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Interference Cancellation in Respiratory Sounds
via a Multiresolution Joint Time-Delay

and Signal-Estimation Scheme
Sonia Charleston, Mahmood R. Azimi-Sadjadi,*Senior Member, IEEE,and Ramon Gonźalez-Camarena

Abstract—This paper is concerned with the problem of cancel-
lation of heart sounds from the acquired respiratory sounds using
a new joint time-delay and signal-estimation (JTDSE) procedure.
Multiresolution discrete wavelet transform (DWT) is first applied
to decompose the signals into several subbands. To accurately
separate the heart sounds from the acquired respiratory sounds,
time-delay estimation (TDE) is performed iteratively in each
subband using two adaptation mechanisms that minimize the
sum of squared errors between these signals. The time delay
is updated using a nonlinear adaptation, namely the Leven-
berg–Marquardt (LM) algorithm, while the function of the other
adaptive system—which uses the block fast transversal filter
(BFTF)—is to minimize the mean squared error between the
outputs of the delay estimator and the adaptive filter. The
proposed methodology possesses a number of key benefits such
as the incorporation of multiple complementary information at
different subbands, robustness in presence of noise, and accuracy
in TDE. The scheme is applied to several cases of simulated
and actual respiratory sounds under different conditions and the
results are compared with those of the standard adaptive filtering.
The results showed the promise of the scheme for the TDE and
subsequent interference cancellation.

Index Terms—Adaptive filtering, biomedical signal processing,
wavelet decomposition.

TERMINOLOGY

Throughout this paper we refer to the following terminolo-
gies.

Collected signal Alludes to the signal which
contains several heart sounds
(or heartbeats), respiratory
sound and background noise.

Acquired respiratory sound Refers to that section of the
collected signal where the
heart-contaminated respira-
tory sound is confined.

Interference signal Refers to the heart sounds in-
side the acquired respiratory
sound.
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The following signals are defined for the adaptive filter.

Reference signal Refers to the heart sounds, first or
second heart sounds, selected from the
respiratory-free sections of the collected
signal.

Primary signal Describes the acquired respiratory
sound.

I. INTRODUCTION

SINCE the invention of the stethoscope, respiratory sounds
auscultation has been a clinical approach commonly em-

ployed to monitor the course of lung diseases [1]. During the
last decade or so, several attempts have been made to avoid
the subjectivity of the method and to characterize the sounds
through a more quantitative analysis. The sounds analysis has
established the necessity to eliminate the interference signals
prior to the extraction of relevant features [2]. The acquired
signals not only contain respiratory sounds, but also heart
sounds, ambient, muscle contraction, and hair noises. Some of
these interferences could be eliminated to some extent by using
a sound-proof room and/or an adequate microphone placement.
However, the heart sounds are unavoidable and sometimes
represent severe disturbing interference; each heartbeat pro-
duces two major sounds, known as the first and second heart
sounds. In addition, intersubject and intrasubject biological
variability and the overlap between frequency contents of
the heart and respiratory sounds are important factors that
preclude the application of deterministic filtering schemes
[2], [3]. Some researchers apply highpass filtering schemes
to remove the low-frequency part of the respiratory sound
spectrum. However, in view of the studies carried out by
other researchers [3]–[5], highpass filtering for this application
results in loss of important signal information. More recently,
various adaptive filtering schemes have been proposed to
eliminate this kind of interference [6]–[9]. Adaptive-based
approaches are considered to be the most practical, as they
do not require anya priori information about the signals.
However, they have only been partially successful, as their
performance generally depends on accurate time alignment
of the reference and primary signals. In [6] the reference
signal to the adaptive filter was generated by adding to the
acquired electrocardiographic (ECG) signal a delayed version
of itself. The approach cannot follow the time variations
between the first and second heart sounds or alterations in the
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cardiac frequency present in the acquired respiratory signal,
because the distance between the original ECG and its delayed
version is kept constant throughout the process. To avoid
the acquisition of an additional signal, in [7] an elaborate
scheme was applied to get the reference from the collected
signal. The idea was to produce a spike whenever a heart
sound occurred in the acquired respiratory signal through a
combination of lowpass filtering and squared operation. The
experimental results showed low to moderate heart sounds
reduction [7]. More recently, the analysis of respiratory sounds
on dogs was performed during anesthesia where at least
two microphones were used and a strain gauge monitored
the inspiration/expiration/rest periods [8]. The adaptive heart
sounds cancellation was achieved using the phonocardiogram
(PCG) signal present in the rest periods assuming that the
neighboring PCG beats were correlated. The reference signals
were formed with the PCG beats just before inhalation and just
after exhalation periods. The location of the PCG signals in
the respiratory section was determined by the cross-correlation
method. It was observed that even after the adaptive filtering,
PCG interference posed some problems, especially in the
lower-frequency range. In [9] in order to avoid the time-delay
alignment procedure the reduced-order Kalman filter (ROKF)
was applied. To facilitate the estimation of the respiratory
sounds, an autoregressive (AR) model was fitted to the heart
signal information present in the segments of the collected
signal, which are free of respiratory sounds. The state-space
equations necessary for the ROKF were then established,
considering the respiratory sound as a colored additive process
in the observation equation. It was shown that the ROKF
method produced heart sounds estimates which preserved
the morphology of the original heart sounds. However, the
drawbacks of the ROKF approach lie in the necessity to
establish a model for the heart and respiratory sounds and
the structural and computational complexity of the algorithm.

The study of the aforementioned schemes, as well as the
closer understanding of the original problem, led to the con-
clusion that the performance of any time-domain cancellation
scheme relies strongly on the accurate estimation of the time
delay between the reference and primary signals. Conse-
quently, in this paper the heart sounds interference cancellation
is accomplished in two steps. The first step deals with the time-
delay estimation (TDE) between the two sequences while the
second step deals with the interference cancellation. TDE is
needed not only for interference-cancellation type problems,
but also for source localization, direction of arrival estimation,
etc., [10], [11]. Several methods have been developed for TDE,
but the problem is still a subject of extensive research, since
delay estimation becomes very difficult in real-life situations.
In this paper a new joint time delay and signal estimation
(JTDSE) procedure is proposed using the dyadic multiresolu-
tion analysis through the discrete wavelet transform (DWT)
[12]–[14]. The proposed methodology possesses a number of
key benefits such as the incorporation of multiple complemen-
tary information at different subbands, robustness in presence
of noise, and a validation procedure for the estimated delays.

The organization of this paper is as follows. Section II
describes the modeling process of the acquired sounds in

the context of time delay and signal estimation. Section III
details on the fundamental idea and assumptions of the JTDSE
scheme. The adaptation schemes for the TDE using the Leven-
berg–Marquardt (LM) algorithm [15] and the adaptive signal
separation using the block fast transversal filter (BFTF) al-
gorithm [16] are also briefly described in this section. The
scheme is then applied to several cases of simulated and
actual respiratory sounds in order to test its performance under
different conditions and for a variable number of heart sound
component scenarios. The results presented in Section IV
show the promise of the proposed scheme for the TDE and
subsequent interference cancellation.

II. M ODELING OF THE ACQUIRED RESPIRATORYSIGNAL

Let us consider the following model for the acquired respi-
ratory signal, , which consists of multiple heart sounds,
respiratory sound, and the background noise, i.e.,

(1)

where the first and second terms represent the effects of
first heart sounds and second heart sounds with unknown
time delays and , respectively, is the respiratory
sound and represents the effects of additive measurement
noise. The first and second interference heart sounds
and are of finite duration and nonoverlapping. Thus,
we can write

for

with

for

with

where and are the corresponding durations. In addition,
these signals represent the “distorted” or modified version of
the reference heart sounds, i.e.,

(2)

where refers to the convolution operation, and
represent the first and second heart reference sounds, and

and denote the impulse responses of the
“unknown” systems representing the correlation between the
reference heart sounds and the interference heart sounds.

The model in (1) is arrived at based upon three assumptions
using the properties of the contributing signals. First, the
interaction between the heart sounds and the respiratory sound
is assumed to be additive. Second, since the two sounds are
generated by independent sources, they are assumed to be
uncorrelated [6], [7]. In addition, the relationship between the
heart sounds outside and within the respiratory segment is ex-
pressed as in (2) [8], [9]. Now, considering these assumptions,
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(a)

(b)

Fig. 1. (a) One-level multiresolution or subband analysis and synthesis. (b) Tree structure for DWT subband analysis containingN levels.

the goal of the JTDSE method is to estimate the time delays
and and then separate the corresponding heart sounds

from the acquired respiratory signal. This is accomplished
in two steps. In the first step the time delays associated
with the heart sounds are estimated, i.e., the estimates of
the positions of these interference signals are provided. The
second step deals with the estimation of the interference and
the subsequent cancellation process. The basic principle behind
the proposed scheme is that the information about the time
delays is common to all the information bearing subbands,
hence, providing multiple “looks” of the same signal.

III. JOINT TIME DELAY AND SIGNAL

ESTIMATION (JTDSE) IN SUBBANDS

A. JTDSE Process

The first step in the interference cancellation procedure is to
determine the accurate position of each heart-sound component
in the acquired respiratory signal. Once this is accomplished
time alignment of the reference and the acquired signal and
subsequent adaptive filtering for signal separation can be
achieved in each subband. In this paper TDE is accomplished
by using multiresolution or subband decomposition [12]–[14]
of the reference signal and the acquired respiratory signal using
the DWT. This decomposition permits the study of signals
at different scales in a similar manner that one examines a
geographical map, i.e., large scales correspond to global views
while lower scales correspond to detailed views.

Let represent a square summable discrete-
time sequence. The multiresolution analysis of can be
interpreted as a successive decomposition of in terms of
its lower resolution and “detail” sequences. Using the subband
decomposition scheme, a lower resolution and the “additional
detail” sequences are generated by filtering with a half-

band lowpass filter, , and a half-band highpass filter,
, respectively. These sequences can then be subsampled

(decimated) by a factor of two, due to the Nyquist criterion,
generating an increment in the scale. This procedure precisely
forms one level of the multiresolution analysis as shown
in Fig. 1(a). The lowpass approximation sequence can be
decomposed subsequently as shown in Fig. 1(b). The filter
bank has a tree structure as shown in Fig. 1(b) giving the
well-known octave-band decomposition of the frequency axis,
i.e., each level halves the width of the band and increases
the frequency resolution by a factor of two. Note that due
to subsampling by two, its time resolution is halved. The
maximum resolution in the discrete-time case is determined
by the original sampling rate.

Using the filter-bank approach for the DWT and assuming
that the process of dividing the bands continues forlevels,
the final lowpass approximation sequence in Fig. 1(b) can be
written as

(3a)

where is expressed in terms of the impulse responses
of the half-band lowpass filter as

(3b)

Similarly, the “added details” sequences at different levels
are expressed in terms of the half-band highpass

filter as

(4a)

where is given by

(4b)
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Fig. 2. Joint time delay and signal estimation in subbands.

We assume that the filters are of finite-impulse response (FIR)
type of order and the impulse responses and their shifted
versions, by even shift, form orthogonal sets. It turns out
that the lowpass and highpass filters are related by

as the modulation by indeed
transforms a lowpass to a highpass filter. Note thathas
to be even in order for the filters to form orthogonal sets.

The original sequence can be recovered by up-
sampling by two followed by convolution with filters with
impulse responses and It can easily be shown
[12] that these are time-reversed versions of and ,
respectively. The synthesis equation in terms of and

sequences and the corresponding impulse
responses of the filters in the associated bands is given by

(5)

Note that the above DWT analysis and synthesis equations,
(3)–(5), are obtained based upon the assumption that the
signals are of infinite extent. In practice, however, only finite-
extent signals are encountered, in which case, in order to
avoid border problems, one assumes that the original signal
is symmetric [13], [14].

Once the signals are decomposed, the time delays are
estimated in each subband, iteratively using two adaptive
mechanisms as shown in Fig. 2. This figure demonstrates
the entire process in one subband at theth level, where

and are the final lowpass approximations for ,
which represents a first or a second heart sound reference,
and for the acquired respiratory signal, , respectively. A
similar process can be applied to the added details and

The reference signal, , in Fig. 2 is the
first, , or the second, , heart sound sequences,
manually selected from the nonbreathing part of the collected
signal. The presence of measurement noise is inevitable in the
chosen reference signal. However, due to fact that the ratio
of the power of the heart sound to that of the measurement
noise is very high, this does not impact the accuracy of the
TDE. The reference is then shifted in the subband to different
positions by The delay is updated using a nonlinear
adaptation process to provide an estimate of, i.e., the

time delay associated with theth heart sound. This is due
to the property that the final lowpass approximation and the
added detail approximations for the sequence , with

and , an integer, are, respectively, and
The updating rule for is based on the

LM algorithm [15] as will be described later. For every new
, the function of the adaptive transversal filter is to modify its

weights in order to generate an output signal which minimizes
the mean squared error (MSE) at the output or maximizes the
correlation or similarity between the outputs of the delay and
the adaptive filter. To see this, let us for simplicity, assume that
the acquired respiratory signal contains only one first heart
sound and that the TDE is performed on the final lowpass
approximated signals. In this case the output of the system
(error signal) is

(6)

But, from (1) the final lowpass approximation of is

(7)

where represents the actual time delay at level and
and are the final lowpass approximations of
and , respectively. Thus, we have

(8)

Since is assumed to be independent of the respiratory
sound, , and the measurement noise, , when
and, further, captures the inverse model of the process

in the relevant subband, maximum correlation would
occur between the delayed reference and the output of
the filter It can easily be shown that this leads
to the minimum of the mean squared value of

The original BFTF algorithm is used for updating the
weights of the transversal filter as this method is inherently
fast [16]. The process is repeated for several iterations for
and the MSE curve is examined for its minima. The analysis
of the minima of the MSE curve at each subband can be
done using a simple thresholding operation. The positions at
which these minima occur correspond to the locations where
maximum correlations between the outputs of both adaptive
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systems are found, which in turn correspond to the estimates
of the delays Consequently, the time delays are computed
once the complete MSE curve is obtained. To account for the
time lag introduced by the FIR adaptive filter at these positions
[17], the lag associated with the largest weight is subtracted
from the delay estimate at each level. The final delay value
is then calculated using , where is the level
index, is the estimated delay, andis the lag associated with
the weight of the largest magnitude. The heart sounds are then
separated from the acquired respiratory signal by means of a
separate processing.

As a result of the filtering and decimation processes at each
level, the signals are less correlated than those at the previous
levels. This has two major benefits for our application. First,
noise and other disturbances will be less prominent at the
higher levels than in the original signal domain. Second,
since the signals at the higher levels are also, less correlated,
the estimate of the gradient in the LM algorithm will be
less noisy. In addition, the lower levels (finer scales) offer
increased accuracy in comparison with the higher levels. Thus,
once the time delays in each subband are determined, the
estimated delays can be validated against each other between
the subbands and levels (if needed) due to the fact that in a
dyadic multiresolution analysis the relationship between two
consecutive levels is established by multiplication or division
by two. Based on these principles, a decision rule was arrived
at in order to select the time delays between two levels. If the
number of minima is the same between the two levels, the
time delay information is generally extracted from the lower
level; otherwise, the time delay information is extracted from
the next level.

B. Time-Delay Adaptation Process

As mentioned before, the delay is updated in each
subband using a nonlinear adaptation process, namely, the LM
method. Let us, for the sake of simplicity, use the lower-order
approximation at level for the subsequent analysis. Note that
a similar procedure can be applied to all the other subbands.
If represents the output of the variable delay in Fig. 2,
the index for minimization in this subband can be given by

(9)

where and
are the weight vector for the adaptive BFTF

of order and its input vector at time , respectively. As
described before, for every new, the minimization with
respect to is performed using the BFTF algorithm [16],
which is explained later. Once the optimum weight vector
for that specific is obtained, the procedure is repeated by
updating using the LM algorithm [15]. For the time-delay
adaptation, the goal is to iteratively find the necessary changes
for that lead to the minimum of the cost function (9) using
the following adaptation rule

(10)

where is the iteration index and is the updating step. The
updating step can be generated using different nonlinear
adaptation approaches such as the steepest descent method,
which converges linearly and may be inefficient, particularly
as the minimum is approached, or the Newtons method which
converges quadratically provided that an adequate initial es-
timate of the unknown weight vector is available [15]. In
this paper, the LM optimization algorithm [15] which is a
nonlinear least squares-based method and provides a mean
for interpolating between the Gauss-Newton and the steepest-
descent steps is used. The algorithm possesses quadratic
convergence close to a minimum, where it approximates the
Gauss-Newton method. If the initial estimates are relatively
poor, its convergence degenerates to the method of steepest
descent.

Using the LM algorithm for TDE in each subband and
defining where

the following updating rule for can be given:

(11a)

where represents the integer part of

(11b)
and is computed using the forward difference method
[18]. The parameter, , prevents the possibility of singularity
of term. If this parameter is close to zero, then the
estimate is reduced to Gauss-Newton’s method, but ifis
greater than , then (11a) provides a steepest-descent step.
The selection of the parameter in (11) is a crucial step in
the application of the LM algorithm. A simple way for the
selection of this parameter is to multiply it by some factor
whenever a step would result in an increase of the cost function
(9) or divide it by the same factor if the step produces a
reduction of the cost function. However, instead of deciding
whether a step is successful based on a simple decrease or
increase of the cost function, a better approach is to decide
whether the cost function at hand is adequately represented by
a quadratic model, so that the convergence of the algorithm
to a local minimum could be guaranteed. The criterion can be
written as the ratio

(12)

where The numerator represents the actual
change in the value of the cost function (9), while the denom-
inator represents the ideal change provided by the quadratic
model of the cost function. A value of equal to or greater
than one (1) represents an acceptable model representation,
while a value less than one represents an inadequate model
representation. The value of is not modified if is inside
the admissible modeling region established between 0.25 and
0.75 [15]. However, outside this interval, the strategy is to
select an initial value of and then increase (or decrease) it
until the acceptable interval of is reached.
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C. Weight Adaptation Using the BFTF

The second adaptive process for updating the weights of the
transversal filter uses the BFTF scheme [16]. This method is
selected over all other adaptive schemes because of its unique
features which include convergence speed, low computational
requirements, and reduced round-off error effects. In general,
adaptive schemes are divided in two classes: methods that
update the weights per sample of the desired and reference
signals, and those that make such adaptation once per block
of data. The BFTF algorithm is computationally very efficient
compared with other least squares (LS)-based schemes. In this
method, a block-LS cost function is minimized in every block
independently. As a result, the algorithm guarantees a locally
optimal solution in each block. Let us start with a single
data block, the BFTF approach determines the weight vector

which minimizes the block LS cost function

(13)

where is the order of the transversal filter vector,specifies
the data block length, is the highest time index of the block,

is the estimated delay, and is defined as before. Note that
is the same weight vector as in (9). However, in

this section indexes and are added to indicate dependency
on the choice of the filter order and block size. Additionally,

represents the same index for minimization defined
over one block of data. Now, let us define the desired and
input block vectors as
and , respectively, and the
aggregate data matrix as

(14)

With the error vector defined as
, (13) can be rewritten as

(15)

In order for (15) to attain its minimum, the vector
must be orthogonal to , i.e., (normal
equation) [16]. The vector that minimizes (15) is given
by [16]

(16)

where # denotes the generalized inverse which reduces to the
standard inverse when the quantity involved is invertible. The
goal of BFTF algorithm is to find a recursion for in
terms of , i.e., to update the weight vector of order
in terms of the weight vector of order The algorithm consists
of two steps. In the first step an order update rule is used
intrablockwise to successively increase the order of the filter
with the exact solution obtained at theth iteration. Once the
final weight vector is obtained, the filtering is implemented on
the data within the whole block in one pass. For details on the
BFTF algorithm, see [16].

IV. RESULTS AND DISCUSSION

The JTDSE in subbands described in the Section III was
examined on two data sets. The goal of the first experiment was
to test the JTDSE scheme on synthesized data with different
heart-to-respiratory ratios (HRR’s) and for variable number of
heart sounds. The HRR is defined by where

and are the interference signal and respiratory sound
variances, respectively. In this study the locations of the heart
sounds are knowna priori. The second experiment, however,
involved processing real data collected from a healthy subject
with prominent heart sounds as well as the data from an
asthmatic subject with obscured heart sounds conditions. The
goal of this study was obviously to investigate the usefulness
of our scheme for real-life situations.

A. Results on Synthesized Data

The first data set was generated using a segmented heart
sound and an artificial respiratory sound. The segmented heart
sound was obtained from a different subject, not included
in the real cases of this paper. The reason was the low
measurement noise power for this case. A variable number
of heart sounds with different amplitudes and delays were
buried in the artificial respiratory sound to generate different
HRR conditions. The artificial respiratory signal was generated
by filtering a Gaussian noise sequence, covering the same
spectral range that is present in the real respiratory signals,
and allowing spectral overlap between heart and respiratory
frequency contents. In addition, to mimic the breathing-like
shape of the respiratory signal, the filtered sequence was
envelope modulated by a Hamming window in the time
domain. This procedure generates the simulated respiratory
sound for just one phase of the respiratory cycle. Note that the
model for this synthesized respiratory signal can be obtained
from (1) and (2) by setting or

, hence, in this case the effects of distortion are
ignored. In addition, with the exception of one case, the
measurement noise is zero since it does not present a
dominant source of interference to impact the accuracy of
the TDE. Fig. 3(a) shows the artificial respiratory signal and
Fig. 3(b) shows the segmented second heart sound to be buried
in the respiratory signal. Five synthesized cases were generated
with two or four buried heart sounds and with the HRR’s of

13.5 and 19.5 dB. These values are selected as they can
be found in real-life situations and, moreover, provide difficult
conditions for the detection of the heart sounds. Table I
presents all the cases and their corresponding HRR’s, together
with the true and the estimated values of the delays. Fig. 3(c)
and 3(d) presents the two synthesized signals corresponding to
cases 1 and 3 in Table I, respectively. The second column in
Table I shows the type of the heart signal inserted. The third
column gives the HRR and respiratory-to-heart ratio (RHR)
values for the cases generated. The numbers in the fourth and
fifth columns represent the true and estimated time delays
using the JTDSE- and the conventional cross-correlation-
based methods, respectively. In all these synthesized data the
measurement noise was equal to zero, except in the first
case in Table I, where a heart-to-measurement noise ratio of
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(a) (b)

(c) (d)

Fig. 3. (a) Artificial respiratory signalv(n), (b) segmented second heart sound with measurement noisex(n)+ b(n), (c) synthesized signalz(n) with HRR
= �13:5 dB (case 1 in Table I), and (d) synthesized signalz(n) with HRR = �19:5 dB (case 3 in Table I).

TABLE I
TRUE AND ESTIMATED DELAYS FOR DIFFERENT HRR (RHR) VALUES

Case Heart Sound HRR (RHR) (dB) Time Delay Estimates JTDSE Method Time Delays Estimates Conventional Method

True: 280, 680 True: 280, 6801 Second �13.5 (13.5)
Estimated: 280, 672 Estimated: 263, 383, 465, 590, 679
True: 280, 680 True: 280, 680

2 Second �13.5 (13.5)
Estimated: 280, 680 Estimated: 280, 375, 465, 556, 678
True: 280, 680 True: 280, 424, 544, 680

3 Second �19.5 (19.5)
Estimated: 280, 680 Estimated: 263, 374, 466, 556, 651, 759
True: 280, 390, 570, 680 True: 280, 390, 570, 680

4 Second �13.5 (13.5)
Estimated: 280, 392, 568, 680 Estimated: 263, 383, 556
True: 280, 680 True: 280, 680

5
First and
Second

�13.5 (13.5) Estimated: 280, 680 Estimated: 280, 234, 374, 516, 556, 650, 680

7 dB was used, according to the power of the noise present
in the collected real data. The heart sound and the
synthesized signal were then applied to the system in
Fig. 2 with an eighth-order adaptive transversal filter. The
dyadic decomposition was carried out for three levels using
the Daubechies wavelets [12]. Precautions were taken to avoid
edge effects in computing DWT coefficients for finite length
sequences by considering symmetric extension of the original
sequences.

Once the MSE curve in each subband was generated, the
minima selection was performed through a thresholding opera-
tion that is MSE-curve dependent. The thresholding operation
considers the MSE-curve values and their probabilities through
the use of the MSE-curve histogram. It is assumed that the
prominent MSE minima have lower probability in comparison

with the rest of the MSE-curve values. The operation requires
ordering the MSE-curve values from the global minimum to
the global maximum to initialize a vector associated with the
global minimum or the first minimum. A simple distance-based
aggregation rule helps to decide if the next MSE-curve value
in the ordered list is close to the first minimum or represents
a different minimum in the MSE curve. Each time that a
new minimum value is added to the vector, a decision about
whether or not to include another minimum in the vector is
made, based on the probability computation from the MSE-
curve histogram. The multiple time-delay estimates generated
in the subbands can then be validated to arrive at the final
estimates. Table II provides the estimated time delays in all
the subbands for the second and third cases in Table I. As
can be seen from the results in this table, a simple decision
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(a) (d)

(b) (e)

(c) (f)

Fig. 4. (a)–(c) MSE curves for the JTDSE scheme at the third level of decomposition for cases 1, 3, and 4 of Table I, respectively. The horizontal dashed
line in the MSE curves indicates the threshold. (d)–(f) Absolute value of the cross-correlation result betweenx(n) andz(n) for case 1, 3, and 4 of Table I.

rule can be devised to select the common time-delay estimates
according to their frequency of appearance in all the bands.
Our empirical studies indicate that subbands four and five
provide consistently valid estimates. Consequently, for all
other cases the delay estimates were computed based upon
these two bands only.

Fig. 4 presents the results for the first, third, and fourth
cases of the Table I. The actual delays of the heart sounds
components in the first and third cases were 280 and 680,
while the HRR of the third case, 19.5 dB, was lower than
the first one, 13.5 dB. For the fourth case the actual delays
were 280, 390, 570, and 680 as is shown in Table I. In all
these cases, the second heart sound was used both as the
interference and reference signal to the filter. Fig. 4(a)–(c)
presents the MSE curves for these cases at the third level
of the decomposition and for the fourth subband. The first
curve, Fig. 4(a), presents well-defined minima at two positions

and For the third case, even though the
HRR is very low, it is possible to identify two prominent
minima at and The estimated values of
time delays were extracted from these MSE plots by applying
the adaptive thresholding operation mentioned before. These
values were then corrected by the delays caused by the largest
weight of the transversal filter, and for the
first case and and for the third case. The
results were then multiplied by i.e., ,
where , in order to provide the estimates of as
given in Table I. For the first case, the second estimated

TABLE II
ESTIMATED DELAY FOR SEVERAL SUBBANDS FOR

(a) SECOND AND (b) THIRD CASES OF TABLE I

Bands Estimated delay values

1 264 544 680
2 280 384 560
3 280 432 696
4 280 680
5 280 680
6 320 752
7 0 280 600 680
8 280 680

(a)

Bands Estimated delay values

1 464 544
2 560
3 320 432 640
4 280 680
5 280 680
6 320
7 0 280 600 680
8 280 680

(b)

time delay is slightly perturbed from the true delays as seen
in Table I, while for the third case, the estimated values
are equal to the true values. Once the delays are estimated,
time-alignment can be achieved and filtering carried out in



1014 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 44, NO. 10, OCTOBER 1997

(a) (c)

(b) (d)

Fig. 5. Fifth case of Table I, containing a first and a second heart sound. MSE curve for JTDSE using (a) a first heart and (b) a second heart sound as
the reference. The horizontal dashed line in the MSE curves indicates the threshold for minima selection. (c) Absolute value of the cross-correlation for a
first heart sound reference and (d) cross-correlation result for a second heart sound reference.

the subband. The processed signal can then be reconstructed
at the original signal scale. Fig. 4(d) and (f) presents the
results of the cross-correlation between the reference and
the synthesized signals, which is still widely used for time-
alignment purposes [8]. A thresholding procedure was applied
to the normalized absolute value of the cross-correlations in
Fig. 4(d) and (f). The delay values were estimated from these
curves by thresholding the envelope of the normalized absolute
cross-correlation. An adequate value for the threshold that
worked satisfactorily for all the cases was fixed at 0.6; a value
below this was considered to represent poor correlation. The
estimated delays using this method are also given in Table I.
As can be observed, the cross-correlation method provided a
rather large number of spurious time-delay estimates. Even an
adaptive threshold method for the cross-correlation function
could generate several spurious time delay estimates.

The effectiveness of these methods was also tested when the
time delays became close together, while the HRR was kept
constant. Although this case does not typically occur in real-
life situations, as there is always a time difference between
the onset of the first and second heart sounds, the case is
presented here to demonstrate the potential of the JTDSE
method for separating close components. Fig. 4(c) presents
the fourth case of Table I where four heart components are
present in the synthesized signal. The MSE curve indicates the
presence of four heart sound components through four well-
defined minima. In this case, the JTDSE method generated
accurate estimates of the positions of all the heart sound
components inside the synthesized signal and the estimated

values match very closely with the true values as seen in
Table I. The cross-correlation method, on the other hand, failed
as it provided three estimated delays and those estimates were
not even correct.

The last case in Table I corresponds to a synthesized signal
containing a first and a second heart sound components. Real
examples of this kind will be presented in the next section.
It is generally correct to assume that the first heart sound
is more closely correlated with another first sound than a
second heart sound as they are produced by the same cardiac
source. A similar assumption can be made for the second heart
sound. Consequently, in situations where multiple different
heart sounds are present, two different reference signals must
be used in the JTDSE method. Note that one can not use both
the first and second heart sounds as the reference, as the time
interval between them is generally variable. Fig. 5(a) and (b)
shows the plots of the MSE curves for the JTDSE when a first
and second heart sounds are used as a reference, respectively.
Again, the curves exhibit well-defined minima at two different
positions indicating the presence of two different heart sound
components in the synthesized signal. The estimated delays at
fourth subband are given in the last row of Table I. Fig. 5(b)
and (d) shows the results of cross-correlation method which
show estimated delays at 280, 516, and 650 for the first heart
sound and 234, 374, 556, and 680 for the second heart sound.

B. Results on Real Data

The second data set consisted of real signals collected from
a healthy subject and an asthmatic patient. This data was
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(a) (b)

(c) (d)

Fig. 6. (a) Collected signal from a healthy subject. (b) Collected signal from an asthmatic patient. (c) Manually selected acquired respiratory section
z(n) from the signal in (a). (d) Manually selected acquired respiratory sectionz(n) from the signal in (b). The respiratory sections are identifiedR in
(a) and (b) whileH identifies the selected reference heart sounds.

acquired at trachea and cardiac apex levels and sampled at
a rate of 4 KHz. Note that in all the experiments manual
segmentation was performed in order to extract the acquired
respiratory segments and the reference heart sounds. The
reference signal was selected from those heart sounds close to
(before or after) the acquired respiratory section. Although, it
is possible to implement an automatic segmentation scheme
based on signals like the air flow or changes in thoracic
electrical impedance with the respiratory cycle [19], this was
not implemented here as it is not related to the main thrust
of the paper. Fig. 6(a) and (b) shows the collected signals
including several heart sounds. It is possible to clearly see the
only heart sound component inside the acquired respiratory
section in the first case, as the HRR is higher than in the
second case. This case was included in the testing in order
to verify that under the high HRR condition the results of the
JTDSE and cross-correlation methods are identical. In contrast
to the first case, the second case, as shown in Fig. 6(b) and
(d), is complicated due to several factors; such as low HRR,
presence of multiple heart sound components, and variations
in the cardiac frequency. Fig. 6(c) and (d) shows the manually
extracted acquired respiratory sections for these cases.

In any real case, multiple first and second heart sounds may
be present in the acquired respiratory signal. In addition, as
pointed out before, the heart sounds outside and inside the

acquired respiratory section are correlated. Consequently, for
more accurate TDE, it is better to examine the results of both
the first and second heart sounds as a reference for the JTDSE
scheme. These heart sounds are manually extracted from the
collected signals in Fig. 6(a) and (b) in sections that are close
to the acquired respiratory section. The results of both heart
sounds can then be combined for the filtering process. The
heart-to-measurement noise ratio (HNR) was about 7 dB for
the cases shown in Fig. 6(a) and (b). For the case in Fig. 6(c),
the MSE curve is obtained using the JTDSE method with
an eighth-order BFTF filter and the second heart sound as
a reference is shown in Fig. 7(a). The corresponding MSE
curve using the first heart sound as the reference gave one
minimum at approximately the same location as the one shown
in Fig. 7(a). Both MSE curves indicated the presence of only
one heart sound. Nevertheless, only the results of the second
heart sound are presented since larger correlation was obtained
for this reference signal. Fig. 7(d) shows the cross-correlation
result between the acquired respiratory signal in Fig. 6(c)
and the manually selected second reference heart sound for
this case as shown in Fig. 6(a). As can be seen from both
the MSE curve and the cross-correlation result, the location
of the heart sound component can easily be detected. The
estimated time delay was 372 for both the JTDSE and the
cross-correlation methods. The validity of this estimate can
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(a) (d)

(b) (e)

(c) (f)

Fig. 7. Results for the healthy subject case. (a) MSE curve for the JTDSE for a second heart sound as the reference, (b) estimated respiratory signal for
JTDSE, (c) estimated heart sound for JTDSE, (d) absolute value cross-correlation result between the manually-selected reference second heart sound and the
acquired respiratory signal in Fig. 6(c), (e) estimated respiratory signal for cross-correlation method, and (f) estimated heart sound for cross-correlation method.

be approximately verified by visual inspection since the heart
sound is prominent for this subject. Fig. 7(b), (e), (c), and
(f) presents the estimated respiratory and heart sounds for
these methods. As far as the estimation of the heart sounds
components is concerned, this is considered to be a simple
case since the heart sound is very prominent in the acquired
respiratory section.

In contrast to the first case, the second case [as shown in
Fig. 6(b) and (d], is complicated due to the factors mentioned
earlier. In this case, due to low HRR, the order of the BFTF
filter in the TDE was increased to 20. Fig. 8(a) shows the MSE
curve obtained using the JTDSE method when the first heart
sound was used as the reference signal for the JTDSE scheme.
Again, the MSE curve presents well-defined and prominent
minima at positions pointed out by A and B with estimated
time delays at 936 and 2208, respectively. Fig. 9(a) shows
the corresponding cross-correlation result between the signal
section in Fig. 6(d) and the first heart sound reference selected
for this case. The cross-correlation method provided time-
delay estimates at 1000, 1329, and 2295. Next, the second
heart sound was used as the reference signal for the JTDSE
method. Fig. 8(b) presents the MSE curve for this case. Now
the MSE curve presents two well-defined minima at positions

pointed out byC and D with estimated time delays at 1312
and 2680. PointsA, B, C, and D are indicated in the MSE
curves in Fig. 8(a) and (b).

Considering the characteristics of these MSE curves it is
observed that when a first heart sound was used as the
reference, in Fig. 8(a) two prominent minima occurred atA
andB indicating increased correlation at these positions, while
the minima at positionsC and D were not so prominent.
On the other hand, when a second heart sound was used
as the reference, Fig. 8(b) exhibits two prominent minima at
positions indicated byC and D, whereas, those atA and B
are not so obvious for this reference. Taking into account the
changes and similarities in the positions of the minima in these
curves, one can conclude that two first heart sounds and two
second heart sounds are present in the acquired respiratory
section of Fig. 6(d). The first minimum, located around 60
in Fig. 8(a) and (b), is due to the sudden transition at the
beginning of the acquired respiratory signal in Fig. 6(d) at
approximately 500. This transition might have been caused by
a small movement of the microphone. Fig. 9(b) presents the
result of the cross-correlation method for a second heart sound
as the reference signal. This figure indicates the estimated time
delay values at 1182 and 1369.
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(a) (b)

(c) (d)

Fig. 8. Results for the asthmatic subject case in Fig. 6(d). (a) MSE curve for the JTDSE using a first heart sound as the reference, (b) MSE curve for the
JTDSE using a second heart sound as the reference, (c) estimated respiratory signal, and (d) estimated interference heart sounds.

(a) (b)

(c) (d)

Fig. 9. Results for the asthmatic subject case. (a) Absolute value of the cross-correlation between a first reference heart sound from Fig. 6(b) and theacquired
respiratory section of Fig. 6(d). (b) Absolute value of the cross-correlation between a second heart and the acquired respiratory section of Fig. 6(d). (c)
Estimated respiratory signal and (d) estimated interference heart sounds.
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Once the time delays are estimated using both the JTDSE
and cross-correlation method in conjunction with the adaptive
filtering, a separate adaptive transversal filter of order eight is
used in each subband to generate estimates of the heart and
respiratory signals alone. Fig. 8(c) and (d) shows the estimated
respiratory and heart sounds using the TDE results of the
JTDSE scheme, respectively, while Fig. 9(c) and (d) shows
these estimated signals based upon the results of the cross-
correlation method. As can be observed, in the latter case, the
amplitudes of the heart sound estimates are decreased due to
the fact that the cross-correlation method failed to determine
the positions of the multiple heart sounds. The JTDSE method
still provided accurate estimates of the positions of the multiple
heart sound components in the acquired respiratory section
even for this difficult case, hence, resulting in more reliable
estimates of the respiratory and heart sounds.

V. CONCLUSION

In this paper, a new interference cancellation scheme is
presented which provides estimates of the positions of the in-
terference heart sounds signal and then separates these signals
from the acquired respiratory signal. The main property of the
JTDSE method is based upon the fact that the information
about the time delay between reference and acquired signals
is common to all the levels and information-bearing subbands.
Consequently, this provides multiple “looks” of the signal at
different levels/subbands. The method was tested on both syn-
thesized and real respiratory signals. The performance of the
JTDSE scheme was compared with the conventional adaptive
filtering when used in conjunction with the cross-correlation
method. The cross-correlation was used to provide the estimate
of the time delays and a conventional adaptive filter was
used for signal separation purposes. The results indicated
that the proposed scheme is promising for applications that
require simultaneous TDE and interference cancellation. The
results on synthesized data showed that the proposed scheme
is capable of estimating the time delays and their number very
accurately, even under difficult conditions. The results on real
data, on the other hand, showed the promise of the proposed
scheme for real-life applications.

As always, there is a tradeoff between the computational
complexity of the algorithm and the accuracy of the TDE.
If a signal has a length and the adaptive filter order
used in the JTDSE scheme is , the order of operations
per delay adaptation according to 11(a) is , for each
subband at the third level of decomposition. In contrast,
the order of operations per delay is for the cross-
correlation method. Even though the proposed JTDSE scheme
is computationally more demanding than the cross-correlation
method, the JTDSE offers substantially better and more reli-
able time-delay estimates. In addition, an optimum number of
subbands and levels can be determined using wavelet packets
[20], [21] to maximize the entropy measure in those bands.
This optimal subband decomposition not only reduces the
computational time, but also permits the decomposition of the
time-scale plane best adapted to the signal characteristics. The
JTDSE method can effectively be used in areas such as target
detection, direction of arrival estimation, and equalization.
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