ANALYTICAL STUDY CI' THE MECEANICS COF

FOR TWO-DIMENSIONAL JET

by

Lucien Duckstein,
Yuichi Iwagaki,
George L. Smith,
and
Maurice L. Albertson

Freypared for
U. S. Bureau of rublic Roads
Under Contract #CIR11-550L

Englneering Reseorch
Colorado State University
Fort Collins, Colorad

April 8, 1960 CERGOGLS 12

LT

Ula4Dl 0592279




ACKNOWLEDGMEITS

The analyticcl study of the uechanics of scour for both the three-

dimensional and two dimcnsional Jjet wos made at Colorzdc State University

sponsorshir of the U. S. Bureau of Fublic Roeds. The permission
of Mr. Carl Izzaxd, Chief of the Division of Hydrawlic Research, U. C.
Bureau of Fublic Rocds, to present these lies is grateft acknow-
ledged. The also wish to thani: lr. Eric Flate for his revi
criticism, and assisto clarification of the basic theory
concert iner ar ( i1 I'¢ i scour
sition; anc te R nambe i Acting Dean and Chief,
Research, Colorado Stote University for his encouragemen

of this report.




CONTENTS

ACKNOWLEDGMELTS

LIST OF SI1BCLS

LIST OF FIGURES

ABSTRACT

INTRODUCTIOH

EQUATION OF CONTTIUITY OF MASS SEDIMTIT TRANSPORT

IMEINGEMENTY OF A TWO-DIMENSIONAL JET OF IDEAL FLUID ON
NORMAL, ILAINE BED

IMFITIGEZOTT A IION-SUBMERGED, T0-DIIIIISIONAL JZT OF
E‘LUID Oid' [L LJE BED * e s e o e o

IDMFINGEMENT OF A SUBMERGED, TWO-DIMIIISION
FLUID O A IIORMAL, ELAINE BED o o +

DEINGEMEIT OF A NON-SUBMERGED, TWO-DINZIISIONAL, VERTICAL
J 2
i

JET OF REAL FLUID O AN ERODIDLE BED v v v v o o o o »

IMIINGEMEIL OF A SUBMERGED, TWO-DIMIIISIONAL VEKTICAL JET
OF REAL FLUID Ol AN ERODIBLE BED & &+ o « o o o o o &«

IMEINGEMEIYY OF A TiC-DINMENS IONAL, TICLIIZD JET OF REAL
FLUID Gi{ Al ZRODIELE RBE . o

SUIMMARY AI7D CONCLUSICINS

oo YT YT
EFERENCES ¢ ¢ o o o o




Defipition

Coefficient of proportionality vetwsen
U and X or V and 2Z.

Function defined by Eq 80.
Function defined by Eq 81.

Ratlo of momentum thickness of boundary
layer to thickness of boundary layer o .

Constant in sediment transport equation.
Function of time having positive value.

Tailwater depth or height of outlet from
normel boundery or simulated stream bed.

b/sin 6.

Ratio of displacement thickness of boundary
layer to thickness of boundary layer O.

Width of two-dimensional jet'at outlet or
tallwater surface.

Function of time having positive value.
Function of time having positive value.
Integral constants.

Constent.

Function defined by Eq 1ll2.

Function defined by Eq 113.

Diameter of three-dimensional jet at outlet
or tailwater surface.

Mean diameter of sediment particle.

Function defined by Eq 82.

Function defined by Eq 83.




SYMBOLS (cont'd)

Definition
Function.dcefined by
Function defined by E
Accelerction due to gravity.

Thiclkness of deflected jet in case of ideal
fluid.

Constant, 0.0225 for smooth boundary end
m' = 1/7.

Function defined b7 Eg 58.

Exponent in sediment transport equation.
Exponent in power-law velocitly distribution.
Constant.

Coordinate point relative to X, 2 axis.
Coordinate peint relative tc X, Z axis.

Exponent defined by 2z'/(1+m') and equal to
1/4 for m' = 1/7.

Fressurc intensity at a roint.
Fressurc at the point of stagnation.
Function defined by Eq 1L7.

Derivative of F with respect to (X/b).

/ a ~
Ft3/SCC/Ft Mass rote of sediment transport per wnit width.

Function defined by Eq 176.

Derivative of @ with respect to (X/b).
Radial coordinate parallel to normal boundary
Function defined by Eq T7.

Derivative of R with respect to (%/b).




SYMBOLS (cont'd)

Reynolds number of the flow.
Ratio Z/5.

Function defined by Eq 109.

Derivative of S with respect to (/).

Time.
Time when Zg = 0.92 Zgow

Velocity in the boundary layer.

Horizontal component of velocity of deflected
Jet at a point in ideal fluid.

Horizontel component of velocity of dzflected
Jet at 2 point N in Fig. 7.

Horizontal component of velocity at o point
for casce of viscous flow elong X-axds.

Shear velocity.
Critical shecaxr velocity.

Vertical component of velocity at a2 point
in ideal fluid.

Value of V at Z = 0.

Vertical component of jet velocity at outlet
or teilwater surface.

Maxiinez velocity et centerline of jJet.
Value of V, at 2 =0

m

Velocity component of inclined jet at a
point.

Value of V' at outlet or tailwater surface.

Value of V! at Z = b.




SYMBOLS (cont'd)

Definition

Masdmum velocity of Jet at centerline of
inclined Jet.

Value of Vp corresponding to a point
along the X-axis.

Value of Vi, at Z=b and X =0
Vertical component of velocity for three-
dirmensional jet at outlet or tailwater

surface.

Maxirnm velocity at center of three-
dimensional jet.

Horizontal ccordinate parallel to normal
boundary or simulated alluvial stream bed.

X corresponding to a certain value of the
integral constant.

Horizontal coordinate from centerline of
inclined jet.

Vertical coordinate perpendicular to
deflecting boundary or bed level.

Distance from bed level, perallel to
center line of inclined jet.

Vertical distances from
M and N in Fig. 7.

Depth of scour (25 = -Z).

Final depth of scour.

Inclined value of Zg.

Inclined value of Zgo.-

Constants in the expression which charac-
terizes the velocity function at every
gection within the diffusion region of a

et issuine from a non-submerged outlet.
(]

Value of ¢, B for the case of a subnmerged
outlet. ;




SYMBOLS (cont'd)

Definition

Coefficient in equation for boundary layer
thickness for ideal flow.

Coefficient in equation for boundary layer
thickxness for viscous flow

Thicimess of boundary leyer.
5/X.

Function express

vet Z=0.

Derivative of . with

Function defined by

Porosity of sediment.
Kinematic viscosity of water.

Angle of Jet wit
surface.
L

2 2;
[ =4
Lb-sec /ft 1 dinent =~ specific gravity

Lb-scce/ft
2

Lb/ft Intensity of shear.
2

/ -
Lb/ft Intensity of shear along boundery or
simulated zlluvial stream bed.

5 T8 ; ;
Lb/Tt Critical intensity of shecar.

Function de v Eq T9.
Function
Function defined by

Function defined by




SYMBOLS (cont'd)

Definition
Function defined by Eq 123.
Function defined by Eq 159.

Function defined by Eq 171.
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near coordinate system the equation of continuity
is derived, and the continuity equation is used
to help in describing mathematicelly the phenomenon of scour by the con-
tinuity equation. The relationship between the shape of the scour hole
and its variation with time is investigeted for different conditions of
scour and deposition. Expressions for distribution of sediment transyort
along the ted are derived for each condition.

The impingenent of a two-dimensional jet on a normel boundary is
analyzed by naling the assumption that the Bernoulli Equation is valid in
the neighborhocd of the stadnation point. Plane, potential flow is con-
sidered first, followed by flow of a fluid with viscosity. flox with
viscosity from submerged and non-submerged outlets, expressions for the

horizontal velocity and shear distribution along the boundary are cdevelopec

<

using Bernoulli's theorem and the boundary layer theory.

The variation of the depth of scour 1s determined for two conditions

of outlets by assuning a law of open channel flow for sediment transpor-
tation and by ng the previously determined shear distributions cnd the
continuity equation. In particular, the variation of scour depth with
respect to time and the final depth of scour arc descrived theoretically
in terms of dimensionless paramcters. It is then shown that the develop-
ment of the scowr hole with resprect to time follows the power law and the
logarithmic law for the subnierged and n ged outlets respectively

before the fincl state is reached.




lyzed in the same manner
as in the case of & vertical jet. In this cace, expressions for the voria-
tions of the derth of scour with respect to time and the final depth of

scour are also cdeveloned

INTRODUCTION
Various aspects of the phenomena of scour has concerned engineers

since the advent of the construction of hydraulic structures in or ncar

“alluvial waterways. Classical studies on scour and scour ccntrol include

'

those of Rouse (1)*, Doddiah (2), Thomas (3), Hallmerk (L&), Albertson (5),

and Smith (8) to namc a few. However, these investigations were concerned

with only individuzl facets of the phenomena.

L

In 1957, Dr. Yuichi Iwagaki, Kyoto University, Kyoto, Japan, came to

Colorado State University as o visiting professor in hydrawlies. Because
of his interest in c ¥ ge of scour in alluvial material, M. L.
Albertson s 2 ! Dr. Iwegaki study the theoretical aspects of scour
caused by a v from the viewpoint of the continuity, momentun,
and energy equations.

In developing the theory, Dr. Iwogeld made use of the Bernoulli
theoren, exyerirn _and theoretical s i by & i ing Truclien-
brodt (7), and Truckenbrodt {8) of a jet deflecti normal boundary,

experimental anc theoreticel studies by Albert end others (9

/) on the
diffusion of & submerzed jet, and of the scdiment transport ion
develored by Brown and Laursen (10). Iwegaki's developmental wori: was
based largely on the fundamental ideas put forth by Shields (11), Kalin-

ske (12), and Exmer (13). Concurrently with the development of the

three-dimensional theory, L. Duckstein, under the supervision of

*lumbers refer to erpended references
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Iwagaki's theory, e mere comprehensive fundamental study on the dynormics

]

of a jJet of air impinging upon & normal, smooth boundary was initiated

under sponsorship of the Nationzl Science Foundation.

At this time, the exyerimental equirment for the National Science

Foundation supported study has been constructed and tested. The primerxy

oojJectives of the first phase of this resecarch jrogram are, for given
fluid cheracterisiics and boundary georctry, os follows:

1. To measure, for a rre-determined range of flow characteristics,
tie shear stress, velocity rrofile, and rate o
nonentw: clong a hydraulically smooth boundary.

2. To measwre, for a pre-determined range of flow cheracteristics,

the sheor stiress, velocity jrofile, end rate of chanze of

memeatw: elong en ertificially-roughened boundery, where the
tatistical nature.

rougiviess is of a randon or s

UATION OF COITINUTYY FCR SEDIMENT TRACFCRY':

~ -~y T - 3
Thecretical Develo
e x -
nass sediment trans:iort,

- “-vnv‘:"‘*'*‘ 1 13rn I og 1 o 3 1 3

<nllnitesimal clement AA'B'B, Fig. 1, defined Ly lines AA' ond 3'B and
mae AT .3 7 SSp— SR AL ) nn : 34

lines A'2' and A3 oy ve considered. e quantity of sediment trans-
vt = = A o o ' _ % A ¥ 4 ’

rorted tarougn tiie scection 2T unit widih rer unit of time is

o . » ~ 5
and through scction A'Z (See Fi
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in which q is the nass rate of sediment transport per unit width from
Z2=0 to Z =2x,
The difference between these quantities is equal to

o
5.?(‘1 ax (1)

The quantity of scdiment scoured by the jet per unit of time can be expressed

by
- 5%. (z a®) (1 -2) (1) (2)

in which M is the porosity cf the sediment.
The equation of continuity of mass sediment transport in rectilinear coordi-

nates is obtained by equating the quontities given by Egs 1 end 2, that is,

- b 4%”=
(1 x)ﬁ(zm 5= 1K =0

7 .
(L-2M)2+=2=0 (3)

’
i

This equation has been given by Exner (13) and Iwegoxi (15)

Conditions of Application of the Continuity E

quution - The relation

between the shepe of the scour hole and the distribution of the scowred
sediment will now be considered for the following conditions of scour end
derosition.
1. The condition of 32/dt = 0 (No scour).
this condition Eq 3 becomes

Oqg _
3%

Integration of Eq 4 gives

G = &1

in which is the integxral constant.

s |

6=




The condition of 0Z/0t = - ¢ (t), ¢ > 0 (Uniform scour).

Fron Eq 3

or .= (1 -A) X + cH (6)

in which ¢, 1is the integral constant.
The condition of 32/t = ¢ (t), ¢ > 0 (Uniform deposition).

/ Ps

his condition is obtained by changing the

in which
The con

(Lincer scour).

From Eq 3

Integrating Eq & yl

in which c),
The condition of 927/

cquation for this condition is the
of lincar scour defined by Eq .

CcasSc.

of unifor: scour, linear scour,

or X £ X, (Uaiform scow).

92/ 9t = - (A} - BJX) for X_ < X < Ay/3; (Lincar scour).




/¥t = ByX - A3 for X > A;3By (Linear deposition).

Tone expressions giving

Qs
g = (1 - A)(A3x
e
lated in 1 through 6

Figs. 2, 3, 4, 5, and 6.

Ug
(1 - \) cxX +

istribution of sedinment
are

The

follows:

transport for conditions
illustrated schematically in

irection of sediment novenent

is in tre direction of the arrow on each figure.

£ 4,

Limitations of Application

of the Continuity Equation - The foregolng

methematicel anclysis Les considered both the physicelly possible and the

physically

Therefore, it

1:
-
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inconing flow. Due to the finite
introduced at a single point.

Fal

of stagnation, the scdirent dis-

the velocity is zero.




Fig. 2 Distribution of g4 1in the case of no scour

Fig. 3 Distridution cf 9s 1in the case of wiform scour

case of uniform deyposition
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+
v

Second, since the constant of integration denotes the initiul sedimen
discharge, it can never beconme as 7 ¢ he jet is impinging on
the boundary. Therefore, all of the foregoing cases in which the direction
of sediment novcment is toward the oirigi ¢, = 0, are not relevant to
the analysis of this rerport.

A

Third, the sediment discharge cannot chenge sign. That is, as shown

in Fig. b for the casez ¢, > 0, only tict quantit: of sedinent contained
< B ) v

by the flow can be depositad. 0, if the initial discharge
¥ < b &

1

sediment can leposi : less sediment has beesn scours

neer the origin.

IMFINGEMELT OF A TWO-DIMENSIOHAL JET OF IDEAL FLUID ON A IORMAL, FLANE BED

——_‘—/ = —
! t -

7777 T YT
h Z,

ig. T Schematic drawing of tha imringement of a two-dimensional jet
of ideal fluid on & normal, plane bed

.,




Ideal Fluid - The impingenment of a two-dimensional Jet on & non-erodible
bed covered by o teilwater of depth b 1s considered for the case of ideal
flow, that is, flow without diffusion or boundary shear (See Fig.

For this casec, the Bernoulli Equation applied between points

in Fig. 7 gives
Yo
2g

2
# g+ (b= Zy) = +Ige(D =2y

in which Vo is the velocity component of the jet at a distance
the bed and Uy 1 he horizontel velocity component of the deflecte
at a point N located at a great distance from the stagnation point
at & distaace Zj from the bad.
Bernoculli's ecquution shows that

Vo = Uo

e I 4

From the continuity equation of water nmass
V3, = 2 Uy
and Eq 11, the following relation for the thickness of the deflected
h 1is derivca:
= 30/2 (13)
is valid only in the region where the stresamlinces are

perallel to the bed.

The flow within the stagnation region can be approximated by two-
dimensional, potentiacl flow with stagnction. TFor this flow, the verticsal

and horizontal velocity components V ond U can be exgrassed according t:

Senlichting (06), by




For ideal flov,

bad where the

Bq 15 expressas the velocity distribution necs e stegnation point.

3 $ o~ 4}~ L o 1 « e Y Ao 3 : ~ ~ 17
it is assumed thot there is o smooth transition betwean the Uwd cases,

then the velocity distribution along the bed would be o

Distribution of the velocity compoaent




IMPINGEMENT OF A NON-CUUBMERGED, TWO-DIMEIISIONAL JET OF REAL FLUID ON A

FLANE BED.

1
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Boundary Layer: Laminar Flow - For an analysis of the develorment

of the laminar boundary layer use will be made of the results of th
experimental study made by L. Howarth (17), who, from en analysis of his

experimental datey determined the following relationship

d (u/u)
a (Ve /v 2) .

in which u 1is the velocity in the laminer boundary layer, and v 1is
the kinenmatic viscosity.

Eq 17 can be rewri

By definition
To (x) =p vV (du/‘iz)z =0
Substituting th :pression for shear velocity
2]
U‘*- -
into Eq 19 gives
G o= v (aw/az), _ .,
and
substituting Eq 13 intc Eq 21 yield

Uf = 1.233 (22)
U = a2 X, Eq 22 i imensionless terms as follows:
= Fiis (23)
1
which shows that Uyx 1is proportional to the horizontal distance X2 in

the case of the laminar boundary layer.

Boundary Layer: Turbulent Flow - For an analysis of the turbulent

boundoary layer usc will be made of the results of the experimental study

B v \ 3 . . : .
made by Truckenbrodt (8), who deternined the following momentuwn equation

=15




for the boundary layer

1
1./p = 2 ls 021: w/U (1-u/U) as| + oy WU / (1-u/U)as

in which 1 u 1is the horizontal velocity component in the boundary

layer of thiclness as shown in Fig. 10.

Z

~—

ST 777/ LAA L AL

0

Fiz. 10 Boundary layer

~

Assurne that for o smooth boun nat the veloclty profile in the boundary
layer can be e:ress
(25)
and.the sneay velocity
‘fu‘:' = . (26)

in which

14

and -n ; hlen { o= 1/7.

Substituting the asswaptions of Eq 25 and 26 into Eq 2k gives

in which




Integrating Eqs

becones

v A8

I
AX Oy =~

L

\

As deternmined by Truckenbdbrodt (8),

3 =
h the value

~
-




The expression for the shear velocity is obtained by introducing the solution

given by Eq 35 into Zq 38 or

L8/5

which shows tha ' rrorortional to X

Eq 40 can be written in dimensionless form as follows:

S
Vv a

In sumery, the shear velocity Uy, for a smooth boundary, is

L/5

1/2 5 - <
/ for the case of 2 laminar boundory layer and X for

to X

a turbulent boundary layer.

Jet Diffusion - An analysis of jet diffusion for the case of flow from

a non-subnicrged outlet impinging on e plane bed covered by a tailwater sur-
face of depth b (Sce Fig. 9) has been nmede by Horme (12).

investigation wos for the three-dimensional case, it is assumed,

strated by Albertson and others (9), that the vertical velocity distribution
at any normal scction of the zone of flow is similar to that obtained experi-
nmentally by Horma. or the three-dimensional Jjet, Horme determined the

following rel

b -2
-0.109 (—=—-
9 ( d for Re < 2.5 x th
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/
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1
'
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e

b - Z,
-0.137 (/3 .
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diameter of the Jet,
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For the horizontal velocity distribution clong the bed, it is asswned that
Bernoulli's equation is appliceble elong the stagnation stream line. This

assumption gives
g (B + V3) + p + pgZ = p,

The horizontal veloclty component Uy along OX, where V and Z are
insignificant, is, according to Eq 49, given by the relstion

. 2
£ B =P, -7
By analogy with the results of Homaa's study, it 1s assumed that the pressur
distribution a2long the X - axis is given by the relation
2 x
»=5 V7 + pav

in which Vt is the value of V at Z = O for the free jet.

The stagnation pressure is given by

_ v 2 i
Py = g me * pgo

Subtracting Eq 51 from Eq 52 obtain
i g o2
P - P =5 (N~ - W) (53)

From Egs 50 and 53 an expression for Uy 1in dimensionless terms is obtained,

or 1
2

2 [ |

in which Vb/ V.., 1is determined from Eq 45, for 2 =0, as

o - ¢2 3 X} = ¢o

me "o b

Substituting Eq 55 into Eq 54 yields

1
9 3
.f.g.z (l - ¢02>
bm

-21-




Eq 56 shows that Uy—p Vi, as X—)00 and f,— 0. This result is not

valid since the lateral diffusion of the jet is not taken into consideration.

Nevertheless, Zq 55 is assumed to give a correct value for Ub/me in the

proximity of the stognation point, and will be used in the following section

in computing the Loundary layer thiciiness ond shear velocity.

Boundary Loyer Development and Shear Vdlocity - Eq 33 cen be written

as n+1 3 n+1
AXS*n—H;‘f‘A&* ,_\A+—)5*

dl

Eq 57 can be solved only when
deternined by an e:qression of the following type:

u

m
U, =c5 X (59)
which are constants.

L 1 i o 1in the relation given by Eq 56 is known,

Eq 57 can be solved by numerical integration.

Assuning L coastant, the solution of Eq 97 can be written as

(SN

which is in the sanme

The value of 7' 1s obtained by substi

] k ]

EER ey

7'
2 1+n
Eqs 60 and §1 give the value of the exgpression

-

layer thickness Oy = &/X.




An express ] ar

rewritten as

" Eq 60 into Eq &2 yields

n
=k7'-n ToX|" 1 +n

{ v

Thus, by introducing the value of Ub given by Eq 56 and the values 1/

1-

and 0.0225 for n and k resrpectively into Eq 63, one obtains for the

)

shear velocity U, the expression

9
2 » 10
=X =0.0225 7' ™| (1 -9¢,)
on

If the fuaction ¢o is known, the shear velocity distribution can ve

determined.

IMPINGEVMENT OF A OUBMERGED, TWO-DIMIIISIONAL Jml OF REAL ILUID O A NORMAL,
FLANE BED

X

T I

. G B i "
awing of impingement of a2 submerged, two-

of rcal fluid on a normal, plans bed

D




Diffusion of Subnerged Jet Before Impingement - According to the studs
— O ’s ) ()

—

by Albertson and others (9) on a-two-dimensional, submerged et without a
dcflectihg boundary, en expression for the distribution of the center-line
velocity Vm is given by

B
Y = 2.28 (0
Vo 0 - 2
and for the distridbution of longitudinel velocity V in zone of established
flow by X2

1 oy Bl mr———
1 Vv [b-2z|2 gl‘(b-z)2
S - -
2.20 Vg, B

o
Combining Eqs G5 and 66 yields

2
-4.24 __X...___
= ¢ (v - 2)2

in which ©» 1is the distance from the outlet to the boundary as shown in Fig.

Equating Eqs 45 and 67 one obtalns

b-2 X
¢l(30 )B-)

Equating Eqs 55 and 63 gives 5
X =
-k,
b= 2k ( )
o

b -2
An expression for the velocity distribution along the bed -- deflecting

(69)

boundary -- by means of Egs 56 and 69 i follows:

U, - {1 .o > (70)
Von

Eq 70 is plotted in Fig. 13 and is assumed to give a correct valus for Eq 70
in the prodmity of the stagnation point. The dashed line in the Tigure
indicates a more probable velocity distribution when lateral diffusion is

considered.
) P

j 52,

-




Horizontal velocity di the bed.

Boundary Layer Thiclkness and Shee

sheer Velocity - Again by means of Egs 57

and 58, expressions for the boundary layer thicl velocity mey

be obtained for the cas ' the subnerged ver, in orde

1 - o-8.48

The varistion of L with X/b 1is given in Fig. 1, which shows that, in the

vicinity of the stagnetion point, is approxinmutely constant and equal to

2; whereas for values of X/b > 0.8,

L tends rapidly to zero.




Assuning L constant, which is a valid assumption for the proximity
of the stagnetion roint, the boundary leyer thickness is given by Egs 60 and

61, and the shesxr velocity by Eq 6k.

Fig. 14 Variaticn o

Eq 70 into Eq &4 yields

v

7|
v

/ QL9 X.2

Fig. 19 represents the shear velocity distribution given by Eq T2.




1

0.20

Fig. 15 Sheer velocity distribution along the plane bed

IMFINCEMENT OF A MNOII-SUBMERGED, TWO-DIMENSIONAL, VERTICAL Ju“ OF REAL FLUID
ON ANl ERODIBLE B

Rate of Sediment Trunsyort - Brown wnd Lawrsen (10% in their analysis

of bed-load transport theories as given by Chields (11) and Kelinsie (12),
-y hWa wrat £ ~nd3dm , AT s 5 1

show that the rate of sediment transport gqg 1in open channel flow can be

exypressed in the following form
(13)

(74)
In Egs 73 énd 74, Uge 3is the critical shear velocity, o and dg the
mass density and neen diameter of sediment porticles respectively, and ~ Ay
gnd m are constants which are, in general, the function of U§/V32. Thus,
when Uy 1is of the seme order of nagnitude as U*c, the valuc of o

increases and the velue of A, decreases with decreasing values of Ux/Vg.
27




When Ux is rmuch lerger than Uxc, Ux >> Uxc, Eq 73 simplifics to

. : 2n
Qs U.
= A, [.ﬁ]

Uyds Vg

Integral E:pression for Depth of Scour - Substituting Eq O into

Eq 73 gives

; 2,9/20
B oa MR 7,-1/6 [Y_JE & Vob E]'l/lo [l-¢2 ]

Vo 9s 0 &, v %

2 -1/4 1/5 9/10 2| n
Vo rn 7 \
T e o™ e

S v ‘/bm

The following quantities are now defined




Eq 76 with the notations of Eq 78 can be written as follows:

18m + 9 oo+ 1
10
(@vy) 10 R

2
2 Uxc

@7 (T (a)

R

The equation of continuity of sediment transport given dy Eq 3 can be written
as follows:

\OZ 1 0% _
(1'X/5—€+gm—o . (85)

The derivative of gq_ with respect to X/b 1is obtained from Eq k4, or

-~

; 9
n + 9 2 1-1

_mm_ - A& _Jm 10 ' R Jxe T
ox/e) ~ T° T o Y .9/3
S . (a Jo) (vbm)

2
2m + 1) R . - .
(2n + 1) 5 35 (86)
(ax vy) (Vi)
Introducing the notations of Egqs 30 and 41 into Eq 86 one obtains
9 on + 1
bqs vy, 10 10
- = Ay 4y —=———(aV R' R (2n + 1)
bl\x/b> (o) Vsam ( O) ( )

v 9/5 m-1
. J"l, 2
.fo - a

The value of Vi, 1is given by Eq L4, wnich can be written:
Z -Db

ﬂBO

or, with the notation of Eq 62, as follows:

., 9/10
'lbm

CIVO




Substituting Eq 69 into Zq 87 gives

. 2m + 1 m-1
9% AL & (@ Vo) ¥ R! Ran (onm + 1) - (1‘2 _ 8.2)
g

2\

. (FP - a?) (90)

Noting that F is =z function of 2 , substitute Eq 90 into Eq 85 and separate

the veriables which zives

2m + 1
az Ay dg (@ Vo)

= —~y  + (311 + l) v Oy
F(F2 _ 8.2‘)“‘.1 (F2 - L‘.'h) ‘(l - on VS 49

Integrating Eq 91 for given limits, one obtains

2 & pLon+ 1) A9 d
5 F(FZ - 32)121—1{1:2 - a,a) (L-XN)D

am + 1

t
av
( 3% R! Rgmf at = 0 (92)
Vs o)

Eq 92 is valid only for Z << b. If this condition is not fulfilled, then b
in the right-hand term of Eq 92 should be replaced by (b - Z); that is, the
group R'(b) RZ® (b)/b would be replaced by R'(b - 2) B (b - 2)/(b - 2),
which would then be included in the first integrel es a function of Z.

Substituting Egs 79, 82, and 83 into Eq 92, one obtains

F
f dj‘ + Tl l
Fo F2(F2 - a?)m =4 (F2 - a'?) (em + 1) F02m ¥l

Variation of Scour Depth for Ux >> Usc  _ For the cese Ux >> Uxe,

the quantities a and a', which are proportional to U*c/VO, ére négligiblc




end Eq 93 reduccs to

S
ar
2 + 2
I (2n + 1) Fq

| -0
+ > + 1 U

‘o

Integrating Eq 9%, one obtains

-(om + 1) - {(tn+ 1
1 - [F ( J » ( )] - n =0

1 _ |r -
o+ (en+1) FE* 1L

o

2n + 1

1—_2_ +‘rl=O
F

-

Futting Z -Z and using the exiression for F and F, given by Egs 82

“g
and 83 respectively, Eq 9 becames

Bo =l+q

Zig

10 3
R — & 1
B, B 9(om + 1) (2 + )

in which g 1is a2 fumction of the following dimensionless paramelers

5. .
(noting that n and A, are both functions of Ue /(a/p - 1) gdg):

The scour derpth

Z K b.

Final Denth of Scour Zsoo - The final depth of scour Z_ will be
— 2

o

attained when Ux = Uxe. For this cese gg = O and Eq 8% reduces to

-

U*c

R =
w. 2/10 - 1
(Vom) / (« Vo)l/io

<31

(93)




sing Vi, @s a:function of Z , os given by Eq 38, Eq 98 becones

R
10 B,

(99)
in which R is given by Eq T7.
A better aprroximation of Zgeg 1is obtained if b arc of the
same order of magnitude; if @, is written

Zc, | X
¢o( 3 b—r:‘)

hade) S

instead of
A
o J
and)if Eq 99 is solved by trial and error

Example of Integration When

F dar
. — . (100)
jFO Fo(F° - a9)(F° - &

To integrete tlie left tcrm, n is first reduced into its secveral integral

as given by Eq 1, obtain

parts. OSubstituting a'
F
s

z

at

I"
o]




If the value of F aproaches the value for a , the third term 1ln () in
Eq 102 approaches -oo, and the value of t must tend to +00 , This
implies that the limiting value of the depth of scour Zsoo is reached only
after infinite time. For m =2 Eq 95 can be obtained from Eg 102 by
expanding its terms in a logerithmic series.

Since F = a corresponds to t—)oo in Eq 102, it is possible to campute
the time necessary to reach the point where TF , a function of Z/Bo, is
equal to 99 per cent of a . Furthermore, it is to be noted that Z/B, is

a function of the flow and sediment charecteristics.

For m =2, Eq 79 becones

~ 5 Ju 4

The last term of Eq 102 can be written

é

81" Nwi0g . A 5 v, ¥
(Fo} g P iy (@a) e

25 A

Substituting Eq 80 into Eq 104 vields

‘9_)5 Ja - 10

Fo] 35

ted into Eq 102 gives

[i.iiﬁ JpEesg

1 [.U.a _ (107)
b
0.99




0.959

DI N OF & SUBMERGED, TWO-DRMNCIONAL, VERTICAL JET
AN EROW g

3eD

4 ST [ N X SELP— T,y A ¥ £ AL ram s Fasamne
Rite of Gedirent Transyjort - Tz rote of sediment trans

. oms  — -

SRlne L g Jet is the szome as for the non-submerged jet.

Integral Exgression for Depth of Scour - In a manner similer to the

Lhe non-submerzed Jet, the following quantities are now defined.




me 5 c2 Von _
2.2V, 2.26 vV,

Eq 05 expressing V- 2 function of

on

Vr? bes) _ 3

2.8V, Yo -2

or with notation of Eq 11k

\"r
om
2.20 VO

Substituting Eq 110 into Eg 116 gives

-

2n + 1

B

q 119 is substituted into Eq 35, in which 4z is given by BEq 11k,

one ovtains by integration the expression

(2o + 1) 45 ds
{L-X)0b

Substituting Eq 111 into Eq 120 yields
G

N dG &
<(
o9 2 2m - 1,2 2
&g (67 -c7) (G - cr<)
Go
which is the integral cxrression for depth of scour




Variation of Scour Depth for Ux >> Uy, - For the case of U, 2> Uxc,

the quantities C and C' are much smaller than G and Eq 121 becames

(122)

' r G
aG +¢& =0
fmg
G
.

Integrating Eq 122, onc obteins

1 1 1 _
& + 29/9) [Gom ¥y T A 29/9} * f = & (123)
Substituting Eqs 114 and 115 into Eq 123, and denoting the actusl depth of

scour by 2Z5 = -Z , gives the equation

b

18m + 29 20
B ) {

om + ?_i)z]g +(?3 20 Tom + 29 (124)

: R
O ~o

in which g: is @& function of the following rarameters (noting that m and Ay

/]

. 2
ere functions of U /[c/p-l]gd ):

s Vot ; V.o
b

J

Eq 12k is applicable only for 2, << b.

Final Depth of Scour Zg;og - The final derth of scour Zgee Will be

attained when Uyx = Ug.. For this case g5 = O and en equation similer to
Eq 98 is applicable, or

Uxc
10 T
(Vor )%/ 292,28 v,y /10

(125)

Substituting Eq 117 into Eq 112 gives

/20
b + Zoeo = ¢ 2.28 Vo
B, Uxc

B

3 20/9
b+Zsoo _|S2.28V
[o) U*C

=36=




in which

-1/8 | 2.20 843 (
/ - l-c¢

is obtainecd if the last

Y )6l B v 2
tne exTonent e "'d (X/J + ASC)O

£
4 Coay VUG §S

instead o
b and Zgee are of the ne order of

Uy 1s of the same order of magnitude

121 is arp

in which the exponent 38/9

L

£

ninetor of integral,

Seperating the froction of the first ternm of EZq 122 into
oy 2/5 S g

integrael ix ind ¢ = C‘-/), onc obteins

G

G
o
-

Integration of Eq 123

i
3

R

Eq 124 gives the gencrel relation betwcen F(Z) and §(t), when t= o0,

G—>C, and 1ln (G-C) —> - oo -




To determine the time of scour necessary to attain the condition G = 0.99C,

it is necessary to rewrite the last term of Eq 124. ¥With n and § as

defined by Zq 111, onc can cobtain

§=20 5) 20 (2.28)° (Yfa})u 5

which, when substituted into the last term of Eq 124, gives

C7 = ‘ .28)” l‘ )
—5—§~ ——“ () &

Substituting Eq 112 into the right hand side

Define the quantity

1 _9 Ay (U*c

“g"é‘a I

2,20 VS

so that Eq 127 becones

of

Substituting

1{fc
.3'(6;




or, rearranging end reducing terms yields

[E%fil = g; 0.25 = 0.33[g;f -6 [gﬁ + 16.1 log

0.99

- 0.29 log

It 1s to be noted that

C <«
GO

IMFINGEMENT OF A TWO-DIMEUSIONAL INCLINED JET OF REAL FLUID ON Al ERODIBLE BED

t %:'f’ X
777 77 777 /S S 777 L =t LA R LLLLLLAA AL

0

Fig. 16 Coordinate system for an inclined jet

Jet Issuing from a2 Non-Submerged Outlet - For an inclined jet the 2'-

o

s and X'- axis arc taken elong the centerline of the jet eznd transverse to
the jet respectively as shown in Fig. 16. On the vertical rlane containing the
centerline of the jet, the relationghips between the system of coordinates

(X, 2) and X',2') ere

w50




X sin © + Z cos ©
-X cos © +

and ﬁﬁ = X!

maximwn velocity of the

e5 follows:

An expression for the velocity distribution along tae transverse section KM

of the jet can be sindllarily defined es
J

Bxyressions for and 135 using

-

functions of X, Z, 2nd O are as follows:

1. For any point on the vertical
at exy (-

BO




Velocity and Shecr Distrubiton Along the Bed - As in the case of &

vertical jet, the horizontel velocity coriponent U, along the X-axis c
expressed oy
2y1/2
Ub VU'

4 1 -j-Yo

Vomo' Sin © Vot

Combining Egs 133, 139, and 140 , one obtains

S S N
= 7 s

1
o /bmo

o b B'X
el 5 = ex - —™— CO5 ©
) ’ BO] ? By

or
'

D X
\Pi =\VK§3 t g oS

Then with the notation of Egs 142 and 143, Eq 141 becores

U = {1 -‘i/lg /2 (1)

T g &
meo sin

For the distribution of the shear velc ity alongz the bec he aprroach given
for the case of 2 verticel jet is still valid if L i Q i suzed con-
stant. For this condition Eq $3 can be written
n
U?(— _v_7/'n(,X)l+n
1%

U2

Introducing Eq 14k into Eq 63 and taking n

]
Y"
Ybuio

U¥2
(Vo' sin e)2

k!

-1/4 (




Variation of Scour Dernth Ux >> Uy - Since Eq 75 is an cxpression

———ie

for the rate of sediment transport for the case in which Uy >> Uxc, Eq 1Ls

may be substituted into Eqg 75 to give

9(2m+1
Vomo' sin e}"iiam*l

—a e vl Z 0 T [fomot sin e
al V 1
o ]

om 2wl _ 2mtl
—9s
arv.' 4 v

s ]
om+l

2t ] 5. 2(2m+1)
[on VAt :(] 10 [l _\f"] 20
Eea—— 1

Define the quantity P a function of X/b and 6, as

| )

= Vo £ 2 F .5

' sz V:'72m amtl . oamtl
04 ”’\ o

a' V' b
v

X
b

Eq 146 with the notction of Eq 147, becames

9(22+1)
meo' sin 8 1

clVl
o)

dr
a(x/b
The derivative of ¢q. with respect to (X/v) is
9(2mtl)
V. ''sin & 10

Substituting Eq
Vv
-\ 0%
) St o Vo (152)

Py SRAATH YA had, N ' '
case of an crodible bed, Vi __'/V;

depends on Z , and, as glven by
is equal to V,'/V ', or

Vono! m' _ T B (153)




Since Egs
X

Z

along the

herefore, Eq 133

Vot
brio _
T
Vo

Substitution of

ﬁr[-b' s
(&

Define the following quantit

o = 2(2m+1)
10

v

With the definition given by Eq 159,

ﬁwzemﬂtBy




~ ‘/ ‘1\‘
Denoting the actucl depth of scour by Zg = -7, Eq 181 beconies

Dy
SRSty ~ N
B sin B

o

3 ’ €% on Anane n 2 e %76 14 A - -
Final Depth of Scour Z. he finol velue of the scow

r

- ot oo 33 & aeietis
is attained whei. Ux = From th quality, BEq 145 yields

ey~ = % ¥ .—r&b-L—_—._.....
v =7 o v,

" 9/
Unc? /4 | V.-o" sin 6] /

. ' Py % . T ’ oy siny W
Replacing Vi,,'/@¢ V_" by \/m'/a Vo' and using Eq
critical value of scour

SS9
C

Z
B

in which

Thus, from Egs

function

submersed Outlet - In thils case, the following

the longitudinal




V' are appliceble:

Along the centerline
1/2
V! B
SN R o B
V e ' - Z'

2. Trensverse to the direction of flow

x'2

Using the relat (x', 2') and(X, 2) given by Eqs

1
cases

a point along the i 1 (z = 0).

. G r N
Combining Zgs 1€7, 143, and 169, one

W o Vp (228Va) 21w

- 1
VDXT:O

Define now

' , /o
.

133, expressions for the velocily distributions arc given for

A/ ) Ql)“ =
vao

(166)

132 and

the following

1+ (X/2b) sin 2 &




. i LA
Adong; Bed

I
ciue

U ( 1
,-..;V, ,3

However,

assumed to be constant. Cince

cne

anc 172,

)

2

Then by eprlying

The value o 1 be cobtained

Consider

1
o

2

d K,

for the distribution of thnc horizon

in which yﬂ_ 4is rerlaced by

obtains

sin 28

—_——— 4 1f

o

Up2

and J.l..u..Llf

Consida (X/v) is very

be considered
L.

for lerge values (/o with

stant eitlhier for sricll values

- For

the

tal velocity Uy,

distri

w

X/o with L=

bution of




Veriation oi‘ Scour Doypth for Ux >> Uxe - For the case Ux 2> Uxe

F' reploced by &' and @' = 2.28, can-be written as

. ; 18’;‘1" l —t l )
Vo'Ce 1a' (sin 8)” 10 ||Muse __ [iC 2m sin &
0

- r\, J
~ el -~

in which K _
1om-1

§'(sin &) -’

. e.os v

L

The velocity distridution

for a non-submerged cutlet

in which

owing quantity

sﬁbstitutirw

bl

Bg

from which, : Z, one obtains
- 1(;'5?*2‘ 20

bz, o) 20 | I5was
B_sin © 5
o si

47-




show that és' derpen ince m e&nd Ao are functions

d,, upon the following dimensionless paraneters

(/p

Bo sin 6 .
It is to be noted ti zoi 5 : 1e sane as for the case of

the non-subnierged outle ’ i of Zg with the parcmeters follows

(S

-

a2 power type law. Vherees, for thie non-subnierzed outlet, the variation of Zg

o~

with the paramcters follows an exyonential type law.

vy

case, introducing 2.28 V'

into Eq 145 and substi

-1/5 9,

2.28 v,' sin 9 X (1 - o?)

Substituting Z! = -2

Soo

Vissas! V!
- _':,_D.AO}_AT = = ; g
2:20 \o 20V

is defined as

' = Zso.—r._

sin 6

o BEq 1383 yields

-1/5

2
2.28 Vo' sin 8| [2.28 V,' sin & X
T

*C v

Q
(1 - n2)2/10




¢gives the following

Reyplacing Z by its value ing expression

Soo

for the depth of ccour

a Tunction

These taroetic ¢ to thosc

outlet; however, the dexnth

: Fa N 1 -
I 1s Tunction

for the cese of the non-submerged outles Zg .~ is function of the logcritimic law.
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Jet diffusion, which as given by Eq L&, follows an exponential type of
law. Both vertical end transverse distributions of velocity have not
been determined e:perimentally for this case.

For a Jet issuing from a submerged outlet, Albertson and others

have determined both the vertical and transverse distributions of velo-

city within the diffusing jet. Equations 65 and 66 express these two

types of velocity distribution. In perticular, the vertical diffusion
of the jet with time is expressed by & power-type law.

For the casc of the non-submerged outlet, the transverse distribution
of velocity given by Eq 45 wes, as a first approximation, -assued to be
equal to the one obtained by Albertson and others for the case of the
subnerged outlet as cxpressed by Eg 67.

The importaonce of velocity distribution within the diffusing jet is
its effect upon the scour vhenomena, nenely: (z2) the share of the scour
hole depends upon the velocity distribution transverse to the direction
of flow, and (b) the development of the scowr hole with respect to tin
depends upon the velocity distribution in thé direction of flow.

The angle of impingement hes a noticeable influence on the éonstants
giving the depth of scour. This has been demonstrated by the experimental
study of Homma for the three-dimensional Jet issuing from a non-submerged
outlet.

Since the phenomena of scour involving fluid Jets is of such a complex
nature, 2ll of the variables describing the phenomena cannot be included in
en initial theoretical development such as presented herein. Therefore
before the thecory of this analytical study can be utilized for design pur-

poses, it will be nccessary to test the theory and evaluate the various

"y




exponents by means of experimentel deta covering a wide range of flow,

fluid 2nd sediment characteristics and boundery geometry. By mecns of

dimensional analysis, a judicious sclection of essential hydraulic
expedite the

conditions and boundary geometry can be nade, which will

development of thic generalized theory.




REFERENCES

1.. Rouse, Hunter, "Criteria for similexrity in the transportation of
) 'J ® 4
sediment." Frocecedings Hydraulic Conference, University of Iowa
Studies in Engineering, Bulletin 20, 1940, pp. 33-49.

-

Doddiah, Doddisn, "Compariscn of scour caused by hollow and solid

so
Jets of water." M.S. Thesis, Colorado A and M College, 1950.

Thomes, R K., "Scowr in a gravel bed." M.S. Thesis, Colorado
A and M College, 1953.

Hallmerk, D. E., "Scour at the base of a free overfall.” M.S. Thesis,
Colorado A and M College, 1955.

Alvertson, M. L. and Smith, G.L., "Principles of energy dissipation
in erosion control structures." Colorado A and M College, Civil
Engineering Dcpartnent. Repert prepared for "Joint ARS-SCS
Irrigaticn - 1nabe Conference, 1957. Farer lio. 15--For
in-gservice use onlj.

Smith, Georze L., "An anzlysis of scour below culvert outlets
sis, Colorado State University, 1957.
uckenbrodt, E., "Die trowung an einer
<. ) - A r /
den bchelue." ZAM B 32. Heft 4/5.

Truckenbrodt, E., "Die Truvulent Stromung an einer angedlasenen
rotierenden Scheide," ZAMY, Bond 31:1, Heft l'r, Oy Al,rlll‘x.ﬁ..l, 1555,
S. 150-162.

Albertson, M. L., Dai, Y. 3., Jensen, R. A., and Rouse, H.,
of SEE?ngSd Jets,” Transactions A.S.C.E., Vol. 115, 1950
Pp. 039-0CUT.

Brown, C. 3., and Laursen, E. M., "Sediment tr: nvvovuhulon," (In
Froceedings Fourth Hydraulic Conference, Iowe Institute of
Hydraulic Resec :Ach cedited by Hunter Rouse, John Wiley and Sons,

1950. 1. 76

Shields, A., '/ dung ennlichlieitsnmechanik und der t
foru;L ng ie ¢ "'w"*d*‘uxg." Mitteilungen -
D { . Schiffoau., Berlin, H

Kalinske, A. A., "Hovement of sediment

Transactions i.G.U., Vol. 28, llo.

Exncr, F., "Uoder dic Wechselwirkung zwischen Wesser und
in Fluuueq, Iroceedings Vienna Acaderyr of Sciences,
A, Vol. 13%, 1925, p. 165.

"Diffusion



Poreh, M., "Flow characteristics of a circular submerged jet impinging
g

normelly on a smooth boundary." M.Z. Thesis, Colorade State Univer-
olv}) 1959.

Ivogaki, Y., Smi th, George L., end Albertson, M. L., "Analyticzl Ctudy
of the liecliianics of Scour for Z’;‘:ce-Diﬁ“xsiom.l Jet." Colorado
State Univ (.."’Sltj, Dea;:rtmznt ox Civil IEnginecering, Rerort CEREOGLEQ.
Januery 1500. FPrepared for "U. S. 3ureau of Public Roads wader
contract u;’217-55“‘1& "

Schlichting, " eGrew-Hill
New Yori,

Howerth, L., : ulc*t*oq of the
layer near the cylinder
and Memo.

" a

Horma, M., "An Experinental Study on W: "

0¢. of

Ir
Intcr'x 1lional Iydraulic Convention. ptember 1953, 1T

)y e




