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ABSTRACT

TOOLS FOR IMPROVED MANAGEMENT OF SAGEBRUSH AVIFAUNA AND

SAGEBRUSH RANGELANDS

The sagebrush biome of western North America once encompassed over 60 million
hectares, but now occupies approximately 55% of its former range due to cultivation, energy and
urban development, changing fire regimes, and other factors. As a result, many avifauna species
in this ecosystem, such as greater sage-grouse (Centrocercus urophasianus) and Brewer’s
sparrows (Spizella breweri), have experienced population declines during the last fifty years.
Understanding mechanisms behind changes in bird populations first requires an understanding of
how resources may be affected by changes on the landscape. State-and-transition models (STM)
are one tool managers could use to portray rangeland dynamics and predict the impact of state
changes on ecosystem services, such as wildlife habitat. As conceptual models, STMs are a
useful communication tool for land managers and landowners and they can easily be updated
with new information. However, STMs are often criticized for a lack of statistical rigor in
defining transition probabilities between states, and a lack of spatial context to inform potential
transitions and illustrate ecosystem services. They also should include a combination of
ecological data and local stakeholder input to improve model quality and relevance. Therefore,
my research objectives were to: 1) include additional ecosystem services in one locally
developed STM by predicting species richness and avifauna density for common sagebrush
songbirds and greater sage-grouse in the states and community phases, 2) use the same

collaborative STM and map the states across the study area with a new approach for sagebrush



rangelands, and 3) investigate the use of greater sage-grouse as an umbrella for several
sagebrush-associated species (i.e., Brewer’s sparrow, sage thrasher [Oreoscoptes montanus],
sagebrush sparrow [Artemisiospiza nevadensis]), and green-tailed towhee [Chlorura chlorura]).
These research objectives were part of a larger collaborative effort to develop STMs in a
participatory approach with local stakeholders in Northwest Colorado. For all three objectives, |
collected vegetation, soils, and avifauna abundance data in randomly distributed sampling plots

in three project areas in 2013-2015.

For the first objective, | included additional ecosystem services in one recently developed
STM by predicting species richness and avifauna density for common sagebrush songbirds and
greater sage-grouse in the states and communities. 1 modeled songbird and sage-grouse pellet
count data and species richness with fine-scaled vegetation predictors, like shrub cover and shrub
height. | then used the average vegetation values per state or community phase to predict
avifauna density and richness with the top models. Moderate or increasing amounts of shrub
cover were important predictors for most species, as were bare ground and shrub heights,
although responses varied by species. In the STM, | predicted higher species richness and greater
densities for sagebrush and shrub-obligate species in the shrub-dominated states and phase and
higher densities for grassland-associated species in the state and phase lacking shrub cover. This
approach can assist local land managers and landowners gauge impacts of disturbances, such as
fire, on avifauna populations, and it also illustrates the effect of managing for only one state on

other species and services.

For the second objective, | used the same STM and multinomial logistic regression with
the state classification as the response variable and several remotely sensed biotic and abiotic

predictors, such as bare ground and elevation. | then predicted the best model to all pixels within



the study area and summarized spatial information about each mapped state, such as average
patch size. The best model included big sagebrush cover and elevation. Classification accuracy
(based on external and internal validation) was 71-74%, and individual component accuracy
varied across the four states. Two shrubland states comprised approximately 67% of the study
area, while an exotic grassland state comprised the lowest proportion (1%). The shrubland states
were also the most contiguous while the exotic grassland state was the least. To my knowledge,
this is the first attempt to use a locally developed STM and map states across the landscape in a
sagebrush rangeland. Predicting and mapping states across a landscape could guide monitoring
and restoration efforts, inform ecosystem service values per state, elucidate landscape patterns,

and forecast transitions within STMs.

For the third objective, | examined count-based regression models for songbirds and
logistic regression models for sage-grouse with multi-scaled biotic predictors to evaluate sage-
grouse as an umbrella species. | determined the correlation between apparent sage-grouse
occurrence and estimated songbird densities per plot to represent a fine-scaled approach. I also
mapped model-predicted songbird densities within areas likely to contain sage-grouse to
examine the efficacy of sage-grouse as an umbrella at a larger scale. Shrub or sagebrush height
and a form of sagebrush cover were important predictors for all species, although the spatial
extents varied. | determined that correlation between sage-grouse occurrence and density of all
four songbirds at the plot-level was positive but weak. In contrast, higher predicted Brewer’s
sparrow and green-tailed towhee densities were captured in areas likely to contain sage-grouse
across the study area. Sage thrasher densities were similar in areas likely to contain sage-grouse
compared to the entire study area, and average sagebrush sparrow density was lower in areas

likely to contain sage-grouse. In this study, sage-grouse may be an effective umbrella for



Brewer’s sparrows and green-tailed towhees, but sage-grouse habitat does not appear to capture
habitat promoting higher sagebrush sparrow densities. A multi-species focus may be the best

management and conservation strategy for multiple species of concern.

In combination, these objectives are meant to improve management of sagebrush
rangelands and avifauna species. All three objectives illustrate the value of managing for
landscape heterogeneity, which is best achieved by managing for a landscape mosaic of different
states, rather than for a single state, species, or ecosystem service. Specifically, the STM
illustrates services provided by every state and how management for only one state could be
detrimental to other services or avifauna species. Local management efforts for sage-grouse
populations and habitat should also be improved with a greater understanding of multi-scaled
habitat needs for other sagebrush-associated species. Further, | illustrate that by including input
from local landowners and managers, the resulting STM should be more relevant and likely to be

used as a management tool.
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CHAPTER I. INTRODUCTION

The sagebrush biome of western North America once encompassed over 60 million
hectares, but now occupies approximately 55% of its former range (Miller et al. 2011). As a
result, many avifauna species in this ecosystem, such as greater sage-grouse (Centrocercus
urophasianus) and Brewer’s sparrows (Spizella breweri), have experienced population declines
during the last fifty years (Knick et al. 2003). Understanding mechanisms behind changes in bird
populations first requires an understanding of how habitat resources may be affected by changes
on the landscape. State-and-transition models (STM) are one tool managers could use to portray
rangeland dynamics and predict the impact of state changes on ecosystem services, such as
avifauna habitat or populations (Bestelmeyer et al. 2003, Holmes and Miller 2010). However,
STMs could include both ecological data and local knowledge to improve model quality and
relevance (Kachergis et al. 2013). They should also include spatial context to inform potential

transitions and illustrate ecosystem services (Bestelmeyer et al. 2011, Steele et al. 2012).

Ecological Sites & State-and-Transition Models

Ecological sites are defined by ecological site descriptions (ESDs) within climate-based
Major Land Resource Areas (Bestelmeyer et al. 2003). An ecological site includes distinctive
soil and hydrologic properties, topography, and landform features that produce a characteristic
plant community. Each ecological site is characterized by a state-and-transition model (STM),
which describes the dynamics between potential states for a particular site based on management
activities or natural events. Alternate states are described relative to a site’s reference state,
which is often a state that is considered desirable for optimizing forage production for livestock
the desirable state (Bestelmeyer et al. 2009, Twidwell et al. 2013). Within a state, plant

communities may vary among phases and shift along reversible pathways due to drought, fire,



grazing, or other events, reflecting the natural dynamics of plant communities (Stringham et al.
2003). Transitions between states, however, are triggered by natural disturbances or management
activities, resulting in structural and/or functional change and are not easily reversible (Westoby
et al. 1989, Bestelmeyer et al. 2003). In order for one state to transition to another, a threshold
must be crossed (Friedel 1991, Stringham et al. 2003). A threshold represents a spatial and/or
temporal boundary between states, and management intervention may not be enough to allow a
change back to the initial state (Friedel 1991, Laycock 1991, Briske et al. 2005). Bestelmeyer et
al. (2009) stress the utility of STMs for communicating to land managers about thresholds
between reference and alternate states in a system in order to identify and prevent transitions to
undesirable alternate states. Simulated STMs can also be used to forecast vegetation dynamics
based on transition probabilities and drivers within a system or management unit (Daniel and

Frid 2011).

The Natural Resource Conservation Service (NRCS) and several federal agencies have
adopted the use of ESDs and STMs for current rangeland assessment, monitoring, and
management (Bestelmeyer et al. 2003). Bestelmeyer et al. (2009) outlined several steps to
develop data-driven, iterative STMs based on expert knowledge, spatial stratification, multiple
intensity field surveys, multivariate analyses, monitoring, and model refinement. Kachergis et al.
(2013) also outlined how to develop STMs in a multidisciplinary context to include multiple
sources of knowledge. However, STMs are often criticized for a lack of statistical rigor and
exclusion of spatial scale and context (Bestelmeyer et al. 2011, Twidwell et al. 2013). Transition
probabilities are usually described by qualitative or observational studies rather than
experimental approaches, and measuring vegetation characteristics in a few plots will not

characterize patterns within a region or allow inference to a larger landscape (Briske et al. 2005).



Further, a hierarchy of processes can interact to produce what is observed in one plot by
influencing transitions between states (Bestelmeyer et al. 2011). Vegetation patterns also depend
on scale. At a small scale, a plot might show heterogeneity in grazed and ungrazed grasses from
livestock selectivity, but at a larger scale, the landscape could be homogenous because season-
long grazing does not usually result in heavily used or unused areas (Fuhlendorf and Engle

2001).

Sagebrush Rangelands

STMs may be especially useful in arid and unpredictable communities, such as sagebrush
rangelands where multiple stable states occur (Friedel 1991). The sagebrush biome of western
North America once encompassed over 60 million hectares but has experienced a range
reduction of approximately 45% (Knick et al. 2003, Miller et al. 2011). The invasion of exotic
grasses such as cheatgrass (Bromus tectorum) and changing fire intervals have been implicated
in the loss of diverse sagebrush rangelands, in addition to energy development and livestock
grazing (West 2000, Miller et al. 2011). Fire in sagebrush rangelands can result in a state change
through complete shrub cover loss, but unburned patches may remain depending on fire severity
and landscape heterogeneity (Pyke 2011). Sagebrush recovery following a fire is dependent on
initial species composition, completeness of the burn, and presence of obligate seeders (Davies et
al. 2012). Few sagebrush species re-sprout following fire and recovery of shrub cover following

a fire may take decades or even centuries (Knick et al. 2005, Baker 2006).

In addition to exotic plants and fire, other drivers of change in sagebrush rangelands
include livestock grazing and mechanical treatment of shrubs. Grazing is currently the most

common land-use on public and private sagebrush rangelands (Knick et al. 2011). Grazing



pressure by domestic livestock can impact water and nutrient availability, soil stability, and plant
composition and thus, cause community phase and/or state transitions (Friedel 1991, Pyke 2011,
Porensky et al. 2016). Moderate grazing pressure may not cause a state change, but heavy or
continuous grazing during late spring-early summer can reduce perennial bunchgrasses and lead
to a state or community phase with denser sagebrush cover (Pyke 2011). Sagebrush and other
shrubs have often been viewed as competitors with palatable grasses and forbs, and sagebrush
removal via mechanical or chemical methods was initially intended to improve herbaceous cover
for livestock forage (Connelly et al. 2000, Beck et al. 2012). However, mechanical treatment to
reduce shrub cover may have unintended consequences, such as an increase in annual forbs or

exotic grasses with no increase in perennial cover (Davies et al. 2011).

Sagebrush Avifauna

Given the fragmentation and deterioration of sagebrush rangelands, many avifauna
species in this ecosystem have experienced population declines (Dobkin and Sauder 2004).
Some species rely entirely on sagebrush ecosystems for activities such as nesting and foraging
(e.g., sagebrush sparrow [Artemisiospiza nevadensis], Brewer’s sparrow [Spizella breweri], sage
thrasher [Oreoscoptes montanus], and sage-grouse [Centrocercus spp.]), whereas others rely
partially on sagebrush (e.g., green-tailed towhees [Chlorura chlorura], vesper sparrows
[Pooecetes gramineus]; Braun et al. 1976). Greater sage-grouse (C. urophasianus) populations
in North America have declined range-wide within the last fifty years (Connelly and Braun 1997,
U.S. Fish and Wildlife Service [USFWS] 2015). Their distribution is closely associated with
sagebrush distribution because sage-grouse are completely or partially dependent on sagebrush
during all their various life stages (Patterson 1952). Therefore, many of the same factors

implicated in the loss, degradation, or fragmentation of sagebrush communities in western North
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America (e.g., invasive plant species, livestock grazing, and changing fire return intervals) are
also associated with sage-grouse population and other sagebrush avian species declines range-

wide (Connelly and Braun 1997, USFWS 2015).

Sage-grouse have been proposed as an umbrella species for other sagebrush-obligate
species because they have a large annual range that overlaps with many other species, they are
fairly sensitive to anthropogenic activity, their biology is well-known, and many habitat
recommendations have been evaluated and published for sage-grouse (Rowland et al. 2006).
However, this approach is often assumed and rarely tested (Simberloff 1998). Given a reduction
in sage-grouse populations range-wide, large and small-scale conservation efforts (e.g., Sage
Grouse Initiative) are underway to promote sagebrush habitat and prevent further declines in
sage-grouse populations (USFWS 2015). However, it is unclear how efforts to promote sage-
grouse habitat will affect other species which are also dependent on sagebrush. Sagebrush
rangelands are heterogeneous and features relevant to sage-grouse may not be relevant to species
with smaller home ranges (Hanser and Knick 2011). For example, one study found an increase in
Brewer’s sparrow and green-tailed towhee abundance three years following juniper (Juniperus
spp.) removal to restore sage-grouse habitat (Sage Grouse Initiative 2015). Another study found
that mechanical treatments to improve Gunnison sage-grouse (C. minimus) habitat reduced
Brewer’s sparrow density and green-tailed towhee occupancy in treated areas (Lukacs et al.

2016).

Ecological Sites and Wildlife Habitat

Several studies examined the occurrence of sagebrush fauna within ESDs and STMs

(e.g., Holmes and Miller 2010) or evaluated the potential for ESDs and STMs to incorporate



measures that assess wildlife habitat (e.g., Williams et al. 2011). Range conditions across soil
types (i.e., NRCS range site index) influence vegetation characteristics, which in turn, influence
songbird abundance (Vander Haegan et al. 2000). Similarly, abundance of grasshopper sparrows
(Ammodramus savannarum) was greatest in native perennial communities in the Columbia
Basin, and any shift from this community was projected to decrease sparrow abundance (Holmes

and Miller 2010).

To characterize ecological sites and states within STMs, protocols usually include
measuring standard indicators, such as foliar and basal cover by species or functional group,
species richness, plant production, and soil properties (Herrick et al. 2005, Bestelmeyer et al.
2009). In Wyoming, current ESD metrics did not inform predictions of greater sage-grouse nest
occurrence or success beyond other habitat variables measured at a local or landscape scale
(Doherty et al. 2011). The authors suggested including field metrics related to nest occurrence or
success, such as sagebrush canopy cover, grass height and visual obstruction reading, in the
standard ESD measures. Horizontal and vertical shrub structure differentiated ecological sites
and songbird habitat in Northwest Colorado, and modified monitoring methods rather than
standard ESD metrics best characterized shrub structure (e.g., shrub density, shrub canopy gaps,

and shrub height; Williams et al. 2011).

The aforementioned studies illustrate a disconnect between rangeland management and
wildlife habitat management. Ecological sites in the sagebrush biome provide different levels of
habitat quality for different wildlife species, yet traditional ESD metrics do not differentiate
vegetation structure attributes that influence wildlife habitat quality (Doherty et al. 2011,
Williams et al. 2011). In particular, ESDs do not adequately characterize the horizontal and

vertical shrub structure of sagebrush rangelands, which determine the quality of nesting and
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cover habitat for multiple wildlife species (Doherty et al. 2011, Williams et al. 2011). They also
do not account for the influence of spatial heterogeneity on wildlife habitat, such as arrangement
of shrub patches (e.g., clumped or dispersed) within a site or surrounding management activities

(Bestelmeyer et al. 2011).

However, ESDs and STMs have the potential to incorporate multiple ecosystem services,
such as wildlife habitat and livestock forage, which would increase their appeal to a variety of
stakeholders, such as government land agencies and private landowners (Bestelmeyer and Briske
2012). Land managers could then use STMs to predict how wildlife habitat and livestock forage
would change in response to a state change. Further, by associating monetary value to ecosystem
services, like livestock grazing and sage-grouse habitat, landowners can understand the
economic impact and trade-off of managing for different states or objectives (Boyd et al. 2014).
STMs also illustrate the value of landscape heterogeneity. If land managers only promote the
reference state in STMs (Bestelmeyer et al. 2003), then species that thrive in seemingly degraded
states may decline. For example, mountain plover (Charadrius montanus) nesting habitat is
comprised of bare ground, and if the short grass prairie is only managed for livestock forage and
greater grass cover, mountain plover populations could decline (Augustine and Derner 2012).
Instead, STMs could promote an ecosystem approach whereby the objective is to maintain a
functioning, intact system long-term, which may include seemingly degraded or disturbed states

(Boyd et al. 2014).

Spatially Explicit STMs
STMs could be further improved if they included spatial context and scale. As currently
constructed, they merely represent descriptions of states without acknowledgment of spatial

variation in transition drivers, soil, and topography (Bestelmeyer et al. 2011). They also do not



incorporate scale dependent patterns or processes, which can influence transitions (Bestelmeyer
et al. 2011). Spatially represented states could improve understanding of ecosystem services on
the landscape, such as connectivity of wildlife habitat, and they could also enhance assessment,
monitoring, and management of rangelands in a hierarchical or probabilistic framework (Briske

et al. 2005, Bestelmeyer et al. 2009).

Bestelmeyer et al. (2011) suggest that STM development consider three scales (patch,
site, and landscape) and three classes of spatial processes that produce spatial heterogeneity:
spatial variation in driver histories, spatial dependence in response to drivers, and spatial
contagion and feedbacks, such as the spread of transitions to nearby areas (Bestelmeyer et al.
2011). By examining patch size, arrangement, and other landscape patterns, managers can better
identify and predict factors influencing transitions between states. Managers could also target
states to test transition assumptions over time or with experiments to improve the rigor of STMs
(Steele et al. 2012). Similarly, managers could combine simulated state-and-transition modeling
(Daniel and Frid 2011) with spatially explicit states to forecast potential outcomes for

management actions or disturbances within a region (Provenchar et al. 2007).

A logical starting place is to develop a STM (see Bestelmeyer et al. 2009) for one
ecological site or similar ecological sites. States can be generalized across similar ecological sites
because different states should represent differences in structure and ecological processes rather
than differences in species composition (Steele et al. 2012). Ecological sites as defined by
USDA-NRCS are already represented spatially via third order soil mapping units (Bestelmeyer et
al. 2009). However, each soil map unit may contain multiple soil components or ecological sites
due to fine-scale variation that cannot be mapped (Forbis et al. 2007). The map unit is named

according to the major soil component or the dominant ecological site within the unit. For
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regions with coarser variation in soil attributes and less bare ground, mapping states with their
associated ecological site(s) is probably a reasonable approach. However, in more arid regions,
approaches that incorporate fine-scaled variability in soil properties may need to be preserved.
For example, Steele et al. (2012) mapped states by digitally editing the soil map units to
represent multiple ecological sites within a map unit for the Chihuahuan Desert. They then used
a manual classification system based on monitoring data, aerial imagery, and field visits to link
vegetation state with the appropriate ecological site. Regardless of the approach, mapping states
needs to be accessible to managers in order to increase their utility. Starting with a locally
developed STM that is more accurate and relevant to local concerns and stakeholders would also

increase the model’s quality and utility (Steele et al. 2012, Bruegger et al. 2016).

Objectives

Given the need for effective management of multiple avifauna species within sagebrush
rangeland and current limitations with STMs, | had several objectives for my dissertation. These
research objectives were part of a larger collaborative effort to develop STMs in a participatory
approach with local stakeholders in Northwest Colorado. My overall goal was simply to improve
management efforts for sagebrush rangelands and their associated avifauna. My first objective
was to include additional ecosystem services in a recently developed STM by predicting species
richness and avifauna density for common sagebrush songbirds and greater sage-grouse in the
states and community phases. This approach also resulted in a management tool that allowed
landowners or biologists to gauge the impact of state changes on avifauna density, and it
elucidated important habitat relationships for avifauna species in Northwest Colorado. In Chapter
I1, I model indices of songbird and sage-grouse abundance with fine-scaled vegetation predictors,

like shrub cover and shrub height collected in three project areas. For my second objective, | use



the same previously developed STM and mapped states across the study area with a new
approach applicable in sagebrush rangelands. In Chapter 11, I use multinomial logistic regression
with the state classification as the response variable and apply several remotely sensed biotic and
abiotic predictors, such as bare ground and elevation, to predict states. | then predict the best
model to all pixels within the study area and summarize spatial information about each mapped
state, such as average patch size. For my last objective, | investigate the use of greater sage-
grouse as an umbrella for several sagebrush-associated species (i.e., Brewer’s sparrow, sage
thrasher, sagebrush sparrow, and green-tailed towhee). In Chapter 1V, | examine count-based
regression models for songbirds and logistic regression models for sage-grouse with multi-scaled
biotic predictors. | evaluate the correlation between apparent sage-grouse occurrence and
estimated songbird densities per sampling plot, and map model-predicted surfaces for each
species to determine if higher songbird densities are captured in areas likely to contain sage-
grouse. Chapters I, 111, and 1V reflect each of these specific objectives and are intended for

publication in peer-reviewed journals.
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CHAPTER Il. MULTIPLE ECOSYSTEM SERVICES IN A STATE-AND-TRANSITION

MODEL FOR SAGEBRUSH RANGELANDS

Summary

State-and-transition models (STM) describe multiple stable states and non-linear
vegetation dynamics as conceptual models, and they usually include amount of livestock forage
provided by each state. STMs can be improved by addressing multiple ecosystem services, such
as wildlife habitat, so land managers can predict how wildlife populations might change in
response to vegetation dynamics and drivers of change. Our objective was to incorporate
avifauna density and species richness into a recently developed STM for sagebrush rangelands in
Northwest Colorado. We stratified our study areas by ecological site or sagebrush cover and
elevation where developed ecological sites were lacking. We surveyed randomly distributed
plots for songbirds and greater sage-grouse (Centrocercus urophasinus) pellets, collected a suite
of vegetation indicators at each plot, and quantified avifauna habitat relationships with count-
based regression models. We then used the habitat models to predict songbird and sage-grouse
pellet density based on average vegetation values per state or community phase. Moderate or
increasing shrub cover were important predictors for most species, as were bare ground and
shrub height, although responses varied by species. In the STM, we predicted higher densities for
sagebrush and shrub-obligate species in the shrub-dominated states and phase and higher
densities for grassland-associated species in the state and phase lacking shrub cover. We also
predicted greater species richness for the shrub-dominated states and community phase. Our
approach can assist local land managers and landowners gauge impacts of land-use decisions on

avifauna populations, especially for species of conservation concern.
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Introduction

State-and-transition models (STM) are conceptual models that describe rangeland
dynamics, allowing both alternate stable states and conventional succession-retrogression
dynamics (Bestelmeyer et al. 2003). STMs are composed of a reference state and often several
alternate states (Bestelmeyer et al. 2003). Within a state, plant composition can shift among
phases and along reversible pathways in response to weather or disturbance events reflecting the
natural dynamics of variations in different plant communities (Bestelmeyer et al. 2003,
Stringham et al. 2003). Transitions between states, however, imply crossing spatial and/or
temporal boundaries (i.e., thresholds) in which significant ecological processes have been
altered; transitions are the trajectories or drivers of change (Stringham et al. 2003).

A STM usually corresponds to one ecological site, which has distinctive soil, climatic,
and topographical properties that determine a site’s characteristic plant community (Bestelmeyer
et al. 2003). Range condition was initially described in terms of palatable species for grazing and
succession was described in terms of grazing pressure (Dyksterhuis 1949, Westoby et al. 1989).
Now, ecological sites and states are described in terms of species richness, composition,
structure, and ecological function (Stringham et al. 2003, Twidwell et al. 2013). A broader
description of states could allow a broader inclusion of the services a state provides, such as
wildlife habitat. Land managers could then use STMs to predict how wildlife habitat, and thus
populations, may change in response to changing vegetation conditions (Holmes and Miller
2010). For example, Cagney (2009) described nesting and brood-rearing habitat quality for
greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse) and amount and quality
of livestock forage among various states on a sandy ecological site. Further, by associating

monetary value to ecosystem services, like sage-grouse habitat or livestock forage, landowners
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can understand the economic impact and trade-off of managing for different states or objectives

(Pritchett et al. 2012, Boyd et al. 2014).

Many of the threats facing wildlife populations are complex because animals use large
landscapes and select habitat features at multiple scales (Johnson 1980). Therefore, these threats
require equally complex solutions at the ecosystem level rather than species-specific approaches
(Boyd et al. 2014). STMs could provide an ecosystem focus for wildlife management because
they outline drivers of change that degrade range condition and ecological function, which may
threaten wildlife habitat (Boyd et al. 2014). Conversely, STMs define the management actions
that can maintain or restore desirable states to improve range condition and improve or restore
wildlife habitat. For example, sage-grouse require intact sagebrush (Artemisia spp.) systems, yet
pinyon-juniper (Pinus-Juniperus spp.) tree encroachment can be one factor limiting sage-grouse
habitat (Miller et al. 2011). Fire is a natural mechanism to promote a sagebrush-dominated state
and reduce pinyon-juniper establishment and encroachment, but fire also temporarily removes
the sagebrush that sage-grouse require. Using a STM approach in this example could help
stakeholders identify the best solution to maintain not just sage-grouse habitat, but a functioning,
intact system long-term, which includes periodic fire and burned and unburned states (Boyd et al.
2014). Promoting multiple states across a larger landscape would also benefit multiple services
and stakeholders rather than promoting a single state.

Because STMs could improve rangeland management by addressing multiple ecosystem
services and promoting an ecosystem approach (Boyd et al. 2014), our objective was to create a
decision support tool for local managers by incorporating avifauna densities and species richness
as additional ecosystem services into a previously developed STM (Tipton 2015). Specifically,

we collected vegetation and avifauna abundance data in three study areas dominated by
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sagebrush, used the vegetation data to model sage-grouse and songbird habitat, and then used the
habitat models to predict avifauna density and species richness for states and community phases
in a STM developed with a participatory approach for one of the study areas (Bruegger et al.
2016). The STM we used for demonstration purposes included field data and local knowledge,
which should result in a model that is more complete, better reflects local conditions and
concerns, and is more likely to be used by those who help developed it (Knapp et al. 2011,
Kachergis et al. 2013). Because the Natural Resource Conservation Service (NRCS) and other
land management agencies have adopted STMs and ecological sites as the basis for rangeland
assessment, monitoring, and management (Bestelmeyer et al. 2003), the need for locally relevant

STMs addressing multiple ecosystem services is a necessity.

STMs may be especially useful in arid and semiarid systems, such as sagebrush
rangelands, where multiple, persistent states occur (Laycock 1991). The sagebrush biome of
western North America once encompassed over 60 million hectares but now occupies
approximately half of its former distribution (Knick et al. 2003, Miller et al. 2011). The invasion
of exotic grasses, such as cheatgrass (Bromus tectorum) and changing fire intervals have been
implicated in the loss of diverse sagebrush rangelands, in addition to increasing energy
development and persistent livestock grazing (Miller et al. 2011). Given the fragmentation and
deterioration of sagebrush rangelands, many avifauna species in this ecosystem have undergone
population declines (Dobkin and Sauder 2004). Some species rely entirely on sagebrush
ecosystems for activities such as nesting and foraging (e.g., sagebrush sparrow [Artemisiospiza
nevadensis], Brewer’s sparrow [Spizella breweri], sage thrasher [Oreoscoptes montanus], and
sage-grouse [Centrocercus spp.]), whereas others rely on shrub cover in general (e.g., green-

tailed towhees [Chlorura chlorura]; Braun et al. 1976). Long-term data for sage-grouse
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populations in North America show a decline of 17-47% over the last 30 years (Connelly and
Braun 1997) and several songbird species that rely on sagebrush during the breeding season have
also declined in all or part of their range (Dobkin and Sauder 2004). Therefore, STMs should
address habitat for a variety of species, especially avian species of conservation concern, rather

than for a single species or taxon (e.g., Doherty et al. 2011, Williams et al. 2011)..

Although multiple indicators (e.g., species richness, plant biomass, foliar cover; Herrick
et al. 2005) are used to describe states or ecological sites, other environmental features may need
to be included to accurately describe wildlife habitat (Doherty et al. 2011). Indicators such as
shrub and grass height and shrub density are not traditionally collected, but may be useful to
determine habitat structure for sage-grouse or other avifauna (Doherty et al. 2011, Williams et al.
2011). Horizontal and vertical shrub structure differentiated ecological sites and songbird habitat
for several species, as described by modified monitoring methods rather than standard ecological

site metrics (e.g., shrub density, shrub canopy gaps, and shrub height; Williams et al. 2011).

Recent studies have examined the occurrence of avifauna within ecological sites and
STMs (Doherty et al. 2011) or evaluated the potential for ecological sites and STMs to
incorporate measures that assess wildlife habitat (Williams et al. 2011). For instance, abundance
of grasshopper sparrows (Ammodramus savannarum) was greatest in native perennial
communities, and any shift from this community was projected to decrease sparrow abundance
(Holmes and Miller 2010). We sought to improve upon previous efforts by integrating density of
multiple species and taxa within a recently developed STM. Further, Tipton (2015) developed
the STM with field data and local knowledge in a participatory approach (Tipton 2015, Bruegger
et al. 2016), so the results of this effort should be more relevant to local managers and

landowners (Knapp et al. 2011, Kachergis et al. 2013).
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Methods
Study Area

We collected vegetation and avifauna abundance data at three sagebrush-dominated study
areas in Northwest Colorado. West Moffat was the most arid and characterized by low sagebrush
(A. arbuscula)-Wyoming big sagebrush (A. tridentata wyomingensis) communities. Soils were
highly intermixed and variable with topography. Wyoming big sagebrush communities and
loamy or sandy soils dominated East Moffat. Receiving the most moisture, our study area in
east-central Routt County was dominated by mountain big sagebrush (A. t. vaseyana) on loamy
soils and low sagebrush on clayey soils. A bunchgrass (e.g., Sandberg bluegrass [Poa secunda])
or western wheatgrass (Pascopyrum smithii) dominated the understories in each study area. The
study areas (Fig. 2.1) were located across a precipitation gradient from west to east and annual
precipitation varied from 20-40 cm for West Moffat, 18-30 cm for East Moffat, and 35-45 cm for
Routt (Miller et al. 2011). Cattle grazing occurred on all three study areas and sheep grazing also
occurred on one landowner’s private property in East Moffat. Stocking rates for all landowners
were at or below recommended guidelines. Three wildfires occurred prior to the study in East
Moffat: a 2010 wildfire (3,185 ha of which 506 ha were re-seeded with native species in 2011), a
2008 wildfire (10,243 ha), and a smaller 2008 fire (1,505 ha). Past mechanical treatments to
reduce shrub density in East Moffat included mow, brush beat, and drag treatments, each < 200

ha in size and 14-20 years old.

Our data collection coincided with data collection for the STM development, which was
accomplished using a participatory approach (Tipton 2015, Bruegger et al. 2016). Therefore,
where we collected avifauna and vegetation data in each of the three study areas varied based on

local stakeholder concerns. For East Moffat, stakeholders were most interested in Sandyland and
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Rolling Loam ecological sites and areas of past treatments or disturbances, so we randomly
allocated sampling plots (spaced >200 m) within past treatments (e.g., burned and mechanically
treated areas) and areas with no known treatments on Sandyland and Rolling Loam sites (using
Web Soil Survey Geographic [SSURGO] database). We also allocated a small proportion of
plots on Deep Loam, Sandy Foothills, and Claypan ecological sites because they were
intermingled with the Sandyland and Rolling Loam sites, and past treatments or disturbances of

interest to stakeholders occurred on these sites (Tipton 2015).

For Routt, STMs were developed for Claypan and Mountain Loam ecological sites from
a precursor project (Kachergis et al. 2011), so we sampled at established and additional locations
in this area. For West Moffat, local stakeholders were most interested in specific vegetation types
(i.e., Wyoming big sagebrush and salt shrub communities) rather than ecological sites. Further,
ecological sites had not been defined for this area and range sites were poorly defined. Therefore,
we stratified the area by elevation and big sagebrush cover using a digital elevation model and a
remotely sensed vegetation product (Homer et al. 2012), and allocated sampling plots among the

strata with greater effort given to the higher sagebrush cover strata.

We collected vegetation and avifauna data at all three study areas and used these data to
quantify avifauna habitat relationships. However, for demonstration purposes, we are only
predicting avifauna densities within the STM developed for East Moffat (Tipton 2015). This
STM was generalized across multiple ecological sites, mainly due to landowner interest and local
observations that plant communities responded similarly to treatments and disturbances across
sandy and loamy ecological sites. Further, Tipton (2015) did not find a difference among
vegetation clusters or disturbance response based on abiotic characteristics associated with
ecological site.
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Field Surveys

To incorporate multiple avifauna species into the STM, we surveyed for greater sage-
grouse and several songbird species in each project area at 144 randomly generated plots (73 in
East Moffat, 52 in West Moffat, and 19 in Routt; Fig. 2.1) mid-May to late June 2013-2015. To
estimate sage-grouse relative abundance, we surveyed a 10-m radius area at each plot for sage-
grouse pellets. We searched within 2-m increments beginning at plot center to reduce observer
error (Dahlgren et al. 2006). We recorded the number of single pellets, roost piles, and number of
pellets per roost pile. Single pellets reflected general use areas where grouse were most likely
foraging or traveling and roost piles reflected roost areas where groups of birds gather to rest,
often defecating in piles (Patterson 1952, Hanser et al. 2011). Pellets were recorded as a roost
pile if >2 pellets were found within a 30-cm diameter area (Hanser et al. 2011). We also
calculated a naive estimate of pellet detectability to ensure we were detecting a majority of the
pellets within a plot; we re-surveyed a small subset of plots within 1-2 days of the first survey to
determine how many pellets we missed during the initial survey. We used a simple mark-resight
equation (B = (n1 — Nny) / np) to determine pellet detectability where n; is the number of pellets or
roost piles detected the first survey and n, is the number of pellets or roost piles detected on the

second survey (Pollock et al. 2002).

To estimate songbird abundance, we conducted standard point count surveys at the center
of each plot following a distance sampling protocol (Buckland et al. 2001). The protocol
included focusing on detections at and surrounding the point and measuring radial distance with
rangefinders to the point where each bird was first detected (Buckland et al. 2001). We identified
birds both audibly and visually within a six-minute interval at each point and recorded detected

individuals only once. We conducted surveys during the breeding season from sunrise to
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approximately four hours after sunrise depending on weather. We did not conduct surveys during
inclement weather, such as rain or windy conditions when activity of the birds or detectability of
the birds was hindered. We also conducted surveys beginning at lower elevation plots earlier in

the breeding season and moved up in elevation as the season progressed to capture the phenology

of the birds’ breeding activity (Hanni et al. 2013).

We measured a suite of ecological site metrics (e.g., vegetation and soils attributes;
Herrick et al. 2005) at all survey plots during the summers following avifauna surveys. These
metrics were used in both the STM development and to model avifauna habitat. For predictors in
the avifauna habitat models, we primarily used foliar cover by species, litter, rock, dung, and
bare ground as measured with the line-point intercept (LP1) method (Bonham 1989) on five
parallel transects at 1-m intervals. For further details on the ecological site metrics, see Tipton
(2015). We collected several additional metrics to further characterize avifauna habitat. We
assessed visual obstruction with a modified Robel pole (Robel et al. 1970). We recorded visual
obstruction (VO) at five evenly spaced points along two transects per plot, with VO viewed from
four ordinal directions per point. The pole was divided into alternating half decimeters and an
observer recorded the lowest visible half decimeter from a distance of four meters from the pole
and viewed from a height of one meter. We also measured grass height of the nearest plant to
each VO reading and averaged the 10 heights per plot. To further characterize structural
diversity, we measured height of the tallest shrub (excluding inflorescences) intercepting the

transect when taking LPI measurements.
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Data Analyses
Avifauna Detection Probabilities

To estimate songbird density and examine potential variables affecting detectability, we

used program Distance 6.0 (Thomas et al. 2010). We excluded outlier detections based on visual

inspection of detection histograms and binned distances accordingly (Buckland et al. 2001).
Detectability variables included start time, Julian date, observer, how the bird was detected (i.e.,
calling, singing, or visual), temperature, cloud cover, and wind speed (Hanni et al. 2013). We
selected the best detection model for each species using Akaike’s Information Criterion
(Burnham and Anderson 1998) and used the best model to predict density estimates for each
plot. We then used plot-specific density estimates and survey effort (i.e., number of times a plot
was surveyed) to generate an offset value to scale counts for site-specific variability in detection
(Buckland et al. 2009). We also compared density estimates for the common species on plots
surveyed in multiple years to determine if we could combine data from multiple field seasons

(Buckland et al. 2001).

Avifauna Model Development and Evaluation

We evaluated count-based regression models (i.e., generalized linear models) for
songbird abundance and sage-grouse pellets with the vegetation metrics collected at each plot.
We included sampling plots from study areas for a species’ model development only if we
detected songbirds or pellets in that area (e.qg., if a species was only detected in West and East
Moffat, we did not include Routt sampling plots in model development to avoid making false
inferences). For each songbird model, we excluded songbird counts beyond the truncation

distance (as determined by detection histograms) and included an offset term. For the sage-

grouse models, we fit models for single pellet counts and roost pile counts to reflect areas where
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the birds forage and roost. We hypothesized that shrub-obligate species would respond positively
to sagebrush or shrub cover and non-shrub-obligate species would respond negatively, but each

species should respond differently to understory components depending on life history traits.

We also examined count-based regression models for the number of common species
detected per plot and the number of shrub-obligate species per plot to compare species richness
in the STM. Common species included both shrub-obligates (i.e., Brewer’s sparrows, green-
tailed towhees, sagebrush sparrows, sage thrashers, and sage-grouse) and non-shrub-obligates
(i.e., horned larks [Eremophila alpestris], vesper sparrows [Pooecetes gramineus], and western
meadowlarks [Sturnella neglecta]). Shrub-obligate species included Brewer’s sparrows, green-
tailed towhees, sagebrush sparrows, sage thrashers, and sage-grouse. We only calculated richness
metrics with these species because we had enough detections for each to estimate detectability.
To determine the number of songbirds present at each plot for the richness metrics, we calculated
the minimum density to support a songbird territory following Aldridge et al. (2011). We used
the model-predicted plot density for each species and the largest territory size recorded for each
species in the Birds of North America species’ accounts (Poole 2005) or Colorado Parks and
Wildlife species’ accounts (Boyle and Reeder 2005). For sage-grouse pellets and roost piles in
the richness metrics, we classified a plot as containing sage-grouse if >1 single pellet or roost
pile was detected. We used presence/absence of sage-grouse from the raw counts rather than the
model-predicted densities due to high pellet detectability. We chose to evaluate species richness
per state rather than a diversity index because a diversity index could not account for the indirect

relationship between individual counts of songbirds and counts of pellets.

For all count models, we first identified the appropriate distribution (i.e., Poisson and

negative binomial) for each species using an intercept-only model and Vuong’s test (Hilbe
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2011). We examined histograms of raw counts and counts >1 to check for non-linear
relationships, outliers, and variables with limited distributions to part or all of the study area. If
plots showed evidence for non-linearity, we evaluated a linear and a quadratic model with
Bayesian Information Criterion (BIC; Hilbe 2011) to determine which model structure to retain.
We used Pearson’s correlation coefficient to determine if any of the variables were overly
correlated (i.e., r > | 0.7 | ; Zar 2010). We performed all analyses in Program R 3.3.2 (R

Development Core Team 2015).

We then used BIC to compare models for combinations of predictor variables (excluding
overly correlated variables) to determine the best models explaining sage-grouse pellet and
songbird abundance and species richness. We determined competitive models as a model with
ABIC < 2. For all species, we included the best shrub structure variable (i.e., sagebrush cover,
shrub cover, or VO) and evaluated a shrub structure-only model. Most species included in the
analysis are sagebrush- or shrub-obligate species and models without a shrub structure variable
would not be as useful for management of sagebrush rangelands. To avoid over-fitting models,
we did not include more than one variable per 10% of plots with a songbird or pellet count in any
model (Hosmer and Lemeshow 2000) and excluded models when coefficients of variables

switched direction.

To assess the fitted models over an intercept-only model, we calculated a McFadden’s
pseudo-R? value (Zar 2010) and used a chi-square likelihood ratio test with the Irtest function (in
package “Imtest”) to determine goodness-of-fit for the top model over an intercept-only (null)
model. Because we did not have independent datasets to evaluate the predictive capability of our

top models for songbirds, sage-grouse, and species richness, we evaluated predictive success
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using five-fold cross validation (Hastie et al. 2009) with the cvFit function (in package

“cvTools”).

Avifauna Abundance per State or Community Phase

To incorporate avifauna density into the STM for East Moffat (Fig. 2.2; Tipton 2015), we
used our best count model(s) for each species to predict the number of individual songbirds per
hectare and the number of sage-grouse single pellets and roost piles within 0.03 ha per state or
community phase. The STM included two shrub-dominated states (diverse shrubland and needle-
and-thread [(Hesperostipa comata)] shrubland), a native grassland state, and a grass-dominated
and shrub-dominated phase within a crested wheatgrass (Agropyron cristatum) state (Appendix
I; Tipton 2015). For each state or phase, we calculated average vegetation conditions for
predictor variables (e.g., shrub cover and bare ground) and average offset terms for songbird
detectability. We then used the average vegetation values and offset terms per state/phase and
predicted songbird or pellet density per state/phase using each species’ best regression model(s).
We also used our best species richness models to predict richness per state/phase for common
species and for shrub-obligate species only. For species with multiple competitive models, we
model averaged predicted densities. We calculated 95% confidence intervals around each
predicted value using the estimated standard error and a critical value of 1.96 (Zar 2010). To
match the predicted pellet densities per state/phase to the predicted songbird densities per
state/phase, we re-scaled our predicted pellets from pellets/0.03 ha to pellets/1 ha. To better
reflect variation in vegetation and inform management decisions, we also predicted bird and
pellet densities using the minimum and maximum vegetation values for each state/phase. These
values were obtained from field sampling and allowed us to predict a range of predicted densities

based on the range of vegetation components, such as shrub cover, associated with a state/phase
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rather than just an average value. However, the predicted densities do not necessarily reflect
maximum and minimum bird or pellet densities per state/phase because a species could prefer
greater shrub cover, but less bare ground. Therefore, the predicted densities may reflect multiple

vegetation components.

Results

Avifauna Detection Probabilities

We detected a total of 367 Brewer’s sparrows on 109 plots, 97 green-tailed towhees on
45 plots, 129 sagebrush sparrows on 49 plots, 103 sage thrashers on 56 plots, 353 horned larks
on 93 plots, 166 vesper sparrows on 64 plots, and 230 western meadowlarks on 77 plots. Based
on a subset of plots surveyed in >1 season, we did not find a difference in density estimates for
the more common songbirds, and therefore, combined data among field seasons. We binned
songbird counts into 6 or 7 bins and truncated distances >200-250 m, depending on the species.
Average offset value was 0.25 for Brewer’s sparrows, 1.29 for green-tailed towhees, 1.27 for
sagebrush sparrows, 1.42 for sage thrashers, and 0.66, 0.71, and 1.79 for horned larks, vesper
sparrows, and western meadowlarks, respectively. We counted 996 single pellets on 58 plots
(mean of 7 pellets per plot), and 242 roost piles on 46 plots (mean of 2 piles per plot) and
truncated single pellets to <100 and roost piles to <25 to remove outlier groups. Based on 27
plots we surveyed twice in 2013 and 2014, our naive estimate of detectability was 0.91 for roost
piles and 0.86 for single pellets, so we did not include an offset term to scale pellet counts in

subsequent regression models for sage-grouse.

30



Avifauna Model Development and Evaluation

Based on Vuong’s test, the negative binomial distribution was the best model structure
for all songbird species, single pellets, and roost piles. For total species richness and shrub-
obligate species richness, a Poisson distribution was best, given limited zeroes in the datasets.
We did not detect sagebrush sparrows, sage thrashers, or sage-grouse pellets in Routt, so we
restricted model development for these species to East and West Moffat (Fig. 2.1). We only
detected one horned lark in Routt, so we also restricted model development for this species to

East and West Moffat.

Of the 11 variables included (Table 2.1), sagebrush cover, total shrub cover, and VO
were highly correlated, so only the best variable was retained for each species. Shrub height and
VO and grass and herbaceous cover were positively correlated and bare ground was negatively
correlated with litter, grass cover, and total herbaceous cover. For species’ models that were
restricted to East and West Moffat study areas, shrub height was also overly correlated with
sagebrush and shrub cover, and litter and grass were positively correlated. Therefore, we did not
include these variables in the same model. We excluded forb cover and exotic plant cover from
subsequent models due to limited distribution throughout the study area. However, for species’
models that were restricted to East and West Moffat, forb and exotic cover both had a more even
distribution across these two areas and were thus, included in models for sage thrashers,
sagebrush sparrows, and sage-grouse. For species exhibiting non-linear responses to predictors,

see Table 2.3.

Our quantitative models confirmed our hypotheses regarding avifauna habitat

relationships. The best model for Brewer’s sparrows included shrub cover and shrub height (BIC
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= 574.26), a second competitive model included shrub cover, shrub height, and herbaceous cover
with a quadratic term (BIC = 574.65), and a third competitive model also included grass height
(BIC =576.06; Table 2.2). Brewer’s sparrow counts increased with greater shrub cover and taller
shrubs and grasses and peaked at approximately 38% herbaceous cover (Table 2.3; Fig. 2.2). The
best model for green-tailed towhees included shrub cover, shrub height, and cover of bare ground
(BIC = 288.51; Table 2.3). Green-tailed towhee counts increased with greater shrub cover and
shrub height but decreased with more bare ground (Table 2.3; Fig. 2.4). The best model for
sagebrush sparrows included shrub cover plus a quadratic term, grass cover, and exotic plant
cover (BIC = 308.01; Table 2.2). Sagebrush sparrow counts peaked around 21% shrub cover, and
counts increased as grass and exotic plant cover decreased (Table 2.3; Fig. 2.5). The second-best
model for sagebrush sparrows was similar but did not include exotic plant cover (BIC = 308.48).
Two other competitive models were discarded because they were essentially the same model as
the best model (i.e., litter and bare ground were overly correlated with grass cover in the best
model; Table 2.2). The best model for sage thrashers included shrub cover plus a quadratic term
(BIC =293.53), a second competitive model included an intercept term only (null model; BIC =
294.18), and the third best model included litter plus shrub cover (BIC = 294.71; Table 2.2).
Sage thrasher counts peaked around 30% shrub cover and increased with more litter (Table 2.3;

Fig. 2.6).

The best model for sage-grouse general use sites (i.e., single pellets) included sagebrush
cover, bare ground, and a quadratic term for bare ground (BIC = 587.63; Table 2.2). Single
pellets were positively associated with sagebrush cover and peaked around 22% bare ground
(Table 2.3; Fig. 2.7). The second best model for general use sites included only sagebrush cover

(BIC =587.76). The best model for roost sites included sagebrush and herbaceous cover (BIC =
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399.35), followed by a model containing sagebrush and forb cover (BIC = 399.69), an intercept-
only model (BIC =400.21), a model containing just sagebrush (BIC = 400.40), and a model
containing sagebrush and forb cover and grass height (BIC = 400.4; Table 2.2). Roost piles
increased with sagebrush cover and decreased with herbaceous and forb cover and taller grasses
(Table 2.3; Fig. 2.8). Two other models were also competitive for roost sites (sagebrush plus
grass cover and sagebrush plus bare ground; Table 2.2). However, grass cover and bare ground

were correlated with herbaceous cover, so we excluded these models.

The best model for horned larks included shrub cover and litter (BIC = 499.22) and the
second best model included shrub cover only (BIC = 500.26; Table 2.2). Horned lark counts
decreased with greater shrub cover and litter (Table 2.3; Fig. 2.9). The best model for vesper
sparrows included shrub cover and bare ground (BIC = 379.39) and the second best model also
included grass height (BIC = 379.98). Vesper sparrow counts increased with less shrub cover and
bare ground and taller grasses (Table 2.3; Fig. 2.10). The best model for western meadowlarks
included shrub cover and bare ground (BIC = 466.33; Table 2.2) and meadowlarks preferred less
shrub cover and bare ground (Table 2.3; Fig. 2.11). All common species richness and shrub-
obligate species richness each had one competitive model, shrub cover plus a quadratic term
(BIC =572.63 and 488.68, respectively; Table 2.2). Species richness for common and shrub-
obligate species both peaked at approximately 30% shrub cover (Table 2.3; Fig. 2.12). | list

model assessment metrics for each species in table 2.2.
Avifauna Abundance per State or Community Phase
We predicted the highest density of Brewer’s sparrows, sage thrashers, and green-tailed

towhees in the diverse shrubland state (3.3 Brewer’s sparrows/ha; 0.9 sage thrashers/ha; 1.1
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green-tailed towhees/ha; Table 2.4). The lowest predicted densities occurred in the crested
wheatgrass-grassland community phase (0.9 Brewer’s sparrow/ha; 0.3 sage thrashers/ha; 0.1
green-tailed towhees/ha). We predicted the greatest density of sagebrush sparrows in the needle-
and-thread shrubland state (0.8 sagebrush sparrows/ha) and the lowest in the crested wheatgrass-
grassland community phase (0.02 sagebrush sparrows/ha). We predicted the highest single
grouse pellet and roost pile densities in the crested wheatgrass-shrubland community phase (545
pellets/ha; 68 roost piles/ha) and the lowest in the native grassland state (114 pellets/ha; 28 roost

piles/ha).

For horned larks and vesper sparrows (non-shrub-obligate species), the crested
wheatgrass-grassland phase promoted the greatest density (6.4 horned larks/ha; 3.0 vesper
sparrows/ha; Table 2.4), and the native grassland state promoted the highest western meadowlark
density (4.4 western meadowlarks/ha). The diverse shrubland state promoted the lowest density
for horned larks (1.0 horned larks/ha), while the crested wheatgrass-shrub phase promoted the
lowest vesper sparrow and western meadowlark densities (0.9 vesper sparrows/ha; 1.1 western
meadowlarks/ha). Finally, the diverse shrubland state supported the greatest richness for
common (6.7 species) and shrub-obligate species (4.0 species), while the crested wheatgrass-
grassland phase supported the lowest richness for common (4.2 species) and shrub-obligate

species (1.5 species; Table 2.4).

Discussion

We quantified fine-scaled habitat relationships for several avifauna species in Northwest
Colorado and incorporated these relationships into a recently developed STM. The predicted
avifauna densities per state or community phase reflect these relationships. As expected, we

predicted greater densities for sagebrush-associated species and lower densities for grassland-
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associated songbirds in the states or community phase dominated by sagebrush cover (Table
2.4). For example, Brewer’s sparrow densities were highest for the diverse and needle-and-
thread shrubland states and the crested wheatgrass-shrubland phase (3.1-3.3 birds/ha), which had
more shrub cover. In our study, Brewer’s sparrows responded positively to shrub cover, shrub
and grass height, and moderate herbaceous cover. However, this species is usually the most
prevalent songbird in sagebrush rangelands (Wiens and Rotenberry 1981, Aldridge et al. 2011),
which is likely why there was not a large difference in predicted densities among the shrub-

dominated states and community phase.

We predicted the highest green-tailed towhee density for the diverse shrubland state, as
this species responded positively to greater shrub and ground cover and taller shrubs (Fig. 2.4).
The diverse shrubland state had the highest shrub cover on average (33%), as well as taller
shrubs on average (Fig. 2.2). Within sagebrush rangelands, towhees may be more common in
mountain big sagebrush-montane shrub ecotones or areas interspersed with pinyon-juniper
(Knopf et al. 1990, Aldridge et al. 2011). They nest in a diversity of taller shrubs with a greater
proportion of living branches (Knopf et al. 1990, Jehle et al. 2006). Because green-tailed towhees
are often found in higher elevation, montane shrub communities, ground cover is usually greater
and provides ample foraging opportunities for seeds and insects under thick cover (Aldridge et
al. 2011, Dobbs et al. 2012). In our study, the diverse shrubland plots typically occurred at higher
elevations and contained the least bare ground of the shrub-dominated states and phase (Fig.

2.2).

Sagebrush sparrow densities peaked for moderate shrub cover and less ground cover (Fig.
2.5). Therefore, sagebrush sparrow predicted densities were highest for the needle-and-thread

shrubland state and crested wheatgrass-shrubland community phase, which were comprised of
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less average shrub cover than the diverse shrubland state (21-22% versus 33%) and more bare
ground (9-15% versus 7%; Fig. 2.2). In the Wyoming Basin, sagebrush sparrow abundance was
greater for sagebrush landscapes containing less sagebrush cover (Aldridge et al. 2011).
Sagebrush sparrows also tend to use areas with more bare ground during the breeding season
(Wiens et al. 1990), probably because they forage on the ground and walk between nesting and
foraging sites (Martin and Carlson 1999). However, all of our predicted sagebrush sparrow
densities were low within the STM for East Moffat (Table 2.4). For unknown reasons, sagebrush
sparrows were not abundant in East Moffat compared to West Moffat, as other survey efforts

have found (Boyle and Reeder 2005, Bird Conservancy of the Rockies 2016).

Sage thrasher densities also peaked for moderate shrub cover, although they preferred a
higher amount than sagebrush sparrows (Fig. 2.6). They also responded positively to more litter.
We predicted similar, low thrasher densities across the shrub-dominated states and phase (Table
2.4), although litter was the highest in the needle-and-thread shrubland state (72%; Fig 2.2). Sage
thrashers are typically associated with large sagebrush landscapes (Knick and Rotenberry 1995,
Aldridge et al. 2011), and they may use areas with greater litter, which provide better foraging
opportunities for this ground feeder (Reynolds et al. 1999). However, our sage thrasher models
explained little variation, which could indicate that we missed an important environmental
feature in our modeling efforts. The scale we examined for environmental features (i.e., 50 x 50-
m plot) may also have been too small for this songbird, especially considering previous studies

have found features at larger extents to be the most influential (e.g., Aldridge et al. 2011).

Predicted sage-grouse single pellet density was highest for the crested wheatgrass-
shrubland community phase and roost pile density was highest for this phase and the needle-and-
thread shrubland state (Table 2.4). Both single pellet and roost pile models indicated sage-grouse
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preferred greater sagebrush cover as expected. Sage-grouse reliance on sagebrush has been
documented for all life stages, such as lekking (e.g., Patterson 1952), nesting (e.g., Gregg et al.
1994), brood-rearing (e.g., Sveum et al. 1998), and over winter (e.g., Doherty et al. 2008).
Sagebrush cover was only slightly lower in the crested wheatgrass-shrubland phase compared to

the diverse shrubland state (21% versus 22%; Fig. 2.12).

Pellet densities were likely higher in the crested wheatgrass-shrubland phase because of
the higher proportion of bare ground (15%) compared to the diverse shrubland state (7%). Based
on our top models, single pellets peaked for areas containing 20-22% bare ground (Fig. 2.7),
while roost piles were associated with less herbaceous cover (Fig. 2.8). Areas containing 20-22%
bare ground would still have 78-80% shrub and herbaceous cover. To promote sage-grouse
breeding habitat (i.e., lekking, nesting, and brood-rearing), Connelly et al. (2000) recommend
maintaining 15-25% sagebrush canopy cover and >15% herbaceous cover, but the appropriate
mixture of shrub and herbaceous cover would likely vary depending on the life stage and the
ecological site. For example, lek sites are typically areas with less sagebrush and herbaceous
cover (either natural or anthropogenic clearings; Patterson 1952), while nesting habitat includes
abundant forbs for pre-nesting hens, higher residual grass cover comprised of taller grasses, and
taller sagebrush shrubs with greater canopy cover (Aldridge and Brigham 2002, Holloran et al.
2005, Connelly et al. 2011a). Our top roost models also indicated negative relationships between
roost pile density and grass height and forb cover (Fig. 2.8). Average grass height was lowest in
the diverse shrubland state compared to the other shrub-dominated state and phase (Fig. 2.2),
although forb cover was lowest for the needle-and-thread shrubland state. One explanation for

these negative relationships could be that roosting sage-grouse require shrub cover for protection
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from predators, but less and shorter ground cover increase visibility of threats and provide easy

escape routes for the resting birds (Patterson 1952).

As expected, our non-shrub-obligate species had higher predicted densities in the
grassland-dominated state and community phase (Table 2.4). These three species all responded
positively to less shrub cover because horned larks, vesper sparrows, and western meadowlarks
are considered grassland species (Wiens and Rotenberry 1981). However, given the
heterogeneity of sagebrush rangelands and structural diversity, these species can be found in
areas with varying shrub and ground cover (Rotenberry and Wiens 1980, Wiens et al. 1987).
Predicted horned lark density was highest for the crested wheatgrass-grassland phase, likely
reflecting their negative relationship with litter (Fig. 2.9). Average litter cover was higher in the
native grassland state, but average bare ground was greater for the crested wheatgrass-grassland
phase (Fig. 2.2). Horned larks typically occupy areas with less sagebrush and grass cover (Wiens
et al. 1987, Knick and Rotenberry 1995), and they also nest in bare ground spaces, such as two-
track ruts and plowed fields (Beason 1995). In contrast, predicted western meadowlark density
was highest for the native grassland state (Table 2.4) because this songbird was associated with
less bare ground (Fig. 2.11). Indeed, within sagebrush rangelands, western meadowlarks occur
where shrub cover is limited and grass cover and litter are greater (Wiens and Rotenberry 1981,
Knick and Rotenberry 1995) because they use grass cover to conceal nests (Davis and Lanyon
2008). Predicted vesper sparrow density was similar between the grassland-dominated state and
community phase. In our study, they preferred less bare ground but taller grasses (Fig. 2.10),
which is reasonable for a species that uses surrounding grass cover to conceal nests (Jones and
Cornely 2002). The native grassland state had less bare ground while the crested wheatgrass-

grassland phase had taller grasses on average (Fig. 2.2).
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Previous studies have shown that vertical and horizontal structure within a site affect
avian species diversity, so that as habitat complexity increases, niche partitioning should also
increase (MacArthur and MacArthur 1961, Rotenberry and Wiens 1980, Williams et al. 2011).
For instance, at small scales, songbirds may partition nest placement within or under shrubs to
avoid competition (Rich 1980). Predicted richness for both indices was greatest in the shrub-
dominated states and community phase (Table 2.4). Compared to the native grassland state and
crested wheatgrass-grassland phase, the shrub-dominated areas contained greater structural
diversity. Shrub height varied from 14-66 cm, 0-71 cm, and 34-62 cm for the diverse shrubland
state, needle-and-thread shrubland state, and crested wheatgrass-shrubland phase compared to 0
cm in the crested wheatgrass grassland phase and 0-31 cm in the native grassland state (Fig. 2.2).
Similarly, species richness and structural diversity for shrub and grass-associated birds were
positively correlated in the Great Basin region (Wiens and Rotenberry 1981). In our study,
species richness for all common species and shrub-obligate species was associated with moderate
shrub cover (approximately 30%; Fig. 2.12), which only occurred in the shrub-dominated states
and community phase (Fig. 2.2). Further, the top richness models did not include an understory
component, so they are more generalizable for species with different understory preferences,
such as sagebrush sparrows and green-tailed towhees. However, given the low variance
explained for both richness models, we could also have neglected to consider other

environmental features or features at larger scales that may influence richness.

In the STM, our confidence intervals did not overlap for most predicted songbird
densities among states or community phases with large structural differences. For example,
predicted Brewer’s sparrow and western meadowlark densities differed for the shrub-dominated

states and phase compared to the grass-dominated state and phase (Table 2.4). This is not
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surprising given the structural differences between a shrub-dominated and a grass-dominated
landscape for shrubland versus grassland-associated species (Knick and Rotenberry 1995). In
contrast, confidence intervals for sage-grouse pellet and roost pile densities overlapped among
all states and phases in the STM (Table 2.4). One reason for this is that we simply did not
capture the best relationship between pellets and habitat features. Both our roost and general use
models had low explanatory power and the general use model also had a high prediction error
(Table 2.2). Our predictor variables may have been too fine-scaled for a wide-ranging species
(Connelly et al. 2011a), although previous studies have identified similar variables as important
for sage-grouse (e.g., Doherty et al. 2011). The study areas in Moffat County may also represent
high-quality sage-grouse habitat where grouse are known to occur throughout (Colorado Greater
Sage-grouse Steering Committee 2008, Bird Conservancy of the Rockies 2016), and we did not
adequately discriminate amongst habitat and non-habitat within the area. It is also possible that
the pellets were not a reliable index for sage-grouse relative abundance. However, previous
studies have used pellets as a surrogate for habitat use (Dahlgren et al. 2006) and abundance
(Hanser et al. 2011) and evaluated pellets with a secondary measure, like bird-dog surveys or lek
locations. Therefore, we have confidence in the relationships we found between pellets and
habitat features. One way to reduce overlapping confidence intervals in future efforts is to
increase sample sizes of vegetation plots for defining states and phases, so there is greater
distinction and more certainty of vegetation values per state or phase. In addition, increasing
sample sizes of avifauna plots in states or phases that are not high-quality grouse habitat (e.g.,
cheatgrass-dominated grassland or sagebrush state with pinyon-juniper) should widen the gap in

predicted pellet densities among states.
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Management Implications

Our integration of avifauna density into a locally relevant STM (Bruegger et al. 2016) is
useful for management decisions for a variety of reasons. If local managers or landowners want
to manipulate over or understory vegetation, then they can gauge how predicted songbird or
pellet densities may change in response (Holmes and Miller 2010). For example, if managers
want to increase a sagebrush-obligate species, like Brewer’s sparrows, then they should promote
the shrub-dominated states and community phase, which supported higher Brewer’s sparrow
densities (Table 2.4). If a manager wanted to increase the local green-tailed towhee population,
then vegetation characteristics associated with the diverse shrubland state, such as greater shrub
and herbaceous cover and taller shrubs (Fig. 2.2), should be promoted. Managers can also
estimate how avifauna populations might respond to a landscape disturbance, such as fire, in
addition to how livestock forage production may change. In our study area, a fire transitioning
the needle-and-thread shrubland state to a native grassland state, would reduce Brewer’s sparrow
density by approximately 2 birds/ha (Table 2.4), but would increase forage by roughly 350 kg/ha

(Fig. 2.2) for domestic and wild ungulates.

Our predicted avifauna densities were associated with a range of vegetation values per
state or phase, which could further guide management decisions. For example, shrub cover
within the native grassland state varied from 0-6% (Fig. 2.2) due to unburned patches. Therefore,
a manager could predict Brewer’s sparrow density in a burned area based on 0% (0.96 birds/ha)
or 6% shrub cover (1.01 birds/ha), depending on fire severity (Fig. 2.13). By predicting bird or
pellet densities based on vegetation variability, managers can better understand the effect of
under and over story components in determining avifauna habitat. For example, for the three

grassland-associated species, their densities would increase if a shrub-dominated state or phase
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contained the lower range of shrub cover, but would decrease if the native grassland state
contained the maximum shrub cover (Fig. 2.13). Green-tailed towhees preferred areas with
greater shrub and ground cover, but their densities may decline if a shrub-dominated state is
managed for minimum shrub cover, even if ground cover is higher (Fig. 2.13). Managers can
also examine the range of vegetation values, like shrub and herbaceous cover per state and see

how it matches with published habitat guidelines (e.g., Connelly et al. 2000 for sage-grouse).

Our demonstration is also useful for illustrating the value of landscape heterogeneity. We
predicted the highest green-tailed towhee density for the diverse shrubland state, but sage-grouse
single pellet density was highest for the crested wheatgrass-shrubland community phase.
Therefore, if managers treat the diverse shrubland state as the reference state and promote it on
the landscape above other states (Bestelmeyer et al. 2003), the density of some avifauna species
could decline. We also predicted modest sage-grouse pellet and roost pile densities in the native
grassland state and crested wheatgrass-grassland phase where fire had occurred. One reason for
this is that sage-grouse are a landscape species that occupy large territories and can move large
distances between and within seasonal ranges (Connelly et al. 2011b). Also, sage-grouse will use
burned landscapes, provided they are heterogeneous with some unburned patches (Fischer et al.
1996, Knick et al. 2005). Brood use may even be greater in more open habitat with greater
herbaceous cover and surrounding sagebrush cover (Dahlgren et al. 2006). All of our burned
areas in East Moffat occurred within mostly intact sagebrush habitat, and in the two smaller
burns, unburned patches remained in sandy drainages and on clayey ridge tops. Therefore, even
in burned areas, sage-grouse were not far from sagebrush cover. Indeed, we found pellets and
flushed groups of birds in the two smaller, patchy burns, but did not document any sage-grouse

use in the larger (i.e., >10,000 ha), mostly homogenous burn.
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Lastly, our approach has greater utility because it includes a variety of avifauna guilds, so
we can more clearly illustrate the range of ecosystem services among all states and communities.
Focusing on one species and its habitat needs might ignore the value or services provided in
seemingly degraded states (Derner et al. 2009). Thus, managing for landscape heterogeneity
within a management unit may increase the total services provided because alternate states could
benefit additional species, even native grassland patches within sagebrush rangelands. Given that
the main objective of STMs is to display non-linear dynamics (Westoby et al. 1989), it seems
more reasonable to identify potential services provided by each state or phase rather than
subjectively labelling states and phases as “good” or “bad”. For a wide-ranging species like sage-
grouse, the landscape diversity provided by multiple states may also be necessary to support
multiple life stages, such as lekking and wintering (Connelly et al. 2011a). Our habitat models
provide a quantitative approach to directly incorporate avifauna densities and species richness as

ecosystem services into STMs.

To our knowledge, ours is the first attempt to incorporate multiple ecosystem services,
such as livestock forage and avifauna habitat, into a locally developed STM (Bruegger et al.
2016). This attempt demonstrates the need for data-driven STMs that address local or specific
problems and incorporate multiple stakeholders. Local ranchers and managers were interested in
the effects of fire and re-seeding on vegetation and the local sage-grouse population (Bruegger et
al. 2016). In particular, they were concerned that fire would remove sagebrush long term and
diminish sage-grouse habitat, but that seeding native species post-fire could prevent cheatgrass
establishment. From field surveys, we learned that sage-grouse were using the smaller burned
areas with unburned patches and the burned areas did not contain greater amounts of cheatgrass

regardless of post-fire seeding (Tipton 2015). By addressing local concerns and including local
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knowledge in the STM, we increased the credibility and accuracy of the model, as well as its
relevance to potential users, thus increasing the likelihood of local stakeholders using the model
for range or wildlife management (Knapp et al. 2011, Kachergis et al. 2013, Bruegger et al.
2016). In addition, using a generalized STM for several dominant ecological sites, could also
improve the usefulness for local management, as landowners may prefer to manage by

vegetation type rather than ecological site (Knapp and Fernandez-Gimenez 2009).

Additional Considerations

Given limited time and resources by most land managers, it may be difficult to collect
additional metrics to describe wildlife habitat, such as shrub and grass height. However, if STMs
are developed in an iterative process as is recommended (Bestelmeyer et al. 2009), then the
initial site visits and data collection efforts can help determine the most efficient and effective
strategy to define states and appropriate ecosystem services. Previous studies or published STMs
for a similar ecological site can inform which indicators are most useful in distinguishing
ecological sites or states. Initial data exploration of vegetation indicators should also reveal
redundancies and guide which indicators to include or discard from future sampling efforts to
increase sampling efficiency. In the model we used, management history (e.g., fire and crested
wheatgrass seeding) was a significant separator of states (Tipton 2015), so focusing sampling
efforts within and outside disturbed or treated areas is a reasonable starting point for monitoring
plant and avifauna communities. To best determine wildlife abundance (or other ecosystem
service) per state or community phase, vegetation and soil sampling should precede other
sampling efforts to ensure an adequate number of sampling plots are distributed per state for
drawing accurate conclusions about services provided (Holmes and Miller 2010). Monitoring

efforts should also include indicators known to be significant for priority management
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objectives, such as grass height for nesting sage-grouse (Doherty et al. 2014) or forage
production for cattle. Indicators to collect, like shrub cover, should also serve multiple purposes
for defining states and phases and describing wildlife habitat or other services, as previous
studies have shown (see Williams et al. 2011). One extension of our approach to improve
management efforts would be to create spatially explicit STMs, in which landscape patterns
driving transitions could be identified (Bestelmeyer et al. 2011). These landscape patterns could
also describe wildlife habitat, such as connectivity, and visually represent ecosystem services
within an area of interest. Managers could then prioritize states for restoration efforts or

conservation measures depending on the ecosystem services provided.
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Table 2.1. Definitions of fine-scaled predictors used in count-based regression models for
greater sage-grouse and sagebrush-associated songbirds in Northwest Colorado, 2013-2015.

Predictor® Predictor Description

sb absolute sagebrush foliar cover as measured via line-point intercept”

shrub absolute shrub foliar cover as measured via line-point intercept

VO visual obstruction as measured via a modified Robel pole°

shrubHT height (cm) recorded for the tallest part of a shrub (excluding
inflorescence) intercepting the transect line via line-point intercept

grassHT height (cm) of nearest grass measured while recording VO

grass absolute grass foliar cover as measured via line-point intercept

bg absolute bare ground cover as measured via line-point intercept

L absolute litter and woody litter cover as measured via line-point intercept

herb total herbaceous foliar cover as measured via line-point intercept

exotic absolute exotic plant foliar cover as measured via line-point intercept

forb absolute forb foliar cover as measured via line-point intercept

 All predictors were collected in 50 x 50 or 20 x 50 plots.

® Bonham 1989. Absolute cover was obtained based on the proportion of any LPI hits out of the
total hits, and total cover was obtained based on the proportion of top hits out of the total hits
(Tipton 2015).

“ Robel et al. 1970. See text for further description.
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Table 2.2. Count-based regression models for greater sage-grouse pellets and songbirds in Northwest Colorado, 2013-2015. We
report log-likelihood (LL), number of parameters (K), Bayesian Information Criterion (BIC), difference in BIC compared to lowest
BIC of the model set (ABIC), BIC weight (w), pseudo-R? value, prediction error from five-fold cross validation, and p-value from
likelihood ratio test for models with ABIC < 4.

RZ

Model® LL K BIC  ABIC w Error  p-value
Brewer's shrub + shrubHT 27719 4 57426 0.00 038 0.06 278 <0.001
sparrow: shrub + shrubHT + herb + herb? 27242 5 57465 0.39 031 0.08 278 <0.001
shrub + grassHT + shrubHT + herb + herb?> 27063 7 57606 180 0.16 009 277 <0.001
shrub + grassHT + shrubHT 276.04 5 576.92 266 0.10 0.07 278 <0.001
Sage shrub + shrub? 13711 4 29353 0.00 038 0.04 1.66 0.01
thrasher: intercept only 14226 2 29418 0.65 028 0.00 147 NAP
shrub + shrub® + L 13528 5 29471 118 021 0.05 164  0.003
shrub + shrub? + forb 135,78 5 29571 218 013 005 166 0.005
shrub + shrub?® + forb + L 13343 6 29583 230 009 006 1.74 0.001
shrub + shrub® + grassHT 13591 5 29595 242 008 004 165 0.005
shrub + shrub? + forb + exotic 133.61 6 296.2 2.67 0.07 0.06 1.69 0.002
Sagebrush shrub + shrub? + grass + exotic 13952 6 308.01 0.00 032 021 289 <0.001
sparrow: shrub + shrub? + grass 14217 5 30848 0.47 025 020 293 <0.001
shrub + shrub? + bg + exotic 140.18 6  309.34 1.33 0.17 021 295 <0.001
shrub + shrub? + L + exotic 14032 6 309.62 1.61 0.14 021 305 <0.001
shrub + shrub? + bg 14297 5 31008 2.07 011 019 3.01 <0.001
Green-tailed shrub + shrubHT + bg 131.83 5 28851 0.00 057 019 229 <0.001
towhee: shrub + bg 13561 4 291.09 258 0.16 0.16 221 <0.001
shrub + shrubHT + L 13313 5 291.11 2.60 0.15 0.18 2.28 <0.001
shrub + L 13587 4 29161 310 012 016 214 <0.001
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Table 2.2. cont.

Model LL K BIC ABIC w R? Error  p-value
Roost sites: sb + herb 190.02 4 399.35 0.00 0.8 0.03 4.62 0.005
sb + grass 190.07 4 39945 0.10 0.17 0.03 4.58 0.005
sb + forb 190.19 4 399.69 0.34 0.16 0.03 4.60 0.006
Intercept-only 19527 2 40021 086 0.12 0.00 4.62 NA
sb 19296 3 40040 105 011 0.01 4.66 0.03
sb + grassHT + forb 188.13 5 40040 105 011 0.04 4.59 0.003
sb + bg + bg? 188.34 4 400.80 145  0.09 0.04 4.69 0.003
sb + forb + bg + bg? 186.31 5 40159 224  0.06 0.05 4.60 0.001
sagebrush + grassHT 191.20 4 40171 236  0.05 0.02 4.60 0.02
sagebrush + forb + grass 188.83 5 4018 245 0.04 0.03 4.61 0.005
sagebrush + exotic 191.64 4 40259 324 0.03 0.02 4.62 0.03
sagebrush + forb + herb 189.28 5 40270 335 0.03 0.03 4.68 0.007
sagebrush + L 19175 4 40280 345 0.03 0.02 4.62 0.03
General Use:  sb + bg + bg? 28174 5 58763 0.00 047 0.03 20.66  <0.001
sb 286.64 3 58776 013 0.44 0.01 20.67  0.005
sb + grassHT + grassHT? 28329 5 590.73 310 0.10 0.02 20.69  0.002
intercept-only 29055 2 590.75 312 0.07 0.00 20.72 NA
sagebrush + bg + bg? + exotic 280997 6 59096 333 0.07 0.03 20.63 <0.001
sagebrush + forb + forb? 28369 5 59152 389 0.05 0.02 20.64 0.003
Horned larks:  shrub + L 239.95 4 499.22 0.00 0.55 0.12 322  <0.001
shrub 24289 3 50026 104 0.33 0.10 321 <0.001
shrub + L + herb 239.04 5 50223 3.01 0.12 0.12 321  <0.001
shrub + bg 24190 4 50312 390 0.07 0.11 3.22 <0.001
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Table 2.2. cont.

Model LL K BIC ABIC w R>  Error  p-value
Vesper shrub + bg 179.76 4 37939 0.00 057 015 207 <0.001
sparrows: shrub + grassHT + bg 17756 5 379.98 0.58 043 016 211 <0.001
Western shrub + bg 22322 4 46633 0.00 088 0.15 238 <0.001
meadowlarks: shrub + grassHT + bg 22269 5 47024 391 0.12 015 237 <0.001
Species richness  shrub + shrub? 27886 3 57263 0.00 091 0.04 433 <0.001
(all species): shrub + shrub? + grHT 27871 4 57731 4.68 0.09 0.04 433 <0.001
Species richness  shrub + shrub? 236.88 3 488.68 000 066 0.07 232 <0.001
(shrub species shrub + shrub? + grHT 23588 4 49164 2.96 0.15 0.08 232 <0.001
only): shrub + shrub? + bg 236.03 4 49193 325 013 0.08 232 <0.001

shrub + shrub? + L 236.70 4 49328 460 007 0.07 232 <0.001

% Predictor variables described in Table 2.1.
® Did not run the likelihood ratio test to compare a null (intercept-only) model against a null model.
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Table 2.3. Beta coefficient estimates (), standard errors (SE), and 95% confidence intervals for
variables in the top (i.e., ABIC < 2) count-based regression models for greater sage-grouse
pellets and songbirds in Northwest Colorado, 2013-2015.

95%
Variable p SE 95% Lower Upper
Brewer's model 1: intercept -0.39 0.18 -0.77 -0.02
sparrow: shrub 0.01 0.01 0.002 0.03
shrubHT 0.02 0.01 0.01 0.03
model 2: intercept -0.65 0.31 -1.28 -0.05
shrub 0.01 0.01 -0.01 0.02
shrubHT 0.02 0.01 0.01 0.03
herb 0.04 0.02 0.01 0.07
herb? <0.001 <0.001  -0.001 -0.0002
model 3: intercept -0.87 0.33 -1.53 -0.23
shrub 0.01 0.01 -0.01 0.02
shrubHT 0.04 0.02 -0.001 0.07
herb 0.02 0.004 0.01 0.03
herb? 0.03 0.02 0.001 0.07
grassHT <0.001 <0.001 -0.001 -0.0001
Green-tailed model 1: intercept -2.57 0.51 -3.67 -1.58
towhee: shrub 0.01 0.01 -0.01 0.04
shrubHT 0.03 0.01 0.01 0.05
bg -0.07 0.02 -0.10 -0.04
Sagebrush model 1: intercept -2.03 0.87 -3.85 -0.37
sparrow: shrub 0.26 0.08 0.11 0.43
shrub? -0.01 0.002 -0.01 -0.003
grass -0.03 0.01 -0.05 -0.01
exotic -0.03 0.01 -0.06 -0.005
model 2: intercept -2.05 0.90 -3.92 -0.36
shrub 0.26 0.08 0.10 0.43
shrub? -0.01 0.002 -0.01 -0.003
grass -0.04 0.008 -0.06 -0.02
Sage thrasher: model 1: intercept -3.16 0.49 -4.23 -2.26
shrub 0.11 0.04 0.04 0.20
shrub? -0.002  <0.001  -0.004 -0.001
model 2: intercept -1.81 0.13 -2.08 -1.56
model 3: intercept -4.00 0.66 -5.36 -2.74
shrub 0.13 0.04 0.05 0.21
shrub? -0.002 0.001 -0.004 -0.001
L 0.01 0.01 -0.0003 0.03
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Table 2.3 cont.

95%
Variable p SE 95% Lower Upper
Single pellets: model 1:  intercept 0.54 0.54 -0.43 1.66
sb 0.05 0.02 0.01 0.09
bg 0.13 0.05 0.03 0.23
bg? -0.003  0.001 -0.01 -0.001
Roost piles: model 1: intercept 1.12 0.55 -0.08 2.53
sb 0.04 0.02 -0.005 0.08
herb -0.03 0.01 -0.06 -0.01
model 2: intercept 0.55 0.39 -0.32 1.52
sb 0.05 0.02 0.01 0.10
forb -0.07 0.03 -0.13 -0.01
model 3: intercept 0.66 0.22 0.26 1.11
model 4: intercept -0.07 0.34 -0.76 0.70
sb 0.05 0.02 0.01 0.09
model 5: intercept 1.94 0.65 0.36 3.62
sb 0.05 0.02 0.01 0.09
grassHT -0.13 0.05 -0.25 -0.01
forb -0.07 0.03 -0.13 -0.02
Horned lark: model 1: intercept 1.78 0.25 1.28 2.28
shrub -0.06 0.01 -0.07 -0.04
L -0.01 0.004 -0.02 -0.002
model 2:  intercept 1.23 0.12 1.00 1.47
shrub -0.05 0.01 -0.07 -0.04
Vesper model 1: intercept 1.02 0.20 0.62 1.43
sparrow: shrub -0.04 0.01 -0.05 -0.03
bg -0.07 0.01 -0.09 -0.05
model 2: intercept 0.28 0.39 -0.49 1.07
shrub -0.04 0.01 -0.05 -0.02
grassHT 0.06 0.03 0.004 0.11
bg -0.07 0.01 -0.09 -0.05
Western model 1: intercept 0.65 0.23 0.19 1.14
meadowlark: shrub -0.04 0.01 -0.06 -0.03
bg -0.08 0.01 -0.10 -0.06
Species richness model 1: intercept 1.42 0.09 1.23 1.60
(common species): shrub 0.03 0.01 0.02 0.05
shrub? -0.001  <0.001 -0.001 -0.0003

51



Table 2.3 cont.

95%
Variable p SE 95% Lower Upper
Species richness model 1: intercept 0.40 0.15 0.10 0.68
(shrub species shrub 0.07 0.01 0.04 0.09
only): shrub? -0.001  <0.001 -0.002 -0.001

2 Predictor variables described in Table 2.1.
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Table 2.4. Predicted densities of songbirds and greater sage-grouse pellets and species richness for states and community phases in
Northwest Colorado, 2013-2015, for a locally developed state-and-transition model (Tipton 2015, Appendix I). 95% confidence
intervals for each density estimate are in parenthesis.

Diverse Needle-and-thread  Crested Wheatgrass  Crested Wheatgrass Native
Shrubland Shrubland Shrub-Dominated Grass-Dominated Grassland
State State Phase Phase State
Brewer's sparrows/ha 3.3(2.8-3.9) 3.1(2.4-3.7) 3.2(2.2-4.1) 0.9 (0.4-1.4) 1.0 (0.5-1.4)
Green-tailed towhees/ha 1.1(0.8-1.4) 0.5 (0.4-0.7) 0.6 (0.3-0.8) 0.1 (0.02-0.2) 0.2 (0.1-0.4)
Sagebrush sparrows/ha 0.2 (0.04-0.4) 0.5 (0.2-0.8) 0.5 (0.04-0.9) 0.01 (<0-0.03) 0.1 (<0-0.1)
Sage thrashers/ha 0.9 (0.4-1.3) 0.7 (0.3-1.02) 0.8 (0.5-1.2) 0.3 (<0-0.6) 0.3 (<0-0.6)
Single pellets/ha 350 (150-549) 319 (150-488) 452 (109-795) 128 (8-249) 106 (22-189)
Roost piles/ha 55 (24-86) 66 (20-111) 68 (27-108) 35 (<0-84) 28 (<0-70)
Horned larks/ha 0.9 (0.6-1.2) 1.6 (1.3-2.0) 1.9 (1.5-2.3) 6.2 (4.8-7.7) 5.5 (4.2-6.7)
Vesper sparrows/ha 0.9 (0.7-1.2) 1.2 (0.9-1.4) 0.9 (0.6-1.1) 3.1(0.8-5.5) 3.0 (2.0-4.1)
Western meadowlarks/ha 1.5(1.1-1.9) 1.5(1.2-1.9) 1.1 (0.8-1.4) 3.3(2.1-4.5) 4.4 (2.8-6.1)
Common species richness 6.7 (6.0-7.3) 6.5 (6.0-7.0) 6.6 (6.0-7.2) 4.2 (3.4-4.9) 4.4 (3.8-5.1)
Shrub-associated species 4.0 (3.5-4.6) 3.7(3.3-4.1) 3.8(3.4-4.2) 1.5(1.1-2.0) 1.7 (1.3-2.1)

richness
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Figure 2.1. Locations of avifauna, vegetation, and soil surveys, 2013-2015, in Northwest
Colorado with three study areas outlined and labeled (West Moffat, East Moffat, and Routt). We
collected vegetation, soil, and avifauna abundance data at all three areas to quantify avifauna
habitat relationships, but predicted avifauna densities in just the East Moffat state-and-transition
model.
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Figure 2.2. Generalized state-and-transition model created for eastern Moffat County on
Sandyland, Rolling Loam, Claypan, Deep Loam, and Sandy Foothills ecological sites in
Northwest Colorado, 2013-2015 (Tipton 2015) with average and minimum-maximum vegetation
values for each state and community phase. Solid lines around boxes indicate states while dotted
lines indicate community phases within a state. Production estimates include grasses and forbs.
See Tipton (2015) and Appendix | for full description of possible transition drivers and
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Forb: 12% (2-24%)
Production: 419 kg/ha
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Shrub Height: 0 cm (0-0 cm)
Grass Height: 22 cm (18-24 cm)
Bare Ground: 11% (6-14%)
Litter: 63% (48-78%)

Grass: 64% (55-71%)

Forb: 2% (1-3%)

Production: 807 kg/ha

determination of states and phases.
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Figure 2.3. Predicted variable relationships and 95% confidence intervals for Brewer’s sparrows
for the third best negative binomial model (which contains all the top predictors) in Northwest
Colorado, 2013-2015. Variable relationships were similar across all top models (see Table 2.3).
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Figure 2.4. Predicted variable relationships and 95% confidence intervals for green-tailed
towhees for the top negative binomial model in Northwest Colorado, 2013-2015.
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Figure 2.5. Predicted variable relationships and 95% confidence intervals for sagebrush sparrows
for the top negative binomial model (which contains all the top predictors) in Northwest
Colorado, 2013-2015. Variable relationships were similar across all top models (see Table 2.3).
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Figure 2.6. Predicted variable relationships and 95% confidence intervals for sage thrashers for
the third best negative binomial model (which contains all the top predictors) in Northwest
Colorado, 2013-2015. Variable relationships were similar across all top models (see Table 2.3).
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Figure 2.7. Predicted variable relationships and 95% confidence intervals for greater sage-grouse
single pellets for the top negative binomial model in Northwest Colorado, 2013-2015.
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Figure 2.8. Predicted variable relationships and 95% confidence intervals for greater sage-grouse
roost piles for the best negative binomial model (sagebrush and herbaceous cover) and the fifth
best model (grass height and forb cover) in Northwest Colorado, 2013-2015. Variable
relationships were similar across all top models (see Table 2.3).
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Figure 2.9. Predicted variable relationships and 95% confidence intervals for horned larks for the
top negative binomial model (which contains all the top predictors) in Northwest Colorado,
2013-2015. Variable relationships were similar across all top models (see Table 2.3).
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Figure 2.10. Predicted variable relationships and 95% confidence intervals for vesper sparrows
for the second best negative binomial model (which contains all the top predictors) in Northwest
Colorado, 2013-2015. Variable relationships were similar across all top models (see Table 2.3).
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Figure 2.11. Predicted variable relationships and 95% confidence intervals for western
meadowlarks for the top negative binomial model in Northwest Colorado, 2013-2015.
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Figure 2.12. Predicted variable relationship and 95% confidence intervals for the top Poisson
model for avifauna species richness (all common species in top figure and shrub-obligate species
only in bottom figure) in Northwest Colorado, 2013-2015.
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Figure 2.13. Range of songbird and pellet densities based on minimum and maximum vegetation
values per state or community phase in a generalized state-and-transition model created for
eastern Moffat County in Northwest Colorado, 2013-2015 (Tipton 2015). Total richness includes
all eight avifauna species and shrub-species richness includes Brewer’s sparrows, green-tailed
towhees, sagebrush sparrows, sage thrashers, and greater sage-grouse. See Tipton (2015) and
Appendix | for full description of possible transition drivers and determination of states and
phases.
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CHAPTER Ill. A SPATIAL APPROACH TO MAP STATES IN A STATE-AND-

TRANSITION MODEL FOR SAGEBRUSH RANGELANDS

Summary

A state-and-transition model (STM) is a conceptual model that describes rangeland
dynamics and alternate stable states. A STM usually corresponds to one ecological site, which
has distinctive soil and hydrologic properties that determine a site’s potential plant community.
Ecological sites can be represented spatially with soil map units, but STMs are currently
criticized for their lack of spatial scale and context. Therefore, we mapped states in a study area
on target ecological sites using a previously developed STM for Northwest Colorado. The
generalized STM, developed for sagebrush rangelands, included two shrubland states, a native
grassland state, and an exotic grass-dominated state. | used multinomial logistic regression with
“state” as the response variable and included remotely sensed vegetation components, abiotic
data, and disturbance history for predictors. | then predicted the best model(s) to all pixels in the
study area on target ecological sites and summarized statistics for each state. Our best model
included big sagebrush cover and elevation. Classification accuracy (based on external and
internal validation) was 71-74%, and individual component accuracy varied across the four
states. Two shrubland states comprised approximately 67% of the study area, while an exotic
grassland state comprised the lowest proportion (1%). The shrubland states were also the most
contiguous while the exotic grassland state was the least. To our knowledge, ours is the first
attempt to map states in a STM for the sagebrush steppe. Predicting and mapping states across a
landscape could guide monitoring and restoration efforts, inform ecosystem service values per

state, elucidate landscape patterns, and forecast transitions within STMs.
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Introduction

State-and-transition models (STM) are conceptual models that describe linear and non-
linear range dynamics and are composed of a reference state and alternate states described
relative to the reference state (Westoby et al. 1989, Bestelmeyer et al. 2003). Within a state, plant
composition can shift among phases, which represent reversible pathways of change among
communities in response to natural events (e.g. weather) or management (Bestelmeyer et al.
2003, Stringham et al. 2003). Change between states however, requires crossing of spatial and/or
temporal boundaries or thresholds, in which significant ecological processes have been changed.
Transitions are the trajectories or drivers of change (Stringham et al. 2003).

Each STM usually corresponds to one ecological site, which has distinctive soil and
hydrologic properties that determine a site’s potential plant community. Ecological sites can be
represented spatially with soil map units by linking tabular data with soil polygons, which are
available from the Natural Resource Conservation Service (NRCS) Soil Survey Geographic
[SSURGO] Database. The National Cooperative Soil Survey mapped soils over most of the U.S.
with field visits and soil sampling, and soil mapping was accomplished by digitizing fine-scaled
aerial imagery (USDA-NRCS 2009). Each third order soil map unit may contain multiple soil
components or ecological sites due to fine-scale variation that cannot be mapped (Forbis et al.
2007). The map unit is named according to the major soil component or the dominant ecological
site within the unit. States within a STM are not typically mapped with their respective
ecological site because each ecological site could be represented by multiple states depending on
transition drivers (e.g., different locations within one ecological site may be observed in

shrubland and grassland states following a fire; Steele et al. 2012).
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The NRCS and other land management agencies (i.e., Bureau of Land Management,
some state agencies) have integrated ecological sites and STMs into local and regional
assessment, monitoring, and management efforts for rangelands (Bestelmeyer et al. 2009). STMs
have been successfully developed (e.g., Kachergis et al. 2012) and implemented to address a
variety of management concerns for multiple ecosystem services (Cagney 2009, Holmes and
Miller 2010). STMs are a useful management tool because they outline the potential vegetation
types for a site with natural and anthropogenic drivers of change in a conceptual diagram that is
easily communicated to diverse stakeholders (Knapp et al. 2011). In this way, STMs can help
land managers and landowners identify the costs and benefits of possible management actions,
set appropriate goals relative to land potential, and evaluate the likely outcomes (Bestelmeyer et
al. 2003). STMs can also serve as repositories for monitoring data, experimental outcomes, local

knowledge, and other sources of information that may influence management decisions.

However, STMs have been criticized for several reasons. First, the probability of
thresholds occurring is seldom quantified or supported by rigorous experimental and statistical
analyses (Twidwell et al. 2013). Probabilities are usually described by qualitative or
observational studies rather than experimental approaches, which can limit their predictive power
for management. Second, STMs are often developed based on a small sample of plots that may
not capture landscape variability or patterns at multiple scales (Briske et al. 2005, Steele et al.
2012). Third, STMs are frequently developed with expert opinion, literature, and very little
ecological data (Knapp et al. 2011). Finally, STMs lack spatially specific information, such as
spatial scale, context, and variation in driver histories (Bestelmeyer et al. 2011). Without a
spatial approach for applying STMs across a landscape, STMs are greatly limited in their utility

for land management because the states merely represent local descriptions and ignore the role of
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scale, landscape patterns, and the interaction of processes at multiple scales that influence
vegetation dynamics. For example, processes or disturbances at multiple scales could interact to
influence transitions between states, which in turn, can influence the surrounding vegetation
(Bestelmeyer et al. 2009, 2011). Drivers, such as grazing intensity and precipitation, can vary
spatially to influence state transitions and/or phase changes, and spatial nuances in soil properties

can also influence transition drivers (Bestelmeyer et al. 2011).

Taken together, limitations of small sample sizes, lack of field data, and non-spatial
approaches preclude inference to landscape patterns and processes, especially in heterogeneous
environments (Bestelmeyer et al. 2011, Sant et al. 2014). Limitations of STMs as currently
developed may also preclude their acceptance by the scientific community and use by managers
due to their lack of statistical rigor (Bestelmeyer et al. 2009). Further, conservation and
management organizations are adopting ecosystem-based approaches to solve complex problems
that often involve large landscapes and require the ability to make spatial inferences across the
landscapes from ecological data (Forbis et al. 2007, Boyd et al. 2014).

These hurdles for acceptance and use of STMs may be overcome if states could be
extrapolated from a sample of plots and mapped across a larger landscape using a statistically
defensible approach. Mapping states on the landscape could create more robust STMs with
spatial properties, such as patch size and arrangement, which could improve monitoring and
management efforts and increase mechanistic understanding behind transition mechanisms
(Bestelmeyer et al. 2011). A spatial representation of states in an area could also illustrate the
total value of ecosystem services provided by states, such as livestock forage and wildlife habitat

(Troy and Wilson 2006). Further, by mapping states over time, land managers could identify
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places of structural change that may indicate functional loss, which could benefit from

restoration efforts (Briske et al. 2005).

The approach used to map states on the landscape must be simple and use readily
available spatial data in order to make the end product accessible to time- and resource-limited
managers. A logical starting point is to develop a STM (see Bestelmeyer et al. 2009) for one
ecological site or similar ecological sites. States can be generalized across similar ecological sites
because different states should represent differences in structure and ecological processes rather
than differences in species composition (Bestelmeyer et al. 2003, Steele et al. 2012). Also,
similar ecological sites are often intermingled on a landscape and land owners often manage by
vegetation type rather than by ecological site (Knapp and Fernandez-Gimenez 2009). When
developing STMs, Bestelmeyer et al. (2011) recommend that managers incorporate three scales
(patch, site, and landscape) and three classes of spatial processes that produce spatial
heterogeneity: spatial variation in driver histories, spatial dependence in response to drivers, and

spatial contagion and feedbacks, such as the spread of transitions to nearby areas.

Because conceptual STMs are easier to understand, communicate, and develop, few
attempts have been made to spatially represent STMs (Provenchar et al. 2007). Also, land
managers may lack the resources or technical capacity needed to quantify STMs with ecological
and spatial data and map states. However, there have been a few attempts to spatially represent
states across a landscape. Steele et al. (2012) created a spatial database of ecological sites and
states for southern New Mexico using a classification system based on monitoring data, aerial
imagery, and field visits. Due to fine-scaled variation in soils, they digitally edited the soil map
units to represent multiple ecological sites within a map unit. In southwestern New Mexico,

shrub cover classes, including shrub encroachment in regions dominated by native perennial
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grasses, were mapped based on relationships between current and previous year precipitation and

annual normalized difference vegetation index (NDVI; Williamson et al. 2012).

The approaches used by Steele et al. (2012) and Williamson et al. (2012) were developed
and applied in an arid region in the northern Chihuahuan Desert with little ground cover but
much variation in soils at fine scales. Both approaches also involved more analytical or spatial
processing steps that may not be feasible for a land manager without an extensive statistical or
GIS background. Here, we applied a relatively simple approach to map states across a less arid
landscape with greater ground cover and coarser variation in soils. We used a previously
developed STM for sandy and loamy sites in sagebrush rangelands of Northwest Colorado,
which was created using a participatory approach with local knowledge and field data (Tipton
2015, Bruegger et al. 2016). We then evaluated our ability to predict (classify) those defined
states using multinomial logistic regression and readily available spatial data, such as remotely
sensed vegetation components (Homer et al. 2012), a digital elevation model, and wildland fire
perimeter layers (Eidenshink et al. 2007). We then applied the model to the remotely sensed
surface within target ecological sites throughout our study area, grouped similar pixels to
produce state polygons across the landscape, and determined spatial properties of states, such as
average patch size and proportion of state in the sampling region. This approach provides
another tool for managers and land owners to improve monitoring and management efforts

across broader landscapes, particularly in sagebrush rangelands.

Methods
Study Area

We used a STM developed in Major Land Resource Area 34A (Cool Central Desertic

Basins and Plateaus) in eastern Moffat County, Northwest Colorado (Fig. 3.1). Local
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stakeholders provided input to create the STM in an iterative, participatory approach (Bruegger
et al 2016). Participating stakeholders selected the Sandyland and Rolling Loam ecological sites
because these two sites dominate the study area and stakeholders felt vegetation responded
similarly to natural and anthropogenic drivers on the two sites. Sampling plots also occurred on
Deep Loam, Sandy Foothills, and Claypan ecological sites because they were intermingled with
the Sandyland and Rolling Loam sites, and past treatments or disturbances of interest to

stakeholders occurred on these sites (Tipton 2015).

Wyoming big sagebrush (Artemisia tridentata wyomingensis) communities with either a
bunchgrass (e.g., bluebunch wheatgrass [Pseudoroegneria spicata]) or western wheatgrass
(Pascopyrum smithii) understory comprised our study area. In addition, there were two distinct
areas that were former homestead properties seeded with crested wheatgrass (Agropyron
cristatum) in the early 1900’s and the exotic grass was still dominant in the understory. A
pipeline scar in a separate area had also been seeded with crested wheatgrass prior to our study,
which dominated the understory. Three wildfires occurred prior to the study: one in 2010 (3,185
ha), and two in 2008 (10,243 ha and1,505 ha). Annual precipitation varied between 18-30 cm
(Miller et al. 2011) and the common land use activities for this area include cattle and sheep

ranching and recreational hunting.

Data Collection

Following the initial workshop, we conducted low intensity traverses (LIT) or
reconnaissance throughout the study area (summer 2013) and used digital maps to examine
topographic and vegetation variability within focal ecological sites (Bestelmeyer et al. 2009). We
also focused our reconnaissance in past shrub treatments and fires to ensure our spatial data

correctly characterized treatment or disturbance boundaries. Due to limited time, we only
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collected qualitative data on vegetation and site characteristics for the initial traverses. However,
the LIT provided us with enough information for further data collection in our study area based

on mechanically treated areas, recent fires, and areas with no known disturbances or treatments.

For our high intensity traverses (HIT), we collected detailed vegetation and soils
information to further refine our STM with quantitative data. Sampling plots were >400 m apart
and >50 m from a fence line, road (two-track or county road), and water source (e.g., stock
pond). At each plot, we established 5 parallel 50-m transects with 12.5-m spacing between
transects. We dug a soil pit (=50 cm deep) in the center of each plot and described the soil using
NRCS standard soil description protocols (Schoeneberger et al. 2012). For each soil pit, we
described the soil horizon by recording texture, color, structure, and carbonates in each layer. We
recorded slope, aspect, and elevation for each plot, as well as other plot metadata, such as
distance to nearest water source and road or two track. To describe the vegetation in each plot,
we used the line-point intercept (LPI) method (Bonham 1989) to measure foliar and basal cover
by species, litter cover, rock, dung, and bare ground at 1-m intervals on each transect. We also
used the dry weight rank method (Jones and Hargreaves 1979) to estimate species composition
by weight in 5-15 0.1-m? quadrats randomly placed on the transects. For additional details on the

HIT and data collection, see Tipton (2015).

After surveying several high intensity plots during the first field season in 2013, we
decided to collect quantitative data at additional LIT plots in 2014 in order to increase our
sample size for sandy sites. Loamy sites appeared to be over-represented initially and we wanted
to make inference about sandy and loamy ecological sites for our STM. At each low intensity
plot, we collected metadata (i.e., slope, elevation, aspect, and notes on management history) and

dug a soil pit to describe the color, texture, and pedoderm class. We then estimated species
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richness for an approximate 50 x 50-m area, and used the dry weight rank method to estimate
species composition by weight in 15 0.1-m? quadrats randomly placed in the sampling plot. For a
subset of these LIT plots, we collected high intensity data (e.g., LPI and basal gap) the following

field season to further characterize the vegetation in the plot for our STM.

Data Analysis

Tipton (2015) used a variety of multivariate techniques to describe the abiotic gradients
in the study area and identify distinct vegetation clusters. The clusters were largely unaffected by
abiotic characteristics associated with ecological site, which provided additional support for
creating one STM for several ecological sites (Tipton 2015). The resulting STM contained two
shrub-dominated states (diverse shrubland and needle-and-thread [(Hesperostipa comata)]
shrubland), a native grassland state, and a state dominated by crested wheatgrass (Appendix I).
For a more detailed description of each state and potential transition drivers among the states, see

Tipton (2015).

To describe statistical relationships at the landscape-scale between the categorical states
and spatial predictors, we created multinomial logistic regression models with a logit link (Hilbe
2009). We used the package “nnet” (Ripley and Venables 2016) for the multinomial models and
all analyses were performed in program R 3.3.2 (R Development Core Team 2015). We used a
remotely sensed, sagebrush mapping product, which included litter, bare ground, herbaceous
cover, total shrub cover, all sagebrush cover, and big sagebrush cover within 30x 30-m pixels
(Homer et al. 2012). Using multi-scaled spectral imagery, field sampling, and regression tree
analysis, Homer et al. (2012) mapped these vegetation components across sagebrush rangelands
in Montana, Wyoming, and Colorado. To be consistent with field sampling methods, we

summarized the remotely sensed vegetation components within the same area around each
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sampling plot. To do this, we buffered each sampling plot by 25 m and used the “feature
envelope to polygon” tool to create a 50 x 50-m square buffer around each sampling plot center
in ArcMap 10.0 (ESRI 2011). We then calculated zonal statistics for each vegetation component

to provide the average pixel value within a 50 x 50-m “plot”.

Because we recorded abiotic metadata at the center of each sampling plot, we simply
extracted the value for each subsequent predictor in ArcGIS at the plot center. Our topographical
predictors included elevation, aspect, and slope obtained from a digital elevation model (10 x
10-m pixels; U.S. Geological Survey 2014). Our bioclimatic predictors were based on 30-year
monthly averaged (1971-2000) temperature and precipitation PRISM data (800 x 800-m pixels)
and included annual precipitation, minimum temperature for the coldest month, and maximum
temperature for the warmest month (O’Donnell and Ignizio 2012). We used the “nearest”
resampling technique when re-projecting the PRISM data and snapped the PRISM raster layers
to a vegetation component raster (e.g., all sagebrush cover). To incorporate disturbance events,
we downloaded spatial data from the Monitoring Trends in Burn Severity database for the extent
of the three wildfires in our study area (http://mtbs.gov/dataaccess.html). We then classified
sampling plots as “burned” (1) if they occurred within one of the three wildfires in our study area
and “not burned” (0) otherwise. We did not include a predictor for management history because
mechanically treated areas and homestead properties occurred in small proportions of the study
area and represented small proportions of the total sampled plots. Further, when predicting the
top model(s) to a larger landscape, we did not have knowledge of all past mechanical treatments

and locations seeded with crested wheatgrass in the landscape.

To initially determine which predictors to consider for our multinomial models, we

examined boxplots for each descriptor and ran Analysis of Variance tests. If there was little to no
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difference in a predictor among the states, it was excluded from further consideration. We also
checked correlation among the predictors, so as not to include overly correlated predictors (R >
|0.7]) in the same model. Prior to running the models, we normalized continuous predictors to a
mean of zero and SD of 1, so they were on the same scale and to allow for model convergence
(Ripley and Venables 2016). We only included models that contained at least one vegetation
component because STMs should convey information about vegetation dynamics (Bestelmeyer
et al. 2003), and predicting states on the landscape with some type of vegetation characteristic

would help to identify potential management actions; a manager cannot manage elevation.

We used a Bayesian Information Criterion (BIC; Hilbe 2009) to evaluate all possible
model combinations and retained models with ABIC <2. We calculated a McFadden’s pseudo-
R? statistic to assess variation captured by a fitted model relative to the null model (Hilbe 2009).
We also used the Hosmer-Lemeshow goodness-of-fit (GOF) test to examine each model’s fit
using the “generalhoslem” package (Jay 2016), and varied the number of groupings (g = 10, 8, 6,
3) due to a smaller sample size (Hilbe 2009). The diverse shrubland state was set as the reference
level or category for all models, so the predictor relationships must be interpreted relative to this
state. Unlike binomial logistic regression and ordered logistic regression, the response variables
in multinomial regression are assumed to be unordered and independent of one another (Hilbe
2009). Therefore, the predictor coefficients can be viewed as increasing or decreasing the
probability of being in one category or state relative to the reference category. These
probabilities are then exponentiated to the relative risk ratios for ease of interpretation (Hilbe
2009). Because continuous predictors were normalized for model convergence, betas are

interpreted as a change from the minimum to the maximum value for un-normalized predictors.
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Because our main objective was to map the states in the STM by applying the model to
relevant point locations within the study area, we tested the classification accuracy of our best
model(s) with several methods. First, for internal validation, we predicted the best model(s) to
the plots used to build the model to see how many the model correctly classified by state.
Second, we used 10-fold cross validation (“caret” R package; Kuhn 2016), as this method may
more accurately estimate the classification accuracy for a model relative to other validation
methods (Kohavi 1995). Third, we tested the best model with an independent dataset, which
represented 20% of the data used for model development (Hilbe 2009). We had 15 LIT plots
without HIT data. These plots contained soils, species richness, and DWR data, and from the
latter, we could determine species composition for each plot. From these data and the disturbance
histories, we could reasonably classify the LIT plots as one of the four states in the STM. We
followed a key that included four questions: Is the plot dominated by crested wheatgrass? (if yes,
it is most likely a crested wheatgrass state; if no, see next question). Does the plot occur in a burn
and contain <5% shrub cover? (if yes to both, it is most likely the native grassland state; if no,
see next question). Does the plot contain antelope bitterbrush? (if yes, it is most likely a diverse
shrubland state; if no, see last question). Does the plot contain needle-and-thread grass and

cheatgrass? (if yes, most likely the needle-and-thread shrubland state).

Once we applied the model(s) to our entire study area, we also compared the model-
predicted state for pixels containing our LIT and HIT sampling plots (same as the plots used to
evaluate the model independently and develop the model, respectively) to see how many were
correctly classified. A final way to informally test the model’s classification accuracy was to see
if a similar proportion of pixels within recent fires in our study area were classified as native

grassland compared to the proportion of sampling plots within a burn classified as native
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grassland (16 of 22 HIT plots). A majority of the pixels within a recent fire should be classified
as native grassland because full recovery of Wyoming big sagebrush communities often requires
>30 years (Lesica et al. 2007). We also only evaluated pixels within fires occurring from 2008-

2010 in our study area in order to match the time period for burned areas in which we sampled.

To map the states across our study area, we restricted our predictions to pixels south and
east of the Little Snake River and north of the Yampa River for consistency in land management
and vegetation communities where we sampled (Fig. 3.1). We only predicted the top model(s) to
pixels within ecological sites that were targeted for the vegetation sampling (i.e., Deep Loam,
Rolling Loam, Sandy Land, Sandy Foothills, and Claypan). After extracting each raster predictor
layer to the target ESD extent, we read the files into program R using the “raster” package
(Hijmans et al. 2016). For continuous predictors, we normalized each raster pixel using the
minimum and maximum values from the plot data rather than from the entire study area extent,
so that the normalized values would be consistent with the values used to build the model. We
then created a raster stack for the top predictors and predicted the best model to all pixels within
the study area extent. We model-averaged predictions to the study area extent if there were
multiple competitive models. We generated summary statistics for each state from the predicted
surfaces, including total area and average patch size, and the proportion of each state within the

2008-2010 fires.

Results

During summer 2013-2015, we collected vegetation and soil data at 73 HIT plots. We
also collected species richness, DWR, and soil information for 15 LIT plots during summer
2013. Of the HIT plots, 32 were classified as diverse shrubland according to multivariate

techniques, nine were classified as crested wheatgrass, and 16 plots each were classified as
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needle-and-thread shrubland and native grassland (Tipton unpublished data). According to our
decision key, we classified one LIT plot as diverse shrubland, eight as needle-and-thread

shrubland, and six as native grassland.

Slope, aspect, and litter spatial predictors had limited differences among the four states
and were uninformative for our models. Several predictors were highly correlated and restricted
from occurring in the same model. All sagebrush cover, big sagebrush cover, and total shrub
cover were positively correlated (R > 0.9), and bare ground was negatively correlated with each
of the three shrub predictors (R > -0.7). We also discarded minimum temperature for the coldest
month due to a positive correlation with annual precipitation (R = 0.8), and we discarded
maximum temperature for the warmest month due to a negative correlation with elevation (R = -

0.9).

We had two competitive models: one included big sagebrush cover plus elevation (BIC =
126.46, w=0.63) and it explained 53% of the variation (Table 1). Our top model had good model
fit based on varied groupings for the Hosmer-Lemeshow GOF test. The second best model
included all sagebrush cover plus elevation (BIC = 128.33, w=0.25) and explained 52% of the
variation. However, this model was essentially the same as the best model due to a high
correlation between big and all sagebrush cover (R=0.9), so we only considered the top model
further. For our best model, relative risk ratios (Table 3.2) suggest that a 20% increase in big
sagebrush cover (range 3-23%) decreased the relative risk of being in a native grassland and
crested wheatgrass state relative to the diverse shrubland state, but increased the relative risk of
being in a needle-and-thread state (Table 3.2). For a 268-m increase in elevation (range 1,903-
2,171 m), it was more likely for the state to be diverse shrubland rather than the other three states

(Table 3.2).
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The classification accuracy for our best model was consistent across methods. The 10-
fold cross validation classification accuracy for the top model was 71%. For the classification
accuracy of our independent dataset (i.e., LIT plots), we correctly predicted the state for 73% of
the plots (11 of 15 plots). Further, our top model correctly classified the state for 71% of the
plots used to build the model (52 of 73 plots). When we predicted state to pixels in our entire
study area, the model correctly classified the state for 73% of the LIT plots (11 of 15 plots) and
74% of the HIT plots (54 of 73 plots). Individual component accuracies for the model predictions
to HIT sampling plots were 94% for diverse shrubland, 81% for needle-and-thread shrubland,
and 56% for native grassland, and 0% for crested wheatgrass. Component accuracies for the
model predictions to pixels containing HIT plots were the same for diverse shrubland, needle-
and-thread shrubland, and crested wheatgrass, but improved to 69% for native grassland. Lastly,
of the five fires that occurred in our study area from 2008-2010, the model classified 77% of the
total pixels for all burned areas as native grassland (Fig. 3.2), and the model classified 14% as

needle-and-thread shrubland, 1% as crested wheatgrass, and 9% as diverse shrubland.

We predicted the model to pixels within the target ecological sites in our study area (total
2,280.14 km?), and the needle-and-thread shrubland state comprised 39% of the area, followed
by native grassland at 32%, and diverse shrubland at 28% (Table 3.3, Fig. 3.2). The crested
wheatgrass state comprised the lowest proportion in our study area (1%), and also had the
patchiest or least contiguous distribution in our study area, with an average patch size of 0.01
km?. In contrast, the diverse shrubland state had the largest average contiguous patch size of all
states (0.09 km?), followed by the needle-and-thread shrubland state (0.05 km?), and the native

grassland state (0.02 km?). The diverse shrubland state also had the largest maximum patch size
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at 382.72 km?, followed by 100.61 km? and 90.81 km? for the needle-and-thread shrubland and

native grassland states, respectively.

Discussion
Our Approach

We used a locally developed, data-driven STM to evaluate landscape predictions of
ecological states. We demonstrated that remotely sensed vegetation and abiotic layers could be
used to successfully predict ecological states across larger landscapes than we could assess on
the ground. Our STM was developed with ecological data and local knowledge using a
participatory approach, which should increase relevancy of the product for local land
management (Bruegger et al. 2016). This data-driven approach should also improve the quality
of the spatial products, providing more accurate and relevant insights into management issues
(Steele et al. 2012). To our knowledge, ours is the first attempt to map states within a STM for
sagebrush rangelands. Sagebrush rangelands have faced multiple threats over the last century,
which have reduced the quality and quantity of sage-grouse habitats, resulting in many wildlife
species of conservation concern (Knick et al. 2003). Thus, our spatial approach could have
important management implications for local wildlife populations and other ecosystem services
by gauging the impact of land-use change on these services (Timmer 2017, Chapter I1).
Managers could combine the mapped states with values for ecosystem services, such as wildlife
habitat, livestock forage, or soil stability to guide management decisions and scenario planning
(Troy and Wilson 2006). Our method could also allow managers to identify landscape patterns
that may influence transitions between states, such as an exotic grassland-dominated state
expanding to surrounding patches (Brisket et al. 2005, Miller et al. 2011), or target areas for

restoration efforts.
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Our best model included percent cover of big sagebrush, which is an important indicator
for management of sagebrush rangelands, especially for managing wildlife habitat (Knick et al.
2003). An increase in big sagebrush cover increased the probability of a plot being a diverse
shrubland state, although only the confidence interval for the native grassland state probability
did not overlap zero (Table 3.2). “Burn” was not in our top model, but this predictor was
negatively correlated with big sagebrush cover (R = -0.44). Thus, including it with big sagebrush
cover may have been redundant as big sagebrush cover likely accounted for the structural
differences between native grassland and diverse shrubland plots. An increase in big sagebrush
cover also decreased the probability of a plot being classified as crested wheatgrass relative to
diverse shrubland. However, the confidence interval for this probability likely included zero
(Table 3.2) because former homestead properties occurred within and outside burned areas in our
study area. Therefore, some crested wheatgrass plots contained as much as 17% big sagebrush
cover. In contrast, an increase in big sagebrush cover increased the probability of a plot being
classified as needle-and-thread shrubland, although the confidence interval for this probability
also included zero (Table 3.2). Indeed, total sagebrush cover from LPI data and big sagebrush
cover from the remotely sensed product were higher for diverse shrubland plots than for needle-
and-thread shrubland plots (22.0% versus 18.3% sagebrush cover from LPI data and 13.7%
versus 11.3% remotely sensed big sagebrush cover). However, difference in sagebrush cover

from LPI data was not significant between these two states (Tipton unpublished data).

Elevation was the best predictor for differentiating diverse shrubland and needle-and-
thread shrubland plots, with diverse plots mostly occurring at higher elevation (i.e., >2,060 m)
and needle-and-thread plots occurring mostly at lower elevation. Elevational differences linked

to greater precipitation and soil moisture could have driven the differences between the two
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shrubland states. The higher elevation sites where most of the diverse shrubland plots occurred
received greater annual precipitation (435.7 cm) with a slightly lower maximum temperature for
the warmest month (28.4°C) compared to the lower elevation sites where needle-and-thread
shrubland plots were more prevalent (406.7 cm and 29.5°C). Antelope bitterbrush was also
present at all diverse shrubland plots (Tipton 2015). It occurs over a wider range of elevation
than where we sampled and local stakeholders suggested that lack of bitterbrush at lower
elevation sites may be a result of grazing history (Tipton 2015). The lower elevation sites
experienced increasing elk browsing pressure in the winter over the last several years. In
addition, sheep historically grazed the low elevation sites, whereas cattle historically grazed the
higher elevation sites. However, because diverse shrubland plots primarily occurred in areas with
greater annual precipitation and a lower maximum temperature for the warmest month, our
relationships between these two shrubland states and elevation could be attributable to both
climate and management history. Not considering local knowledge from multiple stakeholders
would have limited our understanding of these relationships between site history and biotic
and/or abiotic predictors in STMs (Bruegger et al. 2016), although targeted grazing exclosures
over longer time periods would provide greater understanding behind these potential transition

drivers.

Our best model classified approximately 77% of the pixels across our study area in all
burned areas as native grassland compared to the 73% of our sampled plots classified as native
grassland (Tipton unpublished data). These proportions are fairly similar, which gives greater
confidence in our model. Further, the model classified 14% of all burned areas as needle-and-
thread shrubland, which is the same proportion as our sampled plots (3 of 22 plots). We only

classified pixels as “burned” in our study area if the fires occurred during the same time period
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as the fires we sampled in (i.e., 2008-2010). However, it is likely that not even partial recovery
of Wyoming sagebrush occurred within this short time period (Lesica et al. 2007). Therefore,
pixels within earlier burns should probably be classified as native grassland also. Two additional
fires occurred in our study area just prior to the included burns, one in 2007 and one in 2006. For
the 2007 fire, our model classified most of the pixels as native grassland (96%) and 4% as
needle-and-thread shrubland. For the 2006 fire, the model classified 62% of the pixels as native
grassland, 36% as diverse shrubland, and <2% as crested wheatgrass and needle-and-thread
shrubland. Our model over-estimated pixels classified as diverse shrubland relative to our
proportion from burn sampled plots. However, we did not sample burned areas at higher
elevations, so it is not surprising that we classified 0 burned plots as diverse shrubland. We also
intentionally sampled within a former homestead property in one of our burned areas, so the
model under-estimated pixels classified as crested wheatgrass (1%) relative to the proportion

from our sampling plots (14%).

In our study area, the needle-and-thread shrubland state comprised the largest proportion
of all four states (39%), followed by the native grassland (32%) and diverse shrubland states
(28%; Table 3.3). In terms of ecosystem services, over half of the study area (67%) was
predicted to be sagebrush communities, and could thus provide habitat for sagebrush-obligate
species, many of which are of conservation concern (Knick et al. 2003). The diverse shrubland
state also provided the greatest herbaceous biomass for foraging compared to the other shrubland
state (Tipton unpublished data). In contrast, approximately one-third of the study area was
dominated by native grassland habitat, mostly within burned areas. The native grassland patches
may not provide much cover or nesting sites for shrub-obligate wildlife, but they would provide

greater foraging opportunities for domestic and wild ungulates compared to the needle-and-
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thread shrubland areas. Further, greater sage-grouse will use burned areas if they are
heterogeneous with some remaining shrub cover (Fischer et al. 1996, Knick et al. 2005, Timmer
2017, Chapter 1), and brood use may be greater in less shrubby habitat if it has surrounding
sagebrush cover (Dahlgren et al. 2006). All of the 2008-2010 fires in our study area were
predicted to contain a mix of grassland and shrubland habitat with surrounding sagebrush cover

(Fig. 3.2), suggesting they could potentially provide sage-grouse habitat.

The diverse and needle-and-thread shrubland states had the largest and second largest
average patch size and the largest contiguous patch sizes (Table 3.3). This information could
have management implications for ecosystem services. Managers or landowners may want to
maintain large patches of the shrubland states for wildlife habitat and habitat connectivity,
forage, and ground cover or soil stability. Spatial properties of states could also improve models
describing wildlife habitat relationships, such as interspersion of shrubland patches within a
grassland state. Mapping states on the landscape is also useful for identifying undesirable patches
and potential triggers that could lead to state transitions (Bestelmeyer et al. 2011, Steele et al.
2012). For example, spatial representation of shrub-dominated states in southwestern New
Mexico has directed shrub herbicide applications to areas with specific shrub species and

sufficient grass cover (Bestelmeyer et al. 2009, Steele et al. 2012).

The crested wheatgrass state differed from the other states by dominance of an exotic
grass species, but Tipton (2015) separated it based on management history (i.e., former
homestead properties from the mid 1900’s). The crested wheatgrass plots occurred at both the
high and low elevation sites, within and outside burned areas, and only represented 9 of 73
sampling plots. We also did not include a specific predictor to discriminate the crested

wheatgrass plots because this information was not available throughout the study area. Thus, our
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individual component accuracy for these plots was lowest of all the states (0%). Based on our top
model, we predicted the crested wheatgrass state comprised 1% of our study area. This estimate
seems low for the area (H. Seim, pers. comm.), and is likely unrealistic given the low
classification accuracy for the state. However, it is predicted to occur in small pockets distributed
throughout the study area (Fig. 3.2), which is realistic given the limited and sporadic distribution
of homestead properties and pipeline scars in the area. To improve classification accuracy for a
spatially limited state such as this one, increased sampling efforts could increase the power and
likelihood of other predictors discriminating each state, such as bare ground or percent sagebrush
cover. Local knowledge of an area can also improve sampling efforts for these sparsely

distributed states.

Other Approaches

Our approach to map states from a recently developed STM should be applicable to other
sagebrush rangelands. However, other approaches to map states may be necessary given
variation in soils and vegetation types or different management objectives. In our study area,
ground cover was more continuous and soil variation occurred at coarser scales, so soil map units
could be classified according to the dominant ecological site (Bestelmeyer et al. 2009). The
methods used by Steele et al. (2012) are more complicated than our approach because they edited
soil map units to preserve spatial variation at fine scales (i.e., ecological sites within a soil map
unit), which entailed delineating spatial features with aerial imagery. Their study area also
contained prominent land features, like coppice dunes, that facilitated spatial delineation from
imagery. Further, Steele et al. (2012) manually classified states across the landscape with
existing monitoring data, aerial imagery, or field visits, which may not be feasible for time-

constrained managers over a large landscape. However, the approach used by Steele et al. (2012)
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resulted in a spatial database (linked to the SSURGO database) of ecological sites with
associated generalized states for southern New Mexico, and the database has already been used
to improve range management. For example, the BLM used the mapped states to target shrub
control efforts, organize rangeland health assessments, and determine locations for solar energy

installations to minimize impact.

Another method that holds promise for improved rangeland monitoring across larger
scales is the use of image analysis whereby managers take vertical photos of field plots, and then
use software programs to estimate percent cover and bare ground from the images (Booth and
Tueller 2003). Ground-based imagery reduces field sampling time, so managers can acquire
more field samples and increase statistical power (Booth and Tueller 2003, Cagney et al. 2011).
These images also serve as a permanent record of range condition and thus, allow for temporal
comparison of sites over time (Cagney et al. 2011, Sant et al. 2014). When combined with
remotely sensed data, ground images can be extrapolated across larger spatial and temporal
scales to assess patterns and change over time (Sant et al. 2014). Remotely sensed products used
in this study have recently been coupled with historical precipitation data to forecast changes in
rangeland vegetation components, which could also be used to monitor change over time (Homer
et al. 2015). However, one limitation with ground or satellite imagery is a lack of more detailed
information to inform specific management objectives, such as grass height for sage-grouse
nesting habitat (Doherty et al. 2014) or soil properties to link with ecological sites. Further,
imagery of biotic components may need to be combined with other information, such as
management history and abiotic predictors, to accurately predict states within a landscape, as we
illustrate in our study. Simply predicting vegetation cover to a region without linking itto a STM

precludes an understanding of ecosystem services associated with each state and the mechanisms
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behind state transitions, which may guide management decisions and restoration efforts

(Bestelmeyer et al. 2003).

Considerations and Extensions for our Approach

If our approach were used to map states in other sagebrush regions, managers should
include multiple types of predictors in modeling efforts because remotely sensed vegetation
components alone may not adequately distinguish states (Steele et al. 2012). States may not have
large structural differences and without variation in management history or abiotic features,
states may need to be distinguished based on species composition. However, management
history predictors can only be included if someone has knowledge of their occurrence throughout
the entire area of inference. Managers should also include predictors that span a gradient through
the study area, like cover of bare ground, to increase the model’s ability to discriminate pixels
within the area. Shrub cover may seem like an easier indicator to manage and more relevant to
include for sagebrush rangelands, but structural differences in other regions may not be as stark
as “burned” and “not burned”, so that shrub cover varies little among states. Bare ground has
important implications for soil infiltration and stability and is a useful indicator of rangeland
health (Booth and Tueller 2003, Pellant et al. 2005). Further, bare ground is consistently a more
accurate indicator (Booth and Tueller 2003, Homer et al. 2012, Sant et al. 2014), and increased
bare ground may also be associated with dense, undisturbed sagebrush states (Cagney 20009,
Kachergis et al. 2012). When developing the STM, field sampling should similarly include
variability across the landscape, such as disturbed and undisturbed areas and diversity in slope

and aspect, to provide evidence for or against alternate states (Bestelmeyer et al. 2009).
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Managers may also need to prioritize which states are included in the STM for mapping.
For example, if multivariate analyses identify a state as a distinct cluster, but it only occurs
within a small portion of the study area or is represented by only a few sampling plots (e.g., our
crested wheatgrass state), it may be best to combine the state with another which has similar
structural and/or functional attributes to improve model classification accuracy. If a state occurs
in very small proportions of a study area, it may even be best to not sample those patches and
introduce additional variability. However, if the state is of management concern (e.g., critical
habitat for a wildlife species), then it should be included in the model, but with greater sampling

effort to describe it.

Although it represented only a few plots, we included the crested wheatgrass as a
separate state in our STM for demonstration purposes and because it was a distinct cluster in
analyses conducted by Tipton (2015). However, to see if classification accuracy for the model
improved, we re-assigned the crested wheatgrass plots to one of the other three states based on
our LIT classification key. We re-ran analyses post-hoc and the top model’s classification
accuracy improved slightly for the LOOCV score (71% to 73%) and when predicting the model
to HIT plots (from 71% to 74%), but confidence intervals for the parameters for each state did
not overlap zero. The mapped STM excluding the crested wheatgrass state was similar to our
original map, likely because only a small proportion of sampling plots were classified as crested
wheatgrass. This is a useful illustration that the quality of the spatially explicit STM will reflect
the quality of the conceptual or data-driven STM (Steele et al. 2012). If the model is developed
with probabilistic sampling and large sample sizes to capture landscape variability in the

sampling region, then the classification accuracy throughout the study area should be higher.
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Managers also need to consider the spatial and temporal resolution of spatial predictors
relative to resolution of spatial variation in the study area. For instance, a data layer of vegetation
cover types (e.g., The National Land Cover Dataset) may not adequately predict states in a
sagebrush system as well as a data layer of vegetation components (e.g., LANDFIRE). The states
could be separated by amount of bare ground rather than functional group (e.g., Cagney 2009),
and a data layer containing vegetation cover types may be too coarse to discriminate states in the
study area. There have been recent improvements to remotely sensed methods and data are
becoming increasingly available at regional scales (Homer et al. 2012, 2015) and finer
resolutions (e.g., Sant et al. 2014). Thus, this approach could potentially be used to map
community phases differentiated by species composition or states with less drastic structural
differences (e.g., grasslands). However, it is probably impractical to map ephemeral plant phases
on a landscape because they would likely shift in response to precipitation or grazing pressure
changes (Bestelmeyer et al. 2003, Steele et al. 2012). Another consideration is relevance of
spatial data to the time period of sampling. It may not be possible to conduct field sampling
within the same time period as satellite imagery is collected (but see Homer et al. 2012), but the
spatial data should still capture relevant landscape variability. For example, fires of interest in
our study area occurred from 2008-2010, so we used vegetation cover data that were compiled
after the fires occurred. Otherwise, we would not have accurately discriminated native grassland

pixels in the study area.

We predicted states to target ecological sites within our study area. However, spatial
information for ecological sites may be lacking in certain regions or it may be outdated and
inaccurate. In this situation, a manager could use a digital elevation model or satellite imagery to

identify different landform features in a region, which are likely different ecological sites
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(Bestelmeyer et al. 2009). There are also recent quantitative approaches to create digital soil
maps for a region (McBratney et al. 2003, Levi 2012), which could then be paired with a STM to
map states. Object-oriented image analysis may also offer an alternative to map ecological sites
in a region using image segmentation from remotely sensed imagery and additional spatial
information with a classification algorithm (Laliberte et al. 2007, Steele et al. 2012). However, it
would be a more cumbersome process for land managers to map ecological sites and states
within the sites, and it may be more practical and preferable to simply map at the scale of
ecological sites in the region. Ecological sites would still provide useful information on potential
plant communities and may be fine-scaled enough depending on management objectives

(Bestelmeyer et al. 2009).

Management Implications

Spatial representations of STMs have a variety of useful applications that could greatly
improve land assessment, monitoring, and management at landscape scales. They could increase
our understanding of vegetation patterns and change at larger scales rather than within small
sampling plots (Briske et al. 2005). Managers could use them to design assessment and
monitoring programs in a probabilistic, hierarchical fashion or target areas for experiments to test
and quantify transition probabilities, and thus, increase statistical rigor (Briske et al. 2005,
Bestelmeyer et al. 2009). Spatially represented STMs could also be used for planning purposes to
ensure adequate sample sizes across states if managers wish to draw conclusions about
ecosystem services provided by states (e.g., Holmes and Miller 2010). Managers could ground
truth particular areas, like exotic grassland-dominated states, to target for control or restoration

efforts. As a prioritization tool for land managers, mapped states could inform management or
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conservation actions, such as promoting larger or more contiguous states that provide valuable

ecosystem services.

Landscape diversity may also be a management objective for promoting multiple
ecosystem services provided by multiple states. Mountain plovers (Charadrius montanus)
require a mostly bare ground, heavily grazed or burned state for their nesting habitat, whereas
upland sandpiper (Bartramia longicauda) nesting habitat is comprised of taller grasses with little
grazing (Derner et al. 2009, Augustine and Derner 2012). If combined with simulated state-and-
transition modeling (Daniel and Frid 2011), land managers could more accurately forecast
potential state outcomes for various management actions or disturbances within a region
(Provenchar et al. 2007). This could guide iterative hypothesis-testing, model improvement, and
decision-making within an adaptive management framework to solve complex ecosystem
problems (Holling et al. 1978), such as pinyon-juniper (Pinus spp.-Juniperus spp) encroachment
in sagebrush rangelands (Boyd et al. 2014). Spatially explicit STMs could ultimately inform
conceptual or data-driven STMs by describing landscape patterns that lead to transitions and
linking structural changes to ecological function (Briske et al. 2005, Bestelmeyer et al. 2011).
Taken together, these should increase the rigor of STMs and potentially promote their acceptance

and use by the range and scientific communities.
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Table 3.1. Top multinomial logistic regression models considered for predicting states identified
from a state-and-transition model in Northwest Colorado, 2013-2015 (Tipton 2015). For each
model, we report log-likelihood (LL), number of parameters (K), Bayesian Information Criterion
(BIC), difference in BIC compared to lowest BIC of the model set (ABIC), and BIC weight (w)
for all models <7 ABIC.

Model?® LL K BIC ABIC W

bs® + elev® 43.92 9 126.46 0.00 0.63
as + elev 45.11 9 128.33 1.87 0.25
shrub + elev 46.08 9 130.78 4.32 0.07
as + herb + elev 40.65 12 132.78 6.32 0.03
bs + herb + elev 40.84 12 133.17 6.71 0.02

& All continuous predictors were normalized on a 0,1 scale.

b \egetation predictors include big sagebrush cover (bs), all sagebrush cover (as), total shrub
cover (shrub), and herbaceous cover (herb) within 30x30-m pixels (Homer et al. 2012).
°Elevation in meters.
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Table 3.2. Model statistics from the top multinomial logistic regression model for predicting
states identified from a state-and-transition model in Northwest Colorado, 2013-2015 (Tipton
2015). Statistics are presented relative to the diverse shrubland state and include parameter
probabilities, 95% confidence intervals in parentheses, and relative risk ratios (RRR).

Probabilities: Intercept bs®? elev®
Crested wheatgrass 13.27 (5.43, 21.11) -4.13 (-9.24, 0.99) 18.78 (-29.63, -7.97)
Native grassland 14.81 (6.99, 22.62)  -7.37 (-12.65, -2.09) 19.00 (-29.65, -8.36)
Needle-and-thread

shrubland 14.99 (7.13, 22.83) 3.86 (-3.01, 10.72) 29.32 (-41.75, -6.88)
RRR: Intercept bs elev

Crested wheatgrass 580354.4 0.02 <0.001
Native grassland 2697262.3 <0.001 <0.001
Needle-and-thread

shrubland 3223331.4 47.26 <0.001

 All continuous predictors were normalized on a 0,1 scale.

b \egetation predictor includes big sagebrush cover (bs) within 30x30-m pixels (Homer et al.
2012).

¢ Elevation in meters.
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Table 3.3 Landscape metrics for spatially explicit states identified from a state-and-transition
model in Northwest Colorado, 2013-2015 (Tipton 2015) and predicted with multinomial logistic

regression.
Maximum
State Total area Proportion in Average patch patch
(km? study area size (km?) size (km?)
Diverse shrubland: 649.71 0.28 0.09 382.72
Needle-and-thread shrubland: 886.45 0.39 0.05 100.61
Native grassland: 720.89 0.32 0.02 90.81
Crested wheatgrass: 23.09 0.01 0.002 0.17
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Figure 3.1. Study area extent for making a spatially explicit state-and-transition model in Moffat
County, Northwest Colorado (Tipton 2015). Included are focal ecological sites, high intensity
traverse (HIT) and low intensity traverse (LIT) sampling plots, recent fires, and past mechanical
shrub treatments. Transparent areas within the study area boundaries (i.e., to the north of the
Yampa River, to the east of the Little Snake River, and to the eastern Moffat county border)
indicate no data.
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Figure 3.2. Map of multinomial logistic regression model predictions for states in a state-and-
transition model in Moffat County, Northwest Colorado (Tipton 2015, Appendix I). Included
are four states (native grassland, crested wheatgrass, needle-and-thread shrubland, and diverse
shrubland) as predicted by a multinomial logistic regression model. Transparent areas within the
outlined study area boundaries (i.e., to the north of the Yampa River, to the east of the Little
Snake River, and to the eastern Moffat county border) indicate no data.
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CHAPTER IV. MANAGING FOR MULTIPLE SPECIES: GREATER SAGE-GROUSE AND

SAGEBRUSH SONGBIRDS

Summary

Human activity has altered between one-third and one-half of the earth’s surface, such as
temperate grasslands and sagebrush rangelands, which has resulted in a loss of biodiversity. By
promoting habitat for sensitive or wide-ranging species, it is believed that less exigent species
will be protected in an umbrella effect. Greater sage-grouse (Centrocercus urophasinus; sage-
grouse) have been proposed as an umbrella species for other sagebrush-obligate species because
they have an extensive range that overlaps with many other species, they are sensitive to
anthropogenic activity, they require resources over large landscapes, and their habitat needs are
well-known. However, the efficacy of this concept is often assumed. Therefore, we surveyed
sage-grouse occurrence and sagebrush songbird abundance in Northwest Colorado to determine
the amount of habitat overlap between sage-grouse and four sagebrush-associated songbirds
(Brewer’s sparrow [Spizella breweri], sage thrasher [Oreoscoptes montanus], sagebrush sparrow
[Artemisiospiza nevadensis]), and green-tailed towhee [Pipilo chlorurus]). During May and June
2013-2015, we conducted standard point count breeding surveys for songbirds and counted sage-
grouse pellets within a 10-m radius plot at each songbird point. We then modeled songbird
abundance and sage-grouse occurrence with multi-scaled environmental features, such as
sagebrush cover and bare ground. To evaluate sage-grouse as an umbrella species, we
determined the correlation between apparent sage-grouse occurrence and estimated songbird
densities per sampling plot. To incorporate a larger-scaled approach, we mapped model-
predicted surfaces for each species across our study area to determine average songbird density

in areas likely to contain sage-grouse. Shrub or sagebrush height and a form of sagebrush cover
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were important predictors for all species, although the spatial extent varied. Areas likely to
contain sage-grouse also contained higher densities for Brewer’s sparrows and green-tailed
towhees. However, average predicted sagebrush sparrow densities were lower in areas likely to
contain sage-grouse. In our study area, sage-grouse may be an effective umbrella for Brewer’s
sparrows and green-tailed towhees, but sage-grouse habitat does not appear to capture habitat
promoting higher sagebrush sparrow densities. A multi-species focus may be the best

management and conservation strategy for multiple species of concern.

Introduction

Human activity, such as resource use and extraction, has altered between one-third and
one-half of the earth’s surface, which has large consequences on regional climates, global carbon
fluctuations, hydrological cycles, and biodiversity (Vitousek et al. 1997, Foley et al. 2005).
Globally, temperate grasslands are one of the most imperiled biomes and in North America, it is
the most converted landscape, with >90% altered, mainly for agriculture (Hoekstra et al. 2005).
The sagebrush ecosystem of western North America has also been altered to promote herbaceous
forage for livestock, for agriculture, urban development, and energy extraction and now occupies
about half its historic distribution (Knick et al. 2003). With the current and projected loss of
native habitats in grassland, sagebrush, and other systems, extinction rates for populations and

species are unprecedented (Vitousek et al. 1997).

Even though managing for ecosystem health may be more effective to conserve
populations and species, as well as to promote other ecosystem services, biologists often monitor
and manage with a single-species focus (Vitousek et al. 1997, Boyd et al. 2014). Many biologists
manage for single species to generate support and awareness for the conservation of ecosystems

that support charismatic species, like Florida panthers (Puma concolor coryi). However, some
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biologists are mandated via regulation (e.g., the Endangered Species Act) to manage for specific
habitats that support protected species, such as old-growth forest and northern spotted owls (Strix
occidentalis caurina; Simberloff 1998). Protecting habitats for wide-ranging or sensitive species
could promote habitat for less exigent species in an umbrella effect and thus, promote
biodiversity (Roberge and Angelstam 2004). However, the effectiveness of umbrella species for
conservation and management of multiple species is often assumed and rarely tested (Simberloff
1998). Bifolchi and Lodé (2005) tested the umbrella concept with European otters (Lutra lutra)
and found no difference in species richness for several taxa between paired sites with and
without otters. The authors concluded that generalist species may serve as better umbrella
species compared to specialists like otters and potential beneficiary species should share similar

habitat requirements (Bifolchi and Lodé 2005).

Greater sage-grouse (Centrocercus urophasinus; sage-grouse) have been proposed as an
umbrella species for other sagebrush-obligate species (Rowland et al. 2006). Sage-grouse should
be an effective umbrella species because they have a large annual range that overlaps with many
other species, they are fairly sensitive to anthropogenic activity, their biology is well-known, and
many habitat recommendations have been evaluated and published for sage-grouse (Rowland et
al. 2006, Hanser and Knick 2011). Sage-grouse populations have declined range-wide due to
changing fire intervals (Baker 2011), invasion of exotic plants (Chambers et al. 2007), grazing
pressure (Beck and Mitchell 2000), and energy development (Holloran 2005) fragmenting and
deteriorating sagebrush rangelands (Garton et al. 2011). Thus, large and small-scale conservation
efforts (e.g., Sage Grouse Initiative) are underway to promote sagebrush habitat and prevent
further declines in sage-grouse populations (U.S. Fish and Wildlife Service 2015). However, it is

unclear how efforts to promote sage-grouse habitat will affect other species, which are
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completely or partially dependent on sagebrush. Sagebrush rangelands are not homogenous and
features relevant to sage-grouse may not be relevant to species with smaller home ranges (Hanser
and Knick 2011). For example, Brewer’s sparrow (Spizella breweri) and green-tailed towhee
(Pipilo chlorurus) abundance increased for three years following juniper removal to restore sage-
grouse habitat (Sage Grouse Initiative 2015). Mechanical treatments to improve Gunnison sage-
grouse (C. minimus) habitat reduced occupancy for Brewer’s sparrows and green-tailed towhees
at plots within treatment areas (Lukacs et al. 2015). Large-scale management for sage-grouse
habitat benefitted several shrub-obligate species in Wyoming, but this relationship was not

always positive at finer scales (e.g., nest sites; Carlisle 2017).

Given the loss of sagebrush rangelands, many avifauna species dependent on this
ecosystem have experienced population declines and are of conservation concern (Braun et al.
1976, Knick et al. 2003). Over the last fifty years, Brewer’s sparrow, sagebrush sparrow
(Artemisiospiza nevadensis), sage thrasher (Oreoscoptes montanus), and green-tailed towhee
populations have declined in all or specific regions of the western U.S. according to annual
Breeding Bird Survey data (Dobkin and Sauder 2004). Protecting wide-ranging species, such as
sage-grouse, could provide protection to numerous species of conservation concern that rely
entirely or partially on sagebrush rangelands. However, previous work to identify sage-grouse as
an umbrella species used broad patterns at coarse resolutions (Rowland et al. 2006). Further,
several studies have shown that sagebrush avifauna respond to habitat characteristics and
disturbance at multiple scales (e.g., Wiens et al. 1987, Chalfoun and Martin 2007, Doherty et al.
2008, Carpenter et al. 2010), and have different home range sizes, so umbrella relationships need

to be evaluated in a multi-scaled framework (Hanser and Knick 2011).
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Given the reduction in sagebrush rangelands and associated avifauna populations across
western North America, understanding niche conditions that affect avifauna use and abundance
could help inform conservation of this ecosystem and its associated species. These relationships
could inform land-use planning and management decisions, which are needed for species of
conservation concern, such as sage-grouse and Brewer’s sparrows. Further, the decline in sage-
grouse populations and the impetus to manage for sage-grouse habitat begs the question of how
managing for one species could affect other species with potentially similar habitat requirements
but smaller home ranges. To address these concerns, we pursued the following objectives: 1)
survey sage-grouse occurrence and sagebrush-associated songbird abundance (i.e., Brewer’s and
sagebrush sparrows, sage thrashers, and green-tailed towhees) in Northwest Colorado; 2) model
sage-grouse occurrence and songbird counts with multi-scaled environmental features using
logistic regression and count-based regression models; 3) determine the correlation between
apparent sage-grouse occurrence and estimated songbird densities per plot; and 4) determine

model-predicted songbird densities and species richness in areas likely to contain sage-grouse.

Methods
Study Area

We conducted sage-grouse pellet surveys and songbird point count surveys on privately-
and publicly-owned lands in Moffatt County in Northwest Colorado (Fig. 4.1). The East and
West Moffat study sites were characterized as sagebrush steppe and composed primarily of
various big sagebrush communities with either a bunchgrass (e.g., bluebunch wheatgrass
[Pseudoroegneria spicata] or western wheatgrass [Pascopyrum smithii]) understory. Wyoming
big sagebrush (A. t. wyomingensis) communities dominated the East Moffat site and low

sagebrush (A. arbuscula sp.)-salt shrub (Atriplex sp.)-Wyoming big sagebrush communities
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dominated the West Moffat site. Annual precipitation varied between 18-30 cm for East Moffat
and 20-40 cm for West Moffat (Miller et al. 2011). The East Moffat site was comprised mostly
of sandy or loamy soils (Tipton 2015), while West Moffat had greater heterogeneity in soil and
topographic features. Three wildfires occurred within the East Moffat study site prior to surveys:
a 3,185-h wildfire in 2010, a 10,243-ha wildfire in 2008, and a smaller 1,505 ha fire in 2008. The
West Moffat site was grazed by cattle and the East Moffat site was grazed by both cattle and

sheep.

Field Surveys

We determined sampling locations based on the objectives of a larger collaborative
project to build state-and-transition models in each of three project areas with local input and
field data (Bruegger et al. 2016). In East Moffat, we randomly allocated survey points spaced
>200 m within past treatments or disturbances and areas with no known treatments or
disturbances on target ecological sites (e.g., Rolling Loam and Sandyland; Tipton 2015). In West
Moffat, we stratified survey points based on sagebrush cover (Homer et al. 2012) and elevation
to capture landscape variability, but allocated greater effort to the strata containing more
sagebrush cover. To estimate sage-grouse occurrence, we surveyed a 10-m radius area around
each point for sage-grouse pellets. To survey plots, we attached a measuring tape to a piece of
rebar in the center of each plot and searched within 2-m increments to reduce observer error.
Even though we were mainly interested in presence/absence of sage-grouse, we recorded the
number of single pellets, roost piles, and number of pellets per roost pile for other research
objectives. We recorded pellets as a roost pile if >2 pellets were found within a 30-cm diameter
area (Hanser et al. 2011). We recorded pellets or roost piles if at least half of the pellet or pile

was within the 10-m radius. We also used a simple mark-resight study to estimate naive pellet
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detectability to ensure we were detecting a majority of the pellets within a plot (Pollock et al.

2002).

To estimate songbird abundance, we conducted standard point count surveys at the center
of each pellet count plot following distance sampling protocol (Buckland et al. 2001). The
protocol included focusing on detections at and surrounding the point, measuring radial distance
to the bird with rangefinders or object near the bird to estimate the distance, and recording
distance to where a bird was first detected (Buckland et al. 2001). We identified birds both
aurally and visually within a six-minute interval at each point and recorded individuals only
once. We conducted surveys during the breeding season from sunrise to approximately four
hours after sunrise depending on weather. We did not conduct surveys during inclement weather,
such as rain or windy conditions when activity or detectability of the birds was hindered. We
also conducted surveys beginning at lower elevation sites earlier in the breeding season and
moving up in elevation as the season progressed to capture the phenology of the birds’ breeding

activity (Hanni et al. 2013).

Data Analysis
Detection Probabilities

To estimate songbird abundance, we used program Distance 6.0 (Thomas et al. 2010) and
examined several detection model forms (e.g., half-normal). We excluded outlier detections
based on visual inspection of detection histograms and binned distances accordingly (Buckland
et al. 2001). We compared models with detectability variables using the Multiple Covariate
Distance Sampling engine. Variables included start time, Julian date, observer, how the bird was
detected (i.e., calling, singing, or visual), temperature, cloud cover (i.e., 0 = 0-15% cloud cover,

1 = 16-50% cloud cover, 2 = 51-75% cloud cover, and 3 = 76-100% cloud cover), and wind
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speed (0 = <0 mph, 1 = 1-3 mph, 2 = 4-7 mph, 3 = 8-12 mph, and 4 = 13-18 mph; Hanni et al.
2013). We evaluated models for variables affecting detection probability in three model sets: the
weather set included the three weather variables, the time set included start time and Julian date,
and the observer set included observer and how the bird was detected. We compared univariable
models and models with all combinations of variables for each model set and retained the best
model from each set based on Akaike’s Information Criterion (AIC; Burnham and Anderson
1998). We then compared the top detection model from each set along with a null model to see
which variables best explained the detection probability for each species and predicted density

estimates for each plot using the best detection model.

To determine if we could combine songbird data collected in 2013-2015, we compared
songbird density estimates for common species for a subset of plots surveyed in either 2013 and
2014 or 2014 and 2015 with equation 3.102 in Buckland et al. (2001). If density for the common
species was similar between years, then we assumed that weather and other factors influencing
vegetation and bird density were also similar and we could pool survey data collected in multiple
seasons. We used the best detection model for each species to calculate an offset term based on
the mean density and survey effort at each point count plot, and included the offset term in
subsequent count-based regression models to adjust raw counts for heterogeneity in detection

(Buckland et al. 2009).

Predictor Selection

Given limited information on how sagebrush avifauna scale their environment in
Northwest Colorado and the importance of a multi-scaled approach to understand habitat

relationships, we followed a similar hierarchical exploratory approach as outlined in Leu et al.
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(2011). We first summarized landcover predictors in ArcMap 10.0 within three moving window
scales: 0.56 km, 1 km, and 5 km of each survey point. Scales were chosen based on previous
studies of sage-grouse and sagebrush songbird habitat selection. For instance, previous modeling
efforts have shown that the amount of sagebrush habitat within 1 km of a used site best explained
sage-grouse site selection (Carpenter et al. 2010, Hanser et al. 2011). Sage-grouse also selected
for larger patches within a 0.56-km radius of moderate sagebrush cover for nest and brood
habitat in Alberta, Canada (Aldridge and Boyce 2007), and Connelly et al. (2000) suggest
protecting suitable habitat within 5 km of a lek for non-migratory sage-grouse populations. In the
Wyoming Basin region, the top models explaining Brewer’s sparrow, green-tailed towhee,
sagebrush sparrow, and sage thrasher abundance included variables at multiple scales (e.g., all
big sagebrush cover within a 1-km extent and mountain big sagebrush (A. t. vaseyana) cover
within a 5-km extent (Aldridge et al. 2011). To incorporate a finer scale of habitat selection, we
also included the pixel value for landcover variables at each plot (i.e., 30 x 30-m; Homer et al.

2012).

To summarize multi-scaled landcover predictors, we used a remotely sensed layer
developed for sagebrush rangelands across Montana, Wyoming, and northern Colorado (Homer
et al. 2012). The biotic predictors included percent cover of all sagebrush (all Artemisia spp.),
percent cover of big sagebrush, percent cover of tall sagebrush (i.e., sagebrush >29 cm), percent
cover of total shrubs, litter, herbaceous understory, and bare ground, shrub height, and sagebrush
height (Homer et al. 2012; Table 4.1). We did not explore relationships with anthropogenic

features, such as oil or gas wells because few features occurred throughout the study area.
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Model Development

We evaluated count-based regression models for songbird counts and logistic regression
models for sage-grouse occurrence using the multi-scaled predictors. For songbird models, we
excluded songbird counts beyond the truncation distance (as determined by detection
histograms) and included an offset term to scale counts for detection heterogeneity across plots
(Buckland et al. 2009). If a plot had zero counts, we used the average offset value from plots
with a count for each species (Aldridge et al. 2011). For sage-grouse models, we assigned a “1”
to plots where we found single pellets, roost piles, or both and a “0” for plots where we did not
detect any sage-grouse pellets or roost piles. We only included plots from a study site (East or

West Moffat) in each species’ model if we detected songbirds or pellets in that site.

For songbirds, we first identified the appropriate data distribution (i.e., Poisson and
negative binomial) for each species using an intercept-only model and comparing Bayesian
Information Criterion (BIC) values for the two models. We also used Vuong’s test to determine
the appropriate data distribution (Hilbe 2011). We chose not to explore zero-inflated models for
two reasons. Firstly, a higher frequency of zero counts can be attributed to a negative binomial
distribution with a low mean and this distribution also accounts for overdispersed data, so the
more complicated model structure is unnecessary (Warton 2005, Hilbe 2011). Secondly, zero-
inflated models assume that excessive zeros are partly due to organisms not occurring in the area
(Warton 2005). This was not valid for our study area or focal species, especially because we
restricted analyses to portions of the study area where species were detected. For sage-grouse
and songbirds, we examined scatterplots of every variable at each scale and raw counts and
histograms of counts or occurrence >1 to check for non-linear relationships, outliers, and

variables with limited variation across part or all of the study area. If plots showed evidence for
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non-linearity, we evaluated a linear and a quadratic model to assess fit of the functional form of
the covariate using BIC (Hilbe 2011) to determine which model structure to retain. We then
determined the best spatial extent for each variable in the sage-grouse and songbird analyses by
evaluating univariable regression models and retaining the scale of each variable with the
greatest explanatory power (i.e., lowest BIC score; Leu et al. 2011). We used Pearson’s
correlation coefficient to determine if any of the variables in each analysis were overly correlated
(ie,R> | 0.7 | ; Zar 2010). We performed all analyses in Program R 3.1.3 (R Development

Core Team 2015).

We developed candidate models from combinations of the top predictor variables
(excluding overly correlated variables) and ranked the models according to BIC to determine the
best model(s) explaining sage-grouse occurrence and songbird abundance. We determined
competitive models as a model with ABIC < 4, similar to recommendations for using AIC
(Burnham and Anderson 1998). To avoid over-fitting models, we did not include more than one
variable per 10% of plots with >1 songbird or pellet detection in any model (Hosmer and
Lemeshow 2000). We also excluded models when coefficients for any variable were unstable

and switched direction of influence across models (Arnold 2010).

Model Assessment and Evaluation

To assess the fit of models over an intercept-only (null) model, we calculated a
McFadden’s pseudo-R2 value for all models (Zar 2010). We also used a chi-square likelihood
ratio test with the Irtest function in package “Imtest” to determine goodness-of-fit for the top
model over an intercept-only model. Because we did not have independent datasets to evaluate
the predictive capability of our top models for songbirds and sage-grouse, we evaluated

predictive success using five-fold cross validation (Hastie et al. 2009) with the cvFit function (in
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package “cvTools”; Alfons 2015). We also evaluated the area under the curve for a receiver
operating characteristic (ROC) to determine the predictive performance of our sage-grouse

occurrence models (Hosmer and Lemeshow 2000).

Umbrella Concept

To determine the effectiveness of sage-grouse as an umbrella species for songbirds in our
study area, we looked at two scales. We first examined the Pearson’s correlation coefficient
between estimated songbird densities (derived in program Distance) and apparent sage-grouse
occurrence (raw pellet detections) per plot (i.e., 1-ha for songbirds and 0.03-ha for sage-grouse)
in our study area. We hypothesized that sage-grouse should be an effective umbrella species if R
> 0.5, with greater correlation indicating increasing overlap between species. We then mapped
model-predicted songbird densities within the estimated sage-grouse range in Moffat County
(Colorado Parks and Wildlife 2011) and restricted predictions to north of the Yampa River (Fig.
4.1) for greater consistency to where we sampled. We model-averaged predicted songbird
densities and probabilities of sage-grouse occurrence if there were multiple competitive models
(i.e., ABIC < 4; Burnham and Anderson 1998). We classified the predicted probability of
occurrence for sage-grouse as “0” or “1” based on the sensitivity-specificity equality threshold
(Liu et al. 2005) and used the “OptimalCutpoints” package in R to determine the optimal
threshold (Lopez-Raton et al. 2014). We then overlaid areas where sage-grouse were predicted to
occur on the predicted songbird densities to determine if densities were greatest in these areas.
We also calculated a richness index for the four songbird species by classifying the predicted
densities as a “1” following Aldridge et al. (2011) and using the minimum density to support a
songbird territory. We based the largest territory size on what was recorded for each species in

the Birds of North America species’ accounts (Poole 2005) or Colorado Parks and Wildlife
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species’ accounts (Boyle and Reeder 2005). We could then determine the average richness index

for areas predicted to contain sage-grouse.

Results
Field Surveys

We surveyed a total of 300 plots for sage-grouse pellets and songbirds mid-May to late
June 2013-2015. We detected a total of 854 Brewer’s sparrows (on 233 plots), 158 green-tailed
towhees (on 76 plots), 216 sagebrush sparrows (on 77 plots), 263 sage thrashers (on 133 plots),
5,404 single pellets (on 131 plots; mean of 15 pellets per plot), and 782 roost piles (on 111 plots;
mean of 2 piles per plot). We surveyed 198 plots in East Moffat County and 102 plots in West
Moffat County. Of the 151 plots on which we detected sage-grouse pellets, we detected Brewer’s
sparrows on 132 of those plots, green-tailed towhees on 53 plots, sage thrashers on 84 plots, and
sagebrush sparrows on 31 plots. We detected few sagebrush sparrows in the East Moffat plots (8
birds on 6 plots), so we only included count data from West Moffat for subsequent sagebrush

sparrow models.

Detection Probabilities

Based on 30 plots surveyed in both 2013 and 2014 and 32 plots surveyed in both 2014
and 2015, density estimates for common songbird species were not different (p > 0.10).
Therefore, we combined detections across the three field seasons. For Brewer’s sparrows, we
truncated distances >200 m and binned the data into seven bins. The best detection model was
the hazard rate function with simple polynomial adjustments and no detection variables. Average
Brewer’s sparrow density was 1.92 birds/ha. For green-tailed towhees, sagebrush sparrows, and
sage thrashers, we truncated distances >220-250 m and binned the data into 6 or 7 bins. The best

detection model for green-tailed towhees was a half-normal function with how the bird was
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detected, observer, temperature, and cloud cover. Average green-tailed towhee density was 0.16
birds/ha. The best detection model for sagebrush sparrows was the half-normal function with
how the bird was detected and start time. Average sagebrush sparrow density was 0.25 birds/ha.
The best detection model for sage thrashers was a half-normal function with no adjustments and
how the bird was detected and cloud cover. Average sage thrasher density was 0.15 birds/ha.
Sage-grouse pellet detectability was high (i.e., >0.8), and thus, not considered an issue in

subsequent modeling efforts.

Model Development

Based on Vuong’s test and BIC, the negative binomial distribution was the best model
structure for Brewer’s sparrows, green-tailed towhees, and sage thrashers. For sagebrush
sparrows, Vuong’s test indicated a negative binomial model was best; however the result was not
significant (p = 0.1) and the data were not over-dispersed (mean = 2.01, variance = 2.58).
Including a shrub or sagebrush cover variable resulted in a lower BIC value for the Poisson
model and a lack of convergence in the negative binomial model, so we used a Poisson

distribution for subsequent sagebrush sparrow models.

Of the eight multi-scaled variables included, big sagebrush cover, all sagebrush cover,
tall sagebrush cover, and total shrub cover were highly correlated at all scales, so only the best
shrub structure variable was retained for each species. Further, we could not include tall
sagebrush cover in sagebrush sparrow models due to a limited variability of this predictor in

West Moffat County.

For Brewer’s sparrow, the best scale for predictors was tall sagebrush cover within 1 km,

sagebrush and shrub height within 30 m, herbaceous cover within 5 km, litter within 564 m, and
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bare ground within 30 m. All relationships between predictors and Brewer’s sparrow counts were
linear. For green-tailed towhees, the best scale for predictors with a quadratic relationship was
tall sagebrush cover within 1 km, and shrub and sagebrush height within 564 m. The best scale
for linear predictors was bare ground and litter within 30 m, and herbaceous cover within 5 km.
For sagebrush sparrows, the best scale for quadratic predictors was all sagebrush cover within 1
km and shrub height within 564 m. The best scale for linear predictors was bare ground within 1
km, and sagebrush height, herbaceous cover, and litter within 5 km. For sage thrashers, the best
scale for a quadratic predictor was tall sagebrush cover within 564 m, and the best scale for
linear predictors was herbaceous cover within 5 km, litter within 564 m, and shrub height,
sagebrush height, and bare ground within 30 m. All predictors demonstrated a linear relationship
with sage-grouse occurrence and the best scale for each variable was all sagebrush cover, bare
ground, litter, and shrub height within 30 m, herbaceous cover within 5 km, and sagebrush height

within 564 m.

The best Brewer’s sparrow model included tall sagebrush cover within 1 km (BIC =
1259.51; Table 4.2), followed by a model including tall sagebrush cover and herbaceous cover
within 5 km (BIC = 1260.54), and a third model with herbaceous cover and sagebrush height
within 30 m (BIC = 1262.33). Brewer’s sparrow counts increased with greater sagebrush and
herbaceous cover and taller sagebrush shrubs (Fig. 4.2; Table 4.3). The best green-tailed towhee
model included tall sagebrush cover within 1 km (plus a quadratic term) and herbaceous cover
within 5 km (BIC = 493.55; Table 4.2). Towhee counts peaked at approximately 13% tall
sagebrush cover and with greater herbaceous cover (Fig. 4.3; Table 4.3). The best sagebrush
sparrow model included shrub height within 564 m (plus a quadratic term; BIC = 322.94),

followed by a model including shrub height and herbaceous cover within 5 km (BIC = 326.76;
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Table 4.2). Sagebrush sparrow counts peaked for shrubs approximately 15 cm tall and with less
herbaceous cover (Fig.4.4: Table 4.3). The best sage thrasher model included no predictors (null
model; BIC = 728.05), followed by a model including tall sagebrush cover within 564 m (plus a
quadratic term; BIC = 731.20), and a third best model including sagebrush height within 30 m
(BIC =731.74; Table 4.2). Sage thrasher counts peaked at approximately 10% tall sagebrush
cover and for taller sagebrush shrubs (Fig. 4.5; Table 4.3). The best sage-grouse model included
litter within 30 m (BIC = 404.05; Table 2), followed by all sagebrush cover within 30 m (BIC =
404.09), shrub height within 30 m (BIC = 406.05), all sagebrush cover plus herbaceous cover
within 5 km (BIC = 406.44), and shrub height plus herbaceous cover (BIC = 407.01). There were
other competitive univariable models, such as bare ground within 30 m and herbaceous cover
within 5 km (Table 4.2). However, these variables were highly correlated with litter (R > | 0.7 | )
in the best model and were thus, excluded. Similarly, shrub height plus litter was competitive but
excluded because of its similarity to the higher-ranked shrub height plus herbaceous cover
model. Sage-grouse probability of occurrence increased with an increase in litter, herbaceous
cover, all sagebrush cover, and shrub height (Table 4.3). For model assessment metrics, see

Table 4.2.
Umbrella Concept

For the estimated songbird densities (Distance-adjusted) and apparent sage-grouse
occurrence per plot, the correlation was positively weak for all species. The correlation between
estimated Brewer’s sparrow densities and apparent sage-grouse occurrence was 0.28, for green-
tailed towhee densities it was 0.19, and for sage thrasher densities it was 0.18 (all correlations
were significant [p < 0.05]). The correlation was 0.15 for sagebrush sparrows and sage-grouse

occurrence in West Moffat only (p =0.14).
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Based on our sage-grouse models, sage-grouse are likely to occur in 41% of the overall
sage-grouse range north of the Yampa River with probability >0.52 (Fig. 4.6). In 56% of the
areas where sage-grouse are likely to occur, species richness was two species (Fig. 4.6). In 42%
of areas likely to be occupied by sage-grouse, richness was three species, and all four species
were predicted to occur in just 1.5% of areas likely to be occupied by sage-grouse (Fig. 4.6). In
areas likely to be occupied by sage-grouse, average Brewer’s sparrow density was 3.43 birds/ha
(Fig. 4.7), average green-tailed towhee density was 1.04 birds/ha (Fig. 4.8), average sagebrush
sparrow density was 0.03 birds/ha (Fig. 4.9), and average sage thrasher density was 0.75 birds/ha
(Fig. 4.10). In comparison, average songbird density for the entire study area irrespective of
where sage-grouse are likely to occur was 2.74 Brewer’s sparrows/ha, 0.55 green-tailed
towhees/ha, 0.54 sagebrush sparrows/ha, and 0.72 sage thrashers/ha. Based on our hypothesis,
sage-grouse could be an effective umbrella species for Brewer’s sparrows and green-tailed
towhees in our study area, but not for sagebrush sparrows, and results are inconclusive for sage

thrashers.

Discussion

Knowing where sage-grouse or songbirds occur and where their fitness is greatest should
help biologists prioritize habitats for management and conservation efforts for those species
(Aldridge and Boyce 2007). Further, understanding the environmental features and scales that
species select in these areas should guide efforts to manage for resources to sustain or enhance
populations, especially for species of conservation concern. Although greater sage-grouse did not
receive federal protection in 2015 (U.S. Fish and Wildlife Service 2015), their populations
continue to decline throughout their range (Garton et al. 2011) and they are a species of concern

in Colorado due to local population declines (Colorado Greater Sage Grouse Steering Committee
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2008). In Colorado, all four songbird species included in our modeling effort are also species of
conservation concern due to habitat loss from energy extraction, urban development, agricultural
conversion, and pinyon-juniper encroachment (Pinus spp.-Juniperus spp.; Boyle and Reeder
2005). Therefore, our study in Northwest Colorado elucidated important relationships between

sagebrush avifauna and their environment and between the avifauna species themselves.

Given different species’ needs and home range sizes, such as sage-grouse and songbirds
(Knick and Rotenberry 2002), environmental information needs to encompass large areas and
incorporate multiple scales of habitat selection (Johnson 1980). This is particularly important
when defining a species as an umbrella because the species should have a large home range that
encompasses species with smaller home ranges and nuanced habitat requirements (Hanser and
Knick 2011). For example, Capercaillie (Tetrao urogallus) could be useful as an umbrella for
other subalpine forest avian species in the Swiss Prealps with smaller home ranges but similar
habitat requirements (Suter et al. 2002). Previous studies have reached different conclusions
concerning greater sage-grouse as an umbrella species. Rowland et al. (2006) found only
moderate overlap between Brewer’s sparrows and sage-grouse habitat for broad landcover
associations within the species’ ranges in the Great Basin. Brewer’s sparrows, sage thrashers,
sagebrush sparrows, and green-tailed towhees had greater overlap with sage-grouse along a
multi-scaled environmental gradient spanning Wyoming/basin big sagebrush (A. t. tridentata) to
grass cover (Hanser and Knick 2011). They recommended a multi-scaled approach to assess the
effectiveness of sage-grouse as an umbrella species because the strength and direction of
association between sage-grouse and passerine species varied across scales (Hanser and Knick
2011). Finally, Brewer’s and sagebrush sparrow and sage thrasher abundance throughout the

western U.S. was greater for landscapes containing active sage-grouse leks, which was attributed
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to greater sagebrush cover surrounding leks (Donnelly et al. 2016). However, no leks in

Colorado were included in the analysis.

In Northwest Colorado, we found that greater sage-grouse could be an effective umbrella
for sagebrush or shrub-obligate songbird species, but these relationships were scale-dependent.
When comparing apparent sage-grouse occurrence and estimated songbird densities at the plot
level, we found a moderately positive correlation between sage-grouse and Brewer’s sparrows,
green-tailed towhees, and sage thrashers (R = 0.18-0.29). Correlation was also slightly positive
between sage-grouse and sagebrush sparrows (R = 0.15), but only when comparing plots in the
West Moffat site where sagebrush sparrows were more prevalent. The lack of a stronger positive
correlation between sage-grouse and the songbirds could be a mismatch of scales when
comparing a wide-ranging species to species with much smaller territory sizes. The plot area for
sage-grouse pellets (0.03 ha) was smaller than the plot area for songbird densities (1 ha). A larger
survey plot for pellets could have increased the overlap between sage-grouse occurrence and
songbird densities, especially given the much larger home range sizes for sage-grouse (Connelly
et al. 2000). In addition, previous studies have shown that songbird habitat relationships change
depending on the scale of inference (Wiens and Rotenberry 1981, Wiens et al. 1987). For
example, sage thrashers respond positively to shrub cover at a biogeographic scale, but may
prefer less shrub cover at smaller scales within sagebrush rangelands (Wiens et al. 1987).
Therefore, one should expect the correlation between sage-grouse and songbird habitat selection

to vary depending on scale.

When evaluating model-predicted songbird densities across the study area, we illustrated
higher Brewer’s sparrow and green-tailed towhee densities within areas likely to contain sage-

grouse. Sage-grouse were more likely to be an effective umbrella for Brewer’s sparrows and
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green-tailed towhees because these three species selected for similar features at similar scales
(Table 4.3). Sage-grouse, Brewer’s sparrows, and green-tailed towhees all selected for greater
herbaceous cover at the largest scale. In addition, sage-grouse and Brewer’s sparrows both
selected for taller sagebrush shrubs at the smallest scale and greater sagebrush cover. It was not
surprising that correlation was greatest between sage-grouse and Brewer’s sparrows because this
songbird is typically the most common species detected in sagebrush rangelands (Wiens and
Rotenberry 1981, Aldridge et a. 2011), and we also detected Brewer’s sparrows at a majority of
the plots where sage-grouse were detected. Within sagebrush rangelands, green-tailed towhees
often breed in structurally diverse habitats comprised of various shrub species from mountain big
sagebrush to pinyon-juniper (Wiens and Rotenberry 1981, Aldridge et al. 2011), so they are not
as dependent on sagebrush as sage-grouse. For both Brewer’s sparrows and green-tailed towhees,
a majority of higher predicted densities were captured within areas likely to be occupied by sage-

grouse (Fig. 4.7 and 4.8).

In contrast, we found the opposite pattern for sagebrush sparrows: lower densities were
generally captured within areas likely to be occupied by sage-grouse (Fig. 4.9). Sagebrush
sparrows were associated with shorter shrubs and less herbaceous cover in contrast to sage-
grouse, which selected for taller sagebrush shrubs and greater herbaceous cover. Sage-grouse
also preferred areas with greater sagebrush cover, whereas sagebrush sparrows were only
prevalent in our study area with less shrub cover. In a nearby study site in Northwest Colorado,
sagebrush sparrows were associated with the ecological site that had larger gaps between shrubs
and a greater density of shorter shrubs compared to other ecological sites (Williams et al. 2011).
Sagebrush sparrow abundance in the Wyoming Basin was similarly greater for sagebrush

landscapes containing lower sagebrush cover (Aldridge et al. 2011). The birds may prefer more
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open areas with less shrub and herbaceous cover because they walk between nests and forage on

the ground (Martin and Carlson 1998).

Even though other studies have determined that sage-grouse could be an effective
umbrella for sagebrush sparrows at regional scales (Hanser and Kick 2011), sagebrush sparrows
do not occur throughout sagebrush rangelands in Colorado, but are restricted to a few sub-
regions where shrub and ground cover are less (Boyle and Reeder 2005, Bird Conservancy of the
Rockies 2016). Therefore, overlap between sagebrush sparrow and sage-grouse habitat may
undoubtedly be less in our study area. Further, if we had examined overlap between sagebrush
sparrow densities and sage-grouse occurrence at larger scales, such as multi-state regions, we
may have found a positive relationship similar to previous studies (Hanser and Knick 2011,
Donnelly et al. 2016). At larger scales, differences in shrub height or herbaceous cover may not
matter as much as simply occurring within sagebrush rangelands. In central Wyoming, the
relationship between sagebrush sparrow abundance and sage-grouse pellet counts at a small scale

was also negative (Carlisle 2017).

We found almost no relationship between probability of sage-grouse occurrence and
predicted sage thrasher densities, as average sage thrasher density was only slightly higher in
areas likely to contain sage-grouse (0.75 birds/ha) compared to the total study area (0.72
birds/ha). However, we detected sage thrashers at a majority of the plots where we detected sage-
grouse pellets, so sage thrashers were using areas used by sage-grouse. Further, both sage
thrashers and sage-grouse preferred areas with taller sagebrush shrubs at the smallest scale
(Table 4.3), although sage thrashers preferred moderate amounts of sagebrush cover (10%) rather
than increasing sagebrush cover as sage-grouse preferred. The lack of a stronger relationship

between predicted sage-grouse occurrence and sage thrasher density is in contrast to previous
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studies, which examined overlap in sage-grouse and sage thrasher habitat at large scales (e.g.,
Hanser and Knick 2011). However, a recent study examining the relationship between sage-
grouse pellet counts and songbird abundance also found no relationship between pellet and

thrasher abundance (Carlisle 2017).

Because our best sage thrasher models included no predictors or explained little variation,
we may have missed important features for sage thrasher habitat in our study area and therefore,
underestimated the strength of the relationship between sage-grouse and sage thrashers. For
example, amount of landscape fragmentation was an important predictor for sage thrashers in
previous studies (Knick and Rotenberry 1995, Vander Haegen 2007), although our study area
had relatively little fragmentation from roads or energy development. Previous studies have also
found sage thrashers selecting for environmental features at scales larger than 5-km extents
(Aldridge et al. 2011). However, due to the extent of our remotely sensed product, we could not
investigate scales >5-km. Our count model for thrashers was also zero inflated with mostly
single counts and few plots containing multiple detections. Therefore, we examined logistic
regression models post-hoc for no predictors and tall sagebrush cover within 564 m to see if we
could better predict sage thrasher occurrence. The logistic regression models had ROC scores of

0.50-0.56 indicating that they were not an improvement over count models (Hilbe 2011).

Because sage-grouse and sagebrush-associated species require sagebrush rangelands year
round or during the breeding season, managing for large landscapes of sagebrush should be
beneficial for all species (Braun et al. 1976, Knick et al. 2003). Within sagebrush rangelands
however, the species respond to different features at different scales and quantities, so sagebrush
landscapes must also be managed for heterogeneity (Wiens et al. 1987, Connelly et al. 2011,

Hanser and Knick 2011). For example, sagebrush sparrows in our study area selected larger
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landscapes with less ground cover in contrast to Brewer’s sparrows, green-tailed towhees, and
sage-grouse. Therefore, managing for a single species, even a wide-ranging species like greater
sage-grouse, may not be the best management strategy. Other approaches may offer a better
solution to balance habitat needs for multiple species. An ecosystem approach to managing
sagebrush rangelands rather than a single-species focus, as the Endangered Species Act
encourages, may be a better alternative (Boyd et al. 2014). Complex management problems, such
as exotic grass invasion, cannot be addressed within a regulatory, single-species framework, but
require solutions that promote management trajectories towards ecosystem health (Boyd et al.
2014). State-and-transition models (STM) are one tool managers could use to promote various
plant communities based on their contribution to ecosystem health and ecosystem services
provided (Bestelmeyer et al. 2003, Boyd et al. 2014). Further, STMs could promote management
of multiple states that provide greater structural diversity and habitat for sagebrush-associated
species that have conflicting preferences for bare ground, shrub cover, or shrub height (Derner et

al. 2009).

Another management approach that extends umbrella species management is a multi-
species strategy, whereby a set of focal species dictate management and conservation efforts
(Roberge and Angelstam 2004). A multi-species focus would be ideal when an ecosystem
contains several species of conservation concern because there could be conflicting needs for >2
focal species that must be balanced within the overall ecosystem (Simberloff 1998). All focal
species included in our analysis have experienced population declines either range-wide or
within Colorado and could warrant federal protection in the future (Knick et al. 2003). The
selected focal species for an ecosystem should span spatial scales in terms of resource

requirements and response to disturbances (Roberge and Abgelstam 2004). In our study, this
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would include the four songbird species and sage-grouse, which selected various scales of
environmental features. We estimated species richness at two species for a majority of the study
area; however, management efforts could be more effective if they targeted areas predicted to
include three or four songbird species within areas likely to contain sage-grouse. In our study,
habitat to the east of Little Snake River in Moffat County appears to support the greatest number

of species where sage-grouse are also likely to occur (Fig. 4.6).

In addition, many landscapes, such as sagebrush rangelands, are diverse and should be
managed for their natural heterogeneity rather than for narrow guidelines at a small scale (e.qg.,
Connelly et al. 2000). This should promote habitat for multiple species (Hanser and Knick 2011)
and possibly benefit the entire ecosystem. Biologists and managers also need to support multiple
species and a diversity of habitats within an ecosystem because we lack complete knowledge

about requirements for all species at all scales (Roberge and Angelstam 2004, Leu et al. 2011).

Management Recommendations

We described multi-scaled habitat relationships for several avifauna species of concern in
Colorado and evaluated the use of greater sage-grouse as an umbrella species. These models
could be applied in a multi-species management approach rather than managing for sage-grouse
habitat alone. However, fine-scale measures known to be important for sage-grouse and
sagebrush-associated species, such as grass height or perennial forb cover, should be also
considered in modeling and management efforts. For instance, Hanser and Knick (2011)
combined fine-scale measures with multi-scaled remotely sensed layers to gain a better
understanding of how species may select and partition their environment. Additionally, our use
of sage-grouse pellets to reflect habitat use, as has been demonstrated in other studies (Dahlgren

et al. 2006), may still warrant consideration of other methods to determine habitat preferences

139



(i.e., radio telemetry) and links to fitness consequences across life stages. This could help
managers confirm purported benefits of conservation actions, such as removal of conifer trees.
Given the loss of sagebrush rangelands across the western U.S. and subsequent decline in
sagebrush-associated species, biologists and managers must find the best strategy to conserve
multiple species. But the first step must be disentangling resource needs for these species at

multiple scales in order to understand potential impacts of management efforts.
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Table 4.1. Definitions of multi-scaled predictors used in logistic and count-based regression
models for greater sage-grouse and sagebrush-associated songbirds in Northwest Colorado,

2013-2015.

Predictor® Predictor Description

bs_30m percentage of big sagebrush cover within a 30 x 30-m pixel

bs 564m percentage of big sagebrush cover within a 564-m moving window
bs_1km percentage of big sagebrush cover within a 1-km moving window
bs 5km percentage of big sagebrush cover within a 5-km moving window
as_30m percentage of all sagebrush cover within a 30 x 30-m pixel
as_564m percentage of all sagebrush cover within a 564-m moving window
as_1km percentage of all sagebrush cover within a 1-km moving window
as_5km percentage of all sagebrush cover within a 5-km moving window
shrub_30m percentage of total shrub cover within a 30 x 30-m pixel
shrub_564m percentage of total shrub cover within a 564-m moving window
shrub_1km percentage of total shrub cover within a 1-km moving window
shrub_5km percentage of total shrub cover within a 5-km moving window

tallSage_30m”
tallSage_564m

percentage of all sagebrush cover within a 30 x 30-m pixel
percentage of all sagebrush cover within a 564-m moving window

tallSage_1km percentage of all sagebrush cover within a 1-km moving window
tallSage_5km percentage of all sagebrush cover within a 5-km moving window
herb_30m percentage of herbaceous understory within a 30 x 30-m pixel
herb_564m percentage of herbaceous understory within a 564-m moving window
herb_1km percentage of herbaceous understory within a 1-km moving window
herb_5km percentage of herbaceous understory within a 5-km moving window
litter_30m percentage of litter within a 30 x 30-m pixel

litter_564m percentage of litter within a 564-m moving window

litter_1km percentage of litter within a 1-km moving window

litter_5km percentage of litter within a 5-km moving window

bare_30m percentage of bare ground within a 30 x 30-m pixel

bare_564m percentage of bare ground within a 564-m moving window
bare_1km percentage of bare ground within a 1-km moving window

bare_5km percentage of bare ground within a 5-km moving window

shrubHT_30m
shrubHT_564m
shrubHT_1km
shrubHT_5km

shrub height (cm) within a 30 x 30-m pixel

shrub height (cm) within a 564-m moving window
shrub height (cm) within a 1-km moving window
shrub height (cm) within a 5-km moving window

sageHT_30m sagebrush height (cm) within a 30 x 30-m pixel
sageHT_564m sagebrush height (cm) within a 564-m moving window
sageHT_1km sagebrush height (cm) within a 1-km moving window
sageHT_5km sagebrush height (cm) within a 5-km moving window

& All biotic predictors based on Homer et al. 2012,
® For sagebrush shrubs < 29 cm tall.
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Table 4.2. Logistic and count-based regression models for greater sage-grouse use and sagebrush-associated songbird density in
Northwest Colorado, 2013-2015. For each model, we report log-likelihood (LL), number of parameters (K), Bayesian Information
Criterion (BIC), difference in BIC compared to lowest BIC of the model set (ABIC), BIC weight (w), pseudo-R? value, prediction
error from five-fold cross validation, p-value from likelihood ratio test, and receiver operating characteristic score (ROC) for sage-
grouse logistic regression models.

RZ

Model® LL K BIC ABIC w error  p-value

Brewer's tallsage_1km 621.20 3 125951 0.00 051 0.03 287 <0.001
sparrow: tallsage_1km + herb_5km 618.86 4 126054 103 031 0.04 3.07 <0.001
sageHT _30m + herb_5km 619.76 4 126233 282 0.12 0.03 3.08 <0.001

sageHT_30m 623.76 3 126464 513 004 0.03 3.08 <0.001
shrubHT_30m + herb_5km 62229 4 126739 788 0.01 0.03 3.08 <0.001

herb_5km 625.39 3 126790 839 001 0.03 3.08 <0.001

sageHT _30m + litter 564m 623.75 4 1270.32 1081 0.00 0.03 3.09 <0.001
shrubHT_30m 628.20 3 127352 1401 0.00 0.02 3.09 <0.001

bare_30m 629.68 3 127648 1697 0.00 0.02 3.09 <0.001
shrubHT_30m + litter_564m 62787 4 127856 19.05 0.00 0.02 3.09 <0.001

litter 564m 633.71 3 128453 25.02 0.00 0.01 310 <0.001

Green-tailed tallSage 1km + tallSage_1km? + herb_5km 232.51 5 493.55 0.00 095 020 276 <0.001
towhee: tallSage_1km + tallSage_1km? 238.42 4 499.66 6.11 0.04 0.18 250 <0.001
tallSage_1km + tallSage_1km? + litter_30m 237.61 5 503.73 1018 0.01 0.18 2.60 <0.001

bare_30m 248.53 3 51417 20.62 0.00 0.14 254 <0.001

herb_5km 248.63 3 51438 20.83 0.00 0.14 249 <0.001

sageHT 564m + sageHT 564m? 246.07 4 51496 2141 000 0.15 3.31 <0.001

litter_30m 259.53 3 536.17 4262 0.00 0.10 229 <0.001

shrubHT 564m + shrubHT 564m2 257.11 4 537.03 43.48 0.00 0.11 258 <0.001

Sagebrush  shrubHT_564m + shrubHT_564m? 154.53 4 322.94 0.00 087 0.19 425 <0.001
sparrow: shrubHT _564m + shrubHT_564m? + herb_5km  154.13 5 326.76 3.82 013 020 3.90 <0.001
as_1km +as_1km?® 160.21 4 33430 1136 000 0.16 289 <0.001
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Table 4.2 cont.

Model LL K BIC ABIC W R error  p-value
Sagebrush  sageHT 5km 16424 3 337.72 1478 0.00 0.14 2.06  <0.001
sparrow: as_1km +as_1km? + herb_5km 160.19 5 33889 1595 0.00 0.16 292  <0.001
bare_1km 17026 3 349.76 26.82 0.00 0.11 2.04  <0.001
litter_5km 17129 3 35183 28.89 0.00 0.11 2.04  <0.001
herb_5km 18295 3 375.14 5220 0.00 0.05 2.06 <0.001
Sage intercept-only 35832 2 728.05 0.00 0.57 0.00 1.53 NAP
thrasher: tallSage_564m + tallSage 564m? 35419 4 731.20 3.15 0.12 0.01 1.57 NA
sageHT_30m 35731 3 73174 3.69 0.09 0.00 1.55 NA
herb_5km 35750 3 73211 4.06 0.08 0.00 1.52 NA
shrubHT_30m 35781 4 73274 4.69 0.05 0.00 1.53 NA
bare_30m 358.11 3 73333 5.28 0.04 0.00 1.52 NA
litter_564m 35823 3 73357 552 0.04 0.00 1.53 NA
sageHT _30m + herb_5km 357.20 4 737.22 9.17 0.01 0.00 1.53 NA
shrubHT_30m + herb_5km 35747 4 737.76  9.71 0.00 0.00 1.52 NA
Model LL K BIC ABIC W R ROC  p-value
Sage- litter_30m 196.32 2 404.05 0.00 0.24 0.06 0.65 <0.001
grouse: as_30m 196.34 2 404.09 0.04 0.24 0.06 0.67 <0.001
bare_30m 196.79 2 40498 0.93 0.15 0.05 0.65 <0.001
shrubHT_30m 197.32 2 406.05 2.00 0.09 0.05 0.66  <0.001
herb_5km 19748 2 406.37 2.32 0.08 0.05 0.63  <0.001
as_30m + herb_5km 19466 3 406.44 2.39 0.07 0.06 0.67 <0.001
shrubHT_30m + herb_5km 19495 3 407.01 296 0.05 0.06 0.67 <0.001
sageHT 564m 19840 2 40821 4.16 0.03 0.05 0.66 <0.001

4 Predictors defined in Table 4.1.

® Did not run the likelihood ratio test to compare a null (intercept-only) model against a null model.
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Table 4.3. Beta coefficient estimates (), standard errors (SE), and 95% confidence intervals for
predictors in the top (i.e., ABIC < 4) logistic and count-based regression models for greater sage-
grouse use and sagebrush-associated songbird density in Northwest Colorado, 2013-2015.

95% 95%

Coefficients: B SE Lower Upper

Brewer's model 1:  intercept 0.40 0.07 0.25 0.54
sparrow: tallsage_1km 0.06 0.01 0.05 0.08
model 2:  intercept 0.11 0.15 -0.18 0.41

tallsage _1km 0.05 0.01 0.02 0.07

herb_5km 0.02 0.01 0.002 0.03

model 3:  intercept -0.05 0.15 -0.34 0.23
sageHT_30m 0.01 0.004 0.01 0.02

herb_5km 0.02 0.01 0.01 0.03

Green-tailed model 1:  intercept -6.24 0.67 -7.68 -5.00
towhee: tallSage_1km 0.47 0.09 0.30 0.65
tallSage_1km? -0.02  0.004 -0.03 -0.01

herb_5km 0.09 0.02 0.04 0.14

Sagebrush model 1: intercept -1.94 0.92 -3.89 -0.29
sparrow: shrubHT_564m 0.30 0.11 0.10 0.54
shrubHT 564m*>  -0.01  0.003 -0.02 -0.01

model 2:  intercept -1.74 0.96 -3.75 0.01
shrubHT_564m 0.31 0.11 0.11 0.56

shrubHT 564m?>  -0.01  0.003 -0.02 -0.01

herb 5km -0.03 0.04 -0.10 0.04

Sage model 1:  intercept -1.52 0.09 -1.69 -1.34
thrasher: model 2:  intercept -1.84 0.15 -2.14 -1.55
tallSage_564m 0.14 0.05 0.04 0.23

tallSage_564m? -0.01  0.003 -0.01 -0.002

model 3:  intercept -1.72 0.16 -2.05 -1.39

sageHT 30m 0.01 0.01 -0.003 0.02

Sage-grouse: model 1: intercept -1.29 0.31 -1.91 0.70
litter_30m 0.06 0.01 -0.03 0.08

model 2: intercept -0.84 0.22 -1.28 -0.42

as_30m 0.08 0.02 0.05 0.12

model 3: intercept -0.98 0.25 -1.48 -0.49
shrubHT_30m 0.03 0.01 0.02 0.05

model 4:  intercept -1.30 0.34 -1.98 -0.65

as_30m 0.06 0.02 0.01 0.10

herb_5km 0.03 0.02 -0.002 0.07
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Table 4.3 cont.

95% 95%

Coefficients: B SE Lower Upper

Sage-grouse: model 5: intercept -1.45 0.34 -2.13 -0.80
shrubHT_30m 0.02 0.01 0.002 0.04
herb_5km 0.04 0.02 0.004 0.07

2 Predictors defined in Tables 4.1.
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Figure 4.1. Study area for songbird and greater sage-grouse pellet surveys, 2013-2015, with two
study sites outlined and labeled (West Moffat on the left and East Moffat to the right) and the
overall greater sage-grouse range north of the Yampa River only represented by stippling
(Colorado Parks and Wildlife 2011).
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Figure 4.2. Predicted variable relationships and 95% confidence intervals for the top negative
binomial models of Brewer’s sparrows and multi-scaled predictors in Northwest Colorado, 2013-
2015. Variable relationships were similar across top three models (see Table 4.3).
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Figure 4.3. Predicted variable relationships and 95% confidence intervals for the top negative
binomial model of green-tailed towhees and multi-scaled predictors in Northwest Colorado,
2013-2015.
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Figure 4.4. Predicted variable relationships and 95% confidence intervals for the top Poisson
models of sagebrush sparrows and multi-scaled predictors in Northwest Colorado, 2013-2015.
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Figure 4.5. Predicted variable relationships and 95% confidence intervals for the top negative
binomial models of sage thrashers and multi-scaled predictors in Northwest Colorado, 2013-
2015, excluding the intercept-only model.
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Figure 4.6. Predicted species richness for Brewer’s sparrows, green-tailed towhees, sagebrush
sparrows, and sage thrashers within the overall greater sage-grouse range (Colorado Parks and
Wildlife 2011) in Northwest Colorado. Stippled areas indicate where sage-grouse are likely to
occur with probability >0.52 and richness was calculated based on a minimum density to support
a songbird territory (i.e., 0.42 Brewer’s sparrows/ha, 1.11 green-tailed towhees/ha, 0.59 sage
thrashers/ha, and 0.14 sagebrush sparrows/ha; Boyle and Reeder 2005, Poole 2005).
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Figure 4.7. Predicted Brewer’s sparrow density within the overall greater sage-grouse range
(Colorado Parks and Wildlife 2011) in Northwest Colorado. Stippled areas indicate where sage-

grouse are likely to occur with probability >0.52.
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Figure 4.8. Predicted green-tailed towhee density within the overall greater sage-grouse range
(Colorado Parks and Wildlife 2011) in Northwest Colorado. Stippled areas indicate where sage-

grouse are likely to occur with probability >0.52.
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Figure 4.9. Predicted sagebrush sparrow density within the overall greater sage-grouse range
(Colorado Parks and Wildlife 2011) in Northwest Colorado. Stippled areas indicate where sage-
grouse are likely to occur with probability >0.52.
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Figure 4.10. Predicted sage thrasher density within the overall greater sage-grouse range
(Colorado Parks and Wildlife 2011) in Northwest Colorado. Stippled areas indicate where sage-
grouse are likely to occur with probability >0.52.
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CHAPTER V. CONCLUSION

Given a decline in sage-grouse (Centrocercus spp.) and songbird populations and a loss
of sagebrush rangelands (Knick et al. 2003), managers need to understand habitat relationships
for these species at small and large scales, as well as the impact of managing for a single species.
Managers must also have a better understanding of how landscape patterns may influence
transitions between habitat types, and how these changes in turn, affect avifauna populations.
Further, this information should be gleaned with participation of local stakeholders to elucidate
local phenomena and concerns and ensure the information is used for local management of
wildlife and rangelands (Kachergis et al. 2013, Bruegger et al. 2016). Taken together, these
conditions should foster an ecosystem approach for tackling avifauna population declines and
loss of habitat, in which the provision of multiple ecosystem services for multiple stakeholders is

paramount (Boyd et al. 2014).

In my second chapter, | incorporated avifauna densities and species richness into a locally
developed STM for sagebrush rangelands (Tipton 2015). My purpose was to address multiple
ecosystem services within the model and gauge the impact of local management decisions on
avifauna populations. I also learned about several avifauna species’ habitat relationships for
Northwest Colorado. I predicted higher species richness and greater densities for sagebrush-
associated species and lower densities for grassland-associated songbirds in the states or
community phase dominated by sagebrush cover. However, each species responded to fine-
scaled predictors differently, indicating that a “one-size-fits-all” management approach could be
detrimental. For example, green-tailed towhees (Pipilo chlorurus) preferred the diverse
shrubland state with taller shrubs and greater shrub and ground cover, while sagebrush sparrows

(Artemisiospiza nevadensis) preferred areas with moderate shrub cover and more bare ground.

163



The native grassland state, which resulted from several wildfires, provided the most herbaceous
forage and promoted higher densities for grassland-associated species, such as vesper sparrows
(Pooecetes gramineus). By incorporating habitat relationships for each species in the states and
communities, local managers can predict how avifauna populations will respond to a change in
over or under story from drivers, such as wildfire, and determine which state(s) promotes the
greatest densities for the most species (Holmes and Miller 2010). This was the first attempt to
use a participatory process to build locally relevant STMs with multiple ecosystem services, such
as livestock forage and avifauna habitat (Bruegger et al. 2016). In particular, landowners were
concerned that wildfires removed greater sage-grouse habitat (C. urophasianus), but I predicted
higher than expected pellet densities for the native grassland state due to unburned patches of
sagebrush and surrounding shrub cover. This approach also illustrated the value of landscape
heterogeneity as the management of one state or phase over another could be detrimental to other

species.

In the third chapter, | took the same locally developed STM and mapped the states within
the study area using a novel approach for sagebrush rangelands. A previous approach employed
more steps to manually map states in the Chihuahuan Desert in order to preserve fine scale soil
variation (Steele et al. 2012). My approach included multinomial logistic regression with biotic
and abiotic predictors (including site history) for extrapolating sampling plots to an entire area of
interest. The STM included four states: diverse shrubland, needle-and-thread (Hesperostipa
comata) shrubland, native grassland, and crested wheatgrass (Agropyron cristatum). The top
model included big sagebrush (Artemisia tridentata spp.) cover and elevation with greater
sagebrush cover discriminating diverse shrubland from native grassland pixels and higher

elevations discriminating diverse from needle-and-thread shrubland pixels. The two shrubland
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states comprised approximately 67% of the study area, while the exotic grassland state
comprised the lowest proportion (1%). The shrubland states were also the most contiguous while

the exotic grassland state was the least.

Model classification accuracy indicated that the approach was successful, although future
endeavors should incorporate greater sample sizes to address variability within the area of
interest, such exotic grassland-dominated plots. Managers could combine the spatially
represented states with values for ecosystem services, such as wildlife habitat, livestock forage,
or soil stability to guide management decisions and scenario planning (Troy and Wilson 2006).
This method could also allow managers to identify landscape patterns that may influence
undesirable transitions between states, such as the spread of cheatgrass (Bromus tectorum)-
dominated patches to surrounding sagebrush communities (Miller et al. 2011). By examining
these patterns, managers could target the degraded areas for restoration efforts to prevent the
transitions. Spatially represented STMs could also increase the rigor of rangeland management if
they were used to design assessment and monitoring programs in a probabilistic, hierarchical
fashion or to target areas for experiments to test and quantify transition probabilities (Briske et

al. 2005, Bestelmeyer et al. 2011).

For the last chapter, | examined the efficacy of greater sage-grouse as an umbrella for
several sagebrush-associated songbirds in Northwest Colorado. To determine this, | first
modeled songbird abundance and sage-grouse occurrence with multi-scaled predictors, and then
examined the overlap in sage-grouse habitat for each songbird at two scales. These results are
important because all four species included in the analysis are species of conservation concern in
Colorado (Boyle and Reeder 2005) and the use of greater sage-grouse as an umbrella has not

been examined in a small region or in northern Colorado (but see Lukacs et al. 2015 for
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Gunnison sage-grouse). The best predictors for all species in this study included some form of
shrub cover or shrub height, which is not surprising for sagebrush-associated species (Knick et
al. 2008). However, the birds responded to these features at different scales, which previous
studies have also found (e.g., Wiens et al. 1987, Aldridge et al. 2011). For example, Brewer’s
sparrows (Spizella breweri) preferred greater sagebrush cover within 1-km and taller sagebrush
shrubs within the smallest scale (i.e., 30 m), whereas shorter shrubs (approximately 15 cm tall)
within 564 m and less herbaceous cover at the largest scale were the best predictors for
sagebrush sparrows. Sage-grouse occurrence was positively associated with all sagebrush cover,
sagebrush height, and litter at the smallest scale and herbaceous cover at the largest scale, which
corresponds with previous studies for the species (e.g., Connelly et al. 2000, Holloran et al. 2005,

Kirol et al. 2012).

Based on the model-predicted surfaces in the fourth chapter, | determined that sage-
grouse could be an effective umbrella for Brewer’s sparrows and green-tailed towhees, but
sagebrush sparrow populations could decline if management efforts in the study area promoted
sage-grouse habitat. This latter result is contrary to previous studies (Hanser and Knick 2011),
but the umbrella concept has not been examined for sage-grouse in Northwest Colorado and
sagebrush sparrows do not occur throughout sagebrush habitat in Colorado (Boyle and Reeder
2005). In this study, the best approach for avifauna management would likely be a multi-species
strategy, whereby a set of focal species dictate management and conservation efforts (Roberge
and Angelstam 2004). This strategy would be ideal when an ecosystem contains several species
of conservation concern, which could have conflicting needs and respond to environmental

features at different scales (Simberloff 1998, Roberge and Abgelstam 2004). By promoting
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habitat for multiple species, managers should prioritize landscape diversity within sagebrush

rangelands, which could also benefit the entire ecosystem

Together, these three chapters illustrate the value of locally informed, data-driven STMs
and the need to manage for landscape heterogeneity. The STM was improved by insight from
local participants on seeding history, and participant concerns, such as sage-grouse use in burned
landscapes, helped prioritize field sampling. Further, the resulting STM with multiple ecosystem
services and spatially represented states is more likely to be accepted and used by local
landowners and managers, who provided input and were informed during all steps of model
development (Bruegger et al. 2016). The STM illustrates the services provided by every state and
how management for only one state could be detrimental to other services or avifauna species.
Local management efforts for sage-grouse populations and habitat should also be improved with

a greater understanding of habitat needs for other sagebrush-associated species.

This approach of using a participatory process to build locally relevant STMs with
multiple ecosystem services is novel (Bruegger et al. 2016), and as such, | learned several
valuable lessons that could facilitate a smoother process for other researchers or managers who
wish to undertake similar efforts. First, there must be a balance between the amount of landscape
heterogeneity one wishes to include in a model and the resources available to fully capture that
variability with adequate sample sizes for making inferences. Although it is recommended to
include all sources of landscape variability within an ecological site to disentangle management
history, soil-geomorphological properties, and climate (Bestelmeyer et al. 2009), it is not always
possible to address this variability with adequate sampling effort. Therefore, one needs to
prioritize variability in the area of interest, such as disturbed or re-seeded patches. Also,

sampling efforts should be prioritized around stakeholders’ main interests or questions in order
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to adequately address these main concerns and provide locally relevant results. Otherwise, it is
easy to lose focus and get distracted by new questions or lower priority concerns. To best
determine wildlife abundance (or other ecosystem service) per state or community, the
vegetation and soil sampling should precede other sampling efforts, like bird surveys (see
Holmes and Miller 2010). This will help ensure an adequate number of sampling plots are
distributed per state or community for drawing accurate conclusions about services provided
(Holmes and Miller 2010). Lastly, to increase sampling efficiency and sample size, redundant
indicators, such as basal gap and bare ground from line-point intercept (Herrick et al. 2005),

should be discarded as soon as correlation between the indicators is suspected.

Future Research Needs

This dissertation represents new or improved approaches for management of sagebrush
avifauna species and sagebrush rangelands. However, knowledge is never complete and
management efforts can only be improved with further research. One natural extension would be
to combine the efforts of chapters two and three and map the spatially explicit states with their
predicted avifauna densities. This would illustrate potential densities within the entire study area
for songbirds and sage-grouse pellets, the amount of high-quality versus low-quality habitat for
each species, and connectivity of high-quality habitat. Managers could then predict how
populations may change within the landscape if state transitions occur from fire or other drivers.
To better evaluate the umbrella concept and incorporate avifauna habitat in STMs, future
research efforts should also include measuring fitness (e.g., nest success) for each species and
not just use or abundance. Similarly, rather than using sage-grouse pellets as a surrogate for
habitat use, future efforts could radio-mark individual birds to gain a better understanding of

habitat relationships and survival or reproductive output.
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For the spatially represented states in the STM, local efforts could include ground
truthing a random sample of pixels to verify the model’s classification accuracy and increasing
the sample size of crested wheatgrass plots to improve the accuracy for this particular state in the
region. The spatial approach should also be applied in other sagebrush regions to verify its ease
and applicability for land managers. Mapped states could further be combined with simulated
state-and-transition modeling, so land managers could forecast potential state outcomes for
various management actions or disturbances within a region. This exercise could guide iterative
hypothesis-testing, model improvement, and decision-making within an adaptive management
framework to solve complex ecosystem problems or increase the rigor behind transition

probabilities.
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APPENDIX |

Tipton (2015) differentiated two states and two community phases within one state based
on multivariate techniques, and the vegetation clusters were most strongly associated with fire
and seeding history. A needle-and-thread (Hesperostipa comata) shrubland phase contained
cheatgrass (Bromus tectorum; average 13% cover), needle-and-thread grass (average 30%
cover), and 4-36% cover of Wyoming big sagebrush (Artemisia tridentata wyomingensis). The
diverse shrubland phase always contained antelope bitterbrush (Purshia tridentata; average 8%
cover), Wyoming big sagebrush (average 25% cover), and green rabbitbrush (Chrysothamnus
viscidiflorus; <5% cover). Tipton (2015) identified these two shrub-dominated clusters as
community phases within one state due to low effect sizes between plant functional groups.
However, we chose to classify them as states rather than community phases because some
structural differences existed, such as taller shrubs on average in the diverse shrubland cluster
(Tipton 2015). Further, the two shrubland clusters differed based on elevation, and this
separation was potentially linked to management history differences occurring at low and high
elevation (Tipton 2015). Antelope bitterbrush was found predominantly at the higher elevation
sites. Local stakeholders observed that antelope bitterbrush historically occurred in the lower
elevation sites, but declined over the last 50 years and is largely absent now. The higher
elevation sites, where the diverse shrubland plots were most prevalent, lacked historic sheep
grazing and experienced less elk browsing pressure during the winter. Even after several years
without sheep grazing, antelope bitterbrush had not returned to the lower elevation sites,
indicating that the needle-and-thread shrubland phase was likely a persistent state. However, it
would require more targeted grazing exclosure experiments over long periods of time to

thoroughly address these potential transition drivers.
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The native grassland state contained western wheatgrass (Pascopyrum smithii; average
33% cover) and Sandberg bluegrass (Poa secunda; average 13% cover) with <5% shrub cover.
The crested wheatgrass (Agropyron cristatum) state included plots dominated by the exotic grass
(average 41% cover). Due to functional and structural differences, we divided this state into two
community phases (Bestelmeyer et al. 2003): a shrub-dominated phase (average 22.5% shrub
cover) and a grass-dominated phase (average <1% shrub cover). Both phases were seeded with
crested wheatgrass as a homestead property or pipeline scar, but the grass-dominated phase

experienced a wildfire in 2010.
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