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ABSTRACT 
 
 
 

ECOLOGICALLY-FOCUSED CALIBRATION OF HYDROLOGICAL MODELS FOR 

ENVIRONMENTAL FLOW APPLICATIONS 

 
 

 Hydrologic alteration resulting from watershed urbanization is a common cause of 

aquatic ecosystem degradation. Developing environmental flow criteria for managing the effects 

of urbanization and other human influences requires quantitative flow-ecology relationships that 

link biological responses to streamflow alteration. To the extent possible, gaged flow data are 

used; however, bioassessment sites are frequently ungaged and hydrological models must be 

used to characterize flow alteration. Physically-based rainfall-runoff models typically utilize a 

“best overall fit” calibration criterion, such as the Nash-Sutcliffe Efficiency (NSE), that does not 

focus on specific aspects of the flow regime relevant to biotic endpoints. This study aims to 

identify how accurately coastal southern California rainfall-runoff models can be calibrated 

using specific elements of the flow regime known a priori to be critical to benthic 

macroinvertebrates (ecologically-focused) versus a traditional best overall fit criterion. 

Additionally, this study seeks to assess the utility of ecologically-focused calibrated models by 

comparing flow metric accuracy and the strength of flow-ecology relationships among different 

calibration approaches versus gage data. 

 For this study, continuous HEC-HMS 4.0 models were created for 19 coastal southern 

California watersheds and calibrated to USGS streamflow gages with nearby bioassessment sites 

using one best overall fit and three ecologically-focused criteria: NSE, Richards-Baker 

Flashiness Index (RBI), percent of time when the flow is < 28 L/s (< 1 cfs), and a Combined 
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Calibration (RBI and < 1 cfs), respectively. Ecologically-focused criteria were selected based on 

preliminary statistical flow-ecology relationships at gaged bioassessment sites. Calibrated 

models were compared using flow metric accuracy relative to gage data and the strength of flow-

ecology relationships. Models were highly accurately calibrated to ecologically-focused criteria, 

with calibration median percent errors less than 1.5% and only a single model with a percent 

error greater than 10%, and NSE criteria, with a median value of 0.634. Regardless of high 

calibration accuracy for ecologically-focused models, additional flow metrics not explicitly 

calibrated, especially those describing magnitude or rise and fall rates at aggregated daily time 

scales, were not consistently reproduced by models. Despite inaccuracies across a full suite of 71 

flow metrics, low flow and flashiness metrics relevant to biotic endpoints were modeled 

accurately (< 20% error) and often provided stronger flow-ecology relationships than best overall 

fit criteria in terms of adjusted R2 in multiple regression analyses and variance explained in 

random forest modeling. This was especially true when two ecologically-focused criteria were 

combined, suggesting the importance of multiple calibration criteria. Flow metrics from the 

Combined Calibration provided the strongest flow-ecology models in correlation and regression 

analyses compared to the other three calibration approaches, and perform similarly in random 

forest models. This study demonstrates that if ecologically relevant flow metrics can be 

identified using published literature or preliminary statistical analyses of gaged bioassessment 

sites prior to developing a hydrologic foundation, they can be incorporated as calibration criteria 

and provide stronger modeled flow-ecology relationships than exclusive use of a best overall fit 

criterion. 
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CHAPTER 1: INTRODUCTION 
 
 
 

 Stream biota are fundamentally influenced by flow variability, a key control and indicator 

of ecosystem health (Poff et al., 1997; Bunn and Arthington, 2002). Watershed land uses such as 

urbanization, agriculture, dams, and diversions have significantly modified flow regimes in 

streams around the world (Poff et al., 1997; Walsh et al., 2005; Konrad and Booth, 2005; Poff et 

al., 2006a; Poff et al., 2007). These human influences produce a wide variety of ecosystem 

responses, including water quality degradation, habitat loss, and increases of invasive species, 

but many can be traced back to flow alteration as an important causal factor (Jacobson et al., 

2001; Bunn and Arthington, 2002; Konrad and Booth, 2005; Poff et al., 2006a). This 

understanding has led to the development of environmental flow criteria frameworks, such as the 

Ecological Limits of Hydrologic Alteration (ELOHA; Poff et al., 2010), in which streamflow 

management objectives can be developed to support conservation of aquatic biota in the midst of 

regional hydrologic alteration.  

 Coastal southern California provides an excellent opportunity for the development of 

environmental flow criteria using the ELOHA framework given the extent of land use changes 

and subsequent streamflow alterations that have occurred. Hydromodification, defined as 

changes in channel form associated with streamflow and sediment alterations due to land use 

change (Stein et al., 2012), caused by urbanization has altered the flow and sediment regimes of 

streams throughout coastal southern California, prompting the recommendation of the ELOHA 

framework as a method for mitigating regional hydrologic alteration (Stein et al., 2012). 

Urbanization will further expand as California anticipates a 33% increase in population by 2060 

to over 51 million residents (CA Dept. of Finance, 2014) with urban growth outpacing the 
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overall US average (U.S. Census Bureau, 2012). Rapid urbanization has been shown to 

significantly increase the magnitude and duration of flows in coastal southern California streams 

(Hawley and Bledsoe, 2011). Land use change has also transformed California into the largest 

agricultural state in country (USDA, 2015). Streams in the region vary from small, ephemeral 

arroyos to large, fully-perennial rivers, and experience diverse ranges of urbanization influence. 

Despite the extent of the human footprint in coastal southern California, there hasn’t been a 

formal effort to link flow alteration and the biological status of streams within an environmental 

streamflow framework. Previous studies of identifying significant associations between 

invertebrates and flow characteristics bode well for such an effort (Gasith and Resh, 1999; 

Eberhart, 2014).   

Establishing a hydrologic foundation and flow-ecology relationships between streamflow 

departures and biological indicators such as benthic macroinvertebrates, fishes, algae, or riparian 

vegetation is fundamental to the development of environmental flow criteria in the ELOHA 

framework (Poff et al., 2010).  A regional hydrologic foundation requires the generation of pre- 

and post-alteration streamflow statistics (hereafter referred to as flow metrics), such as mean 

October flow or number of days per year with no flow, over some period at sites with biological 

data in order to assess the influence of flow departures on stream biota. Preliminary flow-

ecology hypotheses are often developed from literature and expert opinion prior to statistical 

testing using streamflow data at gaged bioassessment sites (Konrad et al., 2008; Poff et al., 2010; 

Kendy et al., 2012; Kennen et al., 2013). The ELOHA framework suggests developing testable 

flow-ecology hypotheses independent of the hydrologic foundation using descriptive streamflow 

metrics that likely have a mechanistic relationship with biota and are amenable to management 

(Poff et al., 2010).  
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 Within the context of environmental flow criteria development, hydrologic modeling, 

such as rainfall-runoff modeling, is often used to predict streamflow at bioassessment sites where 

no observable streamflow data exist (Poff et al., 2010). In the US, streamflow gages are sparse 

and biased toward larger rivers with 95% of streams containing less than 3% of streamflow 

gages.  Furthermore, greater than 93% of US stream lengths are described by less than 1/3 of 

streamflow gages (Poff et al., 2006a). Physically-based models can be used to predict flow at any 

point in a stream network based on precipitation data, watershed characteristics, and calibration 

to observed streamflow data. Furthermore, continuous simulations using rainfall-runoff models 

have the advantage of producing time-series of discharge data at many temporal resolutions, 

from which any flow characteristic can be described statistically, given a long enough time-

series. These continuous, physically-based rainfall-runoff models are often more robust in 

characterizing human influences such as urbanization because they directly represent changes in 

infiltration and other hydrologic processes, as opposed to using coarse surrogates such as 

“percent urban land use” that are typically used in statistical or regression models. This aspect 

also makes physically-based models more flexible in depicting management scenarios that focus 

on changing specific hydrologic processes, as opposed to gross categories of land use. 

 Calibration of hydrologic models is a common approach in which data limitations prevent 

direct calculation of some parameters, and so they are adjusted to improve accuracy according to 

observed streamflow data. For a hydrologic foundation, accurately calibrated models can help 

ensure fidelity to highly variable streamflow behavior, otherwise causal linkages between flow 

and biological response may be missed. Rainfall-runoff model calibration is almost always 

performed using “best overall fit” performance measures, such as the Nash-Sutcliffe Efficiency 

(NSE; Nash and Sutcliffe, 1970) or error variance, despite their known bias towards large flows, 
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disregard for timing, and residual autocorrelation (Beven, 2012; Blosch et al., 2013), and 

inability to capture flow metrics of biological interest, such as the seven-day minimum flow and 

timing of annual minimum runoff (Cassin et al., 2005; Vis et al., 2015). Rainfall-runoff models 

calibrated to only one criterion have been shown to be less likely to accurately predict a range of 

ecological flow characteristics (Murphy et al., 2013; Vis et al., 2015). Beven and Binley (1992) 

argue that rainfall-runoff models should be created for only specific purposes, which should be 

known a priori and kept in mind when applying the model outputs. Likewise, it has been 

suggested that prior selection of ecologically relevant streamflow characteristics and targeted 

calibration can improve the application of hydrologic models in ecological flow studies (Cassin 

et al., 2005; Murphy et al., 2013); however, this has not been tested to my knowledge. For the 

purpose of developing environmental flow criteria, a more robust approach to hydrologic model 

calibration is needed—one focused on elements of the flow regime known to be important to 

biological endpoints using prior knowledge of flow-ecology relationships—such that a modeled 

hydrologic foundation is more relevant to manageable biotic endpoints. 

 The creation of an accurate hydrologic foundation is crucial for establishing 

environmental flow criteria and flow-ecology relationships in the wake of urbanization in coastal 

southern California, a method that has been recommended for combatting hydromodification in 

the region (Stein et al., 2012). These issues pose the primary research problem of my study: How 

can a regional set of physically-based rainfall-runoff models be created and calibrated to resolve 

critical elements of human-induced hydrologic alteration across gradients of flow intermittency 

and urbanization using prior knowledge of regional flow-ecology relationships for benthic 

macroinvertebrates for application as a hydrologic foundation? In this study, the feasibility of 
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utilizing an “ecologically-focused” calibration approach at a sub-daily time scale in the 

development of a regional hydrologic foundation is explored. The specific objectives are to:  

1) Identify how accurately coastal southern California rainfall-runoff models can be 

calibrated using specific elements of the flow regime critical to benthic 

macroinvertebrates (ecologically-focused) versus traditional best overall fit criteria; 

2) Explore how best overall fit and ecologically-focused calibration methods affect the 

accuracy of rainfall-runoff models that will be used for a hydrologic foundation; and 

3) Compare how well hydrologic metrics derived from calibrated rainfall-runoff models 

explain variability in benthic macroinvertebrate assemblages versus metrics calculated 

directly from streamflow records at gaged sites. 

 In addressing these objectives, I will develop and describe a novel approach to creating 

hydrologic models that more accurately simulate key elements of the flow regime known to 

strongly influence regional benthic macroinvertebrate assemblages as compared to models 

calibrated based solely on overall fit criteria. To achieve the study objectives, flow 

characteristics known a priori to significantly shape biological assemblages in coastal Southern 

California (Eberhart, 2014) and the NSE were used as competing calibration criteria for 19 

locally-calibrated rainfall-runoff models with outlets at U.S. Geological Survey (USGS) 

streamflow gages matched to nearby bioassessment sites in coastal southern California. Flow 

metrics are computed from both gage data and rainfall-runoff models subjected to the differing 

calibration methods. Model results are then subjected to a statistical assessment of accuracy, and 

ultimately confronted with biological metrics calculated from nearby benthic macroinvertebrate 

bioassessment data to assess their relative explanatory power. 
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CHAPTER 2: BACKGROUND 
 
 
 

2.1 Natural and altered flow regimes 

 The ecological structure and function of streams is fundamentally controlled by multiple 

aspects of the flow regime including flow magnitude, frequency, duration, timing, and rate of 

change (Poff and Ward, 1989). These flow regime components directly influence numerous 

factors critical to ecological integrity such as water chemistry, geomorphic processes, habitat 

structure, and biological organization (Poff et al., 1997; Bunn and Arthington, 2002) making 

them the focus of many environmental flow frameworks (Poff et al., 2010). Natural flow regimes 

vary tremendously across US regions, ranging from perennial flows driven by seasonal rainfall 

variability in the humid southeast, to flashy ephemeral streams in the arid west, to relatively 

stable and predictable snowmelt-dominated systems at high elevations (Poff, 1996). Each of 

these regions contains biota adapted to the local flow regime. Based on this understanding, 

regional flow-ecology relationships and environmental flow criteria can be developed to 

incorporate aspects of the flow regime most critical to local flora and fauna (Poff et al., 2010). 

 The 20th and 21st centuries have been characterized by rapid land use and water resource 

infrastructure changes that have significantly altered natural flow regimes. Urbanization growth 

has been shown to increase the magnitude and frequency of large flows, which can incise, widen 

and enlarge channels (Booth, 1990; Bledsoe and Watson, 2001; Hawley et al., 2012). In attempts 

to prevent flooding and undesirable geomorphic adjustments in agricultural or urban areas, 

streams are often fixed in place with levees and channel armoring, which can lead to channel 

homogeneity, habitat loss and reduced interaction with riparian ecosystems. Presently, 

urbanization is perhaps the most ubiquitous driver of hydrologic alteration due to its rapid 
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increase at a global scale (Forman, 2008). Flashiness and low flow magnitudes and frequencies 

are known to be susceptible to urbanization as streams become flashier and baseflows may 

increase or decrease, often depending on the prevalence of effluent discharge and other factors 

(Walsh et al., 2005). In a southern California case study, the peak and duration of all sediment-

mobilizing flows increased in response to urbanization such that a typical watershed with 20% 

impervious area could increase the two year recurring flow six fold compared to areas with no 

imperviousness (Hawley and Bledsoe, 2011). Indeed, the direct and indirect effects of 

urbanization and other land use changes have been shown to affect all five elements of the 

natural flow regime (magnitude, frequency, duration, timing, and rate of change; Poff et al., 

1997). This poses a substantial problem for the many scientists, engineers, and managers 

working towards creating safe, functional urban water systems while simultaneously maintaining 

ecological integrity. The recent attention to environmental flow standards has generated a rapid 

increase in the numbers of studies focused on improving the ecological integrity of streams and 

watersheds through flow management (TNC, 2015). 

 Quantitative flow metrics describing regional hydrologic variability are often calculated 

from regional regression equations or time-series of streamflow data to compactly and 

statistically describe various elements of the flow regime. Time-series of streamflow data from 

gages or rainfall-runoff models are advantageous because they contain raw data from which 

numerous metrics may be calculated, while regional regression equations are calibrated to 

calculate only one specific metric. Software such as Indicators of Hydrologic Alteration (IHA; 

Richter et al., 1996), GeoTools (Bledsoe et al., 2007), and the Hydroecological Integrity 

Assessment Process’ National Hydrologic Assessment Tool (NATHAT; Henriksen et al., 2006) 

are frequently used to compute descriptive flow metrics.  
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 Additional metrics not computed with software packages that describe streamflow 

flashiness, such a TQmean (Konrad et al., 2005) and Richards-Baker Flashiness Index (RBI; Baker 

et al., 2004), are used in flow-ecology studies due to their known biological relevance in systems 

with variable streamflow regimes. The RBI is widely used (Baker et al., 2004): 

    � = ∑ |��+ −��|��=∑ ����=      Eqn. 2.1 

wherein Qt is the discharge at time t, Qt+1 is the discharge at time step after t, and T is the final 

time step. TQmean quantifies the fraction of time that flow exceeds the mean streamflow for a 

specific duration. RBI increases with flashiness; in contrast, the value of TQmean decreases as 

flashiness increases (Konrad et al., 2005). RBI is dependent on the temporal density of flows, so 

only values calculated at the same time step (e.g. hourly) can be compared for relative flashiness 

(Baker et al., 2004). 

 When time-series of streamflow data are used to compute flow metrics, traditionally 

resolutions of daily, weekly or even monthly time steps are used; however; such coarse temporal 

densities have proven ineffective in capturing flow-ecology relationships in North Carolina 

(Pomeroy et al., 2008) and in describing urbanization effects in North Carolina and Wisconsin 

(Knight and Cuffney, 2012), where 15-minute and hourly time steps, respectively, were more 

effective. The importance of data resolution for capturing streamflow alterations within 

hydropower ecohydrological studies has been specifically investigated recently and it was found 

that flow metrics taken from sub-daily data explain variation in hydrology among streams and 

provide more noticeable variation within streams than daily data for natural “run-of-river” and 

altered hydropower “peaking” flow regimes (Bevelhimer et al., 2014).  
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2.2 Benthic macroinvertebrates in environmental streamflow applications 

 Benthic macroinvertebrates are the most commonly used bioassessment endpoint for 

stream and watershed management and monitoring programs (Resh et al., 2006). Dating back to 

the early 20th century (Kolwitz and Marsson, 1909), they have been used as key indicators of 

water chemistry and aquatic habitat quality (Cairns and Pratt, 1993). The US EPA’s Rapid 

Bioassessment Protocol indicates most state water quality agencies that regularly survey 

biological data focus on benthic macroinvertebrates and recommends their use in monitoring 

because invertebrates represent highly localized site-specific regions of streams due to their 

immobile nature relative to other creatures such as birds and fish (Barbour et al., 1999). This is 

especially useful for establishing flow-ecology relationships when streamflow data are limited to 

sparsely distributed gage sites or specifically modeled locations in a stream network. Benthic 

macroinvertebrates serve critical ecosystem functions and comprise the foundation of food webs 

for many important fish and bird species. Collection and analysis of benthic macroinvertebrates 

is relatively simple, quick, and inexpensive compared to other measures of water quality, such as 

suites of chemical analyses (Barbour et al., 1999; Resh et al., 2006). Benthic macroinvertebrates 

are also appropriate for developing flow-ecology relationships and environmental flow criteria 

because they detectably respond to hydrologic alteration created by land use change (Konrad et 

al., 2008; Poff and Zimmerman, 2010; Kennen and Riskin, 2010; Kennen et al., 2010; Brooks et 

al., 2011; Kennen et al., 2013; Eberhart, 2014).  

 Previous flow-ecology studies utilizing benthic macroinvertebrates have shown increased 

stream flashiness associated with reduced biotic integrity in lowland streams of the US Pacific 

Northwest (Booth et al., 2004; Cassin et al., 2005) and reduced Ephemeroptera, Plecoptera, and 

Trichoptera (EPT) richness in Piedmont streams of the southeast US (Pomeroy et al., 2008). 
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Studies on the response of benthic macroinvertebrates to seasonal flows in Mediterranean 

regions, including coastal southern California and Europe, have revealed that assemblages are 

critically shaped by minimum flows and predictable drying events (Gasith and Resh, 1999; 

Datry, 2012; Belmar et al., 2013). Streamflow time-series of sub-daily time resolution have been 

shown to more accurately describe benthic macroinvertebrate assemblages (Helms et al., 2009), 

often specifically citing the relationship between stream flashiness and benthic 

macroinvertebrates (Cassin et al., 2005; Pomeroy et al., 2008; Bevelhimer et al., 2014); 

however, they have seldom been used in developing hydrologic foundations for environmental 

flow criteria studies (Cassin et al., 2005; Pomeroy et al., 2008). 

 In a study investigating the appropriate time period of a hydrologic foundation for 

ecohydrological studies, Kennard et al. (2010) recommend a duration long enough to sufficiently 

capture the hydrologic variability that shapes stream biotic assemblages, normally around 15 

years of daily streamflow data. For benthic macroinvertebrates specifically, flow metrics 

generated from both long-term (5 to 15 years) and short-term (30 to 100 days) periods prior to 

sampling have been shown to explain significant variation in invertebrate assemblages (Konrad 

et al., 2008). Historical ecohydrological studies involving benthic macroinvertebrates have 

focused on periods of streamflow data less than three years (Likens, 1984), with only 12% of 266 

selected research articles between 1980 and 1987 using durations greater than three years 

(McElravy, 1988). Other, more recent studies have found that a three year hydrologic record is 

adequate to describe regional benthic macroinvertebrate variability (Kennen et al., 2010; 

Eberhart, 2014). 
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2.3 Coastal southern California flow-ecology 

 Coastal southern California has a Mediterranean climate where streams are generally 

flashy, seasonal, and rapidly urbanizing (Gasith and Resh, 1999; Hawley and Bledsoe, 2011). 

Previous research indicates that stream flashiness, drying, and the duration of extreme low flows 

strongly influence benthic macroinvertebrates in coastal southern California (Gasith and Resh, 

1999; Zickovich and Bohonak, 2007; Eberhart, 2014). This study benefits from preliminary 

flow-ecology relationships established at USGS streamflow gages using nearby benthic 

macroinvertebrate bioassessment sites in the region (Eberhart, 2014). Statistical analyses indicate 

that the frequency of flows greater than 28 L/s (~1 cfs) and flashiness explain the most 

variability in a set of taxonomic and trait-based benthic macroinvertebrate metrics. The 28 L/s 

(~1 cfs) threshold was used in the preliminary study as a proxy for stream drying due to the 

sensitivity and uncertainty associated with measuring very small flows at USGS gages. In 

particular, percent richness of non-insect taxa, EPT taxa, shredders, taxa resilient to disturbance, 

taxa resistant to desiccation, and taxa resistant to sand-bed instability were significantly 

correlated (p = 0.1) with the percent of time above a low flow threshold. Flow flashiness was a 

significant predictor of a multi-metric index of biotic integrity specifically created for southern 

California (SC-IBI; Ode et al., 2005), shredder richness resilience to disturbance, and resistance 

to sand-bed instability traits (Eberhart, 2014).  In ELOHA-based and other environmental flow 

studies, it is fairly common to develop such preliminary flow-ecology relationships prior to the 

hydrologic foundation, especially through hypotheses; however, I could not identify any 

scientific literature documenting the use of a priori biological knowledge to guide hydrological 

model calibration for development of a hydrologic foundation beyond suggestions that it should 
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be explored (Cassin et al., 2005; Murphy et al., 2013). These principles highlight the primary 

rationale for this study.  

 Many ecohydrological studies utilize long records of streamflow, often around 15 years, 

to develop regional hydrologic foundations (Kennard et al., 2010); however, perhaps due to their 

relatively short life-cycles compared to other biota used to develop environmental flow criteria, 

such as fishes, some studies have concluded through sensitivity analyses that a three year 

streamflow record balances sufficient  representation of temporal hydrologic variability that 

shape benthic macroinvertebrate assemblages with data availability for a sufficient number of 

(Kennen et al., 2010; Eberhart, 2014). As aforementioned, sub-daily time steps are ideal for 

capturing the effects of urbanization and stream flashiness in coastal southern California and 

other flashy hydrologic settings; however, the tremendous data management and processing 

hurdle of using sub-daily data is demonstrated by some simple arithmetic: 15 years of daily data 

(15*365=5,475) contains nearly 5 times fewer data points than 3 years of hourly data 

(3*24*365=26,280). In order to accurately predict sub-daily streamflow using a rainfall-runoff 

model, sub-daily precipitation input data must be used. This again poses significant processing 

and management challenges, as most sub-daily precipitation data are not correctly formatted for 

rainfall-runoff models and must be carefully scrutinized for commonplace errors. These issues 

make it very laborious to incorporate sub-daily data into long-term regional hydrologic 

foundations, and are perhaps why sub-daily modeling has not been frequently pursued within the 

ELOHA framework. For these reasons, it seems appropriate to utilize a high resolution (hourly) 

hydrologic foundation, at the expense of a shorter than traditional duration (three yr) that has still 

produced flow metrics shown to be significant predictors of benthic macroinvertebrate metrics in 

coastal southern California and other regions for environment flow criteria development. 
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2.4 Rainfall-runoff modeling 

 Physically-based rainfall-runoff models simulate streamflow using rainfall data and 

mathematical equations representing simplified physical processes tracking water movement 

through a watershed. As a hydrologic foundation for flow-ecology studies, rainfall-runoff models 

may be used to predict time-series of streamflow and flow metrics at bioassessment sites (Poff et 

al., 2010). The use of physically-based and readily measureable or calculable parameters in 

rainfall-runoff models, such as the percent of basin area covered in impervious surfaces or time 

of concentration, make them an attractive option for directly characterizing human influences 

and management actions on streamflow through time. Parameters within rainfall-runoff models 

can be adjusted based on physical understanding to represent different land use and stormwater 

management scenarios. This allows for simple computation of hydrologic alteration using 

unaltered- and altered-condition parameter sets, and offers more flexible management options for 

environmental flow application due to an increased ability to describe hydrologic alteration and 

compare different management scenarios (Kendy et al., 2012).  

 Some rainfall-runoff models are designed so that all parameters can be estimated from 

field-collected data. Manually measuring all parameters can be a very resource intensive process; 

thus, rainfall-runoff models are commonly calibrated using existing streamflow gage data 

(Beven, 2012). When performed responsibly, calibration provides a sound method for improving 

the performance of rainfall-runoff models. In practice, calibration involves automatically or 

manually altering model parameters until one or more goodness of fit criteria are satisfied. 

Unfortunately, calibration criteria used in flow-ecology studies are not often described in a 

transparent manner in the hydrologic literature. In studies that do report calibration methods, a 
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single best overall fit criterion, such NSE (Nash and Sutcliffe, 1970), is most often used for 

calibration (Jain and Sudheer, 2008; Beven, 2012; Bloschl et al., 2013; Vis et al., 2015).  

 The NSE has become one of the most widely-used criteria for calibrating rainfall-runoff 

models, despite evidence showing high values of NSE (> 0.5) can be obtained even when the fit 

is relatively poor and vice-versa (Jain and Sudheer, 2008). These problems arise when the 

variance of streamflow values is large, leading to relatively larger residuals for high flows and 

resulting in bias fit emphasizing high flows. By definition, NSE assesses the accuracy of a model 

prediction relative to the observed mean flow during the model duration, such that a modeled 

time series containing only the observed mean flow repeated for every time step would have an 

efficiency of zero (Nash and Sutcliffe, 1970). The worst possible NSE value is negative infinity, 

while a perfect model that identically matches the observed discharges has an NSE of one. The 

formula for NSE, as defined by Nash and Sutcliffe (1970), is: 

    = − ∑ (��� −��� )��=∑ (��� −��̅̅ ̅̅ )��=     Eqn. 2.2 

wherein ̅̅̅̅  is the mean of observed discharges, Qm
t is the modeled discharge at time t, Qo

t is the 

observed discharge at time t, and T is the final time step. By definition, NSE does not explicitly 

incorporate model accuracy for different elements of the flow regime. In many stream 

management applications model accuracy of key aspects of the flow regime, such as summer 

baseflow for sensitive biota or peaks for flood planning, are much more critical than overall 

accuracy relative to the mean flow (Beven and Binley, 1992; Cassin et al., 2005). Rainfall-runoff 

models calibrated to only one criterion, such as NSE, are less likely to accurately predict a range 

of ecological flow characteristics (Murphy et al., 2013; Vis et al., 2015), and the use of multiple 

calibration criteria is recommended for more robust calibration (Gupta et al., 2008). The 

accuracy of ecologically relevant metrics vary with different best overall fit criteria (Vis et al., 
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2015). In order to establish a useful hydrologic foundation for developing flow-ecology 

relationships, modeled ecological flow metrics specifically relevant to regional bioassessment 

endpoints need to be accurate. 

 For the foregoing reasons, more rigorous calibration and testing approaches are needed to 

generate accurate and ecologically relevant streamflow predictions in regional environmental 

flow studies. Prior knowledge often exists regarding the influence of key flow alterations on the 

ecological response of regional streams (Resh et al., 1988). If flow metrics that substantially 

influence biological endpoints can be hypothesized or statistically demonstrated early in the 

process of developing environmental flow criteria, they could also be incorporated as guidelines 

for calibration of rainfall-runoff models that are accurate for the most flow regime elements that 

most affect the stream biota of interest. It is unknown how much the accuracy of rainfall-runoff 

models could improve when calibrated specifically for the most ecologically relevant 

components of the flow regime. Furthermore, I have not seen a previous study that compares the 

extent of variability in regional benthic macroinvertebrate assemblage data explained by 

calibrated rainfall-runoff models versus gage data.  
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CHAPTER 3: METHODS 
 
 
 

3.1 Study area 

 This study utilizes 25 benthic macroinvertebrate bioassessment sites sampled under the 

Surface Water Ambient Monitoring Program (SWAMP) and the Southern California Stormwater 

Monitoring Coalition (SMC), and 19 sub-daily USGS streamflow gages in the coastal southern 

California region. To establish preliminary flow-ecology relationships, each of the bioassessment 

sites used in this study was matched to 14 of the sub-daily USGS streamflow gages such that the 

flow regime at each bioassessment site is represented by a nearby sub-daily streamflow gage that 

meets criteria detailed in Eberhart (2014). In six instances, multiple bioassessment sites on the 

same stream were matched to a single streamflow gage. To bolster the regional hydrologic 

foundation developed in this study, five streamflow gages were included without available 

matched bioassessment data; however, benthic macroinvertebrate samples have been collected or 

are planned near these five gage sites. The 25 bioassessment and 19 stream gage sites are shown 

in Figure 3.1. 
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Figure 3.1: Coastal southern California study area in which circles represent streamflow gage location and each star 
indicates a bioassessment site. 

 

 The study area encompasses coastal regions of San Diego, Riverside, Orange, San 

Bernardino, and Los Angeles Counties, with some basin boundaries extending into Ventura 

County. The area is bounded by the Transverse Ranges to the north, Mexico to the south, the 

Peninsular Ranges to the east, and the Pacific Ocean to the west. Sites are characterized as the 
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“south coast” California hydrologic region (Gotvald et al., 2012), and fall within the southern 

and Baja California pine-oak mountains, and California coastal sage, chaparral, and oak 

woodlands Level III ecoregions (EPA, 2014).  

 The climate of the study area is Mediterranean with hot, dry summers and mild, wet 

winters. Wildfires are fairly common in the summer. Stream types include perennial, 

intermittent, and ephemeral with both sand-dominated and gravel/cobble-dominated substrates. 

The study region spans a broad gradient of urbanization intensity with percent impervious 

surfaces within streamflow gage contributing areas ranging from 0 - 27% (Fry et al., 2011). 

Streams vary from minimally impacted by contemporary human land uses to engineered 

stormwater channels that are fully encased concrete. 

 In addition to the matching criteria provided by Eberhart (2014), study sites were chosen 

to represent the heterogeneity of coastal southern California. The contributing watershed area for 

each site ranges from 23.2 km2 to 1718 km2 with streamflow gage elevations ranging from 6.1 m 

to 930 m. Average basin slopes range from 14 - 57% while average annual precipitation ranges 

from 39 - 78 cm (Falcone, 2011). Additional basin characteristics for the 19 USGS streamflow 

gages are provided (Table 3.1). 

Table 3.1: Range of basin characteristics for the 19 USGS gages. 

Characteristic Minimum (USGS Gage) Maximum (Gage) Source 
Basin Area (km2) 22.4 (10259000 Andreas) 1873 (11070500 San Jacinto) Falcone, 2011 

Mean Basin Elevation (m) 262 (11023340 Poway) 1787 (10260500 Deep Creek) Falcone, 2011 

Average Basin Slope (%) 14 (11092450 Los Angeles) 57 (11098000 Arroyo Seco) Falcone, 2011 

Average Annual Precipitation (cm) 39.0 (11023340 Poway) 78.4 (11098000 Arroyo Seco) Falcone, 2011 

Average Sand Content (%) 33 (11047300 Arroyo Trabuco) 64 (10260500 Deep Creek) Falcone, 2011 

Average Silt Content (%) 24 (10260500 Deep Creek) 48 (11098000 Arroyo Seco) Falcone, 2011 

Average Clay Content (%) 10 (10259000 Andreas) 25 (11047300 Arroyo Trabuco) Falcone, 2011 

Imperviousness (%) 0 (10259000 Andreas) 27 (11092450 Los Angeles) Fry et al., 2011 

Time with no flow (%) 0 (Ten gages) 68 (11014000 Jamul) USGS, 2014; 
USGS, 2015 
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3.2 Creation of rainfall-runoff models 

 For the 19 sub-daily USGS streamflow gage locations (Figure 3.1), rainfall-runoff 

models were created using the newest version of the Hydrologic Modeling System developed by 

the US Army Corps of Engineer’s Hydrologic Engineering Center (HEC-HMS Version 4.0; 

Hydrologic Engineering Center, 2013). Creation of the HEC-HMS rainfall-runoff models is the 

first step in establishing the regional hydrologic foundation. These rainfall-runoff models 

produce sub-daily time series of discharge specifically at gage locations, which provide 

observable streamflow data to use for model calibration. A unique HEC-HMS model was created 

for each of the 19 gaged locations such that each model contains only the drainage area of each 

gage and simulates flow only at the streamflow gage located at the outlet. HEC-HMS is 

commonly used by practitioners in modeling and designing urban best management practices and 

is regarded as an industry standard modeling platform. Furthermore, HEC-HMS was chosen due 

to its on-going development, facility in performing sub-hourly, long-term continuous simulations 

with relatively few parameters (Hydrologic Engineering Center, 2013), approval by FEMA 

(Federal Emergency Management Agency, 2013), and public availability.   

 

3.2.1 Data resolution and duration 

 To resolve ecologically important streamflow flashiness and the effects of urbanization, 

the 19 HEC-HMS models were set up to run at an hourly time step. Some input data, including 

gaged streamflow and some precipitation, were input at a 15 minute time density; however, 

model computations were performed at hourly time steps. Models could not be accurately run at 

the 15 minute time scale because hourly precipitation data were the finest temporal density 
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available at many locations. Each model outputs an hourly time series of flow, which can be 

aggregated to daily data.  

 A regional hydrologic foundation developed for ecohydrological studies should span a 

duration that sufficiently represents the hydrologic variability that shapes biological endpoints 

(Kennard et al. 2010). Recent studies have suggested that three years is adequate for benthic 

macroinvertebrates in coastal southern California (Eberhart, 2014) and New Jersey (Kennen et 

al., 2010); however, three years is much shorter than the typical hydrologic foundation used for 

ecohydrologic studies (Kennard et al., 2010). A three year, hourly hydrologic foundation was 

utilized in this study. To control for climatic variability to the extent possible, all 19 models were 

created for the same time period, specifically water years (WY) 2005 - 2007. This period is 

represented by relatively abundant and high quality streamflow and precipitation data and 

characterizes regional hydrologic variability by including a wet, average, and dry year (Figure 

3.2).  

 

Figure 3.2: Total precipitation volume by water year for the South Coast Region of California (WRCC, 2015). WY 2005-
2007 boxed in yellow to show the hydrologic variability of models is covered by a wet, average, and dry water year. 

 



21 

 

3.2.2 HEC-HMS model inputs 

 HEC-HMS and other rainfall-runoff simulation models utilize input parameters and 

mathematical relationships to convert rainfall input to streamflow output. Methods applicable to 

continuous models that can simulate long periods of no rainfall are needed for the three year 

models used in this study. To simulate infiltration losses, the simple canopy, simple surface, and 

deficit and constant loss methods were used. The Clark Unit Hydrograph technique was used to 

transform excess precipitation to surface runoff, while the linear reservoir method with two 

layers was used to represent baseflow contributions. Each of these methods contain a series of 

parameters, some of which are calculated directly from unique characteristics of each basin and 

others that are calibrated. Table 3.2 depicts the input methods and parameters used for the 19 

models and indicates which parameters were calibrated versus calculated directly. 

Table 3.2: HEC-HMS input methods and parameters wherein bold parameters were calculated directly and all others 
were calibrated. 

Method Parameters 

Simple Canopy 
 Maximum Storage (in)  Initial Storage (%) 

Simple Surface 
 Maximum Storage (in)  Initial Storage (%) 

Deficit and Constant (Loss) 

 Initial Deficit (in)  Maximum Deficit (in)  Constant Rate (in/hr)  Imperviousness (%) 

Clark Unit Hydrograph (Transform)  Time of Concentration (hr)  Storage Coefficient (hr) 

Linear Reservoir (Baseflow) 

 Ground Water (GW) 1 Initial Discharge (cfs)  GW 1 Storage Coefficient (hr)  # of GW 1 Reservoirs  GW 2 Initial Discharge (cfs)  GW 2 Storage Coefficient (in)  # of GW 2 Reservoirs 

 

 To facilitate direct estimation of model parameters based on the unique characteristics of 

each basin, the drainage area of each of the 19 streamflow gages was delineated in ArcGIS 10.1 
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using National Elevation Dataset (NED) 10 m DEM (Gesch et al., 2002) and cross-checked with 

USGS gage annual reports. Percent imperviousness was computed for each basin by clipping 

2006 NLCD data (Fry et al., 2011) in ArcGIS. Time of concentration (TOC), which can be 

defined as the time required for water to flow from the furthest location in a watershed to the 

outlet, was calculated using the well-established Kirpich Method (Kirpich, 1940). The Kirpich 

Method equation is displayed below wherein TOC is the time of concentration in minutes, K is a 

unit conversion coefficient equal to 0.0078 for US units and 0.0195 for SI units, L is the channel 

flow length in feet or meters, and S is the channel slope over the entire watershed (m/m or ft/ft):  

    = ∗ . ∗ − . 5
    Eqn. 3.1 

Variables used in the Kirpich method were obtained from the 10 m DEM ArcGIS delineations. 

The Clark Unit Hydrograph storage coefficient was calculated directly using a method agreed 

upon by the Colorado State Engineer (Tierra Grande International Inc., 2008) and Arizona 

Department of Transportation (NBS/Lowry Engineers & Planners, Inc. and George V. Sabol 

Consulting Engineers, Inc., 1993). The Clark Unit Hydrograph storage coefficient equation is:  

     = .3 ∗ . ∗ . ∗ − .5
   Eqn. 3.2 

wherein R is the storage coefficient in hours, TOC is the time of concentration in hours, L is the 

channel flow length in mi and A is the basin area in mi2. Variables to calculate R were obtained 

from each basin delineation and the Kirpich method. The estimated parameter values for time of 

concentration, basin storage coefficient, percent imperviousness, and basin area are provided for 

the 19 modeled USGS streamflow gages (Table 3.3).
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Table 3.3: Calculated model parameters and climate data information for 19 modeled USGS streamflow gages. 

  Calculated Model Parameters Climate Data 

USGS 
Gage 

HEC-HMS 
Model Name 

Time of 
Concentration 

(hr) 

Basin 
Storage 

Coefficient 
(hr) 

% 
Imperviousness 

Basin 
Area 
(km2) 

CIMIS 
Evapotranspiration 

Site 

Recommended 
Minimum # of 
Precipitation 

Gages 

Number of 
Precipitation 
Gages Used 

10259000 Andreas 0.92 0.52 0.00 22.40 Cathedral City #118 2 5 
11098000 Arroyo Seco 1.95 1.25 0.46 41.44 Glendale #133 2 6 
11047300 Arroyo Trabuco 4.10 2.30 19.06 140.17 Irvine #75 3 8 
11012500 Campo 4.41 1.77 0.55 217.85 Otay Lake #147 3 3 
11044800 De Luz 2.49 1.01 0.32 83.66 Temecula #62 2 9 

10260500 Deep Creek 2.09 0.32 2.34 347.06 
Lake Arrowhead #192 

and Big Bear Lake 
#199 

4 10 

11015000 
Descanso 

Sweetwater 
3.60 1.73 0.28 117.59 Escondido SPV #153 3 8 

11014000 Jamul 2.83 0.91 0.54 181.59 Otay Lake #147 3 5 
11092450 Los Angeles 4.15 1.16 27.34 409.22 Chatsworth #215 4 18 

11022200 Los Coches 1.54 0.69 9.39 31.52 
Miramar #150 and 

Escondido SPV #153 
2 4 

11023340 Poway 2.52 0.95 20.66 109.92 Escondido SPV #153 3 5 
11044250 Rainbow 1.82 1.09 3.70 26.44 Temecula #62 2 3 
11070500 San Jacinto 5.05 0.59 5.86 1872.57 Winchester #179 6 13 
11042000 San Luis Rey 13.45 5.62 2.97 1439.60 Temecula #62 5 23 
11046300 San Mateo 3.53 1.28 0.13 209.27 Temecula #62 3 12 
11044350 Sandia 2.71 1.50 1.27 50.95 Temecula #62 2 6 

11044300 
Santa Margarita 

Sump 
9.40 2.72 3.76 1597.77 

Temecula #62 and 
Winchester #179 

6 19 

11044000 
Santa Margarita 

Temecula 
3.11 0.27 4.11 1522.92 Temecula #62 5 15 

11025500 Santa Ysabel 4.23 1.66 0.10 288.60 Escondido SPV #153 3 10 
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 Besides precipitation, which is discussed in the next section, evapotranspiration is the 

final input requirement for the 19 HEC-HMS models. The California Irrigation Management 

Information System (CIMIS) contains a network of over 145 weather stations that record 

evapotranspiration. For each of the 19 gage locations, monthly average evapotranspiration values 

(in/month) for the CIMIS site nearest each gage location were used within each model (CIMIS, 

2015). An evaporation coefficient of 0.77, calculated at nearby Lake Elsinore, was used for each 

model (Chow et al., 1988).  

 

3.2.3 Precipitation data 

 Locating, formatting, quality assuring (QA), and quality controlling (QC) sub-daily 

precipitation data from a variety of sources is an arduous task and is perhaps why most ELOHA 

studies with similar objectives have not used them. In all, the number of precipitation gages used 

per rainfall-runoff model range from three to twenty-three. Table 3.4 includes information about 

precipitation data sources and types. Occasionally, inexplicably large precipitation pulses caused 

by recording errors occurred for short durations throughout the precipitation data. Hence, expert 

judgment and cross-validation with other nearby gages were used to manually QA/QC 

precipitation time series.  

Table 3.4: Precipitation data sources. 

Source 
Time-Step 
Resolution 

Type 
Number of 
Times Used 

National Climate Data Center (NOAA NCDC) 1 hr Incremental 47 
California Irrigation and Management System (CIMIS) 1 hr Incremental 21 

California Data Exchange Center (CDEC) 1 hr Cumulative 70 
San Diego County Flood Control District (SDCFCD) 15 min Incremental 40 

Ventura County Watershed Protection District (VCWPD) 1 hr Incremental 4 
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 The suggested precipitation gage density requirement put forth by Schaake (1981) was 

used as a guideline for the minimum number of gages per model in this study:  

      = . ∗ .
     Eqn. 3.3 

wherein N is the number of precipitation gages and A is the basin area in km2. 

 Inverse distance weighting was used to weight all the precipitation gages within each 

model. The centroid of each basin was used as the weighting location such that precipitation 

gages nearest the basin centroid received the most weight in estimating basin-wide precipitation. 

Using inverse distance weighting allows for the inclusion of gages containing missing 

precipitation data. When data are missing, the gage is simply no longer considered in the 

weighting scheme until data resume again. This flexibility allows for the inclusion of many 

precipitation gages, regardless of missing data. Due to the coastal southern California climate 

and the lack of high elevation sites in this study, snowmelt was not simulated in the HEC-HMS 

models.  

 Climate information for the models is also provided in Table 3.3. For some basins, two 

CIMIS evapotranspiration sites were approximately equally distant. In these models, the two 

monthly CIMIS evapotranspiration data sets were arithmetically averaged. The minimum 

number of recommended models according to Eqn. 3.3 (Schaake, 1981) is included in Table 3.3. 

Because the inverse distance weighting method explicitly accounts for precipitation gage 

distance and missing data, which often exist in all sources, a greater number of precipitation 

gages than the recommended minimum were used for all models except 11012500 Campo, 

where the minimum was used due to a lack of any other reasonably nearby precipitation gages. 

Intuitively, models of larger basins typically used a greater number of precipitation gages, 
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however sub-regional precipitation gage density played an important role in how many gages 

were used. 

 

3.3 Calibration of rainfall-runoff models 

 Thirteen model parameters (Table 3.2), some with interdependence, were used for 

calibration with observed streamflow gage data. These parameters were manually adjusted to 

improve model accuracy due to the lack of Monte Carlo sampling within HEC-HMS and its 

limitation of incorporating only one objective function in automatic calibration. Previous studies 

suggest that the use of a single objective function supplies only enough information to 

automatically estimate three to five parameters, making it a poor choice for these models (Beven, 

1989; Jakeman and Hornberger, 1993).  

 This study focuses on utilizing prior knowledge of ecologically relevant flow metrics as 

rainfall-runoff model calibration criteria. In addition to employing the common practice of 

calibrating rainfall-runoff models solely to best overall fit criteria, known ecologically relevant 

calibration criteria based on the initial analysis performed by Eberhart (2014) were used. As 

mentioned previously, Eberhart (2014) found streamflow flashiness and the percent of time when 

flow is greater than 28 L/s (~1 cfs; a proxy for stream drying) as having the most explanatory 

power in predicting benthic macroinvertebrate assemblages in coastal southern California. I 

contend that if preliminary flow-ecology relationships such as these can be established at 

streamflow gage sites, they can subsequently be incorporated into an improved hydrologic 

foundation that explicitly prioritizes the accuracy of the flow metrics that most influence 

biological endpoints to develop stronger flow-ecology relationships.   
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 The 19 rainfall-runoff models developed for this study were first visually calibrated over 

the three year period to provide a baseline for subsequent improvement. Next, all 19 models 

were calibrated to maximize the Nash-Sutcliffe Efficiency. Following this, all 19 models were 

calibrated to minimize the percent error of the percent of time flow is less than 1 cfs (< 1 cfs). 

The models were then calibrated to minimize the percent error of the RBI (RBI). Finally, all 

models were calibrated to simultaneously minimize the percent error of the percent of time when 

flow is less than 1 cfs and the percent error of RBI based on an arithmetic average of both 

percent errors (Combined Calibration). Each of the four criteria took approximately the same 

amount of time and effort to calibrate. Through quantitative calibration, four unique parameter 

sets were established for each model, producing 76 (19*4) unique models and subsequent hourly 

time-series of streamflow output for WY 2005-2007. The calibration approaches are summarized 

in Table 3.5: 

Table 3.5: Descriptions of the four calibration criteria. 

Calibration 
Criteria 

Flow 
Regime 

Component 
Description 

Best 
Possible 
Value 

Worst 
Possibl
e Value 

NSE 
Best overall 

fit 

Uses Eqn. 2.1 to determine the accuracy of each model 
relative to the observed mean flow during the model 

duration 
One 

Negative 
infinity 

< 1 cfs Low flow 
Minimizes the % error of time with flow less than 1 cfs 

on a time step basis using Eqn. 3.4 
0 Infinity 

RBI 
Streamflow 
flashiness 

Minimizes the % error of RBI using Eqn. 2.2 and Eqn. 
3.4 

0 Infinity 

RBI and < 1 
cfs “Combined 

Calibration” 

Flashiness 
and low flow 

Simultaneously minimizes the % error of time with flow 
less than 1 cfs and RBI using Eqn 2.2 and Eqn 3.4 using a 

simple average of % errors 
0 Infinity 

 

 

3.4 Streamflow metrics 

 For each of the 76 modeled time-series of streamflow for WY 2005-2007, IHA 7.1 

(Richter et al., 1996) was used to compute 69 descriptive environmental flow component (EFC) 
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metrics. Because IHA operates on a daily time scale, hourly time-series output from HEC-HMS 

were aggregated to daily. To assess the importance of sub-daily data, NSE, RBI, and the percent 

of time with flow less than 1 cfs were also calculated at the hourly time scale for all 76 time-

series as performance criteria. Often, performance criteria were affected by extreme values and 

so both the mean and median were computed for each. This same process was repeated for 

USGS streamflow gage data for the 19 locations. Two sets of gage data, one from WY 2005-

2007 and the other from the three year WY period antecedent to bioassessment sampling, which 

represent recent disturbances affecting individual invertebrate samples, were also used. 

Bioassessment sampling dates range from 5/8/2001 to 6/12/2012. Descriptions of selected IHA 

and hourly flow metrics are provided (Table 3.6). Details regarding how these flow metrics were 

selected from the full suite of 69 IHA flow metrics can be found in Section 3.6.2. For a few sites 

(11092450 Los Angeles, 11044350 Sandia, 11044300 Santa Margarita Sump), the hourly WY 

2005-2007 gage data used for calibration contain no time steps with flow < 1 cfs. This caused 

calculated < 1 cfs percent errors to occasionally be undefined when a model incorrectly simulates 

flow < 1 cfs at one of these sites because a value of 0 is used in the denominator. Due to this, the 

gage and modeled values were switched to compute percent error (Eqn 3.4) when a model 

incorrectly simulated flow < 1 cfs at a site than contained no flow < 1 cfs.  

 

 

 

 



29 

 

Table 3.6: Descriptions of hourly and IHA flow metrics. 

Flow Metric Description 
Flow 

Regime 
Component 

RBI_1hr Richards-Baker Index calculated using Eqn. 2.1 with hourly time steps Flashiness 
cfs_1hr Percent of time with flow less than 1 cfs using hourly time steps Low flow 

Dec Median monthly flow High flow 
Jan Median monthly flow High flow 
Feb Median monthly flow High flow 

SevenDayMax Median annual maxima, seven day mean High flow 
NumZeroDays Median number of zero flow days per year Low flow 

DateMax Median Julian date of annual one day maximum High flow 
LowPulseCount Median number of low pulses (50th percentile) within each water year Low flow 
HighPulseCount Median number of high pulses (75th percentile) within each water year High flow 

RiseRate Median of all positive differences between consecutive days Flashiness 
FallRate Median of all negative differences between consecutive days Flashiness 

NumReversals Median number of hydrologic reversals per year Flashiness 
ExtremeLowDuration Median annual duration of extreme low flows (10th percentile) Low flow 
ExtremeLowTiming Median Julian date of extreme low flows (10th percentile) Low flow 
ExtremeLowFreq Median annual frequency of extreme low flows (10th percentile) Low flow 
HighFlowDuration Median annual duration of high flows (75th percentile) High flow 

LargeFloodDuration Median duration of large floods (10 yr return) High flow 
SmallFloodPeak Median maxima of small floods (2 yr return) High flow 

SmallFloodRiseRate Median rise rate of small floods (2 yr return) Flashiness 
SmallFloodFallRate Median fall rate of small floods (2 yr return) Flashiness 
LargeFloodRiseRate Median rise rate of large floods (10 yr return) Flashiness 

 

3.5 Benthic macroinvertebrate (biotic) metrics 

 Taxonomic and trait-based metrics were calculated using SWAMP and SMC sampled 

benthic macroinvertebrate data. Trait-based metrics are increasingly utilized in stream ecology 

wherein functional traits, such as resistance to desiccation and other disturbances, are assigned to 

each taxon and then aggregated into metrics that represent the functional composition of benthic 

macroinvertebrate assemblages at each site. A large North American database (Poff et al., 

2006b) was used to assign traits to taxa. Reach-wide and riffle-specific approaches were used to 

sample invertebrates at bioassessment sites; however, reach-wide samples were chosen because 

they were available for more sites than the targeted riffle samples.  
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 For this study, I used a subset of the biological metrics selected by Eberhart (2014) in a 

preliminary study of streamflow-invertebrate relationships in coastal southern California. The 

previous study employed correlation, principal component analysis (PCA), literature review, and 

expert knowledge of flow-ecology relationships (Matt Pyne, Lamar University, personal 

communication) to reduce nearly 90 taxonomic metrics and over 200 trait-based metrics to four 

taxonomic metrics, one index of biotic integrity, and seven trait-based metrics. In this present 

study, only biotic metrics showing strong relationships with flow metrics in the previous flow-

ecology study were selected (Table 3.7).  

Table 3.7: Descriptions of benthic macroinvertebrate metrics. 

Metric Name Description Type 

EPTPercentTaxa 
Invertebrates from orders 

Ephemeroptera, Plecoptera, and Tricoptera. 
Taxa Percent 

Richness 

DesiResist 

Organism has one of the following traits advantageous to resistance 
against desiccation: 

1) adult exiting ability 
2) desiccation resistance 
3) air breather 
4) burrowing habit 
5) warm eurytherm 

Trait Percent 
Richness 

NoninsectTaxa - Taxa Richness 

DisturbResil 

Organism has one of the following traits advantageous to resilience 
against disturbance: 

1) multivoltine 
2) fast seasonal development 
3) long adult life span 
4) strong flying ability 
5) high adult female dispersal 

Trait Percent 
Richness 

AmphipodaPercent - 
Taxa Percent 
Abundance 

SCIBI 
Southern California Index of Biotic Integrity 

(Ode et al., 2005) 
Value 

SndInstabResist 

Organism has one of the following traits advantageous to resistance 
against bed mobilization in sand-bed systems: 

1) burrowing habit 
2) sprawling habit 
3) streamlined shape 
4) adult exiting ability 

Trait Percent 
Richness 

ShredderPercentTaxa Organism in shredder functional feeding group 
Trait Percent 

Richness 
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3.6 Statistical analyses 

 All statistical analyses were performed using Microsoft Excel 2010 and 2013, SAS 

University Edition software (SAS Institute Inc., 2015), and R software version 3.2.0 

(package=“randomForest”; Liaw and Wiener, 2002). Approaches including percent error, 

percent difference, correlation, multiple regression (MRA), and random forest (RF) models were 

used to explore modeled flow metric accuracy and associations between flow and biotic metrics. 

Percent error was calculated using Equation 3.4: 

   �� � �� � = | ��  ��� −� �  ��� || ��  ��� | ∗    Eqn. 3.4 

Percent difference was calculating using Equation 3.5: 

�� � � � � =  | �  ��� −�  ��� |�  ��� +�  ��� ⁄ ∗       Eqn. 3.5 

 Modeled flow metric accuracy and explanatory power were compared to gage data for 

the period of simulation (WY 2005-2007) and the three WY period antecedent to bioassessment 

sampling. This approach allows for an investigation into the utility, both in terms of raw flow 

metric accuracy and explaining variation in benthic macroinvertebrate metrics, of the sub-daily 

WY 2005-2007 model predictions.  

 

3.6.1 Performance of rainfall-runoff models using flow metrics 

 The percent error of modeled IHA EFC flow metrics and hourly RBI and percent of time 

with flow less than 1 cfs metrics were calculated in Microsoft Excel. Modeled metrics were 

compared to gage data for the WY 2005-2007 calibration period to determine the accuracy of the 

19 HEC-HMS models. Percent differences between gage data for the 2005-2007 hydrologic 
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foundation and the three WYs antecedent to each bioassessment sampling were also computed 

for all sites. Comparison between the two periods of gage data provides insight on how well a 

constant 2005-2007 simulation period represents antecedent flow conditions experienced by 

sampled organisms. Correlation analyses were performed in SAS University Edition software 

using “proc corr” to assess the relationships between flow metrics from all four calibration 

approaches and both groups of gage data (SAS Institute Inc., 2015). 

 

3.6.2 Performance of rainfall-runoff models using benthic macroinvertebrate metrics 

 Biotic metrics (Table 3.7) were used to compare how flow metrics generated by the four 

calibration approaches explain biological variation relative to gage data. Only 14 of the 19 

calibrated models were used for these analyses due to the absence of processed bioassessment 

data at five sites. Using “proc corr” in SAS (SAS Institute Inc., 2015), a correlation analysis 

explored which of the 71 flow metrics (69 EFCs from IHA, RBI_1hr, and cfs_1hr) computed 

from gage data for the three WYs preceding each bioassessment sample appear to have strong 

relationships with each biological metric. The variability of each biotic metric explained by the 

three WY antecedent gage flow data was used as a comparative standard for statistical analyses 

because gage flow metrics for the period antecedent to bioassessment sampling might be 

expected to have a stronger predictive relationship with biotic metrics compared to a constant 

period.  

 For each biotic metric, flow metrics from the three WY antecedent gage data significantly 

correlated at the p = 0.1 level were carried forward to a reduced group of predictive flow metrics. 

Because hourly data have been shown to better represent urbanization and streamflow flashiness 

which are fundamental to the hydrologic foundation explored in this study, the RBI_1hr and 
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cfs_1hr metrics were included in every reduced group. For some biotic metrics (SCIBI, 

DisturbResil, SndInstabResist, and ShredderPercentTaxa), less than three flow metrics other than 

RBI_1hr and cfs_1hr were significantly correlated at the p = 0.1 level. For these biotic metrics, 

the next most significant flow metrics were added to each reduced group so that at least three 

flow metrics other than RBI_1hr and cfs_1hr were in each biotic metric’s reduced group. Each 

subset of flow metrics from the original 71 metrics described above and unique to every biotic 

metric will be referred to as the “reduced group of flow metrics” for subsequent analyses. 

Descriptions of all reduced flow metrics for all biotic metrics are found in Table 3.6. 

 Using the reduced group of flow metrics unique to each biotic metric, multiple regression 

analysis was performed with SAS University Edition software separately for each of the four 

calibration types and two sets of gage data with “proc reg” (SAS Institute Inc., 2015). The entire 

reduced group of flow metrics for each biotic metric, along with backward selection (p = 0.05), 

minimum Cp selection (Mallows, 1973), and minimum AIC selection (Akaike, 1973) were used 

in MRA. To further reduce the number of flow metric predictors, the same regression analyses 

were performed using only the three most significant predictor flow metrics per biotic metric 

from the three WY antecedent gage data correlation analysis. Standard regression diagnostics 

were performed and appropriate transformations were made based on visual inspection of 

residual plots, RStudent residual plots, and Quantile-Quantile plots.  To achieve 

homoscedasticity, AmphipodaPercent was transformed on the log scale along with a couple of 

the flow metrics from its reduced group: RiseRate and LargeFloodRiseRate. Table 3.8 depicts 

the reduced group of predictive flow metrics for each biotic metric and indicates which three 

flow metrics are most significantly correlated with each biotic metric.  
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Table 3.8: Set of reduced flow metrics for each biotic metric wherein bold flow metrics are the three most significantly 
correlated. 

Biotic Metric Set of Reduced Flow Metrics 

EPTPercentTaxa RBI_1hr, cfs_1hr, NumZeroDays, NumReversals, ExtremeLowDuration, ExtremeLowTiming, 
HighFlowDuration, LargeFloodDuration 

DesiResist 
RBI_1hr, cfs_1hr, NumZeroDays, LowPulseCount, NumReversals, ExtremeLowDuration, 

ExtremeLowTiming, ExtremeLowFreq, HighFlowDuration, SmallFloodRiseRate, 
LargeFloodDuration 

NoninsectTaxa RBI_1hr, cfs_1hr, NumZeroDays, DateMax, ExtremeLowTiming, LargeFloodDuration 
DisturbResil RBI_1hr, cfs_1hr, ExtremeLowTiming, LargeFloodDuration, HighFlowDuration 

AmphipodaPercent RBI_1hr, cfs_1hr, Feb, RiseRate, ExtremeLowDuration, FallRate, LargeFloodRiseRate 
SCIBI RBI_1hr, cfs_1hr, Dec, Jan, SmallFloodFallrate 

SndInstabResist RBI_1hr, cfs_1hr, NumZeroDays, ExtremeLowDuration, ExtremeLowTiming 
ShredderPercentTaxa RBI_1hr, cfs_1hr, SmallFloodRiserate, SevenDayMax, HighPulseCount, SmallFloodPeak 

   

 A final analysis was performed in R software version 3.2.0 using the “randomForest” 

package (Liaw and Wiener, 2002). RF models with 10,000 trees were generated using the same 

list of reduced flow metrics unique to each biotic metric. Similar to the multiple regression 

analysis, random forest models were used to examine the extent to which variability in biotic 

metrics could be explained by flow metrics from one of the model calibrations. Likewise, flow 

metrics produced by gage data were used to explain biotic variability. This was done for every 

biotic metric, all four calibrations, and both sets of gage data. These analyses allow for 

comparison of the ability of each calibrated model to explain biotic variability relative to gage 

data. 
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CHAPTER 4: RESULTS 
 
 
 

 HEC-HMS models calibrated to NSE and the three ecologically-focused criteria for the 

19 basins showed varying degrees of accuracy (Table 4.1). Unsurprisingly, models reproduced 

the metrics to which they were calibrated much more accurately than additional flow metrics. 

RBI calibrated models produced the smallest percent error (median 0.035%), while the 

Combined Calibration approach produced very low errors (medians less than 1%) despite 

yielding the lowest NSE (-4.7; Table 4.1). Median percent errors for the three ecologically-

focused criteria were all less than 1.5%. Overall, the entire suite of hourly and IHA flow metrics 

was not very accurately reproduced by the four calibration approaches (Table 4.2), but the < 1 

cfs and NSE calibrated models yielded the lowest median percent errors with 54%. Despite a 

median percent error greater than 100% for the collection of flow metrics produced by the 

Combined Calibration, some ecologically relevant flow metrics were modeled with accuracy of 

less than 20% error.  

 In comparing all gage and modeled flow metrics specific to each biotic metric with MRA 

of biotic metrics, WY 2005-2007 gage and the Combined Calibration metrics explained slightly 

more variation in biotic metrics, on average, than three WY antecedent metrics, while the two 

individual RBI and < 1 cfs ecologically-focused and NSE calibrated models explained more 

biotic variance in as many MRA models as they explained less (Appendix V). Concerning 

calibration approaches, the Combined Calibration explained the most biotic variability in 50% of 

MRA models and never explained the least amount (Table 4.4). Similar results are found for 

flow metrics selected by minimum AIC through MRA (Table 4.5; Appendix V), and in random 

forest models (Table 4.6; Appendix VI), but with the NSE and < 1 cfs models explaining the 
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same or slightly more biotic variability, and the RBI models explaining slightly less. In AIC 

selected MRA results, the Combined Calibration yielded the largest average adjusted R2 (Table 

4.5), indicating it produced the strongest flow-ecology relationships. In RF models, flow metrics 

from all calibrated HEC-HMS models and the WY 2005-2007 data were able to explain more 

biotic variability, on average, than the three year antecedent data (Table 4.6). 

  

4.1 Calibration of rainfall-runoff models 

 The vast majority of the 19 HEC-HMS models were accurately calibrated using the four 

calibration criteria (Table 4.1). For the three ecologically-focused calibrations (RBI, < 1 cfs, 

Combined), the specifically targeted ecological flow metric(s) used as calibration criteria were 

always accurately modeled, with only one model producing its calibration criteria with a greater 

than 10% error (11.6% for < 1 cfs at 1104250 Rainbow) and median percent errors always less 

than 1.5%.  
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Table 4.1: Calibration results displaying NSE, RBI, and < 1 cfs as calibration criteria and performance measures for all 19 models. 
 

  NSE Calibration RBI Calibration < 1 cfs Calibration RBI and < 1 cfs 
Combined Calibration 

USGS 
Gage 

HEC-HMS 
Model 
Name 

NSE 
RBI 
% 

error 

< 1 cfs 
% error 

NSE 
RBI % 
error 

< 1 cfs 
% error 

NSE 
RBI 
% 

error 

< 1 cfs 
% error 

NSE 
RBI 
% 

error 

< 1 cfs 
% error 

10259000 Andreas 0.575 42.5 100.0 -0.391 0.065 280.1 0.013 99.6 0.3 -4.654 1.9 0.9 
11098000 Arroyo Seco 0.579 20.6 271.3 0.575 0.029 271.2 0.150 87.3 0.6 0.457 0.4 0.2 

11047300 
Arroyo 
Trabuco 

0.753 35.1 648.5 0.172 0.035 1209.9 0.427 72.8 5.1 -0.405 4.5 0.4 

11012500 Campo 0.464 72.0 3.0 -2.819 0.175 10.8 0.452 65.8 2.4 -2213.758 0.3 0.7 
11044800 De Luz 0.770 43.6 51.6 0.000 0.000 102.2 0.167 97.9 5.5 -0.522 0.3 0.6 
10260500 Deep Creek 0.289 18.5 100.0 -0.022 0.096 1802.7 0.287 13.6 1.0 -0.025 4.6 0.1 

11015000 
Descanso 

Sweetwater 
0.819 60.3 116.8 -0.303 0.004 151.4 0.613 83.5 1.4 -33.264 4.2 0.7 

11014000 Jamul 0.593 63.0 100.0 0.266 0.006 11.9 0.498 74.2 1.8 -29.674 0.8 3.0 
11092450 Los Angeles 0.885 35.0 0.0 0.553 0.056 100.0 0.885 35.0 0.0 0.609 7.3 0.0 
11022200 Los Coches 0.707 8.7 4.8 0.336 0.023 19.2 -2.334 36.6 4.1 -29.280 0.0 0.5 
11023340 Poway 0.793 10.4 100.0 0.773 0.044 1103.7 0.794 9.1 3.9 -0.165 5.4 0.3 
11044250 Rainbow 0.634 28.6 37.9 0.611 0.029 40.0 0.451 41.2 11.6 0.184 6.6 6.0 
11070500 San Jacinto 0.286 91.4 74.0 -60.116 0.074 62.5 -0.098 179.2 1.4 -98.147 0.1 0.8 

11042000 
San Luis 

Rey 
0.718 8.5 100.0 0.715 0.029 2767.0 -0.412 10.1 7.6 -7.531 0.6 0.7 

11046300 San Mateo 0.815 7.1 55.5 0.814 0.076 56.2 0.147 97.7 5.8 -2.997 0.8 4.9 
11044350 Sandia 0.854 8.8 100.0 0.839 0.036 100.0 0.606 12.6 0.0 0.312 0.1 0.0 

11044300 
Santa 

Margarita 
Sump 

0.578 43.8 0.0 0.129 0.001 0.0 0.578 43.8 0.0 -101.600 6.4 0.0 

11044000 
Santa 

Margarita 
Temecula 

0.324 43.5 6815.0 0.319 0.001 5184.9 -10.598 83.3 0.5 -48.079 5.5 0.5 

11025500 
Santa 
Ysabel 

0.626 17.5 10.4 0.295 0.090 24.2 0.590 13.1 0.5 -56.257 0.4 5.0 

 Mean 0.635 34.7 457.3 -3.013 0.046 770.5 -0.357 60.9 2.8 -138.147 2.6 1.4 
 Median 0.634 35.0 87.0 0.295 0.035 102.2 0.427 65.8 1.4 -4.654 0.8 0.6 
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 NSE calibrated models produced a median NSE of 0.634. RBI was fairly accurately 

modeled with the NSE calibrations, producing a median percent error of 35% with seven of the 

19 models producing RBI percent errors less than 20%. NSE calibrated models performed poorly 

when assessed by accuracy of the < 1 cfs metric with a median percent error of 87%, and a 

maximum of 6,815%. For the NSE calibration criterion, models had final NSE values greater 

than 0.5 for 15 of the 19 models. Substantial effort went into improving the four models with 

NSE values less than 0.5 but further improvement was not feasible.  

 The RBI calibrated models were the most accurate in simulating their calibration criterion 

with all RBI percent errors less than 0.2% and a median of 0.035%; however, the percent time < 

1 cfs was modeled poorly with a median percent error of 102% and a maximum of 5,185%. 

Nevertheless, a few models (11012500 Campo, 11014000 Jamul, and 11044300 Santa Margarita 

Sump) produced accurate predictions of percent time < 1 cfs with percent errors less than 20%. 

Negative NSE values indicate poor model performance for five of the 19 RBI calibrated models, 

with one outlier producing a NSE of -60. The median NSE of RBI calibrated models was 0.295. 

 The < 1 cfs calibrated models accurately simulated the percent time < 1 cfs with a median 

error of 1.4% and only one model (11044250 Rainbow) producing a < 1 cfs percent error greater 

than 10%. These models yielded a median NSE of 0.427; however, 11044000 Santa Margarita 

Temecula performed very poorly with an NSE of -10.6 and depresses the mean. Only four of the 

19 models calibrated to the < 1 cfs criterion produced negative NSE. RBI was moderately 

accurately modeled with the < 1 cfs calibrated models, where a median percent error of 66% and 

a maximum of 179% were produced. The < 1 cfs calibrations, on average, appear to provide the 

highest overall accuracy when judged by all three metrics. 
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 The RBI and < 1 cfs Combined Calibration proved successful at minimizing the percent 

error of both metrics. The median RBI percent error equals 0.8% with a maximum of 7.3%, 

while the median < 1 cfs percent error equals 0.6% with a maximum of 6.0%. Interestingly, NSE 

was modeled the poorest in the Combined Calibration with a median NSE of -4.7 and a 

minimum of -2,213.8. Twelve of the 19 models from the Combined Calibration produced 

negative NSE. For some models and the overall mean and median, the < 1 cfs percent error was 

actually improved when simultaneously calibrated for RBI and < 1 cfs as opposed to a sole < 1 

cfs calibration, likely do to the progression of calibration (Table 3.5). 

 

4.2 Performance of rainfall-runoff models using flow metrics 

 The mean and median percent errors of IHA and hourly flow metrics relative to the WY 

2005-2007 gage data are provided in Table 4.2. The percent differences between flow metrics 

produced by the three year antecedent gage data and the WY 2005-2007 hydrologic foundation 

gage data are also included. An error assessment of modeled flows versus the three WY 

antecedent gage data is provided in Appendix I. In the “Flow Metric” column (Table 4.2; 

Appendix I), flashiness metrics are denoted in the darker shading and bold, while low flow 

metrics are lightly shaded and underlined. Additionally, correlation matrices of the entire set of 

reduced flow metrics produced by data from the two gage sources and four calibrated models are 

provided in Appendix I.  
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Table 4.2: Accuracy of flow metrics from three WY antecedent gage data and rainfall-runoff models compared to the calibration period WY 2005-2007 gage data. 
Italicized average metric errors at the bottom indicate the calibration approach with the lowest average metric error. 

Flow Metric 

Mean % 
difference 
Gage three 

WY 
antecedent 

Median % 
difference 
Gage three 

WY 
antecedent 

Mean % 
error NSE 
Calibration 

Median % 
error NSE 
Calibration 

Mean % 
error RBI 

Calibration 

Median % 
error RBI 

Calibration 

Mean % 
error < 1 cfs 
Calibration 

Median % 
error < 1 cfs 
Calibration 

Mean % 
error RBI 
and < 1 cfs 
Combined 

Calibration 

Median % 
error RBI 
and < 1 cfs 
Combined 

Calibration 

RBI_1hr 24.1 22.4 15.3 17.6 0.0 0.1 33.6 61.9 0.3 4.6 

cfs_1hr 1.0 23.9 23.7 94.0 125.5 262.4 1.1 0.6 0.2 0.2 

Dec 34.1 98.5 27.5 41.2 93.7 100.0 223.0 22.9 565.9 336.2 

Jan 25.7 84.2 43.8 54.5 80.4 100.0 243.6 59.1 747.8 303.7 

Feb 80.5 110.0 39.1 53.7 64.0 100.0 270.3 26.3 819.9 445.6 

SevenDayMax 61.2 99.6 38.6 89.5 113.6 82.7 68.0 60.1 646.4 829.2 

NumZeroDays 59.8 100.0 135.1 100.0 513.4 100.0 42.5 100.0 117.3 100.0 

DateMax 30.0 6.1 54.2 13.7 12.9 5.9 42.2 13.7 16.3 2.0 

LowPulseCount 11.5 0.0 82.6 100.0 100.0 100.0 65.1 75.0 27.9 25.0 

HighPulseCount 10.1 18.2 7.7 0.0 53.4 100.0 25.9 0.0 86.7 133.3 

RiseRate 52.8 40.0 10062.4 1904.5 9451.9 10985.0 5615.0 1658.5 31134.3 38330.0 

FallRate 46.7 50.0 434.3 40.8 1483.1 1043.9 209.8 71.3 414.5 518.9 

NumReversals 14.3 29.5 72.3 82.9 68.4 76.2 63.3 74.3 39.4 42.9 

ExtremeLowDuration 27.3 0.0 19.4 166.7 158.2 6.7 60.7 213.3 64.0 13.3 

ExtremeLowTiming 11.2 9.0 29.6 50.0 50.8 74.2 5.3 8.9 14.3 1.6 

ExtremeLowFreq 14.6 40.0 10.8 50.0 179.0 200.0 6.2 50.0 47.7 50.0 

HighFlowDuration 58.5 40.0 35.4 0.0 32.3 50.5 51.6 25.0 3.0 0.0 

LargeFloodDuration 66.1 71.9 17.5 40.8 64.1 83.4 18.1 49.0 69.7 83.4 

SmallFloodPeak 23.3 42.6 17.9 54.0 153.3 2.4 73.1 66.2 576.6 671.6 

SmallFloodRiseRate 35.0 55.4 24.9 71.5 85.2 39.6 111.5 57.8 318.5 526.4 

SmallFloodFallRate 55.8 28.4 62.7 26.7 105.9 290.3 144.4 22.4 204.9 748.9 

LargeFloodRiseRate 99.0 106.9 133.8 120.7 137.9 198.8 25.3 11.0 1054.7 559.0 

All Low Flow 20.9 16.5 50.2 97.0 187.8 100.0 30.1 62.5 45.2 19.2 

All Flashiness 46.8 40.0 1543.7 71.5 1618.9 198.8 886.1 61.9 4738.1 526.4 

All 38.3 40.0 517.7 53.9 596.7 100.0 336.3 53.9 1680.5 116.7 
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 In terms of raw flow metric accuracy, the NSE and < 1 cfs calibrated models performed 

the best overall with median percent errors of 54% for both (Table 4.2). Percent differences 

between the WY 2005-2007 and three year antecedent gage data were smaller than any model 

percent error with a median 40% difference. The RBI and Combined calibrations yielded median 

percent errors greater than 100% across all metrics and generally did not accurately replicate 

IHA flow metrics. Despite poor overall performance, the Combined Calibration models 

estimated some IHA flow metrics accurately with less than 20% median error (e.g., 

ExtremeLowDuration, ExtremeLowTiming,  HighFlowDuration, and  DateMax; Table 4.2). The 

Combined Calibration also produced the smallest median percent error of modeled low flow IHA 

metrics with a value of 19%. Metrics describing rise rates and fall rates at the aggregated daily 

time step used by IHA were very inaccurate in the Combined Calibration (median percent errors 

greater than 500%), which affected overall flow metric accuracy. Similar modeled flow metric 

accuracy was found using the three year antecedent gage data for comparison (Appendix I), but 

with increased accuracy of the Combined Calibration, especially in regard to NumZeroDays 

(mean 17% error) and ExtremeLowFreq (median 0% error). 

 

4.3 Performance of rainfall-runoff models based on benthic macroinvertebrate metrics 

 Results presented in this section will be restricted to summaries of analyses performed for 

all eight biotic metrics. Results for the individual biotic metrics are provided in Appendices II, 

III, IV, V, and VI.  
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4.3.1 Correlation analysis 

 A summary of all biotic metrics correlations with their individual group of reduced flow 

metrics based on data source is provided (Table 4.3). Appendix II contains correlation tables for 

each biotic metric individually with its set of reduced flow metrics. Opposing correlation 

directions indicate when the correlation sign (positive or negative) between biotic and flow 

metrics were different for modeled or WY 2005-2007 gage data compared to the three year 

antecedent data. 

Table 4.3: Summary of all biotic metrics correlations with unique group of reduced flow metrics per biotic metric. 

 
3 WY 

Antecedent 
Gage 

WY 2005-
2007 Gage 

NSE 
Calibrat

ion 

RBI 
Calibrat

ion 

< 1 cfs 
Calibrati

on 

RBI and < 1 cfs 
Combined 

Calibration 
significant 
correlations 

36 22 13 8 10 21 

% significant 
correlations 

68% 42% 25% 15% 19% 40% 

differing direction of 
correlation 

- 5 25 16 13 11 

% differing direction 
of correlation 

- 9.4% 47% 31% 25% 21% 

significant differing 
direction of 
correlation 

- 2 12 1 3 1 

% significant differing 
direction correlation 

- 3.8% 23% 1.9% 5.7% 1.9% 

 

 

 As aforementioned, flow metrics were selected for each biotic metric based on significant 

correlations with the three WY antecedent gage data due to the physical disturbance and habitat 

relationships between antecedent flow conditions and benthic macroinvertebrates. Because of 

this, it is unsurprising that the preceding gage data produced the most significant correlations 

with biotic metrics (68%; Table 4.3). Gage data from the WY 2005-2007 hydrologic foundation 

period yield the second most significant correlations (42%) and have the least number of 

differing directions of correlation (9%). The Combined Calibration performed better than any 
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other set of calibrated models with 40% significant correlations and the least number of differing 

directions of correlation (21%). Flow metrics produced by the NSE calibrated models were 

oppositely correlated with biotic metrics according to antecedent data nearly half the time (47%). 

 

4.3.2 Multiple regression analysis 

  MRA was used to examine associations between biotic metrics and flow metrics derived 

from HEC-HMS models with varying calibration criteria and two sources of gage data. Full 

MRA results including AIC and adjusted R2 values are reported for the eight modeled biotic 

metrics individually and summarized (Table 4.4; Table 4.5; Appendices III -V).  

Table 4.4: Multiple regression summary indicating the percent of MRA models in which each set of modeled flow data 
explained biotic variance the most, second most, and least for both the entire set of reduced flow metrics and the further 

reduced set of 3 flow metrics. AIC selected flow metrics from both are also included. 

Flow Data 
Entire reduced set and set of 3 flow metrics AIC selected flow metrics 

Most Second Most Least Most Second Most Least 

NSE 38% 19% 31% 44% 6% 38% 

RBI 13% 25% 38% 13% 25% 44% 

< 1 cfs 0% 13% 31% 0% 31% 19% 

RBI and < 1 cfs 50% 44% 0% 44% 38% 0% 
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Table 4.5: MRA results for all eight biotic metrics for both sources of gage data and all four model calibrations using minimum AIC criteria wherein italicized adjusted 
R2 values indicate more explanatory power than the three WY antecedent gage data and underlined adjusted R2 values indicate less explanatory power. 

 

Biotic 
Metric 

3 WY antecedent gage WY 2005-2007 gage NSE RBI < 1 cfs RBI and < 1 cfs 

Adj. 
R2 

Selected 
Predictors 

Adj. 
R2 

Selected 
Predictors 

Adj. 
R2 

Selected 
Predictors 

Adj. 
R2 

Selected Predictors 
Adj. 
R2 

Selected Predictors 
Adj. 
R2 

Selected 
Predictors 

EPTPercent
Taxa 

0.32 ExtremeLowDuration, 
ExtremeLowTiming 0.79 

RBI_1hr, cfs_1hr, 
NumZeroDays, 
NumReversals, 

ExtremeLowDuration, 
LargeFloodDuration, 
HighFlowDuration 

0.52 

RBI_1hr, 
NumZeroDays, 
NumReversals, 

ExtremeLowDuration, 
ExtremeLowTiming, 
HighFlowDuration 

0.13 NumReversals, 
HighFlowDuration 0.10 NumZeroDays 0.49 

cfs_1hr, 
NumReversals, 

HighFlowDuration 

DesiResist 0.48 ExtremeLowDuration, 
ExtremeLowTiming 0.60 

cfs_1hr, 
ExtremeLowDuration, 

ExtremeLowFreq, 
HighFlowDuration 

0.66 

RBI_1hr, 
LowPulseCount, 

ExtremeLowFreq, 
HighFlowDuration, 
LargeFloodDuration 

0.47 

RBI_1hr, cfs_1hr, 
NumZeroDays, 
NumReversals, 

ExtremeLowDuration, 
ExtremeLowTiming, 

ExtremeLowFreq, 
SmallFloodRiserate, 
LargeFloodDuration 

0.59 
RBI_1hr, NumZeroDays, 

ExtremeLowDuration, 
HighFlowDuration, 
SmallFloodRiserate 

0.57 
NumReversals, 

ExtremeLowDuration, 
SmallFloodRiserate 

NoninsectT
axa 

0.36 RBI_1hr, DateMax, 
LargeFloodDuration 0.31 NumZeroDays, 

DateMax 0.00 NumZeroDays 0.47 
RBI_1hr, cfs_1hr, 

NumZeroDays, DateMax, 
ExtremeLowTiming 

0.40 
RBI_1hr, NumZeroDays, 

DateMax, 
ExtremeLowTiming 

0.31 DateMax, 
ExtremeLowTiming 

DisturbResi
l 

0.29 ExtremeLowTiming 0.36 ExtremeLowTiming, 
HighFlowDuration 0.29 cfs_1hr, 

HighFlowDuration 0.04 RBI_1hr, 
HighFlowDuration 0.02 cfs_1hr 0.21 cfs_1hr, 

ExtremeLowTiming 

Log(Amphi
podaPercen

t) 
0.28 log(LargeFloodRiseRate) 0.38 cfs_1hr, Feb, FallRate 0.17 RBI_1hr, cfs_1hr 0.50 

log(RiseRate), 
ExtremeLowDuration, 

FallRate, 
log(LargeFloodRiseRate) 

0.43 
cfs_1hr, log(RiseRate), 

FallRate, 
log(LargeFloodRiseRate) 

0.59 RBI_1hr, Feb, FallRate 

SCIBI 0.08 SmallFloodFallrate 0.10 Jan 0.28 cfs_1hr, Dec, Jan 0.10 SmallFloodFallrate 0.12 Dec, Jan 0.35 RBI_1hr, cfs_1hr, Dec, 
Jan 

SndInstabR
esist 

0.15 ExtremeLowTiming 0.08 ExtremeLowTiming 0.35 NumZeroDays, 
ExtremeLowTiming 0.01 ExtremeLowDuration 0.07 RBI_1hr, NumZeroDays 0.17 cfs_1hr, 

ExtremeLowTiming 

ShredderPe
rcentTaxa 

0.24 RBI_1hr 0.13 RBI_1hr 0.08 SevenDayMax, 
SmallFloodPeak 0.13 RBI_1hr 0.09 HighPulseCount 0.18 RBI_1hr, 

SmallFloodPeak 

Mean 0.28  0.34  0.29  0.23  0.23  0.36  

Median 0.29  0.34  0.29  0.13  0,11  0.33  
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 MRA results using the entire set of flow metrics unique to each biotic metric and only 

three predictive flow metrics show the Combined Calibration explained the most and second 

most biotic variability (50% and 44%, respectively) more often than any other calibration 

approach (Table 4.4). Although the NSE calibrated models explained the most and second most 

biotic variability more than the other two ecologically-focused calibrations, it often explained the 

least variability (31%). The Combined Calibration approach never explained the least biotic 

variability. The < 1 cfs calibration provided the highest overall accuracy for raw flow metrics 

(Table 4.2); however, it never explained the most biotic variability.  

 Flow metrics selected using minimum AIC from the WY 2005-2007 gage, NSE 

calibrated, and Combined Calibration data explain as much or more biotic variability, on 

average, compared to the antecedent gage data (Table 4.5). The Combined Calibration explained 

the most biotic variability across metrics (mean adj. R2 = 0.36), while the NSE calibrated data 

explained slightly more biotic variability, on average, than the antecedent gage data. The NSE 

data yielded low adjusted R2 values for a few metrics (0 for NoninsectTaxa, 0.17 for 

log(AmphipodaPercent), and 0.08 for ShredderPercentTaxa), while the Combined Calibration 

produced its smallest adjusted R2 of 0.18 for ShredderPercentTaxa. The two individual RBI and 

< 1 cfs ecologically-focused calibration approaches explained the least amount of biotic 

variability, on average, in AIC selected MRA. 

 In full MRA analyses, WY 2005-2007 gage and the modeled Combined Calibration 

metrics explained slightly more variation in biotic metrics, on average, than three WY antecedent 

metrics when considering the entire group of flow metrics unique to each biotic metric 

(Appendix III). Flow metrics from the other two ecologically-focused and NSE calibrated 

models explained biotic variance equally as well as flow metrics from the three WY antecedent 
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data, on average (Appendix III). When the number of predictive flow metrics was reduced to 

three, biotic variation explanation also decreased; however, the WY 2005-2007 gage and 

Combined Calibration data still explained more variance than the NSE, RBI, or < 1 cfs calibrated 

models. 

  

4.3.3 Random forest analysis 

 RF was also used to compare calibration approaches and gage data by examining 

relationships between biotic and flow metrics. Full RF results for the eight modeled biotic 

metrics individually and summarized are provided (Table 4.6; Table 4.7; Appendix VI). 

Table 4.6: Random forest summary indicating the percent of RF models in which each set of modeled flow data explained 
biotic variance the most, second most, and worst for the set of reduced flow metrics. 

Flow Data 
Entire reduced set of flow metrics 
Most Second Most Least 

NSE 13% 50% 25% 

RBI 13% 13% 63% 

< 1 cfs 38% 13% 0% 

RBI and < 1 cfs 38% 25% 13% 
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Table 4.7: Random forest results for all biotic metrics with each set of reduced flow metrics. Percent variance values for flow data are italicized when more biotic 
variance is explained than the 3 WY antecedent gage data and percent variance values for flow data are underlined when less is explained. 

 

Biotic 
Metric 

3 WY antecedent gage WY 2005-2007 gage NSE RBI < 1 cfs RBI and < 1 cfs 

% 
Var. 

Important 
Predictors 

% 
Var. 

Important 
Predictors 

% 
Var. 

Important 
Predictors 

% 
Var. 

Important 
Predictors 

% 
Var. 

Important 
Predictors 

% 
Var. 

Important Predictors 

EPTPercent
Taxa 

9.6 
ExtremeLowTiming, 
LargeFloodDuration, 

NumReversals 
34.0 

HighFlowDuration, 
NumReversals, 

ExtremeLowTiming 
33.4 

ExtremeLowTiming, 
ExtremeLowDuratio

n, NumReversals 
13.9 

NumReversals, 
ExtremeLowTiming, 
ExtremeLowDuration 

27.9 
RBI_1hr, 

ExtremeLowTiming, 
HighFlowDuration 

34.2 
NumReversals, 

ExtremeLowDuration, 
LargeFloodDuration 

DesiResist 11.2 
ExtremeLowTiming, 

NumReversals, 
LargeFloodDuration 

29.4 
SmallFloodRiseRate, 

NumReversals, 
HighFlowDuration 

28.7 
ExtremeLowTiming, 

NumReversals, 
ExtremeLowFreq 

16.0 
NumReversals, 

LargeFloodDuration, 
cfs_1hr 

24.5 
cfs_1hr, 

ExtremeLowTiming, 
ExtremeLowFreq 

29.6 
NumReversals, 

ExtremeLowTiming, 
ExtremeLowDuration 

NoninsectTa
xa 

0 (-) ExtremeLowTiming, 
RBI_1hr, cfs_1hr 15.2 LargeFloodDuration, 

DateMax, cfs_1hr 0 (-) 
ExtremeLowTiming, 
LargeFloodDuration, 

RBI_1hr 
0 (-) NumZeroDays, 

cfs_1hr, RBI_1hr 10.8 cfs_1hr, DateMax, 
ExtremeLowTiming 4.5 cfs_1hr, LargeFloodDuraton, 

ExtremeLowTiming 

DisturbResil 0 (-) 
ExtremeLowTiming, 
LargeFloodDuration, 

cfs_1hr 
19.9 

HighFlowDuration, 
ExtremeLowTiming, 

cfs_1hr 
0.2 

cfs_1hr, 
ExtremeLowTiming, 
LargeFloodDuration 

0 (-) 
HighFlowDuration, 

cfs_1hr, 
ExtremeLowTiming 

8.6 
RBI_1hr, 

LargeFloodDuration, 
ExtremeLowTiming 

0 (-) LargeFloodDuration, cfs_1hr, 
ExtremeLowTiming 

Log(Amphip
odaPercent) 

15.9 
log(LargeFloodRiseRat

e), Feb, 
ExtremeLowDuration 

20.6 
cfs_1hr, Feb, 

ExtremeLowDuratio
n 

20.2 
Feb, 

ExtremeLowDuratio
n, RBI_1hr 

29.7 
cfs_1hr, log(RiseRate), 
log(LargeFloodRiseRat

e) 
27.2 Feb, cfs_1hr, 

log(RiseRate) 32.8 cfs_1hr, Feb, FallRate 

SCIBI 0 (-) SmallFloodFallRate, 
RBI_1hr, Dec 12.3 SmallFloodFallRate, 

RBI_1hr, Dec 3.3 SmallFloodFallRate, 
Dec, Jan 3.0 SmallFloodFallRate, 

RBI_1hr, cfs_1hr 9.6 SmallFloodFallRate, 
Jan, cfs_1hr 6.6 RBI_1hr, SmallFloodFallRate, 

cfs_1hr 

SndInstabRe
sist 

0 (-) ExtremeLowTiming, 
cfs_1hr, RBI_1hr 0 (-) ExtremeLowTiming, 

RBI_1hr, cfs_1hr 22.7 
ExtremeLowTiming, 
ExtremeLowDuratio

n, RBI_1hr 
0 (-) 

ExtremeLowDuration, 
ExtremeLowTiming, 

RBI_1hr 
4.3 ExtremeLowTiming, 

RBI_1hr, cfs_1hr 1.8 ExtremeLowTiming, RBI_1hr, 
ExtremeLowDuration 

ShredderPer
centTaxa 

0 (-) 
RBI_1hr, 

SmallFloodPeak, 
SmallFloodRiseRate 

0 (-) 
SmallFloodRiseRate, 

RBI_1hr, 
HighPulseCount 

0 (-) 
RBI_1hr, 

SevenDayMax, 
HighPulseCount 

0 (-) 
RBI_1hr, 

SevenDayMax, 
HighPulseCount 

0 (-) 
HighPulseCount, 

SmallFloodRiseRate, 
cfs_1hr 

0 (-) RBI_1hr, SevenDayMax, 
HighPulseCount 

Mean 4.6  16.4  13.6  7.83  14.1  13.7  
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 Random forest results were similar, albeit slightly different than MRA. Using the reduced 

set of flow metrics unique to each biotic metric in a random forest analysis, the < 1 cfs and 

Combined Calibration approaches explained the most variance in the same number of RF models 

(37.5%; Table 4.6). Unlike the multiple regression analysis, the Combined Calibration did 

explain the least variability in 12.5% of random forest models. Comparatively, NSE did not 

perform well using random forest as it explained the most biotic variability in only 12.5% of 

models and the least in 25%. RBI performed the worst in random forest models considering the 

reduced sets of flow metrics.  

 Overall, RF models explain more biotic variability when data from the four calibrated 

models and WY 2005-2007 period were used, on average, than when the antecedent gage data 

was used (Table 4.7). The WY 2005-2007 gage data explained the most biotic variability (mean 

of 16%), while the < 1 cfs calibration explained more than any other calibration approach (mean 

of 14%). The NSE and Combined Calibration approaches performed similarly to < 1 cfs, with 

means slightly less than 14%, and the RBI calibration explained the least variability (mean of 

7%).  

 Appendix VI provides a table indicating how often more or less biotic variability was 

explained by the four types of calibrated models and WY 2005-2007 gage data compared to the 

three WY antecedent gage.  
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CHAPTER 5: DISCUSSION 
 
 
 

5.1 Ecologically-focused calibration of hydrological models 

 Rainfall-runoff models should be created to solve specific problems that are understood 

before creating and applying the models (Beven and Binley, 1992), and prior selection of and 

targeted calibration to specific streamflow characteristics have been recommended to more 

accurately model ecological flow metrics (Cassin et al., 2005; Murphy et al., 2013). This study 

compares novel, ecologically-focused calibration criteria based on prior knowledge of regional 

flow-ecology relationships to a traditional best overall fit criterion by modeling flow metrics and 

assessing the strength of flow-ecology relationships based on those metrics. 

 Results indicate that predictive flow-ecology relationships produced by rainfall-runoff 

models calibrated using ecologically-focused criteria based on preliminary regional flow-ecology 

relationships have potential to provide a more useful hydrologic foundation for ecohydrological 

studies compared to traditional overall fit calibration criteria. Specifically, metrics produced by 

the Combined Calibration approach provide the strongest correlations between flow and biotic 

metrics, explain the most biotic variability in MRA, on average, and perform very well in RF 

models. In all statistical analyses, the Combined Calibration explains more biotic variation, on 

average, than the traditional, best overall fit NSE calibration criterion; however, NSE calibrated 

models explain more biotic variation than the individual RBI and < 1 cfs calibrations in MRA 

and more biotic variation than the individual RBI calibration in RF, on average.  

 The Combined Calibration models reproduce the full suite of IHA flow metrics with a 

low level of accuracy when viewed collectively (median percent error greater than 100%; Table 

4.2); however, the Combined Calibration approach predicts some of the most ecologically 
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relevant streamflow metrics with a much higher degree of accuracy. These flow metrics include 

ExtremeLowTiming, NumZeroDays, cfs_1hr, RBI_1hr, HighFlowDuration, 

LargeFloodDuration, and ExtremeLowDuration. For the establishment of a regional hydrologic 

foundation, it is important that hydrologic models accurately simulate hydrologic processes; 

however, the ultimate aim is to accurately predict the most influential elements of the flow 

regime that shape biological communities for flow-ecology relationships (Poff et al., 2010; 

Kendy et al., 2012; TNC, 2015). Hydrological models can never perfectly replicate hydrologic 

processes and tradeoffs must be made to prioritize the accuracy of the most important elements 

of the flow regime for specific model applications. Low flow and flashiness metrics typical of 

ephemeral, Mediterranean streams have historically been difficult to model accurately. As 

expected, the Combined Calibration is much less accurate for simulating elements of streamflow 

that appear to be less important predictors of benthic macroinvertebrate metrics; however, the 

tradeoff appears worthwhile due to substantial biological explanation by the Combined 

Calibration flow metrics in this study. Furthermore, out of the three ecologically-focused 

calibration criteria, < 1 cfs produced the highest median NSE and estimated IHA flow metrics 

with the lowest error, but explained less overall variability in biotic metrics than the Combined 

Calibration, which produced the lowest median NSE.  

 Models specifically calibrated to NSE accurately replicated some flow metrics, especially 

those describing large flow events (HighFlowDuration, LargeFloodDuration, SmallFloodPeak, 

SmallFloowRiseRate, and SmallFloodFallRate). These high flow metrics were selected as 

significant predictors of biotic metrics less frequently than low flow or flashiness metrics, but 

were used in some flow-ecology relationships. The Combined Calibration accurately reproduced 

only two high flow metrics (DateMax and HighFlowDuration); however, these metrics appeared 
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the most frequently in MRA results which helped strengthen the Combined Calibration results.  I 

do not think the explanatory power of high flow metrics is an anomalous statistical artifact. 

Instead, some high flow metrics, especially HighFlowDuration, play a role in shaping biological 

communities. Periods of high flow are biologically important due to their disturbance effects, 

flushing of fine sediment and general reshaping of aquatic habitats, and facilitation of life cycle 

completion for aquatic insects and fish. This study focused on optimizing nontraditional but 

known ecologically relevant aspects of the flow regime unique to arid and Mediterranean 

climates, such as coastal southern California, that are not emphasized in traditional rainfall-

runoff model calibration. This is not to say, however, that high flows are not biologically 

relevant in coastal southern California. Clearly high flow metrics should not be ignored and are 

still shown to be biologically relevant, but in unique climatic settings such as coastal southern 

California prioritizing the accuracy of flow metrics known a priori to be especially strong or 

regionally unique to ecological endpoints may produce stronger flow-ecology relationships.  

 Data quality is an important consideration that may have influenced some results in this 

study. Four models were calibrated with NSE values less than 0.500 (10260500 Deep Creek, 

11012500 Campo, 11070500 San Jacinto, and 11044000 Santa Margarita Temecula). According 

to USGS reports for these gages, flows are regulated due to reservoirs, effluent discharge, 

irrigation diversions, and municipal diversions. These flow alterations often created instances 

when precipitation occurred but no pulse was seen in gaged streamflow records, or instances 

when streamflow pulses occurred with no precipitation. These scenarios are impossible to model 

without a complete water balance tracking all water leaving and entering the stream; however, 

flow regulation is common but is not systematically documented. Such issues highlight the 

importance of tradeoffs in hydrological modeling due to a practical inability to represent all 
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hydrologic processes. Furthermore, a relatively small biotic dataset was used in this study (25 

sites; 8 metrics), which could have directly influenced the accuracy of flow-ecology results of 

this study. The use of presence/absence biotic data in this study helps reduce the impact of these 

errors compared to more sensitive biotic metrics, such as those characterizing abundance.  

Nevertheless, the flow ecology-relationships developed for ungaged sites should be considered 

preliminary until the number of sites is appreciably increased. 

 RF model results deviate slightly from those produced by MRA. A small sample size (n = 

25) and intercorrelation between some predictor flow metric variables are not handled well in RF 

analysis and are likely the cause of discrepancies. Furthermore, RF modeling was used to explain 

biotic variability in the same manner as MRA, and the traditional approach of identifying 

thresholds and cutoffs among predictor variables was not implemented. This study facilitated my 

first attempt experimenting with RF statistical modeling, and so it is included despite its noted 

weaknesses in this specific application. MRA results should be prioritized over RF results for 

this study. 

 The hydrological models developed in this study were created to help guide management 

decisions for establishing environmental streamflow criteria. Based on the modeled accuracy of 

ecologically relevant flow metrics and strength of flow-ecology relationships, I think the 

Combined Calibration models could be reasonably used to make management decisions about 

stream drying and flashiness aspects of the flow regime. Since the models were calibrated to 

these two elements of the flow regime specifically, and were intended for environmental 

streamflow criteria development, I would feel comfortable using them for this specific purpose. 

However, the models are probably unsuitable for other applications without further calibration 

and testing. 
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 These findings suggest the importance of utilizing prior knowledge of flow-ecology 

relationships during calibration and confronting modeled flow metrics with biological data to 

rigorously assess modeled hydrologic foundations. Previous studies have compared regional 

regression approaches for generating ecological flow metrics to hydrologic modeling approaches 

(Murphy et al., 2013) and compared best overall fit calibration criteria for modeling ecological 

flow metrics (Vis et al., 2015), but I could find no studies that examine the predictive utility of 

specific flow regime elements as a benchmark for comparison. The findings of this study also 

suggest that calibration for general fit to a large and arbitrary suite of flow metrics (e.g., the 

complete set of IHA metrics) may not provide the best information for flow-ecology 

applications. Biological knowledge should inform the development of a hydrologic foundation 

because the most ecologically relevant flow metrics may be very accurate despite other 

inaccuracies. The specific ecologically-focused calibration criteria used in this study were chosen 

a priori based on relationships between regional streamflow gages and biota (Eberhart et al., 

2014), suggesting similar preliminary analyses can be used to guide calibration of rainfall-runoff 

models for hydroecological studies in different regions. 

 

5.2 Inadequacy of Nash-Sutcliffe Efficiency for some rainfall-runoff model applications 

 Previous research indicates that best overall fit criteria, such as NSE, are not always the 

ideal calibration criteria to use for rainfall-runoff models (Cassin et al., 2005; Jain and Sudheer, 

2008; Beven, 2012); however, the adequacy of using such calibration criteria in developing a 

hydrologic foundation for flow-ecology relationships within an environmental flow criteria 

framework has only recently been explored (Vis et al., 2015). Through unique comparisons of a 

best overall fit calibration criterion with ecologically-focused alternatives, this study bolsters the 
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idea that NSE may be inappropriate for specific model applications, such as the development of 

environmental flow criteria. 

 The results from this study indicate that an ecologically-focused Combined Calibration 

approach can consistently produce models that simulate flow-ecology relationships more 

accurately than NSE calibrated models, at least for coastal southern California streams. This is 

supported by multiple lines of evidence. Correlation results show that NSE models are least 

predictive in relation to the set of biotic metrics I examined (Table 4.3). MRA results indicate 

that the Combined Calibration outperforms NSE, on average and that, there are a relatively large 

number of instances in which the NSE calibrated models explained the least biotic variability 

(Table 4.4). In the random forest analysis, the < 1 cfs calibrated and Combined Calibration 

models explain more biotic variability than the NSE calibrated models (Table 4.6). These 

findings and the fact that NSE does not provide easier or quicker calibrations compared to 

ecologically-focused criteria indicate that NSE should not be blindly applied to calibrating 

models for hydroecological studies.   

 Overall, NSE models produced the entire suite of flow metrics with a higher level of 

average accuracy than the Combined Calibration (median 54% error); however, these flow 

metrics explained less variability in the selected biotic metrics because those with the most 

biological explanatory power were less accurately modeled. Despite the Combined Calibration 

models producing mostly negative NSE values, they explained more biotic variability than 

models optimizing NSE. Similarly, the < 1 cfs calibrated models produced a larger median NSE 

value than the ecologically-focused Combined Calibration, but did not explain invertebrate 

metrics as well. This finding again suggests the importance of confronting modeled flow metrics 

with biological data early in the hydrologic modeling process if possible to identify ecologically 
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relevant metrics for developing a deeper understanding of hydrologic foundation robustness, and 

not relying simply on collective raw flow metric accuracy. If biological data were not 

incorporated in this study, as has been the norm, different interpretations of hydrologic 

foundation accuracy and flow-ecology relationships would be achieved. 

 

5.3 Calibration of hydrological models using multiple criteria 

 Based on the superior performance of the Combined Calibration over other calibration 

attempts, this study bolsters the idea that multiple criteria should be used simultaneously to 

calibrate rainfall-runoff models. While it is recommended that multiple performance measures be 

used to assess rainfall-runoff model accuracy (Beven, 2012), criteria that simultaneously 

incorporate multiple performance measures for different elements of the flow regime are far less 

commonly used but have shown to produce more robust models (Gupta et al., 2008), albeit 

outside the context of environmental flow applications.  

 When developing rainfall-runoff models with the purpose of accurately predicting several 

flow regime characteristics important to biological endpoints, as necessitated by environmental 

flow studies, Murphy et al. (2013) and Vis et al. (2015) recommend multiple calibration criteria 

focused on overall fit. In this study, the Combined Calibration multiple criteria approach 

attempted to optimize low flow and flashiness aspects of the flow regime without considering 

best overall fit. In doing so, other elements of the flow regime, such as magnitude, were not 

considered and were modeled less accurately. This substantially increased the average metric 

percent error; however, crucial ecological flow metrics were produced with low percent errors 

resulting in the Combined Calibration generally providing the most biotic explanation. Because 

the ultimate aim of rainfall-runoff modeling within a hydrologic foundation is accurate flow-
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ecology relationships, and not necessarily overall accuracy of all flow metrics, the multiple 

calibration criteria approach appears superior to a NSE overall fit criterion. This finding should 

not overshadow the importance of overall fit for accurately identifying flow-ecology 

relationships which utilize elements of the flow regime not identified a priori. While this study 

demonstrates that ecologically-targeted calibration of hydrological models can improve flow-

ecology relationships versus a best overall fit criterion, more sophisticated calibration approaches 

that simultaneously optimize ecologically-focused and best overall fit criteria may further 

strengthen flow-ecology relationships not identified prior to modeling. 

 

5.4 Using antecedent gage data as the standard for comparing modeled flow-

 ecology relationships 

 Three WY antecedent gage data were used for reducing flow metric sets and as the 

standard upon which the explanation of biotic variability was compared in this study. Because 

three years of flow data have been shown to sufficiently explain benthic macroinvertebrate 

variability (Kennen et al., 2010; Eberhart, 2014), and due to the formidable challenges associated 

with using hourly data, three year periods of record were considered in this study. Habitat 

disturbances are a primary physical mechanism through which streamflow directly influences 

benthic macroinvertebrate assemblages. These disturbances are often caused by modified stream 

channel form due to bankfull and overbank flooding events which often occur every 1.5 – 2 

years (Soar and Thorne, 2001), well within the three years used in this study. The WY 2005-

2007 period was specifically chosen due to data availability, and because it represents a typical 

wet, moderate, and dry year similar to the long-term climate in coastal southern California; 

however, it does not incorporate exceptionally anomalous years that may occur in the three year 
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antecedent gage data for each bioassessment sample. Because WY 2005-2007 captures the 

representative range of regional climate variability, it could be used to reduce ecological flow 

metrics and as the standard for comparing flow-ecology relationships at the expense of 

encompassing disturbance events that occurred prior to biological sampling outside the 2005-

2007 period. 

 Because results from this study indicate that flow metrics representing the standard 

period (WY 2005-2007) are generally similar to the three WY antecedent period (mean percent 

difference of 38% and no individual metric different by more than 100%), it is likely that similar 

results would be obtained if WY 2005-2007 gage data were used as the standard for flow metric 

reduction and statistical comparison with biotic metrics. Confrontation of the biological data 

with two periods of streamflow gage data indicates similarly strong flow-ecology relationships 

according to correlation, multiple regression, and random forest analyses; however, for every 

multiple regression and random forest analysis, the WY 2005-2007 gage data explained biotic 

variability, on average, as well or better than the three WY antecedent gage data. These results 

are likely due to the similarity of flow metrics produced by the two sources of gage data and the 

representative range of regional variability captured by the hydrologic foundation period. While 

benthic macroinvertebrate assemblages are certainly shaped by three year antecedent streamflow, 

it appears as if “typical” flow metrics produced by the WY 2005-2007 period in this study may 

more accurately represent differences in relative hydrologic behavior among sites over a 

common period. 

 Gage data from three antecedent WYs were poor predictors of substantial biotic 

variability (0% in RF and adj. R2 < 0.15 in MRA) for some biotic metrics used in this study, 

especially in the random forest analyses. In many instances, the WY 2005-2007 gage data 
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improved explanatory power, often to positive percent variability explained (RF) and more 

substantial adjusted R2 values (MRA). Perhaps for some biotic metrics, anomalous events in the 

three years preceding sampling have weakened flow-ecology relationships that are better 

described with a common representative climatic period. Specifically, the biotic metrics used in 

this study are all based on presence or absence of a specific taxa and not abundance, with the 

exception of AmphipodaPercent. These presence/absence biotic metrics are likely relatively 

unaffected by anomalous events in the three WY antecedent to sampling, while abundance biotic 

metrics are likely more sensitive to anomalous disturbance events. If abundance biotic metrics 

had been used in this study, the three WY antecedent conditions might have explained more 

biotic variability. A more systematic comparison of hydrologic foundation durations (3 yr vs 

longer) with the different types of data used in this study (three year antecedent vs. constant 

climate) and types of biotic metrics (presence/absence vs. abundance) for coastal southern 

California could provide additional insight. 

 Flow metrics that explained the most biotic variability in multiple regression and random 

forest analyses were commonly not the same between gage and modeled data; however, they 

each came from a group of similar metrics that was identified a priori as ecologically relevant 

using antecedent gage data. Extensive review of regional literature and, if available, gage data 

associated with nearby bioassessment sites should be used to guide hydrological model 

calibration to improve the likelihood that modeled flow-ecology relationships are sufficiently 

strong to provide guidance on management options. 
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5.5 A three year duration and hourly resolution hydrologic foundation 

 Both hourly flow metrics derived from three years of data (the percent of time with flow 

< 1 cfs and RBI) explained significant variance in the benthic macroinvertebrate metrics 

examined in this study; however, it is likely that a three year hydrologic foundation with an 

hourly resolution is appropriate only for benthic macroinvertebrates or other relatively short-

lived biota that are sensitive to stream drying events and flashiness. A three year period may not 

be adequate to identify relationships with more mobile or longer-lived biota, such as fishes or 

riparian forest vegetation, and it is not likely that hourly flow data will provide any additional 

benefit over daily for these biota.  

 The temporal resolution of streamflow data significantly affects modeled flashiness. In 

this study, hourly time-series were aggregated to produce daily IHA flow metrics. This 

resolution coarsening appears to have greatly affected the accuracy of the rise and fall rate 

metrics in calibrated models, which were consistently among the least accurately modeled (Table 

4.2) and not commonly selected as significant predictors from both gage and modeled metrics. 

This is especially true for the Combined Calibration where some rise and fall rates were off by 

two orders of magnitude. While the Combined Calibration and RBI calibration successfully 

minimized RBI percent error at the hourly resolution (medians less than 1%), they did not 

adequately model rise and fall rates at the daily time scale after information content was reduced 

through aggradation. Sub-daily models accurately calibrated to flashiness may be erroneous 

when aggregated to daily time steps, as demonstrated by the large errors in daily IHA flashiness 

flow metrics produced by ecologically-focused models specifically calibrated to optimize the 

accuracy of streamflow flashiness at hourly time steps; however, sub-daily flashiness metrics 
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may significantly enhance flow-ecology relationships, as demonstrated in this study, due to their 

biological relevance in certain regions, such as coastal southern California. 

 In coastal southern California, WYs 2005, 2006, and 2007 are characterized as wetter 

than average, average, and drier than average, respectively. These years represent the range of 

the regional climatic variability and it is not likely that their order of occurrence negatively 

impacted model calibration, especially for the Combined Calibration. The Combined Calibration 

includes a criterion more sensitive to higher flows relevant to the beginning of the modeled time 

period (RBI) and a criterion focused on lower flows more relevant to the end of the modeled 

period (< 1 cfs). In coastal southern California, streamflow flashiness is shaped by large events 

that produce high pulses of flow for very short periods of time. Furthermore, no systematic 

residual trends were observed across all models for the calibration approaches more sensitive to 

high flows (NSE, RBI, Combined) and those sensitive to low flows (< 1 cfs, Combined). 

 

5.6 Future research 

 Ecologically-focused calibration criteria for hydrological models have shown promise in 

this study and warrant further investigation. If it proves impossible to accurately model all 

elements of the flow regime, as is the case with long-term, continuous rainfall-runoff models, 

calibration criteria relevant to specific biological endpoints, and combinations of these criteria, 

should be investigated in additional regions for alternative biologic endpoints to determine if 

more robust hydrologic foundations can be created for ecohydrological studies. Specifically, 

multi-criteria approaches that simultaneously incorporate ecologically-focused and best overall 

fit criteria should be explored. A quantitative analysis of the tradeoffs (flow-ecology relationship 

strength and flow metric accuracy) involved between ecologically-focused and best overall fit 
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calibration schemes could provide insight on when highly sophisticated multiple calibration 

criteria warrant use. A deeper investigation into the duration, resolution, and type of streamflow 

data for establishing a hydrologic foundation with benthic macroinvertebrates specifically, across 

many regions, should also be explored. The adequacy of three years of hourly streamflow data in 

describing other organisms could be tested by generating flow metrics from time-series data with 

associated bioassessment sites across gradients of time resolution and duration. Time steps could 

range from 15 min to daily or monthly and durations could range from three years to at least 15 

years. Correlation, MRA, and other statistical procedures could be used to determine the 

explanatory power of different resolutions and durations of data for various biotic endpoints. 

 Hydrological models used for environmental flow applications could be used to simulate 

possible stormwater management scenarios. The impacts of different management approaches 

generated by ecologically-focused models on local biota could help decision-makers consider 

ecological health in management choices. Furthermore, alternative ecologically-focused models 

calibrated to hydraulic conditions may more accurately simulate habitat disturbance events that 

most affect stream biota. The strength of flow-ecology relationships produced by hydraulic 

ecologically-focused calibration criteria warrants future research. 

 Accurate predictions of streamflow at ungaged bioassessment sites are often needed to 

establish regional flow-ecology relationships. While a substantial number of studies have 

recently focused on predicting streamflow in ungaged basins (Bloschl et al., 2013), more robust 

techniques are needed to extrapolate one or a combination of calibrated rainfall-runoff models to 

ungaged basins. When model parameters cannot be directly estimated, recent research has 

focused on spatial proximity and similarity in key watershed characteristics as the basis for 

extrapolation; however, approaches that implement model accuracy through cross-validation 
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should be explored further. Commonly, two neighboring watersheds may generate dramatically 

different hydrological processes and so the accuracy of cross-validated rainfall-runoff models 

when extrapolated to other basins within a region could be an important tool for predictions in 

ungaged basins. 
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CHAPTER 6: CONCLUSIONS 
 
 
 

 Nineteen rainfall-runoff models spanning three years with hourly time steps were 

individually calibrated to streamflow gages in coastal southern California. Calibration criteria 

were NSE and three ecologically-focused criteria identified a priori based on knowledge of 

regional flow-ecology relationships. Calibration was very accurate with only one model 

calibrated to ecologically-focused criteria producing a calibration error greater than 10%. Many 

models were calibrated within a 1% error of their ecologically-focused criteria. Calibration to 

NSE was successful with a median value of 0.634.  

 Correlation, multiple regression, and random forest analyses indicate that flow metrics 

produced by the ecologically-focused Combined Calibration approach generally explain selected 

taxa and trait-based biotic metrics as well or better than metrics derived from gage data in coastal 

southern California. Furthermore, these models calibrated simultaneously to two ecologically-

focused criteria generally produce superior flow-ecology relationships, on average, compared to 

those calibrated to the NSE best overall fit criterion. Despite their relatively low accuracy in 

reproducing some of the full suite of IHA flow metrics, models calibrated based on biologically-

relevant criteria appear to reproduce biologically important flow metrics related to extreme low 

flows and flashiness much more accurately than models calibrated using an overall fit criterion. 

This can lead to stronger flow-ecology relationships, the ultimate aim of hydrological modeling 

in an environmental flow framework. Ecohydrological studies that utilize rainfall-runoff models 

and report calibration methods almost exclusively employ a best overall fit criterion for 

calibration. Such an approach does not necessarily focus on elements of the flow regime critical 

to biologic endpoints, and may not always be the preferred option as demonstrated in this study. 
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This study shows how prior knowledge of flow-ecology linkages can be incorporated into a 

hydrologic foundation.  

 A hydrologic foundation spanning three years that typify a wet, moderate, and dry year in 

coastal southern California, and providing hourly time series of discharge, produces flow-

ecology relationships that are, on average, at least as strong as those developed from gage data 

for the three years preceding each bioassessment sample. Raw flow metrics produced by the 

gaged constant climate period were more similar to those produced by the three year antecedent 

data than any modeled data. Based on these findings, the WY 2005-2007 hydrologic foundation 

period appears to better describe benthic macroinvertebrates in coastal southern California than 

three year antecedent gage data scattered over eleven years. 

 None of the hourly models performed exceptionally well in reproducing the full suite of 

daily IHA metrics with the smallest overall percent error being a median value of 54% (NSE and 

< 1 cfs). This is not necessarily surprising due to the prevalence of magnitude-based flow metrics 

in IHA and the effects of aggregating to daily time steps. While the Combined Calibration 

produced the largest overall median percent error of collective flow metrics (117%), it more 

accurately reproduced certain flow metrics critical to benthic macroinvertebrate endpoints 

(medians < 20%). 

 Future research is needed to investigate how to achieve best overall fit, while also 

ensuring accuracy of the most ecologically relevant elements of the flow regime. Furthermore, 

the use of a priori flow characteristics known to shape biological endpoints as rainfall-runoff 

calibration criteria should be expanded to different regions and biota to better assess the 

feasibility of improving hydrologic foundations within environmental flow studies. This research 
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informs regional studies in which calibrated rainfall-runoff models must be extrapolated to 

ungaged bioassessment sites for a more inclusive regional hydrologic foundation. 
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APPENDICES 
 

 

 

Appendix I: Flow metric accuracy relative to the three WY antecedent gage data and flow metric correlation matrices  

Table A1.1: Accuracy of flow metrics from rainfall-runoff models and WY 2005-2007 gage data compared to the three WY antecedent gage data. Italicized average 
metric errors at the bottom indicate the calibration approach with the lowest average metric error. 

Flow Metric 

Mean % 
difference 
Gage WY 
2005-2007 

Median % 
difference 
Gage WY 
2005-2007 

Mean % 
error NSE 
Calibration 

Median % 
error NSE 
Calibration 

Mean % 
error RBI 

Calibration 

Median % 
error RBI 

Calibration 

Mean % 
error < 1 cfs 
Calibration 

Median % 
error < 1 cfs 
Calibration 

Mean % error 
RBI and < 1 

cfs Combined 
Calibration 

Median % error 
RBI and < 1 cfs 

Combined 
Calibration 

RBI_1hr 24.1 22.4 7.9 3.2 27.4 25.0 15.4 52.3 27.7 19.4 

cfs_1hr 1.0 23.9 25.0 146.8 127.8 361.0 0.1 27.9 0.8 26.9 

Dec 34.1 98.5 48.7 80.0 95.5 100.0 128.9 73.8 371.8 48.3 

Jan 25.7 84.2 56.6 81.5 84.9 100.0 165.3 35.2 554.5 64.5 

Feb 80.5 110.0 74.1 86.6 84.7 100.0 57.7 63.3 291.7 58.4 

SevenDayMax 61.2 99.6 67.4 96.5 13.5 94.2 10.7 86.6 296.7 211.3 

NumZeroDays 59.8 100 26.9 100 231.0 100 69.0 100 17.3 100 

DateMax 30.0 6.1 14.0 20.8 16.5 12.5 5.1 20.8 14.0 4.2 

LowPulseCount 11.5 0.0 84.5 100.0 100.0 100.0 68.9 75.0 35.8 25.0 

HighPulseCount 10.1 18.2 2.2 20.0 69.8 140.0 18.0 20.0 106.7 180.0 

RiseRate 52.8 40.0 5818.6 1236.3 5463.0 7290.0 3228.4 1072.3 18090.8 25520.0 

FallRate 46.7 50.0 232.0 15.5 883.6 586.3 92.5 82.8 219.7 271.3 

NumReversals 14.3 29.5 68.1 76.9 63.5 67.9 57.6 65.4 30.1 23.1 

ExtremeLowDuration 27.3 0.0 9.3 166.7 96.2 6.7 22.1 213.3 72.7 13.3 

ExtremeLowTiming 11.2 9.0 21.3 45.3 45.0 71.8 6.0 19.2 4.1 7.7 

ExtremeLowFreq 14.6 40.0 22.9 66.7 141.0 100.0 18.9 66.7 27.6 0.0 

HighFlowDuration 58.5 40.0 64.6 33.3 62.9 33.3 17.0 50.0 43.6 33.3 

LargeFloodDuration 66.1 71.9 64.0 25.7 28.6 64.9 134.7 216.2 39.9 64.9 

SmallFloodPeak 23.3 42.6 35.0 70.2 100.5 33.6 37.1 78.1 435.7 400.5 

SmallFloodRiseRate 35.0 55.4 6.9 49.6 163.7 146.7 201.1 25.4 496.0 1006.5 

SmallFloodFallRate 55.8 28.4 188.6 2.5 265.1 419.3 333.4 3.2 440.7 1029.4 
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LargeFloodRiseRate 99.0 106.9 21.0 33.0 19.6 9.3 57.7 73.0 290.0 100.0 

All Low Flow 20.9 16.5 31.6 100.0 123.5 100.0 30.8 70.8 26.4 19.2 

All Flashiness 46.8 40.0 906.2 33.0 983.7 146.7 569.4 65.4 2799.3 271.3 

All 38.3 40.0 316.3 68.4 372.0 100.0 215.7 66.0 995.8 61.4 

 

Table A1.2: Three WY antecedent gage data flow metric correlation matrix with correlations statistically significant at the p = 0.1 level denoted in italics. 

Flow 
Metr

ic 

RBI
_1hr 

cfs_
1hr Dec Jan Feb 

7Da
yM
ax 

#Zer
oDa
ys 

Dat
eMa

x 

Low 
Puls
eCo
unt 

High 
Puls
eCo
unt 

Rise 
Rate 

Fall 
Rate 

#Re
vers
als 

Ext 
Low 
Dur 

Ext 
Low 
Tim

e 

Ext 
Low 
Freq 

High 
Dur 

Sma
llFlo
odPe

ak 

Sma
llFlo
odRi

se 

Sma
llFlo
odF
all 

Larg
e 

Floo
d 

Dur 

Larg
eFlo
odRi

se 

RBI_ 
1hr 

- -0.12 0.32 0.28 0.00 0.29 -0.09 
-

0.07 
0.37 0.64 0.06 -0.19 0.45 -0.60 0.03 0.54 -0.31 0.26 0.38 -0.47 -0.25 -0.08 

cfs_1h
r 

-0.12 - -0.44 -0.48 -0.49 
-

0.56 
0.87 

-
0.39 

-0.66 -0.59 -0.37 0.50 -0.75 0.53 -0.69 -0.44 0.49 -0.56 -0.58 0.36 0.56 -0.45 

Dec 0.32 -0.44 - 0.96 0.80 0.70 -0.38 
-

0.22 
0.52 0.58 0.62 -0.85 0.47 -0.22 0.06 0.35 -0.14 0.64 0.42 -0.80 -0.11 0.20 

Jan 0.28 -0.48 0.96 - 0.87 0.78 -0.38 
-

0.04 
0.47 0.57 0.79 -0.95 0.45 -0.16 0.10 0.29 -0.24 0.74 0.48 -0.85 -0.09 0.37 

Feb 0.00 -0.49 0.80 0.87 - 0.75 -0.33 
-

0.01 
0.26 0.26 0.83 -0.92 0.21 0.03 0.17 0.06 -0.10 0.75 0.41 -0.57 -0.03 0.55 

7Day 
Max 

0.29 -0.56 0.70 0.78 0.75 - -0.44 0.19 0.65 0.53 0.76 -0.80 0.47 -0.16 0.32 0.44 -0.28 0.97 0.81 -0.53 -0.33 0.75 

#Zero 
Days 

-0.09 0.87 -0.38 -0.38 -0.33 
-

0.44 
- 

-
0.24 

-0.69 -0.59 -0.16 0.33 -0.84 0.59 -0.77 -0.41 0.68 -0.44 -0.45 0.31 0.56 -0.32 

Date 
Max 

-0.07 -0.39 -0.22 -0.04 -0.01 0.19 -0.24 - 0.15 0.13 0.28 -0.08 0.23 0.01 0.28 0.15 -0.39 0.22 0.47 0.06 -0.12 0.44 

Low 
Pulse 
Count 

0.37 -0.66 0.52 0.47 0.26 0.65 -0.69 0.15 - 0.73 0.28 -0.40 0.81 -0.60 0.40 0.78 -0.49 0.56 0.63 -0.37 -0.57 0.31 

High 
Pulse 
Count 

0.64 -0.59 0.58 0.57 0.26 0.53 -0.59 0.13 0.73 - 0.31 -0.47 0.86 -0.60 0.34 0.79 -0.56 0.47 0.51 -0.68 -0.54 0.09 

Rise 
Rate 

0.06 -0.37 0.62 0.79 0.83 0.76 -0.16 0.28 0.28 0.31 - -0.92 0.16 0.14 0.10 0.15 -0.25 0.73 0.50 -0.53 0.02 0.62 

Fall 
Rate 

-0.19 0.50 -0.85 -0.95 -0.92 
-

0.80 
0.33 

-
0.08 

-0.40 -0.47 -0.92 - -0.36 0.06 -0.13 -0.20 0.26 -0.78 -0.50 0.73 0.04 -0.52 

#Reve
rsals 

0.45 -0.75 0.47 0.45 0.21 0.47 -0.84 0.23 0.81 0.86 0.16 -0.36 - -0.69 0.54 0.64 -0.67 0.45 0.49 -0.53 -0.61 0.17 

ExtLo
wDur 

-0.60 0.53 -0.22 -0.16 0.03 
-

0.16 
0.59 0.01 -0.60 -0.60 0.14 0.06 -0.69 - -0.39 -0.50 0.55 -0.17 -0.19 0.30 0.45 -0.01 

ExtLo
w 

Time 
0.03 -0.69 0.06 0.10 0.17 0.32 -0.77 0.28 0.40 0.34 0.10 -0.13 0.54 -0.39 - 0.26 -0.64 0.34 0.39 -0.01 -0.56 0.38 
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ExtLo
w 

Freq 
0.54 -0.44 0.35 0.29 0.06 0.44 -0.41 0.15 0.78 0.79 0.15 -0.20 0.64 -0.50 0.26 - -0.39 0.31 0.52 -0.31 -0.56 0.01 

High 
Dur 

-0.31 0.49 -0.14 -0.24 -0.10 
-

0.28 
0.68 

-
0.39 

-0.49 -0.56 -0.25 0.26 -0.67 0.55 -0.64 -0.39 - -0.28 -0.32 0.30 0.33 -0.24 

Small 
Flood 
Peak 

0.26 -0.56 0.64 0.74 0.75 0.97 -0.44 0.22 0.56 0.47 0.73 -0.78 0.45 -0.17 0.34 0.31 -0.28 - 0.79 -0.54 -0.30 0.82 

Small 
Flood 
Rise 

0.38 -0.58 0.42 0.48 0.41 0.81 -0.45 0.47 0.63 0.51 0.50 -0.50 0.49 -0.19 0.39 0.52 -0.32 0.79 - -0.38 -0.38 0.64 

Small 
Flood 
Fall 

-0.47 0.36 -0.80 -0.85 -0.57 
-

0.53 
0.31 0.06 -0.37 -0.68 -0.53 0.73 -0.53 0.30 -0.01 -0.31 0.30 -0.54 -0.38 - 0.14 -0.09 

Large
Flood
Dur 

-0.25 0.56 -0.11 -0.09 -0.03 
-

0.33 
0.56 

-
0.12 

-0.57 -0.54 0.02 0.04 -0.61 0.45 -0.56 -0.56 0.33 -0.30 -0.38 0.14 - -0.20 

Large 
Flood 
Rise 

-0.08 -0.45 0.20 0.37 0.55 0.75 -0.32 0.44 0.31 0.09 0.62 -0.52 0.17 -0.01 0.38 0.01 -0.24 0.82 0.64 -0.09 -0.20 - 

 

Table A1.3: WY 2005-2007 gage data flow metric correlation matrix with correlations statistically significant at the p = 0.1 level denoted in italics. 

Flow 
Metr

ic 

RBI
_1hr 

cfs_
1hr Dec Jan Feb 

7Da
yM
ax 

#Zer
oDa
ys 

Dat
eMa

x 

Low 
Puls
eCo
unt 

High 
Puls
eCo
unt 

Rise 
Rate 

Fall 
Rate 

#Re
vers
als 

Ext 
Low 
Dur 

Ext 
Low 
Tim

e 

Ext 
Low 
Freq 

High 
Dur 

Sma
llFlo
odPe

ak 

Sma
llFlo
odRi

se 

Sma
llFlo
odF
all 

Larg
e 

Floo
d 

Dur 

Larg
eFlo
odRi

se 

RBI_ 
1hr 

- -0.14 0.34 0.27 0.37 0.30 0.08 0.22 0.62 0.71 0.42 -0.47 0.56 0.07 -0.07 0.63 0.08 0.44 0.23 -0.61 -0.34 -0.19 

cfs_1h
r 

-0.14 - -0.45 -0.54 -0.48 
-

0.35 
0.87 

-
0.27 

-0.57 -0.50 -0.56 0.50 -0.68 0.76 -0.62 -0.46 -0.16 -0.44 -0.35 0.46 0.80 -0.65 

Dec 0.34 -0.45 - 0.98 1.00 0.46 -0.34 
-

0.26 
0.65 0.61 0.96 -0.98 0.54 -0.30 0.21 0.11 -0.22 0.50 0.08 -0.75 -0.53 0.59 

Jan 0.27 -0.54 0.98 - 0.99 0.44 -0.40 
-

0.22 
0.62 0.58 0.97 -0.96 0.52 -0.36 0.28 0.12 -0.22 0.49 0.09 -0.72 -0.58 0.71 

Feb 0.37 -0.48 1.00 0.99 - 0.46 -0.36 
-

0.20 
0.69 0.65 0.98 -0.99 0.57 -0.32 0.26 0.18 -0.21 0.52 0.10 -0.77 -0.58 0.60 

7Day 
Max 

0.30 -0.35 0.46 0.44 0.46 - -0.27 
-

0.08 
0.34 0.22 0.53 -0.51 0.22 -0.21 0.20 -0.03 0.15 0.97 0.89 -0.82 -0.26 0.43 

#Zero 
Days 

0.08 0.87 -0.34 -0.40 -0.36 
-

0.27 
- 

-
0.16 

-0.54 -0.46 -0.39 0.36 -0.70 0.94 -0.79 -0.36 0.06 -0.34 -0.29 0.35 0.80 -0.51 

Date 
Max 

0.22 -0.27 -0.26 -0.22 -0.20 
-

0.08 
-0.16 - 0.31 0.32 -0.16 0.17 0.27 -0.14 0.35 0.74 0.30 0.01 0.10 -0.02 -0.40 -0.14 

Low 
Pulse 
Count 

0.62 -0.57 0.65 0.62 0.69 0.34 -0.54 0.31 - 0.92 0.70 -0.73 0.91 -0.46 0.40 0.73 -0.04 0.50 0.18 -0.75 -0.79 0.15 

High 
Pulse 

0.71 -0.50 0.61 0.58 0.65 0.22 -0.46 0.32 0.92 - 0.62 -0.67 0.89 -0.44 0.44 0.73 -0.21 0.37 0.06 -0.66 -0.79 0.14 
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Count 

Rise 
Rate 

0.42 -0.56 0.96 0.97 0.98 0.53 -0.39 
-

0.16 
0.70 0.62 - -0.99 0.59 -0.33 0.25 0.24 -0.11 0.61 0.23 -0.83 -0.62 0.64 

Fall 
Rate 

-0.47 0.50 -0.98 -0.96 -0.99 
-

0.51 
0.36 0.17 -0.73 -0.67 -0.99 - -0.62 0.33 -0.25 -0.26 0.16 -0.59 -0.18 0.83 0.62 -0.55 

#Reve
rsals 

0.56 -0.68 0.54 0.52 0.57 0.22 -0.70 0.27 0.91 0.89 0.59 -0.62 - -0.67 0.52 0.76 -0.11 0.38 0.14 -0.60 -0.87 0.15 

ExtLo
wDur 

0.07 0.76 -0.30 -0.36 -0.32 
-

0.21 
0.94 

-
0.14 

-0.46 -0.44 -0.33 0.33 -0.67 - -0.88 -0.34 0.23 -0.28 -0.22 0.30 0.79 -0.46 

ExtLo
w 

Time 
-0.07 -0.62 0.21 0.28 0.26 0.20 -0.79 0.35 0.40 0.44 0.25 -0.25 0.52 -0.88 - 0.36 -0.27 0.26 0.21 -0.28 -0.78 0.42 

ExtLo
w 

Freq 
0.63 -0.46 0.11 0.12 0.18 

-
0.03 

-0.36 0.74 0.73 0.73 0.24 -0.26 0.76 -0.34 0.36 - 0.15 0.17 0.07 -0.35 -0.70 -0.15 

High 
Dur 

0.08 -0.16 -0.22 -0.22 -0.21 0.15 0.06 0.30 -0.04 -0.21 -0.11 0.16 -0.11 0.23 -0.27 0.15 - 0.16 0.29 -0.07 0.13 -0.17 

Small 
Flood 
Peak 

0.44 -0.44 0.50 0.49 0.52 0.97 -0.34 0.01 0.50 0.37 0.61 -0.59 0.38 -0.28 0.26 0.17 0.16 - 0.89 -0.90 -0.41 0.40 

Small 
Flood 
Rise 

0.23 -0.35 0.08 0.09 0.10 0.89 -0.29 0.10 0.18 0.06 0.23 -0.18 0.14 -0.22 0.21 0.07 0.29 0.89 - -0.62 -0.21 0.29 

Small 
Flood 
Fall 

-0.61 0.46 -0.75 -0.72 -0.77 
-

0.82 
0.35 

-
0.02 

-0.75 -0.66 -0.83 0.83 -0.60 0.30 -0.28 -0.35 -0.07 -0.90 -0.62 - 0.58 -0.37 

Large
Flood
Dur 

-0.34 0.80 -0.53 -0.58 -0.58 
-

0.26 
0.80 

-
0.40 

-0.79 -0.79 -0.62 0.62 -0.87 0.79 -0.78 -0.70 0.13 -0.41 -0.21 0.58 - -0.44 

Large 
Flood 
Rise 

-0.19 -0.65 0.59 0.71 0.60 0.43 -0.51 
-

0.14 
0.15 0.14 0.64 -0.55 0.15 -0.46 0.42 -0.15 -0.17 0.40 0.29 -0.37 -0.44 - 

 

 Table A1.4: NSE calibration flow metric correlation matrix with correlations statistically significant at the p = 0.1 level denoted in italics. 

Flow 
Metr

ic 

RBI
_1hr 

cfs_
1hr Dec Jan Feb 

7Da
yM
ax 

#Zer
oDa
ys 

Dat
eMa

x 

Low 
Puls
eCo
unt 

High 
Puls
eCo
unt 

Rise 
Rate 

Fall 
Rate 

#Re
vers
als 

Ext 
Low 
Dur 

Ext 
Low 
Tim

e 

Ext 
Low 
Freq 

High 
Dur 

Sma
llFlo
odPe

ak 

Sma
llFlo
odRi

se 

Sma
llFlo
odF
all 

Larg
e 

Floo
d 

Dur 

Larg
eFlo
odRi

se 

RBI_ 
1hr 

- -0.02 0.23 0.27 0.25 0.30 -0.19 0.45 0.35 -0.08 0.54 0.00 0.02 -0.08 0.03 -0.57 -0.16 0.27 0.14 -0.29 -0.36 0.09 

cfs_1h
r 

-0.02 - -0.29 -0.32 -0.38 
-

0.43 
0.78 

-
0.07 

-0.25 -0.61 0.01 0.43 -0.41 0.37 -0.32 -0.46 -0.31 -0.48 -0.53 0.47 0.49 -0.33 

Dec 0.23 -0.29 - 0.96 0.95 0.75 -0.20 0.64 0.95 0.34 -0.15 0.18 0.53 0.10 0.27 -0.32 -0.16 0.79 0.43 -0.49 -0.17 0.14 

Jan 0.27 -0.32 0.96 - 0.98 0.88 -0.22 0.68 0.98 0.28 -0.16 0.18 0.64 0.06 0.28 -0.34 -0.10 0.87 0.58 -0.64 -0.07 0.37 
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Feb 0.25 -0.38 0.95 0.98 - 0.90 -0.27 0.64 0.97 0.43 -0.16 0.17 0.74 -0.02 0.40 -0.28 -0.06 0.89 0.63 -0.66 -0.07 0.44 

7Day 
Max 

0.30 -0.43 0.75 0.88 0.90 - -0.35 0.57 0.87 0.39 -0.10 -0.06 0.75 -0.19 0.27 -0.19 0.22 0.98 0.88 -0.92 -0.04 0.72 

#Zero 
Days 

-0.19 0.78 -0.20 -0.22 -0.27 
-

0.35 
- 

-
0.32 

-0.21 -0.40 -0.18 0.26 -0.24 0.13 -0.31 -0.21 -0.03 -0.35 -0.41 0.40 0.38 -0.26 

Date 
Max 

0.45 -0.07 0.64 0.68 0.64 0.57 -0.32 - 0.73 -0.20 0.35 0.39 0.13 0.42 0.02 -0.65 -0.46 0.52 0.25 -0.39 -0.26 0.12 

Low 
Pulse 
Count 

0.35 -0.25 0.95 0.98 0.97 0.87 -0.21 0.73 - 0.28 -0.10 0.26 0.62 0.02 0.23 -0.40 -0.12 0.85 0.54 -0.63 -0.10 0.35 

High 
Pulse 
Count 

-0.08 -0.61 0.34 0.28 0.43 0.39 -0.40 
-

0.20 
0.28 - -0.27 -0.22 0.66 -0.62 0.52 0.50 0.45 0.44 0.45 -0.36 -0.18 0.33 

Rise 
Rate 

0.54 0.01 -0.15 -0.16 -0.16 
-

0.10 
-0.18 0.35 -0.10 -0.27 - 0.10 -0.34 0.30 -0.08 -0.27 -0.19 -0.13 -0.11 0.02 -0.43 -0.11 

Fall 
Rate 

0.00 0.43 0.18 0.18 0.17 
-

0.06 
0.26 0.39 0.26 -0.22 0.10 - 0.12 0.28 0.03 -0.40 -0.60 -0.19 -0.40 0.37 0.26 -0.11 

#Reve
rsals 

0.02 -0.41 0.53 0.64 0.74 0.75 -0.24 0.13 0.62 0.66 -0.34 0.12 - -0.38 0.62 0.07 0.20 0.71 0.70 -0.61 0.26 0.76 

ExtLo
wDur 

-0.08 0.37 0.10 0.06 -0.02 
-

0.19 
0.13 0.42 0.02 -0.62 0.30 0.28 -0.38 - 0.08 -0.48 -0.70 -0.19 -0.34 0.31 0.13 -0.38 

ExtLo
w 

Time 
0.03 -0.32 0.27 0.28 0.40 0.27 -0.31 0.02 0.23 0.52 -0.08 0.03 0.62 0.08 - -0.07 -0.26 0.27 0.28 -0.14 0.26 0.35 

ExtLo
w 

Freq 
-0.57 -0.46 -0.32 -0.34 -0.28 

-
0.19 

-0.21 
-

0.65 
-0.40 0.50 -0.27 -0.40 0.07 -0.48 -0.07 - 0.69 -0.14 0.09 0.03 -0.16 0.05 

High 
Dur 

-0.16 -0.31 -0.16 -0.10 -0.06 0.22 -0.03 
-

0.46 
-0.12 0.45 -0.19 -0.60 0.20 -0.70 -0.26 0.69 - 0.27 0.50 -0.48 -0.14 0.37 

Small 
Flood 
Peak 

0.27 -0.48 0.79 0.87 0.89 0.98 -0.35 0.52 0.85 0.44 -0.13 -0.19 0.71 -0.19 0.27 -0.14 0.27 - 0.89 -0.92 -0.11 0.64 

Small 
Flood 
Rise 

0.14 -0.53 0.43 0.58 0.63 0.88 -0.41 0.25 0.54 0.45 -0.11 -0.40 0.70 -0.34 0.28 0.09 0.50 0.89 - -0.97 0.01 0.86 

Small 
Flood 
Fall 

-0.29 0.47 -0.49 -0.64 -0.66 
-

0.92 
0.40 

-
0.39 

-0.63 -0.36 0.02 0.37 -0.61 0.31 -0.14 0.03 -0.48 -0.92 -0.97 - 0.09 -0.78 

Large
Flood
Dur 

-0.36 0.49 -0.17 -0.07 -0.07 
-

0.04 
0.38 

-
0.26 

-0.10 -0.18 -0.43 0.26 0.26 0.13 0.26 -0.16 -0.14 -0.11 0.01 0.09 - 0.30 

Large 
Flood 
Rise 

0.09 -0.33 0.14 0.37 0.44 0.72 -0.26 0.12 0.35 0.33 -0.11 -0.11 0.76 -0.38 0.35 0.05 0.37 0.64 0.86 -0.78 0.30 - 
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Table A1.5: RBI calibration flow metric correlation matrix with correlations statistically significant at the p = 0.1 level denoted in italics. 

Flow 
Metr

ic 

RBI
_1hr 

cfs_
1hr Dec Jan Feb 

7Da
yM
ax 

#Zer
oDa
ys 

Dat
eMa

x 

Low 
Puls
eCo
unt 

High 
Puls
eCo
unt 

Rise 
Rate 

Fall 
Rate 

#Re
vers
als 

Ext 
Low 
Dur 

Ext 
Low 
Tim

e 

Ext 
Low 
Freq 

High 
Dur 

Sma
llFlo
odPe

ak 

Sma
llFlo
odRi

se 

Sma
llFlo
odF
all 

Larg
e 

Floo
d 

Dur 

Larg
eFlo
odRi

se 

RBI_ 
1hr 

- -0.18 0.33 -0.09 -0.28 0.00 -0.07 0.37 - 0.35 0.44 -0.24 -0.01 -0.19 -0.33 0.43 0.49 0.11 0.01 -0.27 -0.12 -0.39 

cfs_1h
r 

-0.18 - -0.77 0.00 -0.03 0.03 0.93 0.19 - 0.12 -0.66 0.60 0.05 0.12 -0.21 0.29 0.02 0.01 -0.11 0.49 -0.07 -0.54 

Dec 0.33 -0.77 - 0.50 0.36 
-

0.10 
-0.57 

-
0.06 

- -0.35 0.61 -0.65 -0.39 -0.03 0.01 -0.27 0.14 -0.10 -0.02 -0.27 -0.11 0.04 

Jan -0.09 0.00 0.50 - 0.94 
-

0.06 
0.06 

-
0.01 

- -0.34 0.06 -0.21 -0.25 0.01 0.34 -0.20 0.05 -0.11 -0.09 0.12 -0.06 -0.16 

Feb -0.28 -0.03 0.36 0.94 - 
-

0.08 
-0.07 

-
0.06 

- -0.29 0.05 -0.12 -0.10 -0.02 0.59 -0.28 -0.07 -0.13 -0.10 0.11 0.00 0.09 

7Day 
Max 

0.00 0.03 -0.10 -0.06 -0.08 - 0.01 
-

0.02 
- 0.46 0.06 -0.24 0.55 -0.11 -0.01 0.44 0.18 0.98 0.97 -0.71 -0.18 0.13 

#Zero 
Days 

-0.07 0.93 -0.57 0.06 -0.07 0.01 - 0.22 - 0.05 -0.62 0.36 -0.10 0.17 -0.48 0.35 0.09 0.01 -0.10 0.44 -0.19 -0.64 

Date 
Max 

0.37 0.19 -0.06 -0.01 -0.06 
-

0.02 
0.22 - - 0.05 0.45 -0.03 -0.11 0.36 -0.11 0.15 -0.14 0.07 -0.05 -0.16 -0.33 -0.38 

Low 
Pulse 
Count 

- - - - - - - - - - - - - - - - - - - - - - 

High 
Pulse 
Count 

0.35 0.12 -0.35 -0.34 -0.29 0.46 0.05 0.05 - - -0.11 -0.16 0.90 -0.41 0.00 0.89 0.39 0.57 0.40 -0.56 -0.12 0.31 

Rise 
Rate 

0.44 -0.66 0.61 0.06 0.05 0.06 -0.62 0.45 - -0.11 - -0.46 -0.20 0.06 0.07 -0.16 0.15 0.10 0.14 -0.50 -0.35 0.10 

Fall 
Rate 

-0.24 0.60 -0.65 -0.21 -0.12 
-

0.24 
0.36 

-
0.03 

- -0.16 -0.46 - -0.09 0.17 0.26 -0.27 -0.26 -0.32 -0.36 0.71 0.32 -0.34 

#Reve
rsals 

-0.01 0.05 -0.39 -0.25 -0.10 0.55 -0.10 
-

0.11 
- 0.90 -0.20 -0.09 - -0.35 0.32 0.68 0.15 0.62 0.49 -0.58 0.03 0.57 

ExtLo
wDur 

-0.19 0.12 -0.03 0.01 -0.02 
-

0.11 
0.17 0.36 - -0.41 0.06 0.17 -0.35 - -0.01 -0.32 -0.51 -0.14 -0.13 0.21 0.06 -0.24 

ExtLo
w 

Time 
-0.33 -0.21 0.01 0.34 0.59 

-
0.01 

-0.48 
-

0.11 
- 0.00 0.07 0.26 0.32 -0.01 - -0.35 -0.36 -0.05 -0.03 -0.02 0.36 0.50 

ExtLo
w 

Freq 
0.43 0.29 -0.27 -0.20 -0.28 0.44 0.35 0.15 - 0.89 -0.16 -0.27 0.68 -0.32 -0.35 - 0.53 0.56 0.37 -0.47 -0.35 0.00 

High 
Dur 

0.49 0.02 0.14 0.05 -0.07 0.18 0.09 
-

0.14 
- 0.39 0.15 -0.26 0.15 -0.51 -0.36 0.53 - 0.21 0.15 -0.22 -0.50 -0.16 

Small 
Flood 
Peak 

0.11 0.01 -0.10 -0.11 -0.13 0.98 0.01 0.07 - 0.57 0.10 -0.32 0.62 -0.14 -0.05 0.56 0.21 - 0.95 -0.79 -0.20 0.15 

Small 
Flood 

0.01 -0.11 -0.02 -0.09 -0.10 0.97 -0.10 
-

0.05 
- 0.40 0.14 -0.36 0.49 -0.13 -0.03 0.37 0.15 0.95 - -0.77 -0.14 0.23 
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Rise 

Small 
Flood 
Fall 

-0.27 0.49 -0.27 0.12 0.11 
-

0.71 
0.44 

-
0.16 

- -0.56 -0.50 0.71 -0.58 0.21 -0.02 -0.47 -0.22 -0.79 -0.77 - 0.25 -0.47 

Large
Flood
Dur 

-0.12 -0.07 -0.11 -0.06 0.00 
-

0.18 
-0.19 

-
0.33 

- -0.12 -0.35 0.32 0.03 0.06 0.36 -0.35 -0.50 -0.20 -0.14 0.25 - 0.11 

Large 
Flood 
Rise 

-0.39 -0.54 0.04 -0.16 0.09 0.13 -0.64 
-

0.38 
- 0.31 0.10 -0.34 0.57 -0.24 0.50 0.00 -0.16 0.15 0.23 -0.47 0.11 - 

 

Table A1.6: < 1 cfs Calibration Flow Metric Correlation Matrix with correlations statistically significant at the p = 0.1 level denoted in italics. 

Flow 
Metr

ic 

RBI
_1hr 

cfs_
1hr Dec Jan Feb 

7Da
yM
ax 

#Zer
oDa
ys 

Dat
eMa

x 

Low 
Puls
eCo
unt 

High 
Puls
eCo
unt 

Rise 
Rate 

Fall 
Rate 

#Re
vers
als 

Ext 
Low 
Dur 

Ext 
Low 
Tim

e 

Ext 
Low 
Freq 

High 
Dur 

Sma
llFlo
odPe

ak 

Sma
llFlo
odRi

se 

Sma
llFlo
odF
all 

Larg
e 

Floo
d 

Dur 

Larg
eFlo
odRi

se 

RBI_ 
1hr 

- -0.11 -0.23 -0.25 -0.24 
-

0.13 
-0.19 0.27 0.06 0.14 0.45 0.07 -0.01 0.19 -0.02 -0.17 -0.03 -0.09 -0.18 -0.48 -0.34 0.03 

cfs_1h
r 

-0.11 - -0.44 -0.35 -0.33 
-

0.37 
0.74 0.03 -0.46 0.18 -0.26 0.39 0.08 0.04 -0.11 0.73 -0.40 -0.66 -0.51 0.53 0.36 -0.56 

Dec -0.23 -0.44 - 0.98 0.97 0.94 -0.26 
-

0.22 
0.67 0.09 0.38 -0.15 0.29 -0.18 0.31 -0.30 0.75 0.78 0.43 -0.07 -0.35 0.36 

Jan -0.25 -0.35 0.98 - 1.00 0.97 -0.21 
-

0.25 
0.62 0.05 0.42 -0.21 0.22 -0.18 0.27 -0.24 0.80 0.66 0.29 0.03 -0.37 0.24 

Feb -0.24 -0.33 0.97 1.00 - 0.98 -0.20 
-

0.24 
0.61 0.04 0.42 -0.22 0.20 -0.17 0.26 -0.22 0.80 0.63 0.25 0.05 -0.38 0.21 

7Day 
Max 

-0.13 -0.37 0.94 0.97 0.98 - -0.23 
-

0.17 
0.63 0.07 0.45 -0.27 0.24 -0.17 0.20 -0.24 0.84 0.62 0.18 -0.08 -0.46 0.19 

#Zero 
Days 

-0.19 0.74 -0.26 -0.21 -0.20 
-

0.23 
- 

-
0.21 

-0.33 0.65 -0.30 0.22 0.34 -0.28 -0.37 0.96 -0.12 -0.42 -0.32 0.41 0.11 -0.42 

Date 
Max 

0.27 0.03 -0.22 -0.25 -0.24 
-

0.17 
-0.21 - 0.40 -0.03 0.01 0.23 -0.10 0.36 0.02 -0.29 -0.37 -0.24 -0.37 -0.08 -0.13 -0.39 

Low 
Pulse 
Count 

0.06 -0.46 0.67 0.62 0.61 0.63 -0.33 0.40 - 0.24 0.17 0.05 0.31 0.03 0.36 -0.41 0.35 0.47 0.08 -0.03 -0.48 0.02 

High 
Pulse 
Count 

0.14 0.18 0.09 0.05 0.04 0.07 0.65 
-

0.03 
0.24 - -0.09 -0.04 0.56 -0.32 -0.38 0.64 0.22 0.09 -0.04 -0.04 -0.40 0.02 

Rise 
Rate 

0.45 -0.26 0.38 0.42 0.42 0.45 -0.30 0.01 0.17 -0.09 - -0.32 -0.28 0.00 -0.21 -0.26 0.58 0.31 0.14 -0.39 -0.54 0.29 

Fall 
Rate 

0.07 0.39 -0.15 -0.21 -0.22 
-

0.27 
0.22 0.23 0.05 -0.04 -0.32 - 0.34 0.11 0.61 0.00 -0.63 -0.11 0.05 0.17 0.54 -0.32 

#Reve
rsals 

-0.01 0.08 0.29 0.22 0.20 0.24 0.34 
-

0.10 
0.31 0.56 -0.28 0.34 - -0.51 0.31 0.28 0.16 0.36 0.25 -0.18 0.13 0.16 

ExtLo
wDur 

0.19 0.04 -0.18 -0.18 -0.17 
-

0.17 
-0.28 0.36 0.03 -0.32 0.00 0.11 -0.51 - -0.02 -0.35 -0.33 -0.23 -0.21 0.12 0.10 -0.32 
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ExtLo
w 

Time 
-0.02 -0.11 0.31 0.27 0.26 0.20 -0.37 0.02 0.36 -0.38 -0.21 0.61 0.31 -0.02 - -0.45 -0.21 0.22 0.19 0.18 0.39 0.00 

ExtLo
w 

Freq 
-0.17 0.73 -0.30 -0.24 -0.22 

-
0.24 

0.96 
-

0.29 
-0.41 0.64 -0.26 0.00 0.28 -0.35 -0.45 - -0.03 -0.47 -0.37 0.41 0.05 -0.33 

High 
Dur 

-0.03 -0.40 0.75 0.80 0.80 0.84 -0.12 
-

0.37 
0.35 0.22 0.58 -0.63 0.16 -0.33 -0.21 -0.03 - 0.56 0.20 -0.24 -0.62 0.38 

Small 
Flood 
Peak 

-0.09 -0.66 0.78 0.66 0.63 0.62 -0.42 
-

0.24 
0.47 0.09 0.31 -0.11 0.36 -0.23 0.22 -0.47 0.56 - 0.85 -0.56 -0.20 0.78 

Small 
Flood 
Rise 

-0.18 -0.51 0.43 0.29 0.25 0.18 -0.32 
-

0.37 
0.08 -0.04 0.14 0.05 0.25 -0.21 0.19 -0.37 0.20 0.85 - -0.50 0.15 0.86 

Small 
Flood 
Fall 

-0.48 0.53 -0.07 0.03 0.05 
-

0.08 
0.41 

-
0.08 

-0.03 -0.04 -0.39 0.17 -0.18 0.12 0.18 0.41 -0.24 -0.56 -0.50 - 0.23 -0.63 

Large
Flood
Dur 

-0.34 0.36 -0.35 -0.37 -0.38 
-

0.46 
0.11 

-
0.13 

-0.48 -0.40 -0.54 0.54 0.13 0.10 0.39 0.05 -0.62 -0.20 0.15 0.23 - -0.12 

Large 
Flood 
Rise 

0.03 -0.56 0.36 0.24 0.21 0.19 -0.42 
-

0.39 
0.02 0.02 0.29 -0.32 0.16 -0.32 0.00 -0.33 0.38 0.78 0.86 -0.63 -0.12 - 

 

Table A1.7: RBI and < 1 cfs Combined Calibration flow metric correlation matrix with correlations statistically significant at the p = 0.1 level denoted in italics. 

Flow 
Metr

ic 

RBI
_1hr 

cfs_
1hr Dec Jan Feb 

7Da
yM
ax 

#Zer
oDa
ys 

Dat
eMa

x 

Low 
Puls
eCo
unt 

High 
Puls
eCo
unt 

Rise 
Rate 

Fall 
Rate 

#Re
vers
als 

Ext 
Low 
Dur 

Ext 
Low 
Tim

e 

Ext 
Low 
Freq 

High 
Dur 

Sma
llFlo
odPe

ak 

Sma
llFlo
odRi

se 

Sma
llFlo
odF
all 

Larg
e 

Floo
d 

Dur 

Larg
eFlo
odRi

se 

RBI_ 
1hr 

- -0.13 -0.21 -0.08 -0.40 0.05 -0.05 0.13 0.15 0.55 -0.27 0.16 0.23 -0.29 0.17 -0.02 -0.05 0.03 -0.16 -0.44 -0.55 0.44 

cfs_1h
r 

-0.13 - -0.63 -0.66 -0.55 
-

0.51 
0.97 0.07 -0.85 -0.37 -0.40 0.37 -0.69 -0.15 -0.96 0.80 0.84 -0.49 -0.43 0.08 -0.34 -0.31 

Dec -0.21 -0.63 - 0.97 0.95 0.77 -0.56 
-

0.35 
0.43 -0.17 0.92 -0.90 0.37 0.11 0.46 -0.48 -0.36 0.76 0.78 0.12 0.50 0.36 

Jan -0.08 -0.66 0.97 - 0.86 0.80 -0.57 
-

0.41 
0.49 -0.14 0.84 -0.90 0.49 0.09 0.50 -0.49 -0.40 0.78 0.64 0.20 0.45 0.48 

Feb -0.40 -0.55 0.95 0.86 - 0.72 -0.50 
-

0.30 
0.37 -0.22 0.94 -0.85 0.26 0.17 0.37 -0.43 -0.28 0.72 0.84 0.10 0.51 0.22 

7Day 
Max 

0.05 -0.51 0.77 0.80 0.72 - -0.47 
-

0.18 
0.59 0.10 0.75 -0.85 0.61 0.10 0.42 -0.38 -0.24 0.98 0.65 -0.02 0.10 0.82 

#Zero 
Days 

-0.05 0.97 -0.56 -0.57 -0.50 
-

0.47 
- 0.02 -0.84 -0.38 -0.32 0.30 -0.73 -0.22 -0.97 0.79 0.83 -0.44 -0.38 0.07 -0.39 -0.26 

Date 
Max 

0.13 0.07 -0.35 -0.41 -0.30 
-

0.18 
0.02 - 0.01 0.31 -0.43 0.44 -0.04 -0.03 0.09 0.00 -0.27 -0.21 0.07 -0.63 -0.12 -0.04 

Low 
Pulse 

0.15 -0.85 0.43 0.49 0.37 0.59 -0.84 0.01 - 0.46 0.28 -0.30 0.77 0.18 0.86 -0.73 -0.72 0.58 0.28 -0.09 0.03 0.51 
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Count 

High 
Pulse 
Count 

0.55 -0.37 -0.17 -0.14 -0.22 0.10 -0.38 0.31 0.46 - -0.33 0.25 0.47 -0.01 0.52 -0.10 -0.33 0.05 0.00 -0.47 -0.41 0.28 

Rise 
Rate 

-0.27 -0.40 0.92 0.84 0.94 0.75 -0.32 
-

0.43 
0.28 -0.33 - -0.89 0.15 0.16 0.18 -0.36 -0.07 0.78 0.75 0.17 0.32 0.35 

Fall 
Rate 

0.16 0.37 -0.90 -0.90 -0.85 
-

0.85 
0.30 0.44 -0.30 0.25 -0.89 - -0.33 -0.13 -0.21 0.30 0.07 -0.80 -0.69 -0.23 -0.39 -0.51 

#Reve
rsals 

0.23 -0.69 0.37 0.49 0.26 0.61 -0.73 
-

0.04 
0.77 0.47 0.15 -0.33 - 0.01 0.76 -0.35 -0.53 0.58 0.21 -0.12 0.10 0.56 

ExtLo
wDur 

-0.29 -0.15 0.11 0.09 0.17 0.10 -0.22 
-

0.03 
0.18 -0.01 0.16 -0.13 0.01 - 0.15 -0.50 -0.21 0.09 -0.02 0.37 0.09 0.10 

ExtLo
w 

Time 
0.17 -0.96 0.46 0.50 0.37 0.42 -0.97 0.09 0.86 0.52 0.18 -0.21 0.76 0.15 - -0.75 -0.89 0.37 0.30 -0.14 0.31 0.30 

ExtLo
w 

Freq 
-0.02 0.80 -0.48 -0.49 -0.43 

-
0.38 

0.79 0.00 -0.73 -0.10 -0.36 0.30 -0.35 -0.50 -0.75 - 0.80 -0.35 -0.24 -0.16 -0.33 -0.29 

High 
Dur 

-0.05 0.84 -0.36 -0.40 -0.28 
-

0.24 
0.83 

-
0.27 

-0.72 -0.33 -0.07 0.07 -0.53 -0.21 -0.89 0.80 - -0.20 -0.17 0.05 -0.36 -0.16 

Small 
Flood 
Peak 

0.03 -0.49 0.76 0.78 0.72 0.98 -0.44 
-

0.21 
0.58 0.05 0.78 -0.80 0.58 0.09 0.37 -0.35 -0.20 - 0.63 -0.04 0.00 0.80 

Small 
Flood 
Rise 

-0.16 -0.43 0.78 0.64 0.84 0.65 -0.38 0.07 0.28 0.00 0.75 -0.69 0.21 -0.02 0.30 -0.24 -0.17 0.63 - -0.41 0.31 0.23 

Small 
Flood 
Fall 

-0.44 0.08 0.12 0.20 0.10 
-

0.02 
0.07 

-
0.63 

-0.09 -0.47 0.17 -0.23 -0.12 0.37 -0.14 -0.16 0.05 -0.04 -0.41 - 0.38 -0.07 

Large
Flood
Dur 

-0.55 -0.34 0.50 0.45 0.51 0.10 -0.39 
-

0.12 
0.03 -0.41 0.32 -0.39 0.10 0.09 0.31 -0.33 -0.36 0.00 0.31 0.38 - -0.30 

Large 
Flood 
Rise 

0.44 -0.31 0.36 0.48 0.22 0.82 -0.26 
-

0.04 
0.51 0.28 0.35 -0.51 0.56 0.10 0.30 -0.29 -0.16 0.80 0.23 -0.07 -0.30 - 
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Appendix II: Correlation matrices for all eight biotic metrics with their sets of reduced flow metrics 

Table A2.1: EPTPercentTaxa correlation matrix using its reduced set of flow metrics for all gage and calibrated model data. Correlations statistically significant at the 
p = 0.1 level are denoted in italics and differing correlation directions relative to the 3 WY antecedent gage data are underlined. 

Flow Metric 
3 WY 

Antecedent 
Gage 

WY 2005-
2007 Gage 

NSE 
Calibratio

n 

RBI 
Calibratio

n 

< 1 cfs 
Calibratio

n 

RBI and < 1 cfs 
Combined 

Calibration 

RBI_1hr 0.23 0.08 0.16 0.08 -0.13 0.12 

cfs_1hr -0.35 -0.21 0.50 -0.09 -0.20 -0.21 

NumZeroDays -0.44 -0.34 0.55 -0.01 -0.37 -0.30 

NumReversals 0.40 0.24 -0.26 -0.35 -0.07 0.58 

ExtremeLowDuration -0.43 -0.38 0.09 0.15 -0.12 0.19 

ExtremeLowTiming 0.57 0.40 -0.55 -0.02 0.14 0.37 

HighFlowDuration -0.44 0.48 0.16 0.23 0.24 -0.35 

LargeFloodDuration -0.41 -0.30 -0.01 -0.26 -0.08 0.13 

 

Table A2.2: DesiResist correlation matrix using its reduced set of flow metrics for all gage and calibrated model data. Correlations statistically significant at the p = 0.1 
level are denoted in italics and differing correlation directions relative to the 3 WY antecedent gage data are underlined. 

Flow Metric 
3 WY 

Antecedent 
Gage 

WY 2005-
2007 Gage 

NSE 
Calibratio

n 

RBI 
Calibratio

n 

< 1 cfs 
Calibratio

n 

RBI and < 1 cfs 
Combined 

Calibration 

RBI_1hr -0.16 -0.13 -0.30 -0.13 0.04 -0.17 

cfs_1hr 0.54 0.48 -0.37 0.36 0.47 0.48 

NumZeroDays 0.57 0.55 -0.40 0.34 0.56 0.53 

LowPulseCount -0.42 -0.32 -0.04 - -0.26 -0.49 

NumReversals -0.54 -0.45 0.19 0.26 0.20 -0.69 

ExtremeLowDuration 0.48 0.57 0.08 -0.06 0.09 -0.27 

ExtremeLowTiming -0.68 -0.58 0.38 -0.06 -0.16 -0.58 

ExtremeLowFreq -0.35 -0.53 0.36 0.19 0.43 0.30 

HighFlowDuration 0.56 -0.31 -0.24 -0.22 -0.38 0.47 

SmallFloodRiserate -0.35 -0.26 -0.19 0.05 0.13 0.13 

LargeFloodDuration 0.47 0.55 0.01 0.08 0.26 -0.09 

 



90 

 

Table A2.3: NoninsectTaxa correlation matrix using its reduced set of flow metrics for all gage and calibrated model data. Correlations statistically significant at the p 
= 0.1 level are denoted in italics and differing correlation directions relative to the 3 WY antecedent gage data are underlined. 

Flow Metric 
3 WY 

Antecedent 
Gage 

WY 2005-
2007 Gage 

NSE 
Calibratio

n 

RBI 
Calibratio

n 

< 1 cfs 
Calibratio

n 

RBI and < 1 cfs 
Combined 

Calibration 

RBI_1hr -0.35 -0.08 0.10 -0.08 -0.24 -0.04 

cfs_1hr -0.44 -0.50 -0.07 -0.55 -0.50 -0.50 

NumZeroDays -0.41 -0.45 -0.19 -0.60 -0.42 -0.44 

DateMax 0.43 0.47 -0.02 0.04 -0.33 -0.37 

ExtremeLowTiming 0.44 0.42 -0.04 0.15 -0.08 0.45 

LargeFloodDuration -0.35 -0.47 0.02 0.12 -0.20 0.16 

 

Table A2.4: DisturbResil correlation matrix using its reduced set of flow metrics for all gage and calibrated model data. Correlations statistically significant at the p = 
0.1 level are denoted in italics and differing correlation directions relative to the 3 WY antecedent gage data are underlined. 

Flow Metric 
3 WY 

Antecedent 
Gage 

WY 2005-
2007 Gage 

NSE 
Calibratio

n 

RBI 
Calibratio

n 

< 1 cfs 
Calibratio

n 

RBI and < 1 cfs 
Combined 

Calibration 

RBI_1hr 0.07 0.14 0.08 0.14 0.22 0.12 

cfs_1hr 0.26 0.25 -0.46 0.08 0.24 0.25 

ExtremeLowTiming -0.57 -0.31 0.40 -0.01 -0.13 -0.37 

HighFlowDuration 0.32 -0.46 -0.21 -0.21 0.00 0.35 

LargeFloodDuration 0.39 0.20 -0.16 0.06 -0.06 -0.13 

 

Table A2.5: AmphipodaPercent correlation matrix using its reduced set of flow metrics for all gage and calibrated model data. Correlations statistically significant at 
the p = 0.1 level are denoted in italics and differing correlation directions relative to the 3 WY antecedent gage data are underlined. 

Flow Metric 
3 WY 

Antecedent 
Gage 

WY 2005-
2007 Gage 

NSE 
Calibratio

n 

RBI 
Calibratio

n 

< 1 cfs 
Calibratio

n 

RBI and < 1 cfs 
Combined 

Calibration 

RBI_1hr -0.37 -0.41 -0.20 -0.41 -0.14 -0.43 

cfs_1hr -0.10 -0.32 -0.30 -0.18 -0.33 -0.32 

Feb 0.42 0.27 0.09 0.15 0.05 0.72 

RiseRate 0.51 0.24 -0.06 -0.12 0.01 0.64 

FallRate -0.36 -0.18 -0.06 0.04 0.16 -0.45 
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ExtremeLowDuration 0.57 -0.21 -0.28 -0.13 -0.11 0.04 

LargeFloodRiserate 0.35 0.69 0.31 0.70 0.64 -0.18 

 

Table A2.6: SCIBI correlation matrix using its reduced set of flow metrics for all gage and calibrated model data. Correlations statistically significant at the p = 0.1 
level are denoted in italics and differing correlation directions relative to the 3 WY antecedent gage data are underlined. 

Flow Metric 
3 WY 

Antecedent 
Gage 

WY 2005-
2007 Gage 

NSE 
Calibratio

n 

RBI 
Calibratio

n 

< 1 cfs 
Calibratio

n 

RBI and < 1 cfs 
Combined 

Calibration 

RBI_1hr -0.14 -0.21 -0.11 -0.21 -0.02 -0.21 

cfs_1hr 0.11 0.13 0.47 0.25 0.16 0.13 

Dec -0.33 -0.34 -0.20 -0.14 -0.30 -0.38 

Jan -0.31 -0.38 -0.10 -0.09 -0.23 -0.31 

SmallFloodFallrate 0.34 0.15 0.11 0.37 0.18 0.26 

 

Table A2.7: SndInstabResist correlation matrix using its reduced set of flow metrics for all gage and calibrated model data. Correlations statistically significant at the p 
= 0.1 level are denoted in italics and differing correlation directions relative to the 3 WY antecedent gage data are underlined. 

Flow Metric 
3 WY 

Antecedent 
Gage 

WY 2005-
2007 Gage 

NSE 
Calibratio

n 

RBI 
Calibratio

n 

< 1 cfs 
Calibratio

n 

RBI and < 1 cfs 
Combined 

Calibration 

RBI_1hr 0.03 -0.03 -0.08 -0.03 0.22 -0.06 

cfs_1hr 0.31 0.22 -0.45 0.03 0.20 0.22 

NumZeroDays 0.33 0.25 -0.46 0.02 0.27 0.27 

ExtremeLowDuration 0.36 0.27 0.14 -0.22 0.19 -0.20 

ExtremeLowTiming -0.43 -0.35 0.56 0.18 -0.19 -0.33 

 

Table A2.8: ShredderPercentTaxa correlation matrix using its reduced set of flow metrics for all gage and calibrated model data. Correlations statistically significant at 
the p = 0.1 level are denoted in italics and differing correlation directions relative to the 3 WY antecedent gage data are underlined. 

Flow Metric 
3 WY 

Antecedent 
Gage 

WY 2005-
2007 Gage NSE 

Calibration 

RBI 
Calibrati

on 

< 1 cfs 
Calibratio

n 

RBI and < 1 cfs 
Combined 

Calibration 

RBI_1hr -0.52 -0.41 -0.24 -0.41 -0.30 -0.42 

cfs_1hr 0.06 0.02 0.23 0.25 0.04 0.02 
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SevenDayMax -0.29 -0.07 -0.18 -0.19 -0.06 -0.25 

HighPulseCount -0.29 -0.28 -0.12 -0.23 -0.36 -0.08 

SmallFloodPeak -0.29 -0.16 -0.24 -0.23 -0.01 -0.27 

SmallFloodRiserate -0.41 -0.08 -0.16 -0.24 0.10 -0.11 

 

 

Appendix III: Multiple regression results for all eight biotic metrics using each set of reduced flow metrics and those   
  statistically selected from each set 

Table A3.1: EPTPercentTaxa multiple regression results with entire set of reduced flow metrics. Adjusted R2 values for flow data italicized when more 
EPTPercentTaxa variance is explained than the 3 WY antecedent gage data and adjusted R2 values for flow data underlined when less EPTPercentTaxa variance is 

explained. 

Flow 
Data 

Adj. 
R2 
All 

Predi
ctors 

Adj. R2 
Backward 
Selection 

Predictors 

Backward 
Selected 

Predictors 

Adj. 
R2 
Cp 

Cp Selected 
Predictors 

Adj. 
R2 

AIC 

AIC Selected 
Predictors 

3 WY 
antecedent 

gage 
0.13 0.30 

ExtremeLowTimin
g 

0.30 
ExtremeLowTimi

ng 
0.32 

ExtremeLowDuration, 
ExtremeLowTiming 

WY 2005-
2007 gage 

0.78 0.76 

cfs_1hr, 
ExtremeLowDurat

ion, 
LargeFloodDuratio

n, 
HighFlowDuration 

0.76 

cfs_1hr, 
ExtremeLowDurat

ion, 
LargeFloodDurati

on, 
HighFlowDuration 

0.79 

RBI_1hr, cfs_1hr, 
NumZeroDays, 
NumReversals, 

ExtremeLowDuration, 
LargeFloodDuration, 
HighFlowDuration 

NSE 0.47 0.41 
NumZeroDays, 

ExtremeLowTimin
g 

0.46 

RBI_1hr, 
NumZeroDays, 

ExtremeLowTimi
ng 

0.52 

RBI_1hr, 
NumZeroDays, 
NumReversals, 

ExtremeLowDuration, 
ExtremeLowTiming, 
HighFlowDuration 

RBI 0.05 0.00 - 0.13 
NumReversals, 

HighFlowDuration 
0.13 

NumReversals, 
HighFlowDuration 

< 1 cfs -0.02 0.00 - 0.10 NumZeroDays 0.10 NumZeroDays 

RBI and < 
1 cfs 

0.48 0.49 
cfs_1hr, 

NumReversals, 
HighFlowDuration 

0.49 
cfs_1hr, 

NumReversals, 
HighFlowDuration 

0.49 
cfs_1hr, 

NumReversals, 
HighFlowDuration 
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Table A3.2: DesiResist multiple regression results with entire set of reduced flow metrics. Adjusted R2 values for flow 
data is italicized when more DesiResist variance is explained than the 3 WY antecedent gage data and adjusted R2 values 

for flow data is underlined when less DesiResist variance is explained. 

Flow 
Data 

Adj. 
R2 
All 

Predi
ctors 

Adj. R2 
Backward 
Selection 

Predictors 

Backward 
Selected 

Predictors 

Adj. 
R2 
Cp 

Cp Selected 
Predictors 

Adj. 
R2 

AIC 

AIC Selected 
Predictors 

3 WY 
antecedent 

gage 
0.32 0.44 

ExtremeLowTimin
g 

0.44 
ExtremeLowTimi

ng 
0.48 

ExtremeLowDuration, 
ExtremeLowTiming 

WY 2005-
2007 gage 

0.51 0.60 

cfs_1hr, 
ExtremeLowDurat

ion, 
ExtremeLowFreq, 
HighFlowDuration 

0.60 

cfs_1hr, 
ExtremeLowDurat

ion, 
ExtremeLowFreq, 
HighFlowDuration 

0.60 

cfs_1hr, 
ExtremeLowDuration, 

ExtremeLowFreq, 
HighFlowDuration 

NSE 0.52 0.63 
LowPulseCount, 

ExtremeLowFreq, 
HighFlowDuration 

0.64 

NumReversals, 
ExtremeLowFreq, 
HIghFlowDuratio

n 

0.66 

RBI_1hr, 
LowPulseCount, 

ExtremeLowFreq, 
HighFlowDuration, 
LargeFloodDuration 

RBI 0.44 0.46 

RBI_1hr, cfs_1hr, 
NumZeroDays, 
NumReversals, 

ExtremeLowTimin
g, 

ExtremeLowFreq, 
SmallFloodRiserat

e, 
LargeFloodDuratio

n 

0.46 

RBI_1hr, cfs_1hr, 
NumZeroDays, 
NumReversals, 

ExtremeLowTimi
ng, 

ExtremeLowFreq, 
SmallFloodRiserat

e, 
LargeFloodDurati

on 

0.47 

RBI_1hr, cfs_1hr, 
NumZeroDays, 
NumReversals, 

ExtremeLowDuration, 
ExtremeLowTiming, 
ExtremeLowFreq, 

SmallFloodRiserate, 
LargeFloodDuration 

< 1 cfs 0.46 0.50 

NumZeroDays, 
ExtremeLowDurat

ion, 
SmallFloodRiserat

e 

0.59 

RBI_1hr, 
NumZeroDays, 

ExtremeLowDurat
ion, 

HighFlowDuration
, 

SmallFloodRiserat
e 

0.59 

RBI_1hr, 
NumZeroDays, 

ExtremeLowDuration, 
HighFlowDuration, 
SmallFloodRiserate 

RBI and < 
1 cfs 

0.50 0.46 NumReversals 0.57 

NumReversals, 
ExtremeLowDurat

ion, 
SmallFloodRiserat

e 

0.57 
NumReversals, 

ExtremeLowDuration, 
SmallFloodRiserate 

 

Table A3.3: NoninsectTaxa multiple regression results with entire set of reduced flow metrics. Adjusted R2 values for flow 
data is italicized when more NoninsectTaxa variance is explained than the 3 WY antecedent gage data and adjusted R2 

values for flow data is underlined when less NoninsectTaxa variance is explained. 

Flow 
Data 

Adj. 
R2 
All 

Predi
ctors 

Adj. R2 
Backward 
Selection 

Predictors 

Backward 
Selected 

Predictors 

Adj. 
R2 
Cp 

Cp Selected 
Predictors 

Adj. 
R2 

AIC 

AIC Selected 
Predictors 

3 WY 
antecedent 

gage 
0.30 0.36 

RBI_1hr, 
DateMax, 

LargeFloodDuratio
n 

0.36 
RBI_1hr, DateMax, 
LargeFloodDuratio

n 
0.36 

RBI_1hr, DateMax, 
LargeFloodDuration 

WY 2005-
2007 gage 

0.25 0.22 cfs_1hr 0.31 
NumZeroDays, 

DateMax 
0.31 

NumZeroDays, 
DateMax 
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NSE -0.19 0.00 - 0.00 NumZeroDays 0.00 NumZeroDays 

RBI 0.46 0.34 NumZeroDays 0.47 

RBI_1hr, cfs_1hr, 
NumZeroDays, 

DateMax, 
ExtremeLowTimin

g 

0.47 

RBI_1hr, cfs_1hr, 
NumZeroDays, 

DateMax, 
ExtremeLowTiming 

< 1 cfs 0.38 0.31 
NumZeroDays, 

DateMax 
0.40 

RBI_1hr, 
NumZeroDays, 

DateMax, 
ExtremeLowTimin

g 

0.40 

RBI_1hr, 
NumZeroDays, 

DateMax, 
ExtremeLowTiming 

RBI and < 
1 cfs 

0.31 0.31 
DateMax, 

ExtremeLowTimin
g 

0.31 
DateMax, 

ExtremeLowTimin
g 

0.31 
DateMax, 

ExtremeLowTiming 

 

Table A3.4: DisturbResil multiple regression results with entire set of reduced flow metrics. Adjusted R2 values for flow 
data is italicized when more DisturbResil variance is explained than the 3 WY antecedent gage data and adjusted R2 

values for flow data is underlined when less DisturbResil variance is explained. 

Flow 
Data 

Adj. 
R2 
All 

Predi
ctors 

Adj. R2 
Backward 
Selection 

Predictors 

Backward 
Selected 

Predictors 

Adj. 
R2 
Cp 

Cp Selected 
Predictors 

Adj. 
R2 

AIC 

AIC Selected 
Predictors 

3 WY 
antecedent 

gage 
0.22 0.29 

ExtremeLowTimin
g 

0.29 
ExtremeLowTimi

ng 
0.29 ExtremeLowTiming 

WY 2005-
2007 gage 

0.32 0.36 
ExtremeLowTimin

g, 
HighFlowDuration 

0.36 
ExtremeLowTimi

ng, 
HighFlowDuration 

0.36 
ExtremeLowTiming, 
HighFlowDuration 

NSE 0.20 0.29 
cfs_1hr, 

HighFlowDuration 
0.29 

cfs_1hr, 
HighFlowDuration 

0.29 
cfs_1hr, 

HighFlowDuration 

RBI -0.07 0.00 - 0.00 HighFlowDuration 0.04 
RBI_1hr, 

HighFlowDuration 

< 1 cfs -0.08 0.00 - 0.02 cfs_1hr 0.02 cfs_1hr 

RBI and < 
1 cfs 

0.17 0.00 - 0.21 
cfs_1hr, 

ExtremeLowTimi
ng 

0.21 
cfs_1hr, 

ExtremeLowTiming 

 

Table A3.5: log(AmphipodaPercent) multiple regression results with entire set of reduced flow metrics. Adjusted R2 
values for flow data is italicized when more log(AmphipodaPercent) variance is explained than the 3 WY antecedent gage 

data and adjusted R2 values for flow data is underlined when less log(AmphipodaPercent) variance is explained. 

Flow 
Data 

Adj. 
R2 
All 

Predi
ctors 

Adj. R2 
Backward 
Selection 

Predictors 

Backward 
Selected 

Predictors 

Adj. 
R2 
Cp 

Cp Selected 
Predictors 

Adj. 
R2 

AIC 

AIC Selected 
Predictors 

3 WY 
antecedent 

gage 
0.19 0.28 

log(LargeFloodRis
eRate) 

0.28 
log(LargeFloodRis

eRate) 
0.28 

log(LargeFloodRiseRa
te) 

WY 2005-
2007 gage 

0.34 0.27 cfs_1hr 0.38 
cfs_1hr, Feb, 

FallRate 
0.38 cfs_1hr, Feb, FallRate 

NSE 0.04 0.00 - 0.17 RBI_1hr, cfs_1hr 0.17 RBI_1hr, cfs_1hr 

RBI 0.46 0.50 
log(RiseRate), 

ExtremeLowDurat
ion, FallRate, 

0.50 
log(RiseRate), 

ExtremeLowDurat
ion, FallRate, 

0.50 
log(RiseRate), 

ExtremeLowDuration, 
FallRate, 
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log(LargeFloodRis
eRate) 

log(LargeFloodRis
eRate) 

log(LargeFloodRiseRa
te) 

< 1 cfs 0.34 0.27 cfs_1hr 0.40 
cfs_1hr, FallRate, 
log(LargeFloodRis

eRate) 
0.43 

cfs_1hr, log(RiseRate), 
FallRate, 

log(LargeFloodRiseRa
te) 

RBI and < 
1 cfs 

0.53 0.59 
RBI_1hr, Feb, 

FallRate 
0.59 

RBI_1hr, Feb, 
FallRate 

0.59 
RBI_1hr, Feb, 

FallRate 

 

Table A3.6: SCIBI multiple regression results with entire set of reduced flow metrics. Adjusted R2 values for flow data is 
italicized when more SCIBI variance is explained than the 3 WY antecedent gage data and adjusted R2 values for flow 

data is underlined when less SCIBI variance is explained. 

Flow 
Data 

Adj. 
R2 
All 

Predi
ctors 

Adj. R2 
Backward 
Selection 

Predictors 

Backward 
Selected 

Predictors 

Adj. 
R2 
Cp 

Cp Selected 
Predictors 

Adj. 
R2 

AIC 

AIC Selected 
Predictors 

3 WY 
antecedent 

gage 
-0.09 0.00 - 0.08 SmallFloodFallrate 0.08 SmallFloodFallrate 

WY 2005-
2007 gage 

0.16 0.00 - 0.10 Jan 0.10 Jan 

NSE 0.23 0.28 
cfs_1hr, Dec, 

Jan 
0.28 cfs_1hr, Dec, Jan 0.28 cfs_1hr, Dec, Jan 

RBI 0.10 0.00 - 0.10 SmallFloodFallrate 0.10 SmallFloodFallrate 

< 1 cfs 0.00 0.00 - 0.12 Dec, Jan 0.12 Dec, Jan 

RBI and < 
1 cfs 

0.33 0.32 
RBI_1hr, Dec, 

Jan 
0.32 RBI_1hr, Dec, Jan 0.35 

RBI_1hr, cfs_1hr, Dec, 
Jan 

 

TableA3.7: SndInstabResist multiple regression results with entire set of reduced flow metrics. Adjusted R2 values for 
flow data is italicized when more SndInstabResist variance is explained than the 3 WY antecedent gage data and adjusted 

R2 values for flow data is underlined when less SndInstabResist variance is explained. 

Flow 
Data 

Adj. 
R2 All 
Predi
ctors 

Adj. R2 
Backward 
Selection 

Predictors 

Backward 
Selected 

Predictors 

Adj. 
R2 
Cp 

Cp Selected 
Predictors 

Adj. 
R2 

AIC 

AIC Selected 
Predictors 

3 WY 
antecedent 

gage 
0.15 0.15 

ExtremeLowTi
ming 

0.15 ExtremeLowTiming 0.15 ExtremeLowTiming 

WY 2005-
2007 gage 

-0.10 0.00 - 0.08 ExtremeLowTiming 0.08 ExtremeLowTiming 

NSE 0.33 0.29 
ExtremeLowTi

ming 
0.35 

NumZeroDays, 
ExtremeLowTiming 

0.35 
NumZeroDays, 

ExtremeLowTiming 

RBI -0.05 0.00 - 0.01 ExtremeLowDuration 0.01 ExtremeLowDuration 

< 1 cfs 0.02 0.00 - 0.03 NumZeroDays 0.07 
RBI_1hr, 

NumZeroDays 
RBI and < 

1 cfs 
0.07 0.00 - 0.17 

cfs_1hr, 
ExtremeLowTiming 

0.17 
cfs_1hr, 

ExtremeLowTiming 

 



96 

 

Table A3.8: ShredderPercentTaxa multiple regression results with entire set of reduced flow metrics. Adjusted R2 values 
for flow data is italicized when more ShredderPercentTaxa variance is explained than the 3 WY antecedent gage data and 

adjusted R2 values for flow data is underlined when less ShredderPercentTaxa variance is explained. 

Flow 
Data 

Adj. 
R2 
All 

Predi
ctors 

Adj. R2 
Backward 
Selection 

Predictors 

Backward 
Selected 

Predictors 

Adj. 
R2 
Cp 

Cp Selected 
Predictors 

Adj. 
R2 

AIC 

AIC Selected 
Predictors 

3 WY 
antecedent 

gage 
0.14 0.24 RBI_1hr 0.24 RBI_1hr 0.24 RBI_1hr 

WY 2005-
2007 gage 

-0.01 0.00 - 0.13 RBI_1hr 0.13 RBI_1hr 

NSE -0.02 0.00 - 0.08 
SevenDayMax, 
SmallFloodPeak 

0.08 
SevenDayMax, 
SmallFloodPeak 

RBI 0.02 0.13 RBI_1hr 0.13 RBI_1hr 0.13 RBI_1hr 

< 1 cfs -0.05 0.00 - 0.09 HighPulseCount 0.09 HighPulseCount 

RBI and < 
1 cfs 

0.09 0.14 RBI_1hr 0.14 RBI_1hr 0.18 
RBI_1hr, 

SmallFloodPeak 

 

 

Appendix IV: Multiple regression results for all eight biotic metrics using only three flow  
  metrics and those statistically selected from the three 

Table A4.1: EPTPercentTaxa multiple regression results with further reduced set of 3 flow metrics. Adjusted R2 values 
for flow data is italicized when more EPTPercentTaxa variance is explained than the 3 WY antecedent gage data and 

adjusted R2 values for flow data is underlined when less EPTPercentTaxa variance is explained. 

Flow 
Data 

Adj. 
R2 
All 

Predi
ctors 

Adj. R2 
Backward 
Selection 

Predictors 

Backward 
Selected 

Predictors 

Adj. 
R2 
Cp 

Cp Selected 
Predictors 

Adj. 
R2 

AIC 

AIC Selected 
Predictors 

3 WY 
antecedent 

gage 
0.32 0.30 

ExtremeLowTimin
g 

0.30 
ExtremeLowTimi

ng 
0.32 

ExtremeLowDuration, 
ExtremeLowTiming 

WY 2005-
2007 gage 

0.04 0.00 - 0.12 
ExtremeLowTimi

ng 
0.12 ExtremeLowTiming 

NSE 0.39 0.41 
NumZeroDays, 

ExtremeLowTimin
g 

0.41 
NumZeroDays, 

ExtremeLowTimi
ng 

0.41 
NumZeroDays, 

ExtremeLowTiming 

RBI -0.11 0.00 - -0.02 
ExtremeLowDurat

ion 
-0.02 ExtremeLowDuration 

< 1 cfs 0.08 0.00 - 0.10 NumZeroDays 0.10 NumZeroDays 

RBI and < 
1 cfs 

0.13 0.00 - 0.10 
ExtremeLowTimi

ng 
0.10 ExtremeLowTiming 
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Table A4.2: DesiResist multiple regression results with further reduced set of 3 flow metrics. Adjusted R2 values for flow 
data is italicized when more DesiResist variance is explained than the 3 WY antecedent gage data and adjusted R2 values 

for flow data is underlined when less DesiResist variance is explained. 

Flow 
Data 

Adj. 
R2 
All 

Predi
ctors 

Adj. R2 
Backward 
Selection 

Predictors 

Backward 
Selected 

Predictors 

Adj. 
R2 
Cp 

Cp Selected 
Predictors 

Adj. 
R2 

AIC 

AIC Selected 
Predictors 

3 WY 
antecedent 

gage 
0.40 0.44 

ExtremeLowTimin
g 

0.44 
ExtremeLowTimi

ng 
0.44 ExtremeLowTiming 

WY 2005-
2007 gage 

0.27 0.31 
ExtremeLowTimin

g 
0.31 

ExtremeLowTimi
ng 

0.31 ExtremeLowTiming 

NSE 0.13 0.12 NumZeroDays 0.16 
NumZeroDays, 

ExtremeLowTimi
ng 

0.16 
NumZeroDays, 

ExtremeLowTiming 

RBI 0.01 0.00 - 0.09 cfs_1hr 0.09 cfs_1hr 

< 1 cfs 0.22 0.28 NumZeroDays 0.28 NumZeroDays 0.28 NumZeroDays 

RBI and < 
1 cfs 

0.35 0.31 
ExtremeLowTimin

g 
0.38 

cfs_1hr, 
ExtremeLowTimi

ng 
0.38 

cfs_1hr, 
ExtremeLowTiming 

 

Table A4.3: NoninsectTaxa multiple regression results with further reduced set of 3 flow metrics. Adjusted R2 values for 
flow data is italicized when more NoninsectTaxa variance is explained than the 3 WY antecedent gage data and adjusted 

R2 values for flow data is underlined when less NoninsectTaxa variance is explained. 

Flow 
Data 

Adj. 
R2 
All 

Predi
ctors 

Adj. R2 
Backward 
Selection 

Predictors 

Backward 
Selected 

Predictors 

Adj. 
R2 
Cp 

Cp Selected 
Predictors 

Adj. 
R2 

AIC 

AIC Selected 
Predictors 

3 WY 
antecedent 

gage 
0.12 0.16 cfs_1hr 0.16 cfs_1hr 0.16 cfs_1hr 

WY 2005-
2007 gage 

0.17 0.22 cfs_1hr 0.22 cfs_1hr 0.22 cfs_1hr 

NSE -0.08 0.00 - 0.00 NumZeroDays 0.00 NumZeroDays 

RBI 0.37 0.34 NumZeroDays 0.34 NumZeroDays 0.34 NumZeroDays 

< 1 cfs 0.18 0.21 cfs_1hr 0.21 cfs_1hr 0.21 cfs_1hr 

RBI and < 
1 cfs 

0.19 0.22 cfs_1hr 0.22 cfs_1hr 0.22 cfs_1hr 

 

Table A4.4: DisturbResist multiple regression results with further reduced set of 3 flow metrics. Adjusted R2 values for 
flow data is italicized when more DisturbResist variance is explained than the 3 WY antecedent gage data and adjusted 

R2 values for flow data is underlined when less DisturbResist variance is explained. 

Flow 
Data 

Adj. 
R2 
All 

Predi
ctors 

Adj. R2 
Backward 
Selection 

Predictors 

Backward 
Selected 

Predictors 

Adj. 
R2 
Cp 

Cp Selected 
Predictors 

Adj. 
R2 

AIC 

AIC Selected 
Predictors 

3 WY 
antecedent 

gage 
0.23 0.29 

ExtremeLowTimin
g 

0.29 
ExtremeLowTimi

ng 
0.29 ExtremeLowTiming 
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WY 2005-
2007 gage 

0.35 0.36 
ExtremeLowTimin

g, 
HighFlowDuration 

0.36 
ExtremeLowTimi

ng, 
HighFlowDuration 

0.36 
ExtremeLowTiming, 
HighFlowDuration 

NSE 0.15 0.13 
ExtremeLowTimin

g 
0.17 

ExtremeLowTimi
ng, 

LargeFloodDurati
on 

0.17 
ExtremeLowTiming, 
LargeFloodDuration 

RBI -0.08 0.00 - 0.00 HighFlowDuration 0.00 HighFlowDuration 

< 1 cfs -0.12 0.00 - -0.03 
ExtremeLowTimi

ng 
-0.03 ExtremeLowTiming 

RBI and < 
1 cfs 

0.02 0.00 - 0.10 
ExtremeLowTimi

ng 
0.10 ExtremeLowTiming 

 

Table A4.5: log(Amphipoda) multiple regression results with further reduced set of 3 flow metrics. Adjusted R2 values for 
flow data is italicized when more log(Amphipoda) variance is explained than the 3 WY antecedent gage data and adjusted 

R2 values for flow data is underlined when less log(Amphipoda) variance is explained. 

Flow 
Data 

Adj. 
R2 
All 

Predi
ctors 

Adj. R2 
Backward 
Selection 

Predictors 

Backward 
Selected 

Predictors 

Adj. 
R2 
Cp 

Cp Selected 
Predictors 

Adj. 
R2 

AIC 

AIC Selected 
Predictors 

3 WY 
antecedent 

gage 
0.10 0.16 log(RiseRate) 0.16 log(RiseRate) 0.16 log(RiseRate) 

WY 2005-
2007 gage 

0.24 0.27 log(RiseRate) 0.27 log(RiseRate) 0.27 log(RiseRate) 

NSE 0.08 0.00 - 0.04 
ExtremeLowDurat

ion 
0.04 ExtremeLowDuration 

RBI 0.32 0.24 log(RiseRate) 0.32 
log(RiseRate), 

ExtremeLowDurat
ion 

0.32 
log(RiseRate), 

ExtremeLowDuration 

< 1 cfs 0.14 0.19 log(RiseRate) 0.19 log(RiseRate) 0.19 log(RiseRate) 

RBI and < 
1 cfs 

0.37 0.38 Feb 0.38 Feb 0.38 Feb 

 

Table A4.6: SCIBI multiple regression results with further reduced set of 3 flow metrics. Adjusted R2 values for flow data 
is italicized when more SCIBI variance is explained than the 3 WY antecedent gage data and adjusted R2 values for flow 

data is underlined when less SCIBI variance is explained. 

Flow 
Data 

Adj. 
R2 
All 

Predi
ctors 

Adj. R2 
Backward 
Selection 

Predictors 

Backward 
Selected 

Predictors 

Adj. 
R2 
Cp 

Cp Selected 
Predictors 

Adj. 
R2 

AIC 

AIC Selected 
Predictors 

3 WY 
antecedent 

gage 
0.01 0.00 - 0.08 

SmallFloodFallrat
e 

0.08 SmallFloodFallrate 

WY 2005-
2007 gage 

0.06 0.00 - 0.10 Jan 0.10 Jan 

NSE 0.10 0.00 - 0.10 
Dec, Jan, 

SmallFloodFallrat
e 

0.10 
Dec, Jan, 

SmallFloodFallrate 

RBI 0.03 0.00 - 0.10 
SmallFloodFallrat

e 
0.10 SmallFloodFallrate 

< 1 cfs 0.07 0.00 - 0.12 Dec, Jan 0.12 Dec, Jan 
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RBI and < 
1 cfs 

0.14 0.00 - 0.17 
Dec, 

SmallFloodFallrat
e 

0.17 
Dec, 

SmallFloodFallrate 

 

Table A4.7: SndInstabResist multiple regression results with further reduced set of 3 flow metrics. Adjusted R2 values for 
flow data is italicized when more SndInstabResist variance is explained than the 3 WY antecedent gage data and adjusted 

R2 values for flow data is underlined when less SndInstabResist variance is explained. 

Flow 
Data 

Adj. 
R2 
All 

Predi
ctors 

Adj. R2 
Backward 
Selection 

Predictors 

Backward 
Selected 

Predictors 

Adj. 
R2 
Cp 

Cp Selected 
Predictors 

Adj. 
R2 

AIC 

AIC Selected 
Predictors 

3 WY 
antecedent 

gage 
0.14 0.15 

ExtremeLowTimin
g 

0.15 
ExtremeLowTimi

ng 
0.15 ExtremeLowTiming 

WY 2005-
2007 gage 

0.00 0.00 - 0.08 
ExtremeLowTimi

ng 
0.08 ExtremeLowTiming 

NSE 0.35 0.29 
ExtremeLowTimin

g 
0.35 

NumZeroDays, 
ExtremeLowTimi

ng 
0.35 

NumZeroDays, 
ExtremeLowTiming 

RBI -0.02 0.00 - 0.01 
ExtremeLowDurat

ion 
0.01 ExtremeLowDuration 

< 1 cfs 0.03 0.00 - 0.03 NumZeroDays 0.07 
NumZeroDays, 

ExtremeLowDuration 
RBI and < 

1 cfs 
0.11 0.00 - 0.07 

ExtremeLowTimi
ng 

0.07 ExtremeLowTiming 

 

Table A4.8: ShredderPercentTaxa multiple regression results with further reduced set of 3 flow metrics. Adjusted R2 
values for flow data is italicized when more ShredderPercentTaxa variance is explained than the 3 WY antecedent gage 

data and adjusted R2 values for flow data is underlined when less ShredderPercentTaxa variance is explained. 

Flow 
Data 

Adj. 
R2 
All 

Predi
ctors 

Adj. R2 
Backward 
Selection 

Predictors 

Backward 
Selected 

Predictors 

Adj. 
R2 
Cp 

Cp Selected 
Predictors 

Adj. 
R2 

AIC 

AIC Selected 
Predictors 

3 WY 
antecedent 

gage 
0.25 0.24 RBI_1hr 0.24 RBI_1hr 0.24 RBI_1hr 

WY 2005-
2007 gage 

0.05 0.13 RBI_1hr 0.13 RBI_1hr 0.13 RBI_1hr 

NSE -0.05 0.00 - 0.02 RBI_1hr 0.02 RBI_1hr 

RBI 0.11 0.13 RBI_1hr 0.13 RBI_1hr 0.13 RBI_1hr 

< 1 cfs 0.08 0.00 - 0.09 HighPulseCount 0.09 HighPulseCount 

RBI and < 
1 cfs 

0.14 0.14 RBI_1hr 0.14 RBI_1hr 0.14 RBI_1hr 
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Appendix V: Multiple regression results summary 

Table A5.1: Multiple regression summary indicating the percent of MRA models in which each set of flow data explained 
more or less biotic variance than the 3 WY antecedent gage data for the entire set of reduced flow metrics and the further 

reduced set of 3 flow metrics. 

Flow Data 
Reduced predictor set 3 predictor set Reduced and 3 predictor set 

More Less More Less More Less 

WY 2005-2007 gage 63% 38% 50% 50% 56% 44% 

NSE 50% 50% 38% 63% 44% 56% 

RBI 50% 50% 38% 63% 44% 56% 

< 1 cfs 50% 50% 38% 63% 44% 56% 

RBI and < 1 cfs 63% 38% 38% 63% 50% 50% 

 

Table A5.2: Multiple regression summary indicating the percent of MRA models in which each set of flow data explained 
more or less biotic variance than the 3 WY antecedent gage data for the AIC selected predictors using the entire set of 

reduced flow metrics and the further reduced set of 3 flow metrics. 

Flow Data 
AIC reduced 
predictor set 

AIC 3 predictor 
set 

AIC reduced and 3 
predictor set 

More Less More Less More Less 
WY 2005-2007 

gage 
63% 38% 50% 50% 56% 44% 

NSE 63% 38% 38% 63% 50% 50% 

RBI 38% 63% 38% 63% 38% 63% 
< 1 cfs 50% 50% 38% 63% 44% 56% 

RBI and < 1 cfs 63% 38% 38% 63% 50% 50% 

 

 

Appendix VI: Random forest results summary 

Table A6.1: Random forest summary indicating the percent of RF models in which each set of flow data explains more or 
less biotic variance than the 3 WY antecedent gage data for the set of reduced flow metrics.  

Flow Data 
Reduced predictor set 

More Less 

WY 2005-2007 gage 88% 13% 

NSE 88% 13% 

RBI 63% 38% 

< 1 cfs 88% 13% 

RBI and < 1 cfs 63% 38% 
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LIST OF ABBREVIATIONS 
 

 
 

Acronyms: 

AIC Akaike Information Criterion 

CA California 

CDEC California Data Exchange Center 

CIMIS California Irrigation Management Information System 

DEM digital elevation model 

EFC environmental flow component 

ELOHA Ecological Limits of Hydrologic Alteration 

EPA United States Environmental Protection Agency 

EPT Ephemeroptera, Plecoptera, and Tricoptera 

FEMA Federal Emergency Management Agency 

HEC-HMS Hydrologic Engineering Center Hydrologic Modeling System 

IHA Indicators of Hydrologic Alteration 

MRA multiple linear regression 

NATHAT National Hydrologic Assessment Tool 

NCDC National Climatic Data Center 

NED National Elevation Dataset 

NLCD National Land Cover Database 

NOAA National Oceanic and Atmospheric Administration 

NSE Nash-Sutcliffe Efficiency 

PCA principal component analysis 
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pers. comm. personal communication 

QA quality assurance 

QC quality control 

RBI Richards-Baker Flashiness Index 

RF random forest 

SC-IBI Southern California Index of Biotic Integrity 

SDCFCD San Diego County Flood Control District 

SMC Stormwater Monitoring Coalition 

SWAMP Surface Water Ambient Monitoring Program 

TNC The Nature Conservancy 

TOC time of concentration 

US/U.S. United States 

USDA United States Department of Agriculture 

USGS United States Geological Survey 

VCWPD Ventura County Watershed Protection District 

WY Water Year 

 

Metric Abbreviations: 

cfs_1hr percent of time with flow less than 1 cfs using hourly time steps 

Adj. adjusted 

Dec. December 

Desi. desiccation 

Dist. disturbance 
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Feb. February 

Freq. frequency 

Instab. instability 

Jan. January 

Max. maximum 

Min. minimum 

Num. number 

RBI_1hr Richards-Baker Flashiness Index using hourly time steps 

Resil resilience 

Resist resistance 

SC-IBI Southern California Index of Biotic Integrity 

Snd. sand 

TQmean fraction of the record above average flow for the record 

 

 

 


