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BACKGROUND: Tropical cyclone epidemiology can be advanced through exposure assessment methods that are comprehensive and consistent across
space and time, as these facilitate multiyear, multistorm studies. Further, an understanding of patterns in and between exposure metrics that are based
on specific hazards of the storm can help in designing tropical cyclone epidemiological research.

OBJECTIVES: a) Provide an open-source data set for tropical cyclone exposure assessment for epidemiological research; and b) investigate patterns
and agreement between county-level assessments of tropical cyclone exposure based on different storm hazards.

METHODS: We created an open-source data set with data at the county level on exposure to four tropical cyclone hazards: peak sustained wind, rain-
fall, flooding, and tornadoes. The data cover all eastern U.S. counties for all land-falling or near-land Atlantic basin storms, covering 1996-2011 for
all metrics and up to 1988-2018 for specific metrics. We validated measurements against other data sources and investigated patterns and agreement
among binary exposure classifications based on these metrics, as well as compared them to use of distance from the storm’s track, which has been
used as a proxy for exposure in some epidemiological studies.

REsuLTS: Our open-source data set was typically consistent with data from other sources, and we present and discuss areas of disagreement and other
caveats. Over the study period and area, tropical cyclones typically brought different hazards to different counties. Therefore, when comparing expo-
sure assessment between different hazard-specific metrics, agreement was usually low, as it also was when comparing exposure assessment based on
a distance-based proxy measurement and any of the hazard-specific metrics.

DiscussioN: Our results provide a multihazard data set that can be leveraged for epidemiological research on tropical cyclones, as well as insights

that can inform the design and analysis for tropical cyclone epidemiological research. https://doi.org/10.1289/EHP6976

Introduction

Hurricanes and other tropical cyclones can severely impact
human health in U.S. communities, as shown in several long-
term national studies (Rappaport 2000, 2014; Rappaport and
Blanchard 2016; Czajkowski and Kennedy 2010; Czajkowski
et al. 2011; Moore and Dixon 2012). These studies characterize
tropical cyclone health impacts using fatality data aggregated in
large part from disaster-related mortality ascertainment and sur-
veillance conducted by agencies like the U.S. Centers for Disease
Control and Prevention, the U.S. National Weather Service, and
local vital statistics departments. These fatality data are based on
case-by-case ascertainment: identifying and characterizing deaths
for which there is a clear link with a disaster through death certif-
icate coding or other indicators (Rocha et al. 2017).
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For several types of climate-related disasters—including heat
waves, floods, and wildfires—such research has been richly supple-
mented by studies that estimate community-wide excess mortality
and morbidity associated with the disaster (e.g., Anderson and Bell
2011; Son et al. 2012; Haikerwal et al. 2015; Liu et al. 2017;
Milojevic et al. 2017). These studies, which typically use time-
series or case-crossover designs, compare the community-wide rate
of a health outcome during a disaster to rates during comparable
nondisaster periods. Although such studies cannot attribute specific
cases (e.g., a specific death) to a disaster, they can quantify the
community-wide change in health risk during disasters and capture
impacts that might be missed or underestimated with traditional
disaster-related mortality ascertainment and surveillance. In many
cases, these studies analyze multiyear, multicommunity data, allow-
ing them to estimate average associations over many disasters and
to explore how a disaster’s characteristics, or the characteristics of
the affected communities, modify associated health risks (e.g.,
Anderson and Bell 2011; Son et al. 2012; Liu et al. 2017). Some
studies have begun to use this approach to study the health impacts
of tropical cyclones, including several studies of Hurricane Maria
(e.g., Santos-Lozada and Howard 2018; Santos-Burgoa et al. 2018),
Hurricane Sandy (e.g., Kim et al. 2016; Mongin et al. 2017; Swerdel
et al. 2014), and the 2004 hurricane season in Florida (McKinney
et al. 2011). However, to expand this approach to longer time peri-
ods and larger sets of communities, researchers must be able to
assess exposure to tropical cyclones consistently and comparably
across storms, years, and communities.

The National Hurricane Center (NHC) publishes a “Best
Tracks” data set that is considered the gold standard for Atlantic-
basin tropical cyclone tracks. It records the central position of a
tropical cyclone every 6 h, as well as the storm’s minimum
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central pressure and maximum sustained surface wind. These
data are openly available through the revised Atlantic hurricane
database (HURDAT?2), a poststorm assessment that incorporates
data from several sources, including satellite data and, when
available, aircraft reconnaissance data (Landsea and Franklin
2013; Jarvinen and Caso 1978). With these data, it is straightfor-
ward to measure a storm’s direct path and so to measure whether
a community was on or within a certain distance of that central
track. Some previous epidemiological studies have done this to
assess exposure to a tropical storm (e.g., Currie and Rossin-
Slater 2013; Kinney et al. 2008; Caillouét et al. 2008), and this
method can be applied consistently across years and communities
for large-scale studies.

However, when epidemiological studies assess exposure to a
tropical cyclone using, as a proxy, how close the storm came to a
community, they may misclassify exposure (Grabich et al. 2015a).
Although a number of tropical cyclone hazards are strongly associ-
ated with distance from the tropical cyclone’s center (e.g., wind
and, at the coast, storm surge and waves; Rappaport 2000; Kruk
etal. 2010), other hazards like heavy rainfall, floods, and tornadoes
can occur well away from the tropical cyclone’s central track
(Rappaport 2000; Atallah et al. 2007; Moore and Dixon 2012). For
example, tornadoes generated by tropical cyclones, which were
linked to more than 300 deaths in the United States between 1995
and 2009, most often occur 200-500 km from the tropical cyclo-
ne’s center (Moore and Dixon 2012).

Further, when studies use distance from the storm’s track to
assess exposure, they often use the same buffer constraints on each
side of the storm track (e.g., Kinney et al. 2008; Currie and Rossin-
Slater 2013). However, the forces of a tropical cyclone tend to be
distributed around its center nonsymmetrically. In the Northern
Hemisphere, cyclonic winds are counterclockwise, so extreme
winds are more common to the track’s right, where counterclock-
wise cyclonic winds move in concert with the tropical cyclone’s for-
ward motion (Halverson 2015), and almost all of the fatal tornadoes
associated with U.S. tropical cyclones between 1995 and 2009
occurred to the right of the tropical cyclone’s track (Moore and
Dixon 2012). Rain, conversely, is often heaviest to the left of the
track, especially when the tropical cyclone interacts with other
weather systems (Atallah and Bosart 2003; Atallah et al. 2007; Zhu
and Quiring 2013) or undergoes an extratropical transition (Elsberry
2002).

The multihazard nature of tropical cyclones therefore makes it
difficult to assess exposure based on how close the storm’s central
track came to the community. Although other approaches have
been developed to incorporate storm hazards, particularly wind,
into exposure assessment (e.g., Grabich et al. 2015a; Zandbergen
2009; Czajkowski et al. 2011), there is not yet a standard approach.
When different studies use different data sets or storm hazards
when assessing storm exposure, it becomes difficult to compare
and aggregate findings.

To help epidemiological researchers assess exposure to tropi-
cal cyclones, we developed an open-source data set (Anderson
et al. 2020a), which we present here. These data cover all coun-
ties in states in the eastern half of the United States over multiple
years and include five metrics characterizing exposure to tropical
cyclones (Table 1): a) closest distance the storm’s central track
came to the county’s center (a proxy measurement of storm expo-
sure used in some previous studies); b) peak sustained surface
wind at the county’s center over the course of the storm; ¢) cumu-
lative rainfall in the county over the course of the storm; d) flood-
ing in the county concurrent with the storm; and e) tornadoes in
the county concurrent with the storm. We aggregated these data
at the county level because data for epidemiological studies are
often available at this level [e.g., direct hurricane-related deaths
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Table 1. Exposure metrics considered to assess county-level exposure to
tropical cyclones.

Available
1988-2018

Metric Criteria for exposure

Distance County population mean center within
100 km of storm track

County cumulative rainfall of >75 mm from
2 d before to 1 d after the storm’s closest
approach and the storm track came within
500 km of the county’s population mean
center

Modeled peak sustained surface wind of
>34 knots at the county’s population mean
center

Flood event listed in the NOAA Storm
Events database for the county with a start
date within 2 d of the storm’s closest
approach and the storm track came within
500 km of the county’s population mean
center

Tornado event listed in the NOAA Storm
Events database for the county with a start
date within 2 d of the storm’s closest
approach and the storm track came within
500 km of the county’s population mean
center

Rain 1988-2011

Wind 1988-2018
Flood 1996-2018

Tornado 1988-2018

(Czajkowski et al. 2011); birth outcomes (Grabich et al. 2015a,
2015b); autism prevalence (Kinney et al. 2008)] and because
decisions and policies to prepare for and respond to tropical
cyclones are often undertaken at the county level (Zandbergen
2009; Rappaport 2000). We also wrote functions to explore and
map these data and to link them with county-level health data
(Anderson et al. 2020b).

Here, we describe how we developed this data set and explore
how its measurements compare to other data that could be used
to characterize tropical cyclone hazards for epidemiological
research. Further, we expand on previous research on measuring
exposure to tropical cyclones for epidemiological research
(Grabich et al. 2015a). This previous study investigated differen-
ces in which communities were assessed as exposed to tropical
cyclones during the 2004 hurricane season in Florida, comparing
exposure assessment based on distance to the storm’s track or vs.
a metric that incorporated storm-generated winds within the
county. They found important differences, concluding that a
study may be prone to bias from exposure misclassification if dis-
tance to the storm track is used as a proxy for exposure (Grabich
et al. 2015a). Here we expand to investigate this question across
a larger set of counties and storm seasons. Further, we investigate
patterns in exposure classification based on other metrics of
storm-related hazards—rainfall, flooding, and tornadoes—impor-
tant for inland health impacts of tropical cyclones (Czajkowski
et al. 2011; Moore and Dixon 2012). These results can help epi-
demiologists design studies and plan statistical analysis for multi-
year, multicommunity studies that estimate excess mortality and
morbidity associated with exposure to the hazards brought by
tropical cyclones.

Methods

For our study domain, we used all counties in the eastern half of
the United States (Figure 1). We included all tropical cyclones
between 1988 and 2018 that were tracked in HURDAT?2
(Landsea and Franklin 2013) and came within 250 km of at least
one eastern U.S. county (Figure 1). We therefore included all
land-falling or near-land Atlantic basin tropical cyclones and
excluded storms that never neared the United States.
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Figure 1. Study area and storms considered in this study. All counties in the
states shown in this map were investigated. The lines show the paths of the
study storms, which included all tracked storms in 1988-2018 that are
recorded in HURDAT?2 and that came within 250 km of at least one U.S.
county. Thicker lines show the tracks of storms whose names have been
retired, indicating that the storm was particularly severe or had notable
impacts.

Distance-Based Exposure Metric

We first measured how close each storm’s central track came to
each county. We used tracking data from HURDAT2, which
records the storm center’s position at four standardized times for
weather data collection (synoptic times), 6:00 A.M., 12:00 P.M.,
6:00 P.M., and 12:00 A.M. Coordinated Universal Time (UTC).
We interpolated this position to 15-min intervals using natural
cubic spline interpolation (Anderson et al. 2020a). At each 15-
min interval, we measured the distance between the storm’s cen-
ter and each county’s population mean center, as of the 2010 US
Decennial Census (U.S. Census Bureau 2020). We took the mini-
mum distance for each county as a measure of how close the
storm came to the county over its lifetime. We also recorded the
time when this occurred for each county so we could link
observed data on precipitation, flooding, and tornadoes. To allow
matching with data recorded in local time (e.g., health data), we
converted these times from UTC to local time (Anderson and
Guo 2016).

Rain-Based Exposure Metric

We based storm rainfall measurements on precipitation data files
from the North American Land Data Assimilation System Phase
2 (NLDAS-2) reanalysis data set, which is available for the conti-
nental United States (Rui and Mocko 2014). We used data that
were previously aggregated from this reanalysis data set to the
county level by two of the coauthors (Al-Hamdan and Crosson)
for the U.S. Centers for Disease Control and Prevention’s Wide-
Ranging Online Data for Epidemiological Research (WONDER)
database (U.S. CDC 2019; Al-Hamdan et al. 2014). To create
these aggregated data, these coauthors took hourly precipitation
measurements in the NLDAS-2 precipitation files, which are
given at 1/8 grid points across the continental United States,
and summed them by day for each grid point. This approach cre-
ated a daily precipitation total for each grid point; these were
then averaged for all grid points within a county’s 1990 U.S.
Census boundaries (Al-Hamdan et al. 2014; U.S. CDC 2019).
This process generated daily county-level precipitation estimates
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for each continental U.S. county for 1988-2011 (U.S. CDC
2019). In this study, we matched these county-level daily meas-
urements by date with storm tracks, using the date when the
storm was closest to each county. Given the location of storm-
affected counties and the typical timing of tropical cyclones,
these precipitation measures primarily represent rainfall, although
occasionally they may represent snowfall or other types of
precipitation.

In the open-source data (Anderson et al. 2020a), we provide
precipitation values at a daily resolution for each county for the
period from 5 d before to 3 d after each storm’s closest approach
to the county. In the software that we published in association
with this data (Anderson et al. 2020b), we provide functionality
to aggregate these daily values to create cumulative precipitation
estimates for custom windows around the date of the storm’s
closest approach to the county. For example, a user could deter-
mine precipitation only on the day the storm was closest to each
county but could also determine the cumulative rainfall for a
more extended period (e.g., 2 d before to 2 d after the storm’s
closest approach). For the analysis of binary exposure classifica-
tions in this study, we calculated storm-associated rainfall as the
sum of precipitation from 2 d before the storm’s closest approach
to the county to 1 d after.

To validate these precipitation estimates, we compared them
with ground-based observations in a subset of study counties. We
selected nine sample counties geographically spread across storm-
prone regions of the eastern United States and for which precipita-
tion data were available from multiple ground-based stations in the
Global Historical Climatology Network throughout the study pe-
riod (Menne et al. 2012; Chamberlain 2017; Severson and
Anderson 2016). These sample U.S. counties were: Miami-Dade,
Florida; Harris County, Texas; Mobile County, Alabama; Orleans
Parish, Louisiana; Fulton County, Georgia; Charleston County,
South Carolina; Wake County, North Carolina; Baltimore County,
Maryland; and Philadelphia County, Pennsylvania. We summed
daily station-specific measurements from 2 d before to 1 d after
each storm’s closest approach and then averaged these cumulative
station-based precipitation totals for each county to create a coun-
tywide estimate of cumulative storm-related precipitation based on
ground-based monitoring. We measured the rank correlation
(Spearman’s p; Spearman 1904) between storm-specific cumula-
tive precipitation estimates for the two data sources (NLDAS-2
reanalysis data vs. ground-based monitoring) within each sample
county.

Wind-Based Exposure Metric

We created a data set of county-level peak sustained surface
wind during each storm. To do this, we first modeled each
storm’s wind field to each county’s population mean center (U.S.
Census Bureau 2020) at 15-min intervals throughout the course
of the storm. We used a double exponential wind model based on
results from Willoughby (Willoughby et al. 2006) to model
1-min surface wind (10 m above ground) at each county center,
based on inputs of the storm’s forward speed, direction, and max-
imum wind speed (Anderson et al. 2020c). Our model incorpo-
rated the asymmetry in wind speeds around the tropical cyclone
center that results from the storm’s forward movement (Phadke
et al. 2003). From these 15-min interval estimates, we identified
the peak sustained surface wind in each county over the course of
each storm.

To validate these modeled county-level peak wind estimates,
we compared them with the postseason wind radii, which have
been routinely published since 2004 (Knaff et al. 2016). These
radii estimate the maximum distance from the storm’s center that
winds of a certain intensity extend. They give separate estimates
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Figure 2. Comparison in nine sample counties of two sources of storm-associated rainfall estimates: (A) county-level estimates derived from a reanalysis data
set and (B) county-level estimates based on ground-based observations in nine sample counties. For both, estimates include rainfall from 2 d before to 1 d after
the storm’s closest approach to the county. Each small graph shows data for one sample county, and each point shows one tropical storm. The number of
storms within each county and the number of ground-based monitors reporting precipitation during the county’s storms are given above each plot. Horizontal
and vertical lines in each plot show the threshold of 75 mm used to classify a storm as “exposed” for the binary classification considered for this metric in fur-
ther analysis (Table 1). Note that ranges of the x and y axes differ across counties.

for four quadrants of the storm to capture asymmetry in the
storm’s wind field and are based on a postseason reanalysis that
incorporates all available data (e.g., satellite data, aircraft recon-
naissance, and ground-based data if available) (Knaff et al.
2016). Wind radii are estimated for three thresholds of peak sus-
tained surface wind: 64, 50, and 34 knots. They therefore allow
for the classification of counties into four categories of peak sus-
tained surface wind: <34 knots; 34-49.9 knots; 50-63.9 knots;
and >64 knots.

We interpolated the wind radii to 15-min increments using
linear interpolation (Anderson et al. 2020a) and classified a
county as exposed to winds in a given wind speed category if its
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population mean center was within 85% of the maximum radius
for that wind speed in that quadrant of the storm. The 85% adjust-
ment is based on previous research that found that this ratio helps
capture average wind extents within a quadrant based on these
maximum wind radii (Knaff et al. 2016). We compared these
wind radii—based estimates of county-level peak sustained sur-
face wind during a storm with the modeled wind estimates, com-
paring all study storms since 2004 for which at least one study
county experienced peak sustained winds of >34 knots (based on
the postseason wind radii). For each of these storms, we calcu-
lated the percent of study counties that were classified in the
same wind category based on both data sources.
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Figure 3. Comparison of two sources of wind exposure estimates: (A) mod-
eled peak sustained surface wind and (B) estimates based on HURDAT2’s
wind speed radii. Each point represents a storm, with the x-axis giving the
percent of counties classified in the same category of peak sustained surface
wind (<34 knots; 34-49.9 knots; 50-63.9 knots; >64 knots) by both sources
of data. The color of each point gives the number of study counties that
were exposed to peak sustained surface wind of at least 34 knots (based on
modeled wind). Estimates are shown for study storms since 2004, the ear-
liest year for which poststorm reanalysis wind speed radii are routinely
available in HURDAT?2, and for which at least one study county had a peak
sustained wind of >34 knots based on the poststorm wind radii.

Flood- and Tornado-Based Exposure Metrics

To identify flood- and tornado-based tropical cyclone exposures
in U.S. counties, we matched storm tracks with event listings
from the Storm Event Database of the National Oceanic and
Atmospheric Administration (NOAA/National Weather Service
2020; NOAA NCEI 2020). Events are included in this database
based on reports from U.S. National Weather Service personnel
and other sources. Although this database has recorded storm data,
particularly tornadoes, since 1950, its coverage changed substan-
tially in 1996 to cover more types of storm events, including flood
events (NOAA NCEI 2020). We therefore considered only flood
metrics of tropical cyclone exposure for storms in 1996 and later.
For each tropical cyclone, we identified all events with event
types related to flooding (“Flood,” “Flash Flood,” “Coastal Flood™)
or tornadoes (“Tornado”) with a start date within a 5-d window
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centered on the date of the tropical cyclone’s closest approach to the
county (Anderson et al. 2020a). To exclude events that started near
in time to the storm but far from the storm’s track and so were likely
unrelated to the storm, we excluded any events that occurred
>500 km from the tropical cyclone’s track. “Flood,” “Flash Flood,”
and “Tornado” events in this database were reported by county
Federal Information Processing Standard (FIPS) code and so could
be directly linked to counties. “Coastal Flood” events were reported
by forecast zone; for these, the event was matched to the appropriate
county if possible using regular expression matching of listed
county names (Anderson and Chen 2019).

The tornado observations from this data set—along with the
derived version of the data available through the Storm Prediction
Center’s National Tornado Database (NOAA/National Weather
Service 2020)—are the official tornado event for the United States.
There are no other collections of tornado data comparable in temporal
or geographic scope, so we did not further validate the tornado event
data. It is difficult to characterize flooding at the county level because
flooding can be very localized and can be triggered by a variety of
causes. To investigate the extent to which the NOAA flood event list-
ings capture extremes that might be identified with other flooding
data sources, we investigated a sample of study counties, comparing
the flood event data during tropical storms with streamflow measure-
ments at U.S. Geological Survey (USGS) county streamflow gages
(USGS 2020; Lammars and Anderson 2017; Hirsch and De Cicco
2015). We considered nine study counties, selecting counties geo-
graphically spread through storm-prone areas of the eastern United
States and with at least one streamflow gage reporting data during all
events. The sample counties were: Baltimore County, Maryland;
Bergen County, New Jersey; Escambia County, Florida; Fairfield
County, Connecticut; Fulton County, Georgia; Harris County, Texas;
Mobile County, Alabama; Montgomery County, Pennsylvania; and
Wake County, North Carolina.

For each county, we first identified all streamflow gages in the
county with complete data for 1 Jan 1996-31 Dec 2018. If a storm
did not come within 500 km of a county, it was excluded from this
analysis, but all other study storms were considered. For each
storm and county, we summed streamflow measurements across
all county gages to generate daily totals for the 5-d window around
the storm’s closest approach. We took the maximum of these
daily streamflow totals as a measure of the county’s maximum
daily streamflow during that storm. We also calculated the percent
of streamflow gages in the county with a daily streamflow that
exceeded a threshold of flooding (the streamgage’s median value
for annual peak flow) on any day during the 5-d window. We inves-
tigated how these measurements varied between storms with asso-
ciated flood events listings vs. storms without an event listing for
the county, to explore if storms with flood event listings tended to
be associated with higher streamflow at gages within the county.

Binary Storm Exposure Classification

In our open-source data, we provide continuous measurements of
some of the exposure metrics: closest distance of each storm to
each county, peak sustained surface wind at the county center,
and cumulative rainfall. However, epidemiological studies of
tropical cyclones often use a binary exposure classification
(“exposed” vs. “unexposed”) to assess storm-related health risks
(e.g., Grabich et al. 2015b; McKinney et al. 2011; Caillouét et al.
2008), so we explored patterns in storm exposure based on binary
classifications of these exposure metrics.

Two of the exposure metrics (flood- and tornado-based) were
inherently binary in our data, because these metrics were based
on whether an event was listed in the NOAA Storm Events data-
base. For other exposure metrics, each county was classified as
exposed to a tropical cyclone based on whether the exposure
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Figure 4. Comparison in nine sample study counties of flood status based on two data sources: (A) NOAA Storm Events listings matched to HURDAT?2 storm
track data and (B) county streamflow gages. Each small plot shows results for one of the sample counties. Each point represents a single tropical storm, and
the point’s position along the x-axis shows the highest daily total streamflow (cubic feet per second) during the 5-d window surrounding the storm, summed
across all identified streamgages in the county. The y-axis separates storms for which a flood event was reported in NOAA’s Storm Events database in the
county with a start date within the 5-d window of the storm’s closest approach. The color of each point gives the percent of streamflow gages in the county
with a daily streamflow that exceeded a threshold of flooding (the streamgage’s median value for annual peak flow) on any day during the 5-d window. The
number of streamflow gages used in analysis are given in parentheses beside the county’s name in the panel title. Note that the x-axis scales differ by county,
depending on the number of streamflow gages and typical flow rates for each gage, and are on a log-10 scale.

metric exceeded a certain threshold (Table 1). We picked reason- Finally, we investigated how well exposure assessment agreed
able thresholds (e.g., the threshold for gale-force wind for wind across these metrics. These results can help epidemiologists answer
exposure; Table S1), but others could be used with the open- several key questions as they interpret previous research and design
source data and its associated software. new studies. Those questions include, for example: If a single storm

For the rainfall metric, a distance constraint was also neces- hazard has been used to measure exposure in an epidemiological
sary, to ensure that rainfall unrelated and far from the storm track study, can the result be interpreted as an association with tropical
was not misattributed to a storm. Through exploratory analysis, cyclone exposure in general, or should it be limited to represent an
we set this distance metric at 500 km (i.e., for a county to be clas- association with that specific storm hazard? If a study investigates

sified as exposed based on rainfall, the cumulative rainfall in the the association between a single storm hazard and a health outcome,
county had to be over the 75 mm threshold and the storm must could this estimate be confounded by other storm hazards? When
have passed within 500 km of the county; Table 1). This distance planning a new study that will incorporate several storm hazards,

constraint was typically large enough to capture storm-related might there be variance inflation from multicollinearity or difficul-
rain. However, data users should note that in rare cases—for ties in disentangling the roles of separate hazards?

example, exceptionally large storms (e.g., Hurricane Ike in 2008) For each storm we investigated the degree to which the set of
or storms for which storm tracking was stopped at extratropical counties assessed as exposed based on one metric overlapped with the
transition (e.g., Tropical Storm Lee in 2011)—some storm- set assessed as exposed based on each other metric, including a metric
related rain exposures may be missed because of this distance that used distance of a county from the storm track as a proxy for ex-
constraint (Figure S1). This distance constraint can be custom- posure to storm hazards. We calculated the within-storm Jaccard
ized using the software published in association with the open- index (J5) (Jaccard 1901, 1908) between each pair of exposure met-
source data (Anderson et al. 2020b). rics. This approach measures similarity between two metrics (X

We characterized patterns in county-level exposure in the — and X» ) for tropical cyclone s as the proportion of counties in which
eastern United States for exposure assessment based on each of ~ both of the metrics classify the county as exposed out of all counties
the measured tropical cyclone hazards (cumulative precipitation, classified as exposed by at least one of the metrics:
peak sustained wind, flooding, and tornadoes). Depending on

available exposure data, this assessment included some or all of = M (1)
the period from 1988 to 2018 (Table 1). For each binary metric X, UXo

of exposure to a tropical cyclone hazard, we first summed the

total number of county-level exposures over available years and This metric can range from 0, in the case of no overlap
mapped patterns in these exposures. between the counties classified as exposed based on the two
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metrics, to 1, if the two metrics classify an identical set of coun-
ties as exposed to the tropical cyclone. We calculated these val-
ues for all study storms that affected >100 study counties (based
on at least one exposure metric) during the years when all expo-
sure data were available (1996-2011).

Data and Code Access

We have posted most study data as an open-source R package
(Anderson et al. 2020a). By sharing this data as an R package, it is
also accessible through cloud-based computing platforms that
incorporate Jupyter notebooks, including the National Science
Foundation’s DesignSafe platform for natural hazards engineering
research (Rathje et al. 2017). We have posted remaining data and
code at https://github.com/geanders/county_hurricane_exposure.

Results

Exposure Assessment Data, Data Validation, and Software

We created and published this tropical cyclone exposure data as an
R package (Anderson et al. 2020a). The package size exceeded the
recommended maximum size for the Comprehensive R Archive
Network (CRAN), the standard repository for publishing R pack-
ages. Therefore, we used the drat framework to set up our own re-
pository to host the package (Anderson and Eddelbuettel 2017).
These data include continuous county-level measurements for the
closest distance of each storm, cumulative rainfall, and peak sus-
tained surface wind. These continuous metrics can be used for clas-
sifying counties as exposed or unexposed—using thresholds
selected by the user—or can be extracted directly as continuous
metrics. The data set also includes binary data on flood and tornado
events associated with each storm in each county. To accompany
these data, we published an additional R package with software
tools to explore and map the data and to integrate it with human
health data sets (Anderson et al. 2020b).

We explored potential limitations in these data by comparing
them with data from other available sources. For estimates of storm-
associated rainfall, we compared data in the open-source package
with ground-based observations in nine sample counties (Figure 2).
Within these counties, storm-related rainfall measurements were
well-correlated between the two data sources, with rank correlations
(shown at the bottom right of each graph in Figure 2) between 0.87
and 0.98. There was some evidence that our primary rainfall metric
may tend to underestimate rainfall totals in storms with extremely
high rainfall, based on a few heavy-rainfall storms in Harris County,
Texas; Mobile County, Alabama; Charleston County, South
Carolina; and Wake County, North Carolina (Figure 2). Further, in
some counties, the correlation was substantially lower when consid-
ering only tropical cyclones with cumulative local rainfall of
>75 mm (Table S2). However, it was rare for a storm to be classi-
fied differently (under the precipitation threshold of 75 mm we used
for binary exposure classification for later analysis) based on the
source of precipitation data. Horizontal and vertical lines in each
small plot in Figure 2 show the threshold of 75 mm, so storms in the
lower left and upper right quadrants would be classified the same
(“exposed” or “unexposed”), regardless of the precipitation data
source, whereas storms in the upper left and lower right quadrants
would be classified differently. Such cases were rare.

For peak sustained surface wind estimates, we found that the
primary wind exposure metric in the open-source data generally
agreed well with the wind radii reported in HURDAT?2. For most
storms, >90% of counties were assigned the same category
of wind speed (<34knots; 34-49.9 knots; 50-63.9 knots;
>64 knots) by both data sources (Figure 3). Disagreement was
limited to a few storms (e.g., Hurricanes Sandy in 2012 and Ike
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in 2008). For these two storms, the modeled wind speed in the
open-source data somewhat overestimated the severity of the
storms’ winds at landfall but then underestimated, particularly for
Hurricane Sandy, how far 34-49.9 knot winds extended from the
storms’ central tracks further inland (Figure S2). For epidemiol-
ogy researchers who would like to conduct sensitivity analysis
using both sets of wind data, we have included estimates from
the HURDAT?2 wind radii as a secondary measure of county-
level peak sustained wind in the open-source data set (Anderson
et al. 2020a).

For flood data, we compared the flood status values included
in the open-source data to stream-flow measurements at USGS
gages within nine sample counties (Figure 4). Across the sampled
counties, streamgage data generally indicated higher discharge
during periods identified as flood events based on the NOAA
Storm Events database (Figure 4). There were some cases, how-
ever, where the two flooding data sources were somewhat incon-
sistent. For example, there were one or two tropical cyclones in
several of the counties (Mobile County, Alabama; Escambia
County, Florida; Fairfield County, Connecticut; and Fulton
County, Georgia) with associated flood event listings but for
which the total discharge across county streamflow gages was
relatively low. For storms without a flood listing for the county,
in most cases the total streamflow discharge in the county was
relatively low, and in all but two cases, all streamgage flows were
below the flooding threshold. The exceptions were for Hurricane
Ida in 2009 in Fulton County, GA, and Hurricane Isaac in 2012
in Mobile County, AL.

Patterns in Tropical Cyclone Exposures

We used this storm exposure data to classify counties as exposed or
unexposed to four different hazards for each tropical cyclone and
then explored patterns over years with available data. Table 2 pro-
vides summary statistics describing the extent of counties assessed
as exposed based on specific storm hazards to help epidemiologists
in planning studies, including understanding the potential statisti-
cal power to study specific exposures, both for multistorm and
single-storm studies. Across the four storm hazards considered,
there was wide variation in the average number of county expo-
sures per year (Table 2). For tropical cyclone tornadoes, there were
on average approximately 40 county exposures per year in our
study. County exposures were more frequent for tropical cyclone
wind exposures (>160/yon average), even more frequent for
tropical cyclone flood exposures (>190/y on average), and most
frequent for tropical cyclone rain exposure (>290/y on average).
For every hazard except tornadoes, we identified at least one tropi-
cal cyclone that exposed more than 250 counties (Table 2).
However, the largest-extent tropical cyclone varied across hazards:
Frances in 2004 exposed the most counties based on rain, Michael
in 2018 based on wind, and Ivan in 2004 based on flooding and tor-
nadoes (Table 2).

When we calculated and mapped the average number of expo-
sures per decade in each county for single-hazard exposures
(Figure 5), strong geographical patterns were clear. Peak

Table 2. Summary statistics for the number of county tropical cyclone expo-
sures under each metric, with exposure assessment based on definitions in
Table 1.

Mean of county
exposures per year
(interquartile range)
208 (48, 441)
162 (55, 258)
197 (76, 241)
38 (8, 42)

Tropical cyclone with
most counties exposed
(# exposed counties)

Frances, 2004 (464)
Michael, 2018 (260)
Ivan, 2004 (317)
Ivan, 2004 (91)

Metric (y available)
Rain (1988-2011)
Wind (1988-2018)
Flood (1996-2018)
Tornado (1988-2018)
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Figure 5. Average number of county-level storm exposures per decade for
binary classifications based on each single-hazard exposure metric (Table 1).
The years used to estimate these averages are based on years of available ex-
posure data (rain: 1988-2011; wind: 1988-2018; flood events: 1996-2018;
and tornado events: 1988-2018).

sustained wind exposure had a strong coastal pattern, with almost
all exposures in counties within about 200 km (124 mi) of the
coastline. Although tropical cyclone rain exposure was also more
frequent in coastal areas in comparison with that in inland areas,
there were also inland rain exposures in counties that were rarely
or never classified as exposed based on wind. Flood-based expo-
sures were frequently in the mid-Atlantic region, with a pattern
that skewed north compared with other exposures. Rain and, to
some extent, flood exposures were characterized by a pattern
defined by the Appalachian Mountains, with fewer exposures

Environmental Health Perspectives

107009-8

west of the mountain range than to the east. Almost all tornado-
based exposures were in coastal states, with many in Florida and
almost none north of Maryland. Patterns were similar when anal-
ysis was restricted to years with exposure data for all four hazards
available (1996-2011; Figure S3).

Agreement across Exposure Metrics

Finally, we assessed within-storm agreement between exposure
classifications for each pair of hazards, as well as with a proxy mea-
surement based on distance from the storm’s track. We found that
these exposure classifications typically did not agree strongly
between pairs of metrics; the set of counties identified as “exposed”
based on one metric often overlapped little with the set identified as
“exposed” by another metric, as storms frequently brought differ-
ent hazards to different locations.

Figure 6 shows as an example Hurricane Ivan in 2004. For
the distance-based metric, the counties assessed as exposed fol-
low the tropical cyclone’s track. For the wind-based metric, only
counties near the tropical cyclone’s first landfall were assessed as
exposed. For rain- and flood-based metrics, however, exposure
extended to the left of the track, including counties as far north as
New York and Connecticut, whereas for the tornado metric,
exposed counties tended to be to the right of the track and
included several counties in central North Carolina, South
Carolina, and Georgia that were not identified as exposed to Ivan
based on any other metric. Figure S4 provides similar maps for
three other example tropical cyclones (selected because they
exposed many U.S. counties based on at least one metric).

We drew similar conclusions when we investigated all 46 tropi-
cal cyclones between 1996 and 2011 (when data for all five metrics
were available) for which 100 or more counties were exposed
based on at least one metric (Figure 7; for the most extensive of
these, storms for which 200 or more counties were exposed based
on at least one metric, Tables S3—S6 provide underlying numbers
comparing exposure assessments between the distance-based
proxy and each hazard-based metric). In Figure 7, each row pro-
vides results for one tropical cyclone, and each box in that row
shows the Jaccard coefficient for a pair of metrics. For all pairs of
metrics, agreement in exposure assessment was, at best, moderate
for all but a few storms. When comparing distance- and wind-
based exposure assessment, only about 10% of storms had Jaccard
indices higher than 0.6 (i.e., out of the counties assessed as exposed
by at least one of the two metrics in the pair, 60% or more were
assessed the same under both metrics). For comparisons of assess-
ments based on other combinations of distance-, wind-, rain-, and
flood-based metrics, fewer than 5% of storms had Jaccard indices
above 0.6. The tornado-based metric had universally poor agree-
ment with other metrics in county-level classification across the
tropical cyclones considered.

There were a few exceptions; tropical cyclones in which expo-
sure assessment agreed well across several of the metrics considered.
For Floyd in 1999 (Figure S4) and Irene in 2011, for example,
county-level classification agreed moderately to well for all pairs of
exposure metrics except those involving the tornado-based metric
(Figure 7). For another set of tropical cyclones (e.g., Ernesto in 2006,
Bertha in 1996, and Isabel in 2003), there was moderate to good
agreement for pairwise combinations of distance, rain, and wind but
poor agreement for other combinations of metrics, whereas for
another set of storms (e.g., Matthew in 2004 and Katrina in 2005),
there was moderate to good agreement between distance and rain.

Discussion
Epidemiologic studies can help characterize which health risks are
elevated during disasters, to what degree, and for whom (Ibrahim
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Figure 6. Counties classified as exposed to Hurricane Ivan in 2004 under each exposure metric considered (Table 1). The red line shows the track of Hurricane
Ivan based on HURDAT?2. Similar maps for other large-extent storms are given in Figure S4.

2005; Noji 2005). As a result, these studies help improve disaster
preparedness and response (Noji 2005). However, tropical cyclo-
nes are multihazard events, making it complicated to measure ex-
posure and so to conduct multicommunity, multiyear studies
leveraging large administrative data sets. Here, we provide open-
source county-level data for several tropical cyclone exposures and
explore limitations in that data. Further, we explore patterns in
storm exposure classifications based on different metrics, and we
find that county-level tropical cyclone exposure assessments vary
substantially when using different metrics. Our results can inform
exposure assessment for future county-level studies of the health
risk and impacts associated with tropical cyclones exposure as well
as provide insights to inform epidemiological study design.

Exposure Assessment Data and Software

The open-source data generally correspond well with data from
other potential sources (Figures 2—4), but there are caveats. The
rainfall data are generally well-correlated with ground-based
observations but may sometimes underestimate very high rainfall
values (Figure 2), and in some counties the correlation was sub-
stantially lower when considering only tropical cyclones with cu-
mulative local rainfall of >75 mm (Table S2). When rainfall data
are used to create binary exposure classifications, this disagree-
ment is unlikely to influence results because both data sources
agree in identifying these as storms with high rainfall, but this
disagreement would be important to consider for cases that
include rainfall as a continuous measurement.

The peak sustained wind estimates are based on modeled,
rather than observed, values, and although the modeled wind data
generally agree well (Figure 3) with postanalysis maximum wind
radii (Landsea and Franklin 2013), there were a few storms with
some discrepancies. These storms (e.g., Hurricane Sandy in 2012
and Hurricane Ike in 2008) were unusually large systems for
which high winds persisted well inland from landfall (Figures 3
and S2).

For the flooding data, we found that flood event status as deter-
mined based on the NOAA Storm Events listings typically agreed
with measurements from USGS streamgages, with a flood event
more likely to be listed if a storm elevated streamflow at stream-
gages across the county (Figure 4). However, there are differences
between the two flooding data sets, and these differences highlight
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both the difficulty of measuring flood exposure at the county level
and inherent challenges in using data from a storm event database
for epidemiological exposure assessment. For example, there was
one storm in Fulton County, Georgia, for which there was high
streamflow but not an associated flood event listing (Hurricane Ida
in 2009). This storm occurred in November 2009, following a
month with historic rainfall and flooding in Georgia (Shepherd
etal. 2011). In this case, the flooding associated with Ida was incor-
porated into an ongoing flood event listing, with a start date well
before the 5-d window we used to temporally match storm-event
listings with tropical cyclone tracks for our data.

This disagreement highlights the difficulty of large-scale pair-
ing of storm tracks with storm event listings; without criteria for
temporally matching event start dates to storm dates, many false
positives would be captured, for which the occurrence of a storm
during an ongoing event might be improperly attributed to the
storm. However, distance and time restrictions like those we used
in matching NOAA Storm Event listings with tropical cyclone
locations and dates do cause occasional false negatives, as for
Hurricane Ida in Fulton County, Georgia, where a storm contrib-
utes meaningfully to an ongoing event, but the event is not cap-
tured for the storm in the exposure data because its start date is
not close in time to the storm’s date.

There are further limitations for the flood and tornado data.
These data came from the NOAA Storm Events database, which,
although it is a widely used database of events maintained by
NOAA, is based on reports and therefore may be prone to under-
reporting (Ashley and Ashley 2008; Curran et al. 2000), espe-
cially in sparsely populated areas (Witt et al. 1998; Ashley 2007),
and to other reporting errors.

Although these aspects are important caveats for the data, we
selected these data sources as among the best currently available
for measuring each of these hazards consistently and comprehen-
sively at a multicounty, multiyear scale. In addition to providing
tropical cyclone exposure metrics for individual hazards, this
data set and its associated software allow users not only to access
measurements for single hazards, but also to create tropical
cyclone exposure profiles based on multiple hazards or to craft
exposure indices that combine hazard metrics (Chakraborty et al.
2005; Peduzzi et al. 2009). This functionality can be critical,
because different hazards of tropical cyclones can act synergisti-
cally in causing impacts (Smith and Petley 2009).
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Figure 7. Agreement between exposure classifications based on different single-hazard exposure metrics for all storms between 1996 and 2011 for which at
least 100 counties were exposed based on at least one metric. Each row shows one storm, and the color of each cell shows the measured Jaccard index for each
pair of exposure metrics (proportion of counties classified as exposed by both metrics out of counties classified as exposed by either metric). For Grace in 2003
and Ida in 2009, there were no county exposures for either the tornado-based metric or the wind-based metric (indicated by gray squares). Colors to the right
of the heatmap show the number of exposed counties based on any of the metrics, and this panel is linked with the color scale labeled “# of counties exposed
by any metric.” Storms are displayed within clusters that have similar patterns based on hierarchical clustering.

This data set is limited to the contiguous United States, and
although expansion to global coverage would be useful and feasi-
ble, there would be some challenges. The key challenge would be
for tornado and flood events. For these events, the data described
in this paper drew on a U.S.-focused storm events database, and
international extension of data on these hazards would require
access to similar databases covering other countries. For precipi-
tation data, whereas the reanalysis product used here (NLDAS-2)
only covers the contiguous United States, other reanalysis prod-
ucts, as well as other types of precipitation data sets, have global
coverage (Sun et al. 2018), including the National Aeronautics and
Space Administration (NASA) Global Land Data Assimilation
System Version 2 (GLDAS-2; Rodell et al. 2004), the Global
Precipitation Measurement Mission (GPM), and the Tropical
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Rainfall Measuring Mission (TRMM). The wind data are gener-
ated based on a model that is currently U.S.-focused (Anderson
et al. 2020c) but could be extended to other areas, although such
extension would require adding new land/sea masks within the
associated software, as well as accounting for differences across
storm basins in wind averaging periods (Harper et al. 2010).
Further, because the core of the wind model was developed based
on data from Atlantic-basin storms (Willoughby et al. 2006), an
extension to other areas should include separate validation and cal-
ibration to ensure it performs appropriately in those settings.
Alternatively, other wind field modeling software is available that
provides a global coverage, such as Geoscience Australia’s
Tropical Cyclone Risk Model (http://geoscienceaustralia.github.
io/tcrm/). Finally, the relevant geopolitical boundaries to use for
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aggregation would vary by country (e.g., municipalities in Mexico,
districts in India).

The data set we present focuses on the physical hazards of a
tropical cyclone. However, health impacts will often come
through indirect pathways, including through damage to property
and infrastructure. In future work, it would be useful to expand
this data set to add data related to these pathways to allow
research exploring the role of indirect pathways from tropical
cyclone physical hazards to health risk. This expansion could
include adding data on normalized storm-associated damages, or
proxy measurements of such damages, from sources like the
NOAA'’s Storm Events database and the U.S. Federal Emergency
Management Agency’s county-level disaster declarations.

Patterns in Tropical Cyclone Exposures

We found average exposures to different tropical cyclone hazards
differed geographically (Figure 5). These patterns were not unex-
pected based on what is known about tropical cyclone hazards
but still highlight variations that are critical to consider in design-
ing studies and statistical analyses for tropical cyclone epidemiol-
ogy. Further, they demonstrate the need for multihazard exposure
data sets for tropical cyclone epidemiology, especially in captur-
ing inland risks.

Tropical cyclone wind exposures had a strong coastal pattern,
which is consistent with the dramatic decrease in wind intensity
that typically characterizes the landfall of tropical cyclones.
Tropical cyclone rain exposures tended to extend further inland in
comparison with those of wind exposures up to the Appalachian
mountains. This finding agrees with previous research indicating
that the Appalachian mountains’ topography both enhances precip-
itation during tropical cyclones and provides hydrological condi-
tions for severe flooding (Sturdevant-Rees et al. 2001). Almost all
tropical cyclone tornado exposures were in southern coastal states,
consistent with previous evidence that tropical cyclone-related tor-
nadoes typically occur to the right of tropical cyclone tracks in
Atlantic-basin U.S. storms (Moore and Dixon 2012). It is impor-
tant to note, however, that the exposure averages we calculated
may be limited as estimates of long-term frequencies, because
tropical cyclones follow decadal patterns (Kossin and Vimont
2007) that may not adequately captured in the available data.

Agreement between Exposure Metrics

We found that tropical cyclones tended to bring different hazards
to different counties, so agreement was typically low between
distance-based tropical cyclone exposure assessment and each of
the single hazard-specific exposures, as well as between pairs of
hazard-specific metrics (Figures 67 and S4). These findings align
with previous results from atmospheric science and related fields
on the characteristics of tropical cyclones. Although tropical
cyclone rainfall and windspeed can be well-correlated when the
tropical cyclone is over water (Cerveny and Newman 2000), this
relationship often weakens once the hurricane has made landfall
(Jiang et al. 2008). Fast-moving tropical cyclones heighten risk of
dangerous winds inland (Kruk et al. 2010), whereas slow-moving
tropical cyclones are likely to bring more rain (Rappaport 2000)
and may cause more damage because of sustained hazardous con-
ditions (Rezapour and Baldock 2014). Further, although the likeli-
hood and extent of flooding during a tropical cyclone is related to
the tropical cyclone’s rainfall, it is also driven by factors like top
soil saturation and the structure of the water basin’s drainage net-
work (Chen et al. 2015; Sturdevant-Rees et al. 2001).

Based on our results, the use of a distance-based metric to
assess exposure to any of these hazards, or the use of measurements
from one hazard as a proxy for exposure to any of the other hazards
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considered, would often introduce exposure misclassification
(Figure 7, Tables S3—S6). This conclusion reinforces similar find-
ings from a study of Florida’s 2004 storm season (Grabich et al.
2015a). For some studies, such exposure misclassification might
plausibly be differential. For example, tropical cyclone wind expo-
sures tend to be concentrated in counties near the coast, whereas
tropical cyclone rain exposures sometimes extend well inland. If
the etiologically relevant exposure for a health outcome is extreme
rainfall but exposure is classified based on measurements of wind,
the probability of being misclassified as unexposed would be
higher in inland counties, whereas the probability of being misclas-
sified as exposed would be higher in coastal counties. If coastal
counties differ from inland counties in either the outcome of inter-
est or in factors associated with risk of that outcome, exposure mis-
classification would be differential (Savitz and Wellenius 2016).
Such differential exposure misclassification could bias estimates of
tropical cyclone effects either towards the null (estimating a lower
or null association compared to the true association that exists) or
away from the null (estimating a larger association than actually
exists) (Savitz and Wellenius 2016; Armstrong 1998).

We did find a small set of tropical cyclones for which for which
agreement was high across several single-hazard exposure assess-
ments [e.g., Hurricane Floyd in 1999, Irene in 2011, Hannah in
2008, Bertha in 1996; Ernesto in 2006 (Figure 7)]. Hurricanes
Floyd in 1999 and Irene in 2011 both made their first U.S. landfall
in North Carolina at minor hurricane intensity (Category 2 and 1,
respectively) and then skimmed the eastern coast of the United
States north through New England, bringing substantial rainfall to
much of the eastern coast from North Carolina north and causing
extensive inland flooding in North Carolina (Floyd) and New
England (Irene) (Avila and Stewart 2013; Lawrence et al. 2000).
Hurricanes Hannah in 2008, Bertha in 1996, and Ernesto in 2006
also followed the eastern coastline. For these storms, the tropical
cyclones’ persistent proximity to water may have helped maintain
wind speeds in similar patterns to rain and distance-based expo-
sures, resulting in more similarities across exposure assessments in
comparison with those of other tropical cyclones. For these storms,
it may be possible to assess exposure to multiple hazards of the
storm using a single metric, perhaps even a proxy like the distance
between the county and the storm’s track. With the data set we
describe in this paper, however, there is little need to limit analysis
based on exposure to a single hazard or proxy, although multiha-
zard studies of storms with high agreement among hazard expo-
sures should look out for modeling issues from multicollinearity.
Further, for these storms it may be difficult to untangle the contri-
bution of each hazard to the overall effect of the storm, given that
several hazards have similar geographical patterns.

Limitations

The data set presented here does have several limitations, in addi-
tion to the caveats previously discussed. First, the data set is not
comprehensive of all tropical cyclone hazards. For example,
coastal counties can experience dangerous storm surge, which is
not specifically covered in this data set (although some resulting
coastal flooding is captured). We are exploring ways to include
this in future versions of the data set, but to date we have focused
on exposures that could affect any county, whether inland or
coastal.

Second, these data are aggregated to the county level. This
spatial scale allows for easy integration with health outcome data
aggregated at the county level, and disaster response decisions
are often made at a county or state level. Such data are often used
for disaster epidemiology, because aggregated data may be easier
to access than individual-level data, especially at a scale that cov-
ers many locations and years and therefore allow higher statistical
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power and include a broader range of exposure levels (Wakefield
and Haneuse 2008).

Such ecological exposure assessment, however, sets a com-
mon exposure level throughout the county, ignoring within-
county variability, even though such variability exists. For some
hazards, this within-county variation could be stark. For example,
tornadoes cause very localized damage, directly along the torna-
do’s path; a tornado can destroy homes on one side of a street but
leave those on the opposite side untouched. Levels of other haz-
ards, like storm-associated winds and rain, will also vary within a
county but typically with smoother variation. In particular, it will
be unlikely that a county will have one area that is exposed to
extremes of these hazards but have other parts of the county that
are completely unexposed, because both the wind fields and rain
fields of tropical cyclones tend to be large in comparison with the
size of a county.

Aggregated data can be used to infer contextual-level associa-
tions—for example, the association between county-level expo-
sure to a storm hazard and countywide rates of a health outcome.
However, ecological data are also sometimes used to infer
individual-level associations (e.g., the association between perso-
nal exposure to a storm hazard and personal risk of experiencing
the health outcome). Individual-level inference from ecological/
aggregated data is susceptible to ecological bias (Greenland and
Robins 1994; Portnov et al. 2007; Idrovo 2011). Researchers
who use the data provided here for ecological studies with the
aim of making individual-level inferences should be aware of this
potential and could explore approaches for minimizing risk of ec-
ological bias (e.g., Wakefield and Haneuse 2008).

Further, although many health outcome data sets are aggre-
gated at this level, some may be aggregated at a finer spatial reso-
lution (e.g., census tract or ZIP code) or unaggregated (i.e., point
locations for each outcome). We have published the wind model
used to create this data set as its own open-source R package
(Anderson et al. 2020c), and it can be used to model storm-
associated winds at a finer spatial resolution; however, measure-
ments of other hazards cannot similarly be rescaled through tools
we provide.

Next, we provide these data and associated software tools through
R packages, and some experience in the R programming language is
required to make full use of them. However, R is currently a popular
programming language for environmental epidemiology, allowing
the data to reach a large audience, and we are exploring options to cre-
ate a web application using the Shiny platform to allow broader web-
based access of the data (Chang et al. 2019).

Last, to assess patterns and agreement for binary exposure
classifications, we have chosen one set of sensible thresholds for
binary classifications based on continuous metrics (rainfall, maxi-
mum sustained surface wind, and distance from the storm’s
track), but other thresholds would be reasonable depending on
hypothesized pathways for a given epidemiological study (Table
S1). Results and conclusions would differ somewhat with other
threshold choices. We have published code for this analysis
online (https://github.com/geanders/county_hurricane_exposure),
allowing other researchers to explore other threshold choices for
these analyses.

Conclusions

To conduct tropical cyclone epidemiological studies that span
multiple communities and storms, it is critical to have consistent
and comprehensive measurements of exposure to storm hazards.
Here we have created and shared a data set that provides these
data for counties in the United States over multiple years. Despite
some limitations in these data, they provide a powerful tool for
expanding tropical cyclone epidemiology studies to more
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extensively leverage existing administrative health data, allowing
researchers to investigate how these storms affect countywide
health risk. Further, this data set provides hazard measurements
that are comparable across communities and storms, allowing ep-
idemiological researchers to design studies to explore how health
risks are modified by characteristics of both the storms and the
communities that are hit. The data are given in an open- source
format, along with associated software tools, which allows them
to be freely used and allows others to explore all associated code
and to contribute additions through platforms like GitHub.

Based on our analysis shown in this paper, these data are typi-
cally in agreement with measurements from other sources of data
available to characterize storm-associated hazards (e.g., ground-
based monitors, streamgages, poststorm wind radii). However,
researchers who are planning to use the data should explore the
analyses presented in this paper to understand the strengths and
weaknesses of the data. Further, our results indicate that county-
level storm exposure is not well-characterized by the closest dis-
tance that a storm’s central track came to a county and that expo-
sure to one storm hazard within a county (e.g., severe winds)
does not imply exposure to other hazards (e.g., excessive rainfall,
flooding). As a result, it is critical that researchers consider which
storm hazards are likely on the causal pathway for the outcomes
they are studying and that researchers characterize storm expo-
sure in a way that captures those specific hazards to avoid expo-
sure misclassification.
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