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ABSTRACT 

 

THE OCCURRENCE AND REMOVAL OF CYANOBACTERIAL METABOLITES 

MICROYCSTIN-LR AND GEOSMIN FROM SOURCE WATERS WITH POWDERED 

ACTIVATED CARBON. 

 

Cyanobacteria blooms may result in the release of problematic algal metabolites, such as 

geosmin and microcystin-LR in source waters. The World Health Organization has set a 

guideline limit of 1 µg/L for the Microcystin-LR in drinking water to prevent adverse health 

effects. Microcystin-LR is the most common and potent cyanotoxin which can cause severe 

gastro-enteritis and hepatoritis. Unlike microcystin-LR, geosmin is not known to be harmful 

however, it imparts an unpleasant earthy off-flavor to drinking water detectable to humans at 2-

10 ng/L. 

Understanding the occurrence of these metabolites is the first step in mitigating waters 

contaminated with these algal metabolites. To understand their occurrence in Northern Colorado, 

environmental sampling was performed in local rivers, lakes and municipal waters. Results of 

environmental sampling in the Northern Colorado area revealed that microcystins frequently was 

detected with geosmin however; geosmin alone, without microcystin-LR, was more frequently 

detected. This common co-occurrence of both compounds may be helpful in the surveillance, 

prevention and elimination of geosmin and microcystin-LR from drinking water sources.  

Since neither of the metabolites can be sufficiently removed by most conventional water 

treatment processes. This study also investigated the concurrent removal of microcystin-LR and 

geosmin from spiked raw Horsetooth Reservoir water, in Fort Collins CO, by powdered 

activated carbon (PAC). Water samples were spiked with microcystin-LR and geosmin to 

achieve various concentrations from 2 to 10 µg/L and 10 to 50 ng/L respectively, with PAC 
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concentrations ranging from 10 to 30 mg/L. Jar testing was employed for the experiments with 

30 min mixing and 30 min settling. Geosmin was quantified by solid phase micro-extraction and 

gas chromatography/mass spectrometry. Microcystin-LR was quantified by liquid 

chromatography/mass spectrometry coupled with electrospray ionization. A PAC dose of 30 

mg/L removed microcystin-LR concentrations up to 6 µg/L below WHO guidelines of 1 μg/L. 

Geosmin concentrations up to 50 ng/L were removed below human detection threshold (5 ng/L) 

with 20 mg/L of PAC. Competitive absorption by PAC was observed between microcystin-LR 

and geosmin where the removal efficiency of both metabolites; because of its smaller size 

geosmin was slightly better absorbed by PAC than microcystin-LR. PAC is a viable method to 

remove both metabolites. 

To evaluate the toxicity of microcystin-LR, H4IIE, rat liver cells were cultured and 

exposed to microcystin-LR in-vitro. Cell viability and histological observations concluded that 

the toxin induced cellular apoptosis and cell viability is cyanotoxin concentration dependent.  
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Introduction 

Cyanobacteria are small photosynthetic bacteria that can be found in practically all waters 

of the world. They can grow in masses called blooms due to an abundance of nutrients and 

warmer temperatures. Cyanobacteria blooms have been occurring more frequently around the 

world due to climate change and poor nutrient management. This can be problematic as 

cyanobacteria may release a host of detrimental metabolites that can affect our drinking waters’ 

quality (Chorus, 2001). Two types of algal metabolites were studied in this research project. The 

first is geosmin, which is one of the most common taste and odor compounds produced by 

cyanobacteria. Geosmin imparts an earthy odor that can be detected by the human nose at as low 

as 2 ng/L (Omur-Ozbek and Dietrich, 2005). The second metabolite is microcystin-LR, which is 

one of the commonly produced cyanotoxins that inhibits essential processes in the liver 

responsible for tumor suppression and may result in massive hepatic necrosis (Chorus and 

Bartman, 1999).  

There is a need for methods to remove these detrimental metabolites from drinking water 

sources worldwide in a cost effective, practical and sustainable way. As geosmin and 

microcystin-LR are often found together (Graham et al., 2010) the prevention, management and 

removal of these detrimental metabolites will require understanding the relationship between the 

two metabolites, their behavior, possible removal techniques and obstacles that may be a result 

of treating water containing the metabolites. 

The research conducted for this thesis contains three parts: First the occurrence of the 

metabolites was evaluated through environmental surveillance for both metabolites at various 

locations in Northern Colorado including lakes, rivers and municipal areas. Detection of geosmin 
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was performed following procedures laid out by Omur-Ozbek and Dietrich (2005). Microcystin-

LR detection was performed following procedures laid out by Triantis et al.(2010). Second, the 

removal of the metabolites was experimented on source water spiked with known concentrations 

of both geosmin and microcystin-LR was investigated. Horsetooth Reservoir water was selected 

as the raw water source to perform the experiments. Horsetooth Reservoir provides water for 

municipal, agricultural and industrial uses in Northern Colorado (USBR, 2012). Powdered 

activated carbon was selected as the treatment method to remove the metabolites for its 

versatility and ability to effectively remove organic compounds (Westrick and Szlag, 2010). The 

third part of this research observed the toxicity of microcystin-LR in-vitro experiments with 

H4IIE rat liver cells to better understand its toxicity. Cells were grown under conditions laid out 

by Ding et al. (2001) and exposed to various concentrations of microcystin-LR for a period of 24 

hours. Histological observations were performed on stained cells and the cell viability was 

observed through SRB laid out by Fricker (1994). 

This thesis consists of three chapters to disseminate the experimental procedures and 

findings. The first chapter provides background information on cyanobacteria, their metabolites 

including microcystins and geosmin, detection methods of the metabolites, and treatment options 

to remove the metabolites from source waters. The second chapter is prepared in a manuscript 

format for an academic journal submission on the occurrence and removal of cyanobacterial 

metabolites. The third and final chapter, also in manuscript format, addresses the specific toxicity 

of the cyanobacterial metabolite, microcystin-LR in in-vitro studies. Both manuscripts include 

details regarding their respective experiments including, materials and methods, results, and 

conclusions for the related research conducted. The raw data is provided in the appendices at the 

end of this thesis.  
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1.0 Literature Review 

1.1 Cyanobacteria 

 

Cyanobacteria, also known as blue-green algae, are photosynthetic unicellular bacteria 

found throughout almost every environment in the world. They can be found in the lush bayous 

of Louisiana to the most barren areas of Antarctica where they have even been observed to form 

colonies in snow and ice (Chorus, 2001). Some nitrogen fixing cyanobacteria are 

photoautotrophs, only requiring light energy, CO2, N2, water and a few minerals allowing them 

to live in a wide variety of environments (Svrcek and Smith, 2004).  

Cyanobacteria are as single celled organisms varying in sizes between 3-10 µm and can 

aggregate into larger clumps. They can appear as scum layers or be dispersed causing a pea soup 

appearance in lakes, ponds and other slow moving water bodies. Although they are referred as 

blue-green, cyanobacteria appear in shades of blue, green, red or brown. Cyanobacteria are 

among the most important group of bacteria in the world. They are thought to have been 

responsible for creating the Earth’s oxygen rich environment over 2.5 billion years ago. 

Cyanobacteria are an essential part of the aquatic food chain and are a source of food for 

phytoplankton which converts gaseous nitrogen into a form that can be taken up by plants (Bean 

et al., 2002; Davis and Cornwell, 2008). 

 

1.1.1 Cause of cyanobacterial blooms 

 

When periods of mass cyanobacterial growth occur, they are often referred to as blooms 

(seen in Figure 1-1). The frequency of these blooms has increased throughout the world due a 

combination of warmer climates and an abundance of available nutrients such as nitrogen and 
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phosphorous due to agricultural and industrial runoff. Certain cyanobacteria species can have 

mean doubling times as fast as 21 hours to 14.7 days. Stagnant water conditions leading to 

stratified water bodies and neutral to alkaline pHs also known to be favorable to cyanobacterial 

growth (Svrcek and Smith, 2004).  

 

Figure 1-1 Bloom of the cyanobacteria Microcystis aeruginosa in Lake Erie in Oct 2011. (Lester, 

2012) 

 

1.1.2 Impacts of cyanobacteria 

 

Blooms can abruptly interfere with an ecosystem’s balance by reducing light penetration, 

out-competing other native organisms and depleting dissolved oxygen levels when the 

cyanobacteria die off and decompose (Svrcek and Smith, 2004; Miller, 2010). In addition, 

throughout their life cycle, cyanobacteria can release various metabolites which can contaminate 
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drinking water sources. These metabolites can be sources of nuisances or even dangers in the 

form of taste and odor compounds and toxins. (Chorus, 1999; Omur-Ozbek and Dietrich, 2005). 

1.1.2.1 Surface Water Ecology 

Some studies have shown that cyanobacterial toxins can inhibit aquatic invertebrate 

grazers which are key elements to fresh water eco-systems. The cyanotoxins have the ability to 

disrupt and destroy the digestive systems of daphnia and mosquito larvae. In a recent study by 

Rohrlack et al. (2005), daphnia were fed cyanobacteria of the Microcystis species, which are 

known to contain intracellular toxins. After 9 hours of ingestion, there was clear indication of the 

loss of cell to cell epithelial gut cell junctions and lowered physical activity. After 32-41 hours of 

exposure, convulsions occurred and finally death. However, it should be noted that not all 

zooplankton avoid cyanobacteria as some can actually be the dominating species benefiting from 

blooms (Oberholster et al., 2006).   

 

1.1.2.2 Taste & Odor 

Consumer acceptance of drinking water is a critical factor to the success of the drinking 

water industry. Taste and odor compounds released by cyanobacteria can cause significant 

problems for drinking water suppliers (Cook and Cook and Newcombe, 2002). Source waters 

contaminated with taste and odor compounds can result in customer dis-satisfaction and lead to 

perceptions of unsafe tap water (Omur-Ozbek and Dietrich, 2005; Zoschke et al., 2011).  

 

1.1.2.3 Toxins 

Cyanobacteria and their toxins have been found all across the world including Colorado 

(Oberholster et al., 2006). One of the earliest documentations of poisonings comes from China, 

approximately 1,000 years ago; General Zhu Ge Ling reported losing troops whom drank from a 
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green colored river that they crossed during a military campaign (WHO, 2003). Today, emerging 

concerns regarding to hepatotoxins and neurotoxins produced by certain species of cyanobacteria 

are making the headlines.  

Cyanotoxin poisonings have been reported in 50 countries, including over 35 states 

within the US in 2011 (Graham et al., 2009). Many of these poisonings are a result of accidental 

ingestion by humans or animals from water bodies experiencing blooms.  A recent incident of 

exposure occurred in August 2011 at Lost Creek Lake in Oregon, where a man was swimming in 

and occasionally gulping in the lake trying to fetch his boat out of the water. He later suffered 

from intense vomiting, diarrhea, vertigo, nausea and abdominal pains (Freeman, 2011). Due to 

adverse health effects of toxin exposure, the World Health Organization has set a drinking water 

guideline limit of 1 ppb (µg/L) for the cyanotoxin microcystin-LR (Chorus, 1999). 

 
Photo Courtesy of Gretchen Bensen 

Figure 1-2. Exposure may result in skin irritations, weakness, nausea and diarrhea (Svrcek and 

Smith, 2004; Lynne, 2011) 
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The most common pathway of human exposure to cyanotoxins is from accidental 

ingestion or contact with water containing cyanobacterial cells through recreational activities. 

Animals on the other hand, are more commonly affected by the cyanotoxin poisonings as 

humans tend to stay away or avoid water bodies with floating mats of cyanobacteria (Svrcek and 

Smith, 2004; Graham et al., 2009). Incidents of dog poisonings are common due to people taking 

them along during their recreational activities. In the state of Oregon, several reports of dog 

deaths related to cyanotoxins have been reported every year, including four from 2009 in the US.  

Wildlife are also not immune from the effects of cyanotoxins either, the mysterious deaths 

involving 11 sea otters in the Monterey Bay area in Northern California were determined to be 

microcystin toxicity related (Miller, 2010). The most severe documented case of cyanotoxin 

exposure in humans occurred in 1996 where renal dialysis patients in a hemodialysis center in 

Caruaru, Brazil were inadvertently provided with a dialysate using water drawn from a reservoir 

experiencing a bloom. All 126 patients became ill and 60 eventually died from complications of 

liver necrosis (Chorus and Bartman, 1999). 

  
Photo Courtesy of Laura Elkomy 

 

Figure 1-3. Pet symptoms can include, weakness, drooling, convulsions, vomiting and even 

death (Lynne, 2011). 

With so many emerging incidents of cyanotoxin exposures, municipalities have begun to 

be more aware of cyanobacteria blooms and follow WHO guidelines to protect the public from 
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cyanotoxins. Higher levels of microcystins in source waters may be associated with cases of 

gastroenteritis and liver toxicity (Hitzfeld, et al., 2000; Haddix et al., 2007). Today over eight 

countries, including Australia, Brazil, Finland and the US, have established water quality and 

programs to address cyanotoxins levels (Svrcek and Smith, 2004). Since any freshwater body 

with the right conditions can harbor cyanobacteria, the distribution of states with reports or 

active programs to address cyanotoxins is widespread across the country. Cyanotoxins are 

currently on the EPA Contaminant Candidate List 3, which is a list of contaminants that are 

known to exist in public water systems, in which research is underway about potential national 

regulation (USEPA, 2011). Currently, there are over 9 states in the US, which have statewide 

and local monitoring programs for cyanotoxins in freshwaters. An additional 13 states have event 

based response procedures or public education materials posted on their websites (Graham et al., 

2009).  Cyanobacteria produce a variety of toxins including microcystins, nodularins, anatoxins, 

saxitoxins, cylindrospermopsin, and dermatoxic alkaloids (Svrcek & Smith, 2004).  

 

1.1.2.4 Water Treatment & Disinfection By-products 

Cyanobacteria can interfere with certain water treatment processes generally causing 

filter clogging (Shehata et al., 2008). Additionally, odor compounds and cyanotoxins may be 

released as the cyanobacterial cells are lysed, due to the addition of oxidative compounds such as 

chlorine during treatment, thus worsening the water quality (Matsushita et al., 2008). 

Disinfection byproducts (DBPs) are formed when organic material that is not removed during 

water treatment comes in contact with a disinfectant. Trihalomethanes (THMs) and haloacetic 

acids (HAAs) are common DBPs created in the water treatment process which pose regulatory 

and health concerns (Bruce et al., 2002). The US EPA (1998) set maximum contaminant levels 

(MCLs) for total THMs at 0.08 mg/L and HAAs at 0.06 mg/L, based on an annual average. 
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THMs and HAAs are environmental pollutants and many forms are carcinogenic. The release of 

algal organic matter (AOM), extracellular or intracellular, produces chloramines and halo-

acetaldehydes in drinking water systems as the AOM ‘s are not removed by conventional 

treatment techniques (Fang et al., 2010). Hence organic metabolites released by the 

cyanobacteria may lead to increased disinfection by-product levels in the finished water. 

 

1.2 Cyanobacterial metabolites 

1.2.1 Geosmin 

1.2.1.1 Occurrence  

Geosmin (trans-1,10-dimethyl-trans-9-decalhol) is one of the most common odorous 

algal metabolites which causes an earthy odor that leads to an unpleasant flavor in drinking 

water. Geosmin, shown in Figure 1-3, is not known to be harmful to humans, it is the primary 

odor compound found in sugar beets and can be produced by other microorganisms such as 

streptomyces, actinomycetes and myxobacteria (Giglio et al., 2008). Geosmin production by 

cyanobacteria is suspected to be a secondary metabolite of cellular growth. Through experiments 

conducted by Giglio et al. (2011), it is shown that geosmin production could be linked to 

isoprenoid production. Isoprenoids can range in function from production and processing of 

pigments, vitamins and other cellular building blocks (Giglio et al., 2011). Typical bloom 

concentrations of geosmin can range from 1-2 ng/L to up to 7,500 ng/L (Li et al., 2010). 
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Figure 1-4. Chemical structure of geosmin 

 

 

1.2.1.2 Detection Limit 

The human odor detection threshold for geosmin is determined as 2 ng/L. The presence 

of geosmin in drinking water can adversely affect consumers’ confidence and acceptance of their 

drinking water source and may drive customers to find alternative sources (Omur-Ozbek and 

Dietrich, 2005; Giglio et al., 2008). For these reasons billions of dollars are spent each year to 

remove the odorants from finished water. In reaction to customer complaints, South Korea and 

Japan has set guideline limits at 10 ng/L for geosmin in tap water (McGuire, 1995). 

 

1.2.1.3 Properties 

Geosmin is a tertiary alcohol, fairly water soluble and has a Henry’s law constant (at 20 

°C) of 0.0023; molecular weight of 182.31 g/mol; and water solubility of 150.2 mg/L (at 20 °C) 

(Bruce et al., 2002; Omur-Ozbek and Dietrich, 2005). Natural degradation of geosmin is 

relatively slow, around 3 days; the main path for removal is through microbial degradation 
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(Lawton et al., 2003). If water containing geosmin is stored with no headspace in dark and at       

4 
o
C, geosmin can remain stable for up to a year (Brownlee et al., 2007).  

 

1.2.2 Microcystin-LR 

1.2.2.1 Occurrence 

Microcystins are a common type of cyanotoxins that specifically targets liver cells. 

Microcystin-LR is among the most frequently detected and most toxic of the microcystin 

variants. Typical bloom concentrations in source waters range from 2 to 10 μg/L of microcystin-

LR (Ho, 2011). Microcystin-LR was detected in all 33 Northeastern and Southeastern US water 

supplies studied during the summer of 2003 (Haddix et al, 2007). It has also been found to occur 

with other cyanotoxins so, in studying microcystins, other toxins may be addressed in the future 

studies. (Chorus, 1999; Triantis et al., 2010). 

 

1.2.2.2 Properties 

Since microcystins, see in Figure 1-4, are cyclic peptides, they are very stable and 

resistant to temperatures up to 300
o
C, chemical hydrolysis or oxidation around neutral pH. They 

can range in molecular weights from 900 to 1100 da (Svrcek and Smith, 2004). There are over 

60 known variants of microcystins. Microcystins may persist for months to years in a stable 

environment (Chorus, 1999). However, in natural waters microcystins can naturally breakdown 

due to biodegradation and photolysis with a half-life around one week (WHO, 2003). 

Cyanobacteria carrying the mcy gene have the potential to produce microcystins. It is believed 

that cyanotoxins may be produced in order to reduce predation from zooplankton (Oberholster et 

al, 2006; Rohrlack et al., 2005; Hawkins et al., 2005; Li et al., 2010; Dixon et al, 2010).  
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Figure 1-5. Chemical structure of Microcystin-LR 

 

1.2.3 Geosmin and Microcystin-LR in cyanobacteria 

 

Recently it was shown that toxins such as microcystins co-occur with taste-and-odor 

compounds such as geosmin (Graham et al., 2010). Cyanobacteria in the genera Anabaena, 

Aphanizomenon, Lyngbya, Microcystis, Oscillatoria, Phormidium, Schizothrix and Symploca 

(Fig 6), are all known geosmin producers. All, with the exception of Symploca, are known to be 

capable of producing cyanotoxins (Chorus, 1999). Since geosmin can be easily detected by the 

human nose, the surveillance of harmful toxins such as microcystin-LR may be easily performed 

due to the likely co-occurrences of the two types of metabolites.  

http://upload.wikimedia.org/wikipedia/commons/c/c0/Microcystin-LR.png
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Figure 1-6. (1) Microcystis spp. (2) Anabaena spp. (3) Phormidium spp.(4) Lyngbya spp. 

(Schneegurt, 2001) 

1.3 Detection methods of cyanobacterial metabolites 

 

Since cyanobacterial metabolites can be detrimental at very low concentrations, advanced 

detection methods are required. In order to detect and quantify at such low concentrations the 

methods used must be specific to either physical separation and/or explicitly selective to the 

compound of interest.  
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1.3.1 Geosmin 

1.3.1.1 Solid Phase Microextraction 

 

The extraction of geosmin for detection and quantification first starts with solid phase 

micro-extraction (SPME) of the compound from either the headspace or from the liquid matrix 

of a sample. There are three phases involved in headspace sampling, fiber coating, headspace 

and sample matrix. Geosmin is diffused from the sample matrix to the headspace then finally 

through equilibrium diffusion into the fiber coating. Manual assemblies of SPME with extraction 

fiber coated with polydimethylsiloxane (PDMS, 100 um), Carboxen (Car)/PDMS 75 um, 

StableFlex divinylbenzen. 

 The conditions of diffusion during the SPME must be standardized to successfully 

predict the gas phase concentration of geosmin in the samples using Henry’s law constants at the 

selected standardized conditions (Omur-Ozbek and Dietrich, 2005). Several parameters such as 

fiber coating, agitation and extraction temperature and time had to be standardized. Extraction of 

geosmin can be increased 1.2x by a salting out effect. Extraction efficiency is low at low pH but 

constant at pH of 4-8 (Saito et al., 2008).  

 

1.3.1.2 Gas Chromatography/Mass Spectrometry 

Gas chromatography is a highly selective test which can isolate volatilized geosmin in a 

mixture of gas through a silica capillary column of cross-linked DB-5. Injection and detector 

temperature is set at 280
o
C and a column temperature at 190

o
C for 2 minutes, increased to 270

o
C 

at 10
o
C/min. Inlet helium carrier gas flow rate at 1.43 ml/Min. In gas chromatography geosmin 

that is extracted from the SPME procedure mentioned above can be desorbed and detected 

through subjecting the fiber carrying the absorbed geosmin in a gas inlet of the GC column. 
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Ionization voltage is set at 70eV and ion fragments detect for geosmin occurred at 112 m/z 

(Matsushita et al., 2008; Saito et al, 2008).  

 

1.3.2 Microcystin 

1.3.2.1 Liquid Chromatography/Mass Spectrometry 

 

Liquid chromatography (LC) is a highly selective test that separates the compound of 

interest in the liquid phase through a specialized column. Liquid chromatography was the 

detection method of choice when it comes to accuracy and sensitivity by Triantis et al, 2010, 

Hawkins et al, 2005, and Agrawal et al, 2010 among others. The stationary phase is composed of 

octadecyl carbon chains bonded silica column (C18), which was chosen depending on the 

polarity of the compound to allow microcystin to be retained longer for a better resolution 

(Figure 1-7). The column temperature is set at 30 
o
C. For microcystin-LR, a mixture of high 

purity water which is the polar solvent and acetonitrile which is a non-polar solvent, both 

containing 0.5% acetic acid are used as the mobile phases. A gradient program starts at 75% of 

the polar component in the mixture then to 30% of polar in 9.5 minutes then 10 for the polar 

component holding for one minute (Triantis et al., 2010). 

Microcystin-LR is detected from multiple reaction ion monitoring using the two most 

intense and characteristic precursor/product-ion transitions obtained from the MS-MS procedure. 

The effluent from the LC is then ionized and the liquid phase is vaporized. The vapor is 

accelerated into fragmentor and a mass filter which selects for certain target masses at 213 m/z to 

detect the amount of microcystin-LR that has gone through. Additionally, to confirm 

microcystin, microcystin-LR is fragmented and mass filtered again at 135 m/z to give two peaks, 

this is called a daughter fragment (Hawkins et al., 2005). 
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Figure 1-7. How liquid chromatography works. 

 

 
Figure 1-8. LC/MS/MS 

1.3.2.2 Liquid Chromatography/ UV Photodiode Array 

 

Microcystin has to be purified by solid phase extraction before subjected to detection 

using the photodiode array. Once microcystin is separated by the LC at a known time, a UV 

source is set to emit at the compounds’ maximum absorbance frequency. The detection 

experiences a drop in UV radiation which is proportional to the concentration of microcystin-LR 

present. The photodiode array detector is set at 238 nm in a thermostated column. Acetonitrile 
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and water containing 0.05% trifluoroacetic acid are used as the mobile phases (Triantis et al., 

2010).  

 

1.3.2.3 Enzyme Linked Immunosorbant Assay 

 

The enzyme linked immunosorbant assay (ELISA) is a low cost, rugged, and simple way 

to detect for microcystins for both environmental and laboratory applications. The ELISA testing 

kit is a good, quick and inexpensive way to screen many samples at once for microcystin-LR 

before confirmation and quantification with more advanced methods. The assay requires very 

little processing of samples only requiring simple filtration or dilutions if concentrations are 

suspected to be beyond the specific kit’s detection limit. ELISA is a good way to screen 

environmental samples for the presence of microcystins due to its specificity for the compound 

type, low cost and fast turnaround time (Hawkins et al., 2005; Triantis et al., 2010).   

As seen in the Figure series 1-9 the well plates are lined with anti-rabbit IgG polyclonal 

antibodies that are raised to bind microcystins and a microcystin-enzyme conjugate. There are 

the same number of antibody binding sites in each well allowing the same number of 

microcystin-enzyme conjugate enzyme molecules to bind to the antibodies. Once the conjugate 

binds and the reaction proceeds, a blue color appears. Conversely, if there is a high concentration 

of microcystins, there will be fewer microcystin-enzyme conjugate molecules bound to the 

antibodies thus a lighter blue color indicating the presence of microcystins. Cross reactivity 

could occur if variants of microcystins and nodularins are present. Nodularins are another type of 

cyanotoxin. The detection limit of the assay is 0.1 μg/L of Microcystin-LR.  

There are however a few limitations on the assay in the form of accuracy and false 

positives. Low concentrations of microcystins (< 0.1 μg/L) can be difficult for the ELISA assay 
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to accurately measure concentrations. False positives may arise due to cross reactivity between 

similar toxin variants or structures similar to the toxin of interest. In a study done by Triantis et 

al (2010), by evaluating ELISA kits available to detect and quantify microcystins, 17% of 

samples reported false positives. There can also be high variability between selected ELISA kits 

for microcystin detection/quantification. Recovery rates ranged from 73%-189% between two 

kits tested by Triantis et al. (2010). Commercial ELISA kits can successfully detect microcystins 

in both raw and finished water even though microcystin concentrations may be low (Haddix et 

al., 2007). 

 

 

Figure 1-9a. Antibodies in media are specific only to microcystin compounds 
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Figure 1-9b. A conjugate to microcystin is then attached to prepare for an indicator substrate. 

 

Figure 1-9c. An indicator substrate Tetramethylbenzidine is attached to allow adsorbance.  
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1.3.2.4 Protein Phosphatase Inhibition Assay 

The protein phosphatase inhibition assay (PPIA) is a good indicator of hepatotoxicity and 

tumor promotion of compounds. Microcystins and other cyanotoxins such as nodularins inhibit 

serene and threonine phosphatase enzymes that are found in liver tissues. These enzymes can 

play a key role in tumor suppression in the liver and with their inhibition toxic effects can be 

observed such as apoptosis and necrosis. The assay can provide bioactivity of the cyanotoxins 

since detection is based on the functional activity of the toxins rather than the recognition of their 

chemical structure. 

Like ELISA, the PPIA can be done in micro-wells but with protein phosphatase enzymes 

as the reactive protein. The active substrate is either P-nitrophenyl phosphate or the microcystin 

compound. Without the presence of microcystins, the P-nitrophenyl phosphate substrate binds to 

the enzyme to carry out a hydrolysis reaction, which is indicated by a color development. 

Conversely, if microcystin is present, the enzyme is inhibited and there is less or no color 

development.  

The PPIA is fast, cost effective and easy to use. However an extensive amount of work 

for reagent preparation is required as commercial kits are not available. PPIA also cannot 

provide accurate quantitative results and not all microcystin variants react with protein 

phosphatase enzymes to a similar extent so the assay is strictly only for detection of microcystins 

(Triantis et al., 2010).  
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Figure 1-10. PPIA Assay 

1.3.3 Integrated method analysis 

 

In order to detect and quantify the microcystin-LR in surface waters, an integrated multi-

method laboratory system is necessary to optimize reliability, efficiency and cost. Research by 

Hawkins et al. (2005) and Triantis et al. (2010) developed an analytical strategy to provide cost 

effective and validated results. Both studies proposed using ELISA method to first screen 

environmental samples for microcystins followed by a confirmation step using another detection 

method. The ELISA test was determined to be most rugged as it required the least amount of 

sample processing which is why the study used it in all of their sample matrices. However, the 

ELISA method had the largest range of percent recovery which is related to its cross reactivity of 

similar compounds as seen in Figure 1-11. The costs associated with the detection and 

quantification of microcystins can be significant and sometimes very high depending on the 
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types of tests ran. The following are the average cost rankings per sample for microcystins: 

PPIA<ELISA<LCMS<HPLC. Proper uses of different toxin analysis techniques was laid out by 

Triantis et al, 2010 to maximize cost effectiveness and accuracy depending on the circumstance 

and sample type. 

 

 

Figure 1-11. Method result characteristics. 
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Figure 1-12. Analytical Protocol for analyzing microcystins developed by Triantis et al. 2010.  
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1.4 Treatment of cyanobacterial metabolites 

 

Most cyanobacteria metabolites are stored intracellularly and are released when the cell is 

lysed (Giglio et al., 2008; Graham et al., 2010; Dixon et al., 2010). Mitigation methods involving 

destroying the cyanobacteria during full bloom conditions may lead to the release of these 

metabolites and hence result in peaked concentrations of cyanotoxins and taste-and-odor 

compounds in the water. There were many instances when the efforts of controlling blooms with 

copper sulfate to kill off the cyanobacteria resulted in elevated fish and human related poisonings 

in Australia and Brazil (Chorus, 1999).  

 

1.4.1 Conventional treatment 

 

Traditional conventional water treatment methods including coagulation/flocculation 

with chemicals or polymers and rapid/slow sand filtration has been proven to be only effective in 

removing cyanobacterial metabolites stored inside cyanobacterial cells themselves 

(Hargesheimer and Watson, 1996). Cyanotoxins on the other hand are ineffectively removed by 

these methods. The exception to this would be slow sand filters which develop a biofilm 

specifically targeted for cyanotoxin treatment (Holst, 2003). Removal rates up to 90% could be 

achieved through laboratory studies but the methods were ultimately unfeasible as cyanotoxin 

release events are short lived and do not provide enough time for biofilm layers to optimize for 

cyanotoxin removal (Svrcek and Smith, 2004). The occurrence of bacteria with the capacity to 

degrade microcystin is strictly limited in freshwaters, especially with waters which have had no 

previous experience with microcystins (Holst et al., 2003). 

Heavy chlorination using aqueous chlorine and calcium hypochlorite has been proven to 

remove around 95% of microcystins with a 30 minute full strength contact. However, this 
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treatment method is highly variable depending on pH and cyanotoxin concentrations. High 

removal rates were only achieved through very high concentrations of microcystin-LR in mg/L 

concentrations (Svrcek and Smith, 2004). Chlorination may also result in harmful chlorination 

by-products (Hitzfeld et al., 2000).  

1.4.2 Powdered Activated Carbon 

 

PAC has been commonly used for the removal of organic compounds. PAC treatment 

methods can significantly reduce toxicity and odors by actually removing the detrimental 

cyanobacterial metabolites from the water source (Hitzfeld et al., 2000; Matsushita et al., 2008; 

Li et al., 2010). Activated carbon is a highly porous adsorptive medium with a complex structure 

which houses a high pore volume giving it its large surface area for contaminants to sorb onto 

(Norit Americas, 2009). Activated carbons for drinking water treatment are typically made from 

coal, coconut or wood sources. Different sources of carbon determine the pore structure 

distribution among the activated carbons (seen in Figure 1-13).  Each type of activated carbon 

has different adsorptive capabilities that can sometimes be customized to be somewhat selective 

for specific contaminants (Cook and Newcombe, 2002).  
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Figure 1-13. Pore Volume distribution from Norit Americas (2009). 

Adsorption onto the activated carbon surface can be driven by physical forces such as van 

der Waals or chemical sources of polarity. Since the metabolites of interest are comprised of 

various peptides, it is suggested that adsorption will be due to hydrophobic, electrostatic and 

dispersion forces (Pendleton, 2001). Diffusion effects, pore size, surface chemistry, surface area 

volume, pH, temperature and concentration can also affect the efficiency of adsorption. 

Generally, non-polar organic species can be efficiently absorbed by activated carbon (Norit 

Americas 2009). 

 



27 

 

 

Figure 1-14. Powdered Activated Carbon 

The advantage to using PAC is that it can be easily incorporated into existing plant 

operations and can be applied only when there is need to treat for organic compounds such as 

cyanotoxins and odors (Cook and Newcombe, 2002). Typically water treatment plants can apply 

up to 50 mg/L of PAC without affecting downstream processes (Ho et al., 2011). The dosing 

variability is highly dependent on the ratio of micro, meso, macro pore structure of the activated 

carbon (Westrick and Szlag, 2010).  

In a recent study by Ho et al. (2011) it was determined that negligible differences in 

removal rates occur while using PAC contact times above 30 minutes to remove microcystin-LR 

from reservoir water. This suggests the removal of microcystins to be more PAC dosage 

dependent than contact time dependent because the kinetics of adsorption are relatively rapid. It 

was concluded that over 96% removal of microcystin was achievable with 50 mg/L of PAC after 

30 minutes of contact time. Another study reported that up to 98% microcystin removal can be 

achieved with wood based activated carbon with a 30 minute contact time. Only 60% removal of 

microcystin is observed when coconut based activated carbon is used (Svreck and Smith, 2004).  

Compared to microcystins, geosmin is a flatter and smaller molecule which allows it to enter 

smaller pores by diffusion. It was found that adsorbed amount of geosmin increased after 24 

hours compared to the 30 minute studies (Ho et al. 2011). Geosmin is relatively resistant to 
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higher natural organic matter (NOM) concentrations when laboratory studies were compared 

with source water studies indicating  that typical conventional treatment only affects larger and 

less adsorbable NOM components which are irrelevant for competitive adsorption against 

geosmin (Zoschke et al., 2011). Li et al.(2010) suggested that that a PAC dosage of 80 mg/L 

could treat a bloom containing 473 ng/L of geosmin below 10 ng/L. This was observed when the 

waterworks at Qinhuangdao city had to control a severe release of geosmin in the drinking water. 

In a laboratory study done by Park et al. (2010) 85% of geosmin was removed by PAC within 60 

minutes. 

Hydrodarco ® B from Norit Americas was the selected PAC for this research project 

because it is commercially available to remove taste and odor compounds such as geosmin, as 

well as other organics from potable water sources. Hydrodarco ® B is produced by steam 

activation of lignite coal under carefully controlled conditions. It is finely milled to have a high 

degree of suspension and high capacity for adsorption.  

 

1.4.3 Membranes 

 

Advanced treatment methods involving membranes through ultrafiltration and nano-

filtration can be effective in removing up to 95 to 100% of microcystins and taste and odor 

compounds (Alvarez et al., 2010; Omur-Ozbek and Dietrich, 2005). Membranes utilize low 

molecular weight cut off pore sizes to only allow water and other small molecules to pass 

through while retaining larger molecules (Hitzfeld et al., 2000). Low pressure membranes 

capable of microfiltration and ultrafiltration are successful in removing cyanobacterial cells. 

High pressure membranes involving reverse osmosis and nanofiltration can effectively remove 

up to 99% of cyanotoxins.  
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A few of the disadvantages of membranes involve dealing with the cyanobacteria cells 

themselves. Pretreatment is often required and filtration through membranes can rupture 

cyanobacteria cells thus releasing intracellular metabolites. It was found that under high pressure, 

intracellular geosmin was not released in static conditions but was released in dynamic 

conditions (Matsushita, 2008). Backwashing of membranes for removal of cyanobacteria can be 

problematic as live cells may be trapped inside the pores causing the flux of the membrane to be 

reduced. Membranes have a high capital cost and require highly trained operators to ensure the 

integrity of the membrane operations making it difficult to adopt this method for algal metabolite 

removal (Svrcek and Smith, 2004).  

1.4.4 UV 

 

Ultraviolet photolysis is a widely used pathogen reducing process. The ultraviolet energy 

can also cause one or more bonds to break in a molecule without the addition of chemicals. In 

experiments by Tsuji et al. (1995), ultraviolet radiation dosages of 1530 mJ/cm2 to 20,000 

mj/cm
2
 could degrade microcystin-LR to a similar degree of photolysis in nature. These 

ultraviolet dosages however are several orders of magnitude higher than what is practical for 

water treatment plants (Svrcek and Smith, 2004). 

 

1.4.5 Ozone 

 

Ozonation has been one of the predominant methods for disinfection or the removal of 

organic compounds responsible for color, taste and odor problems. Ozonation contact times are 

relatively short compared to chlorination and activated carbon with average times around 10 to 

20 minutes (Hitzfeld et al., 2000). Ozone has been found to completely remove up to 5 mg/L of 
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microcystin-LR at an ozone dosage of 2 mg/L (Al Momani and Jarrah, 2010). However other 

studies reported removal rates that were highly variable from 0% to 100%. This is due to 

ozonation conditions including temperature, pH, ozone dosage and most importantly the 

presence of organic matter. Like chlorination, ozonation relies on the oxidation of the compound 

(Alvarez, 2010). If oxidation of microcystin-LR is not complete, the free and intact toxic side 

chain of the microcystin-LR molecule can become more toxic. The side chain, Adda side chain, 

is responsible for the toxicity associated with cyanotoxins. Only complete cleavage of the Adda 

side chain results in reduced or absence of toxicity (Al Momani and Jarrah, 2010; Svrcek and 

Smith, 2004; Lawton and Robertson, 1999). Another issue is the conversion of odorous 

compounds into a displeasing “plastic-like” odor which can be as undesirable as the original odor 

compound (Hargesheimer and Watson, 1996). 
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Figure 1-15. Ozone decomposition pathway. 

 

1.4.6 Moringa Oleifera Coagulant 

 

The water purifying attributes of the moringa oleifera tree seed (seen in Figure 1-16) 

have already been established as an effective and low cost method to treat water in many 

economically disadvantaged countries. The moringa oleifera tree is native to western and sub-

Himalayan tracts, India, Pakistan, Asia Minor, African and Arabia. It is now cultivated in 
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Southeast Asia, Central America, North and South Americas and the Caribbean Islands (Farooq 

et al., 2006). The crushed seeds are a viable replacement for synthetic chemicals used in a water 

treatment process called coagulation and flocculation.  

 

Figure 1-16. Moringa oleifera seeds in their husks 

 

During coagulation and flocculation, contaminants are neutralized and mobilized so they 

are able to adhere to each other to form larger and denser particles that can be settled or filtered 

out (Davis, 2008). The aqueous solution of the moringa oleifera seed is a heterogeneous mixture 

of various functional groups, mainly comprised of low molecular weight amino acids. These 

amino acids generate a negatively charged atmosphere which is key in the coagulation process. 

The proteins have an approximate molecular weight of 1300 Da and an iso-electric point 

between 10 and 11 (Anwar et al., 2007). Coagulation mechanisms involved in this case include 

adsorption and sweep coagulation (Fig. 1.17). The moringa coagulant is aided by dissolved 

cations, in this case calcium cations, to form a net structure to induce sweep coagulation and 

flocculation (Okuda et al., 2001).  

The coagulant is a low cost and low technology way for developing countries to treat 

their source waters during algal bloom events. The moringa oleifera coagulant has been more 

efficient in removing algal cells compared to alum. Up to 97% of algal cells in all algal groups 
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observed from raw Nile river water without pre-chlorination in a study done by Shehata et al. 

(2008).  

 

 

Figure 1-17. Coagulation mechanism of the moringa coagulant (Adopted from Okuda et al. 

2001) 

 The crushed moringa seeds also have anti-microbial and anti-cyanobacterial properties. 

Dosages of 20 to 160 mg/L of the seed can inhibit replication of bacteriophages by damaging 

bacterial membranes. This activity is attributed with the compound 4(α-L-rhamnosyloxy) benzyl 

isothiocynate (Anwar, 2007; Lurling, 2010). Optimal dosage for microbial inhibition was 

determined as 40 mg/L of the moringa oleifera seed.  

 

1.5 Toxicity Analysis 

1.5.1 Toxicity of microcystin-LR 

 

Microcystin-LR is a highly toxic compound with an oral LD50 of 5,000 µg/kg in mice 

(WHO, 2003). Microcytins are primarily hepatotoxins that can cause severe liver damage 

characterized by liver cell cytoskeleton damage, a loss of sinusoidal structure, intrahepatic 

hemorrhaging, haemodynamic shock, formation of hepatic tumors, apoptosis, vacuolization and 
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progressive liver necrosis. Higher doses can lead to death occurring in as little as a few hours to a 

few days of ingestion (Chorus, 1999; 2003; Svrcek and Smith, 2004; Agrawal et al., 2006). 

1.5.1.1 Acute exposure 

Effects of acute exposure to cyanotoxins on humans have been recorded around the 

world, including developed countries such as the US and Australia where cyanobacterial toxins 

were ingested through contaminated water supplies. These supplies were not monitored properly 

for cyanobacteria blooms and resulted in public poisonings. Children are particularly at risk 

because they can drink a higher volume of water in proportion to their body weight than adults 

(WHO, 1999). Symptoms of poisoning through ingestion included cases of severe gastro-

enteritis and hepatoitis.  Histomicrographs of mouse livers exposed with bloom extracts 

demonstrated tissues engorged with blood and grossly distended cells, indicating apoptosis 

(Agrawal et al., 2006). An epidemiologic study found that patients in India who frequently 

bathed in waters infested with cyanobacteria developed acute rhinosporidiosis, which is an 

infection of the mucous membranes (Agrawal et al., 2006). 

A significant cyanobacteria related acute exposure case occurred in 1988 in the Paulo 

Afonso region of the Bahia State in Brazil. 2,000 gastro-enteritis cases followed over a 42 day 

period, of which 88 resulted in death. It was later found that cyanobacteria of the Anabaena and 

Microcystis genera were present in the Itaparica Dam reservoir at the time of the poisonings and 

concluded to be the source of the epidemic (Chorus, 1999). 
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Figure 1-18. Dying fish in a reservoir experiencing a bloom in Loveland, CO.  

 

1.5.1.2 Chronic exposure 

Chronic lower dose exposure to cyanobacterial toxins may result in carcinogenesis and 

tumor growth promotion. China has one of the highest incidents of hepatocellular carcinoma, 

which may be caused by cyanotoxin exposure. In Quidong county in China, residents who have 

been drinking surface water with average microcystin-LR concentrations of 0.1 μg/L reported 

higher frequencies of liver cancer compared to residents drinking from well water (Alvarez et al., 

2010). Another study conducted in Florida reported that there was an increased risk for primary 

hepatocelluar carcinoma for residents living in the service area of water treatment plants drawing 

from surface waters with a history of blooms compared to groundwater users (Bean et al., 2002). 

After ingestion of microcystin-LR, the toxin is transported across the ileum into the bloodstream 

to the liver where it is taken up by hepatocytes. It is generally up-taken through the adenosine 

triphosphate transport system of the cell (Hitzfield et al., 2000). Microcystin-LR is a potent 

inhibitor of eukaryotic protein serine/threonine phosphates 1 and 2A. Protein phosphatases serve 

as enzymes that play an important regulatory role in maintaining homeostasis in the cell (Chorus, 

1999; Chorus and Bartman 2003).  Protein phosphatases can regulate cellular processes such as 
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cell cycle progression, proliferation, protein synthesis, muscle contraction, carbohydrate 

metabolism, transcription, cytokinesis and neuronal signaling. If any of these processes 

malfunction, tumor growth and even cellular death may occur through apoptosis (Ayllon, 2001). 

 

1.5.1.3 Mechanism of action 

 

The effects of microcystins are strictly organ and cell specific, targeting primary 

hepatocytes. The cell specificity is not due to metabolic activation in the liver cells but to the 

specific pathway of uptake. Microcystins have been shown to be taken up through the multi-

specific transport system for bile acids, which is also an entrance pathway for several xenobiotic 

substances. The in-vitro effects of microcystins on hepatocytes can be inhibited by low 

concentrations of bile acids or bile acid transport inhibitors. Only primary hepatocytes and 

intestinal cells are equipped with this bile acid transport system (Chorus, 1999).  

The Adda side chain, which is a unique amino acid only to cyanotoxins, is suspected to be 

responsible for inhibiting protein phosphatases (Hitzfield, 2000). The individual amino acids of 

microcystin-LR may be seen in Figure 1-20 
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Figure 1-19. Amino acids that make up microcystin-LR (Adopted from Schneegurt 2001) 

Apoptosis is characterized by cell shrinkage, chromatin condensation, plasma membrane 

blebbling, vacuolization, oligonuclesomal DNA fragmentation, and breakdown of the cell into 

smaller pieces (Chen et al., 2005). Even at smaller doses of microcystin-LR, apoptosis occurs 

through the BID-BAX-BCL-2 regulatory protein pathway (Chen et al., 2005). Proteins in the 

BCL-2 gene family are potent regulators of apoptosis that can influence the permeability of the 

outer mitochondrial membrane. This can protect various cell types from death induced by growth 

factor deprivation, heat shock and viral agents (Ayllon, 2001). BCL-2 proteins contain both pro 

and antipoptotic members that elicit opposing effects on the mitochondrial membrane including 

the anti-apoptotic protein BCL-2 and pro-apoptotic proteins BAX and BID. Essentially the BID-

BAX-BCL-2 pathways are responsible for homeostasis regulation of the cells (Akcali et al., 

2004).  

The up-regulation of BCL-2 is a host response to toxin exposure, protecting the host cell 

from destruction by apoptosis. Upon apoptosis, as seen in Figure 1-20, BAX oligomerizes with 
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BAK into large complexes that form pores in the lipid bilayer and facilitate the release of 

cytochrome C and other factors. BAK is another pro-apoptic member of the BCL-2 gene family. 

Thus, the up-regulation of BAX at relatively low doses of microcystin-LR could initiate the 

consequent apoptoic events with BID serving as an initiator of BAX.   

 

 

Figure 1-20. Microcystin-LR toxicity pathways (Adopted from Chen 2005). 

 

At high concentrations of microcystin-LR, the expression of BAX can remain high but 

the expression of BID and BCL-2 will decrease. The main promoter and inhibitor of 

mitochondrial apoptosis pathway becomes disabled causing difficulty for the BCL-2 family to 

control the process. The reactive oxygen species pathway then dominates apoptosis during high 
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concentrations of microcystin-LR. In the reactive oxygen species pathway, the protein ferritin is 

the major iron binding protein limiting the catalytic availability of iron for participation in 

oxygen radical generation. Ferritin functions as the primary storage for intracelluar iron. The up-

regulation of ferritin can be induced by microcystin-LR thus, allowing a higher concentration of 

iron to be present. 

The increased concentrations of cellular iron can catalyze redox reactions, enabling iron 

to generate radical species from a Fenton reaction,  Fe
2+

 + H2O2 => Fe
3+

 + HO* + OH
-
.  Reactive 

oxygen species causes an increase in cytosolic calcium and has been observed in cells 

undergoing oxidative stress. This leads to mitochondrial membrane rupture, massive intrahepatic 

hemorrhaging and damage to the cytoskeleton (Ding et al, 2001; Chen et al., 2005). 

Carcinogenesis of tissue could occur from repeated damage, by chronic exposure to microcystin-

LR, through apoptosis or reactive oxygen species (Bean et al., 2002). This damage can be 

characterized by damage to the cytoskeleton which is a major role in hepatotoxicity (Ding et al., 

2001). 

 

1.5.2 Cell culturing 

The H4IIE rat hepatoma cell line is used in many in vitro tests for cytotoxicity screening 

and testing. Typically the cells are used to detect and semi-quantify specific contaminants and 

classes of contaminants from the environment. H4IIE cells can be sensitive to environmental and 

experimental conditions so it is important to regulate and standardize growth factors and growth 

conditions. Use of H4IIE cells can have a powerful predictive ability in terms of risks to 

organisms namely liver toxicity (Whyte and Tillitt, 2004). Cells can be plated into plates or 

flasks in 10% fetal bovine serum. Unattached dead cells can be washed with a saline buffer such 

as HEPES or PBS (Ding et al, 2001).  
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1.5.3 Quantification  

 

Cytotoxicity assays can be quantified through the sulforhodamine B (SRB) colorimetric 

assay. The assay is commonly used to predict pharmacokinetic behavior, target organ toxicity, or 

specific effects such as genotoxicity (Fricker, 1994). The assay is based on the measurement of 

cellular protein content. This is a robust assay with a stable colorimetric end point which gives 

relatively linear results in respect to cell counts over a range of 5 x 10
3
 to 10

5
 cells. The assay 

requires simple equipment and inexpensive reagents (Vichai and Kirtikara, 2006). 

The SRB assay involves fixing living cells with trichloroacetic acid solution (TCA) for 

30 minutes and washing under tap water 5x to remove dead cells. 0.1% sulforhodamine in acetic 

acid is used as the stain which is applied for 15 minutes. Cells are then washed 4x with acetic 

acid. Once stained the, cells are then solubilized with Tris base and read through a plate reader at 

540 nm adsorbance. The plates can be stored for several weeks at room temperature before 

adsorbance is measured (Fricker, 1994, Swennen et al., 2010).  
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2.0 The occurrence and removal of cyanobacterial 

metabolites Microcystin-LR and Geosmin from source waters 

by Powdered Activated Carbon. 

 

2.1 Introduction 

 

The occurrence of cyanobacteria blooms has become more frequent throughout the world 

due a combination of warmer climates and an abundance of available nutrients such as nitrogen 

and phosphorous. Cyanobacteria can produce several metabolites that can be causes of nuisances 

(taste and odor compounds) or cause health concerns (toxins). The most commonly produced and 

detected metabolites in surface waters are microcystin-LR (a hepatotoxin) and geosmin (taste 

and odorant) (Chorus and Bartman, 1999; Omur-Ozbek and Dietrich, 2005; Haddix et al., 2007; 

Dixon et al., 2010). In the environment, most of the cyanobacterial metabolites are stored 

intracellularly and are released when the cells lyse at the end of their life-cycle or by other means 

(e.g. algicides) (Giglio et al, 2008; Graham et al, 2010; Dixon et al, 2010).  

Multiple studies have linked chronic microcystin-LR exposure to an increased risk of 

hepatocellular carcinoma by comparing users of surface water containing the toxin and ground 

waters in which the toxin is absent (Alvarez et al., 2010, Bean et al. 2002). The most common 

pathway of human exposure to cyanotoxins is from accidental ingestion or contact with water 

containing cyanobacterial cells through recreational activities. Recreation victims have reported 

symptoms including intense vomiting, diarrhea, vertigo, nausea and abdominal pains (Freeman, 

2011).  

Due to adverse health effects of toxin exposure, the World Health Organization(WHO) 

has set a drinking water guideline limit of one ppb (µg/L) for the cyanotoxin microcystin-LR, 
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which is the most potent of the microcystin variants (Chorus, 1999; WHO, 2003). Cyanotoxins 

are also on the EPA Contaminant Candidate List 3 (USEPA, 2011).  

Unlike microcystin-LR, geosmin has no known detrimental effects on humans, nor is its 

presence in drinking water regulated in the US (Omur-Ozbek and Dietrich, 2005). Geosmin is an 

earthy smelling compound commonly produced by cyanobacteria, actinomycetes and 

myoxbacteria (Giglio et al., 2008). At concentrations as low as 2 ng/L, geosmin can impart an 

unpleasant odor and flavor to drinking water (Omur-Ozbek and Dietrich, 2005; Giglio et al., 

2011). Geosmin can therefore adversely affect consumer confidence and acceptance of their 

drinking water. For these reasons, billions of dollars are spent each year to remove the odorants 

from finished water. In response to customer complaints, South Korea and Japan have set 

guideline limits at 10 ng/L for geosmin in tap water (McGuire, 1995). 

Mitigation methods involving destroying the cyanobacteria during full bloom conditions 

may lead to the release of these metabolites and hence can result in increased concentrations of 

cyanotoxins and taste-and-odor compounds in the water body (Chorus and Bartman, 1999; 

Dixon et al 2011). Conventional water treatment methods including coagulation/flocculation and 

sand filtration have been proven only effective in removing cyanobacterial cells (Hargesheimer 

and Watson, 1996). The dissolved metabolites, microcystin-LR and geosmin on the other hand, 

are not effectively removed by these methods (Svrcek and Smith, 2004; Lawton and Robertson, 

2003). Slow sand filtration has shown some success in removing cyanobacterial metabolites 

through developing a biofilm layer specifically to treat for the metabolites. Unfortunately, 

metabolite release events are short-lived and do not provide enough time for the biofilm layers to 

optimize and target cyanobacterial metabolites (Holst et al., 2003, Svrcek and Smith, 2004). 



50 

 

Advanced treatment practices can be very effective in removing both microcystin-LR and 

geosmin however; there are also disadvantages associated with operations, feasibility or cost 

related to them. Ozonation and chlorination can remove up to 100% of both microcystin-LR and 

geosmin. However, removal rates are highly variable depending on optimal conditions regarding 

pH, temperature, oxidant dosage and most importantly the presence of organic matter (Alvarez, 

2010). In addition, only complete cleavage of the microcystin-LR molecule can result in reduced 

or absence of toxicity, otherwise toxicity still is present or can even be magnified (Lawton 1999, 

Svrcek and Smith, 2004, Al Momani and Jarrah, 2010). Similarly, regarding geosmin, ozonation 

can convert odorous compounds into a displeasing “plastic-like” odor which can be as 

undesirable as the original odor compound (Hargesheimer and Watson, 1996). 

Powdered activated carbon (PAC) is commonly used for the removal of organic 

compounds in water treatment processes. PAC treatment methods can significantly reduce 

toxicity and odors by removing the detrimental cyanobacterial metabolites from the source 

waters (Hitzfeld et al., 2000; Matsushita et al., 2008, Dixon et al., 2010). PAC can be both cost 

effective and feasible to be incorporated into many existing water treatment processes without 

significant modifications to plant operations. PAC can also be applied whenever a metabolite 

release event occurs (Westrick and Szlag, 2010).  

Understanding the occurrence of these metabolites is the first step in mitigating 

contaminated waters. To understand their occurrence in Northern Colorado, environmental 

sampling was investigated on local rivers, lakes and municipal waters. The next objective of this 

study focused on effectiveness of PAC treatment on co-removal of microcystin-LR and geosmin 

at different concentrations below WHO standards and human detection limits through jar testing.  
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2.2 Materials and Methods 

 

2.2.1 Reagents and Supplies.  

The high purity toxin microcystin-LR (CAS 101043-37-2) was purchased from Cayman 

Chemicals (Ann Arbor, MI). Geosmin (CAS 16423-19-1), ammonium formate in 0.01% (v/v) 

formic acid(A) and acetonitrile 0.01% (v/v) formic acid in LC grade water was purchased from 

Sigma Aldrich (Pittsburg, PA). Optima grade methanol (CAS 67-56-1), 2,4,6-trichloroanisole, 

and sodium chloride was obtained from Fisher Scientific (Hampton, New Hampshire). The 

microcystin plate kit was obtained by Beacon Analytical Systems Inc. Cat# 20-0068(Saco, ME). 

Standard solutions of microcystin-LR were prepared in methanol at 20 and 5 mg/L, 40, 20, 10, 5, 

1, 0.5 and 0.2 µg/L. Standard solutions of geosmin were prepared in methanol at 4 and 0.04 

mg/L, 25, 10, 5, and 1 ng/L. The lignite coal based Hydrodarco-B (PAC) was supplied by Norit 

America Inc. (Marshall, TX). The PAC solution was prepared using nanopure® water at 2 g/L. 

The PAC dosages tested were 10, 20 and 30 mg/L, 1-L Pyrex beakers, Whatman glass fiber 

filters and 40 ml amber  glass (VOA) vials were purchased from Fisher Scientific Inc.  Solid-

phase microextraction (SPME) fibers (65µm PDMS/DVB cross-linked) and holders were 

purchased from Supelco (Bellefonte, PA).   

2.2.2 Water Samples 

 Raw Horsetooth Reservoir water used in the experiments was collected from the Fort 

Collins Water Treatment Facility (FCWTF) located in Fort Collins, CO, in 4 liter amber glass 

jugs and stored at 4
o
C until use. Water quality parameters such as pH, DO, conductivity, and 

TOC were given by FCWTF monitoring instruments at the time of sample collection. 

Environmental samples were collected from the Poudre River, the Big Thompson River, high 

mountain lakes in the Colorado Rocky Mountains, water bodies in the cities of Fort Collins and 
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Loveland, and areas east of interstate 25 in Northern Colorado. Grab samples were collected 

during the summer and fall of 2011 in 40 ml amber glass vials, headspace free and stored at 4
o
C 

in dark until analysis.  

2.2.3 Jar Tests 

1-liter glass beakers were filled with raw water and spiked with geosmin and 

microcystin-LR to achieve levels that correspond to common bloom events.  Total microcystin-

LR concentrations tested were 2, 4, 6 and 10 µg/L and total geosmin concentrations tested were 

10, 20, 30 and 50 ng/L for the jar tests. A series of six jars were simultaneously run on a Phipps 

& Bird™ gang stirrer equipped with 3 inch x 1 inch stainless steel paddles. The solutions in the 

beakers spiked with geosmin and microcystin-LR, were mixed at 200 rpm for 15 seconds before 

the experiments began to ensure proper mixing of the algal metabolites. The PAC was then 

added to achieve a concentration of 10, 20, or 30 mg/L. Then the jars were mixed at 50 rpm for 

30 minutes. After the mixing, the solutions were allowed to settle for 30 minutes. Samples were 

drawn from each jar at approximately 1.5 inches below the water surface and filtered through 

0.45 µm glass filter into in 40 mL amber glass vials for storage at 4
o
C for analysis. Gross water 

quality analyses were immediately conducted for the filtered samples. Temperature, conductivity 

and pH were measured by a Hach® sensIon 156 multi-parameter meter. Alkalinity and hardness 

were measured by Hach® Alkalinity AL-AP and 5B Hardness kits respectively. Microcystin-LR 

and geosmin analyses were performed within three days of sample collection. 

2.2.4 Enzyme Linked Immunosorbant Assay (ELISA) for Microcystins 

 In order to detect and quantify microcystin-LR in surface waters, a two-step method was 

used as suggested by Hawkins et al. (2005) and Triantis et al. (2010). As a first step, the Enzyme 

Linked Immunosorbant Assay (ELISA) was used to screen environmental samples for 
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microcystins. Positive samples from the ELISA were later confirmed for microcystin-LR through 

liquid chromatography-mass spectrometry-mass spectrometry (LC/MS/MS). 

The ELISA test kit was used to screen environmental samples for the presence of 

microcystins for its specificity, low cost and fast turnaround time (Hawkins et al., 2005; Triantis 

et al., 2010). The detection limit of the assay is 0.1 µg/L of Microcystin-LR. Environmental 

samples were filtered through a 0.45 µm glass filter to measure dissolved cyanotoxin 

concentrations specifically. The experimental method outlined by the supplier was followed to 

perform the ELISA testing.  After processing the samples according to the Beacon ELISA kit, 

the resulting plate was read on a FLUOstar Omega Plate Reader at 450 nm. 

2.2.5 LC/MS/MS Analysis for Microcystin-LR 

Microcystin-LR from the jar tests and environmental samples with positive ELISA 

results were detected and quantified by liquid chromatography-mass spectrometry-mass 

spectrometry (LC/MS/MS) following the method adopted from Triantis et al. (2010). The 

LC/MS/MS was performed on an Agilent 1290 UPLC coupled with an Agilent 6460 triple 

quadrupole mass spectrometer equipped with an electrospray ionization source in the positive 

mode (Agilent, Santa Clara, CA). Microcystin-LR was separated on a Zorbax Eclipse Plus C18 

column (2.1 x 50mm, 1.8 um particle size) at 30
o
C. A sample volume of 20 μl was injected and a 

binary mixture of ammonium formate in 0.01% (v/v) formic acid(A) and acetonitrile 0.01% (v/v) 

formic acid in LC grade water (Sigma, Pittsburg PA) (B) at a flow rate of 0.4 mL/min was 

passed through the column. The solvent gradient was 15% B at start, increased to 50% at 3 

minutes and increased again to 90% at 5 minutes. The ionization source conditions used were as 

follows: nebulizer gas flow of 8 L/min at 20 psi. Sheath gas temperature was set at 400
o
C and 

sheath gas flow was set to 10 L/min. The optimized fragmentor was set at 190 V with a cell 
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accelerator voltage of 7 V. The precursor ion was set at 995.6 m/z and product ions of 135.1 and 

107.0 m/z per produced with a collision energy of 90 V. The collection and processing of 

chromatograms was performed by using the Agilent MassHunter software (v B.04.01). The 

detection limit of microcystin-LR was at 0.2 ug/L. 

2.2.6 Solid Phase Microextraction coupled with GC/MS for Gesomin 

Analysis 

The headspace solid phase micro-extraction (SPME) coupled with GC/MS was adopted 

from procedures laid out by Omur-Ozbek and Dietrich (2005) and Saito (2008) for geosmin 

analysis. For every sample 20 mL of experimental solution was placed in 40 mL amber glass 

vials. Standard curve solutions were prepared at 1, 5, 10 and 25 ng/L geosmin. Every vial 

received 4g of NaCl and were spiked with 2,4,6-trichloroanisole TCA  to make up a 

concentration of 10 ng/L to serve as an internal standard.  The vials were then heated to 75
o
C and 

were equilibrated for 10 minutes before the SPME fiber was exposed to the headspace of the 

vials for 20 minutes. After the extraction the compounds on the fiber were desorbed at the GC 

inlet for 2.5 minutes. An Agilent 5890 gas chromatograph (GC) equipped with an Agilent DB-5 

MS (30 m, 0.25 mm i.d., 0.25 um) column connected to an Agilent 5973 mass spectrometer 

(MS) were used for geosmin analysis. The mobile phase consisted of helium gas at 145 kPa and 

a flow rate of 1.6 ml/min. The GC inlet was set to 250
o
C, pressure of 100 kPa (at 124

o
C) in the 

GC oven. The mass spectrometer was set for selected ion monitoring at 112 and 125 m/z, to 

increase sensitivity of detection for geosmin. The internal standard, TCA was set to selected ion 

monitoring at 195 m/z. The detection limit of geosmin was at 0.5 ng/L. 
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2.3 Results and Discussion 

 

 Water quality parameters were measured before and after jar tests were conducted. Table 

2-1 shows the raw Horsetooth Reservoir water characteristics. Temperature data were recorded 

right before experiments started. The data for post jar testing indicated no significant changes for 

hardness, alkalinity, pH, temperature and conductivity. 

Table 2-1. Horsetooth Reservoir Water Quality Parameters 

Parameter Minimum Maximum Average Standard 

Deviation 

Hardness 

(mg/L CaCO3) 

34.2 51.3 36.2 6.14 

Alkalinity 

(mg/L CaCO3) 

30.0 45.0 36.0 3.30 

pH 

 

7.10 

 

7.69 7.39 0.170 

 

Turbidity 

(NTU) 

0.940 3.64 2.47 0.730 

Dissolved Oxygen 

(mg/L) 

3.39 10.6 7.52 2.43 

Total Organic 

Carbon (mg/L) 

3.30 4.00 3.73 0.180 

Conductivity 

(µS/cm) 

45.0 78.3 63.2 8.49 

Temperature 

(
o
C) 

15.1 22.6 19.4 1.59 

 

 

2.3.1 Geosmin and Microcystins in Samples from Surface Waters in 

Northern Colorado 

 

 A total of 52 sites were sampled in the Northern Colorado area from May through 

October of 2011. Each site was sampled at least twice, in May and August. Other samples in 

which microcystins or geosmin were found were sampled two more times in September and 

October. As seen in Figure 2-1, 56% of the samples contained detectable levels of geosmin or 
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microcystins. Of the detectable metabolites, geosmin was detected in 63% of the metabolite 

positive samples.  

Geosmin levels ranged from 0.70 to 19.95 ng/L with the peak occurring in the month of 

June. The largest concentration of geosmin was detected on a slow moving section of the Poudre 

River near Interstate 25.  

 

Figure 2-1. Environmental sampling results. 

Microcystins detected ranged from 0.110 to 3.64 µg/L. However, the Barr Lake sample 

site was the only site to be confirmed to have detectable levels of specifically microcystin-LR 

and geosmin. Microcystin-LR concentrations were confirmed through using LC/MS/MS. 

Microcystin-LR levels ranged from 0.830 to 1.43 ug/L in Barr Lake, with the peak concentration 

occurring during June of 2011. Geosmin at 1.10 ng/L was also detected at Barr Lake during the 

microcystin-LR spike. Other sites with positive indications of microcystins did not have any 



57 

 

detectable levels of microcystin-LR through LC/MS/MS which may suggest the presences of 

other variations of microcystins the presence or nodularins which is another type of cyanotoxin.  

 85% (11 of 23) of the sites which microcystins were detected also had detectable levels 

of geosmin which supports the findings of Graham et al. (2010) where microcystins are 

commonly found with taste-and-odor compounds. However, sites with detectable levels of 

geosmin were found more frequently than sites with microcystins. This may be attributed to the 

lack of the sensitive detection of diverse cyanotoxins and taste and odor compounds in this study 

or the dependent on the particular species of cyanobacteria that thrive in the study area. 

2.3.2 Removal of Geosmin and Microcystin by Powdered Activated Carbon  

2.3.2.1 Microcystin-LR Removal 

The removal of microcystin-LR by PAC, with a contact time of 30 minutes and 30 

minutes of settling time, resulted in average removal rates ranging from 71% to 94% as seen in 

Figure 2-2. The highest average removal rates of microcystin-LR was achieved by 20 mg/L and 

30 mg/L dosages of PAC which had relatively similar removal rates. The smallest average 

percent removal of microcystin-LR of 74% was observed with a dosage of 10 mg/L of PAC to 

treat 2 μg/L of microcystin-LR and a 94% removal was observed with 20 mg/L of PAC to treat 4 

μg/L of microcystin-LR. Up to 100% removal of was achieved when observing individual 

experiments contributing to removal averages. The removal rates are comparable to previous 

studies done by Donati et al. (1994) and Ho et al. (2011) where up to 98% of microcystin was 

removed by 25 mg/L of a wood based PAC and 96% removal was achieved with a 50 mg/L dose 

of PAC with a contact time of 30 minutes for both cases.  
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Figure 2-2. Average microcystin-LR removal rates according to PAC doses. 
Average error ranged from 3.08 to 16.9% 

 

The removal percentage of microcystin-LR was mostly dependent on the dosage of PAC 

used, as the kinetics of adsorption was rapid, highlighted by Ho et al. (2011). A competitive 

adsorptive effect between microcystin-LR and geosmin were observed in some experiments. The 

removal of lower concentrations of microcystin-LR with the lowest dosage of PAC at 10 mg/L 

was most affected by the presence of low concentrations of geosmin. Up to a 20% decrease from 

average removal rate was seen in the combination with concentrations of microcystin-LR at 2 

µg/L and PAC at 10 mg/L as seen in Figure 2-3. The presence of low concentrations of geosmin 

adversely affected the removal of microcystin-LR. Experiments with higher concentrations of 

microcystin-LR(4 to 10 µg/L) and high PAC dosages were more resistant to fluctuations with 

presence of geosmin as seen by Figure 2-4. 
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Figure 2-3. The presence of geosmin affecting microcystin-LR removal. N=6 

 

Figure 2-4. The presence of geosmin having little effect on microcystin-LR removal. N=6 

2.3.2.2 Geosmin Removal 

The removal of geosmin by PAC, with a contact time of 30 minutes and 30 minutes of 

settling time, resulted in average removal rates ranging from 76% to 95% as seen in Figure 2-5. 

Geosmin removal followed similar general trend and range as microcystin-LR removal. The 
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highest removal of geosmin, up to 95%, was achieved by 30 mg/L of PAC. A dosage of 10 mg/L 

of PAC yielded the lowest average removal of geosmin, at 76% removal, the exception of the 

experiment with a 20 ng/L concentration of geosmin where removal average reached 84%. Up to 

99% removal of was achieved when observing individual experiments contributing to average 

removal rates. The results are comparable with a study done by Park et al. (2010) and Cook et al. 

(2001) where PAC doses of 20 mg/L removed between 60-85% of geosmin.  

 

Figure 2-5. Average geosmin removal rates according to PAC dosages    

Average error ranged from 3.01 to 12.8% 

 

Average removal rates for geosmin showed minor variation where microcystin-LR 

concentrations were increased. There was again a competitive effect between both metabolites in 

some experiments when comparing geosmin removal rates with varying concentrations of 

microcystin-LR present. It was observed that, at the lowest dosage of PAC (10 mg/L), as the 

microcystin-LR concentration increased, average geosmin removal decreased. This can trend can 

be seen in, Figure 2-6. Similar to microcystin-LR removal rates, experiments with higher 

dosages of PAC were more resistant to fluctuations of the average removal percentage as seen in 
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Figure 2-7. Again like microcystin-LR, the removal percentage of geosmin was mostly 

dependent on the dosage of PAC used, as the kinetics of adsorption is fairly rapid with nearly 

90% removal of the compound under 30 minutes (Ho et al, 2011). 

 

Figure 2-6. The presence of microcystin-LR affecting geosmin removal. N=6 

 

Figure 2-7. The presence of microcystin-LR having little effect on geosmin removal. N=6 
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Compared to microcystin-LR, geosmin is a flatter and smaller molecule that is fairly 

water soluble, this allows it to enter smaller pores by diffusion (Zoschke et al., 2011). 

Microcystin-LR is a larger molecule containing negatively charged groups including carboxyls, 

D-glutamic acid and d-erythro-β-methyl aspartic acid which is primarily responsible for its high 

solubility in water (Ho et al. 2011). These factors may allow geosmin to be more readily 

adsorbed onto a higher variety of pore sizes compared microcystin-LR. Also there was little to 

no correlation between total organic carbon levels and the removal rates of both of the 

metabolites. This could be attributed with the relatively small fluctuations of TOC levels 

throughout the experiments or both metabolites having little to no competing compounds when 

considering their adsorbance with the PAC. Other water quality parameters such as pH, 

temperature, DO, alkalinity and hardness also did not have any significant effects on the removal 

rates of both metabolites.  

Diffusion effects, pore size, surface chemistry, surface area volume, pH, temperature and 

concentration can affect the efficiency of adsorption (Norit Americas 2009; Westrick and Szlag, 

2010). However, the adsorption of both microcystin-LR and geosmin is suspected to be mostly 

driven by entropy. The presence of dissolved natural organic matter (NOM) can reduce the 

adsorption capacity of activated carbon by restricting access and competing for adsorption 

surfaces (Zoschke et al., 2011; Donati et al., 1994; Pendleton et al., 2001). However, it was also 

discussed by Zoschke et al. (2011), that geosmin is relatively resistant to higher natural organic 

matter (NOM) concentrations indicating that typical conventional treatment only affects larger 

and less adsorbable NOM components which are irrelevant for competitive adsorption against 

geosmin. This could explain why a higher degree of variation of removal percentages in 

microcystin-LR removal was observed when comparing to geosmin removal in this study.  
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2.4 Conclusions 

Through environmental sampling, this study has confirmed that the cyanobacterial 

metabolites, microcystins and geosmin, co-occur in surface waters of Northern Colorado. 

Cyanobacterial metabolites were found at higher concentrations in highly eutrophic conditions. 

Geosmin was found in 44% of the sites sampled and microcystins 29% with 73% of microcystins 

detected with geosmin. Geosmin occurred more frequently than microcystins. When 

microcystins were detected, they frequently co-occurred with geosmin. It is suspected that 

microcystins more frequently co-occur with geosmin than the results show because the 

maximum detectable limit (MDL) is a few order of magnitudes above the MDL of geosmin. 

Only one site (Barr Lake, CO) was confirmed to have the most toxic variant of microcystin, 

microcystin-LR. It may be beneficial to test for microcystins when geosmin is detected, 

especially if the source water is used for recreational activities and as a drinking water source.  

PAC is confirmed to be effective in removing both microcystin-LR and geosmin from 

drinking water sources below WHO standards of 1 µg/L for microcystin-LR and human 

detection limits of 4 ng/L for geosmin. Dosages required to remove microcystin-LR and geosmin 

below the acceptable limits are given in Table 2-2. The removal percentage of the metabolites 

depends on both PAC dose and the metabolite concentration. As expected, for effective removal 

of higher concentrations of cyanobacterial metabolites higher dosages of PAC is required.  
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Table 2-2. Dosages of PAC to remove microcystin-LR and geosmin below acceptable levels in 

Horsetooth Reservoir waters. 

 

 

  PAC Dosage 

    10 mg/L 20 mg/L 30 mg/L 

Microcystin LR 
(below 1 ug/L) 

2  ug/L   

4  ug/L   

6  ug/L   

10 ug/L   

Geosmin  
(below4 ng/L) 

10 ng/L   

20 ng/L   

30 ng/L   

50 ng/L   

Key 
 Not below threshold 
 Below threshold 

 

Prior to this study, there have been no investigations on how microcystin-LR and 

geosmin concentrations affect each other’s removal rates by PAC. Competitive adsorbing 

between microcystin-LR and geosmin was observed at 10 mg/L of PAC and lower 

concentrations of metabolites, where up to a 20% removal reduction was observed. Larger 

concentrations of metabolites and PAC experienced more consistent removal rates. Higher 

dosages of PAC at 20 mg/L and 30 mg/L are relatively resistant to this effect thus a more 

consistent high removal of geosmin and microcystin-LR can be achieved. The adsorption of both 

metabolites onto PAC is primarily driven by entropy where adsorption was somewhat 

competitive between microcystin-LR and geosmin.  
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3.0 In Vitro Microcystin-LR Toxicity in H4IIE Mouse Liver 

Cells 

 

3.1 Introduction 

 

The occurrence of mass blooms of cyanobacteria as of result of eutrophication and 

climate change has been rapidly increasing throughout the world (Chorus 2001; Svrcek and 

Smith, 2004). Large cyanobacterial blooms and the release of their metabolites in source waters 

cause aesthetic issues such as a murky green appearance and unpleasant odors (Chorus and 

Bartman, 1999; Svrcek and Smith, 2004; Omur-Ozbek and Dietrich, 2005; Miller 2010). 

However, these blooms may be causing more than environmental and aestetic concerns 

regarding harmful cyanotoxins that can be released during bloom events (Svrcek and Smith, 

2004; Miller, 2010).  

It is speculated that cyanotoxins are produced to prevent predation by zooplankton 

(Oberholster et al., 2006; Rohrlack et al., 2005; Hawkins et al., 2005; Li et al., 2010; Dixon, 

2010). Some studies have shown that cyanobacterial toxins inhibit aquatic invertebrate grazers 

which are key elements to fresh water ecosystems. The cyanotoxins have the ability to disrupt 

and destroy the digestive systems of daphnia and mosquito larvae. In a recent study by Rohrlack 

et al. (2005), daphnia that were fed toxic cyanobacteria lost  cell to cell epithelial gut cell 

junctions which ultimately led to their death.  

The most common pathway of human exposure to cyanotoxins is from accidental 

ingestion or contact with water containing cyanobacterial cells through recreational activities. 

Animals on the other hand, are more commonly affected by the acute cyanotoxin poisonings as 

humans tend to avoid water bodies with floating mats of cyanobacteria (Svrcek and Smith 2004; 
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Graham, 2009).  Chronic exposure to cyanobacterial toxins may result in carcinogenesis 

(Hitzfeld et al., 2000; Haddix et al., 2007). China has one of the highest incidents of 

hepatocellular carcinoma, which may be caused by cyanotoxin exposure. In Quidong county in 

China, residents who have been drinking surface water with average microcystin-LR 

concentrations of 0.1 μg/L reported higher frequencies of liver cancer compared to residents 

drinking from well water (Alvarez et al., 2010). Another study conducted in Florida reported that 

there was an increased risk for primary hepatocelluar carcinoma for residents living in the 

service area of water treatment plants drawing from surface waters with a history of blooms 

compared to groundwater users (Bean et al., 2002). 

Due to adverse health effects of cyanotoxin exposure, the World Health Organization has 

set a drinking water guideline limit of 1 ppb (µg/L) for the cyanotoxin microcystin-LR, which is 

one of the most common and potent of the cyanotoxins (Chorus and Bartman, 1999). With so 

many emerging incidents of cyanotoxin exposures, municipalities have begun to be more aware 

of cyanobacteria blooms and follow in the footsteps of the World Health Organization (WHO) to 

protect the public from cyanotoxins. Today over eight countries, including Australia, Brazil, 

Finland and the US, have established water quality and cyanobacteria based programs to address 

cyanotoxins (Svrcek and Smith, 2004).  

Currently, there are over 9 states in the US, which have statewide and local monitoring 

programs for cyanotoxins in freshwaters. An additional 13 states have event based response 

procedures or public education materials posted on their websites (Graham et al., 2009).  . 

Cyanotoxins are on the EPA Contaminant Candidate List 3, a list of contaminants that are known 

to exist in public water systems, in which research is underway about potential national 

regulation (USEPA, 2011). Currently, there are over 9 states in the US which have statewide and 
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local monitoring programs for cyanotoxins in freshwaters. An additional 13 states have event 

based response procedures or public education materials posted on their websites (Graham, 

2009).  

Microcystins can cause severe liver damage characterized by liver cell cytoskeleton 

damage, a loss of sinusoidal structure, intrahepatic hemorrhaging, hemodynamic shock, 

formation of hepatic tumors, apoptosis and progressive liver necrosis. Higher doses can lead to 

death occurring in as little as a few hours to a few days of ingestion (Chorus and Bartman, 1999; 

2003; Ayllon, 2001; Svrcek and Smith, 2004; Agrawal et al., 2006). Of the over 60 variants of 

microcystins, microcystin-LR is among the most frequently detected and most toxic of the 

microcystin congeners (Chorus and Bartman, 1999). Microcystin-LR is highly toxic compound 

with an oral LD50 of 5 mg/kg in mice (WHO 2003).  

Microcystin-LR is a potent inhibitor of eukaryotic protein serine/threonine phosphates 1 

and 2A by covalently binding to these enzymes. Protein phosphatases serve as enzymes that play 

an important regulatory role in maintaining homeostasis in the cell including tumor suppression 

(Chorus, 2001). After ingestion of microcystin-LR, the toxin is transported across the ileum into 

the bloodstream through the liver where it can be concentrated and taken up by hepatocytes 

(Chorus and Bartman 1999). 

The microcystin toxin is organ and cell specific, targeting primary hepatocytes. The cell 

specificity is not due to metabolic activation in the liver cells but to the specific pathway of 

uptake. Microcystins have been shown to be taken up through the multi-specific transport system 

for bile acids, which is also an entrance pathway for several xenobiotic substances. The in-vitro 

effects of microcystins on hepatocytes can be inhibited by low concentrations of bile acids or 
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bile acid transport inhibitors. Only primary hepatocytes and intestinal cells are equipped with this 

bile acid transport system (Chorus and Bartman 1999).  

The aim of this study was to observe the toxicity of microcystin-LR on rat hepatocytes, 

H4IIE cells, in-vitro. The H4IIE rat hepatoma cell line is used in many in-vitro tests for 

cytotoxicity screening and testing. Histological observations and a survey were also performed to 

investigate signs of cellular damage due to toxin exposure.  

3.2 Materials and Methods 

 

3.2.1 Cell Culturing 

 

High purity chemical microcystin-LR (CAS 101043-37-2) was purchased from Cayman 

Chemicals (Ann Arbor, MI). Optima grade methanol (CAS 67-56-1; Fisher Scientific) was used 

in preparation of the standard solutions. Standard solutions of microcystin-LR were prepared in 

methanol at a concentration of 5 mg/L. (TCA, 50mM Tris base (pH 10.5), trypsin, acetic acid, 

chamber well slides, stains) The above solutions were sterilized by filtering through a 0.2 um 

filter. MEM/ EBSS 2mM L-Glutamine Hydroclone (Cat#SH30002401) supplemented with 10% 

fetal bovine serum was used for cell culturing. Sulforhodamine (SRB). All cell culturing 

procedures followed sterile measures including working under laminar flood hoods, using 

sterilized pipette tips, syringes, filters and plates.  

Standardized growth factors and conditions were maintained due to the H4IIE cell line 

sensitivity to environmental changes (Whyte and Tillitt, 2004). Cell culturing of H4IIE cells was 

done following procedures laid out by Ding et al., 2001. H4IIE cells were cultured on pass 25 in 

plastic T-50 flasks. MEM/EBSS media with 2mm L-Gludamine (Hydroclone 
TM

) 10% Fetal 
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bovine serum (FBS) and was utilized through the experiment. The cells were incubated at 37
o
C 

with a 5% CO2 environment concentration until cells reached a density greater than 5 x 10
5
 

cells/ml. Cell densities was determined by a Bio-Rad TC-10 Automated Cell Counter. Media 

was changed on a regular basis and cell cultures were split when needed by aspirating the liquid 

media and adding approximately 1.5 ml of 0.25% trypsin to release the cells. Once the cells were 

clearly suspended, the trypsin was neutralized by suspending the cells in media with 10% FBS.  

A 96 well plate was inoculated with the appropriate amount of cells as indicated in Table 

3-1 in a total volume of 200 µl of media. The cells in the plate were allowed to attach over a 24 

hour period in the incubator under the conditions mentioned above. After the first incubation 

period, microcystin-LR exposure tests were begun. The media was aspirated and 200 µl of new 

media with varying concentrations of microcystin-LR were pipetted into each well as given in 

Table 1. A stock solution of the media was prepared with a 150 µg/L microcystin-LR in 10% 

FBS to be added to the wells designated to receive microcystin-LR. All other dilutions of 

microcystin-LR were made from the 150 µg/L stock solution by adding the respective volume of 

the microcystin-LR and media to bring up the well to the desired toxin concentration. Selected 

concentrations of microcystin-LR, 0.78 to 150 µg/L, were tested in triplicates. Two types of 

controls were used: first with 10% FBS media with a 3% concentration of methanol (MeOH), 

representing the largest concentration of methanol, used as a vehicle, in the samples. The other 

control consisted only of 10% FBS media.  
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Table 3-1. 96 Well array for cytotoxicity observations. 

 

 

3.2.2 Cytotoxicity Screening 

 

An LD50 was observed through the sulforhodamine B (SRB) colorimetric assay for 

cytotoxicity screening. The cells were exposed to the toxin for 24 hours under the same 

conditions mentioned above. The SRB colorimetric assay was used analyze for cytotoxicity 

following methods laid out by Fricker, 1994. After the exposure period, the media was aspirated 

and the cells were fixed with 50 μl of 10% TCA in each well. The plate was then refrigerated for 

24 hours. The TCA was then removed and the plate was washed 5 times with tap water to 

remove the remaining TCA, growth medium and low molecular weight metabolites. The plate 

was allowed to air dry completely before adding 0.4% SRB dissolved in 1% acetic acid to the 

TCA fixed wells. The plate was then allowed to sit for 30 minutes for the staining. The SRB was 

  1 2 3 4 5 6 7 8 9 10 11 12 

A 150.00 100.00 75.00 50.00 25.00 12.50 6.25 3.13 1.56 0.78 
Control 

MeoH Control 

B 150.00 100.00 75.00 50.00 25.00 12.50 6.25 3.13 1.56 0.78 
Control 

MeoH Control 

C 150.00 100.00 75.00 50.00 25.00 12.50 6.25 3.13 1.56 0.78 
Control 

MeoH Control 

D 150.00 100.00 75.00 50.00 25.00 12.50 6.25 3.13 1.56 0.78 
Control 

MeoH Control 

E 150.00 100.00 75.00 50.00 25.00 12.50 6.25 3.13 1.56 0.78 
Control 

MeoH Control 

F 150.00 100.00 75.00 50.00 25.00 12.50 6.25 3.13 1.56 0.78 
Control 

MeoH Control 

G Control Control                   

H Control Control                   

             

   

  

 (ug/L) 24hr incubation 10
5
 cells. Well Vol 

200ul 

   

   

  

 (ug/L) 24hr incubation 5 x 10
4
 cells. Well 

Vol 200ul 
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then removed and each well was washed with 1% acetic acid to remove the dye. This was 

repeated four times. The plate was then allowed to air dry once more before 50 μl of 50 mM Tris 

base (pH 10.5) was added to each well to solubilize the cells. The plate was then put on an 

orbital shaker for 5 minutes. The plate was then read on a GloMax® Multi Microplate Reader 

from Turner BioSystems, at 560 nm. Two data sets were produced, wells containing 10
5
 cells 

and wells containing 5 x 10
4 

cells.  

3.2.2.1 Statistical Analysis   

The numerical data are presented as the mean +/- standard deviation from at least three 

independent samples for the experiments performed and analyzed by the one-way analysis of 

variance (ANOVA) method using Microsoft Excel software.  

3.2.4 Histological study 

  

 The H4IIE cells were plated and treated under the exact same environmental conditions 

for the 96 well plates on chamber slides with the same cell densities of 10
5
 and 10

6
 cells. Each 

chamber was inoculated with 50 µl of the cell solution with the respected cell densities.  The 

following concentrations of microcystin-LR were plated for the histological study: 0, 25, 50, 100 

µg/L. After a 24 hour exposure period, the cells were fixed with LC grade methanol at -20
o
C for 

approximately 10 minutes. After fixation, the cells were stained with hematoxylin and eosin and 

analyzed for signs of damage from the toxin using a Ziess Axiovert 200m microscope equipped 

with a Hammatsu ORCA-ER cooled charge-coupled device camera at 40x zoom controlled using 

Slidebook software (v4.1 and 5.0; Intelligent Imaging Innovations, Inc., Denver, CO).  
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3.3 Results 

3.3.1 Cytotoxicity Screening Results 

 

Figure 3-1 shows the number of cells surviving after the 24 hour treatment with the 

respective dosage of microcystin-LR. Cell viability (confluence) was averaged between the 

triplicates and normalized against the control wells.  Relative standard error for wells containing 

10
5 

cells ranged between 0.3 to 24.3%. Relative standard error for wells containing 5 x 10
4 

cells 

ranged between 2.1 to 5.4%. Control well containing 10
5
 cells exposed only to methanol (0.16%) 

saw a 22% loss of cell viability. Other control wells had 100% or more cell viability. By 

observing the wells containing 10
5
 cells, wells with microcystin-LR concentrations of 1.56, 3.13, 

6.25 and 12.5 µg/L resulted in less than 50% viable cells remaining after exposure. The LD50 

concentration was observed at 12.5 ug/L with a downward cell viability trend continuing to wells 

with a 1.56 µg/L microcystin-LR concentration. A similar trend was observed for wells 

containing 5 x 10
4 

cells, where cell viability drops as microcystin-LR concentrations were 

decreased. It should be noted that an LD50 was not observed with wells containing 5 x 10
4 

cells. 

Cell viability only dropped down to 76% by a microcystin-LR dose at 1.56 µg/L.  
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Figure 3-1. Cytotoxicity Results 

 

3.3.2 Histological Observation Results 

Cellular stress was observed comparing control cells to cells exposed to 100 µg/L of 

microcystin-LR. Cellular stress showing signs of apoptosis, as described by Chen et al. 2005, 

was observed in the form of enlarged nuclei, cell blebbling, vacuolization and detachment of 

desmosomes in the exposed cells. Compared to the control cells, there was a higher frequency of 

vacuolization and cell blebbing.  

 A survey was also conducted with participants comparing cells that were exposed to 100 

μg/L of microcystin-LR to cells with no exposure to the cyanotoxin. 76% of participants (n=30) 

selected the image with cells exposed to 100 µg/L as being damaged or stressed. However, only 

17% of participants were able to distinguish between the sets of cells were exposed to a higher 

dose of toxin versus a lower dose of the toxin. 
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Figure 3-2. Control cells from the wells containing 10
5
 cells (left) and 5 x 10

4 
cells (right) 

   

Figure 3-3. Cell exposed to 100 μg/L microcystin-LR from the wells containing 10
5
 cells (left) 

and 5 x 10
4 
cells (right) 

 

3.4 Discussion 

The only observed loss in cell viability of the control wells occurred in wells containing 

10
5
 cells and methanol. Other control cells did not experience a drop in cell viability. This may 

be due to a higher dosage of methanol on a per cell basis. The cytotoxicity analysis showed that 

cells exposed to a mid-range of toxin between 1.56 to 12.5 µg/L of microcystin-LR exhibited the 

lowest cell viability while cells exposed to high and lowest dosage of microcystin-LR 

experienced a high level of cell viability. However, histologically, cells exposed to higher 
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dosages of microcystin-LR (100 µg/L) showed more prominent signs of apoptosis compared to 

control cells and cells exposed to lower dosages of the cyanotoxin.  

One theory suggests that during the cytotoxicity screening experiment, wells with higher 

concentrations of microcystin-LR experienced a large wipeout of the cells leaving an abundance 

of nutrients for surviving cells to utilize. The abundance of nutrients may have come from a 

lower concentration of cells utilizing available nutrients in their support solution and dead cells 

which have succumbed to the toxin. Since wells with 5 x 10
4
 cells had more percentage of cells 

surviving it is suspected that the reduced competition for the nutrients in the support solution was 

the driving factor to their survival. By histological observations, surviving cells underwent 

increased stress some toxin levels still remained in solution.  

 Another theory suggests low dosages and high dosages of microcystin-LR may have 

different toxicity pathways that are dose dependent. As stated by Chen et al. 2005, at smaller 

doses of microcystin-LR, apoptosis occurs through the BID-BAX-BCL-2 regulatory protein 

pathway.  Proteins in the BCL-2 family are potent regulators of apoptosis that can influence the 

permeability of the outer mitochondrial membrane. They contain both pro and anti-apoptotic 

members that elicit opposing effects on the mitochondrial membrane including the anti-apoptotic 

protein BCL-2 and pro-apoptotic proteins BAX and BID. Essentially the BID-BAX-BCL-2 

pathways are responsible for homeostasis regulation of the cells (Akcali et al., 2004).  

The up-regulation of BCL-2 is a host response to toxin exposure, protecting the host cell 

from destruction by apoptosis. Upon apoptosis, BAX oligomerizes with BAK forming large 

complexes that create pores in the lipid bilayer and facilitate the release of cytochrome C and 

other factors. Thus, the up-regulation of BAX at relatively low doses of microcystin-LR could 

initiate the consequent apoptotic events with BID serving as an initiator of BAX (Chen et al, 
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2005).  Thus an up-regulation of BAX could have induced the apoptosis observed with the 

experiment. 

It is believed that the reactive oxygen species pathway dominates apoptosis during high 

concentrations of microcystin-LR. As seen in Figure 3-1,  there was a higher concentration of 

viable cells suggesting the reactive oxygen species pathway may take a longer than 24 hours of 

exposure to take effect to ultimately kill off the cells even though a higher ratio of cells were 

observed to be experiencing apoptosis. This may explain why cell viability exceeded or was 

within 50-100% with higher concentrations of microcystin LR. The toxicity pathway may 

involve a longer path to trigger apoptosis in the cell (Chen et al., 2005). In the reactive oxygen 

species pathway the protein ferritin serves as the major iron binding protein limiting the catalytic 

availability of iron for participation in free radical generation. The up regulation of ferritin is 

suspected to be induced by microcystin-LR. Iron is ubiquitous in cells and present in the 

structure of many enzymes and proteins that catalyze redox reactions enabling iron to generate 

radical species from Fe
2+

 + H2O2 => Fe
3+

 + HO* + OH
-
.  Reactive oxygen species cause an 

increase in cytosolic calcium and has been observed in cells undergoing oxidative stress. This 

leads to mitochondrial membrane rupture, massive intrahepatic hemorrhaging and damage to the 

cytoskeleton (Chen et al., 2005).  

Though cell densities for the wells containing 100 µg/L of microcystin-LR were greater 

than the control wells, there were more signs of apoptosis, by histological observations, 

compared to the control wells and wells with a lower concentration of microcystin-LR. The 

criteria for histo-pathological alternations include swollen, vacuolar degeneration, plasma 

membrane blebbling, DNA fragmentation and breakdown of the cell. It was observed that 

healthy H4IIE cells in the control wells had dendritic characteristics which connect the cells 
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together. Cells in the exposed wells expressed a retraction of these cellular junctions and some 

indications of apoptosis, as mentioned before, in the cells incubated with a concentration of 

microcystin-LR. Cytoskeletal damaged was observed in the form of a higher frequency of 

misshaped cells which is a major indication of hepatoxicity (Ding et al., 2001). By histological 

observation, over 76% participants correctly determined which cells were exposed to 

microcystin-LR and which were not. Participants indicated they observed physical aspects of the 

cell such as cellular shape, nuclei size and overall uniformity of the cells. 

3.5 Conclusion 

 Exposure to the cyanotoxin microcystin-LR can induce H4IIE cells cultivated in vitro to 

express signs of apoptosis. Initial toxicity may have acted quickly and killed off many cells 

leaving surviving cells an abundance of nutrients. An LD50 was observed at 12.5 µg/L as a result 

of the 24 hour exposure to microcystin-LR. Cells exposed to lower doses of microcystin LR 

between 1.56 to 12.5 µg/L experienced a moderate loss of cell viability. Alternatively, since cells 

exposed to low concentrations of microcystin-LR between 0.78 – 50 µg/L experienced cell 

viability drop below 50%, apoptosis is suspected to be induced by the up regulation of the BAX 

regulatory protein pathway during low dose microcystin-LR exposure. At higher concentrations, 

above 12.5 µg/L,  reactive oxygen species pathway is responsible for apoptosis occurring in cells 

exposed to higher doses of microcystin-LR from to histological observations of cells exposed to 

high concentrations of microcystin-LR over 100 µg/L.  

Through the cytotoxicity test, it was shown that the reactive oxygen species pathway 

induces a higher frequency of apoptosis to occur, cell growth is either unaffected or increased 

slightly. However, through histological observations there is a higher ratio between cells 

showing signs of apoptosis compared to normal cells such as cell blebbing and vacuolization. 
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Cell viability is lower for cells exposed to low levels of microcystin-LR suggesting a faster 

apoptic response at low doses. It is concluded that microcystin-LR does have toxic effects on 

H4IIE cells and that toxicity can be characterized by signs of apoptosis and possible loss in cell 

viability. Exposure to the toxin may induce severe hepatosis and can be dose dependent. 

Children are particularly at risk because they can drink a higher volume of water in proportion to 

their body weight than adults (WHO, 1999). Future studies may compare finer increments of 

duration of exposure to microcystin-LR to explore and characterized more accurately toxicity 

pathways and toxicity that is dependent on time. It is expected that the results may deviate from 

this study.  
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Appendix A. Jar Test Results 
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Table A 1. Sample 0,2,10,10, Jan-11 results 

  Replicate1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 603.9 690.4 799.7 1601.6 698 80.12 

Area 2 348.7 364.1 418.2 707.4 377 29.80 

Concentration (ug/L) 0.91 1.01 1.14 2.07 1.02 0.09 

Geosmin             

Area 1 758 755 798 7884 770.33333 19.60 

Concentration (ng/L) 1.04 1.01 1.1 10.83 1.05 0.04 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 30 30 30 30 30.00 0.00 

pH 7.41 7.41 7.4 7.4 7.41 0.00 

Conductivity (µS/cm) 59.5 60.3 62.8 59.2 60.87 1.41 

Temperature (oC) 16 16.6 16.5 17.1 16.37 0.26 

 

Table A 2. Microcystin-LR Standard Curve: 0,2,10,10, Jan-11  

Standard 
Conc. 

135.1 
m/z 107 m/z 

(ug/L) Area A Area B 

2 1476.5 671.6 

4 3437.3 1557.2 

40 28772.2 13264.6 

80 61102.1 26592.5 
 

Table A 3. Geosmin Standard Curve: 0,2,10,10, Jan-11 

Standard 
Conc. Area 

1 315 

5 2362 

10 5891 

25 19031 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 2 10 10 11-Jan

Sample ID
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Figure A 1. Microcystin-LR 135.1 ion curve: 0,2,10,10, Jan-11 

 

Figure A 2. Microcystin-LR 107 ion curve: 0,2,10,10, Jan-11 

 

Figure A 3. Geosmin 112 ion curve: 0,2,10,10, Jan-11 
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Table A 4. Sample 0,2,20,10, Sept 17 results 

  Replicate1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 20 20 17 1711.6 442.15 1.41 

Area 2 5 10 10 776.6 200.40 2.36 

Concentration (ug/L) 0.71 0.71 0.6 2.2 1.06 0.05 

Geosmin             

Area 1 3880 4097 3864 14753 3947 106.267 

Concentration (ng/L) 3.23 3.22 3.41 20.26 7.53 0.09 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 40 40 40 30 40.00 0.00 

pH 6.95 6.9 6.9 7.4 6.92 0.02 

Conductivity (µS/cm) 58.7 58.9 58.6 59.5 58.73 0.12 

Temperature (oC) 17.2 17.8 17.5 16.3 17.50 0.24 

 

Table A 5. Microcystin-LR Standard Curve: 0,2,20,10, Sept 17 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 15 8 

1 34 11 

10 255 111 

20 555 247 
  

Table A 6. Geosmin Standard Curve: 0,2,20,10, Sept 17 

Standard 
Conc. Area 

1 315 

5 2362 

10 5891 

25 19031 
 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 2 20 10 17-Sep

Sample ID
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Figure A 4. Microcystin-LR 135.1 ion curve: 0,2,20,10, Sept 17 

 

Figure A 5. Microcystin-LR 107 ion curve: 0,2,20,10, Sept 17 

 

Figure A 6. Geosmin 112 ion curve: 0,2,20,10, Sept 17 



 

92 

 

Sample ID 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample 

(mg/L) (ug/L) (ng/L) (mg/L) (month-date) 

0 2 30 10 11-Jan 

 

Table A 7. Sample 0,2,30,10, Jan-11 results 

  Replicate1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 10 0 541 1711.6 183.67 252.71 

Area 2 0 0 246 776.6 82.00 115.97 

Concentration (ug/L) 0 0 0.78 2.2 0.26 0.37 

Geosmin             

Area 1 8029 8254 8154 15730 8145.6667 92.04468 

Concentration (ng/L) 10.24 10.52 10.41 20.26 10.39 0.12 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.2 0.00 

Alkalinity (mg/L CaCO3) 30 30 30 30 30 0.00 

pH 7.6 7.7 7.75 7.4 7.6833333 0.06 

Conductivity (µS/cm) 60.5 60.5 60.3 59.5 60.433333 0.09 

Temperature (oC) 19.5 19.4 19.7 16.3 19.533333 0.12 

 

Table A 8. Microcystin-LR Standard Curve: 0,2,30,10, Jan-11 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 0 0 

1 20 0 

5 97 34 

10 207 83 

20 332 131 

40 605 228 
 

Table A 9. Geosmin Standard Curve: 0,2,30,10, Jan-11 

Standard 
Conc. Area 

1 576 

5 4872 

10 6936 

25 20017 

50 39099 
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Figure A 7. Microcystin-LR 135.1 ion curve: 0,2,30,10, Jan-11 

 

Figure A 8. Microcystin-LR 107 ion curve: 0,2,30,10, Jan-11 

 

Figure A 9. Geosmin 112 ion curve: 0,2,30,10, Jan-11 
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Table A 10. Sample 0,2,50,10, Nov 16 results 

  Replicate1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 371.3 352.3 249 895 324.20 53.74 

Area 2 168.6 162 124 470 151.53 19.65 

Concentration (ug/L) 0.31 0.27 0.04 1.48 0.21 0.12 

Geosmin             

Area 1 6421 6596 6598 44244.52 6538.3333 82.97 

Concentration (ng/L) 7.32 7.52 7.52 50.43 7.4533333 0.09 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 30 30 30 30 30.00 0.00 

pH 7.25 7.3 7.31 7.2 7.29 0.03 

Conductivity (µS/cm) 61.3 61.5 61.6 60.5 61.47 0.12 

Temperature (oC) 19.6 19.5 19.4 19.2 19.50 0.08 

 

Table A 11. Microcystin-LR Standard Curve: 0,2,50,10, Nov 16 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 231.5 137.8 

1 544.5 265.5 

10 5406 2350 

20 8847 4088 
 

Table A 12. Geosmin Standard Curve: 0,2,50,10, Nov 16 

Standard 
Conc. Area 

1 469 

5 3664 

10 6254 

25 22220 

50 44308 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 2 50 10 16-Nov

Sample ID
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Figure A 10. Microcystin-LR 135.1 ion curve: 0,2,50,10, Nov 16 

 

Figure A 11. Microcystin-LR 107 ion curve: 0,2,50,10, Nov 16 

 

Figure A 12. Geosmin 112 ion curve: 0,2,50,10, Nov 16 
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Table A 13. Sample 0,4,10,10, Jan-25 results 

  Replicate1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 0 786.3 1127.2 2486.5 637.83 472.00 

Area 2 0 348.6 505.3 1093.3 284.63 211.19 

Concentration (ug/L) 0 1.2 1.77 4.04 0.99 0.74 

Geosmin             

Area 1 1939 1839 1882 8708 1886.67 40.96 

Concentration (ng/L) 2.23 2.12 2.17 10.03 2.17 0.04 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 30 30 30 30 30.00 0.00 

pH 7.55 7.52 7.58 7.6 7.55 0.02 

Turbidity (NTU) 1.89 1.78 1.41 3.76 1.69 0.21 

Conductivity (µS/cm) 62.9 62.9 62.9 61.4 62.90 0.00 

Temperature (oC) 22.4 22.4 22.6 22.4 22.47 0.09 

 

Table A 14. Microcystin-LR Standard Curve: 0,4,10,10, Jan-25 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.01 70.6 37.2 

0.02 86.7 45.1 

1 625.9 256.8 

10 6111 2669 

20 12008 5561 
 

Table A 15. Geosmin Standard Curve: 0,4,10,10, Jan-25 

Standard 
Conc. Area 

1 530 

5 3768 

10 9639 

25 21446 
 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 4 10 10 25-Jan

Sample ID
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Figure A 13. Microcystin-LR 135.1 ion curve: 0,4,10,10, Jan-25 

 

Figure A 14. Microcystin-LR 107 ion curve: 0,4,10,10, Jan-25 

 

Figure A 15. Geosmin 112 ion curve: 0,4,10,10, Jan-25 
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Table A 16. Sample 0,4,20,10, Aug 9 results 

  Replicate1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 64 60 62 2486.5 62 1.63 

Area 2 28 30 26 1093.3 28 1.63 

Concentration (ug/L) 1.38 1.42 1.34 4.04 1.38 0.03 

Geosmin             

Area 1 2801 1703 2209 9067 2237.67 448.71 

Concentration (ng/L) 6.66 4.05 5.25 21.55 5.32 1.07 

Water Quality              

Hardness (mg/L CaCO3) 34.2 51.3 34.2 34.2 39.90 8.06 

Alkalinity (mg/L CaCO3) 40 35 35 30 36.67 2.36 

pH 7.23 6.56 6.5 7.6 6.76 0.33 

Conductivity (µS/cm) 62.3 62.4 65.3 61.4 63.33 1.39 

Temperature (oC) 20.4 20.6 20.1 22.4 20.37 0.21 

 

Table A 17. Microcystin-LR Standard Curve: 0,4,20,10, Aug 9 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 24 11 

1 54 53 

10 498 209 

20 1095 467 
 

Table A 18. Geosmin Standard Curve: 0,4,20,10, Aug 9 

Standard 
Curve Area 

5 1801 

10 3976 

25 10671 
 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 4 20 10 9-Aug

Sample ID
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Figure A 16. Microcystin-LR 135.1 ion curve: 0,4,20,10, Aug 9 

 

Figure A 17. Microcystin-LR 107 ion curve: 0,4,20,10, Aug 9 

 

Figure A 18. Geosmin 112 ion curve: 0,4,20,10, Aug 9 
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Table A 19. Sample 0,4,30,10, Jul 19 results 

  Replicate1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 26 19 25 2486.5 23.33 3.09 

Area 2 0 13 15 1093.3 9.33 6.65 

Concentration (ug/L) 0 0.98 1.17 4.04 0.72 0.51 

Geosmin             

Area 1 2399 2130 2946 12219 2491.67 339.51 

Concentration (ng/L) 6.28 5.58 7.72 32.01 6.53 0.89 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 40 40 40 30 40.00 0.00 

pH 7.1 7.03 7.06 7.6 7.06 0.03 

Conductivity (µS/cm) 62.8 62.8 61.8 61.4 62.47 0.47 

Temperature (oC) 19.8 19.8 19.9 22.4 19.83 0.05 

 

Table A 20. Microcystin-LR Standard Curve: 0,4,30,10, Jul 19 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.8 24 0 

1 30 15 

5 146 59 

10 261 106 

20 669 265 

40 1271 511 
 

Table A 21. Geosmin Standard Curve: 0,4,30,10, Jul 19 

Standard 
Conc. Area 

1 362 

5 2335 

10 4034 

25 10217 

50 18665 
 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 4 30 10 19-Jul

Sample ID
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Figure A 19. Microcystin-LR 135.1 ion curve: 0,4,30,10, Jul 19 

 

Figure A 20. Microcystin-LR 107 ion curve: 0,4,30,10, Jul 19 

 

Figure A 21. Geosmin 112 ion curve: 0,4,30,10, Jul 19 
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Table A 22. Sample 0,6,10,10, Oct-17 results 

  Replicate1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 54 46 43 152 47.67 4.64 

Area 2 26 20 22 74 22.67 2.49 

Concentration (ug/L) 1.99 1.68 1.56 5.79 1.74 0.18 

Geosmin             

Area 1 2366 2384 2431 6379 2393.6667 27.40 

Concentration (ng/L) 2.17 2.19 2.23 5.86 2.1966667 0.02 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 35 35 35 35 35.00 0.00 

pH 6.9 6.8 6.8 6.9 6.83 0.05 

Conductivity (µS/cm) 70.2 70.5 70.8 69 70.50 0.24 

Temperature (oC) 19 19.2 18.9 19.7 19.03 0.12 

 

Table A 23. Microcystin-LR Standard Curve: 0,6,10,10, Oct-17 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 12 8 

20 525 232 

40 1029 479 
 

Table A 24. Geosmin Standard Curve: 0,6,10,10, Oct-17 

Standard 
Conc. Area 

1 779 

5 6320 

10 11982 

25 26628 
 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 6 10 10 17-Oct

Sample ID
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Figure A 22. Microcystin-LR 135.1 ion curve: 0,6,10,10, Oct-17 

 

Figure A 23. Microcystin-LR 107 ion curve: 0,6,10,10, Oct-17 

 

Figure A 24. Geosmin 112 ion curve: 0,6,10,10, Oct-17 
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Table A 25. Sample 0,6,20,10, Nov-16 results 

  Replicate1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 315.7 302.7 271.4 895.4 296.60 18.59 

Area 2 156.7 138.2 119.4 428 138.10 15.23 

Concentration (ug/L) 2.43 2.21 1.91 7.84 2.18 0.21 

Geosmin             

Area 1 1558 1512 1361 26480 1477 84.15 

Concentration (ng/L) 1.78 1.72 1.55 30.18 1.6833333 0.10 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 30 30 30 35 30.00 0.00 

pH 6.9 7 7.1 6.9 7.00 0.08 

Conductivity (µS/cm) 51.7 50.9 50.1 45 50.90 0.65 

Temperature (oC) 20.1 20.1 21.1 17.9 20.43 0.47 

 

Table A 26. Microcystin-LR Standard Curve: 0,6,20,10, Nov-16 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 66.2 32.3 

1 141.4 74.3 

20 2355 1110 

40 4194 1987 
 

Table A 27. Geosmin Standard Curve: 0,6,20,10, Nov-16 

Standard 
Conc. Area 

1 469 

5 3664 

10 6254 

25 22220 

50 44308 
 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 6 20 10 16-Nov

Sample ID
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Figure A 25. Microcystin-LR 135.1 ion curve: 0,6,20,10, Nov-16 

 

Figure A 26. Microcystin-LR 107 ion curve: 0,6,20,10, Nov-16 

 

Figure A 27. Geosmin 112 ion curve: 0,6,20,10, Nov-16 
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Table A 28. Sample 0,6,10,10, Nov-16 results 

  Replicate1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 202.3 230.3 260.5 895.4 231.03 23.77 

Area 2 106.2 93.9 112.3 428 104.13 7.65 

Concentration (ug/L) 1.25 1.52 1.53 7.84 1.43 0.13 

Geosmin             

Area 1 1879 1877 1903 26480 1886.3333 11.81 

Concentration (ng/L) 2.14 2.14 2.17 30.18 2.15 0.01 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 35 35 30 35 33.33 2.36 

pH 6.9 6.9 7.1 6.9 6.97 0.09 

Conductivity (µS/cm) 45.5 45.6 52.9 45 48.00 3.47 

Temperature (oC) 18.3 19.4 19.8 17.9 19.17 0.63 

 

Table A 29. Microcystin-LR Standard Curve: 0,6,10,10, Nov-16 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 66.2 32.3 

1 141.4 74.3 

20 2355 1110 

40 4194 1987 
 

Table A 30. Geosmin Standard Curve: 0,6,10,10, Nov-16 

Standard 
Conc. Area 

1 469 

5 3664 

10 6254 

25 22220 

50 44308 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 6 30 10 16-Nov

Sample ID
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Figure A 28. Microcystin-LR 135.1 ion curve: 0,6,10,10, Nov-16 

 

Figure A 29. Microcystin-LR 107 ion curve: 0,6,10,10, Nov-16 

 

Figure A 30. Geosmin 112 ion curve: 0,6,10,10, Nov-16 
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Table A 31. Sample 0,2,10,10, Jan-11 results 

  Replicate1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 53 47 19 112 39.67 14.82 

Area 2 22 7 8 51 12.33 6.85 

Concentration (ug/L) 2.39 2.06 0.51 5.65 1.65 0.82 

Geosmin             

Area 1 38367 37522 39283 71744 38390.667 719.12 

Concentration (ng/L) 3.23 3.35 3.18 50.48 3.2533333 0.07 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 35 35 35 35 35.00 0.00 

pH 7 7.1 7.2 6.9 7.10 0.08 

Conductivity (µS/cm) 72.9 72.9 72.7 72.2 72.83 0.09 

Temperature (oC) 19 18.8 18.6 19.1 18.80 0.16 

 

Table A 32. Microcystin-LR Standard Curve: 0,2,10,10, Jan-11 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 1 1 

1 19 9 

10 242 104 

20 347 159 
 

Table A 33. Geosmin Standard Curve: 0,2,10,10, Jan-11 

Standard 
Conc. Area 

1 959 

5 5374 

10 12644 

25 32248 

50 73188 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 6 50 10 17-Oct

Sample ID
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Figure A 31. Microcystin-LR 135.1 ion curve: 0,2,10,10, Jan-11 

 

Figure A 32. Microcystin-LR 107 ion curve: 0,2,10,10, Jan-11 

 

Figure A 33. Geosmin 112 ion curve: 0,2,10,10, Jan-11 
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Table A 34. Sample 0,2,10,10, Jan-11 results 

  Replicate1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 36.7 37.4 14.8 130 29.63 10.49 

Area 2 17.4 20.7 7.7 53.8 15.27 5.52 

Concentration (ug/L) 2.67 2.73 0.67 11.2 2.02 0.96 

Geosmin             

Area 1 6960 3579 6604 15323 5714.3333 1516.89 

Concentration (ng/L) 4.68 2.41 4.44 10.31 3.84 1.02 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 35 35 35 35 35.00 0.00 

pH 6.9 6.9 7 6.9 6.93 0.05 

Conductivity (µS/cm) 45.21 45.2 45.3 45.4 45.24 0.04 

Temperature (oC) 21.2 21.4 21.3 21 21.30 0.08 

 

Table A 35. Microcystin-LR Standard Curve: 0,2,10,10, Jan-11 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 11.9 4.9 

1 19.5 5.9 

20 226.4 106.3 
 

Table A 36. Geosmin Standard Curve: 0,2,10,10, Jan-11 

Standard 
Conc. Area 

1 1063 

5 4184 

10 15624 

25 33298 

50 76419 
 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 10 10 10 16-Nov

Sample ID



 

111 

 

 

 

Figure A 34. Microcystin-LR 135.1 ion curve: 0,2,10,10, Jan-11 

 

Figure A 35. Microcystin-LR 107 ion curve: 0,2,10,10, Jan-11 

 

Figure A 36. Geosmin 112 ion curve: 0,2,10,10, Jan-11 
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Table A 37. Sample 0,10,20,10, Oct-3 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 92 68 70 236 76.67 10.87 

Area 2 38 28 32 109 32.67 4.11 

Concentration (ug/L) 4.55 3.22  3.33 12.5 3.89 0.67 

Geosmin             

Area 1 4637 4632 4320 32952 4529.6667 148.27 

Concentration (ng/L) 3.26 3.26 3.04 23.19 3.19 0.10 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 30 35 35 35 33.33 2.36 

pH 7.04 7.13 7.11 7.13 7.09 0.04 

Conductivity (µS/cm) 73.2 73.6 73.4 71.9 73.40 0.16 

Temperature (oC) 19 19.1 19.1 20.4 19.07 0.05 

 

Table A 38. Microcystin-LR Standard Curve: 0,10,20,10, Oct-3 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 1 1 

1 19 9 

10 242 104 

20 347 159 
 

Table A 39. Geosmin Standard Curve: 0,10,20,10, Oct-3 

Standard 
Conc. Area 

1 959 

5 5374 

10 12644 

25 32248 

50 73188 
 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 10 20 10 3-Oct

Sample ID
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Figure A 37. Microcystin-LR 135.1 ion curve: 0,10,20,10, Oct-3 

 

Figure A 38. Microcystin-LR 107 ion curve: 0,10,20,10, Oct-3 

 

Figure A 39. Geosmin 112 ion curve: 0,10,20,10, Oct-3 
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Table A 40. Sample 0,10,30,10, Jan-11 results 

  Replicate1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 2485 1096 198 7330 1259.67 940.81 

Area 2 1236 509 61 3227 602.00 484.18 

Concentration (ug/L) 2.96 1.4 0.4 8.38 1.59 1.05 

Geosmin             

Area 1 10107 10147 10371 25789 10208.333 116.18 

Concentration (ng/L) 11.96 12.01 12.27 30.51 12.08 0.14 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 30 30 30 30 30.00 0.00 

pH 7.8 7.8 7.9 7.8 7.83 0.05 

Conductivity (µS/cm) 60.4 60.3 60.3 60.6 60.33 0.05 

Temperature (oC) 19.4 19.9 19.8 19.9 19.70 0.22 

 

Table A 41. Microcystin-LR Standard Curve: 0,10,30,10, Jan-11 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 425.1 208.4 

1 685.9 287 

10 8614 3896 

20 17796 7545 
 

Table A 42. Geosmin Standard Curve 0,10,30,10, Jan-11 

Standard 
Conc. Area 

1 374 

5 4701 

10 6433 

25 21275 

50 42553 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 10 30 10 11-Jan

Sample ID
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Figure A 40. Microcystin-LR 135.1 ion curve: 0,10,30,10, Jan-11 

 

Figure A 41. Microcystin-LR 107 ion curve: 0,10,30,10, Jan-11 

 

Figure A 42. Geosmin 112 ion curve: 0,10,30,10, Jan-11 
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Table A 43. Sample 0,10,50,10, Oct 3 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 38 25 43 223 35.33 7.59 

Area 2 16 11 18 97 15.00 2.94 

Concentration (ug/L) 2.05 1.45 2.29 10.69 1.93 0.35 

Geosmin             

Area 1 12308 12176 11908  64556 12130.667 166.42 

Concentration (ng/L) 9.72 9.62 9.41 51 9.58 0.13 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 40 40 40 35 40.00 0.00 

pH 7.09 7.2 7.2 6.82 7.16 0.05 

Conductivity (µS/cm) 73.9 74.8 74.6 72.8 74.43 0.39 

Temperature (oC) 20.9 21.1 21.1 20 21.03 0.09 

 

Table A 44. Microcystin-LR Standard Curve: 0,10,50,10, Oct 3 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 11 5 

1 26 13 

10 176 82 

20 438 204 
Table A 45. Geosmin Standard Curve: 0,10,50,10, Oct 3 

Standard 
Conc. Area 

1 1075 

5 3245 

10 11843 

25 29177 

50 65000 
 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 10 50 10 3-Oct

Sample ID
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Figure A 43. Microcystin-LR 135.1 ion curve: 0,10,50,10, Oct 3 

 

Figure A 44. Microcystin-LR 107 ion curve: 0,10,50,10, Oct 3 

 

Figure A 45. Geosmin 112 ion curve: 0,10,50,10, Oct 3 
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Table A 46. Sample 0,2,10,20, Feb 22 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 6 40 31 158.39 25.67 14.38 

Area 2 6 23 17 96.4 15.33 7.04 

Concentration (ug/L) 0.01 0.48 0.35 2.01 0.28 0.20 

Geosmin             

Area 1 1398 1462 1398 9011 1419.33333 30.17 

Concentration (ng/L) 1.54 1.61 1.54 9.94 1.56 0.03 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 30 30 30 30 30.00 0.00 

pH 7 7.2 7.3 7.1 7.17 0.12 

Conductivity (µS/cm) 63.3 62.7 62.5 62.8 62.83 0.34 

Temperature (oC) 17 17.2 17.1 17.5 17.10 0.08 

 

Table A 47. Microcystin-LR Standard Curve: 0,2,10,20, Feb 22 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 40 33 

1 105 45 

10 687 360 

20 1487 698 
 

Table A 48. Geosmin Standard Curve: 0,2,10,20, Feb 22 

Standard 
Conc. Area 

1 475 

5 2966 

10 7200 

25 23734 
 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 2 10 20 22-Feb

Sample ID
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Figure A 46. Microcystin-LR 135.1 ion curve: 0,2,10,20, Feb 22 

 

Figure A 47. Microcystin-LR 107 ion curve: 0,2,10,20, Feb 22 

 

Figure A 48. Geosmin 112 ion curve: 0,2,10,20, Feb 22 
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Table A 49. Sample 0,2,20,20, Sept 17 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 7 6 10 57.85 7.67 1.70 

Area 2 0 4 5 24.12 3.00 2.16 

Concentration (ug/L) 0 0.19 0.34 2.14 0.18 0.14 

Geosmin             

Area 1 960 879 965 17359 934.67 39.42 

Concentration (ng/L) 1.1 1.01 1.11 19.95 1.07 0.04 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 40 40 40 40 40.00 0.00 

pH 7.29 7.36 7.36 7.4 7.34 0.03 

Conductivity (µS/cm) 61.9 61.9 70 62.5 64.60 3.82 

Temperature (oC) 18.5 18.4 18.4 19.1 18.43 0.05 

 

Table A 50. Microcystin-LR Standard Curve: 0,2,20,20, Sept 17 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 15 8 

1 34 11 

10 255 111 

20 555 247 
 

Table A 51. Geosmin Standard Curve: 0,2,20,20, Sept 17 

Standard 
Conc. Area 

1 878 

5 4790 

10 8989 

25 21550 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 2 20 20 17-Sep

Sample ID
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Figure A 49. Microcystin-LR 135.1 ion curve: 0,2,20,20, Sept 17 

 

Figure A 50. Microcystin-LR 107 ion curve: 0,2,20,20, Sept 17 

 

Figure A 51. Geosmin 112 ion curve: 0,2,20,20, Sept 17 
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Table A 52. Sample 0,2,30,200, Jan-25 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 0 64.5 206.6 1368.6 90.37 86.30 

Area 2 8 120.6 64.4 600 64.33 45.97 

Concentration (ug/L) 0 0.34 0.21 2.49 0.18 0.14 

Geosmin             

Area 1 2293 2023 2171 19256 2162.33 110.40 

Concentration (ng/L) 3.09 2.68 2.9 29.57 2.89 0.17 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 30 30 30 30 30.00 0.00 

pH 7.9 7.1 7.2 7.1 7.40 0.36 

Conductivity (µS/cm) 60.4 62.5 62.4 60.4 61.77 0.97 

Temperature (oC) 19.7 16.9 16.9 20.1 17.83 1.32 

 

Table A 53. Microcystin-LR Standard Curve: 0,2,30,200, Jan-25 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0 0 0 

0.5 257.2 124.7 

1 506.3 280.4 

10 5328 2595 

20 10829 4952 
 

Table A 54. Geosmin Standard Curve: 0,2,30,200, Jan-25 

Standard 
Conc. Area 

1 383 

5 2743 

10 5567 

25 15507 

50 33193 
 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 2 30 20 25-Jan

Sample ID
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Figure A 52. Microcystin-LR 135.1 ion curve: 0,2,30,200, Jan-25 

 

Figure A 53. Microcystin-LR 107 ion curve: 0,2,30,200, Jan-25 

 

Figure A 54. Geosmin 112 ion curve: 0,2,30,200, Jan-25 
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Table A 55. Sample 0,2,50,20, Nov 16 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 230.3 37.2 374.4 895 213.97 138.14 

Area 2 87.5 34.4 194.4 470 105.43 66.54 

Concentration (ug/L) 0.47 0.25 0.64 1.48 0.45 0.16 

Geosmin             

Area 1 4202 4398 4229 37000 4276.33 86.73 

Concentration (ng/L) 5.77 6.04 5.81 50.81 5.87 0.12 

Water Quality              

Hardness (mg/L CaCO3) 51.3 34.2 34.2 34.2 39.90 8.06 

Alkalinity (mg/L CaCO3) 30 30 30 30 30.00 0.00 

pH 7.3 7.3 7.3 7.2 7.30 0.00 

Conductivity (µS/cm) 59.4 59.8 59.3 60.5 59.50 0.22 

Temperature (oC) 19.7 19.9 19.3 19.2 19.63 0.25 

 

Table A 56. Microcystin-LR Standard Curve: 0,2,50,20, Nov 16 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

2 1477 671.6 

4 3437 1557 

40 28772 13265 

80 61102 26593 
 

Table A 57. Geosmin Standard Curve: 0,2,50,20, Nov 16 

Standard 
Conc. Area 

1 315 

5 2362 

10 5891 

25 19031 
 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 2 50 20 16-Nov

Sample ID
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Figure A 55. Microcystin-LR 135.1 ion curve: 0,2,50,20, Nov 16 

 

Figure A 56. Microcystin-LR 107 ion curve: 0,2,50,20, Nov 16 

 

Figure A 57. Geosmin 112 ion curve: 0,2,50,20, Nov 16 
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Table A 58. Sample 0,2,10,20, Jan-15 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 418.2 288.6 394.2 1372.9 367.00 56.30 

Area 2 237.1 159.3 169.3 954.6 188.57 34.56 

Concentration (ug/L) 0.73 0.49 0.69 4.03 0.64 0.10 

Geosmin             

Area 1 587 539 542 6340 556 21.95 

Concentration (ng/L) 0.47 0.4 0.4 9.74 0.42 0.03 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 30 30 30 30 30.00 0.00 

pH 7.5 7.5 7.6 7.5 7.53 0.05 

Conductivity (µS/cm) 61 61 61.1 61.1 61.03 0.05 

Temperature (oC) 20.7 20.4 21 21 20.70 0.24 

 

Table A 59. Microcystin-LR Standard Curve: 0,2,10,20, Jan-15 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0 0 0 

0.5 257.2 124.7 

1 506.3 280.4 

10 5328 2595 

20 10829 4952 
 

Table A 60. Geosmin Standard Curve: 0,2,10,20, Jan-15 

Standard 
Conc. Area 

1 383 

5 2743 

10 5567 

25 15507 

50 33193 
 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 4 10 20 25-Jan

Sample ID
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Figure A 58. Microcystin-LR 135.1 ion curve: 0,2,10,20, Jan-15 

 

Figure A 59. Microcystin-LR 107 ion curve: 0,2,10,20, Jan-15 

 

Figure A 60. Geosmin 112 ion curve: 0,2,10,20, Jan-15  
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Table A 61. Sample 0,4,20,20, Jan-15 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 500 124.9 79 2486.5 234.63 188.58 

Area 2 238 46.7 39.8 1093.3 108.17 91.85 

Concentration (ug/L) 0.72 0.1 0.02 4.04 0.28 0.31 

Geosmin             

Area 1 1474 1491 1528  10710 1497.66667 22.54 

Concentration (ng/L) 2.73 2.76 2.83  19.85 2.77 0.04 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 30 30 30 30 30.00 0.00 

pH 7.6 7.5 7.6 7.6 7.57 0.05 

Conductivity (µS/cm) 63.3 63.6 63.7 61.4 63.53 0.17 

Temperature (oC) 20.4 20.2 20.8 22.4 20.47 0.25 

 

Table A 62. Microcystin-LR Standard Curve: 0,4,20,20, Jan-15 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.01 70.6 37.2 

0.02 86.7 45.1 

1 625.9 256.8 

10 6111 2669 

20 12008 5561 
 

Table A 63. Geosmin Standard Curve: 0,4,20,20, Jan-15 

Standard 
Conc. Area 

1 374 

5 1678 

10 5053 

25 13836 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 4 20 20 25-Jan

Sample ID
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Figure A 61. Microcystin-LR 135.1 ion curve: 0,4,20,20, Jan-15 

 

Figure A 62. Microcystin-LR 107 ion curve: 0,4,20,20, Jan-15 

 

Figure A 63. Geosmin 112 ion curve: 0,4,20,20, Jan-15 
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Table A 64. Sample 0,2,30,20, Jan-15 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 12.2 67.6 60 2486.5 46.60 24.52 

Area 2 0 22 28 1093.3 16.67 12.04 

Concentration (ug/L) 0 0 0 4.04 0.00 0.00 

Geosmin             

Area 1 1047 1079 1198 10710 1108 64.97 

Concentration (ng/L) 1.21 1.24 1.38 19.85 1.277 0.07 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 30 30 30 30 30.00 0.00 

pH 7.6 7.6 7.5 7.6 7.57 0.05 

Conductivity (µS/cm) 63.9 63.8 63.8 61.4 63.83 0.05 

Temperature (oC) 21.4 20.4 21.2 22.4 21.00 0.43 

 

Table A 65. Microcystin-LR Standard Curve: 0,2,30,20, Jan-15 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.01 70.6 37.2 

0.02 86.7 45.1 

1 625.9 256.8 

10 6111 2669 

20 12008 5561 
 

Table A 66. Geosmin Standard Curve: 0,2,30,20, Jan-15 

Standard 
Conc. Area 

1 530 

5 3768 

10 9639 

25 21446 
 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 4 30 20 25-Jan

Sample ID
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Figure A 64. Microcystin-LR 135.1 ion curve: 0,2,30,20, Jan-15 

 

Figure A 65. Microcystin-LR 107 ion curve: 0,2,30,20, Jan-15 

 

Figure A 66. Geosmin 112 ion curve: 0,2,30,20, Jan-15 
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Table A 67. Sample 0,4,50,20, Nov 16 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 7.9 0 3.6 86 3.83 3.23 

Area 2 4.2 0 1.6 37 1.93 1.73 

Concentration (ug/L) 0 0 0 3.6 0.00 0.00 

Geosmin             

Area 1 9107 9187 9043 84874 9112.33333 58.91 

Concentration (ng/L) 5.35 5.4 5.31 49.85 5.35 0.04 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 35 35 35 35 35.00 0.00 

pH 6.9 6.9 7 6.9 6.93 0.05 

Conductivity (µS/cm) 45.4 45.6 45.5 65.3 45.50 0.08 

Temperature (oC) 19.5 19.6 18.9 21.2 19.33 0.31 

 

Table A 68. Microcystin-LR Standard Curve: 0,4,50,20, Nov 16 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 11.9 4.9 

1 19.5 5.9 

20 226.4 106.3 
 

Table A 69. Geosmin Standard Curve: 0,4,50,20, Nov 16 

Standard 
Conc. Area 

1 752 

5 8734 

10 13202 

25 37445 

50 88447 
 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 4 50 20 16-Nov

Sample ID
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Figure A 67. Microcystin-LR 135.1 ion curve: 0,4,50,20, Nov 16 

 

Figure A 68. Microcystin-LR 107 ion curve: 0,4,50,20, Nov 16 

 

Figure A 69. Geosmin 112 ion curve: 0,4,50,20, Nov 16 
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Table A 70. Sample 0,6,10,20, Nov 16 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 297.2 383.5 509.7 609 396.80 87.26 

Area 2 141 164.2 237.2 298.3 180.80 40.99 

Concentration (ug/L) 0.14 0.34 0.62 5.12 0.37 0.20 

Geosmin             

Area 1 913 922 890 9129 908.333333 13.47 

Concentration (ng/L) 1.04 1.05 1.01 10.41 1.03 0.02 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 30 30 30 30 30.00 0.00 

pH 7.1 7.1 7.1 7.1 7.10 0.00 

Conductivity (µS/cm) 59.2 59.5 59.7 50.1 59.47 0.21 

Temperature (oC) 18.2 18.2 18.2 20.1 18.20 0.00 

 

Table A 71. Microcystin-LR Standard Curve: 0,6,10,20, Nov 16 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 231.5 137.8 

1 544.5 265.5 

10 5406 2350 

20 8847 4088 
 

Table A 72. Geosmin Standard Curve: 0,6,10,20, Nov 16 

Standard 
Conc. Area 

1 469 

5 3664 

10 6254 

25 22220 

50 44308 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 6 10 20 16-Nov

Sample ID
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Figure A 70. Microcystin-LR 135.1 ion curve: 0,6,10,20, Nov 16 

 

Figure A 71. Microcystin-LR 107 ion curve: 0,6,10,20, Nov 16 

 

Figure A 72. Geosmin 112 ion curve: 0,6,10,20, Nov 16 
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Table A 73. Sample 0,6,20,20, Sept 17 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 27 28 25 400 26.67 1.25 

Area 2 11 22 9 189 14.00 5.72 

Concentration (ug/L) 1.27 1.32 1.17 19.86 1.25 0.06 

Geosmin             

Area 1 3218 3027 2899 14811 3048.00 131.08 

Concentration (ng/L) 4.33 4.08 3.9 19.95 4.10 0.18 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 40 40 40 40 40.00 0.00 

pH 7.52 7.48 7.48 7.58 7.49 0.02 

Conductivity (µS/cm) 58.8 58.6 58.3 58.5 58.57 0.21 

Temperature (oC) 19.1 18.9 18.6 18.7 18.87 0.21 

 

Table A 74. Microcystin-LR Standard Curve: 0,6,20,20, Sept 17 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 10 5 

1 21 10 

5 106 44 

10 201 90 
 

Table A 75. Geosmin Standard Curve: 0,6,20,20, Sept 17 

Standard 
Conc. Area 

1 731 

5 3414 

10 7111 

25 18746 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 6 20 20 17-Sep

Sample ID
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Figure A 73. Microcystin-LR 135.1 ion curve: 0,6,20,20, Sept 17 

 

Figure A 74. Microcystin-LR 107 ion curve: 0,6,20,20, Sept 17 

 

Figure A 75. Geosmin 112 ion curve: 0,6,20,20, Sept 17 
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Table A 76. Sample 0,6,30,20, Sept 17 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 20 20 15 400 18.33 2.36 

Area 2 6 7 7 189 6.67 0.47 

Concentration (ug/L) 0.92 0.92 0.67 19.86 0.84 0.12 

Geosmin             

Area 1 2773 2546 2629 22450 2649.33333 93.78 

Concentration (ng/L) 3.74 3.43 3.54 30.24 3.57 0.13 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 40 40 40 40 40.00 0.00 

pH 6.93 6.3 6.4 6.5 6.54 0.28 

Conductivity (µS/cm) 58.4 58.5 58.3 58.5 58.40 0.08 

Temperature (oC) 18.9 18.6 18.7 18.8 18.73 0.12 

 

Table A 77. Microcystin-LR Standard Curve: 0,6,30,20, Sept 17 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 10 5 

1 21 10 

5 106 44 

10 201 90 
 

Table A 78. Geosmin Standard Curve: 0,6,30,20, Sept 17 

Standard 
Conc. Area 

1 731 

5 3414 

10 7111 

25 18746 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 6 30 20 17-Sep

Sample ID
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Figure A 76. Microcystin-LR 135.1 ion curve: 0,6,30,20, Sept 17 

 

Figure A 77. Microcystin-LR 107 ion curve: 0,6,30,20, Sept 17 

 

Figure A 78. Geosmin 112 ion curve: 0,6,30,20, Sept 17 
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Table A 79. Sample 0,6,50,20, Oct 17 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 29 24 23 112 25.33 2.62 

Area 2 8 10 11 51 9.67 1.25 

Concentration (ug/L) 1.07 0.79 1.25 5.65 1.04 0.19 

Geosmin             

Area 1 4596 4765 4302 71744 4554.33 191.30 

Concentration (ng/L) 3.23 3.35 3.18 50.48 3.25 0.07 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 35 35 35 35 35.00 0.00 

pH 7.2 7.2 7 7.2 7.13 0.09 

Conductivity (µS/cm) 73.6 73.6 71.2 72.2 72.80 1.13 

Temperature (oC) 18.9 18.9 19.4 19.1 19.07 0.24 

 

Table A 80. Microcystin-LR Standard Curve: 0,6,50,20, Oct 17 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 1 1 

1 19 9 

10 242 104 

20 347 159 
 

Table A 81. Geosmin Standard Curve: 0,6,50,20, Oct 17 

Standard 
Conc. Area 

1 959 

5 5374 

10 12644 

25 32248 

50 73188 
 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 6 50 20 17-Oct

Sample ID
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Figure A 79. Microcystin-LR 135.1 ion curve: 0,6,50,20, Oct 17 

 

Figure A 80. Microcystin-LR 107 ion curve: 0,6,50,20, Oct 17 

 

Figure A 81. Geosmin 112 ion curve: 0,6,50,20, Oct 17 
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Table A 82. Sample 0,10,10,20, Nov 16 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 138.1 291.5 208 130 212.53 62.71 

Area 2 59.2 135.2 106 53.8 100.13 31.30 

Concentration (ug/L) 0.64 2.1 1.31 11.2 1.35 0.60 

Geosmin             

Area 1 834 825 835 15323 831.33 4.50 

Concentration (ng/L) 0.95 0.94 0.95 10.31 0.95 0.00 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 35 35 35 35 35.00 0.00 

pH 7.4 7.4 6.9 6.9 7.23 0.24 

Conductivity (µS/cm) 45 45 44.7 45.4 44.90 0.14 

Temperature (oC) 18.1 18.1 17.4 21 17.87 0.33 

 

Table A 83. Microcystin-LR Standard Curve: 0,10,10,20, Nov 16 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 66.2 32.3 

1 141.4 74.3 

20 2355 1110 

40 4194 1987 
 

Table A 84. Geosmin Standard Curve: 0,10,10,20, Nov 16 

Standard 
Conc. Area 

1 469 

5 3664 

10 6254 

25 22220 

50 44308 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 10 10 20 16-Nov

Sample ID
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Figure A 82. Microcystin-LR 135.1 ion curve: 0,10,10,20, Nov 16 

 

Figure A 83. Microcystin-LR 107 ion curve: 0,10,10,20, Nov 16 

 

Figure A 84. Geosmin 112 ion curve: 0,10,10,20, Nov 16 
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Table A 85. Sample 0,10,20,20, Oct 3 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 49 33 29 236 37.00 8.64 

Area 2 59.2 135.2 106 109 100.13 31.30 

Concentration (ug/L) 0.64 2.1 1.31 12.5 1.35 0.60 

Geosmin             

Area 1 4002 3461 3621 32952 3694.67 226.92 

Concentration (ng/L) 2.82 2.44 2.55 23.19 2.60 0.16 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 35 35 35 35 35.00 0.00 

pH 6.97 7.06 7.05 6.9 7.13 0.04 

Conductivity (µS/cm) 74.3 74.1 74.1 71.9 74.17 0.09 

Temperature (oC) 19 18.9 19 20.4 18.97 0.05 

 

Table A 86. Microcystin-LR Standard Curve: 0,10,20,20, Oct 3 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 1 1 

1 19 9 

10 242 104 

20 347 159 
 

Table A 87. Geosmin Standard Curve: 0,10,20,20, Oct 3 

Standard 
Conc. Area 

1 959 

5 5374 

10 12644 

25 32248 

50 73188 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 10 20 20 3-Oct

Sample ID
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Figure A 85. Microcystin-LR 135.1 ion curve: 0,10,20,20, Oct 3 

 

Figure A 86. Microcystin-LR 107 ion curve: 0,10,20,20, Oct 3 

 

Figure A 87. Geosmin 112 ion curve: 0,10,20,20, Oct 3 
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Table A 88. Sample 0,10,30,20, Oct 3 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 22 26 46 239 31.33 10.50 

Area 2 9 12 23 108 14.67 6.02 

Concentration (ug/L) 1.31 1.49 2.43 11.43 1.74 0.49 

Geosmin             

Area 1 6299 6519 6202 51324 6340.00 132.62 

Concentration (ng/L) 4.1 4.24 4.03 33.39 4.12 0.09 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 40 40 40 35 40.00 0.00 

pH 6.94 7 6.9 7.18 7.13 0.04 

Conductivity (µS/cm) 76.6 69.6 69.8 72.4 72.00 3.25 

Temperature (oC) 21.5 15.6 15.2 20.9 17.43 2.88 

 

Table A 89. Microcystin-LR Standard Curve: 0,10,30,20, Oct 3 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 11 5 

1 26 13 

10 176 82 

20 438 204 
 

Table A 90. Geosmin Standard Curve: 0,10,30,20, Oct 3 

Standard 
Conc. Area 

1 1619 

5 8325 

10 17947 

25 37272 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 10 30 20 3-Oct

Sample ID
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Figure A 88. Microcystin-LR 135.1 ion curve: 0,10,30,20, Oct 3 

 

Figure A 89. Microcystin-LR 107 ion curve: 0,10,30,20, Oct 3 

 

Figure A 90. Geosmin 112 ion curve: 0,10,30,20, Oct 3 
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Table A 91. Sample 0,10,50,20, Oct-3 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 9 24 31 223 21.33 9.18 

Area 2 5 11 15 97 10.33 4.11 

Concentration (ug/L) 0.7 1.4 1.73 10.69 1.28 0.43 

Geosmin             

Area 1 10171 10156 10306 64560 10211 67.45 

Concentration (ng/L) 8.04 8.02 8.14 51 8.067 0.05 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 40 40 40 35 40.00 0.00 

pH 6.99 7.04 6.98 7.18 6.82 0.03 

Conductivity (µS/cm) 72.5 72.6 72.6 72.8 72.57 0.05 

Temperature (oC) 19.7 19.8 19.9 20 19.80 0.08 

 

Table A 92. Microcystin-LR Standard Curve: 0,10,50,20, Oct-3 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 11 5 

1 26 13 

10 176 82 

20 438 204 
 

Table A 93. Geosmin Standard Curve: 0,10,50,20, Oct-3 

Standard 
Conc. Area 

1 1075 

5 3245 

10 11843 

25 29177 

50 65000 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 10 50 20 3-Oct

Sample ID
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Figure A 91. Microcystin-LR 135.1 ion curve: 0,10,50,20, Oct-3 

 

Figure A 92. Microcystin-LR 107 ion curve: 0,10,50,20, Oct-3

 

Figure A 93. Geosmin 112 ion curve: 0,10,50,20, Oct-3  
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Table A 94. Sample 0,2,10,30, Jan 11 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 77 41.3 51.6 3810.5 56.63 15.00 

Area 2 54.7 13.2 9.7 711.2 25.87 20.44 

Concentration (ug/L) 0.26 0.22 0.34 7 0.27 0.05 

Geosmin             

Area 1 3712 3926 3412 6498 3683.333 210.82 

Concentration (ng/L) 5.7 6.03 5.24 9.98 5.656667 0.32 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 30 30 30 30 30.00 0.00 

pH 7.52 7.59 7.68 7.68 7.60 0.07 

Conductivity (µS/cm) 60.6 60.2 60.7 60.3 60.50 0.22 

Temperature (oC) 19.5 19.5 19.8 19.5 19.60 0.14 

 

Table A 95. Microcystin-LR Standard Curve: 0,2,10,30, Jan 11 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 425.1 208.4 

1 685.9 287 

10 8614 3896 

20 17796 7545 
 

Table A 96. Geosmin Standard Curve: 0,2,10,30, Jan 11 

Standard 
Conc. Area 

1 383 

5 2743 

10 5567 

25 15507 

50 33193 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 2 10 30 11-Jan

Sample ID
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Figure A 94. Microcystin-LR 135.1 ion curve: 0,2,10,30, Jan 11 

 

Figure A 95. Microcystin-LR 107 ion curve: 0,2,10,30, Jan 11 

 

Figure A 96. Geosmin 112 ion curve: 0,2,10,30, Jan 11 
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Table A 97. Sample 0,2,20,30, Jan 25 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 78.6 85.2 64.5 1368.6 76.10 8.63 

Area 2 36.8 40.7 50.3 600 42.60 5.67 

Concentration (ug/L) 0.1 0.12 0.25 2.49 0.16 0.07 

Geosmin             

Area 1 551 576 412   513 72.14 

Concentration (ng/L) 0.42 0.45 0.2 29.57 0.356667 0.11 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 30 30 30 30 30.00 0.00 

pH 7.5 7.6 7.5 7.1 6.82 0.05 

Conductivity (µS/cm) 60.8 60.6 60.3 60.4 60.57 0.21 

Temperature (oC) 19.9 19.9 19.2 20.1 19.67 0.33 

 

Table A 98. Microcystin-LR Standard Curve: 0,2,20,30, Jan 25 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0 0 0 

0.5 257.2 124.7 

1 506.3 280.4 

10 5328 2595 

20 10829 4952 
 

Table A 99. Geosmin Standard Curve: 0,2,20,30, Jan 25 

Standard 
Conc. Area 

1 383 

5 2743 

10 5567 

25 15507 

50 33193 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 2 20 30 25-Jan

Sample ID
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Figure A 97. Microcystin-LR 135.1 ion curve: 0,2,20,30, Jan 25 

 

Figure A 98. Microcystin-LR 107 ion curve: 0,2,20,30, Jan 25 

 

Figure A 99. Geosmin 112 ion curve: 0,2,20,30, Jan 25 
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Table A 100. Sample 0,2,30,30, Jan-25 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 103.3 114.8 111.7 1368.6 109.93 4.86 

Area 2 45.3 42.8 40 600 42.70 2.16 

Concentration (ug/L) 0.15 0.17 0.16 2.49 0.16 0.01 

Geosmin             

Area 1 3383 3460 3142 24992 3328.33 135.46 

Concentration (ng/L) 4 4.09 3.72 29.57 3.94 0.16 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 30 30 30 30 30.00 0.00 

pH 7.5 7.6 7.6 7.1 6.82 0.05 

Conductivity (µS/cm) 60.6 60.6 60.7 60.4 60.63 0.05 

Temperature (oC) 19.9 19.9 19.8 20.1 19.87 0.05 

 

Table A 101. Microcystin-LR Standard Curve: 0,2,30,30, Jan-25 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0 0 0 

0.5 257.2 124.7 

1 506.3 280.4 

10 5328 2595 

20 10829 4952 
 

Table A 102. Geosmin Standard Curve: 0,2,30,30, Jan-25 

Standard 
Conc. Area 

1 374 

5 4701 

10 6433 

25 21275 

50 42553 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 2 30 30 25-Jan

Sample ID
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Figure A 100. Microcystin-LR 135.1 ion curve: 0,2,30,30, Jan-25 

 

Figure A 101. Microcystin-LR 107 ion curve: 0,2,30,30, Jan-25 

 

Figure A 102. Geosmin 112 ion curve: 0,2,30,30, Jan-25 
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Table A 103. Sample 0,2,50,30, Feb-22 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 33 31 24 1368.6 29.33 3.86 

Area 2 10 13 12 600 11.67 1.25 

Concentration (ug/L) 0.15 0.17 0.16 2.49 0.16 0.01 

Geosmin             

Area 1 4474 4730 4112 23191 4438.67 253.53 

Concentration (ng/L) 4 4.09 3.72 29.57 3.94 0.16 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 30 30 30 30 30.00 0.00 

pH 7.5 7.6 7.6 7.1 6.82 0.05 

Turbidity (NTU) 1.57 1.77 1.84 1.23 1.73 0.11 

Conductivity (µS/cm) 60.6 60.6 60.7 60.4 60.63 0.05 

Temperature (oC) 19.9 19.9 19.8 20.1 19.87 0.05 

 

Table A 104. Microcystin-LR Standard Curve: 0,2,50,30, Feb-22 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 40 33 

1 105 45 

10 687 360 

20 1487 698 
 

Table A 105. Geosmin Standard Curve: 0,2,50,30, Feb-22 

Standard 
Conc. Area 

1 576 

5 4872 

10 6936 

25 20017 

50 39099 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 2 50 30 22-Feb

Sample ID
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Figure A 103. Microcystin-LR 135.1 ion curve: 0,2,50,30, Feb-22 

 

Figure A 104. Microcystin-LR 107 ion curve: 0,2,50,30, Feb-22 

 

Figure A 105. Geosmin 112 ion curve: 0,2,50,30, Feb-22 
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Table A 106. Sample 0,4,10,30, Oct-17 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 18 13 11 99 14.00 2.94 

Area 2 7 7 5 36 6.33 0.94 

Concentration (ug/L) 1.07 0.89 0.82 3.99 0.93 0.11 

Geosmin             

Area 1 927 918 936 13808 927 7.35 

Concentration (ng/L) 0.69 0.68 0.69 10.21 0.69 0.00 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 35 35 35 35 35.00 0.00 

pH 7 7.1 7.2 6.9 6.82 0.08 

Conductivity (µS/cm) 69 69.5 69.5 71.1 69.33 0.24 

Temperature (oC) 19 18.7 18.8 19.5 18.83 0.12 

 

Table A 107. Microcystin-LR Standard Curve: 0,4,10,30, Oct-17 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 12 8 

1 26 11 

20 504 221 

40 1117 487 
 

Table A 108. Geosmin Standard Curve: 0,4,10,30, Oct-17 

Standard 
Conc. Area 

1 1398 

5 7302 

10 17237 

25 33405 

50 67024 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 4 10 30 17-Oct

Sample ID
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Figure A 106. Microcystin-LR 135.1 ion curve: 0,4,10,30, Oct-17 

 

Figure A 107. Microcystin-LR 107 ion curve: 0,4,10,30, Oct-17 

 

Figure A 108. Geosmin 112 ion curve: 0,4,10,30, Oct-17 
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Table A 109. Sample 0,4,20,30, Sept-19 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 5 7 4 99 5.33 1.25 

Area 2 3 2 2 36 2.33 0.47 

Concentration (ug/L) 0.18 0.28 0.13 3.99 0.20 0.06 

Geosmin             

Area 1 581 554 545 31567 560 15.30 

Concentration (ng/L) 0.38 3.6 0.36 20.58 1.446667 1.52 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 35 35 35 35 35.00 0.00 

pH 7 7.1 7.2 6.9 6.82 0.08 

Conductivity (µS/cm) 69 69.5 69.5 71.1 69.33 0.24 

Temperature (oC) 19 18.7 18.8 19.5 18.83 0.12 

 

Table A 110. Microcystin-LR Standard Curve: 0,4,20,30, Sept-19 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 10 5 

1 21 10 

5 106 44 

10 201 90 
 

Table A 111. Geosmin Standard Curve: 0,4,20,30, Sept-19 

Standard 
Conc. Area 

1 1679 

5 9725 

10 18785 

25 36552 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 4 20 30 Spet 19

Sample ID
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Figure A 109. Microcystin-LR 135.1 ion curve: 0,4,20,30, Sept-19 

 

Figure A 110. Microcystin-LR 107 ion curve: 0,4,20,30, Sept-19 

 

Figure A 111. Geosmin 112 ion curve: 0,4,20,30, Sept-19 
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Table A 112. Sample 0,4,30,30, Sept-19 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 1 5 5 99 3.67 1.89 

Area 2 0 1 4 36 1.67 1.70 

Concentration (ug/L) 0 0.18 0.18 3.99 0.12 0.08 

Geosmin             

Area 1 1123 1207 1087 47566 1139 50.28 

Concentration (ng/L) 0.73 0.79 0.71 31.01 0.743 0.03 

Water Quality              

Hardness (mg/L CaCO3) 51.3 68.4 51.3 34.2 57.00 8.06 

Alkalinity (mg/L CaCO3) 45 45 40 35 43.33 2.36 

pH 6.66 6.79 7.19 6.9 6.82 0.23 

Conductivity (µS/cm) 68 68.3 68.5 71.1 68.27 0.21 

Temperature (oC) 19.1 19.2 18.8 19.5 19.03 0.17 

 

Table A 113. Microcystin-LR Standard Curve: 0,4,30,30, Sept-19 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 10 5 

1 21 10 

5 106 44 

10 201 90 
 

Table A 114. Geosmin Standard Curve: 0,4,30,30, Sept-19 

Standard 
Conc. Area 

1 1679 

5 9725 

10 18785 

25 36552 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 4 30 30 19-Sep

Sample ID
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Figure A 112. Microcystin-LR 135.1 ion curve: 0,4,30,30, Sept-19 

 

Figure A 113. Microcystin-LR 107 ion curve: 0,4,30,30, Sept-19 

 

Figure A 114. Geosmin 112 ion curve: 0,4,30,30, Sept-19 
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Table A 115. Sample 0,10,50,20, Oct-3 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 6.4 2.5 6.3 86 5.07 1.82 

Area 2 1.6 1.9 1.8 37 1.77 0.12 

Concentration (ug/L) 0 0 0 3.6 0.00 0.00 

Geosmin             

Area 1 3204 3204 4148 84874 3518.67 445.01 

Concentration (ng/L) 2.84 2.16 2.79 49.85 2.60 0.31 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 35 35 35 35 35.00 0.00 

pH 7 6.8 7 6.9 6.82 0.09 

Conductivity (µS/cm) 45.4 45 45.5 65.3 45.30 0.22 

Temperature (oC) 19.1 21.3 21 21.2 20.47 0.97 

 

Table A 116. Microcystin-LR Standard Curve: 0,10,50,20, Oct-3 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 11.9 4.9 

1 19.5 5.9 

20 226.4 106.3 
 

Table A 117. Geosmin Standard Curve: 0,10,50,20, Oct-3 

1 1063 

5 4184 

10 15624 

25 33298 

50 76419 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 4 50 30 16-Nov

Sample ID
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Figure A 115. Microcystin-LR 135.1 ion curve: 0,10,50,20, Oct-3 

 

Figure A 116. Microcystin-LR 107 ion curve: 0,10,50,20, Oct-3 

 

Figure A 117. Geosmin 112 ion curve: 0,10,50,20, Oct-3 
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Table A 118. Sample 0,6,10,30, Nov 16 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 326.2 244.2 288.3 609 286.23 33.51 

Area 2 182.3 144.3 113 298.3 146.53 28.34 

Concentration (ug/L) 0.21 0.2 0.12 3.6 0.18 0.04 

Geosmin             

Area 1 275 270 287 9133 277.33 7.13 

Concentration (ng/L) 0.31 0.31 0.33 10.41 0.32 0.01 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 30 30 30 30 30.00 0.00 

pH 7.1 7.6 7 7.1 6.82 0.26 

Conductivity (µS/cm) 59.6 63.5 63.6 50.1 62.23 1.86 

Temperature (oC) 18 19.2 19.6 20.1 18.93 0.68 

 

Table A 119. Microcystin-LR Standard Curve: 0,6,10,30, Nov 16 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 231.5 137.8 

1 544.5 265.5 

10 5406 2350 

20 8847 4088 
 

Table A 120. Geosmin Standard Curve: 0,6,10,30, Nov 16 

Standard 
Conc. Area 

1 469 

5 3664 

10 6254 

25 22220 

50 44308 
 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 6 10 30 16-Nov

Sample ID
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Figure A 118. Microcystin-LR 135.1 ion curve: 0,6,10,30, Nov 16 

 

Figure A 119. Microcystin-LR 107 ion curve: 0,6,10,30, Nov 16 

 

Figure A 120. Geosmin 112 ion curve: 0,6,10,30, Nov 16 
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Table A 121. Sample 0,6,20,30, Sept-19 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 15 8 15 146.8 12.67 3.30 

Area 2 5 3 8 63.15 5.33 2.05 

Concentration (ug/L) 0.44 0.16 0.44 5.84 0.35 0.13 

Geosmin             

Area 1 4106 4358 4318 20670 4260.67 110.58 

Concentration (ng/L) 4 4.25 4.21 20.16 4.15 0.11 

Water Quality              

Hardness (mg/L CaCO3) 51.3 34.2 51.3 51.3 45.60 8.06 

Alkalinity (mg/L CaCO3) 45 40 40 40 41.67 2.36 

pH 7.2 7.4 7.4 7.5 7.33 0.09 

Conductivity (µS/cm) 63.3 63.5 63.5 63.6 63.43 0.09 

Temperature (oC) 18.6 19.5 19.6 19.2 19.23 0.45 

 

Table A 122. Microcystin-LR Standard Curve: 0,6,20,30, Sept-19 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 10 5 

1 27 10 

10 264 110 

20 485 209 
 

Table A 123. Geosmin Standard Curve: 0,6,20,30, Sept-19 

Standard 
Conc. Area 

1 1093 

5 4991 

10 11755 

25 28112 

50 49740 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 6 20 30 19-Sep

Sample ID
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Figure A 121. Microcystin-LR 135.1 ion curve: 0,6,20,30, Sept-19 

 

Figure A 122. Microcystin-LR 107 ion curve: 0,6,20,30, Sept-19 

 

Figure A 123. Geosmin 112 ion curve: 0,6,20,30, Sept-19 
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Table A 124. Sample 0,10,50,20, Oct-3 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 38 31 27 153.64 32.00 4.55 

Area 2 15 12 12 65.79 13.00 1.41 

Concentration (ug/L) 1.38 1.1 0.93 6.12 1.14 0.19 

Geosmin             

Area 1 1409 1514 1463 30841 1462 42.87 

Concentration (ng/L) 1.37 1.48 1.43 30.08 1.426667 0.04 

Water Quality              

Hardness (mg/L CaCO3) 51.3 34.2 34.2 34.2 39.90 8.06 

Alkalinity (mg/L CaCO3) 35 40 40 40 38.33 2.36 

pH 7.2 7.3 7.3 7.2 7.27 0.05 

Conductivity (µS/cm) 72.5 72.6 72.6 72.8 72.57 0.05 

Temperature (oC) 20.1 20.3 20.2 19.9 20.20 0.08 

 

Table A 125. Microcystin-LR Standard Curve: 0,10,50,20, Oct-3 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 10 5 

1 27 10 

10 264 110 

20 485 209 
 

Table A 126. Geosmin Standard Curve: 0,10,50,20, Oct-3 

Standard 
Conc. Area 

1 1093 

5 4991 

10 11755 

25 28112 

50 49740 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 6 30 30 19-Sep

Sample ID
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Figure A 124. Microcystin-LR 135.1 ion curve: 0,10,50,20, Oct-3 

 

Figure A 125. Microcystin-LR 107 ion curve: 0,10,50,20, Oct-3 

 

Figure A 126. Geosmin 112 ion curve: 0,10,50,20, Oct-3 
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Table A 127. Sample 0,6,50,30, Oct-17 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 12 33 19 112 21.33 8.73 

Area 2 6 16 10 51 10.67 4.11 

Concentration (ug/L) 0.86 1.61 1.11 5.65 1.19 0.31 

Geosmin             

Area 1 4276 3937 4164 68269 4125.667 141.03 

Concentration (ng/L) 3.16 2.91 3.08 50.48 3.05 0.10 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 35 35 35 35 35.00 0.00 

pH 7.1 6.7 6.9 6.9 6.90 0.16 

Turbidity (NTU) 6.2 5.7 3.3 1.9 5.07 1.27 

Conductivity (µS/cm) 70.8 70.6 70.7 72.2 70.70 0.08 

Temperature (oC) 19.4 19.7 19.9 19.1 19.67 0.21 

 

Table A 128. Microcystin-LR Standard Curve: 0,6,50,30, Oct-17 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 12 8 

1 26 11 

20 504 221 

40 1117 487 
 

Table A 129. Geosmin Standard Curve: 0,6,50,30, Oct-17 

Standard 
Conc. Area 

1 1398 

5 7302 

10 17237 

25 33405 

50 67024 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 6 50 30 17-Oct

Sample ID
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Figure A 127. Microcystin-LR 135.1 ion curve: 0,6,50,30, Oct-17 

 

Figure A 128. Microcystin-LR 107 ion curve: 0,6,50,30, Oct-17 

 

Figure A 129. Geosmin 112 ion curve: 0,6,50,30, Oct-17 
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Table A 130. Sample 0,10,10,30, Jan-11 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 638.9 638.4 471.8 7077.9 583.03 78.65 

Area 2 236.9 328.9 203.8 2993.5 256.53 52.93 

Concentration (ug/L) 0.89 0.89 0.7 8.1 0.83 0.09 

Geosmin             

Area 1 993 864 990 8451 949 60.12 

Concentration (ng/L) 1.27 1.1 1.26 10.78 1.21 0.08 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 35 35 35 35 35.00 0.00 

pH 7.4 7.4 7.5 7.2 7.43 0.05 

Conductivity (µS/cm) 64.3 64.6 64.6 60.6 64.50 0.14 

Temperature (oC) 21.1 21.2 21.1 21.3 21.13 0.05 

 

Table A 131. Microcystin-LR Standard Curve: 0,10,10,30, Jan-11   

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 425.1 208.4 

1 685.9 287 

10 8614 3896 

20 17796 7545 
 

Table A 132. Geosmin Standard Curve: 0,10,10,30, Jan-11   

Standard 
Conc. Area 

1 576 

5 4872 

10 6936 

25 20017 

50 39099 
 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 10 10 30 11-Jan

Sample ID
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Figure A 130. Microcystin-LR 135.1 ion curve: 0,10,10,30, Jan-11   

 

Figure A 131. Microcystin-LR 107 ion curve: 0,10,10,30, Jan-11   

 

Figure A 132. Geosmin 112 ion curve: 0,10,10,30, Jan-11   
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Table A 133. Sample 0,10,20,30, Oct-3 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 8 4 38 236 16.67 15.17 

Area 2 3 2 18 109 7.67 7.32 

Concentration (ug/L) 0 0 1.56 12.5 0.52 0.74 

Geosmin             

Area 1 4581 4231 4567 32952 4459.667 161.79 

Concentration (ng/L) 3.22 2.98 3.21 23.19 3.136667 0.11 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 35 35 35 35 35.00 0.00 

pH 7.02 7.12 7.18 7.2 7.11 0.07 

Conductivity (µS/cm) 71.9 72.1 72 71.9 72.00 0.08 

Temperature (oC) 20.1 20.1 20.3 20.4 20.17 0.09 

 

Table A 134. Microcystin-LR Standard Curve: 0,10,20,30, Oct-3 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 1 1 

1 19 9 

10 242 104 

20 347 159 
 

Table A 135. Geosmin Standard Curve: 0,10,20,30, Oct-3 

Standard 
Conc. Area 

1 959 

5 5374 

10 12644 

25 32248 

50 73188 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 10 20 30 3-Oct

Sample ID
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Figure A 133. Microcystin-LR 135.1 ion curve: 0,10,20,30, Oct-3 

 

Figure A 134. Microcystin-LR 107 ion curve: 0,10,20,30, Oct-3 

 

Figure A 135. Geosmin 112 ion curve: 0,10,20,30, Oct-3 
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Table A 136. Sample 0,10,30,30, Aug-9 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 52 48 51 239 50.33 1.70 

Area 2 20 28 20 108 22.67 3.77 

Concentration (ug/L) 1.16 1.08 1.14 11.43 1.13 0.03 

Geosmin             

Area 1 531 420 433 13582 461.3333 49.55 

Concentration (ng/L) 1.31 1.03 1.06 33.39 9.1975 0.13 

Water Quality              

Hardness (mg/L CaCO3) 51.3 51.3 51.3 34.2 51.30 0.00 

Alkalinity (mg/L CaCO3) 40 40 40 35 40.00 0.00 

pH 7.1 7 6.9 7.2 7.00 0.08 

Conductivity (µS/cm) 63.5 63.8 63.6 72.4 63.63 0.12 

Temperature (oC) 19.1 19.1 18.7 20.9 18.97 0.19 

 

Table A 137. Microcystin-LR Standard Curve: 0,10,30,30, Aug-9 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 24 11 

1 54 53 

10 498 209 

20 1095 467 
 

Table A 138. Geosmin Standard Curve: 0,10,30,30, Aug-9 

Standard 
Curve Area 

5 1425 

10 3610 

25 10474 
 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 10 30 30 9-Aug

Sample ID
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Figure A 136. Microcystin-LR 135.1 ion curve: 0,10,30,30, Aug-9 

 

Figure A 137. Microcystin-LR 107 ion curve: 0,10,30,30, Aug-9 

 

Figure A 138. Geosmin 112 ion curve: 0,10,30,30, Aug-9 
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Table A 139. Sample 0,10,50,20, Oct-3 results 

  
Replicate 

1  
Replicate 

2 
Replicate 

3 Control Average Std. Dev 

Microcystin-LR             

Area 1 29 25 22 223 25.33 2.87 

Area 2 13 9 11 97 11.00 1.63 

Concentration (ug/L) 1.63 1.45 1.31 10.69 1.46 0.13 

Geosmin             

Area 1 913 875 881 33286 889.6667 16.68 

Concentration (ng/L) 1.4 1.34 1.35 51 1.363333 0.03 

Water Quality              

Hardness (mg/L CaCO3) 34.2 34.2 34.2 34.2 34.20 0.00 

Alkalinity (mg/L CaCO3) 40 40 40 35 40.00 0.00 

pH 7 7 6.9 7.18 6.97 0.05 

Conductivity (µS/cm) 72.3 72.4 78.3 72.8 74.33 2.81 

Temperature (oC) 19.7 20.4 21.6 20 20.57 0.78 

 

Table A 140. Microcystin-LR Standard Curve: 0,10,50,20, Oct-3 

Standard 
Conc. 

135.1 
m/z 

107 
m/z 

(ug/L) Area A Area B 

0.5 11 5 

1 26 13 

10 176 82 

20 438 204 
 

Table A 141. Geosmin Standard Curve: 0,10,50,20, Oct-3 

Standard 
Conc. Area 

1 410 

5 2172 

10 5178 

25 15968 

50 33191 

Moringa Coagulant Microcystin-LR Geosmin PAC Water Sample

(mg/L) (ug/L) (ng/L) (mg/L) (month-date)

0 10 50 30 25-Jan

Sample ID
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Figure A 139. Microcystin-LR 135.1 ion curve: 0,10,50,20, Oct-3 

 

Figure A 140. Microcystin-LR 107 ion curve: 0,10,50,20, Oct-3 

 

Figure A 141. Geosmin 112 ion curve: 0,10,50,20, Oct-3 
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Appendix B. Jar Test Results Graphs 
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B.1 Microcystin-LR Removal 

 

 

 

Figure B 1. Graphs of Removal of 2 ug/L Microcystin-LR 
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Figure B 2. Graphs of Removal of 4 ug/L Microcystin-LR 
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Figure B 3. Graphs of Removal of 6 ug/L Microcystin-LR 
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Figure B 4. Graphs of Removal of 10 ug/L Microcystin-LR 

 

0.00

20.00

40.00

60.00

80.00

100.00

0 10 20 30 40 50 60

M
ic

ro
cy

st
in

 %
 R

e
m

o
va

l 

Geosmin ng/L 

10 mg/L PAC 

10 ug/L microcystin LR

0.00

20.00

40.00

60.00

80.00

100.00

0 10 20 30 40 50 60

M
ic

ro
cy

st
in

 %
 R

e
m

o
va

l 

Geosmin ng/L 

20 mg/L PAC 

10 ug/L microcystin LR

0.00

20.00

40.00

60.00

80.00

100.00

0 10 20 30 40 50 60M
ic

ro
cy

st
in

 %
 R

e
m

o
va

l 

Geosmin ng/L 

30 mg/L PAC 

10 ug/L microcystin LR



 

187 

 

B.2 Geosmin Removal 

 

 

 

Figure B 5. Graphs of Removal of 10 ng/L Geosmin 
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Figure B 6. Graphs of Removal of 20 ng/L Geosmin 
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Figure B 7. Graphs of Removal of 30 ng/L Geosmin 
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Figure B 8. Graphs of Removal of 50 ng/L Geosmin 
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Appendix. C. Environmental Samples 

  



 

192 

 

C.1 Horsetooth Water Quality. 

Table C 1. Horsetooth Water Quality from raw water samples 

Sample 
Date Notes Hardness Alkalinity pH Turbidity TOC DO 

Day-Month   (mg/L CaCO3) (mg/L CaCO3)   NTU (mg/L) (mg/L) 

11-Jun   51.3 35 7.1 3.29 3.3 N/A 

22-Jun   34.2 35 7.41 3.64 3.68 7.43 

7-Jul   42.75 35 7.34 3.29 3.77 6.9 

19-Jul   34.2 35 7.5 3.04 3.5 7.84 

9-Aug   34.2 38 7.37 2.57 3.77 6.76 

17-Sep   100.6 70 7.4 1.96 3.61 N/A 

  Diluted 51.3 35 7.14 1.5 N/A N/A 

19-Sep   34.2 45 7.19 2.52 3.82 4.56 

3-Oct   34.2 40 7.18 1.8 3.68 4.01 

17-Oct   34.2 35 7.3 2.69 3.9 3.39 

26-Oct   34.2 35 7.38 0.94 3.88 8.77 

16-Nov   34.2 30 7.5 2.31 3.54 8.82 

11-Jan   34.2 35 7.69 1.71 3.86 10.3 

25-Jan   34.2 35 7.57 2.35 4 10.6 

22-Feb   34.2 35 7.5 1.94 3.8 10.8 

        

 
Average 36.17 36.00 7.39 2.47 3.73 7.52 

 
std dev 6.14 3.24 0.17 0.74 0.18 2.42 

 

 

Figure C 1. Horsetooth Water Samples Collected in 4L Amber Jugs
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C.2. Northern Colorado Grab Sampling 

 

Figure C 2. Sampling sites from 2011 
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Table C 2. Locations of sampling sites 

Site Name Site Category Coordinates 

BT @ 9E 

Big 

Thompson 

-

105.184303,40.434177,0.000000 

BT @ I25 M150 

Big 

Thompson 

-

104.992393,40.397419,0.000000 

BT 160 

Big 

Thompson 

-

105.267609,40.417431,0.000000 

BT M130 

Big 

Thompson 

-

105.060699,40.378788,0.000000 

BT M140 

Big 

Thompson 

-

105.030960,40.383301,0.000000 

BT M40 

Big 

Thompson 

-

105.486557,40.375748,0.000000 

BT M70 

Big 

Thompson 

-

105.189461,40.417187,0.000000 

Barr Lake East I-25 

-

104.768372,39.956070,0.000000 

Greeley West East I-25 

-

104.772835,40.445511,0.000000 

Jackson Reservoir East I-25 

-

104.081039,40.378460,0.000000 

Riverside Reservoir East I-25 

-

104.285660,40.334507,0.000000 

Timath Reservoir East I-25 

-

104.959946,40.546940,0.000000 

City Park Lake Fort Collins 

-

105.103622,40.582344,0.000000 

Douglass Lake Fort Collins 

-

105.082512,40.700684,0.000000 

Fossil Creek Fort Collins 

-

105.003975,40.487106,0.000000 

Fossil Creek Pond Fort Collins 

-

105.025002,40.492981,0.000000 

Horsetooth Dam Fort Collins 

-

105.142593,40.529980,0.000000 

Horsetooth Inlet Fort Collins 

-

105.159714,40.526295,0.000000 

Sherwood Lake Fort Collins 

-

105.048569,40.548912,0.000000 

Brainard Lake 

High  

Mountain 

-

105.575356,40.077942,0.000000 

Grand Lake 

High  

Mountain 

-

105.821686,40.247040,0.000000 
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Hiawatha Lake 

High  

Mountain 

-

105.595695,40.801987,0.000000 

Lake Estes 

High  

Mountain 

-

105.496559,40.377022,0.000000 

Lake Ramona 

High  

Mountain 

-

105.588783,40.799973,0.000000 

Long Lake 

High  

Mountain 

-

105.592346,40.072357,0.000000 

Mary's Lake 

High  

Mountain 

-

105.532951,40.345104,0.000000 

Red Rock 

High  

Mountain 

-

105.541275,40.082012,0.000000 

SMR (Adj to Grand 

Lake) 

High  

Mountain 

-

105.845032,40.229218,0.000000 

Zimmerman Lake 

High  

Mountain 

-

105.869148,40.541656,0.000000 

Boyd Lake Loveland 

-

105.034966,40.436886,0.000000 

Carter Lake Loveland 

-

105.217094,40.350731,0.000000 

Flatiron Reservoir Loveland 

-

105.230484,40.372772,0.000000 

Lake Loveland Loveland 

-

105.086975,40.405914,0.000000 

Pinewood Lake Loveland 

-

105.284302,40.363483,0.000000 

022 Fern Poudre 

-

104.640053,40.418137,0.000000 

Barnes Meadow Poudre 

-

105.834450,40.599232,0.000000 

Chambers Reservoir Poudre 

-

105.845078,40.603230,0.000000 

Dadd Gulch Poudre 

-

105.539436,40.697205,0.000000 

LCR 5 Poudre 

-

104.982475,40.521336,0.000000 

Lost Lake Poudre 

-

105.849365,40.609467,0.000000 

N. Fork Poudre Gateway Poudre 

-

105.234604,40.704262,0.000000 

Picnic Rock Poudre 

-

105.231598,40.670746,0.000000 

Poudre @ Boxelder Poudre 

-

105.008377,40.551262,0.000000 

Poudre @ campgrounds Poudre 

-

105.435318,40.694275,0.000000 
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Poudre @ Drake WWTP Poudre 

-

105.020203,40.559181,0.000000 

Poudre @ Lincoln St Poudre 

-

105.069763,40.588600,0.000000 

Poudre @ Shields Poudre 

-

105.096588,40.603268,0.000000 

Poudre at Prospect Poudre 

-

105.027580,40.569794,0.000000 

Poudre N. Fork 

Confluence Poudre 

-

105.243141,40.700111,0.000000 

S. Platte & Poudre (58th) Poudre 

-

104.618340,40.411144,0.000000 

S. Platte @ 18th Poudre 

-

104.564262,40.413105,0.000000 
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Table C 3. Northern Colorado Environmental Sampling Results May-Oct 2011 

 

Name
Area 

Description

Microcystin 

Screen 1 

May-July 

(ug/L)

1) 

Microcystin 

LR (ug/L)

Microcystin 

Screen 2 

Aug-Oct 

(ug/L)

2) 

Microcystin 

LR (ug/L)

1) Geosmin 

May - June 

2011 (ng/L) 

2) Geosmin  

July 2011 

(ng/L)

3) Geosmin  

August 2011 

(ng/L)

4) Geosmin 

Sept-Oct 

2011 (ng/L) 

022 Fern Poudre 0 0 0 0 1.41 0 0 0

Barnes Meadow Poudre 0 0 0.0512 0 0 0 0 0

Barr Lake East I-25 0.8265 1.32 1.4328 0.61 1.1 0 0 0

Boyd Lake Loveland 0 0 0 0 2.2 2.3 1.1 0

Brainard Lake High  Mountain 0 0 0 0 0 0 0 0

BT @ 9E Big Thompson 0 0 0 0 0 0 0 0

BT @ I25 M150 Big Thompson 0 0 0 0 0.79 0 0 0

BT 160 Big Thompson 0 0 0 0 0 0 0 0

BT M130 Big Thompson 0 0 0 0 0 0 0 0

BT M140 Big Thompson 0 0 0 0 0 0 0 0

BT M40 Big Thompson 0 0 0 0 0 0 0 0

BT M70 Big Thompson 0 0 0 0 0 0 0 0

Carter Lake Loveland 0 0 0 0 0.82 0 0 0

Chambers Reservoir Poudre 0 0 0 0 0 0 0 0

City Park Lake Fort Collins 0.309 0 0 0 0.71 0.7 0 0

Dadd Gulch Poudre 0 0 0 0 2.64 2.5 0 0

Douglass Lake Fort Collins 0 0 0 0 1.4 0 0 0

Flatiron Reservoir Loveland 0 0 0 0 0 0 0 0

Fossil Creek Fort Collins 0.1117 0 0 0 8.8 12.57 13.34 3.82

Fossil Creek Pond Fort Collins 0.111 0 0 0 0.9 1.78 0 0

Grand Lake High  Mountain 0 0 0 0 0 0 0 0

Greeley West East I-25 0 0 0.056 0 0 0 0 0

Hiawatha Lake High  Mountain 0 0 0 0 0 0 0 0

Horsetooth Dam Fort Collins 0.1264 0 0 0 0 0 0 0

Horsetooth Inlet Fort Collins 0.1367 0 0 0 0 0 0 0

Jackson Reservoir East I-25 0.5636 0 0.07875 0 2.5 4.3 2.21 1.58

Lake Estes High  Mountain 0 0 0 0 0 0 0 0

Lake Loveland Loveland 0 0 0 0 0.8 7.4 0 0

Lake Ramona High  Mountain 0 0 0 0 0 0 0 0

LCR 5 Poudre 0 0 0 0 19.95 0 0 0

Long Lake High  Mountain 0 0 0 0 0 0 0 0

Lost Lake Poudre 0 0 0 0 3.22 3.38 0 0

Mary's Lake High  Mountain 0 0 0 0 0.89 1.6 0 0

N. Fork Poudre Gateway Poudre 0 0 0 0 0 0 0 0

Picnic Rock Poudre 0 0 0 0 0.72 0 0 0

Pinewood Lake Loveland 0.7498 0 0 0 1.1 0 0 0

Poudre @ Boxelder Poudre 0 0 0 0 0 0 0 0

Poudre @ campgrounds Poudre 0 0 0 0 0 0 0 0

Poudre @ Drake WWTP Poudre 0 0 0 0 0 0 0 0

Poudre @ Lincoln St Poudre 0.9552 0 0 0 18.9 0.71 1.29 1.4

Poudre @ Shields Poudre 0 0 0 0 2.89 0 0 0

Poudre at Prospect Poudre 0 0 0 0 0 0 0 0

Poudre N. Fork Confluence Poudre 0 0 0 0 0.96 0 0 0

Red Rock High  Mountain 0.5461 0 0 0 0 0 0 0

Riverside Reservoir East I-25 0 0 0 0 0 0 0 0

S. Platte & Poudre (58th) Poudre 0 0 0 0 12.32 1.89 1.89 0

S. Platte @ 18th Poudre 3.636 0 0 0 0 0.82 0 0

Sherwood Lake Fort Collins 0.6689 0 0.0578 0 1.1 1.6 0 0

SMR (Adj to Grand Lake) High  Mountain 0 0 0 0 0 0 0 0

Timath Reservoir East I-25 0.1065 0 0 0 0.7 0 0 0

Zimmerman Lake High  Mountain 0 0 0.0618 0 0 0 0 0
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Appendix D. Toxicity Analysis 
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D.1 Toxicity Analysis Results 

Table D 1. Averaged SRB Raw results from plate reader 

M-LR 

dose ug/L 150 100 75 50 25 12.5 6.25 3.125 1.563 0.781 

Control 

Meo Control 

100,000 

Cells 1.02 0.78 0.82 0.74 0.60 0.56 0.53 0.52 0.55 0.80 1.07 0.97 

Std Dev. 0.11 0.13 0.17 0.06 0.12 0.13 0.21 0.10 0.16 0.03 0.23 0.04 

50,000 

Cells 0.91 0.86 0.92 0.95 0.83 0.70 0.65 0.66 0.65 0.78 0.75 0.85 

Std Dev. 0.04 0.06 0.08 0.08 0.07 0.05 0.11 0.10 0.09 0.12 0.16 0.07 

 

Table D 2. Averaged SRB Quantified results  

 

 

 

 

 

 

 

 

 

M-LR 

dose 

ug/L 150 100 75 50 25 12.5 6.25 3.125 1.563 0.781 

Control 

Meo Control 

100,000 

Cells 105106 88247 83118 76185 53786 49901 42013 47039 46767 82352 109403 100000 

Std 

Dev. 

Cells 15341 309 24295 5716 850 5068 2960 481 4172 3254 22720 3508 

50,000 

Cells 2125 3161 5407 4148 3528 2392 5700 5033 4293 2828 2509 3266 

Std 

Dev. 

Cells 107 101 108 112 98 83 77 78 76 99 78 100 
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D.2 Hematoxylin and Eosin Staining Procedure:  

(http://www.ihcworld.com/_protocols/special_stains/HE_Mayer.htm): 

Eosin Y Solution: 

    

   Eosin Y Stock Solution (1%): 

   Eosin Y --------------------------------------- 10 g 

   Distilled water ------------------------------- 200 ml 

   95% Ethanol ---------------------------------- 800 ml 

   Mix to dissolve and store at room temperature. 

  

   Eosin Y Working Solution (0.25%): 

   Eosin Y stock solution -------------------- 250 ml 

   80% Ethanol -------------------------------- 750 ml 

   Glacial acetic acid (concentrated) ------- 5 ml 

   Mix well and store at room temperature. 

  

Hematoxylin Solution (Mayer):  

      Potassium or ammonium (alum) -------- 50 g  

      Hematoxylin ------------------------------- 1 g  

      Sodium iodate ----------------------------- 0.2 g  

      Citric acid ---------------------------------- 1 g  

      Distilled water ----------------------------- 1000 ml  

      Stir to dissolve the chemicals in the order listed above. For example, dissolve alum in 1000 

ml distilled water first. When alum is completely dissolved, add hematoxylin. When hematoxylin 

is completely dissolved, add sodium iodate, etc.  
   
Procedure:  
   

1.    Deparaffinize sections, 2 changes of xylene, 10 minutes each.  

2.    Re-hydrate in 2 changes of absolute alcohol, 5 minutes each.  

3.    95% alcohol for 2 minutes and 70% alcohol for 2 minutes.  

4.    Wash briefly in distilled water.  

5.    Stain in Mayer hematoxylin solution for 8 minutes.  

6.    Wash in warm running tap water for 10 minutes.  

7.    Rinse in distilled water.  

8.    Rinse in 95% alcohol, 10 dips.  

9.    Counterstain in eosin-phloxine B solution (or eosin Y solution) for 30 seconds to 1 minute.  

10.  Dehydrate through 95% alcohol, 2 changes of absolute alcohol, 5 minutes each.  

11.  Clear in 2 changes of xylene, 5 minutes each.  

12.  Mount with xylene based mounting medium.  
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Figure D 1. Eosin Stain on H4IIE Cells. 

D.3 SRB Protocol 

1. Treat cells with microcystin-LR toxin with respective dosages and incubation periods. 

2. When ready to begin assay, remove media and fix cells with 50 μl of 10% TCA (10 ml 

TCA, 90 ml Mili Q water). 

3. Remove TCA and wash 5x with tap water to remove TCA, growth medium and low 

molecular weight metabolites. 

4. Allow plates to dry. 

5. Add 0.4 % SRB (w/v) dissolved in 1% acetic acid to TCA fixed cells and allow to sit for 

30 minutes. 

a. SRB- 1 ml acetic acid, 99 ml Mili Q water, 0.4 g SRB. 

6. Remove SRB, then wash quickly 4x 1% acetic acid to remove the dye. 

7. Air dry until no standing moisture is visible. 

8. Solubilize dye with 50 mM Tris base (pH 10.5) with 50 μl per well.  

9. Place plate on an orbital shaker for 5 minutes. 

10. Read plate on a plate reader at 560 nm. 
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Figure D 2. H4IIE Cells under SRB Staining 

 

Figure D 3. Solubilized H4IIE cells ready for plate reader. 
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D.4 Enzyme Linked Immunosorbent Assay for Microcystins 

The 96 well plates are lined with anti-rabbit IgG polyclonal antibodies that are raised to 

bind microcystins and a microcystin-enzyme conjugate. There is the same number of antibody 

binding sites in each well allowing the same number of microcystin-enzyme conjugate enzyme 

molecules to bind to the antibodies. Once the conjugate binds and the reaction proceeds, a blue 

color should appear. Conversely, if there were a high concentration of microcystins, there will be 

fewer microcystin-enzyme conjugate molecules bound to the antibodies thus a lighter blue color 

would indicate the presence of microcystins. Cross reactivity could occur if variants of 

microcystins and nodularins are present. The detection limit of the assay is 0.1 ug/L of 

Microcystin-LR. The ELISA testing kit is a good, quick and inexpensive way to screen many 

samples at once for microcystin-LR before confirmation and quantification with more advanced 

methods. Environmental samples were filtered through a 0.45 um glass filter so that only 

dissolved cyanotoxin concentrations would be analyzed.  

50 μl of the enzyme conjugate was pipetted into each well. Next, 50 μl of homogenized 

environmental samples and calibration solutions were pipetted to the appropriate wells making 

sure a clean pipet was used for each solution to avoid cross contamination. 50 μl of the antibody 

was also pipetted into each well before the plate was covered with parafilm and put on an orbital 

shaker to continuously mix the solution during a 30 minute incubation period. Afterwards the 

wells were washed five times with a wash solution before 100 μl of the indicator substrate was 

pipetted into each well. The wells were covered and incubated for another 30 minutes. After 

incubation 100 μl of stop solution was pipetted into each well and after processing the samples 

according to the Beacon ELISA kit, the resulting plate was read on a FLUOstar Omega Plate 

Reader at 450 nm. 
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Figure D 4. Beacon Microcystin-LR ELISA after 30 seconds 

 

Figure D 5. Beacon Microcystin-LR ELISA after 60 seconds 
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Figure D 6. Beacon Microcystin-LR ELISA after 60 seconds 
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D.5 Histological observations  

 

Figure D 7. Histological view of control cells. 
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Figure D 8. Histological view of cells under 24 hr exposure to 25 μg/L microcystin-LR 
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Figure D 9. Histological view of cells under 24 hr exposure to 50 μg/L microcystin-LR 
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Figure D 10. Histological view of cells under 24 hr exposure to 100 μg/L microcystin-LR 


