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ABSTRACT

HomoToPY CONTINUATION METHODS, INTRINSIC LOCALIZED MODES, AND

COOPERATIVE ROBOTIC WORKSPACES

This dissertation considers three topics that are united by the theme of application of
geometric and nonlinear mechanics to practical problems.

Firstly we consider the parallel implementation of numerical solution of nonlinear polyno-
mial systems depending on parameters. The program written to do this is called Paramotopy,
and uses the Message Passing Interface to distribute homotopy continuation solves in another
program called Bertini across a supercomputer. Paramotopy manages writing of Bertini in-
put files, allows automatic re-solution of the system at points at which paths failed, and
makes data management easy. Furthermore, parameter homotopy nets huge performance
gains over fresh homotopy continuation runs. Superlinear speedup was achieved, up to hard
drive throughput capacity. Various internal settings are demonstrated and explored, and the
User’s Manual is included.

Second, we apply nonlinear theory and simulation to nanomechanical sensor arrays. Us-
ing vibrating GaAs pillars, we model Intrinsic Localized Modes (ILMs), and investigate
ILM-defect pinning, formation, lifetime, travel and movement, and parameter dependence.
Intrinsic Localized Modes have been analyzed on arrays of nonlinear oscillators. So far,
these oscillators have had a single direction of vibration. In current experiments for single
molecule detection, arrays made of Gallium Arsenide will be innately bidirectional, forced,
dissipative. We expand previous full models to bidirectionality, and simulate using ODE
solvers. We show that small regions of a very large parameter space permit strong ILM
formation. Additionally, we use Hamiltonian mechanics to derive new simplified models for

the monodirectional ILM travel on an infinite array. This monodirectional ILMs of constant
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amplitude have unrealistic behavior. Permitting the amplitude of the ILM to vary in time
produces much more realistic behavior, including wandering and intermittent pinning.

The final set of problems concerns the application of numerical algebraic geometric meth-
ods to untangle the phase space of cooperating robots, and optimize configuration for fault
tolerance. Given two robots in proximity to each other, if one experiences joint failure, the
other may be able to assist, restoring lost workspace. We define a new multiplicity-weighted
workspace measure, and use it to solve the optimization problem of finding the best location
for an assistance socket and separation distance for the two robots, showing that the solution

depends on robot geometry, which link is being grasped, and the choice of objective function.
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Chapter 1

Paramotopy: Parallel Parameter Homotopy through Bertini

Algebraic Geometry is a mathematical field of study which has blossomed vigorously
over the last few decades. It has grown from the study of geometry arising from coupling
algebraic equations, to include and relate to such fields as Gromov-Witten invariants, string
theory, intersection theory, and many others.

Recently, the application of algebraic geometric methods to concrete, real-world problems
has received much attention. Because algebraic constraints arise in many contexts, it is only
natural to try to exploit this nature. Fields such as robotic workspace analysis [1, 2], robot
design [3], kinematics [4], and optimal control [5], all use some form of geometric methods
to solve problems.

Algebraic Geometry could be said to be the study of systems of algebraic equations; e.g.,
the study of the zero-sets of coupled sets of polynomials, of invariants of such zero-sets, of
their topology. A brief treatment of foundational material is merited.

Let F be our favorite field, usually C, and adjoin to it n variables, creating the ring of

polynomials Flzy, z, . .., x,]. Then we can form an ideal I by taking generating polynomials,
and writing [ = (fi(x1, 2o, ..., xn), ..., fe(x1, 22, ..., x,)). Thatis, I is the set of all elements
of the form U¥_ p;(z1,...,2,) fi(xy, ..., x,), where the p; are arbitrary polynomials coming

from the polynomial ring. From here on we frequently make implicit the dependence of

polynomials f; on any variables.

DEFINITION 1. The set of points on which all polynomials f; in I are simultaneously zero

is the variety associated with I, and is written V (I).

Varieties may have one or more components, which may or may not be all of the same
dimension; the dimension of a component of V'(I) is defined in the usual sense. There may

be multiple components of the same dimension as well. The dimension of a component is
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defined to be the dimension of the tangent space at a nonsingular point of the component. For
example, we call points zero-dimensional, curves one-dimensional, surfaces two-dimensional,
ete.

One of the fundamental problems in algebraic geometry is, given some set of polynomials
corresponding to I, what is a generating set for the ideal? That is, it is not obvious from
looking at a set of polynomials whether another polynomial could be in the ideal. We want
a membership test, or a way to compute the variety. The desire to quickly, accurately, and
automatically answer the ideal membership question gives rise to the field of Computational
Algebraic Geometry.

Various tools have emerged to answer the ideal membership test, among other questions.
The two main categories of methods are symbolic and numeric. The former computes directly
with the generators the user provides, arriving at exact equations. For example, if a user
desires a unique generating set for an ideal, they could call a Grobner basis method, perhaps
as implemented in Maple, GAP, Singular, Macaulay2, or others. The inputs are symbolic
expressions, and the output is also a set of symbolic expressions. From the computed basis,
we can determine whether a given polynomial lies in the ideal. A more thorough discussion
of symbolic methods, namely Grébner Bases and Buchberger’s Algorithm, may be found in
Appendix B.

In contrast to the exact world of symbolic computation, numeric methods work with
floating point approximations of numbers. There is a moderate number of well-developed
software packages which find varieties associated to ideals. The one we will focus on here
will be the Homotopy Continuation solver, Bertini [6], which can find both zero and positive
dimensional varieties. In addition, our focus will be not directly on the ideal membership

test, but rather on finding the zero-dimensional components of V.



1. HoMmoTOoPY CONTINUATION

In contrast to symbolic methods, which can give exact equations for varieties, numerical
methods give approximations to the solutions of systems of equations. The only numeric
method we will discuss here is Homotopy Continuation [7].

A homotopy, shortly, is a continuous deformation. To continue perhaps is to follow.
The combination of these two ideas gives homotopy continuation, which is the following of
solutions as one system of equations is continuously deformed into another.

The simplest example of a homotopy is perhaps the linear case. Take two functions f, g,

along with a ‘time’ variable t € C, and write

h(t) =1 —t)-f+t-g. (1)

If we start at t = 1 and continuously vary to t = 0, then h will be a continuous deformation
of g into f. Note that there is nothing in Equation 1 which prohibits the use of ¢t € C; as
long as our functions can be defined over C, and we ourselves are willing to work over C,
complex time is just fine.

Numerically, we track solutions to (1) as t deforms. Hence, to perform a homotopy
continuation solve, we must obtain the solutions to the start system ¢, and the number of
solutions to g ought to be greater than the number of solutions to f. The generic method for
homotopy continuation is presented in Algorithm 8, and is presented in Figure 1. Obtaining
the start solutions tends to be easy — we construct a system with known solutions, and
simply write them down.

There is a well known upper bound on the number of solutions to a system, called the
Bézout bound [8, 9]. The number of isolated solutions of a polynomial system is no more

than the product of the degrees of the polynomials.



Consider the roots of unity example. If we have a system for which the Bézout bound
is N, and we wish to use the “total degree” start system, factor N as N =[], d;. Then we

can write,

gi(z) = 2 =1

gn(2zn) = 257 —1

The function g has as its zeros the roots of unity specified by the decomposition, and we
require no computation to find them. In contrast, it is the finding of solutions to f that
is hard. Generally, f will be nonlinear, and may have many monomials. Also, if ¢ has
more solutions than the target system f, the excess solutions will diverge to co as t — 0.
Any ‘excess paths’ waste CPU time — thus, reduction of the upper bound on the number of
solutions to f is greatly desired.

Sometimes a system to be solved using numerical methods will have parameters p in
it. Perhaps they represent a point in space, an orientation, or rates of chemical reactions.
Regardless of the meaning of the parameters, homotopy continuation lends itself to rapid
computation of a system for different values of parameters with what is called a parameter
homotopy. This is a two step process. First, we perform a primary solve of the system,
using a constructed start system which will, more than likely, overestimate the number of
paths necessary, using randomly chosen complex values p* of the parameters. The second
step uses the result of the first solve as its start system, tracking now only the exact number
of solutions from p* to p;, the particular point at which we wish to solve. For a graphical
representation of this, see Figure 2. This was originally called the ‘Cheater’s Homotopy’
[10], though it is referred to differently now.

The benefit of a parameter homotopy is reduction of computation time. Suppose we

wish to solve the system for a set {p;} of parameter values. Performing a fresh solve of
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FIGURE 1. An illustration of generic homotopy continuation.
constructed start system diverge to oo, while green paths converge to solutions to the desired
system f. Theory guarantees that off a set of measure zero in C", we will have a uniform
number of (complex) solutions to f. The divergent paths are present because the constructed

complex time

The

start system has a surplus of solutions.

the system for each distinct parameter value would repeatedly follow paths diverging to co.
We would prefer to track only ezactly the correct number of paths each time. Since theory
guarantees that if p* is a randomly chosen point (perhaps using a random number generator,
and off a set of measure zero) in parameter space, it will have the exact same number of
solutions as any other generic point. Hence, we repeatedly track from only the solutions
at p*, instead of starting fresh from a constructed system, if we wish to solve at particular

points in parameter space. This reduces dramatically the number of paths to track when

solving a system repeatedly.

Specific points in the parameter space of a system my have a different number of solutions
than a generic point. This number is always a decrease from the generic number. This

guarantees that no solutions will ever be missed when tracking from the generic point to the

specific.

magenta paths from the



Algorithm 1 Generic Homotopy Continuation

1: procedure HOMOTOPY CONTINUATION( f)
2 Find upper bound b on number of solutions to f
3 Form start system g having (# solutions) = b
4 Write h=(1—t)f+t-g
5: for each solution to g do
6: Track solution as t is deformed through C from 1 to 0
7 end for
8: end procedure

1.1. BERTINI. We turn now to a description of the homotopy continuation solver of which
Paramotopy will make use. Bertini is a freely available software package, using predictor-
corrector methods to track from a start system, and end at a target system. Paramotopy is
designed to repeatedly call Bertini to perform parameter homotopies in parallel, as well as
provide data management and pre- and post-processing capabilities.

Beginning from the pre-obtained solutions of the start system, Bertini uses successive
predictor and corrector solves, combined with ‘endgame’ methods at the tail end of the
solve, to arrive at the solutions to a desired system. The predictor steps are computed using
the Jacobian to the system. Since solution of a matrix system induces magnification of error,
the condition number K of the matrix is monitored, and the precision of the computation
can be dynamically adjusted using Adaptive Multiple Precision methods. At present, there
are at least eight options available to the user for choice of predictor method. Following
a predictor step, which advances in time (¢ € C), a Newton step is called to move the
approximation to the path closer to the actual path. If the Newton step takes too long to
converge, Bertini returns to the previous good step, and retries with a smaller step size in ¢.
The predictor-corrector pattern continues until the solve is almost complete, and ¢ is almost
0. Finally, Bertini turns to endgame methods [7] to complete the solve, ensuring that paths
remain separate.

If two paths pass close to a singularity, they may come close to each other, numerical

path-crossing may occur. This means that the predictor-corrector might accidentally switch
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from one path to another. Bertini monitors for this, and checks at the end of a solve to see
whether any paths have crossed. If paths cross, Bertini informs the user.

Paths may also fail in a way more critically than jumping, as Bertini tracks solutions,
such that Bertini gives up on tracking the path. As a genuinely superfluous path approaches
t = 0, it will necessarily diverge to infinity. However, sometimes paths which would lead
to actual solutions to a system may appear to diverge, as its norm becomes large. Bertini
checks for this at the end of a solve, and writes to file failed paths which paths failed.

Bertini, while it tracks only points through a solve, is capable of determining the di-
mensions, degrees, and numbers of components of a variety. Hence, solves are not limited
to square systems, where the number of equations is equal to the number of variables. In
general, the dimension of a variety is equal to the difference in the number of variables n, and
the number of equations m, as n—m. An underconstrained system where n > m will tend to
have positive dimensional components, and possibly some of lesser dimensions. Bertini can
be instructed to sample these; the samples will almost certainly lie in C — R, of appropriate
dimension, and it is currently very difficult to perform real sampling of positive dimensional
components. Additionally, this is merely an intuitive description, and there can in fact be
multiple solution components in various dimensions.

Bertini has many more modes and capabilities, which are enumerated and described in

the Bertini User’s Manual, as well as an upcoming book.


http://www.nd.edu/~sommese/bertini/BertiniUsersManual.pdf

2. PARAMOTOPY

The Paramotopy software is an extension of Bertini. Because Bertini has built-in support
for custom and parameter homotopies, it can be used to solve a system for myriad parameter
values. However, the userhomotopy mode in Bertini has only support for one parameter
point at a time, so if a user wishes to solve a system for 10 million parameter values (not
that many, really), they must run Bertini 10 million separate times. Paramotopy takes care
of running the Bertini solves for an entire parameter set automatically, in parallel, and in

such a fashion as is portable and easy to use.

2.1. PROGRAM ALGORITHMS. A very coarse outline of Paramotopy is:

(1) Perform ‘Stepl’ solve; run Bertini for random complex values of the parameters
appearing in the system to be solved,

(2) For each point in the parameter space sample, perform the ‘Step2’ solve.

Stepl is sometimes referred to as the offline step, and Step2 as the online. A more thor-
ough description of Paramotopy is in Algorithm 2. Essentially, the user-guided program
initializes, runs Stepl and Step2, and allows for re-solution at parameter points at which
paths failed. The program is provided as two separate compiled executables named (unsur-
prisingly) Paramotopy and Step2. Paramotopy as an executable is a serial program, which
manages the parsing of input files, management of Bertini settings, and calling of Bertini
and Step2. A simplified model of the process is given in Figure 2.

The majority of the CPU time in Paramotopy is spent in Step2. Using the common
Message Passing Interface (MPI) method for parallelism in software, Step2 is implemented
with the master-slave control scheme. It is described in Algorithm 3 and 4. The master
node possesses a buffer containing the parameter points at which we will solve; each slave is

responsible for writing its own input files for Bertini, and writing its own data files.
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FIGURE 2. An illustration of the Paramotopy method. Starting at the right from a constructed
system in Bertini, we continue to the left, to solutions of the desired system for random complex
values. From there, we continue once more (many times more) to any desired set of parameter
values.

The master process (Algorithm 3) remains largely idle, especially for smaller runs; its
main purpose is to achieve equal distribution of points to solve. Initially, it sends each
worker a set of m points, passed in the form of an array of type double. Following the
initial seeding of workers, the master enters a wild-card receive, waiting for workers to finish.
When a worker tells the master it has completed the solves for each of its data points, the
master sends it new work, and enters receive mode once more. This continues until the list
of parameter points is exhausted.

The slave function is described in Algorithm 4. Regarding the Bertini solve, the slave
has a two-step process. To improve performance, and due to issues related to the Bertini
library calls (namely, to forego parsing a nearly identical input file for each and every solve),
each worker performs an initial parameter solve on arbitrary nonzero complex parameter
values, so as to initialize certain memory structures. Once completed, the worker is ready
to solve en masse. It enters a while loop, and receives double arrays containing parameter

points at which to solve from the headnode. After receiving, the worker calls Bertini, gathers
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Algorithm 2 Paramotopy Algorithm. A C++ compiled wrapper around Bertini.

1: procedure PARAMOTOPY (Input File)

2 Load input file

3 Load previous preferences, or create new if not found
4: Get correct folder for run

5: User modifies settings for run
6.
7

8

9

Write config and input sections of Bertini input file > Stepl
system() call to Bertini, parallel or not > Stepl
User Ensures quality of Stepl results
: if parallel then > Begin Step2

10: Paramotopy calls system(’mpilauncher step2’)

11: Process command string — files to save, and other parameters

12: Load preferences

13: if MPIid==0 then

14: master () > Algorithm 3

15: else

16: slave() > Algorithm 4

17: end if

18: Return to Paramotopy

19: else

20: Run Step2 internally, single process performing both master and slave

21: end if > End Step2

22: FailedPathAnalysis()
23: end procedure

the data from the output files, and stores the data into a file unique to the worker. The
receive-solve-write routine is iterated until the work is complete. The exit condition of this
while loop is a special integer message tag sent from the master.

Finally, after a Step2 run has been completed, the user may elect to engage in Failed
Path Analysis. Paramotopy scans the output files for parameter points at which one or more
paths failed during the Bertini run, and reports the number of such points. User may modify
settings for Bertini, such as choosing higher accuracy throughout the solve, and elevating
the security level. The user may also set a number of automatic resolves, and automatic
tolerance tightening.

Currently, analysis of generated data must be done through a separate program. A
general set of data-gathering and plotting functions has been written in MATLAB by the

author. However, specialized or custom analysis must be done by the user.
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Algorithm 3 Paramotopy master function.

1: function MASTER

2 Create input file in memory

3 Get start points from completed Stepl

4: MPI_Bcast Bertini input file and Start file to each worker
5: Get first set of points, from mesh or user-provided file

6 Distribute first round of points

7 while points left to run do

8 MPI_Receive from any source,

9 Create next set of parameters

10: MPI_Send new parameters to slave
11: end while

12: for each worker do

13: MPI_Send kill tag

14: end for

15: Write timing data to disk
16: delete temp files

17: end function

Demonstrations of use of Paramotopy have been performed, using a variety of systems
and machines. The next section describes the features of Paramotopy, and subsequently we

will demonstrate program performance.

11



Algorithm 4 Paramotopy slave function.

1:
2
3
4:
5:
6.
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

function SLAVE

MPI_Bcast to receive Start and Input files from master
Change directory to initial temp file location
Call initial Bertini using Start and Input, to seed memory structures
Collect all .out files from initial Bertini call
Inform master ready for work
Receive initial round of work
Change directory to working temp location
Write . out files
while Have not received kill tag from master do
while Have points to solve do
Write num. out file for straight line program
Call Bertini library
Read selected output files into buffer
if bufferthreshold exceeded then
Write corresponding file buffer to disk
Clear buffer
Initialize buffer
end if
end while
MPI_Send to master that work is completed
MPI_Receive from master, work or kill tag
end while
Write timing data to disk

25: end function

12



2.2. PROGRAM FEATURES. Paramotopy has been implemented in the C4++ program-
ming language, relying on the MPICH2 libraries for intercomputer communication, and
Boost for filesystem operations. At this time, the program uses a text interface using menus
and numeric input for control. Here we will briefly describe some features and usage, and
then the technical details of the program. See Appendix C for the User’s Manual, and details
on compiling, running, and troubleshooting Paramotopy.

Real-world problems may encompass many parameters; this could be problematic for
discretization of parameter space into a uniform sample. Hence, Paramotopy contains sup-
port for both linear uniform meshes of parameters, as well as user-defined sets of parameter
values stored in a text file. Systems with few parameters can make excellent use of computer-
generated discretizations. In contrast, systems with many parameters could use the Monte
Carlo sampling method to obtain useful desired information. To use this functionality, the
user must generate a text file containing whitespace-separated real and imaginary pairs for
each parameter, with distinct parameter points being on separate lines.

As a piece of scientific software, efficiency and performance are important. To this end,
Paramotopy is written with the most accurate timing statements possible built in — those
of the OpenMP package are used, specifically omp_get _wtime(), having up to nanosecond
resolution, depending on the operating system. This enables analysis of performance by
process type, which appears below in the demonstration sections (3).

Paramotopy has both serial and parallel capabilities. The user may choose in the pref-
erences whether to use a launcher to execute step2, or whether to perform Step2 entirely
internally. Since Step2 exists as a separate program from Paramotopy, it is called from
Paramotopy via a system(c_str(command)) instruction. Therefore, we use whatever par-
allel process launcher exists on the computer. Paramotopy comes equipped to use mpiexec
and aprun, but allows the user to select their own launcher program name. Unfortunately,

submission of Step2 to a queue via a script is not supported at this time.
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To aid in the creation and management of data, Paramotopy makes individual folders for
containing data for multiple runs of the same input file. These run folders may be reloaded
in the future, for further work such as Failed Path Analysis. Correspondingly, the user may
select any of the Bertini output files to save for each parameter point, including both the
computer-suited and human-readable files.

Paramotopy collects the Bertini output file failed paths automatically; the user may
not opt out of this. After a Step2 run is completed, the user may enter Failed Path Analysis
mode via the main menu. Paramotopy scans the failed path files collected during the run, and
marks the points at which failures occurred. Subsequently the user may have Paramotopy
re-solve at those points. Prior to the rerun, the user may move to a new random start point.
Additionally, the Failed Path portion has its own set of Bertini settings, independent of
Stepl and Step2, and the tolerances may be automatically tightened by one decimal order
of magnitude with each re-solve iteration. Paramotopy will attempt a user-set number of
iterations for each round of re-solve, terminating after that number, or when all points have
been successfully run with zero path failures.

Bertini settings through Paramotopy are persistent, and user-set. Using an xml file
located near the user’s home directory, Paramotopy maintains preferences from run to run,
and session to session. If a critical setting is missing, the program will either provide a
default value, or prompt the user for their choice. Should the preferences file become corrupt,
Paramotopy falls back to defaults and informs the user. Each of Stepl, Step2, and Failed
Path Analysis have their own groups of Bertini settings, with a minimal default set. The
groups are fully dynamic and mutable; the user can add and delete Bertini settings, as well
as change existing settings. This is advantageous, as Bertini has numerous configuration
possibilities, and as new modes and options are added to the underlying Bertini program,

they may be added with little difficulty directly to Paramotopy.
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Paramotopy has been successfully compiled on a CentOS linux cluster named Sam; several
Apple OSX machines; and a Cray XT6M 1048-core tier 3 supercomputer. Performance has
been proven on Sam, as the laptop Macintoshes available do not have enough processors.
The Cray has been tested, but only minimally after inclusion of several major features —
namely the use of shared memory ramdisks — which the Cray currently does not appear to
support.

The random complex start point used in Stepl has a strong affect on the runtime for
subsequent solves. Hence, we have incorporated the ability to save and load initial random
complex values. Additionally, the user may generate new values internally, should the need
arise. The new point may be in a standard range (the unit cube), or in a custom region of
parameter space.

User-specified preferences within Paramotopy contribute greatly to its performance. Dis-
cussion and performance analysis of several major parameters appears below in Section 3.2.3,

and a User’s Manual in Appendix C.
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3. DEMONSTRATIONS AND PERFORMANCE

In the following sections, we demonstrate Paramotopy’s capabilities, by showing input

files, performance scaling, potential uses, and plots of solution sets.

3.1. MonNKS EQUATIONS. As derived by Ken Monks in an unpublished work, we have
the ‘Monks Equations,” which describe the amplitude of interacting waves on an annulus,
and are related to growth patterns in cacti and other plants. They are computationally inter-
esting because the number of real solutions varies in parameter space, and some equilibrium
solutions are stable and others unstable, as well as being visually appealing. Cutting directly
to the differential equations, we have the following square coupled four-complex-dimensional

system:

Zo = pozo + Z122 — Y20(S — \Zo|2)
Zl = U121 + 502’2 + 222’3 — ")/Zl(S — |Zl‘2) (3)
21 = iz + %oz + Z123 — 720(S — |2)?)

Zo = pozs + 2120 — v23(S — |23]?),

where S = 2 Z?:o |2;]*. Monks notes that the three parameters g, f11,y must be real, and
that v < 0. Note that the complex conjugate operator is is nondifferentiable and nonalge-
braic. To get around this difficulty, we seek pure real solutions, and drop the bar from each
equation.

Paramotopy is useful in describing the dependence on the number of real equilibria in
the system in relation to the values of the parameters, as seen in Figure 4. For generic
parameter values, the Monks Equations have 81 distinct isolated complex solutions, with
no positive dimensional components to the variety corresponding to equilibria solution, as

verified using a positive dimensional run in Bertini. Rarely enough, the single variable group
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total degree start system constructed by Bertini happens to have 81 paths to track as well.
In the figure, we see four slices along 7 values in the three dimensional parameter space,
with (po, 1) € [0,10] x [0, 10]; there a clear dependence on parameter values.

The solution set of the Monks equations is also interesting, seeming to perhaps have
multiple components, as seen in Figure 5. The projections onto different coordinates coupled

with coloring dependent on another variable are nice to look at.

141 30

2| mu0*z0+2z1 *z2—gammax z0 * (2% (202421 "2+22"2+23 "2)—2z0 "2
3lmul*z1+2z0%22422*z3—gammaxz1 % (2% (2z0°2+21"2+22"2423 "2
4lmul*z24z0%z14+2z1*xz3—gammaxz2 % (2% (20°2421"2422"2+23 "2
5|mul*z3+2z1*z2—gammaxz3 * (2% (202421 "2+22"2+23 "2)—2z3 "2
6
7
8
9

)

)—z1"2)
)—z2"2)
)

z0, z1, z2, z3

0

mu0 0 0 10 0 40

mul 0 0 10 0 40

10/gamma 0 0 10 0 1

FiLE 1.1. Monks system Paramotopy input file.

Using a mesh with 8000 points in it, as 20 points in each of three parameters, this set
of equations was used for timing on the Dell 72 CPU cluster, Sam. Results of the tests
are in Figure 3. We use the one-worker test timings as the base time for scaling numbers.
The main highlight of this figure is the flatlining of the speedup factor at about 30x over a
single-worker run. This is far from optimal, as we would prefer the speedup to scale linearly
with the number of processors used in the solve. Based on timing analysis, the hangup is
due an imbalance in the Paramotopy setting which controls distribution of parameter points
to workers. A mere 8000 points distributed across 72 workers is only about 111 points per
worker. For the timing runs shown here, the parameter for distribution was set to 112, so
each worker received only a single round of work. Furthermore, one of the axes in parameter
space has a singularity. Nevertheless, a speedup of 30x over a single worker is excellent, with

a terminal efficiency of almost 40%.
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Raw Process Times, Master Raw Process Times

1200f 1 12007, 1
1000 1 10001 1
800r + master.total ’ 800¢ + slave.total ’
@ master.initialize ) slave.bertini
g 600l master.receive | | g s00l slave.receive| |
= master.send = slave.send
master.write slave.write
400f 1 400¢ |
200f 1 200F ¢, 1
ot ; ‘ ; ‘ ; ‘ ok ; foediiiuiiiiys : ; :
1 12 24 36 48 60 72 1 12 24 36 48 60 72
# Workers # Workers
Normalized Process Times, Master Normalized Process Times, Slave
1 1 b OUUTUROE SUIURUUTUE SOOI H
0.9f
0.8
0.75F ]
[0} ® 0.7- 1
£ + master.total S + slave.total
% master.initialize % 0.6 slave.bertini 1
= master.receive = slave.receive
2 0.5¢ master.send 1 9 0.5¢ slave.send
E master.write &‘3 0.4l slave.write |
0.3f 1
0.25F 4
0.2r i
0.1 8
1 12 24 36 48 60 72 1 12 24 36 48 60 72
# Workers # Workers
Worker Run Times
- - - - - - - 72
25
1200, .
20 1
; 60
1000} Optimal Scaling g 15 &
' Achieved Times =
: 0E
@ 800, 1 5
- | 58 g oy
£ ! IS B 5
= ® 0 5 36 S
= 60019 . £ o £
S \ g @ 0.5W
T \ -5 o
\ 5]
400F 1108 24
\ =
~150
2008y 1 20 12
e i
o 12 24 36 48 60 72 1 : ‘ ; ; ; o
# Workers 1 12 24 48 60 72

36
# Workers

FIGURE 3. Monks equations timing, 8000 parameter points, scaling from 1 to 72 workers. Max-
imum speedup of ~30x achieved. The relatively small parameter point sample hinders effective
distribution of work.
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number real solutions for y=0.17 number real solutions for y=1.02

80

number real solutions for y=3.05 number real solutions for y=7.63

80

FIGURE 4. Regions with various numbers of real solutions to the Monks equations in parameter
space (o, p1, 7). The displayed region is for (ug,p1) € [0,10] x [0,10]. At v = 0 there is one
solution everywhere, namely the 0 solution; this plot omitted. For low -y, there are few solutions
near the parameter-origin, as in (a). As 7 increases, regions of higher numbers of solutions
appear, and these regions move toward the origin.
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() (D)

FIGURE 5. Successive zooms into the origin of solution space. Points represent projection onto
20, 21, with color determined by z3. All solutions for the entire scan through parameter space
plotted.
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3.2. DAMPED DUFFING OSCILLATORS. The following systems are derived from a re-
ceding horizon optimization problem, concerned with driving a nonlinear Duffing oscillator
to rest [11]. The problem depends on parameters, and can be formulated as a polynomial
system, for which we desire the roots. Hence, Paramotopy is a perfect program for solving
the system over and over. We will use three versions of the system, corresponding to looking
at one, two, and three steps.

3.2.1. 9 x 9 Duffing System.

9220

0.2xul+.5e—1xlambda2
2xx12—lambdal+mul-mu?2
2xx22—lambda2+mud—mu4

x114.5e—1%x21—x12
—.5e—1xx114.970%xx21+.5e—1xul —.5e—1xx11"3—x22
mul x(x12—5)

mu2x(—1.0xx12-5)

mu3x*(x22—5)

mudsk(—1.0%x22—5)

ul, lambdal, lambda2, mul, mu2, mu3, mud

© 00 N O Uk W N

_ =
= o

12/x12, x22

13/ 0

14/x11 0 0 1 0 100
15/x21 0 0 1 0 100

FiLE 1.2. 9 x 9 Duffing oscillator system Paramotopy input file.

The 9x 9 Duffing system is a great test for scaling experiments. Stepl follows seven paths,
to three finite nonsingular solutions, and four infinite singular solutions. Step2 follows these
three solutions to each point in parameter space, which is two-dimensional.

Timings here are based off a 1000 x 1000 discretization, in [0, 1] x [0, 1]; see Figure 7.
Base case with one worker took about ~ 7837 seconds, yielding 380 paths per second, or
0.0026 seconds per path. The system is 9 x 9, but steps of the solve do not appear to be very
complex. At peak, this scaling test achieved 72x speedup, and greater than unity efficiency,
using 72 workers, and a single master process. Minimum completion time was 109.5 seconds,

with 27397 paths per second.
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Solutions for the Duffing 9 x 9 appear to lie on several distinct sheets. See Figure 6.
These two plots are projections of solutions to a set of 10000 parameter points. The left
hand of the figure demonstrates projections onto (lambdal, lambda2, x22), with colors
determined by the corresponding parameter point’s distance from the origin. On the right,
we have the same data projection, but color is instead determined by a RGB triple, composed

of normalized values of the three variables (mu3, mu4, x12).
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lambda2 00 o lambdat

-500
lambda2 0 lambdai

FIGURE 6. Solution plots for the Duffing 9 x 9 system. (a) Projections onto variables lambdal,
lambda2, x22, with points colored according to the corresponding value of vx11? + x212. (b)
The same coordinate projections, with coloring coming by letting RGB values be set according
to normalized values of mu3, mu4, x12.
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Raw Process Times, Master Raw Process Times

8000 1 8000, 1
70001 1 70001 1
6000[- 1 6000 |
50000 + master.total il 5000% + slave.total il
@, master.initialize ) slave.bertini
[0} i [0} i
£ 4000l master.receive | | £ 40000+ slave.receive| |
= master.send = slave.send
master.write slave.write
3000 1 3000 1
20001 - 1 20001 » 1
10001 K 10001 1
1 12 24 36 48 72 1 12 24 36 48 60 72
# Workers # Workers
Normalized Process Times, Master Normalized Process Times, Slave
1 1
0.9f ]
0.8 1
0.75F ]
0] ® 0.7- 1
£ + master.total 1S + slave.total
% master.initialize % 0.6 slave.bertini 1
= master.receive = slave.receive
2 0.5 master.send 1 9 0.5 slave.send 1
5] master.write © slave.write
o & 0.4t i
0.3f 1
0.25F 4
0.2r i
0.1 8
1 12 24 36 48 60 72 1 12 24 36 48 60 72
# Workers # Workers
Worker Run Times
- - - - - - - 72
80001 1 l%°
' 1
P 40
7000 Ootimal Seai 1 60
' nenivea Tmes | [ Z
6000*: 20 g 48
@ ool =3
o 50007 {r0 & = ?
IS ' e 2 2o
= ' 0 5 &36 3
' 4000f6 1 2 3 2
=1 ' -10 8 w 0.5W
[an 1 c
L 1
3000 5 -20§—.§ 24
2000} { B-300
- 12
1000 ¥ 1 40
%Qz%. - _50
o 12 24 % 48 e0 72 1 : ‘ ; ; ; o
# Workers 1 12 24 48 60 72

36
# Workers

FIGURE 7. Duffing 9 x 9 timing data. Peak speedup of about 72x, with 72 processors. Greater
than unity efficiency achieved. Peak rate of almost 27400 paths per second.
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3.2.2. Process Querdistribution. The computer Sam has at its disposal one twelve-core
head node, and six twelve-core worker nodes. To test full capabilities of the computer, we run
Paramotopy well over its capacity. These tests revealed that the computer has multithreading
support beyond the raw number of CPU’s it has. See Figure 8

We use the 9x9 Duffing system, with a 5 x 10° point discretization. Beginning from a run
with 60 workers, and using its timing as the base for scaling numbers, we scale all the way to
200 workers. Peak speedup is about 78x, at 80 workers, but beyond this, performance drops
off. Analysis of process type reveals that beyond the two-fold multithreading capacity of the
computer, disk access becomes a barrier, and network throughput becomes limited. Two
sets of program parameters were used as well; increasing the data buffer to 1MB from 64KB,
and increasing the number of files passed out at a time from 100 to 500, did not noticeably

affect the performance of the program.
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Normalized Process Times, Slave

1
0.9r
0.8
o 0.7 g
£ + slave.total
% 0.6 slave.bertini ]
= slave.receive
o 0.5 slave.send i
S o4l slave.write |
0.3f i
0\ L L L L L ' L L L L 1
60 72 84 96 108 120 132 144 156 168 180 192
# Workers

(A) 100 points at a time, 64KB buffer

1 12 24 36 48 60 72 84 961081201 3214415616818019
# Workers

(C) 100 points at a time, 64KB buffer

<
&

Normalized Process Times, Slave

1
0.9r
0.8r
o 0.7
£ + slave.total
% 0.6 slave.bertini 1
= slave.receive
9 0.5 slave.send ]
S o4l slave.write ]
0.3r ]
0.2r
0.1 et
0} i i i i i i i i i i |
60 72 84 96 108 120 132 144 156 168 180 19

# Workers

(B) 500 points at a time, 1MB buffer

Efficiency

1 12 24 36 48 60 72 84 961081201 321441561 6818019
# Workers

(D) 500 points at a time, 1MB buffer

F1cURE 8. Overdistribution of processes to Sam using the 9x9 Duffing system.
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3.2.3. Buffer Size and Parameter Distribution. Paramotopy has many user-configurable
settings available, of which two have ranges of values rather than simply on-off choices, and
greatly influence the performance of the program.

As Step2 runs, its many processes on many computers call Bertini from a library ad
nauseum, generating a plethora of output files. These output files are consolidated into a
set of files, with each worker writing its own data, so as to minimize network traffic. If
the output from each call to Bertini is written immediately to disk, the hard drive head
cannot handle the near-constant access. Hence, to free the hard drive, the workers read
Bertini output into memory immediately upon production, and hold it until the buffer of
user-determined size is filled. Upon filling the buffer, the worker writes that entire group of
output to disk, purges memory, and again begins creating and reading data.

Early versions of Paramotopy wrote output to disk immediately, without buffering, and
performance was poor. This corresponds to the red corner in Figure 9, where the buffer
stores only 1024 characters before dumping to disk. The current Paramotopy allows the
user to specify a number of KB for the buffer size. Note that the buffer size is a minimum
threshold, so that the amount of data written at once is larger than the preference, except
at the end of a run when there is no more data to be added to the stream. The hardcoded
upper limit on buffer size is 64MB.

The second setting available to the user under investigation here concerns the distribution
of parameter points to the workers from the master node. To minimize network traffic and
achieve load balancing, the master parcels out work in even chunks, of user-specified size.
Consider this example: The user specified to have chunk size be ¢ = 100, and there were
a total of 3000 points, with 12 workers. Initially the master seeds each worker with 100
points, with 1800 remaining. Perhaps worker 2 reports back first, so master passes it 100
more points. Then worker 5 completes its first round, and master sends it 100 more points.

This continues, in first-come-first-served fashion, until all 3000 points have been handed out.
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Once all work has been distributed, the master sends each worker a message containing a
tag indicating that the solve is over, and each worker finalizes its data files, writes timing
data if suitably compiled, and exits.

This numfilesatatime parameter influences the solve time, but not near so much as
the data buffer. Setting the parameter to 1 can slow the program down, especially if the
number of workers is large and path track time is low. In this case, workers report back
almost immediately, and workers spend their time idly waiting for more work. In contrast,
if the numfilesatatime setting is too large, all the work will be passed out immediately; in
the extreme case only several or even a single worker will receive points to solve, and the
remaining workers do nothing but exit.

The Figure 9 demonstrates run time versus a set of parameters. The two horizontal
axes in this figure are logarithmic. A total of 299 Paramotopy runs were executed for this
plot, with run times ranging from a peak of 128 seconds, to a minimum of 26 seconds. Not
surprisingly, the maximum occurred with a buffer size of 1KB, and only a single parameter
point being passed out to each worker at a time. The ridge of slightly higher times appearing
at buffer=4096KB is unexplained, but the minimum was achieved for the maximum value
of both parameters.

Optimal settings are easy to achieve. Simply attempt to divide work so that the dis-
tribution of points happens faster than solving a group of points, and keep the buffer size
moderately large, and runtimes will be low. As can be seen in Figure 9, the region of slow

runtimes is bounded near the axes for both parameters.

28



127.911

100

) - 174.9525

()

£ @

= o

o '_

s B
5
=

0 43.9202

256
1024
4096 15300

. 16384 300 . .
buffer_size [KB] 500 numfilesatatime

25.7361

F1GURE 9. Testing Paramotopy run times versus internal parameters, using a 500000 parameter
point sample, in the 9x9 Duffing system. The horizontal axes are logarithmic, with linear

vertical axis corresponding to run time. Coloration is logarithmic in runtime. Optimal settings
are bounded away from the origin.
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3.2.4. Duffing 18x 18. The Duffing 18 x 18 system is the same as the damped controlled
9 x 9 system, but is sees one step further toward the horizon. There are 18 equations in 18

unknowns.

18 2 2 0

.2xul+0.05«lambda?2
.0xx12—lambdal+lambda3+lambda4*(—0.05—-0.15%x12 " 2)+mul-mu2
.0xx22—lambda2+0.05xlambda3+0.970*lambdad4+mu3—mu4
.2xu2+0.05xlambda4

.0xx13—lambda3+mub—mub

.0xx23—lambda4+mu7—mu8

x114+0.05%x21—x12

—0.05%x11+0.970%x21+0.05%ul —0.05%x11"3—x22
x1240.05%xx22—x13
—0.05%x12+0.970%x22+0.05%u2—0.05%xx12"3—x23
mulx*(x12—5.0)

© 0 N O U W N e
NN ON NN O

= =
N o= O

13mu2x(—1.0%xx12—5.0)

14| mudx(x22 —5.0)

15| mudx(—1.0%xx22 —5.0)

16| mub*(x13—5.0)

17|mubx(—1.0%xx13 —5.0)

18| mu7*(x23 —5.0)

19| mu8x(—1.0%xx23 —5.0)

20ul, u2, lambdal, lambda2, lambda3d, lambdad4, mul, mu2, mu3, mu4,

mub5, mu6, mu7, muS8
21| x12, x13, x22, x23

22| 0

23/x11 —1 0 1 0 50
24/x21 -1 0 1 0 50

FiLE 1.3. Paramotopy input file for 18 x 18 Duffing system.

Timing runs using a mesh of 1x 10® are demonstrated in Figure 10. Again, linear speedup
was achieved with efficiency & 1 throughout the range of processors. There is an unexplained
dip in timing near 13 and 14 processors, and breakdown of timing by process type reveals
an increase in writing time — we therefore conclude that something else was using the disk
at that time. The master spends most of its time waiting for the slaves to ask for more
work, and the trends in the timing indicate that Paramotopy in this case would have scaled
well even beyond 72 workers. Unfortunately, the Cray computer was incapable of exploiting

shared memory at the time of this writing, and timing tests were not performed.
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x10* Raw Process Times, Master 4 Raw Process Times

x10
8 1 8f 1
7t 1 7t 1
6f 1 6f 1
51 + master.total ] 51 + slave.total ]
=, master.initialize ) slave.bertini
“é a master.receive | | “é . slave.receive| |
[ master.send [ slave.send
master.write slave.write
3f 1 3f 1
2r 1 2r 1
1t 1 it 1
1 12 24 36 48 60 72 1 12 24 36 48
# Workers # Workers
Normalized Process Times, Master Normalized Process Times, Slave
1 1 {sessesses
0.9f ]
0.8 1
0.75F ]
[0} ® 0.7- 1
£ + master.total S + slave.total
% master.initialize % 0.6 slave.bertini 1
= master.receive = slave.receive
2 0.5¢ master.send 1 9 0.5¢ slave.send 1
5] master.write [ slave.write
o & 0.4t i
0.3f 1
0.25F 4
0.2r i
0.1 8
1 12 24 36 48 60 72 1 12 24 36 48 60 72
# Workers # Workers
< 10° Worker Run Times 72
: - - - - - - 1500
8, 1
i 1
7 1000 60
1
6 \ Achieved Times %
ki
' 500 £ 48
& =
< 5h 1 § g oy
€ | £ ® o
F ol 1771 g gss &
<4 g @ 05
o ol | =
b 500 2 5
PIa . =
8 -1
i | 000 12
E 'b‘ AR
ol ; R B S S B S S S -1500
1 12 24 36 48 60 72 1 . - - v v et
# Workers 1 12 24 48 60 72

36
# Workers

FicUre 10. Duffing 18 x 18 timing results. Linear speedup achieved throughout the range of
processors used. The small blip at 13 processors indicates another process was using the hard
drive, inhibiting Paramotopy performance.
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FiGure 11. Duffing 18x18 solution plots.

(a) Projection of solutions onto coordinates
(lambdal, lambda2, lambda3), with color determined by corresponding parameter distance to

the origin. (b) The parameter space uniformly has nine real solutions. (c) Projection onto

(lambdal, ul, lambda3), with RBG value determined by a triple composed of normalized values
of (mu3, mué, x23)
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3.2.5. Duffing 27 x 27. The Duffing 27 x 27 system is akin to the previous two Duffing
systems, in that it is a receding horizon optimization problem. This adds one step beyond

the 18 x 18 system.

27 2 2 0

1/5%ul+.5e—1«xlambda2

2xx12—lambdal+lambda3+lambdadx( —.5e —1—.15%x12 " 2)+mul—-mu2

2xx22—lambda2+.5e—1xlambda3 +.970*lambdad4+mu3—mu4

1/5%xu2+.5e—1xlambda4

2xx13—lambda3+lambdab+lambda6*( —.5e —1—.15%x13 " 2)+mub5—mub

2xx23—lambdad+.5e—1xlambdab+.970*lambdab+mu7—mus

1/5%xu3+.5e—1xlambda6

2xx14—lambdab+mu9—mul0O

2xx24—lambdab+mull—-mul?2

x11+.5e—1%x21—x12

—.5e—1*%x11+.970%xx21+.5e—1*%xul —.5e—1%xx11"3—x22

x12+.5e—1%xx22—x13

—.5e—1xx12+.970%x22+4+.5e—1%u2—.5e—1%xx12"3—x23

x13+.5e—1%xx23—x14

—.5e—1%x13+.970%xx23+.5e—1*u3 —.5e—1%x13"3—x24

mulx*(x12—5)

mu2x(—1.0%xx12-5)

mu3x* (x22—5)

mudx(—1.0%xx22—5)

mubx(x13—5)
(
(
(

© 00 N O U W N

N N N o e e e e e e e
N o= O © 00 g O Utk W NN = O

mub*(—1.0%x13—5)

mu7x*(x23—5)

mu8xk(—1.0%x23—5)

mu9x* (x14 —5)

mulOx(—1.0xx14—5)

mull*(x24—5)

mul2x(—1.0%xx24—5)

ul, u2, u3, lambdal, lambda2, lambda3, lambda4, lambdab, lambda6
, mul, mu2, mu3d, mu4, mud5, mu6, mu7, mu8, mu9, mulO0, mull,
mul2

300x12, x13, x14, x22, x23, x24

31|10

32/x11 =1 0 1 0 50

33)x21 =1 0 1 0 50

NN NN N NN
© 00 J O U= W

FiLE 1.4. Duffing 27 x 27 Paramotopy input file.

Duffing27 has an initial path count of 2729, tracking to 32 solutions, of which 27 are
nonsingular and finite, and 5 are singular and finite. Hence, the best file to choose for our

start for Step2 is nonsingular _solutions.
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FIGURE 12. Projections of the Duffing 27x27 system onto various combinations of variables. In
all four plots shown here, colors of points correspond to the distance to the parameter point
from the origin. The system generically has 27 nonsingular finite solutions at each point in
parameter space.

Plotting solutions based on a scan in the parameters (x11, x21) reveal a complicated
structure; see Figure 12. There appears to be a component near the origin for each combi-
nation of variables on which we project. The origin in parameter space is mapped to the

‘center’ of each component in variable space.
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3.3. CHEMICAL NETWORK EQUILIBRIA. As a final demonstration of the capabilities of
Paramotopy, we verify the results of the application of a theorem to dynamical systems in
[12]. The application of a modified ‘DetSign’ condition to a chemical reaction system, that is
to say the strict positiveness or negativeness of the determinant, allows the authors to prove
the uniqueness of a positive equilibrium in the domain of validity.

The following examples are numbered as they appear in [12].

3.3.1. Ezample 2.2. Example 2.2 from Craciun et al, originally from [13], given in equa-
tions (2.3) - (2.5) is:

. P1Co
C1 =
P2 +c3

— p3c1,

Co = P3C1 — P4aCa,

D5C3
Ps + C3

C3 = PaCy —

The claim is that for all parameter values in the unit cube, the dynamical system has a unique
equilibrium. Note that these are not strictly polynomials — they are more of a Laurent style
polynomial. We will turn them into polynomials, by setting the left hand side to be 0, and

clearing denominators.

0 = pico — (p2 + c3)psca
0 = p3c1 — paca,

0 = (ps + c3)pac2 — PsCs3 .
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3170

plxcO0 — (p2 + c3)x*p3x*cl
p3xcl—pdxc2

(p6 + c3)xpdxc2 — ph*c3
cl,c2,c3

1

network_monte

c0
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FiLe 1.5. Input file for Example 2.2, Craciun, Helton, Williams, for the random
sampling of parameter space.

For this chemical reaction network, Bertini tracks 4 initial paths total, to 2 finite nonsin-
gular solutions, with multiplicity 1, and 2 infinite nonsingular solutions. As an aside, for this
Step2 we will follow the finite_solutions file from Stepl since the nonsingular_solutions
file contains two infinite solutions, which cause path failures during Step2.

To test the claims of Craciun, Helton, and Williams, we sample the seven dimensional
parameter space 10,000 times randomly. Because Bertini finds all solutions, we perform a
post-run data sort to eliminate all equilibria not in the domain of validity. Sure enough,
each and every one of our random samples has exactly one equilibria in the unit cube.
Figure 13 shows a pair of scatter plots of the equilibria in variable space. One is the solution
set corresponding to the random sampling, and the other is generated by a 50x50 mesh in
parameters p2 and p6. In both the shown plots, the colors of the points correspond to the
value of (p6+c3).

3.3.2. Example 2.3. A similar claim is made regarding Example 2.3, which is a model for
“mitogen activated protein kinase (MAPK) cascades with inhibitory feedback”. The system

is originally from [14, 15, 16]. Equations (2.6) - (2.8) from [12] are:
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FiGure 13. Craciun, Helton, Williams, Example 2.2. Each parameter combination yields a
unique equilibrium in the unit cube. (a) Random sampling solution set. (b) Mesh solution set.
Coloring is determined by the value of (p6 + c3).
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Clearing denominators, we get,

0= —bici(er + (I —c1))(1 + kes) + (1 + ar)di(1 — 1),
0= —boca(es + (1 — ¢3)) + (c2 + az)da(1 — ¢3)eq
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FiLe 1.6. Input file for Example 2.3, Craciun, Helton, Williams, for the computer-
generated mesh.

The Bertini Stepl run tracks 27 paths to 9 finite nonsingular solutions, and 3 infinite

singular solutions each with multiplicity 6. Hence, each parameter point has 9 paths to

track.

We sample the parameter space 10,000 times in the strictly positive domain, and test the
claims given in the paper; namely, that each parameter value has exactly one equilibrium
value in the unit cube, ¢; € [0, 1]. Performing post-solve sorts, we verify the claim — there is
indeed a unique equilibrium in the unit cube. Figure 14 demonstrates both the equilibria for

the each parameter in the random sampling, as well as a 10x10x10 three-parameter unit-cube

mesh in d1, d2, d3.

3.3.3. Example 6.1. As a final demonstration of using Paramotopy to investigate claims

regarding equilibria of dynamical systems, we check the claim in Example 6.1 from Craciun



F1GURE 14. Chemical equilibria solution plots for Craciun Helton Williams Example 2.3. Colors
of points are determined by letting the RGB value be determined by normalized values of
(d1, 42, d3). Hence, the red colored points are heavy in d1, whereas green are heavy in d2, etc.

Helton Williams.

ca = kosa — kasoca — kaypopcacs + 2kcoace

¢g = ko — kp—ocB — kayp—prcacs — kpyc—qCBCo
¢o = kosc — kcsoce — kprosqcepce — kcsaaco

¢p = kop — kp_ocp + kaypspcacn

¢q = komq — kgoocq + kproqepAce

Bertini tracks 32 initial paths to 3 finite nonsingular solutions, and 20 infinite singular
solutions with multiplicity 1, and 3 infinite singular solutions with multiplicity three. A
random sampling of 1000 parameters values verified that the system does in fact have a
positive equilibrium for each parameter value. However, in contrast to a note by Craciun et
al, we found no parameter values with multiple positive equilibria. Perhaps those parameters

lie outside the unit cube.
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FiGURE 15. Solution Plot for Craciun, Helton, Williams Example 6.1. This five-variable, 13-
parameter system has a unique positive equilibrium for each parameter point. Here, we have

0.8

0.6

projected onto coordinates (a,b, c), with coloring coming from +/p? + 2.

Figure 15 shows a 100x100 two-parameter scan in kbctoq, kctoa. The solutions seem to

form a sheet in solution space. Coloration is determined by +/p? + 2.
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kzeroq
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0

.01 0 0.99
kctoa 0.01 0 0.99 0 100

kabtopxaxb + 2xkctoaxc
kabtopxaxb — kbctoqg*xbx*c
kbctogxbxc — kctoaxc
kabtop=xaxb

kbctogxbx*c

—

1

1
0 100

FiLe 1.7. Input file for Craciun, Helton, Williams example 6.1
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4. CONCLUSION

Paramotopy, the parallel wrapper around Bertini, has many uses and is proven in per-
formance. We have demonstrated the use of Paramotopy for investigating the number of
isolated equilibria in dynamical polynomial systems, counting the numbers of solutions to
systems depending on parameters, and examining the structure of solution sets.

We have achieved speedup of up to 80x over running a single worker with one master
node, exploiting shared memory for temporary files, and buffers for reading data upon gen-
eration. Equidistribution of tasks across a computer has been demonstrated as well, and
has been achieved for even moderately sized parameter samplings — and certainly for large
samplings.

Path failure re-solves can be run by the user, with automatic tolerance tightening, and
the ability to move around in parameter space with new Stepl runs before each re-solve
attempt.

The author has provided material for support of anyone who desires to use Paramotopy,
including a User’s Manual, and generic Matlab functions. The Matlab functions include code
for collection of data from solutions files, and display of projections of solution sets colored

in various ways, and numbers of solutions plotted against parameter values.
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Chapter 2

Single Molecule Detection through Intrinsic Localized Modes

The goal of the analysis presented here is to support an experimental team in performing
‘basic research’ to develop the technology for single molecule detectors. The hypothesis of
the detector is as follows. An array of nano-scale crystalline pillars [17], imaged via Fourier
holography [18], and vibrated via some arbitrary mechanism, could be used as a sensor. If
a suspected contaminant or material, which is known to attach to the pillar material, is
passed over the array while being driven, and does in fact attach to one or more pillars,
the exhibited wave form will shift. Furthermore, if the array acts as a system of coupled
nonlinear oscillators, and the parameters of the array are suitable, a phenomenon known as
Intrinsic Localized Mode (ILM) will form and pin to the attachment site. This ILM affects
the entire array. By monitoring the amplitude of vibration for a set of the pillars, molecule
detection is achieved with amplitude shift.

To excite the crystal array, various forcing methods have been suggested, and some are
more immediately realistic than others. Mechanical driving could be achieved by attaching
the base of an array to a piezo electric crystal, which would provide oscillatory energy at
a moderately controllable frequency. However, piezo devices tend to vibrate in a random
fashion, and devices operating in the megahertz regime are not all that common, so they
might not be the best choice.

Magnetic or electric forcing could be an alternative to piezo driving. If the oscillators
were able to be permanently magnetized, then a varying electromagnetic field could be used.
Fluctuating fields of the desired frequency range could easily be generated, and the direction
of forcing more tightly controlled. The difficulty with this is whether a permanent field could
be established on the oscillators; fundamentally this is a materials problem, and it appears

that a solution might be realized as in [19].
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Localized modes appear when oscillator arrays have defects, as seen in early research
and noted in Section 1. To exploit this property, consider this: ILMs on an array are a
global phenomenon - they act to concentrate the energy of the full array at a particular
location. This is why they are called ‘localized’ — they localize the energy, rather than
leaving it distributed. Hence, if a molecule or particle were to attach to an element in an
array, creating a defect at that element, the global vibrational properties of the entire array
will change. Additionally, this means that we can monitor the global properties of the array
for change, rather than focusing solely on individual pillars.

One of the basic properties of oscillators is that when the scale of the vibrating object is
shrunk, the frequency goes up. Miniaturization of arrays to the level which would permit sin-
gle molecule detection will therefore necessitate the development of new imaging techniques.
Traditional lasing using visible light frequencies do not shoot packets of photons with a short
enough burst — the ‘flash’ of the photograph is too long. Hence, this study employs the NSF
Engineering Research Center for Extreme Ultraviolet (EUV) Science and Technology at Col-
orado State University. The particular laser in use is as reported in [20, 21]. The 46.9 nm
wavelength corresponds to a frequency of 6.4 x 10*® Hz, and a cycle time of 1.5644 x 10716
seconds. The spatial resolution for visualization of this laser system as of 2005 was 120-150
nm [21], and operates by shooting the laser over the object, through a zone plate, and onto
a CCD. The EUV laser can also be used to pattern materials such as PMMA plastic, down
to a resolution of about A/2 = 28 nm [22].

Previous studies employing micromechanical cantilevers for use in sensing have monitored
frequency shift upon attachment of particles or molecules [23]. In contrast, we propose to
use amplitude modulation of a 1D array of bidirectional oscillators as an ILM single molecule
detection method; this is practically a consequence of the EUV Holography visualization

scheme.
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1. BACKGROUND

A physical or electronic structure subjected to periodic or quasi-periodic forcing tends to
vibrate with one or several pronounced frequencies; this has been well known for centuries,
and these are the resonant frequencies. As technology has become more refined, we have
been able to develop systems of oscillators, coupled or uncoupled, damped or undamped,
linear or nonlinear, with various forcing schemes. With these advancements, the early model
for oscillation — the simple harmonic oscillator — has long since ceased to be sufficient for
analysis of more complicated systems.

Various special or interesting waveforms emerge in different types of oscillating media.
Strings, wires and the like form standing, traveling, and transverse waves; continuous bulk
media such as water or other liquids can form waves called ‘solitons” which propagate with-
out the typical additive interference properties; and crystals exhibit behaviour described as
‘phonons’. The waveform with which we are concerned is called Intrinsic Localized Mode

(ILM), and is characterized by:

(1) Temporal periodicity,

(2) Spatial localization of energy.

The existence of ILMs has been demonstrated in many coupled systems of oscillators, but
were first discovered in anharmonic pure crystals, as reported in the seminal papers [24, 25].
Since their initial discovery, ILMs have been found in a wide variety of physical and simulated
structures, having a variety of nonlinearities; e.g linear oscillator lattices with cubic or quartic
terms in the Hamiltonian [26]. Many different forms of ILM have been developed and
investigated, such as ‘twisted un/staggered modes’ [27] and ‘bright compact breathers’ [28].
Furthermore, there has been substantial interest in the theoretical analysis and practical
applications of these structures, both at the microscopic and macroscopic scales.

Across all the following cited works, two themes emerge:
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e Nonlinearity,

e Discreteness.

It is these two properties which seem to allow the emergence of a sort of wave form which is
called a localized mode.

The arrays used to investigate ILMs have included:

e Micromechanical coupled oscillator arrays [29, 30, 31, 32, 33, 34,
e Biaxial antiferromagnets [35],

e 2D coupled oscillator arrays [36],

e Coupled arrays of ring oscillators [37],

e Both simulated [29, 30, 36] and experimental [33, 34, 35] investigations.

By far the most common apparatus for the study of ILM has been the micromechanical
cantilever array [29, 30, 31, 32, 33, 34]. Topics of study have included pinning and movement,
manipulation and control by means such as varying nonlinearity, lifetime of ILMs, and
frequency characterization. Many studies use the beam approximation of a cantilever array;
[38] describes the use of molecular dynamics to extend the investigation of ILM from the 1D
lattices common to the field, to 2D and 3D lattices of oscillators.

One-dimensional oscillator arrays made from a few hundred silicon nitride (SiNy) crystals
are the subject of the experiments in [29, 30]. These crystals are imaged by a CCD camera,
using a HeNe laser; higher amplitude of vibration is indicated by darker pixels in an image.
The fundamental frequency of the pillars at fo = 147.0 kHz is within the range which permits
use of typical lasers and visible light for imaging. This is in contrast to the vibrational
frequencies typical of the arrays under our study later, which are more in the range of tens
of megahertz, and necessitate such technologies as the Extreme Ultra Violet (EUV) laser at
Colorado State University.

In the microscopic world, [35] details an automatic ILM detection scheme for low tem-

perature microwave driving of biaxial antiferromagnets made from (CoHs;NH3)o,CuCly. The
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ILMs were detected using a ‘nonlinear energy magnetometer,” and were spin waves rather
than typical vibrations.

Yet another style of array used to generate ILMs exploits geometry of ring structures to
create a nonlinearity from linear elastic springs [37], generating two particular ILM forms,
called ‘rotobreathers’ and ’kinks’. One of the proposed advantages of the ring setup is that
it would be easily realized in macroscopic experiments.

In general, the above works have concentrated on the analysis of the oscillations being
described by a single variable that is perhaps allowed to be complex. In the particular case of
experimental investigation of ILMs in cantilever arrays, the one-dimensionality of vibrations
was enforced by designing the apparatus with the cantilever thickness in the direction of

vibration to be much smaller than in the other direction.

2. MONODIRECTIONAL SYSTEM

Let u,, be the deflection of the n-th crystal pillar from its neutral position, which is taken

to be u, = 0. Then the Hamiltonian of the system is

Hmono = ’Cmono + Pmono (4)
1 .

]Cmono - 5 ; ui (5)
1 1

Pmono = 5 ; (alui + g (un - un—l)z) + 4_1 ; (61ui + BZ (un - un—1)4) (6)

Therefore, the typical equation describing the evolution of one-direction deflection in a one-

dimensional array is given by,

un = — 01Uy — 042((un - un—l) + (un - un—l—l))



Here, aq, as, b1, B are constants that are determined by the material properties of the pillars,
as well as the geometry.
This system has been investigated previously and fairly extensively in the above cited

works.
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3. FuLL BIDIRECTIONAL SYSTEM

Previous work in ILM analysis has used systems with purely monodirectional oscillation.
The topic of this section is the expansion of this previous model, namely equations (4-7), to
account for oscillators with two directions of deflection. More specifically, we will numerically
investigate the appearance and durability of ILMs in oscillator arrays with up to two degrees
of vibrational freedom, having nonlinear equations of motion derived from a Hamiltonian
with quadratic and quartic terms.

Modern application of ILMs to areas such as sensing require miniaturization of the pillar
arrays to sub-micron levels [39], and cantilever arrays of this size are fabricated using tech-
niques like nanoheteropitaxy [40]. This typically produces pillars with similar transversal
sizes, which thus do not possess a preferred direction for vibration. Driving these cantilever
arrays at their resonant frequencies typically excites vibration modes with deflection in both
directions.

The two-dimensional motion of the pillars is similar to having two coupled oscillator
arrays, or an array of oscillators with an internal degree of freedom. While there has been
considerable amount of work in this area already, see for example [41, 42, 43|, the difference
between this work and previous studies is in the structure of elastic coupling between two
directions of oscillation; the goal here is to analyze the detectability of ILMs in the case
when oscillations in two orthogonal directions are allowed.

An illustration of the setup for the problem of interest is shown on Figure 16. For
simplicity, we assume that each crystalline pillar in the array has square cross-section, with
the flat sides being parallel to the axis of the crystal, and the material is such that crystalline
axes are parallel to the pillars’ sides and perpendicular to each other. These cantilever arrays,
when driven by an external vibration source, function as coupled oscillators. Ultimately, it
is the material and design properties that determine the Hamiltonian A and hence the

governing differential equations, which are a generalization of the nonlinear equations for
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Deflections measured
from neutral position

Defected Pillar

FI1GURE 16. An illustration of one dimensional cantilever array that is able to undergo vibrations
in two directions. Also drawn is a defected pillar that is used to pin the ILM appearing from
random initial condition to that pillar.

pillar vibrations derived earlier. In order to test ILM formation and emulate pinning to
molecule attachment to the array, we introduce a small defect in that pillar’s properties, and

query whether an ILM is attractive to the defect.

3.1. EQUATIONS OF MOTION. The equations of motion for the pillars are formulated
via classical mechanics as follows. In order to describe the two-dimensional deflection of the
pillars, we introduce the two components of pillar deflection as u,, = (w4, un,). Since our
bidirectional model is a direct expansion of the monodirectional, we write new kinetic and

potential energies IC, P, which are analogous. The total potential energy is,
7) - 52 + 84. (8)

Suppose for the given deflection, the linear part of deformation energy is given by the qua-
dratic form & = %qugun. We choose a parameterization of the symmetric matrix ()2 with

three parameters oy ,, a1, and ag so as to make & be:

£ (9)

1
52 - 5 Z al,xui,x—i_al,yui,y"’aﬁ ((Un,:r - unfl,x)2 + (Umy — un,17y)2)—|—oé3 (un,x_un,y)

n
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For the purposes of simplified analysis, we only consider o, = o1, = ;. Notice that the
eigenvalues of the Hessian of this matrix are strictly positive and distinct for a; > 0, so there
are no degeneracies or unphysical values of parameters in the system.

The fourth order term in energy is described by a fourth order tensor; i.e.,
Ey=Q4-u,-u,-uy,-u,.

Even when proper symmetries are included, the number of non-zero components of @) lead
to an exceedingly large number of parameters. It is possible to estimate some of these
components analytically if information about the orientation of crystalline axes, pillar shape
and nonlinear elasticity is known. This will be done in further studies; for the purpose of

this work, we shall consider a simpler particular case of the quartic energy as

1
€1=7 > B (up, +uny,) + B2 (Un-re = tnz) + (tn-1y — tny))* + B3 (tna — tny)" . (10)

The kinetic energy remains essentially the same as the monodirectional system,

1 .,
K:§;un. (11)

First, we write the Lagrangian L,
L=K-P. (12)

Then we determine the generalized momenta, and perform the Legendre Transform.

=> u,. (13)
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H=u,p, — L, (14)

—K+P. (15)

Hamilton’s Equations (16) say that:

(16)

In our particular case, this means,

on
ou’
OH

S ou’

(17)

(18)

u=

Equation (18) is conservative, in that #H is conserved, so the dynamics are constrained
to level sets of the Hamiltonian. Indeed, most models of ILM-oscillator mechanics in the
literature are conservative, in that total energy is conserved. There is no dissipation, and no
driving force. However, because the experimental setup for this study will occur in medium
strength vacuum containing the array, and will be actively driven by some yet-undetermined
mechanism, we must consider a nonconservative model. In this vein, we supplement two
terms to the equations of motion: dissipation and forcing. Dissipation is given by yu, where
v is the coefficient of dissipation; forcing is given by o(t), and is represented in present

simulations by periodic sinusoidal forcing. Hence, we have for our equations of motion,

i, = — —ya, +o(t). (19)
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Note that the dissipative model can recover the conservative model, simply by setting v = 0,

o = 0. The corresponding equations of motion for two directions are

un,m = — 01 Ung — a2((un,x - un—l,x) + (un,x - un—l—l,r))
— ag(un,x — Un,y) - Bs(un,x - un,y>3

— Vg 4 0(t) (20)

Upy = — O1,ylny — OQ((“M/ - un—l,y) + (un,y - “n+1,y))

- ﬁlui,y - ﬁQ((un,y - unfl,y)3 + (un,y - un+1,y)3)

— Q3 (un,y - un,x) - 53(un,y - un,x>3

— Yy + 0y (1) - (21)

This functional form of directional coupling allows a comprehensive study of ILM formation
for any set of parameters. In addition, we have added the dissipation in the pillars, described
by the term ~u,, and the forcing term o. Table 1 summarizes the meaning of each of the
parameters appearing in the equations of motion.

For symmetry reasons, in the case considered here there is no cubic term in the energy.
However, note that a cubic term may appear for particular arrangements of the crystal axes
and pillar facets, in the geometries breaking the reflection symmetry of the system. The
appearance and role of a cubic term in energy, leading to quadratic terms in the equations,
is very interesting. However, this will lead to the investigation of a very large number of

parameters, and will have to be addressed in further studies.
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TABLE 1. Parameter Interpretation for Bidirectional Model

| Parameter Interpretation (Equations of Motion) |

o Linear restoration force

Q9 Linear nearest-neighbor coupling
Qs Linear directional coupling

ot Cubic restoration force

5o Cubic nearest-neighbor coupling
B3 Cubic directional coupling

0 Damping Coefficient

o Driving function
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3.2. SIMULATION. The overarching goal is to understand bidirectional vibrations in ar-
rays of coupled oscillators. There are several prominent reasons for this. Foremost, the
arrays are manufactured using techniques that will necessarily yield pillars with very similar
side widths. This in contrast to the macromechanical and micromechanical arrays mentioned
above [29, 30, 31, 32, 33, 34], where the monodirectional nature of oscillations is enforced by
making one width of pillars significantly larger than the other. Secondly, the visualization
using EUV requires out-of-plane oscillation; if the vibration was monodirectional the light
field would be undisturbed. We use (20,21) to realistically simulate experimental conditions.

In order that the manufactured arrays display favorable characteristics for ILM de-
tectability in the EUV holography system, we need the ILMs to form reliably from random
initial conditions with distributed forcing. Not only this, but we need the ILM to be of high
enough amplitude so as to stand out against a background of oscillating pillars; that is, it
needs to be detectable. Since there are several candidates for realizing a forcing method,
namely the noisy piezo method and the materials-problematic electronic forcing, we need to
be able to simulate a wide variety of parameters. Previous studies have used conservative
models to describe ILMs. Typically, artificially prepared initial conditions propagate across
the array. In our case, dissipation will greatly affect the dynamics of the system, and requires
the array to be driven. Hence, interaction between the terms vu and ¢ will be important for
prediction of the behavior of the experimental setup.

TABLE 2. Simulation Parameter Values

Parameter Value
aq 0.0001 ...1
Q3 0.0001 ...1

ot 0.01
5o 0.0001
B3 0, 0.001
¥ 0.001
lo| 0.01...0.2
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