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Abstract

An ad hoc grid is a heterogeneous computing system composed of mobile devices. Each

computing resource is constrained in battery energy. The problem being studied is to assign

statically computing resources to the subtasks of an application that has an execution time

constraint, when the resources are oversubscribed. All subtasks must be executed; to accom-

modate this in an oversubscribed environment, each subtask has two versions: the primary or
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full version, and the secondary or degraded version. The secondary version utilizes only 10%

of the resources that the primary version requires, and produces only 10% of the data output

for the subsequent children subtasks. Thus, the degraded version (secondary version) repre-

sents a reduced capability of lesser overall value, while consuming fewer resources. The goal

is to assign resources so that the application meets an execution time constraint and the bat-

tery energy constraint while minimizing the number of degraded versions used. Five resource

allocation heuristics to derive near-optimal solutions to this problem are presented, evaluated,

and compared.

� 2005 Elsevier B.V. All rights reserved.
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1. Introduction and problem statement

An ad hoc grid is a heterogeneous computing (HC) and communication system,

all of whose components are mobile [18]. Each computing resource is constrained

in battery energy. Ad hoc grids allow a group of individuals to accomplish a mission

that involves computation and communication among the grid components, often in

a hostile environment. Examples of applications of ad hoc grids include: disaster

management, wildfire fighting, and defense operations. In all of these cases, a
grid-like environment is necessary to support reliably the coordinated effort of a

group of individuals working under extreme conditions.

An important research problem is how to assign (match) resources to the subtasks

and order (schedule) the execution of these subtasks that are matched to maximize

some performance criterion of an HC system. This procedure of matching and

scheduling is called mapping or resource allocation. The mapping problem has been

shown, in general, to be NP-complete (e.g., [9,11,14]). Thus, the development of heu-

ristic techniques to find near-optimal solutions for the mapping problem is an active
area of research (e.g., [1,2,5–8,10,17,19,28]).

For this research, a single, large application task composed of S communicating

subtasks with data dependencies among them is to be mapped to machines in an ad

hoc grid. There is a maximum execution time allowed for the application. All sub-

tasks must be executed; to accommodate this in an oversubscribed environment, it

is assumed that each subtask of the application task has two versions that could

be executed. There is a primary or preferred version, called the full version, and a

secondary or lesser preferred version, called the degraded version, utilizing only
10% of the resources that the full version requires, and producing only 10% of the

data output for the subsequent children subtasks. Thus, the degraded version (sec-

ondary version) represents a reduced capability of lesser overall value, while consum-

ing fewer resources. For example, a degraded version of a subtask may sample only

10% of the input data points that a full version samples. The resource utilization for

the degraded version is arbitrarily set to be 10% for this study.

Each machine in the grid has some initial battery energy available at the beginning

of the mission. Every time a subtask is executed on a machine it uses up some of the
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battery energy on that machine and hence the available battery energy on each ma-

chine becomes a constraint while mapping the application task to the grid. An addi-

tional constraint is the execution time, during which the entire application task must

finish executing.

This study follows the work done in [23], which focused on energy management in
ad hoc grids. However, unlike this study, the application task in [23] did not have

versions for its subtasks and the environment was such that there were enough re-

sources available for the application task to complete within the energy and time

constraints using full versions for all subtasks. The problem studied in [23] focused

on statically assigning resources in an ad hoc grid to an application composed of

communicating subtasks in such a way as to minimize the average percentage of en-

ergy consumed by the application to execute in the ad hoc grid. The mapping heu-

ristics were allowed to take up to 1 h to derive an allocation. This precomputed
allocation was then used when the application was actually deployed in a mission.

However, what if some of the machines fail or are not available when the appli-

cation is about to be deployed in the actual mission? In that case, due to lack of re-

sources, it will not be possible to execute the application task and successfully

complete the mission within the energy and time constraints using the precomputed

static allocation of full versions of subtasks to machines. Some of the subtasks of the

application task will then be forced to receive degraded service. This was the idea

behind having versions for subtasks in the application task. Furthermore, this new
allocation, using machines in the ad hoc grid that are functioning at the time of

deployment, must be derived quickly. In this study, we set the maximum time for

a heuristic to derive the new allocation to be 60 s (in contrast to the 60 min in [23]).

The mission for this study is assumed to be less than a day-long operation. It is

assumed that any of the subtasks of the application task must receive all external in-

puts before beginning execution and generate all external results after completing

execution. These are in addition to the global data items that one subtask sends to

another. An example of this for a hypothetical wildfire-fighting mission is shown
in Fig. 1. Also, any of the subtasks of the application task can use either its full

or degraded versions irrespective of what version their parent subtask(s) used. For

the wildfire-fighting example, even if the degraded version of a subtask is used for

determining the temperature of the environment, the degraded output can be used

by a full version subtask to analyze the effect of wind speed on the temperature.

The studied HC environment is designed such that once a subset of machines fails

it is not possible to map all the subtasks using their full version within the application

execution time constraint and battery energy constraints. The goal of this study is to
maximize the number of full version (versus degraded version) subtasks that can be

executed while still completing the application task within the energy constraint and

the application execution time constraint s. The more full versions used, the higher
the quality of the calculations.

Five different heuristic approaches and a lower bound have been designed and

compared via simulations to solve this ad hoc grid resource allocation problem.

We address two methods of solving this problem. One of the heuristics initially uses

the previous static mapping for subtasks mapped to all the machines from [23]
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Fig. 1. External inputs and external outputs for a hypothetical wildfire-fighting example.
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(assuming that all the machines in the grid are working) and then derives a new map-

ping for only the subtasks mapped to the failed machines. The other four heuristics
derive a new mapping for the entire application task to the set of machines that are

still available.

The next section describes the simulation setup used for this research. Section 3

discusses some of the literature related to this work. In Section 4, the heuristics stu-

died in this research are presented. Section 5 describes the results, and the last section

gives a brief summary of this research.
2. Simulation setup

In this study, the application task is composed of S = 1024 communicating sub-

tasks. This large number of subtasks is chosen to present a significant mapping chal-

lenge for each heuristic. The data dependencies among the subtasks are represented

by a directed acyclic graph (DAG). The pseudocode to generate the DAG is given in

the appendix of this paper. For this study, ten different DAGs are developed. The

maximum fan-in (i.e., the number of input global data items received by a subtask)
and fan-out (i.e., the number of output global data items sent out from a subtask) for

all the ten DAGs generated are 12 and 2, respectively. Also, for each DAG there are

seven subtasks with no predecessors, seven subtasks with no successors, and the

remaining 1010 subtasks have predecessors and successors. The sizes of the global

data items to be transferred from one subtask to another are sampled from a Gamma

distribution [21], with a mean value of 2.8 Mbits and a variance of 1.4 Mbits.

Initially, for the baseline grid configuration (i.e., when all machines are present), it

is assumed that there are a total of eight machines in the ad hoc grid and these are
divided equally into two classes: ‘‘fast machines’’ (e.g., laptops) and ‘‘slow machines’’

(e.g., PDAs). It is further assumed that when the mapping is actually deployed (e.g.,

the wildfire fighters arrive at the fire scene), it is discovered that some machines have



Table 1

Simulation configurations for post failure mapping problem

Configuration # Fast machines # Slow machines

Case A 2 2

Case B 2 1

Case C 1 2
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failed and only a subset of them are available for use. At this point, a fast mapping

heuristic must decide how the subtasks are to be allocated among the functioning

machines.

For this study, three different ad hoc grid failure cases are considered as shown in

Table 1. Case A represents the grid configuration where two fast and two slow ma-

chines are present; Case B has two fast and one slow machine; and Case C has one

fast and two slow machines.

The estimated expected execution time for each subtask on each machine is as-
sumed to be known a priori as a result of experimentation with the known applica-

tion. The estimated time to compute (ETC) values are used by the mapping

heuristics. The estimated execution time of subtask i on machine j is ETC(i,j). The

ETC values for all subtasks, taking heterogeneity into consideration, are generated

using the Gamma distribution method described in [3]. For this research, a task

mean and coefficient of variation (COV) are used to generate the ETC matrices.

The mean subtask execution time is chosen to be 100 s and a COV of 0.9 is used

to generate an ETC matrix with high task and high machine heterogeneity. For this
study, ten different ETC matrices are generated and used with each of the ten DAGs

to create 100 different data set scenarios.

When the ETC matrix is initially generated, the values for both slow and fast ma-

chines are generated in the same way, as given above. Arbitrarily, half of the initial

eight machines are designated as ‘‘slow’’ and the other half as ‘‘fast.’’ The ETC val-

ues must be adjusted so that the machines designated as ‘‘slow’’ are indeed slower

than those designated as ‘‘fast.’’

To obtain the two classes of machines, all the ETC values for the slow machines
are adjusted by a multiplicative factor (MF) [23]. For each subtask i the ratio diffi of

the ETC value of the fastest slow machine to the ETC value of the slowest fast ma-

chine is calculated as

diff i ¼
minETCði; jÞ for j across slow machines

maxETCði; jÞ for j across fast machines

� �
.

Then the value of MF is given by

MF ¼ 2=ðmin diff i for i 2 ½0; 1023�Þ.
All the ETC values for the slow machines are now multiplied by MF to obtain the
new adjusted values. After creating the two classes of machines, the new mean esti-

mated execution time for a single subtask is 131 s. For this study, across all the sub-

tasks in an ETC matrix, the average ETC value across all four slow machines is

approximately seven times the average ETC value across all four fast machines.
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The ETC values obtained using the above procedure correspond to the estimated

time to compute values for full version subtasks. The degraded version of a subtask

utilizes only 10% of the resources that the full version needs; hence, its estimated exe-

cution time was 10% of that given in the ETC matrix.

The ad hoc grid model that is considered for this project is a simplified version of
an actual one. In this research, the following simplifying assumptions are made to

make the ad hoc grid model more manageable:

(a) The energy consumed by a subtask to receive a data item is ignored;

(b) Any initial data (i.e., data not generated during execution of the application

task) is preloaded before the actual execution of the application task begins;

(c) A machine consumes no energy if it is idle (i.e., not computing and not

transmitting);
(d) The energy consumed to run the mapping heuristic is ignored;

(e) The machines are not multitasking, i.e., the subtasks are executed sequentially

within a machine; and

(f) The energy to transmit any external outputs (e.g., the predicted direction of the

fire in a wildfire scenario) is negligible.

Each machine j has four energy parameters associated with it:

(a) Maximum battery energy: B(j);

(b) Rate at which it consumes energy for subtask execution, per ETC time unit: E(j);

(c) Rate at which it consumes energy for subtask data transmission, per communi-

cation time unit: C(j); and

(d) The machine�s communication bandwidth: BW(j).

Parameters (b) and (c) use a simplified model of real energy consumption.

The values of B(j), C(j), E(j), and BW(j) for both fast and slow machines are
shown in Table 2. These values represent an approximate industry average based

on microprocessors and battery capacity selected on currently commercially avail-

able machines. Fast machines are typified by the DELL Precision M60 notebook

computer using an Intel MP4M processor operating at 1.7 GHz. The statistics for

the slow machines are typical for personal digital assistant (PDA) computers, such

as the DELL Axim X5 that uses an Intel PXA255 processor operating at 400 MHz.

The energy consumed for executing the full version of a single subtask i on ma-

chine j is ETC(i, j) · E(j) and the energy consumed for executing the degraded version
Table 2

The values of B(j), C(j), E(j), and BW(j) for fast and slow machines

Fast machines Slow machines

B(j) (energy units) 580 58

C(j) (energy units/s) 0.2 0.002

E(j) (energy units/s) 0.1 0.001

BW(j) (Mbits/s) 8 4
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of a single subtask i on machine j is 0.1 · ETC(i, j) · E(j). The time required to trans-

fer one bit of a data item between machine j and machine k is the inter-machine com-

munication time called CMT(j,k) and is given by:

CMTðj; kÞ ¼ 1=minðBWðjÞ;BWðkÞÞ.
The energy consumed to send a data item g of size jgj from machine j to machine k

by a full version subtask is CMT(j,k) · C(j) · jgj. A degraded version subtask pro-

duces only 10% of the data output of a full version subtask for its subsequent chil-

dren subtasks. Hence, the energy consumed to send a data item g of size jgj from
machine j to machine k by a degraded version subtask is 0.1 · CMT(j,k) · C(j) · jgj.
The value 10% was chosen arbitrarily to scale the energy consumption of the de-

graded versions without loss of generality. When machines fail the system becomes
oversubscribed. That is, not all of the subtasks can be completed within the time and

energy constraints without employing some degraded version subtasks. The amount

of degradation influences the count of subtasks that must use their degraded ver-

sions, but the general approach is unaffected.

Each machine can transfer data to only one destination at a time, and can do so

while it is computing. A machine can simultaneously handle one outgoing data trans-

mission and one incoming data reception. Similar to the study in [27], we assume that:

(a) A subtask can send out data only after it has completed execution; and

(b) A subtask may not begin execution until it receives all of its input data items.

The value of the time constraint s was chosen in [23] so that it ensured that all the
machines were utilized, while assuming the baseline grid configuration (i.e., when all

machines were present and working) and that all the subtasks used their full versions.

Experimentation with a simple greedy mapping heuristic was used to determine the

value of s as 34,075 s.
The underlying assumptions are that the battery energy and maximum time al-

lowed to execute the application are hard constraints, and that it will be necessary

for the heuristics to use degraded versions of some subtasks to meet the constraints.

Five static mapping schemes are studied in this paper: Recursive Bisection, Post Fail-

ure Bottoms Up, Post Failure Genetic Algorithm, Post Failure Min–Min, and Post

Failure MCT. The performance of each heuristic is studied for each of the three ad

hoc grid configurations (in Table 1) and across the 100 different scenarios. The time

for each mapper itself to execute is required to be less than or equal to 60 s on a ty-
pical unloaded (i.e., running no other application) 1 GHz desktop machine. This

time was selected to reflect an acceptable delay when machines are found to have

failed as the mission is about to be deployed.
3. Related work

A significant amount of research has been performed in the areas of power con-
strained resource management in uniprocessors [12,25] and also in heterogeneous
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multiprocessors [20,26]. In all of these studies, power management is achieved

through voltage scaling, which allows the reduction of the power usage by a CPU

(which requires a reduction in clock frequency) at the expense of increasing the exe-

cution time of a task. However, in our study we assume a power constrained heter-

ogeneous computing environment where the CPUs that are heterogeneous in nature
operate only at one voltage level as is true for most processors currently available.

Also, the application task is composed of communicating subtasks with multiple ver-

sions and the execution time of each subtask on each CPU is known in advance. The

goal is then to complete executing the application task within the specified time con-

straint and energy constraint while mapping as many full version (versus degraded)

subtasks as possible.

The literature was examined to select a set of heuristics appropriate for the HC

environment considered here. The heuristics generated here include some new heu-
ristics that are based on earlier approaches, but designed to meet the goal of this

study. The Min–Min heuristic approach has proven to be a good heuristic for dy-

namic and static mapping problems in earlier studies (e.g., [8,14,17]). The phase 1

of the Post Failure Min–Min and the Post Failure Bottoms Up heuristics used in this

study are related to the Min–Min heuristic. In phase 1, Post Failure Bottoms Up as-

signs subtasks to machines in a manner similar to the Min–Min heuristic, but con-

siders subtasks for scheduling in a different manner. The phase 1 of the Recursive

Bisection heuristic, which just divides a DAG into levels, has been a part of other
heuristics, such as the Earliest Task First heuristic studied in [13] for scheduling tasks

on homogeneous processors, and the Fast Load Balancing heuristic [22] and Level-

ized Mean Time heuristic [27] for heterogeneous systems. Part of phase 1 of the

Recursive Bisection heuristic also is related to Min–Min. The Post Failure MCT

heuristic is related to the MCT heuristic from earlier studies (e.g., [8,17]).

Genetic Algorithms are a technique used for searching large solution spaces and

have been used for mapping subtasks to machines in an HC environment (e.g.,

[8,24,27]). The phase 1 of the Post Failure Genetic Algorithm used in this study is
based on [27] and has been modified for this problem environment.
4. Heuristics

For all the heuristics, except Post Failure Bottoms Up, only the subtasks whose

predecessors are mapped could be considered during a given mapping iteration

(referred to as mappable subtasks). After mapping a subtask, all heuristics are
required to update the time and energy used for both subtask execution and inter-

machine communication. The makespan is defined as the total execution time of

the entire application task on the machine suite in the ad hoc grid. Hence, the final

makespan of any mapping must be less than or equal to s.
The Post Failure Bottoms Up, Post Failure Genetic Algorithm, Post Failure Min–

Min, and Post Failure MCT heuristics all have two phases. In phase 1 for all these

heuristics except Post Failure Genetic Algorithm, subtasks are assigned to machines

using their full versions, ignoring energy and makespan constraints. For phase 1 of
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the Post Failure Genetic Algorithm heuristic, it is assumed that all the machines are

present in the grid and a static mapping is performed. In phase 2, this initial mapping

is then modified based on the knowledge that a specific subset of machines is no

longer available in the ad hoc grid. Some of the subtasks are converted to their de-

graded versions, so that the new mapping does not violate either the energy or time
constraint. This section describes the five heuristics that were studied.

4.1. Recursive Bisection

The Recursive Bisection (RB) heuristic sorts all subtasks using their full versions

in descending order of their average ETC times across all machines, to form list L.

This ordering of subtasks in list L is used to determine the version of the subtask to

be mapped. In a manner similar to that used in [15] and as shown in Fig. 2, subtasks
are assigned to levels depending on the data precedence constraints.

The lowest numbered level consists of subtasks with no predecessors and the high-

est numbered level consists of subtasks with no successors. Each of the other sub-

tasks is at one level number above the highest producer of its global data items.

Subtasks are considered for mapping from the lowest level number to the highest

level number. Similar to [13,22], for each level, a list of mappable subtasks (subtasks

whose predecessors are mapped) is formed. The machine that gives the minimum

completion time (ignoring other unmapped subtasks) for each of the unmapped sub-
task is determined. From these subtask/machine pairs, the pair that gives the smallest

completion time is selected and the subtask is mapped onto that machine. Resource

utilization is then updated. This procedure is repeated until all subtasks in that level

are mapped.

Initially, all the subtasks are mapped to their minimum completion time machines

using their full versions. After all subtasks have been mapped, the entire mapping is

evaluated to ensure that energy and makespan constraints have been met. If either

the energy or makespan constraint is violated, then using the bisection procedure,
described below, some of the subtasks are converted to their degraded versions.
level 0 
(lowest level)S0 S1

S4
S2

level 1 S3

S5 level 2 

level 3 
(highest level)S7S6

Fig. 2. Levelizing of subtasks S0, S1, S2, S3, S4, S5, S6 and S7 for a given sample DAG.
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Bisection procedure

The bisection procedure performs a binary search on the list L for the minimum

number of degraded version subtasks. The procedure begins by attempting to con-

vert the subtasks in the first half of the sorted list L to their degraded version to meet

the energy and makespan constraints. Each successive iteration attempts to increase
(or decrease) the number of degraded version subtasks by increasing by half (or

decreasing by half) the number of subtasks converted in the previous iteration. Sub-

tasks are converted to their full version if the energy and makespan constraints were

met by the previous iteration of the search. Similarly, subtasks are converted to their

degraded version if either constraint was not met. Subtasks are converted to their

degraded versions from the beginning of the sorted list L, and converted to their full

versions from the bottom of the sorted list L. The procedure terminates when an iter-

ation converts only one subtask to either its full or degraded version.

4.2. Post Failure Bottoms Up

In phase 1, Post Failure Bottoms Up (PFBU) assigns subtasks to levels in a man-

ner similar to the RB heuristic. However, unlike RB, the PFBU heuristic begins by

mapping subtasks from the highest level number. Thus, for the PFBU heuristic, the

set of mappable subtasks at any given time consists of all subtasks that have no suc-

cessors and all subtasks whose successors have previously been mapped.
Let the time for execution and output communication of subtask i on machine j,

normalized with respect to the maximum time required for execution and output

communication by subtask i across all machines be NT(i, j). Let the energy consumed

for execution and output communication of subtask i on machine j, normalized with

respect to the maximum energy consumed for execution and output communication

of subtask i across all machines, be NE(i, j). The fitness value cij for each mappable

subtask on each machine is calculated as

cij ¼ NTði; jÞ þNEði; jÞ.

For each mappable subtask considered, the machine that gives the minimum fit-

ness value is determined (ignoring other unmapped subtasks). From these subtask/

machine pairs, the pair that gives the minimum fitness value is selected and the sub-

task is mapped onto that machine. Resource utilization and the set of mappable sub-

tasks are then updated. This process of machine assignment (matching) is repeated

for all subtasks in the application task. Once all unmapped subtasks are assigned

to machines, the entire mapping is evaluated. Subtasks are scheduled for execution

in the reverse order they were matched. The entire mapping is then evaluated. If
the mapping does not meet either the energy or the makespan constraint, then phase

2 of the heuristic is executed.

In phase 2, the makespan constraint is met as follows. All the subtasks in the

application task using their full versions and using the mappings obtained from

phase 1 are sorted in the descending order of their execution times. Using this order-

ing, one by one each subtask is converted to its degraded version, until the makespan



S. Shivle et al. / Parallel Computing 31 (2005) 671–690 681
constraint is met. Every time a subtask is converted to its degraded version, the entire

mapping is evaluated. After the makespan constraint is met, if the battery constraint

is exceeded on any of the machines, then the following procedure is carried out. For

each machine that exceeds its maximum battery energy, a list of all the subtasks

mapped to that machine in descending order of the energy consumed is generated.
Using this ordering, one by one the subtasks are converted to their degraded ver-

sions, until the energy constraint on that machine is met. This is done for all the ma-

chines that exceed their maximum battery energy. In this way the energy constraint is

met on all machines.

4.3. Post Failure Genetic Algorithm

In phase 1 of the Post Failure Genetic Algorithm (PFGA), all the subtasks are
mapped to machines using the Genetic Algorithm (GA) in [23], assuming that all

the eight machines are available. In [23], the goal was to minimize the average per-

centage of energy consumed by the application (Bpavg) to execute in the ad hoc grid

and the maximum execution time for the entire application was the constraint. Each

chromosome represents one solution to the problem and a set of chromosomes is

called a population. The GA used in [23] operates on a population of 100 chromo-

somes. Each chromosome is made of a scheduling string and a matching string, and

has a fitness value (Bpavg) associated with it. The scheduling string is a total ordering
of the subtasks in the DAG that obeys the precedence constraints, while the match-

ing string gives the subtask-to-machine assignments. Similar to the approach in [27],

these chromosomes then undergo selection, crossover, mutation, and evaluation.

Please see [23] for the GA details.

All the subtasks that are mapped to machines that are labeled as failed are con-

sidered to be unmapped subtasks. These unmapped subtasks are selected for map-

ping in the order they appear in the scheduling string of the final mapping

selected by the GA [23]. The set of mappable subtasks consists of all unmapped sub-
tasks whose predecessors are mapped.

The unmapped subtasks are assigned machines using a fitness function. Let the

time for execution of subtask i on machine j and the time for input communication,

normalized with respect to the maximum time required for execution and input com-

munication by subtask i across all machines, be NT 0(i, j). Let the energy consumed

for execution of subtask i on machine j and energy for input communication, nor-

malized with respect to the maximum energy consumed for execution and input

communication of subtask i across all machines, be NE 0(i, j). The fitness value fij
for the next mappable subtask in the scheduling string is then calculated on each ma-

chine as

fij ¼ NT0ði; jÞ þNE0ði; jÞ.
This unmapped subtask is then assigned to the machine that gives the minimum

fitness value. Once all of the unmapped subtasks are assigned to machines, the entire

mapping is evaluated. If the makespan and energy constraints are violated then they

are met using the same procedure as that of phase 2 of PFBU.
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4.4. Post Failure Min–Min

In phase 1, the Post Failure Min–Min (PFMM) heuristic (based on the concept in

[14]) forms a set of mappable subtasks consisting of all unmapped subtasks whose

predecessors are mapped. PFMM utilizes a fitness function to evaluate all mappable
subtasks. The fitness function is the same as the fij function used for mapping un-

mapped subtasks by PFGA.

For each mappable subtask considered, the machine that gives the minimum fit-

ness value is determined (ignoring other unmapped subtasks). From these subtask/

machine pairs, the pair that gives the minimum fitness value is selected and the sub-

task is mapped onto that machine. Resource utilization and the set of mappable sub-

tasks are then updated. This process continues until all subtasks are mapped. Once

all the unmapped subtasks are assigned to machines, the entire mapping is evaluated.
If the mapping does not meet either the energy or the makespan constraint then

phase 2 of the heuristic is executed.

In phase 2, a time portion metric CPavg and an energy portion metric EPavg is cal-

culated. Let N(j) be the number of subtasks mapped to a machine j. Then,
CPavg ¼ s=NðjÞ and EPavg ¼ BðjÞ=NðjÞ.

Subtasks are considered for conversion to their degraded version in the same

order they were mapped in phase 1. If subtask i is the nth subtask mapped to

machine j, then it is checked if the energy consumed by subtask i on machine j

exceeds EPavg and also if its completion time exceeds n · CPavg. If either of the
two quantities is exceeded, the subtask is converted to its degraded version. Every

time a subtask is converted to its degraded version, the entire mapping is evaluated.
If the mapping does not meet either the energy or makespan constraint, the next

mapped subtask (in the order of mapping used in phase 1) is considered for conver-

sion to its degraded version using the above procedure. In this way, the energy and

time constraints are met.

Experiments also were conducted using phase 1 of PFMM with phase 2 of PFBU.

This gave better results than using the above phase 2 for PFMM.
4.5. Post Failure MCT

For phase 1, the Post Failure Minimum Completion Time (PFMCT) heuristic

based on [4] uses the minimum completion time machine to map a subtask. A map-

pable subtask is one whose predecessors are mapped. For each mappable subtask, in

an arbitrary order, the machine that increases the makespan by the least amount if

the subtask is mapped to it is determined and the subtask is mapped to it. The

mapped subtask is removed from the mappable set and this process continues until

all subtasks are mapped. Once all the subtasks are mapped to machines, the entire
mapping is evaluated. If either the energy or the makespan constraints are violated

then they are met using the same procedure as that of phase 2 of PFBU.
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4.6. Lower bound

The method for calculating a lower bound on the number of degraded version

subtasks assumes a system consisting of homogeneous minimum execution time

(MET) fast machines and homogeneous MET slow machines. The execution time
of each subtask on the homogeneous MET fast machines is the same and is equal

to the minimum time that the subtask would take to execute across all the original

set of fast machines. In a similar manner, the execution time for each subtask on

the homogeneous MET slow machines is the same and is equal to the minimum

time that the subtask would take to execute across all the original set of slow

machines.

The energy consumed by each subtask to execute is related to time. The homoge-

neous MET system uses the minimum time to execute each subtask if it is mapped
onto either the fast or slow machine. The lower bound found using the homogeneous

system of MET fast and MET slow machines will hence be lower than or equal to the

lower bound on the number of degraded versions using the set of machines available.

This lower bound method ignores the data precedence constraints and inter-

machine communications. The energy consumption rate of a fast machine is 100

times more than the energy consumption rate of a slow machine and the average

ETC value across slow machines was approximately only seven times the average

ETC value across fast machines. Therefore, in general, if a subtask running on the
fast machine were to be moved to the slow machine, it will consume less energy

on the slow machine than on the fast machine. Let Ri be the fraction of energy that

the slow machine will consume to execute subtask i as compared to the energy con-

sumed by a fast machine. That is, if si and fi are the energy consumed by the MET

slow machine and MET fast machine to execute subtask i, respectively, then Ri = si/

fi, i = 0, . . . , 1023. The maximum of all Ri (Rmax) will give the worst case energy con-

sumption by the MET slow machine as compared to the MET fast machine if any

subtask was moved from the MET fast machine to the MET slow machine. That
is, the amount of energy consumed by MET slow machine will be at most Rmax times

that consumed by the MET fast machine for executing any subtask. So, we have

Rmax ¼ maxðsi=fiÞ; i ¼ 0; . . . ; 1023.

Recall, the energy initially usable on a slow machine is 58 units, and on a fast ma-

chine is 580 units. The effective total energy available (ETE) normalized based on the

MET slow machine is given by the following equation:

ETE ¼ ðRmax 
 580
 avail: #fast machinesÞ þ ð58
 avail: #slow machinesÞ.

This constitutes the maximum pool of energy available to execute all subtasks

after scaling the MET fast machine energy to MET slow machine energy. Addition-

ally, the slow machines could use only 34.075 units of energy if the time constraint is

considered (i.e., s · rate of energy consumed by MET slow machine = 34,075 ·
0.001). The fast machines could consume all of the energy available within the time

constraint. Hence, the energy on the slow machines could be limited as mentioned

above and this results in the ETE equation being rewritten as
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ETE ¼ ðRmax 
 580
 avail: #fast machinesÞ
þ ð34.075
 avail: #slow machinesÞ.

To find the minimum number of subtasks required to use their degraded versions,

the set of all subtasks T are sorted in descending order based on their energy con-

sumptions on the MET slow machine using full versions. If the subtasks are con-

verted to their degraded version in order until the total energy consumed 6 ETE,

then the minimum number of subtasks will be converted to degraded versions. This

is the same as maximizing the number of subtasks using full versions in executing all

the subtasks within ETE.
Let T1 be the set of subtasks using their full versions as found using the previously

defined method. Then the lower bound on the number of degraded versions will be

jTj � jT1j. Define energy (i) to be the energy consumption of task i on the MET slow

machine. To formally show that no more than T1 subtasks can use their full versions

consider the following proof.

Theorem. There can be no more than T1 subtasks running full versions that combined

consume energy less than or equal to ETE where the energy constraint:P
8t;t2T 1energyðtÞ þ 0.1


P
8d;d 62T 1energyðdÞ 6 ETE is met.

Proof. Assume there is a set T2 such that T2 � T and jT2j > jT1j. Obviously, to max-
imize jT2j requires the jT2j subtasks that consume the least amount of energy on the
MET slow machine. Therefore, by definition T1 � T2, and the energy consumption
for T2 can be expressed in terms of the energy consumption of T1 as follows:X

8t;t2T 2

energyðtÞ ¼
X

8a;a2T 1

energyðaÞ þ
X

8b;b2ðT 2�T 1Þ
energyðbÞ. ð1Þ

Expressing the energy constraint for T2 using Eq. (1) gives:X
8t;t2T 1

energyðtÞ þ
X

8a;a2ðT 2�T 1Þ
energyðaÞ þ 0.1


X
8d;d 62T 2

energyðdÞ 6 ETE ð2Þ

By the definition of T1, moving any subtask to T1 would cause T1 to violate the en-
ergy constraint, therefore moving any task from (T2 � T1) to T1 would violate the

energy constraint. But Eq. (2) is equivalent to converting all (T2 � T1) subtasks to

their full version and by definition violates the energy constraint. Therefore the set

(T2 � T1) must be the empty set, implying that jT2j = jT1j which contradicts the ori-
ginal assumption. h
5. Results

The simulation results for the post failure mapping problem are shown in Figs. 3

and 4. All heuristics were run for 10 different task graphs (DAGs), using 10 different
ETCs (i.e., for a total of 100 different combinations) across three different cases of

available machines in the ad hoc grid (Table 1). The average values and 95% confi-



Fig. 3. The simulation results for number of subtasks that used full version subtasks for the different

heuristics across the three different ad hoc grid scenarios.

Fig. 4. The simulation results for makespan in seconds for the different heuristics across the three different

ad hoc grid scenarios.
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dence intervals [16] of the number of degraded versions used are plotted for all heu-
ristics. The running times of the heuristics averaged over 100 trials, mapping 1024

subtasks per trial, are shown in Table 3.

As seen in Fig. 3, PFGA and PFBU were the best two heuristics for Case A and

Case B, PFMCT and PFGA were the best two heuristics for Case C, and PFMM

and RB performed poorly for all three cases. PFGA, PFBU, and PFMCT differed

only by their initial subtask to machine assignments, they all used an identical



Table 3

The execution times of post failure mapping heuristics (for mapping 1024 subtasks) averaged over 100

scenarios (using a typical 1 GHz unloaded machine)

Heuristic Average execution

times (s)

Recursive Bisection 0.1

PFBU 0.38

PFGA 0.49

PFMM 0.84

PFMM-BU phase 2 0.36

PFMCT 0.56
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procedure for phase 2 to convert subtasks to their degraded versions to meet the time

and the energy constraints. PFBU used a fitness function to assign all the subtasks to

machines, while PFGA used the initial static mapping and in addition a fitness func-

tion for all the unmapped subtasks. PFMCT assigned subtasks to machines that

gave the minimum completion time. It was observed that PFMCT assigned more

subtasks to fast machines as compared to PFGA and PFBU that had a more bal-

anced load distribution, and hence PFMCT had a smaller final makespan as shown

in Fig. 4. This also resulted in a larger number of degraded version subtasks for
PFMCT in Cases A and B. For Case C that had only one fast machine, PFMCT

was forced to assign many more subtasks to the two slow machines in addition to

the one fast machine. Hence, unlike in Case A and B, PFMCT performed compara-

bly to PFGA.

The Recursive Bisection heuristic also used completion time based Min–Min to

map subtasks to machines and hence mapped a majority of the subtasks to fast ma-

chines. Recursive Bisection converted subtasks to their degraded versions in decreas-

ing order of average execution time across all machines irrespective of whether the
subtask was actually mapped to a fast machine or to a slow machine. Another prob-

lem with the RB heuristic is that while matching subtasks to machines in phase 1,

only the execution times of subtasks is considered ignoring the communications. Al-

most every time, a subtask mapped to a fast machine was converted to its degraded

version. This resulted in Recursive Bisection having a very small final makespan (as

seen in Fig. 4) but a very large number of degraded version subtasks.

Phase 2 of PFMM considered subtasks for conversion in the order they were

mapped depending upon a time factor and an energy factor that in turn depended
upon the number of subtasks assigned to a particular machine. This procedure

was found to perform poorly, as can be seen from Fig. 3. The phase 2 of PFMM

attempted to force equal portions of time and energy for the subtasks assigned to

the same machine and did not consider subtasks mapped to other machines. On

the other hand, the phase 2 of PFBU considers all the subtasks mapped across all

machines for conversion to the degraded version. Hence when the phase 2 of PFBU

was used for PFMM there was a considerable improvement in the results across all

the three scenarios as opposed to the results obtained using the previous phase 2 of
PFMM.
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6. Summary

Five heuristics were designed, developed, and simulated using the HC environ-

ment presented. Application tasks composed of communicating subtasks with data

dependencies and multiple versions were mapped using the heuristics described in
this research. The PFGA gave the best or comparable average performance in all

cases. For the situations in cases A and B, which included two fast machines, the

PFBU performed nearly as well while not requiring the computation of a complete

static mapping a priori. For the case where there was only one fast machine avail-

able, PFMCT gave the performance comparable to PFGA. Thus, two approaches

are recommended: a. use the PFGA with a priori static complete mapping; or b.

use PFBU in cases where there are multiple fast machines available, and PFMCT

where there is just one fast machine available.
The results of this work may be used in the development of ad hoc grids in sup-

port of many applications of importance, such as disaster management. All of the

methods studied here can be extended to encompass a larger analysis. For example,

the communication time for receiving data and energy consumption during idle time

may be considered in the future work. Another extension of this model would be to

associate priorities with subtasks, so that subtasks whose accuracies are more critical

for a given mission will be less likely to be degraded. Thus, the model and heuristics

presented here can form the basis for continued research in support of the use of
ad hoc grids to perform applications of importance to society.
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Appendix A. Pseudocode for generating the DAGs

/* input:
Na subtask nodes with no predecessors and only successors, with id #s

ranging from 1 to Na

Nb subtask nodes with both predecessors and successors, with id #s

ranging from Na + 1 to Na + Nb

Nc subtask nodes with no successors and only predecessors, with id #s

ranging from Na + Nb + 1 to Na + Nb + Nc

maxFanOut, the maximum number of edges out of a node



minFanOut, the minimum number of edges out of a node

*/

/* output:

a DAG where all edges point from a smaller id node to a larger id node
*/

DAG generator pseudocode

1. for every node with successors, i,
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/* the maximum number of outgoing edges of node i must be equal to the

maximum fanout or the number of nodes with id larger than node i */

2. maxedges = min(maxFanOut, number of nodes with id larger than i)

3. generate a random number, j, between (minFanOut, maxedges)
4. randomly select j nodes with id larger than i and generate an edge

from i to each of the j nodes, updating the data structures accordingly

5. endfor

/* check for nodes from (Na + 1) to (Na + Nb + Nc) that do not have an incom-

ing edge*/

6. for each node, i,

7. if there is no incoming edge
/* find the first node with id less than i that can be used to
make an edge to the node i */

8. for k = 1 to (i � 1) do

9. if k does not have max outgoing edges

10. generate an edge between the node k and the node i,

and break out of this for loop

11. else if k has an outgoing edge pointing to a node that has more

than 1 incoming edge

12. move the outgoing edge to point to node i,
and break out of this for loop

13. endif /* matches the if in Line (9) */

14. endfor /* matches the for in Line (8) */

15. endif /* matches the if in Line (7) */

16. endfor /* matches the for in Line (6) */

End of DAG generator pseudocode.
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