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ABSTRACT

AN ANALYSIS OF COMBINATORIAL SEARCH SPACES

FOR A CLASS OF NP-HARD PROBLEMS

Given a finite but very large set of states X and a real-valued objective func-

tion f defined on X , combinatorial optimization refers to the problem of finding

elements of X that maximize (or minimize) f . Many combinatorial search algo-

rithms employ some perturbation operator to hill-climb in the search space. Such

perturbative local search algorithms are state of the art for many classes of NP-hard

combinatorial optimization problems such as maximum k-satisfiability, scheduling,

and problems of graph theory.

In this thesis we analyze combinatorial search spaces by expanding the objective

function into a (sparse) series of basis functions. While most analyses of the

distribution of function values in the search space must rely on empirical sampling,

the basis function expansion allows us to directly study the distribution of function

values across regions of states for combinatorial problems without the need for

sampling. We concentrate on objective functions that can be expressed as bounded

pseudo-Boolean functions which are NP-hard to solve in general. We use the

basis expansion to construct a polynomial-time algorithm for exactly computing

constant-degree moments of the objective function f over arbitrarily large regions

of the search space. On functions with restricted codomains, these moments are

related to the true distribution by a system of linear equations. Given low moments
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supplied by our algorithm, we construct bounds of the true distribution of f over

regions of the space using a linear programming approach. A straightforward

relaxation allows us to efficiently approximate the distribution and hence quickly

estimate the count of states in a given region that have certain values under the

objective function.

The analysis is also useful for characterizing properties of specific combinato-

rial problems. For instance, by connecting search space analysis to the theory of

inapproximability, we prove that the bound specified by Grover’s maximum prin-

ciple for the Max-Ek-Lin-2 problem is sharp. Moreover, we use the framework

to prove certain configurations are forbidden in regions of the Max-3-Sat search

space, supplying the first theoretical confirmation of empirical results by others.

Finally, we show that theoretical results can be used to drive the design of algo-

rithms in a principled manner by using the search space analysis developed in this

thesis in algorithmic applications. First, information obtained from our moment

retrieving algorithm can be used to direct a hill-climbing search across plateaus

in the Max-k-Sat search space. Second, the analysis can be used to control

the mutation rate on a (1+1) evolutionary algorithm on bounded pseudo-Boolean

functions so that the offspring of each search point is maximized in expectation.

For these applications, knowledge of the search space structure supplied by the

analysis translates to significant gains in the performance of search.
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Chapter 1

Introduction

Combinatorial optimization refers to the problem of locating from a set of discrete

structures an element that optimizes some value or cost criterion. For example,

suppose X is a finite but very large set of states. Let f : X → R be a real-valued

function defined on X . We call f the objective function and X the state set.

A specific instance of a combinatorial optimization problem is thus a state set

taken with a specific objective function (X , f) [AL03]. The problem is to find a

globally maximal (resp., minimal) state, that is, an element x∗ ∈ X such that

f(x∗) ≥ f(x) (resp., f(x∗) ≤ f(x)) for all x ∈ X . In many cases, the problem

of finding a globally optimal state of an instance of combinatorial optimization

belongs to the family of NP-hard problems. This family contains computational

problems that, unless P = NP, cannot be solved efficiently in the worst case (i.e.,

in time that scales as a polynomial in the size of the input).

The general computational approach for solving hard combinatorial problems

is the combinatorial search algorithm: some prescription of iteratively generating

states in X and evaluating them with respect to the objective function f [HS04].

Combinatorial search algorithms can be partitioned into two broad classes. Con-

structive search algorithms examine the space of partial solutions to iteratively

build a solution from component parts. In contrast, perturbative or local search

1



algorithms employ some kind of transformation (e.g., a move operator or mutation

operator) to perform small perturbations to states in order to incrementally “move”

through the state set toward improving solutions. In this thesis, we will focus on

methods of perturbative search since it is a universal approach to combinatorial

problem solving and is often considered state of the art for many NP-hard problems

such as maximum k-satisfiability [PB10], problems of graph theory [AL03, JM04],

and scheduling problems [NS96, Wat03, BHWR06].

Both constructive and perturbative search algorithms can be complete, that is,

they are guaranteed to find an optimal solution if one exists given enough compu-

tational resources. However, local search algorithms are generally formulated as

incomplete algorithms in which no such guarantee exists. Despite this fact, they

have received considerable attention in both theoretical and experimental com-

puter science communities due to the fact that they often empirically converge

to high quality solutions within low order polynomial time [Yan03] and, for some

problem classes, can quickly solve difficult instances that lie beyond the grasp of

conventional complete solvers [GW93b] and sometimes scale better than complete

solvers [PW96].

These successes have largely been attributed to the fact that perturbative local

search algorithms are somehow exploiting underlying structure in the search space:

the set of all states along with their relationship to one another and their relation-

ship to the objective function. The specific attributes of this inherent structure in

the search space and the causality on the behavior of a local search algorithm are

generally not well-understood. Moreover, search algorithms are often designed in

an ad-hoc manner and are subsequently developed by making incremental modifi-

cations without a clear and scientific understanding of the underlying relationship

with the search space.
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In this thesis, we describe a formal study of the structure of combinatorial

search spaces. We will appeal to the tools of Fourier analysis of finite groups.

In the same manner that the Fourier decomposition of an arbitrary continuous

function can uncover harmonic structure hidden within complicated signals, de-

composing a combinatorial objective function into an alternate basis expansion can

also reveal useful information about the underlying search space. We employ this

basis function decomposition to study the statistical structure of the allocation of

objective function values to states that lie in relevant regions of the search space.

We concentrate on a class of NP-hard combinatorial optimization problems (i.e.,

those whose objective functions are real-valued functions over length-n strings from

a binary alphabet) with a special focus on instances of maximum k-satisfiability.

Formal search space analyses can improve our understanding of the behavior of

algorithms and ultimately effectuate more principled algorithm design: an idea

explored in the penultimate chapter.

This thesis makes several contributions. We present a polynomial-time algo-

rithm that computes constant-degree statistical moments of any bounded pseudo-

Boolean objective function over arbitrarily large regions of the search space. We

employ a linear programming approach to construct bounds for the true distribu-

tion of objective function values over regions and subsequently relax the approach

to devise an approximation of such distributions. This approximation must share

its low moments with the true distribution and can be computed without sam-

pling. We also demonstrate an application for the approximation by showing how

it can be used to accurately estimate the number of improving states in any region

without resorting to sampling.

We also present analyses for specific combinatorial problems that instantiate

bounded pseudo-Boolean objective functions. We make a new connection between
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search space analysis and results from inapproximability theory to prove that a

well-known bound on the quality of local maxima in the Max-Ek-Lin-2 search

space is sharp. For problems of satisfiability, we appeal to the basis function

decomposition to construct bounds on the quality of local maxima and present new

proofs that provide a theoretical confirmation of previous empirical observations

made by others.

A fundamental goal of this research is to explore how formal analysis of com-

binatorial search spaces can provide a foundation for principled algorithm design.

Toward that end, we also introduce two algorithmic applications that benefit di-

rectly from the framework advanced in this thesis. In one application, we employ

our moment calculation algorithm to create a surrogate gradient function that di-

rects a simple hill-climbing search algorithm through plateaus in the maximum

k-satisfiability search space. We find that this ultimately translates to faster con-

vergence to near-optimal values of the objective function. In another application,

we consider the on-line control of the mutation rate parameter of an evolutionary

algorithm on nonlinear functions. We establish how the basis function expansion

can be used to compute on-line the expected fitness of an offspring of the evolu-

tionary algorithm at any point in the search space. Moreover, we show that it is

always possible to solve for the roots of a polynomial of bounded degree in the

mutation rate to find the rate that maximizes the expected fitness of the offspring.

We demonstrate that this approach results in a significant improvement over the

standard recommended rate of 1/n early in search.

1.1 Combinatorial Search Space Analysis

The beginnings of perturbative local search algorithms for combinatorial optimiza-

tion can perhaps be traced back to work at Los Alamos Scientific Laboratory in
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1953 where Metropolis et al. [MRR+53] developed an efficient simulation of phys-

ical systems cooling to thermal equilibrium. Years later, a number of researchers

[KGV83, Čer85] noticed a deep connection between minimizing the objective func-

tion of a combinatorial optimization problem and the cooling of a solid to its

low-energy ground state. This led to the well-known simulated annealing algo-

rithm [vLA87].

By the mid- to late-1950s, several researchers had devised procedures for solving

a conventional graph optimization problem called the traveling salesman problem

by making perturbative exchanges of state elements (in this case, the edges of a

graph) [Flo56, Cro58, Boc58]. To put these results in a historical context, such

procedures were often introduced for solving combinatorial problems by hand. For

example, Croes [Cro58] mentions in the concluding section of his paper that the

procedure could be automated by a computer with sufficient storage capacity. This

perturbative approach has since evolved into many high-performance computer

algorithms for treating hard combinatorial optimization problems such as propo-

sitional satisfiability [SLM92, SK93, SKC94, SKC96, TH03, PB10], the traveling

salesman problem [Lin65, LK73, JM97], the quadratic assignment problem [MF97,

MF00], the linear ordering problem [SS03], the vertex cover problem [RHG07,

Wit09], the maximal clique problem [PH06], graph bipartitioning [FA86, KS96],

scheduling problems [WBWH02, WBHW03, BHWR06] and many others [HS04].

Combinatorial search processes are pervasive in nature. For example, the pro-

gression of a physical system through a set of discrete states that seeks to min-

imize system energy and the evolution of biological structures through adapta-

tion and natural selection are both natural analogues of the processes in which

we are interested in this research. Indeed, rigorous analyses of such “natural”

search spaces comes from theoretical biology with the so-called fitness landscape
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model [Wri32, EMS88, Kau93, FSBB+93], and from condensed matter physics

with the study of disordered magnets [EA75, SK75]. In these cases, analyses focus

on identifying certain structural features of fitness landscapes or potential energy

surfaces and the dynamics of processes that explore the state set.

Many researchers have since realized the connection between the study of such

“natural” search spaces and the study of “synthetic” search spaces of computer

algorithms [KT85, FA86, And88, Wei90, SS92, Sta95, RS02]. These connections

have led to important developments in the study of combinatorial search spaces.

Perhaps one of the most prominent structural characteristics that affects the dy-

namics of processes exploring the search space is the concept of ruggedness or

dependence of objective function value on state change [KL87, Wei90]. This con-

cept of ruggedness is treated mathematically with the autocorrelation coefficient

which can be estimated by random walks. In many cases, it can also be computed

exactly using analytical approaches [Sta96, AZ98, AZ00, AZ01, SWH09].

Loosely speaking, higher ruggedness results in more local optima, or states that

are extremal in their neighborhood. It is generally understood that perturbative

local search algorithms are affected negatively by the presence of a large num-

ber of local optima since the optima must be escaped in order to make progress.

Several analyses have concentrated on characterizing the count and distribution of

optima [KL87], as well as exploring the mathematical relationship between rugged-

ness and local optima [SS92, Sta95, GPS97]. The difficulty of search processes

escaping local optima depends on the structure of the search space “near” the

extremal point and the accessibility of improving states. This structure is coarsely

captured by the rigorous concept of depth which has been introduced in the theory

of simulated annealing. The depth of a local optimum is the minimum disimproving

change in the objective function value that must be accepted to escape the opti-
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mum. It has been used to prove the existence of an optimal cooling schedule for

annealing algorithms (and hence prove their completeness) [Haj88] and has been

related to their rate of convergence [TSY88, TSY89]. The study of depth also has

implications for general computational complexity since, as Kern has conjectured,

characterizing the depth of a combinatorial optimization problem is exactly as hard

as solving it [Ker93]. Sharp bounds on depth (and a related concept called width)

have been derived for certain combinatorial problems such as the (0, 1)-knapsack

problem and set covering [Rya95].

Related to the concept of depth is the basin: the set of all mutually reachable

states that lie above (respectively, below) a particular objective function value. The

structure of basins and their influence on gradient walks was studied by Flamm et

al. [FFHS00] who developed the concept of a barrier tree that describes the height

of barriers between locally optimal solutions. Barrier trees were initially developed

in the context of studying the folding kinetics of RNA sequences, but have since

been applied to the search spaces of combinatorial optimization [FFS00, FHSW02,

FHSS07].

A related but distinct concept to ruggedness is neutrality : the count of neigh-

boring positions in the search space that share an objective function value. Neu-

trality has been handled mathematically by considering a fitness landscape as an

element of an appropriate probability space [RS01] and treating the quantity statis-

tically (a similar treatment was given to ruggedness by Stadler and Happel [SH99]).

High neutrality is a necessary condition for a qualitative search space feature

called a plateau: a maximal set of mutually reachable states whose image under

the objective function is a single value. Neutrality and plateaus arise in a number

of common combinatorial search spaces [Hor97, FCS97, Bar98, BBK+00, Smy04,

BVCE06]. In order to describe plateaus and study their properties, Hoos and
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Stützle [HS04] propose constructing plateau connection graphs which are similar to

Markov models of a random hill-climbing process in which each state corresponds

to a plateau. On k-satisfiability problems in particular, Smyth [Smy04] studied

summary statistics for plateau connection graphs (such as vertex degree and depth)

on random and structured instances of the propositional satisfiability problem.

Furthermore, he experimentally examined the relative frequency of a number of

graph theoretic features of plateaus themselves such as size, branching factor, and

diameter. All such analyses must employ extensive sampling (or in some cases,

exhaustive enumeration of particular small instances) to construct the underlying

empirical models.

Various investigations have considered the classification of qualitative features

in the search space such as the “plateau taxonomy” of Frank et al. [FCS97] which

partitions states into the unique type of plateau to which they belong. Closely re-

lated to this taxonomy is the search space position types of Hoos and Stützle [HS04]

which we will consider in more detail in Chapter 3. Analyses that examine such

qualitative features study the relative frequency of occurrence of features and again

are based on empirical sampling of search space instances to estimate this frequency

distribution.

The relationship between combinatorial problem hardness and search space

structure has also been studied empirically. In the context of propositional satis-

fiability, Clark et al. [CFG+96], and later Hoos [Hoo98], studied the relationship

between the number of optimal solutions and empirical search cost. The hardness

of uniformly generated random constraint satisfaction problems for both local and

complete search has been related to the concept of the phase transition [MZK+99]:

a dependence of the solution character of problem instances on constrainedness.

Several researchers have attempted to explore the apparent link between depen-
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dency of search cost on constrainedness by empirically studying the distribution

of unary prime implicates (sometimes referred to as backbones) [PW96, SGS00].

However, in the case of local search and the satisfiability phase transition, the pic-

ture is often obfuscated by the common practice of filtering unsatisfiable instances,

which is likely to produce unaccounted effects.

For scheduling problems, empirical models that relate search space features to

local search runtime were studied extensively by Watson [Wat03] and Watson et

al. [WBHW03]. Empirical search space models have proven useful for informing the

design of specialized local search for scheduling problems such as the attenuated

leap heuristic of Barbulescu et al. [BHWR06] which responds to plateaus and the

iterated jump-and-redescend heuristic of Watson et al. [WHW03] which addresses

the weakness of attractor basins.

One issue with empirical models is that while they can be richly descriptive,

especially for particular applications, they can also be difficult to generalize. In this

thesis we will employ formal theoretical tools to make general statements about

the entire class of bounded pseudo-Boolean functions (which includes NP-hard

problems such as maximum k-satisfiability, NK-landscapes, and the maximum cut

problem). Furthermore, we remark here that the analyses contained within can be

easily generalized to bounded functions over strings of higher cardinality alphabets.

1.2 Organization

In the next chapter we will construct the foundational framework for the remain-

der of the thesis in terms of basis function expansions of the objective function.

While doing so, we prove the sharpness of bounds on local optima for a particu-

lar combinatorial problem. We then focus the discussion on the Fourier analysis

of pseudo-Boolean functions which is analogous to the well-known Walsh analysis
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in the theory of evolutionary computation. In Chapter 3 we concentrate on the

search space structure of the maximum 3-satisfiability problem and prove theorems

regarding certain forbidden structure.

In Chapter 4 we introduce a tight connection between the basis function expan-

sion and the moments of the objective function over regions of the search space for

bounded pseudo-Boolean functions and present an efficient algorithm for comput-

ing moments. We then relate these moments to the true distribution of values in

the image of regions of the search space under the objective function in Chapter 5.

In Chapter 6 we use the theoretical framework developed in this thesis to inform

principled algorithm design in two algorithmic applications. Finally, in Chapter 7

we summarize the thesis and discuss avenues of future work.
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Chapter 2

Expressing Functions in Terms of
Neighborhood Graphs

Universal, non-specialized combinatorial search algorithms explore the set of states

X making decisions based on the objective function f : X → R. In the case of local

search algorithms, a neighborhood operator is employed that maps states into each

other and thus structures the search of X . The performance of local search algo-

rithms depends on the morphology of the search space which ultimately arises from

the relationship between the objective function f and the neighborhood operator.

The central focus of this chapter is to mathematically study this relationship by

decomposing the objective function into a basis expansion that relates it directly

to the neighborhood operator. Specifically, we re-express the objective function

in terms of the Fourier series of the graph induced by the underlying neighbor-

hood operator. The study of objective functions by expressing them in the Fourier

series of highly symmetric graphs was introduced by Peter Stadler [Sta95] and

has since been employed for studying various combinatorial optimization problems

[KS96, RKHS02, RS02].

In the case of real functions over binary strings, the Fourier series expan-

sion is identical to the Walsh basis expansion. The expression of such func-

tions in their Walsh basis expansion has been studied extensively in theoreti-
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cal work on genetic algorithms since it breaks down the function into compo-

nents that are pertinent to algorithms that perform implicit hyperplane sam-

pling (i.e., population-based genetic algorithms employing recombination opera-

tors) [Gol89, LV91, Gol92, HW97, RHW98, Hec99, HW99, Hec02, HW04]. In this

thesis we show that the Walsh basis expansion can also be useful for studying

algorithms that perform local sampling, such as local search and mutation-only

evolutionary algorithms. This appears to be the first application of the Walsh

decomposition for studying local search.

For some combinatorial problems, the objective function has a very sparse rep-

resentation in the basis expansion that relates it to the neighborhood operator. In

these cases (the so-called elementary landscapes), the maximum principle intro-

duced by Grover [Gro92] imposes a bound on the quality of local optima in the

space. We will prove that a problem called Max-Ek-Lin-2 which requires finding

quasi-solutions to an inconsistent linear system over a finite field possesses this

property. We present an interesting connection between elementary landscapes

and inapproximability results that allows us to prove that the bound imposed by

the maximum principle is sharp for Max-Ek-Lin-2.

This chapter introduces formal concepts and lays the groundwork for the re-

mainder of the thesis. In later chapters we will characterize the statistics of the

objective function over regions of the search space partitioned with respect to

the neighborhood operator. Such an analysis is possible because the set of basis

functions into which we decompose the objective function will be in some sense

“well-behaved” over the regions in question.
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2.1 Preliminaries

We begin by making some preliminary observations about the space of functions on

X . For convenience, notation and concepts are compiled in the appendix provided

on page 160. The set of all possible objective functions on a state set X

F (X ) = {f : X → R}

forms a vector space isomorphic to R|X |. Furthermore, F (X ) is an inner product

space with the scalar product

〈f, g〉 =
∑
x∈X

f(x)g(x),

for f, g ∈ F (X ). If we associate with each state z ∈ X a standard basis function

ez(x) = [x = z], 1

then {ez} forms the “standard basis” of F (X ) and

f(x) = 〈ex, f〉.

Consider any linear operator M : F (X ) → F (X ). Such an operator is a

function endomorphism in the sense that Mf ∈ F (X ) where Mf denotes M

1Throughout this thesis, we will employ the Iverson bracket notation [Ive62, Knu92] to denote
an indicator function on statements that can be true or false. For a such a statement s,

[s] =

{
1 if s is true,
0 otherwise.
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applied to f ∈ F (X ).

Mf(x) = 〈ex,Mf〉

=
∑
y∈X
〈ex,Mey〉〈ey, f〉

=
∑
y∈X
〈ex,Mey〉f(y). (2.1)

Given a function f ∈ F (X ) we say f is an eigenfunction of a linear operator M

if and only if

Mf(x) = λf(x),

for some scalar λ and all x ∈ X .

Local search algorithms and many evolutionary algorithms operate by moving

through the state set by performing minor perturbations on current states to con-

struct similar “neighboring” states. Thus with each state x ∈ X we associate a set

N(x) ⊆ X which comprises the neighboring states of x. This neighborhood opera-

tor imposes a connectivity on the underlying state set. This concept is formalized

by the idea of a neighborhood graph: a graph whose vertex set is X and (possibly

directed) edges connecting x to y if and only if y ∈ N(x).

The structure of this neighborhood graph is determined by adjacency operator

A : F (X )→ F (X ) defined as

〈ex,Aey〉 =

{
1 if y ∈ N(x),

0 if y /∈ N(x).
(2.2)

The relationship between an objective function f and its neighborhood graph can

be studied by considering A as an endomorphism on real functions over X . The

image of f under A is a function Af : X → R that gives the sum of f evaluated

over the neighbors of x. This is captured by the following lemma.

14



Lemma 2.1. Let f ∈ F (X ) and A be the adjacency operator of a neighborhood

N . The function Af , i.e., the image of f under the linear map A, evaluates to

Af(x) =
∑

y∈N(x)

f(y).

Proof. By definition we have

Af(x) = 〈ex,Af〉

=
∑
y∈X
〈ex,Aey〉f(y) by (2.1),

=
∑

y∈N(x)

f(y) by (2.2).

2.2 Alternative basis expansions

Reidys and Stadler [RS02] point out that it is often useful to write elements from

F (X ) in alternative bases. We can learn more about the structure of the search

space if an appropriate choice of basis functions is used. Let {ϕi} be a set of basis

functions that span F (X ). Then

f(x) =
∑
i

aiϕi(x),

where ai is a scalar. Furthermore, consider a linear map M applied to f . By the

linearity of M ,

Mf =
∑
i

aiMϕi.

Throughout this thesis, the set of basis functions we choose will be eigenfunctions

of an appropriate linear operator. This means the quantity Mϕi(x) is efficiently

computable given the value of ϕi(x) and the corresponding eigenvalue. This is

especially useful when f has a sparse representation in the basis, that is,

|{ai : ai 6= 0}| � |X |.
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Furthermore, if the basis functions are instance independent, this gives a natural

separation of an objective function into components that are instance dependent

(i.e., the coefficients) and the components that are instance independent (i.e., the

basis functions).

For example, let f ∈ F (X ) and X ⊆ X . The expectation, or arithmetic mean

value of f over X is written as 〈f〉X and defined to be the expectation of a random

variable that gives the value of f evaluated at a state sampled uniformly at random

from X. Since the probability any particular state y ∈ X is sampled is equal to

1
|X| , we have

〈f〉X =
1

|X|
∑
y∈X

f(y).

Given a functional basis {ϕi} for any objective function f , we can immediately see

that

〈f〉X =
∑
i

ai 〈ϕi〉X . (2.3)

Therefore, we have the following result, which we will exploit in later chapters.

Remark 2.1. Given some basis expansion for f , the problem of finding the expec-

tation of f over a set of states X reduces to the problem of finding the expectation

of the basis functions over X.

This is especially useful when the basis functions in the expansion of f depend

only on the adjacency defined by N . We explore this now.

2.2.1 The relationship between f and N

As a local search algorithm explores a combinatorial space, it must rely on a

“signal” that arises from the relationship between the objective function f and

the neighborhood operator N , or more precisely, the neighborhood graph induced

by N . A strong relationship between f and the neighborhood graph induced by
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N supports local search algorithms since they make progress toward states with

improving f values by examining states constructed by N . Our goal is to study

this relationship in detail.

2.2.1.1 The adjacency spectrum

When the neighborhood operator satisfies some common constraints, we can derive

a number of useful results.

Lemma 2.2. If N is symmetric, that is,

y ∈ N(x) ⇐⇒ x ∈ N(y),

then the adjacency operator A corresponding to the neighborhood graph of N is

self-adjoint. This means

〈Af, g〉 = 〈f,Ag〉.

Proof. By the definitions,

〈Af, g〉 =
∑
x∈X

Af(x)g(x)

=
∑
x∈X

g(x)
∑

y∈N(x)

f(y).

But since y ∈ N(x) ⇐⇒ x ∈ N(y),

=
∑
y∈X

f(y)
∑

x∈N(y)

g(x)

= 〈f,Ag〉.

SinceA is self-adjoint, the finite dimensional spectral theorem (see e.g., [Hal63])

guarantees that A has an orthogonal basis {ϕ0, . . . , ϕ|X |−1} such that

〈ϕi, ϕj〉 = [i = j],
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and Aϕi = λiϕi. This simply means that ϕi is an eigenfunction of the adjacency

operator corresponding to eigenvalue λi.

Therefore, when N is symmetric, a natural way to study the relationship be-

tween f and N is by writing f as an expansion in the orthogonal eigenbasis {ϕi}
of the adjacency operator of the neighborhood graph induced by N

f(x) =

|X|−1∑
i=0

aiϕi(x).

We impose the following ordering on the eigenvalues of A

λ0 ≥ λ1 ≥ . . . ≥ λ|X |−1. (2.4)

Lemma 2.3. If N is regular with degree d, that is, for all x ∈ X , |N(x)| = d, then

the function

ϕ0(x) = 1

is an eigenfunction of the adjacency operator of the neighborhood graph of N cor-

responding to eigenvalue λ0 = d.

Proof. Choose an arbitrary eigenvalue λi of A and let ϕi ∈ F (X ) be the corre-

sponding eigenfunction. Furthermore, let

x∗ ∈ arg max
x∈X

|ϕi(x)|

be a global maximum of ϕi. Then we have,

|λi||ϕi(x∗)| = |λiϕi(x∗)|

= |Aϕi(x∗)|

=

∣∣∣∣∣∣
∑

y∈N(x∗)

ϕi(y)

∣∣∣∣∣∣ by Lemma 2.1,

≤ |N(x∗)||ϕi(x∗)|.
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Since |N(x∗)| = d we thus have

|λi||ϕi(x∗)| ≤ d|ϕi(x∗)|, and so,

|λi| ≤ d. (2.5)

Since we chose λi arbitrarily, d is an upper bound on the eigenvalues of A. Now

let

ϕconst(x) = 1

be the constant function. Then

Aϕconst(x) =
∑

y∈N(x)

ϕconst(y) by Lemma 2.1,

= |N(x)| = d = dϕconst(x).

So d is an eigenvalue of A. Due to the order imposed on the eigenvalues in (2.4),

λ0 is maximal and the bound in (2.5) gives us

λ0 = d,

and the corresponding eigenfunction is

ϕ0(x) = ϕconst(x) = 1.

2.2.1.2 Elementary landscapes

Grover [Gro92] discovered that in many well-studied combinatorial problems with

natural neighborhood operators, the objective function is up to an additive con-

stant an eigenfunction of the adjacency operator

f(x) = a0 + akϕk(x), (2.6)

for some adjacency eigenfunction ϕk. In all cases Grover studied, the neighbor-

hoods are connected and symmetric; so by Lemma 2.3, this can be written as the
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following trivial basis expansion:

f(x) = a0ϕ0(x) + akϕk(x). (2.7)

Since ϕk is an eigenfunction of the adjacency, we can write

Af(x) = a0dϕ0(x) + λkakϕk(x). (2.8)

This is a version of a linear difference equation that is typically called Grover’s

wave equation due to its similarity to the wave equation of mathematical physics

[CM92, BDD03]. Typically, this equation is stated in terms of the combinatorial

Laplacian [Gro92, CM92, Sta96, BC01, RS02, BLS07] which is defined for d-regular

graphs as L = dI − A. In this thesis, however, we will always work with the

adjacency operator.

We can write Equation (2.8) in terms of the expectation operator over the

neighborhood. This will become useful in Chapter 3 where it will play a role in a

probabilistic argument in proofs about forbidden (local) structure in certain search

spaces. It is also a special case of the moment constructions we will perform in

Chapter 4.

Due to Lemma 2.1 we can write the expectation over the neighborhood as

〈f〉N(x) =
1

d
Af(x).

This allows us to write Equation (2.8) in terms of the expectation operator over

the neighborhood

〈f〉N(x) = a0ϕ0(x) +
λk
d
akϕk(x)

= a0 +
λk
d

(f(x)− a0) by (2.6),

=
d− λ
d

a0 + λf(x). (2.9)
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When Equation (2.9) holds, we can immediately infer that there must be a direct

relationship between the elements of (X , N, f). Stadler called these structures ele-

mentary landscapes [Sta95], the term “landscape” coming from theoretical biology.

Despite the apparent restrictiveness of Equation (2.8), a large number of com-

binatorial problems along with their natural neighborhood operators have been

shown to be elementary. For example, Grover [Gro92] proved that Equation (2.6)

holds for graph coloring and not-all-equal satisfiability under the corresponding

Hamming neighborhoods, as well as min-cut graph partitioning and weight par-

titioning under their natural neighborhood operators. The symmetric Travel-

ing Salesman Problem (TSP) under the 2-opt and the 3-exchange neighborhoods

[CM92] and the 2-exchange neighborhood [Gro92], the antisymmetric TSP un-

der the 2-opt and 2-exchange neighborhoods [Sta96], the weakly symmetric TSP

[SBDA03], and variants of the multiple-TSP [CB00] have also all been shown to

satisfy the wave equation.

The general interest in elementary landscapes has flourished in recent years

because a number of useful properties can easily be derived from Equation (2.6).

For instance, Grover [Gro92] showed that all elementary landscapes obey what is

sometimes called the maximum principle [BLS07]:

f(x̂min) ≤ f̄ ≤ f(x̂max),

where x̂min and x̂max are respectively arbitrary local minima and local maxima of

f and f̄ = 〈f〉X is the average value of f over X . In other words, there are no local

minima (resp. maxima) with higher (resp. lower) than average objective value. We

will revisit this maximum principle again in Section 2.3.1 and show that the bound

for local maxima is sharp for a particular combinatorial problem.

The elementary property also has broad implications for the statistics of random

walks through the search space. Weinberger [Wei90] proposed that different land-
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scapes might be characterized by their random-walk autocorrelation: a time-series

autocorrelation of values of f(x) sampled along a random walk on the adjacency

induced by N . Stadler [Sta96] showed that the random-walk autocorrelation func-

tion decays exponentially if and only if the landscape is elementary. Dimova et

al. [DBP05] asserted that an exponentially decaying autocorrelation function is a

characteristic of an AR(1) stochastic process. They use this result to show that a

landscape is elementary if and only if the time series generated by random walk is

consistent with an AR(1) process.

It has also been conjectured (e.g., in [Sta95]) that the autocorrelation proper-

ties (specifically, the correlation length) that can be easily derived for elementary

landscapes are somehow related to the count of local optima in the search space.

This count would be a useful quantity for predicting how hard a particular problem

class or instance is for local search algorithms to solve.

2.3 An example: Max-Ek-Lin-2

We now study a very simple basis decomposition of a combinatorial problem. We

will also prove that the decomposition satisfies Equation (2.9) and is therefore an

instance of an elementary landscape, as introduced in the previous section. This

section thus contributes the first proof that the elementary property holds for this

particular problem; however it is very similar to the problem of finding the ground

state of a p-spin glass which has been shown to be elementary [dOFS99, RS02].

We will also illuminate an interesting connection to inapproximability that allows

us to make assertions about the sharpness of Grover’s maximum principle.

Let Z2 denote the finite field of integers modulo 2. Max-Ek-Lin-2 is a com-

binatorial optimization problem in which, given a potentially inconsistent system

of linear equations over Z2, we are interested in finding a “quasi-solution” to the
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system that maximizes the number of equations that are consistent. Aside from

being interesting from a theoretical perspective, the general problem of finding

consistent equations of a linear system modulo p also has practical applications

in factoring large prime numbers (e.g., for breaking RSA encryption) [HM08] and

linear cryptanalysis. In the latter application, given a cipher which maps plaintext

bits and key bits to ciphertext bits, the objective is to discover linear relationships

between the plaintext, key bits, and the ciphertext bits to analyze the cipher. This

can be modeled as a set of linear equations over Z2.

Suppose we have a set of m linear equations of the following form

z11x1 + z12x2 + . . . + z1nxn = b1,
z21x1 + z22x2 + . . . + z2nxn = b2,

...
...

...
...

zm1x1 + zm2x2 + . . . + zmnxn = bm,

where

• zij, xi, bi ∈ Z2.

• There are exactly k ≥ 3 nonzero coefficients zij in the ith equation.

Put another way, we have the following linear system over Z2

Zx = b,

where Z ∈ Zn×n
2 , and b,x ∈ Zn

2 , and exactly k nonzero entries appear in each row

of Z. The problem of determining the consistency of this linear system, that is,

finding if there exists an x which simultaneously satisfies all m equations, is called

Ek-Lin-2.

The Gaussian elimination algorithm for solving systems of linear equations is

well-defined over finite fields, so we can apply this procedure to solve for x:

x = Z−1b
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in time polynomial in the input size. If the system is inconsistent, that is, there

is no such solution x, the Gaussian elimination algorithm easily detects this by

halting with a degenerate system. Thus the decision problem Ek-Lin-2 is in P.

Suppose we are instead interested in finding the quasi-solution x that gives the

maximum number of consistent equations. In other words, we want to find the

largest feasible subsystem of Zx = b. This rather straightforward maximization

variant, which is called Max-Ek-Lin-2 is NP-hard.

If the system is overdetermined, Gaussian elimination will find some q > 0

equations which are inconsistent. In this case, q is dependent on the order in which

equations are considered during the elimination procedure. Thus the problem is

transformed into finding the order of equations that minimizes q.

A Max-Ek-Lin-2 system of m equations in n unknowns can be solved in Õ(2εn)

time (ε > 0) or approximated in polynomial time (to a factor of 1
2

+ εn
12m

) using

a hybrid heuristic-selection algorithm [VWW06]. Suppose instead we apply the

following local search algorithm. Start with an initial set x(0) of decision variables

for the Zx = b system generated uniformly at random. While stopping criteria

are not met, repeat the following.

1. Let S be the set of all states that can be obtained by adding 1 to a single

decision variable in x(i).

2. Choose y to be the element in S that has the maximal number of consistent

equations in Zy = b (ties broken arbitrarily).

3. If y admits fewer inconsistencies than x(i), then x(i+1) ← y. Otherwise

x(i+1) ← x(i).

We would like to perform an analysis of the search space of this algorithm.

The state set X in this case is the set of all decision variable vectors in Zn
2 . The
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objective function is the function

f : Zn
2 7→ {0, 1, . . . ,m}, where

f(x) = the number of consistent equations of Zx = b.
(2.10)

that represents the count f(x) of the number of consistent equations of Zx = b.

The resulting combinatorial optimization problem is thus (Zn
2 , f) where f is given

by (2.10).

The neighborhood operator used in the above local search algorithm takes a

vector in Zn
2 into a set of vectors that differ by one element from its input. This is

the well-known Hamming operator which we will be working with throughout this

thesis. In the case of Zn
2 , the induced neighborhood graph is isomorphic to Qn:

the hypercube graph of order n.

Let χ be the indicator function

χ(x, j) =

{
1 if equation j is consistent under x,

0 if equation j is inconsistent under x.

Hence we can write (2.10) as the sum of indicator functions

f(x) =
m∑
j=1

χ(x, j). (2.11)

A Hamming move, by definition, changes the state of exactly one decision variable.

Note that an equation that was consistent under x becomes inconsistent only when

the state of one of its decision variables with a nonzero coefficient changes. A

similar argument holds for inconsistent equations.

Denote as ∆(i, j) the change in consistency of equation j when the state of xi

is changed, i.e.,

∆(i, j) =


1 if equation j becomes consistent when 1 is added to xi,

−1 if equation j becomes inconsistent when 1 is added to xi,

0 if equation j is unaffected when 1 is added to xi.

Thus the sum objective function values evaluated over the neighborhood of x is

the value of f(x), plus the gains in consistency, minus the losses in consistency.
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This yields the following identity:

∑
y∈N(x)

f(y) =
∑

y∈N(x)

(
f(x) +

m∑
j=1

∆(i, j)

)

= nf(x) +
n∑
i=1

m∑
j=1

∆(i, j). (2.12)

Since each equation has exactly k nonzero coefficients, there are exactly k out of

the n possible Hamming moves that change its consistency. In other words, for a

given equation j, we have the following result.

n∑
i=1

∆(i, j) =

{
−k if j is consistent,

+k if j is inconsistent.

This can be rewritten in terms of the indicator function

n∑
i=1

∆(i, j) = k − 2kχ(x, j), (2.13)

and summing over all m equations,

n∑
i=1

m∑
j=1

∆(i, j) =
m∑
j=1

n∑
i=1

∆(i, j)

=
m∑
j=1

(k − 2kχ(x, j)) by (2.13),

= mk − 2k
m∑
j=1

χ(x, j)

= mk − 2kf(x) by (2.11),

= 2k
(m

2
− f(x)

)
.

Substituting this result into the corresponding term of (2.12) produces

∑
y∈N(x)

f(y) = nf(x) + 2k
(m

2
− f(x)

)
= 2k

m

2
+ (n− 2k)f(x). (2.14)
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Dividing by the neighborhood size n we recover Equation (2.9) with a0 = m/2,

d = n, and λ = n− 2k, we get

〈f〉N(x) =
2k

n

m

2
+
n− 2k

n
f(x). (2.15)

So the Max-Ek-Lin-2 combinatorial optimization problem under local search by

Hamming moves is a so-called elementary landscape. In other words, the objective

function f , as defined in (2.10) is (up to an additive constant) an eigenfunction of

the adjacency operator A of the Hamming neighborhood graph.

2.3.1 The maximum principle is sharp for Max-Ek-Lin-2

We now show an interesting connection between the maximum principle of Grover

[Gro92] and work by H̊astad [H̊as01] on approximability. A local maximum is

a state x such that for all y ∈ N(x), f(y) ≤ f(x). Recall from the discussion

of elementary landscapes in Section 2.2.1.2 that Grover showed if the objective

function and neighborhood obeyed Equation (2.9), then it must be the case that

all local maxima (minima) lie above (below) the mean objective function value

over the entire state set.

In the case of Max-Ek-Lin-2, this bound is sharp, as we now show. We

point out that the average objective function value of Max-Ek-Lin-2 is equal to

m/2. This is a simple proof using the symmetry of the neighborhood operator and

Equation (2.15) and we omit it here.

Lemma 2.4. For any instance of Max-Ek-Lin-2, a local maximum can be found

in polynomial time.

Proof. A simple local search algorithm suffices. Starting from an arbitrary state,

move to a neighboring state that has strictly improving value. If no such neighbor

exists, the current state is already a local maximum. The number of strictly

improving moves from any arbitrary state bounded by m.
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We can also place a lower bound on the objective function value of local maxima

in the Max-Ek-Lin-2 search space.

Lemma 2.5. In the Max-Ek-Lin-2 search space, all local maxima are greater

than or equal to m
2

.

Proof. This is simply a restatement of Grover’s maximum principle [Gro92]. Let

x̂ be a local maximum. Thus we have,

〈f〉N(x̂) ≤ f(x̂)

2k

n

m

2
+
n− 2k

n
f(x̂) ≤ f(x̂) by (2.15),

f(x̂) ≥ m

2
.

Grover’s maximum principle, restated in Lemma 2.5, gives a lower bound on the

objective function evaluation of all local maxima for the Max-Ek-Lin-2 problem.

However, it is not immediately clear that the bound might be sharp. We now

appeal to a result from algorithmic complexity theory to prove that it is indeed

sharp.

Theorem 2.1. For Max-Ek-Lin-2, local search can always find a state x̂ with

f(x̂) ≥ m
2

in polynomial time.

Proof. This follows immediately from Lemmas 2.4 and 2.5.

A maximization problem can be approximated in polynomial time within a

factor of ρ if there is a polynomial-time algorithm that always (correctly) produces

a solution to the problem with objective value at least f(x∗)/ρ where f(x∗) is

globally maximum.

Theorem 2.2. For any ε > 0, k ≥ 3, it is NP-hard to approximate Max-Ek-Lin-2

within a factor of 2− ε.
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Proof. In [H̊as01, Theorem 5.5].

Corollary. Unless P = NP, no polynomial-time algorithm exists that can always

find a solution x̂ with f(x̂) ≥ m
2−ε for any ε > 0.

Proof. This follows directly from Theorem 2.2. Such an algorithm must find a

solution x̂ with

f(x̂) ≥ m

2− ε ≥
f(x∗)
2− ε .

Since, by Theorem 2.1, it is possible to find a local optimum in polynomial

time, this means unless P = NP, local optima can become arbitrarily close to

m
2

. Given any ε > 0, there must always exist some instance of Max-Ek-Lin-2

that has a local optimum x̂ with m
2
≤ f(x̂) ≤ m

2−ε or local search could could

always approximate the solution within a factor of 2 − ε in polynomial time, due

to Lemma 2.5. It immediately follows from this that, for Max-Ek-Lin-2, m
2

is a

sharp lower bound on the quality of local maxima.

2.4 Sparse representations

We found that the objective function of the combinatorial problem introduced

above was (up to an additive constant) an eigenfunction of the search space adja-

cency operator. We would now like to try to generalize the allowable complexity

of this series expansion somewhat. Consider the neighborhood graph on a set of

states X induced by a operator N . If N is symmetric, we know from Lemma 2.2

and the finite dimensional spectral theorem that the adjacency operator A cor-

responding to N has an orthogonal basis {ϕ0, . . . , ϕ|X |−1} of eigenfunctions. This

basis spans F (X ) and we can write any function f : X → R as

f(x) =

|X |−1∑
i=0

aiϕi(x), (2.16)

29



where ai is a real-valued coefficient.

It is not immediately clear why this particular basis expansion may be useful.

In fact, in the general case, the series in (2.16) has |X | terms, a quantity we have

already supposed is intractably large. However, we will see in the remainder of

this thesis that many important combinatorial optimization problems have a sparse

representation in this basis which means that all except O(1) coefficients ai vanish.

For instance, the trivial function f(x) = 0 might be considered as having a

“maximally sparse” decomposition since it can be represented in the alternate

basis with all zero coefficients ai = 0 for all i = 0, . . . , |X | − 1. In the previous

sections, we discussed (and gave an example) of combinatorial problems whose

objective functions had representations in an adjacency basis {ϕo, . . . , ϕ|X |−1} that

were somehow maximally sparse while remaining interesting, that is, those in the

form of Equation (2.6): in which ai is only nonzero at the constant function ϕ0

and at another single eigenfunction ϕk. Such sparse decompositions make up the

so-called elementary landscapes of Stadler [Sta95].

In the rest of this thesis we will concentrate on the more general case where

the objective function can be expressed sparsely in the eigenbasis of a natural

adjacency, but with k > 1 further nonzero coefficients where k is O(1). We will be

then able to generalize Equation (2.9) to perform analyses of certain search spaces.

The amenability of search spaces to analysis that employs this basis decompo-

sition approach depends on the fact that the state set X admits a neighborhood

operator N that is symmetric and regular (i.e., the underlying neighborhood graph

is a regular, undirected graph). As we have seen above, in this case, the adjacency

operator is self-adjoint. Barnes et al. [BDD03] have also discussed generalizing

such an analysis to non-regular, asymmetric operators.

Many different combinatorial problems yield different state sets and hence dif-
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ferent “natural” neighborhood graphs. Stadler [Sta95] presents various graphs

that represent neighborhood graphs of different combinatorial search spaces. For

example, in the case of scheduling and permutation problems, the neighborhood

graph is a Cayley graph of the symmetric group generated by transpositions or

inversions. In the case of bipartitioning problems, the neighborhood graph is the

Johnson graph J (n, n/2) for even n.

For the remainder of this thesis we will concentrate exclusively on the family

of combinatorial optimization problems whose objective functions are defined over

Hamming space, or {0, 1}n, i.e., the set of strings of length n over a binary alphabet.

We will pay close attention to a subset of this family: problems of maximum k-

satisfiability.

2.4.1 Pseudo-Boolean functions and Hamming space

We begin by introducing some basic concepts for working with the state set {0, 1}n.

Let x ∈ {0, 1}n. Denote the bth element of x as

x[b] ∈ {0, 1}.

Throughout our work in Hamming space, we will often implicitly take advantage

of the isomorphism between {0, 1}n and the set of integers {0, 1, . . . , 2n − 1}. In

particular, we identify each x ∈ {0, 1}n with an integer a ∈ {0, 1, . . . , 2n − 1} as

follows

x 7→ a; a =
n∑
b=1

(
2b−1 × x[b]

)
,

i.e., x[1] corresponds to the “least significant bit” of the string x.

The most natural neighborhood for {0, 1}n is produced by the Hamming neigh-

borhood operator. Given x ∈ {0, 1}n, the Hamming neighborhood operator N is

defined as

N(x) =
{
y ∈ {0, 1}n : |{x[b] 6= y[b]}| = 1

}
,
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for b = 1, . . . , n. In the context of local search (especially when applied to sat-

isfiability problems), this neighborhood is often called the “flip” neighborhood

[GW93a] since it consists of the set of all strings derived by “flipping” a bit. In the

context of evolutionary computation, the Hamming neighborhood is generated by

single point mutations on a binary chromosome.

The search space “closeness” of two binary strings x and y is thus captured by

the minimum number of Hamming neighborhood operations required to transform

x into y. Of course this gives rise to a natural metric. Given x, y ∈ {0, 1}n, the

Hamming distance between x and y is defined as

H(x, y) = |{b : x[b] 6= y[b]}| = 〈x⊕ y, x⊕ y〉,

where ⊕ denotes component-wise exclusive-or. The set {0, 1}n taken with the

function H forms a metric space. This is exactly the graph theoretic distance be-

tween two vertices in the neighborhood graph on {0, 1}n induced by the Hamming

operator.

Definition 2.1. Let x, y ∈ {0, 1}n. The (string) inner product of x and y is a

binary operator

〈·, ·〉 : {0, 1}n × {0, 1}n → N,

defined as

〈x, y〉 =
n∑
b=1

x[b]y[b].

By this definition, given x ∈ {0, 1}n, the quantity 〈x, x〉 can be interpreted as

the number of nonzero bits in x. We will often refer to this quantity as the order

of x.

A Boolean function is simply a function over {0, 1}n into {0, 1}. When we relax

the codomain to the real numbers, we refer to the function as a pseudo-Boolean

function.
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Definition 2.2. A pseudo-Boolean function is a function

f : {0, 1}n → R

that takes binary strings (also called bitstrings) of length n to the real numbers.

2.4.2 Bounded pseudo-Boolean functions

The simplest pseudo-Boolean functions are separable in which the function can be

written as a linear sum of subfunctions depending on each bit:

f(x) =
n∑
b=1

h(x[b]),

where h : {0, 1} → R. Clearly, this function can be optimized in Θ(n) time since

each subfunction can be optimized separately in constant time.

Various search algorithms have been proved to have polynomial complexity

on separable pseudo-Boolean functions such as the (1 + 1) evolutionary algorithm

[DJW98], the (µ+1) evolutionary algorithm [Wit06], randomized local search with-

out [GKS99] and with [SY11] memory, and simulated annealing [JW07]. Pseudo-

Boolean functions become hard to optimize when they are no longer additively

separable. For example, the class of functions of the form

f(x) =
∑

{b,b′}⊂{1,...,n}
h(x[b], x[b′]),

where h : {0, 1}2 → R contains the NP-hard maximum 2-satisfiability problem

as a special case. Of course, there are subclasses of this class that can be solved

efficiently, for instance pseudo-Boolean polynomials of degree 2 with non-negative

coefficients [WW05].

More generally, the objective functions to a large number of well-studied com-

binatorial problems can be expressed as a sum of subfunctions that depend on at

most k input bits where k is a constant with respect to the input size. This family of
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bounded pseudo-Boolean functions is pervasive in many applications. In molecular

biology and biophysics for example, bounded pseudo-Boolean functions are often

employed to model the evolution of a population of organisms [FL70, KL87, MP89].

In NK-landscape models [Kau93], for instance, the fitness of a genotype (a string

over a binary alphabet) is computed as a sum over individual k-ary gene interac-

tions. NK-landscapes have also been employed to simulate landscapes that arise

from RNA folding [FSBB+93].

Bounded pseudo-Boolean functions also play an important role in theoretical

computer science. The problem of maximizing a k-bounded pseudo-Boolean func-

tion is NP-hard, even when k = 2 since it is at least as hard as the maximum

2-satisfiability (Max-2-Sat) problem [GJS76]. In general, the objective func-

tion for any maximum k-satisfiability (Max-k-Sat) problem can be expressed as

a k-bounded pseudo-Boolean function. In subsequent chapters, we will explore

Max-k-Sat problems more deeply using the framework introduced here.

We now formally introduce the bounded pseudo-Boolean functions. To do so,

we must first introduce the pack function of Heckendorn [Hec99]. Note that we can

also think of {0, 1}n as a vector space over the finite field {0, 1} which is closed over

multiplication and addition modulo 2. This allows us to make a formal algebraic

characterization of Heckendorn’s pack function.

Definition 2.3. The Heckendorn Pack Function is defined as

P : {0, 1}n × {0, 1}n → {0, 1}k,

where k ≤ n such that

P(x, z) = xZ,

where Z is an n× 〈z, z〉 matrix over the finite field {0, 1} given by

Zij = z[i]δ〈z,2i−1〉,j.
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Here, δ is the Kronecker delta function.

Note here that the string inner product 〈z, 2i− 1〉 gives the number of nonzero

entries from 1 to i. Thus

δ〈z,2i−1〉,j =

{
1 if there are j nonzero entries from 1 to i,

0 otherwise.

So Zij is equal to 1 if and only if i is the jth position of z that is nonzero. Let

y = P(x, z) = xZ. Clearly, y is a bitstring of length 〈z, z〉. The bth element of y

is given by

y[b] =
∑
i

x[i]Zib,

and is simply the element in x corresponding to the position with the bth nonzero

entry in z. The intuitive meaning of the Heckendorn Pack Function function is that

P(x, z) selects the bits in x and “masks” them with the bitmask given by z and

returns a bitstring of length 〈z, z〉 containing the masked out bits. For example,

P((1, 0, 1, 0, 1), (0, 1, 1, 0, 1)) = (0, 1, 1).

Definition 2.4. A k-bounded pseudo-Boolean function is a pseudo-Boolean func-

tion that can be expressed as a sum of subfunctions that each depend on at most k

bits, i.e.,

f(x) =
k∑
i=0

∑
z:〈z,z〉=i

gz (P(x, z)) .

where gz : {0, 1}〈z,z〉 → R.

Each subfunction gz depends on 〈z, z〉 = i bits. We define inclusion notation

on bitstrings as follows. Given two bitstrings of length n x, y ∈ {0, 1}n, we write

x ⊆ y ⇐⇒ x[b] = 1 =⇒ y[b] = 1,

for all 1 ≤ b ≤ n.
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2.4.3 Fourier (Walsh) series expansion

Recall from Section 2.2 that we can infer properties of search space structure by

studying a given function over X in an alternative basis given by a suitable set of

functions that span the function space F (X ).

A convenient alternative basis for discrete functions comes from the theory

of discrete Fourier analysis which has existed since at least the eighteenth cen-

tury [HJB84]. In this case, the basis functions are sine and cosine functions of

different frequencies. The discrete Fourier series expansion is the projection of an

arbitrary discrete function onto the orthogonal set of sines and cosines. This can

be generalized into n dimensions as follows. Let Σq denote a finite alphabet of

cardinality q. Suppose we are interested in functions over length-n strings from

Σq. The set of such strings Σn
q can be associated with the direct n-product of the

additive group of integers modulo q

(Z/qZ)n = Z/qZ× Z/qZ× · · · × Z/qZ︸ ︷︷ ︸
n

,

which is a finite Abelian group. We can define the complex trigonometric function

φa(x) = cos

(
2π〈x, a〉

q

)
+
√−1 sin

(
2π〈x, a〉

q

)
,

which can be expressed as an exponential function (i.e., as a root of unity),

= exp

(
2π
√−1〈x, a〉

q

)
, (2.17)

where x, a ∈ (Z/qZ)n and 〈x, a〉 denotes the corresponding string inner product.

Here φa maps (Z/qZ)n to the unit circle. We can write any function f : (Z/qZ)n →
R in its Fourier series expansion as

f(x) =
∑

i∈(Z/qZ)n

aiφi(x), (2.18)
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where

ai = |(Z/qZ)n|−1
∑

x∈(Z/qZ)n

f(x)φi(x). (2.19)

The overline denotes complex conjugation. The Fourier series expansion can be

generalized to complex functions of arbitrary finite groups (see e.g., [Ter99]).

In the case of pseudo-Boolean functions, the Fourier series expansion is often

better known as the Walsh series expansion. Walsh analysis has been studied

extensively in theoretical work on genetic algorithms [Gol89, LV91, Gol92, HW97,

RHW98, VW98a, VW98b, Hec99, HW99, Hec02, HW04] because of its usefulness

in characterizing epistasis or bitwise interaction of fitness functions. Epistasis is a

critical component in the analysis of the behavior of genetic algorithms in Hamming

space. Moreover, the coefficients of the expansion have been related to the statistics

of hyperplanes [Hec02] which are pertinent to algorithms that perform implicit

hyperplane sampling (such as genetic algorithms employing recombination).

Our interest in the Walsh expansion is somewhat different. We would instead

like to use the expansion to say something about algorithms that employ local

neighborhood operators. We will show (in Lemma 2.7 below) that the functions in

the Walsh basis expansion are eigenfunctions of the local neighborhood adjacency,

thus directly relating the Walsh expansion to the alternative basis expansions in-

troduced in Section 2.2. In later chapters, we will generalize this further in order to

characterize the distribution of objective function values over regions of Hamming

space.

Joseph L. Walsh [Wal23] introduced the set of orthogonal Walsh functions

that form a complete orthogonal basis of F ({0, 1}n). Thus any pseudo-Boolean

function can be written and analyzed in the Walsh basis. Walsh analysis was first

introduced to the evolutionary computation and search community by Holland and

Bethke [Hol75, Bet80] and later developed by Goldberg [Gol89] and used primarily
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for modeling bitwise nonlinearities in fitness functions and analyzing deception and

disruption in the context of genetic search.

The domain of a pseudo-Boolean function, {0, 1}n, corresponds to the finite

Abelian group (Z/2Z)n. The Walsh functions are the corresponding special cases

of the exponential functions φa in Equation (2.17) and are defined as follows.

ψi(x) = exp
(
π
√−1〈x, i〉) .

Taking advantage of the isomorphism between {0, 1}n and {0, . . . , 2n − 1}, we

refer to ψi as the ith Walsh function which can be written more succinctly as a

real-valued function:

ψi(x) = exp
(
π
√−1

)〈x,i〉
= (−1)〈x,i〉. (2.20)

The order of the ith Walsh function is 〈i, i〉, that is, the number of ones in the

length-n binary string representation of i.

The Walsh basis is functionally complete over {0, 1}n [Wal23], that is, any

arbitrary pseudo-Boolean function f : {0, 1}n → R can be written as a linear

combination of at most 2n orthogonal Walsh functions

f(x) =
2n−1∑
i=0

wiψi(x), (2.21)

where wi is a scalar called the ith Walsh coefficient. Note that this is simply a

special case of the Fourier expansion in Equation (2.18).

In Equation (2.21), it is possible to retrieve the value of any Walsh coefficient

using the following inversion

wi =
1

2n

2n−1∑
x=0

f(x)ψi(x). (2.22)

This identity is a straightforward specialization of (2.19) and is proved, for example,

by Heckendorn [Hec99, Theorem 12].
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The following Walsh function identity follows directly from the pack/unpack

equivalency proved by Heckendorn (i.e., a special case of Corollary 28a to Theorem

28 in [Hec99] or [HW97, Theorem 1]). We state it here for convenience since it

will be used in later chapters.

Lemma 2.6. Let z be an arbitrary bitstring of length n. For any i ⊆ z,

ψP(i,z)(P(x, z)) = ψi(x).

Proof. We have the following identity

〈P(i, z),P(x, z)〉 =

〈z,z〉∑
b=1

P(i, z)[b]P(x, z)[b]

=
n∑
b=1

i[b]x[b] = 〈i, x〉 since i ⊆ z.

Thus,

ψP(i,z)(P(x, z)) = (−1)〈P(i,z),P(x,z)〉

= (−1)〈i,x〉 by the above identity,

= ψi(x).

Formula (2.21) describes a basis expansion for f in the manner of those in

Section 2.2. As mentioned above, this basis expansion has recently been useful in

the analysis of hyperplane sampling algorithms. We now show that the Walsh basis

is also useful for characterizing the relationship between pseudo-Boolean objective

functions and the Hamming operator. In particular, we prove that each Walsh

function is an eigenfunction of the Hamming neighborhood adjacency.

Lemma 2.7. Let A be the adjacency operator corresponding to the Hamming

neighborhood N . The ith Walsh function is an eigenfunction of A:

Aψi = (n− 2〈i, i〉)ψi.
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Proof. Let x ∈ {0, 1}n be arbitrary. We have

Aψi(x) =
∑

y∈N(x)

ψi(y) by Lemma 2.1,

=
∑

y∈N(x)

(−1)〈i,y〉.

For each y ∈ N(x), because x and y differ by a single bit, there exists a unique

0 ≤ a ≤ 2n − 1 for which x ⊕ y = 2a. Thus we can make the following case

distinction. Let ∧ denote componentwise conjunction in the binary representation.

If i ∧ 2a = 0 (i.e., 〈i, (x ⊕ y)〉 = 0) then 〈i, y〉 = 〈i, x〉 and ψi(y) = ψi(x). On the

other hand, if i ∧ 2a = 2a then |〈i, y〉 − 〈i, x〉| = 1 and (−1)〈i,y〉 = −(−1)〈i,x〉, or

equivalently, ψi(y) = −ψi(x).

Since each Hamming neighbor differs from x in each of the n possible bit po-

sitions, there are n− 〈i, i〉 elements y of N(x) that satisfy the first condition and

〈i, i〉 that satisfy the second. Hence

∑
y∈N(x)

ψi(y) = ((n− 〈i, i〉)ψi(x)− 〈i, i〉ψi(x))

= (n− 2〈i, i〉)ψi(x).

Since we chose x arbitrarily, the property holds for any basis function ex and we

have the general equation

Aψi = (n− 2〈i, i〉)ψi,

and ψi is an eigenfunction of A.

2.4.4 Walsh representation sparsity for bounded functions

Note that we can group each term in (2.21) by its order

f(x) =
n∑
p=0

Ψp(x), (2.23)
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where Ψp is defined as

Ψp(x) =
∑

i:〈i,i〉=p
wiψi(x). (2.24)

Hence Ψp is a linear combination of Walsh functions of order p. In other words, Ψp

is a component eigenfunction of f that lies in the eigenspace of A corresponding

to eigenvalue n − 2p. Since there are
(
n
p

)
orthogonal Walsh functions of a given

order p, Ψp contains at most
(
n
p

)
terms.

We now prove some simple bounds on the order of non-zero Walsh coefficients

which will become useful in later chapters for bounding the complexity of com-

puting Walsh coefficients. The following lemma is a slight generalization of the

Expansion Theorem of Heckendorn and Whitley [HW97, Theorem 3]. It has also

been observed informally in a number of works [HRW98, RHW98, Hec02, KP01].

Lemma 2.8. Let f be a k-bounded pseudo-Boolean function on {0, 1}n. For any

length-n binary string i,

wi 6= 0 =⇒ 〈i, i〉 ≤ k,

where wi is the ith coefficient in the decomposition of f .

Proof. Since f is k-bounded it can be expressed as a sum of subfunctions gz that

each depend on at most k bits.

Denote as w
(gz)
i the ith Walsh coefficient for the subfunction gz. Since the

Walsh transform is linear, the ith Walsh coefficient of f is the sum of the ith Walsh

coefficients of the subfunctions, i.e.,

wi =
∑
j

w
(gz)
i .

Since any gz depends on at most k bits, if 〈i, i〉 > k then ∀gz, w(gz)
i = 0. Thus

〈i, i〉 > k =⇒ wi = 0 which gives the contrapositive.

The following theorem follows directly from the above lemma.
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Theorem 2.3 (Decomposition Theorem). Every k-bounded pseudo-Boolean func-

tion f can be written as a linear combination of k + 1 eigenfunctions of A.

Proof. We can write f in the Walsh representation

f(x) =
∑
i

wiψi(x).

By the contraposition of Lemma 2.8, wi is zero for all 〈i, i〉 > k so we may write

f(x) =
∑

i:〈i,i〉≤k
wiψi(x)

=
k∑
p=0

Ψp(x),

where Ψp is defined as in (2.24). Each Ψp is a linear combination of at most
(
n
p

)
Walsh functions of order p and is thus an eigenfunction of A corresponding to

eigenvalue n− 2p.

The sparse representation of k-bounded pseudo-Boolean functions in the Walsh

basis supports the tractable computation of certain statistical quantities of the

objective function. In Chapter 4, we will explicitly appeal to this sparsity property

to construct an efficient algorithm for computing exact objective function statistics

over regions of the search space.

In the next chapter we will show the theory developed here is immediately

useful for proving bounds on certain structures in the Max-3-Sat search space.

In subsequent chapters we will focus on bounded pseudo-Boolean functions over

Hamming landscapes and show how this basis expansion can be exploited to pro-

vide information about the distribution of function values over regions of the search

space.
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Chapter 3

Forbidden Structure in the
Max-3-Sat Search Space

We now appeal to the basis function expansion presented in the previous chapter

to construct proofs that provide a theoretical confirmation of previous empiri-

cal observations by other researchers on problems of maximum 3-satisfiability.2

Maximum k-satisfiability (Max-k-Sat) is a generalization of the propositional

satisfiability problem [Coo71] in which the objective is to find an assignment to

variables that appear in a Boolean formula comprised of clauses of length at most

k, such that the cardinality of the set of clauses satisfied under the assignment is

maximized.

Though Max-k-Sat is NP-hard, it can be approximated efficiently by a num-

ber of polynomial-time approximation algorithms. Johnson [Joh74] proposed the

first such algorithm which guaranteed in polynomial time to produce a state that

produced at least 1/2 the maximum number of satisfied clauses for any instance.

The approximation bound for Johnson’s algorithm was later improved to 2/3 by

Chen and Friesen [CFZ97]. Many polynomial-time approximation algorithms for

2The work presented in this chapter was initially published in the proceedings of the Second
International Workshop on Engineering Stochastic Local Search algorithms [SHW09].

43



Max-k-Sat have since been proposed, the most recent of which [AW02] guaran-

tees a solution within 0.7846 of the optimal solution. This bound can be improved

to 0.8331 supposing the correctness of a conjecture by Zwick [Zwi99].

For the specific case of k = 3, Karloff and Zwick [KZ97] gave a polynomial-time

algorithm based on semidefinite programming that produces an assignment that is

guaranteed to be at least 7/8 of the optimal solution. In the case of k = 2, Feige and

Goemans proposed an efficient algorithm that constructs an assignment guaranteed

to be at least 0.931 of the optimal solution. However, there are theoretical limits

to the approximability in these cases. H̊astad [H̊as01] showed that unless P = NP,

no approximation algorithm can exist that guarantees a solution within 7/8 + ε

of the optimal of any Max-3-Sat instance and 21/22 + ε of the optimal of any

Max-2-Sat instance for any constant ε > 0. In the case of Max-3-Sat, since a

random assignment satisfies any clause with probability 7/8, such an assignment

will satisfy in expectation 7/8 of the optimal solution. The implication of the

result of H̊astad is that Max-3-Sat is polynomial-time inapproximable beyond

the expectation of a randomly generated state.

Local search algorithms have also been studied for their approximability. Hansen

and Jaumard [Han90] proved that a local optimum in the Max-k-Sat search space

is guaranteed to be a solution within 1/2 of the optimum. Mastrolilli and Gam-

bardella [MG05] improved this to 2/3 for a restricted case. In general, local search

algorithms have been extremely popular for Max-k-Sat problems. This is due to

the fact that, despite the asymptotic worst-case bounds on the Max-k-Sat prob-

lem class, they appear to perform empirically well on average. They have been

shown to quickly solve difficult problems that lie beyond the grasp of conventional

complete solvers [GW93b] and have been found to exhibit superior scaling behavior

on soluble problems at the phase transition [PW96].
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In this chapter we will use the basis function expansion developed in Chapter 2

to show that two well-studied structural features are forbidden in certain regions

of the Max-3-Sat search space. These two features, local maxima and plateaus,

directly affect the performance of local search algorithms on the Max-k-Sat prob-

lem [FCS97, Smy04, HS04]. We use the basis function expansion developed in this

thesis to prove bounds on the location and characteristics of local maxima and

plateaus. We show local maxima are forbidden below a certain objective function

value. This result gives an instance-dependent threshold that guarantees all local

maxima in the Max-k-Sat search space must have an objective function value

that lies strictly above the threshold.

Plateaus are regions of the search space consisting of states that are intercon-

nected by a neighborhood operator and share an objective function value. Hoos

and Stützle [HS04] define the width of a plateau P : the minimal length path be-

tween any state in P and one not in P . For many k-Sat instances, empirical

results suggest that plateaus of width greater than one do not exist, or are at

least very rare [Hoo98, HS04]. We prove there are regions of the search space that

cannot contain plateaus of width greater than 1 and show empirically that these

regions encompass the majority of the range of the objective function value. To

our knowledge, there are no analytical results on the existence (or non-existence)

of plateaus of particular width.

3.1 Max-k-Sat

A Boolean variable is a variable that takes one of two values. Without loss of

generality we will say a Boolean variable v ∈ {0, 1}. If v is a Boolean variable, we

say v and ¬v are literals. In this case ¬v denotes the negation of v: the operation

that takes v to its complementary value in {0, 1}. A clause is a set of literals.
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An instance of Max-k-Sat consists of a set

V = {v1, v2, . . . , vn}

of n Boolean variables and a collection

C = {C1, C2, . . . , Cm}

of clauses on V where |Cj| ≤ k.

An assignment is a function A : V → {0, 1}. A clause is satisfied under an

assignment when at least one of its constituent literals evaluate to 1. A solution to

the Max-k-Sat problem is an assignment that maximizes the number of satisfied

clauses.

There are 2n unique assignments of V. The set of all assignments are thus

isomorphic to {0, 1}n and we can represent each assignment A on V as a unique

string x ∈ {0, 1}n where x[b] takes on the value of variable vb in the assignment.

In what follows, we will simply refer directly to strings in {0, 1}n as assignments,

implicitly applying the bijection.

The objective function f : {0, 1}n → {0, . . . ,m} maps an assignment repre-

sented by a length-n binary string to the number of clauses satisfied under that

assignment.

f(x) = |{Cj ∈ C : Cj is satisfied under x}|. (3.1)

The isomorphism allows us to apply the theory of pseudo-Boolean functions de-

veloped in Chapter 2.

3.1.1 Basis expansion of the Max-k-Sat objective function

Note that we can rewrite Equation (3.1) as a sum over indicator functions

f(x) =
m∑
j=1

gj(x), (3.2)
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where gj(x) =
[
Cj is satisfied under x

]
. We can see that the Max-k-Sat objective

function can be expressed as a sum over m subfunctions where each subfunction

depends on at most k variables, hence it is k-bounded. Recall that any pseudo-

Boolean function f : {0, 1}n → R has a Walsh basis expansion

f(x) =
∑
i

wiψi(x).

For Max-k-Sat, it is straightforward to compute the Walsh coefficients using

the identity in Equation (2.22). In this section, we will restrict ourselves to the

case where |Cj| = k for all 1 ≤ j ≤ m. It is trivial to generalize this to the case

where |Cj| ≤ k and we refer the reader to the work of Rana et al. [RHW98].

Let f be the objective function for a Max-k-Sat instance over a set V of

n variables and a set C of m clauses. We would like to compute the ith Walsh

coefficient of f . By Equation (2.22), we have

wi =
1

2n

2n−1∑
x=0

f(x)ψi(x) =
1

2n

2n−1∑
x=0

m∑
j=1

gj(x)ψi(x)

=
m∑
j=1

(
1

2n

2n−1∑
x=0

gj(x)ψi(x)

)
=

m∑
j=1

w
(Cj)
i ,

where w
(Cj)
i denotes the contribution to the ith Walsh coefficient from clause Cj.

Thus it is enough to compute the Walsh coefficient contributions from each clause.

The following Lemma was first proved for Max-k-Sat by Rana et al. [RHW98,

Theorem 1] and later discussed in several other papers in a more general form

[HRW98, HRW99, Hec02]. We restate and prove it here so that it may be expressed

in the notational conventions adapted in this thesis.

Lemma 3.1. Let Cj ∈ C. Let zvar
j ∈ {0, 1}n be the bitstring

zvar
j [b] =

{
1 if vb ∈ Cj or ¬vb ∈ Cj,
0 otherwise.
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Let zneg
j ∈ {0, 1}n be the bitstring

zneg
j [b] =

{
1 if ¬vb ∈ Cj,
0 otherwise.

Then the contribution to the ith Walsh coefficient from clause Cj is

w
(Cj)
i =


2k−1
2k if i = 0,

− 1
2kψi(z

neg
j ) if i 6= 0 and i ⊆ zvar

j ,

0 otherwise.

Proof. We make the following case distinction. Either i = 0, i ⊆ zvar
j and i 6= 0, or

i 6⊆ zvar
j .

Case 1: Suppose i = 0. Then by Equation (2.22), we have

w
(Cj)
0 =

1

2n

2n−1∑
x=0

gj(x)ψ0(x) =
1

2n

2n−1∑
x=0

gj(x) since ψ0(x) = 1. (3.3)

Recall that we are assuming |Cj| = k. Hence, out of 2n possible assignments,

there are 2n−k assignments x which leave Cj unsatisfied and 2n − 2n−k =

2n−k(2k − 1) assignments x that leave Cj satisfied. If Cj is unsatisfied, gj(x)

evaluates to 0, otherwise it evaluates to 1 so we can write the equality in (3.3)

as

w
(Cj)
0 =

1

2n
2n−k(2k − 1) =

2k − 1

2k
.

Case 2: Suppose i 6⊆ zvar
j . In this case, there must exist an integer 0 ≤ a < 2n

such that 2a ∧ i 6= 0 and 2a ∧ zvar
j = 0. Note that the latter condition implies

va /∈ Cj. We have the following identities.

gj(x) = gj(x⊕ 2a), (3.4)

since va /∈ Cj, and,

ψi(x) = −ψi(x⊕ 2a), (3.5)

since 2a ∧ i 6= 0.
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We define the following partition of {0, 1}n

Sa = {x ∈ {0, 1}n : 2a ∧ x = 0}

to be the set of all bitstrings x with x[a] = 0. By Equation (2.22), we have

w
(Cj)
i =

1

2n

2n−1∑
x=0

gj(x)ψi(x)

=
1

2n

∑
x∈Sa

(gj(x)ψi(x) + gj(x⊕ 2a)ψi(x⊕ 2a))

=
1

2n

∑
x∈Sa

(gj(x)ψi(x) + gj(x)ψi(x⊕ 2a)) by (3.4),

=
1

2n

∑
x∈Sa

gj(x) (ψi(x) + ψi(x⊕ 2a))

=
1

2n

∑
x∈Sa

gj(x) (ψi(x)− ψi(x)) = 0. by (3.5),

Case 3: Finally, suppose i ⊆ zvar
j and i 6= 0. In this case, there exists an integer

0 ≤ a < 2n such that 2a ∧ zvar
j = 2a ∧ i = 0.

Again, since va /∈ Cj, the equality in (3.4) still holds. However, in this case,

we now have

ψi(x) = ψi(x⊕ 2a), (3.6)

since i ∧ 2a = 0. By Equation (2.22), we have

w
(Cj)
i =

1

2n

2n−1∑
x=0

gj(x)ψi(x)

=
1

2n

∑
x∈Sa

(gj(x)ψi(x) + gj(x⊕ 2a)ψi(x⊕ 2a))

=
1

2n

∑
x∈Sa

(gj(x)ψi(x) + gj(x)ψi(x⊕ 2a)) by (3.4),

=
1

2n

∑
x∈Sa

2gj(x)ψi(x). by (3.6),
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Note that there are n−k ways to choose a bit position a outside of zvar
j (since

〈zvar
j , zvar

j 〉 = k). Thus we can also choose an a′ 6= a such that 2a
′ ∧ zvar

j =

2a
′ ∧ i = 0 and let the partition

Sa∪a′ = {x ∈ {0, 1}n : 2a ∧ x = 2a
′ ∧ x = 0}.

Following the argument above, we have

w
(Cj)
i =

1

2n

∑
x∈Sa∪a′

2× 2gj(x)ψi(x).

Continuing this argument for all n − k possible bit positions not contained

in zvar
j we have

w
(Cj)
i =

1

2n

∑
x:∈Sa∪a′∪a′′∪a′′′...

2× 2× 2× · · · × 2gj(x)ψi(x)

=
1

2n

∑
x:x⊆zvarj

2n−kgj(x)ψi(x) =
1

2k

∑
x:x⊆zvarj

gj(x)ψi(x).

We now define the function g′j : {0, 1}k → {0, 1} as g′j
(
P
(
x, zvar

j

))
= gj(x).

From above we have

w
(Cj)
i =

1

2k

∑
x:x⊆zvarj

gj(x)ψi(x)

=
1

2k

∑
x:x⊆zvarj

g′j(P(x, zvar
j ))ψP(i,zvarj )(P(x, zvar

j )) by Lemma 2.6,

=
1

2k

2k−1∑
x=0

g′j(x)ψP(i,zvarj )(x).

But g′j is zero for exactly one length-k bitstring. Let z be that string. Then,

=
1

2k

2k−1∑
x=0

ψP(i,zvarj )(x)

− ψP(i,zvarj )(z)


= − 1

2k
ψP(i,zvarj )(z)

= − 1

2k
ψP(i,zvarj )(P(z, zvar

j ))

= − 1

2k
ψi(z

neg
j ).
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The final equality comes from the consequence of Lemma 2.6, and the fact that

packing z into the zvar
j mask gives exactly the string zneg

j .

It immediately follows from Lemma 3.1 that the objective function for a Max-

k-Sat instance can be written in the Walsh expansion

f(x) =
∑
i

wiψi(x),

where

wi =


m2k−1

2k if i = 0,

− 1
2k

∑m
j=1 ψi(z

neg
j ) if i 6= 0 and i ⊆ zvar

j ,

0 otherwise.

Recall from Equation (2.24) that Ψp denotes a linear combination of Walsh

functions of order p. We will refer to this entity as an order-p Walsh span element

since it is an element of the linear space F ({0, 1}n) spanned by the Walsh functions

of order p. Now we can write the objective function in (3.1) as a sum over each

order-p Walsh span element:

f(x) =
k∑
p=0

Ψp(x). (3.7)

From Chapter 2 recall our notational convention of writing the expectation of

a function f over a subset X of its domain is as 〈f〉X . Thus 〈f〉N(x) denotes the

expectation of f over the neighborhood of a point x. We can exploit the basis

expansion introduced in Chapter 2 to derive an expression for the exact value of

〈f〉N(x). On any Max-k-Sat instance, the expectation of f over the neighborhood
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is a linear combination of k + 1 span elements evaluated at x.

〈f〉N(x) =
1

|N(x)|
∑

y∈N(x)

f(y)

=
1

n
Af(x)

=
k∑
p=0

1

n
AΨp(x)

=
k∑
p=0

(
1− 2p

n

)
Ψp(x), (3.8)

since Ψp is an eigenfunction ofA corresponding to eigenvalue (n−2p). We will later

use this expression for expectation of f over the neighborhood in a nonconstructive

combinatorial proof that employs the probabilistic method pioneered by Erdös

[Erd59] to prove the main result of the chapter.

The following two lemmas will be useful in the next section. First, we show

that the zero-order Walsh span element is always a constant that is equal to the

mean objective function value over {0, 1}n.

Lemma 3.2. Let f̄ be the mean objective value over {0, 1}n,

f̄ =
1

2n

∑
x∈{0,1}n

f(x).

For all x ∈ {0, 1}n, the zero-order Walsh span element is the constant function

Ψ0(x) = f̄ .

Proof. Let x ∈ {0, 1}n. There is only one Walsh function of order zero: ψ0(x) = 1.

We have Ψ0(x) = w0ψ0(x) = w0. Note that for p 6= 0 we have

1

2n

∑
x∈{0,1}n

Ψp(x) = 0 (3.9)
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because of the parity of bitstrings of order p. By some algebraic manipulation,

w0 =

 1

2n

∑
x∈{0,1}n

w0


=

1

2n

∑
x∈{0,1}n

Ψ0(x)

=
1

2n

∑
x∈{0,1}n

Ψ0 +
1

2n

∑
x∈{0,1}n

k∑
p=1

Ψp(x) by (3.9),

=
1

2n

∑
x∈{0,1}n

k∑
p=0

Ψp(x)

=
1

2n

∑
x∈{0,1}n

f(x) by (3.7).

In the next section, we will need to bound the value of Ψp over all states x ∈ X.

We use the absolute values of the Walsh coefficients wi to do so.

Lemma 3.3. For all x ∈ X,

∑
〈i,i〉=p

−|wi| ≤ Ψp(x) ≤
∑
〈i,i〉=p

|wi|.

Proof. Let x be an arbitrary state in X. By definition we have

Ψp(x) =
∑
〈i,i〉=p

wiψi(x) =
∑
〈i,i〉=p

±|wi|,

since ψi(x) = ±1 and wi = ±|wi|. Clearly, the smallest that each term could be is

−|wi| and the largest is |wi|.

3.2 The Max-3-Sat search space

Despite their incompleteness, local search algorithms are typically counted as

among the state-of-the-art for solving propositional satisfiability (the decision prob-

lem) and maximum satisfiability (the optimization problem). In the context of
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local search, both cases are identical since the objective function for local search

is nearly always characterized as the number of satisfied clauses under a given

assignment. Several local search studies in the past several years have focused on

k = 3: the smallest case in which the decision problem is NP-complete (though

k = 2 is NP-hard for the optimization problem). We now specialize our attention

to the particular case of k = 3.

Since the behavior of local search algorithms closely depends on the underly-

ing structure of the search space, a large number of researchers have conducted

empirical investigations on certain structural features of the Max-3-Sat3 prob-

lem. Hoos and Stützle [HS04] defined search position types which correspond to

how improving, equal, and disimproving moves behave in the neighborhood of a

point. For example, the familiar strict local maximum (minimum) where each

neighborhood element has a strictly lower (higher) objective function value is a

particular search position. They further identify local minima, local maxima (i.e.,

non strict variance), ledges (improving, disimproving, and equal moves), slopes (no

equal moves), and interior plateau points. This concept is roughly illustrated in

Figure 3.1. For a collection of Max-3-Sat problems, they empirically measured

the distribution of these positions across states either exhaustively (for very small

problems) or using a biased sampling procedure. Most notably, they found that

no interior plateau states were found for any of the instances [HS04, page 214]. In

Section 3.2.2, we will prove rigorously that interior plateau states cannot exist in

a large fraction of the search space.

3Though many of these works are motivated by the study of local search on the decision
problem (i.e., propositional 3-Sat), in all cases the Max-3-Sat objective function was used. For
consistency, and the reasoning outlined above, we have elected to use the single term “Max-3-
Sat” since all results are applicable to the more general optimization problem.
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interior plateau state

ledge state

local minimum strict local minimum

local maximum

strict local maximum

slope

Figure 3.1: The search position types of Hoos and Stüztle (illustration adapted
from [HS04]).

Clark et al. [CFG+96] studied the relationship between problem hardness (in

terms of search cost) and the number of solutions on random 3-Sat problems. In

this work, they empirically measured the cost of several local search algorithms and

found that search cost tended to be inversely proportional to the count of global

optima in the space, and that this relationship changed through the solubility

phase transition. Similar to the search positions of Hoos and Stützle, Frank et

al. [FCS97] developed a taxonomy of search space regions for Max-3-Sat and

experimentally probed the space by probabilistic sampling of the space (using

a local search algorithm) in order to characterize the empirical distribution of

differing types of these regions such as plateaus and local optima.4 Smyth [Smy04]

followed somewhat the approach of Frank et al. to empirically characterize plateaus

in the Max-3-Sat search space in an effort to relate their characteristics (such

as size and the distribution of incident states with improving objective). Smyth’s

work also focused on empirically assessing properties (e.g., diameter and branching

4Note that while their definition of plateau coincides with ours, their definition of local optima
is distinct since they have allowed multiple states to belong to a single local optimum.
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factor) of the subgraphs induced by plateau states on a certain level. Finally, Yokoo

[Yok97] investigated the dependency of search cost on search space characteristics

by exhaustively enumerating the search spaces of some small 3-Sat problems to

measure plateau size and studying empirically how local search runtime is related

to the size of plateaus.

Despite the large amount of empirical work on characterizing search space

structure for Max-3-Sat, very few theoretical analyses exist that can make general

statements about every Max-3-Sat search space. We now employ the framework

developed in Chapter 2 to make some assertions about the Max-3-Sat search

space in general.

3.2.1 Bounding the level of local maxima

A state x is said to be a local maximum if, for all y ∈ N(x), f(y) ≤ f(x). We

point out that this definition is distinct from studies that allow for multi-state

local maxima (e.g., [FCS97]). Our single-state definition coincides with Hoos and

Stützle [HS04]. Furthermore, every global maximum is also a local maximum.

In Chapter 2 we discussed the maximum principle for elementary landscapes

[BLS07]. The maximum principle was proved by Grover [Gro92] and states that

for elementary landscapes no local maxima (minima) lie below (above) the mean

value of the objective function over X . This will not necessarily hold for arbitrary

functions. However, we show here that the basis decomposition of the Max-3-

Sat objective function provides us with a series of eigenfunctions, or elementary

components. Knowledge of these components and their properties allow us to bound

the evaluation level of local maxima on Max-3-Sat.

Before we continue, we prove the following lemma that provides an identity for

a series expansion (when k = 3) that will allow for some algebraic manipulation

in the theorems below.
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Lemma 3.4. For the Max-3-Sat objective function we have the following identity.

3∑
p=0

pΨp(x) = 2f(x)− 2f̄ −Ψ1(x) + Ψ3(x).

Proof. The series is equal to

3∑
p=0

pΨp(x) = Ψ1(x) + 2Ψ2(x) + 3Ψ3(x).

We can group the terms on the right hand side as follows(
Ψ1(x) + Ψ2(x) + Ψ3(x)

)
+
(

Ψ2(x) + 2Ψ3(x)
)
.

By the decomposition in Equation (3.7),(
f(x)−Ψ0(x)

)
+
(
f(x)−Ψ0(x)−Ψ1(x) + Ψ3(x)

)
.

By Lemma 3.2, (
f(x)− f̄

)
+
(
f(x)− f̄ −Ψ1(x) + Ψ3(x)

)
,

and simplifying gives the result.

Theorem 3.1. On any 3-Sat instance with n variables and m clauses, there exists

a positive real number τ such that for any state x, if f(x) < f̄ − τ , then x cannot

be a local maximum.

Proof. We begin by showing if f(x) < 〈f〉N(x), it cannot be a local maximum. We

will then use the previous results to bound the inequality. Let x be a state such

that f(x) < 〈f〉N(x). There exists some point y in the neighborhood of x that has

an evaluation f(y) > f(x). Thus x cannot be a local maximum. In this case,

f(x) < 〈f〉N(x) =
3∑
p=0

(
1− 2p

n

)
Ψp(x) by (3.8),
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allowing us to write

f(x) <
3∑
p=0

Ψp(x)− 2

n

3∑
p=0

pΨp(x).

The first term on the right hand side is simply the decomposition of f(x) given by

Equation (3.7). Thus we can make the following substitution.

f(x) < f(x)− 2

n

3∑
p=0

pΨp(x).

By Lemma 3.4,

f(x) < f(x)− 2

n

(
2f(x)− 2f̄ −Ψ1(x) + Ψ3(x)

)
.

Simplifying, we have

f(x) < f̄ +
1

2
(Ψ1(x)−Ψ3(x)) . (3.10)

Inequality (3.10) describes a threshold that depends on Ψ1(x) and Ψ3(x) such that

if f(x) is less than this threshold, x cannot be locally maximum. We now give a

threshold that holds over the entire search space.

By Lemma 3.3, we have for any x ∈ X,

(Ψ1(x)−Ψ3(x)) ≥
∑
〈i,i〉=1

−|wi| −
∑
〈i,i〉=3

|wi|
 ,

and letting

τ =
1

2

∑
〈i,i〉=1

|wi|+
∑
〈i,i〉=3

|wi|
 , (3.11)

we now have the following bound on the r.h.s. of Inequality (3.10).

f̄ − τ ≤ f̄ +
1

2
(Ψ1(x)−Ψ3(x)) ,

and thus, for all x ∈ X, if f(x) < f̄ − τ , then x cannot be a local maximum. The

threshold f̄ − τ is simply computed (in polynomial time) by summing the absolute

Walsh coefficients of order 1 and 3 and holds over the entire search space.
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We have thus just proved that, in the Max-3-Sat search space, all local max-

ima must lie above f̄ − τ .

3.2.2 Bounding the level of unit width

In a similar manner, we can bound the function value at which plateaus of width

greater than one can appear.

Definition 3.1. A plateau is a maximal set P of states such that for all x, y ∈ P
there is a path (x = x1, x2, . . . , xt = y) of length t ≥ 1 with f(x) = f(xi) for

i = 1, 2, . . . , t and, if t > 1, xi+1 ∈ N(xi). The level of a plateau P is the

evaluation f(xp),∀xp ∈ P .

We say the neighborhood of a state x is flat if, for all y ∈ N(x), f(y) = f(x),

that is, x has the same value as all the states in its neighborhood. A state with a

flat neighborhood corresponds to the interior plateau search position described by

Hoos and Stützle [HS04]. We show that flat neighborhoods cannot exist at certain

levels of the objective function.

Theorem 3.2. On any 3-Sat instance with n variables and m clauses, there exists

a positive real number τ such that for any state x, if f(x) < f̄ − τ or f(x) > f̄ + τ ,

then x cannot have a flat neighborhood.

Proof. We prove the equivalent contrapositive. Let x be a state with a flat neigh-
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borhood. We have

f(x) = 〈f〉N(x)

=
3∑
p=0

(
1− 2p

n

)
Ψp(x)

=
3∑
p=0

Ψp(x)− 2

n

3∑
p=0

pΨp(x)

= f(x)− 2

n

3∑
p=0

pΨp(x) by (3.7).

Therefore, at such a point x we must have

3∑
p=0

pΨp(x) = 0,

2f(x)− 2f̄ −Ψ1(x) + Ψ3(x) = 0 by Lemma 3.4.

Thus if x has a flat neighborhood, the following must hold.

f(x) = f̄ +
1

2
(Ψ1(x)−Ψ3(x)) . (3.12)

Using Lemma 3.3 we can bound the terms Ψ1(x) and Ψ3(x) giving the following

f̄ − τ ≤ f(x) ≤ f̄ + τ,

where τ is given by Equation (3.11) in Theorem 3.1.

Recall the width of a plateau P is the minimal length path between any state

in P and one not in P . We have the following corollary.

Corollary. A plateau P with level less than f̄ − τ or greater than f̄ + τ cannot

have width greater than 1.

Proof. This follows directly from the fact that no flat neighborhoods exist outside

of the range f̄ − τ to f̄ + τ . Thus, for these points, every state on a plateau P

must have at least one neighbor outside P and the width of P is at most 1.
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no plateaus of width > 1

no plateaus of width > 1
no local maxima

f
(x

)

f̄

f̄ − τ

f̄ + τ

Figure 3.2: An illustration of the proved properties. No plateaus of width strictly
greater than one can lie outside the interval. No local maxima can lie below the
interval.

3.3 Derived values in practice

We have shown how the average value of the neighborhood can be obtained analyt-

ically for any particular state and that a region (τ from f̄) can be defined outside

of which plateaus of width greater than one cannot exist and certain local optima

cannot be found. We illustrate the proved properties in Figure 3.2. In this section,

we compute numerical values of the expectation value and of τ on representative

instances to show that (1) the expectation value computation is informative, and

(2) the region is non-trivial in benchmark problem instances.

3.3.1 The neighborhood expectation value

The neighborhood expectation value computed in Equation (3.8) is useful because

it can potentially provide algorithms with higher resolution information about

states than the objective function. For example, given two states x and y with

f(x) = f(y), it is not necessarily the case that the neighborhood expectation values

are equal for both x and y.

Stochastic local search algorithms applied to Max-k-Sat problems often must
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select a neighboring state from a large set of moves with equal evaluation. This

presents a problem for such algorithms due to the lack of gradient information in

the neighborhood [HS04]. A collection of states at the same evaluation level are

indistinguishable in terms of objective function value. However, we conjecture the

expectation value can serve as a predictor of the number of improving moves that

exit a particular state.

To illustrate this concept, we sampled 100 states at a particular objective func-

tion level (f(x) = 390) on each of 1000 instances that make up the uf100-430

benchmark set in SATLIB (100 vars, 430 clauses). For each point we calculated

the correspondence between the expectation value given by Equation (3.8) and the

actual number of improving moves in the neighborhood of the state. These data

are plotted in Figure 3.3. A correlation test gives a strong positive correlation

value of 0.51 with p < 2.2× 10−16 indicating that better expectation leads to more

potential for improvement. These data indicate that the neighborhood expectation

value can provide useful information about the neighborhoods of points even if they

are equal in objective function value. We will revisit this phenomenon in Chapter 6

and exploit this information in a local search application on Max-k-Sat.

3.3.2 Numerical values of τ

To demonstrate the region outside the interval is not trivial, we computed the

values for τ as a percentage of the objective function range m across 18 benchmark

distributions from SATLIB and the 2008 SAT competition. In Table 3.1 we report

the mean (µ), standard deviation (σ), minimum, and maximum of the value τ/m

over all N problems in each distribution.

The mean value of τ is consistently about 10% of the range m with a relatively

low standard deviation. The maximum value of τ does not exceed 13% of the total

objective function range over all the problem distributions we tested.
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Figure 3.3: Number of improving moves vs 〈f〉N(x) at f(x) = 390 for 100 points
each on 1000 instances of SATLIB benchmark set uf100-430. Line indicates linear
best fit.
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SATLIB

set setsize µ σ min max

uf20-91 1000 0.10252 0.00707 0.08104 0.12775
uf50-218 1000 0.10467 0.00421 0.08945 0.11984
uf75-325 100 0.10487 0.00358 0.09538 0.11231

uf100-430 1000 0.10483 0.00307 0.09680 0.11483
uf125-538 100 0.10477 0.00241 0.09898 0.11245
uf150-645 100 0.10514 0.00221 0.10039 0.11027
uf175-753 100 0.10533 0.00239 0.09910 0.11155
uf200-860 100 0.10469 0.00203 0.09942 0.11047
uf225-960 100 0.10484 0.00194 0.09870 0.10898

uf250-1065 100 0.10478 0.00167 0.10082 0.10986
uuf50-218 1000 0.10131 0.00406 0.08888 0.11640

2008 SAT competition

set setsize µ σ min max

v360 10 0.10382 0.00146 0.10046 0.10535
v400 10 0.10370 0.00198 0.10072 0.10651
v450 10 0.10369 0.00162 0.10016 0.10571
v500 10 0.10384 0.00177 0.09947 0.10616
v550 10 0.10366 0.00113 0.10137 0.10494
v600 10 0.10404 0.00107 0.10270 0.10603
v650 10 0.10400 0.00108 0.10293 0.10627

Table 3.1: Computed statistics for τ/m across several benchmark distributions
from SATLIB and 2008 SAT competition.

64



Chapter 4

Efficient Construction of Local
Moments

We now investigate how the results in previous chapters can be applied to char-

acterize the distribution of objective function values over partitions of the state

set that represent regions in the neighborhood graph.5 In particular, we consider

partitioning X into local regions (i.e., sets of states within a certain graph-theoretic

distance) of a given state and studying the moments of the distribution of objective

function values across the region. We will show that if f is a pseudo-Boolean func-

tion that is epistatically bounded by k, the exact moments over local regions can

be constructed in polynomial time, even when the size of the region is exponential.

In Chapter 2 we made the assertion (c.f., Remark 2.1) that the problem of find-

ing the expectation of the values of any function f evaluated over some set of states

X reduces to finding the expectation of basis functions over X from some conve-

nient basis expansion of f . We will now develop this concept to compute moments

over local regions of the space. In particular, we will show that computing the cth

moment of the distribution of a function f reduces to finding the expectation of

5The work presented in this chapter appears in a journal article in Theoretical Computer
Science [SWH11b].
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the cth power of f . Thus, we will show how to compute the moments of f over

Hamming regions by first finding a convenient basis function expansion of the cth

power of f and then efficiently computing the expectation of the basis functions

over the Hamming region using an eigendecomposition equation. This ultimately

leads to a polynomial-time algorithm for computing moments over arbitrary Ham-

ming regions in the space.

This result is significant since the cardinality of such regions can be exponential

in the problem size. For example, a radius n/2 Hamming sphere contains Ω(2n/2)

unique states and any Hamming ball of radius εn for 0 ≤ ε ≤ 1 has Ω(2εn) unique

states. Any k-bounded pseudo-Boolean function is expressible by a sum of m

subfunctions that each depend on at most k bits. On such functions, our approach

has a time complexity of O(mc) to calculate the exact value for the cth moment of

f over any sphere and a time complexity of O(rmc) to calculate the exact moment

over a ball of radius r. In general, since there can be at most
(
n
k

)
functions on

k bits, m is O(nk) giving a worst case polynomial time bound for our approach

of O(nck) and O(rnck) for general bounded pseudo-Boolean functions. However,

in many combinatorial optimization problems, m is typically linear (Max-k-Sat,

NK-landscapes) or quadratic (MAX-CUT and other graph optimization problems)

in n. In these cases, this approach has complexity O(rnc) and O(rn2c), respectively.

This chapter generalizes the work of Heckendorn, Rana, and Whitley [HRW99].

Using a Walsh decomposition, they showed how one could efficiently compute sum-

mary statistics (e.g., central moments such as the mean, variance, skewness, and

kurtosis) over the entire search space for Max-k-Sat and all k-bounded pseudo-

Boolean functions, which they call embedded landscapes. Heckendorn [Hec02] also

extended this work to prove that moments of the distribution of fitness values

over hyperplanes of {0, 1}n can be computed in polynomial time for such func-
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tions. While hyperplane statistics are important from the perspective of hyper-

plane sampling for selection-based genetic algorithms that employ recombination

[Gol89, LV91, Gol92], processes that explore the search space by making decisions

based on the value of nearby states will be strongly influenced by the distribution

of fitness values in volumes of the search space that are close by. Toward that

end, we further generalized the work of Heckendorn et al. to show how low order

moments of the objective function distribution over local regions (Hamming balls

and spheres) can be computed in polynomial time for k-bounded functions.

4.1 Moments of codomain distributions

A moment is a quantitative measure that describes the nature (e.g., location,

spread, shape) of a distribution. In this research, we are specifically interested in

the distribution of values across the image of a set of some domain elements for a

function.

Suppose we have a pseudo-Boolean function

f : {0, 1}n → R.

f has an associated cumulative distribution function

P : R→ [0, 1].

where P (a) = Pr{f(x) ≤ a,∀x ∈ {0, 1}n}. The cth moment of the distribution of

codomain values of f is defined by the Riemann-Stieltjes integral

µc =

∫ ∞
−∞

acdP (a).

This is equivalent to the distribution of a random variable that gives the value of

f evaluated at a point chosen uniformly at random from the domain.
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In this chapter we are interested in characterizing the distribution of codomain

values over meaningful subsets of {0, 1}n. Let X ⊆ {0, 1}n be a set of points. The

cth moment of f over X can be defined as moments of a random variable that

assumes the value of f(x)c evaluated at a point x drawn uniformly at random

from X. In this case, since each element of X is drawn with equal probability, the

probability mass function is 1
|X| and we can define

µc(X) =
1

|X|
∑
x∈X

f(x)c (4.1)

to be the cth moment of f over the set X. For any nonempty set X, it should be

clear that µ0(X) = 1. The first moment, µ1(X), is the mean value of the function

f evaluated over each point in X. The variance of f (the second central moment)

over the set X can be written as

σ2 = µ2(X)− µ1(X)2.

In general, the cth central moment of f over the subset X can be computed as

c∑
i=0

(
c

i

)
(−1)c−iµi(X)µ1(X)c−i.

Higher central moments correspond to statistical quantities such as skewness and

kurtosis which further characterize the shape of the distribution.

4.2 Local regions

The short-term dynamics of local search and mutation-based evolutionary algo-

rithms are influenced by the statistical structure of the search space regions that

are near the current search point. The state set taken together with the connec-

tivity of the neighborhood operator form a metric space. In the case of {0, 1}n,

this translates to the well-known Hamming metric.
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Recall from Section 2.4.1 the definition of the set of Hamming neighbors of x:

N(x) = {y : H(x, y) = 1} and the corresponding Hamming adjacency structure

A. Consider an arbitrary element x of the state set {0, 1}n. We generalize the

definition of the Hamming neighborhood in the following manner.

Definition 4.1. The Hamming sphere of radius r about x is the set

S(r)(x) = {y : H(x, y) = r}.

The set of spheres of distinct radius thus form a partition of the set of states

{0, 1}n into equivalency classes.

Definition 4.2. The Hamming ball of radius r about x is the union of all spheres

about x with radius at most r

B(r)(x) = {y : H(x, y) ≤ r}.

The sphere of unit radius is thus equivalent to the Hamming neighborhood. We

now discuss the construction of the exact moments of f over these local regions,

e.g., µc(S
(r)(x)) or µc(B

(r)(x)) for some c = O(1) and some r = O(n). These mo-

ments can be calculated directly by enumerating all states in the region. However,

in most cases, such regions have intractably large cardinality which prohibits direct

computation. For instance, |B(r)(x)| has exponential growth in n when r = εn for

some 0 < ε ≤ 1. The limiting case, of course, is B(n)(x) which covers the entire

search space. In these cases, one might resort to sampling in an attempt to obtain

an approximation for the moment (e.g., by computing the sample moments from

a uniform or biased sample). However, if f is epistatically bounded, we can take

advantage of the basis expansions developed in the previous chapter to compute

exact (low) moments over regions in polynomial time, even if the cardinality of the

region in question has exponential growth.
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4.2.1 Using the Walsh basis expansion

To compute the cth moment of f , it will become necessary to work with higher

powers of f . Consider the pseudo-Boolean function constructed by taking f to the

cth power, that is,

f c : {0, 1}n → R; f c(x) = (f(x))c , ∀x ∈ {0, 1}n.

Since f c is a pseudo-Boolean function, it can be written in a Walsh basis expansion.

Lemma 4.1. Let f : {0, 1}n → R with Walsh basis expansion f(x) =
∑

iwiψi(x).

The function f c that gives the cth power of f has a Walsh basis expansion

f c(x) =
∑
j

wjψj(x),

where

wj =
∑

i1,i2,...,ic
i1⊕i2⊕···⊕ic=j

wi1wi2 . . . wic .

Proof. Since f c(x) = f(x)c we can write

f c(x) =

(∑
i

wiψi(x)

)c

=
∑
i1

wi1ψi1(x)
∑
i2

wi2ψi2(x) . . .
∑
ic

wicψic(x)

=
∑

i1,i2,...,ic

wi1wi2 . . . wicψi1(x)ψi2(x) . . . ψic(x)

=
∑

i1,i2,...,ic

wi1wi2 . . . wicψi1⊕i2⊕···⊕ic(x)

=
∑

i1,i2,...,ic
i1⊕i2⊕···⊕ic=j

(wi1wi2 . . . wic)ψj(x).

This yields the claimed result.

Given a function f and corresponding Walsh basis expansion

f(x) =
∑
i

wiψi(x),
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let

W(f) = |{i : wi 6= 0}|, i = {0, 1, . . . , 2n − 1}

be the count of nonzero Walsh coefficients in the Walsh basis expansion of f . The

following proposition is an immediate consequence of Lemma 2.8.

Proposition 4.1. If f can be expressed as a sum of m subfunctions that each

depend on at most k bits, then

W(f) ≤ m2k.

Proposition 4.1 makes precise the observations in Section 2.4.4 that a k-bounded

pseudo-Boolean function f has a sparse representation in the Walsh basis. Fur-

thermore, we observe that as long as f is epistatically bounded, we can also bound

the number of nonzero terms in the Walsh expansion of f c.

Lemma 4.2. If f can be expressed as a sum of m subfunctions that each depend

on at most k bits, then

W(f c) ≤
(
c+m2k − 1

c

)
.

Proof. Since f c(x) = f(x)c we can write

f c(x) =

(∑
i

wiψi(x)

)c

. (4.2)

Consider a cth order multinomial sum (z1 + z2 + . . .+ zb)
c in b indeterminates.

The number of terms in the expansion of this expression is equal to the number of

monomials of degree c on the variables zi which is
(
c+b−1
c

)
. Setting zi = wiψi(x),

the r.h.s. of (4.2) is such an expression. By Lemma 4.1 there are b ≤ m2k terms

in this sum which results in the claimed bound.

As a corollary to Lemmas 4.1 and 4.2, if f is a k-bounded pseudo-Boolean, i.e.,

it can be expressed as a sum of m subfunctions that each depend on at most k
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bits, then the Walsh basis expansion of f c

f c(x) =
∑
j

wjψj(x) (4.3)

has at most
(
c+m2k−1

c

)
nonzero terms.

4.3 Constructing moments in polynomial time

If f has a sparse representation in the eigenbasis of some linear operator that acts

on F ({0, 1}n), then the image of f under that operator can be efficiently computed

if its corresponding eigenvalues are known. In this section we will show that f has a

sparse representation in the eigenbasis of the general adjacency structures defined

above.

We begin by characterizing the adjacency structure for radius-r Hamming

spheres. Let x be an arbitrary but fixed point in {0, 1}n. Consider a vertex y

at some distance H(x, y). All Hamming neighbors of y are either one vertex closer

to x or one vertex further away. Define the approaching set

α(x, y) = {z ∈ N(y) : H(x, z) = H(x, y)− 1},

and the retreating set

β(x, y) = {z ∈ N(y) : H(x, z) = H(x, y) + 1}.

Thus the approaching and retreating sets partition the neighborhood set of y and

α(x, y) ∪ β(x, y) = N(y). (4.4)

See Figure 4.1 for an illustration.

The set S(r)(x) consists of all strings at Hamming distance r from x: those

strings that differ from x in exactly r positions. Hence |S(r)(x)| =
(
n
r

)
. Consider
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x

y

α(x, y)

β(x, y)

S(r−1)(x)

S(r)(x)

S(r+1)(x)

Figure 4.1: Illustration of approaching set α(x, y) and retreating set β(x, y). For
some y with H(x, y) = r.

a state y on this sphere, that is, H(x, y) = r. Since y differs from x in exactly r

positions, there are r Hamming moves that result in some state z1 with H(x, z1) =

r − 1. Thus we have |α(x, y)| = r. Furthermore, there are n− r Hamming moves

from y that result in a state z2 with H(x, z2) = r + 1. Hence, |β(x, y)| = n− r.
A generalization of the adjacency matrixA which we will call the sphere matrix

of radius r we define as

S(r)
xy =

{
1 if y ∈ S(r)(x), that is, H(x, y) = r,

0 otherwise.

This matrix identifies all vertex pairs in which one is contained in the radius-r

sphere of the other. We construct the sphere matrix S(r) of radius r recursively

in terms of A. In order to do so, we will first prove some useful properties about

sphere matrices.

The set {0, 1}n together with the Hamming distance function form a metric

space so we have for all x, y ∈ {0, 1}n, H(x, y) = H(y, x) and sphere matrices of
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any radius are symmetric:

S(r)
xy = S(r)

yx . (4.5)

Given any two sphere matrices, their product is a matrix that gives the number

of elements in the intersection of the spheres they represent. Formally, let S(r) and

S(s) be sphere matrices of radius r and s respectively. The product is the matrix(
S(r)S(s)

)
xy

=
∑
z

S(r)
xzS

(s)
zy

=
∑
z

S(r)
xzS

(s)
yz by (4.5),

= |S(r)(x) ∩ S(s)(y)|. (4.6)

We now characterize the particular matrix product (S(r−1)A) which will be

used in our recursive expression for S(r).

Lemma 4.3. Over {0, 1}n we have for all r ∈ {1, . . . , n},

(S(r−1)A)xy =


r if y ∈ S(r)(x),

n− r + 2 if y ∈ S(r−2)(x),

0 otherwise.

Proof. By (4.6) we have

(S(r−1)A)xy = |S(r−1)(x) ∩N(y)|,

since A = S(1) and N(x) = S(1)(x). Consider the neighbor set N(y) of y. Re-

call from Equation (4.4) that the approaching and retreating sets α(x, y), β(x, y)

partition N(y).

Suppose y ∈ S(r)(x). For all z ∈ α(x, y), H(x, z) = H(x, y) − 1 = r − 1. The

neighbors of y that are in S(r−1)(x) are exactly the approaching set α(x, y). Thus

we have

(S(r−1)A)xy = |S(r−1)(x) ∩N(y)|

= |α(x, y)|

= r.
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Now suppose y ∈ S(r−2)(x). For all z ∈ β(x, y), H(x, z) = H(x, y) + 1 = r − 1.

Thus the neighbors of y that are in S(r−1)(x) are exactly the retreating set β(x, y).

Thus we have

(S(r−1)A)xy = |S(r−1)(x) ∩N(y)|

= |β(x, y)|

= n− r + 2.

Finally suppose y is in neither sphere S(r)(x) nor S(r−2)(x). Then H(x, y) 6= r and

H(x, y) 6= r − 2. So

(S(r−1)A)xy = |S(r−1)(x) ∩N(y)|

= |(α(x, y) ∪ β(x, y)) ∩ S(r−1)(x)|

= |∅|

= 0,

since H(x, y)− 1 6= r − 1 and H(x, y) + 1 6= r − 1.

The following lemma uses the above result to provide a matrix expression for

the characteristic function of y ∈ S(r)(x). The expression involves the sphere

matrices of radius r − 1 and r − 2. This will allow us to define S(r) recursively in

terms of lower radius sphere matrices.

Lemma 4.4. Let x and y be arbitrary points in {0, 1}n. Given sphere matrices

S(r−1) and S(r−2) we have the following identity.

1

r

(
(S(r−1)A)xy − (n− r + 2)S(r−2)

xy

)
=

{
1 if y ∈ S(r)(x),

0 otherwise.
(4.7)

Proof. We prove this result by cases.
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Case 1: y ∈ S(r)(x). By Lemma 4.3 we have S(r−1)Axy = r. Furthermore, since

y /∈ S(r−2)(x) we have S
(r−2)
xy = 0. Thus Equation (4.7) evaluates to

1

r

(
(S(r−1)A)xy − (n− r + 2)S(r−2)

xy

)
=

1

r
(r − 0)

= 1.

Case 2: y ∈ S(r−2)(x). By Lemma 4.3 we have S(r−1)Axy = (n − r + 2). Since

y ∈ S(r−2)(x), S
(r−2)
xy = 1 and Equation (4.7) evaluates to

1

r

(
(S(r−1)A)xy − (n− r + 2)S(r−2)

xy

)
=

1

r
((n− r + 2)− (n− r + 2))

= 0.

Case 3: y /∈ S(r)(x) and y /∈ S(r−2)(x). By Lemma 4.3 we have S(r−1)Axy = 0.

Furthermore, since y /∈ S(r−2)(x) we have S
(r−2)
xy = 0. Thus Equation (4.7)

evaluates to

1

r

(
(S(r−1)A)xy − (n− r + 2)S(r−2)

xy

)
=

1

r
(0− 0)

= 0.

Hence, by Lemma 4.4 we can now define the sphere matrix recursively.

S(r) =
1

r

(
S(r−1)A− (n− r + 2)S(r−2)

)
. (4.8)

We have the two base cases S(1) = A and S(0) = I, where I is the 2n×2n identity

matrix (this corresponds to the degenerate sphere S(0)(x) = {x}). We now show

that if f is an eigenfunction of A with eigenvalue λ, it is also an eigenfunction of

the sphere matrix S(r) with an eigenvalue that is a degree-r polynomial in λ.

Let f be some pseudo-Boolean function. Consider the matrix-vector product
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S(r)f evaluated at state x.

S(r)f(x) = 〈ex,S(r)f〉

=
∑

y∈{0,1}n
S(r)
xy f(y)

=
∑

y∈S(r)(x)

f(y), (4.9)

since S
(r)
xy = 1 ⇐⇒ y ∈ S(r)(x), otherwise it is equal to zero. Lemma (2.1)

provides the special case when r = 1.

It is now straightforward to show that eigenfunctions of the immediate Ham-

ming neighborhood structure are also eigenfunctions of the radius r Hamming

sphere. In particular, if ϕi is an eigenfunction of A with eigenvalue λi, it must

also be an eigenfunction of S(r) with eigenvalue γ
(r)
i which is a scalar that is given

by a nonlinear recurrence equation. We capture this in the following theorem.

Theorem 4.1. If ϕi is an eigenfunction of A with eigenvalue λi, then ϕi is an

eigenfunction of S(r) with eigenvalue γ
(r)
i given by the recurrence

γ
(r)
i =

1

r

(
λiγ

(r−1)
i − (n− r + 2)γ

(r−2)
i

)
,

with γ
(1)
i = λi and γ

(0)
i = 1.

Proof. We proceed by induction on r. We have two base cases,

S(0)ϕi = Iϕi = ϕi,

S(1)ϕi = Aϕi = λiϕi.

Thus γ
(0)
i = 1 and γ

(1)
i = λi. Suppose for induction that

S(r−1)ϕi = γ
(r−1)
i ϕi,

and

S(r−2)ϕi = γ
(r−2)
i ϕi,
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for scalars γ
(r−1)
i and γ

(r−2)
i . Thus,

S(r)ϕi =
1

r

(
S(r−1)A− (n− r + 2)S(r−2)

)
ϕi by (4.8),

=
1

r

(
λiS

(r−1)ϕi − (n− r + 2)S(r−2)ϕi
)

=
1

r

(
λiγ

(r−1)
i − (n− r + 2)γ

(r−2)
i

)
ϕi by induction,

so we have the recurrence

γ
(r)
i =

1

r

(
λiγ

(r−1)
i − (n− r + 2)γ

(r−2)
i

)
.

By Lemma 2.7, the ith Walsh function ψi is an eigenfunction of the Hamming

adjacency A corresponding to eigenvalue λi = n− 2〈i, i〉 where 〈i, i〉 is the string

inner product of i with itself: the order of the length-n bitstring representation of

i. Thus in the case of the Walsh functions, we have

S(r)ψi(x) = γ
(r)
i ψi(x),

where

γ
(r)
i =

(
n− 2〈i, i〉

r

)
γ

(r−1)
i −

(
n− r + 2

r

)
γ

(r−2)
i ,

...

γ
(1)
i = (n− 2〈i, i〉),

γ
(0)
i = 1.

Note that this recurrence is exactly equivalent to an identity for the well-known

Krawtchouk polynomials [Kra29]

γ
(r)
i = Kr(〈i, i〉, n),

which has the closed form

γ
(r)
i = Kr(〈i, i〉, n) =

r∑
j=0

(〈i, i〉
j

)(
n− 〈i, i〉
r − j

)
(−1)j. (4.10)
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The first moment of f c (i.e., the cth moment of f) over the sphere of radius r

around an arbitrary point x can be calculated using a function corresponding to

the image of f c under the linear map S(r).

Theorem 4.2. Fix c and k. Let f be any k-bounded pseudo-Boolean function. Let

S(r)(x) be a sphere of radius r around an arbitrary state x. The quantity µc(S
(r)(x))

(the cth moment of f over the sphere) can be expressed as a series containing a

polynomial number of terms.

Proof.

µc(S
(r)(x)) =

1

|S(r)(x)|
∑

y∈S(r)(x)

f(y)c

=
1

|S(r)(x)|S
(r)f c(x) by (4.9),

=
1

|S(r)(x)|S
(r)
∑
j

wjψj(x) by (4.3),

=
1

|S(r)(x)|
∑
j

γ
(r)
j wjψj(x) by Theorem 4.1,

and since ∀x ∈ {0, 1}n, |S(r)(x)| = (n
r

)
,

=

(
n

r

)−1∑
j

γ
(r)
j wjψj(x).

By Lemma 4.2 there are at most
(
c+m2k−1

c

)
terms in the series.

Since a Hamming ball of radius r is a union over all spheres of radius at most

r, the moment calculation can be easily generalized to Hamming balls.6

6This result also trivially applies to any set of points which is a union of spheres about x.
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Theorem 4.3. Fix c and k. Let f be any k-bounded pseudo-Boolean function.

Let B(r)(x) be a Hamming ball of radius r around an arbitrary state x. The quan-

tity µc(B
(r)(x)) (the cth moment of f over the ball) can be expressed as a series

containing a polynomial number of terms.

Proof.

µc(B
(r)(x)) =

1

|B(r)(x)|
r∑
s=0

∑
y∈S(s)(x)

f(y)c

=

(
r∑
s=0

(
n

s

))−1 r∑
s=0

∑
j

γ
(s)
j wjψj(x)

=

(
r∑
s=0

(
n

s

))−1∑
j

wjψj(x)

(
r∑
s=0

γ
(s)
j

)
.

Again, by Lemma 4.2 there are at most
(
c+m2k−1

c

)
terms in the series.

It immediately follows that central moments of the distribution of f over Ham-

ming regions can be expressed in terms of these series.

Corollary. Fix c and k. Let f be any k-bounded pseudo-Boolean function. Let X

be a Hamming region (sphere or ball) of some radius around an arbitrary state.

The cth central moment of f over X can be expressed as a series containing a

polynomial number of terms.

Proof. This follows from the definition of central moments in terms of µc.

c∑
i=0

(
c

i

)
(−1)c−iµi(X)µ1(X)c−i.

4.3.1 A polynomial-time algorithm for computing moments

We have shown that when a function has a sparse representation in the Walsh

basis, the expression for fixed moments of that function over Hamming regions can
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be characterized as a series containing a polynomial number of terms involving

products of the Walsh coefficients. Computationally, this means when given such

a function, we can immediately construct the exact fixed moments over any Ham-

ming region in time polynomial in n, even when the cardinality of the Hamming

region in question is exponential in n.

Let us compute µc(B
(r)(x)) for a function f . We first compute the nonzero

Walsh coefficients of f and store them in a data structure W which is an array

of (bitstring, value) pairs such that, for the jth nonzero Walsh coefficient of f in

some arbitrary order, W [j] = (i, wi). We shall assume that arrays are indexed from

zero. Since f is k-bounded, this data structure can be constructed in polynomial

time [HRW99]. The eigenvalue γ
(r)
p corresponds to the closed expression for the

Krawtchouk polynomial in Equation (4.10).

The ball moment µc(B
(r)(x)) is computed as follows.

BallMoment(x, r, c,W )

1 vol ← 0
2 sum ← 0
3 for s← 0 to r
4 do sum ← sum +SphereSum(x, s, c,W )
5 vol ← vol +

(
n
s

)
6 return sum / vol

In line 4 we must calculate the term corresponding to the sum of f c over spheres

of radius s ≤ r. Let the function Tuples(c, d) return the set of all c-tuples over

the index set {0, 1, . . . , d− 1}. The sum of f c evaluated over a sphere of radius s

around x can be computed as
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SphereSum(x, s, c,W )

1 if c = 0 return 1
2 sum ← 0
3 for each q ∈ Tuples(c, length[W ])
4 do w← 1
5 j ← (000 . . . 0)
6 for `← 0 to c− 1
7 do (i, wi)← W [q[`]]
8 j ← j ⊕ i
9 w← w× wi

10 sum ← sum +
(
γ

(s)
j ×w× ψj(x)

)
11 return sum

If f can be expressed as the sum of m � nk subfunctions, since k and c are

taken as constants, the time complexity of SphereSum is O(mc), i.e., there are

at most m2k elements in W . Note that since multiplication and exclusive or are

commutative operations, there are a large number of symmetries in the sum over all

c-tuples. Therefore the efficiency of the outer loop in lines 3 to 10 may be improved

further using combinatorial enumeration techniques to remove these symmetries.

Since BallMoment must call SphereSum exactly r times, the former algorithm

has a time complexity of O(rmc). These runtime bounds are typical for many

combinatorial optimization problems such as Max-k-Sat and evolutionary models

such as NK-landscapes where m is O(n). In the general case, there can be at most(
n
k

)
= O(nk) nonzero Walsh coefficients of order k so the worst case complexity

for k-bounded pseudo-Boolean functions is O(nck) and O(rnck). Thus we have the

runtime bounds claimed in the introduction.

This algorithm relies on direct knowledge of the Walsh coefficients. For many

combinatorial optimization problems (such as Max-k-Sat, as we saw in Chapter 3)

it is fairly simple to compute the Walsh coefficients directly. In a more general

setting, if the Walsh coefficients are unknown, but f is still epistatically bounded

by a constant k, the Walsh coefficients can be efficiently retrieved deterministically
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in O(nk) time [KP01], or stochastically with negligible error in O(n2 log n) time

[HW04]. If there are m nonzero Walsh coefficients, Choi et al. [CJK08] present

an O(m log n) adaptive randomized algorithm for finding all of them with high

probability.

In this chapter we have used the analysis presented in the thesis to characterize

the distribution of of codomain values of f across Hamming regions using low

moments retrieved by a method that takes advantage of the sparsity of f in an

eigenbasis of the Hamming adjacency. In the next chapter, we will study exactly

how these moments are related to the actual distribution of f over Hamming

regions and use the results to bound and approximate the true distributions of f .
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Chapter 5

Characterizing Distributions of
Codomain Values over Local
Regions

In the previous chapter, we investigated a method for efficiently computing mo-

ments of the distribution of codomain values of the objective function over “local”

regions of {0, 1}n. In this chapter,7 we will study how these moments relate to

the local codomain distribution itself. In particular, we are interested here in the

moment problem of classical probability theory: given a set of moments, find a

probability distribution that exhibits those moments.

András Prékopa [Pré90] originally studied the moment problem of distribu-

tions with finite support. Prékopa showed how to compute bounds on such a

distribution using a linear programming approach. We will connect this theory

to the theoretical work on search space modeling developed in earlier chapters.

In particular, we develop a method for computing bounds on the distribution of

codomain values of the objective function over local regions for a particular class

7Most of the work presented in this chapter was initially published in the proceedings of the
Eleventh ACM SIGEVO Conference on Foundations of Genetic Algorithms [SWH11a].
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of problems. Moreover, we show that Prékopa’s linear programming approach can

be adjusted to provide an heuristic approximation of the local region distribution

for such problems which can be used to estimate the count of improving moves

that lie within a region of the search space.

The distribution of codomain values of an objective function over the entire

state set is essentially a measure that provides one with the count of states in a

particular problem instance that evaluate to a given value of the objective func-

tion. In the Boolean satisfiability research community, this measure is called the

density of states (borrowing nomenclature from statistical physics) and provides a

fine characterization of the structure of a problem instances [EGS10]. For Max-

k-Sat, this so-called density of states can be interpreted as the frequencies of

codomain values of a function that counts the number of assignments to a given

Boolean formula that unsatisfy a particular number of clauses. The density of

states also has a strong connection to model counting since the extremal values of

the distribution of the Max-k-Sat objective function correspond to the number

of satisfying assignments to the corresponding Boolean formula. In general, the

density is intractable to compute, and for Max-k-Sat is approximated by Monte

Carlo methods such as Metropolis sampling [REA96, AER96] or flat histogram

based MCMC methods [EGS10].

The distribution of codomain values over Hamming regions that we address in

this chapter is a generalization of the density of states in Max-k-Sat since one can

construct a Hamming region to cover the entire state set. Recall that our interest

in such a local region distribution comes from the fact that local algorithms will

be influenced by the statistics of the objective function over states that are near

the current solution. For instance, consider a Hamming region around a particular

state x. The codomain distribution over that region determines quantities such as
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the count of elements in the region with higher objective value than x, or even the

count of the best values in the region. The approximations and bounds we present

in this chapter are directly applicable to estimating and bounding these quantities.

5.1 The local region value distribution

Recall the definition of Hamming spheres (Definition 4.1) and Hamming balls (Def-

inition 4.2). We define a Hamming region to be any subset of {0, 1}n that is a

Hamming ball or sphere. Equation (4.1) gives the definition of µc(X): the cth

moment of a real function f over a Hamming region X ⊆ {0, 1}n. In this sec-

tion we will study how a set of moments is related to the distribution of values

from the codomain of f across X. In the remainder of this chapter, we constrain

the codomain of the objective function f to a finite set with linearly bounded

cardinality:

f : {0, 1}n → A,

where

A = {a0, a1, . . . , aq−1}

is a finite set of q elements where q is Θ(n). This asymptotic bound on the

codomain size is important to subsequent analysis since we later characterize the

distribution of codomain values as the solution to q linear equations in q unknowns.

Without loss of generality, let us impose a total order on A so that i < j =⇒
ai < aj. Assuming maximization, let

a∗ = max
x∈{0,1}n

f(x).

Given a Hamming region X, we define the measure

pX : A→ [0, 1],
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where pX(ai) is the probability that an element x chosen uniformly at random

from X has objective function value f(x) = ai. In this case, pX is a probability

mass function with support A. For a given distribution, the set of q discrete values

{pX(ai)} are called the impulses of the probability mass function.

We can thus define the codomain value distribution for f over the local region

X as a function

VX : A→ N,

where VX(ai) = |X|pX(ai) is the number of states y ∈ X such that f(y) = ai.

In this case, V{0,1}n corresponds to the so-called density of states for k-Sat and

Max-k-Sat problems [AER96, REA96, EGS10].

The value distribution exactly characterizes the allocation of objective function

values to states in the region X. Under the assumption of maximization, VX(a∗)

is the number of optimal solutions in X, and

∑
ai>f(x)

VX(ai)

is the number of states in the Hamming region with improving objective function

value with respect to a point x. Thus, an approximation of this quantity can be

used to estimate the number of optimal solutions in X and the number of states

in X with improving objective function value.

We now show that when f has the constraints imposed above, the moments of

f over X appear in a system of equations that determine the value distribution

VX .

5.1.1 Computing the exact value distribution

Consider a state y drawn uniformly at random from the Hamming region X. The

value of f evaluated at y can be modeled as a random variable Z. Since each state
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y ∈ X has a probability 1
|X| of being selected, the expectation of Z raised to the

cth power can be written as

E[Zc] =
1

|X|
∑
y∈X

f(y)c

= µc(X) by (4.1). (5.1)

But E[Zc] is, by definition, the cth moment of the distribution of the random

variable Z. Note that the distribution of Z is the above defined probability mass

function pX . Hence we can write

E[Zc] =

q−1∑
i=0

acipX(ai). (5.2)

Putting together Equations (5.1) and (5.2) we have the following identity:

µc(X) =

q−1∑
i=0

acipX(ai). (5.3)

In other words, the cth moment of f over X is equal to the cth moment of the

probability mass function pX .

In general, a function f has an infinite number of moments. Let us consider

the lowest |A| = q moments of X:

{µ0(X), µ1(X), . . . , µq−1(X)}.

Using the identity in (5.3) we have the following system of q equations in q un-

knowns.
q−1∑
i=0

ajipX(ai) = µj(X), (5.4)

for j = {0, 1, . . . , q − 1}. We can construct the q-dimensional column vectors

p = (pX(a0), pX(a1), . . . , pX(aq−1))
>,

and

µ = (µ0(X), µ1(X), . . . , µq−1(X))>.
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If the q × q matrix

M i,j =
(
(ai)

j
)>

is nonsingular, there is a unique solution p to

Mp = µ,

which defines the probability mass function for the Hamming region since pX(ai) =

pi. The value distribution is then given by VX(ai) = |X|pX(ai).

M belongs to a well-known class of matrices known as Vandermonde matrices.

The determinant is

det(M ) =
∏
i<j

(aj − ai) .

The matrix is nonsingular if and only if all the values of ai are distinct. In our

case, since A is a set, all elements ai ∈ A, by definition, are distinct so M always

has an inverse and the above system of equations always has a unique solution.

Hence, if we have q moments of the Hamming region, we can obtain exactly the

probability mass function over X by solving the system. Since q is O(n), the size

of the linear system is polynomial in n, even if |X| is exponential in n.

5.2 Sharply bounding the local distribution

In the foregoing, q moments of f over X are needed to characterize VX . Thus we

must be able to retrieve moments of arbitrary order. If P 6= NP, this is computa-

tionally difficult, as is captured by the following theorem.

Theorem 5.1. In general, the calculation of VX is #P-hard.

Proof. Let F be a propositional 3-Sat formula with n variables and m clauses.

Let f : {0, 1}n → {0, 1, . . . ,m} give the number of clauses satisfied under an

assignment. Note that f satisfies the conditions we have imposed.
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Let X be a ball of radius n around an arbitrary assignment x. In other words,

X = {0, 1}n and VX(m) gives the number of satisfying assignments to F , solving

#3-Sat which is #P-complete [Val79].

A surprising corollary to Theorem 5.1 is the following.

Remark 5.1. Unless P = NP, no NP-hard problem can be represented by an

objective function f : {0, 1}n → A such that f is both epistatically bounded and the

cardinality of the codomain A of f is O(1).

This follows immediately from Theorem 5.1 since for such a function f one

could compute the moments of f over {0, 1}n in time polynomial in n (since in

this case c must be asymptotically bounded by a constant) and solve the |A| × |A|
linear system corresponding to V{0,1}n . The solution to the problem could then be

immediately deduced from V{0,1}n .

When q is Ω(n), given all q moments, it is, in principle, possible to solve the

linear system in polynomial time. In this case, the computational intractability

must arise in the calculation of the moments themselves. Indeed, one can see that

since the calculation of µc(X) in Chapter 4 is exponential in c, the generation of

all q salient moments must be exponential in n.

Thus, unless P = NP, we cannot hope to efficiently compute VX in general.

Given the results developed in Chapter 4, it is natural to ask the question, given

some information from the low moments of the distribution, is it possible to make

some mathematically rigorous statements about the distribution? In other words,

if we have a set of moments of f over X {µ0(X), µ1(X), . . . , µcmax(X)} where

cmax � q, is it possible to characterize the distribution in some way?

90



5.2.1 Constructing bounding functions

Given only moments up to 0 < cmax � q of the objective function f over a

Hamming region X, we have the partial Vandermonde system where j in Equa-

tion (5.4) runs from 0 to cmax. Algebraically, let M ′ be the (cmax + 1)× q partial

Vandermonde matrix that consists of the first cmax + 1 rows of M and a trun-

cated moment vector µ′ = (µ0(X), µ1(X), . . . , µcmax(X))> consisting of the lowest

cmax + 1 moments of f over X. Consider the partial Vandermonde system

M ′p = µ′. (5.5)

This system is underdetermined, so there are potentially infinite solutions. Further-

more, there is no guarantee that a solution to this system gives a valid probability

mass function. A solution to (5.5) may contain elements that are meaningless as

probabilities, i.e., lying outside of the unit interval.

We can, however, impose a set of reasonable constraints on the decision vari-

ables of the system. In fact, it is possible to pose the formulation of a solution to

the partial Vandermonde system in Equation (5.5) in terms of a linear programming

problem subject to constraints that arise from the moment equations.

max b>z
s.t. M ′z = µ′,

0 ≤ zi ≤ 1.
(5.6)

where b is a length q vector of coefficients and z is a vector of decision variables.

Since the probability mass function in question has finite, preassigned sup-

port, if we select the coefficient vector b carefully, we can construct bounds on

the impulse values of the probability mass function [Pré90]. We will use this re-

sult to construct functions that sharply bound the true distribution of f over X.

Moreover, these bounds will be valid, even when the set of available moments

has cardinality significantly less than q. We now formalize this in the following
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theorem.

Theorem 5.2. Let X be a Hamming region. Let z be the solution to the linear

program in (5.6) with b being the standard jth basis vector:

bi = δij, i = 0, 1, . . . , q − 1,

where δ is the Kronecker delta function. Then

VX(aj) ≤ |X|zj.

Proof. By definition, VX(aj) = |X|pX(aj) so it is enough to prove that pX(aj) ≤ zj.
Suppose for contradiction that pX(aj) > zj. In other words, we have pj > zj.

By definition, z is the unique solution that maximizes

b>z = zj

and satisfies the partial Vandermonde system M ′z = µ′. Now, consider the full

Vandermonde system Mp = µ. Since all equations in the partial system corre-

sponding to M ′ are contained in the full system, it follows that M ′p = µ′ is also

satisfied. But pj > zj =⇒ b>p > b>z, a contradiction that z maximizes the

linear program corresponding to the partial Vandermonde system.

Iteratively maximizing the linear program using the jth standard basis vector

for j = 0, 1, . . . , q − 1 thus generates an upper bound function for each of the

impulses of the distribution function VX . We define this upper bound function

formally as follows.

Definition 5.1. The upper bound function UBX : A → R is constructed as

UB(aj) = |X|zj where z is the LP solution to (5.6) using the standard jth ba-

sis vector for b. By Theorem 5.2 we have

VX(a) ≤ UBX(a),

for all a ∈ A.
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A lower bound can be analogously found by solving the corresponding mini-

mization problem using jth standard basis vectors.

Definition 5.2. The lower bound function LBX : A → R is constructed as

LB(aj) = |X|zj where z is the LP solution to the minimization version of (5.6)

using the standard jth basis vector for b. By a result symmetric to that of Theo-

rem 5.2 we have

VX(a) ≥ LBX(a),

for all a ∈ A.

5.2.2 Bounding the cumulative local distribution

The linear program approach to constructing bounding functions for VX can be

modified to bound the cumulative variant of the value distribution of f over X.

We define the cumulative codomain value distribution of f over X as

CX(a) =
∑
ai≤a

VX(ai).

Intuitively, CX(a) counts the states in y ∈ X such that f(y) is at most a. Moreover,

|X| − CX(a) is the complementary cumulative distribution function that counts

the states y ∈ X such that f(y) is strictly greater than a. We now use the

above approach to construct bounding functions UBC
X and LBC

X for the cumulative

codomain value distribution of f over X.

Theorem 5.3. Let X be a Hamming region. Let z be a solution to the linear

program in (5.6) with b being the coefficient vector

bi =

{
1 if i ≤ j,

0 if i > j,
i = 0, 1, . . . , q − 1,

for some 0 ≤ j < q. Then

CX(aj) ≤ |X|b>z.
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Proof. By definition,

CX(aj) = |X|
j∑
i=0

pX(ai),

so it is enough to prove that

j∑
i=0

pX(ai) ≤ b>z.

Suppose for contradiction that
∑j

i=0 pX(ai) > b>z. In other words, we have∑j
i=0 pi = b>p > b>z. By definition, z is the unique solution that maximizes

b>z and satisfies the partial Vandermonde system M ′z = µ′. Now, consider the

full Vandermonde system Mp = µ. Since all equations in the partial system cor-

responding to M ′ are contained in the full system, it follows that M ′p = µ′ is also

satisfied. But
∑j

i=0 pi > b
>z =⇒ b>p > b>z, a contradiction that z maximizes

the linear program corresponding to the partial Vandermonde system.

We can also define a corresponding cumulative upper bound function formally

as follows.

Definition 5.3. The upper bound function UBC
X : A → R is constructed as

UBC(aj) = |X|b>z where z is the solution to (5.6) using the coefficient vector

bi =

{
1 if i ≤ j,

0 if i > j,
i = 0, 1, . . . , q − 1.

By Theorem 5.3 we have

CX(a) ≤ UBC
X(a),

for all a ∈ A.

Again, a cumulative lower bound function can be constructed by solving the

corresponding minimization problem.
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Definition 5.4. The lower bound function LBC
X : A → R is constructed as

LBC(aj) = b>z where z is the solution to the minimization version of (5.6) using

the coefficient vector

bi =

{
1 if i ≤ j,

0 if i > j,
i = 0, 1, . . . , q − 1.

By a result symmetric to that of Theorem 5.3 we have

CX(a) ≥ LBC
X(a),

for all a ∈ A.

5.2.3 Bounding the extremal values of f in X

The bounding functions on VX given by Definitions 5.1 and 5.2 can be used to

bound the maximum (resp. minimum) values of f within X. We call a bounding

function degenerate if it is zero for all inputs a ∈ A.

Theorem 5.4. Let amax be the maximal value of f in a Hamming region X.

Assume UBX and LBX are nondegenerate. Let

amax
UB = max{i : UBX(ai) 6= 0},

and

amax
LB = max{i : LBX(ai) 6= 0}.

Then

amax
LB ≤ amax ≤ amax

UB .

Proof. By Theorem 5.2, VX(a) is bounded above by zero for all a > amax
UB . Hence

there are no states x in X with f(x) > amax
UB and thus amax ≤ amax

UB . Furthermore,

VX(amax
LB ) > LBX(amax

LB ) > 0. Thus there exists an x ∈ X with f(x) = amax
LB so the

maximal value of f in X is at least amax
LB . Hence, amax

LB ≤ amax.
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In the case that UBX is degenerate, then X must be the empty set since the

count of states occupying any codomain value is bounded above by zero. In the

case that LBX is degenerate, then we must resort to the degenerate lower bound

on amax: that is amax
LB = a0.

It is straightforward to bound the minimal value of f in X by taking the

minimal nonzero impulses of UBX and LBX . However, in this case, the upper

bound function gives the lower bound on the minimal value since we are bounding

“from the left” in this case. Similarly, the lower bound function gives the upper

bound on the minimal value since it bounds “from the right.” See Figure 5.1 for

an illustration. We formalize this in the following theorem.

Theorem 5.5. Let amin be the minimal value of f in a Hamming region X. As-

sume UBX and LBX are nondegenerate. Let

amin
LB = min{i : UBX(ai) 6= 0},

and

amin
UB = min{i : LBX(ai) 6= 0}.

Then

amin
LB ≤ amin ≤ amin

UB .

Proof. By Theorem 5.2, VX(a) is bounded above by zero for all a < amin
LB . Hence

there are no states x in X with f(x) < amin
LB and thus amin ≥ amin

LB . Furthermore,

VX(amin
UB ) > LBX(amin

UB ) > 0. Thus there exists an x ∈ X with f(x) = amin
UB so the

minimal value of f in X is at most amin
UB . Hence, amin

UB ≥ amin.

The degenerate cases are handled accordingly.
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Figure 5.1: Bounding the extremal values of f over X using the nonzero impulses
of UBX and LBX .

5.3 Estimating the count of improving moves in

a local region

In this section we will use the solution of the linear program directly to estimate

the number of improving moves in a local region. This quantity is important to

local search algorithms because it determines how many states in nearby neighbor-

hoods are candidates for selection. It could potentially be used to provide on-line

estimations of the probability of a hill-climbing search or a mutation-only evolu-

tionary algorithm performing a successful move within a certain number of steps.

Moreover, it specifies a new way of comparing two arbitrary points in the search

space by estimating the relative merits of exploration near each state. Finally, it

can provide a sense of how rugged the region is.

We will now consider a general solution of the linear program to be an ap-

proximation of the true distribution. Without loss of generality, we shall assume

maximization and imply the term “improving” is synonymous with “strictly greater

objective function value.” Of course, the results also hold for minimization of f

by reversing the appropriate inequalities.

Consider again the linear program formulation of the partial Vandermonde
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system specified in Equation (5.6). Any solution z to this system has a number

of desirable properties. First, it can be interpreted as a probability mass func-

tion in the sense that its elements lie between 0 and 1 because of the constraints

imposed by the linear program. Moreover, the zeroth moment µ0(X) = 1 cor-

responding to the first row of M ′ ensures the elements sum to unity. Thus we

can define the approximated probability mass function p̂X over X in terms of

z: (p̂X(a0), p̂X(a1), . . . , p̂X(aq−1))
>. The approximated probability mass function

p̂X shares low moments with the exact solution to the original system in Equa-

tion (5.4). This is captured by the following.

Theorem 5.6. Let z be a solution to the linear program in (5.6) with an arbitrary

coefficient vector b. Let p̂X denote the probability mass function obtained from z

as follows:

p̂X(ai) = zi, i = 0, 1, . . . , q − 1.

Then p̂X has the same jth moment as the true distribution pX for 0 ≤ j ≤ cmax.

Proof. Let 0 ≤ j ≤ cmax. The jth moment of p̂X is

q−1∑
i=0

aji p̂X(ai) =

q−1∑
i=0

M ′
j,izi

= µ′j by (5.6),

= µj(X).

By (5.3), µj(X) is equivalent to the jth moment of pX : the true probability mass

function over X.

In other words, since mean and variance depend only on the first and second

moments, for cmax ≥ 2, the approximated probability mass function given by

solving the above linear program has the same mean and variance as the true
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probability mass function of the region. The codomain value distribution over X

is approximately

V̂X(a) = |X|p̂X(a). (5.7)

Similarly the cumulative value distribution is approximately

ĈX(a) = |X|
∑
ai<a

p̂X(a). (5.8)

We define the function

ΞX(a) = |{y ∈ X : f(y) ≥ a} (5.9)

to be the true count of states y in X that have an objective function value strictly

greater than a. For example, ΞB(r)(x)(f(x)) is the count of improving states within

Hamming radius r of x. It is easy to see that

ΞX(a) =
∑
ai>a

VX(ai)

= |X| − CX(a).

Hence an approximation for the number of improving states in X is given by

Ξ̂X(a) = |X| − ĈX(a). (5.10)

5.3.1 Improving accuracy

The underdeteriminacy of the partial Vandermonde system introduces inherent

inaccuracies into the approximation, especially when the number of available mo-

ments is very low. We are thus interested in ways to improve the accuracy of the

approximation of pX by p̂X .

5.3.1.1 Choosing the coefficient vector

The premise of Theorem 5.6 does not specify the coefficient vector b. The result

does not directly depend on the contents of this vector. However, one might expect
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different choices for b to yield approximations of differing accuracy. Indeed, it is

not immediately clear what an appropriate choice for the coefficient vector might

be.

We would expect impulse values occurring near the mean (that is, the values

of ai closest to µ1(X)) to be highest in the probability mass function. Hence

a heuristic might be to maximize impulses near µ1(X). Let ω be a “window

size” parameter. Define also the index of the element nearest to the mean as

ζ = arg mini |ai − µ1(X)| (recall we have imposed a total order on A). We can

then define the coefficient vector as

bi =

{
1 if |ζ − i| ≤ ω,

0 otherwise.

Maximizing b>z is akin to finding the approximated probability mass function

in which impulses lying near the mean value are maximal. Determining more

principled values for b remains a direction for future research.

5.3.1.2 Limiting impulse values

Since the linear program is very underconstrained, the above approach tends to

result in sparse probability mass functions in which a large amount of mass is

allocated to few impulses. Empirical data suggests that the nonzero impulse val-

ues tend to be unimodal and “clustered” around the mean, each with a limited

mass. As an example, see Figure 5.2 which shows four different true codomain

distributions VX over Hamming regions of radius 5 sampled at different levels of

the objective function on a Max-2-Sat instance. To address this and further re-

fine the accuracy of the approximation we introduce an upper limit to the mass

contribution of each impulse.

If A ⊂ N and p̂X is reasonably well-behaved, then a suitable continuity correc-

tion would allow us to model p̂X with a continuous distribution. Neglecting higher
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Figure 5.2: True VX distributions over Hamming balls of radius 5 around points
x sampled at different levels of the objective function. The objective function
comes is defined by an instance of Max-2-Sat. In each plot, a broken vertical line
denotes the mean value of the distribution.

moments, we note that a normal probability distribution with variance σ2 has a

maximum of 1√
2πσ2

. Hence we might limit the maximum value of the impulses in

p̂X by (
2π(µ2(X)− µ1(X)2)

)−1/2
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to mitigate the sparse distribution of mass in the above approach.

Imposing this heuristic limit does not violate the constraints of the program;

hence the result of Theorem 5.6 remains valid, and the solution is still a probability

mass function with the same cmax+1 moments as the true probability mass function

pX . We will presently find (in Section 5.3.2) that this limit empirically improves

the accuracy of the approximated distribution function.

5.3.1.3 Incorporating constraints on higher moments

One advantage to the linear programming approach is that, provided we can com-

pute upper and lower bounds on higher moments, we can incorporate this infor-

mation as linear constraints in the LP approximation.

Let c be the maximum moment degree available and d be an arbitrary incre-

ment. Bounds on moments of higher degree can be added explicitly to the linear

program as doubly bounded constraints:

LB(µc+d(X)) ≤
q−1∑
i=0

ajipX(ai) ≤ UB(µc+d(X)), (5.11)

where LB(µc+d(X)) and UB(µc+d(X)) are respectively lower and upper bounds

on the moment of order c + d. Obtaining the exact moments of higher degrees

becomes computationally difficult (and is generally intractable by Theorem 5.1).

However, if bounds on higher moments can be efficiently obtained, they may be

incorporated into the approximation in this way.

We now impose some mild restrictions on the codomain A of f and show how

to calculate some trivial upper and lower bounds on higher moments. First, we

will assume ∀ai ∈ A, ai ≥ 0. Since A is a finite set with cardinality linear in the

problem size, we can impose this condition without loss of generality since the

evaluation of f can always be shifted by an appropriate constant. Before deriving

upper and lower moment bounds, we prove the following preparatory lemma that
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establishes a useful property for the theorem to follow.

Lemma 5.1. Let X be a Hamming region. As long as there exist at least two

states x1, x2 ∈ X with f(x1) ≥ 1 and f(x2) ≥ 1, then, for c, d ≥ 1,

1

|X|
∑
y∈X

f(y)c

 ∑
z∈X\{y}

f(z)d

 ≥ µc(X).

Proof. Since either x1 ∈ X \{y} or x2 ∈ X \{y}, we have
∑

z∈X\{y} f(z)d ≥ 1.

The conditions for the lemma are relatively weak since, if necessary, we can

shift f without altering the total order on A. We are now ready to give an upper

bound on moments of degree c+ d.

Theorem 5.7. Let X be a Hamming region with at least two states x1, x2 ∈ X

such that f(x1) ≥ 1 and f(x2) ≥ 1. Let d ≥ 1. Then,

µc+d(X) ≤ |X|µc(X)µd(X)− µc(X).

Proof.

µc(X)µd(X) =

(
1

|X|
∑
y∈X

f(y)c

)(
1

|X|
∑
y∈X

f(y)d

)

=
1

|X|2
∑
y∈X

f(y)c+d +
1

|X|2
∑
y∈X

f(y)c

 ∑
z∈X\{y}

f(z)d


=

1

|X|µc+d(X) +
1

|X|2
∑
y∈X

f(y)c

 ∑
z∈X\{y}

f(z)d

 .

Rearranging terms and multiplying by the cardinality of X we have

|X|µc(X)µd(X)− 1

|X|
∑
y∈X

f(y)c

 ∑
z∈X\{y}

f(z)d

 = µc+d(X),

and by Lemma 5.1, |X|µc(X)µd(X)− µc(X) ≥ µc+d.
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We can also derive the following trivial lower bound.

Theorem 5.8. Let X be a Hamming region such that for all x ∈ X, f(x) = 0 or

f(x) ≥ 1. Let d ≥ 1. Then,

µc+d(X) ≥ µc(X).

Proof. Since for all x ∈ X, f(x)c+d ≥ f(x)c we immediately have

1

|X|
∑
y∈X

f(y)c+d ≥ 1

|X|
∑
y∈X

f(y)c,

which proves the claim.

Again, the conditions for the theorem are relatively weak since 1.) Domains

where A ⊂ N already satisfy them, and 2.) The elements of A can be appropriately

shifted without changing the total order. These bounds can be added to the linear

program in the manner mentioned at the beginning of the section.

5.3.2 Numerical results

In order to assess the accuracy of the approximation devised above, it is neces-

sary to perform a number of computational experiments. We divide this section

into two parts. In the first part, we observe the dependence of accuracy on the

accuracy-improving measures introduced above. In the second part, we compare

the predicted number of improving moves with the actual number of improving

moves.

We report all results on the maximum k-satisfiability (Max-k-Sat) domain

which has, as we have already seen in Chapter 2, a k-bounded pseudo-Boolean

objective function. In this case, as we proved in Theorem 5.1, unless P = NP, it is

intractable to generate the true value distribution over all Hamming regions since

such a quantity yields a solution to the decision problem.
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Figure 5.3: A comparison of time (in seconds) to exhaustively compute true dis-
tribution and time to perform LP approximation as a function of ball radius. The
y-axis is on a logarithmic scale.

Therefore, given a Hamming region, we construct the true distribution by a

direct count of states at each objective function value in the region and compare it

with the approximated distribution. Of course this limits the comparison to com-

putationally manageable regions. Figure 5.3 illustrates this with a logarithmic plot

of CPU time in seconds necessary to compute the true distribution as a function of

Hamming ball radius on a 100 variable Max-k-Sat instance. The required time is

directly proportional to the cardinality of the Hamming ball which is exponential

in the radius. As a comparison, we also plot in Figure 5.3 the time required to

perform the LP approximation of the distribution. To solve Equation (5.6) we

used the GNU Linear Programming Kit (GLPK) using a simplex-based LP solver

[Mak08]. While the time to compute the true distribution increases to over 20 min-

utes for each Hamming region, the time to perform the LP approximation remains

less than a second on average. This means it becomes intractable to compare the

approximation accuracy for all radius values on nontrivial instances. However,

we conjecture that, in the case of a Hamming ball, the approximation accuracy
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remains stable with increasing radius, or even possibly improves.

As a test set, we use the 10 instance s2v100c1200 Max-2-Sat benchmark set

from the MAXSAT-2009 competition.8 Each instance contains 100 variables and

1200 clauses. Each approximation is evaluated over Hamming balls of fixed radius

r = 5. Thus the calculations are performed over regions containing 79375496

states.

5.3.2.1 Effects on accuracy

In order to compare how well a particular approximated distribution fits the true

distribution, we define the (normalized) measure of absolute error as

ε =
1

q

q−1∑
i=0

|cX(ai)− ĉX(ai)|.

Note that 0 ≤ ε ≤ 1 and measures the extent to which the two cumulative prob-

ability distribution functions disagree (see Figure 5.4). The ε metric has a loose

similarity to the Kolmogorov-Smirnov statistic which measures the maximum de-

viation between two (continuous) cumulative distributions.

We plot the actual vs. approximated cumulative distribution function in Fig-

ure 5.5(a) for a radius 5 Hamming ball around a random point sampled from a

particular instance from the benchmark set (the results are consistent across in-

stances). The approximation is calculated using a truncated moment vector of the

first four moments of the region

µ′ = (µ0(X), µ1(X), µ2(X), µ3(X))>,

each generated using the algorithm on page 4.3.1 of Chapter 4. The approximation

reported here also uses the heuristic impulse limit based on the second moment

8http://www.maxsat.udl.cat/09/
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Figure 5.5: (a) Cumulative value distribution on a single Max-2-Sat instance:
actual vs. approximated over region of radius 5. (b) Dependence of approximation
accuracy on window size for Max-2-Sat benchmark set s2v100c1200. The y-axis
is on a logarithmic scale.

(discussed above on page 100), and incorporates the upper and lower bounds on

moments µ4(X), µ5(X), and µ6(X) (discussed on page 102). The window was set

to ω = 20. The measured ε value is approximately 7.47× 10−5.
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To determine the dependence of approximation accuracy on window size, we

varied the window size from

ω = 5, 10, . . . , 40.

For each unique ω value, we sampled 10 states from each of the 10 instances.

For each state we compute the ε for the approximation (using the current ω value)

with respect to the actual value distribution (obtained exhaustively). Figure 5.5(b)

shows that the accuracy as a function of window size appears to tend toward a

minimum at ω = 15.

To determine the dependence of approximation accuracy on the length of the

moment vector, heuristic impulse limiting (discussed on page 100), and added

constraints on higher moments (discussed on page 102), we repeat the experiment,

holding the window size at 15 and varying the number of moments used (1 to

4), and the bounds on higher moments. We performed the experiments with and

without heuristic impulse limiting. The results are displayed in Figure 5.6(a). As

expected, the more moments, the more accurate the approximation. The higher

moment bounds, however, do not appear to produce a strong effect. Clearly, the

heuristic impulse limit improves the approximation accuracy in this case.

To determine the dependence of approximation accuracy on the value of the

centroid, we select a representative instance (s2v100c1200-1) and measure the ap-

proximation accuracy for a number of different centroid states at varying objective

function levels.

Since arbitrarily low objective function values are somewhat extraneous in the

Max-k-Sat domain (at least from the perspective of optimization), we limit our

investigation to a range of objective function values that run from the average

objective function value of the instance to near-optimal values. When each clause

is exactly of length k, it is easy to show, by linearity of expectation, a random
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Figure 5.6: (a) Dependence of approximation accuracy on moment degree (and
bounds on higher moments) for Max-2-Sat benchmark set s2v100c1200. Top
lines are without heuristic impulse limit, bottom lines are with heuristic impulse
limit (note the heuristic impulse limit requires the second moment). The y-axis
is on a logarithmic scale. (b) Dependence of approximation accuracy on centroid
value for Max-2-Sat instance s2v100c1200-1. Expected value of a random solu-
tion 900, best value 1031. The y-axis is on a logarithmic scale.

assignment satisfies a clause with probability (2k − 1)/2k. Therefore, the average

objective function value for the 1200 clause Max-2-Sat instance s2v100c1200-1

is 3
4
× 1200 = 900. The optimal objective function value (found by a complete

solver) of this particular instance is 1031.

In order to focus on pertinent levels of the objective function for this instance,

we considered a set of seven target levels: 900, 920, 940, 960, 980, 1000, and 1020,

which range from the random expectation value to near-optimal. For each target

level, we performed 100 episodes of a local hill-climbing search to generate solutions

at or above the target level. Each resulting solution was then used as a centroid in

a Hamming ball of radius 5, the true and approximated value distributions were

subsequently calculated, and the resultant ε was computed (see Figure 5.6(b)).

Due to statistical noise, these results are somewhat hard to interpret. However,
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we do note that accuracy has a stronger trend toward the boundary values of the

target value range.

In all cases, we note the very small ε values. We can thus conclude that the

approximation is substantially accurate, at least with respect to the chosen metric.

5.3.2.2 Estimation accuracy

To evaluate how well the model predicts the number of improving states in a

region, we generated 100 random states on each of the 10 instances (1000 states

total). For each generated state x, we computed the true number ΞB(5)(x)(f(x))

of states with improving objective that lie in the Hamming ball of radius r = 5

about x. We then compute our approximation of this quantity using Ξ̂X defined

in (5.10). We used exact moments µ0(B
(5)(x)) through µ3(B

(5)(x)) retrieved by

the algorithm introduced in Chapter 4. We incorporated further constraints on the

linear program by imposing bounds on moments µ4(B
(5)(x)) through µ6(B

(5)(x))

using the method outlined above. We also employed the heuristic impulse limit

described above.

We plot the actual number of improving states vs. the number predicted in

Figure 5.7(a). Using the above settings, the approximation tends to slightly over-

predict for lower values.

To evaluate the approximation for high-quality states, we sampled, using hill-

climbing local search, 700 states from a single instance s2v100s1200-1 whose

objective function values lie in the interval [900, 1020] (the global optimum is at

1031). Using each of these states as centroids, we enumerate a radius 5 Hamming

ball and count the number of states lying in the ball with objective function value

at least 90% of optimal. We compare this with the corresponding count predicted

by the approximation in Figure 5.7(b).

The strong correlation and corresponding high empirical R2 values suggest that
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Figure 5.7: Number of actual improving states vs. number predicted.

the approximation provides a useful estimate of the number of improving states

in a region around given states. This estimate is useful to practitioners since it

provides a projection of how useful a region is in terms of exploration. In the next

chapter, we will explore further how the results of this thesis might be used in

practice.
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Chapter 6

Two Applications

In this chapter we are interested in applying a number of insights gained from

the theoretical framework developed in previous chapters. The central aim of the

chapter is to demonstrate that formal analysis of the search space can be used

to successfully inform the construction of existing algorithms in a more principled

manner. The chapter is divided into two sections.9 In Section 6.1 we study how the

moment algorithm of Chapter 4 can be incorporated into a heuristic that guides

hill-climbing search algorithms across plateaus. In Section 6.2 we will show how

the framework can be used to control the mutation rate of a (1+1) evolutionary

algorithm in such a way that the expected fitness of the resulting offspring is

maximized.

6.1 Directing Search Across Plateaus

In Chapter 3, we devised a convenient basis function decomposition of the Max-

k-Sat objective function. In Chapter 4, we conceived an algorithm for efficiently

9The work in Section 6.1 of this chapter was initially published in the proceedings of the
Third International Symposium on Combinatorial Search [SHW10]. The work in Section 6.2 of
this chapter has been accepted for publication in the proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2011).

112



constructing the moments of an objective function given an appropriate basis de-

composition. In this section, we will combine this knowledge to design a principled

heuristic for guiding hill-climbing local search algorithms. We test the heuristic

empirically and find that it improves the performance of GWSAT, a hill-climbing

SAT solver, in certain regions of the Max-k-Sat search space.

Local search algorithms have classically been characterized by iteratively ac-

cepting only neighbors with a strictly improving objective function evaluation.

However, in the case of many combinatorial problems, it can be beneficial to also

accept neighbors with equal evaluation in the interest of eventually discovering

improving states. For example, on instances of k-satisfiability, Selman, Levesque,

and Mitchell [SLM92] first discovered that accepting equal moves empirically im-

proved the convergence time of local search. This was later studied in detail by

Gent and Walsh [GW93b, GW93a] who concluded that once greedy hill-climbing

search reached a state within 97% of the optimal, the majority of the moves be-

come plateau moves. Furthermore, they also remarked that this latter phase of

search constitutes, not hill-climbing, but a search for the occasional escape from

a plateau. From a theoretical perspective, Mastrolilli and Gambardella [MG05]

show that on unweighted Max-k-Sat allowing local search to take equal moves

results in an approximation ratio of 2/3 which is superior to basic local search’s

approximation ratio of 1/2.

The success of local search largely depends on how quickly it can follow a

discrete “gradient” to move to better states. When equal moves are allowed,

search must contend with plateaus : connected regions of the search space that are

equivalent under the objective function. Plateaus pose a challenge to local search

since they provide no gradient information to guide search.

Experimental data show that plateaus are a prominent search space feature in
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Max-k-Sat problems [Smy04]. In this section, we use the methods presented in

this thesis to develop a “surrogate gradient” heuristic for Max-k-Sat (on which

clause length is bounded by a constant k, e.g., Max-3-Sat) to help local search

navigate plateaus. The goal of this application is to demonstrate that formal

analysis of search space structure can be used to direct existing algorithms in

a more principled manner than random walks. In particular, we apply the basis

function decomposition of the Max-k-Sat objective function to compute the mean

value of states over large volumes of arbitrary radius around plateau states. We

then use this statistic to direct search across plateaus. Finally, we empirically assess

the utility of the heuristic in a study of its application to Max-k-Sat problems.

We first consider the hypothesis that the guidance offered by the surrogate gradient

improves the time to escape a particular plateau. We then apply the heuristic to

the plateau phase of a hill-climbing local search algorithm in order to determine

whether this ultimately translates to faster convergence. We find the surrogate

gradient to be advantageous in directing search through plateaus to near-optimal

levels.

6.1.1 Background

Recall that Definition 3.1 designates a plateau P as a maximal set P ⊆ X such

that, for all x, y ∈ P , there is a path (x = x1, x2, . . . , xt = y) where, if t > 1,

xi+1 ∈ N(xi) and f(xi+1) = f(xi) for i = 1, 2, . . . , t. By this definition, the set of

plateaus partitions the state set X so each state x belongs to a unique plateau.

The unique objective function value of all states in P is called the level of P .

Broadly speaking, hill-climbing local search algorithms progressively attempt

to escape plateaus of constantly improving level. If no state on the plateau has a

neighbor on a plateau of improving level, the plateau is closed. Assuming maxi-
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mization, P is closed when

∀x ∈ P, ¬∃y ∈ N(x) : f(x) < f(y).

Regions of this nature have been called local optima [FCS97], mesas [Jon95], or

basins [Yok97]. On the other hand, a plateau that has one or more states with

improving neighbors is an open plateau and can eventually be escaped. Again,

assuming maximization, P is open when

∃x ∈ P, ∃y ∈ N(x) : f(x) < f(y).

Determining whether a plateau P is open or closed takes time proportional to |P |
in the worst case. Thus, on extensive plateaus, it is intractable to do so directly.

A hill-climbing local search algorithm can attempt to escape a plateau region by

moving across it using a random walk or by performing systematic search. Either

approach can be prohibitive since the number of states in a particular plateau can

be exponential in the problem size [HK93, FCS97, Smy04]. The distribution of

exit states (incident states with strictly improving objective function value) across

a plateau further impacts how quickly it is escaped.

Hampson and Kibler [HK93] empirically studied plateau characteristics in Max-

k-Sat focusing on plateaus at near-optimal levels. They found that the number of

plateaus in this region grows linearly with n (where n is the number of variables).

They also found that the size of plateaus at better values grows exponentially with

n, while the density of escapes decreases with n, producing an O(n) increase in

waiting time to escape plateaus. Thus the linear growth in waiting time on plateaus

along with linear growth in the number of plateaus should produce a growth rate

for a single hill-climbing episode that is roughly quadratic.

In an experimental study, Frank et al. [FCS97] found that escape density on

open plateaus tends to decrease as plateau level approaches the optimal objective
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function value. This implies that plateaus nearer to optimal solutions become in-

creasingly difficult to escape. They also found that escape density for near-optimal

plateaus increases with constrainedness as measured by number of clauses. Smyth

[Smy04] performed an empirical analysis of plateau structure on uniform random

and structured problems. He found that closed plateaus tend to be smaller than

open plateaus and that plateau characteristics correlate with instance hardness for

stochastic local search algorithms.

A common strategy for escaping plateaus is to introduce a small amount of

noise to the search process. For satisfiability problems, noise is added to the local

search process in the form of a biased random walk [SKC94] which gives rise to

the high performance WalkSAT algorithm [SKC96]. Algorithms from the Walk-

SAT family avoid plateaus by inverting variables that belong to unsatisfied clauses

even if the move results in a disimproving value of the objective function. Within

a clause, however, it may be necessary to break ties among a collection of variables

if they have equal score. To address this, tie-breaking heuristics are based on the

dynamics of the algorithm, such as how recently the variables have been flipped,

e.g., WalkSAT-tabu, Novelty, and R-Novelty [MSK97]. Adding stochasticity

to the latter two results in the probabilistically approximately complete variants:

Novelty+ and R-Novelty+ [Hoo99]. Further refinements include diversification

(Novelty++), deterministic greedy moves (G2WSAT) [LH05], adaptive noise and

combinations of these strategies [LWZ07]. In contrast to these tie-breaking heuris-

tics, the surrogate gradient introduced in the following section is based solely on

features of the search space.

6.1.2 A surrogate gradient

When a hill-climbing local search algorithm reaches a state with no improving

neighbors, it must either interpret the state as a local optimum, or select among
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neighbors of equal value, if any exist. In the latter case, we would like the algo-

rithm to make an informed decision about which equal neighbor to choose, in the

absence of “gradient” information from the objective function. Recall from Equa-

tion (3.1) in Chapter 3 that the objective function for a Max-k-Sat instance with

n variables and m clauses can be written as a k-bounded pseudo-Boolean function

f : {0, 1}n → {0, 1, . . . ,m} that counts the number of clauses satisfied under an

assignment corresponding to a binary string of length n.

We define the surrogate gradient function g̃(r) : {0, 1}n → R to be

g̃(r)(x) = µ1(B
(r)(x)),

or the first moment (i.e., mean value) of f over B(r)(x), or the Hamming ball of

radius r around x as defined in Definition 4.2. In Section 4.3.1 we introduced an

algorithm for efficiently computing exactly this expression, even when the size of

the region under consideration is exponential in n.

An important observation is that f(x) = f(y) does not necessarily imply

g̃(r)(x) = g̃(r)(y) and so g̃(r) might be used to delineate among a set of states

with equal evaluation. For example, in Figure 6.1 we plot the empirical density

function of g̃(5) evaluated over 35 equal neighbors of a particular state sampled at

level 1060 (optimal is 1065) from SATLIB instance uf250-1065-01.

All other things being equal, a plateau state with escapes within radius r would

be expected to have a higher average g̃(r) value than a state with no escapes within

radius r. Thus g̃(r) could function as a heuristic for choosing more promising states

among a set with equal evaluation. In other words, g̃(r) might be used as a surrogate

“gradient” function to guide search across plateaus (see Figure 6.2).
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Figure 6.1: Empirical density function of g̃(5) evaluated over 35 equal neighbors of a
plateau state x sampled from SATLIB instance uf250-1065-01 where f(x) = 1060
(value of global optimum is 1065).

improving state

disimproving statecurrent state

plateau state

Hamming regions

xx y1 y1

y2y2

Figure 6.2: Schematic of surrogate gradient heuristic. Hamming ball of radius
two (denoted by closed splines) around neighbors y1 and y2 of state x. Due to an
improving state near y2, it is likely that g̃(2)(y2) > g̃(2)(y1).
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DPS(x, f, g̃(r))

1 g̃best ← g̃(r)(x)
2 while not done
3 do N ← {y : H(x, y) = 1}
4 if ∃y ∈ N : f(y) > f(x)
5 then return
6 E ← {y ∈ N : f(y) = f(x)}
7 Choose x ∈ arg max

z∈E
g̃(r)(z)

8 if g̃(r)(x) ≤ g̃best
9 then x← random element of E

10 else g̃best ← g̃(r)(x)

Figure 6.3: Directed plateau search process.

6.1.3 Directing search across plateaus

In this section we test the hypothesis that a surrogate gradient function that

computes the mean value of the objective in a volume of search space of a given

radius can direct a search algorithm to escape a plateau more quickly than random

search alone.

6.1.3.1 Directed plateau search

On non-degenerate plateaus, the objective function is no longer useful for directing

search to more promising states. Typically, hill-climbing search algorithms resort

to a stochastic process by iteratively selecting equal neighbors at random until the

plateau is escaped. We will instead use g̃(r) as a heuristic to direct search across

plateau states by choosing plateau neighbors that lie in regions with lower average

f . Given a state x, we perform local search maximizing g̃(r) using only neighbors

with equivalent f values. The directed plateau search process (DPS) is given in

Figure 6.3.

Until a plateau exit is found, plateau moves are chosen to maximize the surro-
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gate gradient g̃(r). However, it is possible to reach a local optimum with respect to

g̃(r). In this case, the search reverts to a random plateau walk by taking random

plateau moves without regard to g̃(r) until a plateau move with an improving g̃(r)

value is found.

6.1.3.2 Plateau escape results

Our hypothesis is that the additional information provided by g̃(r) allows DPS

to escape plateaus more quickly on average than a random plateau walk (RPW).

Starting from an initial state x, each plateau escape process generates a sequence

of, not necessarily unique, states (x = x1, x2, . . . , xt), called a trace, until a plateau

exit is found, or the number of states exceeds some bound. We define Ldps(c) to

be the trace length of DPS on level c: the length of a trace beginning at a state x

with f(x) = c until stopping criteria are met and define Lrpw(c) to be the length

of a trace generated by a random plateau walk with initial state on level c.

If we choose states uniformly at random from a particular level c, we can

characterize Ldps(c) and Lrpw(c) as random variables. So to test our hypothesis we

must show that Ldps(c) stochastically dominates Lrpw(c). Sampling these random

variables amounts to performing both a DPS and a random plateau walk from

states on a level and measuring their trace lengths. To do so, we sampled 100 states

each at levels opt−5, opt−4, opt−3, opt−2, and opt−1 where (opt−c denotes the

cth level below the optimal) on all 1000 instances in the SATLIB benchmark set

uf100-430. For each sampled state, we measured the trace length of both DPS

and a random plateau walk. For the radius parameter we used a number of different

values: r = {1, 2, 5, 10, 20}.
Note that if the initial state has an improving neighbor, the plateau can be

immediately escaped by both processes (trace of length 1) so such data points

are useless to our experiment and are removed from the data. Furthermore, the

120



r 1 2 5 10 20

mean trace 30.38 29.75 28.88 29.55 29.87

std. dev. 109.33 111.71 104.36 110.16 111.71

Table 6.1: Mean and standard deviation of DPS trace lengths for different radius
values on levels opt−4 and opt−5 of uf100-430

maximum allowed trace length was set to 2000 states. We say the process fails if it

does not escape the plateau within the allotted trace length. To control for states

that may lie on closed plateaus, we remove from consideration states on which

both the random walk and DPS process fail.

To test whether r has an effect on escape time, we measured the mean and

standard deviation of the trace lengths on levels 4 and 5 of the uf100-430 dis-

tribution. The results are shown in Table 6.1. The mean trace length for DPS

appears not to significantly depend directly on radius. For the experiments in this

paper, we will use r = 5.

The results for r = 5 on the uf100-430 distribution are shown in Figure 6.4.

The data come from a population of 105 states (100 states/instance). The distribu-

tion of each random variable is heavy-tailed, and follows an overdispersed Poisson

distribution. Such a distribution can be modeled by a negative binomial distribu-

tion with parameters α = β = σ−2 where σ2 is the variance. To test for stochastic

dominance we perform the (nonparametric) sign test that Lrpw(c)− Ldps(c) is, on

average, greater than zero. For each level and each radius, we compute a p-value

of less than 0.0001 when comparing to random plateau walk. We can thus con-

clude there is a statistically significant effect, and that DPS escapes plateaus more

quickly on average than a simple random plateau walk. Statistics for the escape

experiments are shown in Table 6.2. The number of times both methods failed

(and hence were removed) increases sharply from 0.003% at level opt−5 to over
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Figure 6.4: Plateau escape experiments (at radius 5) for levels opt−5, opt−4,
opt−2, and opt−1 of uf100-430 distribution. A sign test confirms statistical
significance for each with p < 0.0001.

60% at the level directly below the optimal (c.f. rightmost column of Table 6.2).

This corroborates the empirical findings of Frank et al. [FCS97] that escape density

tends to decrease at the optimal level is approached.

6.1.3.3 Timing and efficiency

Recall from Section 4.3.1 the computation of the mean objective function value

over B(r)(x) (and thus g̃(r)(x)) requires the Walsh coefficients of f and the sphere

eigenvalues given by the Krawtchouk polynomials (4.10). These quantities can be

computed off-line and stored. Moreover, if the value of g̃(r)(x) is already stored

when DPS is called, for any z ∈ N(x) the value of g̃(r)(z) can be obtained using

a difference equation. This equation can be evaluated in time proportional to the
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Level Alg.
Trace statistics Run statistics

med. mean (sd) % failed mean % grad % both failed

opt−5
random 8 23.19 (76.71) 0.03 -

0.003
dps 5 17.89 (76.21) 0.05 61.02

opt−4
random 11 44.23 (131.89) 0.14 -

0.072
dps 6 34.78 (116.27) 0.07 54.72

opt−3
random 20 115.58 (291.16) 0.96 -

0.974
dps 11 103.21 (280.45) 0.87 44.09

opt−2
random 57 283.34 (504.00) 4.16 -

9.991
dps 43 271.91 (503.98) 4.15 29.93

opt−1
random 248 574.92 (679.23) 10.94 -

60.572
dps 230 561.42 (678.45) 10.69 14.18

Table 6.2: Results for plateau escape experiments: trace length statistics, per-
centage of runs each method failed (i.e., reached the cutoff), and (for DPS) mean
percentage of steps that utilized the surrogate gradient heuristic. We remove runs
in which both methods failed, the percentage of which is listed in the final column.
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Figure 6.5: Median relative CPU time speed-up (DPS) for escaping best 10 levels
of uf100-430 distribution.

number of literals containing the variable which must be negated to transform x

into z. Hence, there is a small overhead associated with calculating the surrogate

gradient in each plateau search step. We would expect, however, that shorter trace

lengths ultimately translate to faster escape time. To investigate this further, let

Tdps(c) denote the processing time needed by DPS to escape level c and Trpw(c)

be the processing time needed by a random plateau walk. We measure the relative

speed-up at level c as Trpw(c)

Tdps(c)
. We report the median relative speed-up for levels

opt−10 up to opt−1 on the uf100-430 distribution in Figure 6.5. On lower levels,

when there is an improvement in trace length, we see this corresponds to an im-

provement in processing time. However, as the highest levels are approached, we

see that the advantage of DPS is diminished (c.f. Figure 6.4), and the overhead

for computing the surrogate gradient translates to a slow-down in processing time.

6.1.4 Improving the performance of hill-climbing search

We now consider the hypothesis that the expedition of plateau search time observed

in the above experiment will ultimately translate to faster convergence time for

hill-climbing search algorithms. An episode of hill-climbing local search can be

seen as a process that escapes plateaus at progressively improving levels. Suppose

124



a hill-climbing process is started from an arbitrary state x0 and eventually reaches

some state x∗ with f(x∗) > f(x0) (recall we are maximizing). The waiting time

(in terms of number of evaluations) between these two boundary states can be

modeled as a sum over random variables which gives the time spent at each level

between f(x0) and f(x∗). Letting τc denote the number of evaluations performed

at level c, we have the total waiting time

Λ =

f(x∗)−1∑
c=f(x0)

τc. (6.1)

Since not all levels are visited during an episode of hill-climbing, let χc be the

indicator random variable where

χc =

{
1 if search skips level c,

0 otherwise.

If the hill-climbing local search randomly selects among equal neighbors, then we

have

τc = Lrpw(c)(1− χc).

By linearity of expectation the expected waiting time is

E[Λ] =

f(x∗)−1∑
c=f(x0)

E[Lrpw(c)(1− χc)], (6.2)

where E[·] denotes random variable expectation. Instead of a random walk, if

DPS is implemented at each level to direct search across plateaus, we can sub-

stitute Lrpw(c) with Ldps(c) in Equation (6.2). If we assume that the probability

of skipping a level is invariant under plateau search dynamics (and we have no

reason to believe otherwise), then given the results presented in the previous sec-

tion, we would expect statistically shorter convergence times for these hill-climbing

episodes when compared to the standard random walk. In other words, using DPS

to escape plateaus should result in faster plateau escape times which ultimately

translate into faster convergence.
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6.1.4.1 Hill-climbing search results

To test the hypothesis that directed plateau search can speed up periods of hill-

climbing local search, we incorporated the DPS process into the plateau phase of

GWSAT: a variant of the randomized greedy hill-climbing local search algorithm in

which an unbiased random walk is performed with probability p in each step [SK93].

Our reasoning for using GWSAT is that the random walk element is necessary for

probabilistically departing closed plateaus, which still pose a problem to DPS.

Since we assess the effect of DPS on single episodes of hill-climbing, we set the

MAX-TRIES parameter to 1. We set the MAX-FLIPS parameter of GWSAT to

10000 and used a walk probability of p = 0.3. To observe the effect of DPS on

GWSAT’s convergence to specific levels of the objective function, we performed

both GWSAT and GWSAT with DPS (GWSAT-DPS) targeting different levels.

Run length distributions for levels opt−5, opt−3, opt−1, and opt−0 (level

opt−0 being the optimal value) are plotted in Figure 6.6. To generate these run

length distributions, we performed both searches 1000 times for each instance in

uf100-430. This set contains 1000 instances so each empirical cumulative distribu-

tion function is generated from 106 data points. For these target levels, GWSAT-

DPS dominates. In target level opt−0, there is a slight crossover around 2000

evaluations.

The SATLIB benchmark set we used contains filtered random uniform prob-

lems generated at the phase transition region (clause to variable ratio ≈ 4.3) and

guaranteed to be satisfiable (using a filtering process). Such benchmarks are typ-

ically used in the context of the k-Sat decision problem. Typical Max-k-Sat

benchmarks are not satisfiable and are deep into the overconstrained phase. To in-

vestigate the impact of adding DPS to a hill-climbing algorithm on a typical Max-

k-Sat benchmark, we generated empirical run length distributions for benchmark
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Figure 6.6: Empirical run length distributions for 1000 runs each on 1000 instance
uf100-430 distribution for four different target levels.
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instances from the Fourth MAXSAT Evaluation in 2009.10 We performed both

searches 10000 times on each instance in the set s2v100c850. This set has exactly

two literals per clause, i.e., Max-2-Sat, and a clause to variable ratio of 8.5. We

use the same settings as above. Since each instance has a different optimal value,

we plot the empirical run length distribution only for 10000 runs on two repre-

sentative instances: s2v100c850-01 and s2v100c850-06. These instances were

selected because, of the ten instances in the set, DPS appears to perform best on

the former, and worst on the latter when targeting the optimal solution.

The run length distributions for targeting the optimal solution (opt−0, which

was found by a complete solver) generated from both instances appear in the

upper half of Figure 6.7. As a reference, we also plot the empirical run length

distribution for a state-of-the-art WalkSAT algorithm G2WSAT [LH05]. The

hill-climbing search with DPS clearly dominates on s2v100c850-01 (top left of

Figure 6.7) but performs relatively poorly on s2v100c850-06 (top right of Fig-

ure 6.7). However, when targeting a suboptimal solution that only differs by one

clause from the optimal, i.e., the level opt−1, the hillclimber with DPS dominates

again for both instances (bottom left and right of Figure 6.7). Determining what

causes the prominent discrepancy for targeting the optimal solution between these

two instances remains a direction of future research.

6.1.5 Implications for search

The empirical results suggest that GWSAT augmented with DPS tends to dom-

inate until the lowest level plateaus. A closer look at the number of evaluations

necessary for convergence to levels opt−5 and opt−0 is given in Figure 6.8. The

10http://www.maxsat.udl.cat/09/
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Figure 6.7: Empirical run length distributions for 10000 runs each targeting the
optimal solution on s2v100c850-01 [top left] and s2v100c850-06 [top right], and
targeting a suboptimal solution with a difference of only one clause from the opti-
mal on s2v100c850-01 [bottom left] and s2v100c850-06 [bottom right].
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Figure 6.8: Comparison of number of evaluations (log scale) to find level opt−5
(left) and level opt−0 (right) on uf100-430.

effect is far less dramatic when converging to the optimal level.

The observed traces for DPS at each level suggest that on near-optimal plateaus,

the surrogate gradient is not followed as often. For instance, in Table 6.2, at level

opt−1, an average of approximately 14% of the steps are directed whereas at level

opt−5, just over 61% of the steps are directed. This is likely due to a loss in

resolution of the surrogate gradient at lower levels. As the extremal value of f is

approached, the local volume will be composed mainly of states on disimproving

levels. Furthermore, many plateaus at this level are closed; GWSAT-DPS will have

to rely on GWSAT’s walk probability rather than plateau search. These character-

istics affect a heavy tailed distribution in waiting time on plateaus at near optimal

levels. These factors statistically obscure the gains in convergence obtained by

DPS on other levels. In Figure 6.9 we plot the empirical density of the surrogate

gradient over equal neighbors for points sampled near the global optimum (at levels

opt−4, opt−3, opt−2, and opt−1).

In order to observe the convergence profile more clearly, we plot the mean

convergence (∆ from optimal value as a function of evaluation) for GWSAT and

GWSAT-DPS over the distribution uf250-1065 in Figure 6.10. The gains begin

occurring around level opt−20 and vanish near level opt−3. as long random walks
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Figure 6.9: Empirical density function of g̃(5) evaluated over equal neighbors of
plateau states x sampled from SATLIB instance uf250-1065-01 at levels close to
the optimal.
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Figure 6.10: Mean convergence (∆ from optimal vs. evaluation) plot for GWSAT
and GWSAT-DPS over uf250-1065 distribution. Dashed lines indicate standard
deviation from mean convergence.

on low level plateaus begin to dominate.

To investigate whether this phenomenon translates deep into the overcon-

strained phase, we also report the percentage of runs (out of 1000) that reached

certain levels near and at the optimal level for ten instances in the MAXSAT 2009

benchmark set s3v80c1000 (in this case the clause to variable ratio is 12.5). The

optimal level is found by the complete solver MiniMaxSat [HLO08]. We report

the percentage of runs that reach each level from opt−5 (five levels below the opti-

mal), to opt−0 (the optimal value) in Table 6.3. Again we see that the heavy-tail

escape behavior obscures the advantage of DPS at the optimal level.

The results demonstrate that search space structure can be used to influence

the trajectory of plateau search in such a way that certain plateaus may be escaped

more quickly. DPS may also be used to quickly move to better regions of the ob-
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% of runs that reach level

instance algorithm opt-5 opt-4 opt-3 opt-2 opt-1 opt-0

1
GWSAT 96.9 93.2 88.2 83.8 59.0 43.1

GWSAT-DPS 97.6 94.4 90.3 87.5 61.3 51.6

2
GWSAT 98.3 95.8 86.3 71.3 47.0 35.2

GWSAT-DPS 99.2 96.8 85.7 72.8 46.8 32.3

3
GWSAT 88.9 70.1 61.3 52.1 29.5 29.4

GWSAT-DPS 90.5 70.4 64.7 53.4 29.2 28.8

4
GWSAT 92.4 89.1 82.0 78.1 42.0 18.9

GWSAT-DPS 95.0 91.4 85.2 80.8 41.3 17.1

5
GWSAT 95.4 93.1 86.5 75.5 42.5 28.9

GWSAT-DPS 97.0 96.1 89.5 77.0 40.4 30.7

6
GWSAT 88.7 73.0 72.7 67.6 58.4 43.6

GWSAT-DPS 92.5 73.8 73.3 70.2 60.5 49.5

7
GWSAT 98.7 98.3 95.4 89.7 74.6 73.8

GWSAT-DPS 99.7 99.5 96.3 93.0 74.7 64.0

8
GWSAT 96.3 89.4 68.5 63.8 39.3 18.7

GWSAT-DPS 98.2 92.8 75.1 71.1 47.1 18.2

9
GWSAT 97.1 95.6 95.0 90.0 86.4 40.0

GWSAT-DPS 97.8 97.4 97.1 94.0 93.4 53.5

10
GWSAT 92.8 88.8 81.1 80.0 62.1 25.7

GWSAT-DPS 95.8 94.3 88.9 87.4 69.5 32.7

Table 6.3: Percentage of runs (out of 1000) that reached best six levels in each
of the 10 instances from the MAXSAT 2009 s3v80c1000 benchmark set. Higher
percentages are in boldface.
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jective function. This could be useful for faster approximations on large problems,

or hybridized in the manner of Kroc et al. [KSGS09] to switch to a complete solver

when the surrogate gradient is no longer helpful.

We have thus seen that knowledge of simple objective function statistics over

local regions can inform the decision process of hill-climbing local search algorithms

to improve their behavior in certain regions of the search space. We will now see

how this information can be used to solve for promising mutation rates in a specific

evolutionary algorithm.

6.2 Controlling Mutation Rates in the (1+1)-EA

Evolutionary algorithms (EAs) are probabilistic direct search methods that are

often applied to the task of function optimization. Broadly speaking, this class of

algorithms employs operations inspired by organic evolution such as recombina-

tion, mutation, and selection to navigate the search space in response to a fitness

function. When applied to a combinatorial optimization problem (X , f), the fit-

ness function of the EA is simply the objective function f of the combinatorial

problem; we will use the former term for the remainder of the section.

We will focus on the simple case of the (1+1)-EA which employs mutation

but not recombination. Mutation can be seen as a generalized local operator

that computes a new state (called an offspring) from the current state (called the

parent) that lies a certain distance away on the neighborhood graph according to

some probability.

Evolutionary algorithms operating on {0, 1}n often employ a natural mutation

operation in which the state of each bit of the state under consideration is inverted

with some probability ρ, the so-called mutation rate. We show, using the framework

developed in Chapter 4, that when the fitness function is a k-bounded pseudo-
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Boolean function, it is always possible to efficiently compute the expected fitness

of a mutation from each string for a given rate. We then show that it is always

possible to solve for the mutation rate that maximizes the expected fitness of the

offspring for any point.

It is well-understood that the choice of the mutation rate parameter can have a

strong impact on the performance of EAs, and a large number of experimental and

theoretical investigations have been carried out to determine the optimal mutation

rate. For example, many experimental studies have suggested a mutation rate

between 0.001 and 0.01 [De 75, Gre86, SCED89]. In many cases, however, mutation

rates that cause an EA to perform well on one class of functions may produce poor

performance on another class of functions. Indeed, Droste et al. [DJW98] have

given theoretical evidence that a mutation rate of 1/n guarantees convergence in

O(n log n) time for the (1+1)-EA applied to linear functions. On the other hand,

Jansen and Wegener [JW00] have introduced a function for which a mutation rate

of 1/n leads to superpolynomial runtime of the (1+1)-EA with high probability

while a mutation rate of logn
n

leads to expected polynomial-time convergence on

the same function. Such results stress the importance of an understanding of the

relationship between the mutation rate and the function being searched.

On linear functions, this relationship is well-understood. For instance, in the

case of One-Max, it is straightforward to derive an analytical expression for the

probability of a successful mutation [Bäc92a]. In the case of general pseudo-

Boolean functions, the probability of a successful mutation from any arbitrary

point is difficult to know. Furthermore, analytical expressions specifying optimal

mutation rates have not previously been derived for epistatically bounded pseudo-

Boolean functions.
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6.2.1 The (1+1)-EA

We concentrate on the (1+1)-EA applied to the task of maximizing pseudo-Boolean

functions. The (1+1)-EA has been subject to a number of theoretical studies

[DJW98, GKS99, Müh92, Rud97, JW00]. The algorithm is presented below, pa-

rameterized by mutation rate ρ.

(1+1)-EA(ρ)

1 Choose x ∈ {0, 1}n uniformly at random
2 while stopping criteria not met
3 do
4 y ← x
5 Flip each bit of y independently with prob. ρ
6 if f(y) ≥ f(x)
7 then x← y

The mutation rate parameter ρ controls the degree to which each search point

is perturbed to produce the next search point. Often, a constant mutation rate

of ρ = 1/n is recommended [Bäc93, Müh92], especially for linear functions. On

functions with nonlinearity, there is strong evidence that the optimal mutation

rate is time-dependent [Hol75, Bäc92a, BS96, HM91].

For some functions, it is possible to compute the exact probability of a suc-

cessful mutation as a function of fitness level and mutation rate [Bäc93, JW00].

This is especially useful in the case of runtime analysis because it allows one to

bound the expected number of mutations until a successful offspring is produced.

However, in the case of general pseudo-Boolean functions, this probability is dif-

ficult to compute. When this probability is not known, one solution is to use

self-adaptation [Bäc92b] in which each individual is augmented with an encoding

of its own mutation rate and the rate is adapted along with the function parame-

ters.
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While linear, unimodal functions have a provably optimal mutation rate of 1/n,

Bäck pointed out that when the fitness is multimodal, a search for a dynamically

varying mutation rate different from a constant value during search may be worth-

while to overcome local optima [Bäc93]. Hesser and Männer [HM91] presented

a theoretical argument that suggested the mutation probability in a population-

based GA employing crossover should decrease with time. In this section we also

find evidence for this on k-bounded functions. In fact, we find that each state has

its own “expectation-best” mutation rate that maximizes the expected fitness of its

offspring. This rate changes in response to the relationship between the fitness of

the state itself and the expected fitness of states that lie within Hamming distance

k.

We now show that on a k-bounded pseudo-Boolean function, even if we cannot

recover the optimal mutation rate (in terms of success probability) for a state, we

can at least efficiently compute the mutation rate that maximizes the expected

fitness of the offspring.

6.2.2 The expected fitness of mutations

We assume that the fitness function f : {0, 1}n → [0,∞) is k-bounded and has a

non-negative real codomain. In the context of function optimization and search,

adding an arbitrary constant to satisfy this constraint will not affect the behavior

of the algorithm.

Recall from Definition 4.1 on page 69 that the Hamming sphere S(r)(x) of radius

r around a point x is the set of points that lie at Hamming distance exactly r from x.

Let x ∈ {0, 1}n be the string under consideration. Mutation is a stochastic process

that produces an offspring z by changing components of x. Since the process is

stochastic, we can characterize f(z) as a random variable. We can calculate the

expected value of this random variable as a function of f(x): the fitness of the
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current state. In other words, we are interested in calculating the first moment

of f over a ball of radius n around x, but now the sampling is no longer uniform

throughout the region as it was in Equation (4.1). Indeed, the probability mass

function of the random variable corresponding to f(z) now depends on Hamming

distance from x, which is captured by sphere membership. Applying mutation to

an element x ∈ {0, 1}n is analogous to performing n independent Bernoulli trials

to determine whether or not to change each bit of x. Thus, the probability that

the offspring of x under mutation with rate ρ lies at Hamming distance r from x

is distributed binomially.

To produce an offspring z via mutation, each bit of x is flipped with probability

ρ. Thus z lies in a sphere of radius r around x with probability ρr(1− ρ)n−r. The

total fitness of all states that lie in the sphere S(r)(x) is equal to∑
y∈S(r)(x)

f(y) = S(r)f(x) by (4.9),

and as we derived in the proof of Theorem 4.1,

=
∑
i:wi 6=0

γ
(r)
i wiψi(x)

=
∑
i:wi 6=0

Kr(〈i, i〉, n)wiψi(x),

where Kr(p, n) is the Krawtchouk polynomial defined in (4.10) and 〈i, i〉 is the

string inner product of i with itself, i.e., the order of the length-n bitstring repre-

sentation of i. The contribution to the expectation in a sphere at radius x can be

obtained by multiplying this sum by the probability of the offspring lying in the

sphere.

ρr(1− ρ)n−r
∑

y∈S(r)(x)

f(y) = ρr(1− ρ)n−r
∑
i:wi 6=0

Kr(〈i, i〉, n)wiψi(x).

We denote as Mx(ρ) the expected fitness of the offspring of x under mutation.

Since all spheres around x are disjoint, the expected fitness of the offspring of x
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under mutation can be computed as the sum of the expectation contributions from

each sphere:

Mx(ρ) =
n∑
r=0

ρr(1− ρ)n−r
∑
i:wi 6=0

Kr(〈i, i〉, n)wiψi(x). (6.3)

Again, since f is k-bounded, the above series contains a polynomial number of

terms. Letting

ar =
∑
i:wi 6=0

Kr(〈i, i〉, n)wiψi(x), (6.4)

we can immediately compute the expected fitness of the offspring as

Mx(ρ) =
n∑
r=0

arρ
r(1− ρ)n−r by (6.3). (6.5)

Intuitively, ar is the total fitness over all states that lie in sphere S(r)(x). It will be

convenient later to express ar in terms of the first moment of f over S(r)(x) which

follows directly from the proof of Theorem 4.2

ar =

(
n

r

)
µ1(S

(r)). (6.6)

We can re-express Equation (6.5) as a degree-n polynomial in ρ as

Mx(ρ) = A0 + A1ρ+ A2ρ
2 + · · ·+ Anρ

n, (6.7)

where

Am =
m∑
`=0

am−`

(
n−m+ `

`

)
(−1)`. (6.8)

When f is epistatically bounded by a constant, the Walsh coefficients can be found

in polynomial time, and the coefficients Am can be efficiently computed. Later, we

will also see that it is possible to further bound the degree of this polynomial.

To find the mutation rate ρ which maximizes the expected fitness of the off-

spring of x, we simply need to find

arg max
0≤ρ≤1

Mx(ρ) = arg max
0≤ρ≤1

A0 + A1ρ+ A2ρ
2 + · · ·+ Anρ

n.
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The first and second derivatives of the expected fitness are

d

dρ
Mx(ρ) = A1 + 2A2ρ+ 3A3ρ

2 + · · ·+ nAnρ
n−1,

and

d2

dρ2
Mx(ρ) = 2A2 + 6A3ρ+ 12A4ρ

2 + · · ·+ n(n− 1)Anρ
n−2.

It is easy to find the stationary points of Mx(ρ) by numerically solving for the

real roots of d
dρ

Mx(ρ). Of course, we can use the so-called “second derivative test”

to test for concavity and solve for the local maxima point set

M =

{
ρ :

d

dρ
Mx(ρ) = 0 and

d2

dρ2
Mx(ρ) < 0

}
.

The mutation rate that maximizes the expected fitness of the offspring is easily

retrieved by finding the point ρ? ∈ (M ∩ [0, 1])∪{0, 1} such that Mx(ρ
?) is maximal.

6.2.3 Degeneracy: when no mutation is “best”

The polynomial defined in (6.7) always has a (possibly non-unique) maximum in

the interval [0, 1]. The degenerate case is when Mx(ρ) is monotonically decreasing

and no stationary points lie within the interval. Moreover, it is possible that any

maxima lying within the interval have evaluation strictly less than Mx(0). In

this case, the “optimal” value is ρ? = 0. Since Mx(0) = f(x), this means that

there is no possible mutation rate (constant across bitstrings) that will produce an

offspring whose expectation is greater than f(x): the fitness of the current point.

This corresponds to a local optimum in “expectation space”, that is, any mutation

is disimproving in expectation. In Sections 6.2.4 and 6.2.5, we will find conditions

on the fitness of f in which this degeneracy must hold for linear functions and

k > 1-bounded functions, respectively.
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6.2.3.1 Choosing a suitable nonzero mutation rate

When any mutation rate is expected to produce an offspring with lower fitness, the

optimal choice to maximize expected fitness is to perform no mutation. Instead,

we would like to perform mutations that, in some sense, minimize the expected

loss in fitness.

Suppose ρ? = 0. Let 0 < ρ � 1 be any positive value close to zero. Then we

know

Mx(ρ) = (1− ρ)nf(x) +
n∑
r=1

arρ
r(1− ρ)n−r < Mx(0) = f(x).

Ignoring the higher order terms we can write

(1− ρ)nf(x) ≤Mx(ρ) < f(x).

Choosing a mutation rate ρ = k/n means that in expectation, k/n bits will be

changed. We can recover the “standard” recommended mutation rate of ρ = 1/n

by observing from the above inequality,(
1− k

n

)n
f(x) ≤Mx

(
k

n

)
< f(x).

Asymptotically we have

e−kf(x) ≤Mx

(
k

n

)
< f(x).

The lower bound on Mx

(
k
n

)
is maximized when k = 1. Thus, when the offspring

is expected to be disimproving, the mutation rate 1/n maximizes the lower bound

on the expectation of the fitness of the offspring under the constraint that we flip

at least 1 bit in expectation. Moreover, in this case we know the expected fitness

of the offspring of x is asymptotically bounded below by e−1f(x).

The slope of the Mx(ρ) polynomial at zero tells us how quickly the expected

fitness falls off by choosing close-to-zero mutation rates. Interestingly, this slope
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is exactly n times the difference between the fitness of the current point and the

average fitness over the immediate neighbors at Hamming distance 1. This can be

derived easily by observing that

d

dρ
Mx(0) = A1,

so by (6.8), the slope of the Mx(ρ) polynomial at zero is equal to a1 − na0.

From (6.4) it is easy to see that

a1 =
∑
i:wi 6=0

K1(〈i, i〉, n)wiψi

= nµ1(S
(1)(x)) = nµ1(N(x)) by (6.6),

where N(x) is the Hamming neighborhood of x, and,

a0 =
∑
i:wi 6=0

K0(〈i, i〉, n)wiψi = f(x),

so the rate of change at zero is equal to n (µ1(N(x))− f(x)). Of course this makes

intuitive sense: the change in expectation of very small mutations is completely

determined by the difference between the current point and its immediate neigh-

bors.

6.2.4 Linear functions

Many analyses of the (1+1)-EA (e.g., [Müh92, Bäc93, DJW98]) have focused on

the linear (or separable) case, that is, k = 1-bounded pseudo-Boolean functions.

In the case of a linear function, the Walsh basis expansion has only nonzero terms
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in the zeroth and first order. Therefore,

ar = Kr(0, n)w0 +
∑

i:〈i,i〉=1

Kr(1, n)wiψi(x) by (6.4),

=

(
n

r

)
w0 +

∑
i:〈i,i〉=1

r∑
j=0

(
1

j

)(
n− 1

r − j
)
wiψi(x)

=

(
n

r

)(
w0 +

n− 2r

n
(f(x)− w0)

)
,

and since w0 = 2−n
∑

x∈{0,1} f(x) = f̄ is the average fitness over all bitstrings (see

e.g., [Hec99]),

=

(
n

r

)(
f̄ +

n− 2r

n

(
f(x)− f̄)) .

Substituting ar in (6.8) we get

Am =
m∑
`=0

(
f̄ +

n− 2(m− `)
n

(
f(x)− f̄))× ( n

m− `
)(

n− (m− `)
`

)
(−1)k,

which simplifies significantly to

Am =


f(x) if m = 0,

2
(
f̄ − f(x)

)
if m = 1,

0 otherwise.

Thus if f is a linear (1-bounded) pseudo-Boolean function, the expected fitness of

an offspring using mutation rate ρ is simply

Mx(ρ) = f(x) + 2
(
f̄ − f(x)

)
ρ.

So in the case of linear functions, the polynomial terms of order greater than

one vanish and the Mx(ρ) polynomial is always a line with y-intercept f(x) and

slope equal to twice the difference between the mean fitness and the fitness of x.

Therefore we have recovered the well-known result for linear functions that when

f(x) < f̄ , Mx(1) is maximal (since the slope is positive) and when f(x) > f̄ , Mx(0)

is maximal (negative slope). On such functions, large mutations are quickly able
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to reach the mean value, after which the smallest mutation probability that still

flips at least one bit in expectation, namely 1/n maximizes the expected fitness of

the offspring. This agrees somewhat with the result of Droste et al. [DJW98] that

on linear functions the (1+1)-EA converges in O(n log n) steps with this mutation

rate, and a constant mutation rate of much larger or much smaller results in

provably longer convergence times.

Here we also see a weakness in relying solely on the expected fitness of the

offspring to choose a mutation rate. In the case of linear functions, when f(x) = f̄ ,

the mutation rate that maximizes the probability of success is equal to n
2

(see

e.g., [Bäc92a]). However, using the Mx(ρ) polynomial, when f(x) = f̄ , the A1

term vanishes and Mx(ρ) is a constant function: all mutation rates give the same

expectation of f(x).

We can thus conclude that success probability, when available, presents bet-

ter higher resolution information about the optimal mutation rate: i.e., that which

maximizes the probability of a successful offspring. However, on general k-bounded

pseudo-Boolean functions where that probability is unknown or difficult to com-

pute, the expectation of fitness offers a compromise.

6.2.5 Functions of bounded epistasis

Linear functions, while amenable to analysis, are a restricted class of fitness func-

tions. At the other extreme, the entire set of general pseudo-Boolean functions is

rather expansive. The class of pseudo-Boolean functions whose epistasis is bounded

by some constant k contains fitness functions that can be very difficult for evo-

lutionary algorithms, and includes a collection of NP-hard optimization problems

such as maximum k-satisfiability and the unrestricted model of NK-landscapes.

In the last section we saw that the Mx(ρ) polynomial coefficients Am vanish for

m > 1. As expected, one can generalize the result to k-bounded pseudo-Boolean
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functions.

Proposition 6.1. Let f be an arbitrary k-bounded pseudo-Boolean function. Con-

sider the Mx(ρ) polynomial for any x ∈ {0, 1}n. If m > k then Am = 0.

Proof sketch. The proof is based on showing that the sum of the first k + 1 terms

` = 0, . . . , k of Am in (6.8) is exactly equal to the additive inverse of the sum of

the last m− k terms ` = (k + 1), . . . ,m. This is mostly tedious manipulation and

is thus omitted here.

It follows from Proposition 6.1 that in general, when f is epistatically bounded

by a constant k, the expected fitness of the offspring is a degree k polynomial in the

mutation rate. In order to compute the rate ρ? that yields the maximal expected

fitness, it is enough to solve for the real roots of the degree k − 1 polynomial

d
dρ

Mx(ρ) as described above.

Proposition 6.1 also asserts that only the fitness of the points that lie within

Hamming distance k of any individual completely determine the expected fitness

of the offspring since any Am contains terms involving ar (and hence, by (6.6),

µ1(S
(r)(x))) only for r < m. Thus, as in the linear case, it is enough to compute

the mean fitness in Hamming spheres out to radius k. It follows that if the mean

fitness in spheres of radius one to k are strictly less than the fitness at x, Mx(ρ)

is degenerate and no mutation rate will produce offspring with expected fitness

above the fitness at x. We formalize this argument in the following lemma.

Lemma 6.1. If µ1(S
(r)(x)) < µ1(S

(0)(x)) for all 0 < r ≤ k, then Mx(0) is maxi-

mal.
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Proof. Choose 0 < ρ ≤ 1. Then

Mx(ρ) = (1− ρ)nµ1(S
(0)(x)) +

n∑
r=1

(
n

r

)
ρr(1− ρ)n−rµ1(S

(r)(x)) by (6.6),

< (1− ρ)nµ1(S
(0)(x)) +

n∑
r=1

(
n

r

)
ρr(1− ρ)n−rµ1(S

(0)(x))

= µ1(S
(0)(x))

(
n∑
r=1

(
n

r

)
ρr(1− ρ)n−r

)
< Mx(0).

Since the choice of ρ was arbitrary, and, by Proposition 6.1 all coefficients above

k vanish, it follows that Mx(0) is maximal.

Clearly, when k > 1, k-bounded functions do not have simple linear Mx(ρ)

polynomials as we saw in the previous section. To illustrate this we plot the Mx(ρ)

polynomials for several random points drawn from various k-bounded functions in

Figure 6.11.

Heckendorn et al. [HRW98], among others, proposed using NK-landscapes

and k-satisfiability problems as test problem domains for evolutionary algorithms.

Since both are representative k-bounded pseudo-Boolean functions, we now report

the results of a number of numerical simulations that study the ρ? mutation rate

and compare it to proposed static rates found in the literature.

6.2.5.1 Unrestricted NK-landscapes

The NK-landscape model [KL87] is a stochastic method for constructing fitness

functions over binary sequences of length n. The model was developed to study

how epistasis affects the ruggedness of the fitness landscape. The fitness function

for the NK model is defined as

f(x) =
1

n

n∑
j=1

gj

(
x[j], x[b

(j)
1 ], x[b

(j)
2 ], . . . , x[b

(j)
K ]
)
,
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Figure 6.11: Mx(ρ) polynomials for random points in the Max-3-Sat search space
(n = 100) [top left and right] and NK-landscapes (N = 100, K = 3) [bottom left
and right].
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where gj : {0, 1}K+1 → [0, 1] gives the fitness contribution of the jth bit in x, and

K other bits {b(j)i }. Typically, the codomain values for gj are generated uniformly

at random and fixed during search.

There are two variants of the NK model. In the adjacent model, the set of

K bits {b(j)i } that interact epistatically with bit j are adjacent to bit j on the

bit string. In the unrestricted model (sometimes called the random model), the

epistatic bit pattern {b(j)i } for the jth bit is drawn randomly (and fixed) from the

n − 1 remaining bits. Thus for each bit j, there are
(
n−1
K

)
possible selections for

the set {b(j)i }. Since the fitness function is expressed as the sum of n functions

each of which depends only on a single bit and the K bits in its epistatic pattern,

the function is epistatically bounded by K + 1. Wright et al. [WTZ00] proved

that the problem of finding the global optimum for the adjacent model is in P by

giving a P-time dynamic programming solution. Moreover, they proved that the

unrestricted model is NP-hard. In this paper, we concentrate on the unrestricted

NK model.

To illustrate the behavior of the optimal rate ρ?, we performed 500 trials of

500 generations each of the (1+1)-EA employing three different mutation rates:

1) the commonly recommended 1/n, 2) a “hard-wired” rate of 0.001, and 3) the

expectation-optimal rate given by the maximum of Mx(ρ) at each point. The

NK-landscape function parameters were n = 100 and K = 3. In each case, the

extra time necessary to solve for the real roots of d
dρ

Mx(ρ) was negligible since the

degree of the polynomial was so low (k = 4). When the expectation maximal rate

ρ? reaches degeneracy (i.e., the maximum is at Mx(0)), we revert to the mutation

rate of 1/n that we proved in Section 6.2.3 maximizes the expected fitness of

the offspring while imposing the constraint that at least some bits are flipped in

expectation.
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Figure 6.12: Log-log plot of mean mutation rates for (1+1)-EA on 500 trials of
500 generations each on two unrestricted NK-landscape models.

In Figure 6.12 we plot the average mutation rate ρ as a function of generation.

As the fitness of the points remain below the average fitness within Hamming radius

k, there is a significant increase from the recommended rate of 1/n. However, very

quickly the fitness of the point exceeds the expectation of the fitness within radius

k and Mx(ρ) reaches degeneracy and the rate reverts to 1/n. This result somewhat

corroborates the claims of others [HM91, Bäc93] that the best mutation rate tends

to decrease during search.

On the NK-landscape with bounded epistasis, the optimal rate ρ? reverts

quickly to the recommended rate of 1/n. However, it leads to significant gains

very early in search as we see in Figure 6.13 where we plot the mean convergence

of the (1+1)-EA for a representative NK-landscape using the three mutation rate

schemes. Before the ρ? rate becomes degenerate, significant gains are made over

the static 1/n rate.
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Figure 6.13: Log-log plot of mean fitness of (1+1)-EA on 500 trials of 500 genera-
tions each on two unrestricted NK-landscape models.

6.2.5.2 Maximum k-satisfiability

In Chapter 3 we saw that the objective function for Max-k-Sat can be written

as a k-bounded pseudo-Boolean function. Hence, a (1+1)-EA tasked to optimize

the Max-k-Sat problem can be easily adapted to find the expectation-optimal

mutation rate for any string.

We performed 500 trials of 500 generations each of the (1+1)-EA on two ran-

domly generated Boolean formulas with 50 variables and 218 clauses, and 100

variables and 430 clauses. The algorithm employed the three different mutation

rates discussed above. Again, when the optimal rate reaches degeneracy, we revert

to the rate that maximizes expected fitness while enforcing bits to be flipped in

expectation.

In Figure 6.14 we report the ρ values found during search. Again, due to the

simplicity of the Mx(ρ) polynomial, the solution time is negligible to compute ρ?

in each case. In both instances, we see again the decrease of the expectation-
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(a) n = 50 (variables), m = 218 (clauses)
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Figure 6.14: Log-log plot of mean mutation rates for (1+1)-EA on 500 trials of
500 generations each on two Max-3-Sat problems.

optimal rate quickly to the degenerate rate where it then reverts to the standard

1/n mutation rate around generation 20 to 50. The initially higher expectation-

optimal rate shown in Figure 6.14 translates to early gains in search as reported

in Figure 6.15 when compared to standard and hard-wired mutation rates.
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Figure 6.15: Log-log plot of mean fitness of (1+1)-EA on 500 trials of 500 genera-
tions each on two Max-3-Sat problems.
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Chapter 7

Summary and Future Work

In this thesis we have studied characteristics of combinatorial search spaces in the

context of search algorithms that perform perturbative local search by employ-

ing some move, mutation, or neighborhood operator. A strong understanding of

search space characteristics is important to understanding the behavior of search

algorithms. A paucity of fundamental models and theories in the study of in-

complete combinatorial search algorithms has resulted in endemic speculation and

vague, inchoate ideas about their behavior and performance: a problem that has

been articulated by others, e.g., [Hoo96, Wat03]. In many cases, rigorous analyses

of search algorithms tend to be outstripped by a somewhat pathological ad-hoc

“incremental design” paradigm. In this paradigm, algorithms and heuristics are

continually designed to be successful on a finite suite of benchmarks. Accordingly,

a large amount of research effort is expended on tweaking and tuning to produce

algorithms that are competitive on such benchmark suites without a clear and sci-

entific understanding of the processes that ultimately make combinatorial search

successful.

For our analysis we have employed a basis function expansion of the objective

function in terms of the neighborhood graph induced by the search operator. We

have shown that this formalism provides insight into certain structural relation-
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ships. For example, in Chapter 2, we connected the formalism to results from the

theory of inapproximability to show that the lower bound on the quality of local

maxima introduced by Grover’s maximum principle is sharp for Max-Ek-Lin-2.

In Chapter 3 we applied the framework to obtain previously unknown bounds on

the objective function levels for local maxima and plateau width in the 3-Sat

search space.

The results presented in Chapter 4 provide a general approach to computing

moments of a k-bounded pseudo-Boolean function f over arbitrary radius regions

(Hamming spheres and balls) in polynomial time. This is significant for the fol-

lowing reasons.

1. The calculation is exact, i.e., the moments are not approximated.

2. The calculation is computationally efficient with respect to näıve enumera-

tion since, in general, the size of these regions is exponential in the bitstring

length of the domain of f (for instance, spheres of radius n/2 or Hamming

balls of radius O(n)).

Exact calculation of the moments affords opportunities not previously avail-

able for heuristic search algorithms that rely on directed sampling. The moments

{µ0(X), µ1(X), µ2(X), . . .} characterize the distribution of values in the codomain

of f over particular regions X of the landscape. In the context of local and genetic

search, an algorithm can exploit this information by computing statistical informa-

tion about unexplored regions of the landscape to determine how promising such

a region might be for further exploration.

Current constructive heuristic search techniques for constraint satisfaction prob-

lems such as Max-k-Sat are often able to prune large regions of their decision

tree by fixing certain variables during search [Dec03]. These fixed variables trans-

form an objective function to a new function defined over a subset of the original
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domain. Low moments over these subsets can also be retrieved in polynomial time

using the algorithm of Chapter 4. Thus this approach is also useful to constructive

algorithms since it can efficiently retrieve moments of a function over leaves in a

subtree of the complete search tree.

In Chapter 5 we explored the moment problem of classical probability theory

to connect the moments over local regions to the actual distribution of codomain

values over local regions. We used a linear programming approach to obtain

sharp bounds on the true distribution over Hamming regions of k-bounded pseudo-

Boolean functions given constant-order moments constructed by the algorithm in

Chapter 4. Furthermore, we relaxed the constraints on this approach to develop an

approximation of the true distribution of objective function values over Hamming

regions. We demonstrated how integrating the distribution function with respect

to codomain value supplies a cumulative distribution function over the region that

we used to estimate the number of improving moves in the region.

A fundamental goal of this research was to show how a formal analysis of the

search space can be used to guide local search algorithms. To address this, in

Chapter 6 we developed a surrogate plateau “gradient” function based on a Walsh

transform of the Max-k-Sat objective function. This surrogate gradient gives

the average objective function value over localized volumes of the search space

to provide information to direct search through plateaus more quickly. We have

shown that this improves the convergence time of hill-climbing local search on

Max-k-Sat problems, especially when targeting near-optimal levels. We have

thus shown that it is beneficial to use exact information about the search space

structure to escape plateaus, rather than by resorting to blind random walks.

We also believe that this approach will provide a rigorous foundation for future

algorithmic innovations.
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Finally, we showed that the framework makes it possible to efficiently compute

the expected fitness of a mutation in the (1+1)-EA for any given mutation rate.

Moreover, we showed how to efficiently compute for any point the mutation rate

that results in the highest possible expected fitness (supposing that the mutation

rate must be constant across the string). We also proved that, for strings with

fitness higher than the expectation in Hamming spheres up to radius k, the fre-

quently recommended rate of 1/n yields the maximal expected fitness of offspring

while imposing the constraint that some bits are flipped in expectation.

7.1 Future Work

In this work we have concentrated on bounded pseudo-Boolean functions in Ham-

ming space. One reason for this is that the Fourier analysis is much easier on

Abelian (commutative) groups such as (Z/2Z)n which corresponds to the domain

of pseudo-Boolean functions. The analyses presented in this thesis will (almost

trivially) generalize to bounded functions on higher cardinality alphabets where

the underlying group remains Abelian, e.g., (Z/qZ)n for q ≥ 2. This would have

immediate implications for other combinatorial problems such as graph coloring

and hypergraph coloring.

Extensions to non-Abelian groups such as the symmetric group would have ex-

tensive impact on combinatorial problems such as TSP, scheduling, and ordering

problems, but would be far less straightforward to develop. In some cases, most

notably the TSP, linear ordering problem, and the quadratic assignment prob-

lem, Fourier decompositions of the objective function have been studied [Sta95,

RKHS02], though the development of general adjacency operators such as those

presented in Chapter 4 are not as easily specified. However, we believe many undis-

covered connections exist between the work presented here and such problems.
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The basis decomposition introduced in Chapter 2 and developed in Chapters 3

through 5 allows us to compute the autocorrelation coefficient of any bounded

pseudo-Boolean function (such as the Max-k-Sat objective function) using its

Fourier coefficients [SWH09]. A conjecture by Stadler and Schnabl [SS92] states

that the autocorrelation is somehow directly related to the number of local optima

in the search space. An interesting direction of research would be to connect

the autocorrelation on bounded pseudo-Boolean functions to work by Reeves and

Eremeev [RE04] who have developed an empirical estimate for the number of

optima on combinatorial landscapes. This might allow one to place a confidence

interval on the quantity predicted by the correlation length conjecture. For Max-

k-Sat, this is directly related to work done by Reeves and Aupetit-Bélaidouni

[RAB04] who have empirically estimated the number of optimal solutions for k-

Sat problems.

In Chapter 5 we saw that the approximation of the true distribution over Ham-

ming regions made it possible to efficiently estimate the number of improving moves

in a region for any bounded pseudo-Boolean function. We conjecture that this ap-

proximation might be refined for some combinatorial problems by using continuous

approximations of the probability mass functions that share the same low moments

of the true distribution (e.g., retrieved by the algorithm presented in Chapter 4).

Finally, we mention that the two applications presented in Chapter 6 are only

simple examples of algorithm design that is informed by search space analysis.

Straightforward extensions of the directed plateau search heuristic described in

Section 6.1 would be to incorporate higher moments into the surrogate gradient.

This would lead to a slow-down in computation time but could translate to a higher

resolution heuristic for escaping plateaus more quickly early in search. It would also

be simple and informative to generalize the mutation rate control for evolutionary
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algorithms presented in Section 6.2 to other mutation-only evolutionary algorithms

such as (µ+ λ)-EAs.

Another potential avenue for extension is to apply the current analysis to dif-

ferent search paradigms. The theoretical analysis in Chapters 4 and 5 partitions

the search space into localized regions with respect to a neighborhood metric. As

mentioned above, it is also possible to apply our results to partitions of the search

space that correspond to decision pivots in complete search algorithms. In this

way, we can extend the existing work to compute moments and approximated dis-

tributions over subtrees in decision tree space. This information could easily be

used to guide branches in complete search algorithms (such as DPLL on k-Sat),

or combined with the work on local moments in Chapter 4 to construct a directed

hybrid approach.

7.2 Concluding remarks

This research is a first step toward connecting theoretical ideas to form a strong

and useful foundation for the analysis of combinatorial search spaces. It provides a

“sampling-free” characterization of distributions of function values that make sense

in the context of a perturbative combinatorial search paradigm. It also allows for a

deeper understanding of the relationship between functions and their distribution

across the search space. Finally, this work illuminates the rich potential that lies

at the interstices of a formal theory of search spaces and the principled design of

heuristic search algorithms.

Over the course of this research we have also obtained a glimpse of why the

perturbative combinatorial search paradigm is so successful on the class of NP-hard

combinatorial problems instantiated by the k-bounded pseudo-Boolean functions.

In the case of Max-3-Sat, we have ruled out certain local search pathologies for a
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large percentage of the search space. More generally, we have seen that for any k-

bounded pseudo-Boolean objective function, the function value at a particular state

is closely related to the moments that describe the true distribution of objective

function values over states that are nearby in the space. However, many unresolved

questions and open problems still remain to be addressed. We hope that this thesis

constitutes an important advance in the theory of combinatorial search spaces.
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Appendix A

Symbols and Concepts

Following is a list of symbols and concepts used in this thesis. In many cases, a

page number is also included that provides a reference to the first use or definition

of the corresponding symbol or concept in the text.

R = the set of real numbers.

N = {0, 1, 2, . . .}.

Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

[P ] – square brackets enclosing an expression P should be understood as

the Iverson bracket [Ive62, Knu92] which is used as an indicator function.

In particular, we use square brackets to denote a number that is 1 if the

enclosed condition is satisfied, and 0 otherwise:

[P ] =

{
1 if P is true,

0 otherwise.

where P is an expression that is either true or false. Note that [¬P ] = 1−[P ],

page 13.

δij: unless otherwise specified, is the Kronecker delta function, page 35.

E[·] denotes the expectation of a random variable, page 88.
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A vector space is a set V over a field F together with two binary operations:

vector addition which takes v, w ∈ V to v+w ∈ V and scalar multiplication

which takes a ∈ F, v ∈ V to av ∈ V such that for all u, v, w ∈ V , a, b ∈ F :

• u+ (v + w) = (u+ v) + w;

• v + w = w + v;

• There exists an element 0 ∈ V , called the zero vector, such that v+0 = v

for all v ∈ V ;

• For all v ∈ V , there exists an element w ∈ V , called the additive inverse

of v, such that v + w = 0. The additive inverse is denoted v;

• a(v + w) = av + aw;

• (a+ b)v = av + bv;

• a(bv) = (ab)v;

• 1v = v;

where 1 is the multiplicative identity of F .

An inner product space is a vector space V over a field F with an additional

structure called an inner product which is a map 〈·, ·〉 : V × V → F , page

13.

A linear map from a vector space V to a vector space W is a function F :

V → W such that f(x+ y) = f(x) + f(y) and f(ax) = af(x) for all x, y ∈ V
and a ∈ F .

A basis of an n-dimensional vector space V is a set of vectors v1, . . . , vn ∈ V
such that every vector v ∈ V can be expressed as a linear combination

v =
∑n

j=1 ajvj for unique scalars aj ∈ F .
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X is a state set: a finite but very large set of discrete structures, page 1.

A function f : X → R is an objective function, page 1.

(X , f) is a combinatorial optimization problem: a set of states along with an

objective function f : X → R.

F (X ) is the set of all real functions {f : X → R}. It is a vector space

isomorphic to R|X |, page 13.

{ϕi} is a set of basis functions for F (X ), page 15.

{ez} is the standard basis for F (X ). Each element z ∈ X has an associated

standard basis function ex(x) = [x = z], page 13.

〈f〉X is the average value of a function f over a set X where X is a subset

of the domain of f , page 16.

f̄ is a more concise way of writing 〈f〉X , page 52.

f c is the cth power of a function f , page 70.

µc(X) is the cth moment of a function f over a subset X of its domain, page

68.

N : X → 2X is a neighborhood operator on X . Here 2X denotes the powerset

of X : the set of all subsets of X , page 14.

When N is regular, the degree of the neighborhood is denoted d, page 18.

Given a neighborhood operator, A is the (algebraic) adjacency operator cor-

responding to the neighborhood graph induced by N , page 14.

H(x, y): the Hamming distance between two strings x and y, page 32.
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S(r)(x) is a Hamming sphere of radius r about a string x, page 69.

B(r)(x) is a Hamming ball of radius r about a string x, page 69.

α(x, y) and β(x, y) are approaching and retreating sets. They are sets of

points in {0, 1}n that partition the neighborhood of y which lies at some

Hamming distance from x, page 74.

S(r) is the radius r sphere matrix, page 73.

{γ(r)
i } is the spectrum (i.e., set of eigenvalues) of the radius r sphere matrix,

page 77.

α(x, y) is the approaching set with respect to two strings x and y, page 72.

β(x, y) is the retreating set with respect to two strings x and y, page 72.

〈x, y〉: the string inner product of two strings x and y, page 32.

P: the Heckendorn Pack Function, page 34.

⊕ denotes the logical exclusive-or operation, page 32.

ψi is the ith Walsh function. The order of ψi is the number of elements in

the binary string representation of i that are equal to 1, page 38.

wi denotes the ith Walsh coefficient, page 38.

Ψp: a linear combination of Walsh functions of order p, page 41.

wj is the sum of degree c monomials on Walsh coefficients such that the

bitwise exclusive disjunction of the binary string representations of the coef-

ficient indexes in each monomial is equal to j, page 70.
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W(f) is the bound of nonzero Walsh coefficients in the Walsh basis expansion

of f , page 71.

Qn denotes the hypercube graph of order n: a regular graph with 2n vertices,

each of which correspond to a unique element of {0, 1}n, page 25.

V denotes a set of Boolean variables, page 46.

C denotes a set of disjunctive Boolean clauses, page 46.

A : V→ {0, 1} is a Boolean assignment, page 46.

τ : a positive real number that defines the objective function range outside

of which certain search space structures are forbidden in Max-3-Sat, page

57.

Kr(x, n) is the order r Krawtchouk polynomial, page 78.

pX is the frequency distribution of codomain values of a function over a

subset X of its domain, page 86.
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ings of the Seventh International Conference on Genetic Algorithms
(ICGA97), San Francisco, CA, 1997. Morgan Kaufmann.

[MF00] Peter Merz and Bernd Freisleben. Fitness landscape analysis and
memetic algorithms for the quadratic assignment problem. IEEE
Transactions on Evolutionary Computation, 4(4):337–352, November
2000.

[MG05] Monaldo Mastrolilli and Luca Maria Gambardella. How good are
tabu search and plateau moves in the worst case? European Journal
of Operations Research, 166:63–76, 2005.

[MP89] Catherine A. Macken and Alan S. Perelson. Protein evolution on
rugged landscapes. Proceedings of the National Academy of Sciences
of the United States of America, 86(16):6191, 1989.

[MRR+53] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosen-
bluth, Augusta H. Teller, and Edward Teller. Equation of state calcu-
lations by fast computing machines. The Journal of Chemical Physics,
21(6):1087–1092, 1953.

[MSK97] David McAllester, Bart Selman, and Henry Kautz. Evidence for in-
variants in local search. In Proceedings of the Fourteenth National
Conference on Artificial Intelligence (AAAI-97), 1997.

[Müh92] Heinz Mühlenbein. How genetic algorithms really work: I. mutation
and hillclimbing. In Reinhard Männer and Bernard Manderick, edi-
tors, Parallel Problem Solving from Nature 2, pages 15–25. Elsevier,
Amsterdam, 1992.
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