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ABSTRACT 

CHAOS THEORY AND ITS APPLICATION IN THE ATMOSPHERE 

Chaos theory is thoroughly reviewed, which includes the bifurcation and routes to tur­

bulence, and the characterization of chaos such as dimension, Lyapunov exponent, and 

Kolmogorov-Sinai entropy. A new method is developed to compute Lyapunov exponents 

from limited experimental data. Our method is tested on a variety of known model 

systems, and it is found that our algorithm can be used to obtain a reasonable Lyapunov­

exponent spectrum from only 5000 data points with a precision of 10-1 or 10-2 in 3-

or 4-dimensional phase space, or 10,000 data points in 5-dimensional phase space. On 

1:he basis of both the objective analyses of different methods for computing the Lyapunov 

exponents and our own experience, which is subjective, this is recommended as a good 

practical method for estiIpating the Lyapunov-exponent spectrum from short time series 

of low precision. 

The application of chaos is divided into three categories: observational data analysis, 

llew ideas or physical insights inspired by chaos, and numerical model output analysis. 

Corresponding with these categories, three subjects are studied. First, the fractal dimen­

sion, Lyapunov-exponent spectrum, Kolmogorov entropy, and predictability are evaluated 

from the observed time series of daily surface temperature and pressure over several regions 

of the United States and the North Atlantic Ocean with different climatic signal-to-noise 

ratios. Although our time series are longer than those used in the previous studies, it is 

found that no saturated value of the correlation dimension can be obtained. However, it 

can be shown that the correlation dimension is greater than 8. It is also pointed out that 

most, if not all, of the previous estimates of low fractal dimensions in the atmosphere are 
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spurious. By means of computing the Lyapunov-exponent spectrum, it is found that the 

error-doubling time is about 2 to 3 days in Fort Collins, Colorado, about 4 to 5 days in Los 

Angeles, California, and about 5 to 8 days in the North Atlantic Ocean. The predictability 

time is longer over regions with a higher climatic signal-to-noise ratio (e.g., Los Angeles), 

and the predictability time of summer and/or winter data is longer than for the entire 

year. The difference between our estimates of the error-doubling time and estimates based 

on General Circulation Models (GCMs) is discussed. 

Second, chaos theory is applied to the study of daisyworld, which is defined as a 

cloudless flat or cylindrical planet with negligible atmospheric greenhouse gases in which 

bare soil and daisies of different colors interact so as to maintain stable climatic conditions. 

It is found that periodic, and even chaotic, states can exist when the parameter controlling 

the feedback between biota and environmental temperature is changed. The existence 

of periodic and chaotic solutions is verified by their power spectra, fractal dimensions, 

and Lyapunov exponents. These results show that stable climatic conditions are not 

always maintained in daisyworld, despite the presence of daisies which supply the required 

feedback. While daisyworld is a simple model, the mathematical analysis of this model 

raises important questions regarding the validity and interpretation of the Gaia hypothesis. 

Finally, using the CSU Regional Atmospheric Modeling System (RAMS) in its nonhy­

drostatic and compressible configuration, over 200 two-dimensional simulations with Ax 

= 2 km and Ax = 100 m are performed to study in detail the initial adjustment process 

and the error-growth dynamics of surface thermally-induced circulations including the 

sensitivity to initial conditions (i.e., the traditional predictability), boundary conditions, 

and model parameters, and to study the predictability as a function of the size of surface 

heat patches under calm mean wind. It is found that the error growth (at least at the 

stage when the surface forcing is strong) is not sensitive to the characteristics of the initial 

perturbations. The numerical smoothing has a strong impact on the initial adjustment 

process and on the error-growth dynamics. The predictability is variable-dependent. The 

mesoscale flow is insensitive to lateral and top boundary conditions. Among the conclu­

sions regarding the influence of the boundary layer structures and model parameters on 
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the predictability and flow structures, it is found that the vertical velocity field is strongly 

affected by the mean wind, and the ilow structures are quite sensitive to the initial soil 

water content. The transition from organized flow to the situation in which fluxes are 

dominated by non-coherent turbelent eddies under calm mean wind is quantitatively evaJ.­

uated and this transition is different for different variables. The relationship between the 

predictability of a realization and of an ensemble average is discussed. The predictability 

and the coherent circulations modulated by the surface inhomogeneities are also studied by 

computing the autocorrelations and the power spectra. The three-dimensional mesoscale 

and large-eddy simulations are performed to verify the above results. It is found that the 

two--dimensional mesoscale (or fine-resolution) simulation yields close or similar results 

regarding the predictability as those from the three-dimensional mesoscale (or large-eddy) 

simulation. The horizontally averaged quantities based on two--dimensional fine-resolution 

simulations agree with those based on three-dimensional large-eddy simulations. By com­

puting the fractal dimensions from the numerical model output, it is found that low (less 

than 5) -dimensional attractors are present for the surface thermally-induced circulations. 

Possible physical processes related to these low dimensions are also discussed. 
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Chapter 1 

INTRODUCTION 

Nonlinear phenomena occur in nature in a wide range of apparently different contexts 

such as hydrodynamic turbulence, chemical kinetics, electronics, ecology, and biology; 

yet they often display common features, or can be understood using similar concepts, 

permitting unification of their study. The similarity of complicated behaviors is not a 

superficial similarity at the descriptive level; instead, it concerns experimental. details. 

This similarity results from the modem theory of nonlinear systems, or, more precisely, the 

qualitative theory of differential dynamical systems, which deals with order within chaos 

and chaos out of order. The former includes such features as solitons, coherent structures, 

and pattern formation , and the la.tter can be studied by computing fractal. dimensions, 

Lyapunov exponents, and the Kolmogorov-Sinai entropy, and by other methods. 

Li and Yorke (1975) seem to be the first to introduce the word chaos into the math­

ematicalliterature to denote the apparently random output of some mappings, although 

the use of the word chaos in physics dates back to L. Boltzmann in the nineteenth century 

in another context unrelated to its present usage. However, there is still no generally 

accepted definition of the word chaos. Usually, chaos (deterministic chaos) refers to the 

irregular, unpredictable behavior in deterministic, dissipative, and nonlinear dynamicaJ. 

systems. It should be emphasized that chaos can not be equated simply with disorder, 

and it is more appropriate to consider chaos as a kind of order without periodicity. It 

is demonstrated in Lorenz (1963) that the sensitive dependence on initial. conditions of a. 

system is related to the aperiodic behavior of the sustem. By dynamical. system we mean 

any system, whatever its nature (e.g., physical), which can take various mathematical. 

forms: differential equations or iterative mappings. A vast number of modes die out due 
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to friction in a dissipative dynamical system, and the asymptotic state of the system can 

be described in a subspace of a much lower dimension, called the attractor. Chaos can also 

occur in Hamiltonian or conservative systems, but this subject requires special methods 

due to the absence of an attractor. 

There were some classical physicists and mathematicians, even in the previous cen­

tury, who had thought about dynamical systems. Hadamard (1898) first observed the 

sensitivity of the solution to initial conditions at the end of the last century in a rather 

special system called geodesic flow. Subsequently, Poincare (1908) discussed sensitivity to 

initial conditions (SIC) and unpredictability at the level of scientific philosophy. (Poincare 

even went on to discuss the problem of weather predictability!) However, their ideas seem 

to have been forgotten until Lorenz (1963) rediscovered them independently in his elegant 

paper entitled "Deterministic non periodic flow" more than half a century later. Therefore, 

Lorenz is regarded as the first to discover the irregular behavior and to analyze it quantita­

tively in completely deterministic dissipative systems. Lorenz used a simple model system 

of three coupled, first-order, nonlinear, ordinary differential equations, a model which car­

ries his name, to model the nonlinear evolution of the Rayleigh-Benard instability, i.e., the 

instability which results when a fluid layer subjected to gravity is heated sufficiently from 

below. By a combination of careful analysis of the numerical solutions and analytical rea­

soning, Lorenz was able to deduce that the solution of his equations is eventually trapped 

in a region of the phase space of the system which has a very intricate (strange) geometric 

structure, and the solution is sensitive to initial conditions. Eight years later, Ruelle and 

Takens (1971), making use of then recent developments in mathematics, proposed a possi­

ble mechanism for the transition from laminar flow to turbulence. Ruelle and Takens were 

the first to introduce the concept of a strange attractor, which is topologically different 

from other attractors, such as point attractors which lead to steady-state solutions, limit 

cycles which lead to periodic solutions, and tori which lead to quasiperiodic solutions. 

The name strange attractor refers to its unusual properties, the most crucial being SIC; 

i.e., two initially close trajectories on the attractor eventually diverge from one another. 

These two independent, pioneering papers triggered an upsurge of research interest among 
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researchers in different fields in an attempt to gain new insights. Since then, especia.lly 

since 1975, publications related to chaos have grown extremely rapidly, and it is not the 

purpose of this study to review a.ll of this progress. Many of the historical papers on chaos 

were assembled into a single reference volume by Hao (1984). A comprehensive treatment 

of chaos with a readable account of many aspects of the subject may be found in Berge et 

al. (1984). Some more recent references can be found in, for example, Campbell (1990) 

and Marek and Schreiber (1991). However, most of the progress in this field so far may 

be roughly divided into two different categories: one involves bifurcation and routes to 

turbulence, and the other consists of quantitative means to recognize, characterize, and 

classify attractors. Here, we only give a brief review. For theories not related to our work, 

only the original references and a few review papers will be citedj for theories related to 

our work, relatively complete references will be cited. 

1.1 Bifurcation and Routes to Turbulence 

Ruelle and Takens (1971) showed that the Landau-Hopf route (Landau, 1944j Hopf, 

1948) to turbulence is unlikely to occur in nature, and proposed a route based on four 

consecutive bifurcations: fixed point --+- limit cycle --+- 2-torus --+- 3-torus --+- strange attrac­

tor (turbulence). A few years later, in collaboration with Newhouse, they reduced this 

scheme to: fixed point --+- limit cycle --+- 2-torus --+- strange attractorj i.e., quasiperiodic 

motion on a 2-torus may lose stability and give birth to turbulence directly (Newhouse 

et al., 1978). This route, ca.lled the Ruelle-Takens route to turbulence, is generic and is 

shown to take place in many models and laboratory experiments, but remains less well 

understood theoretica.lly than the other two routes mentioned below. 

In an excellent review, May (1976) ca.lled attention to the very complicated dynam­

ics, including period-doubling and chaos, in some very simple iterative mappings. Sub­

sequently, Feigenbaum (1978 and 197930) discovered the scaling properties and univer­

sal constants in one-dimensional mappings, and introduced renorma.1.ization-group theory 

into this field. In addition, Feigenbaum proposed another route, which is now ca.lled the 

Feigenbaum route to turbulence: a period-doubling-bifurcation cascade with periods p = 
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2" which quickly coverge to an aperiodic orbit as n -+ 00. This scenario is extremely well 

tested in both numerical and physical systems. The period doublings have been observed 

in experiments such as Rayleigh-Benard convection. 

The third route, ca.lled the Pomeau-Manneville route to turbulence, is through in­

termittency (Pomeau and Manneville, 1980; Manneville and Pomeau, 1980). The term 

intennittency in the context of chaos refers to random alternations of chaotic and regular 

behavior in time without involving any spatial degrees of freedom, which is slightly differ­

ent from the original meaning of intermittency in the hydrodynamic theory of turbulence, 

where intermittency denotes random bursts ofturbulent motion on the background oflam­

inar flow. This scenario and the Feigenbaum scenario are in fact twin phenomena (Hao, 

1984), but its mathematical status is somewhat less satisfactory than that of the other 

two scenarios mentioned above, because its parameter region contains an infinity of (very 

long) stable periods, and because there is no mention as to when the turbulent regime 

is reached or what is the exact nature of this turbulence (Eckmann, 1981). Intermittent 

transitions to turbulence have been seen in many physical experiments. 

Although we are facing a situation of "a.ll routes lead to turbulence", the above 

three routes are the most thoroughly studied. The Ruelle-Takens route is related to Hopf 

bifurcation where a pair of complex eigenvalues cross the unit circle; the Feigenbaum 
'. 

route is associated with pitchfork bifurcation where an eigenvalue crosses the unit circle 

at -1; and the Pomeau-Manneville route is associated with saddle-node bifurcation where 

an eigenvalue crosses the unit circle at +1. A more detailed discussion of these routes is 

given in a review paper by Eckmann (1981). Related to bifurcations is the crises of chaotic 

attractors, i.e., the abrupt changes of the general shapes of attractor at certain parameter 

values, and this is discussed by Grebogi et al. (1982). 

The reason for such intensive studies of the routes to turbulence is that it is believed 

that the key to understanding turbulence may be hidden in the onset mechanism, as 

pointed out by Landau (1944). Turbulence has been a long-standing problem in physics. 

It is no longer a specific problem in hydrodynamics; instead, it has become a general 

concept, relevant to many fields of science such as solid-state turbulence, chemical tur­

bulence, acoustic turbulence, and optical turbulence. On the other hand, it needs to be 
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emphasized that chaos, at least for the time being, concerns mainly irregular behaviors 

in the temporal evolution, and is related only to the onset mechanism of turbulence, i.e., 

to weak turbulence. In contrast, fully-developed turbulence involves both temporal and 

spatial irregularties. 

1.2 Characterization of Chaos 

A simple way to characterize at tractors is via power-spectrum analysis, which is often 

used to qualitatively distinguish quasiperiodic or chaotic behavior from periodic structure 

and to identify different periods embedded in a chaotic signal. Chaos is characterized 

by the presence of broadband noise in the power spectrum. For example, Feigenbaum 

(1979b) used power-spectrum analysis to study the onset spectrum of turbulence. More 

sophisticated tools which are widely used for characterizing at tractors include Lyapunov 

exponents and various definitions of dimensions. 

1.2.1 Dimensions of attractors 

In dissipative systems, the dimension D of an attractor is lower than the dimension 

k of the original phase space, since some modes may damp out due to dissipation. For 

a system whose state may be described by k variables, the corresponding phase space is 

a k-dimensional Euclidean space whose coordinates are those k variables, and each point 

in phase space represents a possible instantaneous state of the system. There are three 

distinct intuitive notions of dimension: one is the topological dimension related to the 

direction of a space (Hurewicz and Wallman, 1948), one is the fractal dimension (or Haus­

dorff dimension) related to the capacity of a space (Mandelbrot, 1983), and one is the 

information dimension related to the measurement of a space (Farmer, 1982). For simple 

attractors such as fixed points, limit cycles, or 2-tori, the separate notions of dimension 

converge to the same integer numbers. However, for chaotic (strange) attractors, these 

dimensions may be different, and they may be noninteger. The topological and fractal 

dimensions require only a metric (Le., distance) for their definitions; whereas, the informa.­

tion dimension needs both a metric and a probability measure for its definition (Farmer, 

1982). It is usually difficult and impractical to compute these dimensions directly. When 
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the Lyapunov-exponent spectrum can be obtained, it is easier to compute the Lyapunov 

dimension, which is related to the information dimension by the Kaplan-Yorke conjecture 

(Fredrickson et al., 1983). It is also relatively easy to compute the correlation dimen­

sion (Grassberger and Procaccia, 198330), which is related to the fractal dimension. The 

computation of the correlation dimension and related problems will be discussed in Chap. 

2. 

The fractal dimension mentioned above is sometimes called mono-fractal, and a mul-

tifractal spectrum is more appropriate for describing many systems. Multifractal measures 

are fundamentally characterized not by a single dimension, but by a dimension function 

(sometimes called the spectrum of singularities) which is simply related to the probability 

distribution (see, e.g., Lovejoy and Schertzer, 1990 and references therein). In the case of 

multifractaJ.ity in fully-developed turbulence, She and Orszag (1991) offered an explana­

tion for the physics behind the multiple exponents, namely, local distortion of turbulent 

structures which modifies the behavior of higher-order moments differentially. 

The above fractals are called thin fractals to distinguish them from fat fractals which 

are sets with fractal structure but a nonzero measure (Eykholt and Umberger, 1988). 

These latter sets allow quantitative analyses of sensitivity to parameters, final-state sen­

sitivity, and quantum chaos, but their fractal dimension is insensitive to their fractal 
., 

structure, because they have the same (integer) dimension as the underlying space. 

The dimension of an attractor measures to what extent the dynamics fills the phase 

space and provides a lower bound for the number of independent variables (degrees of 

freedom) necessary in a phenomenological model to adequately describe the time evolution 

of the system. However, the complexity of a strange attractor cannot be characterized 

merely by its dimension; it must be stretched and folded in some directions as well. These 

more subtle features can be described by Lyapunov exponents. 

1.2.2 Lyapunov exponents of attractors 

Lyapunov exponents are the average rates of exponential divergence or convergence 

of nearby orbits in phase space. The spectrum of Lyapunov exponents provides a quan­

titative measure of the sensitivity to initial conditions (Le., the divergence of neighboring 
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trajectories exponentially in time), and it is the most useful dynamical diagnostic for 

chaotic systems. Lyapunov exponents are independent of initial conditions on any orbit 

(Eckmann and Ruelle, 1985). Any system containing at least one positive Lyapunovexpo­

nent is defined to be chaotic, with the magnitudes of the positive exponens determining the 

time scale for predictability. There are as many Lyapunov exponents as the dimension of 

the phase space (Guckenheimer and Holmes, 1983), and, for a system of coupled ordinary 

differential equations, one of these exponents is necessarily equal to zero, meaning that 

the change in the relative separation of initially close states on a given trajectory is slower 

than exponential. The negative exponents express the exponential approach of the initial 

states to the attractor. In any well-behaved dissipative dynamical system, the sum of all 

of the Lyapunov exponents must be strictly negative (Guckenheimer and Holmes, 1983). 

If the Lyapunov-exponent spectrum can be determined, the Kolmogorov-Sinai entropy 

(Kolmogorov, 1958; Sinai, 1959) can be estimated using the Pesin inequality (Eckmann 

and Ruelle, 1985), and the fractal dimension may be estimated from the Kaplan-Yorke 

conjecture (Fredrickson et al., 1983), which seems to hold for typical attractors. Further­

more, the Lyapunov-exponent spectrum can be used to constrain the choice of mapping 

parameters in a prediction problem (Abarbanel et al., 1990). 

For low-dimensional systems, even without a knowledge of the exact values of the 

Lyapunov exponents (which are important, as discussed in the previous paragraph), a 

knowledge of their signs alone can provide a qualitative classification of attractors. For 

instance, in a three-dimensional phase space, (-, -, -) (i.e., three negative Lyapunov 

exponents) corresponds to a fixed point, (0, -, -) to a limit cycle, (0, 0, -) to a 2-tori, 

and (+, 0, -) to a strange attractor. 

The Lyapunov exponents can be computed relatively easily for known simple model 

systems (Shimada and Nagashima, 1979). In many real world situations, however, all that 

is available is a time series of experimental data, and it is much more difficult to extract 

the Lyapunov exponents from such a series. This will be discussed in Chap. 2. 
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1.3 Application of Chaos Theory 

Just as relativity eliminated the Newtonian illusion of absolute space and time, and 

as quantum theory eliminated the Newtonian and Einsteinian dream of a controllable 

measurement process, chaos eliminates the Laplacian fantasy of long-time deterministic 

predictability. Because of chaos, it is realized that even simple systems may give rise to 

and, hence, be used as models for complex behavior. Conversely, complex systems may 

give rise to simple behavior which may be predicted for a period within the predictability 

limits. Fina.lly, and most important, the laws of scaling and complexity hold universa.lly, 

caring not at a.ll about the details of the system. Chaos leads to the unification of order 

and disorder, and leads to the unification of deterministic and stochastic descriptions 

(Lorenz, 1987). Chaos also acts like a bridge between scientists in traditiona.lly unrelated 

fields. In addition, chaos forms a bridge between different fields; one example is this study 

itself: the unrelated studies in Chapters 2-4 are unified under chaos. Much of Lorenz's 

research presents good examples of how physical insights and new ideas can be gained by 

studying chaos (see, e.g., Lorenz, 199130 and references therein). However, the inftuence of 

this change of traditional viewpoints on the development of science and technology and on 

our daily life still needs some time to be fully observed, just as for the cases of relativity 

theory and quantum theory. 

In addition, chaos offers a fresh way to proceed with observational data, especia.lly 

those data which may be ignored because they proved too erratic. Most chaotic studies in 

the field of atmospheric science have concentrated on computing quantities characterizing 

attractors, such as Lyapunov exponents and fractal dimensions from observational data. 

Nicolis and Nicolls (1984) analyzed the time series of the isotope record of deep sea cores 

and obtained a low dimensionality (between three and four) for the climate system. Sub­

sequently, Fra.edrich (1986, 1987), Essex et aZ. (1987), and Keppenne and Nicolis (1989) 

analyzed daily average data over eastern North America and western Europe, and have 

likewise concluded the existence of low-dimensional attractors. Also, theories of determin­

istic chaos and fractal structure have been applied to data in the atmospheric boundary 

layer (Tsonis and Elsner, 1988), the pulse of storm rainfa.ll (Sha.rifi et aZ., 1990), and 
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some special atmospheric systems, such as the Southern Oscillation (Hense, 1987) and 

cyclone tracks (Fra.edrich and Leslie, 1989; Fraedrich et al., 1990). Using entire global 

fields of data rather than single-point time series, Pierrehumbert (1990) discussed the di­

mension of global atmospheric variability. Recently, Tsonis et al. (1991) claimed that 

the existence of low-dimensional at tractors related to weather and climate should not be 

disregarded. On the other hand, there are still some doubts among researchers concerning 

strange attractors in the atmosphere (Pool, 1989). Ruelle (1990) discussed limitations to 

the Grassberger-Procaccia algorithm and found that many published estimates of fractal 

dimensions are spurious. Lorenz (1991b) discussed another possible reason for apparently 

finding low-dimensional attractors in the atmosphere. 

Related to the application of chaos theory in the atmosphere, Meneveau and Sreeni­

vasan (1987) proposed a multifractal cascade model for fully-developed turbulence. Brether­

ton (1990) applied this model to study the cloud-top entrainment. Lovejoy and Schertzer 

and their groups applied multifractals, generalized scale invariance, and intermittency 

to study radiation processes, cloud physics, and precipitation (see, e.g., Lovejoy and 

Schertzer, 1991 and references therein; Schertzer and Lovejoy, 1990 and references therein). 

Fractal dimensions have also been used to study pollutant dispersion problems (Gifford, 

1991). More applications can be found in Schertzer and Lovejoy (1991) and Sreenivasan 

(1991). 

Although chaos places a fundamental limit on long-term prediction, it suggests pos­

sibility for short-term prediction: random-looking data may contain simple deterministic 

relationships, involving only a few irreducible degrees of freedom. Therefore, chaos theory 

has also been used for prediction problems, especially when we lack proper initial data for 

a numerical prediction model or when we lack a good model (see, e.g., Abarbanel et al., 

1990 and references therein). This is currently a very active research area. 

Another potentially important application of chaos theory is to deal with output from 

numerical models such as mesoscale simulations and general circulation models. As far as 

I know, there is still no published work in this field. 

In Chap. 2, the computation of fractal dimensions, Lyapunov exponents and related 

techniques are discussed. In Chap. 3, the chaotic properties of observational data are 
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analyzed. Unlike the previous works mentioned above in our study, the predictability 

analysis is related to the climatic signal-to-noise ratio. In Chap. 4, the existence of chaos 

in daisyworld is explored. Mathematical analysis of this conceptual atmosphere-biosphere 

coupling model raises important questions concerning the validity and interpretation of the 

Gaia hypothesis. In Chap. 5, the initial adjustment process, the error growth dynamics 

(including the sensitivity to initial and boundary conditions as well as model parameters) 

of surface thermally-induced circulations are studied. The predictability as a function of 

the size of surface heat patches is quantitatively evaluated. The 3-D simulation is used 

to verify the 2-D results. As a. first step, the model output is used to analyze chaotic 

properties, which may further our understanding of predictability problems. Finally, in 

Chap. 6, a summary of the principal conclusions of this study is given, and suggestions 

for further research are provided. 



Chapter 2 

COMPUTATION OF DIMENSIONS AND LYAPUNOV EXPONENTS 

The computation of fractal dimensions and Lyapunov exponents is discussed in this 

chapter. More detailed discussions can be found in Zeng et al. (1991, 1992a,b). The 

phase-space reconstruction, which is related to the computation ofthe above quantities, is 

discussed in Section 2.1. The computation offractal dimensions and related problems are 

discussed in Section 2.2. The computation of other dimensions is also briefly discussed in 

this section. In Section 2.3, the estimation of Lyapunov exponents and related problems 

are discussed. 

2.1 Phase-Space Reconstruction 

For a system with known ordinary differential equations (ODEs) or difference equa­

tions, the set of all dependent variables constitutes a phase space, i.e., a Euclidean space 

whose coordinates are these variables. Each point in this phase space represents a pos­

sible instantaneous state of the system. A state which satisfies the governing equations 

is represented by a particle traveling along a trajectory in phase space. For a system 

with known partial differential equations (PDEs), the system can usually be studied by 

discretizing the PDEs, and the set of all dependent variables at all grid points constitute 

a phase space, which is an approximation to the original infinite-dimensional phase space. 

For such a system (e.g., the atmosphere), an additional difficulty is that the initial values 

of the system may be unknown. However, a time series of a single variable of a complex 

system may be available, and this allows the attractor of the system to be reconstructed. 

When dealing with a time series Xi = x( i~t) (i = 1,2, ... , N), where N is the number 

of observations and ~t is the time interval between measurements, the attract or can be 
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reconstructed in a k-dimensional phase space of delay coordinates by forming the vectors 

(Takens, 1981) 

(2.1) 

where T = mLlt is the delay time, and the integer m must be chosen appropriately, as 

will be discussed later. By extending the Whitney embedding theorem, Takens (1981) 

showed that, for any system, an embedding can be obtained from a single time series of 

infinite precision by using (2v.+l) delay coordinates, where v. is the fractal dimension. 

The physical reason for a possible phase-space reconstruction is that nonlinear systems are 

usually characterized by self-interaction, so that a single variable may carry information 

about the whole system. However, Takens' theorem gives little guidance about practical 

considerations for reconstructing a good phase space; e.g., the reconstruction may depend 

upon the coupling strength of this variable with rest of the variables of the system. When 

delay coordinates are used, it is also difficult to interpret the results physically; in other 

words, relating the local structures based on the delay coordinates back to physical princi­

ples or existing theories is often difficult, if not impossible. Furthermore, Takens' theorem 

does not apply to systems with noise, such as that found in observational time series 

(Breeden ana Hubler, 1990). Recently, however, Takens' theorem has been extended by 

using statistical methods to incorporate the effects of observational noise and estimation 

error in the linear or polynomial approximation (Casdagli et al., 1991). Another method 

for reconstruction is the method of derivatives, numerically investigated by Packard et ale 

(1980), which is related to the reconstruction by delay coordinates described above by a 

linear transformation. 

Another method is singular-value decomposition (SVD) (Broomhead and King, 1986). 

This method is also referred to as principal-component analysis or factor analysis in the 

statistical literature, Karhunen-Loeve decomposition in the engineering literature, and 

empirical-orthogonal-function analysis in the literature of atmospheric science. In the 

(k, m )-window, which consists of k elements of the time series separated by time intervals 

T = mLlt, the trajectory matrix is 
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B N -l/2(- - - )T = T Xl, Xl+m , ••• , Xl+(Nr-l)m , (2.2) 

where NT ~ (N - 1 - (k - 2)m)/m is the number of the available vectors :ii, as defined 

in Eq. (2.1), and the factor of N:;1/2 has been introduced as a convenient normalization. 

The covariance matrix is 

1 NT 

At; = (BT B)i; = N L XI+(I-l)m+(i-l)m XI+(I-l)m+(;-l)m· i,j = 1,2, ... , k. (2.3) 
T 1=1 

Each eigenvalue 8~ (whose square root, 8i, is called a singular value) of A gives the pro­

portion of the variance of the time series explained by projection onto the corresponding 

eigenvector ili. Since the singular values can be ordered as 81 ~ 82 ~ ••• ~ 81c ~ 0, the 

vector ill corresponds to the direction of maximum variability. The space reconstructed 

using these eigenvectors is referred to as singular space (Broomhead and King, 1986). In 

general, SVD provides a convenient basis set for representing data. In practice, however, 

SVD is affected by noise and/or measurement error. SVD is related to the above two 

methods by the linear transformation C = BU, where B is given in Eq. (2.2) and the 

columns of the orthogonal matrix U are formed by ill, il2, ... , ilk. 

The above three methods can sometimes be improved by linear filtering, but such 

filtering must be done carefully, since it may increase the dimension of the time series 

(Badii et al., 1988). 

At this time, there is no general agreement about which method is best. However, 

for a short time series of low precision, the simple method of using delay coordinates is 

widely used, and it has been shown to work reasonably well in many situations (Zeng et 

al., 1992a,b, and references therein). 

When delay coordinates are used for an infinite amount of noise-free data, the time 

delay T = m~t can be chosen almost arbitrarily (Takens, 1981). However, when only a 

limited amount of noisy data is available, the quality of the analysis depends on the value 

chosen for T. The choice of this delay time depends sensitively on the attractor under 

study (Frank et al., 1990). Different methods have been suggested for obtaining T. 
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The first method is the space-filling method. A two-dimensional phase space is recon­

structed by Xi = (Xi,Xi+m) in order to visualize the trajectory. H T is too small, then Xi 

and Xi+m will be indistinguishable, and the trajectory will appear to lie on the diagonal. 

Hence, T must be chosen to be large enough that the trajectory fills the space. However, 

when T is too large, Xi and Xi+m becomes a random sequence. Thus T should not be 

any larger than necessary for the trajectory to fill the space. The trajectory can also be 

visualized in a three-dimensional phase space, with the resulting value of T expected to 

be similar. 

Alternatively, the delay time T may be defined as the lag time at which the autocorre­

lation function drops to a threshold value. This delay time guarantees linear independence. 

In general, the threshold value depends on the system and the data set, and it is usually 

taken as either zero, 0.1, or e-1 , with the latter being chosen in this study. The delay times 

obtained for observational meteorological data (which will be discussed in Chap. 3) using 

the above two methods also correspond to the characteristic times between independent 

estimates (Madden, 1976; Madden and Shea, 1978). 

A more systematic method is based on the mutual information concept (Fraser and 

Swinney, 1986), which measures general dependence, rather than linear dependence. For 

a two-dimens,ional embedding, the mutual information can be defined as 

N-m p. 
I() ~ P. I i,i+m 

m = L.J i,i+m og2 p.. p.. ' 
i=1 s s+m 

(2.4) 

where Pi is the probability of choosing Xi when making a selection from the time ~eries, 

and Pi,i+m is the joint probability distribution of having Xi as the first component and 

Xi+m as the second component of the vector Xi = (Xi,Xi+m)' The best value for T is 

then the smallest value of mt:J.t for which J( m) is a local minimum. Fraser (1989) also 

generalized this procedure to reconstructions of arbitrary embedding dimensions (and 

added an analysis that determined the required embedding dimension). 

For long time series, the mutual information method may be the most comprehensive 

method. However, it does not provide substantially different delay times for many sys­

tems. Furthermore, in practice, when the data size is limited, it may not be possible to 
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compute the mutual information accurately. In contrast, the autocorrelation function can 

be computed from small data sets, and the value of T computed using this method does 

not differ substantially from the value based on higher-order autocorrelations. Therefore, 

for short time series of low precision, the simple autocorrelation method, combined with 

the space-filling method, may be used to determine the delay time T for use in defining 

the delay coordinatels. 

2.2 Computation of Fractal Dimensions 

The fractal dimension is one of the commonly used measures of the "strangeness" of 

attractors. It is related to the number of degrees of freedom. It also provides statistical 

information about the system. Among the different procedures that have been developed 

to compute fractal dimensions are the nearest-neighbor method (Badii and Politi, 1985), 

the correlation-integral method (Grassberger and Procaccia, 1983a), and the singular­

system method (Broomhead and King, 1986). Some information about the quality of the 

results obtained with the different methods has been reported (Holzfuss and Mayer-Kress, 

1986). In practice, the correlation-integral method is the most widely used, and it is 

the one applied in this study. The correlation dimension 11. given by Grassberger and 

Procaccia (1983a) provides a rigorous lower bound to the information dimension and the 

Hausdorff dimension" and all three are generally close in value. The correlation dimension 

also provides a lower bound to the number of dependent variables necessary to describe the 

time evolution of the dynamical system, and the Whitney embedding theorem (Takens, 

1981) gives an upper bound of (2118 + 1) of dependent variables needed to model the 

dynamics of a simple system. However, for complex systems such as the atmosphere, the 

conditions of the Whitney embedding theorem may not be satisfied, and this upper bound 

may not be valid. 

In a k-dimensional phase space [cf. Eq. (2.1)], the correlation function is given by 

(Grassberger and Pr1ocaccia, 1983a) 

N 

G(r) = lim N\ L: H(r -llxi - x;11) , 
N-oo .. 1 1,,= 

(2.5) 
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where N is the total number of data points, H is the Heaviside function defined. by 

H(y) = 1 for positive y, and H(y) = 0 otherwise, and the usual Euclidean norm is used: 

(2.6) 

In other words, C( r) is the cumulative histogram for the number of pairs of trajectory 

points whose distance is less than r. 

The relationship between G(r) and r varies with r. When r is very small, there 

are insufficient statistics, and the influence of noise inherent in the system or contributed. 

by measurements is important; whereas, for r too large, the information is affected. by 

nonlinearity, and the slope of the curve of In G (r) versus In r is smaller than that for 

intermediate r. However, there exists an intermediate range of r in which this slope is 

almost constant; i.e., G(T) depends upon r as 

G(r) '" rll . (2.7) 

For each embedding dimension Ie, this exponent v can be obtained from the slope of the 

linear part of a plot of In G( r) versus In r. If v approaches a value independent of Ie as 

Ie -+ 00 (usually Ie > 2v is sufficient), this value is defined as the correlation dimension v •. 

For this linear range of r, a relatively easy procedure to compute the Kolmogorov-

Sinai entropy K (Kolmogorov, 1958; Sinai, 1959) was also deVeloped by Grassberger and 

Procaccia (1983b). The cumulative distribution Gk(r) obtained from Eq. (2.5), where the 

subscript Ie refers to the embedding dimension, may be interpreted as the probability of 

finding two pieces of the trajectory whose distance remains less than r during the evolution 

time (Ie - l)r. When the embedding dimension is increased from Ie to Ie + 1 at fixed. r, 

the change from Gk(r) to Gk+l(r) gives the number of pairs of such trajectories escaping 

from a ball of radius r. With this interpreta.tion, it can be argued tha.t 

(2.8) 
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When saturation is reached for sufficiently large k, Eq. (2.8) with fixed r can be used to 

obtain the Kolmogorov-Sinai entropy K: 

(2.9) 

where the value of r should be within the linear part of the plot of In ek( r) versus In r. 

It is widely accepted now that there are limitations to the Grassberger-Procaccia al­

gorithm when the number of data is limited. Qualitatively, because of the limitations on 

the number of observations, the interval in r for which Eq. (2.7) is valid begins to shrink 

as the embedding dimension k increases, and this interval becomes very small after the 

dimension is greater than a certain value. Similar arguments have been emphasized by 

Essex et al. (1987), and Tsonis and Elsner (1990) using the concept of critical embed-

ding dimension kc; i.e., the embedding dimension above which the scaling region cannot 

be accurately defined. The quantitative data requirement for the Grassberger-Procaccia 

algorithm has been a highly debated subject in recent years, and various researchers have 

given different criteria. According to Ruelle (1990), at least M = 1011
./

2 data points are 

necessary to reliably estimate fractal dimension V!J, and this is the least strict of several 

different criteria. We will use these criteria to evaluate the reliability of low-dimensional 

atmospheric at tractors obtained by various researchers in the next chapter. 

When the Lyapunov-exponent spectrum can be obtained, the Lyapunov dimension 

DL is given by the Kaplan-Yorke conjecture (Fredrickson et al., 1983) which is valid for 

typical attractors: 

(2.10) 

I 1+1 
where L >'j ~ 0 > L >'j. This dimension is usually close to the correlation dimension 

j=1 j=1 

in value. For systems of known ODEs or mappings, the Lyapunov-exponent spectrum 

can be obtained, as will be discussed in the next section, and Eq. (2.10) provides a 

very simple method for estimating dimension. However, for a very complex system (e.g., 
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the atmosphere), we ca.nnot determine all of the Lyapunov exponents accurately from 

observational data, so that this relation ca.nnot be used. 

Another method for computing a dimension is the use of SVD. In principle, the 

local dimension can be obtained by counting the number of distinct singular values whose 

magnitude is appreciable, with the rest of the singular values being close to zero. H a.Il 

singular values are similar in magnitude, or if they decay in a fairly uniform ma.nner, the 

value of this decomposition is less clear. In the presence of noise or measurement errors, 

mixing may occur when the difference between two nearby singular values is comparable 

to the sampling error (North et al., 1982). When such mixing occurs, it is genera.Ily 

impossible to estimate the dimension of the attractor on the basis of SVD alone (North et 

al., 1982). Similarly, it is demonstrated in Mees et ale (1987) that the recovered attractor 

in a high-dimensional embedding space does not necessarily "nest" in the low-dimensional 

linear subspace determined by the SVD technique, so the SVD is often of limited value as 

a dimension indicator. 

Another simple method (Aleksic, 1991) proposes to obtain a dimension by comparing 

the graphical representations of the distances between the images of close points. However, 

this method is quite sensitive to (even 4%) noise. 

As disc~ssed before, the fractal dimension (Hausdorff dimension), information di-

mension, and correlation dimension are usua.Ily different, but are usua.Ily close in value. 

In fact, they are only three of an infinite number of different (and relevant) generalized 

dimensions (multifractal dimensions) that characterize an attractor. This hierarchy of 

generalized dimensions Dq can be expressed as (Hentschel and Procaccia, 1983) 

(2.11) 

where Pi is the probability that a trajectory point falls into the ith k-dimensional box 

(subspace) of size r in a k-dimensional phase space. It is shown in Hentschel and Procaccia 

(1983) that Do corresponds to the Hausdorff dimension, Dl to the information dimension, 

and D2 to the correlation dimension. A formal relationship between Dq and the spectrum 

of singularities f(a) is derived by Halsey et ale (1986). Further refinements are discussed 
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in Lovejoy and Schertzer (1990, and references therein). In this study, only the correlation 

dimension is computed, and this will be discussed in the following chapters. 

2.3 Computation of Lyapunov Exponents 

For a k-dimensional known model system, a "control" trajectory Z( t) can be obtained 

in a k-dimensional phase space by numerica.lly solving the governing equations. Then, by 

solving the linearized version of these equations, the evolution of an infinitesimal initial 

error vector 6i(to) with time can be described by 

6i(t) = H 6i(ta), (2.12) 

where the k x k matrix H depends upon the values of the control trajectory i between 

times to and t. Letting 7j (j = 1,2, ... ,k) be the square roots of the eigenvalues of HHT , 

where the superscript T denotes a transpose, the Lyapunov exponents can be written as 

~j = lim (In "'fj)/(t - to). 
i-+co 

(2.13) 

The exponents ~j can be ordered as ~1 ~ ~2 ~ ••• ~ ~k, which gives the spectrum of 

Lyapunovexponents. These exponents are independent of the initial condition i(to) if the 

system is ergodic (Oseldec, 1968). 

In practice, when (t - to) is made very large, the eigenvalues of H HT are likely 

to differ by many orders of magnitude (Wolf et aZ., 1985; Lorenz, 198480). Furthermore, 

for a chaotic system, the vector 6i(t) tends to align with the local direction of most 

rapid growth, and the roundoff errors and noises may completely falsify a.ll except the 

largest Lyapunovexponent (Wolf et aZ., 1985; Lorenz, 198480). These two problems can be 

circumvented by using special algorithms [e.g., Gram-Sch.imit (GS) orthonorma.lization, 

Householder QR decomposition, or singular-value decomposition] which decompose H into 

a product of factors Ti giving the evolution over a succession of subintervals between to 

and t. 

In many real-world situations, however, a.ll that is available is a time series of ex­

perimental data, and it is much more difficult to extract the Lyapunov exponents from 
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such a series. Only in the past few years have such methods been proposed. These meth­

ods differ only with respect to the orthonorma.lization method (GS orthonorma.lization or 

QR decomposition), the local mapping method (linear or higher-order polynomial), and 

some technical details. Early methods were based on the linearized mapping and either 

GS orthonormalization (Wolf et al., 1985; Sano and Sawada, 1985) or QR decomposition 

(Eckmann et al., 1986). Most of the later methods were based on Eckmann et al. (1986), 

replacing the linearized mapping with higher-order Taylor series (Briggs, 1990; Bryant et 

al., 1990; Brown et al., 1991), and/or using the singular-value decomposition technique to 

determine the local dimension (Stoop and Parisi, 1991). Based on the work of Sano and 

Sawada (1985) and Eckmann et al. (1986), we have recently proposed a practical method 

for estimating the Lyapunov-exponent spectrum from short time series of low precision 

(Zeng et al., 1991). A comparation of different algorithms and related techniques in Zeng 

et al. (1992b) has shown that our algorithm (Zeng et al., 1991) works for short time series 

of low precision, while most of the above methods are useful only when the time series are 

long and/or have high precision. 

For each point Xi of the control trajectory in k-dimensional phase space [see Eq. (2.1)], 

consider the shell between two spheres centered at Xi of radii Tmin < T, and consider the 

set of trajectory points x; within this ith shell: 

(2.14) 

The use of a shell, rather than a ball, is to minimize the effects of noise or measurement 

error, since these effects are greatest when IIx; - Xiii is small. Tmin is taken to have the 

magnitude of the noise length scale. The choice of the radius T is a compromise between 

two conflicting requirements: T must be sufficiently small that the effect of the nonlinearity 

can be neglected, but T must be sufficiently large that there are at least ni [ef. Eq. (2.17)] 

neighbors of the control trajectory point Xi. In practice, T is taken as the smallest value 

for which the shell contains somewhat more than ni neighbors for each control trajectory 

point Xi. To find the neighbors x; around the control trajectory point Xi is quite time 
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consuming, and some efficient methods such as the box-grid approach (Kostelich and 

Yorke, 1990) and the tree-search algorithm (Bentley and Friedman, 1979) are proposed. 

After a time n.6.t, the small vectors (Xj -Xi) evolve to the small vectors (Xj+n -Xi+n). 

Suppose that the evolution of Xi is given by the map Zi+n = F(zi). Then, with the 

definition ihi = Zj - Xi, the Jth component of Yi+n,i+n can be approximated by a Taylor 

series: 

(2.15) 

Ie 
where the restrictions on the second sum are 0 ~ 1m ~ 2 (m = 1,2, ... k) and L: 1m = 2, 

m=l 
. Ie 

and the restrictions on the last sum are 0 ~ 1m ~ M (m = 1,2, ... k) and L: 1m = M. 
m=l 

The Jacobian of the underlying dynamics is given by the first term on the right-hand 

side of Eq. (2.15), which leads to the approximation (written in matrix form): 

Yj+n.,i+n. = Ti Yj,i (2.16) 

[cf. Eq. (2.12)]. The coefficients in Eq. (2.15), or the matrix in Eq. (2.16), can be 

determined by using a least-square-error algorithm (Brown et al., 1991) to fit the evolution 

of the small vectors (Xj - Xi), where Xj is in the ith shell. The number ni of independent 

parameters for fitting a polynomial of degree M in k dimensions can be obtained from 

Eq. (2.15): 

. _ ~ (k + I-I)! _ (k + M)! _ 1 
n,-f;;;t l!(k-l)! - k!M!' (2.17) 

Note that, to determine all of these parameters for a given i, there must be at least 

ni points Zj within the ith shell, and, in practice, more points are used to reduce the 

statistical scatter. 
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The evolution time n.::lt in Eqs. (2.15) and (2.16) should be small enough that Eq. 

(2.15) is satisfied not only for Yj,i, but also for y';+n,i+n' On the other hand, the evolution 

time should be as large as possible, so that the orientation errors associated with each 

evolution (i.e., with the computation of each matrix Ti) are reduced, and the computational 

cost is reduced considerably. Another potential problem with a large evolution time is that, 

if the direction vectors it (Brown et al., 1991) change significantly within the evolution 

time interval, then different Lyapunov exponents may tend to collapse into the direction 

of the largest exponent, and all except the largest exponents may be overestimated. In 

addition, for attractors with a multi-lobed structure, such as the Lorenz attractor (Lorenz, 

1963), two neighboring points ij and ii may eventually evolve along different lobes, leading 

to erroneous Lyapunov exponents. 

When the evolution time is taken as the delay time, i.e., n = m, the matrix 1i in Eq. 

(2.16) is very simple: it consists of 1 's just above the diagonal and O's elsewhere, except 

for the last row of elements. This may save some computational time [though maybe 

not much (Brown et al., 1991)]. Furthermore, our computations have shown that results 

using n = m are usually as good as, or even better than, those for n =/; m (Zeng et al., 

1991). Therefore, it seems reasonable to use n = m in the computation of the Lyapunov 

exponents,. 

A sufficient condition for the delay coordinates to reconstruct an attractor with frac­

tal dimension II. is that the embedding dimension be greater than or equal to 211. + 1. 

This embedding dimension is called the global dimension dG' Under this condition, inter­

sections of trajectories on the attractor are avoided. However, since do is greater than II., 

there will be dG - II. spurious exponents caused by noise, which is infinite-dimensional, 

and by nonlinearity, since the lower-order coefficients in the fitting polynomial will be al­

tered from their true values in attempting to fit the unrepresented higher-order nonlinear 

curvature. Therefore, a lower local dimension dL is used to construct the matrix Ti by 

several researchers (Eckmann et al., 1986; Bryant et al., 1990; Brown et al., 1991). On 

the other hand, for short time series of low precision, the embedding dimension cannot 

be made too large, due to the limited number of data. Furthermore, it is best to have 
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as few free parameters as possible. Therefore, for short time series of low precision, it 

is probably not an advantage to use different global a.nd local dimensions, a.nd several 

researchers (Wolf oet al., 1985; Sa.no a.nd Sawada, 1985; Briggs, 1990; Zeng et al., 1991) 

have used dG = dL successfully in their studies, a.nd it is used in this study. 

The linear approximation of Eq. (2.16) places a twofold burden on the Jacobia.n Ti 

(Brown et al., 1991): it must yield the correct Lyapunov exponents, a.nd, at the same time, 

map Yi,i into Yj+n,.i+n. When the higher-order polynomial approximation of Eq. (2.15) 

is used, the latter burden is removed; i.e., the higher-order polynomial is responsible for 

mapping Yi,i into Yi+n,i+n, and its first term involving Ti is responsible only for obtaining 

the correct Lyapunov exponents. On the other ha.nd, when the higher-order polynomial 

is used, the minimum number ni of points Xi in the ith shell ca.n be seen from Eq. (2.17) 

to increase rapidly; e.g., for a local embedding dimension of k = 5, a.nd Taylor series 

of orders M = 1, 2, 3, 4, and 5, these minimum numbers are ni = 5, 20, 55, 125, a.nd 

251, respectively. Furthermore, ma.ny more neighboring points are needed in practice to 

improve statistical accuracy. This leads to the two disadvantages of higher-order Taylor 

series: the computation time is larger, a.nd, more importa.nt, the data set must be larger. 

These disadvantages become more significant for noisy data sets, where Tmin must be made 

larger. Therefore, the higher-order polynomial approximation may be expected to improve 

the estimation of the Lyapunov exponents relative to the linear approximation only when 

a very long time sleries of high precision is used, as demonstrated by several researchers 

(Briggs, 1990; Brya.nt et al., 1990; Brown et al., 1991). Especia.lly, the higher-order 

polynomial approximation greatly improves the computation of the negative exponents, 

and helps to identify spurious positive exponents. 

The negative Lyapunov exponents describe the exponential approach of the initial 

states to the attralctor. The possibility of obtaining reasonable negative Lyapunov expo­

nents depends on their magnitudes a.nd the signal-to-noise ratio of the data (Sa.no a.nd 

Sawada, 1985; Zeng et al., 1991). For post-transient, model-generated or observational 

data, the attractor becomes very thin in the directions associated with the negative expo­

nents, and, in general, it is impossible to estimate these exponents accurately. However, 
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the use of the linear or higher-order polynomial approximation implicitly assumes analyt­

icity of the local neighborhood-to-neighborhood maps in phase space, which extend off of 

the attractor, thus allowing analytic continuation away from the given data. Hence, when 

noise is absent, the higher-order polynomial gives a better local mapping on fine scales 

and leads to improved estimates of the negative exponents as mentioned above. 

The identification of the spurious exponents is related to the computation of the 

principal-direction vectors Ji along which the Lyapunov exponents are obtained (Brown 

et al., 1991). Once the Ji are obtain~, the data thickness in each of these directions can 

be computed. The thickness is essentially the root-mean-square displacement of the data 

points within a local neighborhood in the Ji direction, with corrections for the curvature of 

the data set (Bryant et al., 1990). Since a true positive exponent should exhibit significant 

thickness, a spurious positive exponent may be identified by comparing the magnitude of 

its thickness with those of the true positive exponents. As shown in Table 2 of Bryant et 

al. (1990), when a higher-order polynomial is used, it is easier to identify spurious positive 

exponents. 

When only a short time series is available, the advantages of a higher-order polynomial 

map may disappear. We will illustrate this qualitatively with a simple example. Figure 

2.1 shows the mean error growth for the logistic map Z71+1 = 3.8z71{1- z71)' The curve 
.. 

is characterized by the initial exponential stage, the intermediate quasi-linear stage, and 

the final saturation stage. All attractors and, more generally, all unstable dynamical 

systems having the property of mixing are expected to give rise to similar behavior (Nicolis 

and Nicolis, 1991). The first stage reflects local (linearized) properties, and the positive 

Lyapunov exponent can be obtained from the error growth in this stage. The remaining 

two stages depend on global properties (Nicolis and Nicolis, 1991). Suppose that the radius 

r in Eq. (2.14) is within the first stage for linear maps. When the higher-order polynorilial 

map is used for a short time series, in order to obtain enough neighboring trajectory points, 

it may become necessary to increase the radius r, and this may lead to the inclusion of 

points in the intermediate stage. In this scenario, the Taylor series of higher order will not 

lead to a good estimate of the positive exponent, since the intermediate stage is determined 

by the global properties of the system. 
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Figure 2.1: Mean-error growth for the logistic map zn+1 = 3.8zn(1 - zn). 
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Also, when the higher-order fitting is used, large matrices need to be inverted in 

the least-square fitting. Sometimes, all of the points in a neighborhood of the control 

trajectory point Xi lie along only a few directions; i.e., within the available resolution, 

the dimension of the attractor appears to be lower than the true fractal dimension of the 

system. Although it is possible to measure the expansion rates along the unstable manifold 

at Xi, there are not enough data points in the other directions to estimate the contraction 

rates. In such a case, any attempt to estimate the Lyapunov-exponent spectrum using 

a local embedding dimension greater than or equal to the fractal dimension will result 

in large relative errors in the estimate of the Jacobian elements (Eckmann and Ruelle, 

1985; Kostelich and Yorke, 1990). This kind of least-squares problem is ill-conditioned. 

Because of this, the matrix inversion problem is sensitive to (even small) noise in the data, 

especially when the matrix is large. Therefore, it is not surprising that the estimation of 

Lyapunov exponents (positive, zero, and negative) using Taylor series of higher order is 

reported to be sensitive to even small noise (Briggs, 1990; Bryant et al., 1990; Brown 

et al., 1991). In contrast, when the linear map is used together with other appropriate 

considerations (Zeng et al., 1991), it is shown that the Lyapunov-exponent spectrum can 

be reasonably obtained from short time series of low precision. Therefore, the linear map 

is used in t.his study. 

In the linearized case, the matrix Ti can be successively orthonormalized to avoid the 

two problems mentioned in the paragraph after Eq. (2.13). One such algorithm, which 

has been widely used, is Householder QR decomposition (Eckman and Ruelle, 1985): 

(2.18) 

(2.19) 

where Qj is an orthogonal matrix, Rj is an upper-triangular matrix with non-negative 

diagonal elements, and K S (N - (k -1)m -1)jn is the number of subintervals. The first 

orthogonal matrix Qo may be chosen arbitrarily, and it is usually taken to be the unit 

matrix for convenience. If each Ti is invertible, then this decomposition is unique. 
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Multiplying the matrices Ti for the subintervals yields the matrix H for the entire 

interval: 

H = Tl+(K-l)n Tl+(K-2)n ... T1 = QK RK RK-1 ... R1 Qa1. (2.20) 

Since each Ri is an upper-triangular matrix, R = RKRK-1 ... R1 is also upper triangular, 

and its eigenvalues are Rll = (RK)1l(RK-1)ll ... (Rl)1l, where (Rt)ll is the lth diagonal 

element of Ri. Also, since each Qi is an orthogonal matrix, then QT = Qi\ and Eq. 

(2.20) yields 

(2.21) 

which means that H HT is an orthogonal transformation of RRT , so that the eigenvalues 

of H HT are R?,. Therefore, we can obtain the Lyapunov exponents from Eq. (2.13): 

1 K 1 K 
>'1 = A KIn II(Rj)ll = A K I)n(Rj)ll, 1= 1,2, ... ,k. (2.22) 

nut j=1 nut j=1 

The QR decomposition can also be performed using GS orthonormalization, as 

has been done by several researchers (Shimada and Nagashima, 1979; Wolf et al., 1985; 

Sano and Sawada, 1985), although these researchers did not refer formally to QR decom­

position (Geist et al., 1990). However, Householder triangularization is preferable to GS 

orthonormalization, since Householder triangularization leads to (numerically determined) 

matrices which are more nearly orthogonal. Furthermore, it is very stable numerically, 

and, in fact, the sizes of the eigenvalues do not lead to problems (Eckmann and Ruelle, 

1985). Therefore, only the Householder QR decomposition is used in this study. 

We have tested our algorithm on various model systems, including the Lorenz equa­

tions (Lorenz, 1963) and the Rossler equations (Rossler, 1976), which are finite-dimensional 

systems, and the Mackey-Glass equations (Mackey and Glass, 1977), which constitute 

an infinite-dimensional system. The z components of numerical data for these systems 

are treated as experimental data. The first two systems are solved by the Runge-Kutta 

method, and the last system is solved by a very efficient algorithm of second-order pre­

cision (Grassberger and Procaccia, 1983c). We use a time step Llt = 0.01 for the Lorenz 
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equations and .6.t = 0.1 for the ROssler equations. A time step of (O.Ol)T, where the 

parameter T is given in Table 2.1, is used to integrate the Mackey-Glass equations. How­

ever, we then include only every fifth value in our data set, producing a time series with 

.6.t = 0.05T, so that the delay time T is not too large compared with .6.t [usually, T ~ lO.6.t 

is desired (Atmanspacher et al., 1988)1. 

The first 10,000 data are discarded from the generated time series to eliminate tran­

sients, and the number N of observations is taken to be 5000, except for the Mackey-Glass 

equations with T = 30, for which a 5-dimensional phase space is used, and we take 

N = 10,000. For the Lorenz and ROssler equations, all values are rounded off to the first 

decimal, producing a precision of 10-1, and, for the Mackey-Glass equations, all values are 

rounded off to a precision of 10-2 (this is because the horizontal extent of the attractor is 

much smaller in this case). We take K = min (2000, (N - (k -l)m -l)/m) to guarantee 

saturated Lyapunov exponents, although convergence of Ai is actually reached with fewer 

matrices (Fig. 2.2 shows the convergence of Ai for the Mackey-Glass equations). The 

autocorrelation function is also illustrated in Fig. 2.2, and it is seen that the delay time 

T (i.e., the e-folding time of the autocorrelation curve) is about 9.6.t. 

Table 2.1 shows the computed Lyapunov-exponent spectrum for the various model 

systems described above. The error bars are computed from a few runs with changes in 

the parameters T, rmin, and r. It is seen that all error bars are relatively small, which 

shows that the results from our algorithm are insensitive to the choice of these parameters. 

For the Lorenz equations, the computed value of the largest positive Lyapunov exponent 

Al differs from the accepted value by less than 9%. Since the value obtained for A2 is only 

about 3% of Ab its relative error is very large. However, one exponent must be zero, and 

this exponent is easily identified as A2, so that the relative error for A2 has little meaning. 

For the ROssler equations, Al is obtained with a relative error less than 7%, and A2 is less 

than 7% of AI' For the Mackey-Glass equations with T = 23 and only 5000 data points, 

Al is obtained with a relative error less than 2%, and A2 is less than 1% of AI' For the 

Mackey-Glass system with T = 30, a 5-dimensional phase space is used, requiring 10,000 

data points, rather than 5000, so that the density of data points defining the attractor is 



29 

c 0.5 

.2 a 
~ 
a 0 u 
.3 

::::I 
<C 

-0.5 

(a) 

0 200 400 600 800 1000 

t (~t) 

20 

0 

-20 -a 
~ -40 

.< 
-60 

-80 
(b) 

0 200 400 600 

(~t) 

Figure 2.2: (a) Autocorrelation function and (b) convergence of Lyapunov exponents for 
the Mackey-Glass equations with parameters a = 0.2, b = 0.1, c = 10, T = 23, and other 
parameters as described in the text. The inset graph is a magnification of the region close 
to the origin in a). 
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still acceptable. In this case, Al is obtained with a relative error less than 6%, and the 

second positive exponent A2 is also obtained with a relative error of only about 11%. When 

data of higher precision was used, much smaller relative errors were obtained; however, 

given the low precision of this data (Le., the high noise level), better agreement with the 

values in the absence of noise is not to be expected. 

The possibility of obtaining reasonable negative Lyapunov exponents depends on their 

magnitudes and the signal-to-noise ratio of the data (Sano and Sawada, 1985). Since a 

precision of 10-1 or 10-2 is prescribed (i.e., the signal-to-noise ratio ofthe data is low), and 

IA31 is more than a hundred times larger than Al for the ROssler equations, the computed 

IA31 is too small compared with the reported IA31. However, when the absolute values of 

the negative exponents are comparable with A}, as for the Mackey-Glass equations with 

T = 30 or 23, we obtain negative exponents which are comparable to the reported values. 

Therefore, using various known model systems, both finite- and infinite-dimensional, we 

have shown that our algorithm can be used to evaluate the Lyapunov-exponent spectrum 

from only 5000 data points of very low precision (10-1 or 10-2) in a phase space whose 

dimension is less than 5, and from 10,000 points of low precision in 5-dimensional phase 

space. 

In summary, the computation of Lyapunov exponents and related techniques are 

thoroughly reviewed. This computation is simple in principle but very subtle in practice. 

Based on theoretical reasoning and our experiences, suitable options are selected to con­

stitute our method. All parameters are tuned so that no adjusting of free parameters is 

needed. Besides, using known model systems, it is found that our method can be used to 

obtain reasonable results from short time series of low precision. Therefore, our algorithm 

is particularly easy to apply and may find widespread applications in practice. 
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Ta.ble 2.1: Lya.punoy-exponent spectrum for various known model systems. All para.meters 
other tha.n those given in the Ta.ble are a.s described in the text. The reported values are 
ba.sed on Wolf et al. (1985), except for the Ma.ckey-Gla.ss equa.tion with T = 9~t, for 
which the reported values are from Gra.ssberger a.nd Proca.ccia. (1984). 

System Reported Ai (in the a.bsence Computed Ai (in the 
of noise) presence of noise) 

Lorenz (T = 20~t) 1.50 1.63 ± 0.15 
(7 = 16, b = 4.0, R = 45.92) 0.00 0.05 ± 0.25 
(N = 5000, 10-1 precision) -22.46 -3.59 ± 0.41 
Rossler (T = 12~t) 0.090 0.096 ± 0.008 
(a = 0.15, b = 0.2, c = 10) 0.00 -0.006 ± 0.004 
(N = 5000, 10-1 precision) -9.8 -0.735 ± 0.057 
Ma.ckey-Gla.ss (T = 9~t) 0.00956 ± 0.00005 0.00938 ± 0.00040 
(a = 0.2, b = 0.1, c = 10, T = 23) 0.00000 0.00008 ± 0.00020 
(N = 5000, 10-2 precision) -0.0119 ± 0.0001 -0.0160 ± 0.0010 

-0.0344 ± 0.0001 -0.0734 ± 0.0227 
Mackey-Gla.ss (T = 9~t) 0.0071 0.0075 ± 0.0007 
(a = 0.2, b = 0.1, c = 10, T = 30) 0.0027 0.0030 ± 0.0010 
(N = 10,000, 10-2 precision) 0.000 -0.0027 ± 0.0010 

-0.0167 -0.0156 ± 0.0006 
-0.0245 -0.0394 ± 0.0064 



Chapter 3 

FRACTAL DIMENSION AND PREDICTABILITY OF THE 

ATMOSPHERE 

A huge amount of observational data has been accumulated in the past one hundred 

years in different branches of science (including atmospheric science), but the way to ex­

tract useful information from them is quite limited: most of the time, statistical methods 

are used. In this chapter, the chaos theory discussed in the previous chapter is used to 

study fractal structure and predictability for observational atmospheric data. More de­

tailed discussion is given in Zeng et al. (1992a). The analyzed data is discussed in Section 

3.1. The fractal dimension and the controversial issue of the existence of low-dimensional 

attractors in the atmosphere are discussed in Section 3.2. Atmospheric predictability is 

discussed in Section 3.3. 

3.1 The Data 

The data utilized in this study include the daily surface temperature (ST) over a 

period of 100 years (1/1, 1889 - 1/31, 1989) and the daily surface pressure (SP) over a 

period of 90 years (6/1, 1889 - 12/31, 1979, except the periods 8/1, 1940 - 10/31, 1940 

and 9/1, 1961-12/31, 1961) observed in Fort Collins, Colorado. Also used are the surface 

temperatures over a. period of 39 years (1/1, 1947 - 12/31, 1985) observed in Los Angeles, 

California. There are a limited number of missing data (less than 1%) in "the above time 

series, and linear interpolations in time were used to fill in for these missing data. These 

two stations of Fort Collins and Los Angeles in the United States were selected in this 

study based on the climatic signal-to-noise ratio (SNR), which is lower in Fort Collins and 

higher in Los Angeles (Madden and Shea, 1978). 
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We also use the sea surface temperature (SST) and sea surface pressure (SSP) of two 

regions (BOX 244: 20°-30° N, 300°-310° Wj BOX 139: 50°-60° N, 330°-340° W) over 

the North Atlantic Ocean, with the SNR being relatively lower in BOX 139 and higher 

in BOX 244 (Madden, 1916). Daily average data were computed from the Compressed 

Marine Reports (CMRS) of the Comprehensive Ocean-Atmosphere Data Set (COADS) 

(Woodruff et al., 1981). COADS is widely accepted as the best data set over the global 

ocean, with state-of-the-art data quality control. Since the number of global marine 

reports were relatively sma.ll during World War II, only the data from 1/1, 1950 - 12/31, 

1981 are used. In addition, our computations show that there is a considerable number of 

missing daily observations for 2° X 2°, 2° X 10°, or 5° X 5° areas within BOX 244 and 

BOX 139. Therefore, we only used the 10° x 10° box (Le., BOX 244 and BOX 139) to 

compute time series of SST and SSP, with a sma.ll number of missing data for which linear 

interpolations were used to fill in the voids. Since the observational data at different 

stations over the whole of western Europe seem to derive from a single deterministic 

dynamical system (Keppenne and Nicolis, 1989), it is not unreasonable to expect that the 

averaging of observations within a 10° x 10° box over an ocean can only slightly affect the 

computations of chaotic properties from the time series. 

In an effort to minimize the effects of seasonal variations of temperature, a mean 

temperature is computed for each day by averaging temperatures over the record for that 

day of every year. These daily means are then subtracted from each daily value. For 

brevity, the term temperature is used to refer to the temperature perturbation in subse­

quent sections of this chapter. The above procedure does not apply to the observational 

values of the pressure. The total numbers of data points are given in Table 3.3. 

In this chapter, we analyze not only the daily data described above, but also win­

ter / summer data (daily data of winter/summer seasons which last 120 days commencing 

on November 1 and May 1, respectively). 

3.2 Fractal Dimensions of Weather Attractors 

The phase space reconstruction by delay coordinates [ef. Eq. (2.1)], discussd in Sec. 

2.1, is used in this chapter. The time delay T is obtained by the space-filling method and 
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by computing the autocorrelation function, as discussed in Sec. 2.1. As an example, Fig. 

3.1 depicts the time dependence of the surface temperature for the Fort Collins station 

and gives a two-dimensional view of the trajectory with T = 3 days (or m = 3). It is 

seen that the trajectory fills the entire space, suggesting that the data are independent 

for T = 3 days (and that the system is in a phase space of greater than two dimensions). 

The corresponding autocorrelation function is given in Fig. 3.1c. It is seen that T, taken 

as the e-folding time, can be selected as 3 days. In this way, T is selected in the range 

from 2 to 10 days for temperature or pressure data at the different locations, and these 

choices are shown in Table 3.1. These values also correspond with the characteristic times 

between independent estimates (Madden, 1976; Madden and Shea, 1978). 

The existence of chaos can be verified and the strange at tractors can be character­

ized by examining the power spectra and computing fractal dimensions and Lyapunov 

exponents. Before we discuss the fractal dimensions, we present a brief discussion of 

power-spectrum analyses. 

Power-spectrum analysis is often used to qualitatively distinguish quasiperiodic or 

chaotic behavior from periodic structure, and to identify different periods embedded in a 

chaotic signal. Chaos is characterized by a power spectrum of continuous appearance. Fig. 

3.2 shows such a power spectrum for the surface temperature at Fort Collins. There is no 

clear peak corresponding to the annual cycle, since this annual cycle has been removed 

before computation by subtracting the daily averages. However, such a peak does appear 

in the power spectrum of surface pressure data, which is not shown here. It is also seen 

from Fig. 3.2, and from the power spectra of all other analyzed data that the spectra 

tend to resemble white noise beyond a cutoff frequency of about 0.4 cycles per day. This 

is consistent with the result of Keppenne and Nicolis (1989), which implies that a cutoff 

frequency of 0.4 cycles per day may be very common in the power spectra of any daily 

average data in the atmosphere. On the other hand, the power spectrum itself cannot 

distinguish chaotic signals from noisy periodic or quasiperiodic signals. Therefore, the 

computation of fractal dimensions or Lyapunov exponents becomes necessary to verify 

the existence of chaos and extract the dynamics from the time series. 
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Figure 3.1: (a) Time evolution of the surface temperature at Fort Collins, Colorado; (b) 
time trajectory of the above time series evolving in a two-dimensional phase space of 
time-delay coordinates with T = 3 days; (c) autocorrelation function of the above time 
series. The inset graph is a magnification of the region close to the origin in (c). 
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Figure 3.2: Power spectrum ET of the daily surface temperature at Fort Collins, Colorado. 
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The attempts to compute fractal dimensions in the past have been motivated by the 

speculation that climatic fluctuation may be governed by low-dimensional attractors. We 

will show that, at least for surface observational daily data, no low-dimensional at tractors 

exist. Even if the saturated fractal dimension V, can be obtained, it may still be impossible 

to estimate the sufficient number of dependent variables needed to model the atmospheric 

dynamics, and it is impossible to construct simple equations to describe the dynamics. 

This does not necessarily mean that all calculations related to fractals in the atmosphere 

are useless. Pierrehumbert (1990) argued that they may tell us something about the 

statistics of atmospheric variability. The dynamical aspects of the fractality have also 

been considered for 2-D turbulence by Osborne and Caponio (1990). 

Once the phase space is reconstructed, the correlation dimension V, can be computed, 

as discussed in Sec. 2.2. Fig. 3.3 shows the plot of In C( r) versus In r for embedding 

dimensions k = 5,7, ... ,19 for the sea surface pressure at BOX 139. The value of V is 

obtained from Eq. (2.7) in the intermediate range of r in which the slope is almost 

constant. Fig. 3.4 shows the dimensionality V of the weather attractor as a function of 

the number k of phase-space coordinates for the same time series. It is seen from Fig. 3.4 

that saturated values seem to be approached. However, if we look at Fig. 3.3 carefully, 

we can see that, consistent with the qualitative limitation to the Grassberger-Procaccia. 

algorithm discussed in Sec. 2.2, the interval of almost constant slope is very small when 

k > 13. Furthermore, the number of data is less than the quantitative requirement, i.e., 

10"./2, of Ruelle (1990). Therefore, the fractal dimensions obtained from this data set are 

actually spurious. 

Table 3.1 summarizes the dependence of von k for all data. Though saturation values 

seem to be approached for the sea surface pressure at BOX 244 and BOX 139, or for the 

surface temperature at Los Angeles, they are unreliable based on the above qualitative 

and quantitative arguments. It is also found from Table 3.1 that no saturation values can 

be reached for the sea surface temperatures at BOX 139 or BOX 244, or for the surface 

pressure and temperature at Fort Collins. Therefore, we cannot obtain saturated fractal 

dimensions for all data sets in the paper. For the total length of our data, we can conclude 

only that the saturated fractal dimension is well above 8. 
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Figure 3.3: Plots of In G(r) versus In r for embedding dimensions k = 5,7, ... ,19 (ordered 
from left to right) for the sea surface pressure at BOX 139. (a) daily data; (b) winter 
data; (c) summer. data. 
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Figure 3.4: Plots of the dimensionality II as a function of embedding dimension k for the 
same circumstances as in Fig. 3.3. 
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We have also computed the dependence of II on k for random data produced by a 

random-number generator. It is found that the relationship between II and k for the 

observational data is similar to that for random data of a similar length (number of 

observations) (note: for random data of infinite length, II = k). However, the above 

data are not random, as shown by their power spectra and autocorrelation functions 

(note: for Gaussian white noise, the autocorrelation function is zero; i.e., random data are 

independent of each other). The above results only show that the correlation dimension II. 

is so large that even an embedding dimension of k = 19 is not sufficient; i.e., the dynamics 

of the weather attractors are controlled by too many degrees of freedom, and there exist 

no low-dimensional attractors. 

Caputo et al. (1986) pointed out that saturation could be reached to obtain spuri­

ous correlation dimensions even in very-high-dimensional embeddings for any dynamical 

system whatsoever, including cases of infinite-dimensional, stochastic signals. Recently, 

Osborne and Provenzale (1989) proved that a simple class of colored random noises whose 

power spectrum shows a power-law decay have a finite and predictable value for the cor­

relation dimension. Therefore, it is necessary to verify that the observed data are indeed 

deterministic chaos rather than colored noise. First, the autocorrelation function ap­

proaches zero slowly for all data (see, e.g., Fig. 3.1c). Second, it is impossible to fit a 

power law to the spectrum over the whole range of frequencies (see, e.g., Fig. 3.2). Finally, 

the exponent of the power-law fit to the spectrum in Fig. 3.2 is about 1.7, which would 

indicate a fractal dimension of only about 2.9 for colored noise (Osborne and Provenzale, 

1989). This value is much smaller than those in Table 3.1. Therefore, we can conclude 

that the data are not colored noise. 

Table 3.2 shows the values of Kolmogorov-Sinai entropy K computed from Eq. (2.9) 

for the sea surface pressures at BOX 244 and BOX 139 and the surface temperature at 

Los Angeles, where spurious saturated fractal dimensions are reached. The error-doubling 

time T, which is also given in Table 3.2, is computed from 

T = (1n2)/K. (3.1) 
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Table 3.1: Dimensionality 11 as a function of embedding dimension k for the analyzed data. 
All abbreviations are explained in Section 3.1. No saturation values (11.) were obtained 
for some of the data, and this is indicated in the Table by a horizontal line. The question 
mark after a value indicates that it is probably spurious. 

r k 
location variable (day) data 5 7 9 11 13 15 17 19 ". 

II 

daily 4.9 6.5 8.0 9.3 10.2 11.0 11.5 12.3 -
BOX 139 SST 5 WInter 4.6 6.3 7.7 8.1 8.8 9.5 10.0 10.7 -

summer 4.9 6.5 8.4 9.2 10.6 ' 11.8 10.9 11.3 -
daily 4.9 6.7 8.0 9.1 9.4 9.5 9.6 9.7 9.6? 

BOX 139 SSP 5 winter 4.9 6.3 7.4 8.2 8.7 8.9 9.0 9.0 9.0? 
summer 4.9 6.4 7.7 8.6 8.9 8.9 8.8 9.0 8.9? 
daily 4.8 6.6 8.7 10.4 11.7 12.7 13.0 13.5 -

BOX 244 SST 5 WInter 4.7 6.3 7.5 9.0 10.1 11.4 12.6 14.3 -
summer 4.7 6.4 8.0 9.9 10.8 11.4 12.1 12.4 -
daily 4.8 6.5 8.3 9.2 9.5 10.2 10.2 10.0 10.1? 

BOX 244 SSP 7 WInter 4.8 6.8 7.4 8.1 8.6 8.4 8.5 8.3 8.S"{ 
summer 4.8 6.5 7.7 8.8 9.5 10.0 10.0 9.9 10.0? 
daily 4.8 6.7 8.1 9.7 11.1 11.7 13.1 13.8 -

rCL ST 3 winter 5.0 6.8 8.2 9.8 11.5 12.5 12.2 12.7 -
summer 4.8 6.5 8.5 9.7 IDA 11.6 12.3 1304 -
daily 5.0 6.8 8.5 10.2 11.3 12.0 13.7 14.0 -

rCL SP 2 winter 5.0 6.7 8.3 9.8 11.6 13.2 13.6 14.6 -
summer 4.7 6.7 8.3 9.7 IDA 11.6 12.9 13.9 -
daily 4.8 6.5 7.8 8.8 9.3 10.2 10.2 10.3 10.3? 

LA ST 4 winter 4.8 6.7 7.6 8.8 9.5 10.3 10.3 10.3 10.3? 
summer 4.8 6.4 7.4 8.5 9.5 9.9 9.9 9.8 9.9? 
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Since saturated fractal dimensions are not actually reached, Eq. (2.9) should not be 

used, and the error-doubling times in Table 3.2 are unreliable. For example, although 

the potential predictability is larger in BOX 244 than in BOX 139 (Madden, 1976), the 

error-doubling times for both regions are similar in Table 3.2. Also, for the Lorenz system. 

(Lorenz, 1963), or other known systems, our computations show that the values of K and 

T are not sensitive to the time delay Tj whereas, the values of K and T in Table 3.2 vary 

significantly when the time delay T is increased. For example, in contrast to the values 

in Table 3.2 (with T as given in Table 3.1), T is 14.6 days for BOX 244 SSP with T = 
10 days, T is 8.3 days for BOX 139 SSP with T = 8 days, and T = 6.3 days for LA ST 

with T = 6 days. Since saturated fractal dimensions were not reached in previous studies, 

such estimates of the error-doubling time based on Eqs. (2.9) and (3.1) are also unreliable 

(e.g., in Fraedrich, 1987). 

Although the number of observations in our data set at each location is comparable 

with or more than those used in previous studies, we still cannot obtain low-dimensional 

attractors from these data. However, low-dimensional attractors are claimed in previous 

studies. The existence of low-dimensional atmospheric attractors is currently a highly de­

bated subject. The qualitative and quantitative limitations to the Grassberger-Procaccia 

algorithm have been discussed in Sec. 2.2, and it is mentioned that the quantitative re­

quirement of Ruelle (1990)j i.e., at least M = 10,,·/2 data points are necessary to reliably 

estimate fractal dimension VII, is the least strict one among different criteria. With this 

in mind, Ruelle (1990) has shown that the estimate of VII = 7.3 in Tsonis and Elsner 

(1988) is spurious. Using the same argument, we can show that the estimate of VII = 
7.0 in Fraedrich (1987) is also an artifact of the short time series (only 1680 daily data 

of the surface pressure for 14 winter seasons at Berlin) and thus is unreliable. (By the 

way, Fraedrich (1986) did mention that 5475 daily data for 15 years only lead to unsatu­

rated fractal dimensions) The estimate of a fractal dimension of about 8.0 in Keppenne 

and Nicolis (1989) is also unreliable, because only about 9000 daily 500 mb geopotential 

records were used for each station over western Europe. Although the data in Essex et 

al. (1987) and Sharifi et al. (1990) satisfy the requirement of Ruelle (1990), their esti­

mates of low-dimensional attractors are still not so reliable according to the estimate of 
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Nerenberg and Essex (1990) with the condition that the critical embedding dimension kc 

be greater than the fractal dimension v •. The requirement that kc > v. seems necessary 

in order to guarantee the saturation of the fractal dimension. A dimension of about 8.0 

is also obtained in Keppenne and Nicolis (1989) using 63000 records (9000 x 7 stations). 

However, since the time series at the seven stations may describe the same attractor (as 

demonstrated by them), and since these time series describe the evolution of the attrac­

tor during the same period, 63000 data (9000 x 7 stations) may contain less information 

compared with 63000 data observed at a single station. Even if 63000 data is utilized, this 

number is still only marginally satisfied with the quantitative requirement of Nerenberg 

and Essex (1990). 

By mentioning these examples (more can easily be found in the recent literature), we 

illustrate that most, if not all, of the previous estimates oflow-dimensional at tractors in the 

atmosphere are unreliable. However, Tsonis et al. (1991) recently relaxed the requirement 

kc > v., using kc = v. instead, and claimed that the existence oflow-dimensional attractors 

in weather and climate should not be disregarded based on the analysis of Nerenberg and 

Essex (1990). Finally, based on simple models, Lorenz (1991) recently proposed that, if 

a low fractal dimension can be obtained from observational data, this may instead reflect 

only the weak nonlinear interaction between the observed variable and the other variables 

in the atmosphere, and not the true dimensionality of the atmosphere. 

Only single-point time series are used in our study and in most previous publications. 

In contrast, Pierrehumbert (1990) used the entire data sets of the monthly-average heights 

of the 500 mb surface covering the Northern Hemisphere poleward of 300 N latitude, and 

showed that these data sets are also insufficient to draw firm conclusions about the dimen­

sionality of the global atmosphere, and that no low-dimensional « 20) global attractors 

exist. 

The global attractor is probably multifractal (Halsey et al., 1986). This means that 

the globally-averaged dimension will be dominated by the larger local dimensions; many 

local dimensions may be smaller than the global dimension, and the dimension may vary 

with location. Corresponding to this, the unsaturated dimensions v(k) in Table 3.1 vary 
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qualitatively with location. The geographic variability of fractal dimensions may also be 

related to the climatic signal-to-noise ratio. For instance, lI(k) for the surface temperature 

in Los Angeles is lower than in Fort Collins where the climatic signal-to-noise ratio is 

smaller (Madden and Shea, 1978). On the other hand, the climatic signal-to-noise ratio in 

BOX 244 is higher than that in BOX 139 (cf. Fig. 6 in Madden, 1976), but the values of 

lI( k) for the sea surface pressure in both regions are similar. However, these speculations 

about the geographical variability of fractal dimensions need further verification, since 

no saturated fractal dimensions can be obtained with confidence in Table 3.1. Similarly, 

although the correlation dimension of daily data appears to be larger than those of winter 

and summer data in Table 3.1, due to the fact that the (total) daily data include the 

transition-season (spring and fall) data as well, this also needs further verification. 

In summary, we have shown in this section that most, if not all, of the previous 

estimates of low-dimensional attractors in the atmosphere are unreliable. U sing longer 

time series of observational data, we still cannot obtain a saturated fractal dimension lIa, 

and we can claim only that lI. is well above 8. Because saturated values cannot be reached, 

the computation of the Kolmogorov-Sinai entropy and the error-doubling time based on 

Eqs. (2.9) and (3.1) is unreliable. We have also shown that our data are neither white 

noise nor colored noise. The geographic variability of fractals is qualitatively discussed in 

relation to the global multifractal assumption and the climatic signal-to-noise ratio. 

3.3 Lyapunov Exponents and Predictability of the Atmosphere 

We have shown in the previous section that no saturated fractal dimensions can be 

reached and predictability cannot be estimated reliably. Though some people may question 

the usefulness of computing fractal dimensions for the atmosphere, nobody questions the 

importance of predictability. Therefore, in this section, we evaluate the Kolmogorov­

Sinai entropy and the error-doubling time in the atmosphere by estimating the Lyapunov­

exponent spectrum from our practical and reliable method discussed in Sec. 2.3. 

Noise is an infinite-dimensional process and tends to decrease the density of data 

points defining the attractor as the embedding dimension k increases (Wolf et al., 1985). 



45 

Because of the limitations due to the noise level and the total number of data points, we 

believe that the results with Ie S 5 are more reliable than those with Ie > 5. Since our 

goal is to obtain with confidence as many Lyapunov exponents as possible, we report our 

results for Ie = 5 only. As shown in Sec.2.3, at least the positive Lyapunovexponents can 

be computed reliably for Ie = 5. (In our computations, we also find that, as Ie increases 

beyond 5, the Lyapunov exponents decrease slowly, but the Kolmogorov-Sinai entropy and 

the error-doubling time change very little.) 

Table 3.3 summarizes the Lyapunov-exponent spectrum for each analyzed data set. 

It is seen that at least two Lyapunov exponents are positive with comparable magnitude. 

Furthermore, at least one exponent must be zero, and we can easily identify this exponent 

as ~3 in each case (since ~3 is zero to within the error bars). Therefore, the atmosphere 

has a hyperchaotic attractor with a folded, multidimensional fractal structure, and un­

stable motion of comparable importance occurs along two directions. We then obtain the 

Kolmogorov-Sinai entropy K, as the sum of the two positive Lyapunov exponents, and 

the error-doubling time T for each data set. We can conclude from Table 3.3 that the 

predictability time T is about 5 to 8 days at BOX 139 and BOX 244, about 4 to 5 days 

in Los Angeles, and about 2 to 3 days in Fort Collins. It is also seen from Table 3.3 that 

the predictability time T is shorter for the daily data than for the summer and/or winter 

data, since the daily data includes not only summer and winter data, but also transition­

season (spring and fall) data. Besides, it is found that the predictability time T is larger 

in summer than in winter for all variables. Possible reasons for this result are that weather 

events of short life time (such as summer thunderstorms) are filtered out in daily average 

data used in this study, and there are more propagating weather systems in winter than 

in summer. 

Local predictability is controlled by large-scale advection processes and local forcing. 

Due to the regulation on the weather and climate in Los Angeles by the eastern portion 

of the subtropical ridge associated with the descending portion of the Hadley cell, and 

the much more frequent influence of the polar front on the weather and climate in Fort 

Collins, the potential climatic predictability which is a sort of climatic signal-to-noise 
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Table 3.2: Kolmogorov-Sinai entropy K and error-doubling time T of the sea surface 
pressure (SSP) at BOX 139 and BOX 244 and of the surface temperature (ST) at Los 
Angeles (LA). 

Location BOX 244 BOX 139 LA 
variable SSP SSP ST 

daily 0.095 0.093 0.173 
K(day-I) winter 0.061 0.079 0.159 

summer 0.084 0.068 0.155 
daily 7.3 7.5 4.0 

T(day) winter 11.4 8.8 4.4 
summer 8.3 10.2 4.5 

Table 3.3: Lyapunov-exponent spectrum with the parameters given in the text. The 
error-doubling time T is computed from Eq. (3.1), where the Kolmogorov-Sinai entropy 
K is obtained by summing the first two Lyapunov exponents. 

daily 
location variable data data Lyapunovexponent (day-l) T (day) 

number 
daily 0.063 0.031 -0.006 -0.052 -0.134 7.4 

BOX 139 SST 13,870 WInter 0.064 0.026 -0.005 -0.047 -0.131 7.7 
summer 0.064 0.019 -0.011 -0.059 -0.142 8.4 
daily 0.098 0.044 0.004 -0.047 -0.133 4.9 

BOX 139 SSP 13,855 wmter 0.117 0.055 0.021 -0.048 -0.142 4.0 
summer 0.075 0.037 -0.000 -0.042 -0.136 6.2 
daily 0.102 0.046 0.001 -0.042 -0.132 4.7 

BOX 244 SST 13,860 winter 0.086 0.040 0.006 -0.048 -0.130 5.5 
summer 0.078 0.030 -0.007 -0.043 -0.138 6.4 
daily 0.068 0.033 0.003 -0.031 -0.089 6.9 

BOX 244 SSP 13,877 WInter 0.078 0.034 0.006 -0.028 -0.098 6.2 
summer 0.060 0.028 -0.002 -0.033 -0.096 7.9 
daily 0.195 0.081 0.016 -0.077 -0.220 2.5 

FCL ST 36,555 wmter 0.191 0.089 0.011 -0.063 -0.228 2.5 
summer 0.144 0.058 -0.010 -0.068 -0.228 3.4 
daily 0.283 0.119 0.022 -0.089 -0.348 1.7 

FCL SP 32,870 WInter 0.238 0.089 -0.000 -0.108 -0.340 2.2 
summer 0.215 0.105 0.000 -0.122 -0.325 2.2 
daily 0.121 0.065 0.004 -0.059 -0.174 3.7 

LA ST 14,245 WInter 0.122 0.053 -0.001 -0.058 -0.169 4.0 
summer 0.101 0.046 -0.002 -0.052 -0.162 4.7 
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ratio, is higher in Los Angeles than in Fort Collins (see, e.g., Madden and Shea, 1978). 

Corresponding to this, as shown in Table 3.3, the predictability time T is larger for surface 

temperature in Los Angeles than in Fort Collins. T is also larger for sea surface pressure 

in BOX 244 than in BOX 139, where the climatic signal-t~noise ratio is also smaller and 

the potential predictability is shorter (Madden, 1976). 

Our estimates of the error-doubling time in Table 3.3 are from about 2 to 8 days 

for various locations. However, twin experiments of General Circulation Models (GCMs) 

by Smagorinsky (1969) give an error-doubling time of about 2.5 days for the vertically 

integrated standard deviation of the temperature in the Northern Hemisphere. Using an 

ECMWF GCM, Lorenz (1982) obtained an error-doubling time of about 2 days for small 

initial errors of 500 mb heights in the Northern Hemisphere with the aid of a quadratic 

hypothesis for the nonlinear terms in the equation governing the growth of errors. The 

difference between their estimates and our estimates may be explained as follows. First, 

we use single-point time series and study local predictability, but they used data for the 

entire Northern Hemisphere and studied the global predictability, which is controlled by 

areas of lower local predictability (Le., higher Kolmogorov-Sinai entropy). Therefore, it 

is natural that our estimates of the error-doubling time are approximately equal to or 

greater thcpt their estimates. Second, the error-doubling time depends on the magnitude 

of initial errors: this time is short for small initial errors and long for larger initial errors 

(cf. Fig. 2.1). Because our data is from observations, our estimates of error-doubling 

time are generally larger (and more physically relevant) than those based on truly small 

initial errors. Third, daily-averaged data are used in this study, but instantaneous values 

were used in their studies. The averaging process smooths data and increases the error­

doubling time. Fourth, we use observational data, but they used mod~-generated data 

and it is not clear that the error-doubling time in the GCMs is the same as in the real 

atmosphere. Finally, we use surface observations, but they used results above ground. 

The last two points will cause differences between our estimates of error-doubling time and 

theirs, but do not necessarily increase the error-doubling time in our estimates. Using the 

500 mb geopotential record over western Europe, Keppenne and Nicolls (1989) obtained 
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a error-doubling time of about 19 days. This discrepancy with our estimates may also be 

explained by the second and last points in the above discussion. In other words, we use 

surface temperature and pressure data but they used 500 mb geopotential record, and, 

because of this, the magnitude of initial errors may also be different. 

Traditional predictability studies (e.g., Lorenz, 1982) by means of numerical models 

in atmospheric science usua.lly study the error growth from a reference state disturbed 

by various methods of perturbation (ECMWF Workshop, 1988). Both the traditional 

approach and the analysis presented in this paper share a common conclusion: when the 

initial error is small, its growth rate depends on the dynamics of the system, rather than 

on the initial error itself. On the other hand, traditional predictability studies provide only 

the largest (positive) Lyapunov exponent; whereas, our analysis provides all of the positive 

exponents, which a.llows a more appropriate quantitative measure of predictability, since 

different positive Lyapunov exponents correspond to the divergence of initial errors in 

different directions. The traditional approach uses entire global fields of data; in contrast, 

we only use single-point time series. We do not expect to extract all of the information 

about the global dynamics, but we do expect to gain an insight concerning predictability 

from local time-series analyses. As recommended by the ECMWF Workshop (1988, p.17), 

the evaluation of the dimensionality of atmospheric attractors may have an impact on the 

number of elements needed in a Monte Carlo ensemble forecast of the extended range. We 

also anticipate that the analysis of predictability will aid the selection of initial states for 

the Monte Carlo ensemble extended-range forecast. 

Finally, we discuss a problem which needs further study using more data. For known 

systems (e.g., the Lorenz equations), we found that the computation of the Lyapunov­

exponent spectrum is insensitive to the selection of T, which is approximately the e-folding 

time of the autocorrelation function. For Gaussian white noise, our computations show 

that Lyapunov exponents are inversely proportional to T. However, when we analyze our 

data, we find that the Lyapunov exponents decrease slightly as T increases, although they 

are not inversely proportional to T, as would be the case for Gaussian white noise. This 

may be due to the high fractal dimension of the atmosphere. This uncertainty could 
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increase the estimates of T by as much as 50%. Much more data may be required so that 

the Lyapunov-exponent spectrum can be evaluated for higher embedding dimensions to 

improve the estimates of the predictability time T. 

Since the noise level in our data may be assumed to be typical for daily data of the 

atmosphere, and since the total number of data points (from about 13,800 to about 36,500) 

is larger than those used in previous studies (e.g., about 5500 in Fraedrich, 1986; about 

9000 for each station in Keppenne and Nicolis, 1989), it is not unreasonable to assume 

that the above problem may be very common for similar studies using daily data of the 

atmosphere, and sensitivity studies should be conducted to determine its importance in 

estimating predictability. 

In summary, by means of computing the Lyapunov exponents, we obtain error­

doubling times varying from about 2 to 3 days in Fort Collins to about 4 to 5 days 

in Los Angeles and to about 5 to 8 days in BOX 139 (midlatitude North Atlantic) and 

BOX 244 (subtropical North Atlantic). These time scales are smaller than those inferred 

by Keppenne and Nicolis (1989) for western Europe, and are approximately equal to or 

larger than those obtained by Smagorinsky (1969) and Lorenz (1982) using GCMs. The 

reasons are discussed in detail. The predictability time in an area (e.g., Los Angeles) of 

high climatic signal-to-noise ratio is longer than that in an area (e.g., Fort Collins) where 

the climatic signal-to-noise ratio is small. The predictability time for daily data for the 

entire year is shorter than for summer and/or winter data, since the daily data includes 

not only summer and winter data, but also data for the transition seasons (spring and 

fall), whose predictability is poorer and whose dynamics are apparently controlled by more 

variables than in summer and winter. Finally, we have discussed the slight sensitivity of 

the calculation of the Lyapunov-exponent spectrum to the choice of the time delay r. 



Chapter 4 

CHAOS IN DAISYWORLD 

In the previous chapter, we have discussed the application of chaos theory to the 

observational data analysis which goes beyond the traditional statistical or linear analyses. 

Another possible application of chaos is the inspiration of new ideas by the concept of 

chaos. In this chapter, we will explore chaos in daisyworld. More detailed discussions can 

be found in Zeng et al. (1990 and 1992c). 

4.1 Introduction 

It is now widely accepted that the Earth is a single system which consists of the biota. 

and their environment. These two elements of the system are closely coupled: the biota 

regulate the environment (e.g., climate on a planetary scale) and, in turn, the environment 

restricts the evolution of the biota and dictates what type of life can exist as a consequence 

of Darwinian natural selection. In order to qualitatively understand this very complex 

interaction mechanism, a model, daisyworld, which is an active system where the biota 

and the environment are tightly coupled, was first described by Lovelock (1982) and then 

used to study the interaction between daisies of one or two species and the temperature of 

the environment (Watson and Lovelock, 1983, hereafter denoted by WS in this chapter). 

These authors found that the inclusion of feedback from the environment, regardless of its 

direction, stabilized daisyworld, and this was consistent with the earlier Gaia. hypothesis 

that the climate and the chemical composition on the Earth have been and are maintained 

at a steady state by the presence of life itself (Lovelock and Margulis, 1974). Later, Gaia 

is stated more scientifically as a theory in Lovelock (1989) that views the evolution of the 

biota and of their environment as a single, tightly coupled process, with the self-regulation 

of climate and chemistry as an emergent property. Among the many examples to show the 
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widespread influence of the Gaia theory (or hypothesis) are the 1988 Chapman Conference 

on Gaia. of the American Geophysical Union and the scientific journal Garon Science for 

geophysiology researchers and teachers. 

Though the feedback in daisyworld is much simpler than that on the Earth, research 

on such an imaginary planet may provide insight into the properties of the Earth's climate. 

Therefore, further studies are needed. The purpose of this chapter is to study this fictional 

world in more detail, and, especia.lly, to evaluate the chaotic properties of this model. 

Both qualitative and quantitative methods from modern chaos theory have been utilized 

to verify the presence of chaos in daisyworld. 

4.2 Differential Model for Daisyworld 

Daisyworld is a cloudless flat or cylindrical planet with negligible atmospheric green­

house gases that bears life only in the form of different species of daisy. The behavior of 

the daisyworld governed by differential equations described in WS will be studied first. 

For completeness, these equations are written here except in a more general way. A more 

realistic model for daisyworld, the discrete model, will be discussed in the next section. 

4.2.1 Differential model 

The growth rate of the daisies is given by a set of equations in population ecology 

theory (Carter and Prince, 1981): 

dd
a
; = a;(z/3; - ii) (i = 1,2, . .. ,m), 

t . 
(4.1) 

where a; is the area covered by the ith species of daisy, which is measured as a fraction 

of the total surface area of daisyworld. The variable z is the unoccupied fertile area in 

which daisies could grow, i.e., 

m 

z=p- La; , 
;=1 

(4.2) 

where p is the total area of fertile ground. ii is the death rate per unit time and is ta.ken 

to be the same constant for each species. /3i is the growth rate per unit time and per unit 

area, and it is assumed to be a parabolic function of the local temperature Ti: 
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Pi = C[1 - 0.003265(22.5 - Ti?l , (4.3) 

which is zero at Ti = 5°C or 40°C, and reaches its maximum value of C (where C is a 

constant) at Ti = 22.5°C. WS restricted their attention to C = 1; in this chapter, we 

consider the range 1 5 C 5 4. 

The effective temperature Te(OC) at which the planet's surface radiates can be ob­

tained by the radiation budget equation on the surface: 

o-(Te + 273)4 = SL(I- A) (4.4) 

where 0- is Stefan's constant, S is a constant having units of energy flux, L is a dimen­

sionless measure of the luminosity of the sun of daisyworld, and A is the average albedo 

of the planet, which is given by 

m 

A = (1- p)Aga + xAgf + EaiAi 
i=l 

(4.5) 

where Ag. is the albedo of the sterile area in which the daisies cannot grow, Agf the albedo 

of the unoccupied fertile area, and Ai the albedo of the ith species. 

The local temperature of different types of surface can be determined using a conser­

vation of energy balance for the planet. For the daisies, it can be expressed as 

(4.6) 

where q is the conduction coefficient of solar energy among different types of surface. 

Equation (4.6) can be simplified with small error for the temperatures of interest: 

(4.7) 

where q' = 0.25 qj(295.5)3. Alternatively, for the particular value q = SLjo-, Eq. (4.6) 

can be rewritten by means of Eq. (4.4): 

(Ti + 273)4 = q(1 - Ai) , (4.8) 



53 

which means that the local temperatures are determined solely by the local radiation 

balance; Le., there is no feedback between the daisies and their environment. 

Equations (4.1)-(4.5) and (4.7) [or (4.8)] constitute a closed set of equations. The 

differential equation (4.1) can be solved by a forward-difference scheme with small dt: 

a~+1 = a'!- + dta'!-(x" a!, - ..,!') , , ,JJ,,,, (4.9) 

where dt is the time step and implies, in physical terms, that there is a time delay in the 

interaction between the daisy population and the local temperatures. 

4.2.2 Steady-state behavior of the system 

As in WS, it is assumed in this subsection, unless explicitly stated otherwise, that p 

= 1 (Le., the planet's surface is totally fertile), S [in Eq. (4.4)] = 9.17x105 ergs cm-2 s-1 

(or 917 Wm-2), the albedo AgJ [in Eq. (4.5)] = 0.5, t/ = 20, "Ii is constant, dt = 0.01, 

and C = 1. 

Just as the Sun has been increasing in solar luminosity since the formation of the Solar 

System (Owen et al., 1979), the luminosity of the sun of daisyworld is assumed to rise 

slowly, so that, at each value of L, the possible steady state of daisyworld is evaluated by 

solving the gqverning equations forward in time with the initial values of different daisies 

set at the previous steady-state values, or 0.01 if these are zero. 

Fig. 4.1 shows the steady-state behavior of four species of daisy and the temperature 

Te as the luminosity L is incremented. The effective temperatures for one to three species 

are also included in Fig. 4.1 for comparison. It is seen from Fig. 4.1a that the area 
4 

occupied by daisies is almost constant, Le., E ai ~ 0.7, within the range of L from 0.7 to 
i=1 

1.7; however, as the luminosity increases, the species with lower albedos become extinct 

in the battle for survival of the fittest, and the species with the higher albedo dominates 

the planet. For each value of luminosity from 0.7 to 1.7, only one or two species exist. 

Though not shown here, with only two or three species, daisyworld exhibits the same 

characteristics. This is just one example that daisyworld can give insights on biodiversity, 

but further study using more species is needed. 
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Figure 4.1: Steady-state behavior of daisyworld. (a) Areas of four species where At, 
A2, A3, and A4 are 0.2, 0.4, 0.6, and 0.8, denoted by solid, dotted, short-dashed, and 
long-dashed curves, respectively. (b) effective temperatures for the cases of one to four 
species: solid and dotted curves denote the cases of one species with At = 0.25 and 0.75 
respectively; short-dashed curve denotes the case of two species with At = 0.25 and A2 = 
0.75; long-dashed curve denotes the case of three species with At, A2, and A3 being 0.1, 
0.4, and 0.7; and dash-dotted curve denotes the case of four species with albedos as given 
in (a). 
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Once the non-zero steady state is rea.ched for a value of luminosity, it can be seen 

from Eqs. (4.1) and (4.2) that 

m 

L ai = P - 1; / {3j , ( 4.10) 
i=1 

where the subscript j can be any number among 1,2, ... ,m for which aj -:j; o. This means 

that the area occupied by a.ll daisies must be constant no matter how many different kinds 

of daisies exist. The results discussed in the previous paragraph are consistent with this 

general conclusion. 

Fig. 4.1b shows that the temperature regulation ofthe planet is similar for two, three, 

or four species, and, therefore, for the remainder of this chapter, we will consider only one 

or two species for simplicity. One species, with Al = 0.25, will be referred to as "black", 

and the other, A2 = 0.75, will be referred to as "white" to emphasize the contrast, though 

neither of them is perfectly black or white. Hereafter, subscripts b and w will be used to 

indicate black and white daisies. 

When Eq. (4.8) is used to compute Ti, instead of Eq. (4.7), Le., q = SL/u, the 

steady-state behavior for two species is shown in Fig. 4.2. It is found that, for the range 

of L from 0.8 to 1.5, both black and white daisies are eliminated, and the temperature 

increases alinost linearly. Computations also show that the daisyworld model for one or 

two species using Eq. (4.8) exhibits no hysteresis when the luminosity decreases; whereas, 

the system using Eq. (4.7) does (see Fig. lc in WS). Therefore, unlike Eq. (4.7), Eq. (4.8) 

does not yield a self-regulating system. Figures. 4.1 and 4.2 also show that the inclusion 

of the feedback (Fig. 4.1) stabilizes the environment compared with the no-feedback case 

(Fig. 4.2). 

Calculations also show that the steady-state behavior is the same for time steps ~t 

of 0.01, 0.5, or 1.0, although the time needed to obtain the steady state is different. 

Furthermore, it is found that, when steady-state behavior is rea.ched, it is similar for 

different parameter values, e.g., changing q' from 20 to 40 or 60, or changing C in Eq. 

(4.3) from 1 to 2. 
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Therefore, we have shown that, not only for one or two species (which have been 

discussed in WS), but also for more than two species, the inclusion of the feedback between 

the daisies and their environment stabilizes the daisyworld when the differential equation 

(4.1) is used. However, as will be argued in the next section, a more realistic model for 

daisyworld is a discrete model, rather than a differential model. 

4.3 Discrete Model for Daisyworld 

4.3.1 Discrete model 

As mentioned in Subsection 4.2.1, the time step at in Eq. (4.9) represents, in phys­

ical terms, the time delay in the interaction between the daisy population and the local 

temperatures. As a result, in order to accurately approximate the differential equation 

(4.1), at must be chosen to be small. However, this allows the daisies to adjust to tem­

perature variations instantaneously (Le., without delay), which is unphysical. A more 

realistic model is to let at be the generation time, since this is the characteristic response 

time of the daisy population. Therefore, we will modify the above model by replacing Eq. 

(4.1) by Eq. (4.9) with at = 1 (Le., with the generation time chosen as the unit oftime): 

a~+l = a"!- + a"!-(x"f.l!' - "'V!l) 
I I , /oJ, ". (4.11) 

We will refer to the closed set of equations (4.2)-(4.5), (4.7) or (4.8), and (4.11) as the 

discrete model. We also refer to both the diferential and discrete models as daisyworld, 

since we consider them to be two different models of the same physical system in which 

daisies interact strongly with their environment. For one species, this equation is the 

same as that considered by May (1974), and he has shown that the important parameter 

is ({J - 1), which he takes as high as 5. Hence, we consider the ranges 0.3 :5 1 :5 1 and 1 

:5 C :5 4 (and, thus, {Ji :5 4). 

With regard to the question of whether the discrete model or the differential model 

is more appropriate, we refer to Carter and Prince (1981). While they do write down a 

differential equation, to which WL refer as the basis for their differential model, Carter and 

Prince (1981) also conduct an experiment and show that the experimental data actually 
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agree closely with the discrete equation similar to Eq. (4.11) above (see their Fig. 1). The 

main problems with the differential model are that it allows an instantaneous response 

to any change, and it does not allow extinction to occur in a finite time. In contrast, 

the discrete model avoids both of these drawbacks. Furthermore, the discrete model 

with a finite generation time is a first step toward including seasonal variation, since it 

synchronizes the birth at the beginning of each new generation, which corresponds to the 

beginning of the growing season, rather than allowing continuous birth throughout the 

year. 

In order to discuss the coupling constant C in Eq. (4.3) and the generation time ~t, 

we rewrite Eq. (4.9) as 

(4.12) 
= a~ + ai[xn (.8f / A) - (-yf / A)](A~t), 

which shows that changing ~t is equivalent to changing both the growth rate {Ji and the 

death rate "ri. This simply illustrates that the numerical values of these rates depend on 

the unit of time chosen for ~t. Physically, the generation time is nearly fixed (and chosen 

as the unit of time; i.e., time is measured in generations, leading to Eq. (4.11) above): 

unlike the growth rate, it changes only slightly as the climate changes. We will investigate 

the effect of varying the growth rate {Ji by varying its coupling to the local temperature 

(as given by the coupling constant C). Note that one can mathematically vary ~t as 

well, but this is not physically meaningful, since the generation time ~t is not physically 

variable. 

It should be emphasized that the discrete model will yield different results from the 

differential model. It is known from basic chaos theory, even without any computations, 

that, for differential daisyworld, chaos can never occur in the one- and two-species cases. 

This is verified in WL and in Section 4.2. It is further shown in Section 4.2 that steady­

state behavior is obtained in differential daisyworld with more than two species for a wide 

range of parameters. In contrast, for discrete Daisyworld, it will be shown later that 

periodic and even chaotic oscillations can occur in the one- and two-species cases. First, 

however, an analytic analysis is presented. 
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4.3.2 Theoretical analysis of the chaotic regime in the daisyworld model 

When Eq. (4.8) is used. in the model, constant luminosity leads to constant Ti in 

Eq. (4.8) and, hence, constant (Ji from Eq. (4.3). The difference equation (4.11) with the 

above constants can be written as 

m 

ai'+! = (1 + (Ji -1i)ai' - (Jiai' I: aj (i = 1,2, ... , m) , (4.13) 
j=1 

where (Ji and 1i are constants. 

For one species, we let 

(J 
y= 1+(J-1a , 

so that Eq. (4.13) may be rewritten as 

(4.14) 

(4.15) 

which is the well known logistic difference equation (see, e.g., May, 1976, among others). 

The solution yn+1 of this equation is chaotic for many values of 1 + (J - 1 in the range 

3.57 ~ 1 + (J - 1 ~ 4 . (4.16) 

On the other hand, the physical restriction on a is 0 ~ a $; 1, and the maximum 

value of yin Eq. (4.15) can be easily obtained as (1 + (J -1)/4. Therefore, Eq. (4.14) 

yields the condition 

(4.17) 

Combining this with Eq. (4.16) yields 

and, for 15 1, this becomes 
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which also implies that 

0.616 ~ 1 ~ 1 . 

For more than one species, with 1i = 1 (Le., the same for each species), we let 

m 

a = Lai' 
i=l 

1 m f3 
f3 = - L f3iai, Y = a 

a i=l 1 + f3-1 
and we sum Eq. (4.13) over i to yield 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

which is the same as Eq. (4.15). However, while Eq. (4.22) indicates that chaos should 

again be expected, the specific results for the case with one species are not applicable, 

since f3 now depends on n. If, instead of Eq. (4.8), we use the more realistic Eq. (4. 7), then 

f3i is no longer independent of n. However, the analysis leading to Eqs. (4.15) and (4.22) 

is still valid, with f3 now dependent on n in both cases. Therefore, chaos is again expected 

to occur, although we can give no quantitative prediction of the parameter regime. In the 

numerical results which follow, we use Eq. (4.7), rather than Eq. (4.8), since only the 

former can lead to self-regulation (cf. Figs. 4.1b and 4.2b). 

4.4 Numerical Results on Chaos in Daisyworld 

Computa.tions in this section are based on Eqs. (4.2)-(4.5), (4.7), and (4.11). Besides 

those related parameters specified in Section 4.2, other parameters are taken as follows: 

~t = 1.0, Ab = 0.25 for black daisies, and Aw = 0.75 for white daisies. 

During a stage when the luminosity is fixed with time in daisyworld, we alter the 

internal environment by increasing the interaction between the daisies and the environ-

mental effective temperature Te , and by increasing the death ra.te; i.e., the parameters C 

in Eq. (4.3) and 1i in Eq. (4.11) are increased. Note tha.t the discrete equa.tion (4.11) is 
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valid only when at ~ O. IT at becomes zero, extinction has occurred, after which it remainl 

zero. It is meaningless to continue using the discrete equations and allow at to becom4 

negative. 

4.4.1 Daisyworld with only black daisies. 

Figures. 4.3 and 4.4 show a chaotic state of the planet using Eq. (4.7) with only bla.c1 

daisies at L= 0.90, C=4.0, and different values of 'Yb. Other parameters are as previousl~ 

specified. The plots are generated by solving the governing equations with the initial valU4 

of ab (the area covered by black daises) set a.t the steady-state value in Subsection 4.2.2, 
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Figure 4.3: Chaotic behavior of the effective temperature Te in daisyworld with only blac1 
daisies at L = 0.90 and C = 4.0. (a) 'Yb = 1.0; (b) 'Yb = 0.9; (c) 'Yb = 0.8; (d) 'Yb = 0.3. 

It is obvious in these figures that black daisies alone can adjust to drastic change it 

the environmental temperature Te (as large as 19°C) without becoming extinct. However 
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homeostasis is not maintained; instead, the effective temperature and the area covered by 

black daisies is chaotic and unpredictable. It is also interesting to note that variations of 

ab and Te in Figs. 4.3 and 4.4 are quite similar (cf., e.g., Fig. 4.3a and Fig. 4.4a). This 

feature is explained in the Appendix A. 

According to Eqs. (4.19) and (4.20), no chaos occurs in the logistic difference equation 

when I = 0.3 and f3 = constant. However, using Eq. (4.7), in which case, f3 ~ constant, 

daisyworld is chaotic at Ib = 0.3, which shows that the inclusion of the feedback from the 

environmental temperature widens the chaotic regime of daisyworld. This also illustrates 

the well known fact that, once the coefficient in the logistic map given by Eq. (4.15) 

becomes variable, it is difficult to analytically predict the occurrence of chaos from the 

equation. 

The occurrence of chaos in the model is sensitive to the value of C, though not 

sensitive to the value of ;b in this case. Figure 4.5 shows the results for C = 3.0 and Ib = 

0.3. We see from Fig. 5 that both Te and ab are in stable cycles of period 2. The amplitude 

of the oscillation is lOoC for Te and 32% for abo Both amplitudes are smaller than those 

for the chaotic states. When C = 3.0 and Ib = 0.8, 0.9, or 1.0, periodic solutions are also 

obtained, and the amplitudes of ab and Te decrease with the increase of lb. At C = 2.0, 

the daisyworld model reaches a steady state for ;b = 0.3, 0.8, 0.9, or 1.0. Chaos occurs 

with C = 4.0 for a wide range of values of the luminosity. 

4.4.2 Daisyworld with only white daisies. 

The results with L = 0.92 and C = 4.0 are shown in Fig. 4.6. At I'W = 1.0, the 

environmental temperature and the area occupied by white daisies appear to oscillate 

periodically with a period of 10. However, as will be shown later, they are, in fact, slightly 

chaotic. When;'W is changed from 1.0 to 0.8, the apparent periodicity disappears and the 

chaos is apparent. The largest amplitudes of the variations of Te and a'W are roughly 7°C 

and 18% for I'W = 1.0, and roughly lOoC and 25% for IW = 0.8. It is also found that, at 

IW = 0.3, the white daisies become extinct by the fourth generation. 
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In this case, the variations of aw and Te in Fig. 4.6 have opposite phase and are 

inverted versions of each other (d. Figs. 4.6a and b; Figs. 4.6c and d), which is different 

than in case for only black daisies. Appendix A gives the explanation for this difference. 

Computations with white daisies also show that Te and aw oscillate with period 2 at 

C = 3.0, 1w = 0.3, and are in a steady state at C = 3.0, 1w = 0.8, 0.9, or 1.0, and at C = 

2.0, 1w = 0.3, 0.8, 0.9, or 1.0. Finally, for C = 4.0, the range of luminosities giving rise to 

chaos is smaller for white daisies than for black daisies. Unlike the case with only black 

daisies, the occurrence of chaos is sensitive to both C and 1w in this case. 

4.4.3 Daisyworld with both black and white daisies. 

Chaos occurs in daisyworld not only with one species, but also with two species. 

Figure 4.7 shows the chaotic state of the model for L = 0.80 and C = 4.0. The largest 

amplitudes of variations of aw , ab, and Te are roughly 12%,80%, and 23°C, respectively. 

At C = 3.0, aWl ab, and Te in daisyworld vary in stable cycles of period 2 for 1b = 1w 

= 0.8, 0.9, or 1.0. The periodic state for '"1b = 1w = 0.8 is shown in Fig. 4.8. It is seen 

that aw and ab increase or decrease at the same time and the trend in variation of both 

of them is opposite to that of Te. The largest amplitudes of variations for aw , ab, and Te 

are roughly 4%, 24%, and 7°C, respectively. At C = 2.0, homeostasis is maintained in the 

model for 1b = 1w = 0.3, 0.8, 0.9, or 1.0, just as with only one species. It is also found 

that variations of Te and ab have the same phase, but they have no phase relationship 

with aw for the parameters used in Figs. 4.7 and 4.8 (d. Figs. 4.7b and c; Figs. 4.8b and 

c). This is discussed in Appendix A. 

The coupling strength C is the most important parameter in determining the qualita­

tive behavior of daisyworld. As C is increased from 1.0 to 4.0, the behavior of daisyworld 

will change from a steady state to periodicity to chaos over a- wide range of values of 

luminosity, and, thus, the system will become extremely sensitive to minor changes in the 

initial values of aUt and abo As a result, homeostasis can not be maintained by the pres­

ence of one or two species on the planet. Furthermore, since the chaos is more pronounced 

with two species than with one, there is no reason to believe that it will be eliminated 

by including additional species (also, recall Fig. 4.1, which showed that only one or two 
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species at a time were involved in ma.intaining the steady-state behavior). Therefore, the 

conclusion of Watson and Lovelock (1983), based on the differential equation (4.1), that 

daisyworld always shows greater stability with daisies present, is not a general result, and 

the remarks made by Lovelock (1986) that the inclusion of feedback from the environment 

appears to stabilize the system is also not true in general. 

4.4.4 Verification of chaos in daisyworld 

The existence of chaos in daisyworld is verified by examining power spectrum and 

computing fractal dimensions and Lyapunov exponents. When the power spectra are 

computed for the cases discussed in the previous subsections, broadband noise is found 

for the chaotic behavior in Figs. 4.3, 4.4, 4.6, and 4.7, and sharp peaks for the periodic 

beha.vior in Figs. 4.5 and 4.8. Some examples are shown in Fig. 4.9. In particular, for 

daisyworld with only white species and /'W = 1.0, the power spectra shows unambiguously 

that the behavior is slightly chaotic (note the low noise level), even though this is not 

apparent from Figs. 4.630 and b. 

The fractal dimensions are computed from Eqs. (2.5)-(2.7). The Lyapunov exponents 

are computed from Bennetin et al. (1976), which is based on Eqs. (2.12)-(2.13), since 

the governing equations are known. Of course, the more complex algorithm based on 
, 

Eqs. (2.14)-(2.22) will yield the same results. The correlation dimensions and Lyapunov 

exponents for some cases of chaos discussed in the previous three subsections are given in 

Table 4.1. Note that there is only one exponent for the case of only one species. It is seen 

that, in each case, the correlation dimension is fractional and the exponent At is positive, 

which shows unambiguously that chaos is present. 

In summary, by analyzing the power spectra, fractal dimensions, and Lyapunov ex­

ponents, we have verified the existence of chaos in daisyworld with one or two species. 

4.5 Conclusions 

The simple daisyworld model has been used to study the interaction between biota and 

their environment. When the differential equation (4.1) is used, it is shown that steady­

state behavior is always reached, not only for one or two species (as in WS), but also for 
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species in daisyworld. (a) periodic state of black daisies for the parameters used to create 
Fig. 4.5; (b) slightly chaotic state of white daisies with "Iw = 1.0 and the other parameters 
as used to generate Fig. 4.6; (c) chaotic state of white and black daisies for the parameters 
used to create Fig. 4.7. 

Table 4.1: Correlation dimension v and Lyapunov exponents ,\ for some cases of chaos 
from Subsection 4.4.4 

Black daisies only White daisies only Black and White daisies 
(parameters as in Fig. 4.3) (parameters as in Fig. 4.6) (parameters as in Fig. 4.7) 

"Yb = 1.0 "Yb = 0.9 "Yb = 0.8 "Yb = 0.3 "Yw = 1.0 "Yw - 0.8 "Yw - "Yb - 1.0 
v 0.90 0.98 0.97 0.95 0.81 0.91 1.9 
~l 0.51 0.58 0.60 0.44 0.18 0.42 0.47 
~2 - - - - - - -{).22 
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more than two species. However, it is argued that a more appropriate model for daisyworld 

is the discrete model [Eq. (4.11)] rather than the differential. model [Eq. (4.1)]. When the 

discrete equation (4.11) is used, it is found that periodic, and even chaotic, behavior exists 

in daisyworld with one or two species, with the controlling parameter being the strength 

of the coupling between the daisies and the environmental. temperature. Computations 

of the power spectra, fractal. dimensions, and Lyapunov exponents verify the existence of 

periodic and. chaotic behaviors in the model. 

As shown in May (1976) and in Subsection 4.3.2, when the discrete equation (4.11) is 

used, chaos is possible when the feedback is excluded. Chaos is also possible, as shown in 

this chapter, when the feedback is included under the condition that the coupling to the 

environment is large enough that the daisies cannot respond quickly enough to achieve 

equilibrium. 

These results show that daisyworld is not always in a steady state as predicted by 

the Gaia hypothesis; instead, the state of daisyworld can show extreme sensitivity to 

minor fluctuations in the effective temperature or the areas covered by daisies when in 

its chaotic regime. Therefore, the presence of daisies on the imaginary planet does not 

always stabilize the climate conditions of the environment, and the inclusion of negative 

feedback from the environment does not always lead to steady-state beha.vior. 



Chapter 5 

ERROR-GROWTH DYNAMICS AND PREDICTABILITY OF SURFACE 

THERMALLY-INDUCED CIRCULATIONS 

In the previous two chapters, we have discussed two applications of chaos theory, i.e., 

data analysis and inspiration of new ideas. Another possible application of chaos theory, 

i.e., numerical model output analysis, will be discussed in this chapter. As an example, 

the error growth dynamics and the atmospheric predictability of surface thermally-induced 

mesoscale and small-scale circulations will be studied in detail. Several preliminary chaotic 

analyses of model output will also be presented, which improve our understanding con­

cerning atmospheric predictability problems. (For the convenience of publication of this 

chapter, some materials in the previous chapters are repeated here.) 

5.1 Introduction 

The predictability problem of atmospheric flows encompasses, in principle, all the 

complexities of understanding of the atmosphere, since prediction is after all the true test 

of our understanding. Weather forecasting has been the driving force behind predictabil­

ity studies; in fact, the predictability problem has been extensively studied only after the 

advent of numerical weather prediction in 1950s. Predictability studies help the improve­

ment of forecasting and define the likely range of errors in any forecast, as demonstrated 

in ensemble forecasting (e.g., Murphy, 1988). In addition to its practical application, pre­

diction is a fundamental theoretical issue in the analysis of nonlinear systems in various 

branches of science and engineering. 

5.1.1 Definition of predictability 

In the general usage, the verb predict is defined as "to declare in advance, especially, 

to foretell on the basis of observation, experience, or scientific reason" (Webster's Ninth 
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New Collegiate Dictionary). However, a precise and universally accepted definition of the 

term predictability has not been achieved. Traditionally, predictability is defined as the 

dependence of a system on the initial conditions. An unpredictable flow is one which 

exhibits a strong sensitivity. One possible reason for this narrow definition in the atmo­

spheric sciences is that the early weather forecasting was based on the barotropic model 

which is affected only by the uncertainty associated with the initial conditions. This def­

inition is also closely related to the. Lyapunov exponents which are the average rates of 

exponential divergence or convergence of nearby orbits in phase space (Zeng et al., 1991 

and 1992b). Any system containing at least one positive Lyapunov exponent (and thus 

sensitive to initial conditions) is defined to be chaotic, with the magnitUde of the positive 

exponent determining the time scale for predictability. In the pioneering work of Lorenz 

(1963) on chaos, it is demonstrated that the sensitive dependence on initial conditions 

(i.e., predictability) of a system is related to the aperiodic behavior of the system. In 

other words, when a nonperiodic behavior is observed, the system is unpredictable. 

More generally, predictability also includes the sensitivity to boundary conditions 

and model parameters. For a very complex dynamical system such as the atmosphere, 

the "unperturbed" flow itself is a complicated function of space and time. Furthermore, 

a model-simulated flow may not be the correct flow for the system because of deficiencies 

of the numerical model, including uncertainties associated with parameters related to the 

parameterizations of subgrid processes and the numerical solution techniques. Just as 

the initial conditions cannot be determined accurately for such a complicated system, the 

boundary conditions and model parameters cannot be determined accurately. However, 

uncertainties in boundary conditions and model parameters introduce uncertainties at ev­

ery moment rather than just at the beginning of the integration of the governing equations 

of the system. A problem related to predictability is the sensitivity of the atmospheric 

flow to subgrid variability of model parameters (especially those associated with surface 

properties, such as the roughness length) (Garratt et al., 1990). 

From an even more general point of view, the question of predictability is philosoph­

ical, since it concerns whether the future evolves precisely and deterministically from the 



74 

present. Just as relativity eliminated the Newtonian illusion of absolute space and time, 

and as quantum theory eliminated the Newtonian and Einsteinian dream of a controllable 

measurement process, chaos eliminates the Laplacian fantasy of long-time deterministic 

predictability. In this chapter, the sensitivity to initial and boundary conditions as well 

as model parameters will be studied, but the philosophical problem of predictability will 

not be discussed. 

An important part of the definition of predictability is the quantitative characteriza­

tion of the error growth. Two useful quantities are the error-doubling time T for sma.ll 

initial errors and the finite time T. when the magnitude of the initial errors reaches a 

limited value slightly below the saturation level (e.g., 95% of the saturation level) which 

is estimated as the averaged difference between two randomly chosen model states. The 

reason for using a limit value slightly below the saturation level is to reduce the effect of 

sampling fluctuations. The error growth and these two parameters can be qualita.tively 

illustrated with a simple example, which has been studied in Zeng et ale (1992b) for the 

computation of Lyapunov exponents. Fig. 5.1 shows the mean error growth for the lo­

gistic map Zn+1 = 3.8Zn(1 - zn) (Note that this Figure is the same as Figure 2.1.) The 

curve is characterized by the initial exponential stage, the intermediate quasi-linear stage, 

and the final saturation stage. All at tractors and, more genera.lly, a.ll unstable dynami­

cal systems having the property of mixing are expected to give rise to similar behavior 

(Nicolis and Nicolis, 1991). The first stage reflects local (linearized) properties, and the 

. positive Lyapunov exponent as well as the error-doubling time can be obtained from the 

error growth in this stage. The error-doubling time T is independent of the magnitude 

of the initial error in this stage. The error-growth dynamics in this stage has also been 

studied by Farrell (1990), using a simple baroclinic shear model and a barotropic channel 

model with a localized jet. The remaining two stages depend on global properties (Nicolis 

and Nicolis, 1991). Note that, in contrast to the error-doubling time T, the finite time T. 

when the mean error reaches 95% of the saturation level is dependent upon the magnitude 

of the initial error. 

In addition to the above two quantities T and T., which are widely used in the pre­

dictability study of large-scale atmospheric phenomena, other measures are also used to 
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Figure 5.1: Mean error growth for the logistic map zn+1 = 3.8zn(1- zn). 
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evaluate or score the prediction. Some quantitative measures in evaluating mesoscale fore­

casts are reviewed in Anthes (198480). One phenomenon may be indicated to be predictable 

by one measure but not by another. This is especially true for some mesoscale forecasts 

which are event-oriented. For example, it may be possible to predict the occurrence of a 

severe weather event with skill. H the measure of success is the simple prediction of the 

event's existence, this event is predictable. However, measures based on domain-averaged 

errors may show little predictability. An example is given in Anthes (198480). 

5.1.2 Large-scale atmospheric predictability 

The atmospheric predictability study begins with the work of Thompson (1957), using 

a barotropic model and a two-level baroclinic model. Since then, most of predictability 

studies have concentrated on large-scale (i.e., synoptic and planetary scale) flow. These 

studies are based on three different approaches proposed by Lorenz (196980). They include 

the dynamical, empirical, and dynamical-empirical approaches. 

The empirical approach is based on the natural occurrence of analogs in the atmo­

sphere, i.e., similar weather situations. This approach has been used in Lorenz (1969b) 

and Toth (199180). This approach is the most attractive among the three approaches from 

a conceptual point of view, because it make use of real atmospheric behavior. However, it 

suffers from the absence of close analogs. The quantitative cumulative histogram for the 

number of analogs can be obtained as a by-product in the computation of the correlation 

dimensions [Eqs. (2.5)-(2.7)] (Grassberger and Procaccia, 198380) (which will be used in 

this chapter) based on the entire global data sets (e.g., Pierrehumbert, 1990). The lack of 

close analogs provides an evidence that the atmosphere is aperiodic, and hence it cannot 

be predicted for a long time. Although close global analogs are rare, local close analogs 

can be obtained from observational data. However, after a few days, the local resemblance 

will be much weaker due to local forcing and/or large-scale advection precesses. This kind 

of local predictability has been studied in Zeng et al. (199280) (and in Chap. 3). 

The dynamical-empirical approach uses derived equations for the errors, with ob­

served spectral properties of the atmosphere appearing as coefficients. Among the three 
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approaches, only this approach treats the influence of smaller-scale errors on the larger­

scale flow explicitly. However, it suffers from the limitation that the real atmosphere 

does not always behave like the idealized models, especially for mesoscale and small-scale 

phenomena. This approach was first used in Lorenz (1969c), for a study of error kinetic 

energy transfer between different scales in a tW<rdimensional turbulent flow with the quasi­

normal approximation, and then used by Leith (1971) and Leith and Kraichnan (1972), 

using more general theories of tW<rdimensional turbulence. Instead of using the stationary 

energy spectra as in the above three papers, Metais et al. (1984) and Metais and Lesieur 

(1988) investigated the predictability of tw<r and three-dimensional freely-evolving tur­

bulence, using the eddy-damped quasi-normal Markovian theory. The main conclusion 

of these studies is that initially small errors in any part of the spectrum (including at 

the smallest scale) will reach the neighboring scales first and then spread throughout the 

entire spectrum due to instability and nonlinearity of the flow. The predictability limit, 

defined as the time when the error kinetic energy reaches the kinetic energy of the basic 

flow at a given wavenumber, is inversely proportional to the wavenumber. The rate of 

upscale transport of small-scale error kinetic energy depends on the statistical structure 

of the small-scale flow field, especially its energy spectrum. The possible spectral gap in 

the mesosc.ale (which is explained in Lilly, 1989) has shown in Lorenz (1984b) and Lilly 

(1990) to lead to slower error spread through the energy spectrum than in the case with­

out gap. Using the vorticity and thermodynamic energy equations for three-dimensional 

quasi-geostrophic flow, Thompson (1988) showed that whether the local error-variance 

grows or decays is crucially dependent upon the detailed structure and local scale of the 

basic field of potential vorticity, relative to the characteristic scale of the error fields. If the 

local scale of the vorticity field is very large, the error-variance grows very slowly or may 

even decrease; if it is very small, i.e., strong gradients of potential vorticity are confined to 

small regions, the error variance grows rapidly as a manifestation of the strong baroclinic 

instability. 

The dynamical approach is based on numerical forecast models. The traditional 

predictability (Le., sensitivity to initial conditions) is usually studied. This approach is 
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used most widely among the three approa.ch.es. It suffers from the fact that the growth 

of errors is model-dependent because of deficiencies of different models. The early such 

studies are summarized in Charney et al. (1966) and by Smagorinsky (1969). The more 

recent and detailed study of this type has been that of Lorenz (1982), using the ECMWF 

operational forecasts of a 100-day sequence. The error growth curves in Lorenz correspond 

with the quasi-linear stage in Fig. 5.1, because the initial analysis error is not very small 

and the saturated level has not been rea.ch.ed due to integration of only 10 days. It is 

shown in Lorenz that the lower bound on atmospheric predictability of the instantaneous 

weather patterns, based on the comparison of numerical forecast and analysis, is about 

10 days, and the upper bound, based on the twin experiments, is about 14 days by 

extrapolation (since only lO-day forecasts were available). Dalcher and Kamay (1987) 

extended the work of Lorenz (1982) by including the effect of growth of errors due to 

model deficiencies, using the same ECMWF date set. A similar predictability study is 

also carried out by Chen (1989), using the DERF data set which is a series of successive 

30-day integrations with initial conditions separated by 24 hours conducted at the N ationa! 

Meteorological Center (NMC), and similar results are obtained. The true upper bound 

results from the instability and nonlinearity of atmospheric flows, which may be different 

from the upper bound determined from the twin experiment. The difference between the 

upper and lower bounds is caused by the deficiencies of the forecast model, especially 

those associated with the parameterization of unresolved or poorly resolved scales; the 

magnitude of this difference is also affected by the first-day forecast errors. When the 

:first-day forecast is improved with the introduction of four-dimensional data assimilation, 

e.g., by the adjoint method (e.g., WMO, 1990), and with the improvement of the numerical 

model, the difference will be decreased. When the model is improved, the lower bound 

will be increased, but it is not quite certain whether the upper bound will be unchanged, 

decreased, or increased. Further work on this problem is needed. 

The error-doubling time of about 2.5 days for small errors is obtained by Lorenz (1982) 

by extrapolating the error-growth curves to small errors, assuming that the nonlinear 

terms in the error-growth equations are quadratic. When extrapolation is required, the 
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error-doubling time will be sensitive to the method of extrapolation and hence is not a 

good measure of error growth, as pointed out in Dalcher and Kalnay (1987), since the 

exact location dividing the initial exponential and the quasi-linear regimes in Fig. 5.1 

is unknown. In general, however, the error-doubling time is a very useful parameter to 

characterize the initial exponential stage in Fig. 5.1. A linear extrapolation to small errors 

is used in Chen (1989). However, this is correct only for an extrapolation to errors which 

are not so small. 

Other studies using the dynamical approach include the dependence of predictability 

on the scales of the Hows (Baumhefner, 1984; Dalcher and Kalnay, 1987; and Schubert 

and Suarez, 1989), on the How regimes (Deque, 1988; Palmer, 1988), on the time average 

(in contrast to the instantaneous values) (Roads, 1986), and on measures of forecast skills 

(Anthes, 198430; Toth, 1991b). Many conclusions from these studies can be conceptually 

understood by Fig. 5.1. For example, the curve in Fig. 5.1 is an average of 400 different 

error-growth curves. The predictability based on different curves is different, or, more 

quantitatively, the average growth rate is different from the most probable for a given 

event (and a. similar argument is also discussed in Benzi and Carnevale, 1989). In other 

words, predictability is ca.se-dependent, or dependent on the How regime in the case of the 

a.tmosphere. 

The potential predicta.bility of the low-frequency component of a.tmospheric motion 

(e.g., monthly and seasonal means) has been studied by, e.g., Shukla (1981). It is argued 

that the low-frequency component is more predicta.ble beca.use it is mainly forced by slowly 

varying boundary conditions. The predicta.bility on the time scales of months to 15 years 

has been studied by Goswami and Shukla (1991 and references therein), using a. coupled 

ocean-a.tmosphere model. On the scales of months to centuries, numerical prediction 

is ba.sically a boundary-value problem for the atmospheric model when coupling to the 

ocean and biosphere is not included. However, for the coupled atmosphere-ocean-biosphere 

clima.te model, the numerical prediction is still an initial- and boundary-value problem, 

and sensitivity to initial conditions (especially those of the deep ocean) is expected. 
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5.1.3 mesoscale atmospheric predictability 

Usually, mesoscale phenomena are divided into two groups: terrain-induced mesoscale 

systems and synoptically-induced mesoscale systems (Pielke, 1984). However, for mesoscale 

predictability studies, it is convenient to use four classes on the basis of categorization of 

the evolution of mesoscale phenomena. These four categories are (Lilly, 1984): (a) nearly 

homogeneous turbulent How with well-defined variance spectra; (b) frontal and jet-like 

near-discontinuities, arising out of large scale processes (i.e., synoptically-induced sys­

tems)j (c) response to small-scale topographic forcing (i.e., terrain-induced systems)j and 

(d) large amplitude instability. 

In contrast to large-scale predictability studies, mesoscale atmospheric predictabil­

ity studies emerged only about 10 years ago. They differ from those of the large scales 

in several ways. In general, the energy spectrum (including the occurrence of intermit­

tency), model resolutions, and instability mechanisms are different. Besides, mesoscale 

predictability is strongly affected by large-scale forcing by means of the lateral boundary 

conditions and small-scale surface forcing. Specifically, for category (a), the approach to 

predictability analysis is similar to that for the large scales, except using the mesoscale 

energy spectrum, and the mesoscale predictability time is shorter than that for the large 

scales. For category (d) such as convective storm systems, a shorter predictability time 

than quiescent weather in category (a) is expected. However, for a particularly important 

high-energy convective storm type, such as rotating super-cell storms in the presence of 

a well-defined stable lid at the top of the boundary layer, evidence from, theory, obser­

vation, and numerical models suggest that their stable coherent structure enhances the 

stability and predictability, and their predictability time is much longer than turbulence 

predictability theory (e.g., Lorenz, 1969c) would suggest, partly due to the effects of helic­

ity acquired from the mean state and amplified by buoyancy (Lilly, 1990, and references 

therein). 

Most of the previous mesoscale predictability studies have fallen into the category 

(b), i.e., mesoscale systems forced by instabilities in traveling large-scale disturbances, 

which are studied in a numerical model in a domain of a few thousand kilometers in 
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length with grid spacings of about 50 to 100 kilometers. A numerical model in such a 

domain and with such a resolution is often called a regional model. Early studies are 

summarized in Anthes (1984b) and Anthes et ale (1985). The major and surprising 

conclusion is that the twin experiment of slightly different initial conditions shows little or 

no error growth over a period of 3 days under the condition of the same lateral boundary 

conditions. In contrast, using a global model with coarser resolution, errors grow with 

time in the same regional model domain. Therefore, the high predictability in regional 

models with grid increments of 50 to 100 km is contrary to the pessimistic conclusion from 

turbulence theory (e.g., Lorenz, 1969c) and is different than the results from the large­

scale predictability studies. Later studies have attempted to explain this controversy. 

Possible explanations are offered in Errico and Baumhefner (1987), Paegle and Vukicevic 

(1987), Anthes et ale (1989), Van Tuyl and Errico (1989), Vukicevic and Errico (1990), 

Vukicevic and Paegle (1989), and Warner et ale (1989). A more recent review is given in 

Paegle et ale (1990). These explanations include the strong diffusion in the model which 

smooths the error fields at small horizontal scales but only slightly affects the fields in the 

control or perturbed runs due to diabatic or adiabatic processes (Errico and Baumhefner, 

1987; Van Tuyl and Errico, 1989). Another reason for the enhanced predictability is 

the effect·. of the geostrophic adjustment process on the initial errors: part of the initial 

perturbations are projected onto gravity waves which interact only weakly with other, 

more significant motions (Warner et al., 1984; Errico and Baumhefner, 1987). The third 

reason is the surface forcing which tends to form coherent structures, such as the sea 

breeze, which is insensitive to initial conditions (Paegle et al., 1990). The last and maybe 

the most important reason is the constraints of the lateral boundary conditions. One 

constraint is the "sweeping out" of errors by correct or perfect lateral boundaries (Errico 

and Baumhefner, 1987). This mechanism may be weak at the beginning, since it is by 

advection. However, after a certain time (e.g., 36 hours), the whole domain will be strongly 

affected by the lateral boundary values. Another constraint of the lateral boundaries is the 

imposition of the largest spatial scale, through the specified lateral boundary conditions, 

that can react to the internal data uncertainty (Vukicevic and Paegle, 1989). When the 
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domain is not large enough (e.g., less than 7000 km), a substantial portion of the large 

scale flow in the domain is pre-specified, and the initial errors will not grow because of the 

slow interaction between the error field and the flow field due to the separation of scales, as 

suggested by Thompson (1957) and Lorenz (1969c). Note that this argument is based on 

the integral (rather than local) lateral boundary efect in the barotropic model (Vukicevic 

and Pa.egle, 1989). It is also demonstrated in Vukicevic and Errico (1990) using a complex 

limited-area model that, if the domain is sufficiently large, forecast differences grow with 

time, but only at large scales. Although the errors do not grow in the above studies due to 

the above reasons, the prediction of explosive cyclones, which are characterized by strong 

baroclinic instabilities, is still sensitive to initial uncertainties, including the magnitude 

and spatial distribution of initial errors in regional models (Kuo and Low-Nam, 1990). 

For the category (c) situation, i.e., the surface-induced mesoscale systems, a longer 

predictability time than expected from turbulence predictability theory (e.g., Lorenz, 

1969c) is anticipated. The surface forcing is basically linear, and can be suppressed by 

synoptic wind. Besides, instability on these scales is different from that for the large 

scales. Although strong surface forcing is used to explain the enhanced predictability for 

the synoptically-induced flow, there are very few predictability studies on these surface­

induced mesoscale systems themselves. One such study is that of Berry and Pa.egle (1990) 

in which a hydrostatic, anelastic model is used to study the predictability of a sea breeze 

type of circulation. Note that there are quite a few studies on these systems which are 

not directly related to the predictability problem (Pielke, 1984; Schadler, 1990; Pielke et 

01., 1992a, and references therein). 

For mesoscale simulations, nested models should be used; otherwise, both the top 

and lateral boundary layers should be removed as far as possible ~om the region of sig­

nificant mesoscale perturbations. The influence of the lateral boundary conditions on the 

predictability of synoptically-induced mesoscale flows has already been mentioned above. 

The importance of the top boundary conditions (including the height and the form of 

the top) for different mesoscale systems is discussed in Pielke (1984). The importance of 

the parameterization of the air/soil or air/vegetation/soil interface (which is an internal 



83 

boundary condition) to mesoscale systems is also discussed in Pielke (1984). The sensitiv­

ity of mesoscale flows to model parameters has been reported in many studies. Note that 

the specification of the surface parameters, such as the roughness length, can be regarded 

as a part of the boundary conditions. However, usually (and in this study), the surface 

parameters are regarded as a part of the model parameters. 

All predictability studies mentioned above are carried out in the Eulerian frame. 

Atmospheric predictability can also be studied in the Lagrangian frame. A preliminary 

comparison between the Lagrangian and Eulerian predict abilities is given in Haidvogel 

and Holloway (1984). Further study is obviously needed. 

The aim of this chapter is to systematically study the error-growth dynamics and 

the predictability of some surface thermally-induced circulations, and quantitatively eval­

uate the transition from organized flow to the less predictable flow in which fluxes are 

dominated by non-coherent eddies, by means of simulations of coarse resolution (Ax = 2 

km) and fine resolution (Ax = 100 m). Such studies are of basic scientific value for their 

help in understanding turbulence dynamics and atmospheric predictability of large scales. 

The importance of organized surface forcing to predictability is also a critical problem in 

practice since, as discussed in Pielke et al. (1989), measurement-accuracy requirements in 

the atmosphere become increasingly more difficult as the spatial scale of the atmospheric 

forcing becomes smaller. Furthermore, such studies can improve the prediction of air qual­

ity on these scales and improve the parameterization of subgrid processes in large-scale 

numerical models. 

Circulations caused by horizontal differential heating are created by such mechanisms 

as land-water contrasts, elevated terrain, urban-rural contrasts, gradients in soil moisture 

content, gradients in snow cover, variations in cloud shadowing, and contrasts in ground 

albedo and vegetation. Such thermal inhomogeneities may extend from a few square 

meters to hundreds or even thousands of square kilometers in the real world (Wetzel 

and Chang, 1988). We will concentrate on the circulations caused by the land-water 

contrasts, and it is anticipated that our results can be (at least qualitatively) applied to 

the circulations caused by other mechanisms. The nonhydrostatic, compressible numerical 
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model used in this study is discussed brie:Hy in Section 5.2. The initial adjustment process 

and the error-growth dynamics of the circulations are studied in Section 5.3. The transition 

from organized local :How to the situations in which :Huxes are dominated by non-coherent 

turbulent eddies, and the predictability as a function of the size of heat patches are 

quantitatively evaluated in Section 5.4. In Section 5.5, the results from three-dimensional 

simulations with two-dimensional surface forcing are compared with those of the two­

dimensional simulations in Sections 5.3 and 5.4. Further analyses (including those based 

on chaos theory) of model output are presented in Section 5.6. Finally, conclusions are 

given in Section 5.7. 

5.2 Numerical Models 

Both two- and three-dimensional configurations of version 2C of the Regional Atmo­

spheric Modeling System (RAMS) developed at Colorado State University are used in our 

study. We have carried out both mesoscale and fine-resolution simulations, which differ in 

the grid resolutions and turbulence parameterizations. RAMS is a merger of a nonhydro­

static cloud model (Tripoli and Cotton, 1989a,b, and references therein) and a hydrostatic 

mesoscale model (Pielke, 1974aj McNider and Pielke, 1981). It is a highly versatile nu­

merical code of nonhydrostatic or hydrostatic, compressible, anelastic or incompressible 

primitive dynamical equations supplemented with one, or more than one, two-way inter­

active grid nestings, and with optional parameterizations of turbulence, radiation, moist 

processes (such as microphysics and cumulus convection), a soil layer, and a vegetation 

canopy. RAMS has been used successfully to simulate systems from compact atmospheric 

systems, such as tornadoes and boundary layer eddies, to mesoscale and synoptic sys­

tems. Overview discussions of RAMS are reported in Tremback et al. (1986), Cotton et 

al. (1988), Walko and Tremback (1991), Cotton et al. (1990), and Pielke et al. (1992b). 

Only options pertinent to our simulations will be discussed brie:Hy. 

5.2.1 Governing equations 

The nonhydrostatic, fully compressible equations are used. RAMS solves prognostic 

equations in the atmosphere for the three velocity components (u, v, w), potential tem­

perature fJ, mixing ratio q, and perturbation Exner function 7r', where the perturbation is 
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based on the difference from the initial state. The prognostic equation is also solved for 

the subgrid-scale turbulent kinetic energy e in the fine-resolution simulations. 

5.2.2 Numerical schemes 

The numerical scheme is described in Tripoli and Cotton (1982). The time-difference 

operator is a leap-frog scheme. An energy-conserving second-order scheme is used for the 

nonlinear advection terms. A time-split scheme is used so that a long time step can be used 

for advective processes and a shorter time step can be used for gravity-wave processes. 

Following Drogemeier (1985), the model sound speed is reduced. The model solutions are 

little affected as long as the reduced sound speed is at least a factor of 2 or 3 faster than 

the characteristic velocities of other disturbances, however, the efficiency of the model 

integration is increased by this sound speed reduction. 

5.2.3 Parameterizations 

Moisture is taken as a passive tracer, and no moist processes are considered. The 

radiation schemes are described in Chen and Cotton (1983a,b) for both the longwave 

and shortwave radiational tendencies. These schemes consider the radiative effects of 

condensate (which is not used in our study), water vapor, ozone, and carbon dioxide. 

The radiational tendencies are updated every 15 minutes. The soil model is described in 

Tremback and Kessler (1985), which solves the prognostic equations for the soil moisture 

and temperature. No vegetation canopy is included. A surface energy budget is calculated 

which includes shortwave and longwave radiative fluxes, latent and sensible heat fluxes, 

and conduction to and from the soil. The surface layer fluxes of heat, momentum, and 

water vapor into the atmosphere are computed using the scheme of Louis (1979). 

For the fine-resolution simulations, boundary layer turbulence parameterization is 

based on the scheme of Deardorff (1980), in which the grid-averaged subgrid fluxes are 

diagnosed via down-gradient diffusion relationships. The eddy diffusivities are estimated 

as functions of the subgrid kinetic energy e which is computed from the prognostic equation 

of e. It was recently shown in Schumann (1991) that some parameters need to be modified 

in order to give reasonable results. However, the original scheme of Deardorff (1980) will 
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be used, and it is expected that the modifications recommended in Schumann (1991) will 

not change the conclusions. The Schumann scheme will be used in our future research. 

For the mesoscale simulations used in this study, a first-order scheme is used. The 

formulation is similar to Smagorinsky (1963) with the modifications by Hill (1974) and 

Lilly (1962). The vertical and horizontal diffusion coefficients are 

KVh = 3Kvm, and (5.3) 

where the subscripts H and V represent "horizontal" and "vertical", respectively, the 

subscripts m and h represent "momentum" and "heat or moisture", respectively. ~z, ~z 

and tl.y are grid increments in the vertical and horizontal directions, respectively. Ri is the 

Richardson number, and N is the Brunt-Vaisala frequency. DVH is the three-dimensional 

deformation, and DH is the deformation of only the horizontal components. AKMIN is 

the parameter to control the constant part of the horizontal diffusion coefficients. AKMIN 

is taken as zero. For convenience, the constant part of the horizontal diffusivity is denoted 

as KHO, the deformation part is denoted as KHD, and KHO + KHD is denoted as KH. 

A fourth-order filter, which is denoted as FILT4, can also be used in the model. This 

filter is very efficient in removing short waves (Walko and Tremback, 1991). FILT4 is not 

used in the standard run. (When FILT4 is used, it is activated every 10 minutes.) 

5.2.4 Boundary conditions 

The lower surface of the atmosphere consists of soil only or of alternating soil and 

water strips of the same size in the x-direction. The roughness length is 0.2 m over the soil, 

and is computed over water from a formula similar to that of Clarke (1970). A constant 

water surface temperature of 293 K is used. The parameterization of the air/soil interface 
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has already been mentioned in the previous subsection. The soil moisture and temperature 

are constant at the bottom of soil which is 0.5 meter below the air/soil interface. 

Periodic lateral boundary conditions are used to avoid the possible influence of lateral 

boundary conditions on the predictability as discussed in the Introduction. For sea-breeze 

type circulations, other lateral boundary conditions will yield similar results when the 

ambient wind is weak. The top boundary is a rigid top with a Rayleigh absorbing layer 

consisting of the upper 5 levels in the model. A relaxation time scale of 75 seconds is 

used. The purpose of the absorbing layer is to damp gravity waves and other disturbances 

which approach the top boundary, so that they will not be reflected back downward. A 

discussion of this boundary condition is given in Cram (1990). 

5.2.5 Grid structure 

The domain is located at 40oN. Cartesian coordinates are used. The grid stagger 

is the standard C grid ( Arakawa and Lamb, 1981). This grid is staggered in both the. 

horizontal and vertical directions. The eddy diffusion coefficients used in the mesoscale 

simulations are computed at the grid points for 9. 

For both fine-resolution and mesoscale simulations, 11 levels are used in the soil with 

the soil bottom at 0.5 m below the air/soil interface. For mesoscale models, 28 vertical 

levels (with the first level being the surface) are used with a grid spacing of AZ2 = 40 

m near the surface for w and AZk = min (1000 m, 1.15Azk_l) for k = 3,4, ... , 28. The 

second level for the horizontal velocities, temperature, and diffusion coefficients is 20 m 

above the ground, since a staggered grid is used. The domain top is at about 10 km. Az 

= Ay = 2 km. For the two-dimensional mesoscale model, 150 horizontal grids are used. 

For the three-dimensional mesoscale model, 50 (in z) x 40 (in y) grids are used. 

For the fine-mesh simulations, 40 vertical levels (with the first level being the surface) 

are utilized with AZ2 = 40 m near the surface for w and AZk = min (100 m,1.1Azk_l) 

for k = 3, 4, ... , 40. The domain top is at about 3.5 km. Az = Ay = 100 m. 100 

horizontal grids are used for the two-dimensional simulations For the three-dimensional 

fine-resolution model, which is also called the large-eddy simulation (LES), 60 (in z) x 40 

(in y) grids are used. 
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5.2.6 Initial conditions 

The initial time (t = 0) is 6:00 am local standard time (LST) on July 1. All results 

are reported with respect to the time t rather than to the actual time. InitiaJIy, large-scale 

wind is zero, potential temperature is 293 K on the surface and increases with height at a 

constant lapse rate of i = 4 K km -1. The time step is 15 seconds for the mesoscale model 

integration, and 4 seconds for the fine-resolution simulations. The model is integrated for 

24 hours~ 

The initial soil temperature is the same as the surface temperature. The soil type is 

clay loam. The initial soil moisture is constant and is 0.60"at, where O"at is the saturation 

soil water content (Lee and Pielke, 1992). 

5.2.7 Miscellaneous aspects 

In the following sections, for convenience, the term control ron is used to refer to the 

simulation without uncertainties or with very smaJI initial uncertainties which are neces-

sary to initiate the turbulence in the fine-mesh simulations, or to initiate inhomogeneities 

along the y-direction in the three-dimensional mesoscale simulations. The term standard 

ron, denoted as ST, is used to refer to the control run with the initial and boundary 

conditions as well as model parameters as specified in this section (such as AKMIN = 0). 

The term perturbed ron is used to refer to a simulation with uncertainties in the initial 

conditions. The term signal is used to refer to the root-mean-square (RMS) difference of 

a variable a (denoting '1.£, v, W, or 0) at time t and at the initial time: 

RMSC(a) = [~ I)ac(t) - ac(0))~1/2. 
Do 

(5.4) 

The term noise, error, or uncertainty is used to refer to the RMS departure of a perturbed 

run from the control run: 

RM SP(a) = [~ L)ap(t) - acCt))2p /2 . 
Do 

(5.5) 

In Eqs. (5.4) and (5.5), the subscripts p and c denote the perturbed and control runs, 

respectively; Do denotes the sub domain in which RMSC(a) and RMSP(a) are computed; 
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and N denotes the number of a in the sub domain Do. In addition to RMSC and RMSP, 

the quantity RMSD is used to denote the RMS difference between two simulations, and 

is also used to denote RMSC or RMSP in some figures for brevity. 

When RMSC(a) is larger than RMSP(a)j Le., the signal/noise ratio is greater than 

unity, the prediction is meaningful for the variable a. When the signal/noise ratio is less 

than unity, the forecast is worthless. Note that this measure of predictability is somewha.t 

different from those (such as the error doubling time and the finite time T,,) mentioned in 

the previous section. Another measure of predictability used in this chapter involves the 

error growth characteristics. 

The sensitivity of the field of a variable a to boundary conditions or model parameters 

depends on the ratio of the signal RMSC(a) over RMSD(a.) which is the RMS difference 

between two simulations of different boundary conditions or model parameters. When 

this ratio is much larger than unity, the variable is insensitive to the boundary conditions 

or model parameters. When it is close to or less than unity, the variable is sensitive to 

the boundary conditions or model parameters. 

In practice, because of the small size of the domain, initialization, or, more gen­

erally, four-dimensional data assimilation (4DDA), of the model is often based on very 

limited conyentional observations. In this case, the actual initial data uncertainties on 

these scales are more likely to be systematic rather than random. On the other hand, 

with unconventional measurement techniques, such as profiler, satellite, lidar, and radar, 

enough observations can be obtained for 4DDA of the model. In this case, random initial 

uncertainties are more appropriate. In this study, the initial uncertainties are a combi­

nation of random and systematic errors: they are pseudo-random numbers (between 0 

and 1) multiplied by a coefficient. In other words, the initial uncertainties are random 

with a non-zero mean value. Initial perturbations are applied to all grid points. The 

perturbations of model parameters or boundary conditions can be systematic or random. 

Only the systematic perturbations are used in this study. The random perturbations of 

the boundary conditions and model parameters at different grid points and the random 

subgrid variability of model parameters will be studied in the future. 
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In the following sections, in addition to the standard run (ST), different initial. and 

boundary conditions, as well as model parameters, will be used for sensitivity studies, in 

which case the changes will be explicitly stated. Results in this chapter are based on more 

than 200 simulations. Most of the simulations are made for 24 hours starting from 600 

LST, but our discussion will concentrate on the first 12 hours (Le., daytime). 

5.3 Error-Growth Dynamics 

In this section, two-dimensional mesoscale simulations a.re carried out to understand 

the error-growth dynamics of surface thermally-induced mesoscale systems. The surface 

consists of land of 100 km surrounded by water for 100 km on both sides. The subdomain 

Do in Eqs. (5.4) and (5.5) is the whole domain (denoted as sub domain A), or the subdo­

main in the lower 22 levels (below 4.5 km) (denoted as subdomain B), or the subdomain 

in the lower 17 levels (below 2 km) (denoted as sub domain C). 

5.3.1 In:O.uence of initial uncertainties 

The influence of the cha.racteristics of initial uncertainties (e.g., the horizontal. scale 

and the magnitude) on the predictability of regional models is emphasized by Errico and 

Baumhefner (1987) and Wa.rner et al. (1989). For the smaller domain in our study, 

the impact of initial perturbations may be different due to different initial adjustment 

processes. 

In order to understand the initial adjustment process, we first run RAMS without 

any diabatic processes (Le., removing radiation, diffusion, and surface heating terms). It 

is found tha.t the decrease of u~, when the initial perturba.tions a.re introduced into the u 

field, is slower than that of fJ~, when the initial perturbations are introduced into fJ field. 

For instance, after integration of 15 minutes, RMSP(u) decreases by 3.5% compa.red with 

the initial value of RMSP(u) in the sub domain C. In contrast, RMSP(fJ) decreases by 

8.8% for the same period. This means that the mass field adjusts to the velocity field as 

a whole, although the adjustment process is different for different vertical normal modes. 

Our computations also show that the adjustment process is basically completed within 
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half an hour, because the magnitudes and the scales of the random perturbations are 

small. 

Numerical experiments show that the adjustment process with the Coriolis force f 

are very close to that without f. In order to study the effect of the hydrostatic adjustment 

by vertical sound waves, simulations with hydrostatic or anelastic approximation can be 

performed. However, this involves different numerical solution techniques and different 

boundary conditions in RAMS, compared with the standard run. Therefore, it is difficult 

to study the influence of this adjustment process directly in RAMS. It is expected that 

this adjustment process is more important in our studies than in large-scale dynamics, 

but that it is still unimportant compared with the adjustment process by the gravity 

waves in our studies, because the adjustment time by sound waves is much shorter than 

30 minutes. Therefore, the geostrophic adjustment process for our studied domain is the 

balance between the horizontal pressure gradient term and the nonlinear advection terms 

resulting from gravity wave propagation. Qualitatively, the adjustment process for initial 

perturbations of 8 can be described as follows: 8& induce pressure perturbations p' mainly 

through the hydrostatic equation, and p' induce u' through the momentum equation for the 

u-component, and u' then induce w' mainly through the continuity equation. In this case, 

the available potential energy (which is proportional to the variance of fJ') is converted 

into the perturbed kinetic energy. In contrast, initial perturbations of u induce w' through 

the continuity equation, and Wi induce 81 mainly through the term of Wi multiplied by the 

environmental stratification in the thermodynamical equation. In this case, the energy 

conversion process is reversed. 

Using the above qualitative description, the adjustment process of different forms of 

initial perturbations can be understood easily. For instance, in one case, initial perturba­

tions of 8 (i.e., 8&) are random between 0 and 0.2 K with a mean value of 0.1 K and RMS 

difference of 0.114 K, and in another case, the initial perturbations are (lfo - 0.1) so that 

the mean value is close to zero and the RMS difference is about 0.055 K. Our computations 

show that the error growth curves for u and w are very close between these two cases, 

because the mean value for the former case is very small, and available potential energy is 
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the same between these two cases. Note that, qualitatively, if the mean value is large so 

that the dynamics of the circulations is changed, the error growth curve will be changed 

even if the available potential energy is unchanged. When initial perturbations of fJ are 

systematic rather than random, the available potential energy is zero. Our computations 

show that the kinetic energy is also close to zero for the first hour of integration due to 

the lack of conversion of kinetic energy from the available potential energy and due to the 

weak forcing. 

When the fourth-order horizontal and vertical advection schemes are used, the ad­

justment process is very close to that using the second-order schemes which are used for 

all other simulations. This means that implicit smoothing in the numerical schemes is 

unimportant. However, the explicit smoothing through the horizontal diffusion terms KH 

or the fourth-order filter FILT4 can strongly affect the adjustment process. Fig. 5.2 shows 

the results for different cases in subdomain C. Results for the submodains A and B are 

similar. It is seen that the adjustment process is strongly affected by numerical smoothing 

including KHD, KKO, and FILT4. The effect of FILT4 denoted by the short dashed line, 

which is used every 10 minutes, is stronger than the deformation part of KH, denoted 

by the dotted line, since FILT4 is very effective in removing perturbations of short wave­

lengths, and since KHD is small. Also, the constant part of KH, i.e., KHO, with AKMIN 

being 0.3, is about 567 m2/s [or about 2.1 x 1O-3(Llx)2 / Llt] for momentum, and its effect 

is also stronger than KHD. 

When surface heating and radiation processes are included, the adjustment process 

is very close to that without these diabatic processes, because the surface heating is weak 

within the first half hour of integration. IT we take the state after the adjustment of initial 

random perturbations (within 30 minutes) as the "initial" perturbations, these "initial" 

perturbations are not random. Furthermore, our computations show that changing the 

starting time of the integration from 600 LST to 630 LST does not affect our results. 

Therefore, whether the initial perturbations at 600 LST are random or scale-dependent 

does not matter (and the important thing is the characteristics of the state after the 

initial adjustment for our studies), although it is important for large-scale problems due 

to a longer adjustment time (e.g., Errico and Baumhefner, 1987). 
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Figure 5.2: The first-hour adjustment process of the initial random perturbations 9'a with 
mean value of 0.1 K and RMS difference of 0.114 K in the sub domain C. The solid line 
denotes the standard run (ST) except without KH, the dotted line denotes ST (where 
KHD is used), the short dashed line denotes ST (except without KHD) with FILT4, the 
long dashed line denotes ST with FILT4, and the dotted-dashed line denotes ST with 
FILT4 and K HO where AKMIN is 0.3. 
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In order to study the influence of initial error magnitude on error growth, we ran two 

simulations with different initial perturbations: 8'0 with a mean value of 0.1 K and a RMS 

difference of 0.114 K (Le., the standard run 8T), and 8'0 with a mean value of 1 K and 

a RMS difference of 1.14 K (denoted as case 82). Therefore the only difference between 

the two cases is that the initial perturbations in S2 are 10 times as large as in ST. Fig. 

5.3 shows the results for both cases. It is seen that, after the results for S2 are scaled 

by a factor of 10, curves for both cases are relatively close for 1£, w, and () for, the first 5 

hours. Furthermore, the change of RM8P between t = 0.5 hour and 5 hours is small. It 

is expected that, although the surface forcing itself is not small, its influence on the error 

growth can be omitted due to weak motions during this period. Besides, the influence of 

nonlinear advection terms on the error field is quasi-linear and slightly smaller than that of 

diffusion, also due to weak motions. Therefore, the error growth is basically a quasi-linear 

process. We speculate that this is the reason for the above two features. The feature that 

the error growth curves of different initial magnitudes are parallel has also been observed 

in many predictability studies of large-scale flow (e.g., Lorenz, 1982; Dalcher and Ka.lnay, 

1987; Chen, 1989), though no reasons are given in their studies. We speculate that the 

quasi-linear error growth occurs except near strongly baroclinic zones in their cases. 

It is also seen from Fig. 5.3 that both RM8P(u) and RMSP(w) are similar for 

8T and 82 (without scaling) between t = 6 and 12 hours when the surface forcing is 

strong. In other words, when the surface forcing is strong, coherent structures (i.e., the 

sea breeze circulations) appear, and the flow field is insensitive to the magnitude of initial 

perturbations. However, this alone cannot determine the predictability of the surface 

thermally-induced circulations. The signal (RMSC)-to-noise (RMSP) ratio needs to be 

computed in order to determine the predictability. 

Therefore, for our studies, the error growth (at least at the stage when the surface 

heating is strong) is not very sensitive to the characteristics of the initial perturbations. 

In rest of the chapter, only random perturbations as in the case ST are used. 
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Figure 5.3: RMSP for 9, u, and w in the sub domain C. The case ST is denoted by the 
solid line, and S2 is denoted by the dashed line. The dotted line is the dashed line scaled 
by a factor of 10. Note that the dashed line for 9 is not drawn for clarity. 
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5.3.2 Impact of numerical smoothing 

In the previous subsection, the influence of numerical smoothing on the initial adjust­

ment process was shown to be strong. In this subsection, its effect on error growth will 

be shown to be strong as well. 

The error growth depends on the nonlinearity and instability of the flow. When the 

surface forcing is strong, turbulence is fully-developed, which leads to strong nonlinearity 

and convective instability, and hence leads to the growth of RMSP. On the other hand, 

the land/water contrast induces sea-breeze type of circulations which are strongest when 

the surface forcing is strong. These circulations are coherent and suppress the growth of 

RMSP. In addition, the error growth is also slowed by numerical smoothing. Fig. 5.4 

summarizes the impact of different numerical smoothers on error growth. It is seen that, 

RMSP is smaJ.l and decreases slightly from t = 0.5 to 4 hours due to quasi-linear error 

growth as discussed in the previous subsection. In the case of no KH or FILT4, RMSP 

increases rapidly from t = 4 to 8.5 hours due to strong surface forcing and due to the 

lack of explicit numerical smoothing. The influence of numerical smoothers is also strong 

at this stage. The influence of FILT4, denoted by the short dashed line in Fig. 5.4, is 

stronger (weaker) than that of KHD before (after) the time t = 9 hours. When KH is used, 

especiaJ.ly when KH and FILT4 are used together, RMSP even decreases before the time 

t = 10 hours - this changes the qualitative features of the error growth, compared with 

the case with KHD. In order to understand the strong influence of numerical smoothing, 

we compute RMSD between the control run with KHD (i.e., the standard run ST) and 

the standard run plus FILT4. It is found that this difference is only slightly smaJ.ler than 

RMSC in ST. In other words, smoothing by KHo and FILT4 strongly a.ffect.s the mesoscale 

flow. 

Figure 5.5 describes the error growth for the cases S3 and S4, which are the same as 

ST and S2, respectively, except using both KH and FILT4. In contrast to Fig. 5.3, the 

curves for S3 and S4 in Fig. 5.5 decrease slightly with time and are very close up to t = 
8.5 hours. This means that the increase of smoothing decreases the nonlinearity of the 
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Figure 5.4: The same as in Fig. 5.2. except for an integration of 12 hours. 
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mesoscale flow and extends the period in which the impact of nonlinear terms and surface 

forcing on the error growth is balanced by the numerical smoothing. 

Theoretically, the influence of numerical diffusion is related to the turbulent Reynolds 

number which is LV /K, where L and V are representative length and velocity scales, 

respectively, and K is the turbulent exchange coefficient. With the increase of K H by 

means of adding KHO, the Reynolds number is decreased. For the first few hours of 

integration, the velocity and length scales are small; the increase of KH may lead to a 

very weak turbulent flow or even laminar flow. 

Another way to understand the influence of numerical diffusion is by considering the 

model equation in the schematic form 

(5.6) 

where ale is the amplitude of a spectral component k in the control run, F is the surface 

forcing, N is the nonlinear advection terms, and v is an effective diffusion coefficient. N 

is determined by F. F may be slightly affected by v, since v can affect ale. The difference 

between the control and perturbed experiments, denoted by 0, can be obtained from Eq. 

(5.6): 

(5.7) 

It is expected that of is smaller than 6 N in magnitude, since F is less affected by pertur­

bations. It is also expected that ale is more strongly affected by initial perturbations than 

Vie so that the ratio of oale/ale is larger in magnitude than that of OVIe/VIe, or, equivalently, 

the term vleoale is larger than the term aleovle in magnitude. This is true especially when 

Vie contains both the constant and deformation parts. When the surface forcing is weak, 

oN may be smaller than the last term in Eq. (5.7) if the damping is strong. In this case, 

as shown by the dotted-dashed line in Fig. 5.4 for the first 10 hours or so, the difference 

fields decrease with time. When the surface forcing is strong, however, oN is larger than 

the last term in Eq. (5.7), and the difference fields increase with time. 
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5.3.3 Effect of boundary layer structure and surface heating 

In order to understand the effect of overlying boundary layer structure and surface 

forcing, both RMSC and RMSP are computed. But, first, the dependence of the pre­

dictability of mesoscale flows on the variable is discussed. 

Fig. 5.6 shows the signal and noise for the standard run ST. It is seen that, during 

the day, RMSC is qualitatively similar in shape for 0, u, and w, but the error growth is 

different for these variables. Especially, the signal/noise ratio is substantiallly different 

for these variables: it is much larger than unity for (J, is larger than unity for u, and is 

close but less than unity most of the daytime for the w field. In other words, 0 is strongly 

predictable, u is predictable, and w is least predictable; a result which was also reported 

in Pielke et ale (1989). 

The dependence of the predictability on the variable is well known from large-scale 

predictability studies, where the 500 mb geopotential height is often used. In our case, 

this phenomenon can be explained in different ways. In the mixing layer, the potential 

temperature is very well mixed, and the mixing depends on the surface heating. When (J is 

perturbed, the mixing is hardly affected, since the surface heating is only slightly affected 

by these perturbations. Therefore, RMSP{ (J) is very small compared with RMSC( 0) and 

changes little with time. The variable u is less well mixed than 0, and the variation of 

RMSP{u) relative to RMSC(u) is larger than for (J. For the variable w, both RMSC{w) and 

RMSP{ w) are small, and slight differences of locations of upward and downward motions 

can substantially change R..\fSP(w). Therefore the signal/noise ratio is low for w. Another 

way to explain these features is that the velocity field is related to the pressure gradient 

and the pressure is related to the temperature field through the hydrostatic equation. 

Therefore, slight variations of (J can induce large variations of u, and the predictability of 

(J is better than that of u. Similarly, the variable w is related to the gradient of u through 

the continuity equation, and its predictability is less than that of u. 

When we change the date from July 1 to April 1; Le., when we decrease the surface 

forcing, RMSC and RMSP are smaller than but similar to those in Fig. 5.6. When the 

latitude is changed from 400N to 60°, 20°, or OON (so that the surface heating and the 
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Figure 5.6: The signal (RMSC) and noise (RMSP) of 9, u, and w in the subdomain C for 
the standard run ST. The solid and dotted lines denote RMSC and RMSP, respectively. 
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Coriolis force are changed), qualitatively similar curves ofRMSC and RMSP are obtained. 

When the initial stratification is changed from 4 K/km to 8 K/km, the stratification is 

more stable so that RMSC and RMSP are smaller than those in Fig. 5.6. Also, the 

signal/noise ratio for w is slightly higher than that in Fig. 5.6. Therefore, a more stable 

stratification improves the predictability slightly. When the initial stratification is changed 

from 4 K/km to 2 K/km, RMSC and RMSP are larger than those in Fig. 5.6, and the 

flow is slightly less predictable than in Fig. 5.6. Overall, the effects of these changes are 

noticable for RMSC and RMSP, but are small in terms of the predictability; Le., for the 

ratio of RMSC/RMSP. 

It has been shown in Pielke (1984) that surface thermally-induced circulations are 

strongly affected by synoptic wind. In a more general sense, mesoscale flow is affected by 

large-scale forcing and surface forcing, and the latter itself is also affected by the former. 

Theoretically, the impact of the synoptic wind is two-fold: it increases the Richardson 

number and makes the flow less unstable during the day, and it suppresses the surface 

thermally-induced circulations. Based on simulations with synoptic winds of U = 3, 

6, and 9 mis, it is found that their influence on RMSC(8) and RMSP(8) is small. The 

synoptic wind decreases RMSC(u), but does not change the signal/noise ratio significantly. 

However, the influence of synoptic wind on the w field is strong. Fig. 5.7 shows RMSC( w) 

and RMSP(w) for different synoptic winds. It is seen that, compared with the lower panel 

in Fig. 5.6 with calm synoptic wind, both the signal and noise decrease, and the signal 

/noise ratio is greater than unity with U = 3, 6, or 9 m/s. This means that, when the 

synoptic wind is changed from zero to 3 ,6, or 9 mis, w is changed from unpredictable to 

predictable. Whether this is generally true for thermally-induced mesoscale flows needs 

further work. Further studies are also needed to explain the signal/noise ratio (which is 

smaller than unity) between t = 9 and 13 hours with U = 6 m/s. 

5.3.4 Sensitivity to boundary conditions and model parameters 

In order to understand the sensitivity of the flow structure to different specifications 

in the model, we compute RMSD between the standard run ST and a simulation with 

different specifications. Note that RMSD is different from RMSP in that RMSP is the RMS 
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difference between two runs with and without initial perturbations and is related to error 

growth, but RMSD is related to the influence of the specifications on the flow structure 

and is the traditional sensitivity analysis. Only systematic perturbations of boundary 

conditions or model parameters are used. The random perturbations of parameters at 

model grid points and the random subgrid variability will be studied in the future. 

Our computations show that the surface thermally-induced mesoscale circulations are 

almost unchanged when the height of the model top is changed, or when the number of 

the levels or the relaxation time scale is changed in the Rayleigh absorbing layer. It is 

also found that, when different lateral boundary conditions (such as the zero gradient 

boundary conditions, the radiative boundary conditions, and enhanced diffusion near the 

boundaries) are used, the flow structures are very close to those using periodic bound­

ary conditions under a calm synoptic wind. No simulations are carried out to study the 

sensitivity to the boundary conditions at the bottom of the soil, but insensitivity is ex­

pected. The sensitivity to the internal boundary conditions at the air/soil interface is not 

studied, but the sensitivity to parameters relating to the parameterization of the air/soil 

interface is discussed below. Therefore, surface thermally-induced mesoscale circulations 

are insensitive to top and lateral boundary conditions under a calm synoptic wind. 

Our results show that, when the initial time is shifted from 600 LST by an hour, 

results are only slightly changed. When the surface roughness length is changed from 0.2 

m to 0.05 m, max[RMSD( 8)] = 0.21 K is small compared with RMSC( 8) given in Fig. 

5.6, max [RMSD(u)] = 0.83 m/s is not large compared with RMSC(u) given in Fig. 5.6, 

but max [RMSD(w)] = 0.28 m/s is large and comparable to RMSC(w) given in Fig. 5.6. 

The last point is consistent with that of Garratt et al. (1990) in that the main influence 

of roughness length change is on the vertical velocity. When the ratio of the diffusion 

coefficient for" heat to that for momentum is changed from 3 to 1 in Eq. (5.3) and before 

~ in Eq. (5.1), the influence is larger than that of changing the roughness length from 0.2 

m to 0.05 m: max [RMSD(8)] = 0.27 K, max [RMSD(u)] = 1.0 mIs, and max [RMSD(w)] 

= 0.36 m/s. As in the case of changing the roughness length, the major influence is on the 

vertical velocity. In a study on the influence of changing surface-Ia.yer parameteriza.tion 

constants, similar conclusions were reported in Garratt and Pielke (1989). 
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Soil water content should be between IJwilt and IJ Ie, which are the permanent wilting 

point associated with a soil water potential of -15 bar, and the field capacity associated 

with a hydraulic conductivity of 0.1 mm/day, respectively (Lee and Pielke, 1992). For the 

soil type of clay loam used in our study, IJwilt and IJje are 0.53 and 0.68 of IJsat which is the 

saturated soil water content. Several studies (e.g., McCumber and Pielke, 1981) reveal 

that, among many factors, the soil water content is one of the most important for the soil, 

although the soil water content and other factors such as soil type, vegetation, and albedo, 

are not independent. In ST, the initial soil moisture content is SLM x 8sat where SLM 

= 0.6. Because of the small range of SLM (from 0.53 to 0.68) between very dry and very 

moist conditions, it is expected that a small change of SLM will strongly affect the surface 

energy budget in a complicated way (e.g., by changing the Bowen ratio, the albedo, and 

the soil thermal conductivity). Fig. 5.8 shows RMSD between the standard run ST (with 

SLM = 0.6) and the runs with SLM = 0.54, 0.57, 0.63, and 0.66. It is seen that, among 

the four different values of SLM used in Fig. 5.8, RMSD( 8) is largest at SLM = 0.54 for 

t < 8 hours and at SLM = 0.66 for t > 8 hours, RMSD(u) is largest at SLM = 0.54 for 

t < 11 hours and at SLM = 0.66 for t > 11 hours, and RMSD( w) is largest at SLM = 

0.54. Overall, RMSD caused by the change of SLM in these four cases is as large as the 

signal RMSC in the standard run ST. Therefore, the effect of soil water content is strong 

on the flow structure, which was also found in McCumber and Pielke (1981) and Schadler 

(1990). The strong influence of soil parameters on synoptically-induced mesoscale systems 

was also reported in Tremback (1991). Changes of soil moisture (which also determines 

the surface albedo in RAMS) over time can also cause substantial climatic changes (e.g., 

Charney, 1975; Idso, 1981). 

One question that we do not address in this study is the influence of changing the grid 

spacing with a corresponding change of constants in the turbulence closure scheme. Our 

experience has shown that with the decrease of grid spacing, the constants such as 0.16 in 

Eq. (5.1),0.25 and AKMIN in Eq. (5.2) need to be increased to suppress the numerical 

noise. The selection of these constants is usually arbitrary. A better way may be to use 

the higher-order closure scheme, e.g., the Mellor-Yamada level-2.5 scheme (Mellor and 

Yamada, 1974). We plan to study this question in the near future. 
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5.4 Predictability as a Function of the Size of Surface Heat Patches 

In this section, the surface consists of alternating water and land strips with the size 

of each strip denoted by L. For the cases L = 0 (Le., homogeneous land), 1, 2.5, and 5 

km, a 2-D fine-resolution (~z = 100 m) model is used. In these cases, the horizontal 

domain size is 10 km, and RMSC and RMSP are computed in the subdomain below 1.5 

km. The perturbations are added at t = 2 hours rather than at t =0. For the cases L 

= 10 to 150 km, a 2-D mesoscale model with ~z = 2 km is used, and the horizontal 

domain size is between 280 and 360 km. In these cases, RMSC and RMSP are computed 

in the sub domain which is below 2 km and consists of an equal number of water and land 

strips. The synoptic wind is zero. Qualitatively similar results are obtained when other 

sub domains are used. 

The influence of the width of land masses on the development of sea-breeze type cir­

culations has been studied for the past twenty years or so. Neumann and Mahrer(1974, 

1975) studied the thermally-induced circulations due to circular islands or lakes of different 

radii. Abe and Yoshida (1982) demonstrated the influence of the width of a peninsula on 

the development of a sea breeze. Mahrer and Segal (1985) studied the impact of both the 

geometry and size of the landmass on the sea-breeze circulations. More recently, Xian and 

Pielke (1'991) studied similar problems, using a 2-D hydrostatic version of RAMS. Usually, 

the vertical velocity variation is emphasized in these studies. The influence of horizontally 

varying soil water content on the triggering of atmospheric convection was studied by 

Schadler (1990). Pie1ke et al. (1992a) demonstrated that the influence on the atmosphere 

of mesoscale landscape spatial variability must be parameterized (or explicitly modeled) 

in large-scale atmospheric model simulations including general circulation models, based 

on computations of the subgrid turbulent heat fluxes and the resolvable heat fluxes in­

duced by surface inhomogeneities. The enhanced potential buoyant energy due to surface 

inhomogeneities (wet soil/dry soil) is suggested as a mechanism for potentially enhanced 

thunderstorm severity over and near irrigated locations in Pie1ke and Zeng (1989). In 

addition to the above numerical and experimental studies, Dalu and Pielke (1992) made 

an analytical study of the vertical heat fluxes generated by mesoscale atmospheric flow 
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induced by thermal inhomogeneities. Dalu et al. (1992) also evaluated the linear impact 

of thermal inhomogeneities on mesoscale flow with a calm mean wind. However, none of 

these studies focused at the predictability of the surface thermally-induced circulations. 

Figures 5.9 and 5.10 show RMSC(w) and RMSP(w) with different sizes of heat patches 

under calm synoptic wind. It is seen that, when L = 0 to 5 km where a fine-mesh model 

is used, the vertical velocity w is unpredictable. When L = 10 to 40 km, w is predictable 

in mesoscale simulations since the signal/noise ratio is greater than unity. When L = 50 

to 70 km, w is marginally predictable. When L is increased beyond 70 km, w becomes 

unpredictable. 

Figures 5.11 and 5.12 show the results for u. When L = 0 to 2.5 km, the horizontal 

velocity field u is unpredictable. When L = 5 km, u is predictable in the fine-resolution 

simulations. When L is greater than 5 km, the contribution of the coherent circulations 

should be larger than when L = 5 km, so that it is expected that the u field should also 

be predictable in fine-resolution simulations. However, this requires further study. When 

L is greater than or equal to 10 km, it is also seen from Figs. 5.11 and 5.12 that the u 

field is highly predictable in mesoscale simulations. 

Figures 5.13 and 5.14 show the results for fJ. For all cases including the case of 

homogeneous soil (L = 0 km), the 9 field is highly predictable in both high-resolution 

and mesoscale simulations. The signal RMSC( 9) consists of two parts: one is the RMS 

difference between the horizontally-averaged potential temperature < 9 > and the initial 

9, denoted as RMSC( < 9 »; the other is the RMS difference between fJ and < fJ >, 

denoted as RMSC(fJI). Note that [RMSC(9)]2 = [RMSC( < 9 > W + [RMSC(fJ' )]2. Our 

computations show that RMSC( 9') is close to RMSC( fJ) when the turbulence is fully 

developed (e.g., t = 5 to 11 hours). 

For a convective boundary layer with inhomogeneous surface forcing, the dependence 

of the predictability on the surface forcing is two fold: the strong heating leads to fully­

developed turbulence, and the strong horizontal differential heating results in thermally­

induced circulations at the same time. The former is noncoherent, turbulent, and basically 

unpredictable. However, the latter is coherent and predictable. By analyzing the autocor­

relation and power spectrum, which will be discussed in Section 5.6, it is found that the 
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w, u, and (J fields contain components of both coherent circulations and random motions. 

The relative importance of these two components depends on the size L. In addition, un­

der the same conditions, the relative contribution of the coherent circulation component is 

larger for the u and (J fields than for the w field. These are consistent with the conclusion 

in Krettenauer and Schumann (1991), and Walko et al. (1992) that long-time and phase 

averages in a realization are needed to exhibit the coherent circulations, especially for the 

w field. Since (J is well mixed in a convective boundary layer with or without horizontal 

differential heating, the (J field is highly predictable in all cases in Figs. 5.13 and 5.14. 

When L = 5 km, the coherent circulations are strong for the u field so that u becomes 

predictable in high-resolution simulations. When L is greater than 5 km, the circulations 

are even stronger and u is very predictable in mesoscale simulations (and is expected to 

be correspondingly predictable in fine-resolution simulations). 

When L is smaller than or equal to 5 km, the coherent circulations for the w field are 

not strong, as reflected in its power spectrum and autocorrelation which will be discussed 

in Section 5.6. Besides, the error field w', i.e., the difference between the control and 

perturbed runs, shows large variations at both small and large wavelengths. In other 

words, because the coherent circulations are weak, even the component of the coherent 

circulations for the instantaneous w field is somewhat sensitive to initial perturbations. 

This is consistent with the conclusion in Walko et al. (1992) that, even when the time and 

space averages are used in a realization, the mean probability of occurrence of positive 

vertical velocity shows a very strong horizontal variation. Therefore, w is unpredictable in 

fine-resolution simulations for L = 0 to 5 km. As L is increased, the coherent circulations 

become stronger, and w becomes predictable in mesoscale simulations with ~x = 2 km 

for L = 10 to 40 km. However, since the strength of the circulation depends on the grid 

increments, further work is needed in order to determine the range of L for which w is 
predictable in fine-resolution simulations with ~x = 100 m. 

When L is greater than 70 km, except near the coastlines, the flow is dominated by 

boundary layer turbulence, just like the homogeneous case, and w becomes unpredictable 

in mesoscale simulations. On the other hand, when L is greater than 70 km, the hori­

zontal differential heating is very strong. Since AKMIN is zero in mesoscale simulations, 
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and since the turbulent flux terms in 2-D simulations actually contain both the subgrid 

contributions and the resolvable-scale fluxes which cannot be properly handled without 

including the third direction (Pielke, 1974b), strong upward motion can induce numerical 

noise. Therefore, whether or not w is unpredictable for L greater than 70 km requires 

further study. 

When ax = 2 km is used for L ~ 10 km, the boundary layer turbulence is parameter­

ized, which, unavoidably, contains some arbitrarily-selected constants. Since ax = 2 km 

is close to the turbulence scale in the convective boundary layer, some sensitivity to the 

constants in the parameterization is expected (as has been demonstrated in the previous 

section). The problem of changing the grid increments with a corresponding change of 

parameterization constants will be studied in the future. 

Note that the above results represent the predictability of a single realization of grid­

volume-averaged variables. The predictability of a generalized ensemble average, i.e., an 

ensemble average of grid-volume-averaged variables (Cotton and Anthes, 1989), may be 

different. Since the control and perturbed runs can be taken as two individual realizations 

of an ensemble average, whether an ensemble average and a realization yield close results 

regarding the predictability is dependent upon the predictability of the single realization. 

When a variable is highly predictable in a realization, an ensemble average and a realiza­

tion have the same predictability. In contrast, when a variable, such as w, is unpredictable 

in a realization due to a large chaotic motion component, an ensemble average may still 

be predictable if the chaotic motion component appears to be nearly random and can be 

removed significantly by averaging. Therefore, Figures 5.13 and 5.14 show that an ensem­

ble average and a realization yield the same results regarding the predictability of (J for 

fine-resolution and mesoscale simulations. Since RMSP(u) is comparable to RMSC(u) for 

L = 0 to 5 km in the fine-resolution simulations with ax = 100 m; i.e., the variation of the 

u field is large from one realization to another, the predictability of an ensemble average 

is different from that of a single realization in Figs. 5.11 and 5.12. As L is increased, 

coherent circulations become stronger so that the difference between two individual real­

ization, i.e., RMSP(u), becomes smaller compared with RMSC(u). Therefore, an ensemble 
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Figure 5.12: Same as Fig. 5.10 but for u. 
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average a.nd a realization yield close results for L equaJ. to or greater tha.n 10 km in the 

mesoscaJ.e simulations with ~z = 2 km. Further work is needed to determine the critical 

value of L (greater tha.n 10 km) at which a.n ensemble average a.nd a realization yield 

close results for fine-resolution simulations. For the w field, a.n ensemble average a.nd a 

realization yield close results for L = 10 to 30 km in mesoscale simulations. For all other 

cases, the predictability of a.n ensemble average is different from that of a realization, and 

further work is needed. 
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Figure 5.13: Same as Fig. 5.9 but for 8. 

The tra.nsition from organized :How to the situation in which :Huxes are dominated by 

non-coherent turbulent eddies is a.n importa.nt theoretical problem in turbulence study. In 

practice, the understanding of such a transition will help the parameterization of subgrid 

processes in large-scale numerical models. As far as we know, our study is the first 
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quantitative evaluation of the transition from predictable flow to unpredictable flow due 

to the development of coherent circulations. 

5.5 Three-Dimensional Experiment 

The results in the previous two sections are based on 2-D numerical simulations. The 

difference between 2-D and 3-D simulations has been discussed for different situations 

in the past (a discussion related to the sea breeze is given in Pie1ke, 1974b). Extensive 

3-D simulations are beyond the scope of this study. Instead, we ran only a pair of 3-D 

mesoscale simulations (Le., a control run and a perturbed run) for ~x = ~y = 2 km and 

a pair of fine-resolution simulations (Le., a control run and a perturbed run) for ~x = ~y 
= 100 m. The domain is 50 (x) x 40 (y) x 28 (z) in the mesoscale run, and is 60 (x) x 40 

(y) x 40 (z) in the fine-resolution run. For the mesoscale run, the surface is homogeneous 

in the y-direction, and consists of a strip of water and a strip of land with L = 50 km 

in the x-direction. Homogeneous land (Le., L = 0 km) is used in the fine-resolution run. 

In order to initiate asymmetry in the y-direction, very small initial perturbations of (J are 

added in the control run. Everything else is the same as for the corresponding 2-D runs 

as shown in Figs. 5.9 to 5.14. 

Natural phenomena are three dimensional. When 2-D simulations are used, the vari­

ation in the y-direction is removed, the vorticity tilting and stretching in the y-direction is 

omitted, and the energy and enstrophy cascade processes are changed. For 2-D turbulence, 

energy and enstrophy are both conserved; energy cascades toward the low wavenumbers, 

and enstrophy cascades toward the high wavenumbers. However, for 3-D turbulence, en­

strophy is not conserved, and energy cascades toward the high wavenumbers. It is also 

found in Pielke (1974b) that, even with strong 2-D forcing as in our studies, the circula­

tions are so inherently three-dimensional that the Reynolds stress terms must represent the 

resolvable as well as the subgrid-scale fluxes. Due to these limitations, even the features in 

the x-z directions can be distorted in the 2-D simulations compared with 3-D simulations; 

for instance, the eddies appear to be larger in 2-D simulations with fine resolutions. 

Figure 5.15 shows RMSC and RMSP in the 3-D mesoscale simulation for fJ, u, and w 

in sub domain A (the whole model domain), sub domain B (below 4 km) and sub domain 
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C (below 2 km) which is the same as used in Figs. 5.10, 5.12, and 5.14. It is seen that, 

as in the case of the 2-D runs (which are not shown), RMSC and RMSP are similar 

in the different subdomains. Comparing Fig. 5.15 with the panels for L = 50 km in 

Figs. 5.10,5.12, and 5.14, it is seen that RMSC(fJ), RMSC(u), RMSC(w), and RMSP(fJ) 

are qualitatively and quantitatively close between the 2-D and 3-D simulations, and that 

RMSP(u) and RMSP(w) in the 3-D simulation are smaller than in the 2-D simulation. 

Regarding the predictability, very close results are obtained for fJ and u, and similar results 

are obtained for w between the 3-D and 2-D simulations. It is also shown in Pielke (1974b) 

that, with 2-D forcing, the 2-D and 3-D models produce identical results when the explicit 

horizontal diffusion in the 2-D model is increased. 

The 3-D fine-resolution simulation with ~x = ~y = 100 m can be called a large-eddy 

simulation (LES), since most of the energy-containing eddies are explicitly resolved in the 

model. However, the 2-D simulation is not called 2-D LES, since the criterion for LES is 

not satisfied. Instead, we only refer to such 2-D simulations as fine-resolution simulations. 

Figure 5.16 shows RMSC and RMSP in the 3-D LES for fJ, u, and w in sub domain A (the 

whole model domain), sub domain B (below 2 km), which is the same as used in Figs. 5.9, 

5.11, and 5.13, and sub domain C (below 1 km). Note that the sub domains are different 

from those in the 3-D mesoscale simulation. It is seen from Fig. 5.16 that, as in the 

case of the 2-D runs (which are not shown), the ratios of RMSCjRMSP are similar in 

different subdomains. Comparing Fig. 5.16 with the panels for L = 0 km in Figs. 5.9, 

5.11, and 5.13, it is seen that RMSC(fJ) and RMSP(9) are qualitatively and quantitatively 

close between 2-D and 3-D simulations. It is also found that RMSC and RMSP for u and 

w in the 3-D simulation are smaller than in the 2-D simulation. This means that eddy 

activities are stronger in the 2-D simulation. Similar results were also reported in Cotton 

et al. (1990). Regarding the predictability, very close results are obtained for fJ, and 

similar results are obtained for u and w between the 3-D and 2-D simulations. Although 

important features (such as rolls, e.g., Krettenauer and Schumann, 1991) may occur in 

the y-direction in the 3-D LES, and the 2-D simulations are not accurate quantitative 

representations of the 3-D structure in the boundary layer, it will be shown in the next 
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denote RMSP in the sub domains A, B, and C, respectively. 



120 

section that the domain-averaged properties are not substantially changed between the 

2-D and 3-D fine-resolution simulations. 

Based on the above comparisons, it is reasonable to expect that our results in the 

previous two sections are also correct for 3-D simulations. Because the 2-D simulations 

are much cheaper than 3-D simulations, our comparison of 2-D and 3-D runs suggests 

that 2-D simulations can be widely used in predictability studies when the surface forcing 

is homogeneous in the y-direction. When surface characteristics are variable in the y­

direction, however, only 3-D simulations can be used. 
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Figure 5.16: Same as Fig. 5.15 but for the 3-dimensionallarge-eddy simulation with L = 
Okm. 

5.6 Further Analysis of Model Output 
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5.6.1 Analysis tools 

In the previous sections, RMSC and RMSP are computed based on quantities at grid 

points. A related problem is to study the influence of initial perturbations on the domain­

averaged quantities. This method is applied to output from fine-resolution simulations (L 

= 0 to 5 km). Such a method is also used in Pielke et ale (1992a) to evaluate the nonlinear 

influence of mesoscale landuse on weather and climate, based on the variation of subgrid 

and mesoscale heat fluxes as a function of L. 

Another quantity to be computed is the spatial and temporal autocorrelation coeffi­

cients. The autocorrelation measures the persistence of a wave within the entire duration 

of a temporal or spatial series. This quantity, denoted as R, is computed for cases of L = 
o to 150 km. 

Another quantity related to the autocorrelation is the power spectrum, denoted as E. 

E(f) represents the portion of variance explained by waves of frequency f for time series 

or of wavenumber f for spatial series. E(f) is normalized by the variance so that the sum 

of E(f) for f = l/N to 1/2 is unity where N represents the total number of data. This 

quantity is computed for the cases ofL = 0 to 150 km. Note that power spectrum analysis 

does not include any phase information. A new technique that deals with both frequency 

and phase information is the wavelet representation which has been developed recently, 

and has been used in different fields (e.g., Strang, 1989 and references thereinj Meneveau, 

1991 and references therein). We plan to used this technique in the near future. 

The fractal dimension and Lyapunov exponents are important quantities in chaos 

theory developed in the past thirty years (e.g., Zeng et al., 1992a,bj also see Chap. 2). 

The fractal dimensions are evaluated in this study, and the Lyapunov exponents will be 

discussed very briefly. (For the convenience of publication of this chapter, the rest of this 

subsection is a repetition of the material in Chap. 2.) 

The significance of the fractal dimension in chaos is discussed in Zeng et ale (1992a) 

in detail. Related to the predictability problems, the estimation of the fractal dimension 

from the whole model output provides some information about the statistics of atmo­

spheric variability. Besides, if a low-dimensional attractor can be obtained under certain 
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conditions, a relatively simple model may be constructed for prediction problems. This is 

a very active area in chaos research (e.g., Abarbanel et al., 1990). 

The computation of the fractal dimensions is carried out in a phase space. For a 

system with known ordinary differential equations (ODEs) or difference equations, all 

dependent variables constitute a phase space, Le., an Euclidean space whose coordinates 

are these variables. Each point in phase space represents a possible instantaneous state 

of the system. A state, which is governed by the governing equations, is represented by 

a particle traveling along a trajectory in phase space. For a system with known partial 

differential equations (PDEs), the system can usually be studied by discretizing the PDEs, 

and all of the dependent variables at all grid points constitute a phase space, which is an 

approximation to the original infinite-dimensional phase space. For such a system (e.g., 

the atmosphere), an additional difficulty is that the initial values of the system may be 

unknown or lacking. However, a time series of one or more of the variables of a complex 

system may be available, and the attractor of the system needs to be reconstructed in 

a phase space. Different reconstruction techniques have been discussed in detail in Zeng 

et al. (1992b). In this chapter, the phase space will be constructed by using dependent 

variables at grid points, and by the time-delay method (Zeng et al., 1992b). 

In a k-dimensional phase space reconstructed from model output, the correlation 

dimension, which is different from (but usually close to) other definitions of the fractal 

dimension, is given by (Grassberger and Procaccia, 1983a) 

N 

G(r) = lim N\ L H(r -llxi - xiiI) , 
N-+oo .. 1 

1.)= 

(5.8) 

where the vector Xi is a trajectory point, N is the total number of trajectory points, H is 

the Heaviside function defined by H(y) = 1 for positive y, and H(y) = 0 otherwise, and 

the usual Euclidean norm is used. In other words, C(r) is the cumulative histogram for 

the number of pairs of trajectory points whose distance is less than r in k-dimensional 

phase space. 

The relationship between C(r) and r varies with r. When r is very small, there 

are insufficient statistics, and the influence of noise inherent in the system or contributed 
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by measurements is important; whereas, for r too large, the information is affected by 

nonlinearity, and the slope of the curve of In G(r) versus In r is smaller than that for 

intermediate r. However, there exists an intermediate range of r in which this slope is 

almost constant; i.e., G(r) depends upon r as 

(5.9) 

For each embedding dimension k, this exponent 11 can be obtained from the slope of the 

linear part of a plot of In G ( r) versus In r. IT 11 approaches a value independent of k as 

k -+ 00 (usually k > 211 is sufficient), this value is defined as the correlation dimension 11 •• 

When a high-dimensional phase space is used, which is constructed by variables at different 

grid points, 11/1 can be obtained without increasing the embedding dimension further. In 

this study, the correlation dimension is computed from the entire model output and from 

the output at several grid points for cases of L = 0 to 150 km. 

5.6.2 Results of further analysis 

The horizontally averaged statistical qua.ntities from our 3-D fine-resolution simula­

tions are compared first with those from other 3-D LESs. Figure 5.17 shows the horizon­

tally averaged quantities as a function of time in the 3-D fine-resolution simulation for the 

homogeneous case (Le., L = 0). It is seen tha.t, a.t the stage of the fully-developed turbu­

lence (e.g., t = 9 hours), the horizontally averaged quantities are characteristic of those 

from laboratory and other LES studies (Deardorff and Willis, 1985; Mason, 1989; Moeng 

and Wyngaard, 1988; Hadfield et al., 1991,1992; Krettenauer and Schumann, 1991; Walko 

et al., 1992). The negative skewness near the surface is also present in Fig. 5.17f, as in 

other LES studies. Some possible reasons are discussed in Mason (1989) and Nieuwstadt 

et al. (1991). However, most of the previous LES studies concentrated on the steady-state 

behavior rather than the predictability of the boundary layer flow. 

Figure 5.18 shows the horizontally averaged quantities as a function of time in the 

2-D fine-resolution simulation for the homogeneous case (Le., L = 0). It is seen that the 

horizontally averaged potential temperature is close to that in the 3-D LES (Fig. 5.17). 
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Other quantities in Fig. 5.18 are similar to those in Fig. 5.17 qualitatively, and are larger 

than those in Fig. 5.17 quantitatively. This is another indication that eddy activities are 

stronger in the 2-D simulation. Note that normalization is not used in Figs. 5.17 and 5.18. 

The negative skewness near the surface is also present in Fig. 5.18f, as in LES studies. 
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Figure 5.18: Same as Fig. 5.17 except from 2-D fine-resolution simulation. 

Figures 5.19 and 5.20 show the influence of surface inhomogeneities on the prediction 

of the horizonta.lly averaged quantities at time t = 9 hours for the cases of L = 1 and 5 

km. It is seen from both Figures that the horizonta.lly averaged potential temperature, 

Le., < 8 >, is very close between the control and perturbed runs, while other horizonta.lly 

averaged quantities are somewhat different. The profiles of < 8 > are expected, since 

potential temperature is well mixed. It is also found that the horizontally averaged quan-

tities, except < (J >, are also somewhat different between the control and perturbed 3-D 
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LESs. This is consistent with the conclusion in previous LES studies (e.g., Walko et al., 

1992) that long-time averages are needed to obtain stationary statistics. When temporal 

and horizontal averages are used, quantities are insensitive to the initial perturbations. 

However, since no steady state is expected with the surface forcing, which varies with 

time, long-time averages may not be appropriate in our cases. Therefore, the small dis­

crepances between the control and perturbed runs simply re:flect the temporal :fluctuation 

of a spatially-averaged variable in a spatial and temporal average. By comparing Figs. 

5.19 and 5.20 with the corresponding Figure for the homogeneous case (i.e., L = 0 km) 

which is not shown, it is found that the discrepancies between the control and perturbed 

simulations in Figs. 5.19 and 5.20 are smaller than for the homogeneous case. This may 

imply that a smaller number of realizations are needed for an ensemble average when sur­

face forcing is present. This is consistent with the discussion about the ensemble average 

and individual realizations in Section 5.4. Obviously, further studies are needed to clarify 

this important issue. 

The domain for the case of L = 1 or 5 km is covered half by water and half by soil. 

ff we regard the model domain as a grid box of large-scale models, the difference of the 

corresponding variables between Fig. 5.19 and 5.20 indicates the errors due to subgrid 

variability. This is related to the subgrid parameterizations in large-scale models. It is 

seen that the major errors caused by subgrid variability are the variances of (J' and 11.' near 

the surface, and the peak of the skewness. It is also interesting to note that the skewness 

in Fig. 5.20 (Le., L = 5 km) is very nearly zero, rather than negative as in the cases of L 

= 0 km (Fig. 5.18) and 1 km (Fig. 5.19). The reason is unclear at present. 

At time t = 3, 5, 7, 9, and 11 hours and at different vertical levels, the autocorrelations 

for 8, u, and w are computed for the cases L = 0 to 5 km. It is found from these 

computations that the autocorrelation for w [Le., Rw(r)] drops to zero rapidly and then 

oscillates around zero in all cases with the increase of the lag r. In contrast, Ru and Ro 

decrease more slowly with the lag r. It is also found that, with the increase of L (i.e., the 

increase of the spatial scale of the surface forcing), Ru and Ro decrease more slowly with 

the lag r. This simply reflects the increase of the strength of coherent circulations with 

the increase of 1. 
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We also compute the autocorrelation coefficients at different times and different ver-

tical levels for the cases of L = 10 to 150 km. Some of the results are presented in Fig. 

5.21. For the surface of alternating water and soil with the width of each strip (of water 

or soil) being L, the wavelength of the thermally-induced circulations is 2L or Ldx (since 

dx = 2 km). The peak of each curves in Fig. 5.21 reflects this wavelength; for instance, 

for the case of L = 10 km (denoted by the solid line), the peaks are at lag = 10, 20, 

... , 70dx. This means that the boundary layer flow is strongly modulated by the surface 

inhomogeneities. 
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Figure 5.21: The autocorrelation coefficients of 8, u, and w at time t = 9 hours and at the 
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The horizontally averaged autocorrelation coefficients of 8, u, and w at different ver­

tical levels are also computed as a function of time. It is found from these computations 

that the autocorrelation for 8, u, and w decreases slowly for the cases of L = 10 to 150 

km. In the cases of L = 0 to 5 km, the autocorrelation for 8, i.e., R8(t), also decreases 

very slowly. For instance, for the time lag of 2 hOUlS, R8 is still greater than 0.5 for the 

case of L = 5 km. This long persistence illustrates the longer predictability of 8 field, as 

found in Section 5.4 by computing the signal/noise ratios. In contrast, Rw(t) drops to zero 

rapidly for the cases of L = 0 to 5 km, which means that the component of small-scale 

non-coherent motions is more important, as mentioned in Section 5.4. It is also found 

that Ru(t) decreases more slowly in the case of L = 5 km than in the homogeneous case. 

This is consistent with the fact that the u field is more predictable for L = 5 km than for 

L = 0 km, as shown in Fig. 5.11. 

Figure 5.22 show the auto correlations of the error fields, i.e., the differences of 8, u, 

and w between the control and perturbed runs. It is seen that the error fields do not show 

the surface modulation, and are influenced mainly by perturbations of short wavelengths. 

The power spectra are computed at different time and different vertical levels for the 

cases of L = 0 to 5 km. Some of the results are shown in Fig. 5.23. It is seen that, for the 

homogeneous case, i.e., the panels of (a), (c), and (e) in Fig. 5.23, there are a few important 

wavenumbers at t = 3 hours. With the evolution of the boundary layer structures and 

eddies with time, only one or two wavenumbers dominates the spectra. Furthermore, as 

the integration time increases from t = 3 hours to 11 hours, the dominant wavenumber 

for the u field decreases, and when t = 11 hours, the dominant wavenumber is 2; in other 

words, the dominant wavelength of the eddies for the u field is 5 km. Note that the eddy 

activities have been found to be stronger in the 2-D fine-resolution simulation in Section 

5.5. The phenomena, that eddies are larger in size and eddy activities are stronger in the 

2-D fine-resolution simulation, are also observed in Cotton et ale (1990). The reason is that 

the energy and enstrophy cascade processes are changed and the vorticity cannot stretch 

in the y-direction, as mentioned in Section 5.5. In contrast to the homogeneous case, the 

surface inhomogeneities and forcing will modulate the eddies in the boundary layer. It is 
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seen from the panels of (b), (d), and (f) in Fig. 5.23 that the dominant wavelength is 2 km 

at any time due to the width of strip of land (L) of 1 km. For the cases of L = 2.5 and 5 

km, the dominant wavelengths are 5 and 10 km, respectively. Therefore, although the 2-D 

fine-resolution model produces larger eddies than in LES for the homogeneous case, the 2-

D model does not have this problem in the presence of significant surface inhomogeneities 

(e.g., L = 1 km). For the cases of L = 10 to 150 km, the dominant wavelength is also 

found to be 2L. 
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The power spectra of 9, u, and w are also computed as a function of frequency for 

the first 12 hours at different vertical levels for the different cases. It is found that the 

spectra for w is flat between low and high frequencies. This means that w is controlled 

by components of both coherent circulations and chaotic motions, as mentioned before. 

However, the spectra for 9 have peaks at low frequency, and decrease with an increase of 

the frequency. This means that the chaotic components are small for 9 field. The spectra 

for u also have peaks at low frequency, but decrease more slowly with the increase of the 

frequency than the spectra for 9. These results mean that 9 is more predictable than u, 

and u is more predictable than w, which are consistent with our results in Sections 5.3 

and 5.4. 

In order to further understand the results for the u field in Section 5.4, the power 

spectra for the u field in the control run and the error field of u between the control 

and perturbed simulations are shown in Fig. 5.24. It is found that both the u field and 

the error field of u are influenced mainly by the low wavenumber components for the 

homogeneous case. In other words, the coherent circulations are not strong, and the error 

field of u is mainly caused by the change of locations of coherent circulations. Therefore, 

the signal/noise ratio of u is smaller than unity in the homogeneous case. When L = 5 

km or 30. km, the u field shows strong coherent circulations, and the error field of u is 

influenced by components of both high and low wavenumbers (Le., by components of both 

coherent circulations and chaotic motions). Therefore, the u field is predictable when L is 

equal to or greater than 5 km. 

Figure 5.25 shows the power spectra for the w field in the control run and the error 

field of w. It is found that, like the error field of u, the error field of w is influenced mainly 

by the change of locations of coherent circulations for the homogeneous case. Therefore, 

the signal/noise ratio of w is smaller than unity in the homogeneous case. For L = 30 km, 

the w field shows strong circulations, and the error field of w is influenced mainly by the 

component of chaotic motions so that the w field is predictable. For L = 100 km, because 

the region of substantial horizontal differential heating covers only a small portion of the 

total domain, as discussed in Section 5.4, both the w field and the error field of w are 
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determined mainly by components of short wavelengths. Therefore, the w field becomes 

unpredictable in our simulations. Again, further study is needed to clarify this result. 

O.S 

0.4 

..J 
0.3 

~ 
c 
0 

0.2 
a.J' 

0.1 

10 20 30 40 50 

0.8 I I I I 
L= Skm 

0.6 -
-" I.&.J 

~ 
C 0.4 -
0 

a.J' 
0.2 - -

.~ /' ........... 
l. .. .......... 

0 I -. ...... I 1 __ 

0 10 20 30 40 50 

0.8 r-
I 

L=30~m I -
-" 0.6 r- -I.&.J 

~ 
c: 
0 0.4 r- -

a.J' 
0.2 f- -

0 -.. " ., .' . .A. ........ .. -............ _- J 1 

0 20 40 60 

Wavenumber 

Figure 5.24: The power spectra of u, denoted by the solid line, and of the error field of u, 
denoted by the dotted line, at the height z = 108 m for the cases of L = 0 and 5 lan, and 
at z = 112 m for L = 30 km at time t = 9 hours. The corresponding wavelength with the 
wavenumber n is lOIn (km) for L = 0 and 5 km, and is 300/n (km) for L = 30 km. 

Figure 5.26 compares the spectra in the 3-D LES and those in the 2-D high-resolution 

simulation for the homogeneous case. For the 3-D LES, the. spectra are computed in the 

x-direction and are then averaged along the y-direction. It is seen that the spectra are 

different between the 2-D and 3-D simulations, as mentioned in Section 5.5. For the 3-D 

LES, the -5/3 range in wavelength is 300 to 1500 m for fJ, 1500 to 3000 m for u, and 240 to 

1500 m for w. When the wavelength is smaller than 1500 m, the spectrum for u decreases 

faster with wavenumber than for the -5/3 power law. The sharp drop in the spectra at 
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Figure 5.25: The power spectra of w, denoted by the solid line, and of the error field of w, 
denoted by the dotted line, at the height z = 132 m for the cases of L = 0 km, and at z 
= 139 m for L = 30 and 100 km at time t = 9 hours. The corresponding wavelength with 
the wavenumber n is lOin (km) for L = 0 km, and is 300/n (km) for L = 30 and 100 km. 
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high wavenumbers can be explained by the fact that averaging or filtering is used in LES, 

as discussed in Moeng and Wynga.a.rd (1988). For the 2-D simulation, the spectrum of 

() is close to the -3 power law at high wavenumbersj the spectrum of u is close to the -3 

power law when the wavelength is less than 3.3 kmj and the spectrum of w decreases more 

slowly with wavenumber than for the -3 range. 
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Figure 5.26: The power spectra (denoted by the solid lines) of () and u at the height z = 
108 m, and w at the height z = 132 m for the homogeneous case (i.e., L = 0 km) at time t 
= 9 hours. The left panels represent the spectra for the 3-D LES, in which the dotted line 
denotes the -5/3 power law and the corresponding wavelength with the wavenumber n is 
6/n (km). The right panels represent the spectra for the 2-D high-resolution simulation, 
in which the dotted line denotes the -3 power law and the corresponding wavelength with 
the wavenumber n is lOin (km). 

We next take all grid points to construct a 4000-dimensional phase space for the cases 

of L = 0 to 5 km. Results for 6, u, and ware stored every half an hour. Therefore, for 
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each variable, there are 48 trajectory points in this phase space for 24 hours of integration. 

Note that the phase space is only a projection of the true phase space which consists of 

all prognostic variables (8, u, w, and the turbulent kinetic energy) at all grid points. 

Although the dimension of the phase space is fixed for these cases, saturated correlation 

11. can be obtained without further increasing the embedding dimension, since this phase 

space is large enough. Figure 5.27 shows the cumulative histograms for the cases of L = 
o to 5 km. It is seen that the correlation dimension 11. is similar for 8 for different cases. 

For (In r) from 2 to 2.5 (or the potential temperature difference defined by the Euclidean 

norm from 7.4 to 12.2 K), the correlation dimension is about 3.5. For (In r) greater than 

3, 11. is about 1.4. For the u-component, 11. is similar for the cases of L = 1, 2.5, and 5 

km, but different between these cases and the homogeneous case. 11. is about 3.2 for the 

intermediate range for L = 1, 2.5, and 5 km, but difficult to estimate for the homogeneous 

case. For the w-component, 11. is about 4.7 in the intermediate range for the cases of L = 
1, 2.5, and 5 km, but difficult to estimate for the homogeneous case in the intermediate 

range. For (In r) greater than 2.5 (or the w difference defined by the Euclidean norm 

greater than 12.2 mjs), 11. is less than unity for all cases. 

By comparing 11. for different variables, it is seen that 11. is smallest for 8, and largest 

for w in. the intermediate range. This is consistent with the predictability of these vari-· 

abIes: 8 is most predictable and w is least predictable. However, this consistency need not . 

be true in general. The fractal dimensions are different for different variables, because dif­

ferent variables are governed by different detailed dynamics. Low-dimensional attractors 

are found in the intermediate range for 8 in all cases, and for u and w in all cases except 

the homogeneous case. (The high correlation dimensions of u and w in the intermediate 

range for the homogeneous case, which are difficult to estimate, imply that the turbulent 

structures in the boundary layer are of a larger degree of freedoms and hence are difficult 

to predict.) The low fractal dimensions between 3 and 5 imply that the motion in a very 

high dimensional space (which approximately represents the original infinite-dimensional 

space of the physical system) is confined to the vicinity of a low-dimensional manifold. 

However, the correlation-dimension analysis gives us no way of constructing this manifold. 
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This is a well-known frustration of the correlation dimension analysis. For our cases, we 

speculate that the three dimensions of the low-dimensional attractors are associated with 

the magnitude of the surface heating, the surface. modulations due to surface inhomo­

geneities, and the thermal stratification in the boundary layer. Another dimension may 

be associated with the Coriolis force or the horizontal diffusion. The selection of these four 

features is based on the fact that, from linear theory (Rotunno, 1983; Dalu and Pielke, 

1989) and from our own experiences, that these parameters basically determine the surface 

thermally-induced circulations under the condition of calm wind. We also speculate that 

the diurnal cycle is responsible for the correlation dimension being less than unity for the 

vertical velocity at large In r. 

Low dimensional attractors are also obtained for the cases using Llx = 2 km. Some of 

the results are given in Fig. 5.28. Discussions similar to those in the previous paragraph 

can be given. We also use data stored every 30 seconds at 66 grid points (11 points at 

each of six selected levels in the boundary layer) to compute the correlation dimension. 

Only the data in the first 12 hours are used, so that there are 1440 trajectory points in the 

66-dimensional phase space. The results for L = 10, 30, 50, and 100 km are given in Fig. 

5.29. As in Fig. 5.28, the correlation dimensions are also low (less than 4). Results similar 

to those in Fig. 5.29 are also obtained for the cases of L = 0 to 5 km. Furthermore, we 

compute the correlation dimensions at different vertical levels in a 11-dimensional phase 

space for all cases. Low-dimensional attractors are obtained for all cases based on the 

intermediate range of the curves. 

In addition to the above computations, we also compute the correlation dimensions 

in 3 to 11 dimensional phase space by two methods. The same two methods were used 

in Essex et al. (1987) and were shown to produce similar results. The first method, 

as used in the above, entails the use of the data from each of 11 grid points at the 

same vertical level and separated by 500 m in fine-resolution simulations as a separate 

coordinate. The embedding is done by introducing the data from progressively more grid 

points as additional coordinates. In this way, the number of trajectory points in the phase 

space is 1080 for the first 12 hours, since data are stored every 40 seconds for the cases 
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of L = 0 to 5 km. An example for the case of L = 5km is given in Fig. 5.30. It is seen 

that, as in the above, the correlation dimensions are low. It is also seen that the w field is 

characterized by two distinct correlation dimensions: ZlII is higher in the lower range than 

in the intermediate range. 
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Figure 5.30: Correlation dimension plot for the case of L = 5 km, using the data of 9 and 
u at z = 589 m and of w at z = 637 m. The solid, dotted, short dashed, long dashed, and 
dotted-dashed lines denote the phase space reconstructed by using 3, 5, 7,9, and 11 grid 
points, respectively, and are separated by increments of 1 for clarity. Note that the term 
1/ N2 in Eq. (5.8) is not included. 

The other method treats the data at 11 grid points together as independent measures 

from a single site by cancatenating the different time series from each grid point to create 

a single large time series of 11880 data. An example is given in Fig. 5.31 where 20 (x 

40 seconds) is used as the time delay in the reconstruction of phase space. The data are 
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the same as those used to generate the lower panel in Fig. 5.30. As in the lower panel 

of Fig. 5.30, the correlation dimension is low, and there are two regimes in Fig. 5.31 

with the correlation dimension higher in the lower range. Because of the low value of the 

correlation dimensions, the qualitative and quantitative requirements discussed in Zeng 

et al. (1992a) (and in Chap. 3) are satisfied. Therefore, we have shown by different 

methods that low-dimensional attractors (less than 5) exist for surface thermally-induced 

circulations. These low dimensions are probably associated with the magnitude of the 

surface heating, the horizontal differential heating due to the surface inhomogeneities, the 

thermal stratification, (the synoptic wind when present), and the latitude or the horizontal 

diffusion. 

We have also made some preliminary tests of applying our algorithm (Zeng et al., 

1991) to estimate the Lyapunov exponents from model output. However, since the time 

delay, which is the e-folding time of the autocorrelation with time, is large, there are not 

enough independent data to compute the Lyapunov exponents. If the delay time is taken 

to be small, the matrix Ti (see Zeng et al., 1991) is singular, and the Lyapunov exponents 

cannot be estimated. Although the Lyapunov-exponent spectrum cannot be obtained at 

this time, the largest Lyapunov exponent (.xl) can be obtained from the error growth 

curves at times tl and t2: .xl ~ In[RMSP(t2)/RMSP(tt}1/(t2 - tl). Therefore, it is seen 

from Figs. 5.3 to 5.15 that the Lyapunov exponents are different for different variables, 

and different at different periods for the same variable: .xl is near zero for the first few 

hours, is positive and approximately constant when the surface forcing is strong, and is 

negative again after sunset. 

5.7 Conclusions 

The predictability studies of small to large scale atmospheric :flows are overviewed. 

The definition of predictability and the difference in the predict abilities between the large 

scale and mesoscale (and small scale) atmospheric flows are discussed. Using 2-D RAMS 

in its nonhydrostatic and compressible configuration, the predictability of the surface 

thermally-induced circulations is studied, including not only the sensitivity to initial con­

ditions (Le., the traditional predictability studies), but also the sensitive dependence on 
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Figure 5.31: Correlation dimension plot of w for the case of L = 5 km, using the data 
of (J and u at z = 589 m and of w at z = 637 m. The solid, dotted, short dashed, 
long dashed, and dotted-dashed lines denote the embedding dimensions of 3, 5, 7, 9, and 
11, respectively. The phase space is reconstructed from the large time series created by 
cancatenating the different time series from 11 grids. Note that the term 1/ N 2 in Eq. 
(5.8) is not included. 
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the boundary conditions and model parameters. It is found that the error growth (at least 

at the stage when the surface forcing is strong) is not sensitive to the characteristics of 

the initial perturbations (such as the magnitude and the horizontal scales). The reason is 

that the initial geostrophic adjustment process, which is the balance between the horizon­

tal pressure gradient force and the nonlinear advection terms, is very fast (about half an 

hour). The adjustment processes due to the Coriolis force and sound waves, and the im­

plicit numerical smoothing are unimportant for the initial adjustment process. However, 

the explicit numerical smoothing by means of the horizontal diffusion terms or filters has 

an important impact on the initial adjustment process. The numerical smoothing also has 

a strong impact on the error growth dynamics. Specifically, the strong numerical smooth­

ing can even change the error growth property from increasing with time to decreasing 

with time. 

It is found that the predictability is different for different variables, because different 

variables are governed by different detailed dynamics. Another reason may be that the 

coupling of different variables to rest of the variables is different, which is used in Lorenz , 

(1991) to explain the different fractal dimensions of different variables in a system. The 

potential temperature is most predictable, the vertical velocity is least predictable, and 

the horizontal velocity is in between. It is also found that the effects of the change of the 

stratification in the boundary layer, the change of the latitude, the change of the simula.­

tion date (which changes the strength of surface forcing) are small on the predictability; 

i.e., the signal/noise ratio, although these effects are large for the signal and the noise 

individually. Although the ambient wind does not change the signal/noise ratios of (J and 

u significantly, the increase of the ambient wind can change the w field from unpredictable 

to predictable in our cases. The surface thermally-induced flows are shown to be insensi­

tive to boundary conditions. Based on sensitivity studies on selected model parameters, 

it is found that the change of surface roughness length and the constants in turbulence 

parameterizations mainly affect the w field. Especially, the flow structure is strongly af­

fected by the specification of the initial soil water content. Because the soil parameters 

cannot be accurately determined in practice, it is expected that this will cause serious 

uncertainties in the numerical simulation of surface thermally-induced circulations. 
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The influence of the size of surface heat patches on the atmospheric predictability of a 

single realization was studied. The transition from organized flow to the situation in which 

fluxes are dominated by non-coherent turbulent eddies is quantitatively evaluated. The 

predictability of atmospheric flow is controlled by two different processes: one is the non­

coherent and unpredictable turbulent eddies; the other is the coherent and predictable 

thermally-induced circulations. It is found that this transition is different for different 

variables. The potential temperature is predictable for all cases, because (J is always well 

mixed in the convective boundary layer. When the size of the soil strip is greater than 

or equal to 5 km or so, the strong coherent circulations induced by surface forcing are 

dominant, and the horizontal velocity field becomes predictable. The vertical velocity 

field is least predictable because it is related to the derivatives of u, and small change 

of u can alter w significantly. Another reason is that the instantaneous state of a single 

realization is used in the fine-resolution simulations, which affect w field most strongly. 

As far as we know, our study is the first quantitative evaluation of this transition process, 

which is of theoretical significance in turbulence studies and of practical importance in 

the parameterization of the subgrid processes in large scale numerical models. 

The relationship between the predictability of a realization and of an ensemble average 

is discussed. When a variable is highly predictable in a single realization, an ensemble 

average and a realization yield the same predictability. When a variable is unpredictable 

in a realization, it may still be predictable in an ensemble average. Therefore, an ensemble 

average and a realization yield the same predictability for 8 when L = 0 to 150 km, for u 

when L ~ 5 km, and for w when L = 10 to 30 km. 

A pair of three-dimensional mesoscale simulations were carried out with alternating 

water and soil strips in the x-direction and an otherwise homogeneous surface in the y­

direction. It is found that results regarding the predictability are close for (J and u, and 

similar for w between 2-D and 3-D simulations. A pair of 3-D LESs were also performed 

for the homogeneous case. It is found that results regarding the predictability are close for 

(J, and similar for u and w between 2-D and 3-D fine-resolution simulations. Furthermore, 

domain-averaged quantities are found to be similar between 2-D and 3-D fine-resolution 
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simulations. Therefore, although 2-D models cannot simulate the detailed 3-D structures 

correctly (e.g., the eddies are larger and eddy activities are stronger in the 2-D simulations) 

due to its inability to resolve the variation in the y-direction and to stretch the vorticity, 

and due to the change of energy and enstrophy cascade processes, 2-D simulations are still 

useful for predictability studies. The 2-D simulations also provide guidance in the design 

of the computationally more costly simulations. 

Further analyses of model output show that the horizontally averaged quantities are 

similar between the control and perturbed runs. The small discrepancies may reflect the 

temporal fluctuation of a spatially averaged variable in a spatial and temporal average. 

It is also found that the differences between the control and perturbed simulations are 

smaller in the presence of surface inhomogeneities than in the homogeneous case. This 

may imply that a smaller number of realizations are needed for an ensemble average when 

surface inhomogeneities are present. Obviously, further studies are needed to clarify these 

issues. 

Computations of the autocorrelation with a space lag show the coherent circulations 

clearly. It is also found that the autocorrelation coefficient decreases more slowly with 

time for 8 and u than for w, which is consistent with the fact that (J and u are more 

predictable than w. With the increase of the spatial size of the surface forcing, the 

autocorrelation decreases more slowly. The large peaks in the power spectra also show the 

surface modulation clearly. In particular, although the 2-D fine-resolution model produces 

larger eddies than those obtained in LES for the homogeneous case, it does not have this 

problem in the presence of surface inhomogeneities. Power spectra also show that the 

peaks are located at low frequencies for (J, located at low and intermediate frequencies for 

u, and located at low and high frequencies for w. This means that th.e (J field has the 

longest persistence, and w has the shortest persistence. The power spectra of variables in 

the control run and the error fields between the control and perturbed runs help explain 

the results of the predictability as a function of the size of heat patches. 

The correlation dimensions are computed in a phase space constructed by different 

methods. It is found by all these methods that low (less than 5) -dimensional attractors 
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are present for the surface thermally-induced circulations. In the absence of ambient 

wind, four dimensions may be associated with the surface heating due to solar radiation, 

horizontal differential heating due to surface inhomogeneities, thermal stratification, and 

the latitude or the horizontal diffusion. The existence of low-dimensional attractors in 

these systems are not surprising, since, based on linear theory, these four parameters 

determine the gross features of the circulations. For some cases (especially of w), there 

are two distinct regimes with higher correlation dimensions in the lower range of the 

distance r in phase space. This means that the large variations of w are controlled by a 

smaller number of degrees of freedom than the small variations. Finally, a preliminary 

analysis of the Lyapunov exponents shows that the Lyapunov exponents are different for 

different variables, and different during different periods for the same variable. 





Chapter 6 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

6.1 Conclusions 

In this study, chaos theory is overviewed, and a practical method is developed to 

compute the Lyaunov-exponent spectrum from short time series of low precision. The ap­

plication of chaos is divided into three categories, and each of these categories is studied by 

an example: the daisyworld model, the observational data analysis, and atmospheric pre­

dictability. These three examples are important questions themselves in the atmospheric 

sciences. They are unrelated themselves, but are unified under chaos. In this section, only 

the major points from this study are summarized. More detailed conclusions have been 

given in each of the previous chapters. 

(i) Chaos theory is overviewed, which includes the bifurcation and routes to turbulence, 

and the characterization of chaos such as dimensions, Lyapunov exponents, and 

Kolmogorov-Sinai entropy. We divide the application of chaos into three categories: 

new ideas inspired by chaos, observational data analysis, and numerical model output 

analysis. This overview and classification also demonstrate that current emphasis 

on the computation of fractal dimensions from observational data and the debate 

regarding the existence of low-dimensional attractors in the atmosphere are just 

small parts of chaos theory and its application in the atmosphere. 

(ii) The computation of the Lyapunov-exponent spectrum is simple in principle, but very 

subtle in practice. Different techniques from different sources are compiled to give a 

comprehensive overview of different aspects of this computation for the first time in 

the literature. Based on theoretical reasoning and our experiences, we select suitable 
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options from different techniques to develop our own method. All parameters are 

tuned so that our scheme contains no free adjustable parameters, and hence can be 

easily used by other researchers with or without experience. Using various known 

model systems, both finite- and infinite-dimensional, it is found that our method 

can give reasonable results from short time series of low precision. 

(iii) Using observational daily data of surface temperature and pressure in the United 

States and over the North Atlantic Ocean, the fractal dimensions and the Lyapunov 

exponents are estimated. Although our time series are longer than those used in 

the previous studies, it is found that no saturated value of the correlation dimension 

can be obtained. Based on the qualitative and quantitative requirements of the data 

for the computation of the correlation dimensions, it is found that most, if not all, 

of the previous estimates of low dimensional attractors are spurious. Therefore, we 

claim that there probably exist no low-dimensional attractors from observational 

data in the atmosphere. Different from the previous studies on the computation of 

the Lyapunov exponents from observational data, we relate our computations to the 

climate signal/noise ratio analysis. It is found that the error-doubling time is 2 to 

8 days at different locations. The predictability time is longer in an area of higher 

climate signal/noise ratio. The predictability time for daily data for the entire year 

is shorter than that for summer and/or winter data. The relationship between our 

estimates and those based on general circulation models is also discussed. 

(iv) When the differential model is used for daisyworld as in Watson and Lovelock (1983), 

it is found that a steady state is always maintained, not only for one or two species 

(as in Watson and Lovelock), but also for more than two species. However, we ar­

gue that, physically, a more appropriate model for daisyword should be the discrete 

model, rather than the differential model. When the discrete model is used, it is 

known that chaos is possible without the feedback between the biota and the envi­

ronment. When the feedback is included, we find that periodic, and even chaotic, 

behavior still exists in daisyworld with one or two species, with the controlling pa­

rameter being the strength of the coupling between the daisies and the environmental 
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temperature. Computations of the power spectra, fractal dimensions, and Lyapunov 

exponents verify the existence of chaos in daisyworld. Therefore, our results show 

that the presence of daisies in daisyworld does not always stabilize the climate con­

ditions of the environment, and the feedback from the environment does not always 

lead to steady-state behaviors. These results raise questions regarding the validity 

and the interpretation of the Gaia hypothesis. 

(v) The atmospheric predictability of microscale to planetary-scale motions are overviewed, 

which is, as far as we know, the most comprehensive updated review of the atmo­

spheric predictability studies. Using the 2-D RAMS in its nonhydrostatic and com­

pressible configuration, it is found that the error growth (at least at the stage when 

the surface forcing is strong) is not very sensitive to the characteristics of the initial 

perturbations, due to the very fast geostrophic adjustment process (of about half 

an hour), which is the balance between the horizontal pressure gradient term and 

the nonlinear advection terms. The explicit horizontal diffusion terms and filters 

can strongly affect not only the initial adjustment process but also the error growth 

dynamics. Especially, the strong numerical smoothing can even change the error 

growth property from increasing with time to decreasing with time. 

(vi) It is found that the predictability is variable-dependent: the potential temperature 

is most predictable, the vertical velocity is least predictable, and the horizontal 

velocity is in between. The mesoscale flow is shown to be insensitive to boundary 

conditions. Among the conclusions regarding the influence of the boundary layer 

strucures and model parameters on the predictability and on the flow structures, it 

is found that an increase of the ambient wind can change the vertical wind field from 

unpredictable to predictable in our c~ses. The flow structure is strongly affected by 

the specification of the initial soil water content. 

(vii) The transition from organized flow to the situation in which fluxes are dominated by 

non-coherent turbulent eddies is quantitatively evaluated. This transition is deter­

mined by two different processes: one is the non-coherent and unpredictable turbu­

lent eddies; the other is the coherent and predictable thermally-induced circulations. 
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This transition is different for different variables: the potential temperature from an 

ensemble average or from a realization is predictable and gives the same predictabil­

ity, which is independent of the size of the surface inhomogeneities; the horizontal 

velocity from an ensemble average or from a realization is predictable and gives the 

same predictability when the size of heat patches is equal to or greater than about 5 

km; the vertical velocity from an ensemble average or from a realization is predictable 

and gives similar predictability when the size of heat patches is between about 10 

to 30 km. The reasons are also discussed. The predictability and the coherent cir­

culations modulated by the surface inhomogeneities are also studied by computing 

the autocorrelations and the power spectra of variables in the control run and the 

error fields between the control and perturbed runs. The relationship between the 

predictability of an ensemble average and of a realization is also discussed. 

(viii) The eddies are larger and the eddy activities are stronger in the 2-D fine-resolution 

simulations than in 3-D LES. However, the 2-D mesoscale (or fine-resolution) sim­

ulation yields close or similar results regarding the predictability as those from 3-

D mesoscale (or fine-resolution) simulations. The horizontally averaged quantities 

based on 2-D fine-resolution simulations are characteristic of those based on 3-D 

LES. 

(ix) The fractal dimension is computed in phase space contructed by different methods. 

It is found that low (less than 5) -dimensional attractors are present for the surface 

thermally-forced circulations. Four dimensions may be associated with the surface 

heating due to solar radiation, the horizontal differential heating due to surface in­

homogenei~ies, the thermal stratification, and the latitude or the horizontal diffusion 

in the absence of ambient wind. Finally, a preliminary analysis shows that the Lya­

punov exponents are different for different variables, and different during different 

periods for the same variable. 
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6.2 Suggestions for Future Work 

Because this work involves my research on a few different subjects, many sugges­

tions for future research became apparent during the course of this work. Some of these 

suggestions are due to the inspiration of chaos-one of the application of chaos theory. 

(i) Only the mono-fractal dimension is computed in our study. A more appropriate tool 

to characterize the nonlinear dynamical processes is the multifractal spectrum of 

dimensions. Although the qualitative and quantitative data requirements have been 

established for the computation of the mono-fractal dimensions, the corresponding 

requirements have not yet been studied. 

(li) Although it is not directly related to chaos, a new technique called wavelet transfor­

mation, of which I became aware during this work, contains not only the frequency 

information (as the Fourier transformation) but also the phase information. There­

fore, this tool is very helpful to study the spatial intermittency and the spatial­

temporal nonlinear variations. 

(iii) I hypothesize that the predictability should be universal for certain types of dy­

namical systems. One way to test this hypothesis is to follow the milestone work 

of Feigenbaum (1978, 1979a) which lead to the well-known Feigenbaum constants. 

The advanced mathematical theory on the renormalization group is needed for this 

research. 

(iv) Noise reduction is a very active research area in nonlinear science. This can be 

related to the 4DDA, especially by the adjoint method. For example, observational 

data can be processed by noise reduction techniques before 4DDA. Some methods 

in noise reduction may also be used to improve the 4DDA by the adjoint method. 

(v) Lyapunov exponents are the time averages of the local (temporal) rates of divergence. 

Higher moments of these local rates are also helpful to understand the fine structure 

of the attractors. 
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(vi) For high-dimensional complex systems (such as the atmosphere), the embedding di­

mension may be smaller than the fractal dimension. This may be related to the 

slight sensitivity to the selection of the time delay T in the computation of the Lya­

punov exponents from observational data, as reported in Chapter 3. It is assumed in 

Chapter 3 that at least the first few positive exponents can be reasonably estimated. 

Considering the practical significance of this assumption, further work is needed. 

(vii) Figure 4.1 shows an example regarding biodiversity. Since biodiversity loss is a very 

important environmental problem, further work on this topic is needed. 

(viii) Between the differential model of Watson and Lovelock (1983) and our discrete model 

of daisyworld, there exists another model-the time delay differential model. Some 

work based on this model has been done in De Gregorio et al. (1992) and Flynn and 

Eykholt (1992). The biodiversity problem may be studied by these models. 

(ix) Our 2-D simulations have led to many conclusions. We have shown that the major 

results on the error growth dynamics and the predictability as a function of the 

size of surface inhomogeneities are consistent with those based on 3-D mesoscale 

simulations using 2-D forcing. Using 3-D simulations with 3-D forcing, further work 

is needed to extend these conclusions to more realistic situations. 

(x) Our conclusions regarding the predictability as a function of the size of the surface 

inhomogeneities are based on the condition of calm mean wind. Further work is 

needed to evaluate the influence of mean wind on this transition process. 

(xi) The moisture is taken as a tracer in our study. An important question is whether 

our conclusions will be changed by moist processes. Further work is needed on this 

topic. 

(xii) When 3-D LES is used, it would be interesting to compare the predictability of the 

individual realizations with that of the ensemble average. In addition, it is concluded 

in Chapter 5 that surface inhomogeneities decrease the required number of individual 

realizations for an ensemble average. Considering its importance, further study is 

needed. 
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(xiii) Because of the rapid increase of computer power, small grid increments (such as a few 

hundred meters or a few kilometers) have begun to be used in mesoscale simulations. 

One problem is the adjustment of the constants in the turbulence parameterization 

when the grid increments are changed. A related question is how to compare results 

based on different resolutions. 

(xiv) The computation of the Lyapunov exponents provides a new tool for model output 

analysis. Further work is needed to apply this method to different model output. 

(xv) The predictability in the Eulerian frame is usually emphasized. The predictability 

study in the Lagrangian frame should also be very helpful. In addition, the compu­

tation of the fractal dimensions and Lyapunov exponents can be carried out easily 

in the Lagrangian frame. 

(xvi) The adjoint technique has been applied to a diverse set of problems (e.g., Errico and 

Vukicevic, 1991) which are all related to the predictability problem. Further work 

is needed to improve our understanding of the usefulness of the adjoint method in 

the predictability problems and of the usefulness of the results from predictability 

studies in the application of the adjoint method. 

The above suggestions are still a partial list of my ideas gained in my research on chaos 

theory and its application in the atmosphere in the past few years. Those unlisted ideas are 

related to the extended-range forecasting, pollutant dispersion, numerical schemes, model 

grids, synoptically-induced mesoscale dynamics, and climate dynamics. The diversity of 

these ideas is again an indication of the power of chaos. Indeed, it is expected that more 

and more researchers will be inspired by chaos in their scientific work. 
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Appendix A 

EXPLANATION FOR SOME FEATURES IN FIGURES 4.3-4.4, AND 

4.6-4.8 

For one species with the parameters given in the paper, Eqs. (4.4) and (4.5) yield 

4 SL ] (Te + 273) = - [0.5 + (0.5 - A;) ai , 
(! 

(AI) 

and, since 5 :::; Te :::; 40, we have 

(A2) 

For black daisies with Ab = 0.25, Eq. (AI) becomes 

(A3) 

so that Te and aU) oscillate in phase (cf Figs. 4.3 and 4.4). On the other hand, for white 

daisies with Aw = 0.75, we have 

(A4) 

and Te and aU} have opposite phase (hence, in Fig. 4.6, the plots of Te and aware inverted 

versions of each other). 

For both black and white daisies with AU} = 0.75 and Ab = 0.25, we can obtain from 

Eqs. (4.4) and (4.5) that 

(A5) 

Since the variation of ab is larger than that of aU} in Figs. 4.7 and 4.8, Te and ab have the 

same phase, as can be seen from these figures. However, no such phase relationship exists 

between aw and either Te or abo 
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