
Shea LOtJY 

NUMERICAL SIMULATION OF DISPERSION 

IN GROUNDWATER AQUIFERS 

by 

Donald Lee Reddell and Daniel K. Sunada 

June 1970 

41 



June 1970 

NUMERICAL SIMULATION OF DISPERSION 

IN GROUNDWATER AQUIFERS 

by 

Donald Lee Reddell 

and 

Daniel K. Sunada 

HYDROLOGY PAPERS 

COLORADO STATE UNIVERSITY 

FORT COLLINS, COLORADO 80521 

No . 41 



ACKNOWLEDGMENTS 

This paper is based primarily on Dr. D. L. Reddell's Ph.D. dissertation entitled, 

"Dispersion in Ground Water Flow Systems ." The work was supported by Colorado Experiment 

Station Project No. 110, Office of Water Resources Research through the W.R.R. Act of 

1964, PL 88-379 and National Science Graduate Traineeship . 

iii 

I 

' 

' 1 
~ 
I 

' 



Chapter 

Abstract 

I 

II 

II I 

IV 

v 

VI 

References 

TABLE OF CONTENTS 

Introduction . 

1.1 Uescription of Problem 
1.2 Purposes and Objectives. 
1.3 Methods of Investigation 

Previous Work Related to This Research. 

2.1 Theoretical Investigations 
2.2 Analyt ical Solutions .. . 

Longitudinal Dispersion . 
Longitudinal and Lateral Dispersion . 

2.3 Experimental Results 
2.4 Numerical Solutions. 

Summary. . . . . . 

Presentation of Mathematical Model For Dispersion 
in Groundwater Aquifers . . . 

3.1 General Flow Equation . 
3.2 Dispersion Equation .. 
3.3 Auxiliary Equations .. 
3.4 Dispersion Coefficients. 

Development of Numeri cal Model for Dispersion 

4.1 Finite Differ ence Form of Two-Dimensional 
Flow Equation ... . .......... . 

4.2 Finite Difference Form of Two-Dimensional 
Dispersion Equation .. ..... . 

4.3 Finite Difference Form of Velocity Equation . 
4.4 Boundary Conditions ........ . 
4.5 Description of the Computer Program. 
4.6 Validity of Computer Simulator 

Results and Interpretations 

5. 1 Longitudinal Dispersion in Steady, Uniform, 
One-Dimensional Flow . . . 

5.2 Longitudinal and Lateral Dispersion in 
Steady , Uniform, One-Dimensional Flow. 

5 . 3 Numerical Solutions Using the Tensor 
Concept of Dispersion ........ . 

Longitudinal Dispersion ...... . 
Longitudinal and Lateral Dispersion. 

5.4 Dispersion Along Equilibrium Salt-Water Wedge. 

Summary and Conclusions 

6.1 
6 .2 
6 . 3 

Evaluation of Numerical Simulator. 
Suggestions for Future Work. 
Observations 

1 

1 
1 
2 

3 

3 
4 
4 
5 
6 
7 
8 

9 

9 
9 

10 
10 

12 

12 

12 
14 
15 
15 
16 

18 

18 

19 

21 
21 
23 
27 

30 

30 
30 
31 

32 

Appendix A Derivation of Fundamental Flow Equation 36 

Appendix B Derivation of Dispersion Equation. . . . .. 39 

Appendix C Development of Finite Difference Equation for the 
Flow Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 

iv 



Appendix 0 

Appendix E 

Appendix F 

Appendix G 

Appendix H 

TABLE OF CONTENTS - Continued 

Development of Finite Difference Equation for the 
Dispersion Equation 

Stability Analysis for Dispersion Equation. 

Flow Chart of Program 

Fortran IV Computer Program 

List of Symbols Used in this Study. 

v 

Page 

48 

53 

63 

68 

87 



Figure 

2-1 

2-2 

2-3 

4-1 

4-2 

5-1 

5-2 

5-3 

5-4 

5-5 

5-6 

S-7 

5-8 

LIST OF FIGURES AND TABLES 

Schemati c column and t ypical concentrat ion prof iles for a 
slug injection. [After Hoopes and Harleman (1965) ] 

Schematic sketch of longitudinal dispersion column setup. 

Schematic sketch of l ongitudinal and l at eral dispersion 
column setup .... 

Grid syst em used t o develop a finit e di fference equation 

3 

5 

5 

for the seepage vel ocity. . . . . . . . . . . . . . . . . 14 

Schematic sketch showing relation of seepage velocity at 
moving point to the seepage velocity calculated at the 
interface between grids . . . . . . . . . . . . . . . . . . . . 14 

Comparison of analytical and numerical solution to the 
longitudinal dispersion problem used by Garder ~· (1964) ....... 18 

Effect of grid size on the err.or of solution by the method 
of characteristics. . . . . . . . . . . . . . 18 

Comparison of numerical and analytical solutions using 
different numbers of moving points per grid . . . . . . . . . . . . . . . 19 

Comparison of numerical and analytical solutions using 
only one moving point per grid. . . . . . . . . . . . . . . . . . . . 19 

Comparison of numerical, transient concentration distribu­
tion along x2ao for the two-dimensional dispersion 
problem with the analytical c;olution to the one-dimensional 
dispersion problem . . . . . . . . . . . . . . . . . . . . . . 19 

Comparison of numerical and approximate analytical 
solution for the one-dimensional flow, two-dimensional 
dispersion problem at steady state concentration. . . . .. . ... . 20 

Comparison of longitudinal concentration distribution 
at steady state as calculated numerically and by an 
approximate analytical solution for the one-dimensional 
flow, two-dimensional dispersion problem. . . . . . ........ 20 

Schematic sketch of coordinate axes rotation used for 
comparing numerical tensor transformation with known 
analytical solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

5-9 Comparison of longitudinal concentration distribution 
calculated with and without tensor t r ansformat ion for 
Runs T-1 and T-2. . . . . . . . . . . . . . . . . . .... . ... . 22 

5-10 Comparison of l ateral concentration dist ribution 
calculated with and without tensor transformat ion 
for Runs T-1 and T-2 after 0 . 46 pore volumes have 
been injected . . . . . . . . . . . . . . . . . . . . . . . . 22 

5-11 Comparison of lateral concentration distribution for 
Run T-3 after 0 . 46 pore volumes have been inject ed .. .. ... . . .. . 23 

5- 12 Comparison of lateral concentration distribution for 
Runs T-4 and T-5 at steady state . . . . . . . . . ... . .. . ... .. 23 

vi 



LIST OF FIGURES AND TABLES - Continued 

5-13 Comparison of longitudinal concentration distribution 
at steady state as calculated numerically using the 
proposed tensor transformation and by an approximate 
analytical solution . . . . . . . . . . · . . . . . . . . . . . . . . .. . 24 

5-14 Comparison of longit udinal concentration distribution 
at steady state as calculated numerically using no 
tensor transformation and by an approximate analytical 
solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 

5-15 Comparison of numerical solutions with and without 
t he tensor form of dispersion for steady state 
concentration at X3/i3"'0.3045 .. .......... .... . .... 24 

5-16 Comparison of numerical solutions with and without 
the tensor form of dispersion for steady state 
concentration at x3; i 3 = 0. 6090. . . . . . . . . . . . . . . . . . . . . 24 

5-17 Comparison of nwnerical solut·ions with and without: 
the tensor form of dispersion for steady state 
concentration at x3;t3 = 0 .9570. . . . . . . . 25 

5-18 Numerical results for Run T-6 at different time levels. 25 

5-19 Numerical results for Run T-4 at different time levels. 25 

5-20 Schematic sketch showing the effect of the moving point 
location on calculating average concentration . 26 

5-21 Numerical results for Run T-8 at different time levels . 26 

5-22 equilibrium wedge in a confined aquifer . 27 

5-23 Comparison of fresh water head calculated numerically 
and by Eq . 5-9 for the salt -water intrusion prob l em . . .. ...... 28 

5-24 Comparison of i nterface loca.t ion calculated numerically 
and by Eq . 5-10 . . . . . . . . . . . . . . . ... . .. . 29 

5-25 Numerical results showing the concentration distribution 
across the transition zone for various value of 2 . . . . . . . . . 29 

A-1 Volume element of a porous medium used for developing 

B-1 

B-2 

continuity equation 

Volume element of a porous medium used to develop 
continuity equation for tracer in miscib l e fluid flow 

Tortuous path of fluid element . . 

.. ........ 36 

39 

40 

C-1 Central grid and six adjacent grids with the subscripting 
used in the fini te difference equations . . . . . ....... 45 

0-1 Three-dimensional grid system with subscripting used to 
develop the fini te difference form of the dispersion equation ...... 49 

Tabl e 

V-1 Data for computer runs made t o verify numerical simulation 
and t ensor transformation of dispersion problem . . . . . . . . . . . . . 22 

vii 



ABSTRACT 

A fundamental flow equation for a mixture of miscible fluids was derived by combining 

the law of conservation of mass, Darcy's l aw, and an equation of state describing the 

pressure-volume-temperature-concentration relationship. The result is an equation involving 

two dependent variables, pressure and concentration. 

A relationship for determining concentration was derived by expressing a continuity 

equation for the dispersed tracer. The problem was formulated on a microscopic basis and 

averaged over a cross-sectional area of the porous medium to give a macroscopic convective­

dispersion equation. The resulting coefficient of dispersion was a second rank tensor. 

The two resulting differential equations are solved numerically on the digital computer. 

An implicit numerical technique was used to solve the flow equation for pressure and the 

method of characteristics with a tensor transformation was used to solve the convective­

dispersion equation. The results from the flow equation were used in solving the convective­

dispersion equation and the results from the convective-dispersion equation were then used 

to resolve the flow equation. 

The proposed computer simulat or successful ly solved the longitudinal dispersion problem 

and the longitudinal and lateral dispersion problem. Using the tensor transformation, prob­

lems of longitudinal and lateral dispersion were successfully solved in a rotated coordinate 

system. 

The computer simulator was used to solve the salt-water intrusion problem. The numerical 

results for the fresh water head in the aquifer closely matched those obtained analytically. 

Also, the numerical results for the location of the fresh-salt interface were good except in 

the region of the wedge toe. 

viii 



NUMERICAL SIMULATION OF DISPERSION 
IN GROUNDWATER AQUIFERS 

by 

Donald Lee Reddell* and Daniel K. Sunada** 

Chapter I 

INTRODUCTION 

1.1 Description of Problem. The rapid growth 
of the world's population is placing an increasing 
demand upon fresh water supplies. This has resulted 
i n groundwater becoming an i mportant source of water 
supply in many regions, and the use of aquifers as 
operating reservoirs is becoming more common . Effi­
cient use of aquifers as reservoirs will require an 
understanding of the water quality problems created 
by sea- water intrusion into coastal aquifers, r echarge 
of surface water into aquifers, underground waste 
disposal, and infiltration of pollutants from surface 
sources into aquifers. 

Since pollutants , wastes, and recharge waters 
are normally miscible with the native groundwater, an 
understanding of the mechanics of miscib le fluid dis ­
placement is necessary for the analysis of groundwater 
quality problems. Studies indicate that the mixing 
of miscible fluids in a porous medium is dependent 
upon the magnitude and distribution of flow velocities 
within the porous medium and upon the geometry of the 
porous structure. This mixing is greater than can be 
accounted for by molecular diffusion and has been 
named dispersion by Scheidegger (1954). 

The dispersion process can be described by a 
form of the convective-diffusion equation in which a 
coefficient of dispersion replaces the standar d coef­
ficient of diffusion . Initial efforts at analyzing 
dispersion used a scalar dispersion coefficient . 
However,. the work of de Josselin de Jong (1958) indi­
cated the dispersion coefficient is not a scalar, 
and he introduced the use of longitudinal (parallel 
to flow direction) and lateral (perpendicular to flow 
direction) dispersion coefficients. Bear (196la) and 
Scheidegger (1961) proposed that the dispersion coef­
ficient is a symmetric second order tensor formed 
from the contraction of a fourth order tensor which 
depends on the porous medium and a second order ten­
sor which is a function of the flow. 

Many basic studies have been conducted to explain 
the physical laws of the dispersion process. These 
studies have resulted in analytical solutions to 
simple flow problems with simpl e boundary conditions. 
Also, some approximate solutions have been developed 

for radial and source-sink flow fields . However, 
no analyt ical solutions have been obtained which 
will be adequate for describing groundwater quality 
problems on an aquifer wide basis. Moreover, the 
complexity of the ~eneral differential equations 
describing dispersion is such that it is unlikely 
that analytical solutions will be developed in the 
near future . 

Because of the inadequate techniques in 
analytical solutions and the recent advances in 
numerical and computer technology, an interest in 
using a computer simulation to describe the disper­
sion process has developed. Garder et al. (1964) 
used the method of characteristics (al so referred to 
as "particle i n cell" technique) to numerically 
solve the dispersion equation. However, they did 
not consider the tensorial nature of the dispersion 
coefficient for multidimensional flows. 

Shamir and Harleman (1966) transformed the 
cartesian form of the convective- dispersion equation 
into equipotential and stream function coordinate 
systems. This technique properly considers the ten­
sorial nature of the dispersion coefficient, but 
present s problems with unsteady nonuniform flow. 

1.2 Purposes and Objectives. The literature 
indicates very l i ttle work toward application of 
basic dispersion results to field problems . Practi­
cal problems involve complex flow geometries in 
anisotropic and nonhomogeneous media with comp l icated 
boundary conditions. A computer simulation of the 
dispersion process should handle unsteady nonuniform 
flow problems and, in addition, consider the tensorial 
nature of the dispersion coefficient . 

The objectives of this paper are: 

(a) Develop a computer simulation for the 
mass transport of a fluid miscible with the native 
groundwater . The theory will be developed for three­
dimensional, nonhomogeneous, unsteady f l ow fields, 
with density and viscosity variations between the 
two fluids. However, only two-dimensional flow 
problems in an isotropic medium using a conservative 
fluid will be run in the computer simulator . 

*Ph. D. graduate of Colorado State University, Department of Agricultural Engineering Department~ Fort Collins, 
Colorado , presently Assistant Professor of Agricultural Engineering , Texas A & M, College Stat1on, Texas. 

*"Associate Professor of Civil Engineering, Colorado State University, Fort Col l ins, Col orado . 
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(b) Develop a numerical tensor transforma­
tion wh ich considers the tensorial nature of the 
dispersion coefficient in a cartesian coordinate 
system. 

1.3 Methods of Investigation. The techniques 
of investigation are directed toward use of the com­
puter as a model simulator. No laboratory experi­
mental techniques are used. The differential equa­
tions describing the miscible displacement process 
are developed and written in finite difference form. 
An implicit numerical technique is used to solve the 
flow equation and the method of characteristics with 
a tensor transformation is used to solve the 

convective-dispersion equation. The results from 
the flow equation are used in solving the dispersion 
equation and the results of the dispersion equation 
are then used to ·solve the flow equation again. 
This procedure has been referred to as a "leap-frog" 
technique, and will be explained in detail in 
Chapter IV. 

The validity of the computer simulation is 
tested on some simple problems for which exact or 
approximate analytical solutions are available. 
Also, the more complex case of dispersion along an 
intruded salt-water wedge is considered. 



Chapter II 

PREVIOUS WORK RELATED TO THIS RESEARCH 

Slichter (1905) injected a salt solution into 
a well and observed the time of arrival at a nearby 
observation well. He observed that the salt did not 
arrive at the observation well as a slug, but instead 
the salt concentration gradually increased with time 
to some maximum value. Since Slichter's work, many 
investigations have been made on the flow of miscible 
fluids in porous media. These investigations are 
divided into the following four categories for dis­
cussion purposes: (2 .1) theoretical investigations, 
(2.2)analytical investigations, (2.3) experimental 
studies, and (2.4) numerical simulation. 

2.1 Theoretical Investigations. The theoretical 
investigations have been oriented towards developing 
a basic understanding of the dispersion phenomena . 
These studies attempt to define the dispersion coef­
ficient in terms of medium properties, fluid proper­
ties, and the fluid velocity. 

Dispersion and diffusion may be visualized by 
the injection of a slug of dye into a f luid flowing 
through a porous medium as shown in Fig . 2-1. The 
center of the slug will travel along the column axis 
(r=O) with the average fluid velocity, v3 . As 

time, t , increases, the slug will increase in size 
and mix with the surrounding native fluid to form 
concentration profiles in both the x3 and r-

directions . This variation in concentration, C , 
is created by both dispersion and diffusion . Diffu­
sion is a direct result of thermal motion of the 
individual fluid molecules and takes place under the 

v
3
1direction of flow) 

Slug 
Injection 

Porous 
Medillll 

Fig. 2-1 Schematic column and typical concentration 
profiles for a slug injection. (after 
Hoopes and Harleman (1965~ 

3 

influence of a concentration gradient. Dispersion 
in porous media is a mechanical or convective mixing 
process which is the result of individual fluid 
particl es trave.ling at variable velocities through 
irregular shaped pores and along tortuous micro­
scopic pathlines. 

Dispersion results in a variation of concentra­
tion similar to that created by diffusion. However, 
dispersion is the result of convective mixing on a 
microscopic scale; not of a concentration gradient. 
Because of the difficulty in describing the boundary 
conditions f or flow through porous media on a micro­
scopic scale, a macroscopic model is used. ll'hen using 
the macroscopic model, dispersion is assumed to be 
proportional to the concentration gradient . A detail­
ed description of the transition from a microscopic to 
a macroscopic model is given in Section B-2 of 
Appendix B. 

To investigate the dispersion process, many 
porous media models have been used. Perhaps one of 
the simplest models is a bundle of capillaries. 
Taylor (1953, 1954) investigated the displacement of 
a fluid from a straight capi l lary tube of radius, r , 
by another fluid miscib le with the first. !lis results 
indicated that the tracer was dispersed relative to 
a plane moving with velocity, V , exactly as in a 
Fickian diffusion process, but with a diffusion 
coefficient, 

D (2-1) 

where Dd is the molecular diffusion coefficient. 

Aris (1956) generalized Taylor's results by consider­
ing a bundle of capillary tubes and obtained an 
effective diffusion coefficient, 

where r is a coefficient depending 
the capillary tube's cross-section. 
et al. (1965) i nvestigated the range 
of Eq. 2-2 . 

(2-2) 

on the shape of 
Ananthakrishnan 
of applicability 

Another theoretical approach is to develop a 
statistical model of the microscopic motion of marked 
fluid particles and to average these motions to obtain 
a macroscopic description of dispersion. Scheidegger 
(1954) neglected molecular diffusion and used the 
theory of a ran·dom walk extended to three dimensions. 
However, he assumed that the probability for a par­
ticle to move a given distance was the same for all 
directions . This l eads to a dispersion coefficient 
that has the same value 'in all directions, and has 
subsequently been proven wrong for the general case . 

l 
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De Josselin de Jong (1958) also used a statis­
tical approach and was probably the first to develop 
a model which defined the dispersion coefficient as 
an anisotropic quantity. His model was constructed 
of interconnected straight channels oriented at ran­
dom but uniformly distributed in all directions. 
The final result was a concentration profile des­
cribed by a three-dimensional nprmal distribution 
i n which longitudinal disper sion was greater than 
transverse dispersion. The concept of longitudinal 
and transverse dispersion has been verified experi­
mentally [de Josselin de Jong (1958); Bear {196lb)] . 

Saffman (1959, 1960) used a statistical approach 
similar to de Josselin de Jong (1958). However, 
Saffman introduced molecular diffusion into his model 
and studied the r elationship between mechanical dis­
persion and molecular diffusion . Saffman's first 
model (1959) assumed dispersion was large compared 
to molecular diffusion. Saffman's second model 
(1960) was for the case where molecular diffusion 
and dispersion are of the same order of magnitude. 

Other statistical models have been investigated 
by Danckwerts {1953), Beran (1955), Rifai et al. 
(1956), and Day (1956) . Scheidegger (1957) developed 
two theoretical models which yielded, 

D ...... v (2-3) 

for one model, and 

D ,.., y2 (2-4) 

for the other model. Equation 2-4 represents a model 
where enough residence time exists in each flow 
channel for molecular sideways diffusion to cause 
complete mixing between invading and original fluids. 
Equation 2-3 represents a model i n which no mass is 
allowed to be transferred from one streamline to 
another by molecular diffusion. A~ shall be seen, 
experimental evidence indicates that Eq. 2-3 comes 
closer to physical reality. Scheidegger (1960) sum­
marized much of the statistical work done prior to 
1960. 

Using the results of de Josselin de Jong ' s work 
(1958). Bear (196la) developed an expression for the 
dispersivity tensor in terms of the average distance 
travel ed by the tracer in the medium. Bear implied 
that the dispersion coefficient , Dij • was a second 

rank tensor linear in the components of the velocity . 
Scheidegger (1961) suggested by induction that: 

v v m n 
Dij • Eijmn -V- (2-5) 

where cijmn is the coefficient of dispersivity, 

which is a porous medium property, and VmVn/V i s a 

tensor which represents the linear influence of 
velocity. Scheidegger concluded that the coefficient 
of dispersivity was a fourth rank tensor with 81 com­
ponents; but due to certain symmetry properties, 
contains only 36 independent components in the general 
case of an anisotropic medium. In isotropic media, 
there are only two dispersivity constants. 

Recent work by Poreh (1965), showed from physical 
and dimensional reasoning that the t ensor form of the 
coefficient of dispersion i s 

4 

(2-6) 

where d = pore size parameter, 6 .. = kronecker 
lJ 

delta, ViVj is a tensor representing the linear 

i nfluence of velocity, and F
1 

and F2 are even 

functions of Vd/Dd and Vd/v , the Peclet and 

Reynolds numbers, respectively. Bear and Bachmat 
(1967) also showed the dispersion coefficient, D . . 

lJ 
to be a function of t he Peclet number. 

Several investigators, including Scheidegger 
(1961) and de Josselin de Jong and Bossen (1961), 
have suggested that the dispersion of a tracer in 
fluid flow through saturated homogeneous porous media 
can be described by the differential equation, 

~~ .. a!i [ Dij a!~ - vic J (2-7) 

where C is the ~racer concentration, t is time, 
Vi is the component of the velocity vector in a 

car tesi an coordinate system, and xi(i=l, 2 ,3) is the 

cartesian space coordinates. The double summation 
convention of tensor notation is implied in the use 
of Eq . 2-7 . Bachmat and Bear (1964) gave the dis­
persion equation in curvilinear coordinates consis~­
ing of streamlines and equipotentials c~-~ coordi­
nates). Bear and Bachmat {1967) used basic fluid 
flow equations which are averaged over a representa­
tive volume element of porous media to yield the 
equation of motion and the equation of dispersion. 

Perkins and Johnston (1963) gave a good summary 
of diffusion and dispersion in porous media. A more 
recent and more detailed summary of the theory of 
dispersion in porous media was given by Bear et al . 
(1968, Chapter 11). 

2.2 Analytical Solutions. Most dispersion 
problems have a direct analogy with heat flow. For 
this reason, a good reference for analytical solu­
tions is Carslaw and Jaeger (1959) or Crank (1956) . 
Some of the more important analytical solutions are 
discussed below. 

Longitudinal Dispersion. A semi-infinite column 
(X3>0) of homogeneous and isotropic porous media 

with a plane source maintained at X3•0 is shown 

in Fig. 2-2. The flow is maintained at a constant 
specific discharge, q , in the x3-direction. For 

an isotropi c media, the axes of the dispersivity 
tensor is assumep to coincide with the velocity vec­
tor. Thus, Eq . 2-7 reduces to 

ac 
at = (2 -8) 

where DL is the longitudinal dispersion coefficient. 

Initial and boundary conditions are given by, 



C(O,t) = C
0 

t > 0 

C(X3,0) = 0 x3 ~ o 

C(co ,t) = 0 t > 0 (2-9) 

C=C 
0 

x3=0 

T /.0 

C/C
0 

X3=0 
x3 

0 
0 t 

Porous 
~'ledi um 

/.0 

C/C
0 

X =oo 
3 

q 
0 

V3=q/~ 
0 t 

p . ' ~::. oros1 ty, 

t=O 

Fig. 2-2 Schematic sketch of longitudinal disper­
sion column setup 

Ogata and Banks (1961) used Laplace transforms to 
obtain the solution , 

(2-10) 

where erfc(u)=l-erf(u) . Ogata and Banks showed 
that the second term in Eq. 2-10 may be negl ected in 
most cases. For instance, if DL < 0.002 v3x3 a 

maximum error of less than three percent is intro­
duced by neglecting the second term. Therefore, 
unless the region cl ose to the source is considered, 
an approximate solution to Eqs. 2-8 and 2-9 is 

c 
c 

0 

(2 - 11) 

Ogata (1961, 1964a) gave a solution in integral 
form to the problem where a slug of radius "a" is 
injected at x3=0 . This problem must consider both 

longitudinal dispersion and transverse dispersion . 
Using his solutions , Ogata (1964a) developed experi­
mental procedures for determining both DL and DT . 

5 

In many physical problem~, the tracer being 
used may react with the solid matrix of the porous 
medium. Depending on the reaction, the tracer may 
be adsorbed to the matrix or additional tracer may 
be produced . To handle such cases, a production 
term dependent on the concentration is added to 
Eq . 2-8 . Using varying functional relationships for 
the production term, solutions to this problem have 
been obtained by Ogata (l964b), Banks and Jerasate 
(1962), Banks and Ali (1964), and Lapidus and 
Amundson (1952). A closely related problem is that 
of radioactive decay of a tracer. Bear et al . (1968, 
p. 347) gave the solution ·to Eqs. 2- 8 and 2-9 where 
the tracer continuously undergoes radioactive decay. 
Coats and Smith (1964) investigated the effects of 
dead-end pore volume on dispersion and gave several 
solutions to the simple diff usion model characterized 
by Eq . 2- 8. 

Longitudinal and Lateral Dispersion . If a 
rectangular column (O~x3~£3 , O~x2~t2) is used and 

a tracer source is maintained over a portion of the 
input area Cg~x2~b) as shown in Fig. 2-3, then 

both longitudinal and lateral dispersion will occur. 
Assuming a homogeneous and isotropic medium with uni­
directional flow in the X.3-direction and a c;ax·l =0 ' 
Eq. 2-7 becomes. 

C=C 

q 

t =O 

(2-12) 

zi-m~:~f 
Tracer Spread 
at t=t

1
. 

l 

Fig . 2-3 Schematic sketch of longitudinal and 
latera.l dispersion column setup 

The initial and boundary conditions are given by: 



C(x2,0,t) 

ccx2,0,t) 

C
0 

; o~x2~b 

0 ; b<X
2
<t

2 

acco ,x3 ' t) 
__ a_x_2 -- '" o t>O 

t >O 

C(x2 ,~ ,t) '" Bounded 

t >O 

C(x2,X3,0) = 0 ; 0~.X:2~R.2 ; X3>0 (2-13) 

A series solution to Eqs. 2-12 and 2-13 was given by 
Bruch and Street (1967) . Harleman and Rumer (1963} 
gave the following approximate steady stat e soluti on 
to Eqs. 2-12 and 2-13, 

~ • !. erfc [ X2-b J (2-14) 
Co 2 2~3/V3 

In their work on waste-water recharge and dis­
persion, Hoopes and Harleman (1965, 1967a, 1967b) 
have developed several approximate solutions to the 
radial dispersion prob lem. Raimondi et al . (1959) 
also gave an approximat e solution to the radial dis ­
persion prob l em. Esmail and Kimb l er (1967) gave a 
soluti on which allows for alternate injection and 
production. 

Dagan (1967) gave an anal ytical solution for 
disper sion in a nonhomogeneous porous column . Using 
the Laplace transform, Shamir and Harleman (1966, 
1967) deve loped analytical solutions for longitudinal 
and l ateral dispersion in layered porous media . 
Bear and Todd (1960, pp. 27-33) gave some anal ysis 
of the unsteady flow problem. Banks and Jerasate 
(1962) allowed the coefficient of dispersion to vary 
with time, and solved the probl em by i ntroducing a 
different time scale. 

2 . 3 Experimental Results. Much of the experi­
mental work has attempted to estab lish relationships 
so that the dispersion coefficients may be calculated 
from media and fluid properties. As was pointed out 
in Section 2 . 1, theoretical models indicate that the 
dispersion coefficient is a second rank tensor. 
Experiments of de Josselin de Jong (19S8) , Bear (1961b) 
and Bear and Todd (1960) tend to confirm this concept . 
Scheidegger's work (1961) indicated that for homo­
geneous and isotropic media, the dispersion tensor 
reduces to two independent terms : (1) the l ongitudi­
nal dispersion coefficient, UL , and (2) the lateral 
dispersion coefficient , Dr . 

Most of the experime~tal det erminations of the 
longitudinal dispersion coefficient used Eqs . 2-10 
or 2- 11 as a basis for anal ysis . Ebach and White 
(1958) performed experiments on a wide range of par ­
ticle sizes , shapes , and Reynolds numbers . They 
empirica lly postulated t hat for Reynolds numbers, 
R < 100 , 

(2- 15} 
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where V = fluid velocity, d = particle s ize of the 
porous media, and v = kinematic viscosit y . The 
experimentally determined coef ficient o1 is 

strongly dependent on the porous medium whi le 

is dependent on flow regime. However , evidence 
exists (Adam, 1966) that s1 is also dependent on 

medium properties. Experimenters have found a l arge 
variation in t he values of o 1 and s1 . A l arge 

percentage of this variation may be attributed to 
experimental t echniques ; especially the different 
methods for measuring concentration. 

Harleman and Rumer (1963) found o 1 = 0.66 and 

a1 • 1.2 while Hoopes and Harleman (1965) found 

o1 = 1. 70 and e1 = 1.2 . Ebach and White (1958) 

found o1 = 1.92 and s1 • 1.06. Experimental 

results for longitudinal dispersion were given by 
Banks and Ali (1964) , Blackwell (1962) , Cairns and 
Prausnitz (1960), Carberry and Bretton (1958), 
Simpson (1969), and many others . 

Equation 2-15 prompted investigators of lat eral 
dispersion t o fit their experimental data to the f orm, 

B 
0

T = 0 ( Vd) 
2 

v 2 v (2-16) 

Harleman and Rumer (1963) found o 2 = 0 .036 and 

s2 = 0 . 7 . Hoopes and llarleman (1965) found o2 = 

0.11 and a2 • 0 . 7 . Latera l dispersion has been 

investigated by Simpson (1962), Blackwell (1962) , 
Grane and Gardner (1961) , vanderPoel (1962) , and 
Li and Lai (1966) . 

Harleman et al . (1963) were able to correlat e 
the longitudinal dispersion coefficient with permea­
bility, 

B 
DL = o ( v/k) 3 
v 3 \/ 

(2-17) 

where k i s the per meability with uni t s of L2 . 
Harleman et al. found a3 ~ 54 for spheres and 88 

for sand with s3 = 1. 2 for both media . Hoopes and 

llarleman ( 1965) found results simi lar to Eq . 2-17 , 
with o3 dependent upon the media . Rumer (1962) 

investigated longitudinal dispersion and the effects 
of unsteady flow on the dispersion coefficient . 
Simpson (1969) investi gated the effect s of turbulent 
flow on the longitudinal dispersion coefficient , and 
Hoopes and Harleman (1967a) showed t he dispersion 
coefficient along streamlines t o be the same for both 
uniform and nonuniform flow at the same velocity. 

The effects of molecular diffusion on the above 
Reynolds number type relationships has been debated 
in the literature. Relationships such as Eqs . 2-15, 
2-16, and 2-17 woul d appear to be invalid for al l 
ranges of Reynolds numbers. Biggar and Nielsen (1960) 
gave a very lucid account of the effects of molecular 
diffusion on dispersion. They proved that molecular 



diffusion is very important at small flow velocities, 
when the medium consists of a natural soil skeleton 
instead of washed sands or glass beads, and for 
unsaturated flow. They hypothesized tha~ the pres­
ence of dead-end pores (a characteristic of the 
soil) is highly important in determining the effects 
of molecular diffusion on the total dispersion pro­
cess. Coats and Smith (1964) also treated the dead­
end pore problem. Bear et al. (1968, pp. 332- 335) 
stated that the dispersion-cQefficient ·depends on the 
flow pattern (e.g., velocity), Peclet number (Vd/Dd)~ 

and on some fundamental medium characteristics. A 
plot of DL/Dd vs. Vd/Dd is broken up into five 

regions and characteristics of each region are dis­
cussed by Bear. 

Adam (1966) used dimensional analysis and experi­
mental results to determine the effects of anisotropic 
porous media on the dispersion tensor. Adam argued 
that experimental evidence indicating the dispersion 
coefficient is nonlinear in velocity (i.e., exponent 
of velocity is different than one) is incompatible 
with Eq. 2-3 proposed by Scheidegger (1961) and 
Bear (196la). However, List and Brooks (1967) ana­
l yzed numerous experimental results and were criti~ 
cal of the velocity power law relationships. 

From these various investigations the conclusion 
is reached that the dispersion coefficient is indeed 
a tensor of rank two; but an adequate relationship 
has no·t been developed for describing the phenomenon 
over a large range of flow parameters. 1'-luch more 
theoretical work is needed in this area. 

A study of dispersion using the concept of 
similitude has been done by very few people. Raats 
and Scotter (1968) considered geometrically similar 
media and sought the conditions for dynamic similar­
ity. Bachmat (1967) investigated the criteria for 
similitude of the dispersion phenomena in homogeneous 
and isotropic porous media . Heller (1963) also pre­
sented a good discussion on scaling of flows in 
porous mediums. 

Few results from field experiments are available. 
Harpaz and Bear (1964) presented results of labora­
tory and field tests on underground storage operations 
with a single recharging well and with two wells, 
one recharging and one pumping. Lau et al. (1957) 
performed some field tests to evaluat~ious tracers, 
and found the chloride ion to be the best . Field 
oriented laboratory experiments have been conducted 
by Hoopes and Harleman (1965, 1967b) on wastewater 
recharge and by Rumer and Harleman (1963) on salt­
water intrusion along coastal aquifers. Esmail and 
Kimbler (1967) investigated the effects of gravity 
segregation and dispersion on the problem of storing 
fresh water in saline aquifers. 

2.4 Numerical Solutions. Because of the diffi­
culty in obtaining analytical solutions to ground­
water flow problems, many investigators are now using 
numerical solutions. Numerical solutions of immis­
cible flow problems have met with more success than 
miscible flow problems. Much work remains to be 
done on developing satisfactory numerical techniques 
for the dispersion problem. 

Many of the reservoir simulation techniques 
inv?lving immiscible fluids have been developed in 
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the petroleum industry. Douglas, Peaceman, and 
Rachford (1959) employed an alternating-direction­
implicit procedure (ADIP) to solve a two-dimensional, 
two-phase, incompressible flow model. Blair and 
Peaceman (1963) extended this to include the effects 
of compressibility. Larkin (1964) used the 
alternating-direction-explicit-procedure (ADEP). 
Quon et al. (1965 , 1966) also used ADEP in a reser­
voir simulator. Coats and Terhune (1966) and 
Carter (1967) compared the ADIP and ADEP techniques. 
Bj'ordammen and Coats (1967) compared alternating 
direction and successive overrelaxation techniques 
for the simulation of two- and three-dimensional, 
two-phase flow reservoirs . Other reservoir simula­
tors have been described by Dougherty and Mitchell 
(1964) , Fagin and Stewart (1966), and Breitenbach, 
Thurnau, and van Poollen (1968 a, b, and c). 

Digital computer simulators in the groundwater 
fie ld have not been as widely developed as in the 
petroleum industry. Bittinger et al. (1967), Tyson 
and Weber (1964), and Chun, l~ebeT,ii'nd ~lido (1964) 
have presented some information on reservoir simula­
tion in the groundwater industry. The above men­
tioned works are just a few of the ones which have 
been developed in the last few years on reservoir 
simulation using numerical analysis and digital 
computers. 

The problem of miscible flow has not been 
treated as extensively numerically as t he immiscible 
flow problem. ?eaceman and Rachford (1962) pre­
sented a centered-in-time and centered-in-distance 
equation combined with a "transfer of overshoot" 
procedure which was demonstrated to work well in one 
dimension. However, subsequent testing has shown 
that for multidimensional displacement their method 
involved a numerical dispersion of the same order of 
magnitude as the physical dispersion. 

Garder, Peaceman and Pozzi (1964) used th~ 
method of characteristics to improve the numerical 
solution to the miscible flow problem, but did not 
consider the dispersion coefficient as a tensor. 
Their numerical t echnique is discussed in detail in 
Chapter IV. 

Stone and Brian (1963) made a thorough analysis 
of a numerical scheme to solve the one-dimensional 
dispersion equation. They used three adjacent grids 
at two time levels, and assigned arbitr ary weighting 
coefficients to the convective and time terms. They 
then proposed an iterative scheme with three cycles 
per time step to improve the solution . No considera­
tion was given to the effects of changes in viscosity 
or density. 

Hoopes and Harleman (1965) used an explicit 
finite difference scheme to obtain a solution for 
the problem of radial flow from a well . By neglecting 
lateral dispersion, they also obtained a solution to 
a two-well problem. The size of the grid spacing 
and time increment were restricted for the explicit 
scheme because of a stability criterion. This pre­
sented some problems because of large amounts of 
required computer time. 

Shamir and Harleman (1966) used a 
concept in their numerical technique . 
wrote the dispersion equation in terms 
function and potential function (i.e., 

very ingenious 
First they 
of the stream 
in terms of ~ 



and f coordinates). They noted that the velocity 
is everywhere tangential to the streamlines, and 
thus their equation was one-dimensional in the con­
vective term. They then used the Stone and Brian 
(1963) numerical technique for one- dimensional flow 
and handled the lateral dispersion with an ADIP 
technique. If the major axis of the dispersion ten­
sor coincides with the velocity vector, then Shamir 
and Harleman's technique will consider the dispersion 
coefficient as a tensor. However, their scheme does 
not consider the effects of density or viscosity 
changes; nor does it consider unsteady flow except 
in the few cases where the streamlines do not change 
position with time. 

Nelson (1965) described a computer program for 
predicting waste transport in groundwater. The pro­
gram generated permeability information and stream 
funct5ons using a potential map with a small amount 
of permeability information. However, he considered 
a "piston type" flow and neglected dispersion entirely. 

Summary. In summary, the following results are 
important to the present study: 

( 1) The dispersion coefficient is an anisotropic 
quantity and must be treated as a second 
rank tensor. 
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(2) 

(3) 

(4) 

(5) 

(6) 

The dispersion coefficient is linearly 
related to the components of velocity as 
given by Eq. 2-5 . 

The analytical solution to the longitudinal 
dispersion problem is given by Eq. 2-10. 

An approximate steady state solution to 
the longitudinal and lat eral dispersion 
problem is given by Eq. 2-14. 

The longitudinal and lateral dispersion 
coefficients can be obtained from the 
empirical relationships given by Eqs. 2-15, 
2-16, and 2-17 . 

Numerical solutions to the problem of 
miscible displacement in porous media have 
proven to be difficult. The numerical 
techniques of Stone and Brian (1963), 
Garder et al. (1964), and Shamir and 
Harlema~66) appear to be the most 
successful. 



Chapter III 

PRESENTATION OF MATHEMATICAL MODEL FOR DISPERSION 
IN GROUNDWATER AQUIFERS 

When working with miscible fluid displacement, 
the conservation of mass for each component present 
in the system is required. In this study , only two 
components are considered, a conservative tracer and 
the native groundwater. Therefore, two equations of 
mass conservation are required to describe the system 
considered here. One of these equations will be for 
the combined masses of both components (i .e., total 
mass • tracer mass+ native groundwater mass) . The 
other equation is for the mass of the tracer. 

3.1 General Flow Equation. A fundamental flow 
equation for the mixture of two miscible fluids is 
derived by combining the conservation of mass equa­
tion for the mixture, Darcy's law , and an equation 
of state describing the pressure-volume-temperature­
concentration rel ationship. A linear equation re­
lating change in porosity and change in pressure is 
also used . The result is an equation invol ving two 
dependent variables, pressure and tracer concentra­
tion. A detailed development of this equation is 
given in Appendix A. Using shorthand tensor nota­
tion, the final equation may be written as: 

_a_ [pt.Aikxi (~ + pg !!!...)] t.x. = 
ax. 11 ax. ax. 1 

l l l 

Mi (i=l,2,3) 

t 
tiV=IIX 1t.x2AX 3 • 

xi(i=l,2,3) 

p 

k 
X. 

l 

(3-1) 

dimensions of volume element 
---L, 
cross sectional area of element 
perpendicular to xi(i.e., 

t.A1•AX2Ax3)---L2, 

time---T, 
volume of element---L3, 

Cartesian coordinate system 
(x

1
,x

2
,x3)---L, _ 

total fluid density---ML-~ or 
FT2L -4 ' 
absolute permeability in x.-
direction---L2, l 

viscosity of fluid mixture---
FTL-2 . 

P £ pressure of fluid mixture--­
-2 FL , _2 g acceleration of gravity---LT 

h elevation of volume element 
above datum---L, 

~ porosity---dimension l ess, 2 _
1 

B 2 fluid compressibility---L F , 
CF formation compressibility factor 

2 -1 ---L F , 
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a • proportionality factor relating 
concentration and density--­
dimensionless, 

C • mass concentration of tracer---
ML-3 or FT2L-4 . 

pp • mass density of produced fluid 
-3 2 - 4 ---ML or FT L , and 

Q • rate of fluid production--­
L3T-l, 

p
0 

= reference value of density--­
ML-3 or FT2L-4, 

~0 reference value of porosity--­
dimensionless. 

To obtain Eq . 3-1 in its present form the 
following assumptions have been made: (1) Darcy ' s 
law is applicable, (2) single phase flow, (3) iso­
thermal flow, ( 4) a linear relationship between change 
in porosity and change in pressure, (S) size of volume 
element does not vary with time, and (6) a linear 
relationship between density, pressure, and concentra­
tion. 

The flow of groundwater through an aquifer is 
used in this study, and the validity of Darcy's law 
presents no serious obstacles . For problems in the 
nonlinear flow regime, additional terms involving the 
gradient of pressure raised to some power would be 
needed in Eq. 3-1. Should a multiphase problem be 
considered, then equations of the form of Eq. 3-1 
would need to be developed for each phase and the 
saturation, S , would be different than one . The 
assumption of isothermal flow eliminates having to 
consider the density in Eq. 3-1 as a function of 
temperature, and considering the size of the volume 
element invariant with time permits the el imination 

of a (t.V) from &q . 3-1. The use of a linear relation­
shi~tbetween "change in porosity"-"change in pressure" 
and density-pressure-concentration is discussed in 
Section 3.3. 

3. 2 Dispersion Equation . A convective­
dispersion equat ion may be obtained by combining the 
conservation of mass equation for the tracer, Fick ' s 
law, and an equation of state . A detailed derivation 
of this equation is given in Appendix B. The general 
dispersion equation is given by: 

a - a [ ac J - ('AVC) " ax (D .. +DdT .. )9AA. -a- t.x. at i lJ lJ 1 xj l 

_a_ (CV.~6A.)Ax. - C Q 
axi 1 1 l p 

(3-2) 



where D .. 
l) 

Dd 

= dispersion coefficient which is a second 

rank tensor---L2T-l 
molecular diffusion' coefficient---L2T-1, 

T .. " porous medium "tortuosity" f actor which 
lJ is also a second rank tensor --­

dimensionless, 

Vi = seepage velocity (flow rate per unit 
pore area) of fluid mixture in ith 

direction---LT-1 , 

concentration of tracer in produced 

fluid---ML-3 or Ft2L-4, and 

all other terms are as described previously. 

Assumptions necessary to obtain Eq . 3-2 are: 
(1) diffusion is described by Fick ' s law, (2) the 
convective mixing called dispersion is proportional 
to the concentration gradient, and (3) single-phase 
flow exist~. The double summation convention of 
tensors is implied in the use of Eq. 3- 2. 

The use of Fick's law to describe diffusion 
means that a dilute solution is being used. In 
addition , any diffusion due to temperature gradients 
or velocity gradients is disregarded. Assuming that 
dispersion is proportional to a concentration gra­
dient is discussed in Appendix B. For multi-phase 
flow, equations similar to Eq. 3-2 must be written 
for each phase. 

Because of the numerical technique to be used 
in solving the dispersion equation, an alternate form 
of Eq. 3-2 is desirable . This is achieved by chai n­
ing out the derivatives of concentration as is shown 
in detail by Eqs. B-31 thru B-40 of Appendix B. The 
final result is, 

- V !£... - (C C) _g_ · ' X p- .... -v 1 0 i .. ., 
(3-3) 

where 

(3-4) 

The fluid compressibility effects on concentration 
are neglected in developing Eq. 3-3 . 

3 . 3 Auxiliary Equations. Because of the inter­
relationship among several of the parameters in Eqs. 
3- 1 and 3- 3, the following auxiliary equations are 
needed in the mathematical model. The components of 
the seepage velocity for the fluid mixture may be 
obtai ned from Darcy's law, and are given by 

(3-5) 

The relationship between the porosity of the 
porous medium and the f luid pressure is assumed to be, 
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(3-6) 

where rj>
0 

= original porosity---dimensionless , and 
-2 P

0 
=original fluid pressure-- - FL 

The density of the fluid mixture is assumed to be a 
linear function of the fluid pressure and tracer 
concentration, 

(3-7) 

where p a original fluid density---ML-3 or FT2L-4, 
0 and 

C
0 

• original tracer concentration---ML-3 

or FT2L- 4 . 

Also, the viscosity is assumed to be a linear func­
tion of the concentration, 

(3-8) 

where ~0 • original viscosity- - -FTL-2 , and 

A = proportionality factor rel ating concen­
tration and viscosity---dimensionl ess. 

The use of Eqs. 3-6, 3-7, and 3-8 are assumptions . 
Equation 3-6 has been used in the petroleum industry 
with success [Breitenbach ..tl........li_ (1968b)] . Depend­
ing upon the fluids used, relatio~ships other than 
those given by Eqs. 3- 7 and 3-8 may be desirable. 
For the example problems in this study, salt water 
and fresh water are used as the two fluids, and t he 
linear relationships of Eqs . 3-7 and 3-8 are believed 
to be adequate . 

3 .4 Dispersion Coefficients. Equation 3-3 and 
the corresponding finite-difference equations of 
Chapter IV are developed in a general way so that 
any value may be used for the nine components of the 
dispersion tensor . However, the use of a functional 
relationship is desirabl e which wi l l give the values 
of all nine components in a systematic manner . 

Assuming an isotropic porous medium, the 
"tortuosity" tensor, T.. , is given by lJ 

T .. 
l) 

16 .. 
lJ (3-9) 

where T • tortuosity factor---dimensionless, and 
6 .. • kronecker delta. 
lJ 

Thus, the nine components of the diffusion tensor are, 

(3- lOa) 

and 

0 . (3-lOb) 

Scheidegger (1961) gave the relationship, 



where 

v v m n 
0ij = cijmn - v- (3-11) 

c.. the dispersivity of the m.edium , a 
lJmn fourth rank t ensor---L , 

t he component s of velocity in the m 
and n directions, respectively- - ­

-! LT , and 
-1 V = magnitude of the velocity---LT 

For an isotropi c media, Scheidegger shows that 
the dispersivities reduce to only two terms, c1 and 

with 

ECICIOtCI El 

E aaee e:2 

caeae 1/2 (c l -c2) 

e:o.l313a 1/2 ( c 1-e:2) 

all other c ' s = 0 (3-12) 

The l ongitudinal and transver s e di~persion coeffi­
ci ents are related to the dispersivities by 

(3-13a) 

and 

(3-13b) 
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Expanding Eq . 3-11, introducing Eqs. 3-12 and 3-13, 
and adding the diffusion tensor given by Eq. 3-10, 
the following functiona l relat ionship for the nine 
components of the hydrodynamic dispersion coefficient 
are obtained: 

D~ l 
vl\ v2v2 v3v3 

DdT D --+ 0r - 2- + DT7+ L 2 v v 

o;2 
vlvl 

DL 
v2v2 v3v3 

DdT D -- + --+ D -- + 
T v2 v2 T v2 

vlvl v2v2 v_v_ 
* DL 

.) .) 

DdT 033 DT -2- + DT --+ --· v v2 v2 

o;1 * (DL-DT) 
vlv2 

012 v2 

* * vlv3 
031 0 13 (DL-DT) 

v2 

* * (DL-DT) 
v2v3 

(3 -14) 032 023 7 
Other functional relationships for obtaining the 
components of the hydrodynamic dispersion tensor are 
given by Bear et al. (1968), Por eh (1965) , and List 
and Brooks (1967). 



Chapter IV 

DEVELOPMENT OF NUMERICAL MODEL FOR DISPERSION 

The computer simulation of. t he miscibl e displace­
ment pr oblem wi ll be developed by writing t he finite 
difference form for each of the equations given in 
Chapter III . ' Because of limited funds available for 
analysis, the computer simulator is developed for a 
t wo-dimensi onal vertical flow problem. Finite differ­
ence equations and stability crit eria for the t hree­
dimensional problem are given in Appendices C, D, 
and E. 

4. 1 Finite Difference Form of Two-Dimensional 
Flow Equat ion . An i mplicit , cent ered-in-space finite 
di fference scheme is used t o approxi mate the time and 
space derivatives of Eq. 3-1. This scheme is devel oped 
in detail in Appendix C for the three-dimensional prob­
lem. The two-dimensional finite difference equation 
has the form 

P+ N+ pt+l - N- pt+l + N+ pt+l - N- pt +l 
· k+o · 1 k+p · k l+p · k 1 x

1 
x

1 
1+l , x

1 
x

1 
1- , x3 x3 1, + x3 x3 1, -

[ 
+ + - - + + - - J t + 1 - p N +p N +p N +p N +p. k(CF +6. k)/At P. k 
xl :xl xl xl x3 x3 x3 x3 l.' i, k l.' l. ' 

p. k(CF +B. k) ~ t t-1 
1 ' . k l., ~i k(C. k-C. k) 

l , pt ' l, 1, 
At i , k+ At

0 

(4-1) 

the grid row and grid Here i and k indicate 
co lumn respectivel y , and 

+ 
t i ndicates time l evel . 

The coefficients o; 
i 

, and are given 

as Eq. C-7 of Appendix C. 

A rectangul ar grid syst em is superimposed onto 
the region of interest, and Eq. 4- 1 written for each 
grid. The dimensions of the grids , Ax1 , and Ax3 , 

are assumed to be constant over the entire region . 
Variable dimensional grids may be used, but a change 

+ 
i n t he coefficient s, N;. , is necessary. The coef-

ficients , 

each time 

t 
Px. 

l. 

step. 

:t 1 
and Nx. , are held constant during 

l. 

Approximation of the original 
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non-linear equation is obtained by adjusting the 
± + 

val ues of Px. and N- after each computation. If x. 
1 + 1 .. 

the change in P~ . and N- is small during each 
X. 

1 1 

llt . this procedure will pr oduce acceptable results . 

The change in concentrat ion with respect to 
time on t he right hand side of Eq. 4-1 is calculat ed 
using the change in concentration from t he previous 
time step, llt

0 
If the change in concentration 

during each llt is smal l , this wi ll also produce 
acceptable results. I f necessary, an iteration 
between the solution of the flow equation and the 
dispersion equation can improve this approximation . 

If the rect angular grid system has m-rows and 
n-columns, then t her e wi ll be mn gr ids. Since 
Eq. 4-1 contains unknown pressures from each of the 
four adjacent grids plus an unknown pressure for the 
grid in question , the result of writing Eq. 4-1 f or 
all grids is a set of mn simultaneous algebraic 
equations . This s et may be written i n matrix form 
as 

[A] [P] = [rhs] (4 - 2) 

where [A] is a mn by mn matrix containing t he 
coefficients of pressure, [P] is a mn column 
vector containing the unknown pressures, and [rhs) 
is a mn column vector containing all the factors 
on t he r ight hand side of Eq. 4-1 . 

4 . 2 Finite Difference Form of Two-Dimensiona l 
Dispersion Equation . The numerical solution of the 
multi-dimensional dispersion equation (Eq . 3-3) has 
been a difficult problem. Therefore, some background 
material may be helpful in under standi ng the tech­
nique used in this study. If the convective terms 
and production term of Eq. 3-3 are negl ected, the 
resulting equation is 

~4-3) 

This equation is a second order partial different ial 
equation of parabolic type (heat flow equation) and 
is of the same form as Eq. 3-1 . A disper sion equa­
tion of this type could b~ solved in t~e same way as 
the flow equation given in Eqs. 4-1 and 4-2 . This 
particular type of equat~n has been successfully 
solved numerically many times . 

Now suppose that the di spersion and product ion 
terms of Eq. 3- 3 are neglected. Then the resulting 
equation is 



ac 
- + at 0 (4-4) 

which is a first order partial differential equation 
of hyperbolic type and has been treated numerically 
with some success in one dimension. However, exten­
sion to t wo or more dimensions has proven difficult. 
Usually one of two t hings happens: (1) the numerical 
solution develops oscil l ations or (2) it becomes 
smeared by "artificial dispersion" resulting from 
the num·erical process. Thus, when convection and 
dispersion are cons idered si multaneous ly, this "arti­
ficial dispersion" may dominate the low physical 
dispersion which characterizes miscible displacement . 

If convection and dispersion are neglected , 
t hen a change in concentration can be caused by the 
production t erm, 

0 (4-5) 

Al though not immediate ly obvious, the production term 
may be written as [ (C -C)/llx.] [Q/(4>liA.)] or p 1 1 

[ (C -C)/6x.)V where V is the velocity of t he p 1 p p 
product ion fluid. This term is analogous to the 
convective terms of Eq . 4-4, and therefore shall be 
analyzed in a manner similar to the convective terms . 
In general, the production term will be a discrete 
function, and wil l be introduced through boundary 
conditions of the problem. 

In problems of miscible displacement, the amount 
of dispersion is usually very small, and t his ~akes 
the convective-dispersion equation almost of the 
hyperbolic t ype shown in Eq . 4 -4. Garder et al . (1964) 
recognized t his and developed a numerical technique 
for solving the convective-dispersion equation based 
on the method of characteristics . They a.ssume that 
the dispersion terms are given functions of x1, x2, 
x5 , and t , i.e. , 

Negl ecting the product ion term momentari l y, and 
substituting cq. 4-6 into Eq. 3- 3 gives 

!£. ... v !L = f(x
1

,x
2
,x

3
,t) at i ax. 

J. 

( 4-7) 

Garder et al . (1964) show t hat a nonhomogeneous 
equation wi t h the form of Eq . 4- 7 has characteristic 
curves 

( 4-8) 

where t is an arbitrary curve parameter whi ch in 
this case is time. These characteristic curves are 
the solutions to the ordinary differential equations, 
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and 

(4-9) 

The concentrati.on, C 
charact eristic curves . 

is not a constant on these 

The basis of the method of charact eristics is 
t hat given solutions to Eq. 4-9, a solution to the 
original partial differential equation (Eq. 4-7) may 
be produced by following the char acteristic curves. 
The requirement of following the characteristic 
curves is achieved numerically by introducing a set 
of moving points in additi on to the nor mal grid 
system. Each of the moving points is assigned a con­
centrat ion, which varies wi th t i me . At each time 
i nterval, t he moving points in a t wo-dimensional 
system are relocated using a finite difference form 
given by, 

t+l t ... lit vt+l ( 4-10) xl = X 
R. l l'. l l'. 

and 
t +l xt + 6t vt•l ( 4-11) x3 3~ 31'. l'. 

where t+l 
time l evel, 

is t he new time level, t is the old 
lit is the time increment, x1 and 

l'. 
x3 are the coordinates of t he Hh moving point, 

~ 

while vl and v3 are the velocities of the R.th 
R. R. 

moving point i n the xl- and x3-directions . 

Each cell in the grid system is assigned a 
concentrat ion equal to the average of. the concentra­
tions of the moving points l ocated inside t he cel l 
at time t+l . The concentration of t he cell and 
each moving point inside the cell is then modified 
for dispersion by solving dC/dt = f(x1,x2,x3,t) 

using an explicit, centered-in-space finite difference 
equation . This equation is developed in detail i n 
Appendix D for the three-dimensional problem. The 
two-dimensional form is 

ct• l 
i,k 

+ ,t+6 t+ll) _ E (Ct.•6-Ct.+6 ) + E (C. kl-C. k k kl x3x3 1, + 1 , x3x3 1, 1,-

G+ cct+b ct+ll ct+6 ct+ll ) 
+ x

3
x

1 
i+l,k+l+ i+ l,k- i-l,k+l- i-l,k 

- G (Ct+ll +Ct+ll -Ct+Cl -Ct+ll ) . (4-12) 
x3x

1 
i+l ,k i+ l ,k-1 i -l,k i-l,k- 1 



Here i and k indicate grid rows and gr id columns 
r espect ively, t+l is the new time level and t+A is 
a time level somewhere between t and t+ 1 . The 

E:t and G±. coefficients _ are given as Eqs. x.x. x. x . 
1 1 1 J 

D-19 of Appendix D. 

4 . 3 Finite Difference Form of Velocity Equat i on. 
In the method of characteristics descri bed above, a 
determination of the seepage velocity is necessary 
for relocating the moving points during each time 
step. To accomplish t his, a grid and its four adja­
cent grids are used as shown in Fig . 4-1. 

i ,k-1 

i - l,k i ,k i+1 ,k 

i,k+ l 

Fig. 4-1 Grid syst em used to develop a finite 
difference equat ion for the seepage 
velocity . 

The f low equation (Eq. 4-2) is solved for the 
pressures at time level t+l . These pressures are 
assigned to the centers of each of the grids. Using 
these pressures and Darcy • s law,. a value for the 
seepage velocity at the contact between two grids 
may be calculated. Thus, a fini t e difference form 
of the horizont al seepage velocity at i+~,k could 
be wri t ten as 

(4-13) 

where al l symbol s arc as previously defined . The 
horizontal seepage velocity at i+~ ,k could al so be 
tvri tten as 

= -

(4-14) 

By continuity, Eqs . 4-13 and 4-14 should give t he 

same value for (V 1) ~:~,k Thus, upon adding t he 

two equations , cancel ling like terms, and rearranging, 
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a weighted val ue of 
form, 

t +l 
(V1). , k is obtained i n the 1+'1, 

x1 1, x
1 

1+ , -2 (k ) . k (k ). 1 k [ 

t +l t+l ~ (P.+l k-P. k)+(pg). I k(h. 1 k-h . k) . (4-15) 
1 ' l' 1 +"J' l + • 1 . 

In a simil ar manner, the vertical seepage velocity, 

(v ) t+ 1 b . 
3 i,k+~ , may e wr1tten as 

-2(kx ). k(kx). k 1 [ 3 1 , 3 1, + 

AX3[Ckx ). k 1 (~~). k+Ckx ). kc~~). k 1] 
31,+ 1, 31, 1 , + 

t+l t+1 ~ (P . k ,-P . k)+(pg). k L(h. k 1-h. k) . (4- 16) 
1 , +~ l, l, +~ l , + 1, 

Using Eqs . 4-15 and 4-16, the seepage velocities 
at each interface of a grid is calcul at ed as shown in 
Fig. 4-2. A seepage velocity must be assigned to 

(v ) t+ 1 
3 i ,k+~ 

Fig . 4- 2 Schematic sket ch showing relation of seepage 
velocity at moving point to t he seepage 
velocity calcul ated at the interface 
bett•een grids. 

each moving point tdthin the grid based on the val ue 
of the seepage velocities at the interfaces . A 
linear interpolation is used in making this assign­
ment. For i nstance , the velocit y components of the 
moving point in the grid of Fig . 4-2 are given by , 

and 

t+l 
(V1). ' k l-'1, 

xl - (xl) 
t i-~. k 

6Xl 

( 4-17) 

[ 
t+ 1 t+ 1 J 

(V3)i,k-~-(V3)i , k+~ ' 

(4-18) 



4 .4 Boundary Conditions. Appropriate boundary 
conditions due to geologic and hydrologic infl uences 
must be used in conjunction with Eqs . 4-2, 4-10, 4-11, 
4-12, 4- 17, and.4-18 to obtain a solution. These 
conditions take the form of (a) no-flow boundaries, 
(b) hydraulic boundaries at ground surfaces, 
(c) groundwater underflow boundaries, and (d) known 
tracer concentrations maintained at certain 
boundaries. 

No-flow boundaries are simulated by assigning a 
permeability"of zero, a longitudinal dispersion coef­
ficient of zero, and a transverse dispersion coeffi­
cient of zero to the grids located along the boundary. 

+ 
With such a simulation, the coefficients N­

x. 
l 

+ + E- and G-
x.x. x.x. 

l l l. J 
, as given in Appendix C and 

Append.ix D, are automatically set equal to zero. The 
one exception that has to be treated separately is 
the case where grid (i,k) and one of the adjacent 
grids are both no-flow boundaries (see Fig . 4-1) . In 

.. + 
this case the coefficients N- E- , and x. x. X:. 

+ G­
x.x. 

l J 

l. l. l 

will become 0/0 which is indefinite. An 

"IF" statement in the computer program can effec­
tively take care of this one situation and set the 
appropriate coefficients equal to zero if this 
situation should ever occur. 

Hydraulic boundaries at the ground surface are 
most commonly encountered in the form of a direct 
connection between a groundwater aquifer and a river 
or lake, and are simulated by programming a time­
varying or constant water pressure in the appropriate 
grids. If the known pressure boundary is encountered 
in grid (i,k) , then the coefficients of the pres­
sures in the adjacent grids are set equal to zero, 
the coefficient of the pressure in grid (i,k) is 
set equal to one, and the right hand side of Eq. 4-1 
is set equal to the known pressure value. The 
resulting equation is 

pt+l 
i,k 

known value. (4-19) 

In case the known pressure boundary is encountered in 
one of the grids adjacent to grid (i,k) , then the 

± N± appropriate coefficient Px. x. is multiplied by 
l l 

the known pressure and transferred to the right hand 
side column vector of Eq . 4-2. The corresponding 
element of the coefficient matrix, [A] is then set 
equal to zero. 

Groundwater underflow boundaries occur when only 
a portion of an aquifer is being studied. This bound­
ary condition may be simulated in many ways, but per­
haps the simplest is to project the pressure gradient 
and concentration gradient across the boundary and 
calculate the rate of underflow using these projected 
gradients. 

Boundary conditions f or known tracer concentra­
tions must be specified a lso. These conditions are 
handled in this simulation by the moving points. As 
fluid leaves the model, moving points with their 
corresponding concentration values are removed from 
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the system. As fluid enters the model, moving points 
with the appropriat e boundary concentrations are 
added to the system. 

The boundary conditions described above are the 
only ones considered in this simulation. Other 
boundary conditions such as those associated with a 
leaky aquifer or radioactive decay of a tracer may 
be encountered . Appropriate additions to the com­
puter program would be required. 

4.5 Description of the Computer Program. The 
computer simulation was programmed in Fortran IV for 
the CDC6400 Computer at the Colorado State University 
Comput er Center . A f low chart of the program is 
shown in Appendix F, and a reprint of the program 
used in solving the salt-water intrusion problem is 
given in Appendix G. 

The MAIN program accepts the input dat a and 
governs the sequence of operations to be performed. 
Subroutine INICON assigns a uniform distribution of 
"moving" points to each grid along with t he initial 
value of concentration assigned to each point. Sub­
routine REAOIN reads in or assigns appropriate values 
to all physical quanti t ies such as permeability, 
porosity, viscosity, etc. All of the initial values 
are then printed out using subroutine INIPRT and 
subroutine MATROP . 

Because of the l arge amount of computer storage 
required, auxiliary storage in the form of a scratch 
tape is used. The locations and concentrations of 
the moving points are stored in common with the 
coefficient matrix used in solving the pressure equa­
tion. Since the location and concentration of the 
moving points must not be destroyed, they are written 
onto the scratch tape each time before the pressure 
equation is solved and then read back afterwards. 
This was done by subroutines, I~RTAPE and ROT APE which 
are systems routines developed at the CSU Computer 
Center. They allow for reading or writing on the 
tape while the program continues to execute. 

Subroutine ~~TSOL sets up the coefficient matrix, 
[A) , and the right hand side column vector, [rhs) , 
for solving the pressure equation . This subroutine, 
as is presently written, may take care of two types 
of boundary conditions: (1) a constant pressure 
boundary and (2) a no-flow boundary . Other boundary 
conditions besides these may easi ly be added to t he 
program. ~1ATSOL checks the boundary conditions and 
makes the appropriate changes in [A] and [rhs) . 

To solve the set of equations set up by MATSOL, 
the sol ution of a set of simultaneous equations is 
required. A general numerical solution should offer 
several solution techniques such as Gauss elimination, 
successive overrelaxation (SOR), or iterative alter­
nating direction implicit procedure (ADIPIT) . For a 
review of these techniques, the reader is referred to 
Breitenbach et al . (1968b). 

Gauss elimination is by far the most reliable 
numerical method one can choose for solving the 
matrix given by Eq. 4- 2. However, the volume of com­
putation required by Gauss elimination for a large 
matrix can result in large amounts of computer time. 
In such cases, ADIPIT or SOR may prove to be more 
efficient with time. For the computer simulator 
developed herein, Gauss elimination was chosen . 



If the matrix, [A] , were written out, the 
resulting matrix is found to be a band matrix with 
five diag~nals of the form, 

Computer storage is not necessary for the matrix 
elements above and below the band. Thus , having a 
minimum band width is desirable. An appropriate 
choice of the grid numbering pattern can reduce the 
total width of the band. Another important feature 
is.that th~ n~er of rows participating in the upper 
tr1angular1zat1on for each column is quite limited. 
Thurnau (1963) developed an algori thm cal led BANDSOLVE 
which makes use of these characteristics in solving 
a five diagonal band matrix. 

In this computer simulator, subroutine BSOLVE 
makes use of the BANDSOLVE algorithm to solve the 
matrix equation, Eq. 4-2, by Gauss elimination. This 
subroutine allows for row interchange to combat round­
off error. The only problem encountered in using 
this technique to solve the matrix equation was that 
of large amoUPts of computer storage . As an example, 
a grid network with the dimensions of 10 grids by 25 
grids has 250 equations and requires 5250 words of 
computer storage for BSOLVE. In contrast, a 20 grid 
by 25 grid network has 500 equations and requires 
20,500 words of computer storage for BSOLVE. For 
large problems, external storage would be necessary 
on many computers. 

After solving for the new pressures, the storage 
taken up by subroutine BSOLVE is available for other 
uses. Therefore, the coordinates and concentrations 
of the moving points are read from the scratch tape 
and placed in the storage locations previously 
occupied by BSOLVE. 

Subroutine VELOCY calculates the velocities at 
each grid interface by use of Eqs. 4-15 and 4-16. 
This routine also calculates the longitudinal and 
lateral dispersion coefficients using a velocity power 
relationship of the form of Eqs. 2-15 and 2-16. With 
values for the dispersion coefficients and velocity 
components, Eq. 3-14 is used to calculate the compo­
nents of the dispersion tensor . 

Subroutine MOVPT uses the velocities calculated 
in VELOCY and Eqs . 4-17 and 4-18 to obtain t he veloc­
ity components of each moving point. Each point is 
then moved to a new location by use of Eqs. 4-10 
and 4-11. A sect ion of this subroutine determines 
which of the points has moved out of the model. 
These points are tagged and introduced at an inflow 
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boundary with the appropriate boundary concentration. 
Of all the subroutines developed for this si~ulator 
M?VPT i~ probably the least general. At the presen~ 
t1me, m1nor changes in the program must be made when 
boundary conditions are changed to allow for the 
pr~per removal and reintroduction of the moving 
po1nts. After each point has been moved to a new · 
location, the average concentration of each grid is 
calculated by arithmetically averaging the concentra­
tions of the "moving points" located in the grid. 

With the average concentrations of each grid 
d~termined, subroutine DISP uses Eq. 4-12 to deter­
mlne the change in concentration due to dispersion. 
~e end result is the concentration of each grid at 
t 1me t+6t. To conclude a time step, a mass balance 
~f the ~ystem.is c?lculated and appropriate changes 
1n dens1ty, VlSCQSlty, and porosity are made using 
Eqs. 3-6, 3-7, and 3-8. A test for print out is 
made and the program returns to subroutine MATSOL 
where the pressure equation is resolved and the 
entire process repeated for the next time step. 

4.6 Validity of Computer Simulator. A dis­
cussion of the validity of the proposed computer 
simulator is needed at this point . No rigorous proof 
of the stability and convergence of the overall simu­
lator is available. Thus, the performance of the 
program in solving problems will be used as a major 
test of validity. A discussion of this performance 
is presented in Chapter V. However, some confidence 
can be gained by analyzing the individual parts of the 
simulator for stability and convergence. 

The pressure equation is solved using Eq. 4- 1 
as the fi~ite difference form. This is an implicit, 
centered-1n-space di fference scheme with variable 
coefficients . No general stability criteria for t he 
variable coefficient difference equation has yet been 
d~veloped. Although not giving a rigorous proof, 
R1chtmyer (1957, p. 72) gave the argument that the 
stability conditions for the constant coefficient 
problem must be satisfied at every point in the domain 
of the difference equation for the variable coeffi­
cient difference equation to be stable. Smith (1965) 
and Richtmyer (1957) both showed that the implicit 
difference scheme with constant coefficients is 
unconditionally stable and convergent. Thus, using 
the heuristic argument of Richtmyer, it may be con­
cluded that Eq . 4-1 is stable for any value of 6~ 

1' 6x3, and 6t . 

. The change in concent ration due to dispersion is 
g1ven by Eq. 4-12, and is an explicit centered-in­
space finite difference equation. ·In general, 
explicit difference schemes have stability criterion, 
and Eq. 4-12 is no exception. The stability criter­
ion for a constant coefficient explicit difference 

form involving a2c;axi , a 2c;ax~ , and a 2c;ax~ 

may be found in Smith (1965) or Richtmyer (1957). 
However, Eq . 4- 12 also contains the cross-derivative 

a2c;ax1ax3 and a stability analysis of the equat i on 

was necessary . The stabilit y anal ysis was done by a 
Fourier series approach for both the three-dimensional 
and two-dimensional problems. This analysis is given 
in detail in Appendix E. In summary , the stability 
of Eq. 4-12 is assured if 



and 

+ 1 
< --2 • 

( 4-20) 

( 4-21) 

( 4-22) 

( 4-23) 

where Di 1, 033, Di3 and 031 are th.e components 

of the dispersion tensor, ~t is the tempor al 
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increment, ax1 and ~x3 are the spatial incre­

ments and w = p/(p -~C) . The stability of the 
three-dimensional equation is given as Eq. E-40 of 
Appendix E. 

If Eq. 3- 14 is used to obtain Dil o;3 , Di3 
and o;1 then Eqs. 4-20, 4-21, and 4-22 are satis­

fied automatically. Thus, Eq. 4-23 is the only 
stability criterion of any importance to the problem 
being considered here. 

A theoretical devel opment of the convergence of 
the overall "method of characteristics" scheme used 
to solve the dispersion equation has not been success­
ful. If the stability criterion of Eq . 4-23 is not 
satisfied, then the numerical solution "blows up " . 
Some convergence tests made by running problems with 
known solutions are given in the next chapter. 



Chapter V 

RESULTS AND INTERPRETATIONS 

Because of the di fficulty in obtaining t heoret i-
·cal criteria for the validity of the numerical simu­
lator, experience with actual problems is a necessity . 
The numerical solution of the pressure equation has 
been done successfully many times, and will not be 
the subject of detailed review in this study . How­
ever, the solution of the dispersion equati on by the 
"method of characteristics" (~!OC) has not been so 
wi de ly studied; especially using the tensor relation­
ships developed in Chapter IV. Therefore, t he numeri­
cal solution of ·the dispersion equat ion is the object 
of most of the fo l lowing results and discussion. 

5.1 Longitudinal Dispersion in Steady, Uniform, 
One-Dimens i onal Flow. I f the results of known analy­
tical solut ions can be reproduced, a great deal of 
confidence in the numerical solution can be gained. 
An anal ytical solution to the one-dimensional problem 
wi th a step input of the tracer as a boundary condi­
tion is available . This solution was given as Eq . 
2-10. The f irst test of the MOC wi l l be to see how 
well it solves the one-dimensional problem. 

Garder et al. (1964) showed that accur ate 
solutions of one-dimensional problems can be obtained 
by the ~10C over a wide range of values of t he dis­
persion coefficient, including zero . They a l so 
showed that the moving points do not need to be uni­
formly spaced, and that increasing the number of 
movi ng points beyond two points per gri d did not sig­
nificantly improve the accuracy of t he solution. A 
run was made using the data of Garder et al . (1964), 
and the resul ts are shown i n Fig. 5-l .-----

No theoretical determination of the error has 
been made for the method of characteristics . For 
purposes of t his study, an estimate of the error 
between the numerical and analytical solution is 
given by 

E (t) Max 
l<i<n 

(5-1) 

where 
i is 
being 

E(t) is the error at a particular time level, 
the grid number, n is the number of grids 
used, Ci(t) is the numerical value of con-

centration in the ith grid, and Ci(t) is the 

analytical value of concentration for the ith grid . 
Other measures of error, such as a least squares 
approach, could be used. However, from a computing 
standpoint, Eq. 5-l is the easiest to determine and 
wi ll give the relative merits of the numerical 
technique . 

To show the effect of grid size on the error, 
several runs using different values for the spat ial 
i ncrement wer e made. The results of these runs are 
summarized in Fig. S-2 . The error for the MOC behaves 
very strangely , and does not seem to necessarily get 
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smal ler with smaller grid size . This erratic 
behavior of t he error is believed t o be caused by 
the method of calculating the average gri d concen­
tration and the relative positions of the moving 
points inside the grid. This problem will be dis­
cussed in detail in Section 5. 3 of t his chapter. 

o.a 

!~ 

J 0.4 

o.z 

Ptl"otntU!rs r:ol" 
;?.-ob1tm 

u · tOO .co: 
Ll.~ • l.lll en 

~L • 2 .94 • lU·'c~t1/tee 

• •0.$4 
v1 "' O. Ot4ll cntse-c 
t.3 • 18:!. U c• 

No. ot C1'l\l• • .&& 
Potnu p• r t rid • 4 

10 IS 

~s 
o ~l'lll!r1c• l Solut10I\ 
- ll.n.l,rtlul SolutiO~\ (£o. 2- 10) 

v,. 
,..,:._ •O.Il2 ., 

30 " 40 

Fig. S-1 Comparison of. analytical and numerical 
solution to the longitudinal dispersion 
problem used by Garder et al . (1964). 
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Fig. S-2 Effect of grid size on the error of 
solution by the method of characteristics. 

Some indication of the nature of t he erratic 
behavior of the er ror shown in Fig. S-2 can be 
obtained by devising a particular grid dimension, 
vel ocity, t i me i ncrement, and moving point location 
so that even though the moving points have moved -
they have t he same rel ative positions in the grid at 



each time step . Using v3 = 0.10 em/sec and 6t = 
2 sees, each point will move 0.2 em each time step. 
If a grid dimension of 0.4 em is chosen and two points 
per grid are used, t hen the distance between each mov­
ing point is 0.2 em . Thus, at each time step, a 
moving point just t akes the position of the point in 
front of it at the old time level, and all points 
are located in the same relative position in every 
grid. This concept is carried over when 4, 6, 8, or 
16 points per grid are used . 

The results of runs using the above concept are 
shown in Fig. S-3. The fact that the results for 2, 
4, 6, 8 , and 16 points are the same in Fig. S-3 is not 
just graphical. The computer results ••ere the same 
to ail significant figures printed out. These results 
offer two possible conclusions . The first possible 
conclusion is that a relationship between the three 
parameters, velocity, time increment, and distance 
between moving points, has an effect on the error 
of solution. The second possible conclusion is t hat 
using an arithmetic mean to determine the average 
concentration of each grid is improper. Some type 
of weighted average may be more appropriate. These 
possible conclusions will be expl ored in detail in 
the following pages. 
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Comparison of numerical and analytical 
solu·tions using different numbers of mov­
ing points per gri d. 

1.0 

The results from using one point per grid (Fig. 
S-4) also indicated an interesting phenomenon that 
was noticeable on other runs. When using one point 
per grid, there is 0.4 em between each moving point . 
Since the points only move 0 . 2 em per time step, two 
time steps are needed for a point to move across a 
grid. Thus, the concentration of the one point de­
termines the concentration of the grid for two time 
steps. In effect, the grid concentrat ion is not 
changed due to convection . Every even time step 
gives accurate results using one point per grid, while 
each odd time step will give poor results, with the 
front lagging behind the actual front as shown in 
Fig . S-4 . This produces a "jerky" effect in the 
accuracy of the solution which is undoubtedly some 
of the reason for the errat ic behavior of the error 
shown in Fig . 5-S . A different method for calculating 
the average grid concentration appears to be needed. 
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Fig. S- 4 Comparison of numerical and analytical 
solutions using only one moving point 
per grid. 
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Compari son of numerical, transient concen­
tration distribution along x2=o for the 

two-dimensional dispersion problem with 
the analytical solution to the one­
dimensional dispersion problem. 

\fuen sufficient points per grid are used to provide 
a proper average gr id concentration, then the MOC 
yields good results for the one-dimensional prob lem. 

5 . 2 Longitudinal and Lateral Dispersion in 
Steady, Uniform, One- Dimensional Flow . In the pre­
vious section , the MOC was shown to be capable of 
giving good results for the one-dimensional disper­
sion problem. The extension of this analysis to the 
slightly more difficult problem of two-dimensional 
dispersion is the next logical step . A rectangular 
region, O~x3~~3 and o~x2~~2 is considered in 

which the flow is along the x3-axis with a steady, 

uniform seepage velocity, v3 . A fluid of concen-

t ration, C
0 

input boundary 

, is injected over a portion of t he 

portion of the boundary 

, while the remaining 

(b~x2~~2) is injected with 

J 



a fluid of zero concentration. A schematic of this 
particular problem is shown in the upper right hand 
corner of Fig . 5-6 . 

'10 o.s 

~ o.• 
: 

~ 
tJ 0. 3 

o.z 

o., 

0.3 

0.) 

o.• 
AWI'"OJC, M• 1ytiul 
Sol"tiOII '1vtr~ by 
tq. 1-2. 

x, 

lit • 2.0U<I 
v1 • O. JO c:at,••c 
D1. • 0 .OJ ca:ttuc 
Dt .. 0.001 r;m~/sec 

rolnu pu GY1d • " 

~.":,,-...,,;':,o:-----7,..,.,--,,~.o:---f~...._,SI"'"'-:,:O:.s---:', .o 
01st.iftet, 

Fig. 5-6 Comparison of numerical and approximate 
analytical solution for the one-dimensional 
flow, two-dimensional dispersion problem 
at steady state concentration. 

The differential equation and boundary conditions 
for this problem were given as Eqs. 2-12 and 2-13. 
When the input concentration at x

3
=0 is maintained 

for a long time, the concentration distribution will 
approach a steady state. Harleman and Rumer (1963) 
neglected the longitudinal dispersion term in the 
differential equation and solved the steady state 
problem. Neglecting the longitudinal dispersion is 
valid because a2cjax~ is very small at steady state. 

Their approximate solution for the s teady state case 
was 

c 
co = 

The numerical solution of this problem using the 
MOC was compared with the solution given by Eq. 5-2. 
Data for this run are: 25 x 20 grids on O~X~lO em 

and O~x2~4 em, v3 = 0.10 em/sec, DL = 0.01 cm2jsec, 

DT = 0 .001 cm2/sec, points per grid = 4, 6x3 = 0 .4 em, 

6Xz = 0.2 em, b = 2.2 em, and 6t = 2.0 sec . As was 

done for the one-dimensional problem, the computer 
program bypassed the solutions of the pressure equa­
tion and velocity equation . Steady state conditions 
were achieved at about 200 seconds, or after ab~ut 
100 time steps. The computer time required to sol ve 
the dispersion equation for this problem was about 
0.55 sees/time step . The step input of concentration 
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was handled numerically by letting C/C
0 

= 1.0 for 

.x;2<b , C/C
0 

= 0.5 for x2 = b , and C/C
0

" 0.0 

for x2>b . 

The numerical solution provided the transien~ 
concentration distribution, but no check of its 
accuracy was made csince Eq . 5-2 is for steady state. 
However, if DT is small and b is large, the con-

centration distribution at x2 = 0 is not affected 

by lateral dispersi on , and the transient concentra­
tion profile along x2 ~ 0 should be the same as 

for the one-dimensional dispersion case. This was 
found to be true for this run as shown in Fig. 5-S. 

The numerical results at steady state (t = 200 
sees) are compared with the approximate analytical 
solution (Eq. 5-2) in Figs. 5-6 and 5-7. The accu­
racy of the results appear to be quite good except 
for the area close to x3 = 0 . This should be 

expected since the assumption of a2c;ax~ = 0 i n the 

analytical solution is not valid in this area. Some 
of this discrepancy may also be the result of the 
very steep concentration profile in the x2-direction 

for the area close to x
3 

= 0 . Although not tried, 

smaller grid dimensions in the x2-direction might 

i mprove the results . Figure 5-7 gives the longitudi­
nal concentration distribution at steady state for 
various values of x2 . The small curvature of the 

lines in Fig. 5-7 compared with the curvature shown 
in Fig. S-6 l ends support to the assumption that 
a2c; ax2 = o at steady state. 

3 

1.0 

Fig. 5-7 Comparison of longitudinal concentration 
distribution at steady state as calculated 
numerically and by an approximate analyti­
cal solution for the one-dimensional flow, 
two-dimensional dispersion problem. 

The MOC appears to be capable of solving problems 
of longitudinal and lateral dispersion with as much 
ease as it did longitudinal dispersion alone. No 
problems with "overshoot" occurred and no numerical 
smearing was noticed. 



5.3 Numerical Solutions Using the Tensor Concept 
of Dispersion. One of the primary objectives of this 
work is to consider the dispersion coefficient as a 
tensor and evaluate the importance of using the tensor 
concept . To be perfectly rigorous, the dispersion 
coefficient was treated as a tensor in the previous 
two sections. However , in those instances the axes 
of the dispersion tensor was oriented parallel to the 
coordinate axes x1 , x2, and x3 This resulted in 

t he c.oefficients o;1 , Di2, o;1 , 0~3 , D ; 2, and o;3 
all being zero, and D~ 1 = DL , o;3 = DT . Thus , 

the previous analys is was reduced to working with 
l ongitudinal and lateral dispersion. 

In an isotropic medium, experimental results 
indicate that the dispersion tensor is oriented so 
that longitudinal dispersion is parallel to the 
velocity vector and lateral dispersion is perpendicu­
lar to the velocity vector. Thus, if the velocity 
vector is oriented at some angle to the coordinate 
axes , then the dispersion tensor is also at some 
angle to the coordinate axes. In the original paper 
by Garder et al. (1964), it was assumed that the 
velocity vectOr was essentially parallel to the x

1
-

axis. However, in most complex groundwater flow 
situations the velocity vector will not be parallel 
to the coordinate axes, but wi ll be constantly chang­
ing direction at different locations in the system . 

The gener al dispersion equation (Eq . 3-3) and the 
tensor transformation equations (Eq. 3-14) were der ived 
and written in finite difference form so that assuming 
the velocity vector parallel to one of the coordinate 
axis is not necessary. Thus, any type of compl ex 
flow system may be analyzed using the proposed numeri ­
cal simulat or . 

No analytical solutions are available for a 
multidimensional flow problem involving the proposed 
tensor transformations . To check the numerical 
simulation, the problems described in Sections 5.1 
and 5.2 were made two-dimensional by orienting the 
coordinate axes at some angle to the flow vector. 
Solving these problems in the rotated coordinate 
system forces the us e of the tensor transformation 
and numerical scheme. However, the physics of the 
probl em have not been changed, and the resulting 
answers should be the same as those obtained in 
Sections 5.1 and 5.2 . 

After some preliminary cal cul ations, the coordi­
nate axes were rotated so that an angle of 45° existed 
between the velocity vector and the coordinate axes. 
The derivation of the stability criteria in Appendix E 
influenced the decision for using 45° . This is be­
cause at increments of w/4, 3n/4 , Sw/4, and 7rr/4 

the off diagonal tensor components 0~2 , o;1, o;
1

, 

D~3 , o;3 and o;
2 

are at a maximum . Thus, the 

maximum influence of the t ensor transformation would 
occur when the angle between the velocity vector and 
the coordinate axes was given by nn/ 4(n=l ,3,5,7 . .. ) . 
Figure S-8 is a schematic sket ch of the proposed 
numerical scheme. 

The one detail about the proposed scheme for 
testing the numerical t ensor transformation that may 
provide t r oub l e is t he boundary conditions . As seen 
in Fig. 5-8 , the straight boundaries of t he origi nal 
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Fig . S-8 Schematic sketch of coordinate axes rota­
tion used for comparing numerical t ensor 
transformation with known analytical 
solutions. 

column will be approximated by a series of rectangles 
or squares in the rotated column . As 6XZ and 

6X3 become very small , a better approximation of the 

boundary conditions can be obtained. In the computer 
runs, the results along the boundary grids were not 
as accurate as they should be . However, moving away 
from the boundary only a smal l distance , the results 
were found to be consistent with the analytical 
solutions. 

Longitudinal Dispersion. The first computer 
runs using the tensor transformation were made for 
the longitudinal dispersion problem discussed in 
Section 5 .1 . Three different runs were made, and 
the data for these r uns are shown in Table V-1 as 
runs number T-1, T-2, and T-3. As can be seen from 
the data, lateral as well as longitudinal dispersion 
was al l owed to take place. However, a fluid of con­
centration C/C

0 
= 1.0 was inject ed across the 

entire interface O~x2~i2 . This should result in 

0 , and e limination of lateral dispersion. 

Thus , an effective test of the numerical appr oxima­
tion for cC/oXz and oC/3Xz3X3 is provided. 

The computer time required to solve this problem 
was approximately 0.50 sec/time step for the 20 x 20 
grid network and approximately 1.25 sec/time step 
for the 38 x 38 grid network. This is t he time 
required to so lve only the dispersion equation since 
the solutions of the pressure equation and velocity 
equation were bypassed for t hese runs . Thus, increas-
ing t he number of r,rids by a factor of 3 .6 resulted 
in increasing the computer time by a fac tor of 2 . 5 

The results for Run T-1, in which Eq . 3-14 was 
used for the tensor transformation , are shown in 
Fig. S-9. For comparison, the analytical so lut ion 
determined from Eq . 2-10 is given. As can be seen, 
the resul t s are quite good . No problems with "over­
shoot" occurred for this case . For x3; t

3 
> 0. 9 , 

some error is noticeabl e on the 0.92 pore volume 
injected curve. This is because the boundary condi­
tion of the analytical solution has been violated. 
The analytical solution is for a semi -infinite column; 
not a f inite column. Thus, the end effects of the 
column became noticeable. 



TABLE V-1 Data for computer runs made to verify 
numerical simulation and tensor trans­
formation of dispersion problem 

Run 
6t tx~ 6xi v~ v; 

(sec) (onl (CII) (CII/sec) (011/sec) 
v• Ho. of Tensor 

(on/sec) Points Trans for­
per Grid mation 

used 

T -1 

T -2 

T-3 

T-4 

T-5 

1.5 0.2 C.2 

1.5 0.2 0.2 

2.0 0.4 0.4 

2.0 0. 4 0.4 

1.5 0.2 0.2 

.071 

. 071 

.071 

.071 

.071 

T· 6 1.5 0.2 0.2 .071 

T-7 1. 5 0.2 0.2 .C71 

T-8 1.5 0.2 0.2 .071 

TABLE Y-1. Continued. 

NO. of 
Run Grids i n 

No. of 
Grids in 

x2- (cm2/sec) 

T· 1 

T ·2 

T ·3 

T -4 

T·S 

T·6 

1·7 

;.a 

Di;~~tion Direct ion 

38 

38 

20 

Zil 

38 

38 

38 

38 

0 •• 

38 

38 

20 

20 

38 

38 

38 

38 

I..U!!!! 

0.01 

.1.01 

0.01 

0.01 

0.01 

0.01 

0.01 

C. 01 

-A"f!l)'t' U I S.llilltOII ((Ill, 2·10). 

c .• 

o .,.._rtU1 •t~wh Ut.t"' 1'H1-0r 
lo..- of OUHf'\\Oft ('w!l f~l) 

6 ,._,.,,,UI :t~slll1t U\1"'9 ,1f0 
Tenso,. ,,. .. ,,O""'t.t"' 
(Run T•ZJ 

.071 

.071 

.071 

.071 

.071 

0.10 

0. 10 

0.10 

0.10 

0.10 

.071 0.10 

.071 0. 10 

.071 0.10 

2 

2 

2 

!2 b 
(em) (em) 

0.003 6.509 4.245 4.245 

0.003 6.509 4.245 4.245 

0.001 5.66 5.66 3.66 

0.001 7.358 3.962 1.981 

o.oo1 o.5o9 4.245 2.122 

0.003 6.509 4.245 2. 122 

0.003 6.509 4.245 2.122 

0.003 6.509 4.245 2.122 
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Fig. S-9 Comparison of longitudinal concentration 
distribution calculated with and without 
tensor transformation for Runs T-1 and T-2. 

Also shown on Fig . 5-9 are the results of Run 
T-2 in which the tensor transformation was not used. 
For this case, D~ 1 = OL , o;2 = DT , and D~2 o;

1 
= 0 . This means that the dispersion tensor was 

assumed to bt: or iented parallel to the rotated coor­
dinate axes rather than the velocity vector. The 
results of Run T-2 indicate that by not using the 
tensor transformation, an error results in the numeri­
cal solution. The run without the tensor transforma­
tion gives a steeper concentration distribution curve 
than t he analytical solution . Although not tried , 
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the use of a larger value for DL should move the 

curve for Run T-2 nearer the analytical solut ion. 

Although the error created by disregarding the 
tensor transformation is discernible, this is the 
maximum error that will occur. As the coordinate 
axes are rotated from the present 45° to either 0° 
or 90°, the two solutions given by Run T-1 and Run 
T-2 will gradually approach each other . Thus, i n 
many practical problems, the error in determining 
the dispersion coefficient will probably result in 
greater errors than that created by neglecting the 
tensor transformation. However, the tensor trans­
formation required very little more computer time, 
and did result in a more accurate solution. 

Figure 5- 10 shows the lateral concentration 
distribution for Runs T-1 and T-2 after injecting 
0 .46 pore volumes of rluid. The data along x2/t2 • 

0.5 correspond to those shown in Fig. 5-9 for 
V3t/13 = 0.46. Again, the numerica l result using the 

tensor transformation are more accurate than those 
without the transformat ion. As was surmised earlier, 
approximating the straight boundary of the column 
with a square grid (see Fig. S-8) has resulted in a 
larger error along the boundary. The numerical re­
sults for any value of x3;t3 were generally the 

same to three decimal places for 0.3~x2;t2 ~ 0.7. 
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~1g . 5-10 Comparison of lateral concentration dis­
tribution calculated with and without 
tensor transformation for Runs T-1 and 
T-2 after 0.46 pore volumes have been 
injected. 



The no-flow boundary condition in Run T-1 was 
approxi mated numerically by setting the dispersion 
coefficients equal to zero for all gri ds along the 
boundary . Another way to treat the no-flow boundary 
i s ~o use a reflective boundary condi~ion. Run T-3 
was made wi th a reflective boundary condition along 
x2;12 = 0 and a boundary condition with the disper-

sion coefficients equal to zero along x2; 12 z 1.0. 

As can be seen in Fig. 5-11, the use of the reflec­
tive boundary condit i on appar ently reduces the amount 
of error. The reflective boundary condition improves 
the results because the finite difference equation 
for the cross derivative a2c;ax3ax2 involves using 

a "nine-star" grid pattern (see Fig . 0-1, Appendix D) 
i nstead of the usual "five -star" gri d pattern. This 
means that the derivative of concent ration in the 
boundary grid has an influence further into the media. 
This influence is more adequately accounted for by 
the reflect ive boundary condition. 
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Fig. 5-11 Comparison of lateral concentration dis­
tri bution for Run T-3 after 0.46 pore 
volumes have been injected . 

Longitudinal and Lateral Dispersion. With the 
set ·up shown in Fig. 5-8, the longitudinal and lateral 
dispersion problem discussed in Section 5. 2 was solved 
in the rotated coordinate system using the tensor 
transformation relationships. In these runs, fluid 
with a concentration of C/C

0 
= 1.0 was injected 

over the interval o~x2~b , and fluid with a concen­

tration of C/C
0 

= 0.0 was i njected over the interval 

b~Xz~12 . Runs T-4, T-5 , T-6, T-7, and T-8 were made 

to study the effects of the tensor transformation 
when both longitudinal and lat eral dispersion take 
place. The data for these runs are given in Table V-1. 

The first run in this series (Run T-4) was made 
with 6x3 and 6X2 equal to 0.4 em. The results from 
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this run yielded mor e error than was tolerable. An 
example of this error is shown i n Fig. 5-12 after 
2.3 pore volumes had been injected. This was assumed 
to be approximately at steady state. Since the re­
sults of Run T-4 are smooth and display no anomalies , 
the error was presumed to be the result of using 
large spati~l dimensions in the region of the steep 
concentrat ion profile along x2 • b. 
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Fig . 5-12 Comparison of lateral concentration dis­
tribution for Runs T-4 and T- 5 at s teady 
state. 

To check this hypothesis, Run T-5 was made using 
x3 and x2 equal to 0 . 2 em. The results were 

much better as shown i n Fig. 5-12, but are sti ll not 
accurate enough. The spatial dimensions could have 
been decreased more , and a mor e accurate solution 
would probably have been obtained. However, Run T-5 
required the use of a 38 x 38 grid system or a 40 x 
40 grid system when the boundary grids are included. 
This i s 1600 grids and 3200 moving points. The com­
puter program for this problem required about 25,200 
words of computer storage. This was near the avail­
able comput er s t orage, and decreasing the spatial 
dimensions further was not attempted. 

Since the very sharp concentration front along 
x

2 
; b appears to be causing the problem, then 

increasing the width of the dispersed zone might he lp . 
With this i n mind, Run T-6 was made with DT = 0 .003 

cm2/sec instead of DT = 0.001 cm2/sec. The results 

of this run are shown in Fig. 5- 13 , and they are much 
improved. Except for the area near the inflow bound­
ary (x3;t3 < 0. 3) where the analytical solution is 

not good, the results compare favorably with the 
approximate analytical solution given by Eq. S-2. 

Run T-7 was then made using the same data as 
Run T-6, except the tensor transformation equations 
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Fii. 5-13 Comparison of longitudinal concentration 
distribution at steady state as calculated 
numerically using the proposed tensor 
transformation and by an approximate 
analytical solution. 

were not used. These results are shown in Fig. 5- 14, 
and do not match the analytical solution. Figs. 5-15, 
5-16, and 5-17 give a comparison of the l ateral con­
centration distributions for Runs T-6 and T-7 at 
various values of x3113 . Run T-7, using no tensor 

transformation, shows a flatter concentration distri­
bution than the analytical solution. 

Figures 5-15, 5-16, and 5-17 do no.t show any 
"overshoot" or "undershoot". However, "overshoot" 
and "undershoot" did occur; but was generally 
restricted to the third or fourth decimal place. 
This small significance resulted in no noticeable 
"overshoot" in the graphical presentation. The use 
of the "nine- star" grid pattern to estimate the cross-

derivative a2C/ax2ax3 is believed to be the source 

of this small amount of "overshoot". However, the 

magnitude of the "overshoot" (10-
3 

to 10-
4

) is 
-2 

much smaller than the overall error (10 ), and is 
not considered to be a major detriment to the numeri­
cal scheme . 
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Pi&. 5-14 Comparison of longitudinal concentration 
distribution at steady state as calculated 
numerically using no tensor transformation 
and by an approximate analyti~al solution. 
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Fig. 5-16 Comparison of numerical solutions with 
and without the tensor form of disper­
sion for steady state concentration at 
x3/t3 • 0.6090. 
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and without the tensor form of disper­
sion for steady state concentration at 
x3J£ 3 " 0.9570. 

A more serious obstacle to the success of the 
numerical scheme appears to be the moving points. In 
Section 5.1, a lag i n the concentration profi le for 
longitudinal dispersion was noticed when the same 
points remained inside a grid throughout a t ime step. 
This resulted in a "jerky" movement of the concent ra­
tion front as was shown i n Fig . 5-4 for the case of 
one point per grid. In other words, the accuracy of 
the numeri cal scheme appears to be dependent upon the 
time increment selected for a given grid size . 

The prob lem with the "jerky" frontal movement 
was a l so noticeable in the two-dimensional dispersion 
problem where two points per grid were used. The 
resul ts f or Run T-6 shown in Figs . 5- 13, 5-15, 5- 16, 
and 5-17 are after injecting for 150 seconds and are 
quite good . However, Fig . 5-18 shows the results for 
Run T-6 at 120 seconds and at 180 seconds. These 
results are obviously not as good as those for 150 
seconds. Thus, the accuracy of t he numerical solution 
apparently depends on which time level is chosen to 
print out the results . The results for Run T- 4, in 
which four points per grid were used, did not show 
this apparent accuracy dependence on time . As is 
seen in Fig . 5-19 , the results of Run T-4 are approxi­
mately the same for t " 120 seconds , t = 150 seconds, 
and t = 180 seconds. 

A conclusion which might be deduced from the 
above observations is that the number of points per 
grid does have an effect on the accuracy of the 
results. However, t he use of hand calculations to 
move the points from location to location indicated 
that the relative position of the movi ng points in a 
particular grid at a given time l evel i nfluences the 
resul ts more than the number of points. Figures 5-20a, 
b, and c illustrate an example of this hypothesis . 
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Fig. 5-20 Schematic sketch showi ng the effect of 
the moving point l ocation on cal culat ing 
average concentration. 

In Fig . 5-20a, two points are central ly located in 
the grid, and points in the adjacent grids are lo­
cated as shown. All points above the diagonal are 
assigned a concentration of zero , and al l points 
below the diagonal are assigned a concentration of 
one. No dispersion is allowed to take place. Under 
this setup, the aver age concentration assigned to 
the grid would be (1.0 + 0.0)/2 = 0.5. 

Now suppose that the velocity vector is oriented 
parallel to the diagonal, and that the magnitude of 
the velocity and t ime increment are such t hat at the 
next time s tep the points are located in t he gr id 
as shown in Fig. 5-20b. Even though two points are 
still in the grid t hey are positioned along the right 
side of the grid and both are above the diagonal. 
For this case, the average concentration assigned to 
t he grid i s (0.0 + 0.0)/2 = 0 . 0 . Thus, by goi ng 
from one time step t o t he next, the concentration 
has changed from 0.5 to 0 .0. 

To carry the case t o an even f urther extreme , 
suppose the magnitude of the ve l ocity and t ime incre­
ment are such that at the next time step the points 
are located as shown in Fig. S- 20c . The two points 
in this inst ance are l ocated very close to the left 
side of the grid and are below the diagonal . Thus, 
the average grid concentration is (1 . 0 + 1. 0)/2 = 
1.0 . 

Three comp l etely different answers were obtained 
at three different time level s depending on how t he 
points were posit ioned in the grid . Obvious ly all 
three answers cannot be right. The correct answer 
is , of course, 0 . 5 which was given by t he point loca­
t ions in Fig. 5-20a. The phenomenon depicted in 
Figs . 5-20a, b, and c is exact ly the phenomenon en­
countered iu Run T-6 in which distorted values were 
obtained at certain time l eve l s and accurate results 
were given at other time l evels . 

The phenomenon discussed above could be reduced 
to a tolerable l eve l by increasing the number of mov­
ing points per grid . This is indicated by the fact 
that Run T-4 with four points per grid di d not show 
an accuracy dependence on time. However , perhaps the 
key to the probl em is not incr easing the number of 
points, but determining the ~verage concentration by 
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another method. A proper weighted averaging scheme 
will help things consider ably. 

Run T-8 was made with all data exactly like 
Run T-6 except t hat area was used as a weighting 
factor. The average concentration was calculated by 

c"~ 
2 3 

C.M. 
1 1 

(5-3) 

where C is the average concentration, 6x2 and 

6X3 are the spatial dimensions Of the grid, Ci is 

the concentration of the ith moving point, 6Ai is 

the "area of influence" of the i th moving point, and 
n 
2 !:!.A. = 6x2t;.x3 . . The concept of an "area of 

i =l 1 

influence" is schematically shown in Fig . 5-20d. 
Usi ng such a concept, points 1, 7, 8, and 9 wi ll have 
some influence on the average grid concentration 
whil e the i nfluence of points 1 and 2 has been di­
minished . The results for Run T-8 using the weighted 
average are shown in Fig. 5-21 after 120 seconds , 
150 seconds , and 180 seconds. These results are much 
improved over those of Run T-6 shown in Fig . 5-18. 
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fig. 5-21 Numerical results for Run T-8 at different 
time levels. 

The conclusion that must be r eached here is 
t hat t he method of cal culating the average grid con­
centration is an important factor in the numerical 
scheme. If some type of weighted average is not used , 
then a sufficient number of moving points must be 
used to guarantee a reasonable estimate of the average. 
Although Garder et al . (1964) concluded that two 
points per grid gave sufficient accuracy, the results 
obtained in this study indicat e t he number of points 
per grid may need to be greater than two . The exact 
number needed is unknown, and would appear to be 



dependent on the nature of the problem being 
considered. 

If an adequate scheme for weighting the concen­
tration can be developed, then a smaller number of 
points per grid may be used. Using an "area of 
influence" as a weighting function gave good results 
for the problem considered here· where a uniform, 
steady velocity field was used. The numerical prob­
lems encountered in determining an "area of i nfluence" 
for each point in a nonuniform, ur.+teady f low field 
appear to be numerous. Other weighting schemes, 
besides area, which could easily be calculated for 
the nonuniform, unsteady case might prove to be ade­
quate . This problem is left to future t hought and 
research. 

5. 4 Dispersion Along Equi libriUlll Sal t-l~ater 

Wedge. In Sections 5.1, 5.2, and 5.3, the numerical 
simulation of the dispersion equation and the tensor 
transformation of the dispersion coefficient was 
compared with known analytical solutions. However, 
the total simulator using both the dispersion equa­
tion and the flow equation have not been used. A 
problem which seems favorable to this type of analysis 
is tne salt-water intrusion problem. Rumer and 
Harleman (1963) used a laboratory model of a two­
dimensional confined aquifer to investigate convec­
t ion and dispersion along a salt-water wedge. 
Columbus {1965) used a Hele-Shaw model to investigate 
sea-water intrusion in an unconfined model neglecting 
dispersion . Because Rumer and Harleman's (1963) data 
contained i nformation on the value of the dispersion 
coefficients, a computer run was made using the data 
from one of their laboratory runs. 

The equilibrium salt-water wedge, when subjected 
to t he steady flow of fres h water to the ocean, will 
develop a transition zone . Using Darcy ' s law and the 
Oupuit- Forchheimer approximation, the specific dis­
charge of fresh water per unit width of ocean front, 
q , can be written as 

q 
K dh* 

y dX 
1 

(5- 4) 

in which K • hydraulic conductivity, y is the dis­
tance between the top of the aquifer and the wedge 
interface, and h* is the piezometric head (Fig. 5-22). 
The medium is assumed to be homogeneous , isotropic, 
and no mixing occurs at the inter face. 

1 --q Ocean 
d* 

1 
L - --

~ 

Fig. 5-22 Equilibrium wedge in a confined aquifer. 
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The condition of equal pressures in the salt­
water and the fresh water at each point along the 
interface yields 

pf 
y = - h* 

llp 
(5- 5) 

where cf and ps are the densities of fresh and 

salt- water, respectively , and 

stituting Eq. S- 5 into Eq. 5-4 

• l!o 
q-

p 

(h* - ~ ~)dh* 
pf 

of 
-K- dxl 

Integrating and solving for h* 

h* 

2- llp 
q p 
__ f_X+B 

K 1 

{lp • p s - p f . 

gives 

Sub-

(5-6) 

(S-7) 

The constant of integration, B , can be obtained 
by using the value of h* at x 1• 0 Henry (1959) 

showed that the outcrop opening (y at x
1
=0) was 

given by, 

0.741 9 
K llo/o f 

Substituting Eq . 5-8 into Eq. S-5 gives 

0 . 741 q 0s 
+-I; 

K Pf 

(5-8) 

(5-9) 

Using Eq. S-9 in Eq. S-7, gives B = (0.74lq/K) ~ 
Thus, the piezometric head is given by. 

• llp 
2q- 2 
__ 

0_f_ x • {0 .741 q) 
K l K 

h* 
Ps 

+- E p • 
f 

(5-10) 

Subst i tuting Eq. 5- 10 in Eq . 5-5, gives the equation 
for the interface, 

y ( 
0. 74lq )

2 

K l!p 
pf 

( 5·11) 

Although the static interface between fresh and salt 
water will be subjected to dispersion, Rumer and 
Harleman (1963.) showed that the position of the mean 
isoclor (C = 0.5) is adequately predicted by Eq. 5-11. 

Rumer and Harleman (1963) gave the following 
information for their Run No. N-2: q=0.0733 cm2/sec,, 



Ap/pf = 0 . 006, K = 0.835 em/sec, porous medium= 

plastic spheres, and median grain diameter = 0.965 mm. 
A computer run was made using Rumer and Harleman's 
information, plus some additional data required by 
the numerical simulator. the data used in the com­
puter run are: Ax1 = 6 .0 em , Ax2 = 6.0 em, At = 
500 sec; k • 9 . 885 x l0-6cm2 , ~ • 0.39, pf = 1.000, 

p = 1.006, Ap = 0.006, ~ = .0116 poise, fluid corn-
s I 

pressibility • 0 .0, rock compressibility ~ 0.0, 
A = 0 .0, a= 0.006 , grid dimensions= 12 x 27, 
depth of aquifer • 60 em, length of aquifer = 156 em, 
t • 33 em, q • 0.0736 cm2jsec, moving points per 
grid = 2, and the acceleration of gravity = 980 em/sec2. 
In addition to these data, the dispersion coefficients 
were assumed to be given by 

DLp (v d5oP )1.2 
0 . 66 --

~ \J 
(5-12) 

and 
v d r7 DTp 

0.036 (~ -. \J 
(5-13) 

The reason for using Eqs . 5-12 and 5- 13 is that 
Harleman and Rumer (1963) determined these relation­
ships f or the same medium (plastic spheres) used by 
Rumer and Harleman (1963) in their study of sea-water 
intrusion. 

The computer run was made for 60 time steps or 
about 8.33 hours . Whether this was long enough for 
the wedge to reach equilibrium is unknown. The concen­
trations were not changing very rapid l y, and the toe 
of the wedge was moving very slowly. Therefore, the 
wedge was assumed to be in equilibrium. The computer 
time required for solving both the flow equation and 
dispersion equation for this 12 x 27 grid network was 
about 3.4 sec per time step. 

Fluid enters the model at x1 = 156 em and leaves 

the model at x 1 • 0 . No fluid flows across x2 • 0 

and x2 = 60 em. Thus , the boundary conditions are 

given by 

and 

ah 
+ pg -- "' a 2 

0 at 

and 

(5-14) 

(5-15) 

(5-16) 

P(O,O) is assumed to arbitrary and was taken to be 
29,576.40 cynesjcm2 for this run. P(l56,0) was main­
tained at the necessary level to cause a fresh-water· 

flow of q = 0.0733 cm2/sec. 
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The boundary conditions given by Eqs . 5-14 and 
5-16 are believed to be adequate. However, the 
boundary condition given by Eq. 5-15 is subject to 
some suspicion. The actual physical boundary· condi­
tion where the fresh water discharges into the ocean 
is very difficult to describe numerically . The com­
puter run indicat ed that some recirculation of fluid 
took place along this boundary. If the simulator 
should be used to study the salt-water intrus ion 
problem in detail , additional work on describing 
this boundary condition will be necessary. 

A comparison of the fresh-water head calculated 
numerically and by Eq. 5-10 is shown in Fig. 5-23. 
The comparison shows that the numerical results and 
those by Eq. 5-10 are very close except for the 
region close to the ocean front. This would be t he 
region affected most by t he use of the Dupuit­
Forchheimer assumptions . Also this region is prob­
ably affected by the boundary condition given in 
Eq. 5-15. 

o ,.,..,.lui C•lcul~of Fre~tt-waur 14tM Alo119 Cf:nter of 
TN G.rU ( • : • 3.0 c:tl) , 
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Fig . 5-23 Comparison of fresh- water head calculated 
numerical ly and by Eq. 5-9 for the salt­
water intrusion problem. 

Figure 5-24 shows a comparison of ·the mean 
concentration line (C/C

0
=0 . 50) calculated numeri-

cally and the interface location obtained from Eq . 
5-11 . These results are good except in the vicinity 
of the wedge toe. Several factors may be contributing 
to this error. First, the numerical results may not 
be completely at a steady state. However, the 60 
time steps computed required 205 seconds of computer 
time. The concentration changes taking place were 
slow enough so that large amounts of computer t i me 
would be required to carry the solution to a real 
steady state. The present grant for computer usage 
would not allow such large amounts of computer time. 
Thus, runs of longer duration were not made. 

Another factor which proved a limitation on this 
problem can be seen in Fig . 5-25. The concentration 
profiles are extremely steep. In fact, the profile 
is so steep that the grid concentrations obtained 
from the computer were generally either C/C

0
=1.0 

or C/C
0
aO.O. Very few grids had a value for C/C

0 
between these two extremes. Thus, a large amount of 
interpolation was required to determine the line 
C/ C

0
;0,5. To alleviate this problem, smaller spatial 

dimensions are needed which 'will require more computer 
storage. This will necessitate making changes in the 
program for more extensive use of auxiliary storage 
(i.e., tape). 
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Fig. 5-24 Comparison of interf ace location calcu­
lated numerically and by Eq. 5-10. 
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Fig. 5-25 Numerical results showing the concentra­
tion distribution across the t r ansition 
zone for various values of x 2 . 
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Another problem is that of having the moving 
points heavily weighted to one side of the grid . 
This problem was discussed in Section 5.3, and t he 
use of a weighted average using the "area of in­
fluence" as a weighting factor proved successful. 
However , the unsteady, nonuniform flow field en­
countered in the salt-water wedge makes the deter­
mination of an "area of influence" difficult. Using 
mor e movi ng points per grid than the two used in 
this run would probably help this problem. 

The computer program indicates t hat a small 
amount of salt-water flow (approxi mat ely 0.008 
em /sec) occurred in the salt-water wedge. This 
would have the effect of moving the wedge toe toward 
the ocean; although not by enough to account for all 
the discrepancy shown in Fig. 5-24 . 

Another factor which might have effected the 
location of the interface is the boundary condit ion 
given by Eq. 5-15 to approximate the ocean front . 
The computer results indicated that some recircula­
tion of flui d was occurring along the two grids 
adjacent to the ocean. 

To investigate all of the above effects on the 
numerical solut i on would require additional computer 
funding. Such funds are not presently available . 
This should be made the obj ect of some future 
research proposal. 



Chapter VI 

SU~l!>IARY AND CONCLUSIONS 

A ~hree-dimensional fundamental flow equation 
for a mixture of miscible fluids flowing through a 
groundwater aquifer was derived. Also, a three­
dimensional convective-dispersion equation describing 
the movement of a tracer miscible with the groundwater 
was derived. Finite difference forms of ~hese two 
equations were developed, but because of insufficient 
computer funds the three-dimensional equations were 
never used. 

A computer program using the two-dimensional 
finite difference equations was developed and tested 
with success on problems with known analytical solu­
tions. Assuming an isotropic medium, a tensor trans­
formation for the dispersion process was tested 
extensively. Because the numerical simulation of the 
tensor transformation involves the cross-derivatives 
of concentration, new stability criterion were 
developed for the explicit finite difference scheme 
used to solve for dispersion. 

6.1 Evaluation of Numerical Simulator . The 
results of this work will allow the study of numerous 
miscible displacement problems in complex groundwater 
flow fie lds. The numerical simulator can be used for 
steady or unsteady flow, homogeneous or nonhomogeneous 
aquifers, isotropic or anisotropic media, constant 
densities or varying densities, and constant viscosi­
ties or varying viscosities. The use of the proposed 
simulator has resulted in the following: 

a. The one-dimensional flow problem with longi­
tudinal dispersion can be handled without any difficul­
ty, and excellent results were obtained . No "over­
shoot" or numerical smearing was noticeable . 

b. The one-dimensional flow problem with both 
longitudinal and lateral dispersion can be handled 
satisfactorily. No "overshoot" or numerical smearing 
were observed. Small spatial dimensions are required 
along a sharp concentration front to adequately des­
cribe the front. 

c. Working with a rotated coordinate system, 
the proposed numerical simulation for the tensor 
transformation of the dispersion process was success­
ful. The use of the "nine-star" finite-difference 
pattern to describe a 2c;a~1ax2 was sufficient except 

along no-flow bouncaries . The use of a reflective 
boundary condition instead of setting the dispersion 
coefficient equal to zero helped alleviate this 
problem. 

d. Garder et al . (1964) concluded that the 
method of characteristics numerical scheme for dis­
persion would give good answers for as few as two 
points per grid. The results of this work indicate 
that the points per grid may need to be greater than 
two. The exact number needed is unknown, and would 
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appear to be dependent on the nature of the problem 
being considered. 

e. The method of calculating the average grid 
concentration proved to be an important factor in 
the numerical scheme. If an arithmetic average of 
the points located in a grid at a particul ar time 
level is used, then more points than two per grid 
may be necessary to obtain an adequate average. A 
weighted average using the "area of influence" for 
each point was proposed and proven effective for a 
steady , uniform flow field. Calculation of an "area 
of influence" is difficult for an unsteady, non­
uniform flow field. 

f. The numerical simulator was used to solve 
the salt-water intrusion problem. The numerical 
results for the fresh water head in the aquifer 
matched closely those obtained analytically. The 
numerical results for the location of the fresh-salt 
interface were good except in the region of the 
wedge toe. Insufficient funds prevented exploring 
the effects of smaller spatial dimensions and a lar­
ger number of grids. 

The efficiency of the numerical scheme would 
seem to make it useful as a practical tool. However, 
large amounts of computer time will be required be­
cause the numeri~al solution must be carried out 
from the initial condition to the required time by 
increments of 6t . Most practical problems wi ll 
also require the use of large amounts of computer 
storage . Thus, the present program will need to be 
modi fied so that more extensive use of external 
computer storage can be made. 

6.2 Suggestions for Future Work. Subjects not 
covered, or not covered adequately, in this study 
are: 

a. The investigation of a weighting technique, 
other than the "area of influence ," which could be 
used to determine the average grid concentrat ion for 
an unsteady, nonuniform flow field. 

b. A method whereby the pressure equation is 
solved for larger spatial and temporal increments 
than the dispersion equation. 

c. The effect of smaller spatial increments, 
more points per grid, and different boundary condi­
tions on the salt-water intrusion problem. 

d. A study of dispersion in layered and non­
homogeneous porous media. 

e. A study of dispersion in anisotropic media. 
Some method of determining the principle axes of the 
dispersion tensor would be required. After this is 
determined, the sol ution would be much the same as 
that a l ready presented. 



f. The simulator should be used to solve an 
actual field problem. 

6.3 Observations. The results of this work 
would indicate that hydrodynamic dispersion in a homo­
geneous and isotropic media is a valid and reproducible 
phenomenon. However, the actual significance of the 
dispersion process may be questioned because of the 
smallness of the dispersed zone when compared to t he 
overal l model dimensions. The conclusion that disper­
sion is not worth worrying about except for the most 
noxious pol lutants and radioisotopes would seem to be 
warranted. 

However, fie ld tests at Berke l ey by Lau, et al. 
(1957 , 1958) showed that the dispersion consta~e­
sulting from a pumping test were from 20 to 30 meters 
compared to less than l mm i n the laboratory. This 
is a change of 3 orders of magnitude. Other field 
work in transport phenomena indicates that the dis­
persed zone i s significant i n real aquifers. An ob­
vious conclusion is that mixing processes not involved 
in laboratory models and homogeneous and isotropic 
media are present in aquifers . This extra mixing 

process would appear to be the result of nonhomoge­
neous and anisotropic media which characterize real 
aquifers . 

The reason for the above observations are that 
the results of this study show a significant , but not 
overwhelming, difference between solutions with and 
without the tensor transformation . ~lany people may 
easily conclude that using the tensor transformation 
is not worth the effort. If the real aquifer magni­
fies the error between solut ions with and without 
~he tensor transformation as much as i t does the 
dispersed zone, then a significant error may occur 
in the solution of f ie ld problems. 
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This work is a first step in developing a 
numerical solution for miscible displacement which 
makes use of the t ensorial nature of the dispersion 
process . Until work in real aquifers indicates 
otherwise, the numerical simulator should maintain 
the capability of treating the dispersion process as 
a tensor. The work on this project needs to continue 
with a study of the dispersion process in a non­
homogeneous aquifer. 
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APPENDIX A 

DERIVATION OF THE 
FUNDAMENTAL FLOW EQUATION 

A fundamental flow equation for a displacement 
process involving miscible fluids can be derived by 
combining the law of conservation of mass, Darcy's 
law, and an equation of state describing the pressure­
volume-temperature-concentration relationship. The 
result is an equation i nvolving two dependent vari ables, 
pressure and concentration. 

A.l Continuity Equation. An important relation­
ship in fluid flow is the principle of conservation of 
mass. This principle is a statement of material bal­
ance with respect to a volume element fixed in space, 
and may be simply stated as: 

(Rate of Mass Inflow) - (Rate of Mass Outflow) = 

(Rate of Change of Mass Inside Volume Element) 

Applying this principle to the volume element shown 
in Fig. A-1 results in 

Fig . A-1 Volume element of a porous medium used 
for developing continuity equation. 

(A-1) 

where M M M -x
1
-6x /2' x2-6x2/2 ' x3-6x3/2-

rate of mass inflow across faces x1- 6x1/2, 

x2-6x2/2, and x
3

-6x
3
/2 respectively, 

M M M " x1+6x1/2' x2+6x2/2' x3+6x3/2 

rate of mass outflow across faces x1+6x1/2, 

x
2
+6x

2
/2, and x

3
+6x3/ 2 respectively, 

MVE =mass contained inside the volume element, 
and 

M 
p 

a mass sour ce or sink term which is 
posi tive when a sink and negative 
when a source . 

Applying a Taylor series expansion about the point 
(x

1
, x2, x

3
) of Fig. A-1 gives: 
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Neglecting second order terms and higher, the follow­
ing relationships are obtained from Eq. A-2: 

aMxl 
- axl Axl 

(A-3) 

Substituting Eq. A-3 into Eq. A-J gives: 

. - . (A-4) 

Each one of the mass flow rate components may be 
expressed in terms of the fluid density, the dimen­
sions of the volume element, and the volume flux. 
Thus, 

and 

M = pq1Ax2Ax3 xl 

M 
x2 

= pq2Ax
1

Ax3 

M 
x3 

• pq3llx
1
6x2 

MVE popSllx1 llx2'~x3 

M p = ppQ 

mass density of the solution, 

components of the volume flux in the 
x

2
-, and x3-directions , 

porosity of the medium, 

S saturation of fluid, 

(A-Sa) 

(A-Sb) 

(A-Sc) 

(A-Sd) 

(A-Se) 

Q =production term wi th units of L
3T"1

, and 

pp = mass density of production fluid. 

Substituting Eq. A-5 into Eq. A- 4 gives: 

a a 
ax

3 
(pq3llx1Ax2)Ax3 • -at (p.pS6x1Ax2llx

3
)-ppQ 

(A-6) 

A.2 Fundamental Flow Equation. To develop the 
flow equation, an expression for the volume flux terms 
is required. Darcy's law is assumed to be applicable 
for this flow situation and the axes of the cartesian 
coordinate system (x

1
,x2,x3) are assumed to coin-

cide with the axes of the permeability tensor. Thus, 
the volume flux terms are given by: 
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k k 

q = _ ~ (~ + ah ) 
3 IJ ax

3 
pg ax

3 
' (A-7) 

where k ,k ,k absolute permeability in the 
xl x2 x3 x

1
-, x2-, and x

3
-directions, 

respectively, 
kr relative permeability to fluid , 

~ • viscosity of fluid at reservoir 
conditions, 

P • fluid pressure, 

g 2 acceleration of gravity, and 

h • the elevation of the volume 
element above an arbitrary datum 
which is perpendicular to the 
direction of gravity. 

After substituting Eq. A-7 into Eq. A-6, the results 
are 

_.L [ pkxl kr ( ~ + pg ~ xh 1 ) 6X26x3J (lxl 
oXl )J 3Xl o 

(A- 8) 

Multi-~hase flow r equires the development of an 
equation similar to Eq. A-8 for each phase being con­
sidered. Such equations have been developed for 
three-phase f l ow by Breitenbach et al . {1968b). The 
derivation being developed here is to be used in a 
single-phase flow simulator in which S: l and k : 1 
Thus, Eq. A-8 reduces to r 

a [okxl ( aP ah ) J 
~ -~- ail+ pg ~ Ax2Ax3 AXl 

pk 

+ a [ x2 { aP 
pg :~2 ) AX l Ax3J llx2 ax2 -~.~- ax2 + 

pk 

+ a [ x3 ( aP 
ax3 -~.~- ax

3 
• pg :~3 ) llx16x2] Ax3 

(A-9) 



The right hand side of Eq. A·9 contains the 
porosity, ~ , which is assumed to be a linear func­
tion of pressure given by 

(A-10) 

where CF is the formation compressibility factor, 
~0 is the original value of porosity, and P

0 
is 

che original value of pressure. The density, p , 
varies with x1, x2, x3, and t , and is dependent 

upon pressure, P , concentration, C • and tempera· 
ture, T . Assuming isothermal conditions, the 
effects of temperature may be neglected and an equa· 
tion of state of the following form is assumed : 

(A·ll) 

where B is the fluid compressibility, ~ is a pro­
portionality factor relating concentration and density 
and the subscript (o) refers to the original value of 
the variable . 

Differentiating Eq. A-10 with respect to t 
gives 

(A-12) 

Likewise, differentiating Eq. A·ll with respect to 
t gives 

(A-13) 

Expanding the right hand side of Eq. A-9, introducing 
Eqs . A-12 and A-13, and assuming that the size of the 
v~lume element c~v = ~xl6x2~x3) does not change 
w1th time gives 

aP 
rhs = ~x1~x2~x3 (p~0CF + P0~B) at 

ac 
+ ~~[IX 1c.x2c.x3 at (A·l4) 
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Substituting Eq . A- 10 and A-ll into Eq. A- 14 gives 

rhs Po~o~xl~x2llx3[cF 
~cc-co) J aP 

+ c - + F p
0 

at 

+ CF(P- P 0 ) ~~] (A-15) 

Since CF and 6 are of t he same order of magnitude 

(10-6 in most cases), then 2C S(P·P) << 10-6 for 
F o 

small pressure changes and can be neglected. For 
small concentration changes, CFa(C-C

0
) << 10-6 

Also, the term CF(P-P
0

) << 1 for small pressure 

changes. Thus, for small pressure and concentration 
changes, Eq . A-15 may be approximated by 

(A-17) 

where i 1,2-,3 is a cartesian coordi nate 
syste-m (x l ,x2,x3) ' 

CIA. a cross. sectional area perpendicular to 
l flux and qi . 

c.v volume cf volume element, llx
1 

c.x2 t1x3 

Equation A-17 is the fundamental flow equation for 
the s~turated f l ow of a solution containing a mis­
cible tracer , and will be referred to as the flow 
equation . 



APPENDIX B 

DERIVATION OF THE DISPERSION EQUATION 

To solve the flow equation (Eq. A- 17), a relation­
ship for determining the concentration C is needed. 
This relationship may be obtained by expressing a 
continuity equation for the dispersing tracer. The 
problem is formulated on a microscopic ~asis and then 
averaged over a cross-sectional area of the porous 
medium to give the desired macroscopic equation of 
dispersion. 

Two different size elements, a fluid element 
and a representative volume element, are used in this 
analysis . A fluid element with very small dimensions 
is used inside the pores of the porous medium for the 
microscopic analysis. A representative volume ele­
ment of the porous medium is defined as the smallest 
volume around a point such that adding an infinitesi­
mal volume has a negligible effect on the values of 
medium properties such as porosity. The representa­
tive volume element is used in the macroscopic analy­
sis and contains both medium and fluid. 

B.l Continuity Equation for the Tracer. The 
continuity equation for the tracer is given as: 

(Rate of Mass Inflow of Tracer) -

(Rate of Mass Outflow of Tracer) 

(Rate of Change of Tracer ~ss Inside Volume Element) . 

When applied to a representative volume element of 
porous media wi th the dimensions of llx

1
, llx2, and 

ax3, as shown in Fig. B-1, the results are : 

(Mt)x -llx /2- (Mt)x +llx /2+ (Mt)x -llx /2 
l 1 1 1 2 2 

aMtVE 
--+ M at tp 

where 

Rate of mass inflm1 of tracer across 
faces x1- llx1/2, x2- llx2/2, and 

x3-6x3/2 respectively, 

(B-1) 

(Mt)x +[lx /2' (Mt)x +[lx /2' (Mt)x +llX /2 = 
1 1 2 2 3 3 

Rate of mass outflow of tracer across 
faces x

1
+llx

1
/2, x

2
+llx

2
/2, and 

x3+llx/2 resp.ecti vely, 

MtVE = Mass of tracer contained inside the 
volume element, and 
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M tp Mass source or sink term for the tracer 
which is positive when a sink and nega­
tive when a source. 

Fig. B-1 Volume element of a porous medium used to 
develop continuity equation for tracer in 
miscib le fluid flow. 

Expanding ~ach one of the mass flow rate terms 
in a Taylor series about the point (x1 , x2, x3) 
gives 

1 
+F 

+-
2! 

+ -
21 

a 2 CM ) 2 

__ t_x~1 ( ll: 1 ) 

ax2 
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and 

1 
+-

21 

1 
+iT 

l 
+-

21 

+ o 0 I :Jt 

+ .•• ~ 

+ ••. 

The tracer mass flow rates may be expressed in 
terms of the tracer mass flux, the dimensions of the 
volume element, and the porous medium properties, i.e., 

Cl\)x Ji~S6X2llx3 
1 

(B-3a) 

(1\) 
x2 

J;4~Sllx1llx3 (B-3b) 

(Mt) 
x3 

" J;q.Sllx1t.x2 (B-3c) 

MtVE ~Sllx.1t.x2t.x3C (B-3d) 

and 

MtP • c Q p (B-3e) 

where C • average tracer concentration in the volume 
element, mass of t r acer per volume of 
solutiol), 

macroscopic tracer mass flux components 
in x1-, x2-, and x3-directions respec-

tively, 

porosity, 

S = saturation of phase containing tracer, 

Q production term with units of L3T-l, and 

Cp tracer concentration of production fluid. 

In Eq. B-3, the mass flux components , J~, J;, and 

J;, are defined as the mass flow rate per unit pore 

area. The reason for choosing a flux per unit pore 
area is because the microscopic fluid e lements will 
be averaged over a cross- section of the volume element 

to yield J~, J;, and J; Since fluid elements 
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only exist in the pores, the result is a flux in 
terms of the pore area rather than gross area. 

Substituting Eqs. B-3 and B-2 into Eq. B-1, 
neglecting the second order terms in Eq. 8-2, and 
using tensor notation gives 

where i 1, 2, 3 corresponds to x
1

, x2, and x
3 

coordinates, and 

l!Ai cross-sectional area perpendicular to 

mass flux component, J~ . 
1 

8.2 Determining the Tracer Mass Flux Components, 
J~ . To accomplish this portion of the derivation, 

1 

the microscopic mass flux equations are developed and 
then averaged over a cross-sectional area of the 
representative volume element to give a statistically 
meaningful macroscopic mass flux equation. 

Microscopic Analysis . For a flui d element inside 
a pore of the porous medium, the diffusive mass f lux 
of the tracer with respect to the volumetric velocity, 

V , is given by Fick's first law (Bird, Stewart and 
Lightfoot, 1960): - . 

Dd grad C (B-5) 

... 
where J " diffusive mass flux of the tracer, 

C concentration of tracer in fluid element, ... 
vt velocity of the tracer in fluid element 

with respect to a fixed coordinate system, 
1: 
V volumetric velocity of fluid element , and 

Dd • coefficient of molecular diffusion. 

A fluid element in a porous media must follow a 
tortuous path as it moves through the pores. Let a tor­
tuous path of length do be depicted as shown in 
Fig. B-2. The diffusive mass flux term may be written 
as 

(B-6) 

Fig. B-2 Tortuous path of f l uid element. 



-+ 
The determination of J as a function of the 

difference in concentration between the ends of the 
tortuous path and the direct distance between the 
ends is desirable. Thus, Eq. B-6 may be expressed as 

(B-7) 

... 
The diffusive mass flux, J , does not have to be in 
the direction of dC/d~ because the tortuous path 
varies in direction from point to point. Projecting 
.... 
J as given in Eq. B-7 onto the ( -direction (the axis 
of the tortuous path) results in 

(B-8) 

where 
.... 
IJ I magnitude of J 
.... 

l l~l magnitude of unit vector in <;-direction , ... .... 
9 angle between J and 1~ , and 

cos a dE.:/ do 

Substituting Eq. B-7 into Eq. B-8 gives 

(B-9) 

The components of J in the xi (i=l,2,3) coordinate 
system are given by ~ 

J. " IJ ~I 11;.1 cos a 
1 l 

where IJ, I magnitude of J( 
Jlx. l magnitude of unit vector in 

1 tion, .... 
9 angle between J( and l xi 

cos a dx/di; 

Substituting Eq. B-9 into Eq . B-10 yields 

J. 
1 

D (d~ ]2 
d do 

By the definition of a total derivative, 

de ac dx
1 ac dx2 ac dx3 

d( = ax;:- - + 
ax2 

- - + ax3 ~ d( d( 

Equations B- 11 and B- 12 combine to give 

J . 
l (

d'lz dxi dx. oc D- _ ___1__ 
- d do dE; d l; ax. 

J 

(B-10) 

x. -direc-
1 

. and 

(B-11) 

(B-12) 

(B-13) 

where the double summation convention of tensor nota­
tion has been invoked. The term (d~/do)Z (dx . /d() 

1 

(dx ./d() is analogous to the reciprocal of a term 
J 

commonly referred to as tortuosity, and is a tensor 
of rank two which "deflects" or "twists" the gradient 
of concentration to form a new vector oriented in a 
different direction. By definition, let 
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T .. -
1) 

(B-14) 

Substituting Eqs. B-13 and B-14 into Eq. B-5, the 
following form of Fick's law for describing diffusion 
on a microscopic scale in a porous medium is obtained: 

Dd Tij 
c 
X. 

J 
(B-15) 

~tacroscopic Analysis . The objective here is to 
obtain a relationship for the components, Ji , of 

the tracer mass fiux vector corresponding to the 
representative volume element shown in Fig. B-1 . 
Equation B-15 gives the tracer mass flux for a fluid 
element in a pore of the representative volume ele­
ment . Since the cross-sectional area, AAi , of 

the representative volume element is perpendicular 
to the tracer mass flux component, Ji , the total 

mass flowing thru this cross section is just the sum 
from all the fluid elements located in ~Ai , i . e., 

(Total tracer mass)i ~ f (; v. dA . 
(cpSAAi) 1 l. 

D T ~ dA. 
d ij d.X. l. 

J 
(B-16) 

where dAi = the area of the fluid element parallel 

to ~Ai . The tracer mass flux, J~ , for the 
l 

representative volume element may be expressed as 

J~ " 
1 

(Total tracer mass)i 

cpSMi 
(B-17) 

where $S6Ai is the total pore area through which 

the fluid moves. Substituting Eq. B-16 into Eq. B-17 
gives 

* 1 [ J "" J. = -- CV.dA . 
1 cpS~Ai (cpS~A.) 1 1 

1 

(B-18) 

To evaluate the terms of Eq. B-18, the following 
definitions are made: 

c = c + c 
V.=V.+\r. 

l l 1 

0 

T .. + T .. 
lJ lJ 

i' .. 
1J 

in which C V. , and T .. 
1 1) 

of the variable at a point; C 

(B- 19) 

are the actual values 

v. 
1 

, and T . • 
lJ 



are the averaged values of the var!ablesoover the 
cross-sectional area, f:J.Ai ; and C Vi , and 

T. ·. represent the deviations of the variables at a 
1J 

point from the cross-sectional averages. By0 defin!-
tion, the spatial .average of the variables C Vi , 

and T., · over the cross-sectional area, f:J.A . , is 
lJ - - - l 

zero (i.e . , C ~ V. = T .. = 0) . Using Eq . B-19 in 
1 lJ 

Eq. B- 18 gives 

[ f (C+C)(V.+V.)dA.-
(cpStJ.A.) 1 1 1 

1 

(B-20) 

Expanding terms in Eq. B-20 gives 

* 1 [ 0 0 J. "-- I CV.dA. + I CV,dA. + I V.CdA . 
1 cpStJ.Ai (cpStJ.A.) 1 1 (cj>StJ.A.) 1 1 (cpStJ.A.)l 1 

1 l 1 

0 

I oo I ac I ac 
+ CV.dA. - DdT .. -,- dA.- DdT . . ~. 

(cj>St:.A.) 1 1 (<j>SM.) 1J oXj 1 (cj>SIJ.A.) 1JoXj 1 
1 1 ll 

(B-21) 

But by definition of the mean, Eq . B-21 is 

* 0 0 00 ac J. cv. + cv. + cv . .. cv. DdTij axj l l 1 1 1 

-. -----0 
ac o ac o ac 

- DdTij axj - 0dTij axj - 0dTij axj (B- 22) 

The following observations are made: 

1. As previously noted, 
are zero. 

0 

c , and f . . 
1) 

2. The average of a derivative is equal to the 
derivative of the average (Kells (1~50), 
page 78). Thus, 

cac;ax. ) = (ac;ax.) " 0 
J J 

3. Medium properties and fluid properties are 
assumed to be uncorrelated. Thus, 
---,- - --- - -o ac o o o o 

(T . . -a -) = T .. (oC/ax.) = T.. (aC/ax.) 0 . 
lJ xj 1J J 1J J 

With the above observati ons , Eq. B-22 reduces to 

* J. 
1 

(B-23) 
oo cv ... cv. 

l 1 
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Thus, the av~raged mass flux of the tra~er over 
a cross-sectional area of the representative volume 
element is composed of three different flux terms. 
The first is a flux, CVi , due to convection with 

the average velocity of the fluid. The second is a 

flux, c vi ' which will be called the dispersive 

flux and is the result of microscopic spatial varia­
tions in velocity and concentration. The third is 

ac 
a flux, DdT .. -a- , due to molecular diffusion . 

1J xj 

Dispersive Mass Flux. In order to use Eq. B-23, 

some relation between c vi and c has to be postu­

lated. By analogy with Fick ' s first law of mass 
transport, the following relationship is assumed: 

C V. 
l 

0 ac 
p ax:-

1 

(B-24) 

where Dp is called the dispersion coefficient of 

mass transport in porous media. The dispersion coef­
ficient, D , i.s not a physical property character-p 
istic of a given fluid; but depends on position, 
direction, velocity of flow, and the type of porous 
material. 

Making such a postulation as Eq . B-24 is not 
without some foundation. For years, the theory of 
turbulent flow has used an analogy with Newton's law 
of viscosity to approximate the Reynold's stresses. 
Also, experimental evidence tends to match the 
approximation used in Eq . B-24. 

Experimental evi'dence also indicates that D 
p 

is not isotropic, but that transverse dispersion may 
occur and is less than dispersion in the longitudinal 
direction. Using a statistical approach , de Josselin 
de Jong (1958) determined analytically that longitudi­
nal dispersion is larger than the transverse disper­
sion . His result is approximately a normal distri­
bution of concentration in three dimensions. 

Because longitudinal 
are different and must be 
nate transformation, Dp 

and transverse dispersion 
invariant under a coordi­
must be treated as a tensor. 

By definition C ·vi is a vector or tensor of rank· l. 

Also by definition ac;axi is a vector or tensor of 

rank 1. Thus, Eq . B-24 is of the form 

(Tensor of Rank .!) =-(Tensor of Rank :0 (Tell'S or of Rank..!). 

(B-25) 

Since D is an anisotropic quantity, then the form 
p 

of Eq. B-25 indicates that the multiplication must be 
that of finding t'he inner product of two tensors and 
that D must be a tensor of rank 2. Thus, Eq. B-24 

p 
may be written as 

c v. 
1 

o .. ac 
1) ax:­

) 

(B-26) 



Introducing Eq . B-26 into Eq . B-23 gives 

J~ cv. 
~ 1 

(B-27) 

8 . 3 Dispersion Equat ion. The results of t he 
flux determination given in Eq. B-27 are now intro­
duced into Eq. 8-4 to yie ld 

a a [ ac J - (4>Sllx liX liX C) = - (0 . . +DdT . . )-
0

- .pSM. llx. 
at 1 2 3 axi 1J l J xj 1 1 

(B-28) 

Equa~ion B- 28 is the general form of the dispersion 
equa~ion. However , since Eq. B-28 is ~o be solved 
numerically by the method of characterist i cs, a 
different form is required. Let the dispersive and 
mol ecular flux terms be denoted by DO , and rewrite 
Eq . B-28 as 

(B-29) 

The volume flux of a fluid flowing through a porous 
medium may be expressed as 

(B-30) 

where q. is the volume flux in the i~h direction. 
Using Eq: B-30 in Eq. B-29 and chaining out the de­
rivatives of concentrati on results in 

1 [-
0-(q .M.) llx . + f- ($Sllx1llx 2 t~x_)J Ax1Ax2t.x

3 
~Xi 1 1 1 t .l 

oo .ps ac qi ac ~ Q 
CAxlAX2AX3 -T at- c axi - c Ax1Ax2AX3 

(B-31) 

From Appendix A, Eq . A-6 for the fl ow equation is 

(B-32) 

Chaining out the derivatives of density in Eq. B-32 
gives 

1 [ - ·- (q liA )llx + :t ($Sllx1Ax2 t~x3)J llx
1
Ax2Ax3 axi i i i u 

(B-33) 

The left hand sides of Eqs. B-31 and B-33 are equal. 
Thus , the right hand sides must be equa l also, i .e . , 
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(B-34) 

Collecting like terms gives 

~s I~_ f ~J 
I at P at 

DD 

(B-35) 

Differentiating Eq. A-11 of Appendix A, the following 
relationships are obtained: 

ap ap ac 
axl. = Bp o ax.- + a ax.- ' 

l 1 

(B- 36a) 

and 

(B-36b) 

Substituting Eq. B-36 into Eq . B-35 and collecting 
like terms gives 

~S( l aC) ac = DD 
- qi (1 - aC) ac 

llXlllX2t.x3 ax.-P at p 
1 

cs P0 (.ps ~ + q. 2..f_) 
P at 1 ax. 

1 • 

(B-37) 

where qi is given by Eq. B-30. Upon division by 

.ps(p~aC J , Eq. B-37 becomes 

ac (-P-) f DD ) _ v ~ 
at= p-aC I.PSllxlllx2llX3 i axi 

- (Cp -C) 4>Sllx
1
llx

2
Ax

3 
+ : ~~~ ( ~~ • Vi ~~i ) 

(B-38) 

If the volume element is completely saturated, i .e., 
5: 1 then 

~ct = /__lL_)/ _1_) _a (co .. +D T .. )$1\A. ~J 
o l p-aCI .pt.A. ax . lJ d1J 1<lx. 

1 1 J 

~) V. ' . l oX . 
l 

(B-39) 



Equation B-39 is a form of the dispersion equa­
tion containing two dependent variables, pressure 
and concentration, just as in the fundamental flow 
equation . Assuming that the terms of Eq. B-39 con­
taining pressure and compressibility may be neglected, 
results in· 
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(B-40) 

Equation B- 40 shall be called the dispersion equation. 



APPENDIX C 

DEVELOPMENT OF FINITE DIFFERENCE 
EQUATIONS FOR THE FLOW EQUATION 

Since the same f l ow equation wil l be solved for 
all grids, a finite difference equation can be deve l ­
oped by consideri ng a central grid (i , j,k) and t he 
six immediately adj acent grids as shown in Fig. C-1. 
The general form of t he flow equation given by 
Eq. A-17 may be rearranged into the following form 
for devel oping the finite difference equation: 

1 _a_ [pkxi llAi(~ + pg ~hxi )ll llx1. 
~0llx 1 llx2 llx3 dXi ~ oXi o ~ 

(C-1) 

where xi(i=l,2,3) 
system. 

indicates a cartesian coordinate 

i,j,k-1 

-i -1 , j , ]<I / i + 1, j , k , 

i,j+l,k 

i,j ,k+l 

Fig. C- 1 Centr al grid and six adjacent grids with t he 
subscri pting used i n the finite di fference 
equations . 

Because of the symmetry of the spatial deriva­
tives in Eq. C- l, only a detai l ed descript ion of the 
fini t e difference equation i n the x1-direction will 

be gi ven. Analogous equations for the x2- and x3-

directions may be easily deve l oped . Looking at a 
point on the boundary between grids i,j,k and 
i+l,j , k , the terms (ap;ax1). , . k and 

1 +>i' J ' 
(ah/3x1) i+~ , j ,k are approximated by: 

p. 1 . k - p. . k 
1+ , ], l ,J, 

6x
1 

(C-2a) 

and 

l ~~Ji+~ ,j,k 
h. ' k -h''k 1+ 1, ) , 1,J , 

llx1 
(C-2b) 

45 

Likewise, for a point on the boundary between grids 
i,j ,k and i-l,j ,k ; 

(2L) -P .. k - p . 1 . k 
1 ,J' 1- 'J' 

axl . -' . k - llx1 1 '1 'J ' 

(C-3a) 

and 

( ~~J _, . k = 

h . . k - h . l . k 
1 •J' 1- , J! 

llx1 1 ~,] J 

(C-3b) 

The x1-component of the left hand side of Eq. C-1 

may be approximated by : 

(lhs)x 
1 

ll fl[pk llx2llx3 

(~0llX1:!2llx3 tj,Jll!J~ xl ~ (~ 

[ 

pk llx
2
llx

3 
+ pg ~~ )J - _x...:l~u--- ( ~:1 + 

1 · L • k 
l. +~,] J 

+ pg :~JJ. . } 
1-~,J , k 

Introducing Eqs. C-2 and C-3 into Eq. C- 4 gives 

(C-4) 

p. 1 . k - p. . k 
1+ ,], l , J, 

llXl 

h. 1 . k- h .. k] 
( ) 

1 + ,J, l,J, 
+ Qg • L • k A 

l+"l,J' ... xl 

pk llx t:.x 

( 
xl 2 3 ) [Pi, j ,k - Pi- l, j , k 

u i-~ , j ,k t:.x l 

h . . k 
( ) l d' + pg • L • k 

1 - "l, J ' 
(C-5) 

In developing Eqs. C-2 thru C- 5, the grid dimensi ons, 
x1, x2 , and x3 , are assumed to be constant. 

This is just a matter of convenience . Al l owi ng the 
grid dimensions to vary spatially can be accomplished 
without great difficulty. 



The coefficients of the form 
((k Ax

2
ax .) /u). 1 • k are calculated using the 

xl j J.+~,J' 

harmonic mean concept: 

(C- 6) 
;J 0 0 k (k ) + IJ 0 0 k (k ) 
J.,J, x 1 . 1 . k J.+l ,J, x 1 .. k 

1 + ,J, l,J, 

Using Eq . C-6, the fo l lowing definitions are made: 

2 ( k ) ( k ) 
x1 . . k x1 . 1 . k 

= ----------~~1~·lw·~~~J.+~·~J~·~---------------
(oo) (Axl) 2 [>~· . k(k ) +>~. 1 . k (k ) 

i ,j ,k l.J, xl i+l,j,k 1+ ,J' xl i,j,k 

(C- 7 a) 

2 ( k ) ( k ) 
x 1 . . k x 1 . 1 . k l,J, 1- ,J , 

(<!> ) (llx ) 2 [1J . . (k ) + IJ .. (k ) ) 
o . . k 1 1,J ,k x 1 . 1 . k 1-l ,J , k x 1 . . k 

l , J , 1- , J, 1,J, 

(C-7b) 

2(k ) (k ) 
x2 i,j,k x2 i , j +l,k 

(C-7c) 

2 (k ) (k ) 
x2 i,j,k x2 i,j - l,k 

2 
(¢ ) (Ax) ( J.J. . ( k ) +u . . . (k ) · ] 

o . . · k 2 l ,J,k x2 .. 1 k 1 ,) - l,k x2 .. k 
l,J, l,J - ' l ,J, 

(C-7d) 
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2 (k ) (k ) 
x3 . . k x. . . k 1 l ,J, .)1,J,+ 

(q,) (Ax ) 2 [1J .. (k ) +u. . (k ) 
o . . k 3 1,J,k x3 .. k 1 1 , J,k+l x3 .. k 
l,J, 1,J, + l,J, . 

(C- 7 e) 

2 (k ) (k ) 
x3 . . k x3 . . k l ,J, l,J, - 1 

(C-7f) 

+ 
= 0 0 5 (p. 1 0 k + p 0 0 k) Px (C- 7 g) 

1 1+ , J , ~ ,], 

Px 0 0 5 (p 0 i 0 k + p 0 0 k) (C-7h) 
l ~- , ] :1 l ,J' 

+ 
= 0.5(p .. l k Px + p 0 • k) (C-7 i) 

2 1. ,J+ , ~ ,J J 

-
= 0.5(p . . l k + p 0 0 k) Px (C-7j) 

2 l ,] - ' 1, J , 

+ 
= 0 0 5 (p . 0 k l Px + p 0 0 k) (C-7k) 

3 1 ,J, + 1 ,J, 

-
Px_ 

j 

= 0 0 5 (p . 0 k l 
1 ,] , -

+ p. 0 k) 
l ,J ' 

(C- 71) 

+ 
6hx (h . l . k - h 0 0 k) (C- 7m) 

l 
1+ ,J, 1. ,J, 

!>h 
xl 

(h. 1 . k 
l - ,J ' 

- h 0 0 k) 
l ,J' 

(C-7n) 

+ 
(h 0 • 1 k llh - h . 0 k) (C-7p) 

x2 l , J + ' 1 ,) ' 

Ah 
x2 

(h. 0 1 k 
0 1 , J- ; - h. . k) 

1 J J ' 
(C-7q) 

+ 
Ah = (h . 0 k 1 - h . . k) (C- 7r) 

x3 l , J, + l , J' 

Ah (h. 0 k l - h. 0 k) (C-7s) 
x. 1 , J ' - 1 'J' .) 

Using the notation of Eqs . C-7 and substituting 
difference approximations for al l pressure and ele­
vation derivatives, the left hand side of Eq. C-1 
may be written as: 



lhs 

.. .. 
+ P N p · · 1 k + Px N p. . 1 k x2 x2 l,J+ , 2 x2 l,J- , 

+ (P+ ) 2N+ gAh+ +(p- ) 2N- gAh­
xl xl xl xl xl xl 

+ ( p + ) 2N + gAh + + (p- ) 2N- gAh­
x2 x2 x2 x2 x2 x2 

(C-8) 

The right hand side of Eq. C- 1 contains deriva­
tives with respect to time. The derivatives of pres­
sure with respect to time will be represented by an 
implicit finite difference form: 

aP 
pt+l - p~ . 
i,j,k l,J ,k 

Clt (C - 9) 

The derivatives of concentration with respect to time 
wi 11 be approximated from the previous, not the pres­
ent , time interval : 

ac 
3t" (C- 10) 

1.;here lit is the time increment used in the pre­
ceding tige step. Combining Eqs . C-9 and C-10, the 
right hand side of Eq . C-1 becomes: 

rhs 

(p ) · · k (CF+S) . . k t _ o l, J, l,J, P .. 
lit l ,J ,k 

+ 
CL. . (C~ . -C~-~ ) 
l,J,k l,J,k l,J,k 

ll t
0 

(C-11) 
An implicit finite difference representation of 

Eq. C-1 may be obtained by combining Eqs. C-8 and 
C-11 to give: 
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P+ N+ Pt.+l . +p- N- pt+l + + t+1 
1 k . 1 . k +p N p. . 1 k x1 x1 1+ ,J, x1 x1 1- ,J, x

2 
x
2 

l,J+ , 

(p ) .. k(CF+S) . . k 
~·~· l,J, p~ . 

At l.,J,k 

t t-1 
CL . (C. . - c. . k) l,J,k l , J,k l,J, 

+ 
l'.t 

0 

(C-12) 

. The analogous implicit finite difference scheme 
for the two-dimensional vertical flow problem may be 
formulated by allowing no flow to take place across 
grids in t he x2-dircction, i . e., 3P/ax

2 
" 0 and 

3h/ax2 " 0 The flow in the x1- and x
3
-directions 

will be in terms of flow per ur.it width, i.e., 
llx2 • 1 . Under these conditi?ns, Eq . C-12 reduces 
to: 

.. 

All coefficients in Eq. C-13 are calculated from 
Eq. C- 7 with Ax2 : 1 for all grids. 



APPENDIX D 

DEVELOP~~NT OF FINITE DIFFERENCE 
EQUATION FOR THE DISPERSION EQUATION 

A numerical solution to the dispersion equation 
will be obtained by using the method of characteris­
tics. The dispersion equation was given by Eq. B-40, 
and is reproduced here in the form: 

ac -"'- _a_ [o~ .~t.A. lf_J at • ~c.A. ax. 1J 1 ax. 
1 1 J 

where 
p 

w = p - aC , and 

0~ . ~D .. + DdT
1
. J. 

l) lJ 

(D-1) 

Following the development of Garder et al. (1964), 
the second order terms of Eq. D-1 are regarded as 
given functions of x1 , x2 , x3 , and t , and 

Eq. D-1 treated as a first - order equation . Such an 
equation will then have four characteristic curves 
which are the solutions to the following ordinary 
differential equation: 

dx1 
vl (0-2) dt 

dx2 
v2 (D-3) dt 

dx3 
v3 (D-4) dt 

and 

ac "' a r * ac J (0-5) at" cj>t.Ai ax.- o .. cj>t.A. -a -
1 L lJ 1 xj 

A fifth charact eristic curve could be written for the 
production term , (Cp-C)(Q/cj>t.x1t.x2t.x3) However, 

the production term will be treated as a boundary 
condition of the moving points described below. 

In addition to the usual division of the fl ow 
region into a grid system , a set of moving points is 
intr oduced into this numerical solution. Each one of 
t he moving points has associated with it a concentra­
tion, which varies with time. Within each time inter­
val, the moving points are relocated using the finite 
difference equations, 

t t+l 
X + t.t V l 

1£ l 
!D-6) 
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xt•l xt t+l 
(D-7) 

2£ 2£ 
+ t.t v2 

1 

and 
t+l xt vt•l (D-8) x3 \ 

+ t. t 
3£ £ 

where t+l is t he new time level and t is the old 
time level. Each cell in the grid system is assigned 
a concentration equal to the average of the concen­
trations of the moving points located inside the 
cell at time t+l . The concentration of the cell 
is then modified for dispersion by solving the 
explicit form of Eq. D-5. 

Because of symmetry only a detai~ed descripti on 
of the finite difference form of Eq. D- 5 in the 
x1-direction will be given. Expandi ng the x1-

derivative on the right hand side of Eq. 0-5 gives 

(rhs) 
xl 

(D-9) 

As can be seen, Eq . D-9 involves the cross derivatives 
of the concentration . Also, there are six more second 
order terms in Eq. D-5 in addition to the three given 

in Eq. D-9 , 

To develop a finite difference form of Eq. D-9, 
consider the cell (i,j,k) as shown in Fig. D-1 , and 
the 18 indicated adjacent cells. The spatial deriva­
tives at a point on the boundary between cel l s (i,j,k) 
and (i+l,j,k) may be approximated by 

c. 1 . k - c .. k 1+ ,], 1,], 

t.xl ( ~;1 ) . 1.. • k 
l+"l,)' 

(D-lOa) 

(D-lOb) 

c . I . k 1-C . l • k 1 l+>i,J,. 1•'1,) , -
2t.x3 

(D-lOc) 



i,j-1, k-1 

-l,j, k-1 i , j ,k-1 
~ i•t.i. Jo.l 

' I 
I 

/i,.;.l, k-1 

-l, j-l,k l,j-l,k k:.JI 
1-l, j ,k i . j y i •l, j ,k 

I 
I 

11-J.i+J, k 
I 

I i ,j+l,k ' +l,j•l,k 
I 

I 
I 

~v 
i· l,j ,k.+ I i+l,j,k+ 

i , j.k+l 

i,j+l.k+ 

Fig . D-1 Three-dimensional grid system with sub­
script ing used to devel op the finite dif­
ference form of the dispersion equation. 

Using a llnear i nterpolation scheme , 

ci·~.j+l , k 

c. . 1 k 
l~EJ + t 

2 

+ c. 1 . 1 k 
l + ~J · ~ (D-lla) 

c. . 1 k + c. 1 . 1 k 

ci·~. j -1 ,k 
1 fl- ' 1• ,J- z (D -llb) 

2 

c. . k 1 + C. 1 . k 1 

ci+~,j ,k•l 
l J J, + l+ ,J J + (D- llc) 

2 

ci+!Lj ,k - 1 
c. . k 1 

1 t J t -
+ c. 1 . k 1 

l+ •J ! -
2 

(D-lld) 

In wr1t1ng Eqs . 0-10 and 0-11, al l spatial increments, 
~x1 , llx2 , and 6x3 , are assumed to be equal. Th is 

is in keeping with the finite difference grid system 
proposed in Chapter IV, and the problems that arc 
solved i n Chapter V. 
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Substitut ing Eqs . D-11 i nto Eqs . D-10 gives 

(c ) C.l.k·C .. k a 1.• ,J, ld , 

·axl i•~ .j ,k • 6x1 (0-12a) 

- , l + , ] + , 1,) - J 1 + ;~~ )- , 
(

aC ) Cl. , J.+l k+C. 1 . 1 k-C .. 1 k-C. 1 . 1 k 

(D-12b) 

( ~c ) C .. k l+C. 1 . k 1- C .. k -C. . k 
0 l , ), + l+ ,), + 1,), -1 1+1,], -1 
ax. . L . k= 4llx

3 j l +"l,J ' 
(D-12c) 

Similarly , for a point on the boundary between cells 
(i,j ,k) and (i -l, j ,k) , the spatial derivatives 
are 

(D-13a) 

(O-l3b) 

( 
~c ) C. . k 1 +C . 1 . k 1-C. . k 1-C. 1 . k 1 _a_ • 1 1 ) 1 + 1- 1 ) 1 + l,J,- 1- ,), -
dX. · 1 • k 4flx3 • 

~ l·,,J' 

(0-13c) 

Now using a central fini te difference scheme, Eq. D-9 
may be written as 

(D- 14) 



Introducing Eqs. D-12 and D-13 into Eq. D- 14 gives 

(rhs) • 
"1 

(D~1~6x2Ax3)i-j,i , k(ci ,i,k-Ci-l,j,k) 

(6x I )2 

(0"12tAx 2t.x 3). t. ' k (C .. 1 k+Ci - 1 j 1 k -Cl. j-1 k-Cl.-1 j·l k) 
.. 1-'1 t] t 1 r J + t t • « 1 r • t 

46x
1
4x

2 

{0-lS) 

Coefficients of the form (Oi 1~Ax2Ax3)i•~,j,k will 

be calculated using the harmonic mean, i.e.: 

2(c!>D*11) · · k(~u·l1) · 1 · kllx21lx3 
( D * Ao.. A A ) _ _ ....:...:;:.....::,~..!,.' )L'!..:.:...-.:..:.....!lC:..+~, )L>!..:.:........:.~ 

l l~uX2uX3 . ~ . k= 1 •-.,; , ("o* l co* ) 
y 11 .. k+ ~ 11 . 1 . k l,J, ].+ ,J, 

(0-16) 

Thus, the coefficients of concentration in Eq. 0-15 
are of the form 

(U-17) 

In a completel y anal ogous development to that 
used in Eqs. 0-10 thru D-16 , the x2-deri vati ve and 

x3-derivative on the right hand side of Eq . 0-5 may 

be obtained . In obtaining the x2-derivative, a 

central difference scheme using the points (i,j+~,k) 
and (i,j-~,k) is used, while the x3-derivativc 
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uses the points (i,j,k+~) and (i,j,k-~) An 
explicit form of the left hand side of Eq . D-5 is 

dC 
dt 

ct•l - c~ . 
i,j ,k l,J ,k 

llt lD-1 8) 

To simplify notation t he following definitions are 
made: 

2(wo*li) .. kc~ol*l). 1 . kilt 
l,J l l+ ,) , 

(0-19a) 

* * l(wOll). ' k(~Dll) '-1 . kilt 1,), l ,], 
(0-19b) 

* ) * 2(wD22 i · k(¢022) · · 1 kilt 
l J l l ,)+ 1 

(llx2)2£c•o;2l .. k•c•o2*2l . . 1 kl 
l,J' l,J+ ' 

(D-19c) 

(D-19d) 

(Ax.) 
2 

[ ($0:3) · · k+ ($U3*3) · · k 1) .) .) 1,), 1,), + 

(D- l9e) 

* ) * 2(wll3 •. . k(c!>U33) .. k-lAt .) l , J , 1,], 

2 [ * * (Ax.) ($D33) .. k+(~D3.) .. k 1) .) 1,J, .) l,J, -

(0-19f) 

(wD~2) .. k<•ol*2). •I . kAt 
1 t) t } ,J 1 (D-l9g) 

( * * wD l2) · · k (<J>Dl2) · -1 j ktlt 1 J J' 1 , , (D-19h) 

(wu2* l) · · k(.po2*1) · · 1 kAt l, J I 1 ,J... l 

21lx1Ax2 (( ~o2*1 ) .. k•c•o2*1) .. 1 kl 
1,), lrJ+ ' 

(D-19 i) 

(wo2•1) · · k(¢o;l) · · -1 kAt 
l,J, - l,J ' (0-19j) 



Cwo*l3J · · kc~o·l3J · 1 · k6t G + • ___ _.:;~l:..z.,.J..) .J.:.I :;____::;_;l:_+-=..!.'.J..J .J.:.' :;._ __ 

x1x3 2tlxlllx3[(~0*1~) .. k+(¢0*13). +1. k] 
.> l,J' 1 .) ' 

(O~l9k) 

(wo*l3) · · k($0~3) · -1 · kilt G- • ___ _.:;~l:..z.,.J..).J.:.•~___::;_;l~:..z.·.J..J.J.:.I~--
xlx3 2llx1tlx3[(¢0*13) .. k+($0*1_)._1. k] 

l,J' .} l ,] ' 

(0-19i) 

(w03*1) · · k(4>D3*1) · · k 16t G + • ___ ....::.;::_::l:..z.•.J...J J..:.• :.:...__..:::.:......:l:..!'!..otJ..z.•.:.:.•-=.. __ 

x3xl 2tlxlllx3[ (¢u:l) . . k+(<j>03*l) .. k 1] .} 1,J, 1,], + 

(0-19m) 

(0-19n) 

(0-19p) 

(w02*3). . k ($0*23). . -1 kAt 
1 , ), 1,] 1 

(0-19q) 

(w0*32) · · k(¢03*2) · · k 16t l,J, 1 ,], + 

[ * * 2llx26x. ($032). . k+ (~032). . k 1] .) 1,), l,J, + 

(0-19r) 

(603*2) .. k(¢0*32) .. k-16 t 
l,]' l,J l 

2llx2AX3 ( (90:2). . k+ ($03*2). . k-1) 
.) .1.,) > l,J 1 

(0-19s) 

Using Eq. 0-18, the notation of Eqs. 0-19 , and sub­
stituting difference approximations for all concen­
tration derivatives, the explicit form of Eq. D~S 
becomes: 
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t c. . k 1) 
l,) I • 

- F (C~ . +C~ . -C~ . -C~ . ) x1x2 l,J+l,k 1-l,]+1,k l , J-l,k 1-l,J-l,k 

+ F+ (C! . +C! . -C~ . -C~ . ) 
x2x1 l+l,] , k 1+1 , ]+l ,k 1-l,J,k 1-l,]•l ,k 

t + t t t 
- F (C' 1 j k C' 1 j 1 k-C' 1 j k-C. 1 . 1 k) X2X1 l + > 0 1+ I • > l• I I 1- , )• > 

+ G+ (C~ . +C~ . -C! . -C~ . ) 
x1x3 l,J, k+l 1+1,J,k+l l,J,k- 1 l+l,J,k- 1 

- G- (C ~ . +C! . -C ~ . -C ~ . ) 
x1x3 1-l , J,k+l 1,J,k+l l,),k-1 1-1,J,k-l 

+ G+ (C! . +C~ . -C~ . -C~ . ) x3x1 l+l,],k+l l+l,J,k 1-l,],k+l 1-l,J,k 

- G (C ~ . . +C! . -C ~ . -C ~ . ) x3x1 1+l,] ,k 1•1,) ,k-1 1-1.3 ,k 1-l,) ,k-1 

+ H+ (Ct . +C! -C~ . -c7 . ) 
x2x3 i,J,k+l l,j+l,k+l l,J,k-1 1,J•l,k-1 

- H ( C ~ . +C ~ . -C ~ . -C ~ . ) x2x3 1,]-l,k+ l l,J,k+l l,J-l,k-1 1,J,k-1 

+ H + (C! . +C ~ . -C ~ . -C ~ . ) 
x3x2 l,J+l,k+l 1,J•l,k 1,J-1,k+1 1,]-l,k 

- f( (Ct . +C~ -C~ . . -C7 . ) x3x2 i,J+l,k l,j•1,k-l 1,]-l,k 1,]-l,k-l 

(0-201 

The analogous explicit finite difference equat ion 
for the two-dimensional dispersion equation may be 
obtained by al l owing no flow to take place across 
grids in the x2-direction, i.e., cacjax2)~o . The 

flow in the x1- and x3-directions will be for a unit 

width of the model (6x2=1) . Under these conditions, 

the two-dimensional form of Eq. 0-20 is: 



Ct. +l=Ct. +E+ (Ct. Ct ) E- (Ct Ct ) 
k k 1 k - . k - . k - . 1 k 1, 1, x1x

1 
1+ 1, x

1
x

1 
1, 1- , 
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+ G+ (Ct +Ct Ct Ct ) 
. 1 k 1 . 1 k- . 1 k 1- . 1 k x3x1 1+ , + 1+ , 1- , + 1- , 

- t t t t 
- G (C . k+C. 1 k 1-C. 1 k -C . 1 k 1) x 3x 1 1 + 1 , 1 + , - 1- , 1 - , -

(D-21) 

The coefficients in Eq . 0-21 are calculated using the 
defini tions given in Eq. D-19 with 6x

2
• 1 . 



APPENDIX E 

STABI LITY ANALYSIS FOR DISPERSION EQUATION 

E.l Method of Determining Stabi lity. The expli­
cit f i nite difference form of the dispersion equation 
(Eq. 0-20) has a stability criterion at tached to its 
use . To examine the stability of this equation, the 
linear form of Eq. D-20 with constant coefficients 
will be used, i.e.: 

Ct+l = c t . . k . . k + 
l ' J , l 'J, 

cc~ . • ct . l+l,J ,k 1- l,J ,k 
t 

2C. . k) 
l , J, 

wo;2llt 
(C t . 1 k + c~ . t 

+ --- - 2C. . k) 
(llx2)2 l ,J+ , l,J-l,k l ,J' 

wo;3at 
(C~ . c~ . t + --- + 2C .. k) 

(t.x3) 2 l ,J , k+l l ,J,k-1 l , J ' 

(E-1) 

The method used for the stability analys is is 
t hat of a Fourier series developed by von Neumann and 
discussed by O'Brien et al. (1951) and Smith (1960, 
p . 102). This technique expresses an init ial line of 
errors in terms of a finite Fourier series, and con­
siders the growth of a function that reduces to this 
series for t =O by a ' variables separable' method . 
The errors at the nodes of the grid system for t =O, 
O~x1~11.x1 O~x2.::J'ft.x2 and O~x3~Lt.x3 are 

denoted by EP,Q,R where P:' l, 2, .. . N Q=l,2, ... ~l 

R= l ,2, .. . L N =the number of grids in the x1-

direction; M the number of grids in the x2-

direction; and 
x3-direction. 

L = the number of grids in the 

The MNL equati ons, 

E--- = 
P,Q,R 

MNL 
2 A exp[i(~ Pt.x 1+~ Qt.x2+y Rt.x

3
)] 

n=l n n n n 
(E-2) 

are sufficient to determine the MNL unknowns A1• 

A2, . . ··~L uniquely, thus demonstrating that an 

arbit rary dis t ribu.tion of i nitial errors can be 
· expressed in the complex exponential form. In 
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n.~ nn nn 
Eq. E-Z, *n 2 Nax

1 
~n = Mt.x

2 
Yn = Lt.x

3 
and i = /:1 . Equation E-1 is a linear finite dif­
ference equation and separate solutions are additive. 
Thus, only an analysis of the error propagation in 
a single term of the series is necess ary. This makes 
An a constant and can be neglect ed . As t increases, 

a s~lution of the finite difference equation is 
wanted such that it reduces to exp[i(~~llx1+~QIIx2+ 
yRt.x3) ] when t=Sllt=O . Thus, it .is assumed that 

5 E--- = exp {i (~x1 + ~x2 + yx3) + At) P,Q,R 

(E-3) 

where ~ = exp(AIIt) , and A 
Note that Eq . E-3 reduces to 

is a complex constant. 
exp[i(wPt.x 1+~Qt.x2+yRIIx3)] 

when S=O , which is the desired result. 

error, 

provided 

E
-_s _ _ . 

, will not 1ncrease as P,Q,R t 

Al so, the 

increases 

(E-4) 

E. 2 Stability Funct ion for Thr ee-Dimensional 

D. . E . S h E'S" .. 1SperSlon quat1.on. ince t e error P ,Q,R satlS-

fies the same fin ite difference equation as ct . k 
5" 1 ' J' 

then Eq. E-1 may be written in terms of E~--,. ,Q,R 

For example, the f irst few terms of Eq. E-1 would 
look like 

E~+!- = E~-- + 
P,Q, R P,Q , R 

s s s 
(E- - - + E- - - - 2E-p -Q -R) + . • • 

P+l,Q,R P-l ,Q,R , , 
. (E-5) 



s Substituting Eq. E-3 for the values of E---
Eq. E-5 may be written as P ,Q,R 

w0~1ll t + ---
(llx 1) 2 

(E-6) 

Equation E-6 contains only the first three terms and 
similar terms are implied for the other five terms 
of the equation. Note that Eq. E-6 shows a pattern 

of each term containing the factor exp[i(~PAx1 + 
- - ~ 
~Qllx2 + yRllx3)]~ . Thus, if Eq. E-6 were expanded 

in its complete form and divided thru by exp[i(~Pllx1 - - s 
+~QAx2+yRllx3)]~ , the following result would be 

obtained: 

+ 

+ 

(E-7) 
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Noting that exp(i6)=cos6+i sine , exp(-ie)=cose -

i sine , and i2 = - 1 , Eq. E-7 becomes 

(E-8) 

From trigonometric identities, cos 28-l = - 2 sin2e 
and sin 2e • 2 sine cose Thus, by l etting 

~l!Xl ~6x2 yllx3 a • -
2

- , b • - 2 - , and d ,. - 2 - , Eq. E-8 

may be written as 

* 4(* * ) 4w033llt w 0 +0 llt 
Sl.n2 ·' _ 12 21 --=:._ u (sin a cos a sin b cos b) 

(6x3) 2 llxlllx2 

(E-9) 

Thus, upon substituting Eq . E-9 into Eq. E-4, the 
stability of Eq. E-1 is assured if 

0 ~ F(a,b,d) ~ ~ (E-10) 

where 



•• oi /lt . wo;2!1t 
F " --- s1n2a + sin2b (a,b,d) 2 (t.x2)7 (llx1) . 

wDj.ot w(o~2+o; 1 )At 
~ --..)- sin2d + (sin a cos a sin b cos h) + 

(6x3) 2 6x111x2 

w(o~3·o; 1)dt + (sin a cos a sin d cos d) + 
flx 1 t~x3 

( . . w o23+o32)6t 
+ (sin b cos b sin d cos d) (E-ll) llx,t>x_ - ·' 

F (a,b,d) shall be r eferred to as the stabil ity 

function, and must satisfy Eq. E-10 for all values 
or a, b, and d . To investigate the r~nge of 
F(a, b ,d) , an absolute max1mum and minimum value of 

F(a,b,d) must be obtained. A necessary condit ion 

for a relative maximum or minimum to exist at a point 
is for the first partial derivatives of F to be 
:ero when eval uated at the point (Taylor, 1955, 
p. 154). Taking the derivatives of Eq. E-ll and 
setting them equal to zero gives 

oF 
aa'" 

si n b cos b(cos2a-sin2a)] 

sin d cos d(cos2a- sin2a) ] • 0 

sind cos d(cos2b- sin2b) ] 0 

and 

aF acr· 

sin b cos b(cos2d- sin2d)) 0 

(E-12) 

(E-13) 

(E-14) 
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By inspection, Eqs. E-12, E- 13, and E-14 are satis-
fied when 

sin l sin b . sln u • 0 

sin a = cos b sin J 0 

s in a sin b cos d 0 

s in a cos b cos u 0 

cos 3 sin b sin u 0 

cos a = sin b cos d 0 

cos a = cos b .. sin d . 0 

cos a cos b cos J . 0 (E - 15) 

There arc ot her solutions t o Eqs. E- 12, E-13, 
and E- 14 which shall be discussed later. At the 
present time, an investigation of t he points given 
by Eq. E- 15 for an absolute maximum and minimum 
shall be undertaken. Substituting Eqs. E-15 into 
Eq . 1.:-11 gives 

F(sin a = sin b sin d 0) = 0 

F(sin a cos b sin d =0) 

F(sin 3 • sin b 

F(sin 3 cos b 

F(cos 3 sin b sin d =0) 
wDj1t. t 

(llx 1) 2 

F(cos a cos b .. sin d =0) .. wDi 16t wD22 t~t 
---+ 

(llx2)2 (llxl)z 

F(cos a cos b 

wOi/·t w033D.t 
F(cos a = cos b = cos t1 • 0) --- + --

(t.x 1) 2 (6x3)2 
(E-16) 

If the coefficients w, Di 1, o;2, o;3 and 6 t 

are positive, then from Eq . E-16 F(a ,b,d) has a 
minimum value of zero at sin a = sin b = sin d = 0 

wD j1ht wDi2at uo;36t 
and a maximum value of ~ + --- + ~ at (llx 1 r (6x2) 2 (tlx3) 

the points where cos a • cos b • cos d = 0 



To investigate the sufficiency condit ions for a 
local maximum and minimum, Eq. E-ll is expanded in a 
Taylor ' s series about the point of interest, i.e., 

F{a,b,d)=F(a,i>,Ci) • [{a-a) aaa • {b-bJa'b 

• (d-d)2....] F(a b _,,,_-- • _!_ [ 
'ad ' •"' a,b,d 21 

- a - a - a J2 

ca-a)a; • (b-bJas • (d-dJacr F(a,b,d) [a,i>,Ci • 

+ higher order terms, (E-17) 

where a, b and d are the values of the variables 
a, b and d at the point of interest . By hypothesis, 
the points at a maximum or minimum value of F(a,b ,d) 
have 

~, "' ~, = 2£.1 .. 0 a a - - - ab - - - ad - - -a,b,d a,b,d a,b,d 

Hence , Eq. E-17 may be written as 

--- 1 -za2FI F(a , b, d) - F(a, b,d) • 2 (a-a) -
2 

_ _ 
aa a,b,d 

1 --r a2F [ 1 --r a2F 
+ 2 (b-b -2--- + 2 (d-d -21---

ab a,b ,d ad a , b ,d 

a2F 
+ (a-a) (b-b) --1 aaab - - -a,b,d 

• (a-a) {d-d) ~~ aaad - - -a, b ,d 

a2F 

(E-18) 

+ (b-b)(d-d) __ , 
abad -- ­a ,b,d + higher order terms. 

(E-19) 

In the neighborhood of the point (a,b,d) , the 
principal part of the right hand side of Eq. E-19 is 
composed of second order terms, which may be written 
in a quadratic matrix form (Wylie, 1966, Chapter 11) 
as 
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F(a,b,d) - F{a,i>,Ci) = ~ • II ca-a) Cb-'b) (d-d) 11 • 

a2F a2F a2F -zl--- raab[- __ aarcri- _ _ ca-a) 
aa a,b,d a ,b ,d a,b,d 

{b-b) 

a2F a2F a2F 
W<r[--- abTci[--- -21---a ,b,d a ,b,d ad a,b,d 

(d-d) 

(E- 0) 

Eq. E-20 is of the general matrix form [Y)•(XT) [A)[X], 
where [A) is a symmetric matrix and (X) is a 
column vector. In this notation, [A] is the matrix 
of the quadrat ic form and is positive-or negative­
definite, semidefinite, or indefinite accordi ng t o 
the nature of [Y] . 

By the definition of positive-or negative­
definite and maximum or minimum values, the fo l lowing 
results may ~e deduced (Wylie (1966, Chapter 11)). 
If F(a,b,d)-F(a,b,d) is negative for all sufficiently 

small values of (a-a) , (b-b) , and • (d-d) which 

are not all zero, then F(a,b,d)-F(a,b,d) is negat ive­

definite and the point (a,b,d) is a local maximum. 

If F(a,b,d)-F(a,b,d) is posit ive for all sufficiently 

small values of (a-a) , (b-b) , and (d-d) which 

are not all zero, then F(a,b,d)-F{a,b,d) is positive 

definite and the point (a,b,d) is a local minimum. 

The point (a,b,d) is neither a maximum nor a minimum 

if F(a,b,d)-F(a,b,d) is sometimes positive and some­
times negative in the neighborhood of the point 

(a,b,d) , and t his is the case if the quadratic form 
is indefinite. If the quadratic form is semidefinite, 

then no decision about the nature of the point (a,b,d) 
may be deduced and a consideration of the higher 
order terms of the Taylor ' s series would be necessary. 

From Wylie (1966 , p. 468), a necessary and 
sufficient condition that the real quadratic form, 

[X T] [A] [X] , be positive-definite (or negative­
definite) is that the quantities 

all a l 2 
det , ... det 

a21 3 22 a anl · · · nn 

(E- 21) 



all be positive (or for negative-definite t o alternate 
in sign, with dct fl~ negative), where a11 , a12 , 

... , ann are the elements of matrix [A] . Applying 

the above di scuss ion and Eq. E-21 to Eq. E-20, the 
following conclusions may be obtained : 
If 

a2F _, > 0 
2 ---aa a , b,d 

(E-22) 

{::: ::: -I,::~ J'} 1 •.•.• · , 
(E-23) 

(E-24) 

then Eq. E-20 i s positive-definite and t he point 

(~,b,d) is a relative minimum. If Eq. E-22 is nega­
tlve, Eq. E-23 is pos itive, and Eq . E-24 is negative, 
then Eq. E-20 is negative-definite and t he point 

(a,b,d) i s a relative maximum . 

Taking the second partial derivatives of Eq . E- ll 
gives 

a?.F 2wD~ 16t (cos2a - sin2a ) ;:r ~ 2 
(llx1) 

4w(Di2•o; 1) llt 

llx
1

llx2 
sin b cos b sin a cos a 

4w(Di3•o; 1)llt 

~xlt.x3 
s in d cos d sin a cos a 

' 
(E-2Sa) 

a2F 2wo;2tt (cos2b - s in2b) _ ,. 
ab2 (t.x2) 2 

( • * 4w o12+o21)At 
sin llx

1
6x2 

a cos a sin b cos b 

sin d cos d s in b cos b , (E-2Sb) 
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a2F 
aaab " 

a2F 
aaad " 

a2F 
abad " 

4w(Di3•o;1) t.t 

t.xl t.x3 

4w(o;3•o;2) t.t 

( * .. w o12+o
21

) 1it 

lix1t.x2 

w(Di 3•o;])At 

llX1t.x3 

wco;3•o;2)llt 
t.x2t.x3 

sin a cos a sin d cos d 

sin b cos b sin d cos d , (E -2Sc) 

(cos2b- sin2b)(cos2a- sin2a) 

(E -2Sd) 

(cos2d- sin2d)(cos2a - sin2a) 

(E -2Se) 

(cos2d- sin2d)(cos2b - sin2b) 

(E-2Sf) 

From Eq. E-16, a candidate for a minimum value of F 
is the point where sin a = sin b " sin d = 0 
Using this point to evaluate Eqs. E-25 gives: 

a2F 2wDi1llt 

~~sin a• sin b•sin d•O (llxl) 2 
(E-26a) 

a2r l 
2wo;2llt 

~ sin a•sin b•sin d•O 
2 

(llx2) 
(E -26b) 

* a2F 2wo33iit 

~~ sin a= sin b•sin d•O 2 (iix3) 
(E-26c) 

a2F w(D~2·o;1)t.t 
aaab I . azs in b=sin d'"O 

lix
1
t.x

2 s1n 
(E-26d) 

a2F w(D~3·o;1)1i t 

aaad ls 'ln a• s in b•sin duO .:.x1t.x3 
(E- 26e) 

(E -26f) 



Using Eqs. E-22, E-23, E-24, and E-26 , t he points 
where sin a • sin b • sin d = 0 will be a minimum 
if the following conditions hold: 

> 0 (E-27a) 

2 * * 2 4w o
11 

o22At 

(t.xl ) 2(llx2) 2 
(E-27b) 

and 

3 .. ( * * )2 3 2w o22 o
13

+o
31 

At 3 * * * 2 3 2w o11co23+o32) At 

2 2 )2 (Ax 1) (6x2) (AX3 (AX1)2(AX2)2(6X3)2 

3 * * ") 3 2w o33co12+o21 At 
> 0 (E-27c) 

(Axl)2(Ax2)2(Ax3)2 

Noting that At , t.x
1 

, Ax2 , Ax
3 

, and w are a l l 

positive, then Eq. E-27 reduces to 

0~1 > 0 (E-28a) 

0* co* o* ) 2 * co* o* ) 2 o* co* o* ) 2 o - 22 13+ 31 -011 23+ 32 - 33 12+ 21 > • 

(E- 28c) 

The third inequality of Eq. E-28 may be wr i t ten as 

0* [o* o* ( * o* ) 2) o* [o* o* co* o* ) 2 ] 11 22 23- 023+ 32 + 22 11 33- 13+ 31 

The first two inequalities of Eq . E-28 are a subset 
of those required by the third inequality , i.e., 
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* 011 * 022 o;3 > 0 (E-30a) 

0i2 °i3 > co;3 
* 2 + 032) (E-30b) 

0i1 o;3 > (0~3 + * 2 031) (E- 30c) 

0i 1 o;2 > (0~2 • o* ) z 
21 (E- 30d) 

(E- 30e) 

From Eq . E-16, the candidate for the maximum 
value of F was the points where cos a = cos b = 
cos d = 0 . Eval uating Eqs. E-25 at t hese points 
gives : 

a2F -2wOi 1t.t 

aa2 lcos (Axl)2 aacos b=cos d=O 
(E-3la) 

a2F -2wo;2At 

ab
2 

cos a•cos b=cos d=O 2 (Ax2) 
(E-3lb) 

a2F -2wo;3At 

~~cos a,. cos b"cos d=O (Ax3) 2 
(E- 3lc) 

a2F -w(o~2·o;1)At 
aaab I d=O t.xlt.x2 cos a•cos b•cos 

(E-3ld) 

a2F -w(D~3·o;1)6t 
aaad l d=O xl x3 cos a=cos b•cos 

a2F -wco;3·o;2)t.t 

abad l d=O llx2Ax3 cos a•cos bacos 
(E-31£) 

Comparing Eqs. E-26 and E-31, it is seen that all 
elements of Eq. E- 31 are just the negative value of 
the elements in Eq . E- 26. Since the inequalities of 
Eq. E-30 will assure that the elements of Eq. E-26 
form a positive-definit e matrix, then Eq . E- 30 wi l l 
also assure that the elements of Eq . E-31 form a 
negative-defi nite matr ix. Thus , when the inequalities 
of Eq. E- 30 are satisfi ed, the point s sin a = sin b = 
sin d = 0 and cos a = cos b • cos d = 0 are assured 
to be minimum and maximum values respectively of 
F(a,b,d) . 

Although not shown here , each of the remaining 
six point s of Eq . E-15 results i n an indefinite 



quadratic matrix when the inequalities of Eq . E-30 
are used . Thus, each of these points are saddl e 
points of F(a,b,d) , and are not relative extremes 
of the function. 

Ther e still remains the possibility of solutions 
to Eqs . E-12, E-13, and E-14 besides those given by 
Eq . E-15 . Using the trigonometric ident ity sin 20 • 
2 sin e cos e , and solving Eq. E-12 for sin 2a 
gives 

sin 2a 
cu~2·o; l) t.x1 sin 2b cos 2a 

2Dil ux2 

(D~3·D;l) t.xl 
sin 2d cos 2a (E-32) 

2Dh Ax_ 
~ 

In a similar mannor, Eq. E-14 is solved for sin 2d , 
i . e., 

sin 2d 
(DiJ+031l llx3 . 

2a cos 2d 20!. - s~n 

~~ 
.:.xl 

(D23+032l llx . 
;, 

sin 2b cos 2d 
2033 t.x2 

(E-33) 

Substituting Eq . E-33 into Eq . E-32 gives 

llx
1 

sin 2b cos 2a 

(E-34) 

Substituting Eq. E-32 into Eq . E-33 gives 

sin 2d 
llX. sin 2b cos 2d 

t.x2[4Di1oi 3-Coi3•o31)2cos 2a cos 2d[ C
0
i3•

0
31l 

(E-35) 

Now then, a substitution of Eqs . E-34 and E-35 into 
Eq . E-13 gives 

(023•o32l cos 2d cos 2a cos 2b 0 (E-36) 
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Although Eq . E-36 is not in an explicit form yet, i t 
is easi ly observed that Eq . E-36 is almost of tho 
same form as the third inequality of Eq. E- 28 . In 
fact since icosel ~ 1 , there is no way in which 
Eq . E-36 may be satisfied if Eqs. E-28 (or Eqs . E-30) 
hold. 

From this ana lysis it may be concluded t hat if 
Eqs E-30 arc valid, then F(a,b,d) has only one 
minimum value l ocated at the points sin a = sin b = 
sin d = 0 , and from Eq. E-16, 

Absolute ~lin. F(a,b,d) 0 (E-37) 

Also, F(a,b,d) has only one maximum value located 
at the points cos a = cos b = cos d = 0 and from 
Eq . E-16: 

Absolute ~lax. F(a ,b,d) 
wOh tlt w022At ---· ---2 2 
(ilx1) (t.x

2
) 

wD3:;t.t 
+---

2 
(Ax

3
) 

(E-38) 

Combining Eqs. E- 37, E-38, and E-10 results in: 

(E-39) 

In summary, stabi l ity of Eq . E-1 is assured for any 
a, b, and d if: 

D*l l o2*2 > co~ •D* )2 12 21 

wDi1At wD22t.t w033At l 
--- + ---+ --- ~-
(t.xl) 2 (t.x2) 2 (Ax3) 2 - 2 

(E-40a) 

(E-40b) 

(E-40c) 

(E-40d) 

(E-40e) 

(E-40f) 

E.3 St abi lity Funct ion for Two-Dimensional 
Dispersion Equat ion . The linear , constant coeffi­
cient, expl icit difference form of the two-dimensional 
dispersion equation has the fol l owing form: 



~033llt t t t 
+ ---2 (C. k+l+C. k-1-2C. k) 

(Ax ) 1, 1, 1, 
3 

+ 

(E-41) 

Designating the error in the two-dimensional space 

· Es d · · · · reg1on as, P,R , an approX1.mat1ng lt 1n a manner 

similar to that of Eq. E-3 gives 

s - - s 
E-P -R • exp[i(~PAx1 + yRAx3)]t • 

(E-42) 

In a manner analogous to that used in developing 
Eqs. E-5 , E-6, E-7, E-8, and E-9, the amplification 
factor is given by 

4w(Di 3+Dh)At 
Ax

1
Ax3 

(sin a cos a sin d cos d) 

(E-43) 

Substituting Eq. E-43 into Eq. E-4, the stabi l ity 
of Eq. E-41 is assured if 

1 
0 ~ F(a,d) ~ 2 , (E-44) 

where 

The necessary condition for a maximum or minimum value 
of F(a,d) is for the first partial derivatives of 
F to vanish at the point of local extreme , i.e., 

0 

(E-46) 
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(E-47) 

By inspection, Eqs. E-46 and E-47 are satisfied when 

sin a • sin d = 0 

sin a • cos d 0 

cos a = sin d 0 

cos a = cos d = 0 

(E-48a) 

(E-48b) 

(E-48c) 

(E-48d) 

Disregarding other possible solutions of Eqs . 
E-46 and E-47 at the present time, the values of 
F(a,d) at the points suggested by Eq. E-48 become 

F(sin a • sin d • O) = 0 

w033At 
F(sin a • cos d • 0) • ---2 

(6x3 ) 

F(cos a .. sin d 

F(cos a = cos d 

(E-49a) 

(E-49b) 

(E-49c) 

(E -49d) 

If the coefficients w , Di1 , 033 , and At 

are positive, then F(a,d) has a minimum value of 
zero at (sin a = sin d = 0) and a maximum value· 

wDi!At w033At 
of --- + --- at the points where cos a = 

(Axl)2 (Ax3)2 

cos d = 0 . 

A two variable analysis of the sufficiency 
conditions , analogous to Eqs. E-1~, E-18, E-19, and 
E-20, leads to the following quadratic form: 

F(a,d) - F(a,if) = i · II (a-a) (d-d) II · 

a2F a2p I 
(a-a) 

wl-- aaadl--a,d a,d 

(E-50) 
a2p a2p 

(b-b) 
aaad l- - wl--a,d a,d 



From Eq. E-21, it is concluded that if 

(E-51) 

{~:~dr} , __ 
a ,d 

0 (E-52) 

then Eq . E-50 is positive-definite and the point 

(a,d) is a relative minimum . If Eq . E-51 is nega­
tive nnd Eq. E-52 is positive, then Eq. E-50 is 
negative-definite and the point (a,d) is a relative 
maximum. 

Taking the second partial derivative of F(a ,d) 
gives 

(E-53b) 

and 

When (sin a • sin d • 0) , then 

;;2F 2wDi1At 

aa2 lsin a•sin d•Oa (t.xl ) 2 

<> 2F 2wDht t 

ad
2

1 sin a= sin d•O 2 ( llx3) 

o2F ~) (Di3+D3l)l.t 
aaod I . a= sin d=O c.x

1
c.x3 Sln 

From Eqs . E-51 and E-52, the points (sin a sin d 
0) are a relative minimum if 

61 

(E-54a) 

and 

(E-54b) 

when (cos a cos d 0), then 

a2F -2wDi 1At 

aa2 lsin a= sind z 0 = (ox
1
) 2 

a2F 

ad
2 

sin a = sin d 0 
, and 

a2F -w(Di3+0*3l)llt 

aaadlsin a = sin d = 0 Ax1Ax3 

From Eqs . E-51 and E-52, the points (cos a= cos d 
0) are a relative maximum if the inequalities of 
Eq. E-54 hold. Thus, when the inequalities of Eq. 
E-54 are satisfied, the points (sin a = sin d = 0) 
and (cos a = cos d = 0) are assured to be a minimum 
values respectively of F(a ,d) . 

The remaining two points of Eq. E-48, (sin a = 
cos d = 0) and (cos a z sin d = O) , result in an 
indefinite quadratic matrix when t he inequalities of 
Eq. E-54 are used. Therefore, each of these two 
points are saddle points of F(a,d) . 

The possibility of other solut ions to Eqs. E-46 
and E-47 stil l exists. Solving the two equations 
simultaneously gives 

(E-55a) 

and 

~tultiplying Eq. E-55a by E-55b gives 

(E-S6) 

where the trigonometric identity cos2e-sin2e=cos2e 
has been used. If Eq. E-54 holds, then t her e is no 
way for Eq . E-56 to be valid because Ieos 2a cos 2b j 
~ 1 Therefore, all the points of relative extreme 
are included in Eq. E-48. 

From this analysis , F(a ,d) has only one minimum 
value located at the point (sin a= sind~ 0), and the 



Absolute Min. F(a,d) • 0 (E-57) 

Also , F(a,d) has only one maximum value located at 
the point (cos a • cos d: 0), and the 

Absolute Max. F{a,d) 
wDi1t.t w0336t 
---+ ---
(llx l )2 (6x3) 2 

(E-58) 

Combining Eqs. E-57 , E-58, and E-44 results in : 

(E-59) 
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In summary, the stability of Eq. E-41 is assured for 
any (a ,d) if 

2 
40i 1°33 > (Di3 + 031) 

wDi!At 
---2 + 
(t.x

1
) 

1 
< 2 

(E-6Da) 

(E-60b) 

(E-60c) 



APPENDIX F 

FLOW CHART OF PROGRAM 

I start I 

I Read Data I 

Call INICON to initialize the 
coordinates and concentration of 

each moving point 

Call READIN to read in physical 
data for problem such as permeability, 
porosity, viscosity, initial pressures, 

and boundary pressures. 

Call INIPRT to print out all 
of the initi~l information 

Call STORAG to compute initial 
mass storage of each 

miscible fluid in system 

Ca lculate the numher of l 
time steps to be used 

1 

[Call IOWAIT to test if operation 
on scratch tape is completed 

[Call BACKF to backspace scratch tape 

Call MATSOL to set up matrix for the flow equation 
and then solve the matrix by Gauss elimination for 

pressure at the new time level 
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Is yes 
PCNT equa 

FWTOP 

No Print outj 
Pressures 

Call RDTAPE to read coordinates and 
concentration of moving points from scratch tape 

Call VELOCY to calculate velocities at each gr1d 
interface, the longitudinal and lateral di spersion 

coefficients. and the components 
of the di spersion tensor 

1 I Test for completion of tape readingJ 
operation and backspace tape 

! 
Call MOVPT to determine the velocity of each point and move the 

point to a new location. Points moving out of system are 
located and re-entered at an appropriate inflow boundary. 

The average concentration of each grid 
is determined from the points located in each grid. 

1 
Call DISP to calculate the change 

in concentrati on due to di spersion. 
The average grid concentration and each 

moving point are corrected for this dispersion 

Call 
! 

WRTAPE to write coordinates and concentration 
of moving points on scratch tape. 

---- ----- _l ___ 
Correct porosity, viscosity, and densi ty 
for changes in pressure and concentration 
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No 

yes 

Print out 
Veloci ties, Components 
of Dispers ion Tensor, 

and average grid 
concentration 

Calculate a mass balance 
of each miscible fluid 

C>,....---,-;-No----< 

Has Total 
Number of 

time steps 
been exceeded? 
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"' "' 

c 

MAIN PROGRAM 
PROCI\lM lU I N 
DIMENSION FKII2 , 271 ,POR I1 2 ,271,HI12,271 , Pil2 , 271 , PT II2, 27 1, 

IPPI12, 271,PDTI12, 271,RH0112 , 271 , VISI12,271 , Qil2 , 271,C4VCII2 , 271, 
2CAVGPII2 , 271 , 0ElCI12 , 271 , SVHCII2 ,271 , COUNTII2 ,27 1, 0 11112, 271 , 
30221 12 , 211 , 0121 12 , 271 , VXI 12 , ZAI , vz I 13 , 271 , CCMATISSOOI , X114961 , 
HI 14961 , CI H 96J , CMA UX I250 , 21l , CRI2501 , X81 124 l , Z81 l24l , CB11241 , 
SX82124 1,1821241, C8 2124 1 
COMMO~ OflT , ST , FWTOP , OELX , OE LZ , FK , POR,H , P, PT , PP , RHO ,VI S , Q, RHOP , 

1CAVC, C4 VGP , DElC , G, 8ETA,Al PHA,GAMHA,RCOMP,SUMC,COUNT,Dll , 022 , 012, 
2VX ,VZ, NWDCNT , XAI , ZBI , CB loXB2 ,ZB2,CBZ , CCMAT 

EQUI VAlE liCE ICCMATIII , POT Il l ,XI I I , CMATRXI I ll , ICCMATII4971 , Z I Ill, 
IICC HA112993J,Cil ll, ICC HATISZS I IoCRI I II 

c• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • 
C•••••THE MAI N PR nr.R AH I S THE CONTROl PROGRAM AND DIREC TS THE SEQUENCE•• t ••••• OF OPERATI ONS FOR SOlVING THE Fl OW EQUATI ON AND DISPERS I ON••• 
(ooooo EQUATI ON. AP PROPRIATE SUBROUT INES ARE CAllED AS NEEDED TO oo 
C••••• HAKE TH E NECESSARY CAlCULATI ONS. THE PROGRAM DESCRIBED HE RE•• 
c ooooo I S FOR A TWO DIMENSI ONAl VE RTI CAL FlOW PROBLEM. ••••• 
c •••••NR • NUMBE R OF ROWS ••••• 
c •••••NC • ~UMBER OF COLUMN S ••••• 
Cooooo IIO!E THAT THE ~UMBER OF ROWS , NR , SHOUlD AlWAYS BE EQUAl ooooo 
C .. ooo TO OR lESS THAN THE NUMBER OF COlUMNS , NC. ••••• 
C•••••NA • ROW DIMENSI ON OF THE REDUCED COEFF ICIENT MATRIX USED IN ooooo 
C .. ++• GAUSS ELI MI NA TION, ouoo 
C•••••NB • COlUM~ DI MENSI ON OF THE REDUCED COEFFICIENT MATRIX USED IN •• 
c• .. •• GAUSS El iMI'UTION. ••••• 
t•••• • OELT • TIME INCREME NT ISEC.I ••••• 
c ooooosT • TOT Al TIME OF ANALYSIS ISEC.I ••••• 
CooooOFHTOP ~ PRINT OUT CONTROL. FWTOP SHOULD AL WAYS BE A MULT IPlE ••••• 
t•••••• OF DELT . ••••• 
t .. • .. DElX • SPATIAl I NCREMEIIT IN THE X' DIRECTI OII IFT.I ooooo 
C•••••DElZ • SPATIAL INCREMENT IN THE Z' OIRECTION 1FT. ) •••• • 
C .. ooO FK • PERMEAB ILITY ISQ. FT. I ••••• 
C•••••POR • POROSITY ooooo 
c oooooH • ELEVA TIO~ AT CE NTER OF GRID IFT . I ooooo 
c ooooop • PRESSURE AT CENTER OF GR ID FOR INITIAL TI HE lEVEl llBS. PER oo 
t••••• SQ . FT . ) ••••• 
c •••• • PT • PRESSURE AT CENTER OF GRID AT PRESEIIT TIME lEVEl l l8S. PER •• 
' *•••• SO . FT . l ••••• 
C .. •••PP•P~ESSURE AT CENTER OF GR I D AT PREVIOUS TIME LEVEl I LBS. PER ••• 
c••••• so. Ft . t ~ ••••• 
c oooooPOT • POTENTIAl AT CENTER OF GR I D IFT.I ••••• 
C•••••RHO • DENS ITY OF FlUID !SlUG S PER CUBIC FOOT! ••••• 
C•••••RHOP • DENSI TY OF PRODUCED FlUID !SLUGS PER CUBIC FOOTI ••••• 
c •••••VIS• VISCOSITY OF FlUID ILBF . -SEC. PER SQ. FT.I ooooo 
C•••••O a PRODUCT ION TERM !CUBIC FEET PER SEC . ! ••••• 
C•••• • CAYG • AV ERAGE CONCENTR ATI ON OF TRACER !SlUGS PER CUB. FT . I • •••• 
C•••••tAVGP•AVERAGE CONC ENTRATI ON FROM PREVI OUS TI ME STEP. ••• •• 
c ooo+oDELC• CHAN~E IN CONCENTRATI ON DUE TO DISPERS ION. ••••• 
C ..... G • ACCHERA f I ON OF GRAY I TY 1FT. PER SQ. SEC. I ••••• 
C•••••BE TA • FLU ID COHPRESSIB ILITY I SQ. FT . PER LB . I ••••• 
c ••• • • RCDMP • ROCK COMPRESSIR il iTY I SO. Fr . PE~ l8. 1 ••••• 
c • ••••ALPHA • CONSTANT RElATING DENS ITY TO CONCENTRAT ION • •••• 
C•••••GAMNA • CONSTANT RELAT IIIG VISCOS I TY TO CONCENTRAT ION. • •••• 
coooooSTO~ • TOTAL HASS STORAGE OF ARE A ISlUGS I ••••• 
c •••••WRTAPE • SURROUT INE TO WRITE IIIFORMATI ON ON A TAPE . THIS IS A ••• 
C• • ••• SYSTEMS PROGRAM OF THE CSU COMPUTER CENTER . ••••• 
c•••••RDTAPE • SUBROUTINE TO READ INFORMAT I ON FROM A TAPE. TH IS I S A ••• 

C••••• SYSTEMS PROGRAM OF THE CSU COMPUTER CENTER. • • ••• 
C••••• tCHAI • DUMMY ARR AY TO BE USED BY DIFFERENT VARIABLES AT DI FFER-•• 
C••••• E~T lOC ATIONS THROUGHOUT PROGRAM AND SUBPROGRAMS. ••••• , .....•......•...•.••..........•••..••••••.............................. 
c 

READ 15, 121 ~R ,NC,NPX ,NPZ 

READ 1~ , 21 DElXo DElZ , AlPHA 
~A•INR-21 * 1NC-21 
N6•120NR 1-1 
MAh NR-1 
M• MAA- 1 
NA A•IIiC- 1 
N•NAA- 1 
AM•M 
AN• "i 
NP l •NPZ*IIR 
NP2•NPX ONC 
NWDCIIT• JJONR*~CONPXONPZJ+bOO 

TIME•O. O 
CAll INI CD~ INR, NC , NPJ,NPZ,NPX, NP ZI 
CAll R~AOIN (MR,NC,NA , NBI 
00 20 l • lo NR 
00 lD J • lo NC 
POTI I,JI•I PTII,Jl/I RHDII, J I•G li +HII,JI 

20 CONTINUE 
CAl l I NIPRT INR , NC , NA,NBI 
CALL STORAG INR ,NC,NA, NB , SI QR,AOO I 
HRI! E Jb , 91 STOR , ADO 
S TOR I•S IOR 
STORP•S TOR 
ADOI•AIIO 
ADOP•AOO 
SQSO•D.O 
SOTO•D. O 
LOOPVL•ST/DElT 
PCNT• I.O 
00 8 ILAST•J ,LOOPVL 
T IM~•T IME+OEL T 
DO SO I•I,NR 
00 SO J • I , NC 
PP I I , J I • P T I I , J I 

50 CONI INUE 
CAll IOWAIT ll , NSTAT, NWOSI 
CAl l 84CKFill 
CAll HA!SOl INR , NC , NA , NBI 
IF IPCN T.EQ.FWTOPI GO TO 3 
GO 10 22 

l WRIT E 16, 101 TIME 
CAll MATROP INR , NC , PTI 
DO 2l l•l , Nq, 
00 21 J • l,NC 
POT CI , J I•IPTJI , Jl/IRHOII , Jl • Gli +HJI, Jl 

21 CONTIIIUE 
WR I ! f lbol ll TIME 
CALL HA TROP I NR,~C , POTI 

22 CAll ROTAPE ll , lo l oCC MA TIIJ , NHDCNTI 
IC• IIC+I 
IR•IIR •I 
CAll VElOCY I NR,NC.IR , ICI 
CALl I OWA IT I l oNSTAT , NWOSI 

(g 
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)> 
z 
<~ 

"U o m Oz 
S::o 
"''CT! ex 
-l 
~C) 
"'0 
=o 
8 
;o 
)> 

3: 



?. 

CAll ~4( <f Ill 
CAl l lCIVP I 1'1~ , 'IC , 'IP I , UP2 , liP X, NPZ I 
CAll ~RTAPE II, I , I , C~IIAIIt l , lloWCNII 
CAl l O I SP I'IR , NC , ~Pt ,NP2 , 11PX , ~Pll 
r.o ..,, l • t , tl~ 

DO !-0 J• I, :IC 
PO~I I, JI•P'IRI I o JI • ti . O oi OCC•P t iPIII ,JI-PPti , JJIII 
RIIOI I, JI•RttOII , JI • IfiE TA•RhOI I, JI • IPTII , JI - P?II , JI I I +IAL PH••t t AI/Gt 

11,JI -CAI/GPt (, J ill 
\l i St l o JI • VI SI I , JI +t (;A"'"'A>ICAV~ II, JI -CIIV(;O ( I , Jill 

60 (flhl l 'llJf 
IFI PC>IT.£0 , FWIIlPI GO TO 6~ 
r.o TO n 

f.S WR if ~ l~ .lq TillE 
Chl l •AJROP 112 , 28 , VXI 
Ill\ I If I ~ .l 5 I II ME 
CALl IIA TRO~ 11.1 0 27 , Yl I 
WR ITE tb o lbl TIHF 
tALl ~ITnOP ~~~ , ,C , O I 1 1 
wR I TE 11> , 171 TII'E 
CA l l MATRDP INA , Nt , 022 1 
... ~ I TE 16,1 11 1 Tr~F 
t All MAT~OP !N~ . ~C ,0 1 Z I 
wq I TF I I> , 19 I ll Hf 
CALL MAT~O~ I NQ , ~: , C IIVGPI 
WRIT E 16, 25 1 T I~E 
CALL IIATQOP I NR ,~: , tAVGI 
WRIT E 16 , 1001 tXOit ll oi • I,NP I I 
WI\ I T f I 6 .t 00 I II !I ll II , I • I , I,P II 
lo'< IT ~ 16,1 001 ICR1111,! • 1, •;o u 
IIR IIF lh .tOO I U02 tll, I • I,',P II 
kR IT f I I> .tOOl llR2111oi • 1,11P I I 
kR I Ti 16 , 1001 I CP2 tlloi • I, NP1 1 

1 00 FORI'AT ll~o1 2FIO . )I 

PCIH •O. I) 
Zl CALL ~~AL lhR , NC , NA , ,B , S i rRJ , AOOI,STORr,AOnP , SCSO, SOTO , TIH EI 

PCIIT•PC•H +1. 0 
a CO"' T !loUt 
2 FORI<\l llFIO. l l 
9 FO~"lT IIHO ,tOl, 'IHS TORAGE • ,FlO. ' .10X .l ~'ITQA(f~ S TO" AGE = , 1'111 . 1 

10 FOR~AT IIHO , ,Jt, ,6HNE W PRE~SURE "AP t lP\ . PE~ SO. FT . J AI TIHE • 
IFI0 . 2 , 1H II 

11 FO~"AT t 1110 , 57~ , HH'IEW POTE'H I AL HAP 1FT . 1 AT T IHF • , F I 0 . 7 .tH II 
12 FI\A"U 1~ 1 101 
13 FO,VAJ t IH 0 l 5f8. 31 
14 FO~~ITIIHO , SZX , ZOH~-VELOC II Y AT Til<~ • , F!O. Z , IH /1 
15 FOR~ HI IhO, S2X , 20Hl-VfLOCI IY AT Tl~~ • , F!0. 2 , JH II 
16 FOR~ATIIH0 , ~2X ,I 11101 1 AT liME • ,F10 . 2 , 1H /I 
17 FORMATII H0 , 52X ,I JH02Z AI III'E = , FI0 . 2.1 H II 
18 FOKI!ATtltrO , <;ZX , I1>t012 AT TillE • 0 FHJ.2 0 111 II 
19 FORHAT IIH0 , ~2 X , I 5HCAVGP AT liME • 0 F I 0 . 2 , 1H /1 
25 FOR'IAT1lli0 , 52X0 14H(A VG AT T IMF ~ ,F10 . 2 .1H II 

ENO 

SUBROUTINE READIN 
Sl."~~q:'llfl~f~ ~f:AOI'l I~R , at~ , 'It , "'liJ 
I'II'E':S i fl'l Fl< ll2,271 , PORI12 , 27J,HI12.Z7) , ~' 112 , 771 , P it 12 , 271 , 

I PP1 12, l11 , POTI 12 . 211 , i<H'll12 , l71 oYI SI 12 . 271 , 0112 , 2 71 , CAVGI I 2 oHI , 
2CAv;P( 11 , 271 , 0ElCII2 , 27 I , suutl12 ,271 , C:n•·n 112 0 2 71 0 0 1111 2 0 271 , 
J0721 1 2 , 77 1, 0121 1Z,271, YXI 12, 261 , VZI I3, 271, CC~ATI S~OOI , XII 4~61 , 

4LII4961otl H~bl , ::l'~f>XI2S0 , 211 , C.'l. t 2501 , X r.II HI , l6 1 12' 1 • C8 11 2'•l o 
5~~l124 1 , Z~21241oCB2 124 1 
(~~~~~ OEL T , ST , FWTO? , OflX , U~l1 ,F~ , pr~ , II , P , D J , PP , ~HO , VIS 10 , AH~P , 

I(. 4Y~ , CAVGr , VELC , ~ , 8E TA , Al Pth\ , (,6"1 '1.11., , PCOt--'P , S.UMC, COU~T, 0 ll , 02? , 012 , 
2VX ,Vl , NWOt•:J, XPl ,Z8 1 r C~l ,X~2 , Z~2 rC~Z .CCH~ J 

(0U I 'I~L £•;:E ICC:-tATil loP:l Tt i i,HII,t.~ATRX II I I, I CCHATII491J , Zt 1 11 , 
ll ft~M l l'I'HI , C 1111 , ( c;(MH I 52511 , C;t l lll 

t ·· ··· ···· ··· ··············· · · ··~····· ·$· ····~························ ·· ( H .. •TIIIS SUARilUI I ' IE ltE~DS P I TltE PI1VS I C•\L 0 \TA 'IEEOEO TO SOL VE THE ••• 
C• •••• PRfH\lf M. ••••• 
t•••••P ti, J I GREATER THAN 100 , 000 I NO ICAT ES C0~STANT PRESSURE BOU~DAKY .• 

c • • ••• •••••••*•••••••••••••••**** • *• *•••*••••••••••••• •••••••••••~•••••• 
c 

liE All IS , II tiELT , S I, FWTOP 
READ 1~ . ~ 1 r, , ~ E T I\ , RCOHP , !ILPHA ,IIHOP , f,AMHA 
l k •t:o<-1 
l f.•r.t- t 
00 10 J • l , ll( 
FK tt , Jt~o .o 

10 FK ni{ , J I ;n . o 
DO I I l •2.1R 
00 I I J •l , iiC 

11 fKI I, J I •O .OOOOO'I~R5 
fl"l l l I • I, I~R 
t>O 1 2 J•I , UC 
POR.II,JI •rt . )'l 
VISII oJI •O . OIIb 

12 I)(I , JI•O. O 
ltll.t 1•69. 0 
PI loi i~ J 21?'13 . l!R 
ut 1 , •.-c J .!i!"f>'J . o 
Pt1 , 'Cti• 1 2J~71 .. ~0 
00 I l I •2 , r,'! 
1111 .1 1•1111 -1 .1 1-i'El/ 
ttiJ,~:C ) -a•U 1- l , rltl - OE l l 
P C l, ' !C. ) :a. PC 1-1 t /'.IC. l +-( q,HOt 1 , ~IC J • t;tOf lZ) 

13 Pt i, II•PII - I,I I • III.HOI I, II • t.•oELll 
DO 14 J•l , IC 
PI I 0 JI•2957b. 4 
Hit , J I •69. 0 
()(\ 14 1•2. ··~ 
>II (, JI•fiii- I,JI-OH l 

14 PII , JI •P II- I , JI • I R~O il ,JI+G•DELZI 

on • r • l · "~"' 
00 4 J • 1,11( 
l fiOI I , J I.L T.tOOOOO . OI PTI I, Jl•P(I, Jl 
I FIPI I, JI . GT.I OOOOO . OI P TII , Jl • P II , JI-100000 . 0 

4 CNH IIIUE 
REf llll.'l 

l F O~MAT l lflQ. ll 
) FOC\H~ I l bF10 . 31 
5 FOR~AT I E I I . 4 , EII . 4 , F B. 3,4Fl0 . 3 1 

Et~O 



g: 

c 

SUBROUTINE INICON 
SU&ROVTI'IIE I'~ICO'II C ~R ,NC , 'IPI ,"'P2,11PX , 11Pl l 
U lME~SlON FKI12 , 27l , POR C1 2 , 271 , Hl i 2 , 271,Pl12 , 27 1,PT ll2 , 271, 

1 PP 112, 271 , POT 112 ,271 , RHOI12, 27 I, VI Sl l2,271 ,0112, 271 , CAVGC 12 , 271 , 
2CAVGPII2,271 , 0ELCII2 , 271,SU~Cil2 , 2 71,COUNTC 12 , 271 , 011112,27 1, 
1022112 , 271 , 0121 !7 , 271 oVX I 12 , 28 1, Yl I 11,271 , CCM.ATCSSOOI , XC i'o'l61 , 
4li1496 1,CII4'l6 1, CMATRXI 250, 2ll oCRl 2SOI , XS11241 olBII241 , C811241 , 
5XR71241, ZB21241 , C82 1241 
COMHO'II DELT,ST , FWTOP , OEL X, OEL Z,FK , POR , H,P,PT , PP , RHO , YIS , Q, RHOP , 

lC4VG , CAVGP , OELC ,Co8E fA,ALPHA ,CAMHA , RCOHP , SUMC, COUNf , Dl l oD22 oDl2o 
7V X, Vl 0 NWOCNT , XR I 0 l81 , C8l , XB2 , ZB2 oCB2 , CCM4T 

EllUIVALE'ICE ICCMATIII , POTC1 1 , XC I I , CHATRll lll, ICCHATI 14971,Z i l ll , 
llCCH~TI2~9}1 , C CIII, ICCMAT 1525l l oCR IIII 

c--•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••-­
c••••• TH I S SUBROU TINE DE TERMI NES THE I'IIT IA L X- Z COORD INATES OF THE oo+o 
C••••• ~UV I'IIG PO INTS AND AS SIGNS AN INITIAL CONC ENTRATI ON TO EACH • • 
C+++++ OF THE PO INTS. THE HOVI ~G PO INTS ARE UN IFORMLY DISTRIBUTED++ 
C••••• THROUGHOUT THE GRI D SYS TEH, INCL UDI NG THE OOUNDARY GRI DS.•••• 
C+++++X •X-COO~U INAT E OF HOVING PO INT . >>••• 
C•••••z • /-COORD INATE OF HOVING POINT. ++ +++ 
C++•••C • CONCENTRATION OF HOVING POINT . ++ ++ + 
C++++• NPX • NU~RER OF HOVING POI NTS PER GRID IN X-~IRECTION . ••• •• 
C•••••NPl • ~UMBER OF MJ VING PO I NTS PER GR I D I~ Z-DI RECTI OH. • •••• 
c u o.. NOTE Tlt l\f NPX*NPZ I S THE TOTAL ~UHRER OF HOVING PO INTS PER .. • 
C+++•• GR 10 I NIT !AllY . +o++• 
C•••••PX • FLOATING POINT DESIGNAT I ON OF NPX, +++++ 
Cooo++Pl • rLOAII NG PO IN I OESIGNAT !ON OF NPZ . ooo+o 
c u o .. NPI s '<UHI\ER OF ~JVING PIII'<TS 1'1 VE~fl CAL OI><.ENSION OF MODEL . ••••• 
C* .... NP2 • 'IIIHilER OF HOY ING PO I IHS I N HORIZO'<T4L DIME NSION OF HODEL . ••• 
C+oo+o NOTE IHAI ~PJ O 'IIP2 IS THE IOTAL NUMBER OF MOVI NG PO l ~TS IN too 
C..... THE MOOH I•HTIAllY. ••••• 
C•••••SUMC • SUMMATI ON OF CONCENTR ATI ON OF ~DYING POINTS IN A GRI D. •••• 
c•••••COU~T • A COUN T OF THE NUMBER OF HOVING POl~TS IN A GR I D. • •••• 
Co+• • • CAVG • AVERA~E CO~CE'I TRAT ION OF TRACE~ !SLUGS PER CU6. FT . II •••• • 
C•••• • A'ID I S OE TEqMINEO BY SUHC/ CDU'I I . ••• •• 
C••• • • DELC •CHANGE IN CONCE NTRATION DUE TO DISPERSION. ••••• 
c •••••LOG,NOG oOOG , •o • I NCREMENTING FACTORS USED IN 00 LOOP. ••••• 
C•+•••~ll o 'll2 • ROW NU~OER AND COLU~N NUH6E~ OF GR ID IN -WHI CH PO I NT I S•+ 
C .. +++ LOC A TEO. ••••• 
c--•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••-­
c •••••xoi,Za i,CBt • COORD INATES AND CONCENTRAT I ONS OF BOUNDARY HOV ING •• 
c•• ••• PO INTS ALONG X•O. • •••• 
C .. • .. X112 ol81 oC82 • COO~O INATES A'ID CO•tCE'I I RATIONS OF BOUNDARY HOY ING •• 
C••••• POINTS ALONG X•HOOEL l[N~TH . ••••• 
c 

REIII"'O I 
LOG•I - NP l 
NOG•O 
PX.ahP)( 
PZ•NPZ 
on 61 I • I,NR 
DO 67 J• I, NC 
SUHCI I,J 1•0. 0 
COUN T! I,Jl •O. O 

67 OELCII , J I•O. D 
110 10 J • I , NP2 
OOG•J- 1 
XO•I DEL X/ PXI+CO. S• OIIG I 

IFIXO. LT. I 56. 0 1 YO•SORTI39 . 99* l l 56 . 0-XDI +220 . 0I 
IFIXO . GT. I56. 01 YO• O. O 

I~ LOG•lilG +NP I 
NOG•tlOG HIP 1 
DO 10 I•LOG, 'IOG 
OOG•I-LOG 
Zlll •lOELZ/PZl +t O. S• OOGI 
X l II•XO 
IFILIII .LT. YDI tiii • O. O 
IFi li i i . GE . YDJ CI I I•O . LO 
Nll•liii/OEllti . O 
NI 2•Xl ii/DEL X+I.O 
SUIICIIIII , NI21•SUHC I Ni l ,NI21•C l I I 
COU~TI NI I, 11121 •COUNT I NI I,Nl2l +L.O 

I 0 CON T ltiUE 
C• ••••FROII HERE fHRU STATEMENT 2 , A SUFFER ZONE OF 200 HOVI~G POINTS ••• 
C••••• I S CREATED FO~ USE IN INJECTI NG AT INF LOW BOUNDARY COND- ••• • 
C••••• ITIUNS. ooooo 

AL E~X• INC•DEL XI+ISO . O 
ALE~~· INR •DEL LI/2 . 0 

l0G•INPI *NP 21<1 
~OG• lNP I•NP21 •200 

00 2 I•LOG , NOG 
~ II I •ALEN~ 
ZIII • ALENZ 
CIII •O.lO 
CONTI'IU~ 
CAl l WR U PF II ,I ,I , CC HA TIll , "WOCNT I 
XO•COELK /PXI+O,S 
00 l l 1• 1, I'IP I 
OUG• I-1 
ZD llll•li)Ell/PZ l • I O. 5+00G I 
XA l ll l• lD 
CO ICII•O. O 

12 COIITI'<UE 
LDG•IIIPI • INP2-III+I 
'IOG•NP I • NP2 
OOG•~Pl- 1 
XO•COELX / PXI•tO. S+DOGI · 
00 I) I • LOG, 'IOG 
OIIG• I-LOG 
J• I -LilG+I 
lAliJI•lii[LZ/PZI• tO. S+DOGI 
XHllJI•~lJ 
C021JI•O. I O 

13 CON TI'<UE 
DO I I•I , NR 
DO I J• I , NC 
I FICOU'IITt i , JI . EQ. O. OI COUNT! I,JJ•l . O 

CAVGII , J I •SUMt I I , JlltOUNTC I , J l 
CAVGP! I , JJ •CAYG(I , JI 
RfiOII , JI• l.O+ALPHA• CAVGII , Jl 
CALL IOWAIT ti , N.STAT ,NWOSI 
t ALL BACKF Ill 
Rf TU'IN 
END 



& 

c 

SUBROUTINE BSOLVE 
StiBPC.u t JN~ ~~OLVf (( , f; , M,V) 
iJ IN ii'!~lll'l C l '.,ll ) , VC'II 

c--••**•~4*••··~·,••••••~··•••• ••···~•*•••••'•••••••••••••••••••••••••--
t •••••THIS SUG10UI I~E SOLVES IHF ~·1~11 SfT ~P 1• •~TSOL R1 GAUSS • • ••• 
C. ••••c tlltcll!hf i O:.f . ••••• 

c--···~·· ~*···········*••·••••••c•e···········c••••···· · ···········$··-­
t 

LP• II'-11/1 
C·:l 1 l•t . l.R 
IH" Ln-L• l 
(i(l 7. I • l ' I PJ, 
on 1 J•2 , ,.. 
ttt. , J-ll...-C.lL , J) 
f= •t-=tJ- l 

~ ... ~ .. -· 
Cl l o'II•O. 0 

2 C( IOl • l fJU1tll sO . 0 
l~·L~ • I 
~~:E:~- 1 

0'"' IV I :a 1 , II~ 
t~~ I V•l 
l '\:$ 1• 1 
nf) 'l l .. l~ .LR 
IF U !>Sitll.III . GT . AIISI C I'.P I V.III I IIPIV•l 
Cll!H 1\UE 
I F I ,.,p IV . I ~ • I I b , 4 

4 un IJ J•1 , M 
H~"•C II , J I 
f. I I , J I •Ctt/P IV, JI 

5 C(~P IV 1 J)~T(PP 

TFIIP•V Ill 
V III•VJ~PIVI 
\11/IPIVI • TEIIP 

b VIII•VIII/(11 , 11 
.:>O 1 J e.l t M 
C I I , J I •C I I , J 1/f. I I , I I 
on 'J L• LS oll\ 
Hr·:P•C I l , 1 I 
Vll l •VIU-Ifi<O•VIII 
DO r1 Ja? , ~ 

8 CIL , J-II•CIL ,Jl-I[IIP• CII,JI 
'I Cll ,'11 •ii . O 

IF ILR. LT . III lQ•lR<I 
10 (OtHPWF 

VI.<I•Vli•I / C I 'l o ll 
JH•~ 

0'1 l l. 1• 1, IM 
L~·l· l 

00 II J•ZoJI' 
K':.;: L tJ 

1 1 Vll i •VIli-C I L , JI •V~KH-1 1 
IF IJH. ll . lll JM•J~tl 

12 C:liH IIIU€ 
RETU~N 

EtiU 

c 

SUBROUTINE MATROP 
SUB~~U T I ~E HAI PO~ IN~ , '1:, Rl 
0 1/-l (IIS ! Il!i 61 NR , Ntl o ~11 21 

c •• •••••~··••*••••••*••••••••••••••••••• •••••••••••••••••••••••••••••••• 
C .... •llll S SUU~roJTI'IE n~GA'IIlES TilE II.ITIAL DA TA 0~ THf RESULTS 11<10• .. • 
t u•.. A SU I T.\Bl E f.1R'< FO~ PQ I'IIC'UT. • • ••• 
c••• •••••••••*••••••••••••••••••••••••••••• •••••••••••••••••••••••••••• • 
r. 

[In II I •I , ,..C ,1 l 
l'l • l/12 
OIJ q J• lo 'l~ 

I F I I I 'I • 1 I• 12 . l E. tiC. I I , ' 
00 l JJ•I . Il 
JJ.J• Pl• l 2tJJ 

2 AIJJI•a iJ,JJJI 
GO To1 b 

J tl•"C-12*1'1 
!Jil 4 JJ•I oll 
JJJ • Jtl• t l • JJ 

4 AlJJJ ~O IJ, JJJ I 

li•LL• L 
00 ~ JJ• llol2 

5 A(JJI•O. O 
b I F IAIL I . LT . O. OOII GO To) 14 

IF I I'l l 1 . 1 , 8 
\IQ(Tf 16, 121 IAIIII.II •I .t ?I , J 
GO TO 'I 

8 WI( I I E I t- ,121 IAIIII ,! I•I o l21 , 
GO TO 9 

14 IF I I til 15.15 ,16 
15 liP I T£ I 6 ,I 71 IAI!II ,II • t,IZ I , 

Gil TO 9 
lb W~ITE 11>.171 IACIII,II•I ,I ZI , 
'I CONTI 'IUE 

IFI~C . LE . ti'I•II*IZI 1 1 , 10 
10 \IR I Tf 16, Ill 
I I CON I I'HIF 

~FTilR'I 
12 FOR~Af IIH ,t 2E t 0 . ) ,!41 
IJ FOKH~T I IH0 , // 1 
17 FOR~AI lUI tiZUO. J , I41 

END 

"" 
J 

1'1 



~ 

c 

SUBROUTINE INIPRT 
SuBKOUT I~E INIPRT ! NR , NC, NA , Nnl 
OIN~NSION FKII2o27l,POR I12, 27 1,HII 2o271, PI I2o271,PTII2o271, 

IPP! 12 , 271 ,POT! 12,21J, RHO I \ 2 , 27 1 oVlSI 12,211,01\2,271 , CAVG I 12 , 271 , 
2CAV(;P( 12 ,27 I oOELC I 12 , 27 l, SUI'C I 12 , 27) ,COUNT I 12o 27 l , 01 \ I 12 , 27 l, 
3022 112 , 271 ,DJ2 ! !2 , 271 , VXI 12 , 28 1 , Vll 1} , 271 , CC MAT(55001,XI !4961 , 
HI 1496J , CI 14961 ,:MATIUI 250 , 211 , CR I 250 l , XBI I 241, ZBII241, C811 741 , 
SXA21241 , Z~2124l ,C821241 
COMHO~ OfLT , ST,fWTOP, OELXo OELZ , FK,POR , H, P ,PT,PP,RHO,VI S,O, RHOP , 

!CAvC, CAVCP , DELC , G, BETA,ALPHA , GANHAo RCOHP , SUMC, COUNT, DIIo DZZoOIZ o 
2VX ,vZ, NWDCNT,XBI , ZBioCBI , XB2 , ZB2 , C82 , CCHAT 

EOU I VALE'lCE ICC HATI \J,POTIIJ ,X IIl 1 CMATRX11llo ICCHATII497J , l! lll , 
II CC HATI 2991l,Cilll 1 ICCMATIS25li , (RIIll 

c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C•••••THI S SUBROUTINE WRITES OUT ALL Of THE IPIITIAL DAT A BY uSE OF ••••• 
t••••• SUORDUTINE HATRDP. ooooo 
c•• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • 
c 

WRI Tt 16,1 I 
WRITE 16 1 21 NR , NC , NA, N8 
WRIT t 16,11 DELT , ST , FWT OP 
WR ITE 161 41 OELX 1 OELZ 
WRITE 16,51 C, ALPHA, RHOP 
WRITE 16,61 BETA, RCOHP oGAHMA 
WRIT E 16, 71 
CALl HATROP INR, ~Co FKl 
WRIT E (6 , 81-
CAll MAT~OP INR, NC, PORI 
WRIT!' 16,91 
CALL MATROP INR, NC, HI 
WRITE 16,101 
CAL L MATROP INR, NC, PTI 
WRITE 16,1 II 
CALl MATROP INi\, NC o POll 
WRITE 16, 121 
CALL HAT~OP I~R 1 NC, RHO) 
WRIT E (6 , 131 
CAL L MATROP IN~ , ~C, VISI 
WRIT t 16 , I 4 I 
CAL L H~T~OP INR , NC, OJ 
WRI TE 16 I 151 
CA Ll MATROP INR, NC, CAVGI 
WR liE 16 .161 
CAL L MATROP INR , NC, DELCI 
RETURN 
fORMAT IIMI , 36X,57H••••••••••TWD-01MENS IO~AL VERT IC AL FlOW PROBLEM 
l•••···· ··· //) 2 FORMAT IIHO, I 5HROW OI MENSIO~ • , I4 , 1 0X ,I8HCOLU~~ OIMENSIO~ • ,14 , 
li0Xoi9HCHATRX DIMENSIONS •,14 o 1X, ZH~Y,IX,I41 

3 FORMAT llH0 ,1 2HDELTA-TIHE • , FIO. } ,IX, SHSECS. ,IOX,I6HTOTAL Ru~ TI ME 
I • oF I0 . 3 ,! x , 5HSECS. , IOX , l9HPR INT OUT CONTROL • , FIO . JI 

4 fORMAT IIH0,9HDELTA- X • oFlO. ) ,I X,}HFT . ,I OX,9HOELTA- Z • oFIO. ) ,lX, 
13MH . I 

5 FORMAT IIHO , I7HACC. OF GRAVITY • oFI0. 3 , 1X oi6HfT . PER SQ. SEC.,IOX, 
17HAlPHA • 1 F I0 .3, 10X,21HPROD . FLUI D DENSITY •oFI0 .3,1X, I7HSLUG PER 
ZCUII . FT . I 

6 FORMAT (IH0 1 i3HFLUID COMP. • , FI 0 . 3 ,lX,l 5HSC. FT . PER lB • .tOX, IZHRO 
It~ COMP. • oFlO. l,!X,I5HSQ. FT. PER LB.,IOX,7HGAHHA • , FIO,l I 

c 

1 FORMAT IIH0, 5Z X1 27HPE RMEA8!L IT Y MAP I SO. FT. l . /1 
8 FO~MAT IIHO, SAX 1 1}HPOROS ITY MAP . /l 
9 FOKHAT liHOo 52 X1 25HGR IO ELtVATI ON HAP I FT.J. II 

10 FORMAT IIH0 1 45X 1 40M I~ITIAL PR ESSURE MAP !LOS. PER SO. FT . J. II 
II FORMAT IIH0 , 51~ 1 28H I~IT! AL POTENTIA L HAP IFT. I . /I 
12 FORMA T IIH0 ,4SX,41 HINITIAL DENSITY MAP !SLUG PER CUBIC FT . I . /1 
\ } FOR~AT I IHOo4l~o45HI~ ITI AL VISCOS ITY MAP !L B.-SEC . PER SO. FT.I. /1 
14 FORHAT IIH0 o46X , 37HDROOUCTION HAP !CUBIC FEET PER SEt .J. /I 
15 FORHAT llHO o4 lX 1 48HIN ITIAl tONCENTRAT IO~ HA P !SLUG PER CUBIC FOOTI 

I . /1 
16 FORM4T IIH0,41X 1 49HCHANGE I ~ CONCENTRATION HAP !SLUG PER CUBIC FT. 

II . II 
END 

SUBROUTINE STORAG 
SuBROU TIN E STORAG INR,NC, NA ,NS , STOR,ADOI 
DIHEUSIO.~ FKI I 2 1 21l , PORI\2 , 271,HI 12o21l oPI 12 o27J , PTI 12, 271, 

IPP I 12 , 2 71 , POTI 12 , 2 1l,RH0112 1 271 , VISII2,27 1, QI 12 1 271 , CAVGI12 1 271, 
ZC AVCP IIZo271 1 0Eltl l 2 , 271 , SUHCI!2 , 271,tOUNTI12 , 27 l, DIII12o27J , 
1027112 , 771 , 0 12112 1 27 1 oVXI I2,28 J , Vll 11, 271 oCCHAT 155001 ,XI lt.961 , 
Hll4961 1 CI 14961 , CIIA TR XI 250,2 I I, CRI 2501 , X& I I 241 ol81124J , CBII21o J, 
5XB21241 , l82124l , C82 (2t,J 

COMMCH OEL J , ST , FWTQP , OELX, OEl l, FK , POM t~tP,PT,PP,~HO ,VJS,O,AHOP, 
I CAVC , ~AVGP , OELC , C ,DETA,ALPHA,GAHHA,RCOMP , SuHC , COUNT,Ol!, 022 , 0 1 2 , 
2VX 1 Yl , NWOCNT 1 XAI 1 ZBI,C81 1 X8 2 oZBl , CB2 , CCNAT 
EQUIYALE~CE ICCHAT I I I , PO TIIl oXIl l oCHATRXI I JJ , ICC HATI1497 J ,ZIII I o 

IICCMATI 2q9)1 1 CII II 1 ICCHATI5251J,Ck!IJI 

c•• •••••••••••••••••• ••••••••••••••••• •••••••••••••••••••••••••••••••••• 
C•••••THI S SUBROUTINE COMPUTES THE HASS STO~ACE FOR THE TOTAL ARE A. •••• 
C+o o+oSTOR•TOTAL MA SS STORAGE OF AREA ISLUC.SI ••••• 
c•••••AOO • TRACER MASS STORAGE OF AREA ISLUC~ I. ••• •• 
c •• ••••••••••••••••••••••••••••••••••~•••••••••••••••••••••••••••••••••• 
c 

NCI•"'t- l 
NRI •>4R-I 
ADD•O. O 
STOR•O . O 
00 I L•2 , Nt I 
00 I K•Z , NRI 
S TOR•! I . O• OEL XOOELZ • POR I Koli • RHOI K, Ll I + S TOR 
AOO•I I. O •OELX•OELZ•PORI~. L I •C ~VCI~ , LI I +AOD 
CONTI NUE 
QE TUK~ 
END 



::! 

SUBROUTINE MATSOL 
SURROUT I~ E ~ATSOL I,R ,NC ,NA , ~RI 
0 I >1~ "IS I O"l F K I I 2 , 2 7 I , P 00. I I ? , 271 , If I I 2 , 2 71 , P I I 2 , 27 I , P T I 12 , 2 71 , 

IPP! 12 , Z71,P'lTII2o 27J,RH0112 , 27 1 ,VISII 2 .l71 , 0112 , 77l , CAVGII2 , 271 , 
2CAV~PIJ2 , 271 ,0HCII l o 271 , $11HCII l o271,(0il"•lii7 , 2 11 , DIII I 2 o 271 o 

1022112 , 2 11 0 :1121 1 2 , 27l , VXI1 2 , 281, Vli1 J , 77l ,CCIIH I~5001 , XI 14'161 , 
HI I '•'~<> loCI 14'161 , (~l\ H ~1 250 .ll I , CIU 2531 , X~ l 12 • I ,llllt2•1 ,(811 1 41 , 
SX!l2t 2 41,ZA2124l , Cil712 41 
COMMO~I UfLT,ST , F~TOP ,OELX, OFLZ,FK, PfJ~ , H , P , P T,PP , RHO ,VIS ,Q , RtfOP , 

lC AVG , (..\VGP , OE L(. , G ,at: T A, Al "*' ~ , t.AI'tlo!A , ~C.OJ.:P t SUMC , tr:~•NT, 0 ll , l>22 • 012 , 
2VX, Yl , ~~rC~T,XA I , llllo CII I , ~~z , TR2 ,C8Z ,CC~41 

EQU I VILf,CE ICCMATIIJ , POTIII , XI II oC~~T~~~ II I , I CC>IATII4Q7l , l l ll l , 
IICC1'•11 2'1'lii,Ci ll I, ICCMAII525llotolllll 

c 
c--••••••• ~•••••••••••••~••••• *••••••••••••••••••••••••• ••••••••••••*•-­
t .... H HI S SUr~!ltiTI'lf SET~ UP Ill( CGHFIC I U H MUO.IX A'IO THE RI GtiT • •••• 
C••••• te!·~n Sl OE COLU~~ VtCT~~ . ••••• 
C .... * lli( CCEFFI CifiHS ARE CllMPUI <'D AY THE ru'"-CIIC>iS PARAM , RIIOA~, • t•tt 
CH .. O A"ll ~LVAH . • • •• • 
( *'"•THt >'hf'l. IX OllTAI'IED liAS ~l l OF lttf LO•.[Q. LF FT ttA>IO A"'D UPPEII. "*''' 
C .... , Rlf,HT HA'<{l lE~O HEI<fi.IS EliMitl~l£0. •••• • 
t •••••CMATRX ~ E l f~[~TS Of COE FF IC I ENT ~ATQ.IX • •••• 
( H .. • CII. • HfMFU I S OF II. I GII T HANO S l llf COLUI'" VE(IO~ "*' " 
t --•••••••••••••••••• •••••••••••••••••••••••••e••••••• ••••••••••••••••--
c 

P~RAMIAF~I , AFK2 , APOO. , A I'IE LS , AHUJ,AHIJ21 • 1 2 . 0•AFKI•AFK21/14POR•ADELS• 
IAOELS•C~~UI•AFK2 +AMU2•AFKIII 

Q.HC•\ Ml40<tt0 I , ARHO? I • 0 . S• l ARIIO I • ARIIOZ I 
(l V~ll I Alii , Attll• AICI-AHl 
0:1 I J~t ,Nf\ 
DO I 1 • 1 , ~A 
CM4TPXII , JJ eO. O 
llT•O 
~~c ) z'JC-1 
tHt 1 •~.:~-1 

I B•"'R-2 
1!-l• l ft • l 
I C• I M+l 
lll•l•l~+l 
00 12 J•Z , NU 
1'10 l l 1•2, '1R l 
'IT=;Jl + I 
CR IIHI=O. O 
IFIF~I I,JJ . EO. O. Ol 11 , 72 

22 I FIPII , J I . GL I OOOOO . Ol 11, 2 
2 JA =I 

Jfl= I 
(.M~I~XI>< T, II•RHOAMI R>IO C JA , J-II, RoiO II .JII • PAR t.III F KI JA , J - 11, 

I FK I I, J J , POll. I I , J I , [lEl X, VI S I JA , J - 1 I, VIS I I , J I I 
C~A T~XI 'IT , I BI•RHOAJo\111.1101 1-J, JJ , RIIU J I , J I ltPARAMIFKIJ-1 , Jl, 

lfK JI,Jl, PORJI , Jl , OHl , V ISCI - 1 , JI ,VI SCI,JII 
CHAI~XI'H ,I (I•II.tt~AHCI\HOII+I, Jl , RtlOJ I, Jli +PARAHCfKI J+Io JJ , 

I FK II, J I, PORI I, J I, OELl , VI S I It I , J I , VI S I I .J II 
(.~ATRXINI , t O I =RHOAI\I'UID I JO ,JO\ J,RHOI I, JIIOPARA"'IFKI J O,J+ll, 
tFKII , JI , PORI I,JJ,O[L~ ,VI St JO , J+JI,VISII,Jil 

C .. H• THE FOLUIW t 'IG Sl.\IEH£NTS Ilt<II. U 101 TRAioSFER CDEFF I C I F.NfS , ••••• 
C. **+.. >1\ILI I PLIEO 1\Y RESPECTIV~ PRES SUR E TERM , 10 R I GHT HA!iO O+U t 
C••••• ~IDE COlUHII VECTOR FOR ~~OW•I ll(lUIIOARY CO'lOITI ONS , ••++• 

tfCPIJA,J-II . GE . t OOOOO . O I } , 4 
3 UC'.Il=C~I<Jil-lt"o\IRXI'IT , ll•PI( JA , J-111-t r. • CMAIRX(NI , II+RHOAH 
li Rtn l J~.J- JI , Rto l t I , JJI>ELV·\)'(HI Jh , J- 1 t , Ht ( ,Jil l 
(~HUI'ol , l 'II=CMA fKXI~I,IMI -C:'IAIKXI ~I, II 
( ""'Al A.XC •Jt , 11:.0 . 0 

'IFIPII-I,JI . r.t.IOOOOO . OI S , l, 
) (O{I'•I I •C~I'oll-lt"AIII.XI '·' •I t• l< ?ll l - 1, J II -I G•CM4!RX ( , l , IBI +RHOAM 

II RtiOt l-1, J l , ... lli i, Jll • ELVA.'Hiilt-1, JI , Hti , JIII 
CJo4Al.~ I~T,IMI•C~~IRXI11 , 1MI-C•\IRXINT , IBI 
(MATrt~ J'tT , IO I =O .O 

b IF I ? I I • I, J I • GE . I 000!)0 , Ill 7, 8 
7 CRI'oii•C•CUfi - I C"H<I.X(tii ,I CI•Plt l+ l , J ll - lt:•CMAI~~I>H , I C I • PIIOAH 

J( l( ttJ(I +- 1 , Jl , A.HOl i , JJ.•fLVA~(H(I +l, Jl t HCt ,Jll) 
C'<~ I'U I'H, IM I =(>U II\ X I '.1, t M 1-CMHI\X I NT, (( I 
(IUI~~ I'li , I C I=\1 . 0 

d JFI Pt JD , J tl l . f. t.I OOOOO . OI ~ . 1 0 
'I (1\(', II •C>liiiT I-ICI'AlRXI II I ,I OI•PII JO,J+I II -t G• C'IAIRX I IIT, I U I•I\O<OAI1 

II RI!Ill J O , J •II,RH:lli , Jll•ELVAYIHI JO,J+ll 1Hil 0 JIII 
C~aTo< XI,l,I'II•CMAIRXI~I,JMI-C~A IRXINI,IO I 

(Jo4HRX I'H,Ioli•O.O 
IU O:Afq (JioT , J~I =C!tAIRXI'II ,t t\J - I : ... ATR~ Ifll ,J I • C.IIATRXIIII ,Jillt(MAUXI'H , 

II C. Jo CMAIRX I~I . I O I+IIRIIOI I,Jiti ii.COHPtSEihll/OfLTII 
nELC:CP• C/,yt; II , JI -CA VC.PII ,JI 
C~ l'iiJ •( o\1'1 11-1 1~.-10 1 I,JI* l ~tn~P+6ETAI•PT I t, JI I/DElii•IIALPtiA+ OHC 

IC.P I /l>tll l+IIRMOP • OI I,Jil/I PrR I J , JI•IlfLX• DELlll-lG*CMhl'l.XI ' IT , Il • 
2RII0~'~ l "(>1(11 JA , J-IJ,RUOI I, J llt'tLVAI'tllliJA , I- ll , 111 1 , J 111-I G• CMA T'I.XI'H , 
1 1 PI •~IIO ~ .. t RUTI I 1- I,JI , RHOI (,.lll *ElVA>ItH( l-l,JI , H JI, J li i -IG •~Joh\I RX I 
<,Ill , ICI ·~ H'JAI<I RHO I I +I, J I , Rtlil I I , J I I • E l V~ ~ 1111 t +I , J I , u I I , J 111 - I I; • C.HAfl\ 
5X I 'H , t n t•<tiiOAIII RHO I J O , J >l I , RHO I I ,J ll•~lVAI\t U I JO , J + ll , HI ( , JIll 

r.o r!l 17 
1 1 c~• r~xl~r . t~I•I .O 

(;tt ''Ht•PJI 1 tJ) 

12 (.(! 'T I'IIJC 
(All ~SOLVE IC~AIU ,>M , tlR , ( RI 

'4T•II 
no 1' J •l . ,•~ l 
110 lJ 1•7 , NR I 
UT • ,H • I 

t3 PTI I , JI • CRCIITI 
RE TUI\'1 
UITI 



;::: 

c 

SUBROUTINE VELOCY 
SUB~OUT I~E VEL OC Y ~~~ .~C , IR,ICI 

tJ IHfiiS I ON FK I 12 , 211 , PORt 12 , 271 , HI 12 , 2 7 I , P t 12,271 , P T I 12, 271 , 
IPP 112, 27 1, POT 112 , 211, RHO! 12 , 271 , VI S 112, 271 ,Qt 12 , 27 1, CAVG I1 2, 27 1, 
2CAVGP( 12 , 271 , 0ELC ( 12,271, 5UMCI 12 , 271 , COUIH 112, 271,0 11 ( 12,211, 
30221 12 , 271 , 1>121 12 , 271, VXI 12, 28 1, VZ ( 1), 211 ,CC MATI5500 ), X( 14961, 
4/ ll4~bi,C II49bi ,~I1A T~XI250 ,?1 I 0 CRI2501 ,XII I 124 I , lBI 124 I , CB 1 I 24 I, 
5X82 124 1,162124l , C821241 
COHYO~ OELT,ST,FW TOP , OELX,OElZ ,FK , PO~ ,H ,o,pf,PP , ~HO , V I S ,Q, ~HQP, 

I CAVG , :AVGP ,DELC,G ,BETA,ALPHA ,(;AMMA,~CO~P , SUMC,COU~T , Oli , D22 , 012 , 
2VX ,Vl , NWOC~T , XSI , Z6l ,CSI , XB2 , ZR2,CB2 ,CCMAT 

FOU IVAUIICf tCCIUTill , POT III,Xt II , CMAT RXI Il l, ICCHATI14971,Zil I I , 
IICCMAI129931 , CIIII , ICCMliJ52511 , CR III I 

t--································································ ···-­C•••••TICI S SU~~OUIJNE CAlCULATES THF SEEPAGE VELOC I TIES AT EACH GR I D•••• 
C••••• I~TERFACE ,THE LONG I TUDINAL AND lATE~AL DISPE~SI ON COEFf- • ••• 
c••••• ICI ENTS ARE OETERMINEO FO~ EACH GRID USING A VE LOCITY POWER•• 
c••••• REL AT i n.SH!P , AND THF COMPO~ENTS Of THE DISPERS IONTENSO~ ARE • 
c••••• DEIERMI~EU BY US ING TilE APPROPR IAT E TR ANSFORMATI ONS, ••••• 
t ooooovx • VfLOCITV IN X-OIRECIION. ooooo 
t ••• ••vz • VEL OC ITY IN Z- DIRFCIION, • • ••• 
c •••••OIFF • OIFFUSI ON COEFF ICI EN T ••••• 
C•••••TOKT • TO~TUOSIIY . •••• • 
t •••••OIA • HE0 14~ GRA J ~ SI ZE OIAMETfR. ••• •• 
C•••••v~x ·~-VtlOC IIY AT CENTE~ OF GR I D. ••••• 
t•••••vzz • /-VELOCITY AI CENTER OF GR ID. • • • • • 
t • • • ••Ol • LO~G I IUOINAl OISPERS IO~ COEFFIC I ENT . • ••• • 
C• ••••DT • lATERAl O! SPE~SI ON COEFF I CI ENT . ••••• 
C•• ••• RE • REY~OLOS NUMBER . ••••• 
C•••••OI I , 022, 012 • COMP~~ENTS OF THE DISPERSI ON COEFFICIE~T I ENSO~ . • • • 
c--••••••••••••••••••••••--•••••••••••••••••••••••••--•••• •••••• ••••••-­
c 

00 10 I•I , NR 
nn q J•l.~C 
I FIFK II,Jl . EO. O. O. OR.FKIJ, J-I I . EO. D. OI GO TO 8 
OUG• I 1-l.O I•FKI I , JitfKII , J-11 I I I DEl X•! FKII,J-l l t PQR!I , J l oY! SII,JI• 

IFKIJ , JI • PORII , J-11 • YISI! , J-IIII 
V~I J, JI •OOG+IIPT II, JI-PTII, J· I I I•0 . 5 0G•IRHO II, JI +RHOII oJ-III• 

IIHI I , JI·HII,J-1111 
GO TO 9 

OVXIJ , J I •O. O 
'I CONT I ~UE 

V~ll,! I • VX!I , 21 
VXI I,I ti•VXII , 'ICI 

10 COIITI 'IUE 
00 20 J•I , 'IC 
00 I•) 1•2 ,NR 
l flfKII , J I . EO. O. O. OR. FKII-I, J I . EQ. O. OI GO TO 18 
OOG•I!-2.0I•FKI! , JI•FKII - I . JII/IDELl•IFKII-I . Jl • PORII , JI • VI SI I , JI• 

I f lU I,J l•PORII-l , JitVI Sll-l,JI II 
VZC I, JI•OOG•II PTII , JI-PTII-I , JI I•O. , • G•IRHOI!,J I • RHOII-I , JII• 

IIHII , J I - HI 1- I,JIII 
GO TO 19 

16 VZ!I , JI•O . O 
19 CONTINUE 

Vl!l , JI•V1 12, JI 
VZIIR , JI•Vli~R,JI 

20 CONII'<UE 
OIFF•O . O 
TOKT•0 . 5 
OIA•O. 0965 
00 30 l•l oNR 
00 3D J•I , NC 
VXhVK I I , J 1-0. 5•1 VXl I, J 1-VX I I , J+l I I 
VZ l • VZI I,JI -D. 5•tV111 , JI-VZII+I,JII 
VELX•vu; •vu 
VEll•V ZZ • V ll 
IFIVElX . (O. O.D. ANO. VEll.EO.O. OI GO 10 2 1 
VEl•SQMTIVElX+VELZI 
RE•I VEl • DIA• RHOI I , Jil/VI S I! , JI 
DL•O. D 
01•0. 0 
OIIII, JI•IOl•VX X• VXXI/IVEl•VFli•IOTtVZL• VZZI/tVEl*VEli • OIFFOTORT 
02211,JI • IDTOVXX•VXXI/IVEL• VEL I•I OL• VZZ • V1ZI/IVEL• VEL I+OiffoTORT 
0 121 1, JI•IIOl•U ll t VXX tV ZZI/IVFL>VELI 
GO TO 25 

21 Dllii,JI •O . O 
022 1 I.JI•O. O 
lli211,JI •D . O 

25 SUHCI! , JI•O. O 
COUNTII , JI •D . O 
CAVGPI I,JI •CAVGII , JI 

30 CONI I HUE 
RETUMN 
ENO 



-· ,, 

{. 

SUBROUTINE DISP 
!.UP'*:'l'ITI'.f 1'\J\r» ttt~.t , •.:C. , NP I 1 t:P2 1 f,P\. 1 ',Pl) 

r~ucf N:) 1 :•rJ F .c c 1 7 , 2 7) , POR c 12 , 11) , H 1 12, 21 l , ;:, t 12,27, , P f t 12 , 71) , 
lo'f I 12,27),1'1)11 12 , 271 , 111t:ll 12.711 , Vl5112 , 271 , 01 12 , 271 , CAYGI 12 ,211, 
lCh"lvt' l 11 , )71 , OILr I 12 , 211 , Sv~'-111 , 271 , cr.u•.r 112 , 171 , Oi l I 12 , 27 1, 
\il2l( \ 1 , 11l , 0121 12,l1) 1 VYt 11 , 21H , VZ( 13 , 27l ,((.f4.ATf5500) , X( l49b), 
'•ll I~ 1<>1 , C( I 4'1f>I, C11t. TI\ (( 2SO , l ii, CI!.I2>fl l,:<;. ll241, ZRI 1241 , (11 11 241 , 
<;~i<l1241 , [><21241 , (~212~ 1 
~"~'';'l\ "£L 1 , s' , FWTr'!P , OEL 'IC, rEL l, FK, PO~ , u , !') , ;-T, PP , A;rtO , ·11 s , o , KHOP , 

1 C. A , r, , ::.Av~P , OF Lt , r, , f\F 1 a. , ll ~ .... " . ~4.,..-A , Reo,... ;>- , SVHC, CC"ut:T, 011 , 022 , 01 2 . 
7v ... , V l, • ., .. 0( '4 f, X·H , li11 , (Fq, Xf\2 tZ F\2 , ::01 , c.c~:. T 
F~UIVAlt~tt I CCMftTIII , POIII I , XIII , C~ITR• Il ll, I CC~ATI1~~71,lllll , 
IICC~" Cli'H I , (Il l I, ICC>IA TI SlSII , CQ IIII 

c•··~•• •t,• •••t••, •••• • •••••••••••• • • ••••~•••~•••••••• •••••••••••••••••• • 
C .... Ofhl5 \"O.Rf'IJI I',f r.~LCillATE \ THE i.IIA'Ifif 1'1 CO"<CE'H RAIJ O>I DUE TO •••• 
(..... flJ\1'<~~10·1 . CAV(, I S THEil CCH.lrr.TFO Fn~ Til l\ OI SPf.tS ! fl'< E FfCl• 

($•·····~*····~· · ·· ········ ·· ··· ···*·~····~· ·~··~······~···· · ··········· 
(. 

MR=.I:~-l 
H(:::: 1: 1: -t 

1,n 47 1 ~2 , "q, 

1'0 41 J•2 . ~C 
14=RH1t I, JIll qH<1 1 I, J 1- tt. lPiiHCA VG II 
!H il l Ill , J +l t.l O. O. t) . OR . Oil ll , J ) . fi:/ . 0 . 0 1 r.n TO 31 
O(X' A•l I I . O• w• PO~ I I, J + ll •O£ ll ' ll Il l I, J 1*1'1 1 II , H I I I fi DEl ~•OFL ~ • 

II Pol~ I I , J I • 0 I I I I , .II o POll< I I , J • I I tfl I I I I , J +I I I I l •I CAVG I I , J + I 1-CAV(".I I , J 
lll 

GO TO ll 

31 OC~'-'•O . n 
1 2 lflf'l!ll , J-II . FI) • .J . O. oi\ . Ollll i, J l. H; . o . c.l :;n TOll 

['C U II•II? . v•Wt l'C'R II , J- II*)H l' fl l lll , Jl•UIIIJ , J - 11 1/Ir>flX*OEl .. 
II r1 '\I I , J I • 0 Ill I , J I • PO;:t I I , J • I I• 0 111 I , J - Ill I I • I C.\"/G I I , J 1- C AVG I I , J-1 
~II 
.;'l 10 H 

l' ,,, .,,~~o .o 

H lfi 07< 11•1 , JI . t.J. ,) . (l . OR . 02l fi , JI . EJ . O. C I GO TO 3'> 
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SUBROUTINE MOVPT 
SU~~OUTI~E HOVP T I NR ,NC ,~Pl ,NP7. , NPX , NPZI 

Ol l<fNS 10'1 FK Ill ,271 , POR 112,27 1 ,11112,211 , PI 12 , 271 , PT I 12,271, 
1PP111,271,POTI!1,271,~H0112,171,VISI12 , 271 ,Qil1 , 171 ,CAVC!l2 ,27 1, 
2CAVGPI 12, 271,DELC 112 , 171 , SUI<Ci l2 , 271,COUNT I l 2 , 271 , Dll I 12, 271, 
10 211 12,271 , 0121 12 , 271 , VXII2,281 , Vllll , 27l , CCMATI 55001 ,xtt•'l61, 
4lll4'11d ,C( 14961 , CHAnXI250 , 211 ,CRI2501 , X81 1241 , ZBI1241,CB1 I 241 , 
5X811241,182124I ,C8212~1 

COM'40"4 OE'LT , ST ,FlofTOP,OELX,UELZ ,FK,PO~,II,P,PT,PP , RHO,VIS ,Q , AHOP, 

l CAVG , CAVGP , UELC , G,BE TA , ALPHA , GAHHA,RCOMP,SUMC, COUNT,OlloD22, 0 12 , 
2VX ,VZ, NWDCNT ,X8 l,ZB!,C81 , XB2 ,ZBZ, CB2 , CCMAT 
EQU IVALE~CE ICCHATIII,POTili,XIIl,CMATRXIlll, ICCMATII4971,ZIIII , 

liCCfoiATI2'1911,Cil ll , ICCHATI~25li , CRI Ill 
c 
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c •••••THtS SUBROUTINE CORRECTS THE CONCENTRAT ION OF EACH MOVING POINT ••• 
C .. ••• FOR TilE EFFECTS OF DISPERSI ON IN THE PREVIOUS TIME STEP ooooo 
C••••• (THIS LOGICALLY SHOULD HAVE AEEN OD~E AT THE END Of THE • • ••• 
c••••• ' PREV IOUS TIME STEP BUT FOR PROGRAMMING EFFIC IENCY WAS • • ••• 
C•••• • OELAYEO I. ALSO, THE VELOC ITY OF EACH PO INT IS DETERMIN ED oooo 
( ooooo AND THE PO INT MOVED ACCORDINGLY. POINTS HOVING OUT OF !HE ooo 
C••••• ~OOEL ARE LOCATED AND RE-ENTERED AT AN APPROPRIAT E INFLOW ooo 
Cooooo ROUNDA RY. A RECORD OF SUMC AND COUNT IS MA INT AI NED AND CAVC•• 
C••••• I S RECALCULATE D FOR EACH CRID. 
t ooooovxx , vzz • VELOCITY COMPONENTS Of HOYINC POINT . •• 
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PX•NPX 
PZ•NPZ 
AL ENX•DEL X ON( 

ALENZ•OELZ• NR 
AD I SX•OElX/PX 
ADI Sl•OEL ZIP l 
DO'> I•I , NPI 
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NI2•X6lll i/DELX+l . O 
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APPENDIX H 

LIST OF SYMBOLS USED IN THIS STUDY 

Definition 

Fourier coefficients 

Square coefficient matrix 
1jlt.x

1 Coefficient in stability analysis equal to --2--

Width of injected tracer along input boundary 
l;t.X 2 Coefficient in stability analysis equal to --2--

~lass concentration of tracer 

Reference concentration 

Maximum concentration 

Formation compressibility factor 

Mass concentration of tracer in produced fluid 

Concentration of tracer i n fluid e l ement 

Deviation of concentration at a point from cross­
sectional average 

Dispersion coefficient 

Total dispersion coefficient 

Effective diffusion coefficient 

Molecular diffusion coefficient 

Dispersion coefficient, a second rank tensor 

Longitudinal dispersion coefficient 

Transverse (or lateral ) dispersion coefficient 

Pore size parameter 

Coefficient in stabi lity analysis equal to 

Aquifer thickness 

Error at node of grid (P,Q,R) at time level St.t 

Coefficients for finite di fference scheme and defined 
by Eqs. D-19 

Error between numerical and analytical solutions 

Coefficients for f i nite difference scheme and defined 
by Eqs . D-19 

Even funct i on of Peclet number 
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Units 

L· 

FT2L - 4 

FT2L-4 

FT2L-4 

L2F-l 

FT2L-4 

FT2L -4 

FT2L-4 

L2T- l 

L2T-l 

L 2T-l 

L2T- l 

L2T-l 

L2T-l 

1.21 -1 

L 

L 



g 

+ H­
x.x. 

1 J 

h" 

h 

i ,j ,k 

ij 

K 

L 

L 

M 

M 

m 

N 

n 

p 

p 
0 

[P] 

Q 

q 

Definition 

Even function of Reynolds number 

Coefficients for fini t o difference scheme and defined 
by Eqs . D-19 

Gravitational acceleration 

Coefficient s for finite difference scheme and defined 
by Eqs . D-19 

Piezometric head 

Elevation above dat um 

Subscript used to denote row and columns of finite 
diffe rence gri d 

Subscript used to denote tensor where i and j = 1,2,3 

Tracer mass flux components averaged over cross section 
of volume element (relative to pore area) 

Diffusive mass flux components in fluid element 

Hydraulic conductivity 

Rel at i ve permeability to f luid 

Permeability in x.-direction 
1 

Number of grids in x
3
-directton 

Length of sea-water wedge 

Length in x_-directions 
.) 

Units 

L 

L 

L 

L 

Total mass flow rate FL -lT 

Number of grids in x2-direction 

Mass of volume element 

Mnss f l ow rate of source or sink 

Muss flow r at e of tracer 

Tracer mass in volume element 

Tracer mass flow rate of source or sink 

Number of rows in mat rix 

Coefficients calculated for the finite difference 
scheme and defined in Eqs . C-7 

Number of grids in x1-direction 

Number of colwnns in matrix 

Fl uid pressur e 

Reference pressure 

Column vect or 

Rate of fluid production 

Fresh-water flow rate per unit width of ocean front 
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FL -1T2 

FL -lT 

FL-lT 

FL-1T2 

FL -lT 



q 

IR 

r 

[rhs] 

s 

T 

T 

T .. 
lJ 

T .. 
l J 

0 

T .. 
lJ 

t 

' 

t+l 

t-1 

t+LI 

v 
p 

v 

v 

y 

a 

B 

t::.V 

Definition 

Volume flux 

Reynolds number 

Radius 

Column vector 

Saturation of fluid 

Temperature 

Tortuosity 

Tortuosity factor, a second rank tensor 

Tortuosity on microscopic scale, a second rank tensor 

Deviation of tortuosity at a point from cross-.sectional 
average 

Time 

New time level 

Previous time level 

Time level between t and t+l 

Seepage velocity components (flow per unit pore area) 

Seepage velocity of production fluid 

Magnitude of velocity vector 

Velocity of fluid element 

Velocity of tracer in fluid element 

Deviation of velocity at a point from cross-sectional 
average 

Velocity components of 1th moving point 

Cartesian coordinates 

Rotated cartesian coordinates 

Coordinates of 1th moving point 

Thickness of fresh-water flow 

Factor relating concentration and density 

Fluid compressibility 

Grid dimensions in rotated coordinat es 

Dimensions of volume element 

Cross-sectional area of volume element perpendicul ar to 
x1 , x2 , and x3 directions (i.e., LIA1 = t::.x2t~x3) 

Volume of volume element (LIY a t::.x 1t~x2t~x3) 
Coefficient in finite difference equation defined 
in Eq. C-7 
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Units 

L 

T 

T 

T 

T 

LT-l 

LT-1 

LT-l 

LT-1 

LT-l 

L 

L 

L 

L 

L 

L 



li t 

0 

p 

~0 

110 

T 

erf 

erfc 

Definition 

Time increment 

Time increment in previous time step 

Difference i n density, ps-pf 

Longitudinal dispersivity 

Lateral dispersivity 

Coefficient of dispersivity, a fourth rank tensor 

Length of tortuous tube 

Shortest distance between ends of tortuous tube 

Amplification factor in stability analysis 

Height of ocean above top of aquifer 

Coefficient for finite differ ence equation defi ned 
i n Eq. C-7 

Fluid density 

Reference density 

Fresh water density 

Salt water density 

Density of produced fluid 

Porosity 

Reference porosity 

Viscosity 

Reference viscosity 

Kinematic viscosity 

Kronecker delta 

Factor relating viscosity and concentration 

Capil l ary tube coefficient 

Factor defined by p/(P-aC) 

Coeffi cient equa l to mr/Nllx1 

Coefficient equal to ntr/Ml!x2 

Coefficient equal to n1T/Lt~x3 
Potential function 

Stream function 

Error function 

Complimentary error function 
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Units 

T 

L 

L 

L 

L 

L 

L 

FT2L-4 

FT2L-4 

FT2L -4 

FT2L- 4 

FT2L-4 
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K<-y !;o)rds: Disporsion, ~ater Quality, ~wocrical Simulation, Ground ll'ater 

!\bstract: A ilo•~ equation for a •ixture of ~niscible fluids was derived by 
comb~ning the Ja1~ of conservation of mass, Darcy's law, and an equation of 
s t ate descr ibins the pr essuro-volume-tompol·n ture-conccntration relationship. 
The result is an equation involving t "'o dependent variab les, pressure and 
concentration. A relati onship for detc~ining concentration was derived by 
expros:.ing a continuity equation for t he dispersed tracer . An implici t 
r.U!Ierica l technique "as uscJ to solve t he f low equation for pressure and the 
Method of charactet·isti cs with a tensor transfon:~ation was used to solve the 
con\'CC~ive-di spersl on equation . The r esults from the flm• equati on were 
used in solving the convective-dispers i on equation and the results from the 
co11vective-dispersion equation ~<ere then used to resolve the flo~< equation . 
The cowputer stmulato•· successfully sol ved the longitudinal dispersion prob­
le~ and the longitt~inal and lateral dispersion probleM. Using the tensor 
transfonr.ation , probl ems of longit~dinal and lateral dispersion wer e success­
tully solved in a rotated co-ordinat e sys tem. The computer simul ator was used 
to solve the salt-water i ntrusion pr oblem. The numerical results for the f resh 
"ater head in t he aquifer closely matched those obt ained analytically. 

"efer encc: ReJdcll , Donald 1 •• and Daniel K. Sunada, Colorado State University, 
Hydrology Paper No. 4l(June 1970) "lo.'umerical Simulat ion of 
Dispersion in Groundwater Aquifers." 

Key 11nrJs : Disper s i on, ll'a tet· Qual it}'. l\u111er i cal Simulation, Ground l'l:lter 

Abstrn.:l: A I'I ON equat i on for a mixt ur e of miscib l e fluids l<as derived by 
.oooblni.nc tho Ia~< of conse11:ation of mass, Oarc>·'s la~o•, and an equation of 
state describing t he pressure-vol~e-te•pcrature-concentration relationship. 
The r esult is an equation involving two dependent variables, pressure and 
conc.-nnation. A relationship for detcrlilining concentration ~<as derived by 
l'xpressing a continui ty equation for the dispcl'Sed tracer . An implicit 
nmllcl· ical technique was used to solve the flo"· equation for pres•uro and the 
L>ethod of charac t edstics with a tensor t ransfot'llation ~<as used to solve the 
convective-dispersion equation. 'M1e results fr001 the flow equation were 
used in solving the convective-dispersi on equation and the results from the 
convect ive-dispersion equation ~<ere then used to resolve the flow equation. 
The ~o,..pu tcr simulator successfully solved the longitudinal dispersion prob­
l em and the lon~;.ituJinal and latera l disper~ion problem. Using the tensor 
transfomation, problems of longi tuJ i na l ami l ater a l dispersion ~<ere success­
fully soh·cd in a rotated co-ordinate systco. The c01oputer silllulator was used 
::o sohe the satt-;.·ater intrus ion probl e•. The ntmeri cal results for the f r esh 
,.·ater head in the;! aquifer closely aatchoo those obtained analytically. 

R<"foronce: RcJdc l l , Donald L. :lnd Daniel K. Sunada , Col or3do State University, 
llydrology Paper No. 4l(.lune 1970) "Nun:er ical Simulation of 
Dispersion i n Ground~<ater Aqui fe.rs." 

Key l'lords: Di spersion, Water Quality, NUiilerical Simulation, Ground Water 

Abstract : A flolf equation for a mixture of miscible fluids >~as derived by 
combi ning tho lalf of conservation of mass, Darcy's law, and an equation of 
s tate describing the pressure-volume-temperature-concentration rel a t ionshi p. 
The result is an equation involving t~<o dependent variables, pressure and 
concentration. A relationship for determining concentration was derived by 
expressing a continuity equation for the dispersed tracer. An implicit 
nuacrical techni'lue was used to solve the flow equation for pressure and the 
met hod of character istics with a tensor transfomation was used to solve the 
convect ive-d ispersion equation. The results from the flo.~ equation were 
used in solving the conve.:tive- disper s ion equation and the results from the 
convective-dispersion equation were then used to resolve the fl01< equati on. 
Tho compute1· s i.,..lator successfully solved the longitudinal dispersion prob­
le• and the l ongitudinal and lateral disJ>er s ion problem. Usin~: the t ensor 
transfor-.ation, problCils of longitudinal and lateral dispersion were success­
fully solved in a rotated co- ordinate system. The computer simulator was used 
to solve the sal t -water intrusion probl em. The numeri ca l results for the fresh 
water head i n the aquife r closely matched those obtained analyl: ically. 

Reference: Reddell, Donald L. and Daniel K. Sunada, Col orado State Univer sity, 
llydrology Paper No. 4l (June 1970) "NUJ~erical Simul3tion of 
Oispers i on 111 Gr oundwater Aquifers." 

Key Words: Dispersion, ll'ater Quality , Numerical Simulation, Ground Water 

Abstract: A flow equation for a mixture of miscible fluids was derived by 
COIIIbining tho law of conservation of •ass , Darcy' s law, and an equation of 
s tate describing the pressure-volume-temperature-concentration relationship. 
The result is an equation i nvolving two dependent variables, pressure and 
concent ration. A relationship for determining concentration was derived by 
expressing a continuity equation f o1· the dispersed tracer. An implicit 
numerical technique ~<as used to sol ve t he flow equation for pressur e and t he 
method of characteristics with a tensor transformation was used to solve tho 
convective-dispersion equation. The results from the flow equation were 
used in solving the convective-dispersion equation and the results fra. the 
convect ive-dispersion equation wer e t hen used to r esolve the flow equation. 
The comput er simulator successfully solved the longitudinal di spersion prob­
l em and. t he l ongitudi nal and latet·al disper sion probl em. Using t he tensor 
transformation, problems of longi tudinal and lateral dispersion were success­
fully solved in a rotated co-ordinate systea. The computer simulato•· was used 
t o solve the sa1t-wate1· intrusion problem. The nu111erical results for the fresh 
water head in the aquifer closely matcl1ed those obtained analytically. 

Reference: Reddell, Donald L. and Daniel K. Sunada, Colorado State Universi ty, 
Hydro logy Paper No . 41 (June 1970) "NUJaerical Si~nulation of 
Dispersi on in Ground1<ater Aquifers ." 
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