, yet the BWB 

and BBL models provide accurate predictions of leaf-level gs, then other parameters in the gs or 

An models may be in error. From the standpoint of modeling gs specifically, this error must be 

due to the parameterization of one of the other three parameters (Γ, g1, or D0). Our full season 

sensitivity analysis of the coupled gs-An scheme revealed g1 to be the parameter with the second 

largest influence on transpiration (~25%) with Γ and D0 both having <1% influence (data not 

shown). Like g0, g1 has received little attention in the literature. The parameter g1 is often 

described, similar to g0, as a parameter fit to observed data (i.e. the slope of Equation 4 when 

plotted against observed gs), even though a physiological significance for g1 has been described 

(Xu and Baldocchi, 2003; Medlyn et al., 2011). Currently, it is not agreed upon whether g1 

changes or not in response to environmental factors (Baldocchi, 1997; Xu and Baldocchi, 2003). 

While there are several methods for calculating g1 as an index of An, CO2 and VPD (Equation 4, 

see also: Ball, 1988; Medlyn et al., 2011), these methods rely on statistical extrapolations from a 

linear regression fit that, like g0, may not be representative of observed values. 
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The values for nighttime gs in the literature come from a broad range of species, ecotypes 

and PFTs, ranging from 1 to 400 mmol m-2 s-1 (with a mean of 75.4 mmol m-2 s-1) and include 

only a few instances of a value ≤ 10 mmol m-2 s-1 (Table 2.3). The reported nighttime gs values 

could be useful for parameterizing g0, directly connecting plant physiology studies with 

ecological modeling efforts. In light of our analyses and the data in the literature, we strongly 

encourage modeling efforts at all scales to pay more attention to this parameter. For example, the 

values used in Sellers et al. (1996) (10 mmol m-2 s-1) and Oleson et al. (2010) (2 mmol m-2 s-1), 

two prominent large scale land surface schemes, are unrealistically low and also use the same 

value for all PFT’s. While our study does not represent a comprehensive survey, our computed 

average for four broadleaf deciduous tree species was closer to 40 mmol m-2 s-1. An even greater 

range of values are reported in Table 2.3 that might help provide general PFT g0 

parameterization guidance. We acknowledge the difficulty in species or PFT specific 

parameterization. However, we find it important to reiterate that species-specific g0 

parameterization in our study greatly improved full season model estimates. 

 

Conclusions 

The g0 parameter in the BBL gs model has a substantial influence on transpiration 

estimates at the whole crown level. Historically, little attention has been paid to g0 and it has 

typically been parameterized as an empirical fitting coefficient. In this paper we assert that g0 is a 

parameter with physiological significance and it can be measured. Knowing this, an additional 

“mechanistic” attribute may be associated with the BWB family of models. By shifting the 

current paradigm from g0 as a linear extrapolation “fitting coefficient” to a basal gs rate, 

additional focus can move toward refining measurements of the remaining model parameters. 
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Although we did not find g0 to change in response to season or drought, understanding the 

underlying mechanisms that cause inter- and intraspecific g0 differences are still warranted, 

especially given the disagreements found in the literature. Currently, empirical g0 measurements 

are easy to obtain with simple hand-held porometers, providing a supplement to data collected 

with photosynthesis gas-exchange equipment. Finally, models should consider species-specific 

characterization of g0 when predicting water flux rather than assume a single value among 

species or PFTs.  
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Tables 

Table 2.1: Locations and climate characteristics of the Avon, OH and Fort Collins, CO research 

sites. 

 
Avon, OH Fort Collins, CO 

Latitude/Longitude 41.433, -82.052 40.613, -104.998 

Mean annual 
maximum temperature 
(°C) 

27.0 16.8 

Mean annual minimum 
temperature (°C) -5.7 1.1 

Mean annual 
precipitation (mm) 1056 383 

Mean annual wind 
speed (m s-1) 1.5 3.2 
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Table 2.2: Species-specific input parameters used in MAESTRA. Observed minimum stomatal 

conductance (g0-obs), minimum stomatal conductance extrapolated from a least squares fit of the 

linear net photosynthesis and stomatal conductance relationship (g0-ext), species stomatal 

response coefficient (g1), maximum Rubisco mediated rate of photosynthesis (Vcmax), maximum 

electron transport rate (Jmax), leaf dark respiration (Rd), quantum yield of electron transport (α), 

CO2 compensation point (Γ) and leaf width (Lw). 

 

Units Acer rubrum Betula nigra 
Carpinus 

betula 
Cercis 

canadensis 
Malus 

domestica 

g0-obs (mmol m-2 s-1) 42.57 ± 22.1 51.24 ± 14.4 61.78 ± 32.1 26.58 ± 12.5 49.69 ± 3.1 

g0-ext (mmol m-2 s-1) 15.2 ± 18.2 -14.4 ± 40.5 -29.6 ± 8.2 -29.6 ± 19.3 20.4 ± 10.2 

g1 (dimensionless) 7.72 ± 3.7 8.13 ± 3.73 9.53 ± 2.61 8.16 ± 3.55 9.99 ± 0.59 
Vcma

x 
(μmol m-2 s-1) 45.55 ± 11.7 56.05 ± 12.9 43.87 ± 7.2 43.58 ± 6.9 22.68 ± 4.1 

Jmax (μmol m-2 s-1) 131.7 ± 46.6 164.3 ± 50.1 157.7 ± 65.4 120.3 ± 15.9 81.6 ± 22.8 

Rd (μmol m-2 s-1) 1.76 ± 0.9 1.80 ± 0.6 1.71 ± 0.8 2.56 ± 1.2 1.35 ± 0.15 

α (mol e- mol-1 PAR) 0.143 ± 0.06 0.124 ± 0.02 0.116 ± 0.03 0.139 ± 0.04 0.213 ± 0.07 

Γ (ppm) 73.3 ± 45.7 59.8 ± 37.2 54.1 ± 30.4 35.9 ± 28.2 6.78 ± 0.29 

Lw (cm) 11.4 ± 0.5 6.4 ± 2.3 3.8 ± 0.3 11.3 ± 1.9 4.7 ± 0.8 
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Table 2.3: Measurements of nighttime stomatal conductance (gs) (surrogate for minimum 

stomatal conductance (g0)). Values are reported in mmol m-2 s-1. 

 
Species/Functional type g0 min g0 max g0 mean 

Reference 

      

Functional 
type Seep ecotype 20 120  (Snyder et al., 2003) 

 Riparian 40 170   

 Scrub 15 40   

 Warm desert 15 100   

 Conifer trees 20 60  (Caird et al., 2007) 

 Broadleaf evergreen 20 180   

 Broadleaf deciduous 20 260   

 Shrubs 20 260   

 Vines 20 140   

 Herbaceous dicots 20 220   

 Perennial grasses 20 140   

Species Pinus ponderosa 10 120  (Misson et al., 2004) 

 Pinus ponderosa 1 23  (Grulke et al., 2004) 

 Styrax ferrugineus 50 145  (Bucci et al., 2004) 

 Roupala Montana 45 125   

 Ouratea hexasperma 35 75   

 Quercus rubra 2 40               (Barbour et al., 2005) 

 Ouratea hexasperma 30 60  (Scholz et al., 2007) 

 Blepharocalyx salicifolius 77 81   

 Qualea grandiflora 102 158   

 Betula papifera   200 (Daley and Phillips, 2006) 

 Quercus rubra   20  

 Acer rubrum   20  

 Helianthus annuus 40 400  (Howard and Donovan, 2007) 

 Quercus virginiana   50 (Cavender-Bares et al., 2007) 

 Ricinus communis 50 200   (Barbour and Buckley, 2007) 

 Picea sitchensis 5 100  (Seibt et al., 2007) 

 Fagus sylvatica 5 25   

 Prunus x yedoensis 231 288  (Bowden and Bauerle, 2008) 

 Acer rubrum 159 249   

 Acer buergeranum 82 211   

 Prunus serrulata 213 233   

 Platanus x acerifolia 131 210   

 Acer rubrum 35 48  (Bauerle and Bowden, 2011) 

 Eucalyptus sideroxylon 15 80  (Zeppel et al., 2011) 

 Eucalyptus delegatensis 54 36  (Medlyn et al., 2007) 
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Figures  

 

Figure 2.1: Measured values of minimum stomatal conductance (g0; gs when An ≤ 0) for 

the 2011 growing season. Solid circles represent well-watered conditions and open circles 

represent water stress. The solid horizontal line indicates the whole season g0 mean for 

the well-watered treatment and the dotted line represents the whole season mean for the 

drought treatment. Vertical bars represent one standard error (n = 3). Note: differences 

between seasonal treatment means were not significant for all species (P > 0.1).  
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Figure 2.2: Relationship of midday stomatal conductance (gs) and minimum stomatal 

conductance (g0) to increasing levels of water stress (reported as percent of well-watered 

treatment) as an average of four tree species. The gs-irrigation level relationship was 

significant (P = 0.0036, R2 = 0.97), whereas the g0-irrigation level relationship was not (P 

= 0.79, R2 = 0.02). Vertical bars represent one standard error (n = 36). 
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Figure 2.3: Measured versus predicted values of canopy transpiration per m2 of leaf area 

for four tree species. Mean bias error (MBE) and root mean square error (RMSE) are 

reported in kg m-2 d-1. Each point represents the mean value of one week of measured 

versus predicted transpiration. Bars represent one standard error (n = 7). 
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Figure 2.4: Sensitivity of transpiration estimates to five key input parameters. Panel (a) 

shows the parameter effect for five physiological parameters averaged across the entire 

season (minimum stomatal conductance (g0 – mmol H2O m-2 s-1), stomatal response 

coefficient (g1 – unit less), quantum yield of electron transport (α – mol e- mol PAR-1), 

maximum rate of Rubisco mediated carboxylation (Vcmax – μmol CO2 m-2 s-1) and dark 

respiration (Rd – μmol CO2 m-2 s-1). Panel (b) shows full-season transpiration estimates 

when MAESTRA was parameterized with the mean measured g0 (g0 = μ – solid black 

line), the mean plus one standard deviation (g0 = μ+σ – dotted black line) and the mean 

minus one standard deviation (g0 = μ-σ – dashed gray line). Panel (c) shows the daily 

change in the g0 parameter effect across the season. 
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Figure 2.5: The crown spatial minimum stomatal conductance (g0) parameter effect (%) 

on transpiration estimates in a simulated crown at a leaf area index (LAI) of 2, 5 and 10. 

The parameter effect was calculated as the difference in transpiration estimates at the 

upper (64.67 mmol m-2 s-1) and lower (10.47 mmol m-2 s-1) range of measured g0 divided 

by the mean (42.57 mmol m-2 s-1). Contour lines show changes in the g0 parameter effect 

(%) at relative canopy height and width.  
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Figure 2.6: A simulated representation of the influence of leaf absorbed 

photosynthetically active radiation (PARL) on components of the Leuning (Leuning, 

1995) stomatal conductance (gs) model – as simplified for this study (refer to Equations 

1-3) – where total stomatal conductance (Σgs) is the sum of the minimum stomatal 

conductance parameter (g0) and the portion of the Leuning model driven primarily by 

photosynthesis (βgs). The black line represents the percent contribution of g0 and the grey 

line represents the βgs contribution to Σgs.  
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Figure 2.7: Linear relationship between stomatal conductance (gs) and net photosynthesis 

(An) for Malus domestica. The g0 parameter can be defined as the extrapolated x-y 

intercept (An = 0) of a least squares fit to the linear gs-An relationship (g0-ext), however, 

empirical observations of g0 (An ≤ 0; g0-obs) from the same leaves show it to be higher, 

suggesting that the linearity between gs-An becomes non-linear or asymptotic at low light 

levels. The parameter g0 can also be defined as the x-y intercept of a linear fit of observed 

gs to model output (inset figure) but it is important to note that the g0 values derived from 

either fit are not different statistically. See Equation 1 and 4 for description(s) of the 

model and parameter definitions. 
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Figure 2.8: Comparison of gravimetric and MAESTRA estimated transpiration for 

containerized Malus domestica. Black circles represent gravimetric measurement values 

of transpiration, grey circles are transpiration estimates from MAESTRA when 

parameterized with values of g0 observed at An ≤ 0 and white circles represent 

transpiration estimates from MAESTRA when parameterized with g0 values derived from 

a least squares estimate of the linear gs-An regression. Each point represents the mean of 

four individual trees at a 30-minute time step. Root mean square errors of modeled versus 

measured regressions were 0.0067 and 0.041 g m-2 s-1 for the observed and least squares 

fit g0 respectively. Mean bias errors were 0.0003 and -0.0021 g m-2 s-1 for the observed 

and least squares fit g0 respectively.  
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Chapter 3: Seasonal canopy aerodynamics varies among species: potential implications for 

transpiration estimates 

 
 

Overview 

 The decline in wind speed with depth into plant canopies is often empirically 

characterized with an exponential extinction coefficient (α). Aerodynamic properties of the 

canopy determine α and thus variation among species, vegetation type, and canopy development 

stage can occur. Error in characterizing α can affect estimates of boundary layer conductance to 

water vapor (gbV), the canopy decoupling coefficient (Ω), and transpiration. Hence, the goals of 

the current study were to characterize the change in seasonal aerodynamics in four tree species to 

compare α calculated from canopy wind profiles to predictions of α from a simple empirical 

model, determine the influence of α on gbV, Ω, and transpiration, and explain the influence of 

wind speed on transpiration over a range of environmental conditions using a canopy flux model 

(MAESTRA). Among species, measured α varied with wind speed above the canopy (U3m) and 

over the season. Leaf area index (LAI) was correlated with α among species and measurement 

periods (R2 = 0.78), and the simple empirical model for determining α was well correlated with 

measurements (R2 = 0.92). Towards the middle of the season, mean canopy gbV decreased to 20-

50% of early season gbV, whereas mean canopy Ω followed a similar but inverted parabolic 

trend. Mean canopy gbV was strongly correlated with U3m in the lower α/LAI canopies and with 

daily interpolated α in higher α/LAI canopies. The influence of a discrete increase in wind speed 

(0.6 to 2.4 m s-1) resulted in a wide variation of influence on transpiration estimates (-30% to 

20%). We conclude that within canopy variation in wind speed can influence transpiration 
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estimates and Ω, thus accurate characterization of α over the season is integral to preserve 

transpiration estimate accuracy. 

 

Introduction 

 Transpiration and energy exchange between vegetation and the atmosphere is regulated 

by physiological and environmental factors. To estimate the physiological controls on 

transpiration, photosynthesis (An) and stomatal conductance (gs) are often linked in model 

formulations that can span multiple scales (e.g., Wang and Jarvis, 1990a; Sellers et al., 1996). 

The precision of such computations however, depends on an accurate representation of the 

governing environmental conditions that can vary within the canopy and over the season, e.g., 

the decrease of wind speed with depth into the canopy. Moreover, seasonal changes in leaf width 

(Lw) and leaf area index (LAI) influences canopy aerodynamics and can alter canopy wind speed 

attenuation (α), yet this influence has only been quantified for energy exchange (Cammalleri et 

al., 2010). Hence, an investigation into the seasonal changes in vegetation aerodynamics that 

effect boundary layer conductance, α, and canopy transpiration estimates is warranted. 

 Since it was originally introduced, measurement methods for obtaining α have evolved to 

represent the canopy wind profile with greater resolution. Originally, α was calculated using 

wind speed above the canopy and at one height within the canopy (Equation 1, see also Inoue, 

1963; Cionco, 1966). However, subsequent studies found α to be dependent on the height of the 

within canopy wind speed measurement and to vary with canopy size and development (Saito, 

1964; Cionco, 1978). Regardless of these sources of variation, α is typically reported as a 

constant value representative of a vegetation type (Wright, 1965; Cionco, 1966; Cionco, 1972; 

Campbell and Norman, 1998). Neglecting to account for how canopy aerodynamics develop and 
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their influence on α could be especially detrimental for modeling investigations in vegetation that 

experience large seasonal changes in canopy size and LAI (Westgate et al., 1997; Souch and 

Stephens, 1998; Trout et al., 2008).  

 Numerous modeling efforts of varying complexity have been made in an attempt to 

eliminate the need for within canopy wind speed measurements to characterize canopy wind 

profiles. For example, Goudriaan (1977) presented a simple sensor-less modeling approach using 

LAI, Lw, and canopy height to estimate α. Limited reports indicate relatively good agreement 

between measured α and that determined by the Goudriaan model (αG) (Goudriaan, 1977; 

Campbell and Norman, 1998). However, comparisons have been mostly limited to densely 

spaced agronomic crops - leaving some uncertainty as to the effectiveness of the Goudriaan 

model in other vegetation types. More recently, there have been substantial efforts to 

characterize the canopy wind profile at a much greater spatial resolution (i.e. 3-dimensions), but 

complex statistical methods are not practical for larger-scale field studies and often yield 

substantial modeled-to-measured discrepancies due to turbulence effects (e.g., Grace et al., 1987; 

Domingo et al., 1996). Simplified 2-dimensional representations of bulk airflow are a more 

reasonable means to derive α and subsequent calculations of leaf boundary layer conductance at 

various canopy depths. 

Boundary layer conductance regulates the exchange of mass and energy with the 

atmosphere and is governed by leaf geometry and wind speed (Schuepp, 1993; Nobel, 1999). 

Hence, accurate estimates of α are important for determining wind speed at different canopy 

layers for calculations of boundary layer conductance to water vapor (gbV). The ratio between gs 

and gbV acts to partition the control of transpiration between bulk incoming radiation (i.e. 

environmental control) and the physiological control of gs responses to vapor pressure deficit 
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(VPD). Jarvis and McNaughton (1986) defined this ratio with a dimensionless coefficient (Ω) 

ranging from 0 - 1. Lower Ω values (i.e. < 0.4) indicate that gs is much smaller than gbV and will 

limit (i.e. control) conductance when determining transpiration rate. Conversely, larger values of 

Ω (i.e. > 0.6) indicate that gbV will regulate transpiration. Medium range Ω values (i.e. 0.4 - 0.6) 

indicate intermittent control between gs and gbV. Nonetheless, a lower gbV indicates that the 

diffusion of water molecules, evaporated from sub-stomatal cell walls, will be restrained by the 

boundary layer. This will cause the partial pressure of water vapor at the leaf surface to increase, 

consequently decreasing the diffusional evaporation gradient. The decline in water loss results in 

a decrease in gs (e.g., Bunce, 1985; Aphalo and Jarvis, 1991; Mott and Peak, 2010), effectively 

decoupling the leaf physiological control of transpiration (i.e. gs) from atmospheric VPD 

(Meinzer, 1993).  

 Increasing wind speed influences several biophysical processes at the leaf level, some of 

which can lead to an increase in transpiration whereas others can lead to a decrease (Larcher, 

2003). For example, if leaf temperature (Tleaf) is greater than air temperature (Tair), increasing 

wind speed will lower Tleaf, reducing the available kinetic energy for evaporation (the converse 

would be true if Tleaf < Tair) (Drake et al., 1970). On the other hand, transpiration may be 

increased by intensifying wind speed as boundary layer conductance increases and evaporative 

demand is augmented as saturated air in the canopy is exchanged with drier air from aloft (e.g., 

Schuepp, 1993; Martin et al., 1999; Kim et al., 2014). At the same time, the increased 

evaporative demand can cause a decline in gs, potentially reducing transpiration if the canopy is 

well coupled to the atmosphere (Aphalo and Jarvis, 1991; Meinzer, 1993; Mott and Peak, 2010).  

Hence, the counter-balancing physiological and environmental interactions may be responsible 

for the contradictory findings regarding the influence of wind speed on transpiration (for a 
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summary see Kim et al., 2014). This study had four main goals: (1) to characterize the variation 

of canopy aerodynamic properties and their influence on α among and within species over a 

season (2) asses the species and seasonal accuracy of the Goudriaan (1977) model for estimating 

α (3) to assess the impact of α on estimates of gbV and Ω, and (4) to provide a theoretical 

assessment of the influence of wind speed on transpiration over a range of environmental 

conditions using a 3-dimensional canopy flux model.      

 

Materials and methods 

Site characteristics and plant material 

This study was conducted in the summer of 2011 at a commercial nursery near Avon, OH 

(41.433°N lat., -82.052°W long.). The research site consisted of four plots, each 11 m wide (east 

to west) and 75 m long (north to south), separated by a 4 m tractor row. Each plot contained 

>300 57 L sunken containers (pot-in-pot production) spaced 1.5 m center-to-center. Trees for 

each plot were grown in 57 L black plastic containers that contained a soil-less substrate mixture 

consisting of 64% pine bark, 21% peat moss, 7% Haydite ©, and 7% sterilized regrind. The 

remaining 1% was a 12-0-42 slow release fertilizer (Agrozz Inc., Wooster, OH, USA). The 

species chosen for this study cover a range of ecological and commercial significance, growth 

rates and canopy aerodynamic characteristics (Acer rubrum ‘Franksred’, Betula nigra ‘Cully’, 

Carpinus betula ‘Columnaris’, and Cercis canadensis). Trees were irrigated twice daily to 

container capacity with spray stakes (PC spray stakes, Netafim, Israel). A weather station 

(Decagon Devices, USA) was installed near the center of each plot at 3 m above the ground to 

collect measurements of wind speed (U3m) and photosynthetically active radiation (PAR). Air 
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temperature (Tair) and relative humidity (RH) were also collected and used to calculate VPD. 

Seasonal meteorology is shown in Figure 3.1.  

 

Canopy aerodynamic measurements 

To measure α in each plot we constructed a 3 m tall mobile wind tower from 10 cm diameter 

PVC pipe. Ten cup anemometers (Davis Instruments Corp, Hayward, CA, USA) were attached 

at 0.33 m intervals and connected to data collection nodes (EM50R, Decagon Devices, Pullman, 

WA, USA) that recorded a five minute average from one minute measurement intervals. In the 

center of each plot, an 8 cm diameter steel tube protruded from the ground to a height of 0.5 m - 

a plumb mount to hold the wind tower. Starting on day of year (DOY) 143 we began to rotate the 

wind tower among individual plots for measurement periods of >3 days (measurement periods 

are listed in Table 3.1). At the beginning of each relocation we collected plot LAI with a hand-

held canopy gap-fraction analyzer (LAI 2000, LiCor Inc., Lincoln NE, USA). These 

measurements included five separate LAI readings in each plot where 270° of the field of view 

was obscured with a filter. Each reading was taken 10 cm above the ground with the 90° of 

unobstructed view facing inwards to the plot. All measurements were taken immediately 

following sundown. We marked the location of the five readings and returned to this location for 

each subsequent measurement. On the same day LAI was collected, we also measured canopy 

physical characteristics (canopy height, stem height, canopy width in the x and y-axes, and Lw 

(Table 3.2). Leaf area density (LAD) was calculated as (LAI × stem spacing)/canopy volume.  
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Species-specific characterization of α 

Wind speed within plant canopies can be approximated with an exponential equation (Campbell 

and Norman, 1998) as: 

 𝑈z = 𝑈hexp �𝛼 �
𝑧
ℎ
− 1�� (1) 

where Uz is the wind speed at height z within the canopy and Uh is the wind speed at height h 

above the canopy. Equation 1 can be rearranged to solve for α using measurements of wind 

speed at two heights. However, α has been determined to vary, depending on the height at which 

the within-canopy wind speed measurement is collected (Saito, 1964) suggesting that more than 

one measurement point in the canopy is needed to characterize α with acceptable accuracy. 

Hence, we tested two different methods for determining α. First, we tested the Goudriaan (1977) 

model that assumes a uniform distribution of leaf area within a spherical canopy and defines αG 

as: 

 
𝛼𝐺 =  �

0.2𝐿𝐿𝐿ℎ
𝑙m

�
1
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 (2) 

where lm is the mixing length, describing the mean distance between leaves defined as: 

 
𝑙m = �
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1
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 (3) 

We calculated αG using the canopy physical dimensions and LAI collected on the first day of 

each wind tower measurement period. Next, we tested the following equation fit to 

measurements of wind speed within the canopy to obtain the wind profile fit α (αF): 

 𝑈z = 0.5exp𝛼𝐹𝑈3m (4) 
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Our results did indicate that the fit value of α (αF) varies with U3m (Fig. 3.2). Thus, to normalize 

αF for testing and comparisons we fit Equation 4 to wind tower measurements only when U3m 

was 1.5 m s-1 (i.e. seasonal mean: Fig. 3.1) to derive the mean fit α (αFmean). 

 

Modeling the influence of wind speed on energy exchange, boundary layer conductance and 

transpiration 

In this study, we used the iterative approach of Leuning et al. (1995) executed in the modeling 

framework of MAESTRA (Wang and Jarvis, 1990a) to determine the influence of wind speed on 

within- and whole-canopy estimates of gbV and transpiration using a pre-calibrated and validated 

set of physiological parameters for the four study species (Barnard and Bauerle, 2013). 

MAESTRA breaks an individual tree crown into a predetermined number of grid cells, each with 

an associated leaf area that depends on leaf area distribution and canopy shape (e.g., Wang et al., 

1990; Baldwin and Peterson, 1997). Radiation conductance (grN) (Wang and Leuning, 1998) and 

percentage of sunlit and shaded leaf area is calculated for each grid point (Wang and Jarvis, 

1990b). We assumed uniform distribution of leaf area within individual tree crowns.  

Initial and subsequent leaf energy balance estimates are based on the assumption that exchanges 

of sensible heat (H) and latent heat (λE) in a transpiring leaf will balance to equal incoming net 

solar radiation (Rn) as: 

 𝑅n = 𝐻 + 𝜆𝜆 (5) 

with H defined as:  

 𝐻 = 𝜌𝑎𝐶p(𝑇leaf − 𝑇air)𝑔bH (6) 
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Where ρa is the density of dry air, Cp is the specific heat of air, and Tleaf is leaf temperature. Leaf 

boundary layer conductance to heat, which in plant canopies is defined by the sum of grN and 

free (gbHf) and forced (gbHu) convection as: 

 𝑔bH = 2(𝑔bHf + 𝑔bHu + 𝑔rN) (7) 

with gbHf defined as:  

 
𝑔bHf =

0.5𝐷H(1.6 × 108|𝑇leaf − 𝑇air|𝐿𝑤3)0.25

𝑤 �
𝑃

𝑅𝑇air
� (8) 

where DH is molecular diffusivity to heat, P is atmospheric pressure, and R is the universal gas 

constant. Boundary layer forced convection is defined as:  

 
𝑔bHu = 0.003�

𝑈z
𝐿𝑤

�
𝑃

𝑅𝑇air
� (9) 

Latent heat flux is defined by the Penman-Monteith equation (Monteith, 1965) as: 

 
𝜆𝜆 =

𝑠𝑅n + 𝑐a𝑔h𝐶p𝑀a

𝑠 + 𝛾(𝑔bH 𝑔V� )
 (10) 

where s is the slope of the temperature-saturation vapor pressure curve, ca is the CO2 

concentration of the air, Ma is the molecular mass of air, γ is the psychometric constant, and gv is 

total leaf conductance to water vapor which is a combination of gs and gbV with gbV defined as: 

 𝑔bV = 1.075 × 2(𝑔bHf + 𝑔bHu) (11) 

and gs is defined using the Leuning (1995) model as: 

 𝑔s = 𝑔0 +
𝑔1𝐴n

(𝑐𝑠 − Γ)(1 + 𝑉𝑉𝑉
𝐷0

)
 (12) 

where g0 is minimum gs, g1 is the marginal cost of water per unit of carbon gain, Γ is the 

photosynthetic CO2 compensation point, and D0 is an empirical coefficient. Net photosynthesis is 

calculated using the biochemical Farquhar-von Caemmerer model (Farquhar et al., 1980). 
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 Finally, to describe the degree to which the canopy is aerodynamically coupled with the 

atmosphere, we calculated the Ω coefficient defined by Jarvis and McNaughton (1986) as: 

 
Ω =

𝑠 𝛾� + 2
𝑠 𝛾� + 2 + 𝑔bV 𝑔𝑠�

 (13) 

 

Results and Discussion 

Development and characterization of canopy aerodynamics 

Values of αF increased exponentially (by as much as 6x) as concomitant measurements of 

U3m decreased (Fig. 3.2). Coefficients from power functions fit to U3m versus αF varied among 

species and over the season (data not shown). The species that exhibited the most seasonal 

variation in αF also had the largest changes in canopy size and LAI (e.g. B. nigra and C. 

canadensis; Table 3.2). These findings contradict previous studies that report a minor influence 

of wind speed on αF in stands with initially low αF (Cionco, 1972; Cionco, 1978). Instead, αF was 

reported to be proportional to canopy characteristics (i.e. α ∝ [(element flexibility) × (LAD) × 

(tree height)]1/3 where element flexibility describes leaf, branch, and stem element absorption of 

wind momentum transfer. Although the variation in the αF-U3m relationship observed among 

species in this study supports the influence of crown structure on canopy aerodynamics, our 

observations show that species differences are most notable at U3m of 1 to 4 m s-1. We note that 

this observation may be specific to the smaller trees and plots used in this study and that our 

results may differ from larger forest trees or nursery plots. Due to the variability of αF in 

response to U3m and the likelihood of mean U3m varying among measurement periods, we filtered 

our data set to only include U3m = 1.5 m s-1 (mean seasonal U3m) to normalize a mean α (αFmean) 

for comparisons. Regardless, this study is the first to quantify the effects of increasing wind 

velocity on αF among several tree species which could have implications for studies that collect 
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αF values at different time periods or from regions with different native wind speeds (e.g., 

Campbell and Norman, 1998).  

We observed substantial variation in canopy aerodynamic characteristics and αFmean over 

the season and among species. Initially, Lw increased in the early season in all species but C. 

betula, whereas αFmean increased in all species alongside LAI (Figs. 3.3 and 3.4). Acer rubrum 

and C. canadensis had Lw’s that developed at a similar rate and plateaued to roughly the same 

width at the same time. Betula nigra also plateaued at the same time as A. rubrum and C. 

canadensis but at a lower Lw (Fig. 3.4). Cercis canadensis had the smallest increase in αFmean 

(~50%), whereas C. betula and A. rubrum had closer to a 100% increase. Betula nigra, on the 

other hand, experienced the greatest change in αFmean, starting out as the lowest of all species 

(~0.3) then increasing 9x to ~2.7 by the end of the season. The upper value in B. nigra (2.7) is 

particularly noteworthy given that a value of 3 was hypothesized as the maximum canopy α 

(Cionco, 1978). The seasonal variation we observed is important given that most studies have 

assumed α to be constant for a given vegetation type regardless of growth stage (Cionco, 1972; 

Goudriaan, 1977; Inoue and Uchijima, 1979; Sauer et al., 1995; Kim et al., 2014). One exception 

was Cionco (1978) who reported a counter-intuitive decrease in α with canopy development in 

corn. Instead, we found αFmean to increase over the season at variable rates among species in 

response to the development of LAI and Lw. Our findings were similar to Daudet et al. (1999) 

that found a close correlation between canopy wind attenuation and cumulative LAI. For 

example, C. canadensis and B. nigra had αFmean’s that tracked LAI relatively closely, whereas the 

rate of increase of αFmean outpaced LAI in C. betula. We observed an increase in αFmean between 

the second and third measurement periods in A. rubrum and a decrease between the fourth and 

fifth period that does not correspond to changes in LAI. Two potential sources of error may 
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explain this divergence: (1) seasonal variation in branch, stem and/or, petiole flexibility was not 

captured by our measurements (Cionco, 1978) and (2) a possible error in gap-fraction LAI 

estimates due to small canopies with high LAD (i.e. portions of the crown leaf area may be 

obscured in the image due to leaf overlap (e.g., Weiss et al., 2004)). Future studies could address 

these potential error sources with parallel measurements of element flexibility to quantify how 

this error source changes over the season and the effect it has on canopy aerodynamics.   

Regardless of differences in how LAI and αFmean developed over the season, when all 

species and measurement periods were pooled, LAI emerged as a relatively accurate predictor of 

αFmean (p <0.0001, R2 = 0.78; Fig. 3.5a). However, the individual slopes for A. rubrum and C. 

betula were higher than that of the pooled regression. The differences in slope may be due to the 

influence of LAD on LAI estimates, a result of gap-fraction techniques that do not account for 

individual crown height or volume. For example, C. betula and A. rubrum had similar LAD’s that 

were  ~3-4x greater than B. nigra and 4-6x greater than C. canadensis (both species had αFmean’s 

that were well characterized by LAI: Table 3.3). However, if we assume that there is no error in 

the gap-fraction LAI data, the improved relationship of species-specific αFmean with αG would 

support LAD as a source of error because the Goudriaan model distributes LAI over a discrete 

canopy volume - indirectly accounting for canopy density.  

The Goudriaan model proved to be a highly accurate method for predicting canopy α (R2 

= 0.92, Fig. 3.5b). While the individual slopes of C. betula and A. rubrum were higher than the 

pooled regression, they were more similar than the slopes from the regressions between LAI and 

αFmean. Hence, the Goudriaan model appears to be an accurate and simple method for determining 

α from a small set of measurements that are relatively easy to collect (i.e. Lw, tree height, and 

LAI). Our findings are in agreement with a previous assessment which found measured fluxes of 
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sensible heat to agree well with modeled fluxes when the Goudriaan model was used to 

characterize α (Cammalleri et al., 2010), however season changes in α were not tested. Hence, 

our results indicate that intensive sampling of within canopy wind-speeds is not necessary to 

characterize α on a species basis or to identify seasonal changes. However, it is important to note 

that the Goudriaan model will not account for the variation of αFmean with U3m, but will instead 

provide a general-mean value for that species and canopy size. An alternate benefit of using the 

Goudriaan model to calculate α is that the equation may be rearranged to solve for LAI if αFmean, 

canopy height, and Lw are known. This could offer a straightforward real-time method to 

determine LAI, which could be particularly beneficial in vegetation that experiences large 

changes in LAI over a growing season (e.g., agronomic or biomass crops).        

 

Species characteristics affect canopy-to-atmosphere coupling 

The evolution of Ω over the growing season varied among species, but generally 

followed a parabolic increase to a maximum (~DOY 220 to 250), followed by a secondary 

decrease prior to leaf senescence (Fig. 3.6). An increase in Ω will occur as gbV decreases or as gs 

increases. While changes in gs can be due to a combination of physiological and environmental 

responses, gbV is generally dependent on the influence of Lw and wind velocity on forced 

convection and the influence of Tleaf to Tair differences on free convection (i.e. Equations 9 and 

10). In this study, modeled mean gs declined through the season for all species due to An 

declining as the shaded fraction of leaf area increased (Bauerle et al., 2004; Campoe et al., 2013). 

Despite variable rates of canopy development the rate of seasonal gs decline was similar among 

species, but with different early season maximums that corresponded to species-specific gs-max 

(Table 3.3). Regardless, the daily variation in gbV (and corresponding variation in Ω) suggests 
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that wind velocity and canopy aerodynamics are the predominant influences that interact with 

species-specific physiology (i.e. gs) to determine the variation in canopy-to-atmosphere coupling. 

For example, A. rubrum and C. canadensis had relatively similar seasonal evolution of Ω despite 

different physiology and αFmeans. The reason being, C. canadensis had lower mean gbV in the 

early- and mid-season due to lower within canopy wind velocities from higher αFmean (Fig. 3.2). 

However, lower αFmean’s and higher gbV in A. rubrum were balanced by higher mean canopy gs, 

resulting in similar Ω values to C. canadensis. Carpinus betula had the second lowest initial gbV, 

but the second highest gs-max, resulting in the highest initial Ω with the earliest peak. By day of 

year 220, αFmean of B. nigra was >2.3, and individual crowns had begun to overlap with each 

other in the canopy (Table 3.2). The resulting decline in wind speed (>70% of above canopy 

wind speed in the lower ¾ of the canopy) greatly reduced gbV. The highest gs-max of all three 

species (B. nigra) produced a peak Ω of ~0.6 with minimal decline towards the end of the 

season. Cercis canadensis had the second highest αFmean at the end of the season and also 

exhibited the second lowest secondary decline in Ω. Carpinus betula showed the strongest 

secondary decline in Ω despite having an αFmean not much smaller than C. canadensis but with a 

substantially smaller Lw (3 cm versus 10.5 cm for C. betula and C. canadensis respectively). 

Hence, Lw may be more important in determining gbV for tree crowns with high LAD. 

Regardless, our findings clearly point to gbV as the main driver of canopy Ω which is contrary to 

a previous study that found spatial variability in leaf gs to dictate variation in Ω (Daudet et al., 

1999). It is unlikely that differences in Lw between this study and the Daudet et al. (1999) study 

because the species we used covered a wide range of Lw’s and the species with the smallest Lw 

(C. betula) responded similarly to the other three species.  



61 
 

Figure 3.7 shows that mean daily gbV can be correlated with U3m and/or the daily 

interpolated value of αFmean.  However, the strength of the correlations between U3m and gbV 

decreases with αFmean and LAI with the converse being true for the daily interpolated value of 

αFmean. As a result, we see a strong correlation between the daily interpolated value of αFmean and 

gbV in C. canadensis and B. nigra (R2 > 0.7), whereas their correlation with U3m is weak (R2 < 

0.3). Interestingly, even in the two species with the lowest average seasonal αFmean (A. rubrum 

and C. betula), the correlations with U3m are never > 0.55. Hence, these correlations underscore 

the importance of accurate characterization of α and its seasonal development in plant canopies. 

Only measuring above canopy wind speed is not sufficient to adequately characterize the spatial 

variability of wind speed within a canopy. However, as LAI and αFmean increase U3m has a 

decreasing influence on gbV which is particularly notable at the end of the season in B. nigra and 

C. canadensis and to a lesser extent A. rubrum (Fig. 3.6). Mischaracterizing spatial variability in 

canopy wind speed can skew estimates of gbV and Ω, thus altering estimates of energy and mass 

exchange (Bunce, 1985; Daudet et al., 1999; Martin et al., 1999). Hence, future studies should 

focus efforts on accurate characterization of α, especially in canopies that have higher LAI. 

 

Theoretical modeling exercises  

The modeling framework used in this study provides a theoretical foundation to examine 

the influence of wind speed on transpiration over a wide range of environmental conditions.  We 

tested 1,000 random combinations of environmental conditions (VPD ranged from 0-4 kPa,  

PAR from 0-2000 μmol m-2 s-1, and Tair from 5-40° C) and found that a discrete change in wind 

speed (i.e. from 0.6 to 2.4 m s-1) resulted in changes in transpiration rates (ΔEwind) that ranged 

from -30% to +20% (Fig. 3.7). When regressed against individual environmental conditions, 
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there was a peaked response for PAR (Fig. 3.8a) which identifies that the extreme ends of the 

range of ΔEwind (i.e. 10 to 20% and -30 to -25%) are most likely to occur in low light conditions. 

There was a less distinct trend between ΔEwind and Tair (Fig. 3.8b) but a clear trend between 

ΔEwind and VPD (Fig. 3.8c). Overall, ΔEwind is negative or close to zero at the VPD’s most often 

observed in this study (i.e. 0-2 kPa) but becomes positive and asymptotic at higher VPD. 

Additionally, the more negative end of the range generally coincides with lower Tair and the 

higher end of the range occurs at high Tair (Fig. 3.8c). This may be partly due to the fact that 

lower VPD’s are more likely at lower Tair with the converse holding true for higher VPDs. 

Nevertheless, two important conclusions can be drawn from these theoretical exercises. First, in 

low-light conditions (i.e. PAR < 250 μmol m-2 s-1) ΔEwind is at the extreme upper and lower ends 

of the range of influence and were quite negative or positive depending on the other 

environmental conditions (i.e. VPD). Given that nighttime transpiration can account for a 

significant portion of total daily transpiration (Benyon, 1999; Dawson et al., 2007) the 

interactions between wind speed and VPD at low light warrant future investigation under field 

settings and in larger scale models that use two-stream big-leaf formulations for 24 h estimates 

(e.g., Sellers et al., 1996; Oleson et al., 2013). Second, the observed relationship between ΔEwind 

and VPD may isolate the primary indirect influence of wind on transpiration. Currently, there 

have been numerous studies with contradictory results regarding the influence of wind speed on 

transpiration. For example, Kim et al. (2014) and Daudet et al. (1999) showed only marginal 

influence of wind on transpiration whereas Taylor et al. (2001) found a significant positive effect 

at forest edges and Gutiérrez et al. (1994) found a negative influence in coffee hedgerows. Kim 

et al. (2014) provided a direct analysis of why wind speed may have positive and negative 

influences on transpiration. However, their analysis was from big-leaf simulations that account 
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for one dimension aerodynamic and physiological resistances while not taking into account leaf 

energy balance. They also filtered their data set to remove the influence of light and VPD, 

eliminating the ability to see how several environmental parameters interact. There are numerous 

mechanisms by which wind speed can influence leaf-level properties and the vegetation and site 

specific (e.g., α and Ω) characteristics will all interact to dictate wind influence. Out modeling 

simulations, however, indicate a more substantial role of the leaf energy balance and suggest that 

increasing wind speed will reduce the leaf-to-air temperature difference (Tdif) by increasing H, 

gbV,  and (if Tleaf > Tair) λE. However, as ambient VPD decreases, the diffusional driving force for 

transpiration declines causing λE to decrease. The resulting decrease in Tdif will lower gbH and 

then total leaf H. Figure 3.9 describes this relationship between H and λE, as they must balance 

with incoming net radiation (i.e. Equation 4), to show that the Bowen Ratio (i.e. H: λE) 

approaches zero at high VPD. This indicates that almost all heat transfer is convective in 

saturated air conditions due to the marginal humidity gradient reducing transpiration.. 

 

Conclusions 

In this study we provided descriptions of the seasonal development of canopy 

aerodynamics and their influence on α in four broadleaf tree species. In addition, we showed that 

the empirical Goudriaan (1977) model for predicting α was highly predictive among species and 

over the season. By accurately characterizing α we were able to improve the understanding of the 

influence of within canopy wind speed on gbV and Ω - showing how they work in unison to 

partition the control of transpiration between environment and physiology. Most importantly, we 

have identified the role of leaf energy balance in determining the influence of wind speed on 

transpiration which has not been previously considered (e.g., Kim et al., 2014). Further, this 
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study has identified a connection between the meteorological conditions and the influence of 

wind speed on transpiration, suggesting future wind speed studies disseminate their results 

within the context of environmental interactions.       
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Tables 

Table 3.1: Day(s) of year that the wind tower was placed in the plots of each species that 

comprised each measurement period. The wind tower was left in each plot for >3 days or longer 

depending on average wind conditions and time needed to complete additional data collection. 

Note: no Period 5 data was collected in Cercis canadensis due to early leaf senescence.  

 Period 1 Period 2 Period 3 Period 4 Period 5 
Acer rubrum 147-151 166-176 198-201 218-222 237-242 
Betula nigra 143-147 163-166 195-198 214-218 233-237 
Carpinus betula 151-154 176-180 201-206 222-225 242-248 
Cercis canadensis 154-157 180-185 206-210 225-228  
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Table 3.2: Physical dimensions of the four study species (n = 12) at the beginning of the five 

measurement periods used to calculate the wind extinction coefficient from the Goudriaan (1977) 

model. Leaf area index (LAI) was estimated for each species at the plot scale. Note: Period 5 LAI 

data was not collected for Period 5 in Cercis canadensis due to early leaf senescence.  

Species Perio
d 

Tree 
height 

(m) 

Stem 
height 

(m) 

Canopy 
width 
(m) 

Stem 
caliper 
(mm) 

LAI 
 (m2 m-2) 

Acer rubrum 1 1.87 0.74 0.25 22.4 0.34 

 2 2.12 1.21 0.43 27.5 0.48 

 3 2.23 1.21 0.75 30.2 0.62 

 4 2.34 1.20 0.81 33.4 0.65 

 5 2.37 1.20 0.86 34.7 0.64 

Betula nigra 1 0.61 0 0.27 38.4 0.25 

 2 1.14 0 0.89 50.3 0.8 

 3 1.71 0 1.33 66.8 1.21 

 4 2.19 0 1.64 79.0 2.05 

 5 2.25 0 1.73 85.5 2.99 

Carpinus betula 1 1.51 0.43 0.36 26.1 0.57 

 2 1.82 0.40 0.51 30.1 0.65 

 3 2.02 0.39 0.55 32.5 0.67 

 4 2.07 0.38 0.56 33.4 0.66 

 5 2.06 0.38 0.57 33.6 0.7 

Cercis canadensis 1 2.12 1.01 0.80 25.5 0.49 

 2 2.41 0.98 1.17 28.1 0.74 

 3 2.72 0.98 1.41 31.2 1.08 

 4 2.68 0.98 1.64 32.4 1.45 

 5 2.68 0.97 1.70 32.5  
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Table 3.3: Seasonal mean crown leaf area density (LAD), mean maximum leaf width (Lw), 

maximum theoretical stomatal conductance (gs-max), and photosynthesis (Amax) at 400 ppm CO2. 

 LAD 
 (m2 m-3) 

Lw 
 (cm) 

gs-max 
(mol m-2 s-1) 

Amax 
(μmol m-2 s-1) 

Acer rubrum 0.33 8.9 0.489 10.38 

Betula nigra 0.12 4.7 0.801 13.72 

Carpinus betula 0.46 3.3 0.601 10.81 

Cercis canadensis 0.08 9.6 0.443 9.44 
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Figures 

 

Figure 3.1: Seasonal daily light integral (DLI), mean daily air temperature (Tair), vapor pressure 

deficit (VPD), and wind speed at 3 m (U3m). 
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Figure 3.2: Values of α fit to within canopy wind speed (αF) are dependent on wind speed at 3 m 

(U3m). Dashed vertical line represents the mean seasonal U3m (1.5 m s-1). Points for each species 

include 4-5 measurement periods (cf. Table 3.1) and 3-6 measurement points within the canopy 

depending on canopy height (cf. Table 3.2). 



70 
 

 

Figure 3.3: Canopy wind extinction coefficient values fit to within canopy wind speed at mean 

seasonal daytime wind speed at 3 m (αFmean) and canopy leaf area index (LAI) over the season. 

Measurement periods are listed in Table 3.2. 
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Figure 3.4: Mean canopy leaf width (Lw) increases in the initial portion of the season before 

reaching a canopy maximum in three of the four species. Seasonal variation in Lw was not 

evident in C. betula. Bars represent one standard deviation (n = 14). 
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Figure 3.5: Leaf area index (LAI) and Goudriaan (1977) model estimates of canopy wind 

extinction coefficient (αG) regressed against canopy wind extinction coefficient values as fit to 

wind tower data at mean seasonal daytime wind speed at 3 m (αFmean). 
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Figure 3.6: Seasonal evolution of stomatal conductance (gs – black circles), leaf boundary layer 

conductance to water vapor (gbV – grey circles) and the least squares parabolic fit of the canopy 

decoupling coefficient (Ω - black line). Dashed grey lines represent 95% confidence interval. 

 



74 
 

 

Figure 3.7: The correlation between leaf boundary layer conductance to water vapor (gbV) and 

wind speed measured at 3 m (U3m) and mean seasonal canopy wind extinction coefficient 

(αFseason). The correlation between gbV and αFmean increases as mean seasonal αFmean and LAI 

increase. Panels are arranged from top to bottom in increasing order of measured α (cf. Figure 

3.2). Note: y-axis scales differ among the four species. 
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Figure 3.8: The influence of a discrete increase in wind speed (0.6 – 2.4 m-1: Table 3.1) on 

transpiration rates (ΔEwind) at 1000 random combinations of air temperature (Tair), 

photosynthetically active radiation (PAR) and vapor pressure deficit (VPD). Each panel 

represents a regression of the influence of wind speed plotted against the value of an individual 

meteorological parameter within the random combinations. 
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Figure 3.9: Sensible (grey circles) and latent (black circles) heat flux and the Bowen ratio 

(sensible to latent heat ratio; dotted line) response to increasing vapor pressure deficit (VPD). 

Photosynthetically active radiation was held steady at 1500 μmol m-2 s-1 while wind speed varied 

from 1-5 m s-1.



77 
 

References 
 
 
 

Aphalo, P. and Jarvis, P., 1991. Do stomata respond to relative humidity? Plant, Cell & 

Environment, 14(1): 127-132. 

Baldwin, J., V Clark and Peterson, K.D., 1997. Predicting the crown shape of loblolly pine trees. 

Canadian Journal of Forest Research, 27(1): 102-107. 

Barnard, D. and Bauerle, W., 2013. The implications of minimum stomatal conductance on 

modeling water flux in forest canopies. Journal of Geophysical Research: 

Biogeosciences, 118(3): 1322-1333. 

Bauerle, W.L., Bowden, J.D., McLeod, M.F. and Toler, J.E., 2004. Modeling intra-crown and 

intra-canopy interactions in red maple: assessment of light transfer on carbon dioxide and 

water vapor exchange. Tree Physiology, 24(5): 589-597. 

Benyon, R.G., 1999. Nighttime water use in an irrigated Eucalyptus grandis plantation. Tree 

Physiology, 19(13): 853-859. 

Bunce, J., 1985. Effect of boundary layer conductance on the response of stomata to humidity. 

Plant, Cell & Environment, 8(1): 55-57. 

Cammalleri, C. et al., 2010. The impact of in-canopy wind profile formulations on heat flux 

estimation in an open orchard using the remote sensing-based two-source model. 

Hydrology and Earth System Sciences, 14(12): 2643-2659. 

Campbell, G.S. and Norman, J.M., 1998. An Introduction to Environmental Biophysics. 

Springer. 



78 
 

Campoe, O.C. et al., 2013. Stem production, light absorption and light use efficiency between 

dominant and non-dominant trees of Eucalyptus grandis across a productivity gradient in 

Brazil. Forest Ecology and Management, 288: 14-20. 

Cionco, R.M., 1966. A mathematical model for air flow in a vegetative canopy, DTIC 

Document. 

Cionco, R.M., 1972. A wind-profile index for canopy flow. Boundary-Layer Meteorology, 3(2): 

255-263. 

Cionco, R.M., 1978. Analysis of canopy index values for various canopy densities. Boundary-

Layer Meteorology, 15(1): 81-93. 

Daudet, F., Le Roux, X., Sinoquet, H. and Adam, B., 1999. Wind speed and leaf boundary layer 

conductance variation within tree crown: consequences on leaf-to-atmosphere coupling 

and tree functions. Agricultural and Forest Meteorology, 97(3): 171-185. 

Dawson, T.E. et al., 2007. Nighttime transpiration in woody plants from contrasting ecosystems. 

Tree Physiology, 27(4): 561-575. 

Domingo, F., Van Gardingen, P. and Brenner, A., 1996. Leaf boundary layer conductance of two 

native species in southeast Spain. Agricultural and Forest Meteorology, 81(3): 179-199. 

Drake, B., Raschke, K. and Salisbury, F., 1970. Temperature and transpiration resistances of 

Xanthium leaves as affected by air temperature, humidity, and wind speed. Plant 

Physiology, 46(2): 324-330. 

Farquhar, G.D., Caemmerer, S. and Berry, J., 1980. A biochemical model of photosynthetic CO2 

assimilation in leaves of C3 species. Planta, 149(1): 78-90. 

Goudriaan, J., 1977. Crop micrometeorology: a simulation study. Pudoc, Center for Agricultural 

Publishing and Documentation. 



79 
 

Grace, J., Jarvis, P. and Norman, J., 1987. Modelling the interception of solar radiant energy in 

intensively managed stands. New Zealand Journal of Forestry Science, 17(2-3): 193-209. 

Gutiérrez, M., Meinzer, F. and Grantz, D., 1994. Regulation of transpiration in coffee 

hedgerows: covariation of environmental variables and apparent responses of stomata to 

wind and humidity. Plant, Cell & Environment, 17(12): 1305-1313. 

Inoue, E., 1963. On the turbulent structure of airflow within crop canopies. Journal of the  

Meteorological Society of Japan, 41: 317-326. 

Inoue, K. and Uchijima, Z., 1979. Experimental study of microstructure of wind turbulence in 

rice and maize canopies. Bulletin of the National Institute of Agricultural Sciences. Series 

A. Physics and Statistics. 

Jarvis, P.G. and McNaughton, K., 1986. Stomatal control of transpiration: scaling up from leaf to 

region. Advances in Ecological Research, 15(1): 49. 

Kim, D. et al., 2014. Sensitivity of stand transpiration to wind velocity in a mixed broadleaved 

deciduous forest. Agricultural and Forest Meteorology, 187: 62-71. 

Larcher, W., 2003. Physiological Plant Ecology: Ecophysiology and Stress Physiology of 

Functional Groups. Springer, NY. 

Leuning, R., 1995. A critical appraisal of a combined stomatal-photosynthesis model for C3 

plants. Plant, Cell & Environment, 18(4): 339-355. 

Leuning, R., Kelliher, F., Pury, D.D. and Schulze, E.D., 1995. Leaf nitrogen, photosynthesis, 

conductance and transpiration: scaling from leaves to canopies. Plant, Cell & 

Environment, 18(10): 1183-1200. 



80 
 

Martin, T.A., Hinckley, T.M., Meinzer, F.C. and Sprugel, D.G., 1999. Boundary layer 

conductance, leaf temperature and transpiration of Abies amabilis branches. Tree 

Physiology, 19(7): 435-443. 

Meinzer, F.C., 1993. Stomatal control of transpiration. Trends in Ecology & Evolution, 8(8): 

289-294. 

Monteith, J., 1965. Evaporation and environment, Symposium of the Society for Experimental 

Biology, pp. 4. 

Mott, K.A. and Peak, D., 2010. Stomatal responses to humidity and temperature in darkness. 

Plant, Cell & Environment, 33(7): 1084-1090. 

Nobel, P.S., 1999. Plant Physiology: Park S. Nobel. Academic press. 

Oleson, K. et al., 2013. Technical description of version 4.5 of the Community Land Model 

(CLM), NCAR Technical Note NCAR/TN-503+STR, pp. 420. 

Saito, T., 1964. On the wind profile within plant communities. Bulletin of the National Institute 

of Agricultural Sciences, 11: 7. 

Sauer, T., Norman, J., Tanner, C. and Wilson, T., 1995. Measurement of heat and vapor transfer 

coefficients at the soil surface beneath a maize canopy using source plates. Agricultural 

and Forest Meteorology, 75(1): 161-189. 

Schuepp, P., 1993. Tansley review No. 59. Leaf boundary layers. New Phytologist: 477-507. 

Sellers, P. et al., 1996. A revised land surface parameterization (SiB2) for atmospheric GCMs. 

Part I: Model formulation. Journal of Climate, 9(4): 676-705. 

Souch, C. and Stephens, W., 1998. Growth, productivity and water use in three hybrid poplar 

clones. Tree Physiology, 18(12): 829-835. 



81 
 

Taylor, P.J., Nuberg, I.K. and Hatton, T., 2001. Enhanced transpiration in response to wind 

effects at the edge of a blue gum (Eucalyptus globulus) plantation. Tree Physiology, 

21(6): 403-408. 

Trout, T.J., Johnson, L.F. and Gartung, J., 2008. Remote sensing of canopy cover in horticultural 

crops. HortScience, 43(2): 333-337. 

Wang, Y.-P. and Leuning, R., 1998. A two-leaf model for canopy conductance, photosynthesis 

and partitioning of available energy I: Model description and comparison with a multi-

layered model. Agricultural and Forest Meteorology, 91(1): 89-111. 

Wang, Y. and Jarvis, P., 1990a. Description and validation of an array model—MAESTRO. 

Agricultural and Forest Meteorology, 51(3): 257-280. 

Wang, Y. and Jarvis, P., 1990b. Influence of crown structural properties on PAR absorption, 

photosynthesis, and transpiration in Sitka spruce: application of a model (MAESTRO). 

Tree Physiology, 7: 297-316. 

Wang, Y., Jarvis, P. and Benson, M., 1990. Two-dimensional needle-area density distribution 

within the crowns of Pinus radiata. Forest Ecology and Management, 32(2): 217-237. 

Weiss, M., Baret, F., Smith, G., Jonckheere, I. and Coppin, P., 2004. Review of methods for in 

situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling. 

Agricultural and Forest Meteorology, 121(1): 37-53. 

Westgate, M., Forcella, F., Reicosky, D. and Somsen, J., 1997. Rapid canopy closure for maize 

production in the northern US corn belt: Radiation-use efficiency and grain yield. Field 

Crops Research, 49(2): 249-258. 

Wright, J.L., 1965. Evaluating Turbulent Trasfer Aero-Dynamically within the Microclimate of a 

Cornfield, Cornell University, Ithaca, NY, 174 pp.



82 
 

Chapter 4: Species-specific irrigation scheduling with a spatially explicit biophysical 

model: a comparison to substrate moisture sensing with insight into simplified 

physiological parameterization 

 
 

Overview 

Biophysical models that spatially characterize the photosynthesis-stomatal conductance 

(An-gs) linkage offer a predictive approach to determining species-specific transpiration for 

irrigation scheduling. However, due to the complexity of physiological parameterization, 

biophysical models have been impractical for nursery implementation. An alternative to 

predictive irrigation scheduling is substrate moisture sensing, controlling irrigation based on 

measured volumetric water content. Substrate moisture sensing to aid irrigation scheduling is 

increasingly being adopted in nurseries thus a comparison with predictive control is warranted. 

This study had two primary goals: first, we compared the growth (crown leaf area and stem 

caliper) and irrigation application efficiency (ea) of a predictive scheduling method to a substrate 

moisture sensing-based method in five deciduous tree species that were grown in a containerized 

pot-in-pot production system. The predictive method applied 18-56% more water than the 

sensing-based method in four species and 6% less in the fifth. Mean ea, was 80.1 and 89.5% for 

predictive and sensing-based treatments respectively. Across species, predictive scheduling 

yielded 11-53% greater leaf area and 3.4-11% more caliper growth than sensing-based 

scheduling. Our second goal was to quantify the loss of transpiration estimate accuracy per 

species when key species-specific physiology parameter values in the An-gs scheme were 

replaced with multi-species means. We found the accuracy of transpiration estimates to depend 

largely on two parameters: g0 the minimum stomatal conductance and g1 the marginal water cost 
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per unit carbon gain. When only these two parameters were characterized on a species-specific 

basis transpiration estimates were within 10% error >65% of the time and within 20% error 

>95% of the time. We conclude that the parameters g0 and g1 in the An-gs scheme are critical to 

accurate species-specific transpiration estimates and that most other physiology parameters may 

be generalized, potentially eliminating the need for extensive An-gs gas exchange experiments to 

parameterize individual species or varieties. 

 

Introduction  

Water resource availability for agricultural use is in decline (Vörösmarty et al., 2000), 

leading producers to carefully evaluate irrigation efficiency. A variety of plant monitoring, 

substrate moisture sensing and predictive water use methods are available to refine irrigation 

scheduling decisions (Jones and Tardieu, 1998; Jones, 2004). However, spatially explicit 

biophysical models that couple within-canopy photosynthesis-stomatal conductance (An-gs) have 

received less attention for irrigation scheduling (Bauerle et al., 2002; Kim et al., 2008). One 

reason for this is the complexity involved in parameterizing and validating the species-specific 

physiology sub-models. Recent studies indicate that the accuracy of the An-gs scheme for 

estimating transpiration may largely depend on two parameters however, potentially simplifying 

species-specific model parameterization (Bauerle and Bowden, 2011; Barnard and Bauerle, 

2013). Moreover, biophysical models are relevant to predictive irrigation scheduling in 

containerized crops that have limited substrate volumes and likely require multiple daily 

irrigation events (e.g., Beeson and Haydu, 1995). Thus, an irrigation scheduling comparison 

between a predictive method and a substrate moisture sensing-based method is warranted, 
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including an assessment of the influence of physiologically-based parameters on transpiration 

prediction accuracy.  

Substrate moisture sensing-based methods have been successful for scheduling irrigation 

in containerized crops (e.g., Sammons and Struve, 2008; Lea-Cox, 2012; Bayer et al., 2013; 

Chappell et al., 2013). However, implementation at nursery scales is limited by the need for 

numerous sensors to capture variation in volumetric water content (VWC) within and among 

containers as well as variation among species (Daniels et al., 2012; Bauerle et al., 2013). 

Sensing-based methods also require a priori analyses to determine lower and upper VWC set-

points (unique to each substrate type) to serve as irrigation prompts. Alternative plant monitoring 

methods for irrigation scheduling have been successful (e.g., canopy temperature) but face 

similar limitations when moving across scales (e.g., Jones, 2004). Thus, a scalable real-time 

predictive method for determining crop water needs may provide a more efficient and effective 

way to schedule irrigation if it can reduce labor and system hardware (Romero et al., 2012; 

McCarthy et al., 2013). 

Coupling a photosynthesis model (e.g., Farquhar et al., 1980) to a gs model (e.g., Ball et 

al., 1987) is a method frequently used to predict transpiration at a variety of scales (Sellers et al., 

1996; Baldocchi and Meyers, 1998; Hanson et al., 2004; Landsberg and Sands, 2010; Oleson et 

al., 2013). The benefit of linking a form of the Ball-Berry gs model to An as opposed to an 

entirely empirical gs model (e.g., Jarvis, 1976) is that it contains some parameters that are 

physiologically-based (Leuning, 1990; Barnard and Bauerle, 2013). In addition, substantial 

environmental variation within heterogeneous canopies requires spatially explicit estimates and 

physiological feedback to preserve the accuracy of the An-gs model prediction (Bauerle et al., 
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2009; Yuan et al., 2014). Such hierarchical schemes have been previously tested, validated and 

implemented (Wang and Jarvis, 1990b; Medlyn et al., 2007; Bowden and Bauerle, 2008).    

A recent study has shown transpiration estimates derived from a Ball-Berry type gs model 

to be largely dependent on two key parameters (g0; the minimum gs when An ≤ 0 and g1; the 

marginal cost of water per unit of carbon gain) (Barnard and Bauerle, 2013). The g0 parameter 

has received less attention, and has typically been assumed to be unrealistically low or 

statistically extrapolated from An-gs data collected under well-lit conditions (Barnard and 

Bauerle, 2013). In other studies that included sensitivity analyses, four additional physiology-

based parameters have been shown to have a > 5% effect on transpiration (Bowden and Bauerle, 

2008; Bauerle and Bowden, 2011), suggesting that the accuracy of transpiration estimates may 

largely depend on a subset of model parameters. Building upon these findings, we designed this 

study to accomplish two primary goals. First, we compared the growth and irrigation application 

efficiency (ea) among five container grown deciduous tree species that were irrigated to maintain 

substrate moisture within a preset VWC range to a treatment irrigated by predictive 

physiologically-based transpiration estimates. Second, we assessed how much species-specific 

physiology is required to accurately estimate transpiration by comparing post-hoc parameter set 

simulations of generalized physiology (i.e. multi-species averages) with species-specific 

characterization of six key physiology parameters.  

 

Materials and methods 

Site characteristics and plant material 

This study was conducted during the summer of 2012 near Avon, OH (41.433°N lat., -

82.052°W long.). Zhu et al. (2005) provides a full description of the research site. Briefly, the 
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site consists of six plots, each containing 25 subsurface 57 L socket containers (a pot-in-pot 

production system). Each plot was sub divided into five rows of five sockets per row. Irrigation 

was controlled by a solenoid valve connected to 2.54 cm black tubing. Two pressure (137 kPa) 

compensated emitters with 160° spray angles (PC Spray Stake, Netafim USA, Fresno, USA) 

placed 10 cm from the container wall - one directly north and one south of the stem – applied 

irrigation at a combined flow rate of 24 L h-1. Emitters were Three replicate rows of five 

deciduous tree species (Acer rubrum L. ‘Red Sunset’, Betula nigra ‘Cully’, Carpinus betula 

‘Columnaris’, Cercis canadensis and Quercus rubra) were randomly assigned to predictive and 

sensing-based irrigation treatments (three plots per treatment with a replicate species row per 

plot). Trees were one-year-old bare-root whips planted into 57 L containers with a soil-less 

organic substrate consisting of a mixture of 64% pine bark, 21% peat moss, 7% Haydite© and 

7% sterilized regrind. The remaining 1% was slow release fertilizer 12-0-42 (Agrozz Inc., 

Wooster, OH, USA). To measure leachate per species, the five sockets within a row were 

connected in series by subterranean PVC that channeled leachate into a tipping bucket (FC525, 

Texas Electronics Inc., Dallas, TX, USA). Counted tips (10 mL per tip) were recorded at one 

minute intervals (model CR23X, Campbell Scientific, Logan, UT, USA). A Theta Probe 

measured substrate moisture (model ML2x, Dynamax Corp. Houston, TX, USA). It was 

positioned in the eastern side of the container, halfway between the trunk and the container wall 

(~15 cm) with the prongs at 45o beginning 20 cm below the substrate surface. Moisture readings 

were logged once per minute to determine substrate dielectric permittivity (εa), which is 

converted to VWC using sensor-to-substrate specific calibration curves. Environmental 

conditions (temperature, wind speed, relative humidity and incident photosynthetically active 
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radiation (PAR)) were measured every minute and averages stored at five minute intervals 

(model EM50R, Decagon Devices Inc., USA) (Fig. 4.1). 

 

Substrate moisture sensing-based irrigation 

Irrigation for the sensing-based treatment was controlled within a set pre-determined 

well-watered VWC range of 35-42% (Model CR23X integrated with the model SDM-CD16AC 

16 channel controller; Campbell Scientific, USA). If the measured VWC went below 35%, a 5-

second pulse of irrigation (14 mL) was commanded every minute until substrate VWC readings 

became > 42%. We note that replicate rows of species in different plots were irrigated 

independently. A detailed description of the sensing-based system can be found in Zhu et al. 

(2005).  

 

Predictive model irrigation 

The predictive irrigation treatment was designed to replace water lost according to 

transpiration estimates. MAESTRA (Wang and Jarvis, 1990a; Medlyn, 2004), a spatially explicit 

and semi mechanistic flux model was parameterized with leaf-level physiology (Table 4.1) and 

used to calculate transpiration on a 15-minute time step from weather data collected on site 

(Decagon Environmental Monitoring System, Decagon, USA). A description of MAESTRA’s 

leaf to crown transpiration linkage can be found in Medlyn et al. (2007). Software developmental 

issues delayed the deployment of real-time predictive irrigation until DOY 205. Prior to this date 

(DOY 157-204); we completed simulations once every 1-2 days to estimate average daily water 

use. This water use estimate was divided into six equal irrigation events, applied at 2 hour 

intervals between 0800 and 2000.  
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Irrigation application use efficiency 

To determine irrigation application use efficiency (ea), we summed the volumes of 

precipitation, irrigation, and leachate and calculated treatment specific efficiency as: 

 𝑒𝑎 =  �
𝑉𝑠
𝑉𝑓
�  × 100 (1) 

where Vf is the volume of water applied to the substrate (both precipitation and irrigation) and Vs 

is the volume available in the substrate - defined as: 

 
𝑉𝑠 =  𝑉𝑓 −  𝑉𝑙 

(2) 

 

where Vl is the leached volume. The volume of precipitation for the Vf parameter was measured 

by a tipping bucket rain gauge (FC525, Texas Electronics Inc., USA) located in the center of the 

plots at a height of 3 m.  

 

Predictive model description 

Essential to solving for a discontinuous canopy MAESTRA provides a hierarchical 

computational-framework that divides the crown into sub-volumes and integrates multiple sub-

models that are solved iteratively. The leaf area associated with each grid point was based on 

empirical measurements of crown leaf area, leaf optical properties, and crown shape (described 

below). Direct and diffuse beam radiation and within-canopy light scattering are spatially 

accounted for and used in leaf energy balance and temperature calculations. Leaf temperature 

estimates are input into a mechanistic biochemical photosynthesis model (Farquhar et al., 1980) 

to determine grid point An for sun exposed and shaded leaves calculated as: 

 𝐴𝑛 = min�𝐴𝑐,𝐴𝑗 ,𝐴𝑝� − 𝑅𝑑 (3) 
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where An is limited by Rubisco limited CO2 assimilation rate (Ac), the Ribulose 1-5 bisphosphate 

regeneration (RuBP) rate of CO2 assimilation (Aj) or the triose phosphate utilization (TPU) 

limiting CO2assimilation rate (Ap) minus leaf dark respiration (Rd). The Ac limitation is 

calculated as:  

 𝐴𝑐 =  𝑉𝑐𝑐𝑐𝑐 �
𝐶𝐶 −  Γ

𝐶𝐶 + 𝐾𝐶(1 + 𝑂/𝐾𝑂)� − 𝑅𝑑 (4) 

where Vcmax is the maximum rate of Rubisco carboxylation, Cc is the partial pressure at the sites 

of carboxylation, Γ is the CO2
 compensation point, Kc is the Michaelis-Menten constant of 

Rubisco for CO2, O is the partial pressure of oxygen at the site of carboxylation and KO is the 

inhibition constant of Rubisco for oxygen. The Aj limitation is calculated as:  

 𝐴𝑗 = 𝐽𝑚𝑚𝑚
𝐶𝐶 − Γ

4𝐶𝐶 + 8Γ
− 𝑅𝑑 (5) 

where Jmax is the rate of electron transport, and the Ap limitation is calculated as: 

 𝐴𝑃 = 3𝑇𝑇𝑇 − 𝑅𝑑 (6) 

Calculated An is input into the semi-empirical gs model (Leuning, 1995) for grid point specific gs 

calculated as: 

 𝑔𝑠 = 𝑔0 +
𝑔1𝐴𝑛

(𝐶𝑎 − Γ) �1 + 𝑉𝑉𝑉
𝐷0

�
 (7) 

where Ca is the CO2 concentration of ambient air, VPD is the air vapor pressure deficit and D0 is 

an empirical coefficient. Grid point gs and canopy aerodynamics are used to determine the 

canopy conductance parameter in an isothermal version of the Penman-Monteith 

evapotranspiration equation (Monteith, 1965) calculated as: 

 
𝐸 =

𝑆𝑅𝑛 + 𝜌𝑎𝐶𝑝𝑉𝑉𝑉𝑔𝑘
𝜆�𝑆 + 𝛾�𝑔𝑘 𝑔𝑣� ��

 (8) 
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where E is transpiration, S is the slope of the saturation VPD versus air temperature, Rn is 

isothermal net radiation, ρa is dry air density, Cp is the specific heat capacity of air, λ is the latent 

heat of evaporation of water, γ is the psychrometric constant, gh is leaf conductance to heat and 

gv is the leaf conductance to water vapor. Because latent heat loss from evaporation (determined 

by grid point E) alters the leaf energy balance the process is repeated with an updated estimate 

until the iterations reach convergence. Within canopy point estimates are then summed for whole 

crown estimates.  

 

Predictive model parameterization and growth measurements 

MAESTRA integrates physiological, morphological, site (plant spacing, slope, aspect 

etc.), and canopy aerodynamic parameters. Bauerle and Bowden (2011) report a sensitivity 

analysis that identified five physiological parameters, each having > 5% influence on canopy 

transpiration estimates. Of the five, three were from the Farquhar et al. (1980) photosynthesis 

model (Vcmax, Rd and α; the quantum yield of photosynthesis) and two were from the Ball-Berry 

family of gs models (e.g., Ball et al., 1987; Leuning, 1995; Medlyn et al., 2011) (g0 and g1). To 

characterize each of these parameters accurately and to capture potential seasonal dynamics (e.g., 

Bauerle et al., 2012) we collected CO2
 and light response curves (ACi and AQ curves 

respectively) from identical plant material four times throughout season on one south facing, sun 

exposed leaf from mid canopy height (n = 4 per species) with a portable gas exchange system 

(Ciras-II, PP Systems, Amesburry, MA, USA). We calculated Vcmax, Jmax, and g1 (and others) 

from the ACi curve (Sharkey et al., 2007) and α and Rd (and others) from AQ curves (Ögren and 

Evans, 1993) (Table 4.1). The g0 parameter, which is recently thought to be the most significant 

Ball-Berry model parameter for accurate transpiration estimates (Barnard and Bauerle, 2013), 
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was measured four times throughout the season at one hour after sunset with a hand-held 

porometer (Model SC-1, Decagon Devices Inc., USA). Leaf absorptance, reflectance and 

transmittance were calculated from hand-held SPAD meter (Model SPAD-502Plus, Konica-

Minolta, Tokyo, Japan) readings as per Bauerle et al. (2004b). Key physiological and 

morphological parameters are reported in Table 4.1. 

Canopy physical dimensions (canopy height and width in the X and Y axes), trunk 

caliper, leaf area and leaf morphological characteristics (i.e. Lw) were measured every 14 days 

during the study on n = 9 trees per species per treatment. To measure leaf area we randomly 

sampled n = 30 leaves from each species within a treatment, photographed the leaves and 

determined average area per leaf using image analysis software (ImageJ, National Institutes of 

Health, Washington D.C., USA). We then counted the total number of leaves on n = 6 trees per 

species per treatment and multiplied that number by the average area per individual leaf.  

 

Within container substrate moisture distribution 

To characterize the spatial distribution of substrate moisture within the containers we 

deployed an array of 12 substrate moisture sensors (Model 5TM, Decagon Devices Inc. USA) in 

one container of four different species in the sensing-based treatment. Four sensors were placed 

in each of three vertical layers at 10, 20 and 30 cm below the substrate surface (one in each 

cardinal direction) inserted horizontally 15 cm inward from the container wall through holes 

drilled in the container side. All substrate moisture sensors in the array were connected to a 

wireless data collection node (EM50R, Decagon Devices Inc., USA) to measure sensor output 

and record a five-minute average. We were unable to collect these measurements in Q. rubra due 

to numerous sensor failures throughout the season.  
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MAESTRA performance with generalized physiology parameters 

 To test the accuracy of transpiration estimates when parameterized with generalized 

multi-species means in place of species-specific measured values we combined the validated 

physiological parameter set (Barnard and Bauerle, 2013) with the observed canopy dimensions 

and leaf area (from this study) to calculate daily benchmark transpiration estimates for each of 

the five study species. Generalized multi-species parameter values were calculated as the mean 

of nine deciduous hardwood tree species (the five species used in this study plus four additional 

species – Table 4.1). All together, these nine trees species were chosen to represent a variety of 

species of ecological and commercial significance that would also be representative of the 

temperate broadleaf deciduous tree functional type used in large scale land surface schemes 

(Oleson et al., 2013). We then compared that benchmark model estimate to post-hoc model 

estimates in which one or more of the input parameters were generalized to determine parameter 

specific influence on seasonal transpiration estimates. Because Vcmax and Jmax parameters both 

display seasonal responses to day length (which can be estimated for any day of the year given 

the target day and a measurement of Vcmax or Jmax at the summer solstice (Bauerle et al., 2012) we 

used interspecific means of Vcmax and Jmax collected on the summer solstice (Vcmax* and Jmax*, 

Table 4.1) to estimate these parameter values at six time points through the growing season (day 

of year 153, 172, 198, 224, 250 and 283).  

 

Results 

Tree water use and irrigation application efficiency 

In terms of total volume of applied irrigation, about 1.4x more water was applied to the 

predictive treatment versus the sensing-based treatment across all species (Table 4.2). In both 
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scheduling treatments, B. nigra was provided with the largest total volume of irrigation (1197 

and 770 L tree-1 for predictive and sensing-based treatments respectively). For the predictive 

treatment, Q. rubra received the least total irrigation (303 L tree-1), whereas C. betula received 

the least amount in the sensing-based treatment (238 L tree-1). However, C. betula had the 

second greatest volume of irrigation (516 L tree-1) in the predictive treatment.  

When normalized by leaf area, differences in irrigation application volumes were not 

much different with an average of 1.33x irrigation applied to the predictive treatment (1.57 L m-2 

d-1) than to the sensing-based treatment (1.18 L m-2 d-1) (Table 4.2). Despite the total volume of 

water applied being greater in the predictive treatment of A. rubrum, the volume applied per m2 

of leaf area was less. In the other four species, the predictive treatment had both the greater total 

volume applied and volume applied per leaf area with C. betula receiving the most water per day 

(2.19 L m-2 d-1) and Q. rubra receiving the least (1.09 L m-2 d-1). In the sensing-based treatment, 

B. nigra received the most irrigation (1.33 L m-2 d-1) and C. betula the least (1.06 L m-2 d-1). 

Differences in applied irrigation between the two treatments, using MAESTRA estimates as the 

benchmark, varied daily, ranging from ~6 L m-2 d-1 to near zero (Fig. 4.2). Carpinus betula had 

the largest average difference in applied water between treatments (0.91 L m-2 d-1) and B. nigra 

had the second largest difference (0.65 L m-2 d-1). The average difference between treatments for 

A. rubrum and C. canadensis was 0.04 and 0.17 L m-2 d-1 respectively. Quercus rubra was the 

opposite of other species with 0.04 L m-2 d-1 more water applied in the sensing based treatment.  

Across all species, total leachate was 2.6x greater in the predictive treatment than the 

sensing-based treatment, with a total of 583 and 219 L tree-1 leached respectively (Table 4.2). 

Among all species and treatments, predictive C. betula had the largest total leachate volume (211 

L tree-1) and sensing-based A. rubrum had the lowest (16 L tree-1).  
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Normalizing total leachate volume by the amount of water applied (i.e. precipitation and 

irrigation) yields ea’s that were greater in the sensing-based treatment than the predictive 

treatment (Table 4.2). On a species basis, the predictive treatment ea was linearly correlated with 

ea in the sensing-based treatment (R2 = 0.63; data not shown) but irrigation was overall ~9% 

more efficient in the sensing-based treatment (80.1% versus 89.5%). Sensing-based irrigation for 

A. rubrum was the most efficient (~95%) with B. nigra also performing at >90% ea. Carpinus 

betula had the lowest ea of all five species in both treatments (58.9 and 73.8% for predictive and 

sensing-based treatments respectively). 

When normalized by leaf area, all predictive treatment species except A. rubrum 

transpired more water per day (Table 4.2). Within the predictive treatment, B. nigra had the 

highest daily water use (1.73 L m-2 d-1) and Q. rubra had the lowest (1.04 L m-2 d-1). Within the 

sensing-based treatment A. rubrum had the highest daily water use (1.12 L m-2 d-1) and C. betula 

had the lowest (0.94 L m-2 d-1). The predictive treatment typically transpired 1.2 - 1.7x more 

water per m2 of leaf area than the sensing-based treatment.  

 

Seasonal tree growth and container VWC 

Trees from the predictive irrigation treatment plots had greater caliper growth by the end 

of the season (Fig. 4.3). The species with the largest difference in caliper growth between 

predictive and sensing-based treatments was B. nigra with ~11% greater caliper in the predictive 

irrigation treatment, whereas the other four tree species ranged from 3.4% (Q. rubra) to 8% (C. 

betula) (Fig. 4.3).  

Canopy leaf area accumulation was also greater in trees irrigated with the predictive 

method (Fig. 4.4). Maximum canopy leaf area was the greatest in B. nigra with ~7 m2 of leaf 
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area in the predictive treatment, whereas sensing-based trees developed ~6 m2 of canopy leaf 

area (i.e. ~15% difference in canopy leaf area between treatments, the second smallest difference 

between treatments). Carpinus betula had the largest difference in maximum leaf area between 

treatments (53%). The predictive treatment of A. rubrum had the second largest maximum leaf 

area (~4.7 m2) and the second largest difference of leaf area between treatments (44%). C. 

canadensis and Q. rubra had the third and fifth smallest difference in leaf area between 

treatments with a 23% and 11% difference respectively.  

 

Between treatment and spatial variation in within container substrate moistures 

Over a representative period of ten days that consisted of high, medium and low 

transpiration rates (Fig. 4.5a), the mean container VWC for the predictive treatment of A. rubrum 

was 42.8% with a coefficient of variation of 2.9%. The mean VWC in the sensing-based 

treatment was slightly lower (40.1%) with a coefficient of variation >2x higher than the 

predictive treatment (6.4%) (Fig. 4.5b). 

Container VWC varied along a vertical height gradient, increasing linearly with depth. 

Sensors in the middle layer of the container (i.e. 20 cm) were more characteristic of mean 

container VWC than other depths (Table 4.3). The east sensor at the 20 cm depth (which 

corresponded with the Theta Probe sensor locations in the sensing-based treatment) was 

commonly the first or second best sensor to represent bulk container VWC. The exception to this 

was C. canadensis in which the east sensor at 20 cm was the fourth least representative sensor 

and the sensor at the 30 cm depth was the most representative. The east sensor at 20 cm was 

more representative of bulk container VWC more than 90% of the time in A. rubrum and C. 

betula, while only being representative 65.8% of the time in B. nigra. 
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MAESTRA simulations and performance with a generalized parameter set   

By generalizing one physiology parameter at a time, it was clear that individual 

parameter influence on daily transpiration estimates varied from day to day and within species 

(Table 4.4). Overall, g0 and g1 were the two parameters with the greatest daily influence, 

averaging 12.8 and 15.2% respectively. The one exception was C. betula, where α was the 

parameter with the second highest influence. Regardless, Jmax was consistently the least 

influential parameter (1.16%); Rd and Vcmax were both ~1.4% and α had a 1.92% influence. 

Across species Rd, Jmax, Vcmax, and α could all be generalized without having >10% influence on 

daily transpiration estimates. Both g0 and g1 emerged as reliable predictors of measured water 

use in the predictive treatment as evidence from a strong linear relationship with transpiration 

(Fig. 4.6).  

 When we generalized Rd, Jmax, Vcmax, and α but retained species-specific g0 and g1, all 

five species were within 10% of the benchmark species-specific transpiration estimates on >65% 

of the days during the experimental period and within 20% of the benchmark more than 95% of 

the days (Table 4.5). When species-specific g1’s were replaced with interspecific means, C. 

betula and B. nigra were still within 10% of the benchmark estimates >90% of the time and were 

within 20% for all days of the study. Acer rubrum was only within 10% of the benchmark ~50% 

of the time but within 20% of the benchmark every day. Both Q. rubra and C. canadensis where 

within 10% of the benchmark <25% of the days, but were within 20% of the benchmark for 

~40% of the days. When both species-specific g0 and g1 were replaced with generalized 

interspecific means, A. rubrum, B. nigra, and C. betula were all within 20% of the benchmark 

>98% of the time (with B. nigra being within 10% over 90% of the time). Cercis canadensis and 

Q. rubra were within 20% <6% and were never within 10% of the benchmark. 
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For g0 and g1, the percent difference between transpiration estimates when the model was 

run with species-specific values for these two parameters versus the generalized multi-species 

mean was correlated with the difference between the species-specific value and the generalized 

value (Fig. 4.7). The correlation was stronger for g0 (R2 = 0.99) than it was for g1 (R2 = 0.91). 

Error accumulation over the entire season was the greatest when g0 and g1 were 

generalized (ranging from -200% up to 600% error accumulation) (Fig. 4.8a). Quercus rubra 

was the most heavily influenced by the generalization of these two parameters with >400% error 

per parameter. The remaining four parameters (Rd, Jmax, Vcmax, and α) had variable but much 

smaller transpiration influences than g0 and g1 (Fig. 4.8b). 

 

Discussion 

 Higher growth rates in the predictive treatment were mostly the result of greater irrigation 

volumes. However, Q. rubra had higher growth in the predictive treatment as well, but with less 

water applied - a difference that may be due in part to the more frequent irrigations in the 

predictive method. Previous studies have reported greater plant growth in containerized plants 

when daily irrigation volume is applied in smaller quantities several times per day instead of 

receiving the same volume all at once (Ruter, 1998; Beeson and Keller, 2003). It is important to 

note that the sensing-based treatment had fewer irrigation events because the difference between 

the lower and upper VWC set-points (i.e. 35 and 42% respectively) was large enough that only 

2-4 irrigation events occurred each day, resulting in a lower mean VWC. Prior to beginning this 

study, we chose the 35-42% range using two criteria: first, for the upper set-point, our sensor 

calibrations with this substrate indicated that 43% VWC was container capacity and preliminary 

work showed that setting the upper set-point at 43% would result in almost continuous irrigation, 
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but 42% did not. Second, for the lower set-point, studies using similar potting mediums reported 

a loss of water use efficiency at VWC <35% (Bayer et al., 2013). We did observe that VWC 

could go above 43% during large precipitation events (cf. arrow in Fig. 4.5b), but note that 

overall the predictive method maintained a higher average VWC than the sensing-based 

treatment. Nevertheless, had we chosen a smaller window a priori (in particular using a higher 

VWC for the low-end set-point) the sensing-based treatment would have applied water more 

frequently, achieved a higher mean VWC and would have potentially produced more growth. 

Hence, it is difficult to conclude that the predictive method is superior to sensor-based control 

given growth and irrigation efficiency in this study alone. Future studies would benefit from 

testing various substrate moisture ranges and mean VWC levels to identify which proves optimal 

for a given substrate and/or species. The research in this area has thus far been restricted to field 

grown crops (e.g., Dabach et al., 2013)  

There was variation in ea among species and between treatments due to substrate 

hydraulic properties and species-specific traits that affect water uptake. On average, ea was ~10% 

greater in the sensing-based treatment than the predictive treatment with greater irrigation 

volumes being coupled with greater leachate. However, high leachate may not be due entirely to 

greater irrigation volumes. More frequent irrigation events in the predictive treatment likely led 

to the development of preferential water flow pathways within the substrate (Bacci et al., 2003) 

which would result in water channeling towards container drainage holes. In the sensing-based 

method, however, the less frequent irrigation events allowed the substrate to dry down to a lower 

VWC, potentially priming the substrate to absorb more of the irrigation dosage (Naasz et al., 

2005).  
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On a species basis however, the correlation between treatment ea’s suggest that variation 

in ea may be determined by species-specific root system characteristics. For example, a higher 

proportion of fine uptake roots to coarse transport roots or the presence of larger first-order (i.e. 

fine uptake) roots can result in greater bulk root water uptake and potentially higher ea (Gardner, 

1964; Andreu et al., 1997; Amato and Ritchie, 2002). While we did not collect root 

measurements in this study, Bauerle et al. (2013) investigated within container root 

characteristics in six tree species (including the five used in this study) of comparable age and 

grown in the same containers and substrate. We observed a positive linear trend between mean 

species ea and the surface area of first-order roots from the Bauerle et al. (2013) study but no 

significant relationship between mean species ea and mean root diameter or mean root length. 

We believe this relationship may identify one potential causative factor determining species 

differences in water uptake and variation in ea. 

Excess irrigation is sometimes applied to leach fertilizer salts that accumulate in 

containerized substrates (Yeager et al., 1997; Jacobs and Timmer, 2005; Sammons and Struve, 

2010). Previous studies suggest that leaching fractions (100 - ea) between 10-20% can reduce salt 

buildup (Moratiel and Martínez-Cob, 2013; Stanley, 2013) and best management practices 

recommend a 20% leaching fraction (Yeager et al., 1997) - although even higher leaching 

fractions have been reported in irrigation comparison studies (~35%; Incrocci et al., 2014). In 

this study, we observed a wide range of leaching fractions from 4.2% up to 41.1%. The average 

leaching fraction for the predictive treatment was ~20% and in agreement with best management 

practices (Yeager et al., 1997). The average leaching fraction in the sensing-based treatment was 

closer to 10% with two species at ~5%. Lower leaching fractions in the sensing-based treatment 

did accrue water savings, but they came at the cost of reduced growth from salt and/or water 
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stress (Sammons and Struve, 2010). Thus, growers using a moisture sensing-based method might 

need to monitor substrate salt content so they can manually command irrigation events to leach 

salts.  

Container grown plants are often widely-spaced to create an open canopy for maximum 

light interception (Papadopoulos and Pararajasingham, 1997; Bauerle et al., 2004). The resulting 

canopy structure has relatively high aerodynamic roughness and is well-coupled to the 

atmosphere - lending the majority of transpiration control to species-specific stomatal regulation 

(Jarvis and McNaughton, 1986; Meinzer, 1993). We confirmed stomatal control of transpiration 

in this study with the observation of different transpiration rates among species and between 

treatments on a m2 of leaf area basis. In addition to species differences in water use we also 

observed a strong linear relationship between measured transpiration rates and stomatal 

parameters in the predictive treatment (e.g., g0 and g1). Recent studies have identified the 

importance of these two parameters in predicting transpiration rates in linked An-gs schemes (Xu 

and Baldocchi, 2003; Bauerle and Bowden, 2011; Medlyn et al., 2011; Barnard and Bauerle, 

2013), but this is the first study to identify a direct relationship between gs model parameters and 

measured whole-plant transpiration. However, the relationship between gs model parameters and 

measured transpiration was less clear in the sensing-based treatment, suggesting that less 

frequent irrigation and lower water volumes may have resulted in marginal water stress (Beeson 

and Keller, 2003). Nevertheless, given the identical environmental conditions of the shared plots 

in this study, transpiration rates were lower in four of the five species in the sensing-based 

treatment, indicating that gs was constrained. Future studies would benefit from coupled 

measurements of An-gs and leaf and substrate water potential when comparing irrigation 

scheduling methods to determine the effect of irrigation frequency on whole plant water status. 
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 While potentially easier to apply at the plot scale, farm scale deployment of sensing-

based irrigation scheduling would be labor and hardware intensive and involve numerous 

logistical difficulties. First, while the cost of substrate moisture sensors has continually declined, 

the need for numerous sensors (and subsequent data loggers) to characterize species-specific 

moisture status marginalizes decreases in costs per-sensor (Daniels et al., 2012; McCarthy et al., 

2013). Second, moisture sensors have a limited life span under field conditions and can be 

difficult to remove from containers following a season or more of root growth. Moreover, in the 

case of emerging wireless sensors, they could accidentally be shipped with the container at the 

time of sale. Sensors also require a substrate specific calibration to account for the physical 

differences in water holding capacity – creating a barrier to adoption for nurseries that customize 

substrates for different species. Finally, the spatial variability of substrate moisture and root 

distribution within a container necessitates that sensors be placed in the identical position among 

containers (Daniels et al., 2012; Bauerle et al., 2013). Similar to Bauerle et al. (2013), we 

observed the middle of the container to represent bulk container VWC >90% of the time.  

The complexity of integrating various technologies in order to operate biophysical 

models in real-time could prove to be problematic over large ornamental production sites that 

contain hundreds of species and cultivars. However, predictive control may offer the most robust 

irrigation scheduling tool in the future given its ability to operate for long periods of time without 

expert intervention, minimal hardware requirements and because of its stability due to the 

potential for season long calibration (Romero et al., 2012; McCarthy et al., 2013). Predictive 

control has had few agricultural applications in the past due to lack of user friendly open-source 

models (Romero et al., 2012). The model formation used in this study (MAESTRA), while 

complex, is open source and well documented. Hence, the second of our primary goals in this 
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study was to identify methods in which the complexity of MAESTRA could be simplified to 

improve species or cultivar based implementation at the farm scale.  

Two possibilities that could reduce the complexity of MAESTRA would be (1) to 

identify key physiological transpiration parameters and focus efforts towards their 

characterization with less effort placed on the parameters that have less influence on model 

output (discussed below) or (2) to categorize species into transpiration functional groups based 

on an easily measurable physiological characteristic that relates to water use. In the latter, we 

propose using the gs model parameter g0 to determine functional group classification. Not only 

did we observe a strong relationship between measured transpiration and g0 in this study (Fig. 

4.6) but g0 has been shown to be the most influential parameter for predicting transpiration and it 

can be easy to measure with a hand-held porometer (Barnard and Bauerle, 2013).  

 To minimize the amount of species-specific physiology parameters we compared post 

hoc the decrease in model accuracy as species-specific physiological parameters were substituted 

for generalized multi-species averages (c.f. Table 4.1). The multi-species averages were 

analogous to plant functional type values (i.e. identical physiology parameter values that are 

representative of a plant functional type e.g. deciduous hardwoods) (Oleson et al., 2013). We 

acknowledge that generalizing parameters among species can be perceived as a contradiction to 

modeling species-specific transpiration. However, a tradeoff exists between the complexity of 

model formulation and accuracy. The collective error from species-specific gas exchange 

measurements combined with non-linear statistical analyses used to obtain parameter values 

from that data may cancel out greater process representation (Reynolds and Acock, 1985). 

However, we found that all but two of the species-specific parameters in the An-gs scheme could 

be replaced with a general multi-species mean value while encountering limited loss of 
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transpiration estimate accuracy. The parameters that we found to be generalizable were all from 

the photosynthetic sub-model: Jmax, Vcmax, Rd, and α. The amount of time and labor involved in 

characterizing Jmax, Vcmax, Rd, and α on a species (let alone cultivar) basis is substantial. At the 

expense of a 5-10% reduction in transpiration prediction accuracy for the species in this study, 

gas exchange experiments could be substantially reduced. We note that our parameter influence 

findings are lower than previously published studies that report Jmax, Vcmax, Rd, and α as having a 

greater effect on transpiration estimates (Bauerle and Bowden, 2011; Barnard and Bauerle, 

2013). However, it is important to compare methods. Both Bauerle and Bowden (2011) and 

Barnard and Bauerle (2013) tested the influence of individual parameters by observing the 

change in model output over a range of observed intraspecific variation (i.e. a species mean ± 

standard deviation). In this study, we took a different approach and tested how model output 

changed when a generalized value was used in place of a species-specific value for a given 

parameter. Using a single parameter value to represent a group of species is equivalent to the 

method used in larger-scale terrestrial models that characterize vegetation on a plant functional 

type basis. In fact, they often times use the same values for multiple plant functional types (e.g., 

Oleson et al., 2013). We found strong non-linear relationships between the deviation from a 

species-specific physiology parameter value and its influence on transpiration in g0 and g1 (i.e. 

Fig. 4.6) and weaker relationships with other parameters (data not shown). Hence, using identical 

values across physiologically diverse sub-groups may present a substantial source of error in 

transpiration estimates. We note that the hierarchy of influence we report for An parameters 

pertains specifically to transpiration estimates and An would likely be more influential for carbon 

flux predictions (e.g., Bauerle et al., 2014).   
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 Unlike the photosynthetic parameters that may be generalized with a minimal loss of 

transpiration predictive accuracy, gs model parameters (i.e. g0 and g1) require species-specific 

characterization. The influence of these parameters for predicting transpiration has been reported 

elsewhere (e.g., Baldocchi et al., 2002; Bauerle and Bowden, 2011; Medlyn et al., 2011), but this 

is the first study to identify the percent loss in predictive accuracy when generalized among 

several deciduous species. We found that g0 and g1 were the two most influential parameters in 

determining transpiration predictive accuracy in all species except C. betula (α was higher than 

g1; Table 4.5). In all five species, daily irrigation estimates could be within 20% accuracy >95% 

of the time when only g0 and g1 were parameterized on a species-specific basis and within 10% 

on >65% of the days during the study period (with >96% of the days in three of the five species; 

Table 4.5). Once species-specific characterization of g1 is removed the post-hoc model runs 

become unreliable in C. canadensis and Q. rubra >50% of the time. When all parameters are 

generalized only A. rubrum, B. nigra and C. betula maintain accuracy within 20% on most days. 

Studies indicate that although the range of g0 and g1 across all species can be large, they can 

often be categorized into smaller ranges per plant functional type (Caird et al., 2007; Medlyn et 

al., 2011).  

  

Conclusions 

Irrigation scheduling has developed into a mature field (Jones, 2004). However, few 

studies have directly compared the performance of irrigation scheduling methods in real-time 

and no study to our knowledge has used a spatially explicit biophysical model to schedule 

irrigation in real time. Greater water application volumes and/or more frequent irrigation events 

resulted in the predictive method producing greater canopy leaf area development and stem 
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caliper, at the expense of slightly lower ea than the substrate moisture sensor-based method. 

While the predictive method was superior in terms of producing more plant growth in this study, 

both it and sensing-based methods provided realistic avenues for improving nursery-level water 

use. We observed a marginal loss of transpiration estimate accuracy when photosynthetic 

parameters where generalized, but g0 and g1 in the An-gs scheme must remain characterized on a 

species-specific basis to maintain predictive accuracy. The ability to generalize multiple 

physiology parameters in biophysical models represents a step forward in making such model 

formulations applicable across species. Furthermore, the influence of these parameters on the 

accuracy of transpiration predictions will help to inform larger scale modeling efforts that use the 

An-gs sub model scheme.     
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Tables 

Table 4.1: Species-specific physiology parameters (mean ± standard deviation) used in this study. Minimum stomatal conductance 

(g0), marginal water cost per unit of carbon gain (g1), seasonal mean maximum-Rubisco mediated rate of carboxylation (Vcmax), 

maximum-Rubisco mediated rate of carboxylation measured on the summer solstice (Vcmax*), seasonal mean maximum electron 

transport rate (Jmax), maximum electron transport rate measured on the summer solstice (Jmax*), leaf dark respiration (Rd) and quantum 

yield of electron transport (α). Reported mean and standard deviation calculated from four time points throughout the season (DOY 

140, 182, 215 and 288) where each time point included n = 4 replicate trees. The mean value in the far right column is calculated from 

the nine species. 

 
Units 

Acer 
rubrum Betula nigra Carpinus 

betula 
Cercis 
canadensis 

Quercus 
rubra 

Acer 
saccharum 

Magnolia 
stellata 

Gelditsia 
triacanthos 

Platanus 
acerifolia Mean 

 
g0 

 
(mmol m-2 s-1) 32.6 ± 22 51.2 ± 14 61.8 ± 32 26.6 ± 13 18.9 ± 6 29.5 ± 4 38.2 ± 11 21.4 ± 6 42.9 ± 9 35.9 ± 14 

g1 (dimensionless) 7.7 ± 3.7 8.1 ± 3.7 9.5 ± 2.6 8.2 ± 3.6 7.1 ± 4.7 11.3 ± 1.6 9.9 ± 4.3 5.6 ± 2.6 7.9 ± 0.7 8.49 ± 3.9 

Vcmax (μmol m-2 s-1) 45.6 ± 11.7 56.1 ± 12.9 43.9 ± 7.2 43.6 ± 6.9 44.7 ± 12.3 40.7 ± 9.8 34.7 ± 8.7 23.9 ± 3.4 52.0 ± 10.1 42.8 ± 9.3 

Vcmax* (μmol m-2 s-1) 59.7 ± 2.4 71.58 ± 4.5 51.65 ± 4.5 41.03 ± 2.8 58.53 ± 6.9 68.55 ± 4.2 53.70 ± 3.7 36.60 ± 2.5 76.9 ± 8.7 56.2 ± 13.4 

Jmax (μmol m-2 s-1) 131.7 ± 46.6 164.3 ± 50.1 157.7 ± 65.4 120.3 ± 15.9 152.3 ± 47.4 140.3 ± 34.9 106.3 ± 29.4 79.5 ± 19.3 178.5 ± 65.1 141.4 ± 33.9 

Jmax* (μmol m-2 s-1) 205.1 ± 21 222.7 ± 53 249.4 ± 61 138.5 ± 34 243.2 ± 67 244.5 ± 45 198.1 ± 39 127.5 ± 21 273.3 ± 82 208.1 ± 48 

Rd (μmol m-2 s-1) 1.76 ± 0.9 1.80 ± 0.6 1.71 ± 0.8 2.56 ± 1.2 1.75 ± 0.9 1.42 ± 0.4 1.42 ± 0.7 1.96 ± 0.5 2.52 ± 1.1 1.88 ± 0.4 

α (mol e- mol-1 PAR) 0.143 ± 0.06 0.124 ± 0.02 0.116 ± 0.03 0.139 ± 0.04 0.131 ± 0.02 0.101 ± 0.03 0.139 ± 0.02 0.253 ± 0.06 0.128 ± 0.04 0.138 ± 0.04 



107 
 

Table 4.2: Species-specific total volume of water applied (irrigation and precipitation) and 

leached, irrigation application efficiency (ea), mean daily water applied per m2 of leaf area (does 

not include precipitation) and mean daily water transpired per m2 of leaf area for predictive and 

sensing-based irrigation treatments for the five study species.  

 Predictive Sensing-based 
Acer rubrum   
 Total volume water applied/leached (L tree-1) 470 / 86 389 / 16 
  ea (%) 81.7 95.8 
 Mean daily water applied (L m-2 d-1) 1.21 1.24 
 Mean daily water transpired (L m-2 d-1)   1.11 1.12 
Betula nigra   
 Total volume water applied/leached (L tree-1) 1197 / 185 777 / 43 
  ea (%) 84.5 94.4 
 Mean daily water applied (L m-2 d-1) 2.01 1.33 
 Mean daily water transpired (L m-2 d-1)   1.73 1.04 
Carpinus betula   
 Total volume water applied/leached (L tree-1) 516 / 211 238 / 62 
  ea (%) 58.9 73.8 
 Mean daily water applied (L m-2 d-1) 2.19 1.06 
 Mean daily water transpired (L m-2 d-1)   1.58 0.94 
Cercis canadensis   
 Total volume water applied/leached (L tree-1) 453 / 49 372 / 38 
  ea (%) 89.3 89.8 
 Mean daily water applied (L m-2 d-1) 1.34 1.12 
 Mean daily water transpired (L m-2 d-1)   1.34 1.10 
Quercus rubra   
 Total volume water applied/leached (L tree-1) 303 / 52 321 / 60 
  ea (%) 82.7 81.5 
 Mean daily water applied (L m-2 d-1) 1.09 1.13 
 Mean daily water transpired (L m-2 d-1)   1.04 0.96 
 Total irrigation applied/leached (L tree-1) 2939 / 583 2097 / 219 
  Mean ea (%) 80.1 89.5 
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Table 4.3: Container moisture sensor locations and their relation to bulk container moisture 

content (calculated as the average of 12 sensors). Sensors were installed at depths of 10, 20 and 

30 cm below the substrate surface and the container was placed within the socket such that 

sensor locations within a vertical layer corresponded to the four cardinal directions. The east 

sensor at 20 cm (denoted with a *) corresponds to the location of the Theta-probe in the sensing-

based irrigation treatment. The three most representative sensors of bulk container moisture are 

indicated by bold font with their rank in parentheses.  

 

 

 

 

 

 

 

 

Sensor depth Sensor location 
Acer 

rubrum 
Betula 
nigra 

Carpinus 
betula 

Cercis 
canadensis 

10 cm North 8.3 21.1 3.9 56.7 
 East 7.8 40.3 2.8 49.7 
 South 9.9 26.6 4.0 25.4 
 West 2.2 17.7 2.1 14.8 
20 cm North 37.6 84.1 (1) 93.7 (1) 58.4 (3) 
 East* 97.5 (1) 65.8 (2) 90.4 (2) 27.9 
 South 85.6 (3) 64.2 (3) 85.7 (3) 59.1 (2) 
 West 85.7 (2) 58.7 76.3 36.5 
30 cm North 8.3 21.1 3.9 31.2 
 East 7.8 40.3 2.8 32.2 
 South 9.9 26.6 4.1 60.1 (1) 
 West 2.3 27.8 2.0 9.1 
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Table 4.4: The influence of physiological parameters on daily transpiration estimates when the 

species-specific measured value is replaced with a multi-species generalized mean. Within a 

species the parameters are ranked top-to-bottom in order of their percent influence on model 

output (second column) and the percent influence is reported in the individual parameter 

influence column. The additive influence column shows how, starting with the parameter with 

the lowest influence, the influence of generalizing additional parameters (individually) is 

cumulative on model output. The final bolded number per species indicates the total error that 

would be encountered if all six parameters were generalized. Generalized parameter values were 

calculated as the interspecific mean of nine deciduous hardwood tree species (cf. Table 4.1).  

 

Species Parameter 
Individual 
parameter 

influence (%) 

Additive 
parameter 

influence (%) 
Acer rubrum Jmax 0.45 0.45 
 Rd 0.67 1.12 
 α 0.87 1.99 
 Vcmax 1.99 3.98 
 g0 3.03 7.01 
 g1 16.98 23.99 
Betula nigra Rd 0.65 0.65 
 Jmax 0.74 1.39 
 Vcmax 1.18 2.57 
 α 2.54 5.11 
 g1 9.87 14.98 
 g0 11.25 26.23 
Carpinus betula Vcmax 0.42 0.42 
 Jmax 0.55 0.97 
 Rd 0.78 1.75 
 g1 2.11 3.86 
 α 4.35 8.16 
 g0 16.66 24.82 
Cercis canadensis α 0.25 0.25 
 Jmax 1.95 2.20 
 Vcmax 2.49 4.69 
 Rd 4.29 8.98 
 g0 11.22 20.20 
 g1 14.55 34.70 
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Quercus rubra Rd 0.84 0.84 
 Vcmax 1.31 2.15 
 α 1.59 3.74 
 Jmax 2.14 5.88 
 g0 21.95 27.83 
 g1 32.61 60.44 
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Table 4.5: Model performance with and without generalized parameterization of g0 and g1. 

Values were calculated as the interspecific mean of nine deciduous hardwood tree species (cf. 

Table 4.1). The second column indicates the parameters generalized (i.e. species-specific 

parameterization). Mean, maximum (Max.) and minimum (Min.) daily departures are calculated 

with the validated species-specific output as the benchmark against which generalized model 

runs were compared. The final two columns report the percentage of days (out of 153 days) that 

result in water use predictions within 10% and 20% of the validated species-specific model 

estimates when generalized parameters are used as input. 

 Parameters 
not 

generalized 

Mean 
daily 

departure 
(%) 

Max. 
daily 

departure 
(%) 

Min. daily 
departure 

(%) 

% of days 
within 
10% 

% of 
days 

within 
20% 

Acer rubrum g0 and g1 -5.8 -10.7 -4.1 98.7 100 
 g0  9.8 3.3 12.9 50.3 100 
 none 12.6 8.2 15.9 9.8 100 
Betula nigra g0 and g1 -3.6 -14.0 0.03 96.7 100 
 g0  5.2 12.9 0.05 94.1 100 
 none -5.8 -16.8 -0.03 91.5 100 
Carpinus betula g0 and g1 1.4 5.9 0.05 100 100 
 g0  3.8 8.6 -0.03 100 100 
 none -12.2 -25.3 -3.6 27.5 98.0 
Cercis canadensis g0 and g1 7.2 14.4 -0.01 67.3 100 
 g0  22.5 10.7 34.5 0 41.8 
 none 31.9 16.6 46.5 0 2.6 
Quercus rubra g0 and g1 -7.4 -22.2 -0.07 66.7 95.4 
 g0  22.2 47.9 1.1 20.3 46.4 
 none 43.0 80.7 12.8 0 5.2 
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Figures 

 

Figure 4.1: Daily meteorological measurements at the research site. Air temperature and wind 

speed at 3m (Tair and Uh respectively), photosynthetically active radiation (PAR), relative 

humidity (RH) and precipitation.  
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Figure 4.2: Daily difference in applied irrigation between predictive and sensing-based 

treatments. Positive values indicate higher predictive treatment versus sensor-based water 

application volumes and negative values indicate lower. 
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Figure 4.3: Seasonal accumulation of stem growth measured at 10 cm above the ground. The 

predictive treatment is represented by black circles and the sensing-based treatment by white 

circles. Note: y-axis scale differs for top panel (Betula nigra). 
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Figure 4.4: Seasonal development of canopy leaf area. The predictive treatment is represented by 

black circles and the sensing-based treatment by white circles. Note: y-axis scale differs for top 

panel (Betula nigra). 



116 
 

 

Figure 4.5: a) Ten consecutive days of transpiration estimates and b) variation in container 

substrate volumetric water content (VWC) in the predictive (solid black line) and sensing-based 

(dashed gray line) treatments for Acer rubrum. Arrow points to a precipitation even that occurred 

in the evening on day of year 217.  
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Figure 4.6: Measured transpiration linear correlation with two key input parameters of the Ball-

Berry-Leuning gs model, g0 (panel (a) - minimum stomatal conductance) and g1 (panel (b) - 

marginal water cost per unit of carbon gain). 

 



118 
 

 

Figure 4.7: The percent influence of generalizing parameters with multi-species means 

substituted for species-specific values correlates with the difference between the species-specific 

parameter values and the generalized multi-species means for g0 (panel (a) - minimum stomatal 

conductance when net photosynthesis < 0) and g1 (panel (b) - marginal water cost per unit of 

carbon gain). X-axis indicates the difference between the species-specific value (e.g., g0-species) 

and the generalized multi-species value (e.g., g0-generalized)  
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Figure 4.8: The seasonal cumulative influence of six key physiological parameters on seasonal 

transpiration estimates when replaced with multispecies means (cf. Table 4.1). Parameter 

abbreviations: g0; the minimum stomatal conductance when An ≤ 0, g1; the marginal water cost 

per unit of carbon gain, Vcmax; the maximum rate of carboxylation, Jmax; the maximum rate of 

electron transport, Rd; leaf dark respiration and α; the quantum efficiency of photosynthesis. 

Note, the scale between the panel (a) and panel (b) differ by over an order of magnitude. 
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Chapter 5: Conclusions 

 
 

Modeling provides a representation of vegetation biophysical processes that are otherwise 

difficult to measure directly with equipment. However, it is essential that these processes be 

accurately represented in modeling frameworks in order to accurately depict interactions 

between physiology and environment. Hence, the purpose of this dissertation was to improve 

upon the robust modeling framework of MAESTRA by expanding the understanding of 

individual parameters, how they interact with the environment, how the model reacts to 

environmental change, and to ultimately test the predictive ability of the model by applying it in 

a real-time irrigation system for container grown trees.  

 The second chapter of this dissertation investigated the role of g0 and its sizeable 

influence on transpiration estimates over a range of environmental conditions. Typically, g0 has 

received little attention and is often assumed as an unrealistically low value or characterized by 

statistical extrapolation. Instead, I found that g0 is not well characterized by extrapolation in trees 

and that using the same values assumed in large scale modeling efforts (e.g., Sellers et al., 1996; 

Oleson et al., 2013) would result in gross underestimation of transpiration. I found that the g0 

parameter can be well characterized with a hand-held porometer by measuring leaf gs 1 h after 

sunset, providing a simple method to observe the response of g0 to season, drought or other 

stimuli. Thus, the main implications of this chapter are (1) that g0 is a parameter with 

physiological significance and can be measured directly - circumventing potential errors 

obtained by using statistical extrapolations or assumed values and (2) that the lack of drought or 

seasonal response of g0 in broadleaf trees indicates that temporal or drought response functions 

are not needed for this parameter. Given the significant influence of g0 in modeling transpiration, 
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coupled with the ease of obtaining field estimates, future studies and modeling efforts would be 

greatly improved by an increased focus on characterizing this parameter more accurately. 

 The species and seasonal variation in α and its subsequent influence on gbV, Ω, and 

transpiration were the focus of the third chapter. Contrary to previous studies, I found α to be 

dynamic in response to U3m and canopy development stage (i.e. LAI). These findings are 

important because α is typically assumed to be environmentally static and a single value is often 

used to represent a vegetation type regardless of growth stage (e.g., Cionco, 1966; Kim et al., 

2014). In conjunction with canopy development and subsequent changes to α, Lw also increased 

in the early season, resulting in seasonal variation in gbV and Ω. Similar to α, Ω is often assumed 

to be static for the representation of vegetation-type coupling to the atmosphere. I found that 

canopy development led to substantial shifts in Ω and in one species (B. nigra) increasing to ~0.6 

(i.e. roughly the point at which physiological control of transpiration becomes secondary). These 

findings underscore the importance of characterizing seasonal development of canopy structure 

and aerodynamics when modeling transpiration.  

There has been disagreement among studies that quantified the response of transpiration 

to increases in wind speed (see: Kim et al., 2014). However, it was common among these studies 

to isolate the influence of wind speed by removing variation in other environmental parameters, 

perhaps occluding true biophysical responses at the leaf level. I tested the influence of a discrete 

increase in wind speed over 1000 random combinations of environmental parameters (PAR, 

VPD and Tair) and found ΔEwind to vary predictably with VPD but less so with Tair or PAR. This 

theoretical exercise has significant implications at a variety of scales by assigning VPD as a 

cofactor in determining the influence of wind speed on transpiration - a connection which had 

not been previously identified.  
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The fourth chapter of my dissertation presented the results of a comparison between a 

substrate moisture and predictive technique (i.e. MAESTRA) for scheduling irrigation in 

container grown trees. This is the first study of its type to use a complex model to schedule 

irrigation. I found that MAESTRA-controlled irrigation produced greater tree growth by 

determining plant water needs more accurately than the moisture sensing technique. As 

agricultural water resources decline, these findings will have industry implications for improving 

irrigation scheduling as growers struggle to improve crop growth efficiency. I also found that, 

despite the complexity of MAESTRA, a close focus on two key parameters (g0 and g1) can yield 

accurate transpiration estimates while minimizing the need for the measurement of extraneous 

parameters. Hence, other transpiration model parameters for MAESTRA may be simplified with 

default values, increasing the ease of MAESTRA application in research and commercial 

settings.
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