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of the parameters internal to the structure implementing Ao(z)
or A1(z) does not increase the passband level of H'(z). In the
FIR case, however, this situation is not true because the func­
tions A(z) and B(z) are not structurally allpass (however assum­
ing that P(z) and Q(z) are designed to have "good" passbands
and stopbands, this is approximately so). The size of the ripples
in the arbitrary-level filters depend on the ripples of A(z) and
B(z), which in tum depend on the stopband attenuations of the
original filter and its power complementary filter. It must be
noted that we have the freedom to choose only one of the two
magnitude levels and that the accuracy of the spectral factoriza­
tion technique directly affects the design.
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Reduced Order Strip Kalman Filtering Using
Singular Perturbation Method

M. R. AZIMI-SADJADI AND K. KHORASANI

Abstract -Strip Kalman filtering for restoration of images degraded by
linear shift invariant (LSI) blur and additive white Gaussian (WG) noise is
considered. The image process is modeled by a I-D vector autoregressive
(AR) model in each strip. It is shown that the composite dynamic model
that is obtained by combining the image model and the blur model takes
the form of a singularly perturbed system owing to the strong-weak
correlation effects within a window. The time scale property of the
singularly perturbed system is then utilized to decompose the original
system into reduced order subsystems which closely capture the behavior
of the full order system. For these subsystems the relevant Kalman
filtering equations are given which provide the suboptimal filtered esti­
mates of the image and the one-step prediction estimates of the blur
needed for the next stage. Simulation results are also provided.
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I. INTRODUCTION

Parametric representation of digital images have found numer­
ous applications in image restoration [1]-[3], image data com­
pression [4], and texture analysis [5]. An image is modeled by a
finite-order autoregressive (AR) or autoregressive moving average
(ARMA) representation which closely match the autocorrelation
function or equivalently the spectral density function (SDF) of
the image field. Even though high-order models may take more
correlations into account, in general they are not necessarily
capable of better image representation. Additionally, the princi­
ple of parsimony precludes the use of a large order model for this
representation.

Suresh and Shenoi [2] proposed a strip Kalman filtering pro­
cess which makes use of a vector scanning scheme. The image
process is modeled by a finite-order vector AR model which
relates a column of pixels to the past columns in a certain region
within the strip. The effect of an LSI blur is modeled by a 2-D
state-space structure [6] implemented by a I-D structure with
intrastrip and interstrip recursion characteristics [2]. The size of
the state-vector in the composite dynamic model and hence the
computational effort of the filtering process are dependent on (i)
the size of the blur model and (ii) the order of the AR model used
to generate the image. If the width of each strip and the order of
the vector AR model are denoted by W and M, respectively, the
size of the state-vector in the composite dynamic model is shown
[2] to be WM + W +1 which may be large even for moderate
values of W and M.

The contribution of this paper is to employ singular perturba­
tion methodology for decomposing a given image model into
reduced order models whereby the image restoration can be
performed effectively. To this effect, a singularly perturbed model
of the original system in [2] is obtained by expressing the state
variables into a set of slow and fast variables. Using the model
reduction capabilities of the singular perturbation technique the
full order model is decomposed into reduced order sub-models
corresponding to strong-weak correlation areas. The utility of the
singular perturbation method lies in the fact that the aggregated
effects of the weakly correlated states are taken into account in
the reduced order models. These models can be used in the strip
Kalman filtering process without losing significant accuracy in
estimation.

II. MODELING THE IMAGE PROCESS

Consider an N X N image which is vector scanned horizontally
in strips of size W X N. The direction of scanning is assumed to
be from left-to-right and top-to-bottom. Each strip is processed
independently with an overlap between the adjacent strips to
reduce the edge effects. The image is assumed to be represented
by a vector Markovian field and modeled, within each strip by an
Lth-order vector AR model with causal quarter-plane region of
support. If the support region of this model is denoted by R, the
following AR model of order L can be written for the process

Z(k) = ~iZ(k -1) + ~iZ(k -2) + ... + ~~Z(k - L) + U(k)
(1)

where the superscript t denotes matrix transposition; ~1"'" ~L
are constant W X W matrices which constitute the autoregressive
parameters; and Z(k) represents a W X 1 vector with elements
that are the pixels intensity values in the k th column of a given
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Fig. 1. Region of support for the vector AR model.
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m€[l, M]; n€[M +1, L - M]. (8)€ = max [ 1- II~mll],
1-11tf>"II

where

That is the model coefficient matrices, ~m 's, that are of the size
W x W have norms which can either be of order 1, (I"; m e; M),
if the corresponding vector is located in the strong correlation
area or of order e, (M +1 ,,;m ,,; L), if the relevant vector is
inside the weak correlation area. The parameter e known as the
"singular perturbation parameter" is normally obtained by clus­
tering the eigenvalues of matrix A into two isolated groups of
sizes M and L - M. The eigenvalues that are located in the
cluster close to the origin of the unit circle in the z-plane are
referred to as "fast eigenvalues" and the ones that are located in
the cluster in the vicinity of the unit circle are called "slow
eigenvalues" [8]. In our case due to the vector (multichannel)
nature of the process the Frobenious norm (strong norm), that is,
IIAII = [trace(A tA)]1/2, of each coefficient matrix ~m is computed
and then € is evaluated using

R
1

R
2

R=R
1uR 2

~ 1. Strong Correlation Area

(say ith) strip in the image (See Fig. 1) i.e.,

Z(k) = [ZU-I)W,kZU-IlW+I,k'" z;W-l,kJ' (2)

~ 2 Weak Correlation Area

where zm,,, denotes the intensity of the pixel at location (m, n).
The image process is assumed to be column wide-sense stationary
within each strip, Vector U(k) which is defined similar to Z(k)
represents a white vector sequence which drives the AR process.
The statistics of this error sequence are

E[U(k)] =0 and E[U(k)U'(k-l)] = Qu8(l ) (3)

Z(k) =tf>'lZ(k-1)+tf>SZ(k-2)+ , .. +tf>~Z(k-M)

+ €tf>~+jZ(k - M -1) + €2tf>~+2Z(k - M -2)

+ ... +€I.-Mtf>~Z(k-L)+U(k) (7)

(9)

(lOb)

slow
states

(

M k - 1) =€L-M-IZ(k-L)

g2(k-1) =€L-M- 2Z(k+1-L)

X 2 ( k - 1): . fast

states

gL_M(k-1) =Z(k-M-1)

.{~I(k-1)=Z(k-M)

XI(k -1). :

XM(k-1) =Z(k-1).

Z(k) =tf>'IZ(k-1)+qf2Z(k-2)

+ ... + tf>~Z(k- M) +U(k).

Now the AR model (7) can be arranged in a state-space form as

Now, the system described by (7) is in singularly perturbed
form in the sense that by formally setting e = 0, the order of the
system is reduced from L to M. That is, the reduced model
becomes

The vector of interest Z(k) can be extracted using

This model, although provides computation simplicity, in general,
will not be able to yield satisfactory filtering results. This reduced
model corresponds to the truncated AR model with the region of
support of R I . The main advantage of the singular perturbation
analysis is to utilize effectively the simplicity offered by the order
reduction and simultaneously provide a satisfactory filtering pro­
cess. This method is developed in this section and later in Section
III.

Let us define the following states in region R 2 and R I ,

(5)

Z(k)']', (4)

lO
I w 0

~~lA= .
0;, ~l.-j tf>'j

B{] (6)

X(k) =AX(k-1)+BU(k)

where

X(k) = [Z(k-L+1)' Z(k-L+2)'

Then the state equation becomes

and I W represents an identity matrix of order W. Due to strong­
weak coupling effects in the vector AR model (1), the above
system can be represented in a singularly perturbed form.

If the support region R of this model is partitioned into two
subsets R I and R 2 (see Fig. 1) associated with the strong and
weak correlation areas, respectively, the following perturbed AR
model can be written for the process.

where Qu is the covariance matrix of the error vector U(k) and
8(1) represents the Kronecker delta function. It is interesting to
note that although U( k) is vectorially an uncorrelated process,
the elements within each vector are mutually correlated. This fact
has been shown in [11],

A state space model for the image process can be obtained by
defining a vector X( k) as
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and

£Al2

c4321

£A22

£.4)22

o

where

where the dominant slow eigenvalues are approximated by those
of A)l and the fast ones by £A)4' Note that this partitioning can
always be accomplished by separating the blur dynamics into
slow and fast groups with a time scale separation proportional to
that of the image process dynamics. If the blur dynamics is all
slow (or fast) then matrix A) will only contain block A)l (or
£A)4)' Having decomposed A) as such, X) will also be parti­
tioned into slow and fast parts, i.e., [Xjs Xj!Y resulting in the
following composite dynamic model:

Note that the above composite dynamic equation clearly indi­
cates that the state vector associated with the blur, i.e., X) is
evaluated one step ahead in each stage. In the Kalman filtering
equations this part leads to one-step prediction estimates whereas
for the other state vectors, i.e., Xl and X2 the filtered estimates
will be computed. In what follows we make use of the singular
perturbation technique to obtain reduced order subsystems for
the above composite dynamic model.

III. MODEL REDUCTION USING SINGULAR PERTURBATION

As pointed out earlier the dynamic equation for the image
process is already in singularly perturbed form due to the strong­
weak coupling in the vector AR model. The perturbation parame­
ter £ is estimated using (8). Now let us assume that the matrix A)
in the blur model can also be decomposed into

A) = [~:: :~::]
and further C) is given by

Note that the states associated with the strong correlation area
are named as "slow states" as they lead to the slow dynamics of
the system whereas those corresponding to the weak correlation
area are named as "fast states" since they relate to the fast
dynamics of the system [8]. The state-space model in (10) is now
in the standard singularly perturbed form. Using the singular
perturbation technique this dynamic system can be decomposed
into reduced order subsystems. The main crux of the singular
perturbation analysis lies in the fact that the reduced order
subsystems incorporate the effects of those weakly correlated
pixels in region R 2 that are normally ignored to avoid having a
large order model. In Section III we shall describe how these
subsystems can be derived.

The image generated by the process (10) passes through a
degradation process which blurs the image with an LSI blur
having an infinite extent point spread function (PSF) and also
adds a WG noise to the blurred image. In [2] the LSI blur is
modeled in each strip by a I-D state-space equation of form:

X)(k+l) =A)X)(k)+B)Z(k)

Y(k)=C)X)(k)+D)Z(k)+V(k) (11)

where the state vector X) (k) consists of two parts which propa­
gate vertically during the interstrip recursion and horizontally
during the intrastrip recursion [2], respectively; Y(k) represents a
column of the degraded image and V( k) is a W X 1 vector
consisting of WG additive noise elements with zero mean and
variance IJv

2• The composite dynamic model can then be obtained
by combining (10) and (11) to give

X(k) =AX(k-l)+BU(k)

Y(k) = CX,(k) + V(k) (12)

where

where The output equation is given by

[AU £Al2

~l B-[ZJA = ~2l £A22

A)l (4)2 A)

C= [D)Cl 0 C)] (13)

[ X,(k) ] [X'(k)]
X(k) ~ X2(k) ; X,(k) ~ X2(k) (14)

X)(k+l) X)(k)

and
- "- - "-A)l = B)ClAll; A)2 = B)ClAl2

- "- (IS)B) = B)ClB I .

Taking into account (16a), this output equation can be rewritten
as
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where

Cll~[D3CIAll C31]

Cn ~ [(D3CIAI2 ell]

D~ D3CIBI •

(17b)

(17c)

(17d)

A computationally efficient iterative technique for obtaining the
solutions of (21) and (22) is suggested in [10] which gives the
following results. (It is assumed that 1;1 is non-singular.)

Lk+ 1= (A22Lk + Lk1;2Lk - A21)1;i l

(25a)

Let us denote
Mk+ 1= ~J:I( 1;2LkMk + Mk( A22+ Lk1;2) - 1;2)'

(25b)

To obtain low order models it is assumed that the magnitude of
the stable fast eigenvalues go to zero, thus all the fast modes are
assumed to decay instantaneously. This is analogous to approxi­
mating all the fast eigenvalues as "deadbeat." For system (23),
this means approximating the groups of fast eigenvalues that arc
clustered within an O( e) radius of the origin of the unit circle as
zero eigenvalues. Thus XI (k) = 0, which reduces (20b) to

XI ( k) = - LXs( k) +( I - ML) XI ( k) = - LXs( k)

Then (16a) and (17a) become \;/k> O. (26)

(28a)

(27a)

(27b)Xl(k) = -LXsO(k).

XsO(k) = 1; lXsO(k-1) + BP(k)

XsO(O) = Xs(O)

XsO(O) = Xs(O) = Xs(O)

Applying the above expressions for all k, our reduced order
model in the original coordinate system becomes

Note that (27b) may differ from the actual XI(k) states for some
values of k = 0 to k = (say k*). However, since all the fast modes
are stable in this analysis Xl(k) will indeed converge to XI(k)
after some k > O.

The uncorrected slow subsystem is obtained from (27a) by
formally setting (= 0, that is

and the fast states in the original coordinate system appear only
as quasi-steady-state function of Xs , i.e.,

= (1;:1 + ~2~11;J:l )Xs°(k -1)

+(( I - 1;J:I~2A21~J:I )BI + 1;J:11;2B2)U(k) (29a)

° ) (- - ) °Xs (k = All-Al2 LO Xs (k-1)

+((1 - MILo)BI - MIB2) U(k)

More improved result is obtained by keeping O(c) terms only, i.e.,
setting (2 and higher order terms in ( to zero and by letting
L = Lo and M = M 1 in the state equation and L = L I in the
output equation. This yields the first-order "corrected slow"
subsystem as

(20a)

(19a)

(19b)

(20b)

_M][Xs(k)]
I X/(k)

~2 ][Xs(k -1)] + [~I ]U(k)
A 22 XI ( k - 1) B2

- J[Xs (k - 1) ] -
C22 X

/(k-1)
+DU(k)+V(k).

[
Xs( k) ] [I M] [ Xs( k) ]
X/(k) = -L I-LM XI(k)

Y( k) = [Cll

or

where matrices L and M satisfy the following [9]:

L~I + A21- L~2L - ~2L = 0 (Riccati-type equation) (21)

~IM+ 1;2- ML1;2 - MA22 - 1;2LM= 0

(Lyapunov-type equation). (22)

Using the above transformation, system (19) is transformed into

It is easily seen that the eigenvalues of 1;1 are the union of those
of All and A 31 which are slow and the eigenvalues of A22 are the
union of those of (A 22 and (A 34 which are fast, i.e., the compos­
ite dynamic model is also in the standard singularly perturbed
form. To obtain the decoupled slow and fast subsystems, let us
define the following block diagonalizing transformation [9].
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Fig. 2. Original "Mona Lisa" image. Fig. 3. Blurred and noisy image (T = 0.8 and SNR = 10 dB).

This process can be continued to obtain more accurate slow gain matrix, and the matrices A, B, (; are defined by
subsystems. For most practical applications prescribed error
bounds are obtained after 3 or 4 iterations of L and M. In A£(~1-~2L'-1) (32a)
general, let us assume that the relevant accuracy is achieved after
"I" iterations, thus we have B £ ((1 - ~L,)Bl - ~B2) (32b)

is used. The blur factor T is chosen to be 0.8. The PSF has been
realized by the following separable 2-D state-space model [6].

R( m +1, n) = e-TR( m, n) + e-TS( m, n) + z( m, n)

S(m,n+1) =e-TS(m,n)+z(m,n)

y(m,n) =e-TR(m,n)+e-TS(m,n)+z(m,n) (34)

V. IMPLEMENTATION AND RESULTS

The proposed scheme is implemented on a VAX 11/780
computer to restore the "Mona Lisa" image corrupted by both
additive WG noise and LSI blur. Fig. 2 shows the original Mona
Lisa image having a resolution of 512X 512 pixels and 256 grey
levels. The image is first blurred and then corrupted by additive
WG noise to achieve a SNR of 10 dB. Fig. 3 shows the corrupted
image which is used as the input to our restoration filter. LSI blur
with separable PSF of form

(33)

(32c)

(m,n) >0

where R(m, n), S(m, n), z(m, n), and y(m, n) are respectively
the vertical state vector, the horizontal state vector, the original
uncorrupted image and the degraded image. The model in (34)
can be arranged into a 1-D strip state-space structure like that in
(11) with intrastrip and interstrip propagation characteristics [2].
The blur model matrices A3, B3, C;, and D3 in (11) can be
formed using [2, eq. (57)].

The image model can be generated by computing the correla­
tion matrices in each strip of width W = 8 and then solving a
vector Yule-Walker equation. Since the image is assumed to be
column wide-sense stationary in every strip, using the ergodicity
property reasonable estimates of the correlation matrices can be
evaluated using

The fast states are obtained from (27b). For the uncorrected case
XJ(k) = - LoXso(k), and for the corrected case XJ(k) =
- L,Xso(k).

XsO(k) =AisO(k-l) (31a)

K(k) = [AP(k-l){;t+BQuDt]

.[(;P(k-l){;t+DQuDt+CJv2Irl (31b)

i so(k) = XsO( k) + K( k) [ Y( k) - (;is°(k -1)] (31c)

P(k) = AP(k -1)Ai + BQuBt - K(k)

X [(;P( k -1)At + DQuBt] (31d)

IV. KALMAN FILTER EQUATIONS

Having derived the corrected slow subsystem, the problem of
constructing Kalman filter for the full order system in (19) has
now been reduced to that of constructing a Kalman filter for this
subsystem.

Note that the slow state Xso(k) in (30) consists of two parts
associated with the image, i.e., X?(k), and the blur, i.e.,
X3~(k + 1). Thus, the conditional mean estimate of X1o(k) given
the observation vectors up to Y( k) gives the "filtered estimates"
of the image whereas the conditional mean estimate of X3~(k +1)
based upon these observation vectors leads to "one-step predic­
tion estimates." Now taking into account the above facts and
considering the presence of the feedthrough term with gain D,
the Kalman filter equations for theD model in (30) are derived
to be

XsO(k) = (~l - ~2L'_1)XsO(k -1)

+((1 - M,L'_1)B1- ~B2)U(k) (30a)

XsO(O) = Xs(O)

Y(k) = (ell - ~2L, )Xs°(k -1) + DU(k) +V(k). (30b)

where Xso(k) and Xso(k) are, respectively, the a priori (before
updating) and the a posteriori (after updating) estimates of
Xso(k), P(k) is the error covariance matrix, K(k) is the Kalman

1 N-l

Pi £ E[Z(k - i)Zt(k)] = (N _ i) k2:.; Z(k - i)Zt(k). (35)



IEEE TRANSACTIONS ON CIRCillTS AND SYSTEMS, VOL. 37, No.2, FEBRUARY 1990 289

Fig. 4. Processed image using the reduced order strip Kalman filter (SNR = Fig. 6. Processed image using uncorrected reduced order model (SNR =16.6 dB).
14.3 dB).

= 0.58164.

Fig. 5. Processed image using the full order strip Kalman filter (SNR ~
17.7 dB).

VI. CONCLUSIONS

The time-scale property of an image processing system is
effectively utilized for the decomposition-aggregation of the sys­
tem into reduced order models. Although the results are stated
for a separation in two time-scales, they can be extended to
image processing systems with multiple time-scales using a nested
application of decomposition-aggregation transformations. For

method for calculating e. Note that since £ > e: T (T = 0.8), all
the blur state variables are associated with the fast dynamics.
Thus, the reduced order model which contains only the slow state
variables, will be of size 8 corresponding to image states. Interest­
ingly, this reduced order model closely captures the dynamics of
the full order system. The Riccati and Lyapunov equations (25a)
and (25b) are solved iteratively and the prescribed error bound
(£5) is achieved in each strip after less than 10 iterations. The
relevant values of L, and ~ are then used in (30) to yield the
corrected reduced order subsystem which is used in (31) for the
filtering process. Note that (31b) and (31d) can be implemented
off-line in each strip to compute the steady-state Kalman gain
matrix needed for filtering process in (31a) and (31c). Fig. 4
shows the result of applying the reduced order strip Kalman
filtering in (31) to the degraded image in Fig. 3. The SNR of this
image is measured to be 16.6 dB. The CPU time for the entire
process is approximately 8 min. Fig. 5 shows the result of apply
direct strip Kalman filtering (full order) to the degraded image in
Fig. 3. The SNR of image is found to be 17.7 dB and the CPU
time is approximately 34 min. The comparison between the
processed images indicates that the reduced order model that is
of size 8, with the new matrices obtained through solving the
Riccati and the Lyapunov equations in (25a) and (25b) iteratively
is capable of performing satisfactory filtering and deconvolution.
Note that, in spite of the fact that the blur states do not appear in
the reduced order model, their effects and the aggregated effects
of the other weakly correlated vectors, i.e., Z( k - 2), Z( k - 3),
and Z(k -4) have been taken into account in matrices A, iJ, C,
and D in the reduced order strip Kalman filter equations in (31).
The uncorrected reduced subsystem leads to unsatisfactory result
as shown in Fig. 6. The lines in this image appear as the state
variables associated with the blur (both horizontal and vertical)
are totally ignored in the' uncorrected reduced order subsystems.
The edge effects resulted from ignoring the blur states (mainly
the horizontal ones) are disappeared in the image in Fig. 4, since
the corrected reduced order subsystem contains the aggregated
effects of these states as explained before.

i = 2,3,4

11~411 = 4.59258X 10- 2
•1I~311 = 1.03670x 10- 2

;

These values dictate the decomposition of the system into an
eight-order slow and 33rd-order fast subsystems. The value of the
perturbation parameter £ based on norm criterion is

The eigenvalues of the state matrix in the full order system (16)
are also computed in this strip which confirm the validity of our

A fourth-order (L = 4) vector AR model is fitted to the image
process in every strip and the relevant state-space equation (13)
has been formed. This model is then combined with that of the
blur to yield the full order composite dynamic structure. The
order of this model is 41 (= 4 X 8+ 8+ 1). The norms of the
coefficient matrices ~1' <h, ~, and ~4 are evaluated in all the
strips and the range of variations of the perturbation parameter £
is measured (for M = 1) using (8) to be 0.573325... e ... 0.663886.
However, in order to set up the singularly perturbed model in
(16), the value of e should be determined in each strip. The
norms of matrices ~1' ~2' ~3' and ~4 in a typical strip, say strip
33 where spatial variations exist, are evaluated to be
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I. INTRODUCTION

Recently, some notable attempts have been made to give a
common interpretation to the algorithms for testing the stability
of continuous- and discrete-time linear systems by adopting an
approach based on the theory of pseudo-lossless functions [1) or
an "interpolation" approach (2) or a "synthesis" approach (3).

In this paper, we show that the known stability-test algorithms
for linear systems can be regarded as particular cases of a unique
type of procedure that is capable of generating new stability tests
too. The following treatment refers to the two-term recursive
forms of the classical algorithms and to continuous-time systems,
but the same approach could be used for discrete-time systems as
well. Precisely, by generalizing both the Astrom form of Routh's
algorithm (4) and the s-domain Schur-Cohn type algorithm, we
derive a recursion for generating a polynomial Pi-1 (s) of degree
i-I from a polynomial Pi(s) of degree i and from Pi( - s). It is
then shown that Pi(s) is Hurwitz if and only if Pi_ 1(s) is
Hurwitz and the values of the relevant parameters belong to
suitable ranges. A geometrical interpretation of this property,
based on the well-known root locus method (5), is given, which
provides some insight into the similarities and differences be­
tween the considered procedures.

the relevant reduced order models, new Kalman filtering equa­
tions are given which provide the suboptimal filtered estimates of
the image states and the one-step prediction estimates of the blur
states. The effectiveness of the proposed decomposition-aggrega­
tion method has been demonstrated on a real world image.
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II. GENERAL RECURSIONS

Let us consider the ith degree polynomial:

Pi(s):= L a'.isi
i~O

and decompose it into the sum of its even and odd parts as

where

(1)

(2)

1
Qi,i(S) :="2[Pi(S)+(_1)i p,(-S)] =ai,isi+ai.i~2si~2+...

(3)

and

A Unifying Frame for Stability-Test Algorithms for
Continuous-Time Systems

W. KRAJEWSKI, A. LEPSCHY, G. A. MIAN, AND U. VIARO
According to the standard Routh algorithm, a polynomial

P;-1 (s) of degree i-I is formed as follows:

where

Relation (6b) is nothing but a particular case of the classical
Euclid algorithm and corresponds to dividing Qi,i(S) by Qi,i-l(S)
(6). As shown, e.g., in (4), polynomial P;~I(S) may directly be
expressed in terms of Pi(s) as

(5)

(7)

whose even and odd parts are related to those of Pi(s) via

Qi-l,i~I(S) =Qi,i~I(S) (6a)

Qi-l,i-2( s) = Q"i( s) - qiSQi,i~1 (s) (6b)
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Abstract - A number of stability-test algorithms for linear continuous­
time systems are presented in a unified manner, based on a general
recursive relation for generating a sequence of polynomials of descending
degree. Precisely, each polynomial in the sequence is expressed as a
suitable combination of the "preceding" polynomial of higher degree and
the polynomial with opposite zeros. It is shown how the general recursion
may give rise to the known stability-test algorithms as well as to some
families of new algorithms. The corresponding criteria are proved with the
aid of simple geometrical considerations based on root loci. In this way an
insight is gained into the nature of the different procedures.
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