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ABSTRACT OF THESIS

INSIGHTS INTO THE ORIGINS OF FUNCTIONAL MITRAL REGURGITATION 

AND DEVELOPMENT OF A CORRECTIVE EPICARDIAL DEVICE

Functional mitral regurgitation (FMR) is a frequent complication of left ventricular 

remodeling and carries a significant adverse prognosis. While significant progress has 

recently  been made in the understanding of the pathophysiology  and treatment of this 

disease, failure to obtain acceptable outcomes is driving researchers and clinicians to 

investigate alternative approaches to the consensual treatments. A thorough 

understanding of the normal anatomy and physiology of the mitral valve is warranted to 

underline the pathophysiological mechanisms of left ventricular remodeling leading to 

functional mitral regurgitation. The accumulated experience with traditional techniques 

and the experimentation of emerging surgical procedures allowed us to identify  strengths 

and points to be improved for each therapeutical approach. Based on this review, we 

defined the specifications of a new device designed to correct FMR.

In the first study  we tried to develop an acute model of myocardial ischemia to 

induce mitral valve regurgitation in sheep. In six sheep, acute myocardial infarction was 

induced by ligation of the second and third obtuse marginal branches of the left 

circumflex coronary artery, defining an ischemic (IZ) and non ischemic (NZ) zone. Aortic 

and left ventricular pressures, left ventricular volumes, ECG, and segmental length of the 

IZ and NZ were recorded.  Aortic blood flow was measured with an aortic flow probe in 

three sheep. Maximum elastance, dP/dt, tau, left ventricular and myocardial stiffness, 
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total mechanical energy (PVA), external work (Ew), contractile efficiency  and the global 

and regional preload recruitable stroke work (PRSW and rPRSWX) were calculated. 

Myocardial perfusion was calculated with injection of microspheres. Mitral regurgitant 

volume was calculated as the difference between the aortic and the left ventricular 

stroke volume. The data was compared between baseline, after five to ten minutes and 

one hour of ischemia. Myocardial blood flow decreased from 1.53 ± 0.81 mL/g/min to 

0.37 ± 0.37 mL/g/min (p=0.022) in the IZ. Mitral regurgitation was not observed at any 

time point. Ischemia reduced PRSW from 60.7 ± 9.1 mmHg at baseline to 42.3 ± 4.3 

mmHg and t+60 min (p=0.002), and rPRSWIZ from 96.2 ± 33.9 mmHg.L.m-1 at baseline 

to 59.2 ± 28.6 mmHg.L.m-1 at t+5-10 min (p=0.026) and 63.7 ± 25.7 mmHg.L.m-1 at t+60 

min (p=0.032). PVA decreased from 6260 ± 1387 mmHg.L at baseline to 4149 ± 1299 

mmHg.L at t+5-10 min (p=0.019) and 4368 ± 1632 mmHg.L at t+60 min (p<0.001). Ew 

decreased from 3877 ± 1287 mmHg.L at baseline to 2334 ± 872 mmHg.L at t+5-10 min 

(p=0.037) and 2507 ±  883 mmHg.L (p=0.013) at t+60 min. Myocardial stiffness of the IZ 

decreased from 2.63 ± 1.23 mm-1 at baseline to 0.94 ± 0.57 mm-1 at t+5-10 min 

(p=0.014) before an increase to 3.56 ± 0.57 mm-1 at t + 60 min (p=0.033). In conclusion, 

acute occlusion of OM2 and OM3 did not induce acute functional mitral valve 

regurgitation. It did however, induce early  systolic and diastolic regional dysfunction. The 

non-ischemic myocardium did not compensate for the left ventricular remodeling.

In the second study, we used acute aortic banding to induce mitral valve 

regurgitation. This was done to assess the effects of an epicardial device designed to 

reposition the papillary  muscles on FMR, considering that left ventricular remodeling with 

tethering of the papillary  muscle is the most important factor leading to FMR. In seven 

sheep, aortic, left ventricular and atrial pressures, left ventricular volumes, aortic blood 

flow, mitral annulus diameter and ECG were recorded. Acute FMR was induced by aortic 
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banding. Left ventricular end diastolic and end systolic volume, stroke volume, the 

constant of passive left ventricular stiffness and Tau were measured. Mitral regurgitant 

flow was calculated from the difference between aortic stroke volume and left ventricular 

stroke volume. Application of an epicardial device reduced FMR from 14.4 ± 5.4 to 7.7 ± 

5.2 mL (p=0.001) without decreasing mitral annulus diameter in diastole (p=0.075) and 

systole (p=0.080). Left ventricular end diastolic volume decreased from 241.5 ± 52.5 to 

227.6 ± 46.5 mL (p=0.044). Passive left ventricular stiffness increased from 0.92 ± 0.5 to 

1.18 ± 0.59 mL-1 (p=0.044). Other parameters of diastolic dysfunction were not affected 

by  the device. In conclusion, acute FMR was decreased by  the application of an 

epicardial device. Diastolic function was not adversely  affected by  the device. Most likely, 

correction of FMR by  the epicardial device was achieved by  repositioning of the papillary 

muscles. The epicardial device was not in contact with blood and did not require 

cardiopulmonary bypass.

Baptiste Gleyzolle
Clinical Sciences

Colorado State University
Fort Collins, CO 80523

Summer 2010
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Chapter I

Introduction

Cardiovascular diseases has become over the last 50 years the number one 

cause of death and hospitalization in the United States as well as other developed 

countries. The population pays a significant price for these pathologic conditions, in part 

from the mortality  but also due to the cost associated with treatment and 

socioeconomics.1 Among cardiopathies, coronary artery  disease is from far the most 

common and is often associated with functional mitral regurgitation (FMR).1-5 Secondary 

to left ventricular remodeling, FMR is a challenge for cardiovascular surgeons. Indeed, a 

poor long term prognosis and increased morbidity  is associated with this condition 

despite the advances made in cardiac surgery.3, 6

After an anatomical review of the mitral apparatus focusing on the aspects 

playing a crucial role in the genesis of FMR, the second chapter will further develop the 

pathophysiologic events leading to FMR. The third chapter will review the current 

available therapeutic options, their clinical implications and the future directions to be 

followed in hopes of obtaining more successful clinical outcomes.
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Chapter II

Natural history of the mitral valve

The understanding of the normal mitral valve physiology  relies on the knowledge 

of its anatomy and spacial organization.

1. Using the ovine model as a comparative study

The ovine model is recognized as a valuable tool for studying mitral valve 

function, particularly  ischemic heart diseases. Its mitral physiology is thought to be 

similar to the human being, however, some slight anatomical singularities distinguish 

sheep from human hearts. In the sheep, the mitral leaflets attach to atrial muscle rather 

than to the ventricle, the relative length of free papillary  muscle is greater7 and the 

coronary anatomy  is highly  reproducible between individuals,8, 9 as compared to the 

human.

Those specificities do not seem to affect the pathophysiology  of mitral valve 

diseases, and most of the structure and function of the mitral apparatus is highly 

comparable between sheep and humans. Hence, from now in this study, no differences 

will be asumed between human and the ovine model, unless specified.

2. Anatomical considerations

i. Structural components

The valvular complex comprises the annulus, the valve leaflets and the tensor 

apparatus formed by the cordae and the papillary muscles. 
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a.  Annulus

The annulus is the fibrous like structure supporting the leaflets and demarcating 

the orifice between the left atrium and the left ventricle. This orifice is D shaped with the 

straight border in fibrous continuity  with the aortic valve. Considering this asymmetry, 

two dimensions of the annulus are described: the septo-lateral axis is perpendicular to 

the valves and represents the short dimension, as opposed to the anterio-posterior axis. 

The fibrous tissue is organized in discontinued sheet like fibrous extensions of the 

aortoventricular membrane that expends around the subvalvular region. An extensive 

variability  of the fibrous organization of the annulus has been described,10 with a lack of 

continuity  observed in the lateral side of the annulus. Consequently, this weakened side 

tends to dilate first secondary to various cardiomyopathies.10

In vivo, the annulus is not entirely  in the same plane, and is echographically 

described as «saddle shaped», forming a hyperbolic paraboloid with the lowest points at 

the level of the leaflet commissures (Figure 2.1).11, 12 This curvature is exacerbated 

during systole, reducing the stress of the mitral valve components.13

Figure 2.1: Schematic representation of the mitral annulus shape at end-diastole (A) 
and end-systole (B). ac: anterior commissure, pc: posterior commissure, al: aortic 
commissure hinge, pl: mural commissure hinge. Gorman III et al. 1996
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b.  Valve leaflets

Two notably  different leaflets compose the mitral valve. The aortic or septal 

leaflet, smooth and semicircular, occupy approximately  one third of the circumference of 

the annulus and are in fibrous continuity  with the aortic valve. The mural leaflet, long and 

narrow, occupies the remainder of the circumference and is usually  partially  divided in 

three scallops by two clefts.

The leaflets have a fibrous skeleton (fibrosa) covered on their atrial side by  a 

myxomatous connective tissue (spongiosa). Atrial and ventricular endocardium 

respectively  lie on each side of the leaflets. The total mitral leaflet area is 1.5 to 2 times 

the annular area.14 The difference between the leaflet and the annular area when the 

valve is closed is to be found on the coaptation surface, i.e. The surface of leaflet 

apposition. This apparent excess of leaflet surface is defined as the functional reserve of 

the mitral valve and allows a tight coaptation under a broad range of hemodynamic 

conditions.

When seen in transection, two zones can be distinguished in the aortic leaflet 

and three in the mural leaflet. Near the free edges of both leaflets, the atrial surface is 

irregular with nodular thickening. This is the thickest part of both valves, the tendinous 

cords attaching to this rough zone. Broadest at the lowest portions of the leaflets, this 

zone tends to taper towards the commissures.10, 14-16 Distal to this area in regard to the 

free edges, the leaflets possess a clear zone devoid of cordal attachments. The basal 

zone is only  found on the ventricular side of the mural leaflet and corresponds to the 

area of attachment of the basal cords.10, 14-16
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c.  Papillary muscles and cordae

Two groups of papillary  muscles are classically  described in the left ventricle. The 

posteromedial group lies near the posterior attachment of the left ventricular free wall 

and the interventricular septum, while the anterolateral group lies on the anterolateral  

left ventricular free wall.

As functional units, the papillary  muscles include a portion of the left ventricular 

wall, usually  the apical and middle thirds of its width.15 While the spacial organization of 

the numerous muscular bundles forming the base of the papillary  muscles is highly 

variable, the distal tips supporting the cordae form muscular columns with precise 

spacial positioning which plays a critical role in the distribution of forces and proper 

closure of the mitral valve.14, 17, 18

The tendinous cords represent a complex rope like structure composed of highly 

bound collagen linking the ventricular free edges of the leaflets to the papillary  muscles. 

The basal cords attach the leaflets directly  to the posteroinferior left ventricular wall, 

while the cords arising from the apices of the papillary  muscle attach to both the aortic 

and lateral leaflets.14, 15 Several classifications have been proposed in relation to the 

anatomical localization, structure and function of the cords14, 15 .

The first order cords (commissural or marginal) insert near the edges of the 

leaflets. They are numerous, thin, and form a meshwork close to their attachment to the 

leaflets (Figure 2.2). Second order cords insert on the rough zone of the leaflets. The 

cords in the rough zone typically  originate as a single cords from the tip of the papillary 

muscles and split into three cords. Among the cords of the septal leaflet, two are the 

largest and the strongest. They  are named strut cords and arise from both tips of the 

papillary muscles. They  are though to support the maximum force. Basal cords originate 
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directly  from the left ventricular wall or the trabecular region of the posterior papillary 

muscle and are linked to the atrial myocardium (basal portion) of the mural leaflet.14-16

ii. Vasculature of the mitral valvular complex

 Coronary  arteries in the subepicardial fatty tissue give birth to finer perpendicular 

arborizations (class A) perfusing the middle and outer third of the myocardium19 (figure 

2.3). The larger arborizations (class B) divide less frequently  and terminate as an 

anastomotic meshwork perfusing the inner third of the myocardium, the endocardium 

and the papillary  muscles. Each papillary  muscle is vascularized with several of these 

branches.14, 19 The trabeculae bridging the papillary muscles to the left ventricle often 

carry those segmental blood vessels.19

Most of the time, the anterior papillary  muscle is perfused by  both the first obtuse 

marginal branch of the left circumflex coronary artery  and the first diagonal branch of the 

Figure 2.2: Tendinous cords of the mitral valve. Anatomical preparation showing the 
distribution of the cordal support of the aortic leaflet (AoL) and mural leaflet (ML). 
Muresian 2009
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left anterior descending  artery.20 In the human being, the vascularization of the 

inferoposterior left ventricular wall and the posterior papillary muscle is variable. In the 

right dominant system, this zone is perfused mostly by  the distal right circumflex 

coronary artery  and in some cases the third obtuse marginal branch of the left circumflex 

coronary artery.14, 19, 20 In the left dominant system however, the posterior papillary 

muscle and the inferoposterior region of the left ventricular wall is irrigated by the second 

and third obtuse marginal branch of the left circumflex coronary artery.14, 19, 20

In the sheep, the coronary vascularization is comparable to a left dominant 

system. The coronary pattern is very constant between individuals.8

3. Mitral valve function during the cardiac cycle

The normal closure starts in early  systole with a sphincteric mechanism of the 

annulus elevating the aortic leaflet towards the mural one.21 Left ventricular contraction 

subsequently  increases the pressure gradient between the ventricle and the atrium, 

eventually  bringing the leaflets towards the plane of the annulus according to the 

coapting force.18 An adequate inter-scallop coaptation appears to be of equal importance 

Figure 2.3: Schematic representation of the blood supply  of the normal papillary 
muscle. Estes et al. 1966
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to the inter-leaflet coaptation for the valve competence.22 During peak systolic pressure, 

most of the cordae are aligned in the same plane, which is the plane of the coaptation 

surface, roughly  in the atrioventricular axis.18, 23 The increasing stress is progressively 

supported by  a growing number of increasingly  thick chords that can share the stress 

between them according to their thickness (Figure 2.4).23

The rough zone acts in functional continuity with the cordea, distributing equally 

the amount of tethering force on the leaflets.18, 23 Hence, the leaflets normally  coapt by 

apposition of the rough zones in a plane apical to the annulus, the cords and papillary 

muscles defining a tenting area and a tenting volume. The spatial positioning of the 

papillary muscles plays a critical role in the coaptation of the valve leaflets since they 

support the majority  of the cordae, and are responsible for the adequate distribution of 

the tethering forces.18 During the cardiac cycle, the papillary  muscle tips keep a constant 

distance relative to the annulus.21 It is now recognized that the papillary  muscles function 

Figure 2.4: Schematic representation of the mitral valve during systole. During the 
systolic peak under maximum stress, all the chordea are in the same plane. Nazari et 
al. 2000
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as a separate unit from the left ventricle. They act as shock absorbers to compensate for 

the changes in left ventricular geometry, maintaining a constant tip to annulus length.24

Appropriate function of the mitral valve is accomplished by  the fine organization 

and function of all its structural components. Any  pathology  leading to the modification of 

one or several of those parameters can induce dramatic dysfunction of the mitral valve.
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Chapter III

Pathophysiology of functional mitral valve 

regurgitation

Primary mitral regurgitation is a condition in which pathology of the mitral 

apparatus has caused the mitral valve to leak. In contrast, functional mitral regurgitation 

is induced by pathology  of the left ventricle causing an otherwise normal mitral valve to 

be incompetent.

1. Etiologies of FMR

By definition, FMR is seen when the mitral valvular complex is modified enough 

to perturb the forces leading to the natural function of the leaflets. This condition 

happens secondary  to left ventricular remodeling: enlargement of the left ventricle with 

tethering of the cordea and augmentation of the interpapillary  distance, annular 

dilatation, ventricular dysfunction and asynchrony  of the papillary  muscles contractility. 

Classically, FMR is characterized as ischemic or non-ischemic. With non-ischemic 

causes of FMR, the left ventricular dysfunction is global. Idiopathic dilated 

cardiomyopathy  or dilated cardiomyopathy  secondary  to aortic stenosis are the most 

common causes of non-ischemic FMR. In contrast, left ventricular infarction due to 

coronary disease causes regional wall disfunction and may lead to ischemic FMR if the 

left ventricular dilatation is severe enough.
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2. Effect of left ventricular remodeling and papillary muscle tethering

Otsuji et al.25 showed that alteration of the tethering forces on the mitral valve 

induces MR rather than contractile dysfunction. They  pharmacologically  induced global 

left ventricular dysfunction limiting left ventricular dilatation with a pericardial 

restraint.Only  trace MR was observed, while FMR developed immediately  after removal 

of the constraint, illustrating that left ventricular dilatation was a prerequisite to FMR.25

They  found that tethering length from the papillary  tips to the anterior annulus was the 

only independent predictor of MR.25

In addition, isolated papillary  muscle dysfunction without left ventricular dilatation 

does not induce MR while a preserved papillary  muscle function with left ventricular 

remodeling does not prevent MR.26 In this condition, ischemic MR can paradoxically be 

reduced inducing papillary muscle ischemia.27 Papillary  muscle dysfunction decreased 

Figure 3.1: How papillary  muscle (PM) dysfunction can decrease mitral regurgitation 
(MR). Left: schematic view of the left ventricle and mitral valve. LV: left ventricle, LA: 
left atrium, Ao: aorta. Center: inferobasal infarction with PM still functioning causing 
MR with leaflet tethering and tenting. Right: extension of ischemia to papillary  muscle 
causes its dysfunction and paradoxical decrease in MR via decreased tethering. 
Messas et al. 2001
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leaflet tethering due to their elongation, improving coaptation of the mitral valve (figure 

3.1). In contrast, chronic injection of ethanol in papillary muscles causes scarring and 

retraction induced MR.28

Those observations emphasize the importance of papillary  muscle displacement 

and tethering forces on the genesis of mitral regurgitation.

Although simultaneous displacement of both papillary  muscles can lead to MR, 

the posterolateral papillary  muscle seem to play  a more important role for the apparition 

of MR. Hence, Kumanohoso et al.5 studied the incidence of MR in a population of 

patients with no prior myocardial infarction. The higher incidence and greater severity  of 

MR was observed in patients with inferior basal infarction. This observation was 

correlated with more severe geometric changes involving the posterolateral papillary 

muscle.5 This observation was also described by Timek et al.29 who investigated different 

locations of left ventricular ischemia. MR was induced by proximal left circumflex 

coronary artery  occlusion but not during left anterior descending or posterior left 

circumflex coronary  artery  occlusion. Posterolateral ischemia increased tethering of the 

papillary muscles, delayed valve closure in early systole and caused dilatation of the 

annulus.29 

3. Altered annulus and leaflet function during MR

i. Annulus changes contributing to MR genesis

a. Loss of contractility

During FMR the dynamic behavior of the annulus is impaired.30 While a normal 

annulus exacerbates its saddle shape during systole, this sphincteric mechanism is 

decreased during ischemia. The systolic increase in average change in annular height to 

commissural width ratio (AHCWR) is then lost during ischemic mitral regurgitation.30 As 
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we saw above, the saddle shape of the annulus during systole is crucial to minimize the 

stress of the leaflets.13 Loss of saddle shape is a factor contributing to leaflet tenting and 

tethering during FMR. This functional disarrangement are associated in addition with 

some degree of annular dilatation.

b. Annular dilatation

In acute ischemic mitral regurgitation or in chronic FMR an increase in septo-

lateral dimension of the annulus is often implicated in leaflet malcoaptation.31, 32 More 

specifically, the right lateral annulus moves laterally, respectively  away  from the anterior 

papillary muscle.22 This asymmetrical dilatation is the origin of interscallop 

malcoaptation, thought to be important in the genesis of ischemic MR.22 Mitral 

regurgitation however, is not associated with the commissure to commissure dimension 

of the annulus.33 In dilated cardiomyopathy, for virtually  the same grade of MR, the 

annulus is more dilated with a symmetrical deformation compared to an ischemic 

disease.12 Park et al.34 correlated the severity  of MR to the mitral annular area in a 

recent study  including a population of patients with advanced dilated cardiomyopathy. 

This observation is controversial since some authors describe that isolated increase in 

annulus diameter without increase in tethering length is not associated with MR.35, 36

Hence, annulus changes alone do not create MR but as part of the unifying 

principle of mitral valve function, remodeling of the annulus plays a direct role in leaflet 

geometry and motion, impaired during FMR.

ii. Leaflets coaptation defines mitral competence

a. Effects of the left ventricular remodeling on the leaflets 

geometry

As described above, the leaflet motion and stabilization is intimately  associated 

with the spacial organization of the cordae and papillary  muscles. Glasson et al.31 
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studied lealfet motion and mitral valve geometry  during acute anterobasal left ventricular 

ischemia. They  observed a posterolateral displacement of the posterior papillary  muscle 

during end-diastole as well as a posterior mitral annulus enlargement. Interestingly, 

leaflet malcoaptation was present in early  systole but the valve became competent 

during mid-systole. They  termed this abnormal motion «loitering».31 They  noted however 

that the coaptation plane remained similar to that of the control group. Using a 

theoretical model of the tensor apparatus during systolic stress, Nazari et al.23 

demonstrated that dilatation of the annulus and leaflet tethering disarranged the chordal 

apparatus radially: the coaptation plane surface is deviated relatively to the second order 

chordae, causing the chordae closer to the free margin to be overloaded in early  systole.

23 At peak systolic stress, the mitral leaflets become tented as maximum load is applied 

on the second order cords.12, 37 This tenting volume has been correlated with the degree 

of MR,37 and is now considered a reliable index for the quantification of subvalvular 

remodeling.38

b. Insights into the dynamic lesion of mitral leaflets during FMR

This study  hence introduces the idea of the dynamic balance of the forces 

involved in mitral function and the impact of geometrical disarrangement. Nielsen et al.18 

studied in vitro the mitral coaptation geometry  isolating the chordal force components 

(Figure 3.2). 

Mitral valve competence is guaranteed by  the force equilibrium resulting in the 

chordal tethering force component FT and the chordal coapting force component FC. 

While FT is determined by  the spacial relationship of the papillary  muscles, FC is 

determined by  the forces applied by  the transmitral pressure difference acting on the 

leaflet surface. In normal conditions, each force component of the cordae is uniaxially 

parallel and opposed resulting in a null balance equilibrium.18, 39 Posterolateral 
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displacement of the papillary muscles increased the tethering force significantly,18, 40

however, the coaptation force increased for the aortic leaflet and decreased for the mural 

leaflet, reducing considerably  its occlusional area.18 This caused an asymmetrical 

coaptation pattern shifted posterolaterally which was also described clinically.41

Leaflet «loitering»31 and mitral regurgitant flow  is then observed in early  and late 

systole when the coaptation force is lower than the tethering force applied on the mural 

leaflet.42 During the peak systolic stress, the sum of coaptation forces overcomes the 

tethering forces and the valve becomes competent, unless the annular dilatation or the 

tenting is too severe. If the systolic function is impaired, one might think that the left 

ventricle may not develop an adequate transmitral pressure gradient, diminishing the 

coaptation forces, and perhaps worsening the mitral insufficiency.

c. Compensatory mechanisms for FMR

Since the mitral valve leaflet can acutely  and reversibly  elongate up to 15% 

under physiological conditions,43 it is reasonable to think that mitral valve leaflets may 

compensate for the increased stress due to left ventricular remodeling by enlargement. 

Stiffening of the leaflets with increased collagen concentration has been reported in 
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severe heart failure patients,44 and a recent study  showed that mitral valve leaflet 

surface was 35% greater in patients with chronically  tethered leaflets compared to 

normal control subjects.45 They  hypothesized that significant MR may  develop or worsen 

in the face of chronic leaflet tethering due to insufficient leaflet adaptation. The variability 

of compensatory  response may explain the heterogeneity  of FMR severity  seen among 

patients.45 The question wether this leaflet adaptation to increased tethering is a passive 

stretch or involves active histologic changes has been investigated recently by  Dal-

Bianco et al.46 In a model of mitral leaflet tethering without MR nor ischemia, they 

observed increased leaflet area and thickness. Interstitial matrix was produced by 

activated mesenchymal and endothelium cells.46 To avoid confounding factors, they 

chose a model with no MR since turbulent flow induces focal leaflet thickening and may 

further signal remodeling.47, 48 For a similar reason, an ischemic model could have 

interfered since the infarcted myocardium and its borderzone region may stimulate 

leaflet growth and collagen production.48

Hence, modified mechanical stresses induced by  left ventricular remodeling is 

promote an active compensatory  phenomenon which may  become maladaptative with 

chronicity.47

Tosummarize, functional mitral regurgitation is a complex pathology  secondary  to 

left ventricular remodeling. Many  structural and functional components play  a role in its 

genesis and evolution, including the compensatory  attempts. Papillary  muscle tethering 

of the mitral valve appears to be the most important factor leading to MR. It is crucial to 

understand the mechanisms involved with this condition to find the most appropriate 

therapeutic options, today limited in their long term results.
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Chapter IV

Therapeutic options for a dynamic structural 

disease

1. Prognosis of patients diagnosed with FMR

FMR occurs in roughly  50%  of patients with congestive heart failure49 and 20% to 

25% of patients followed up after myocardial infarction.2-5 Among those patients, FMR 

carries an adverse prognosis with a graded relationship  between severity  of mitral 

regurgitation and survival (Figure 4.1 and 4.2).3, 6

Furthermore worsening of MR between baseline and one month is associated 

with increased adverse outcomes.6

Figure 4.2: Kaplan-Meier survival curves divided according to the severity  of MR. 
Solid line: no MR, dashed line: mild MR, dotted line: moderate to severe MR. The 
patients were only under medical treatment. Amigoni et al. 2007
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Although demonstrated to be actively  associated with worsening of left 

ventricular remodeling, survival and morbidity, correction of FMR is still hotly  debated.50 

The debate takes its origins in the facts that the actual available therapeutic options do 

not provide satisfying results on a mid to long term and they  are inherently  associated 

with surgical risks and morbidity.

2. Treatment of FMR

Like any  other pathologic process, prevention, limitation of the risks factors and 

early  detection and treatment of FMR are of crucial importance. For dilated 

cardiomyopathy  patients, this means early  medical management to limit left ventricular 

remodeling, while for patients undergoing left ventricular infarction, limiting the infarct 

size and extension is the aim. If MR develops or worsens despite preventive or first line 

measures, two axes of treatment can be envisioned: restoring leaflet coaptation with 

valvuloplasty  or annuloplasty  procedures or restoring subvalvular geometry with 

ventriculoplasty techniques or with procedures modifying papillary muscles positioning.

Each technique currently  described has advantages and drawbacks. Through a 

brief review of the therapeutic options used or in development, we will try  to define 

specifications for the development of a new device able to correct FMR.

i. Restoring leaflet coaptation

To date, the standard of care to treat FMR is based on annuloplasty  techniques. 

The rationale is that restoring coaptation addressing the annular geometry, correction 

MR at the time of surgery  may  become permanent and sufficient to stabilize the left 

ventricular remodeling and prevent heart failure events.

Because of the work of Kay  et al.51 demonstrating the better short and long term 

outcome, mitral repair has became the preferred method against mitral replacement for 
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treatment of FMR. Gillinov et al.52 confirmed this evaluation, however they  found that in 

high-risk sick patients, the survival was equivalent.

The superiority  of repair over replacement is demonstrated by  the fact that the 

surgical time is lower, there are no potential complications associated with prosthetic 

deterioration or malfunction, and most importantly  the subvalvular apparatus is spared. 

Repair techniques result then in some degree of left ventricular function improvement 

due to the maintenance of the ventricular to valvular mechanical relationship.

a.  Undersized annuloplasty

Undersized annuloplasty  has become the treatment of choice of FMR following 

the work of Bolling et al.53, and is sometimes associated with CABG. The goals of this 

procedure are to decrease the annular septo-lateral dimension to increase leaflet 

coaptation. Many  types of prosthetic rings are available: complete, incomplete, rigid, 

flexible, symmetrical or not. Several authors argue in the literature the merits of one type 

of implant versus another, but no definite advantage has been shown, at the exception of 

pericardial bands that carry a worse long term prognosis.54

Early  results for mitral annuloplasty  were encouraging with a relatively  low 

perioperative mortality  rate55 and residual MR (Figure 4.3).54, 56 The clinical benefits of 

this technique are still strongly debated. Despite these interesting early  results, a 

disappointing high rate of MR recurrence is observed generally  a few months post 

correction, ranging from 17 to 35 percent according the studies.54, 56-58 To obtain 

conclusive results concerning the survival rate, control groups have to be chosen with 

caution with an unbiased population. Two large retrospective analysis with rigorous entry 

criteria with ischemic MR compared the five years survival of patients who underwent 

undersized annuloplasty  and revascularization to a group of patients who had 

revascularization only.59, 60 No survival benefit could be attributed to valve intervention 
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compared to control, in each study the five year survival being 50 percent or less.59, 60

Mitral valve repair did however decrease the incidence of symptomatic heart failure.59

Undersized annuloplasty  improve mitral leaflet coaptation but does not address 

subvalvular changes (Figure 4.4). Left ventricular remodeling is the primary factor 

Figure 4.3: Mitral regurgitation control versus annuloplasty. Gorman III, 2006

Figure 4.4: Left ventricular end-systolic volume, control versus annuloplasty  group. 
Guy et al. 2002
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contributing to alteration of the valvular complex geometry   and is not addressed by 

undersized annuloplasty.

Guy  et al.61 and Enomoto et al.62 prophylactically  placed annuloplasty rings 

before myocardial ischemia in sheep. Although they  did not see significant MR eight 

weeks post infarction, left ventricular remodeling was comparable with the control groups 

(Figure 4.4). Hung et al. Also recognized this phenomenon of left ventricular remodeling 

clinically.63 Those observations led the clinicians to investigate the potential predicting 

factors of MR recurrence after annuloplasty. In a very  recent study, Onorati et al.64 found 

that recurrence of ischemic MR following undersized annuloplasty  correlated with the 

signs of absence of reverse ventricular remodeling. Tethering of the mitral leaflets and 

left ventricular dilatation tended to increase the risk of recurrence.64 Lee et al.65

demonstrated that apical tethering of the aortic leaflet is a major cause of annuloplasty 

Figure 4.5: Schematic representation of the mitral valve and proposed mechanisms 
for apical and posterior tethering. A: aortic leaflet, BC: second order chordae, MC: 
marginal chordae, P: mural leaflet, PM: papillary muscle. Lee et al. 2009
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failure (Figure 4.5). Hence, undersized annuloplasty  does provide some benefits in some 

patients but the risks associated with the procedure (risk of repair failure and poor long 

term survival rate) justify investigation in to alternative procedures.

b. Valvuloplasty techniques

Edge-to-edge techniques

Alfieri et al.66 originally  developed edge-to-edge suture techniques for various 

mitral valve diseases. The technique is relatively  simple and fast to execute (Figure 4.6). 

A ring annuloplasty  has to be performed concomitantly otherwise the results are 

disappointing in the long term.67 Like annuloplasty  alone, more than 30 percent of 

patients with ischemic cardiomyopathy  undergoing this procedure have a moderate to 

severe recurrent MR at one year post mitral valve repair.68 The authors concluded that 

this subcategory of patients may not be optimal candidates for this technique.

A percutaneous variant of the edge-to-edge repair has been developed in a 

porcine model using catheter delivered clips, but the success remains dependent on an 

additional annuloplasty intervention.69

Posterior mitral valve restoration

Fundaro et al.70 introduced a technique for the correction of asymmetrical 

annulus dilatation encountered during ischemic cardiomyopahies. They  aimed to 

Figure 4.6: Edge-to-edge suture. Left: commissural suture, right: double-orifice suture. 
De Bonis 2002
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decrease leaflet tethering via reduction of annular septo-lateral dimension and 

approximate the papillary muscles with a reconstruction technique. 

c. Percutaneous annular reduction

A variety of devices have been developed for percutaneous annuloplasty 

techniques. They  are implanted in or in proximity  of the coronary  sinus. Representative 

examples are the Percutaneous Transvenous Mitral Annuloplasty  (PTMA) formed of 

three stainless steel rods, the CARILLON Mitral Contour System, an anchored nitinol 

bridge or the Percutaneous Septal Sinus Shortening (PS3), an anchored stent.71

Several drawbacks to those techniques will need to be addressed before use in 

the clinical setting. The first problem arises from the anatomy of the coronary  sinus in the 

human being. Maselli et al.72 reviewed 61 anatomical preparation from excised human 

hearts and showed that a large number of specimen had several large branches of the 

main circumflex coronary  artery  that were running between the anterior interventricular 

vein, the coronary sinus and the annulus. The risk of compressing a coronary artery  with 

a percutaneous device has to be taken in to consideration.72 Finally, the devices placed 

within the coronary artery may carry a thrombogenic risk.

Relative disappointing long term results of valvular procedures led the clinicians 

and investigators to focus more on the correction of the subvalvular apparatus geometry, 

either with a single intervention or in conjunction with an annuloplasty technique.

ii. Correction of the chordal-valvular apparatus tethering

As we saw above, most of the complications and failure of the interventions used 

to date are reasonably  related to the fact that none are able to stabilize or reverse left 

ventricular remodeling. With this paragraph we will review the described techniques that 

aim at restoring physiological balance to the subvalvular apparatus.

a. Procedures for the chordal apparatus
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Second-order chordal cutting

Considering the fact that tethering of the aortic mitral leaflet is a major player for 

the genesis and that second-order chordae are responsible of this tethering, Messas et 

al.73, 74 developed the technique of second-order chordal cutting. This operation does not 

reposition the papillary  muscle in their physiologic position, however relief of the 

tethering allows a new mechanical balance of the chordal-valvular apparatus (Figure 

4.7). In an animal model, Messas et al.75 demonstrated that chordal cutting did not have 

adverse effect on left ventricular dynamics and energetics in response to concerns 

regarding altered leaflet motion and left ventricular stability.76, 77 Indeed, a retrospective 

study  comparing patients with ischemic MR who underwent undersized annuloplasty  or 

chordal cutting showed promising two-year follow-up  results for the chordal cutting 

group.78 Although no significant differences were found in survival rate or factors 

predictive of survival between groups, they did find that chordal cutting decreased the 

Figure 4.7: Chordal cutting. Left: papillary  muscle displacement secondary  to 
inferobasal infarction tethers the aortic leaflet, right: second-order chordae cutting 
restores leaflet coaptation. PM: papillary muscle, MR: mitral regurgitation. Levine et al. 
2005
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recurrence rate for MR from 37 percent to 15 percent.78 Interestingly  atrial fibrillation was 

significantly  higher in the chordal cutting group compared to the control. This observation 

should not be observed with a new approach via aortotomy recently described.79

Although those results are encouraging, like undersized annuloplasty left 

ventricular remodeling is not addressed with this technique.

Chordal translocation

Chordal translocation was proposed by  Masuyama et al.80, 81 as an alternative to 

chordal cutting. The rationale for this technique is to cut the tethering strut cord and to 

replace them with a suture so that the leaflet coaptation is maximized and the 

ventricular-valvular continuity  preserved. Some authors indeed consider that chordal 

cutting alone may alter ventricular function,77, 80 however the animal model used is 

debatable and these conclusions do not permit the affirmation of the superiority  of one 

procedure over the other one.

b. Surgical Ventricular Reconstruction

Surgical Ventricular Restoration (SVR or Dor procedure) aim to restore normal 

left ventricular geometry  via reconstruction. Revascularization is usually performed 

concomitantly  with or without mitral valve repair if needed. Most of the patients chosen 

for this aggressive surgical procedure suffer from heart failure either from advanced 

degenerative or ischemic etiology  and may benefit from transplantation.82 The left 

ventricular volume is reduced by plication of redundant dilated left ventricular wall.83

Several studies focused on the role of SVR for FMR. Di Donato et al.84 found a 

surprisingly  high survival rate of 88 percent at three years for patients undergoing SVR 

and CABG, however their study  population included only  patients with mild chronic FMR 

secondary  to anterior myocardial infarction. They did comment on the fact that the 

valvular complex was not directly  involved in the ischemic zone. MR was secondary  to 
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more global left ventricular remodeling. They  hypothesized that they  could reconstruct 

the geometry of the mitral valve complex. They  did not perform a valve repair. Perhaps, 

their success rate can be explained by  their rigorous case selection. Prucz et al.82

however did include a larger population and compared the impact of SVR and CABG to 

CABG alone on chronic ischemic MR. SVR did reduce the MR but survival rates were 

similar. Patients undergoing SVR and CABG were less likely  to be readmitted in the 

hospital for CHF.

c. Repositioning of the papillary muscles

 Procedures requiring bypass surgery

Kron et al.85 first introduced the concept of relocating the posterior papillary 

muscle during an open approach. The rationale is that tethering of the posterior papillary 

muscle can be reduced and maintained stable by  a permanent suture to the fixed 

annuloplasty  ring (Figure 4.8). The short term result reported in a brief communication86

seems encouraging. Rama et al.87 introduced a variant of the Kron suture. They sutured 

Figure 4.8: Kron suture. Left: apical displacement of the posterior papillary  muscle 
(PPM) causes mitral regurgitation (MR), right: relocation of the posterior papillary 
muscle restores adequate coaptation of the aortic (A) and mural (P) mitral leaflets. LV: 
left ventricle, LA: left atrium. Kron et al. 2002
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the two papillary  muscle together, placing the tips in the median plane. They tested their 

method in eight patients with advanced ischemic cardiomyopathy  and MR who 

underwent concomitant undersized annuloplasty. Six patients were alive with absent to 

mild MR at approximatively one year follow-up. The low number of patients did not allow 

a statistical analysis.

 Surgical procedures on beating heart

Moainie et al.88 used an epicardial patch prophylactically  sutured over an 

infarcted area. The patch reduced the MR compared to the control group but could not 

prevent it. Hung et al.89 reused the idea of an epicardial patch but did upgrade it with the 

addition of an inflatable balloon (Figure 4.9). They  demonstrated that MR could be 

corrected by  repositioning the papillary muscle via external pressure. Interestingly, they 

reported that the patch-balloon did not change the indexes of left ventricular contractility, 

stiffness and relaxation time constant either in the acute or  chronic phase. Left 

Figure 4.9: Papillary  muscle repositioning with an epicardial patch balloon. Hung et al. 
2007
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ventricular remodeling with increased left ventricular volumes did happen in half of the 

animals.

The same research team tested an alternative procedure for papillary muscle 

repositioning by injection of Polyvinyl Alcohol (PVA) gel into the myocardium.90 The 

bulging created at the level of the posterior papillary  muscle decreased the tethering and 

reduced MR to trace amounts in an acute ischemic model.

In a similar aim to replace the papillary  muscles by  correcting the infarct area, 

Liel-Cohen et al.91 reduced MR in a chronic ischemic model by  repositioning of the 

papillary muscles via plication of the infarcted region. The sutures were strictly  placed 

over the infarct and the only independent predictor for reduction of MR was the tethering 

length of the papillary  muscle tips.91 They  concluded that very  localized geometric 

changes affecting the mitral valve attachments could be of major benefit for correction  

of MR.

All of these techniques showed promising results, but so far have only  been 

evaluated in animal models.

The only  surgical procedure aimed at repositioning the papillary muscles off-

pump sparingly tested in human clinical trials uses the Coapsys device (Myocor, Mapple 

Groove, Minnesota). Fukamashi et al.92 originally  introduced the Coapsys device 

designed to reshape the left ventricle and in some degree the annulus in patients with 

ischemic MR (Figure 4.10). The device is constituted by  an anterior pad and a posterior 

pad linked by  an expanded polytetrafluoroethylene coated subvalvular cord. The device 

is fitted to reduce MR during surgery under echocardiographic visualization.71, 92 The 

Coapsys is currently  being evaluated in a multi-center randomized prospective study: the 

Randomized Evaluation of a Surgical Treatment for Off-pump Repair of the Mitral Valve 

(RESTORE-MV) which compares the efficacy  of the device to undersized annuloplasty 
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in patients undergoing CABG who have FMR.93 The initial results showed that the device 

reduced the septo-lateral dimension of the annulus and MR to a similar extent as in the 

annuloplasty  group. However, they  did not provide statistical analysis between groups. 

The anteroposterior dimension of the left ventricle was reduced as well, as opposed to 

the annuloplasty  technique which did not. The index of sphericity  was then decreased. 

They  concluded that the Coapsys device could correct MR to the same extend as 

annuloplasty and reshape the left ventricle in addition.93

One-year follow-up is available for 11 patients from a prospective non 

randomized single-center feasibility  study.94 They did not report any  failure of the 

implant. The MR remained lower than the baseline level. A percutaneous delivery 

Figure 4.10: Correction of IMR by  the Coapsys device. The papillary  muscle are 
drawn together by  the annular head of the posterior pad while the papillary  muscles 
are repositioned by  the papillary  head of the posterior pad. AML: aortic mitral leaflet, 
PML: mural mitral leaflet, PM: papillary muscle. Fukamachi 2008
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system for the Coapsys has been recently  described and will be enrolled soon in a 

feasibility study.71, 95

The ability  to correct the subvalvular geometry  during an off-pump procedure is 

the main advantage of the device. However, the myocardium is not spared during the 

device placement: because of its design, the left ventricle has to be perforated which 

may increase the operative risk in an off-pump procedure. Furthermore, some authors 

think that the permanent annular cinching may  lead to further remodeling and altered 

transmyocardial strains.96 Finally, the subvalvular cord may create hemodynamic 

turbulence increasing the thromboembolic risk for those patients.

3. Benefits of a subvalvular procedure associated with a mitral valve 

annuloplasty

In a recent retrospective study  of 59 patients with ischemic functional MR 

undergoing surgical correction, Ueno et al.97 compared the postoperative and mid term 

echocardiographic findings of three study groups: the patients either had undersized 

annuloplasty  alone, undersized annuloplasty  and SVR, or undersized annuloplasty, SVR 

and a subvalvular procedure (chordal cutting, translocation or papillary  muscle 

approximation). All the patients received a CABG concomitantly  with the other 

procedures. They  observed that the additional subvalvular procedures significantly 

corrected leaflet tethering and maintained a lower mitral regurgitation grade compared to 

the other groups. Based on their echocardiographic measurements the authors expect a 

reduced recurrence of MR.

4. Conclusion

Mitral apparatus tethering is the major component leading to functional mitral 

regurgitation. The current treatment technique of choice is the undersized annuloplasty, 
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which requires extracorporeal circulation during anesthesia. Furthermore, no technique 

addresses directly  the left ventricular remodeling. Hence, an epicardial device altering 

the forces applied on the leaflets (figure 3.2) by  repositioning the papillary muscles 

should be beneficial.
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Chapter V

Evaluation of an acute model of myocardial 

ischemia to induce functional mitral valve 

regurgitation in sheep: Evaluation of diastolic 

dysfunction

Regional and global systolic dysfunction associated with acute myocardial 

infarction (AMI) are widely  recognized as independent predictors of prognosis,1-3 

however, the role diastolic dysfunction remains unclear. Diastolic wall motion 

abnormalities may  be transient and can regress overtime post treatment of AMI.4-6 

Systolic and diastolic heart failure represent different entity  of heart failure.7, 8 Systolic 

and diastolic dysfunction after AMI may arise from a similar cellular level.5, 6 Long term 

outcome and remodeling after myocardial infarction has been widely  evaluated and 

studied.  Diastolic dysfunction after myocardial ischemia is a well recognized problem 

that might even develop in the absence of systolic dysfunction. However, diastolic 

dysfunction in the acute phase of myocardial ischemia has not been evaluated.

1. Hypothesis

The purpose of our study was to evaluate acute myocardial ischemia to induce 

functional mitral valve regurgitation and evaluate global and regional left ventricular 

function and compliance in an acute ovine model of regional supply ischemia.
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2. Material and methods

The experimental protocol used for this investigation received the approval of the 

Animal Care and Use Committee (#: 07-003A-01) at Colorado State University  (Fort 

Collins, CO, USA).

i. Surgical preparation

Six adult female Dorsett sheep  were premedicated with diazepam (7.5 mg IV) 

and induced with ketamine (250 mg IV). After endotracheal intubation, they  were 

ventilated and maintained under anesthesia with continuous administration of Isoflurane 

(1.5 to 3%). Fentanyl (20 μg/kg/h IV) and Lidocaine (100 mg/kg/min IV) were continually 

infused. Left chest-wall resection and subtotal pericardectomy  were performed. A bolus 

of magnesium chloride (1g IV) was injected half an hour after the beginning of the 

surgery  before induction of ischemia. An intercostal thoracotomy was performed.  The 

pericardium was opened. 

A high fidelity  microtip pressure catheter with two pressure sensors (Pressure 

Mikro-Tip®, Millar instruments Inc., Houston, USA) was inserted in the left ventricle and 

proximal aorta through an incision at the apex of the heart. An 18 Gauge catheter was 

inserted in the left atrium. Four 2 mm ultrasonic crystals (SonometricsCorp., London, 

Canada) were implanted in the epicardium to measure the major and minor axis of the 

left ventricle. The minor axis is defined between the left anterior descending coronary 

artery  and the left posterior descending coronary  artery, distal to the coronary sinus 

(Figure 5.11). An aortic flow probe was placed after dissection of the proximal ascending 

aorta. A 16 Gauge catheter was inserted in the descending aorta. A Rummel tourniquet 

was placed around the caudal vena cava to induce transient reduction of preload during 

pressure volume loop recording.
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The second and third Obtuse Marginal (OM2 and OM3) branch of the left 

circumflex coronary  artery were dissected proximally  and two Rummel tourniquets were 

placed.

 At the end of the experiment, the animals were euthanized by  injection of 20 mL 

of pentobarbital IV.

Figure 5.1: Schematic representation of the left ventricular vascularization. LCC: Left 
Circumflex Coronary  artery, LAD: Left Anterior Descending coronary artery, LPD: Left 
Posterior Descending coronary  artery, OM1,2,3: first, second and third Obtuse Marginal 
branch of the LCC, LNZ and LIZ: axis for the measurement of the non ischemic and 
ischemic segmental lengths, cross on OM2 and OM3: position of ligatures,  grey  zone: 
ischemic area, stars: position of the subepicardial ultrasonic crystals.
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ii. Experimental design and data acquisition. 

All the signals from the transducers were recorded and analyzed by  a data 

acquisition software (Sonosoft® Sonometrics Corp., London, Canada). Three sets of 

recordings were obtained for each sheep, after stabilization of the heart rate. Baseline 

data was saved following the instrumentation, five to ten minutes after occlusion of OM2 

and OM3 the early  ischemic data (t + 5-10 min) was recorded and after one hour of 

occlusion, the late ischemic data (t + 60 min) was saved. For each data recording, the 

ventilation was stopped and the vena cava gradually  occluded in order to calculate the 

load-dependent indexes by linear regression.

Data was later analyzed by  data analysis software (Cardiosoft, 

SonometricsCorp., London, Canada). The heart rate (HR) was calculated based on the 

recorded electrocardiogram. End-systole was defined as the maximum ratio of left 

ventricular pressure (LVP) to left ventricular volume (LVV). End-diastole was defined at 

the end of the left atrial contraction isolated from the LVP curve. End-Systolic Left 

Ventricular Pressure (ESLVP), End-Diastolic Left Ventricular Pressure (EDLVP), Aortic 

Diastolic Pressure (ADP), Aortic Systolic Pressure (ASP) were recorded with the Millar 

catheter. End-Diastolic Left Ventricular Volume (EDLVV) and End-Systolic Left 

Ventricular Volume (ESLVV) were calculated based on the ultrasonic crystals 

calculations using an ellipsoid model. The Stroke Volume (SV) was calculated based on 

the equation: SV=LVEDV-LVESV. Aortic blood flow (ABF) was recorded and the Aortic 

Stroke Volume (ASV) calculated based on the equation ASV=ABF/HR. The Mitral 

Regurgitant volume (MRV) was then defined as: MRV=SV-ASV.

End-Systolic Pressure Volume Relationship (ESPVR) was calculated by linear 

regression based on the Pressure-Volume curves obtained during transient caval 

occlusion. End-Diastolic Pressure Volume Relationship (EDPVR) was also calculated 
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during transient vena cava occlusion. The equation was obtained by  exponential 

regression, fitting LVP=b0+b1*expβLVV were b0 is the intercept of the LVP value, b1 a 

curve fitting parameter, LVV the left ventricular volume and β the passive diastolic left 

ventricular stiffness. External work (EW) of the left ventricle was the area of the 

Pressure-Volume loop. Pressure-Volume Area (PVA) was defined as the area under 

ESPVR, above EDPVR and left of the isovolumetric contraction phase of the pressure-

volume loop. Emax was defined as the slope of the ESPVR, while V0 was the intercept 

with the volume axis. Preload Recruitable Stroke Work (PRSW) was defined as the 

slope relating EW to LVEDV in the equation: EW=PRSW*(LVEDV-V1) were V1 is the 

intercept with the volume axis. EDPVR, ESPVR and PRSW were calculated by 

regression based on the Pressure-Volume loops recorded during acute occlusion of the 

caudal vena cava. Contractile Efficiency  (CE) was the ratio between EW and PVA. The 

first derivative of left ventricle pressure curve against time was used to determine dP/dt 

max. The left ventricular exponential time constant of isovolumic relaxation τ was 

calculated by performing a linear regression of dP/dt versus Left Ventricular Pressure 

(P): dP/dt=(-1/τ)*P.

Two axis formed by the ultrasonic crystals were used to measure the segmental 

length of the non ischemic zone (LNZ) and the ischemic zone (LIZ) at end-diastole (LNZD 

and LIZD) and end-systole (LNZS and LIZS) (Figure 5.1). The Regional Passive diastolic 

left ventricular stiffness or myocardial stiffness was defined for each zone X as the βX 

index in the relationship LVP=b0+b1*expβX LX. The regional Preload Recruitable Stroke 

Work (rPRSW) was defined for each zone X as the slope relating Ew and LXD in the 

equation: Ew=rPRSWX*(LXD-LX0) were LX0 is the x-intercept. Both βX and rPRSWX were 

calculated by regression based on the Pressure-lenght loops recorded during acute 

occlusion of the caudal vena cava.
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iii. Microsphere study

 Five mL of a 0.02%  Tween 80 solution was slowly  injected after collection of the 

hemodynamic data. Five minutes after Tween 80 injection, colored Microspheres (Dye-

Trak® Triton Technology, San Diego, USA) were injected in the left atrium through the 18 

Gauge catheter. Different colors of microspheres were used for baseline and ischemia. 

Ten seconds after injection, an aortic blood sample was drawn through the 16 Gauge 

catheter at a constant rate of 10 mL/min in a 35cc syringe. The hearts were harvested 

during necropsy  in order to verify  the positioning of the sutures and to obtain myocardial 

tissue samples from the Non Ischemic Zone (NIZ) and the Ischemic Zone (IZ) (Figure 

5.1). 

Following tissue digestion or blood hemolysis, the microspheres were recovered 

by sedimentation9 and regional blood flow of the myocardium was calculated.10

iv. Statistical analysis.

 The data was analyzed using a statistical software (JMP, SAS Institute Inc, Cary, 

USA). For each hemodynamic and energetic parameter, a One-Way  Analysis of 

Variance for repeated measurements was used to assess the time effect. A One-Way 

Analysis of Variance for repeated measurements was used to compare the myocardial 

perfusion of the Non-Ischemic and the Ischemic Zone at baseline and after induction of 

ischemia. The level of significance was set at p<0.05.

3. Results

Six sheep were entered in the study. Coronary  ligation was performed at the level 

of OM2 and OM3 (Figure 5.1). The positioning of the sutures was confirmed at necropsy 

for all the animals. An ischemic zone (IZ) was induced with a significant reduction of 

blood flow from 1.53 ± 0.81 mL/g/min to 0.37 ± 0.37 mL/g/min (p=0.022). The blood flow 
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in the Non-Ischemic Zone (NIZ) of the myocardium was not significantly  affected from 

1.65 ± 0.90 mL/g/min to 1.84 ± 0.87 mL/g/min (p=0.079)(Figure 5.2).

Hemodynamic parameters collected at baseline and after ischemia are reported 

in Table 5.1. Left Ventricular End-Systolic Pressure decreased from 105.0 ± 12.4 mmHg 

at baseline to 88.7 ± 7.3 mmHg (p=0.016) at t + 5-10 min, while Left Ventricular End-

Systolic Volume increased from 194.5 ± 86.9 mL at baseline to 210.5 ± 94.1 mL 

(p=0.039) at t + 5-10 min. Aortic Diastolic pressure decreased from 89.8 ± 10.2 mmHg at 

baseline to 77.7 ± 6.6 mmHg at t + 5-10 min (p=0.042). Aortic systolic pressure was 

decreased from 105.0 ± 13.6 mmHg at baseline to 88.0 ± 7.8 mmHg at t + 5-10 min 

(p=0.020) and then increased to 125.5 ± 32.4 mmHg at t + 60 min (p=0.028 when 

compared to t + 5-10 min).

Figure 5.2: Regional blood flows of the ischemic and non ischemic zone at baseline and 
during ischemia. *: p<0.05.
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Ischemia reduced PRSW from 60.7 ± 9.1 mmHg at baseline to 42.3 ± 4.3 mmHg 

at t + 60 min (p=0.002). The regional Preload Recruitable Stroke Work of the Non 

Ischemic Zone (rPRSWNIZ) was 51.6 ± 11.8 mmHg.L.m-1 at baseline, 55.2 ± 16.4 

mmHg.L.m-1 at t+5-10 min (p=0.603) and 53.3 ± 14.1 mmHg.L.m-1 at t + 60 min 

(p=0.836). The regional Preload Recruitable Stroke Work for ischemic zone (rPRSWIZ) 

Table 5.1: HR: Heart Rate, LVESP: Left Ventricular End-Systolic Pressure, LVEDP: Left 
Ventricular end-Diastolic Pressure, ASP: Aortic Systolic Pressure, ADP: Aortic Diastolic 
Pressure, LVESV: Left Ventricular End-Systolic Volume, LVEDV: Left Ventricular End-
Diastolic Volume, dP/dt max: Mean maximum value of the derivative of left ventricular 
pressure against time, Emax: Maximum elastance of the left ventricle, τ : Isovolumetric 
relaxation time constant, β: Passive diastolic left ventricular stiffness, PRSW: Global 
Preload Recruitable Stroke Work, rPRSWIZ: Regional Preload Recruitable Stroke Work 
of the ischemic zone, rPRSWNIZ: Regional Preload Recruitable Stroke Work of the non 
ischemic zone, PVA: Pressure-Volume Area, Ew: Stroke work of the left ventricle.
Values with a similar superscript letter are significantly different (p<0.05).
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Baseline t + 5-10 min t + 60 min
HR (bpm) 93 ± 13 93 ± 8 93 ± 12
LVESP (mmHg) 105.0 ± 12.4a 88.7 ± 7.3a 94.4 ± 12.1
LVEDP (mmHg) 14.0 ± 2.0 14.6 ± 5.4 13.6 ± 5.1
ASP (mmHg) 105.0 ± 13.6a 88.0 ± 7.8a,b 125.5 ± 32.4b

ADP (mmHg) 89.8 ± 10.2a 77.7 ± 6.6a 82.2 ± 11.2
LVESV (mL) 194.5 ± 86.9a 210.5 ± 94.1a 208 ± 86.4
LVEDV (mL) 238.6 ± 88.1 248.9 ± 95.4 249.6 ± 90.4
SV (mL) 44.1 ± 7.4 38.4 ± 8.0 41.6 ± 9.1
dP/dt max (mmHg.L-1) 1274 ± 381a 1008 ± 171a 1155 ± 278
Emax (L.mmHg-1) 1.33 ± 0.47 1.23 ± 0.62 1.62 ± 0.12
τ (sec-1) 0.047 ± 0.006 0.051 ± 0.005 0.052 ± 0.008
β (mL-1) 0.351 ± 0.252 0.399 ± 0.495 0.325 ± 0.350
EDPVR Slope 
(mmHg.mL-1) 0.017 ± 0.01 0.019 ± 0.01 0.018 ± 0.01

PRSW (mmHg) 60.7 ± 9.1a 50.0 ± 15.4 42.3 ± 4.3a

PVA (mmHg.L) 6260 ± 1387a,b 4149 ± 1299a 4368 ± 1632b

Ew (mmHg.L) 3877 ± 1287a,b 2334 ± 872a 2507 ± 883b



decreased from 96.2 ± 33.9 mmHg.L.m-1 at baseline to 59.2 ± 28.6 mmHg.L.m-1 at t + 

5-10 min (p=0.026) and to 63.7 ± 25.7 mmHg.L.m-1 for t + 60 min (p=0.032 when 

compared to baseline).

Emax was not affected by ischemia (p=0.353) with V0 increasing from 141.6 ± 

70.8 mL at baseline to 149.4 ± 72.8 ml at t + 5-10 min (p=0.447) and to 159.0 ± 67.0 mL 
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Figure 5.3: Pressure-Volume loops 
of five consecutive cardiac cycles 
r e p r e s e n t a t i v e o f a s t a b l e 
hemodynamic state at baseline 
(top), t + 5-10 min (middle) and t + 
60 min (bottom). ESPVR: End-
S y s t o l i c P r e s s u r e - V o l u m e 
Relationship, V0: volume intercept of 
the ESPVR, EDPVR: End-Diastolic 
Pressure-Volume Relationship.



at t + 60 min (P=0.0043) (Figure 5.3) while dP/dt decreased from 1274 ± 381 mmHg.L-1 

at baseline to 1008 ± 171 mmHg.L-1 at t + 5-10 min (p=0.044). 

The Mitral Regurgitant volume was 1.2 ± 2.3 mL at baseline, -1.3 ± 1.6 mL at t + 

5-10 min and 0.2 ± 0.5 mL at t + 60 min (p=0.746).

Passive diastolic stiffness of the left ventricle β (p=0.059) and the index of 

isovolumetric relaxation τ  (p=0.599) remained unchanged after induction of regional 

ischemia. The slope of EDPVR was not affected by  induction of ischemia at t + 5-10 min 

(p=0.488) and t + 60 min (p=0.707). Myocardial stiffness of the Non Ischemic Zone (βNIZ) 

was 1.70 ± 1.10 mm-1  at baseline, 2.00 ± 1.30 mm-1  at  t + 5-10 min (p=0.64) and 2.90 

Figure 5.4: Passive regional left ventricular stiffness of the ischemic (dash line) and non 
ischemic (solid line) zones at baseline, t + 5-10 min and t + 60 min. * and †: p<0.05.
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± 1.50 mm-1 t + 60 min (p=0.19). Myocardial stiffness of the Ischemic Zone (βIZ) 

decreased from 2.63 ± 1.23 mm-1 at baseline to 0.94 ± 0.57 mm-1 at t + 5-10 min 

(p=0.014). At t + 60 min β IZ was 3.56 ± 0.57 mm-1 which was significantly  increased 

when compared to t+5-10 min  (p=0.033) but not when compared to  baseline (p=0.376) 

(Figure 5.4).

The total mechanical energy (PVA) decreased after induction of ischemia from 

6260 ± 1387 mmHg.L at baseline to 4149 ± 1299 mmHg.L at t + 5-10 min (p=0.019). 

After one hour of ischemia, PVA remained significantly  lower at 4368 ± 1632 mmHg.L 

than at baseline (p<0.001). The stroke work developed by  the left ventricle (EW) 

described a similar evolution with a decrease from a baseline value of 3877 ±  1287 

mmHg.L to 2334 ± 872 mmHg.L at t + 5-10 min (p=0.037). EW stayed below the 

baseline level for t + 60 min at 2507 ± 883 mmHg.L (p=0.013). Contractile efficiency 

(CE) was not significantly  reduced from 61 ± 12% at baseline to 56 ± 9% at t + 5-10 min 

and 59 ± 6% at t + 60 min (p=0.513) by the acute regional ischemia.

The segmental length of the non ischemic zone (LNZ) remained unchanged with 

ischemia (table 5.2). The segmental length of the ischemic zone (LIZ) increased at end-

systole from 65.8 ± 12.3 mm at baseline to 69.5 ± 14.0 mm at t + 60 min (p=0.025) but 

did not change at end-diastole.

Table 5.2: LNZ: Segmental length of the non ischemic zone, LIZ : Segmental length of the 
ischemic zone, D: End-diastole, S: End-Systole. Values with a similar superscript letter 
are significantly different (p<0.05).  
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Baseline t + 5-10 min t + 60 min

LNZ (mm)
D 85.9 ± 21.0 87.9 ± 22.9 86.2 ± 20.5

LNZ (mm) S 77.4 ± 19.1 80.7 ± 21.3 78.2 ± 18.8

LIZ (mm)
D 71.1 ± 14.12 71.42 ± 15.8 71.7 ± 14.7

LIZ (mm) S 65.8 ± 12.3a 66.7 ± 13.2 69.5 ± 14.0a



4. Discussion

Acute myocardial ischemia of the posterior papillary  muscle did not induce mitral 

valve regurgitation in sheep but induced a reversible reduction of regional passive 

diastolic stiffness of the ischemic zone of the left ventricle. Within an hour after induction 

of ischemia the compliance of the ischemic zone was similar to baseline. The overall left 

ventricular passive compliance was not affected by ischemia. In this study, we have 

characterized the evolution of a regional acute posterolateral myocardial ischemia and 

its impact on the hemodynamic and energetic state of the left ventricle.

The coronary  circulation in sheep is very  similar to human, making it a valuable 

large animal model to assess the impact of acute myocardial ischemia on systolic and 

diastolic left ventricular function11 Although several large animal models of acute 

myocardial infarction have been described,11-14 none investigates the very  early stage of 

left ventricular remodeling and both global and regional responses to acute regional 

myocardial infarction.

Ligating the second and third obtuse marginal branches of the left circumflex 

coronary  artery  induced consistently  an infarcted area involving 21% of the 

posterolateral aspect of the left ventricle including the posterior papillary  muscle.11 The 

ischemic zone created was well demarcated in all sheep with a significantly  decreased 

coronary blood flow. The absence of collateral coronary  circulation in sheep15 allowed us 

to define specific myocardial regions, with or without ischemia.

Discoloration of the myocardium was visible immediately  after occlusion the two 

obtuse branches and remained visible during the entire experiment. Regional myocardial 

ischemia induced mild hemodynamic changes. Preload recruitable stroke work, PVA and 
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external work were significantly reduced after induction of the infarction. Aortic systolic 

pressure was significantly  reduced. Mitral regurgitation was absent at each time point. 

Since the occlusion of those two obtuse branches should affect only  21% of the left 

ventricular wall left ventricular pressures and volumes were not significantly  affected 60 

minutes after the induction of ischemia. The first derivative of the left ventricular pressure 

against time was significantly  reduced at t + 5-10 min only, while Emax was not affected. 

As opposed to dP/dt, Emax is not load sensitive. Reduced PVA associated with a 

conserved Emax implies a parallel shift to the right of ESPVR with an augmentation of 

Vo due to the dilation of the left ventricle in diastole and systole. The ischemic segment 

has a significant augmentation in length at t + 60 min in systole. 

Diastolic dysfunction of the entire left ventricle was not affected. The constant of 

isovolumetric relaxation time, the slope of End Diastolic Pressure Volume Relationship 

and the index of passive left ventricular stiffness were not affected by  the infarction. 

However when we analyzed the passive stiffness of the ischemic and the non ischemic 

area of the left ventricular wall the passive stiffness of the ischemic area was reduced 

during the first 10 minutes but returned to normal one hour after induction of ischemia. 

The index of left ventricular diastolic stiffness is usually  affected by chronic changes in 

the left ventricular wall after ischemia like fibrosis or extracellular matrix remodeling. In 

an acute situation the collagen matrix was not altered. This increase in compliance can 

be due to initial slippage of myocytes, edema, decrease wall thickness, coronary artery 

turgor, or abnormality  of calcium handling by the sarcoplasmic reticulum.16, 17, 18, 19 

Abnormal calcium handling is mostly  affecting inactivation phase of relaxation,17 

however we were unable to detect a delayed relaxation phase in our study. Perhaps 

infarct size may  have been too small to detect a global ventricular effect. Decreased 

ventricular wall thickness due to vascular collapse could have been responsible for the 
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early  increased compliance according to the Salisbury effect.20 Olsen et al.19 showed 

that coronary  pressure is an independent determinant of ventricular compliance, hence 

acute ligation of coronary arteries may explain the observed early  increase compliance. 

Preload recruitable stroke work was significantly  decreased for the area of infarction 

which demonstrates an abnormal contractile function of this area of the myocardium, 

which might be another indicator of abnormal calcium handling. Three dimensional 

echocardiography  has shown a reduction of left ventricular thickness associated with 

passive stretching.21, 22 Paradoxical motion of the ischemic zone during systole could 

also induce significant dilation of the ischemic zone and contribute to the increase 

compliance of that segment of the left ventricular wall. However, the length of the 

ischemic segment was significantly  increased only  in systole 60 min after induction of 

ischemia therefore bulging of the ischemic zone may  not be the major cause of the  

modification of compliance in the early  phase. The late increase in ischemic myocardial 

stiffness that we observed at t + 60 min can be due to abnormal calcium handling by  the 

sarcoplasmic reticulum resulting in cytoplasmic calcium overload. Varma et al.23 showed 

that calcium overload in the cytoplasm can alter the compliance of the left ventricle 

because it altered actin-myosin interaction. 

 Regional preload recruitable stroke work of the ischemic zone was depressed 

immediately  after induction of the infarction and persisted at t + 60 min, indicating 

reduction of contractile function of this zone. This effect has been previously  reported in 

rat,24, 25 dog26, 27 and swine28 models. This regional adaptation had a repercussion on the 

overall left ventricle mechanical work (EW) without a compensatory  mechanism from the 

non–ischemic zone of the left ventricle. Since PVA and EW were reduced without an 

effect on contractile efficiency, contractility  of the entire left ventricle was reduced. The 

non-ischemic myocardium is not compensating for the ischemic zone since preload 
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recruitable stroke work of this non ischemic zone is not increasing and PVA is not 

increasing either. The augmentation of afterload related to the dilation of the ischemic 

zone was not sufficient to decrease contractile efficiency. 

5. Conclusions

A mild acute posterolateral myocardial infarction induced early  systolic and 

diastolic regional dysfunction. Regional ischemia immediately  altered global left 

ventricular function but changes were not seen in diastolic function. No mitral 

regurgitation was identified. The infarction most likely  increased in size and the non 

ischemic myocardium did not compensate for the left ventricular remodeling. Both 

systolic and diastolic functions were most likely related to the same cellular mechanism.
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Chapter VI

Correction of Acute Functional Mitral 

Regurgitation: development of e New 

Epicardial device

Current proposed therapies for functional mitral regurgitation (FMR) have the 

goals of correcting the valvular geometry  and structural stabilization of the valvular-

ventricular complex. While the presence of an external constraint appears to be crucial 

in controlling or reversing the progression of the left ventricular remodeling,1-3 

modification of the mitral valve apparatus is considered as critical in the correction of 

FMR.4 Undersized annuloplasty restores annular shape and reduces the septolateral 

dimension of the mitral valve,5 and hence could be considered as a focal constraint. 

Although the subvalvular changes are partially  addressed,6 the ventricular remodeling 

can progress and may  lead to the recurrence of FMR.7,8 Recent studies emphasize the 

importance of restoring the structural organization of the valve apparatus.9,10 Correction 

of the papillary  muscle tethering can be achieved directly  by  cordal cutting11 or 

translocation,12 papillary muscle approximation13 or relocation,14 or indirectly  by  applying 

an external force to the papillary muscles.15

 The Coapsys (Myocor, Maple Grove, Minnesota, USA) device has been shown 

to reduce functional mitral regurgitation, however part of the device is in contact with the 
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blood, which can increase the risk of thromboembolism in the long term. Polymer 

injection in the ventricular wall in close proximity  to the papillary muscles has been 

described recently  as an alternative method for papillary  repositioning and acute 

correction of FMR.16,17 Long-term effect of the polymer injection within the myocardium is 

unknown. 

1. Hypothesis

The purpose of this study  was to evaluate an epicardial device designed to 

displace the papillary  muscles toward a more normal position. The effects of the device 

on functional mitral regurgitation, mitral annulus diameter and diastolic function in an 

acute sheep model of functional mitral valve regurgitation were evaluated.

2. Material and methods

The experimental protocol used for this investigation received the approval of the 

Animal Care and Use Committee (#: 07-003A-01) of the Colorado State University  (Fort 

Collins, CO, USA).

i. Surgical preparation

Seven adult female Dorsett sheep were premedicated with diazepam (7.5 mg IV) 

and induced with ketamine (250 mg IV). After endotracheal intubation, they  were 

ventilated and maintained under anesthesia with continuous administration of Isoflurane 

(1.5 to 3%). Fentanyl (20 μg/kg/h IV) and Lidocaine (100 mg/kg/min IV) were continually 

infused. Left chest-wall resection and subtotal pericardectomy were performed. 

An ultrasonic flow probe was placed around the ascending aorta (Transonic® 

Flow probe, Transonic Systems Inc., NY, USA). A high fidelity  microtip pressure catheter 

with two pressure sensors (Pressure Mikro-Tip®, Millar instruments Inc., Houston, USA) 

was inserted in the left ventricle and proximal aorta through an incision at the apex of the 
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heart. An 18 Gauge catheter was inserted in the left atrium and connected to a fluid filled 

pressure transducer. Four 2 mm ultrasonic crystals (SonometricsCorp., London, 

Canada) were implanted in the epicardium to measure the major and minor axis of the 

left ventricle. The minor axis is defined between the left anterior descending coronary 

artery  and the left posterior descending coronary  artery, distal to the coronary sinus. The 

minor axis was also used as a measurement for the anteroposterior diameter of the 

annulus. Descending aorta was dissected and a curved vascular clamp was pre-placed 

for aortic banding. The brachiocephalic trunk was dissected and a Rummel tourniquet 

was pre-placed. The caudal vena cava was exposed and a Rummel tourniquet was 

placed. 

ii. Induction of acute functional mitral regurgitation with aortic banding

Aortic banding was induced with complete occlusion of the descending aorta and 

partial occlusion of the brachiocephalic trunk until an aortic blood flow of 0.8 L.min-1 was 

reached. To be able to repeat the occlusion and the degree of aortic banding between 

the device “on” and “off” only the aortic clamp was released and replaced when needed.

iii. Application of the external device

An external device (Figure 6.1 and 6.2) was pre-placed on the epicardium with 

four mattress sutures mounted on Rummel tourniquet. The device was positionned on 

the left ventricle to have the two pads pushing on the papillary  muscle in an apico-basal 

direction toward the center of the annulus. Then four mattress sutures mounted on 

Rummel tourniquet were placed to stabilized the device in the desire position. Two 

proximal mattress sutures were placed close to the annulus sparing the coronary 

arteries and two sutures were also placed close to the apex. None of the sutures were 

interfering with coronary  arteries. The crossbar was then placed to connect the two 

vertical legs of the device. Sutures were maintained loose for the recording of data with 
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the device “off”. The sutures were tightened to apply  the device for the recording of the 

data with the device “on”. 

Figure 6.1: Epicardial device. a: one vertical leg with annular and apical fixation points 
(white arrows) to place mattress sutures, the pad is position at the level of the papillary 
muscles. b: The connecting bar has been placed between the two vertical legs to 
complete the device.

Figure 6.2: The device was placed to have the two pads pushing on the papillary 
muscles in an apicobasal direction toward the center of the annulus (blue arrows). The 
four sutures holding the device on the epicardium (white arrows) were maintained loose 
for the recording of data with the device “off”. The sutures were tightened to apply  the 
device for the recording of the data with the device “on”.
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iv. Data acquisition

Data were recorded by  a data acquisition system (Sonolab and Sonosoft, 

SonometricsCorp., London, Canada). Data were recoded at baseline, after induction of 

aortic banding with the device “on” or “off” according to the protocol one or two (Figure 

2.3). In half of the sheep, data were first recoded with device “on” and in the other half 

the data were recoded with the device “off” first. Data was collected for at least three 

minutes until the left atrial, left ventricular pressure, and aortic flow were stable. Then 

only, aortic clamp was released for five minutes and after return to baseline value for left 

ventricular pressure and aortic flow. The experiment was repeated with either the device 

on or off according to the protocol (Figure 6.3). At baseline the vena cava was gradually 

occluded in order to calculate EDPVR (End-Diastolic Pressure Volume Relationship) and 

ESPVR (End-Systolic Pressure Volume Relationship) by  linear regression. At the end of 

the experiment, the animals were euthanized by  injection of 20 mL of pentobarbital IV. 

The hearts were harvested during necropsy in order to verify  the positioning of the 

device.

Figure 6.3: Data were recorded at baseline, after induction of aortic banding with the 
device “on” or “off” according to the protocol. In half of the sheep, data were first 
recorded with device “on” and in the other half the data were recoded with the device 
“off” first. Data was collected for at least 3 min until the left atrial, left ventricular 
pressures, and aortic flow were stable 
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 Data were later analyzed by  data analysis software (Cardiosoft, 

SonometricsCorp., London, Canada). The heart rate was calculated based on the 

recorded electrocardiogram. End-Systolic Left Ventricular Pressure (ESLVP), End-

Diastolic Left Ventricular Pressure (EDLVP), Aortic Diastolic Pressure (ADP), Aortic 

Systolic Pressure (ASP) and Mean Aortic Pressure (MAP) were recorded with the Millar 

catheter. Mean Left Atrial Pressure (MLAP) was recorded through the 18 Gauge atrial 

catheter. Aortic Blood Flow was recorded via the aortic ultrasonic flow probe. End-

Diastolic Left Ventricular Volume (EDLVV) and End-Systolic Left Ventricular Volume 

(ESLVV) were calculated based on the ultrasonic crystals calculations using an ellipsoid 

model. We used the minor axis of the left ventricle to measure the anterior-posterior 

annulus diameter. The first derivative of left ventricle pressure curve against time was 

used to determine dP/dt max and dP/dt min. The first derivative of left ventricle volume 

curve against time was used to determine dV/dt min. External work (EW) of the left 

ventricle was the area of the Pressure-Volume loop. Left ventricle Stroke Volume (SV) 

was calculated based on the difference between End-Diastolic Left Ventricular Volume 

and End-Systolic Left Ventricular Volume. Aortic Stroke Volume (ASV) was obtained by 

dividing the mean aortic blood flow by  the heart rate. Mitral Regurgitant Volume was then 

defined as: MRV=SV-ASV. Passive diastolic left ventricular stiffness was defined as the 

β index in the relationship LVP=b0+b1*exp(β*LVV).  The left ventricular exponential time 

constant of isovolumic relaxation τ was calculated by  performing a linear regression of 

dP/dT versus Left Ventricular Pressure (P):  dP/dT= (-1/τ)*P.

v. Statistical analysis

 The data was analyzed using a statistical software (JMP, SAS Institute Inc, Cary, 

USA). Hemodynamic parameters with device on and off were compared between 

protocol 1 and 2 with a paired-t test. Hemodynamic parameters (baseline vs aortic 
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banding, and device “on” vs “off” during aortic banding) were compared with a paired-t 

test. The level of significance was set at p<0.05.

3. Results

Seven adult sheep weighting from 55 to 75 kg were studied. Hemodynamic 

parameters collected at baseline are reported in Table 6.1.

Table 6.1: HR: Heart Rate, EDLVP: End-Diastolic Left Ventricular Pressure, ESLVP: End-
Systolic Left Ventricular Pressure, MLAP: Mean Left Atrial Pressure, ADP: Aortic 
Diastolic Pressure, ASP: Aortic Systolic Pressure, MAP: Mean Aortic Pressure, ABF: 
Aortic Blood Flow, EDLVV: End Diastolic Left Ventricular Volume, ESLVV: End Systolic 
Left Ventricular Volume, DAP ann D: Diameter Antero-Posterior annulus during Diastole, 
DAP ann S: Diameter Antero-Posterior annulus during Systole, SV: Left ventricular 
Stroke Volume, ASV: Aortic Stroke Volume, dP/dt max: mean maximum value of the first 
derivative of left ventricular pressure against time, Ew: External work of the left ventricle, 
β: Passive diastolic left ventricular stiffness.
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Parameter Baseline

HR (bpm) 88 ± 12

EDLVP (mm Hg) 16.1 ± 3.4
ESLVP (mm Hg) 105.1 ± 6.3
MLAP (mm Hg) 9.7 ± 5.8
ADP (mm Hg) 92.1 ± 8.3
ASP (mm Hg) 106.0 ± 7.5
MAP (mm Hg) 96.7 ± 7.9
ABF (L/min) 4.4 ± 0.8
EDLVV (ml) 235.9 ± 49
ESLVV (ml) 185.9 ± 41.9
DAP ann D (mm) 74.6 ± 7.8
DAP ann S (mm) 68.7 ± 7.4
SV (ml) 50.0 ± 8.6
ASV (ml) 50.6 ± 8.3
dP/dt max  (mmHg.sec-1) 1035 ± 154
EW (ml.mmHg) 4060 ± 1175
β (ml-1) 0.09 ± 0.09



i. Induction of mitral regurgitation with aortic banding

Aortic banding increased (p<0.001) left ventricular end systolic pressure from 

105.1 ± 6.3 to 205.2 ± 19.5 mmHg. End diastolic pressure increased (p<0.001) from 16.1 

± 3.4 to 46.4 ± 6.6 mmHg (Figure 6.4). Index of left ventricular contractility, dP/dt max 

increased (p=0.007) from 1035.40 ± 154 to 1605.10 ± 698 mmHg.s-1. End-diastolic left 

ventricular volume was not different (p=0.185) before (235.9 ± 49 ml) and after (241.9 ± 

52.5 ml) aortic banding. End-systolic left ventricular volume increased (p<0.001) from 

185.9 ± 41.9 to 219.6 ± 44.0 ml. The anterior-posterior annulus diameter increased from 

Figure 6.4: Pressure-Volume loops at baseline (a) and during aortic banding without the 
device (b) and with the device (c). ESPVR: End-Systolic Pressure-Volume Relationship 
at baseline conditions. EDPVR: End-Diastolic Pressure-Volume Relationship  at baseline 
conditions. Each curve represents the mean trace of ten cardiac cycles with the heart in 
stable hemodynamic conditions.
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74.6 ± 7.8 to 75.9 ± 7.8 mm during diastole (p=0.031) and from 68.7 ± 7.4 to 73.0 ± 7.3 

mm during systole (p<0.001). Mechanical work decreased from 4060.0 ± 1175.0 to 

2563.0 ± 1642.0 mL.mmHg (p=0.041). Left ventricular stroke volume decreased 

(p<0.001) from 50.0 ± 8.6 to 22.3 ± 12.4 mL. Aortic blood flow  decreased (p<0.001) from 

4.4 ± 0.8 to 0.7 ± 0.6 L.min-1. Acute functional mitral regurgitant flow was 14.4 ± 5.4 mL 

after aortic banding (Figure 6.5). Passive left ventricular stiffness increased (p=0.004) 

from 0.10 ± 0.08 to 0.92 ± 0.5 mL-1.

 ii. Effect of the external device

Hemodynamic data were not significantly different between protocol 1 and 

protocol 2 (Table 6.2), therefore all data was pooled for further statistical analysis.

Hemodynamic parameters collected after application of the device are reported 

in Table 6.3, and Figure 6.4. Application of the device decreased (p=0.014) left 

ventricular stroke volume from 22.3 ± 12.4 mL to 18.6 ± 10.3 mL during aortic banding. 

Aortic stroke volume was not different (p=0.157) before (7.0 ±7.4 mL) and after (9.5 ± 

6.5 mL) application of the external device. 

Figure 6.5: Effect of the external device on mitral regurgitant volume during aortic 
banding.

65



Left ventricular end-diastolic volume decreased (p=0.044) from 241.5 ± 52.5 to 

227.6 ± 46.5 mL. The external device decreased (p=0.001) acute functional mitral 

regurgitant flow from 14.4 ± 5.4 mL to 7.7 ± 5.2 mL (Figure 6.5). The anteroposterior 

diameter of the mitral annulus was not different in diastole (p=0.075) and in systole 

(p=0.080) after application of the device.

Table 6.2: HR: Heart Rate, EDLVP: End-Diastolic Left Ventricular Pressure, ESLVP: End-
Systolic Left Ventricular Pressure, MLAP: Mean Left Atrial Pressure, ADP: Aortic 
Diastolic Pressure, ASP: Aortic Systolic Pressure, MAP: Mean Aortic Pressure, ABF: 
Aortic Blood Flow , EDLVV: End-Diastolic Left Ventricular Volume, ESLVV: End-Sytolic 
Left Ventricular Volume, SV: Stroke Volume, ASV: Aortic Stroke Volume, dP/dt max: 
mean maximum value of the first derivative of left ventricular pressure against time, EW: 
External Work, β: Passive diastolic left ventricular stiffness, τ : isovolumetric relaxation 
time constant.
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Parameters Protocol 1 Protocol 2 P Value
HR (bpm) 121 ± 13 101 ± 15 0.381
EDLVP (mmHg) 47.1 ± 3.6 45.5 ± 4.2 0.794
ESLVP (mmHg) 207.7 ± 10.5 201.9 ± 12.2 0.737
MLAP (mmHg) 53.8 ± 6.7 43.9 ± 6.8 0.354
ADP (mmHg) 147.3 ± 9.7 130.8 ± 11.2 0.317
ASP (mmHg) 210.1 ± 9.8 202.0 ± 11.3 0.609
MAP (mmHg) 168.2 ± 8.9 154.5 ± 10.3 0.362
ABF (L.min -1) 0.5 ± 0.3 1.0 ± 0.3 0.234
EDLVV (mL) 226.9 ± 26.9 261.8 ± 31.0 0.434
ESLVV (mL) 209.2 ± 23.0 233.5 ± 26.6 0.519
SV (mL) 17.7 ± 6.1 28.3 ± 7.0 0.304
ASV (mL) 3.8 ± 3.4 11.3 ± 3.9 0.209
dP/dt max (mmHg.sec-1) 1843 ± 346 1288 ± 399 0.341
dP/dt min (mmHg.sec-1) -1352 ± 407 -1408 ± 235 0.840
dV/dt max (mL.sec-1) 368 ± 163 221 ± 101 0.196
EW (mL.mmHg) 1776 ± 721 3612 ± 833 0.156
β (ml-1) 0.97 ± 0.28 0.84 ± 0.32 0.770
τ (sec-1) 0.063 ± 0.020 0.066 ± 0.009 0.781



Passive left ventricular stiffness (β) increased (p=0.044) from 0.92 ± 0.5 to 1.18 ± 

0.59 mL-1 after application of the device during aortic banding. Other parameters of 

diastolic function were not affected by the placement of the device (Table 6.3).

Table 6.3: HR: Heart Rate, EDLVP: End-Diastolic Left Ventricular Pressure, ESLVP: End-
Systolic Left Ventricular Pressure, MLAP: Mean Left Atrial Pressure, ADP: Aortic 
Diastolic Pressure, ASP: Aortic Systolic Pressure, MAP: Mean Aortic Pressure, ABF: 
Aortic Blood Flow, EDLVV: End-Diastolic Left Ventricular Volume, ESLVV: End-Sytolic 
Left Ventricular Volume, DAP ann D: Diameter Antero-Posterior annulus during Diastole, 
DAP ann S: Diameter Antero-Posterior annulus during Systole, SV: Left ventricular 
Stroke Volume, ASV: Aortic Stroke Volume, dP/dt max: Mean maximum value of the first 
derivative of left ventricular pressure against time, EW: External work, β: Passive 
diastolic left ventricular stiffness, dP/dt min: Mean minimal value of the first derivative of 
left ventricular pressure against time, dV/dt max: Mean minimal value of the first 
derivative of left ventricular volume against time, or diastolic filling rate, τ : Active 
relaxation time index.
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Parameters Device OFF Device ON P Value
HR (bpm) 112 ± 26 108 ± 20 0.618
EDLVP (mmHg) 46.4 ± 6.6 50.2 ± 19.8 0.570
ESLVP (mmHg) 205.2 ± 19.5 202.8 ± 19.5 0.611
MLAP (mmHg) 48.8 ± 11.7 46.9 ± 13.9 0.537
ADP (mmHg) 140.2 ± 19.7 134.1 ± 14.2 0.108
ASP (mmHg) 207.6 ± 20.0 204.6 ± 17.8 0.300
MAP (mmHg) 162.4 ± 17.8 156.6 ± 11.3 0.137
ABF (L.min -1) 0.7 ± 0.6 1.0 ± 0.8 0.193
EDLVV (mL) 241.5 ± 52.5 227.6 ± 46.5 0.044
ESLVV (mL) 219.6 ± 44.0 208.8 ± 38.5 0.090
DAP ann D (mm) 75.9 ± 7.8 75.5 ± 7.6 0.075
DAP ann S (mm) 73.0 ± 7.3 72.5 ± 7.3 0.080
SV (mL) 22.3 ± 12.4 18.6 ± 10.3 0.014
ASV (mL) 7.0 ± 7.4 9.5 ± 6.5 0.157
dP/dt max (mmHg.sec-1) 1605 ± 698 1533 ± 327 0.689
dP/dt min (mmHg.sec-1) -1376.3 ± 319.7 -1363.40 ± 353.5 0.898
dV/dt max (mL.sec-1) 283.6 ± 141.7 276.8 ± 160.8 0.640
EW (mL.mmHg) 2563 ± 1642 2086 ± 1146 0.065
β (ml-1) 0.92 ± 0.51 1.18 ± 0.59 0.044
τ  (sec-1) 0.066 ± 0.024 0.064 ± 0.015 0.823



4. Discussion

Application of an epicardial device significantly  reduced acute functional mitral 

regurgitation without affecting the anterioposterior annulus diameter and without 

inducing diastolic dysfunction. The augmentation of passive left ventricular stiffness did 

not affect the hemodynamic parameters in this animal model of functional mitral 

regurgitation. This device was applied on the epicardium without cardiopulmonary 

bypass. None of the components of the device were in direct contact with blood, which 

should limit the risk of thromboembolism.

Mitral regurgitation volume was reduced by  46.5%, with the application of the 

epicardial device. The Coapsys device reduced mitral regurgitation by  75%18 and 

chordal cutting restored the baseline mitral regurgitation volume.19 The epicardial device 

did not completely  correct the functional mitral regurgitation for several reasons. This 

device works by  applying pressure at the base of the papillary  toward the annulus. Since 

our model was associated with an increased passive left ventricular stiffness, this 

increased stiffening more likely  interfered with the effect of our device. This model was 

chosen because it was an acute model of functional mitral valve regurgitation with left 

ventricular dilatation and no anatomical modification of the mitral valve apparatus. 

Messas et al.19 and Fukamachi et al.18 used chronic models of left ventricular dilation 

with either coronary  embolization or fast pacing, which are both associated with severe 

dilation of the left ventricular wall and increased compliance. With a more compliant 

ventricle the effect of the device should be improved because it should be able to move 

the papillary muscle more toward the annulus and reduce the tethering on the leaflets.

Positioning of the device is an important factor to optimize its effect. In this study 

we used external landmark like coronary  arteries to decide how to place the device.  In 
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the future, echocardiography would be a better tool to optimize the placement of the 

device. Undersized annuloplasty  has been shown to significantly reduce mitral 

regurgitation.20 However, while undersized annuloplasty can correct the mitral valve 

regurgitation and improves the geometry  of the left ventricle, this technique does not 

address the tethering of the papillary  muscle. Annuloplasty decreases the 

anteroposterior annulus diameter, which increases the tethering from the posterior 

papillary muscle. This epicardial device may be combined with a left ventricular annular 

procedure.9,10,21

Left ventricular remodeling after an ischemic event is mainly  characterized by 

annular dilation, tethering of the papillary  muscles and ventricular dysfunction.22,23 

Tethering of the papillary  muscle has been proposed as the most important parameter 

for the development of FMR.4,22 Functional mitral valve regurgitation was corrected in 

this experiment without affecting myocardial function or mitral valve annulus. Since the 

left ventricular end diastolic volume was significantly reduced after placement of the 

device, the papillary  apparatus was more likely  remodeled. The tethering of the mitral 

valve leaflet was corrected by  pushing the papillary  muscles toward the mitral valve 

leaflets.

Application of the epicardial device to the left ventricle did not interfere with 

diastolic function. Tau, diastolic filing rate and EDLVP were not significantly  modified by 

the application of the epicardial device. Since the device is a rigid structure, its 

application increased passive left ventricular stiffness. Two sutures were placed on the 

anterior and posterior aspect of the mitral valve annulus. Two other sutures were at the 

apex of the left ventricle. As the device was maintained to the myocardium with four 

sutures and since the two arms of the device are only  coupled by  one transverse bar, the 

device did not interfere with the motion of the left ventricular free wall during diastole. 
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Furthermore, the motion of the left ventricular free wall was not limited because the 

device was applying pressure on two focal points in regard of the papillary  muscles. 

Therefore, the left ventricular end diastolic volume was reduced while the left ventricular 

end diastolic pressure, dp/dt min, and diastolic filling rate were not affected.  

In this study, supravalvular acute aortic stenosis induced functional mitral 

regurgitation without interfering with myocardial function. Acute augmentation of 

afterload resulted in a severe augmentation of left ventricular pressures, and dilation of 

the mitral annulus. This model induced an acute functional mitral valve regurgitation 

without modifying the anatomy of the mitral valve apparatus.

One limitation of our study is that we tested our device in an acute model of 

functional mitral valve regurgitation induced by  an acute increase in afterload. The model 

induced a significant mitral regurgitation with an augmentation of the diameter of the 

annulus.  However the model resulted in a significant augmentation of the left ventricular 

stiffness. In a more realistic chronic model of myocardial ischemia the stiffness of the left 

ventricle would have been decreased. Therefore, the effect would have been more 

important as the device works by  pushing the papillary  muscle toward the annulus. 

However, a diastolic dysfunction might have been induced because the device might 

have then interfered with the passive relaxation.

5. Conclusion

Application of an epicardial device designed to displace the papillary  muscles 

decreases functional mitral valve regurgitation without interfering with diastolic function. 

Decreased papillary  muscle tethering was the likely  mechanism for correction of 

functional mitral regurgitation based on a decrease in end-diastolic volume and no 

change in anteroposterior diameter of the mitral annulus. This study  did not allow 
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determination of whether the device is better suited to prevent or treat functional mitral 

valve regurgitation. This device needs to be tested with a chronic model of functional 

mitral regurgitation and dilation of the left ventricle. If an epicardial strategy  for correction 

of functional mitral regurgitation proves effective, less invasive methods for device 

application can be envisioned.
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