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1. INTRODUCTION 

1. 1 Object 

A complete and accurate description of the structural action 

occurring in the transfer of loads from reinforced concrete flat plate 

structures to their supporting columns has not yet been obtained. 

* Attempts (4 .. 5, 6" 8 .. 9) have been made at determining empirical 

equations which predict the shear strength at the supporting column in 

flat plates. These equations have been developed on the basis of tests 

of models which are purported to represent the portion of the plate 

within the line of contraflexure for the principal moment. As is 

pointed out by Mowrer and Vanderbilt (10) .. these test specimens are 

not truly repres entative of the structural action of an interior panel 

of a flat plate 'with respect to deflections .. shears and in-plane forces 

and more closely resemble footings than continuous structures. 

MOiNrer and Vanderbilt proposed a new type of test specimen (Fig. 1. I) 

to more closely model the structural action of a continuous flat plate 

around an interior column. 

The reinforced concrete test specimen of Fig. 1. 1 was 

developed after considerations of the elastic model shown in Fig. 1.2a. 

The elastic plate of Fig. 1. 2a is a square .. uniformly-loaded plate 

with clamped edges and a point support at the center. The line of 

contraflexure for zero principal moments in the clamped plate is 

* Numbers in parentheses refer to entries in bibliography. 
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shown by a dashed line. Shown in Fig. 1.2b are the line of 

contraflexure from 1. 2a and the line of contraflexure for a square, 

interior, flat plate panel on point supports. An "interior" panel is 

here defined as a panel which is one of an infinite array of identical 

panels. In real structures every panel which has at least one 

continuous panel on each side is closely an "interior" panel. 

As is evident in Fig. 1. 2b the clamped plate of 1. 2a closely 

models the conditions around an interior column of a continuous flat 

plate structure. Comparisons of orthogonal m~)lnents and deflectio:1s 

show similar agreement.. While not shown, studies of a clamped 

plate having a square column showed similar agreement with a 

continuous plate on the same size of s quare columns. 

The dimensions of the reinforced concrete test specimen were 

chosen to model the clamped plate of Fig. 1. 2a following a procedure 

which is described elsewhere (10). As is shown in Chapter 4 the edge 

beams of the reinforced concrete test structure were not as rigid in 

torsion as intended and thus the reinforced concrete test specimen 

does not model the conditions around a column in an interior panel as 

closely as desired. It does, however, more closely model the 

structure than do the "footing" type of specimens which have been 

used in prior studies. 

The object of this study is to analytically define the elastic 

behavior of the test specimen of Fig. 1. 1. Main emphasis is on 
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the determination of shear force distribution at the column and the 

location of the line of contraflexure about the column. 

1.2 Scope 

The elastic analyses of the specimen were based on the 

ordinary theory of flexure for beams and plates and were performed 

using the finite difference method. The Control Data Corporation 

Model 6400 digital computer at Colorado State University was used 

to generate and solve the sets of silnultaneous finite difference 

equations which define the deflected surface of the plate. Analyses 

were performed for several rectangular column sizes and for 

different edge beam torsional and flexural rigidities. 

The mathematical model shown in Fig. 1. 3 was used in 

the analyses of the test specimen. The edge beam in the model 

is assumed to be a line beam. The neutral axis of the edge beam 

is assumed to be in the plane of the neutral surface of the plate 

in order to preclude consideration of tee-beam action. Torsion 

in the beam is assumed uniform between node points. Non

deflecting point supports are located at each of the four corners of 

the plate and the center column is assumed rigid. The plate is 

loaded perpendicular to the plane of the plate with unifornl 

load q. 

A solution for the plate deflection is obtained by first 

setting up a square grid on the plate. At each node point on the 
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grid an opera tor form of the governing differential equation is 

written which describes the deflection at the node point in terms of 

the deflections at surrounding node points. The solution of the 

simultaneous set of difference equations for all the node points 

on the grid yields the deflection of each node point. Using these 

deflections # moments and shears in the specimen are computed. 

Results of the analyses include deflections for the total 

plate; shear force distribution around the column; the orthogonal 

moments m and m # the twisting moment m # and the maximum 
x y xy 

principal moments; and the location of the lines of contraflexure 

around the column. 

Chapter 2 contains a discussion of the plate operators us ed 

and Chapter 3 contains a description of the computer programs 

used in the analyses. The effect of varying the beam rigidity 

and column size on the deflections# shears# and moments in 

the plate are discussed in Chapter 4. Chapter 5 contains the 

summary and conclusions o Appendices A and B are a more 

detailed discussion of the computer programs. 

1. 3 Acknowledgments 

This report was prepared as a Master's Thesis under the 

direction of Dr. M. D. Vanderbilt# Associate Professor of Civil 

Engineering. Financial support for the project was a grant by the 

National Science Foundation .. 



5 

1. 4 Notation 

The following notation is used in this thesis. 

a 

b 

c 

D 

G 

h 

H 

H' 

I s 

= 

= 

= 

= 

= 

= 

= 

= 

= 

width of beam 

depth of beam 

3 a 
a b (1 - O. 63 b > 

a measure of the torsional rigidity of a beam 
cross-section 

E I s s 
2 

(1 - .... > 

modulus of elasticity of the beam material 

modulus of elasticity of the slab material 

Eb 
2(1 + .... > = shear modulus of elasticity of the 

beam material 

distance between node points 

:~~ = ratio of beam flexural stiffness to plate 

stiffness 

Eblb 
Dh = a measure of the flexural stiffness of a 

beam 

= moment of inertia of the cross-section of a 
beam 

:. :. moment of inertia per unit width of plate 



J = 

JI = 

L = 

m = 

m = max 

m = 

m = 

M = 

n = 

q .: 

Q = 

R = 

t = 

T = 

v = 

v = 

= 

6 

~;L = ratio of beam torsional stiffness to plate 

stiffness 

~~ = a measure of the torsional stiffness of a 

beam 

half the length of the side on the mathematical 
model (Fig. 1. 3) 

bending or twisting moment per unit width of 
plate 

maximum principal moment 

bending or twisting moment on a grid width of 
plate h 
iii =mh 

bending or twisting moment acting on a width of 
plate h/2 
- m mh m' =-=--

2 2 

bending moment in a beam 

number of node points or deflection equations 

uniformly distributed load per unit of area 

total load acting at a node point 

plate reaction 

thickness of the plate 

torsional moment in a beam 

vertical shear per unit width of plate 

vertical shear acting on a width of plate of h 
v = vh 

vertical shear acting on a width of plate of h/2 



v 

w 

XI YI Z 

!.L 

= 

= 

= 

= 

7 

vertical shear in a beam 

deflection of the plate l positive downward 

rectangular reference coordinates 

Poisson's ratio 



2. DEVELOPMENT OF PLATE OPERA TORS 

The ordin3.ry theory of flexure of beams and flat plates was 

assumed to describe the structural action of the specimen and is 

discussed in section 2. 2. The analyses were accolnplished using 

both the calculus of finite differences 'Nhich is discussed in section 

2. 3 and the Newmark plate analog which is discu.3sed in section 2. 4. 

Presentation and derivation of all operators used in the analyses are 

inc luded in this chapter. 

Following is a list of differential equations for medium thick 

plates and beams. COlnplete derivation of the plate equations is 

found in Timoshenko (14) and the beam equations derivations are 

given by Timoshenko (15). 

The governing differential equation for plates is 

444 a w 28·w a VI q -- + ---- + -- = -
a 4 a 2a 2 a 4 D x x Y y 

(2. 1) 

The bending Inoments, twisting mOlnents J shears and 

reactions are related to the deflections by the following equations. 

(2. 2) 

(2. 3) 
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2 a \V 
m = -D (1-.... > (--) 

xy axBy 

am am a3 a3 x xv w w v =--+-~= -D (--+---) 
x ax ay ax3 axBy2 

am am a3w 3 
v =~+ !Y =-D(--+ aw) 

y ay ax ay3 Byax2 

am a3 a3 xv w w 
R = v + -~ = -D (-- + 2 ---) 

x x By a 3 a a 2 x x y 

The fundamental equations of beam flexure are: 

4 
d "W 

q = -Eblb -d 4 
x 

d dw T = -CG-(-) 
dx dy 

(2.4) 

(2. 5) 

(2. 6) 

(2. 7) 

(2.8) 

(2. 9) 

(2. 10) 

(2. 11) 

(2. 12) 

A solution of the governing equation for the deflection w which 

satisfies given boundary conditions for the plate will lead to the 

solution of shears and Inoments in the plate through the use of the 

above equations. 
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2. 3 Finite Difference Op~rators 

The calculus of finite differences was used to derive the 

operator forms of the differential equations at interior points on the 

specimen where the plate is continuous and no difficult boundary 

conditions exist. Following is the basic theory of finite differences 

and the derivation of basic operator forms as well as those used in 

the analyses. 

The illustration below sho\vs the deflected shape of what may 

be a beam or a cross-section view of a plate in the x-y plane. The 

deflected shape is approximated by straight lines between node points 

spaced at h. 

r-----------------------------------------4-X 
w. - w. 1 

slope = J J-
h 

w'+1 - w. 
slope = J . J 

h 

j 

~ h -~)~I(F--- h -~>I 

y 

deflection 
curve 

[w'+1 - w.l + [w. - w. 1] 
The f!.verao-e slope at J' = J _1 J J - -

o 2h 

(2. 13) 
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The average slope at j in operator form is 

(2. 14) 

The curvature at point j is obtained by operating on equation 2. 14. 

a a a 
2 [ w '+ 1 - w.] [w. - w. 1 ] 

W W J J J J-117- (-) = h - = .------
ax ax ax2 h 

(2. 15) 

(2. 16) 

Similarly the third and fourth order operators are derived. 

2 3 1 2 0 ~ (a W) = a w = _1_ [+1-___ +1 ___ ... J. ___ 4-I-_2 __ --I-11]w (2. 1 7) 
ax ax2 ax3 2h3 T 

Similar operators in the y direction are obtained as above. 

1 

aw 1 
-=-ay 2h w (2. 19) o 

-1 
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1 

1 

1 

-2 

o 

2 

-1 

1 

-4 

6 

-4 

1 

w (2. 20) 

w (2. 21) 

w (2. 22) 
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-
1 -2 1 

224 a (a w) _ a 'W 1 
-2" --2 - 2 2 = 114 
ax ay ax ay 

-2 4 -2 w (2. 23) 

1 -2 1 

-

Now referring to the governing differential equation 

444 
aw+ 2 aw +aw=.-S 

4 2 2 a 4 D ax ax ay y 
(2. 1) 

the first term is expressed by operator (2. 18); the second term is 

expressed by operator (2. 23) multiplied by two; and the third term is 

expressed by operator (2. 22). Summing the three equations and 

multiplying both sides by h 
4 

results in equation (2. 24)" the general 

13 point deflection operator for plates. 

1 
- f-

2 -8 2 

11 -8 20 -8 .1 
I J 

(2 .. 24) 

2 -8 2 

1 - -
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Using the above derived operators and the fundamental 

equations for the flexure of plates the following operators may be 

derived. 

2 2 a \v a w 
m =-D(-+~--) 

x ax2 ay2 

~ 

-1-1 

-1 2+21-1 -1 w (2. 25) 

-fJ. 

-

2 2 a w a w m = -D (-+ 1-1-) 
Y ay2 ax2 

- -1 

D -fJ. 2+21-1 -1-1 
w (2. 26) 

-1 

-
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? a .... w 
m = -D (1-1-1) (-- ) 

xy axay 

1 -1 

-1 + 1 

w 

3 3 2 2 
a w a w aw a w a w 

v x = -D (--3 + - 2) = -D ax (--2 + --2 ) 
ax ax8y ax ay 

~ -
-1 0 +1 

1-1 +4 0 -4 ,+1 
I I 

-1 0 ~1 

~ -
3 3 2 2 a w a·w aw a w a w 

v = -D (-+--) = -D- (-+-) 
y a 3 a a 2 ay a 2 a 2 y Y x Y x 

(2. 2'1) 

w (2. 28) 
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- ±1 

+1 -4 + 1 

D 0 0 0 
w (2.29) 

-1 +4 -1 

-1 - f--

2. 4 Newmark Plate Analog Operators 

The above operators have been easily derived using the 

calculus of finite differences. For more difficult operators involving 

discontinuities or special boundary conditions a model called 

Newmark's plate analog is more conveniently used (11). Figure 2.1 

shows the plate analog. It is composed of rigid bars connecting 

elastic hinges .. with torsion springs connecting parallel bars.. The 

following are characteristics of the analogous plateo 

1. The bars are weightles s and rigid. 
2. The mass of the plate and external loads are concentrated 

at the hinges. 
3.. The resultant of direct stresses are bending moments 

acting at the elastic hinges and at the ends of each bar. 
4. The resultant of the vertical shearing stresses are 

shearing forces acting at the elastic hinges and at the 
ends of each bar. 

5~ The resultant of the horizontal shearing stresses are 
twisting moments concentrated in the torsion springs. 
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The form of the equations governing deflections of the model 

are exactly the same as the finite difference form of the governing 

fourth order differential equation from the theory of flexure of plates. 

The operators obtained using the plate analog are described 

below. 

(a) _]\1oment Operators 

m and iii are the same form as m and m obtained by 
ox oy x y 

finite difference calculus. Referring to Fig. 2. 2" m and mare 
ox oy 

given by the expressions 

D 
m 

ox h 

m 
oy 

-1 

-J.l 

-J.1 

2+2J.l -1 
w (2. 30) 

-J.l 

-1 

2+2J.l -J.l w (2. 31) 

-1 
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niB is of the same form as m from the finite difference 
xy xy 

calculus" but it is applied to obtain the torsion in the torsion springs 

in quadrant B of Fig. 2.2 instead of the torsion at joint o. The 

torsional moment operators for the four quadrants around joint 0 are 

given belo\v. 
{,jOint 0 

1-~ -1+ 

B 
D B m 
h • w (2. 32) xy 

-1 +jJ. 1-jJ. 

1-jJ. -1+ 

-A D A m -- • w (2. 33) xy h 

-1+jJ. 1-jJ. 

'''-joint 0 
joint 0 

1-f.l "'-I +~ 

-c D C m =- • w (2. 34) xy h 

-1+~ I-jJ. 

1-jJ. -1 +jJ. 

D 
D D m =- • w (2. 35) xy h 

-1+\..1 1-jJ. 

joint oj 
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(b) Shear Operators 

The shear operator is derived using Fig. 2. 2 as follows. The 

sum of the moments about end n of bar on is equal to zero. 

-D -A 
(v )(h) + m - m + m - m = 0 

on oy ny xy xy 
(2. 36) 

1 - D -A 
v =-(-m +m -m +m) 

on h oy ny xy xy 
(2. 37) 

Substituting the operator forlns of the terms on the right side of 

equation (2. 37) gives 

D 
v 

on h2 

and similarly 

v 
ow 

-

-1 

1 

.1 
I 

-

-

5 -1 

w (2. 38) 
-5 1 

1 
-I-

-
1 -1 

-5 
w I 

5 
(2. 39) 

1 -1 

-
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- -
1 -1 

D 
I w 

1-1 
(2. 40) 

+5 -5 
I 

1 -1 

-

-
-1 

-I--

-1 5 -1 

D 
·v 2 os 

h 

w (2. 41) 
1 1 -5 

-

The operators for the beam shear at the northwest corner 

support are derived as follows from Fig. 2. 3. 

To obtain V at the corner set the sum of the moments about 
oe 

end e of bar oe equal to zero. 

- -B (V )(h) + (v' )(h) + M + m' + m- M - m I = 0 
oe oe ox ox xy ex ex 

(2. 42) 

M ror mBM mt 
V = -v' -~ -~ - _x.x. + -.3x + ~ 

oe oe h h h h h 
(2. 43) 

Substituting the operator forms of the terms on the right side of 

equation (2. 43) gives 



V 
oe 

D 

-

IHI 
I 
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...!.~ 
2 2 

-3HI 

.!. - ~ 
2 2 

3H' I-H' 

1 ~ --+-
2 2 

I w (2. 44) 

To obtain V the sum of the moments about end s of bar os 
os 

is set equal to zero. 

(V )(h) + (v' )(h) - M - m' - m B + M + m' = 0 (2.45) 
os os oy oy xy oy sy 

M m' m
B 

M or 
V = - VI + ~ + ~ + ~ -~ -~ 

os os h h h h h 

Substituting the operator forms of the terms on the right side of 

equation (2.46) gives 

v 
os 

.!._f.1 
2 2 

1 ~ 
~-+-

2 2 

-HI 
-f----

3H' 

-3HI 

HI 

1 .... --+-
2 2 

.!. _J~: 
2 2 

w. 

(2. 46) 

(2. 47) 
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(c) Spandrel Beam Operators 

The deflection operator for an edge beam is found as 

follows: 

Referring to Fig. 2. 4 the vertical forces at joint 0 are 

summed giving, 

(V + v' ) -v - (V + v' ) + Q = 0 • oe oe os ow ow 
(2.48) 

Next moments about end e of bar oe are summed giving 

(V + 'V, )h + M + mt + fiB - M - mt = 0 
oe oe ox ox xy ex ex 

(2. 48) 

which reduces to 

- 1 -B 
(V + v' ) = + - (-M - m' - m + M + mr). (2. 50} 

oe oe h ox ox xy ex ex 

A summation of moments about end w of bar ow gives 

- --c 
(V + v' )h + M + m' + m - M - m' = 0 ow ow wx wx xy ox ox 

(2. 51) 

which reduces to 

(V + vr ) = + ! ( -M· - m' - m C + M + m' ). (2. 52) 
ow ow h wx wx xy ox ox 

Now substitution of equation {2. 50} and equation (2. 52) into 

equation (2. 48) leads to 

~ (-M m' _fiB + M + m' ) - v - ! (-M - m' 
h ox - ox xy ex ex os h wx wx 

-C --m + M + m' ) + Q = 0 
xy ox ox 

(2. 53) 



23 

which may be rewritten as 

roB M m' M m' 
2 2 ~ ex ex wx wx 
=M - -m - +-- +-- +----+ ---
h ox h ox h h h h h 

-c m 
+~ - v' + Q = O. 

h os 

Finally the substitution of the operator forms of the terms in 

(2. 54) 

equation (2. 54) gives the following deflection operator for the edge 

beam. 

roo-
I.l. I.l. -

-(1+1.l.) F z 

1. + H' -(4+4H') (10+6Ht) -(4+4H') ,(i+Hf) ,2 
I I 

Qh2 
w=--

D (2. 55) 

2-1.l. -7+ .... 2-1.l. 
z z 

1 
--- -~ -

(d) Fict~tious Point Operators on the Spandrelj3ea..!!! 

Following is the derivation of the operator which provides the 

additional eqaations necessary for the fictitious points. 

The operator is derived from the equation expressing equilib-

rium of moments ahout the axis of the edge beam in Fig. 2. 4. 
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T -T +m =0 
ow oe oy' 

(2. 56) 

J'D ( _ w ) 
Tow =2h -wsw + wnw + Ws n (2. 57) 

J'D T = -- (-w + W + w - w ) 
oe 2h s n se ne 

(2. 58) 

Substituting the operator forms of the terms in equation (2. 56) and 

dividing by ~ gives equation (2.59). 

JI -2(J'+1) J' 

-2 .... 4(1+ .... ) -2tJ. 

"- t-

w=o (2. 59) 

_Jf 2(J'-1) _Jf 

This equation is applied at every node point on the edge beam (except 

at the corner) to provide the necessary extra equations for determin-

ing the deflections of the points outside the plate. 

Following is a derivation of the fictitious point operators at 

the corner of the slab. 

Set the summation of torque about the x axis at the corner 

joint equal to zero in Fig. 2. 3. 

M + m' -T = 0 
oy oy oe 

(2. 60) 

Substituting the operator forins of the terms in equation (2. 60) gives 



_J.L 
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1 JI JI 
-H'---- +-

2 2 2 

_J.L 
2H'+1+p- 2 

/' 
corner 

_H,_l+J' J' 
2 2 2 

Similarly torsion about y at the corner joint = O. 

M + mt + T = 0 
ox ox os 

w = o. (2. 61) 

(2. 62) 

Substituting the operator forms of the terms in equation (2. 62) gives 

_J.L -
2 

1 J' 1 J' 
-H'-"2-2 ?'H'+1+u -H'--+=-

2 a 
/ 

w = O. 

corner 
JI _p- J' 
2 2 2 

-

(f) Deflection Operator for Points Adjacent to the Corner of the 
--Column--------

(2. 63) 

The corner of the column is a peculiar boundary because it is 

essentially the orthogorlal intersection of two clamped edges. The 

13 point deflection operator for plates may not be simply applied at 

grid points adjacent to the column corner (i and j in figure below) using 
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the usual technique of reflecting operator values across clamped edge 

boundaries. The operator must be broken into its component parts 

and specially derived for these grid points. 

i 

j 
V///,///// 

~ 
V 

~ 
V 
V 
v 

Following is the derivation of the deflection operators at the 

two grid points i and j. 

Using Fig. 2. 2 as a reference set the summation of vertical 

forces on joint 0 equal to zero. 

v +v -v -v -Q=O 
ow os on oe 

(2. 64) 

Or solving for Q 

Q = v +v - v - v 
ow os on oe 

(2. 65) 

Now obtain the operator form for all terms on the right hand 

side of equation (2. 65). The general operator form for v is 
on 

derived for equation (2. 38) and the operator forms for v ,v and 
ow oe 
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v are shown in equations (2.39) through (2. 41). These operators 
os 

are now derived for point i adjacent to the column corner. 

1 ( - -D -A v = - -m + m - m + m ) 
on h oy ny xy xy 

(2. 66) 

~ -
-1 

-1 5 -1 

1 -5 1 
w (2. 67) 

~'/"/" 

~ 
~ '; 

'-- -

1 ( - - -C -B) v = - -m + m - m + m 
os h sy oy xy xy (2. 68) 

-1 

-1 6 -1 
w (2. 69) 

1 + J.l 
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1 (_ + _ _B + _A ) 
v oe = h -mox mex - m xy mxy (2. 70) 

-

1 -1 

+1 -5 +5 -1 
w (2. 71) 

v ,'//' '/" /'" 
~ 
~ 
~ 

-

1 ( - -c -D) v = - +m - m - m + m 
ow h ox wx xy xy (2. 72) 

~ -
1 -1 

= 1 -5 5 -1 
w (2. 73) 

1 
~'//'~'/// 

~ 
~ 

~ . -'--
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Substitution of equations (2.67}1 (2. 69>., (2. 71) and (2.73) into 

equation (2. 65) results in the deflection operator (2. 74) at the points 

adjacent to the column. 

-
-

2 

+1 -8 

2+!J. 

-

+1 
r--

-8 

21 

/ ////, 

~. 
~ 

2 

-8 +1 

'// / / / 

h4 
w = ~- (2. 74) 

D 

A similar equation results for the other point adjacent to the 

corner of the column and is given as equation (2. 75) 

+1 

2 -8 2+!J. 

4 
+1 -8 21 

.qh 
(2. 75) w =--

D 

2 -8 

+1 
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(g) Shear Operator at the Corner of the Column 

The determination of shear force at the column corner requires 

special forms of the shear operators v and v . These special 
on ow 

operators are the result of the peculiar boundary condition at the 

corner of the column which is essentially the orthogonal inter-

section of two clamped edges. 

Following is the derivation of the shear operator V at the 
on 

column corner. Referring to section (b) of Chapter 2 the shear v 
on 

is 

1 -D .-A 
v ::: - (-m + m - m + m ). 

on h oy ny xy xy 
(2. 37) 

The operator forms of the terms on the right side of the equation are 

given below~ 

m 
oy 

D 
h 

-211 

-2 

V//I/////, 

~ 
~ 

w (2. 76) 

~ 
~ 



m =D 
ny h 

r--

I.....-

r--

-

1-.... 

-1+ .... 
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-1 

-.... 2+2 .... - .... 

"////,//// 
/ 
i/ 
/ 
" 

/ 
/ 
/ 

/ 

-1+ .... 

/' //./ / /7T7 

~ 
V 

~ 
~ 
1/ 

-

w (2. 77) 

--.J 

-
-

-
w (2. 78) 

---' 



-A D 
m xy h 

~ 

'--
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1-11 -1+11 

w (2. 79) 
,///////// 
/ 

~ 
/ 
/ 

~ 
~ 

Substitution of equations (2. 76), (2. 77), (2. 78) and (2. 79) into 

equation (2. 37) gives the shear operator v at the corner of the 
on 

column. 

v 
on 

~ 

'--

-1 

1+iJ. 

-
-1 

6 -1 
w 

,//// /J //// 

/ 
/ 

~ 
~ 
~ 

-

(2. 80) 

The operator for v at the column corner is derived in a 
ow 

similar manner and is given below in equation (2.81). 
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r-- -

1 -l-J.L 

D 
v --

ow h 2 
1 -6 

/' "/ / /,' //77-

1 ~ ?; 
~ 
~ 
~ 

w (2. 81) 

'-- ' -



3. DESCRIPTION OF COMPUTER PROGRAMS 

3. 1 Introductory Remarks 

The analyses of the test structures required the solution of 

from 997 to 1021 simultaneous finite difference deflection equations 

of the form 

= rl q~4 (3 .. 1) 

nx1 

where 

C :: the coefficient matrix formed by the plate operators 

W :: the plate deflection vector 

K :: the load term or constant vector 

n :: number of node points 

RO"N i of matrix equation (3.1) is the difference equation describing the 

deflection of point i in terms of the deflections of the node points 

surrounding node point i. Due to the node point numbering scheme 

(Appendix A) and the form of the deflection operators~ C is a banded 

matrix with a band width of 129 J with 64 elements on either side of 

the main diagonal. All elements outside the band are zero. Due to 

the boundary conditions, the band is not symmetrical nor is the Inatrix 

well conditioned. 

To cope with the problems of non-symmetry and ill-

conditioning in the coefficient matrix a Gauss elimination procedure 

combined with back-substitution was used as the equation solution 
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technique. Program CSUPLT generates and solves the deflection 

equations for test plates with various sized rectangular columns. 

Program SHRMOM then uses the deflections obtained from CSUPLT 

to compute shears and moments in the plate. 

Both programs are written in FORTRAN EXTENDED for 

use 'with the SCOPE operating system on the Control Data 

Corporation Model 6400 digital computer at Colorado State 

University. The two programs are described briefly below and in 

detail in the appendices. 

3. 2 Description of Program CSUPLT 

Program CSUPLT computes the deflections of the test 

specimen for variol.ls column sizes I spandrel beam torsio:lal 

rigidities and spandrel beam flexural rigidities. 

The square plate with a rectangular column is symmetrical 

about an east-west and a north-south line through the column 

(Fig. 1. 3). Therefore, only one quadrant of the plate must be 

analyzed to describe the action of the whole plate. The north-west 

quadrant was selected for the analyses. This quarter of the plate 

was divided with a 30x30 grid plus one fictitious grid line along each 

outside edge making a total grid size of 31x31 (Fig. 1.3). The node 

points are numbered consecutively west to east and north to south 

with the variation in column size affecting node point number-ing on 

east-west grid lines which intercept the column. The program 
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generates a deflection equation for each node point and then a 

Gauss elimination .. back-substitution technique is used to solve the 

equations for the plate deflections. These deflections along with 

dimensionless parameters defining the geometry of the plate and the 

node point numbering sequence are printed by the computer and also 

punched in cards to form the data input deck for program SHRMOM. 

3. 3 Description of Program SHRMOM 

The punched card output of CSUPLT is us ed as the total 

input data deck for SHRMOM. The input data consists of the column 

size .. dimensionless ratios of H' and J', geometric constants for 

node point numbering and the def] ections at the node points of the 

plate. The program then computes and prints out the shears at the 

face of the column and one grid space from the face of the column; 

and moments in the x-direction, moments in the y-direction .. twist

ing moments and principal moments in an area aro"..lnd the column 

bounded by the grid line 23 grid spaces from the center of the column. 



4. RESULTS 

4.1 Introductory Remarks 

The results of the analyses of the mathematical model are 

presented herein for a series of column shapes and sizes. The 

response of the structure to a uniform load is presented in terms of 

the deflections along lines of symmetry and the moments and shears 

in the vicinity of the column. 

Deflections are given for specimens with various column 

sizes and for test plates with various edge beam rigidities. 

Moments along a line of symmetry are given for a typical 

specimen with a square column. Moments at the column face and one 

grid space from the column face are sho~vvn for the square columns. 

Lines of contraflexure are shown and discussed for specimens 

with various column sizes. Position of these lines is discussed with 

respect to those in interior panels and clamped edge plates. 

Shear force magnitude and distribution around the column is 

presented. Discussion on the accuracy and validity of the results is 

included. 

Since the object of the study is the analysis of a particular 

real structure as shown in Fig. 1. 1, the column sizes will be given 

in terms of inches and not as a fraction of the plate span length. The 

mathematical model Fig. 1. 3 was analyzed for ten different column 

sizes. The four square columns analyzed included 16"x16"" 12"x12"" 
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SIfXS" and 4"x4". Rectangular columns analyzed were (E- W 

.. .. ) 16" 12" 16 ft s" 16" 4" 12" 8" dlmenslon x N-S dlmension x ~ x ~ x ~ x ~ 

12"x4" and 8"x4". Edge beam rigidities used were computed for the 

6 1fx9" edge beam in Fig .. 1. 1 and are H' = 270.0 and J' = 120. O. 

Poisson's ratio of the material was assumed equal to O. 15 throughout 

* the study.. Some special study was done in investigating the effect of 

edge beam rigidity on deflected shape and inflection point location. 

Validity of the deflection solution was determined and is 

discussed in section 4. 2. 

4 .. 2 Deflections 

Validity of the deflection solution for the mathematical model 

was determined by comparison with finite difference solutions of 

clamped edge plates obtained previously by Vanderbilt (17). Com-

parison was made for a square clamped edge plate with a point column 

in the center~ and for a square clamped edge plate with a square 

column in the center.. The side length of the square column was equal 

to one tenth the total plate span. Very large edge beam rigidities of 

JI = H' = 33" 000. 0 were used to approximate a clamped edge on the 

mathematical model with a point column.. J' = H' = 100,000.0 were 

used for the mathematical model with a square column. Comparisons 

* A study of a test specimen having a 12"x12" colu111n showed 
that for II = 0 .. 00 deflections were less than 1 % larger than those 
obtained using II = 0 .. 15. 
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of the results are shown in Fig. 4. 1 and Fig. 4. 2 where the two 

solutions show close agreement. Maximum difference between the two 

solutions is 4. 5 percent for the point column solution and 6. 75 percent 

for the square column solution. The grid spacing used in the clamped 

edge solution was three times as large as the grid used on the 

mathematical model. This grid size difference may be the cause of 

the clamped edge solution being consistently larger than the mathe

matical model solution. 

The reinforced concrete test specimen (Fig. 1. 1) was 

intended to simulate the state of stress around an interior column in 

a clamped edge plate (section 1. 1). The flexural and tocsional 

rigidities of the concrete test specimen were chosen to approximate 

the clamped edge boundary conditions. Deflection curves for the 

mathematical model with a 16" square column and various edge beam 

rigidities are shown in Fig. 4.3. The rigidities HI = 270.0 and 

JI = 120.0 are computed for the 6"x9" edge beam in the actual test 

specimen shown in Fig. 1. 1. Notice the large rotation at the edge 

even for edge beam rigidities ·of HI = J r = 2000. O. Even very large 

edge beams do not produce the desired clamped edge condition. The 

dashed line is drawn through the inflection points and will be 

discussed in section 4. 4. 

Figures 4. 4 and 4. 5 are deflections along the N -S line of 

symmetry and the diagonal for the specimen with the four different 

square columns. The maximum deflection on the N-S line of 
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symmetry is approximately equal to the maximum deflection on the 

diagonal line of symmetry for each column size. Also the deflections 

decrease approximately in proportion to the increases in column size. 

Maximum deflection along these lines of symmetry occurs further 

from the column center as the column size is increased. 

Deflections for the specimen for four different rectangular 

columns are sho'wn in Figures 4. 6 and 4. 7. The rectangular columns 

all have an E- W dimension of 16" while the N -8 dimension varies 

from 4 ft to 16". The two graphs show how the deflections change on 

both N-S and E-W lines of symmetry as the column size is changed in 

only the N-8 dimension. Again" as with the square columns" the 

deflections decrease approximately in proportion to the increase in 

column size. The deflection decrease on the E-W line is about only 

half that on the N-8 line for changes in N-S column dimensions .. 

A typical moment diagram for a midpanel line of symmetry is 

shown in Fig. 4. 8. The plots of m , m and m are shown on an 
x y xy 

E-W line of symmetry for the test plate \¥ith a 16"xI6" column. 

The Inoments m at the north face of the column for the test 
y 

structure with various square columns are shown in Fig. 4.9. Note 

that the maximum value is at the corner of the column and varies only 

about 17 percent over the size range of the square column. The 

moment distribution varies little with colulnn size. The ratio of the 
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moment at the corne:;." to the moment at the center of the column face 

varies from 1. 6 for the 4"x4" column to 2. 6 for the 16"xI6" column. 

The moments m at a distance of h = L/30 from the north face 
y 

of the four square center columns are shown in Fig. 4. 10. The 

moments at h from the column corner are not nearly as large as 

those computed at the column corner except for the 4"x4" column. 

4.4 Lines of Contraflexure 

The edge beams of the specimen under consideration (Fig. 1. 1) 

were to have been rigid enough to effectively clamp the edge of the 

plate and eliminate any rotation or translation of the edge. Under 

these edge conditions the resulting lines of contraflexure would lie at 

L/6 from the column face just as they do in an interior panel of a flat 

plate structure (section 1. 1). Figure 4. 11 shows the lines of contra-

flexure for principal moments for the specimens with square columns. 

* . The lines are nearly a constant L/4 from the column face for all four 

columns. This is larger than the expected L/6 and is a result of the 

edge beams not actually being rigid enough to consider the edges 

clamped .. 

The effect of edge beam rigidity on the position of the line of 

contraflexure is shown in Fig. 4. 3 where the dashed line is drawn 

through the inflection points on the deflection curves. Even for very 

,,~ 

Actual values range froin L/4. 27 for the smallest column to 
L/4 .. 00 for the largest column. 
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rigid beams the inflection point lies at L/5. 5 fr01TI the column face. 

It should be noted that the LIs was determined previously (1 7) using a 

coarser grid than that used in this study. 

The six Figs. 4. 12 to 4. 17 show the lines of contraflexure for 

the orthogonal moments m and m and the maximum principal 
x -y 

moment m for rectangular columns. In general m = 0 is L/4 
max max 

from both short and long column faces. When the ratio of the long to 

short face length is large such as 4 in the 16 "x4" column the m ..: 0 
max 

line is L/4" 4 frorn the short column face and L/3. 9 from the long 

face. 

4. 5 Shear at the Column. 

Shear forces at the corner point support, the column face, and 

at h = L/30 fr01TI the column face were computed using the Newmark 

plate analog. These calculations were made for the test specimen of 

Fig. 1. 1 with edge beam rigidities of J' = 120.0 and H' = 270. O. 

Column size was the variable, with the ten different sizes indicated in 

section 4 .. 1 being used. 

A static equilibrium check of vertical forces acting on the 

northwest quarter of the plate was made. The object was to verify 

the shears calculated at the column face and at h from the column 

face for each column size. The three vertical forces on the quarter-

plate are the load (downward) I the shear at the corner point support 

(up\vard), and the shear at the column (upward). 
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The equilibrium check is shown in Table 4. 1. Columns 2" 3, 

and 4 show the equilibrium check using the shears at the column 

face. Static equilibrium error is shown in column 4. Columns 5" 6, 

and 7 show the equilibrium check using the shears at h from the 

column face. Static equilibrium error is shown in column 7. Com

parison of columns 4 and 7 indicates that the shears computed at h 

from the column face are far more accurate than those computed at 

the column face. 

Shear force distribution at the face of the s quare columns is 

shown in Fig. 4.18. The computed maximum value of shear force, 

which occurs at the corner of the column" is very nearly the same for 

the three larger columns. 

Shear force distribution at one grid space from the column 

face is shown in Fig. 4. 19. The distribution remains nearly on the 

same line for all the square columns. 

Using a much finer grid around the column Moe ( 8 ) and 

Ang ( 2 ) found the shears to be negative near the midpoint of the 

column face. Since similar results were not obtained during the 

present study one analysis of a specimen with an 8"x8" square 

column was made using a finer grid around the column. This 

particular column size was chosen because of the 1 70/0 error in 

equilibrium using shears at the column face (Table 4. 1). A finer grid 

size with spacing h = L/60 was used within a region bounded by a line 

at a distance of 2L/15 from the column, as shown in Fig. 4. 20. 
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Deflections at points 1-25 were used as known boundary conditions. 

They were obtained either directly or by interpolation from the 

computer analysis with the coarser gria size11 =L/30. Grid points 

shown in Fig. 4 .. 20 with dark dots are those for which a deflection was 

kno'Nn from using the coarser grid. Finite difference equations were 

written manually for points 26-88 and solved to obtain the deflections. 

Shears at the column face;, at L/60 from the column face and at L/30 

from the column face were computed and are shown in Fig. 4. 21 

along with similar results from the coarse grid analysis. A check of 

equilibrium of vertical forces showed that for the shears computed 

one grid space from the column;, equilibrium was satisfied within 70/0. 

Shears near the column face midpoint are shown to be negative 

whereas the coarser grid did not indicate negative shear anywhere 

along the column face. The equilibrium check made using the shears 

cOlnputed at the column face satisfied equilibrium within 60/0 error. 

Figure 4. 22 shows the shear distribution on the column face 

for four rectangular columns all with a north face of 16 ft. Shear 

distribution on the 16" face changes very little with the column size. 

Shear on the west face at the corner is nearly constant for all four 

column sizes. 

Figure 4. 23 shows the shear distribution at h = L/30 from the 

faces of the four rectangular columns with 16 H north faces. The 

shear distribution changes little on either face. 



5. SUMMARY~ DISCUSSION AND CONCLUSIONS 

The results of the analyses of an elastic mathematical model 

of a new type of shear test specimen (Fig. 1. 3) are presented. 

Emphasis is on the structural behavior around the center support of 

the test specimen .. 

The analyses were performed using the calculus of finite 

differences and Newr.aarkrs plate analog. The development of the 

operators is given in Chapter 2 and the cOlnputer programs used in 

generating and solving the finite-difference simultaneous equations 

are described in Chapter 3 and the Appendices. 

The results of the analyses are given in Chapter 4 in terlns of 

deflections# shears# m()ments~ and positions of lines of contraflexure 

near the column for test specimens with ten various column sizes. 

5. 2 Discussion and Conclusions 

The reinforced concrete test specimen used in another phase 

of this study and analyzed herein is shown in Fig. 1. 1. Based on 

studies of elastic plates this specimen was designed to simulate the 

structural behavior in the vicinity of a column supporting an interior 

panel of a continuous multi-panel flat plate structure. The Inathe-

matical elastic model shown in Fig. 1. 3 !llodels the reinforced 

concrete specimen of Fig. 1. 1. 
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As shown in Fig. 4. 3 and 4. 11 the new test specimen does not 

model the elastic behavior of an interior panel as closely as had been 

desired. The lines of contraflexure for the new test specimen lie at 

about L/4 from the column face rather than the L/6 reported 

previously (10). The dashed line drawn through the inflection points 

in Fig. 4. 3 shows that extremely large values of beam rigidities 

{H' .. Jt> are necessary to simulate the clamped edge condition.. It 

may be concluded that the test specimen more closely simulates the 

structural behavior around an interior column supporting four corner 

panels (Fig. 5. 1) ttlan the typical interior column desired. 

As is shown in Fig. 4. 18 the shears computed along the 

column face are concentrated at the corner of the column. The 

changes in the slope of the deflection surface at the co:"ner of the 

column are too large and abrupt to permit an accurate approximation 

using the finite difference method.. Therefore errors are encountered 

in computing shears at the face of the column as is shown in Table 4. 1. 

The distribution shown in Fig. 4. 18 is for the elastic structure 

and would change as plastic deformation occurs at the highly 

stressed corners. 

The shear in Fig. 4. 19 at one grid space from the column 

satisfied equilibrium within 0.610/0 for all column sizes which 

indicates that the finite difference method accurately describes the 

stress near but not at the column corner. 
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The refined grid study described in section 4. 5 shows that the 

grid size used in this study was too coarse to indicate negative shear 

near the midpoint of the face as was reported by previous 

investigators (2" 8). 

The test specimen does closely simulate the state of stress 

around an interior column in a continuous flat plate structure. 

Experimental testing of the model under uniform loads should 

provide useful data to contribute to the understanding of reinforced 

concrete flat plates. 
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(1) (2) (3) (4) (5) (6) 

Load Down Beam Shear 
Equilibriurr Load Down Beam Shear 

Outside of + Shear at 
Error for Outside of + Shear at 

Column (3) 2" from 2" from 
Column Column FaCE 

Size 
(3)-(2) Column Column FaCE 

(inches) qL
2 

qL
2 (2) qL

2 
qL

2 

4x4 .9989 1.1055 10.67% • 9956 • 9928 

8x4 • 9978 1.1524 15. 490/0 .9933 .9900 

8x8 • 9956 1.1667 17. 19% • 9900 .9862 

12x4 .9967 1.1454 14. 920/0 • 9911 .9873 

12x8 • 9933 1.1477 15. 540/0 .9867 .9823 

12x12 .9900 1. 1246 13.60% .9822 .9774 

16x4 .9956 1. 1127 11. 760/0 .9889 .9845 

16x8 • 9911 1.1097 11. 970/0 .9833 • 9785 

16x12 .9867 1.0843 9.890/0 .9778 • 9724 

16x16 • 9822 1.0444 6. 330/0 • 9772 • 9663 
12. 740/0 avg 

Table 4. 1 Equilibrium Check of Shear Forces . 

(7) 
Equilihriun 
Error for 

(6) 

(6)-(5) 
-(5) 

-. 280/0 I 

-. 360/0 

-. 390/0 

-. 380/0 

-. 450/0 

-. 490/0 

-. 440/0 

-.49% 

-. 550/0 

-. 610/0 
-. 44170 avg 

C.1l 
o 



51 

PLAN 

..... , ~r--------------l 0' - 6
tf 
------~----__+_I., 

Variable 

~ 11--
L-J __ 

-co 
I -o ...... 

------------------------------------------------------~--

SECTION 

~ = Point Support 
Each Corner 

Fig. 1. 1 Reinforced Concrete Test Specimen 



.. 

, 

, 
~ 

, 

Quarter Panel 

52 

I 
J 

I 
I 

1 
~ 

~~--r---r--'r-~--~---+---+--~--~---

.~ 

, -

.. "" .
.' , 
• I 

Point 
Support 

J~ 
a. Clamped Edge Plate Showing Line of Contraflexu re 

I 

I 
- - - Clamped Edge 
- Continuous Flat Plate 

(,' ~ Point 
: VS11pport 

:- I~------
~;"V L/6 ~ 

h. Comparison of Line of Contraflexure in Clamped Plate 
With Line for Continuous Interior Panel 

Fig. 1. 2 



53 

PLAN 

I 
-·-I+I-t 

-I .-----_+____-----:5111 1 -~rrr_------------------~ + ~~-+-+---------------I 
T ~I-I-+------------~ Point Support 
I! Each Corner 

-+-- 30x30 Grid 
On Plate 

Rigid 
Column 

SECTION 

L------~ 

7 
Line of 

Symmetry 

Fig. 1.3 Mathelnatical Model of the Test Spccilncn 

o 
I 

l.f) 



54 

Elastic Hinges 
Stiffness = Eb1b Torsion Spring 

lastic 
--~--+-r-- Hinges 

Stiffness 
E I 

s s 
2 

H--h --Jo+~- h ---,+1(--- h -~ioIF---

Fig. 2. 1 Plate-Beam Analog at Edge Beam 



55 

c- B 

-c -B 
m 

ffixy v xy 

~~ ~ so 
.......... 

~ y~ l ~ ~ ~i 
{ l 

~ Q 

ffi 
ox 

m 
oy 

v 
on 

Enlarged Joint 0 

~ y 

z 

Fig. 2. 2 Forces Affecting Equilibrium of Typical Joint 
in Plate Analog 



56 

y 

~x 
Vos v' 1 m' 

ox 

T 
eo 

z 

v 
s 

M os R 

T 
so 

v 
os 

oy 

Q 

m' 
oy 

R 
Enlarged Joint 0 

m 
xy 

V 
oe 

Fig. 2. 3 Forces Affecting Eq·.lilibrium at Edge Bealn 
Corner Joint in Plate-Beam Analog 



lVbx 

57 

nn 
-r --T-- -.- --,..---,.. 

I • I I I 
I • I I I 

I tnwJv.ne' -r -- f-- ,---. ---f-
t I • • • 

ee 'ww'w :0 e I 
I 

-C~ 

SW S se 

ss 1-----"'" X 
h 

H 
v Q 

ON M z V ox 

v na v' 
os oy oe 
Enlarged Joint 0 

M 
ox 

oe 

Fig. 2. 4 Forces Affecting Equilihriuna of Typical Edge 
J oint in Plate- Beana Analog 



~.;.I~ 
4-! 
o 
00 

S 
~ 
(J) 

.j-.) 

c: 
'r-( 

00 
c: 
o 

.r-( 

.j-.) 

C,) 
Q) 

~ 
Q) 

o 

c(':POint column 
.00 ,I" I 

+ 

.001 

.002 

• 003 

• 004 

... 

t> 

+ 

... 

+ 
Ci) 

+ 

... 

N - S Line of Symmetry 

~ 1~ ~ 
1 , , I J 

... 
Q of. 

... 
... 
(;) ... + + + 

e 

-+i 
I 

... 
+ Q 

... 

L 
r-30 

f 

... 

~ 

.. 

I 

.. 
.a. 

+ 

.. 

edge b~m midpoint 

I. ~ 

G 
T 

+ 

+ + 

G - clamped edge 

+ - rigid edge beam 
H' = 33,000. 
JI = 33,000 • 

Fig. 4. 1 Comparison of Deflections on N-S Line of Symmetry 
For a Specimen with a Point Column 

CJ'1 
co 



column center column edge 

• 000\ I 1 

N-S Line of Symmetry 

L 
r-TO~ -1 

I 

L 
r"30 edge beam midpoint 

~~Io 
0'1 

4-4 
o 
U) 

S 
~ 
Q) 

..j-) 

C 
• .-1 

U) 

s:: o 
'.-1 
..j-) 

C,) 
Q) 

cj 
Q) 

o 

• 001 

.002 

.003 

T T 

+ 
+ 
G 

+ 

1 

+ 

4-

G + 

1 I . . I 

+ 
+ 
G .... + + 4-

.... + E) 
G 

4-

.... 
+ E) 

+ 

I 

"t 
.... 

I , ,4 
.... .... ... 

+ 
4-

e - clamped edge 

+ - rigid edge beam 
HI = 100,000. 
JI = 100,000. 

Fig. 4. 2 Comparison of Deflections on N-S Line of Symmetry 
For a Specimen with a 12"x12" Square Column 

C1l 
co 



N -S Line of Symmetry 

column center L 
• 0.0.0.0 fI"4'''2, if' L -+t t+'h = 3"'0 = 2" 2 ~ 

-a.lp .0025 
~ o 
en 
S 
~ 
(l) .., 
t:: .0.0.50. 

.,...f 

en 
t:: 
o 

.,...f 

-+-> 
<:J 
(l) 
q 
(l) 

Cl .0.0.75 

.0.10.0. 

Dashed Line Throug 
Inflection Points 

N-S Line of 
Symmetry 

IN 

Fig. 4. 3 Deflection Curves on N -S Line of Symmetry for a 
Specimen with a 16"x16" Column and Varied 

Edge Beam Rigidities 

H' = J' = 10.0.,0.0.0.. 

= 20.0.0.. 

H' = 120.0.. 
J' = 260.. 

H' = 270.. 
J' = 120.. 
test specimen 

0') 

o 



N -S Line of Symmetry 

.0000 /'. -; t'" h = jo. = 2" 
:::z' cc!:::a::c!:::<L ' , .). 

center of column 
edge b~am midpoint 

-af.0025 

~ 
o 
rn 
S 
~ 
(lJ 

+-> o .0050 . ~ 
o 
o 
.~ 
+-> 
('.) 
(lJ 

~ 
c3 .0075 

.0100 

N-S Line of ffi..- 1 
Symmetry $ N 

~16f1x16" column 

Fig. 4. 4 Deflection on N -S Line of Symmetry for 
Specimens with Sq~.lare Columns 

12"x12" 
8"x8" 
41'x4" 

0') ..... 



Diagonal Line of Symmetry--Column to N-W Corner 

N-W corner 

• 0000 f < < 'E Ie: -.., r- -{2 h = 2. 8 2 " ) 

~l 
~IO. 0025 

tt-f 
o 
til 

S 
~ 
(l) 
~ 

!:l .0050 
'r-! 

!:l 
o 

'r-! 
~ 
C,) 
(l) 

..-I 
tH 
(l) o .0075 

.0100 

16"x16" column. 
12"x12" 

~ 4"x4" 

Diagonal Line 
of Symmet~y 

Fig. 4. 5 Deflection on the Diagonal Line of Symmetry 
For Specimens with Square Columns 

1 N 

0') 
t\j 



N-S Line of Symmetry 

column center edge 'Qeam midpoint 
• 0000 (. "1 r- h = 1:. = 2" ~<-~ 39 ) 

~~Io 
~ 
o 
en 
E 
H 
G.> 
~ 

s:: 
.,-i 

s:: 
o 

.,-i 
~ 
() 
C) 

~ 
(J) 

.0025 

.0050 

Q .0075 

.0100 

N-S Line of 
Symmetry 

16"x16" column 
16"x12" 

1 N 

Fig. 4. 6 Deflection on :N -S Line of Symmetry for Specimens 
\iVith Columns with 16" E- W Dimension and Varying 

N-S Dimension 

(1) 
w 



E- W Line of Symmetry 

edge beam midpoint 
column center 

-.... ""'h - L - 2" 
f I I - "39 - :::Jtaaaf 2? ?,z <? if . 0000 

16 "x 16" column 
16"x12" 
16"x8" 
16"x4" ---

E-W Line of /r~-t iN 
Symmetry 

Fig. 4. 7 Deflection on E- W Line of Symmetry 
for Specimens with Columns with 16" E- W 

Dimension and Varying N-S Dimension 

.0025 

~. 0050 

.0075 
r 

.0100 

~~Q 
<+-c 
0 
til 

S 
$..4 
(I) 
~ 

s:: 
-.-I 

s:: 
0 

-.-I 
~ 
(') 
(I) 

£;:l 
(I) 

Q 

I (7) 

~ 



edge beam midpoint 

E-W Line of Symmetry 
m =0 

xy 

y 

El 1~ Lx 

Fig. 4. 8 m, m ,m on E- W Line of 
Symmet~y fo¥ a S~~cimen with 

a 16 "xI6" Column 

+.060 

+.030 

column center 

C\l 
...J 
0" 

C+-i 
0 
Ul 

-.030 S 
H 
(J) 
~ 

Q 
0') 

..... c.n 
~ 
Q 
(J) -.060 
S 
0 
~ 

-.090 

-.120 

-. 150 



4"x4 fl max .. _____ 
8"x8'f max .. ~ 

12"x12" max" ~ 
16"x16" max.~ 

66 

y 

8"x8 ff 

~16"X16" 

center of 
4 "x4" column 

center of 
12"x12" column 

~--~----~-----r----~ 

~-

Fig. 4. 9 Moment m at the Face of 
the Square Cohrinns in the 

Test Specimens 

-.450 

-.300 

-. 150 

.000 



67 

-.300 
4"x4" 

-.225 

-. 150 

y 
16"x16" 

1N Lx -.075 

.000 r----------

center of 4 "x4" column I 

center of 12"x12" 
column ------------~== 

Fig. 4. 10 Moment m One Grid Width From the 
Face of the ~uare Columns in 

the Test Specimen 

N 
~ 
0' 

c.-. 
0 
(fJ 

e 
~ 
a> ....., 
s:: 
.~ 

....., 
s:: 
a> 
E 
0 
~ 



68 

L/30 -+l r-

4 "x4" column 

8"x8" column 

12 "x 12" column 

16 "x 16" column 

Fig. 4. 11 Lines of Contraflexure for 
Principal Moments about Square 

Columns in the Specimen 



69 

L/30 -+I r-

Fig. 4. 12 Lines of Contraflexure 
Around a 16"x4" Column 

in the Specimen 



70 

L/30 -1 r-

o 

ffimax=O I 
~ 

Fig. 4. 13 Lines of Contraflexure A round 
a 1 6 "x8" Column 
in the Specimen 



71 

L/30 -1 r-

m := 

y 

mma~: I 
~ 

Fig. 4 .. 14 Lines of Contraflexure A round 
a 16"x12" Column 

in the Specimen 



m 
y 

72 

L/30 -1 r-

n~ ____ ~ 0 I 
-=:d 

Fig. 4 .. 15 Lines of Contraflexure i\ round 
a 12"x4" Column 
in the Specimen 



m 
y 

73 

L/30 ~ r-

Fig. 4. 16 Lines of Contraflexure l\ round 
a 12"x8" Column 
in the Specimen 



74 

L/30 -1 r-

m =0 
y 

o 

m\ ~O I 
~ 

Fig .. 4. 1 7 Lines of Contraflexurc A round 
a 8"x4" Center Column 

in the Specimen 



75 

8 "x8" and 

16"xI6" max.-
- 12"x12" max. 

- 4 "x4" max. 

,,~ 
4"x4" 

~ ~c ~ , 
16"x16" 

, 
center of 4 "x4" column 

center of 12 "x12" column =------&-_-

~ 
I 

Fig. 4. 18 Shear at the Column Face for 
Square Columns in the Test Plate 

9 .. 0 

~ 
u 

CH 
0 
if} 

6.0 8 
H 
Q) 

+-> 

c 
or-f 

H 
cU 
(l) 

3.0 ...c:: 
en 

0.0 



76 

" 

" 12"x12" 
r - -r - ~ - -r - -..----

:~ 
center of 4 "x4" column t ~--~------~--~ ---..:...-

~ 
I 
I 

center of 12 "x 12" column :....-..----'----..J-__ 

I 

~ 
I 
I 

Fig. 4. 19 Shear at One Grid Space h = L/30 
From Square Columns in the Test Plate 

-1_ 
I 

4.5 

0.0 



77 

~ Lines of Symmetry 

" 13 

12 

25 

" , " I 

'" J -" , -

" 49 58 

" '\ I' 
" '" I 

, 
" 

" 83 88 

~ 
I 
I 

Line of Symmetry 

- - - -

column center 

Fig. 4. 20 Refined Grid Near Column 



+20.0_ 

+ 15. 0 I 

..J 
0" +10.0 

c.-. 
0 

rn 
8 
~ 
(!) 
~ 

c: 
'r-! +5.0 
H 
('j 
(!) 

..c 
r.J) 

0.0 I 

-5.0 

coarse grid analysis - -
fine grid analysis 

~ I I 

~I 
~1 C) 

81 I 4 
L 

..8 30 ..8 
0 
C) 

L 
~ 60 

at the column face 

L 
60 from the column face 

L 30 from the column face 

\ ~--- - -~ ---------

Fig. 4. 21 Shear at the Column Face and at h = 3~ from 
the Column Face for the Coarse and Fine Grld 

1 0 
C) 

c.-. 

li 
'r-! 

,8 

...:J 
cc 



6.0 

16"x4" 

16 "x 12" _--il_ 

16"x16" 

3.0 0.0 

79 

Shear distribution 
for four columns 

C enter of 16 "x4" 
column 

column 

Fig. 4. 22 Shear at the Column Face for the 
16"x4", 16"x8", 16"x12" and 16"x16" 

Columns in the Test Plate 

9.0 

6.0 

3.0 

0 .. 0 



16 ffx8" 

16"x16" 

4.5 3.0 

16"x12'" 

80 

r
I 
I 
t 

,... 

I 
I 
l-

I 
~ 
I 

1. 5 

all four curves lie 
within these bound 

center of 16"x4" 

4 .. 5 

column 

-~-
--1-

center of 16ttx12"~ 
column ~ 

1---- - --

_--1_ 
I 

Fig. 4. 23 Shear at One Grid Space from the Column for the 
16"x4" 16"x8" 16"x12" and 16"x16" Columns • • 



81 

PLAN 

~interiOr column 

ELEVATION 

... I 
"·1 

1...1 I .. -

1---1 I 
. .. 

Fig. 5. 1 Continuous Structure More Closely 
Simulated by the Test Specimen 

of Fig. 1. 1. 



APPENDIX A 

SOLUTION OF SIMULTANEOUS EQUATIONS USING 
THE GAUSS ~ELIMINATION TECHNIQUE 

A. 1 Introductory Remarks 

The set of up to 1021 simultaneous~ deflection equations for 

the test plate were solved using a Gauss elimination and back-

substitution technique.. This method was selected because of its 

simplicity, reliability and adaptability to large, unsymmetrical, ill-

conditioned matrices ( 12) (13). The general theory of Gauss 

elimination and back-substitution is explained in Section 1\. 2. 

A general description and flow di8.gram of the algorithm written is 

given in Section A. 3. The solution technique described here was 

combined with an equation generating routine to obtain program 

. CSUPLT which actually generates and solves the deflection 

equations for the plate analyses. 

A.2 Gauss Elimination and Back-Substitution 

The Gauss elimination technique is a procedure for 

converting a general matrix into an upper-triangular matrix (one in 

which all elelnents below the main diagonal are zero). The 

procedure is demonstrated using the three simultaneous equations 

A. 1 written in matrix form. 
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All A12 A13 Xl Cl 

A2l A22 A23 X2 = C2 (A. 1) 

A3l A32 A33 X3 C3 

The coefficient matrix A may be converted to an upper-

triangular matrix using Gauss elimination. This is accomplished by 

eliminating the non-zero terms to the left of the Inain diagonal in 

each row. In row 1 there are no terms to the left of the Inain diag-

onal. In row 2 the first and only term left of the main diagonal is 

A21. To eliminate A21 cOlnpute the ratio 

A21 
R == All • 

Next multiply row 1 by R and subtract the product from row 2. 

Note that 

so 

A2l 
R * All == --'::: All = A2l All 

(A. 2) 

(A. 3) 

A 21 - R ~::: All = A 21 - A 21 == 0 (A. 4) 

which eliminates the A2l term below the diagonal. Other terms in 

row 2 will now be 

A22 - R * .A12 == A221 

A23 - R * 1\,13 = A23 1 

C2 - R * Cl = C2'. 

(A.5) 

(A. 6) 

(A. 7) 



84 

Now the form of the matrix equation is 

All A12 Al3 Xl CI 

o A22' A23 1 X2 = C2' (A. 8) 

A3l A32 A33 X3 C3 

The same procedure is now applied to row 3 in which two elements to 

the left of the main diagonal need to be eliminated. COlnpute a new 

ratio R as 

A3l 
R = All • 

Multiply row 1 by R and subtract it from row 3 to obtain 

A31 
A3l-R~I;All =A3l---*All=O 

All 

A32 - R ~, Al2 = .l\.32' 

A33 - R * Al3 = A33' 

C3 - R * CI = C3 1 

The form of the matrix equation is now 

All A12 Al3 Xl Cl 

o .l\221 A23' X2 = 

o A.32' A33 1 X3 C3' 

To eliminate term A32 J a new R is computed as 

Multiply row 2 by R and subtract the product from row 3. 

(A. 9) 

(A. 10) 

(A. 11) 

(A. 12) 

(A. 13) 

(A. 14) 

(A. 15) 



85 

A32' 
A32' - R ~:: A221 = A32' - --- ~:: A22' = 0 

A22' 

A33 1 - R ~::: A23 1 = A33" 

C3' - R ~::: C2 t = C3" 

The form of the equations is now 

All A12 Al3 Xl CI 

o A22' A23' X2 = 

o o A33" X3 C3" 

(A. 16) 

(A. 1 7) 

(A. 18) 

(A. 19) 

The Gauss elimination has no\v been pel."formed on this set of 

equations and the coefficient matrix J\. has been upper-triangularized. 

Note the solution vector X remains unchanged during the elimination. 

Back-substitution is now used to solve for the X vector. 

Starting with the last row 

_ C3" 
X3 - A33" 

Then with X3 known 

C2 1 - A23' ~::: X3 
X2 = 

A22' 

With X2 and X3 known 

CI - Al2 ~:: X2 - Al3 '::: X3 
Xl = 

All 
-----------

(A. 20) 

(A. 21) 

(A. 22) 

This methodical technique is readily adaptable to machine 

calculations and can be used to solve thousands of equations as well 

as the three equations described above. 
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If a diagonal terln of zero is encountered" in row 2 for 

example" during the elinlination of the teTln A32 1 the ratio R of 

equation AJ. 5 will be undefined. In this situation rows 2 and 3 will be 

switched which" with A22' = 0" will change the form of equation .. L\J. 4 

to 

All A12 A13 Xl CI 

o A32' A33' X3 = (A. 23) 

o o A23' X2 

and the upper-triangularization is completed in this particular case. 

A. 3 General Des~~ription of Algorit_h~q~STAP _~~...§9!~ing 
Simultaneous Equations 

The simultaneous equation solver GASTAP (GAu~s elimination 

using TAPe storage) uses the technique of Gauss elirnination com-

bined with back-substitution and scratch tape storage in the solution 

of large, unsymmetrically banded matrices. It was written in 

Fortran IV for use on the Control Data Corporation Model 6400 

Computer with 32K storage of which 27I( is availahle. A sliding 

block technique is used in the solution of large sets of equations. 

The coefficient matrix i\. is dimensioned (96" 1 79) in the main core 

storage of the cOlnputer so that band widths up to about 161 may be 

used. The first set of equations read into core goes into A and the 

terms to the left of the main diagonal are eliminated. Coefficients 

froln the upper rows of A and their corresponding constant terms are 

then written on tape leaving a number of equations (equal to the band 
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width divided by two) in the lower part of A. These equations are 

then transferred up the diagonal to the upper rows and more equations 

are read into the lower rows of A where the te rms to the left of the 

main diagonal are then eliminated. This process continues until the 

whole lnatrix is upper triangularized l stored on tape and the A matrix 

in core is zeroed. Then the last batch written onto tape is read off 

the tape and back-Stlbstitution is performed for each equation obtain

ing part of the solution vector. Each batch is read off the tape and 

back-substitution is performed until the whole solution vector is 

obtained. 

The amount of computer time required to obtain the solution 

to a set of simultaneous equations is dependent partly, of course" on 

the number of equations being solved. The band width of the coef

ficient matrix actually is the major determining factor in COiupute:(' 

time used. One thousand equations with a coefficient matrix hand 

width of three elements may be solved in a few seconds whereas the 

same number of equations with a coefficient matrix band width of one 

hundred twenty-nine may require two or three minutes solution time. 

Precision of this solution was checked by cOluputing deflections for all 

the test plates which contained square center columns. These par

ticular plates contained a diagonal line of symmetry which was not 

used as a boundary in generating the deflection equations. The 

deflections on opposite sides of this line of symmetry were checked 

and found to be equal or symmetrical within one percent. It should 
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be noted that some error is to be expected in the operator equations 

which describe a finite approximation. 

A general flow diagram of GASTAP is given in Fig. A. 1 

A.4 Program CST]P_LT--Generati~~~§~!::t_i~~~_ ~~~efle.ction 
Equati~~~or the _!es~Plate 

The program CSUPLT (Colorado State University PLaTe) 

generates and solves the deflection equations for the test plate. It is 

simply an extension of the basic equation solver GASTAP. The 

program sequentially passes from point to point on the grid~ from 

west to east and north to south~ checks the boundary conditions and 

node point numbering and writes the correct deflection equation for 

each node point on the grid (Step A, Fig. A. 1). The variables 

considered in these equations are the edge beam flexural and tor-

sional rigidities~ Poisson's ratio of the plate Inaterial, and the 

column size which alters the node point numbering in the portion of 

the slab west of the column. 

The solution of these equations is obtained using the 

GASTAP algorithm. The values of deflection are output on punch 

cards along with all values describing plate and beam properties and 

in particular constant indexes which describe the node point nllmber-

ing and plate geometry as affected by the column size. This deck of 

punch card output is used directly as the input data deck for program 

SHRMOM which computes the shears and moments in the plate. 



89 

I Startl 
t 

I Read Input Datal 
t 

I Initialize Matricesl 
t 

COlnpute and Print Geometric Constants 
(Size) of the Matrix 

t 
~ I Read or Generate One Equation J\. 

f 
Eliminate TerlTIS Left of the 

f' Main Diagonal 
t 

No Enough Equations Eliminated for' Yes 
a Batch Transfer to Tape? 

Transfer Batch of Equations to 
"" 

Tape 
t 

"" NO! All Equations Read or Generated? 1 Yes ... -., 

~ Read Batch Off Tape : 
t 

Back-substitute and Solve the 
Equations in the Batch 

t 
No Have ... 4.11 Batches been through I Ye~ 

the Back-substitution? I 
,~ 

I Print the Solution Vector! 

.J No 
t 

! Last Problem?J 

tYes 

lEnd I 

Fig. A. 1 General Flow Diagram of GASTAP 



APPENDIX B 

PROGRAM SHRMOM--COMPUTATION OF SHEAR 
AND MOMENT IN THE TEST PLATE 

The program SHRMOM (SHeaR and MOMent) computes the 

shears and moments in the test structure. The punch card output of 

CSUPLT is used as the total input data deck for SHRMOM. Shear 

forces at the face of the column, at h = L/30 from the face of the 

column, and at the corner point support are computed.. Two checks 

are then made of the static equilibrium of vertical forces on the 

plate. First, the total shear force at the face of the column and the 

shear force at the corner point support are summed. This sum 

should equal the load doYW"n on the quarter plate excluding that acting 

directly on the column. Second, the total shear force at h = L/30 

from the column face and the shear force at the corner point support 

are summed. This sum should equal the load acting on the plate 

excluding that acting directly on the column and 'within h = L/30 from 

the column face. These calculations are made to check the validity 

of the shear force computed at the column and at h from the column. 

Orthogonal moments, the twisting moment, principal moments 

and their orientation are computed for each node point in a wide area 

around the column. Using this inforlnation the lines of contraflexure 

may be drawn. 
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The program is written in FORTRAN EXTENDED language 

for use with the SCOPE operating system on the Control Data 

Corporation Model 6400 computer at Colorado State University. Total 

solution time for one test structure is about 210 seconds central 

memory time using the SCOPE operating system.. Using the NCAR 

operating system solution time is 380 seconds central memory time. 
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